ESTUDIO COMPARATIVO DEL DISEÑO DE LA ESTRUCTURA DE UNA EDIFICACIÓN TÍPICA APOYADA SOBRE AISLADORES SÍSMICOS Y APOYOS RÍGIDOS.

> ANGIE LIZETH ÑAÑEZ ORTIZ - 505977 SAÚL ANDRÉS HERNÁNDEZ CAGUA - 505976

UNIVERSIDAD CATÓLICA DE COLOMBIA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL MODALIDAD PROYECTO DE GRADO BOGOTÁ, D. C. ABRIL 2019

ESTUDIO COMPARATIVO DEL DISEÑO DE LA ESTRUCTURA DE UNA EDIFI-CACIÓN TÍPICA APOYADA SOBRE AISLADORES SÍSMICOS Y APOYOS RÍGI-DOS.

ANGIE LIZETH ÑAÑEZ ORTIZ- 505977 SAÚL ANDRÉS HERNÁNDEZ CAGUA - 505976

Trabajo de grado para optar el título de Ingeniero civil

DIRECTOR: MARISOL NEMOCÓN RUIZ Ingeniera Civil

UNIVERSIDAD CATÓLICA DE COLOMBIA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA CIVIL MODALIDAD PROYECTO DE GRADO BOGOTÁ, D. C. ABRIL 2019

Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)

Esto es un resumen legible por humanos del <u>Texto Legal (la licencia</u> completa).

Advertencia

Usted es libre de:

Compartir - copiar, distribuir, ejecutar y comunicar públicamente la obra

Bajo las condiciones siguientes:

Atribución — Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).

No Comercial - No puede utilizar esta obra para fines comerciales.

Nota de aceptación:

Ing. Marisol Nemocón Ruiz Director de Investigación

Firma del presidente del Jurado

Firma del Jurado

Bogotá D.C, ABRIL de 2019

DEDICATORIA

El proyecto lo dedicamos a nuestros profesores e ingenieros externos que nos ayudaron y transmitieron su conocimiento logrado a través de la experiencia, a nuestros compañeros y familiares que de una u otra forma nos apoyaron para la ejecución del trabajo.

AGRADECIMIENTOS

Agradecemos primero a Dios por permitirnos culminar este ciclo lleno de aprendizaje y experiencias, y poder cumplir todas nuestras metas.

En el acompañamiento agradecemos al Ingeniero Julio Cesar Martínez, por brindarnos su tiempo y conocimiento en la línea de investigación, como también en la gestión integral de nuestro desarrollo.

À la docente Marisol Nemocón Ruiz que también nos apoyó y brindo de su conocimiento para alcanzar la culminación de esta investigación.

CONTENIDO

LISTADO DE TABLAS	9
LISTADO DE FIGURAS	12
LISTADO DE ECUACIONES	14
INTRODUCCIÓN	15
1 GENERALIDADES	16
	16
1.1 ANTEGEDENTES 1.2 PLANTEAMIENTO DEL PROBLEMA	10
1.2.1 Descripción del problema	17
1 2 2 Formulación del problema	17
1.3 OBJETIVOS	18
1.3.1. Objetivo General.	18
1.3.2. Objetivos Específicos.	18
1.4 JUSTIFICACIÓN	19
1.5 DELIMITACIÓN	20
1.5.1 Espacio.	20
1.5.2 Tiempo.	20
1.5.3 Contenido.	20
1.5.4 Alcance.	20
1.6 MARCO DE REFERENCIA	21
1.6.1 Marco Teórico.	21
1.6.1.1. Desarrollo de los Aisladores Sísmicos.	21
1.6.1.2. Sistemas de Aislamiento en Colombia.	23
1.6.1.3. Conceptos Fundamentales del Sistema de Aislación Sísmica.	25
1.6.1.4. Aisiadores Elastomericos.	28
- Alsiadores Elastomericos de Bajo Amortiguamiento (LDRB).	29
- Alsiadores Elastoméricos Do Alto Amortiguamiento (HDPP)	3U 21
- Aisladores Deslizantes	31 31
- Aisladores Deslizantes Planos	32
- Aisladores De Péndulo Friccional (EPS)	33
1.6.2 Marco Conceptual.	34
1.7 METODOLOGÍA	35
1.7.1 Tipo de estudio.	35
1.7.2 Fuentes de información.	35
1.8 DISEÑO METODOLÓGICO	35
1.8.1 Fases de la investigación	36
2. ANÁLISIS DE LA ESTRUCTURA CON APOYOS EMPOTRADOS EN	SU
BASE38	

2.1 Análisis Fuerza Horizontal Equivalente.	38
2.1.1. Características de la Estructura y Materiales.	38
2.1.2. Avaluó de Cargas.	38
2.1.3. Nivel de amenaza Sísmica.	40
2.1.4. Movimientos Sísmicos de Diseño (Espectro de Diseño).	42
2.1.5. Determinación de las Fuerzas Sísmicas.	43
2.1.6. Periodo Fundamental de la Estructura.	44
2.1.7. Torsión.	47
2.1.8. Umbral de Daños.	58
2.2 Análisis Dinámico.	70
3. ANALISIS DE LA ESTRUCTURA CON AISLADORES SISMICO.	72
3.1. Selección del Aislador Sísmico.	72
3.2. Entrada de Datos.	78
3.3. Implementación del Sistema de Aislación en la Estructura.	82
3.4. Análisis del Comportamiento de la Estructura.	83
4. ANALISIS COMPARATIVO DE LOS RESULTADOS.	87
5. CONCLUSIONES.	90
BIBLIOGRAFÍA	91
ANEXOS.	93

LISTADO DE TABLAS

	Pág.
Tabla 1.Avalúo de Cargas de Entrepiso-Piso 1.	38
Tabla 2.Avaluó de Cargas de Entrepiso-Piso Tipo.	39
Tabla 3.Avaluó de Cargas de Entrepiso-Cubierta.	39
Tabla 4. Valor de Aa y de Av para capitales del departamento .	40
Tabla 5. Valores Aa y Av aplicados al Proyecto.	40
Tabla 6. Coeficiente Fa para la zona de periodos cortos de espectro.	41
Tabla 7. Coeficiente Fv para la zona de periodos intermedios de espectro.	41
Tabla 8. Valores asignados Fa y Fv para el proyecto.	41
Tabla 9. Valores de los parámetros Ct y α para el cálculo del periodo.	42
Tabla 10. Masas de la Estructura.	43
Tabla 11. Fuerza Horizontal Equivalente.	44
Tabla 12. Periodo Fundamental Tx.	44
Tabla 13. Periodo Fundamental Ty.	45
Tabla 14. Valores para Fsx	45
Tabla 15. Fuerza Horizontal Equivalente en X.	45
Tabla 16. Valores para Fsy.	46
Tabla 17. Fuerza Horizontal Equivalente en Y.	46
Tabla 18. Torsión Accidental en Eje X.	46
Tabla 19. Torsión Accidental en Eje Y.	47
Tabla 20. Combinaciones para verificar Derivas.	47
Tabla 21. Irregularidad Torsional Modo 1 (X).	47
Tabla 22. Irregularidad Torsional Modo 2 (X).	49
Tabla 23. Irregularidad Torsional Modo 3 (X).	50
Tabla 24. Irregularidad Torsional Modo 4 (X).	51
Tabla 25. Irregularidad Torsional Modo 5 (Y).	53
Tabla 26. Irregularidad Torsional Modo 6 (Y).	54
Tabla 27. Irregularidad Torsional Modo 7 (Y).	55
Tabla 28. Irregularidad Torsional Modo 8 (Y).	57

Tabla 29. Valores de Ad para las ciudades capitales de departamento.	58
Tabla 30. valores asignados para Umbral de Daño.	59
Tabla 31.Valores asignados para umbral de daños Tx.	59
Tabla 32. Fuerza horizontal Equivalente en X, para umbral de daño.	60
Tabla 33.Valores asignados para umbral de daños Ty.	60
Tabla 34.Fuerza horizontal Equivalente en Y, para umbral de daño.	60
Tabla 35. Torsión Accidental para Umbral de Daño en X.	61
Tabla 36. Torsión Accidental para Umbral de Daño en Y.	61
Tabla 37. Derivas máximas para el umbral de Daño como porcentaje de h _{pi} .	61
Tabla 38. Análisis de derivas Umbral de Daño, Modo 1 (X).	62
Tabla 39.Análisis de derivas Umbral de Daño, Modo 2 (X).	63
Tabla 40.Análisis de derivas Umbral de Daño, Modo 3 (X).	64
Tabla 41.Análisis de derivas Umbral de Daño, Modo 4 (X).	65
Tabla 42.Análisis de derivas Umbral de Daño, Modo 5 (Y).	66
Tabla 43.Análisis de derivas Umbral de Daño, Modo 6 (Y).	67
Tabla 44.Análisis de derivas Umbral de Daño, Modo 7 (Y).	68
Tabla 45.Análisis de derivas Umbral de Daño, Modo 8 (Y).	69
Tabla 46. Derivas máximas como porcentaje de hpi.	70
Tabla 47. Derivas en el Principales Modo de Vibracion X.	70
Tabla 48.Derivas en el Principales Modo de Vibracion Y.	71
Tabla 49. Cortante Basal Estructura Empotrada.	71
Tabla 50. Combinacion de carga.	72
Tabla 51. Fuerza Axial AIS1.	72
Tabla 52. Fuerza Axial para AIS2.	73
Tabla 53. Fuerza Axial para AIS3.	74
Tabla 54. Fuerza Axial para AIS4.	75
Tabla 55. Fuerza Axial para AIS5.	76
Tabla 56.Valor máximo de carga axial en los apoyos.	77
Tabla 57. Propiedades Técnicas del Aislador.	78
Tabla 58. Porpiedades de los aisladores a implementar.	80

Tabla 59. Aisladores Seleccionados.	81
Tabla 60. Derivas en los 3 Principales Modos de Vibraciones X.	84
Tabla 61. Derivas en los 3 Principales Modos de Vibraciones Y.	84
Tabla 62. Cortante Basal con Aisladores Sismicos.	84
Tabla 63. Comparación del Cortante Basal.	88

LISTADO DE FIGURAS

Pág.
Figura 1. Puentes la Estampilla – Manizales23
Figura 2. Aisladores utilizados en las pilas23
Figura 3.Viaducto Helicoidal - Entre Dosquebradas y Santa Rosa24
Figura 4. Aisladores en pila del Viaducto Helicoidal24
Figura 5. Aceleración y desplazamiento de la estructura
Figura 6. Impacto de Alargamiento de periodo obtenido por aislamiento sísmico en
aceleraciones, (a) Espectro de respuesta de aceleración, (b) Espectro de
respuesta de desplazamientos de una estructura27
Figura 7. Respuesta de aceleración y desplazamiento, espectro para aumentar la
amortiguación. (a) Aceleración RS, (b) Desplazamiento RS
Figura 8. Diagrama que muestra varios tipos de aisladores
Figura 9. Partes de un Aislador Elastómero29
Figura 10. Aislador tipo LDRB
Figura 11. Aislador tipo LRB
Figura 12. Aislador de Alto Amortiguamiento
Figura 13.Aislador deslizante, o friccional32
Figura 14. Aislador deslizante plano
Figura 15. Aisladores de Péndulo Friccional33
Figura 16.Diseño Metodológico
Figura 17.Espectro de Diseño42
Figura 18.Espectro umbral de daño59
Figura 19. Lazo de Histeresis
Figura 20. Localización de Aisladores Sísmicos81
Figura 21. Propiedades de diseño NLink82
Figura 22. Disposicion de Aisladores Sismicos en la Estructura
Figura 23. Detalle elemento tipo LINK
Figura 24. Deformaciones presentadas en el Modelo con Aisladores85
Figura 25. Deformaciones presentadas en el Modelo empotrada en la base 86

Figura 26. Desplazamiento de estructura empotrada en la base	. 86
Figura 27. Desplazamiento de estructura con aisladores	. 87
Figura 28. Derivas en Estructura Empotrada	. 89
Figura 29. Derivas en Estructura Aislada	. 89

LISTADO DE ECUACIONES

Pág.

Ecuación 1. Periodo Fundamental de la Estructura	
Ecuación 2. Ecuación de Cortante Sísmico en la Base	43
Ecuación 3. Exponente relacionado con el periodo fundamental	43
Ecuación 4. Periodo Fundamental	44
Ecuación 5. Rigidez Efectiva	79
Ecuación 6.Desplazamiento de transición	79
Ecuación 7. Fuerza de Fluencia	79
Ecuación 8. Rigidez Inicial	79

INTRODUCCIÓN

Se ha evidenciado a través del tiempo, eventos sísmicos de diferentes magnitudes, que al momento de presentarse generan daños sobre las construcciones, causando desgastes en los materiales y daños en elementos. Por lo tanto, desde el punto de vista tecnológico e industrial se ha buscado la forma en la cual se puedan mitigar los efectos de los movimientos sísmicos sobre las estructuras. Creando sistemas de aislación que disipen la energía del sismo y reduzcan su impacto en la estructura.

El objetivo de realizar esta investigación es elaborar una modelación numérica de una estructura apoyada en el Software de análisis y diseño estructural ETABS 2016, que permita observar el comportamiento de la estructura al momento de un sismo, y paralelo al mismo modelo, implementar el sistema de aislación sísmica, con el objetivo de realizar un análisis comparativo entre estos dos modelos y evidenciar la reducción de fuerzas internas y desplazamientos presentados por la estructura, demostrando que el uso del sistema de aislación genera sobre la estructura una mayor capacidad de disipación de energía y mayor resistencia a los daños colaterales.

1. GENERALIDADES

1.1 ANTECEDENTES

Basados en los eventos sísmicos que se han presentado en diferentes países del mundo, se han desarrollado investigaciones y tecnologías fundamentadas en construcciones antiguas que no presentaron daños después de un sismo. Como resultado a los análisis realizados a estas estructuras, se encontraron en las cimentaciones materiales como maderas, algas y ciertos tipos de cimentaciones no convencionales. Luego de caracterizar estos materiales se encontró que, debido a su composición, estos materiales tenían la capacidad de absorber o disipar energía (Kirikov, 1992).

Apoyados en estas investigaciones se crearon sistemas de aislación sísmica, con la finalidad de disipar la energía del sismo, a través de materiales como el caucho, el cual luego de pasar por un proceso de vulcanización desarrolla propiedades elastoméricas, capaces de disipar energía, además se pueden encontrar aisladores con estructura de plomo para otorgar resistencia al sistema y aumentar las capacidades de amortiguamiento (Aislamiento Sismico para Edificaciones y Puentes, 2007).

Uno de los primeros países en utilizar el sistema de aislación sísmica fue Japón, que en 2011 en la ciudad de Tohoku presentó un sismo de grado IX, el cual origino velocidades de hasta 100 cm/s, se evidenció que las estructuras en las que se empleó el sistema de aislación sísmica respondieron de manera positiva evitando el colapso (Moquete, 2012).

El sistema de aislación sísmica se usa con el objetivo de que la estructura no colapse a causa de las fuerzas sísmicas generadas, lo que busca es que la estructura soporte estos esfuerzos y los daños que se presenten no afecten los componentes estructurales (Genatios, y otros, 2016).

1.2 PLANTEAMIENTO DEL PROBLEMA

1.2.1 Descripción del problema.

Es habitual luego de un evento sísmico, que se presente deterioro sobre elementos estructurales que fallan debido a las fuerzas internas generadas por el sismo, lo cual puede llegar a producir que la estructura colapse.

Haciendo frente a esta problemática se han generado a nivel internacional, en países como Japón, Chile, México donde se presentan eventos sísmicos con frecuencia y de magnitudes considerables, sistemas de aislación analizando materiales en estructuras antiguas, que debido a su composición funcionaban como disipadores de energía, ubicados entre la superestructura y la subestructura, de esta manera reduciendo los esfuerzos y desplazamientos transferidos a la estructura y evitando el deterioro de la misma. Con el fin de verificar la utilidad del sistema de aislación se realizarán dos modelos, a los cuales se les evaluarán los desplazamientos y fuerzas internas producidas por los sismos. Este proceso se realizará bajo la normativa NSR-10 (NSR-10, 2010) y el libro Design of seismic isolated structures from theory to practice (Naeim, y otros, 1999).

1.2.2 Formulación del problema.

¿Qué variación se genera en los desplazamientos y fuerzas internas de la estructura al momento de implementar el sistema de aislación sísmica?

1.3 OBJETIVOS

1.3.1. Objetivo General.

Evaluar la resistencia sísmica de una estructura, ya planteada y diseñada bajo la NSR-10, a la cual se le implementará el sistema de aislación sísmica, para un posterior análisis comparativo.

1.3.2. Objetivos Específicos.

>Describir la metodología para llevar a cabo la implementación del sistema de aislación sobre la estructura ya planteada.

>Integrar de manera efectiva el sistema de aislamiento sobre la estructura, relacionando los aspectos técnicos que contempla el sistema.

>Llevar a cabo modelos numéricos, a través de software (ETABS 2016), con el fin de representar la respuesta sísmica de ambas estructuras.

➢Realizar un análisis comparativo de los resultados obtenidos, de la estructura aporticada en concreto reforzado sobre apoyos convencionales vs la estructura agregando el sistema de aislamiento.

>Dar a conocer el comportamiento de una estructura, con la implementación del sistema de aislación sísmica.

1.4 JUSTIFICACIÓN

La investigación se basa en la comparación de desplazamientos y fuerzas internas producidas en una estructura, comparadas con los resultados obtenidos en la misma estructura con el sistema de aislación aplicado en su base, y de este modo obtener más información y considerar el uso de este sistema para futuras estructuras. Este análisis comparativo se realizará con ayuda del software ETABS 2016.

El uso de estos sistemas se justifica, en vista de que Colombia se encuentra ubicado en zona de amenaza sísmica intermedia y alta, asimismo que en las últimas décadas se han presentado eventos sísmicos de magnitudes considerables, como el ocurrido el Armenia en 1999, evento que generó innumerables pérdidas humanas y daños irreparables a estructuras del municipio (AIS, 2010).

Este proyecto adquiere importancia al ser un avance científico que en Latinoamérica se ha comenzado a implementar, no obstante, en Colombia se cuestiona el uso del sistema, debido a la falta de practica y ausencia de información.

1.5 DELIMITACIÓN

1.5.1 Espacio.

La investigación y el desarrollo del proyecto se realizado en las instalaciones de la Universidad Católica de Colombia, en los laboratorios de informática. Y en los equipos de la empresa Julio Martínez Chávez & CIA. Teniendo en cuenta el horario de uso de los equipos y la disponibilidad de tiempo que se tenga para el uso, con el fin de evitar interrupciones.

1.5.2 Tiempo.

El tiempo de elaboración de los modelos estructurales se establece en vista de las correcciones realizadas por el director del proyecto y la aprobación de las investigaciones usadas para determinar las propiedades del sistema de aislación

1.5.3 Contenido.

A lo largo del documento se presentarán los sistemas de aislación sísmica, su clasificación e información general, la implementación a nivel mundial. Se lleva a cabo una descripción general de la edificación sobre la cual se analizarán las fuerzas internas y desplazamientos, y posteriormente se agregará el sistema sísmico sobre la misma estructura con ayuda del software ETABS 2016, y así extraer la información del modelo y realizar el análisis comparativo sobre los resultados obtenidos.

1.5.4 Alcance.

La investigación va dirigida a evaluar el comportamiento de una estructura empleando el sistema de aislación sísmica, el cual contribuye a absorber la energía transmitida por el suelo, y de esta manera que la estructura presente menores desplazamientos y reducir las fuerzas internas en los componentes estructurales.

1.6 MARCO DE REFERENCIA

1.6.1 Marco Teórico.

1.6.1.1. Desarrollo de los Aisladores Sísmicos.

El desarrollo de los aisladores sísmicos dio inicio en 1909 cuando J.A. Calanterients redactó una carta al Director de servicio sísmico de Chile, en la cual, afirmaba que un edificio podía construirse en un país sísmico con total seguridad si es que había una junta entre la base de la estructura y el suelo rellena de un material fino ya fuese arena, mica o talco, que le permitiese deslizarse durante un evento sísmico, esto permitiría que las fuerzas horizontales transmitidas a la estructura se reduzcan y como consecuencia no colapse la edificación (Naeim, y otros, 1999).

Entre 1876 y 1895, el ingeniero John Milne, quien fue maestro de Ingeniería de Minas en la Universidad de Tokio, llevó a cabo varias investigaciones pioneras sobre la sismología, tanto que se le llegó a conocer como el "Padre de la Sismología Moderna", y a lo largo de sus investigaciones realizó varias publicaciones para el diseño de edificios en áreas sísmicamente activas, publicaciones que hasta el día de hoy son válidas, también ejecutó varios experimentos de aislación sísmica, en donde instrumentaba una estructura aislada sísmicamente y la sometía a un movimiento sísmico. En 1885, escribió un reporte sobre su primer experimento a la Asociación Británica de Avance de la Ciencia, en donde describía su primer experimento, en el cual la estructura estaba construida sobre unas esferas de deslizamiento de 10 pulgadas de diámetro, sin embargo, aparentemente el edificio no tenía un buen desempeño a cargas del viento, así que al realizar nuevamente el ensayo determinó que con esferas de un diámetro de 1/4 de pulgada la estructura se volvía estable a cargas de viento (Naeim, y otros, 1999).

La práctica de los aisladores se ha implementado en las construcciones en los últimos 20 años con el desarrollo de los aisladores elastoméricos, mediante unión por vulcanización del caucho a las placas de refuerzo de acero delgadas. Que ha desarrollado que estos elementos sean rígidos verticalmente y que puedan soportar las cargas del edificio, y a su vez, que el edificio se mueva lateralmente bajo un fuerte movimiento del suelo (Naeim, y otros, 1999).

Lo que se busca al momento de implementar estos aisladores sísmicos es a edificios importantes que alberguen equipos sensibles o que sean de un uso importante para la ciudad, afectando directamente las derivas que pueden ocurrir al momento de un sismo. Ya que, las derivas de gran tamaño causan daños a los componentes no estructurales del edificio, y estas derivas se pueden disminuir endureciendo la estructura, pero esto conlleva a que se amplifique el movimiento del suelo por lo que sobre el suelo se generarían aceleraciones más elevadas lo cual puede llevar a hacer colapsar la edificación. Por lo que el mejor método para disminuir estas derivas y conservar la estructura es implementando los aisladores sísmicos, ya que el sistema proporciona la flexibilidad necesaria para los desplazamientos generados por el sismo (Kirikov, 1992).

El sistema de aislamiento, lo que busca es desacoplar el edifico o la estructura de los componentes horizontales, al interponer elementos estructurales con una rigidez horizontal baja entre la estructura y la base. Esto le da a la estructura un comportamiento diferente y mucho menor al que se genera con unas bases fijas y al comportamiento del movimiento del suelo. Este sistema de aislamiento no afecta la energía del terremoto, sino que la desvía a través de la dinámica del sistema (Kelly, 2001).

El primer sistema de aislamiento usado en una estructura fue en 1969, en una escuela de Skopje, Yugoslavia. La escuela Pestalozzi, cuya estructura estaba constituida por tres pisos y había sido construida por ingenieros suizos, esta construcción está aislada por un sistema conocido como aislamiento de base completa 3D. En donde se desarrollaron bloques de goma, que no se encontraban reforzados por completo, por lo que la presión ejercida por el edificio hacía que los aisladores se abultaran hacia los lados. Se usaron unos bloques de vidrio los cuales actuaban como espoletas sísmicas que amenazaban con romperse cuando la carga sísmica ejercida superaba el umbral de diseño. Debido a la rigidez del sistema, el edificio rebotaría sobre los aislamientos y se sacudiría en dos direcciones, al momento en que se presentara el terremoto. Estos apoyos se diseñaron cuando la tecnología de las placas no era ampliamente conocida ni se había desarrollado por completo, este sistema es muy poco probable a que se vuelva a usar en la actualidad (Naeim, y otros, 1999).

Muchos de los sistemas implementados en Nueva Zelanda y Japón, incluyen rodamientos en los aislamientos de baja amortiguación, con algún tipo de amortiguador mecánico, fuera de eso tienen componentes como amortiguadores hidráulicos, barras de acero, bobinas de acero o tapones de plomo dentro de su estructura. Lo cual conlleva a varios inconvenientes, ya que estos amortiguadores requieren conectores mecánicos y mantenimiento de rutina, estos amortiguadores generan un comportamiento no linean en la respuesta del análisis dinámico del edificio.

En comparación Estados Unidos, lo más usado es el aislador con núcleo de plomo, los cuales son rodamientos elastoméricos laminados con uno o más orificios circulares, en donde los tapones de plomo se insertan para agregar mayor amortiguación al sistema de aislamiento. También se han usado estos aislamientos mediante la inclusión de amortiguación en el propio elastómero. En Estados Unidos, Italia, Japón, La República Popular de China e Indonesia han usado aisladores de alta amortiguación, lo cual nos permite concluir que su simplicidad e importancia genera que este principio se extienda rápidamente (Kirikov, 1992). El concepto de aislamiento ha proporcionado una rica fuente de trabajo teórico, tanto en la dinámica del sistema estructural como en la mecánica de los propios aisladores. Este trabajo teórico, ha sido publicado en revistas de ingeniería estructural y de ingeniería sísmica, y ha conducido a implementar normas de diseño para estructuras aisladas (Kirikov, 1992).

1.6.1.2. Sistemas de Aislamiento en Colombia.

El primer proyecto al cual se le implementó del sistema de aislación sísmica en Colombia fue el puente La Estampilla – Manizales en 2008, Figura 1.

Figura 1. Puentes la Estampilla – Manizales

Fuente: El Aislamiento Sísmico de Estructuras. Su Aplicación en Colombia., 2009.

De acuerdo con la información encontrada se utilizaron aisladores de péndulo por fricción, con capacidad de desplazamiento de 0.35 m, y ubicando 2 aisladores por cada pila, y de esta manera cada uno de los puentes se encuentra apoyado sobre 6 aisladores sobre las pilas (Figura 2).

La segunda obra ejecutada con el sistema de aislación sísmica es el viaducto Helicoidal – Entre Dosquebradas y Santa Rosa construida en el año 2010, Figura 3. Figura 3.Viaducto Helicoidal - Entre Dosquebradas y Santa Rosa.

Fuente: El Aislamiento Sísmico de Estructuras. Su Aplicación en Colombia., 2009.

Estructura de la cual habló el diseñador como "Una solución creativa, pero con mucha responsabilidad. Está construido con la técnica de péndulo invertido, sobre unos aisladores sísmicos, que tienen una garantía de 200 años, es decir, el mantenimiento de este puente, en cuanto a los aisladores, será de cero en todo este tiempo" (10). Construcción que el ingeniero bautizó como su hijo más preciado. Se puede visualizar los aisladores entre la base del puente y la pila del viaducto en la Figura 4

Figura 4. Aisladores en pila del Viaducto Helicoidal.

Fuente: El Aislamiento Sísmico de Estructuras. Su Aplicación en Colombia., 2009.

Luego de estas estructuras, se abrieron paso a variedad de posibilidades a contemplar en las construcciones a nivel nacional, continuando con estas metodologías se implementaron en las siguientes estructuras:

- Puente Gualanday-Tolima.
- Clínica Comfandi-Cali.

Dentro de las investigaciones realizadas por la comunidad científica, buscando la ampliación de estas metodologías, se ha llegado a concluir que "Los aisladores sísmicos disipan la energía que es producida por los eventos de sismo, posibilitando el desacoplamiento del edificio con la cimentación, haciendo que en los apoyos inferiores no se produzca acumulación de energía y que en los pisos superiores no aumente la aceleración que causa la deformación del pórtico", a estas investigaciones se han elaborado modelos de simulación de aisladores sísmicos tipo péndulo de fricción, a través de ecuaciones y modelaciones analíticas utilizando el software ETABS 2016, ensayando varios tipos de estructuras buscando los mejores resultados, simulaciones de las cuales se concluyó que "Los modelos experimentales reflejan el comportamiento esperado de una estructura con aislamiento sísmico en su base presentando reducciones hasta en un 300% en los niveles de aceleración. Sin embargo, esta disminución puede variar significativamente dependiendo de la frecuencia de la señal de entrada. No en todos los casos este sistema funcionaría eficientemente" (Antorveza, 2010).

No obstante, se deja claro que es necesario seguir profundizando en este tema debido a la falta de implementación del sistema en las estructuras en el país, lo cual da paso a la investigación efectuada en este proyecto, que busca determinar el efecto generado por un sismo sobre una estructura de uso público la cual va a ser necesaria antes, durante y después de un evento sísmico.

1.6.1.3. Conceptos Fundamentales del Sistema de Aislación Sísmica.

En la actualidad, las estructuras no son ni perfectamente rígidas ni perfectamente flexibles, por lo que la respuesta a los movimientos del suelo se encuentra entre los dos extremos, como se muestra en la Figura 5. Para periodos entre cero e infinito, las aceleraciones y los desplazamientos máximos relativos al suelo son una función del terremoto. (Obando, 2013)

Figura 5. Aceleración y desplazamiento de la estructura.

Para la mayoría de los terremotos, existe un rango de periodos en donde la aceleración generada en la estructura se amplificará más que la aceleración máxima del sismo. Los desplazamientos generalmente no superarán el desplazamiento del terreno máximo, aunque particularmente para sitios de suelo blando y sitios que se encuentren cerca de la falla, no aplicará esta situación (Obando, 2013).

La implementación del sistema de aislación sísmica, aplicara a tres propiedades características, presentadas en la estructura al momento del sismo y cumpliendo con el principio ya mencionado:

- 1. Flexión.
- 2. Amortiguación.
- 3. Rigidez.

Los aisladores reaccionarán de la siguiente forma ante estas propiedades generando:

 Flexibilidad: debido a la flexibilidad adicional, el periodo de la estructura se alargará. Como podemos ver en la Figura 6, se producen reducciones en la fuerza cortante de la base a medida que se alarga el periodo de vibración de la estructura. La medida en que estas fuerzas se reducen depende de la naturaleza del movimiento del terreno y del periodo de la estructura (Valerio, 2015). Figura 6. Impacto de Alargamiento de periodo obtenido por aislamiento sísmico en aceleraciones, (a) Espectro de respuesta de aceleración, (b) Espectro de respuesta de desplazamientos de una estructura.

Fuente: Valerio, 2015.

- 2. Disipación de la energía: la flexibilidad adicional para alargar el periodo de la estructura dará como resultado un desplazamiento relativo a través de la montura flexible. Como se muestra en la Figura 7, en la curva se ve aumentar el desplazamiento al aumentar el periodo. Los grandes desplazamientos se pueden controlar si se introduce una amortiguación adicional en la estructura. Como se muestra en la Figura 7, se ve el efecto suavizado de una amortiguación más alta. Uno de los medios más efectivos para proporcionar un nivel sustancial de amortiguación es mediante la disipación de energía (Valerio, 2015).
- Figura 7. Respuesta de aceleración y desplazamiento, espectro para aumentar la amortiguación. (a) Aceleración RS, (b) Desplazamiento RS.

Fuente: Valerio, 2015.

3. Rigidez bajo cargas laterales bajas: Si bien la flexibilidad lateral es altamente deseable para cargas sísmicas elevadas, claramente no es deseable tener

en un sistema estructural que vibre perceptiblemente bajo cargas que ocurren con frecuencia, como cargas de viento o cargas de frenado.

La implementación del sistema de aislamiento se basa en la suposición de que en el rango de frecuencias medias, durante periodos de aproximadamente 0,5 segundos a 4 segundos, la entrada de energía es una constante, por lo que la velocidad será constante, según los códigos de diseño para una velocidad constante, el desplazamiento es proporcional al periodo (T), y la aceleración será inversamente proporcional al periodo (T).Cumpliendo de esta forma el principio fundamental del sistema de aislamiento, que es modificar la respuesta de la estructura para que el suelo pueda moverse debajo del edificio sin transmitir estos movimientos al interior de la estructura. (Obando, 2013)

Atendiendo a la necesidad de mitigar los efectos sísmicos sobre las estructuras, se han desarrollado varios tipos de aisladores sísmicos, según su composición y estructura, como se muestra en la Figura 8.

Figura 8. Diagrama que muestra varios tipos de aisladores.

Fuente: Seismic isolation in buildings to be a practical reality: behavior of structure and installation technique, 2011.

1.6.1.4. Aisladores Elastoméricos.

Los aisladores elastoméricos, están formados por un conjunto de láminas planas de goma intercaladas por placas planas de acero, adheridas a la goma durante un

proceso de vulcanización, por lo general presentan una sección circular o cuadrada y cubierta en su extremo superior e inferior por dos placas de acero, donde se conecta con la superestructura, en su parte superior y con la subestructura en su parte inferior. Las láminas de acero confinan lentamente a la goma haciendo que el aislador tenga una gran rigidez vertical, y a su vez una rigidez horizontal muy baja, permitiendo el desplazamiento horizontal de la estructura en relación al suelo. La rigidez vertical del sistema es comparable con la rigidez vertical de una columna de hormigón armado. El comportamiento de los aisladores elastómeros depende de la amplitud de la deformación a la que son sometidos, en menor grado de la temperatura, el envejecimiento y la frecuencia del movimiento (Nitsche, 2018).

Figura 9. Partes de un Aislador Elastómero.

Fuente: Aislamiento Sismico para Edificaciones y Puentes, 2007.

- Aisladores Elastoméricos de Bajo Amortiguamiento (LDRB).

Estos dispositivos son los más simples dentro de los aisladores elastoméricos. Los aisladores tipo LDRB (Figura 10), presentan bajo amortiguamiento (2-5% como máximo) por lo que generalmente se utilizan en conjunto con disipadores de energía que proveen amortiguamiento adicional al sistema.

Las ventajas que otorgan este tipo de aisladores de bajo amortiguamiento son: la fácil manufactura, modelado simple, y la temperatura y el envejecimiento no afecta sus propiedades mecánicas. Su única desventaja es que generalmente se instalan acompañados de algún otro sistema de amortiguamiento adicional con el fin de complementar la absorción de energía (Seismic isolation in buildings to be a practical reality: behavior of structure and installation technique, 2011).

Figura 10. Aislador tipo LDRB.

Fuente: Grupo Vikingo.

- Aisladores Elastoméricos con Núcleo De Plomo (LRB)

Estos aisladores con núcleo de plomo son aisladores similares a los LDRB (Figura 11), pero poseen un núcleo de plomo, ubicado al centro del aislador que permite aumentar el nivel de amortiguamiento del sistema hasta niveles cercanos al 25-30%. Ya que, al deformarse lateralmente el aislador durante la acción de un sismo, el núcleo de plomo fluye, incurriendo en deformaciones plásticas y disipando energía en forma de calor. Al término de la acción sísmica, la goma del aislador retorna la estructura a su posición original, mientras el núcleo de plomo se recristaliza.

La rigidez inicial y el amortiguamiento efectivo del aislador dependen del desplazamiento al cual sea ejercido el aislador sísmico (Grupo Vikingo).

Figura 11. Aislador tipo LRB

Fuente: Grupo Vikingo.

- Aisladores Elastoméricos De Alto Amortiguamiento (HDRB)

Los aisladores elastoméricos de alto amortiguamiento, cuyas láminas de elastómero son fabricados complementando su estructura con elementos como carbón, aceites y resinas con el fin de aumentar el amortiguamiento de la goma hasta niveles cercanos al 10-15%. El comportamiento del material se presenta no lineal para tensiones de cortante, inferiores a 20%, y se caracteriza por una alta rigidez y amortiguamiento, lo que tiende a minimizar la respuesta bajo acciones de viento y sismos de pequeña magnitud. Sobre el rango de 20-120% de tensión de cortante, el módulo se torna bajo y constante (Uso de los Aisladores de Base en Puentes de Concreto Simplemente Apoyados, 2012).

La relación de la deformación lateral entre el espesor de la lámina de caucho alcanza niveles de hasta 300%.

Estos aisladores a comparación de los LDRB (Figura 12), presentan mayor sensibilidad a cambios de temperatura y frecuencia, pero a su vez los aisladores HDRB presentan mayor rigidez para los primeros ciclos de carga, y que posteriormente en el tercer ciclo de carga se logra estabilizar (Naeim, y otros, 1999).

Figura 12. Aislador de Alto Amortiguamiento.

Fuente: TecnoAv.

- Aisladores Deslizantes.

Los aisladores deslizantes (Figura 13), utilizan una superficie de deslizamiento típicamente de acero inoxidable, sobre la que se desliza una placa de acero revestida de Poli tetra Fluoruro Etileno (PTFE), sobre la que se soporta la estructura. La superficie de deslizamiento permite el movimiento horizontal de la estructura de manera independiente del suelo. Este sistema disipa la energía por medio de las fuerzas de rozamiento que se generan durante un sismo (Doshin Rubber Engineering).

Estos sistemas requieren de un mayor mantenimiento y cuidado, ya que cualquier modificación en las superficies deslizantes puede resultar en un coeficiente de fricción distinto al esperando por el diseño (CDV Ingenieria Sismica).

El coeficiente de fricción del aislador dependerá de cierta variedad de coeficientes relacionados con el entorno en el cual actuará y será instalado el aislador, tales como, la temperatura de trabajo, la presión de contacto, la velocidad de movimiento, el estado de la superficie de contacto, etc.

Figura 13. Aislador deslizante, o friccional.

Fuente: Infraestructura Hospitalaria.

- Aisladores Deslizantes Planos.

Estos aisladores son los más simples, consisten básicamente en dos superficies, una adherida a la superestructura y la otra a la subestructura, posee un bajo coeficiente de fricción, por lo que permite los movimientos horizontales y resistencia a cargas verticales. Estos llevan una capa de material elastoméricos que les facilita el movimiento del deslizador en caso de sismos. Estas superficies deslizantes son de acero inoxidable pulido espejo, y de un material polimérico de baja fricción Figura 14). Este tipo de aisladores generalmente requieren de disipadores y aisladores sísmicos adicionales, con el propósito de que estos regresen la estructura a su posición original luego de un sismo (Naeim, y otros, 1999). Figura 14. Aislador deslizante plano

Fuente: Sismica.

- Aisladores De Péndulo Friccional (FPS).

El aislador FPS (Figura 15), consiste de un deslizador articulado sobre una superficie de acero inoxidable de forma esférica. Las características de estos apoyos constan en la superficie deslizante esférica de acero inoxidable pulido y el deslizador articulado, que está revestido con un material compuesto, de alta capacidad de soporte basado en poli tetra fluoro etileno que tiene un bajo coeficiente de fricción. Los apoyos están sellados e instalados con la superficie deslizante boca abajo, para evitar la contaminación de la interfaz de deslizamiento.

Este es un dispositivo que elimina por completo el efecto de la torsión en la estructura, al ser un elemento que actúa por gravedad, su funcionamiento está prácticamente garantizado (Infraestructura Hospitalaria).

Figura 15. Aisladores de Péndulo Friccional

Fuente: Sismica.

1.6.2 Marco Conceptual.

Podemos observar un listado de definiciones de los términos utilizados en el presente documente, con el fin de otorgar una mayor claridad en la lectura del mismo:

- Aisladores Sísmicos: Sistema diseñado, con el fin de disipar la energía creada por los eventos sísmicos, y que de esta forma la estructura no colapse. (El Aislamiento Sísmico de Estructuras. Su Aplicación en Colombia., 2009)
- Elastómeros: Son polímeros amorfos, es decir que no tienen una forma determinada. Mediante procesos físicos y químicos, los elastómeros son moldeados según las necesidades de la producción. Cuando están a temperatura ambiente, los elastómeros son blandos y fácilmente deformables. (QuimiNet, 2019)
- **Deriva:** Se define como la relación entre el desplazamiento lateral en la parte más alta del edificio, dividido la altura del piso. Este es un factor que permite calcular los desplazamientos laterales máximos de la edificación. (Significados, 2019)
- **Fricción:** Es la fuerza ejercida, por el rozamiento de dos cuerpos, en donde uno de estos cuerpos se encuentra inmóvil.
- **Polímero:** Son macromoléculas formadas por uniones de enlaces covalentes, creando de esta forma largas cadenas moleculares. Ejemplo: Polietileno, poli tetra fluoruro etileno, etc. (Marínez, 1983)
- Amortiguamiento: Es la capacidad que tiene el sistema, de disipar la energía, es decir de recibir, absorber y mitigar la fuerza a la cual es sometido. (Ecultura Group, 2019)
- **Vulcanización:** Es el proceso mediante el cual se calienta el caucho crudo, en presencia de azufre, con el fin de que este se vuelva más duro y resistente. (Mariano, 2012)
- **Carga Muerta:** Carga vertical aplicada sobre una estructura que incluye el peso de la misma estructura más la de los elementos permanentes. También llamada carga permanente, concarga. (N/A, 2019)
- **Carga Viva:** Carga externa movible sobre una estructura, que incluye el peso de la misma junto con el mobiliario, equipamiento, personas, etc, que actúa verticalmente, por lo tanto no incluye la carga eólica, también llamada la carga variable. (N/A, 2019)
- Fuerza Sísmica: Es la acción que un sismo provoca sobre la estructura de un edificio y que deben ser soportadas por esta. Fuerzas transmitidas a través del suelo. (N/A, 2019)
- **Tensión:** es aquella fuerza que, aplicada a un cuerpo elástico, generalmente estas fuerzas son ejercidas buscando la elongación del cuerpo, como por ejemplo cadenas, cables o hilos. (Ecultura Group, 2019)

- **Rigidez:** Esta es la resistencia a las deformaciones elásticas producidas en cierto material, en donde se contempla la capacidad del elemento para so-portar los esfuerzos que se estén aplicando. (Julian Perez Porto, 2010)
- **Cizallamiento:** Deformación lateral que es producida por una fuerza externa, también llamada esfuerzo cortante. (Construmatica, 2018)
- **Péndulo:** Es un sistema físico que puede oscilar bajo la acción gravitatoria u otras características físicas, y que está configurado para una masa suspendida de un punto o de un eje horizontal fijos mediante un hilo, una varilla, y otro dispositivo que sirve para medir el tiempo. (Fisica Conceptual, 2018)

1.7 METODOLOGÍA

1.7.1 Tipo de estudio.

El proyecto se llevó a cabo mediante diferentes métodos de investigación, "el diseño metodológico que se realizó es de tipo experimental" (CATÓLICA s. f.), los cuales abarcaron todo el proyecto para el cumplimiento de los objetivos planteados.

1.7.2 Fuentes de información.

Para llevar a cabo el proyecto se utilizaron diferentes fuentes de información.

>Fuente de información personal: Se consultaron diferentes docentes del área de estructuras de la Universidad Católica de Colombia, también se contó con fuentes de ingenieros de las empresas JULIO MARTÍNEZ CHÁVEZ & CIA LTDA.

>Fuentes de información institucional: La biblioteca de la universidad católica de Colombia nos proporcionó la mayoría de información teórica mediante sus instalaciones físicas y virtuales.

>Fuentes de información documental: Información documental para el desarrollo del proyecto se basó en investigaciones enfocadas en determinar la eficiencia y aplicabilidad del sistema de aislación sísmica a nivel internacional para estructuras de tipo institucional.

1.8 DISEÑO METODOLÓGICO

El proyecto pasó por diferentes etapas las cuales se reflejan en la Figura 16.

Figura 16. Diseño Metodológico.

Fuente: Autores.

1.8.1 Fases de la investigación

➢Fase 1: Se realizó una investigación, recopilando información acerca de las características y funcionamiento, con el fin de conocer e implementar el sistema de aislación, partiendo de información y experiencias a nivel internacional, con el objetivo de adaptar la información y así elaborar prácticas a nivel nacional.

➢Fase 2: Se realizaron dos modelaciones numéricas, la primera modelación será la estructura convencional empotrada en su base y en la segunda modelación se agregará el sistema de aislación sísmica, obteniendo los desplazamientos y fuerzas internas presentadas en las estructuras, estas se evaluarán a condiciones naturales de la zona en donde se encuentran ubicadas.
➢Fase 3: Con los resultados obtenidos se realiza la comparación de las fuerzas internas y desplazamientos presentados en los dos casos, y así mismo se determina que tan factible es el uso del sistema de aislación.

2. ANÁLISIS DE LA ESTRUCTURA CON APOYOS EMPOTRADOS EN SU BASE

2.1 Análisis Fuerza Horizontal Equivalente.

2.1.1. Características de la Estructura y Materiales.

El proyecto se refiere al "CENTRO DE ESPECIALIDADES – ALTHEA", una estructura conformada con 8 placas aéreas aligeradas para un área de construcción de 3,213.73 m², con una altura activa de 26.60 m; se encuentra localizado en la calle 49 No. 1-09 de la ciudad de Tunja, Boyacá. Se anexan los planos estructurales elaborados por la empresa JULIO MARTÍNEZ CHÁVEZ & LTDA, en el -Anexo 1.

Los parámetros de diseño para resistir las cargas verticales y laterales se rigen según NRS-10, por lo tanto, la amenaza sísmica dentro de la cual se encuentra la ciudad de Tunja es intermedia, el proyecto se encuentra clasificado en el grupo de uso IV – edificaciones indispensables. El sistema estructural utilizado es pórticos de concreto reforzado, el material utilizado para el concreto es de f'c= 35.0 MPa y para el acero de refuerzo se tiene Fy=420 MPa.

2.1.2. Avaluó de Cargas.

Los valores relacionados en los avalúos de carga, son los especificados para este proyecto por la empresa JULIO MARTÍNEZ CHÁVEZ & CIA LTDA.

AVALUO DE CARGAS DE ENTREPISO - PISO 1								
Datos de entrada:			_					
H [m]	=	0.50			<u>nn</u> c/15 cr	5.5 MP C	:/15 cm	
ts [m]	=	0.08		8 - 0.15	Vor	0.15	28	
ti [m]	=	0.00					11	
hc [m]	=	0.42						
bv [m]	=	0.15		COR	TE TIPI	CO PLAC	CA	
Sv [m]	=	1.54	L			ESC	4LA 1 + 25	
Plaqueta superior	-	0.08	x	24.00	kN/m³	=	1.92	kN/m ²
Acabados	-	0.05	Х	22.00	kN/m ³	=	1.100	kN/m ²
Cieloraso liviano	-					-	0.294	kN/m ²
Muros y particiones	livianas -	3.10	х	0.370	kN/m³	=	1.147	kN/m ²
Muros y particiones	-	3.10	х	0.140	kN/m³	=	0.434	kN/m²
							2.975	kN/m²
CARGA MUERTA							4.895	kN/m²
CARGA VIVA							4.905	kN/m ²
	DISE	NO PLAC	UET	A SUPER	RIOR			
AVALUO DE	CARGAS							
Peso propio	-					=	1.920	kN/m²
Acabados	-					=	1.100	kN/m ²
Muros y particiones	livianas -					=	1.147	kN/m²
Muros y particiones	-					=	0.434	kN/m ²
CARGA MUERTA							4.601	kN/m ²
CARGA VIVA							4.905	kN/m ²
CARGA TOTAL							9.506	kN/m²
CARGA ULTIMA							12.388	kN/m²

Tabla 1. Avalúo de Cargas de Entrepiso-Piso 1.

Tabla 2. Avaluó de Cargas de Entrepiso-Piso Tipo.

AVALUO DE CARGAS DE ENTREPISO - PISO TIPO								
Datos de entrada:					-4	<u>m</u> m c/15 cm	5.5 mm c/15	cm 000
H [m]	=	0.50			80 - 0.15	Vor.	0.15	
ts [m]	=	0.08			\square			
ti [m]	=	0.00				CODIE 1	1	
hc [m]	=	0.42			COR	TE TIPIO	CO PLACA	_
bv [m]	=	0.15					ESCALA 1 -	25
Sv [m]	=	1.52						
Plaqueta superior	-	0.08	x	24.00	kN/m³	=	1.92	kN/m²
Acabados	-	0.05	х	22.00	kN/m ³	=	1.100	kN/m²
Cieloraso liviano	-					=	0.294	kN/m²
Muros y particiones livianas	-	3.10	х	0.330	kN/m³	=	1.023	kN/m ²
Muros y particiones	-	3.10	х	0.270	kN/m³	=	0.837	kN/m ²
							3.254	kN/m²
CARGA MUERTA							5.174	kN/m²
CARGA VIVA							1.960	kN/m²
	DISE		QUE	TA SUPE	RIOR			
		AVALUO	DE	CARGAS	3			
Peso propio	-					=	1.920	kN/m ²
Acabados	-					=	1.100	kN/m ²
Muros y particiones livianas	-					=	1.023	kN/m ²
Muros y particiones	-					=	0.837	kN/m²
							4 880	kN/m²
							4,000	kN/m2
							9.780	kN/m ²
CARGA ULTIMA							12.716	kN/m ²

Fuente: Autores.

Tabla 3. Avaluó de Cargas de Entrepiso-Cubierta.

Datos de entrada: H [m] = 0.50 ts [m] = 0.08 ti [m] = 0.02 hc [m] = 0.42 bv [m] = 0.42 bv [m] = 1.49 Plaqueta superior - 0.08 x 22.00 kN/m³ = 1.920 kN/m² Acabados - 0.08 x 22.00 kN/m³ = 1.760 kN/m² Muros y particiones livianas - = 0.294 kN/m² Muros y particiones livianas - = 0.490 kN/m² CARGA MUERTA 4.612 kN/m² CARGA VIVA 4.903 kN/m² Muros y particiones livianas - = 1.920 kN/m² Acabados - = 0.147 kN/m² CARGA VIVA 4.612 kN/m² 2.692 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones l	AVALUO DE CARGAS DE ENTREPISO - CUBIERTA								
H [m] = 0.50 ts [m] = 0.08 ti [m] = 0.00 hc [m] = 0.00 bv [m] = 0.42 bv [m] = 0.15 Sv [m] = 1.49 Plaqueta superior - 0.08 x 22.00 kN/m² Acabados - 0.08 x 22.00 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.417 kN/m² CARGA MUERTA 4.612 kN/m² CARGA VIVA 4.903 kN/m² Muros y particiones livianas - = 1.920 kN/m² CARGA VIVA 4.903 kN/m² - 2.692 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas = =	Datos de entrada:				Γ	۲Ľ	<u>6.5 mm</u> c/15 cm	55 nn c/1	5 cm
ts [m] = 0.08 ti [m] = 0.00 hc [m] = 0.42 bv [m] = 0.15 Sv [m] = 1.49 Plaqueta superior - 0.08 x 24.00 kN/m ³ = 1.920 kN/m ² Acabados - 0.08 x 22.00 kN/m ³ = 1.760 kN/m ² Geloraso liviano - = 0.294 kN/m ² Muros y particiones livianas - = 0.490 kN/m ² Muros y particiones livianas - = 0.490 kN/m ² CARGA MUERTA - 4.612 kN/m ² CARGA VIVA - 4.903 kN/m ² Muros y particiones livianas - = 0.147 kN/m ² CARGA MUERTA - 1.760 kN/m ² CARGA VIVA - 1.760 kN/m ² CARGA MUERTA - 1.760 kN/m ² Avaluo DE CARGAS - = 1.920 kN/m ² Acabados - = 1.760 kN/m ² Acabados - = 0.147 kN/m ² CARGA MUERTA - 4.317 kN/m ² CARGA VIVA - 4.903 kN/m ² Muros y particiones livianas - = 0.147 kN/m ² CARGA MUERTA - 4.317 kN/m ² CARGA VIVA - 4.903 kN/m ² CARGA MUERTA - 4.317 kN/m ² CARGA VIVA - 4.903 kN/m ² CARGA VIVA - 4	H [m]	=	0.50			82 F.a.		- 0.15	24
ti [m] = 0.00 hc [m] = 0.42 bv [m] = 0.15 Sv [m] = 1.49 Plaqueta superior - 0.08 x 24.00 kN/m ³ = 1.920 kN/m ² Acabados - 0.08 x 22.00 kN/m ³ = 1.760 kN/m ² Cieloraso liviano - = 0.294 kN/m ² Muros y particiones livianas - = 0.490 kN/m ² Muros y particiones livianas - = 0.490 kN/m ² CARGA MUERTA	ts [m]	=	0.08			11			
hc [m] = 0.42 bv [m] = 0.15 Sv [m] = 1.49 Plaqueta superior - 0.08 x 24.00 kN/m³ = 1.920 kN/m² Acabados - 0.08 x 22.00 kN/m³ = 1.760 kN/m² Cieloraso liviano - = 0.490 kN/m² 4.00 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.490 kN/m² CARGA MUERTA 4.612 kN/m² CARGA VIVA 4.903 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 0.147 kN/m² CARGA MUERTA	ti [m]	=	0.00						
bv [m] = 0.15 Sv [m] = 1.49 Plaqueta superior - 0.08 x 24.00 kN/m³ = 1.920 kN/m² Acabados - 0.08 x 22.00 kN/m³ = 1.760 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.612 kN/m² CARGA VIVA 4.903 kN/m² Muros y particiones livianas - = 1.920 kN/m² CARGA VIVA 4.612 kN/m² 4.612 kN/m² Muros y particiones - = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones livianas - = 0.147 kN/m² CARGA MUERTA <t< td=""><td>hc [m]</td><td>=</td><td>0.42</td><td></td><td></td><td>СП</td><td>CORTE 2</td><td>D PLACA</td><td>、 II</td></t<>	hc [m]	=	0.42			СП	CORTE 2	D PLACA	、 II
Sv [m] = 1.49 Plaqueta superior - 0.08 x 24.00 kN/m³ = 1.920 kN/m² Acabados - 0.08 x 22.00 kN/m³ = 1.760 kN/m² Gieloraso liviano - = 0.294 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones livianas - = 0.147 kN/m² CARGA MUERTA 4.612 kN/m² 2.692 kN/m² CARGA VIVA 4.903 kN/m² 4.903 kN/m² DISEÑO PLAQUETA SUPERIOR = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 1.760 kN/m² CARGA MUERTA - = 0.490 kN/m² Muros y particiones livianas - = 0.147 kN/m² CARGA MUERTA - =	bv [m]	=	0.15		L			ESCALA	1 + 45
Plaqueta superior - 0.08 x 24.00 kN/m³ = 1.920 kN/m² Acabados - 0.08 x 22.00 kN/m³ = 1.760 kN/m² Gieloraso liviano - = 0.294 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.612 kN/m² CARGA VIVA 4.903 kN/m² DISEÑO PLAQUETA SUPERIOR Avaluo DE CARGAS = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² 4.317 kN/m² CARGA VIVA 4.903 kN/m² 4.903 kN/m²	Sv [m]	=	1.49						
Acabados - 0.08 x 22.00 kN/m³ = 1.760 kN/m² Cieloraso liviano - = 0.294 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.612 kN/m² CARGA VIVA 4.903 kN/m² DISEÑO PLAQUETA SUPERIOR - - Acabados - = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 0.490 kN/m² CARGA MUERTA - = 0.147 kN/m² CARGA VIVA 4.317 kN/m² 4.317 kN/m² CARGA VIVA 4.903 kN/m² 4.903 kN/m²	Plaqueta superior	-	0.08	х	24.00	kN/m³	=	1.920	kN/m²
Cieloraso liviano - = 0.294 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.612 kN/m² CARGA VIVA 4.903 kN/m² DISEÑO PLAQUETA SUPERIOR AVALUO DE CARGAS Peso propio - = 1.920 kN/m² Muros y particiones livianas - = 1.920 kN/m² Muros y particiones livianas - = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² 4.317 kN/m² CARGA VIVA 4.903 kN/m² 4.903 kN/m²	Acabados	-	0.08	Х	22.00	kN/m ³	=	1.760	kN/m ²
Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 2.692 kN/m² CARGA VIVA 4.903 kN/m² DISEÑO PLAQUETA SUPERIOR AVALUO DE CARGAS Peso propio - = 1.920 kN/m² Muros y particiones livianas - = 1.760 kN/m² Muros y particiones livianas - = 0.490 kN/m² CARGA MUERTA 4.317 kN/m² KN/m² CARGA MUERTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² CARGA VIVA 4.903 kN/m²	Cieloraso liviano	-					=	0.294	kN/m ²
Muros y particiones - = 0.147 klV/m² CARGA MUERTA 2.692 klV/m² CARGA VIVA 4.903 klV/m² DISEÑO PLAQUETA SUPERIOR AVALUO DE CARGAS Peso propio - = 1.920 klV/m² Muros y particiones livianas - = 1.920 klV/m² Muros y particiones - = 0.490 klV/m² CARGA MUERTA 4.317 klV/m² 4.317 klV/m² CARGA VIVA 4.903 klV/m² 4.903 klV/m²	Muros y particiones livianas	-					=	0.490	kN/m ²
2.692 kN/m² CARGA MUERTA 4.612 kN/m² CARGA VIVA 4.903 kN/m² DISEÑO PLAQUETA SUPERIOR AVALUO DE CARGAS Peso propio - = 1.920 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.490 kN/m² CARGA MUERTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² CARGA VIVA 4.903 kN/m² CARGA VIVA 9.221 kN/m²	Muros y particiones	-					=	0.147	kN/m ²
CARGA MUERTA 4.612 kN/m² CARGA VIVA 4.903 kN/m² DISEÑO PLAQUETA SUPERIOR AVALUO DE CARGAS Peso propio - = 1.920 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² CARGA IOTAL 9.221 kN/m²								2.692	kN/m²
CARGA VIVA 4.903 kN/m² DISEÑO PLAQUETA SUPERIOR AVALUO DE CARGAS - 1.920 kN/m² Acabados - = 1.920 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² cARGA VIVA 4.903 kN/m² CARGA VIVA 4.903 kN/m² 9.221 kN/m²	CARGA MUERTA							4.612	kN/m²
DISEÑO PLAQUETA SUPERIOR AVALUO DE CARGAS Peso propio - = 1.920 kN/m² Acabados - = 1.760 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² CARGA IOTAL 9.221 kN/m²	CARGA VIVA							4.903	kN/m ²
AVALUO DE CARGAS Peso propio - = 1.920 kN/m² Acabados - = 1.760 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² 4.903 kN/m² CARGA VIVA 4.903 kN/m² 9.221 kN/m²		DISE	O PLAQ	UET	A SUPE	RIOR			
Peso propio - = 1.920 kN/m² Acabados - = 1.760 kN/m² Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² CARGA IOTAL 9.221 kN/m²		A	VALUO	DE (CARGAS				
Acabados = 1.760 kN/m² Muros y particiones livianas = 0.490 kN/m² Muros y particiones = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² CARGA TOTAL 9.221 kN/m²	Peso propio	-					=	1.920	kN/m ²
Muros y particiones livianas - = 0.490 kN/m² Muros y particiones - = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² CARGA TOTAL 9.221 kN/m²	Acabados	-					=	1.760	kN/m ²
Muros y particiones = 0.147 kN/m² CARGA MUERTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² CARGA TOTAL 9.221 kN/m²	Muros y particiones livianas	-					=	0.490	kN/m ²
CARGA MUERTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² CARGA IOTAL 9.221 kN/m²	Muros y particiones	-					=	0.147	kN/m ²
CARGA MUEHTA 4.317 kN/m² CARGA VIVA 4.903 kN/m² (CARGA TOTAL 9.221 kN/m²									
CARGA VIVA 4.903 kN/m² CARGA TOTAL 9.221 kN/m²	CARGA MUERTA							4.317	kN/m ²
UARGA TOTAL 9.221 KN/m ²	CARGA VIVA							4.903	kN/m ²
ICARGA ULTIMA 12.046 kN/m ²	CARGA IUTAL							9.221	kN/m ²

2.1.3. Nivel de amenaza Sísmica.

			Zona de	
Ciudad	Aa	Av	Amenaza	
	_	-	Sísmica	
Arauca	0.15	0.15	Intermedia	
Armenia	0.25	0.25	Alta	
Barranquilla	0.10	0.10	Baja	
Bogotá D. C.	0.15	0.20	Intermedia	
Bucaramanga	0.25	0.25	Alta	
Cali	0.25	0.25	Alta	
Cartagena	0.10	0.10	Baja	
Cúcuta	0.35	0.30	Alta	
Florencia	0.20	0.15	Intermedia	
Ibagué	0.20	0.20	Intermedia	
Leticia	0.05	0.05	Baja	
Manizales	0.25	0.25	Alta	
Medellín	0.15	0.20	Intermedia	
Mitú	0.05	0.05	Baja	
Mocoa	0.30	0.25	Alta	
Montería	0.10	0.15	Intermedia	
Neiva	0.25	0.25	Alta	
Pasto	0.25	0.25	Alta	
Pereira	0.25	0.25	Alta	
Popayán	0.25	0.20	Alta	
Puerto Carreño	0.05	0.05	Baja	
Puerto Inírida	0.05	0.05	Baja	
Quibdó	0.35	0.35	Alta	
Riohacha	0.10	0.15	Intermedia	
San Andrés, Isla	0.10	0.10	Baja	
Santa Marta	0.15	0.10	Intermedia	
San José del Guaviare	0.05	0.05	Baja	
Sincelejo	0.10	0.15	Intermedia	
Tunja	0.20	0.20	Intermedia	
Valledupar	0.10	0.10	Baja	
Villavicencio	0.35	0.30	Alta	
Yopal	0.30	0.20	Alta	

Tabla 4. Valor de Aa y de Av para capitales del departamento .

Fuente: NSR-10, 2010.

Según la Tabla 4, se obtienen los valores de la aceleración horizontal (Aa) y el coeficiente de la velocidad horizontal (Av). Que, para la ciudad de Tunja, Boyacá son los indicados en la:

Tabla 5. Valores Aa y Av aplicados al Proyecto.

Aa	Av
0,20	0,20

Basados en estos coeficientes, posteriormente se determina el coeficiente de amplificación que afecta la aceleración en la zona de periodos cortos (Fa) y el coeficiente de amplificación que afecta la aceleración en la zona de periodos intermedios (Fv), con ayuda de la Tabla 6 y Tabla 7:

	Tipo de	Intensidad de los movimientos sísmicos							
	Perfil	$A_a \le 0.1$	$A_{a} = 0.2$	$A_{a} = 0.3$	$A_a = 0.4$	$A_a \ge 0.5$			
1	A	0.8	0.8	0.8	0.8	0.8			
	В	1.0	1.0	1.0	1.0	1.0			
	С	1.2	1.2	1.1	1.0	1.0			
	D	1.6	1.4	1.2	1.1	1.0			
	E	2.5	1.7	1.2	0.9	0.9			
	F	véase nota	véase nota	véase nota	Véase nota	véase nota			

Tabla 6. Coeficiente Fa para la zona de periodos cortos de espectro.

_		-
Fuente:	NSR-10,	2010.

Tabla 7. Coeficiente Fv para la zona de periodos intermedios de espectro.

Tipo de	Intensidad de los movimientos sísmicos							
Perfil	$A_v \le 0.1$	$A_{y} = 0.2$	$A_{y} = 0.3$	$A_{v} = 0.4$	$A_v \ge 0.5$			
A	0.8	0.8	0.8	0.8	0.8			
B	1.0	1.0	1.0	1.0	1.0			
C	1.7	1.6	1.5	1.4	1.3			
D	2.4	2.0	1.8	1.6	1.5			
E	3.5	3.2	2.8	2.4	2.4			
F	véase nota	véase nota	véase nota	Véase nota	véase nota			

Fuente: NSR-10, 2010.

Teniendo en cuenta que el tipo de perfil es D, según el estudio de suelos elaborado por la empresa LÓPEZ HERMANOS LTDA para el proyecto, los coeficientes aplicados a este tipo de suelo se visualizan en la Tabla 8:

Tabla 8. Valores asignados Fa y Fv para el proyecto.

Fa	Fv				
1,4	2,0				
Euonto: Autoros					

2.1.4. Movimientos Sísmicos de Diseño (Espectro de Diseño).

Con los datos anteriores se obtiene el espectro de diseño evidenciado en la Figura 17.

Figura 17. Espectro de Diseño.

Fuente: Autores.

Con el espectro de diseño establecido, se obtiene el periodo fundamental de la estructura (Ta) dado por la Ecuación 1, para posteriormente hallar la aceleración horizontal (Sa) aplicada al proyecto.

$$Ta = Ct * h^{\alpha}$$

Ecuación 1. Periodo Fundamental de la Estructura.

Los valores se toman de la Tabla 9.

Tabla 9. Valores de los parámetros Ct y α para el cálculo del periodo.

Sistema estructural de resistencia sísmica	Ct	α
Pórticos resistentes a momentos de concreto reforzado que resisten la totalidad de las fuerzas sísmicas y que no están limitados o adheridos a componentes más rígidos, estructurales o no estructurales, que limiten los desplazamientos horizontales al verse sometidos a las fuerzas sísmicas.	0.047	0.9
Pórticos resistentes a momentos de acero estructural que resisten la totalidad de las fuerzas sísmicas y que no están limitados o adheridos a componentes más rígidos, estructurales o no estructurales, que limiten los desplazamientos horizontales al verse sometidos a las fuerzas sísmicas.	0.072	0.8
Pórticos arriostrados de acero estructural con diagonales excéntricas restringidas a pandeo.	0.073	0.75
Todos los otros sistemas estructurales basados en muros de rigidez similar o mayor a la de muros de concreto o mampostería	0.049	0.75
Alternativamente, para estructuras que tengan muros estructurales de concreto reforzado o mampostería estructural, pueden emplearse los siguientes parámetros C_t y α , donde C_w se calcula utilizando la ecuación A.4.2-4.	$\frac{0.0062}{\sqrt{C_w}}$	1.00

Fuente: NSR-10, 2010.

El valor del periodo fundamenta de la estructura será.

$$Ta = 0,90 s$$

Mediante el espectro de diseño, con el valor del periodo (Ta), se procede a establecer la aceleración de diseño (Sa).

$$Sa = 0,53 g$$

2.1.5. Determinación de las Fuerzas Sísmicas.

Para el cálculo de las fuerzas sísmicas, se procede a determinar la masa por piso de la edificación. Según la

Tabla 10.

PISO	LOSA (kN)	COLUMNAS (kN)	VIGAS (kN)	∑W	M(mg)		
Cub. Maq.	1519.61	13.44	241.07	450.73	45.946		
6	1427.21	161.04	1254.99	2467.38	251.516		
5	1427.21	599.28	1622.39	3741.27	381.373		
4	1427.21	761.28	1844.24	4032.73	411.083		
3	949.62	761.28	1844.24	4032.73	411.083		
2	1673.65	761.28	1844.24	4032.73	411.083		
Mezanine	1519.61	761.28	1459.63	3170.53	323.194		
1	1427.21	761.28	1757.29	4192.22	427.341		
Fuente: Autores.							

Tabla 10. Masas de la Estructura.

Se calcula el cortante sísmico de diseño en la base de la estructura a través de la Ecuación 2:

$$Vs = Sa * \sum M$$

Ecuación 2. Ecuación de Cortante Sísmico en la Base.

Se elabora antes de la fuerza sísmica, el cálculo del exponente relacionado con el periodo fundamental de la edificación (k).

$$k = 0.75 + 0.5T$$

Ecuación 3. Exponente relacionado con el periodo fundamental.

$$k = 1.2$$

Se procede a calcular la fuerza sísmica aplicada sobre la estructura, como se muestra en la Tabla 11.

PISO	Ni(H)	M(mg)	$M * H^k$	Сvх	Fs(T)	Cor. (Ton)
Cub. Maq.	26.6	45.946	2355.62	4.64%	641.109	641.109
6	22.8	251.516	10717.37	21.09%	2916.851	3557.961
5	19	381.373	13057.33	25.70%	3553.700	7111.660
4	15.2	411.083	10768.18	21.19%	2930.681	10042.341
3	11.4	411.083	7624.58	15.00%	2075.114	12117.455
2	7.6	411.083	4687.12	9.22%	1275.653	13393.108
Mezanine	3.8	323.194	1604.00	3.16%	436.546	13829.653
1	0	427.341	0.00	0.00%	0.000	13829.653
	Σ	2662.621	50814.203			

Tabla 11. Fuerza Horizontal Equivalente.

Fuente: Autores.

2.1.6. Periodo Fundamental de la Estructura.

Por medio de las combinaciones básicas establecidas en la NSR-10 (B.2.4.2), se generan los desplazamientos en X, Y y rotación, para la corrección del cortante basan y obtener el periodo fundamental de la estructura mediante la siguiente ecuación.

Ecuación 4. Periodo Fundamental.

$$T = 2\pi \sqrt{\frac{\sum_{i=1}^{n} (m_i * \delta_i^2)}{\sum_{i=1}^{n} (f_i * \delta_i)}}$$

Se muestran los resultados en las siguientes tablas.

Piso	m	Fx(T)	δχ	m*δx²	Fx*δx
Cub. Maq.	45.95	65.42	0.152	1.059	9.931
6	25.64	297.64	0.145	0.535	43.009
5	38.88	362.62	0.132	0.672	47.685
4	41.90	299.05	0.113	0.534	33.763
3	41.90	211.75	0.088	0.327	18.697
2	41.90	130.17	0.059	0.145	7.667
Mezanine	32.95	44.55	0.026	0.023	1.172
1	43.56	0.00	0.001	0.000	0.000
			Σ	3.295	161.92

Tabla 12. Periodo Fundamental Tx.

Fuente: Autores.

Tx = 0.89 sTabla 13. Periodo Fundamental Ty.

Piso	m	Fy(T)	δy	m*δy²	Fy*δy
Cub. Maq.	45.95	65.419	0.0679	0.212	4.442
6	25.64	297.638	0.0944	0.228	28.097
5	38.88	362.622	0.0721	0.202	26.145
4	41.90	299.049	0.0587	0.144	17.554
3	41.90	211.746	0.0435	0.079	9.211
2	41.90	130.169	0.0276	0.032	3.593
Mezanine	32.95	44.545	0.0102	0.003	0.454
1	43.56	0.000	0.0011	0.000	0.000
			Σ	0.901	89.50
		Fuente: A	utores	-	

Ty = 0.63 s

Con los periodos fundamentales calculados se realiza la corrección del cortante basal y las fuerzas sísmicas.

Tabla 14. Valores para F	sx
--------------------------	----

T (s)	0.89			
Sa (g)	0.53			
К	1.195			
Vsx (Ton) 1411.18912				
Fuente: Autores				

Tabla 15. Fuerza Horizontal Equivalente en X.

PISO	Ni(H)	M(mg)	MxH^k	Cvx	Fsx(Ton)	Cor (Ton)
Cubierta Maq	26.6	45.946	2317.30	4.62%	65.242	65.242
6	22.8	251.516	10551.12	21.05%	297.061	362.303
5	19	381.373	12866.51	25.67%	362.250	724.553
4	15.2	411.083	10622.66	21.19%	299.075	1023.628
3	11.4	411.083	7532.36	15.03%	212.070	1235.698
2	7.6	411.083	4639.83	9.26%	130.632	1366.330
Mezanine	3.8	323.194	1593.33	3.18%	44.859	1411.189
1	0	427.341	0.00	0.00%	0.000	1411.189
	Σ	2662.621	50123.100			

Tabla 16. Valores para Fsy.

- ()				
T (s)	0.63			
Sa (g)	0.7			
К	1.065			
Vsy (Ton) 1863.83469				
Fuente: Autores				

Tabla 17. Fuerza Horizontal Equivalente en Y.

PISO	Ni (H)	M(mg)	MxH^k	Cvx	Fsy(Ton)	Cor(Ton)		
Cubierta Maq	26.6	45.946	1512.68	4.30%	80.176	80.176		
6	22.8	251.516	7026.95	19.98%	372.445	452.621		
5	19	381.373	8774.51	24.95%	465.070	917.691		
4	15.2	411.083	7457.50	21.21%	395.266	1312.956		
3	11.4	411.083	5489.51	15.61%	290.957	1603.914		
2	7.6	411.083	3564.48	10.14%	188.926	1792.840		
Mezanine	3.8	323.194	1339.47	3.81%	70.995	1863.835		
1	0	427.341	0.00	0.00%	0.000	1863.835		
	Σ	2662.621	35165.104					

Fuente: Autores.

Se verifica la torsión accidental de la estructura, a través de la Tabla 18.

PISO	Fsx (Ton)	Long x (m)	ex(m)	MTx (Ton*m)
Cub. Maq.	65.24	10.51	0.53	34.28
6	297.06	31.64	1.58	469.95
5	362.25	31.21	1.56	565.29
4	299.08	31.21	1.56	466.71
3	212.07	31.21	1.56	330.93
2	130.63	31.21	1.56	203.85
Mezanine	44.86	26.31	1.32	59.01
1	0.00	31.21	1.56	0.00

Tabla 18. Torsión Accidental en Eje X.

PISO	Fsy (Ton)	Long y (m)	ey(m)	MTy (Ton*m)			
Cub. Maq.	80.18	5.85	0.29	23.45			
6	372.45	12.29	0.61	228.87			
5	465.07	21.62	1.08	502.74			
4	395.27	21.62	1.08	427.28			
3	290.96	21.62	1.08	314.52			
2	188.93	21.62	1.08	204.23			
Mezanine	71.00	21.62	1.08	76.75			
1	0.00	20.12	1.01	0.00			
	Fuente: Autores.						

Tabla 19. Torsión Accidental en Eje Y.

Con las torsiones accidentales en ambos ejes, se verifican las derivas con las siguientes combinaciones de la Tabla 20.

Eje X	Eje Y
Fsx + Mty	Fsy + Mtx
Fsx – Mty	Fsy – Mtx
-Fsx + Mty	-Fsy + Mtx
-Fsx - Mty	-Fsy - Mtx
	1

Tabla 20. Combinaciones para verificar Derivas.

Fuente: Autores.

2.1.7. Torsión.

Se realiza el chequeo para torsión aplicando los 8 modos de sismo en X y Y respectivamente, para verificar las irregularidades torsionales que se puedan presentar.

	Tabla 21.	Irregularidad	Torsional	Modo 1	(X).
--	-----------	---------------	-----------	--------	------

	MODO 1 (X)						
	PISO Cub. Maq.						
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)					
21	7.495	0.260					
15	7.939	9.260					
23	7.603	0 427					
17	8.109	9.427					

Tabla 21 (Continuación).

	PISO 6				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	12.726	16 17/			
12	14.231	10.174			
30	12.798	16 187	NO IRREGUI ARIDAD		
17	14.180	10.107			
		PISO 5			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	19.311	23.526	NO IRREGULARIDAD		
12	19.899				
30	19.327	23.827	NO IRREGUI ARIDAD		
5	20.384	20.021			
		PISO 4			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	25.650	31.167	NO IRREGULARIDAD		
12	26.295	••			
30	25.666	31,496	NO IRREGULARIDAD		
5	26.828				
		PISO 3			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	30.687	37.302	NO IRREGULARIDAD		
12	31.482				
30	30.698	37.698	NO IRREGULARIDAD		
5	32.132	51000			
NODO		PISO 2			
NODO	SISMO X (mm)	1.2^((Δ1+Δ2)/2)			
25	33.444	40.584	NO IRREGULARIDAD		
12	34.195				
30	33.454	40.956	NO IRREGULARIDAD		
5	34.806				
		$1.2^{\circ}((\Delta 1 + \Delta 2)/2)$			
25	22.090	26.870	NO IRREGULARIDAD		
12	22.094				
30 F	22.091	27.161	NO IRREGULARIDAD		
5	23.177				

MODO 2 (X)				
		PISO Cub. Maq.		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
21	7.957	0.256		
15	7.469	9.250	NO IRREGULARIDAD	
23	7.928	0.255		
17	7.497	9.255	NO IRREGULARIDAD	
		PISO 6		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
25	13.689	16 200		
12	13.310	10.200		
30	13.636	16 15/		
17	13.286	10.154	NO IRREGULARIDAD	
		PISO 5		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
25	21.115	24 330		
12	19.450	24.339		
30	20.841	22 102		
5	17.814	23.193		
		PISO 4		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
25	27.735	22.155		
12	25.856	32.155	INO IKKEGULAKIDAD	
30	27.447	28 620		
5	20.253	20.020	NO IRREGULARIDAD	
		PISO 3		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
25	32.873	20 21 1		
12	30.979	30.311		
30	32.603	10.061		
5	34.165	40.001	NO IRREGULARIDAD	
		PISO 2		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
25	35.443	11 502		
12	33.727	41.302		
30	35.220	40.404	NO IRREGULARIDAD	

Tabla 22. Irregularidad Torsional Modo 2 (X).

Tabla 22 (Continuación).

5	32.120			
PISO MEZANINE				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
25	23.194	07 004		
12	22.358	27.331		
30	23.102	26.917		
5	21.594	20.017		

Fuente: Autores

Tabla 23. Irregularidad Torsional Modo 3 (X).

MODO 3 (X)						
	PISO Cub. Maq.					
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
21	8.628	10 1/1				
15	8.275	10.141				
23	8.635	10 213				
17	8.387	10.213				
		PISO 6				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
25	14.041	16 660				
12	13.726	10.000				
30	13.980	16 603				
17	13.691	10.005				
		PISO 5				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
25	21.771	25 111				
12	20.081	20.111				
30	21.470	28 05/				
5	26.787	20.904				
		PISO 4				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
25	28.276	32 821				
12	26.426	JZ.02 I				
30	27.987	20 321				
5	20.881	29.321				

Tabla 23 (Continuación).

PISO 3					
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	33.329	28 800			
12	31.487	30.090			
30	33.068	10 597			
5	34.577	40.567			
		PISO 2			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	35.831	11 009			
12	34.166	41.990			
30	35.616	10 021			
5	32.607	40.934			
		PISO MEZANINE			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	23.390	07 500			
12	22.580	21.002			
30	23.301	27.095			
5	21.841	21.000			

Fuente: Autores

Tabla 24. Irregularidad Torsional Modo 4 (X).

MODO 4 X)					
		PISO Cub. Maq.			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
21	8.189	10 179			
15	8.774	10.170			
23	8.260	10 227			
17	8.952	10.327			
		PISO 6			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	13.022	16 570			
12	14.597	10.572	NO IRREGULARIDAD		
30	13.193	16 602			
17	14.627	10.092	NO IRREGULARIDAD		
	PISO 5				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			

Tabla 24 (Continuación).

25	19.941	24 266	NO IRREGUI ARIDAD		
12	20.502	24.200			
30	19.965	24 565			
5	20.977	24.303			
		PISO 4			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	26.190	21 022			
12	26.866	31.033	NO IRREGULARIDAD		
30	26.211	22 1 22			
5	27.428	32.103			
		PISO 3			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	31.153	27 902			
12	32.001	57.092			
30	31.166	29.216			
5	32.694	30.310			
		PISO 2			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	33.842	41 001			
12	34.642	41.091			
30	33.853	11 100			
5	35.294	41.400	NO IRREGULARIDAD		
		PISO MEZANINE			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
25	22.291	27 127			
12	22.920	21.121			
30	22.291	27 420			
5	23.423	21.429			

MODO 5 (Y)				
		PISO Cub. Maq.		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
15	13.448	16 700		
17	14.550	10.799		
21	13.484	16 917		
23	14.545	10.017	NO IRREGULARIDAD	
		PISO 6		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
12	17.743	10 /02		
17	14.745	19.495		
25	17.794	10 550		
30	14.800	19.556		
		PISO 5		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
5	11.858	17 000		
3	16.863	17.232		
25	24.717	20,000		
30	10.266	20.990		
		PISO 4		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
5	12.287	10 175		
3	18.005	10.175	NO IKREGULARIDAD	
25	27.307	22.620		
30	10.426	22.039	IKKEGULAKIDAD	
		PISO 3		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
5	12.542	19 706		
3	18.784	10.790	NO IRREGULARIDAD	
25	29.495	22,690		
30	9.986	23.009	IRREGULARIDAD	
		PISO 2		
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
5	11.297	16.060		
3	16.985	10.909		
25	27.500	21.540	IRREGULARIDAD	

Tabla 25. Irregularidad Torsional Modo 5 (Y).

Tabla 25 (Continuación).

30	8.400			
PISO MEZANINE				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
5	6.531	0.676		
3	9.596	9.070		
25	15.845	10.161		
30	4.424	12.101	IRREGULARIDAD	

Fuente: Autores

Tabla 26. Irregularidad Torsional Modo 6 (Y).

MODO 6 (Y)						
	PISO Cub. Maq.					
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
15	14.110	15 205				
17	11.399	15.505				
21	14.174	15 246				
23	11.403	15.540				
		PISO 6				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
12	23.998	20 000				
17	10.850	20.909	INNEGOLANIDAD			
25	24.200	21 267				
30	11.245	21.207				
		PISO 5				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
5	13.905	20,668				
3	20.541	20.000				
25	32.878	25 476				
30	9.582	25.476	IRREGULARIDAD			
		PISO 4				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
5	14.941	22.285				
3	22.201	22.200				
25	37.977	20.074				
30	10.480	29.074	INNEGULARIDAD			

Tabla 26 (Continuación).

	PISO 3				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
5	16.139	22.950			
3	23.610	23.650			
25	37.818	20.251			
30	10.934	29.251	IRREGULARIDAD		
		PISO 2			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
5	15.176	22 124	NO IRREGULARIDAD		
3	21.714	22.154			
25	36.777	29 106			
30	10.066	20.100	IRREGULARIDAD		
		PISO MEZANINE			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
5	9.116	12 099			
3	12.531	12.900			
25	21.328	16 250			
30	5.755	10.230	INNEGULANIDAD		

Tabla 27.	Irregularidad	Torsional	Modo	7	(Y).
	mogalandada	rorororiai	111000	•	· · /·

MODO 7 (Y)						
		PISO Cub. Maq.				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
15	13.486	11 706				
17	11.158	14.700	NO IRREGULARIDAD			
21	13.656	14 044	NO IRREGULARIDAD			
23	11.250	14.944				
		PISO 6				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
12	24.225	21 257				
17	11.203	21.257	IRREGULARIDAD			
25	24.505	21 746				
30	11.739	21.740	IRREGULARIDAD			
	PISO 5					
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				

Tabla 27 (Continuación).

5	13.442	20.240				
3	20.306	20.249				
25	34.138	26 562				
30	10.132	20.302	IRREGULARIDAD			
		PISO 4				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
5	14.440	01 001				
3	21.895	21.001				
25	37.182					
30	10.981	28.898	IRREGULARIDAD			
		PISO 3				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
5	15.635	00.040				
3	23.275	23.340				
25	37.921	00 500	IRREGULARIDAD			
30	11.384	29.583				
		PISO 2				
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
5	14.716	01 667				
3	21.395	21.007				
25	36.832	20.276				
30	10.461	28.376	IRREGULARIDAD			
	PISO MEZANINE					
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)				
5	8.874	10 720				
3	12.356	12.730				
25	21.353	16 205				
30	5.956	10.300	IKKEGULAKIDAD			

MODO 8 (Y)					
		PISO Cub. Maq.			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
15	12.892	16.264			
17	14.381	10.304	NO IRREGULARIDAD		
21	12.921	16 252			
23	14.333	10.355			
		PISO 6			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
12	18.005	10 001			
17	15.163	19.901			
25	18.077	10 000			
30	15.240	19.990			
		PISO 5			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
5	11.602	17 008			
3	16.745	17.000			
25	25.009	21 288			
30	10.638	21.300			
		PISO 4			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
5	11.966	17 850			
3	17.799	17.059			
25	27.445	22.028			
30	10.786	22.950	INNEGOLANIDAD		
		PISO 3			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
5	12.165	18/16			
3	18.527	10.410			
25	29.558	22.029			
30	10.339	23.930	IRREGULARIDAD		
PISO 2					
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)			
5	10.910	16 570			
3	16.721	10.379			
25	27.541	21.767	IRREGULARIDAD		

Tabla 28. Irregularidad Torsional Modo 8 (Y).

Tabla 28 (Continuación).

30	8.737			
NODO	SISMO X (mm)	1.2*((Δ1+Δ2) /2)		
5	6.311	0.450		
3	9.443	9.452	NO IRREGULARIDAD	
25	15.864	10.004		
30 4.609		12.284	IRREGULARIDAD	

Fuente: Autores

El edificio presenta irregularidad torsional causada por los puntos extremos de la estructura, que fueron calculados perpendicularmente a un eje determinado, dentro de los parámetros establecidos en NRS-10, Titulo A. Por lo tanto, el diseño es afectado por $\phi p = 0.90$.

2.1.8. Umbral de Daños.

Se realiza un análisis de la estructura teniendo en cuenta las fuerzas sísmicas horizontales del umbral de daño, para ello se determinan los parámetros para la obtención de los movimientos sísmicos.

Parámetros de diseño:

Tabla 29. Valores de Ad para las ciudades capitales de departamento.

Ciudad	Ad	Ciudad	Ad
Arauca	0.04	Neiva	0.08
Armenia	0.10	Pasto	0.08
Barranquilla	0.03	Pereira	0.10
Bogotá	0.06	Popayán	0.08
Bucaramanga	0.09	Puerto Carreño	0.02
Cali	0.09	Puerto Inírida	0.02
Cartagena	0.03	Quibdó	0.13
Cúcuta	0.10	Riohacha	0.04
Florencia	0.05	San Andrés, Isla	0.03
Ibagué	0.06	San José del Guaviare	0.02
Leticia	0.02	Santa Marta	0.04
Manizales	0.10	Sincelejo	0.04
Medellín	0.07	Tunja	0.07
Mitú	0.02	Valledupar	0.03
Мосоа	0.10	Villavicencio	0.07
Montería	0.04	Yopal	0.06

Fuente: NSR-10, 2010.

Se extraen los valores para los movimientos símicos de la zona, de la Tabla 7 y Tabla 29.

Tabla 30. valores asignados para Umbral de Daño.

Ad	0.07			
Fv	2.0			
Ś 1.25*Fv				
Fuente: Autores.				

Con los datos anteriores se elaboró el siguiente espectro para el umbral de daños.

Figura 18.Espectro umbral de daño.

Fuente: Autores.

Por lo tanto, para los periodos (Tx, Ty) establecidos el valor de $S_{ad} = 0.21$ g, se procede a realizar el cálculo del cortante basal (V_{sd}) para las fuerzas horizontales del umbral de daño (Fs).

Tabla 31. Valores asignados para umbral de daños Tx.

Tx (s)	0.89			
Sad (g)	0.21			
К	1.195			
Vsdx (Ton)	559.15			

PISO	Ni(H)	M(mg)	MxH^k	Cvx	Fsx(Ton)	Cor(Ton)
Cub. Maq.	26.6	45.946	2317.30	4.62%	25.851	25.851
6	22.8	251.516	10551.12	21.05%	117.703	143.554
5	19	381.373	12866.51	25.67%	143.533	287.087
4	15.2	411.083	10622.66	21.19%	118.501	405.589
3	11.4	411.083	7532.36	15.03%	84.028	489.616
2	7.6	411.083	4639.83	9.26%	51.760	541.376
Mezanine	3.8	323.194	1593.33	3.18%	17.774	559.150
1	0	427.341	0.00	0.00%	0.000	559.150
	Σ	2662.621	50123.100			
Fuentar Autorea						

Tabla 32. Fuerza horizontal Equivalente en X, para umbral de daño.

Fuente: Autores.

Se obtiene el cortante correspondiente a cada piso en el eje X, de igual manera se realiza el cálculo del cortante en el eje Y.

Tabla 33. Valores asignados para umbral de daños Ty.

Ty (s)	0.63			
Sad (g)	0.21			
K	1.065			
Vsdy (Ton) 559.15				
Fuente: Autores.				

Tabla 34. Fuerza horizontal Equivalente en Y, para umbral de daño.

PISO	Ni (H)	M(mg)	MxH^k	Cvx	Fsy(Ton)	Cor(Ton)	
Cub. Maq.	26.6	45.946	1512.68	4.30%	24.053	24.053	
6	22.8	251.516	7026.95	19.98%	111.734	135.786	
5	19	381.373	8774.51	24.95%	139.521	275.307	
4	15.2	411.083	7457.50	21.21%	118.580	393.887	
3	11.4	411.083	5489.51	15.61%	87.287	481.174	
2	7.6	411.083	3564.48	10.14%	56.678	537.852	
Mezanine	3.8	323.194	1339.47	3.81%	21.299	559.150	
1	0	427.341	0.00	0.00%	0.000	559.150	
	Σ	2662.621	35165.104				

Fuente: Autores

Se calculan las torsiones accidentales en cada eje (X y Y), en base a los esfuerzos horizontales de umbral de daño obtenidos.

PISO	Fsx (Ton)	Long x (m)	ex(m)	MTx (Ton*m)		
Cub. Maq.	25.85	10.51	0.53	13.58		
6	117.70	31.64	1.58	186.21		
5	143.53	31.21	1.56	223.98		
4	118.50	31.21	1.56	184.92		
3	84.03	31.21	1.56	131.13		
2	51.76	31.21	1.56	80.77		
Mezanine	17.77	26.31	1.32	23.38		
1	0.00	31.21	1.56	0.00		
Fuente: Autores.						

Tabla 35. Torsión Accidental para Umbral de Daño en X.

Tabla 36. Torsión Accidental para Umbral de Daño en Y.

PISO	Fsy (Ton)	Long y (m)	ey(m)	MTy (Ton*m)		
Cub. Maq.	24.05	5.85	0.29	7.04		
6	111.73	12.29	0.61	68.66		
5	139.52	21.62	1.08	150.82		
4	118.58	21.62	1.08	128.18		
3	87.29	21.62	1.08	94.36		
2	56.68	21.62	1.08	61.27		
Mezanine	21.30	21.62	1.08	23.02		
1	0.00	20.12	1.01	0.00		
Fuente: Autoree						

Fuente: Autores.

Se verifican las derivas para el umbral de daño bajo los lineamientos señalados en NSR-10, Titulo A- Capitulo 12, donde se reduce el coeficiente de amortiguamiento al 2% y la deriva máxima no debe superar lo establecido en la Tabla 37.

Tabla 37. Derivas máximas para el umbral de Daño como porcentaje de h_{pi}.

Estructuras de:	Deriva máxima
concreto reforzado, metálicas, de madera, y de mampostería que cumplen los requisitos de A.12.5.3.1	$0.40\% \left(\Delta_{max}^{i} \leq 0.0040 \ h_{pi} \right)$
de mampostería que cumplen los requisitos de A.12.5.3.2	$0.20\% \left(\Delta_{\max}^{i} \le 0.0020 \ h_{pi} \right)$

Fuente: NSR-10, 2010.

ANÁLISIS DE DERIVAS MODO 1 X								
	NODO 21							
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	153.507	-0.019	7.487	0.336	7.495	15.2	0.20%
6	3.8	146.02	-0.355	13.331	0.407	13.337	15.2	0.35%
5	3.8	132.689	-0.762	19.575	0.004	19.575	15.2	0.52%
4	3.8	113.114	-0.766	25.942	-0.049	25.942	15.2	0.68%
3	3.8	87.172	-0.717	31.041	-0.189	31.042	15.2	0.82%
2	3.8	56.131	-0.528	33.779	-0.26	33.780	15.2	0.89%
Mezanine	3.8	22.352	-0.268	22.352	-0.268	22.354	15.2	0.59%
1	0.6	0	0	0	0	0.000	2.4	0.00%
	-			NODO	23			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	153.507	2.811	7.487	0.842	7.534	15.2	0.20%
6	3.8	146.02	1.969	13.331	1.126	13.378	15.2	0.35%
5	3.8	132.689	0.843	19.575	0.283	19.577	15.2	0.52%
4	3.8	113.114	0.56	25.942	0.258	25.943	15.2	0.68%
3	3.8	87.172	0.302	31.041	0.188	31.042	15.2	0.82%
2	3.8	56.131	0.114	33.779	0.096	33.779	15.2	0.89%
Mezanine	3.8	22.352	0.018	22.352	0.018	22.352	15.2	0.59%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	21			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	153.507	5.515	7.487	1.325	7.603	15.2	0.20%
6	3.8	146.02	4.19	13.331	1.814	13.454	15.2	0.35%
5	3.8	132.689	2.376	19.575	0.549	19.583	15.2	0.52%
4	3.8	113.114	1.827	25.942	0.55	25.948	15.2	0.68%
3	3.8	87.172	1.277	31.041	0.55	31.046	15.2	0.82%
2	3.8	56.131	0.727	33.779	0.436	33.782	15.2	0.89%
Mezanine	3.8	22.352	0.291	22.352	0.291	22.354	15.2	0.59%
1	0.6	0	0	0	0	0.000	2.4	0.00%

Tabla 38. Análisis de derivas Umbral de Daño, Modo 1 (X).

ANÁLISIS DE DERIVAS MODO 2 X								
	NODO 21							
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	157.036	4.576	7.927	0.691	7.957	15.2	0.21%
6	3.8	149.109	3.885	13.47	0.446	13.477	15.2	0.35%
5	3.8	135.639	3.439	20.085	0.608	20.094	15.2	0.53%
4	3.8	115.554	2.831	26.602	0.761	26.613	15.2	0.70%
3	3.8	88.952	2.07	31.759	0.836	31.770	15.2	0.84%
2	3.8	57.193	1.234	34.459	0.818	34.469	15.2	0.91%
Mezanine	3.8	22.734	0.416	22.734	0.416	22.738	15.2	0.60%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	23			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	157.036	0.157	7.927	0.266	7.931	15.2	0.21%
6	3.8	149.109	-0.109	13.47	0.266	13.473	15.2	0.35%
5	3.8	135.639	-0.375	20.085	-0.19	20.086	15.2	0.53%
4	3.8	115.554	-0.185	26.602	-0.139	26.602	15.2	0.70%
3	3.8	88.952	-0.046	31.759	-0.067	31.759	15.2	0.84%
2	3.8	57.193	0.021	34.459	0.002	34.459	15.2	0.91%
Mezanine	3.8	22.734	0.019	22.734	0.019	22.734	15.2	0.60%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	21			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	157.036	-4.065	7.927	-0.14	7.928	15.2	0.21%
6	3.8	149.109	-3.925	13.47	0.093	13.470	15.2	0.35%
5	3.8	135.639	-4.018	20.085	-0.952	20.108	15.2	0.53%
4	3.8	115.554	-3.066	26.602	-0.997	26.621	15.2	0.70%
3	3.8	88.952	-2.069	31.759	-0.93	31.773	15.2	0.84%
2	3.8	57.193	-1.139	34.459	-0.779	34.468	15.2	0.91%
Mezanine	3.8	22.734	-0.36	22.734	-0.36	22.737	15.2	0.60%
1	0.6	0	0	0	0	0.000	2.4	0.00%

Tabla 39. Análisis de derivas Umbral de Daño, Modo 2 (X).

Fuente: Autores.

ANÁLISIS DE DERIVAS MODO 3 X								
	NODO 21							
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-160.4	-4.606	-8.627	-0.116	8.628	15.2	0.23%
6	3.8	-151.773	-4.49	-13.833	-0.796	13.856	15.2	0.36%
5	3.8	-137.94	-3.694	-20.709	-0.746	20.722	15.2	0.55%
4	3.8	-117.231	-2.948	-27.158	-0.828	27.171	15.2	0.72%
3	3.8	-90.073	-2.12	-32.249	-0.868	32.261	15.2	0.85%
2	3.8	-57.824	-1.252	-34.879	-0.833	34.889	15.2	0.92%
Mezanine	3.8	-22.945	-0.419	-22.945	-0.419	22.949	15.2	0.60%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	23			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-160.4	-0.462	-8.627	0.128	8.628	15.2	0.23%
6	3.8	-151.773	-0.59	-13.833	-0.646	13.848	15.2	0.36%
5	3.8	-137.94	0.056	-20.709	0.064	20.709	15.2	0.54%
4	3.8	-117.231	-0.008	-27.158	0.056	27.158	15.2	0.71%
3	3.8	-90.073	-0.064	-32.249	0.01	32.249	15.2	0.85%
2	3.8	-57.824	-0.074	-34.879	-0.04	34.879	15.2	0.92%
Mezanine	3.8	-22.945	-0.034	-22.945	-0.034	22.945	15.2	0.60%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	21			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-160.4	3.498	-8.627	0.362	8.635	15.2	0.23%
6	3.8	-151.773	3.136	-13.833	-0.504	13.842	15.2	0.36%
5	3.8	-137.94	3.64	-20.709	0.839	20.726	15.2	0.55%
4	3.8	-117.231	2.801	-27.158	0.901	27.173	15.2	0.72%
3	3.8	-90.073	1.9	-32.249	0.849	32.260	15.2	0.85%
2	3.8	-57.824	1.051	-34.879	0.718	34.886	15.2	0.92%
Mezanine	3.8	-22.945	0.333	-22.945	0.333	22.947	15.2	0.60%
1	0.6	0	0	0	0	0.000	2.4	0.00%

Tabla 40. Análisis de derivas Umbral de Daño, Modo 3 (X).

Fuente: Autores.

ANÁLISIS DE DERIVAS MODO 4 X								
	NODO 21							
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-156.871	-0.012	-8.186	0.239	8.189	15.2	0.22%
6	3.8	-148.685	-0.251	-13.695	2.504	13.922	15.2	0.37%
5	3.8	-134.99	-2.755	-20.2	-3.404	20.485	15.2	0.54%
4	3.8	-114.79	0.649	-26.498	-0.019	26.498	15.2	0.70%
3	3.8	-88.292	0.668	-31.53	0.157	31.530	15.2	0.83%
2	3.8	-56.762	0.511	-34.199	0.246	34.200	15.2	0.90%
Mezanine	3.8	-22.563	0.265	-22.563	0.265	22.565	15.2	0.59%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	23			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-160.024	-6.082	-11.339	-3.413	11.842	15.2	0.31%
6	3.8	-148.685	-2.669	-13.695	0.086	13.695	15.2	0.36%
5	3.8	-134.99	-2.755	-20.2	-2.003	20.299	15.2	0.53%
4	3.8	-114.79	-0.752	-26.498	-0.339	26.500	15.2	0.70%
3	3.8	-88.292	-0.413	-31.53	-0.246	31.531	15.2	0.83%
2	3.8	-56.762	-0.167	-34.199	-0.134	34.199	15.2	0.90%
Mezanine	3.8	-22.563	-0.033	-22.563	-0.033	22.563	15.2	0.59%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO 2	21			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-160.024	-6.082	-8.692	-8.492	12.152	15.2	0.32%
6	3.8	-151.332	2.41	-16.342	5.165	17.139	15.2	0.45%
5	3.8	-134.99	-2.755	-20.2	-0.664	20.211	15.2	0.53%
4	3.8	-114.79	-2.091	-26.498	-0.646	26.506	15.2	0.70%
3	3.8	-88.292	-1.445	-31.53	-0.63	31.536	15.2	0.83%
2	3.8	-56.762	-0.815	-34.199	-0.497	34.203	15.2	0.90%
Mezanine	3.8	-22.563	-0.318	-22.563	-0.318	22.565	15.2	0.59%
1	0.6	0	0	0	0	0.000	2.4	0.00%

Tabla 41. Análisis de derivas Umbral de Daño, Modo 4 (X).

ANÁLISIS DE DERIVAS MODO 5 Y								
NODO 21								
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	9.799	97.988	-0.135	13.484	13.485	15.2	0.35%
6	3.8	9.934	84.504	0.734	15.916	15.933	15.2	0.42%
5	3.8	9.2	68.588	1.361	15.241	15.302	15.2	0.40%
4	3.8	7.839	53.347	1.881	15.986	16.096	15.2	0.42%
3	3.8	5.958	37.361	2.261	16.063	16.221	15.2	0.43%
2	3.8	3.697	21.298	2.321	13.897	14.089	15.2	0.37%
Mezanine	3.8	1.376	7.401	1.376	7.401	7.528	15.2	0.20%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NOD	O 23			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	9.799	80.439	-0.135	14.026	14.027	15.2	0.37%
6	3.8	9.934	66.413	0.734	15.317	15.335	15.2	0.40%
5	3.8	9.2	51.096	1.361	12.259	12.334	15.2	0.32%
4	3.8	7.839	38.837	1.881	12.451	12.592	15.2	0.33%
3	3.8	5.958	26.386	2.261	11.892	12.105	15.2	0.32%
2	3.8	3.697	14.494	2.321	9.695	9.969	15.2	0.26%
Mezanine	3.8	1.376	4.799	1.376	4.799	4.992	15.2	0.13%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NOD	D 21			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	9.799	63.671	-0.135	14.544	14.545	15.2	0.38%
6	3.8	9.934	49.127	0.734	14.744	14.762	15.2	0.39%
5	3.8	9.2	34.383	1.361	9.41	9.508	15.2	0.25%
4	3.8	7.839	24.973	1.881	9.074	9.267	15.2	0.24%
3	3.8	5.958	15.899	2.261	7.906	8.223	15.2	0.22%
2	3.8	3.697	7.993	2.321	5.68	6.136	15.2	0.16%
Mezanine	3.8	1.376	2.313	1.376	2.313	2.691	15.2	0.07%
1	0.6	0	0	0	0	0.000	2.4	0.00%

Tabla 42. Análisis de derivas Umbral de Daño, Modo 5 (Y).

ANÁLISIS DE DERIVAS MODO 6 Y								
NODO 21								
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	16.516	106.551	0.75	14.154	14.174	15.2	0.37%
6	3.8	15.766	92.397	0.979	15.879	15.909	15.2	0.42%
5	3.8	14.787	76.518	2.356	16.456	16.624	15.2	0.44%
4	3.8	12.431	60.062	3.141	17.524	17.803	15.2	0.47%
3	3.8	9.29	42.538	3.612	17.974	18.333	15.2	0.48%
2	3.8	5.678	24.564	3.592	15.897	16.298	15.2	0.43%
Mezanine	3.8	2.086	8.667	2.086	8.667	8.914	15.2	0.23%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	23			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	16.516	74.726	0.75	12.735	12.757	15.2	0.34%
6	3.8	15.766	61.991	0.979	13.238	13.274	15.2	0.35%
5	3.8	14.787	48.753	2.356	11.363	11.605	15.2	0.31%
4	3.8	12.431	37.39	3.141	11.694	12.108	15.2	0.32%
3	3.8	9.29	25.696	3.612	11.395	11.954	15.2	0.31%
2	3.8	5.678	14.301	3.592	9.505	10.161	15.2	0.27%
Mezanine	3.8	2.086	4.796	2.086	4.796	5.230	15.2	0.14%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODC	21			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	16.516	44.316	0.75	11.378	11.403	15.2	0.30%
6	3.8	15.766	32.938	0.979	10.716	10.761	15.2	0.28%
5	3.8	14.787	22.222	2.356	6.497	6.911	15.2	0.18%
4	3.8	12.431	15.725	3.141	6.121	6.880	15.2	0.18%
3	3.8	9.29	9.604	3.612	5.11	6.258	15.2	0.16%
2	3.8	5.678	4.494	3.592	3.397	4.944	15.2	0.13%
Mezanine	3.8	2.086	1.097	2.086	1.097	2.357	15.2	0.06%
1	0.6	0	0	0	0	0.000	2.4	0.00%

Tabla 43. Análisis de derivas Umbral de Daño, Modo 6 (Y).

Fuente: Autores.

ANÁLISIS DE DERIVAS MODO 7 Y								
	NODO 21							
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-19.88	-106.582	-1.45	-13.579	13.656	15.2	0.36%
6	3.8	-18.43	-93.003	-1.343	-16.229	16.284	15.2	0.43%
5	3.8	-17.087	-76.774	-2.979	-16.594	16.859	15.2	0.44%
4	3.8	-14.108	-60.18	-3.697	-17.593	17.977	15.2	0.47%
3	3.8	-10.411	-42.587	-4.102	-18.006	18.467	15.2	0.49%
2	3.8	-6.309	-24.581	-4.012	-15.911	16.409	15.2	0.43%
Mezanine	3.8	-2.297	-8.67	-2.297	-8.67	8.969	15.2	0.24%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	23			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-19.88	-75.031	-1.45	-12.34	12.425	15.2	0.33%
6	3.8	-18.43	-62.691	-1.343	-13.62	13.686	15.2	0.36%
5	3.8	-17.087	-49.071	-2.979	-11.489	11.869	15.2	0.31%
4	3.8	-14.108	-37.582	-3.697	-11.776	12.343	15.2	0.32%
3	3.8	-10.411	-25.806	-4.102	-11.452	12.164	15.2	0.32%
2	3.8	-6.309	-14.354	-4.012	-9.543	10.352	15.2	0.27%
Mezanine	3.8	-2.297	-4.811	-2.297	-4.811	5.331	15.2	0.14%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	21			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-19.88	-44.883	-1.45	-11.156	11.250	15.2	0.30%
6	3.8	-18.43	-33.727	-1.343	-11.126	11.207	15.2	0.29%
5	3.8	-17.087	-22.601	-2.979	-6.611	7.251	15.2	0.19%
4	3.8	-14.108	-15.99	-3.697	-6.218	7.234	15.2	0.19%
3	3.8	-10.411	-9.772	-4.102	-5.19	6.615	15.2	0.17%
2	3.8	-6.309	-4.582	-4.012	-3.459	5.297	15.2	0.14%
Mezanine	3.8	-2.297	-1.123	-2.297	-1.123	2.557	15.2	0.07%
1	0.6	0	0	0	0	0.000	2.4	0.00%

Tabla 44. Análisis de derivas Umbral de Daño, Modo 7 (Y).

Fuente: Autores.

ANÁLISIS DE DERIVAS MODO 8 Y								
NODO 21								
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-13.163	-98.019	-0.565	-12.909	12.921	15.2	0.34%
6	3.8	-12.598	-85.11	-1.097	-16.267	16.304	15.2	0.43%
5	3.8	-11.501	-68.843	-1.985	-15.378	15.506	15.2	0.41%
4	3.8	-9.516	-53.465	-2.438	-16.054	16.238	15.2	0.43%
3	3.8	-7.078	-37.411	-2.75	-16.095	16.328	15.2	0.43%
2	3.8	-4.328	-21.316	-2.741	-13.912	14.179	15.2	0.37%
Mezanine	3.8	-1.587	-7.404	-1.587	-7.404	7.572	15.2	0.20%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	23			
PISO		Δx	Δу	dx	dy	ΔΡ	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-13.163	-80.744	-0.565	-13.631	13.643	15.2	0.36%
6	3.8	-12.598	-67.113	-1.097	-15.698	15.736	15.2	0.41%
5	3.8	-11.501	-51.415	-1.985	-12.385	12.543	15.2	0.33%
4	3.8	-9.516	-39.03	-2.438	-12.534	12.769	15.2	0.34%
3	3.8	-7.078	-26.496	-2.75	-11.948	12.260	15.2	0.32%
2	3.8	-4.328	-14.548	-2.741	-9.734	10.113	15.2	0.27%
Mezanine	3.8	-1.587	-4.814	-1.587	-4.814	5.069	15.2	0.13%
1	0.6	0	0	0	0	0.000	2.4	0.00%
				NODO	21			
PISO		Δx	Δу	dx	dy	ΔP	∆lim(mm)	Deriva %
Cub. Maq.	3.8	-13.163	-64.238	-0.565	-14.322	14.333	15.2	0.38%
6	3.8	-12.598	-49.916	-1.097	-15.154	15.194	15.2	0.40%
5	3.8	-11.501	-34.762	-1.985	-9.524	9.729	15.2	0.26%
4	3.8	-9.516	-25.238	-2.438	-9.171	9.490	15.2	0.25%
3	3.8	-7.078	-16.067	-2.75	-7.986	8.446	15.2	0.22%
2	3.8	-4.328	-8.081	-2.741	-5.741	6.362	15.2	0.17%
Mezanine	3.8	-1.587	-2.34	-1.587	-2.34	2.827	15.2	0.07%
1	0.6	0	0	0	0	0.000	2.4	0.00%
	Fuente: Autores.							

Tabla 45. Análisis de derivas Umbral de Daño, Modo 8 (Y).

Se realiza la comprobación del límite de deriva máxima para el umbral de daño sobre los nodos que presentaron mayor desplazamiento en la estructura, en cada combinación de carga para sismo, sin superar el 1% de la deriva máxima en cada piso, teniendo en cuenta que en el análisis no se trabajan secciones fisuradas.

2.2 Análisis Dinámico.

Se clasifica la estructura por el uso, altura total, perfil de suelo y zona de amenaza sísmica y se determina el método de análisis dinámico según la NSR-10 A.3.4.2. Por lo tanto, para iniciar el análisis se procede a obtener los modos de vibración(ϕ) de la estructura mediante el software ETABS 2016, con una participación de masas mínima del 90% en los modos de vibración.

Posteriormente con los periodos específicos de cada modo de vibración, se determina a través del espectro elástico de aceleraciones y el espectro elástico de desplazamientos, las aceleraciones horizontales (Sa) y los desplazamientos horizontales de diseño (Sd).

Con estos valores ya determinados se realiza el cálculo de desplazamientos horizontales, para el respectivo cálculo de deriva en los ejes X y Y, cumpliendo con los límites establecidos por la NSR-10, A.6.4-1.

Tabla 46. Derivas máximas como porcentaje de hpi.

Estructuras de:	Deriva máxima
concreto reforzado, metálicas, de madera, y de mampostería que cumplen los requisitos de A.6.4.2.2	$1.0\% \left(\Delta_{max}^{i} \leq 0.010 \ h_{pi} \right)$
de mampostería que cumplen los requisitos de A.6.4.2.3	$0.5\% \left(\Delta_{max}^{i} \leq 0.005 \ h_{pi} \right)$

Fuente: NSR-10, 2010.

Los cálculos y resultados del análisis dinámico se encuentran en el -Anexo 2.

Se obtienen las derivas y se verifica que no sobrepasen el límite establecido, se muestra el modo de mayor desplazamiento tanto en X como en Y.

Tabla 47. Derivas en el Principales Modo de Vibracion X.

Deriva X						
PISO	1					
7	0.13%					
6	0.30%					
5	0.43%					
4	0.58%					
3	0.71%					
2	0.79%					
1	0.52%					

Fuente: Autores.

Deriva Y						
PISO	1					
7	0.002%					
6	0.001%					
5	0.001%					
4	0.001%					
3	0.001%					
2	0.001%					
1	0.000%					
Fuent	e: Autores.					

Tabla 48.Derivas en el Principales Modo de Vibracion Y.

Se procede a calcular el valor del cortante basal generado para cada modo establecido.

Tabla 49. Cortante Basal Estructura Empotrada.

Cortante Basal (kN)						
	Vx	Vy				
Modal 1	9138.7053	405.4296				
Modal 2	-842.2102	9248.3864				
Modal 3	-1263.3588	-25642.9987				
Modal 4	-27846.7729	1589.6625				
Modal 5	-1283.5217	-36334.0934				
Modal 6	27838.9931	-33542.7215				
Modal 7	35191.7479	27015.3948				
Modal 8	-22736.6394	-69390.3713				
Modal 9	53211.5212	-15162.0042				
Modal 10	-83345.6899	36291.7434				
Modal 11	-24041.7151	58325.1213				
Modal 12	39422.4378	170373.278				
Modal 13	40817.6785	36214.9475				
Modal 14	138251.434	40608.4777				
Modal 15	34553.1824	-439300.165				
Modal 16	-164788.419	-22724.4823				
Modal 17	-38284.8448	-135955.721				
Modal 18	67852.5115	347920.833				
Modal 19	-30324.4387	1109433.54				
Modal 20	31055.7321	-1489436				
Modal 21	23423.8036	-1081726				

3. ANÁLISIS DE LA ESTRUCTURA CON AISLADORES SÍSMICO.

3.1. Selección del Aislador Sísmico.

Los parámetros específicos del aislador sísmico se obtendrán del catálogo de la empresa Dynamic Insolation Systems (DIS). En donde se ingresa con la carga axial ejercida sobre el apoyo, y se elige el aislador que cumpla la carga axial requerida, se seleccionan las propiedades de diseño como lo son las resistencias, desplazamiento máximo, parámetros de rigidez y el diámetro.

Para la selección del aislador sísmico, se verifica que este cumpla con la carga axial a la cual va a ser sometido, bajo las combinaciones de carga establecidas en la Tabla 50.

ID	COMBINACIÓN			
AIS1	1.2Pd+Pl+EQ			
AIS2	1.2Pd+Pl+EQ			
AIS3	0.8Pd+EQ			
AIS4	0.8Pd-EQ			
AIS5	Pd+0.5PL			
Fuente: Autores.				

Tabla 50. Combinacion de carga.

Con los resultados de las fuerzas axiales obtenidas por medio de las combinacio-

nes, se selecciona la carga máxima encontrada en cada apoyo de la estructura.

AIS1					
Story	Joint Label	FX	FY	FZ	
		kN	kN	kN	
PI-01	3	-401.6215	-153.7011	-2015.6879	
PI-01	4	-552.3393	-78.5797	101.3711	
PI-01	5	-266.1627	-12.8813	1547.3962	
PI-01	8	-345.3104	-230.5166	435.8997	
PI-01	9	-459.0268	-115.9125	1988.3643	
PI-01	10	-235.0733	-43.8099	2062.5302	
PI-01	12	-486.7413	-423.2499	-4811.0894	
PI-01	13	-741.1522	-426.4918	445.0527	
PI-01	14	-698.4935	-312.3539	-580.4072	
PI-01	15	-770.3195	-5147.186	-19551.6	
PI-01	16	-444.479	-115.8641	1319.1585	

Tabla 51. Fuerza Axial AIS1.
Tabla 51 (Continuación).

PI-01	17	-544.2064	-498.9005	-4830.3231
PI-01	18	-540.6504	-644.4947	-1914.1698
PI-01	19	-635.6082	-547.2241	3040.4599
PI-01	20	-766.6563	-465.8976	2191.8607
PI-01	21	-412.3684	-242.9994	2979.2988
PI-01	22	-351.0714	-132.3914	3121.6186
PI-01	23	-507.9167	-1396.091	12733.1689
PI-01	24	-259.0482	-99.9256	-2251.4087
PI-01	25	-554.8989	-405.1795	2661.4594
PI-01	26	-995.9569	-444.2549	6613.1769
PI-01	27	-853.2724	-316.7995	3867.786
PI-01	28	-642.1779	-350.521	2676.8306
PI-01	29	-1774.083	-72.1204	1663.6023
PI-01	30	-350.638	-24.7961	4400.7928
PI-01	68	-338.3323	-5231.074	20577.42

Tabla 52. Fuerza Axial para AIS2.

	AIS2						
Story	Joint Label	FX	FY	FZ			
		kN	kN	kN			
PI-01	3	394.5941	168.4337	4298.7058			
PI-01	4	564.097	94.5381	1861.1401			
PI-01	5	250.7048	23.5688	-288.0853			
PI-01	8	330.3926	233.9341	2995.6607			
PI-01	9	468.2487	125.1676	1370.2851			
PI-01	10	197.0125	48.1997	-277.5917			
PI-01	12	493.5025	431.0262	6808.9617			
PI-01	13	789.1104	443.9006	2847.1371			
PI-01	14	697.1452	325.1128	4281.4278			
PI-01	15	762.3307	5710.154	23052.762			
PI-01	16	463.9811	129.059	3003.3736			
PI-01	17	503.8576	1008.401	9261.5669			
PI-01	18	539.3407	637.4844	5049.3094			
PI-01	19	710.0846	551.661	329.4889			
PI-01	20	702.4426	476.6611	2470.7431			
PI-01	21	423.4105	273.2246	-609.2752			

Tabla 52 (Continuación).

PI-01	22	376.3773	112.0715	1195.7485			
PI-01	23	471.1123	940.404	-8597.4593			
PI-01	24	260.1141	99.1511	3719.215			
PI-01	25	557.1026	403.8478	-509.9193			
PI-01	26	1014.83	419.0902	-4212.9737			
PI-01	27	848.7136	297.728	-925.8182			
PI-01	28	656.1786	314.2928	438.9487			
PI-01	29	1771.941	49.9539	1100.6452			
PI-01	30	342.2705	13.8313	-3074.2378			
PI-01	68	338.7088	4602.318	-17117.198			

Fuente: Autores.

Tabla 53. Fuerza Axial para AIS3.

AIS3									
Story	Joint Label	FX	FY	FZ					
		kN	kN	kN					
PI-01	3	-399.1252	-158.117	-2547.7761					
PI-01	4	-555.9049	-83.2661	-363.1258					
PI-01	5	-261.7984	-15.9519	1263.366					
PI-01	8	-341.2807	-230.8101	-406.7312					
PI-01	9	-461.8771	-118.4239	1153.0206					
PI-01	10	-223.5791	-45.0926	1633.399					
PI-01	12	-488.1733	-424.2025	-5227.2611					
PI-01	13	-755.1496	-431.1839	-259.2503					
PI-01	14	-697.5643	-316.0309	9 -1402.2071					
PI-01	15	-767.5806	-5265.752	-20299.075					
PI-01	16	-450.9716	-118.7127	326.9251					
PI-01	17	-532.8444	-610.7242	-5795.6683					
PI-01	18	-540.0554	-643.0531	-2556.5397					
PI-01	19	-658.0475	-548.0578	2261.1033					
PI-01	20	-746.3622	-468.8919	1124.6682					
PI-01	21	-415.8606	-250.3711	2447.8305					
PI-01	22	-357.857	-127.9369	2118.9984					
PI-01	23	-497.8101	-1300.155	11851.1965					
PI-01	24	-259.5391	-99.7429	-2526.2554					
PI-01	25	-555.5565	-404.8055	2230.3128					
PI-01	26	-1001.641	-438.3311	6085.352					
PI-01	27	-851.4706	-311.4381	3226.0994					

Tabla 53 (Continuación).

PI-01	28	-646.8072	-341.4636	1978.3524			
PI-01	29	-1774.097	-65.9616	1031.6199			
PI-01	30	-348.0783	-21.4584	4111.721			
PI-01	68	-338.5735	-5093.28	19835.8434			

	AIS4								
Story	Joint Label	FX	FY	FZ					
		kN	kN	kN					
PI-01	3	397.0903	164.0178	3766.6175					
PI-01	4	560.5315	89.8516	1396.6432					
PI-01	5	255.0691	20.4982	-572.1155					
PI-01	8	334.4224	233.6405	2153.0299					
PI-01	9	465.3984	122.6562	534.9413					
PI-01	10	208.5068	46.917	-706.7229					
PI-01	12	492.0705	430.0736	6392.7899					
PI-01	13	775.113	439.2085	2142.8342					
PI-01	14	698.0743	321.4358	3459.628					
PI-01	15	765.0696	5591.588	22305.2879					
PI-01	16	457.4885	126.2104	2011.1402					
PI-01	17	515.2196	896.5775	8296.2217					
PI-01	18	539.9358	638.9259	4406.9395					
PI-01	19	687.6453	550.8272	-449.8677					
PI-01	20	722.7366	473.6668	1403.5506					
PI-01	21	419.9183	265.8529	-1140.7435					
PI-01	22	369.5917	116.5259	193.1283					
PI-01	23	481.219	1036.339	-9479.4317					
PI-01	24	259.6232	99.3339	3444.3683					
PI-01	25	556.4451	404.2218	-941.0659					
PI-01	26	1009.147	425.014	-4740.7986					
PI-01	27	850.5155	303.0894	-1567.5048					
PI-01	28	651.5493	323.3502	-259.5295					
PI-01	29	1771.927	56.1128	468.6628					
PI-01	30	344.8302	17.169	-3363.3096					
PI-01	68	338.4677	4740.111	-17858.775					

Fuente: Autores.

	AIS5								
Story	Joint Label	FX	FY	FZ					
		kN	kN	kN					
PI-01	3	-2.2656	5.1583	875.4648					
PI-01	4	4.0961	5.636	749.0071					
PI-01	5	-5.5468	3.8084	487.6404					
PI-01	8	-5.444	1.562	1294.465					
PI-01	9	3.1858	3.3719	1261.653					
PI-01	10	-13.283	1.5535	677.9036					
PI-01	12	2.6646	3.4119	790.8503					
PI-01	13	16.9804	6.3584	1293.943					
PI-01	14	-0.2096	4.541	1439.61					
PI-01	15	-2.625	222.2013	1376.844					
PI-01	16	6.5047	5.1732	1665.149					
PI-01	17	-14.493	198.8385	1732.949					
PI-01	18	-0.3573	-2.7844	1246.385					
PI-01	19	26.0186	1.8016	1295.296					
PI-01	20	-21.96	3.8846	1797.706					
PI-01	21	3.7749	11.4267	919.2777					
PI-01	22	9.2602	-7.9327	1657.373					
PI-01	23	-13.349	-179.876	1626.869					
PI-01	24	0.2875	-0.2959	596.4798					
PI-01	25	0.7731	-0.4789	860.1967					
PI-01	26	6.5948	-9.6204	936.1891					
PI-01	27	-1.3785	-6.8551	1150.141					
PI-01	28	4.6857	-13.5854	1208.651					
PI-01	29	-1.078	-8.0038	1066.133					
PI-01	30	-2.9039	-3.8136	518.7416					
PI-01	68	0.0677	-245.481	1359.323					

Tabla 55. Fuerza Axial para AIS5.

Con las cargas axiales obtenidas, se seleccionan el valor máximo de las combinaciones de carga en los apoyos como se observa en la Tabla 56.

Tabla 56.Valor máximo de carga axial en los apoyos.

ld	Carga Axial (kN)
3	4299
4	1861
5	1547
8	2996
9	1988
10	2063
12	6809
13	2847
14	4281
15	23053
16	3003
17	9262
18	5049
19	3040
20	2471
21	2979
22	3122
23	12733
24	3719
25	2661
26	6613
27	3868
28	2677
29	1664
30	4401
68	20577

Con los valores máximos de carga se ingresa a la Tabla 57, para obtener las propiedades del aislador.

Diámetro	PROP	EDADES DE	Desplazamient	Canacidad	
Aislador, D ₁ (mm)	Rigidez Producida, Kd(kN/mm)	Resistencia Características Qd(kN)	Rigidez a la compresión, Kv(kN/mm)	o Máximo, D _{max} (mm)	Carga Axial P _{max} (kN)
305	0.2-0.9	0-65	>50	150	450
355	0.2-1.2	0-65	>100	150	700
405	0.3-1.6	0-110	>100	200	900
455	0.3-2.0	0-110	>100	250	1,150
520	0.4-2.3	0-180	>200	300	1,350
570	0.5-2.8	0-180	>500	360	1,800
650	0.5-3.5	0-220	>700	410	2,700
700	0.5-4.2	0-220	>800	460	3,100
750	0.7-4.7	0-265	>900	460	3,600
800	0.7-5.3	0-265	>1,000	510	4,000
850	0.7-6.1	0-355	>1,200	560	4,900
900	0.7-6.1	0-355	>1,400	560	5,800
950	0.7-6.1	0-490	>1,800	610	6,700
1000	0.8-6.3	0-490	>1,900	660	7,600
1050	0.9-6.3	0-580	>2,100	710	8,500
1160	1.1-6.5	0-665	>2,800	760	13,800
1260	1.2-6.7	0-755	>3,700	810	20,500
1360	1.4-7.0	0-890	>5,100	860	27,600
1450	1.6-7.2	0-1,025	>5,300	910	33,400
1550	1.8-7.4	0-1,025	>6,500	910	40,000

Tabla 57. Propiedades Técnicas del Aislador.

Fuente: Aislamiento Sismico para Edificaciones y Puentes, 2007.

3.2. Entrada de Datos.

Posteriormente a la selección del aislador, se calculan parámetros adicionales de rigidez y desplazamiento, para comprender el comportamiento de este, frente a cargas aplicadas. El análisis se realiza bajo los fundamentos de la norma ASCE/SEI 7-16, que estable la curva de histéresis, para determinar la respuesta al amortiguamiento y las cargas operativas del aislador.

$$Keff = Kd + \frac{Qd}{Dm}$$

Ecuación 5. Rigidez Efectiva.

$$Dy = \frac{Qd}{Ke - Kd}$$

Ecuación 6.Desplazamiento de transición.

$$Fy = Qd + Kd * Dy$$

Ecuación 7. Fuerza de Fluencia.

$$Ke = 10 * Kd$$

Ecuación 8. Rigidez Inicial.

En donde:

Id	Carga Axial (kN)	Carga Axial Aislador (kN)	Kd (kN/mm)	Qd (kN)	Ke (kN/mm)	Dm (mm)	Dy (mm)	Fy (kN)	Keff (kN/mm)
3	4299	4900	3,40	177,5	34	560	5,801	197,22	3,717
4	1861	2700	2,00	110,0	20	410	6,111	122,22	2,268
5	1547	1800	1,65	90,0	16,5	360	6,061	100,00	1,900
8	2996	3100	2,35	110,0	23,5	460	5,201	122,22	2,589
9	1988	2700	2,00	110,0	20	410	6,111	122,22	2,268
10	2063	2700	2,00	110,0	20	410	6,111	122,22	2,268
12	6809	7600	3,55	245,0	35,5	660	7,668	272,22	3,921
13	2847	3600	2,70	132,5	27	460	5,453	147,22	2,988
14	4281	4900	3,40	177,5	34	560	5,801	197,22	3,717
15	23053	27600	4,20	445,0	42	860	11,772	494,44	4,717
16	3003	3100	2,35	110,0	23,5	460	5,201	122,22	2,589
17	9262	13800	3,80	332,5	38	760	9,722	369,44	4,238
18	5049	5800	3,40	177,5	34	560	5,801	197,22	3,717
19	3040	3100	2,35	110,0	23,5	460	5,201	122,22	2,589
20	2471	2700	2,00	110,0	20	410	6,111	122,22	2,268
21	2979	3600	2,70	132,5	27	460	5,453	147,22	2,988
22	3122	3600	2,70	132,5	27	460	5 <i>,</i> 453	147,22	2,988
23	12733	13800	3,80	332,5	38	760	9,722	369,44	4,238
24	3719	4000	3,00	132,5	30	510	4,907	147,22	3,260
25	2661	2700	2,00	110,0	20	410	6,111	122,22	2,268
26	6613	6700	3,40	245,0	34	610	8,007	272,22	3,802
27	3868	4000	3,00	132,5	30	510	4,907	147,22	3,260
28	2677	2700	2,00	110,0	20	410	6,111	122,22	2,268
29	1664	1800	1,65	90,0	16,5	360	6,061	100,00	1,900
30	4401	4900	3,40	177,5	34	560	5,801	197,22	3,717
68	20577	27600	4,20	445,0	42	860	11,772	494,44	4,717

Tabla 58. Porpiedades de los aisladores a implementar.

Fuente: Autores.

Debido a que cada apoyo requiere un aislador de dimensiones distintas, se realiza una tipificación de los aisladores a implementar verificando que cumplan las cargas solicitadas, se seleccionaron los siguientes aisladores a implementar que se muestran en la Tabla 59.

ID	Carga Axial Aislador (kN)	Kd (kN/mm)	Qd (kN)	Ke (kN/mm)	Dm (mm)	Dy (mm)	Fy (kN)	Km (kN/mm)
1	3600	2,70	132,5	27	460	5,453	147,22	2,988
2	7600	3,55	245,0	35 <i>,</i> 5	660	7,668	272,22	3,921
3	27600	4,20	445,0	42	860	11,772	494,44	4,717
			-					

Tabla 59. Aisladores Seleccionados.

Fuente: Autores.

Se realiza la disposición de estos aisladores en la planta como se muestra en la Figura 20, según la carga axial presentada en cada apoyo.

Figura 20. Localización de Aisladores Sísmicos.

Fuente: Autores.

3.3. Implementación del Sistema de Aislación en la Estructura.

Se diseñó el aislador sísmico, por medio de un elemento tipo NLink, al cual se le ingresan las propiedades determinadas anteriormente, como se señala en la Figura 21.

Figura 21. Propiedades de diseño NLink.

Fuente: Autores.

Se crean los diferentes tipos de NLink necesarios para representar los aisladores a implementar en el proyecto, en este caso se crearon tres tipos diferentes, los cuales responden a cargas axiales y desplazamientos específicos de cada apoyo.

Se observa el aislador ubicado en los apoyos de la estructura.

Figura 22. Disposicion de Aisladores Sismicos en la Estructura.

Fuente: Autores.

Se muestra el aislador modelado a través de un elemento tipo LINK en la Figura 23.

Figura 23. Detalle elemento tipo LINK.

Fuente: Autores.

3.4. Análisis del Comportamiento de la Estructura.

Para realizar una comparación correcta entre las estructuras desarrollada con aisladores sísmicos y la que se encuentra empotrada en sus apoyos, se obtienen las fuerzas internas y las derivas encontradas en los elementos.

Se seleccionan los 3 principales modos de vibración, donde se evidencian los valores de derivas más alto con respecto a los 21 modos calculados. Como se pueden ver en el -Anexo 3.

Deriva X				
PISO	1	2	3	
7	0.18%	0.02%	0.70%	
6	0.21%	0.06%	0.88%	
5	0.03%	0.05%	0.07%	
4	0.02%	0.06%	0.04%	
3	0.88%	0.93%	0.59%	
2	0.46%	0.85%	0.04%	
1	0.79%	0.92%	0.87%	
Example: A stance				

Tabla 60. Derivas en los 3 Principales Modos de Vibraciones X.

Fuente: Autores

Tabla 61. Derivas en los 3 Principales Modos de Vibraciones Y.

Deriva Y				
PISO	1	2	3	
7	0.042%	0.000%	0.514%	
6	0.575%	0.063%	0.339%	
5	0.604%	0.056%	0.481%	
4	0.014%	0.340%	0.049%	
3	0.014%	0.146%	0.055%	
2	0.817%	0.696%	0.781%	
1	0.660%	0.880%	0.405%	

Fuente: Autores.

Se realiza el cálculo del cortante basal, para elaborar el análisis comparativo en cuanto a la reducción de esfuerzos que genera la implementación los aisladores.

Tabla 62. Cortante Basal con Aisladores Sismicos.

Cortante Basal (kN)			
	Vx	Vy	
Modal 1	311.4282	-311.1707	
Modal 2	-177.703	-193.1347	
Modal 3	77.7854	-101.0024	
Modal 4	-428.4437	-276.1711	
Modal 5	-213.8808	233.2184	
Modal 6	449.2848	-598.3377	
Modal 7	-411.2855	-15.296	
Modal 8	-110.9237	-350.8755	
Modal 9	612.3455	-322.2246	
Modal 10	269.9707	72.0832	

Tabla 62 (Continuación).

Modal 11	-316.0535	-7.509	
Modal 12	-627.284	-118.8481	
Modal 13	266.6237	-95.6144	
Modal 14	-411.6831	115.2708	
Modal 15	-73.1953	211.448	
Modal 16	-658.1585	-68.6541	
Modal 17	367.3228	23.2362	
Modal 18	-198.8013	828.0086	
Modal 19	691.9783	-523.9878	
Modal 20	-402.5793	859.6287	
Modal 21	-219.4287	492.3492	
Fuente: Autores.			

Además, se evidencian las deformaciones presentadas en las estructuras a través del modelo en 3D elaborado en el Software ETABS 2016 (Figura 24 y Figura 25). Como también evidenciar el desplazamiento de la estructura en la base por causa de las fuerzas sísmicas (Figura 26 y Figura 27).

Fuente: Autores.

Figura 25. Deformaciones presentadas en el Modelo empotrada en la base.

Fuente: Autores.

Fuente: Autores.

Figura 27. Desplazamiento de estructura con aisladores.

4. ANÁLISIS COMPARATIVO DE LOS RESULTADOS.

El primer parámetro a comparar en las estructuras, es el cortante basal, que es la reacción que se presenta en una estructura sometida a fuerzas sísmicas, las cuales se distribuyen a lo largo de sus elementos, y se reflejan los esfuerzos soportados.

Como se evidencia en la Tabla 49 y

Tabla 62, se presenta una reducción significativa del cortante basal, que será reflejado en un mejor desempeño estructural del modelo con aisladores sísmicos.

Cortante Basal (kN)						
	Empotrada		Aislada		Disminuyó	
	Vx	Vy	Vx	Vy	X	Y
Modal 1	9138.705	405.4296	311.4282	-311.171	8827.2771	716.6003
Modal 2	-842.21	9248.386	-177.703	-193.135	-664.5072	9441.5211
Modal 3	-1263.36	-25643	77.7854	-101.002	-1341.1442	-25541.996
Modal 4	-27846.8	1589.663	-428.444	-276.171	-27418.329	1865.8336
Modal 5	-1283.52	-36334.1	-213.881	233.2184	-1069.6409	-36567.312
Modal 6	27838.99	-33542.7	449.2848	-598.338	27389.7083	-32944.384
Modal 7	35191.75	27015.39	-411.286	-15.296	35603.0334	27030.6908
Modal 8	-22736.6	-69390.4	-110.924	-350.876	-22625.716	-69039.496
Modal 9	53211.52	-15162	612.3455	-322.225	52599.1757	-14839.78
Modal 10	-83345.7	36291.74	269.9707	72.0832	-83615.661	36219.6602
Modal 11	-24041.7	58325.12	-316.054	-7.509	-23725.662	58332.6303
Modal 12	39422.44	170373.3	-627.284	-118.848	40049.7218	170492.126
Modal 13	40817.68	36214.95	266.6237	-95.6144	40551.0548	36310.5619
Modal 14	138251.4	40608.48	-411.683	115.2708	138663.117	40493.2069
Modal 15	34553.18	-439300	-73.1953	211.448	34626.3777	-439511.61
Modal 16	-164788	-22724.5	-658.159	-68.6541	-164130.26	-22655.828
Modal 17	-38284.8	-135956	367.3228	23.2362	-38652.168	-135978.96
Modal 18	67852.51	347920.8	-198.801	828.0086	68051.3128	347092.824
Modal 19	-30324.4	1109434	691.9783	-523.988	-31016.417	1109957.53
Modal 20	31055.73	-1489436	-402.579	859.6287	31458.3114	-1490295.6
Modal 21	23423.8	-1081726	-219.429	492.3492	23643.2323	-1082218.3
Fuente: Autores						

Tabla 63. Comparación del Cortante Basal.

ruente: Autores

En las derivas y desplazamientos horizontales presentados por las estructuras, se puede observar según la Tabla 47 y Tabla 60, donde se presenta un incremento de las derivas en la estructura con aisladores sísmicos, estos debido a la absorción de energía dispuesta por el sistema y reflejando así mismo el comportamiento elástico de la estructura.

Figura 28. Derivas en Estructura Empotrada.

Fuente: Autores.

Figura 29. Derivas en Estructura Aislada.

Fuente: Autores.

5. CONCLUSIONES.

- Al realizar el análisis de la estructura empotrada en la base, se comprobó que este si cumplía con los parámetros mínimos establecidos por la NSR-10, sin embargo, al momento de implementar el sistema de aislación sísmica, la estructura presentó un mejor desempeño en los desplazamientos y las fuerzas internas.
- El propósito final del aislador sísmico es reducir las fuerzas sísmicas para que la estructura trabaje en el rango elástico y así poder reducir las secciones de la estructura, lo cual permitirá que se tenga optimización de recursos y de igual manera se cumpla con las solicitaciones que exige la normativa para que la respuesta estructural frente a un sismo sea la adecuada. Lo anterior se puede cumplir, ya que se han disminuido en un mayor porcentaje los desplazamientos laterales.
- Se observa que los desplazamientos calculados para la estructura con aisladores sísmicos, presentan un aumento de derivas en el primer piso, esto debido a que las fuerzas horizontales presentadas en la estructura aislada son distribuidas de manera uniforme, por lo que las derivas máximas se presentaran en el primero piso, por acción la absorción de energía presentada en el aislador sísmico, por lo tanto, al incrementar la altura la energía se va disipando.
- El aislamiento en la base presenta mejor comportamiento en cuanto a las fuerzas de sismo frente al modelo empotrado en la base, en conclusión, la estructura que se encuentra aislada tendrá un mejor desempeño donde las deformaciones permanentes serán casi nulas y la rigidez y resistencia no se verán afectadas por el evento.
- Como se puede evidenciar en los periodos establecidos por las estructuras, en la estructura con aisladores sísmicos, el periodo incrementa, y de esta manera disminuye la aceleración espectral lo que genera que se presenten fuerzas laterales menores, comparadas con la estructura empotrada en los apoyos.
- Gracias a la respuesta del aislador en cuanto a la absorción de la energía producida en un sismo y la disipación de la misma sin afectar los miembros rígidos, los daños que presentará la estructura serán mínimos, por lo tanto, la integridad de la estructura no se verá afectada y podrá seguir siendo inmediatamente ocupacional.
- Al realizar el análisis comparativo de las estructuras, se obtuvo una respuesta eficaz al evaluar la reducción de esfuerzos y desplazamientos presentados en la estructura con el sistema de aislación sísmica, cumpliendo con el principal objetivo de la investigación que es exponer y corroborar la información a nivel internacional y nacional, que justifica el uso de sistemas de aislación sísmica como una solución, para mitigar los daños causados por efecto de un sismo.

BIBLIOGRAFÍA

AIS, UNIDADES INGEOMINAS. 2010. *Estudio General de Amenaza Sísmica.* Bogota : Asociación Colombiana de Ingeniería Sísmica, 2010.

Aislamiento Sismico para Edificaciones y Puentes. DIS. 2007. 2007.

Antorveza, Gregorio Rentería. 2010. Gregorio Rentería Antorveza, el ingeniero que diseñó el puente helicoidal en Risaralda. Colombia : El Tiempo, 31 de Julio de 2010.

CDV Ingenieria Sismica. *CDV Ingenieria Sismica.* [En línea] [Citado el: 18 de 09 de 2018.] www.cdvperu.com.

Doshin Rubber Engineering. *Doshin Rubber Engineering.* [En línea] [Citado el: 15 de 09 de 18.] www.doshingrubber.com.

El Aislamiento Sísmico de Estructuras. Su Aplicación en Colombia. **Rendón, Jorge. 2009.** Colombia : s.n., 2009.

Genatios, Carlos y Marianela, Lafuente. 2016. *Introduccion al Uso de Aisladores y Disipadores en Estructuras.* 2016.

Grupo Vikingo. *Grupo Vikingo.* [En línea] [Citado el: 14 de 09 de 18.] www.cauchosvikingo.com.

Infraestructura Hospitalaria. *Infraestructura Hospitalaria.* [En línea] [Citado el: 14 de 09 de 18.] www.hospitalaria.cl.

Kelly, Trevor. 2001. *Base Isolation of Structures.* New Zealand : Holmes Consunting Group Ltd, 2001. 00988847.

Kirikov, B. 1992. *History of Earthquake Resistant Construction.* Madrid : Instituto de Ciencias de la Construcción Eduardo Torroja-Fundación MAPFRE, 1992.

Moquete, Francisco. 2012. *Evaluacion de Riesgo Sísmico en Edificios Especiales.* Cataluña : Universidad Politécnica de Cataluña, 2012.

Moreno, D.M., L.E., Yamin y Reyes, J.C. Estudio Experimental de Aisladores Sísmicos Tipo Péndulo de Fricción en Modelos a Escala Reducida. Bogota : Universidad de Los Andes. **Naeim, Farzad y Kelly, James M. 1999.** *Design of seismic isolated structures: from theory to practice.* s.l. : John Wiley & Sons, 1999. 0471149217.

Nitsche, Claudio. 2018. Proteccion Sismica de Estructuras. 2018.

NSR-10. 2010. *Reglamento colombiano de construcción sismo resistente NSR-10.* Colombia : Asociación Colombiana de Ingeniería Sísmica, 2010.

Obando, Alejandrina. 2013. *Análisis y Diseño de un Edificion con Aisladores Sísmicos Modelamiento en el ETABS.* s.l.: Universidad Central Del Ecuador, 2013. 1003324991/2248-7220.

Pinzon, Nathalia y Edwin, Martinez. 2014. ESTADO DEL ARTE Y MODELO DIDÁCTICODESCRIPTIVO DE AMORTIGUADORES Y AISLADORES. Bogota : s.n., 2014.

Seismic isolation in buildings to be a practical reality: behavior of structure and installation technique. Islam, A. y Jameel.M.:Jumaat, M. 2011. s.l.: J. Eng. Technol. Res, 2011, Vol. 3, págs. 99-117. 2006-9790.

Sismica. Sismica. [En línea] [Citado el: 14 de 09 de 18.] www.sismica.cl.

Structural Engineering Institute. 2017. *Minimum Design Loads And Associated Criteria For Buildings and Other Structures.* United States of America : America Society Of Civil Engineers, 2017.

TecnoAv. TecnoAv. [En línea] [Citado el: 14 de 09 de 18.] www.tecnoav.cl.

Uso de los Aisladores de Base en Puentes de Concreto Simplemente Apoyados.

Rico, Leocardio y Chio, Gustavo. 2012. 2012, Revista Tecnura, págs. 103-124.

Valerio, Jacob. 2015. *Análisis Comparativo de un edificio en la base vs un edificio aislado utilizando 4 tipos de aisladores sísmicos.* Catalunya : Universidad Politecnica de Catalunya, 2015.

ANEXOS.

-Anexo 1. Planos Centro de Especialidades Althea. El documento se encuentra en la carpeta PLANOS CENTRO DE ESPECIALIDADES ALTHEA.

-Anexo 2. Cálculo por Método de Análisis Dinámico para Estructura Empotrada. El documento se encuentra en la carpeta ANÁLISIS DINÁMICO, con el nombre CÁLCULO POR MÉTODO DE ANÁLISIS DINÁMICO PARA ESTRUCTURA EMPOTRADA

-Anexo 3. Cálculo por Método de Análisis Dinámico para Estructura Aislada. El documento se encuentra en la carpeta ANÁLISIS DINÁMICO, con el nombre CÁLCULO POR MÉTODO DE ANÁLISIS DINÁMICO PARA ESTRUCTURA AISLADA.