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ABSTRACT 

 

1. Introduction 

 The primary objective of metabolomics is to analyze the set of low molecular weight 

compounds present in a biological fluid, cell, tissue or organism, in specific physiological 

conditions or in response to different disturbances or stimuli. The main limitations of 

metabolomic analysis are related to the identification of metabolites, since the existing 

databases are not as up-to-date as those of the other omic disciplines. On the other hand, there 

are no universal protocols to address the metabolomic analysis of certain samples, since there 

are still aspects to be standardized. Among them, it is worth noting the acquisition of 

information that allows the unequivocal identification of metabolites, even for mass 

spectrometry, the technique of greater detection power, since there is no protocol that 

guarantees a good identification level of compounds without an exhaustive formation of the 

personnel involved in this task. Another scarcely established aspect is the application of 

validation protocols that ensure the analytical quality of the generated results. 

Almost all the limitations of metabolomics are a consequence of the great complexity of 

the biological samples, which include a wide variety of metabolites of diverse chemical nature 

and that cover a range of concentrations of several orders of magnitude. For this reason, it is 

technically unfeasible the development of an analytical method that in a single analysis 

provides results of metabolites such as, for example, glucose, a polar metabolite present at 

millimolar concentration, and calcitriol, a non-polar metabolite present at picomolar level. In 

this sense, the presence of major compounds complicates the detection of the metabolites 

present at low concentration. It is evident that there is a demand for more sensitive, selective 

and precise methodologies, which provide greater capacity for metabolite detection (measured 

by what is called the metabolomic coverage). 

With these premises, the current major challenge of metabolomics is to maximize the 

detection capacity of analytical methods in order to achieve the unambiguous identification of 

thousands of metabolites in an organism. This challenge is currently utopian when working 

with complex organisms because there is no single methodology that allows reaching the level 

of detection of some metabolites in higher organisms. 

Therefore, the main motivation of the Doctoral Thesis was to find solutions for the 

different challenges currently faced by metabolomics. 

 



2. Research content 

The basic objective of the research in this Thesis Book was to develop new analytical 

strategies based on the use of low- and high-resolution mass spectrometry to improve the 

detection and identification coverage in metabolomic analysis. These new strategies were 

applied throughout the main steps of the analytical process—sampling, sample preparation, 

determination and data analysis—and allowed improving basic analytical features such as 

sensitivity, selectivity and precision of metabolomic analysis methods (targeted and 

untargeted) and their detection capacity. The achievement of this basic objective has leaded to 

metabolomic analysis methods capable of providing a higher level of information, which is a 

key milestone for the resolution of biological problems. This objective was divided into three 

general objectives according to the different topics in this research: (i) to take benefit from the 

versatility of the triple quadrupole mass spectrometer to improve the 

identification/quantification of certain families of metabolites; (ii) to develop approaches to 

improve the detection and identification of metabolites by chromatographic techniques 

coupled to mass spectrometry in high resolution mode; and (iii) to create strategies for 

searching potential biomarkers in clinical and agro-food studies. From each general objective, 

we defined several concrete objectives: 

- To develop an automated qualitative and quantitative method based on on-line 

coupling of solid phase extraction (SPE) and liquid chromatography–tandem mass 

spectrometry (LC–MS/MS) to maximize sensitivity for determination of fatty acid 

esters of hydroxy fatty acids (FAHFAs) in serum (Chapter I). The method was further 

applied to a cohort of individuals to evaluate the influence of glycaemia on FAHFA 

levels. 

- To propose a qualitative/quantitative strategy for determination of polar lipids in 

human plasma by LC–MS/MS. Two MS/MS acquisition methods were combined to 

identify and confirm the presence of polar lipids in plasma (Chapter II). Thus, the 

process was carried out in two steps: (i) identification of lipids through the 

characteristic fragmentation pattern for each family; and b) confirmation of detected 

lipids by monitoring product ions corresponding to the fatty acids (FAs) conforming 

them or other characteristic product ions. 

- To study the differences at metabolite level between serum and plasma obtained with 

conventional tubes (heparin tube for plasma) and polymeric gel tubes by application 

of an untargeted approach based on gas chromatography coupled to time-of-flight 

mass spectrometry (GC–TOF/MS) (Chapter III). A cohort of volunteers was selected 



for blood sampling using four different tubes (plasma, plasma-gel, serum and serum-

gel).  

- To evaluate the influence of sample preparation on the determination of polar lipids 

in visceral adipose tissue (Chapter IV). Two different extractants were tested to 

compare their efficiency for the extraction of polar lipids, but also their inefficiency for 

extraction of acylglycerides (the main interference in the detection of polar lipids). 

Additionally, the implementation of an SPE step with a selective sorbent for retention 

of glycerophospholipids was assessed to check its influence on the subsequent 

detection of this family of lipids. 

- To maximize the identification coverage of metabolites found in pig fecal samples 

through the study of sample preparation (Chapter V). For this purpose, two analytical 

platforms such as LC–QTOF MS/MS and GC–TOF/MS were combined to evaluate 

their additivity in terms of identification. Concerning sample preparation, six solvents 

with different polarity were tested to evaluate the extraction performance and, in case 

of GC–MS, two derivatization protocols were compared. 

- To develop a new statistical package, called MetaboQC, to study and filtrate 

experimental variabililty in data sets generated by MS analysis of sequences processed 

for several days (Chapter VI). This new tool uses quality controls (QCs) to individually 

correct any tendency on quantitative signals of metabolites that can be associated to 

instrumental variability. 

- To study, by untargeted metabolomics analysis, the postprandial response to the oral 

fat tolerance test (OFTT) on plasma metabolomic profile (Chapter VII). Collected 

plasma samples were analyzed by LC–QTOF MS/MS and GC–TOF/MS. This test can 

open possibilities for the application of OFTT to the diagnostic of a wide range of 

pathologies. 

- To evaluate the predictive capacity of type 2 diabetes mellitus (T2DM) occurrence by 

examining the postprandial response (after OFTT) (Chapter VIII). With this aim, 

plasma samples were collected from 215 patients (CORDIOPREV project) at baseline 

and four hours after the OFTT. 107 individuals developed diabetes after five years. 

Collected plasma samples were analyzed by LC–QTOF MS/MS and GC–TOF/MS. 

- To elucidate the early events preceding the onset of islet autoimmunity and overt type 

1 diabetes mellitus (T1DM). Metabolomics was used to determine levels of molecular 

lipids and polar metabolites in human peripheral blood mononuclear cells (PBMCs) 



isolated from prospective samples collected in the Type 1 Diabetes Prediction and 

Prevention (DIPP) study (Chapter IX).  

- To develop discrimination models and search for panels of markers with capability to 

classify slaughtered pigs by their feeding regime (Chapter X). 80 samples of 

subcutaneous adipose tissue from Iberian pigs subjected to four different feedings 

were used. Data were obtained from the classical method for the determination of FAs 

based on GC–FID and from a method for determination of carbon isotopic 

abundances by isotope ratio mass spectrometry (IRMS). 

 

3. Conclusions 

The most outstanding conclusions of the Doctoral Thesis according to the initially proposed 

objectives are the following: 

1. Benefits derived from the versatility of the triple quadrupole analyzer to 

improve the identification/quantification of certain families of metabolites. 

(i) An automated method based on SPE on-line coupled to LC–MS/MS 

has been developed for determination of FAHFAs in serum. Eleven FAHFAs 

have been identified and quantified in relative terms in serum by application 

of a confirmatory test. PAHSA and PAHOA were the most concentrated 

FAHFAs in serum. PAHPA and POHPO reported significant differences 

between glycaemic states, while only POHPA was found significantly different 

considering BMI.  

(ii) A dual analysis strategy for massive quantitative determination of 

polar lipids by LC–MS/MS with a QqQ analyzer was optimized. A 

combination of two MRM methods enabled to monitor 398 polar lipids in 64 

minutes (32 minutes per run) after application of a simple protocol for sample 

preparation. The proposed method can be used in lipidomic analysis of 

biological samples to provide qualitative and semiquantitative information of 

lipid polar families.  

2. Improvement of the analytical process (sampling, sample preparation and 

data analysis) through methodological development in untargeted metabolomics 

analysis. 

Sampling 



(iii) It is essential to take into account that metabolic alterations occur in 

applying experimental protocols for metabolomics analysis in blood sampled. 

Serum and plasma collected in polymeric gel tubes were compared with serum 

and plasma obtained in conventional tubes using a GC–TOF/MS untargeted 

approach. Significant changes attributable to the polymeric gel were only 

detected in serum, while no differences were observed in plasma, which in 

overall terms provided a metabolite profile similar to that of plasma collected 

in conventional tubes. An additional issue was to evaluate the metabolite 

differences between serum and plasma collected from the same group of 

individuals in conventional tubes. These differences affected to critical 

pathways such as the citric acid cycle, the metabolism of amino acids, the 

fructose and mannose metabolism and that of glycerolipids, and pento-

se/glucuronate interconversions.  

Sample preparation 

(iv) The influence of sample preparation for lipidomics analysis of polar 

lipids in adipose tissue was studied. According to these results, the 

recommended sample preparation for analysis of polar lipids in adipose tissue 

would be LLE combined with an SPE step to enhance detection of 

glycerophospholipids. Concerning the extractant, MTBE favored the 

detection of less abundant lipids such as ceramides and unsaturated fatty 

acids and, therefore, it would be recommended for untargeted analysis of 

polar lipids. 

(v) The influence of sample preparation on the identification coverage for 

pig fecal samples analysis by LC–MS/MS and GC–MS has been evaluated. A 

total number of 303 compounds by combination of all the extractants and 

analytical platforms were tentatively identified. According to the results 

obtained, it should be recommended the utilization of MeOH/water as 

extractant for GC–MS analysis, but for LC–MS/MS analysis the combined 

analysis of extracts obtained with MeOH or MeOH/water and ethyl acetate 

can lead to a significant increase of identified compounds. Concerning the 

derivatization step, the implement-tation of methoximation previous 

silylation provided the identification of three α-keto acids that are not 

detected by the other tested strategies. Regarding the complementarity of the 



two analytical platforms, it is obvious that both approaches should be 

combined to obtain a comprehensive view of the pig feces metabolome. 

Data analysis 

(vi) A tool for correction of experimental variability associated to the 

instrumental quantitative response has been developed for implementation in 

metabolomics workflows based on MS detection. The proposed package is 

based on functions that can be used to correct variability on data sets obtained 

in metabolomics studies with large set of samples. The strategy included in 

this package involves that each metabolite is corrected according to the 

function that best fits its variability trend. Therefore, correction is 

independently applied to each metabolite. The only requirement for its 

application is the implementation of QCs, preferentially prepared with the 

same samples of the cohort, following a given planning in the sequence of 

analysis. 

3. Development of strategies for searching potential biomarkers in clinical and 

agro-food applications. 

Clinical applications 

(vii) Postprandial alterations in the level of plasma metabolites after the 

OFTT were studied by combination of LC–QTOF MS/MS and GC–TOF/MS. 

The most important metabolic alterations affected inflammatory and 

oxidative processes, synthesis of primary and secondary bile acids and cortisol 

production. This study revealed that OFTT can be used to interpret deviations 

associated to metabolic diseases, increasing its usefulness. 

(viii) The capability of metabolic changes occurring in the OFTT 

postprandial to predict the development of T2DM has been assessed. Taking 

into account the complexity of T2DM pathogenesis, two multimetabolite 

panels were configured to identify future T2DM patients. The combination of 

the two panels led to a model with sensitivity of 86.6% and specificity of 71.6%. 

The HR obtained for both panels, 5.4 (3.0–9.6) and 6.5 (3.7–11.4), revealed 

the predictive power, which reflected metabolic alterations associated to 

oxidation, insulin secretion and mitochondrial and peroxisomes activity. 

(ix) Metabolic patterns occurring in PBMCs of children developing 

pancreatic β-cell autoimmunity or overt T1DM have been studied. Pathway 



analysis suggested that alanine, aspartate, glutamate, glycerol phospholipid 

and sphingolipid metabolism were overrepresented in PT1D. Genome-scale 

metabolic models of PBMCs in T1DM progression were developed using 

available transcriptomics data and constrained with metabolomics results. 

Metabolic modeling confirmed altered ceramide pathways as specifically 

associated with T1DM progression.  

Agro-food application 

(x) The statistical combination of the results obtained by different 

analytical methods (concretely fatty acids determination by GC–FID and δ13C 

by IRMS analysis) could be the key for the correct discrimination of feeding 

regimes in the sector of Iberian pig. Taking into account the demand for 

methods to discriminate feeding regimes, this approach could be 

implemented in routine laboratories since the analysis of fatty acids is already 

carried out at this level, while IRMS analysis is frequently used in reference 

food laboratories. 
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RESUMEN 
 

1. Introducción 

 El objetivo primordial de la metabolómica consiste en analizar el conjunto de 

compuestos de bajo peso molecular presentes en un fluido biológico, célula, tejido u 

organismo, en unas condiciones fisiológicas específicas o en respuesta a diferentes 

perturbaciones o estímulos. Las principales limitaciones del análisis metabolómico están 

relacionadas con la identificación de los metabolitos, ya que las bases de datos existentes no 

están tan actualizadas como las del resto de disciplinas ómicas. Por otro lado, no existen 

protocolos universales para abordar el análisis metabolómico de determinadas muestras, ya 

que aún quedan aspectos por estandarizar. Entre ellos cabe destacar la obtención de 

información que permita la identificación inequívoca de metabolitos, ya que incluso para la 

espectrometría de masas, la técnica de mayor poder de detección, no hay un protocolo que 

garantice un buen nivel de identificación de compuestos sin una formación exhaustiva del 

personal implicado en los análisis. Otro aspecto poco establecido es la aplicación de 

protocolos de validación que aseguren la calidad analítica de los resultados generados.  

 Casi todas las limitaciones de la metabolómica son consecuencia de la gran 

complejidad de las muestras biológicas, que incluyen una amplia variedad de metabolitos de 

diversa naturaleza química y que cubren un rango de concentraciones de varios órdenes de 

magnitud. Por este motivo, es técnicamente inviable el desarrollo de un método analítico que 

en un único análisis proporcione resultados de metabolitos como, por ejemplo, la glucosa, de 

tipo polar presente a concentración milimolar, y el calcitriol, metabolito no polar presente a 

nivel picomolar. En este sentido la presencia de compuestos mayoritarios complica la 

detección de los metabolitos presentes a baja concentración.  

 Resulta evidente que existe una demanda de metodologías más sensibles, selectivas y 

precisas, que proporcionen mayor capacidad de detección de metabolitos (medida por lo que 

se denomina cobertura metabolómica del término inglés “metabolomics coverage”).  

 Con estas premisas, se puede decir que el mayor reto actual de la metabolómica es 

maximizar la capacidad de detección de los métodos analíticos con el fin de conseguir la 

identificación inequívoca de los miles de metabolitos existentes en un organismo. Este reto 

es actualmente utópico cuando se trabaja con organismos complejos pues no existe una única 

metodología que permita alcanzar el nivel de detección de algunos metabolitos en 

organismos superiores.  

 Por ello, la principal motivación de la Tesis Doctoral fue buscar soluciones para los 

distintos retos a los que se enfrenta actualmente la metabolómica. 

2. Contenido de la investigación 

El objetivo básico de la investigación en esta Tesis fue desarrollar nuevas estrategias 

analíticas basadas en el uso de espectrometría de masas de baja y alta resolución para 

mejorar la detección y la cobertura de identificación. Este objetivo se dividió en tres objetivos 



generales de acuerdo con los diferentes temas de esta investigación: (i) aprovechar la 

versatilidad del analizador de triple cuadrupolo (QqQ) para mejorar la 

identificación/cuantificación de ciertas familias de metabolitos; (b) desarrollar nuevas 

herramientas para mejorar la detección e identificación de metabolitos mediante técnicas 

cromatográficas acopladas a espectrometría de masas de alta resolución; y (c) crear 

estrategias para buscar biomarcadores potenciales en estudios clínicos y agroalimentarios. 

En este contexto, la Tesis ha dado lugar a los siguientes resultados: 

- Desarrollo de un método cualitativo y cuantitativo automatizado basado en el 

acoplamiento en línea de la extracción en fase sólida (SPE) y la cromatografía líquida 

con detección por espectrometría de masas en tándem (LC–MS/MS) para maximizar 

la sensibilidad en la determinación de ésteres de ácidos grasos y ácidos grasos 

hidroxilados (FAHFAs) en suero. El método se aplicó a una cohorte de individuos 

para evaluar la influencia de la glicemia en los niveles de FAHFAs [1]. 

- Propuesta de una estrategia cualitativa/cuantitativa para la determinación de lípidos 

polares en plasma humano por LC–MS/MS. Se combinaron dos métodos de 

adquisición de datos MS/MS para identificar y confirmar la presencia de lípidos 

polares en plasma. La propuesta se llevó a cabo en dos pasos: a) identificación de 

lípidos a través del patrón de fragmentación característico para cada familia; y b) 

confirmación de los lípidos detectados mediante la monitorización de iones producto 

correspondientes a los ácidos grasos (FAs) que los conforman u otros iones 

característicos. 

- Estudio sobre las diferencias a nivel de metabolitos entre suero y plasma obtenidos 

con tubos convencionales (tubo de heparina para plasma) y tubos con gel polimérico 

mediante la aplicación de un enfoque no dirigido basado en cromatografía de gases 

con detección por espectrometría de masas con analizador de tiempo de vuelo (GC–

TOF/MS). Se seleccionó una cohorte de voluntarios para el muestreo de sangre 

utilizando cuatro tipos de tubos (plasma, plasma-gel, suero y suero-gel) [2]. 

- Evaluación de la influencia de la preparación de la muestra en la determinación de 

lípidos polares en tejido adiposo visceral. Se probaron dos disolventes para comparar 

su eficiencia en la extracción de lípidos polares, pero también su ineficiencia para la 

extracción de acilglicéridos (las principales interferencias en la detección de lípidos 

polares). Además, se evaluó la implementación de una etapa SPE con un sorbente 

selectivo para la retención de glicerofosfolípidos con el fin de verificar su influencia 

en la detección posterior de esta familia de lípidos [3]. 

- Desarrollo de una estrategia para maximizar la cobertura de metabolitos 

identificados en muestras fecales de cerdo a través del estudio de la preparación de la 

muestra. Con este propósito se combinaron dos técnicas de detección, LC–QTOF 

MS/MS y GC–TOF/MS, para evaluar su complementariedad en términos de 

identificación. Con respecto a la preparación de la muestra, se probaron seis 

disolventes con diferente polaridad para evaluar su rendimiento de extracción y, en 

el caso de GC–MS, se compararon dos protocolos de derivatización [4]. 



- Diseño y desarrollo de un nuevo paquete estadístico, llamado MetaboQC, para 

estudiar y filtrar la variabilidad instrumental en conjuntos de datos generados 

mediante análisis por espectrometría de masas en secuencias desarrolladas durante 

varios días. Esta nueva herramienta utiliza controles de calidad (QCs) para corregir 

individualmente cualquier tendencia en las señales cuantitativas de metabolitos que 

puedan estar asociadas a la variabilidad instrumental [5]. 

- Estudio, mediante un análisis metabolómico no dirigido, de la respuesta posprandial 

a la prueba oral de tolerancia a la grasa (OFTT) en el perfil metabólico plasmático. 

Las muestras de plasma recolectadas se analizaron por LC–QTOF MS/MS y GC–

TOF/MS. Los resultados de este estudio abren una vía al uso de este test para el 

diagnóstico de un amplio abanico de patologías. 

- Evaluación de la capacidad predictiva de la aparición de diabetes mellitus tipo 2 

(T2DM) mediante el examen de la respuesta posprandial (después de la OFTT). En 

este estudio se recogieron muestras de plasma de 215 pacientes (proyecto 

CORDIOPREV) justo antes y cuatro horas después de la prueba OFTT. 107 personas 

desarrollaron diabetes después de cinco años. Las muestras de plasma se analizaron 

por LC–QTOF MS/MS y GC–TOF/MS.  

- Dilucidación de los eventos que preceden al inicio de la autoinmunidad de los islotes 

y la diabetes mellitus tipo 1 (T1DM). Se utilizó la metabolómica para determinar los 

niveles de lípidos moleculares y metabolitos polares en células mononucleares de 

sangre periférica humana (PBMC) aisladas de muestras prospectivas recolectadas en 

el estudio de Predicción y Prevención de Diabetes Tipo 1 (DIPP) [6]. 

- Desarrollo de modelos de discriminación y búsqueda de paneles de marcadores con 

capacidad para la clasificación de cerdos por su régimen de alimentación. Se 

utilizaron 80 muestras de tejido adiposo subcutáneo de cerdos ibéricos sometidos a 

cuatro regímenes de alimentación. Los datos se obtuvieron combinando el método 

clásico para la determinación de FAs basado en GC–FID y un método para la 

determinación de las abundancias isotópicas de carbono por espectrometría de 

masas con relación isotópica (IRMS) [7].  

3. Conclusiones 

Las conclusiones más destacadas de la Tesis Doctoral de acuerdo con los objetivos 

inicialmente propuestos son los siguientes:  

1. Beneficios de utilizar la versatilidad del analizador de triple cuadrupolo para mejorar 

la identificación/cuantificación de ciertas familias de metabolitos. 

(i) Se ha desarrollado un método automatizado basado en SPE en línea 

acoplada a LC–MS/MS para la determinación de FAHFAs en suero. El 

método permitió identificar y cuantificar en términos relativos 11 FAHFAs en 

suero mediante el desarrollo de una estrategia de análisis confirmatorio. Los 

FAHFAs más concentrados en suero fueron PAHSA y PAHOA. Se han 



detectado diferencias significativas en los niveles de PAHPA y POHPO en 

función del estado glucémico, y de POHPA en función del BMI [1]. 

(ii) Se ha optimizado una estrategia de análisis para la identificación y 

cuantificación masiva de lípidos polares por LC–MS/MS con un analizador 

QqQ. La combinación de dos métodos MRM permitió monitorizar 398 

lípidos polares en 64 minutos (32 minutos por cada método) después de la 

aplicación de un protocolo de preparación de muestra simple. La estrategia 

propuesta puede usarse en el análisis lipidómico de muestras biológicas para 

obtener información cualitativa y semicuantitativa de familias de lípidos 

polares. 

2. Mejora del proceso analítico (muestreo, preparación de muestra y análisis de datos) 

a través del desarrollo metodológico en análisis metabolómico no dirigido. 

Muestreo 

(iii) Es esencial tener en cuenta las alteraciones que se producen en los 

protocolos experimentales de análisis metabolómico cuando se toman 

muestras de sangre. Se ha comparado suero y plasma recogidos en tubos con 

gel polimérico con suero y plasma obtenidos en tubos convencionales 

utilizando un enfoque no orientado mediante GC–TOF/MS. Se detectaron 

cambios significativos atribuibles al gel polimérico en suero, mientras que no 

se observaron diferencias en el plasma, que proporcionó un perfil de 

metabolitos similar al del plasma recogido en tubos convencionales. 

Adicionalmente, se han evaluado las diferencias de metabolitos entre suero y 

plasma recolectado en tubos convencionales del mismo grupo de individuos. 

Estas diferencias afectaron a rutas importantes como el ciclo del ácido 

cítrico, el metabolismo de los aminoácidos, de la fructosa y la manosa y de 

los glicerolípidos, así como las interconversiones pentosa/glucuronato [2]. 

Preparación de la muestra 

(iv) Se ha estudiado la influencia de la preparación de la muestra en el análisis 

lipidómico de lípidos polares en tejido adiposo. Según los resultados 

obtenidos, se recomienda la LLE seguida de una etapa SPE para mejorar la 

detección de glicerofosfolípidos. Respecto al extractante, el MTBE favoreció 

la detección de lípidos menos abundantes como ceramidas y ácidos grasos 

insaturados y, por lo tanto, se recomienda para el análisis no dirigido de 

lípidos polares [3]. 

(v) Se ha evaluado la influencia de la preparación de la muestra en la capacidad 

de detección de metabolitos en el análisis de muestras de heces de cerdo 

mediante LC–MS/MS y GC–MS. Se han identificado tentativamente un total 

de 303 compuestos mediante combinación de todos los extractantes y 

plataformas analíticas estudiadas. Según los resultados obtenidos, se 

recomienda la utilización de MeOH/agua como extractante para el análisis 

GC–MS. Sin embargo, para LC–MS/MS el análisis combinado de extractos 

obtenidos con MeOH o MeOH/agua y acetato de etilo puede dar lugar a un 



aumento significativo de los compuestos identificados. Respecto a la etapa 

de derivatización por sililación, la implementación de una metoximación 

previa hizo posible la identificación de tres α-cetoácidos que no se detectan 

con las otras estrategias. Con respecto a la complementariedad de las dos 

plataformas analíticas, es obvio que ambas deben combinarse para obtener 

una visión integral del metaboloma de las heces de cerdo [4]. 

Análisis de datos 

(vi) Se ha desarrollado una herramienta para la corrección de la variabilidad 

experimental asociada a la respuesta cuantitativa instrumental y su 

implementación en flujos de trabajo de metabolómica basados en la 

detección por MS. El paquete propuesto se basa en funciones que pueden 

usarse para corregir la variabilidad en los datos obtenidos en estudios de 

metabolómica con un gran conjunto de muestras. La estrategia incluida en 

este paquete implica que cada metabolito se corrige de acuerdo con la 

función que mejor se adapte a su tendencia de variabilidad. Por lo tanto, la 

corrección se aplica independientemente a cada metabolito [5].  

3. Desarrollo de estrategias para la búsqueda de biomarcadores potenciales en 

aplicaciones clínicas y agroalimentarias. 

Aplicaciones clínicas  

(vii) Se han estudiado las alteraciones metabólicas producidas en el postprandio 

del OFTT, mediante la combinación de LC–QTOF MS/MS y GC–QTOF/MS. 

Las alteraciones metabólicas más importantes afectaron a los procesos 

inflamatorios y oxidativos, la síntesis de ácidos biliares primarios y 

secundarios, síntesis de carnitinas y a la producción de cortisol. Este estudio 

reveló que el OFTT se puede utilizar para interpretar las desviaciones 

asociadas a enfermedades metabólicas, aumentando la utilidad del OFTT. 

(viii) Se ha evaluado la capacidad predictiva de los cambios metabólicos que 

ocurren en el postprandio del OFTT para predecir el desarrollo de T2DM. 

Teniendo en cuenta la complejidad de la patogénesis de T2DM, se 

configuraron dos paneles multimetabolitos para identificar futuros pacientes 

con T2DM. La combinación de los dos paneles condujo a un modelo con una 

sensibilidad del 86,6% y una especificidad del 71,6%. El HR obtenido para 

ambos paneles, 5.4 (3.0-9.6) y 6.5 (3.7-11.4), reveló su poder predictivo y el 

hecho de que reflejan alteraciones metabólicas asociadas a la oxidación, la 

secreción de insulina y la actividad mitocondrial y de los peroxisomas. 

(ix) Se han estudiado los patrones metabólicos que se producen en las BMPC de 

niños que han desarrollado autoinmunidad en las células β pancreáticas o 

T1DM. El análisis de rutas metabólicas sugirió que el metabolismo de 

alanina, aspartato, glutamato, glicerofosfolípidos y esfingolípidos estaba 

sobreexpresado en PT1D. Se han desarrollado modelos metabólicos a escala 

del genoma de las CMSP en la progresión de la T1DM utilizando los datos 



transcriptómicos disponibles y los resultados del análisis metabolómico. Los 

modelos desarrollados mostraron alteraciones en la ruta metabólica de las 

ceramidas, asociadas específicamente con la progresión de la T1DM [6].  

Aplicaciones agroalimentarias 

(x) La combinación estadística de los resultados obtenidos por diferentes 

métodos analíticos (concretamente la determinación de ácidos grasos por 

GC–FID y de δ13C por análisis IRMS) podría ser la clave para la correcta 

discriminación de los regímenes alimenticios en el sector del cerdo ibérico. 

Teniendo en cuenta la demanda de métodos para discriminar los regímenes 

de alimentación, este enfoque podría implementarse en laboratorios de 

rutina, ya que el análisis de ácidos grasos se ha realizado tradicionalmente 

con este fin mediante GC–FID, mientras que el análisis IRMS se usa con 

frecuencia en laboratorios alimentarios de referencia, por lo que los 

resultados de ambos conlleva una mayor seguridad en el diagnóstico [7]. 
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 The basic objective of the research in this Thesis Book was to develop 

new analytical strategies based on the use of low- and high-resolution mass 

spectrometry to improve the detection and identification coverage in metabolomic 

analysis. These new strategies were applied throughout the main steps of the 

analytical process—sampling, sample preparation, determination and data 

analysis—and allowed improving basic analytical features such as sensitivity, 

selectivity and precision of metabolomic analysis methods (targeted and 

untargeted) and their detection capacity. The achievement of this basic objective 

leaded to metabolomic analysis methods capable of providing a higher level of 

information, which is a key milestone for the resolution of biological problems.  

This objective was divided into three general objectives according to the 

different topics in this research:  

• To take benefit from the versatility of the triple quadrupole mass 

spectrometer to improve the identification/quantification of certain 

families of metabolites. 

• To develop approaches to improve the detection and identification of 

metabolites by chromatographic techniques coupled to mass spectrometry 

in high resolution mode. 

• To create strategies for searching potential biomarkers in clinical and agro-

food studies.  

 

 From each general objective, we defined several concrete objectives: 

(i) To develop an automated qualitative and quantitative method based 

on on-line coupling of solid phase extraction (SPE) and liquid 

chromatography–tandem mass spectrometry (LC–MS/MS) to 
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maximize sensitivity for determination of fatty acid esters of hydroxy 

fatty acids (FAHFAs) in serum (Chapter I). The method was further 

applied to a cohort of individuals to evaluate the influence of 

glycaemia on FAHFA levels. 

(ii) To propose a qualitative/quantitative strategy for determination of 

polar lipids in human plasma by LC–MS/MS. Two MS/MS acquisition 

methods were combined to identify and confirm the presence of polar 

lipids in plasma (Chapter II). Thus, the process was carried out in two 

steps: (i) identification of lipids through the characteristic 

fragmentation pattern for each family; and b) confirmation of detected 

lipids by monitoring product ions corresponding to the fatty acids 

(FAs) conforming them or other characteristic product ions. 

(iii) To study the differences at metabolite level between serum and plasma 

obtained with conventional tubes (heparin tube for plasma) and 

polymeric gel tubes by application of an untargeted approach based 

on gas chromatography coupled to time-of-flight mass spectrometry 

(GC–TOF/MS) (Chapter III). A cohort of volunteers was selected for 

blood sampling using four different tubes (plasma, plasma-gel, serum 

and serum-gel).  

(iv) To evaluate the influence of sample preparation on the determination 

of polar lipids in visceral adipose tissue (Chapter IV). Two different 

extractants were tested to compare their efficiency for the extraction 

of polar lipids, but also their inefficiency for extraction of 

acylglycerides (the main interference in the detection of polar lipids). 

Additionally, the implementation of an SPE step with a selective 

sorbent for retention of glycerophospholipids was assessed to check 

its influence on the subsequent detection of this family of lipids. 

(v) To maximize the identification coverage of metabolites found in pig 

fecal samples through the study of sample preparation (Chapter V). 

For this purpose, two analytical platforms such as LC–QTOF MS/MS 
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and GC–TOF/MS were combined to evaluate their additivity in terms 

of identification. Concerning sample preparation, six solvents with 

different polarity were tested to evaluate the extraction performance 

and, in case of GC–MS, two derivatization protocols were compared. 

(vi) To develop a new statistical package, called MetaboQC, to study and 

filtrate instrumental variabililty in data sets generated by MS analysis 

of sequences processed for several days (Chapter VI). This new tool 

uses quality controls (QCs) to individually correct any tendency on 

quantitative signals of metabolites that can be associated to 

instrumental variability. 

(vii) To study, by untargeted metabolomics analysis, the postprandial 

response to the oral fat tolerance test (OFTT) on plasma metabolomic 

profile (Chapter VII). Collected plasma samples were analyzed by LC–

QTOF MS/MS and GC–TOF/MS. This test can open possibilities for 

the application of OFTT to the diagnostic of a wide range of 

pathologies. 

(viii) To evaluate the predictive capacity of type 2 diabetes mellitus (T2DM) 

occurrence by examining the postprandial response (after OFTT) 

(Chapter VIII). With this aim, plasma samples were collected from 215 

patients (CORDIOPREV project) at baseline and four hours after the 

OFTT. 107 individuals developed diabetes after five years. Collected 

plasma samples were analyzed by LC–QTOF MS/MS and GC–

TOF/MS. 

(ix) To elucidate the early events preceding the onset of islet autoimmunity 

and overt type 1 diabetes mellitus (T1DM). Metabolomics was used to 

determine levels of molecular lipids and polar metabolites in human 

peripheral blood mononuclear cells (PBMCs) isolated from 

prospective samples collected in the Type 1 Diabetes Prediction and 

Prevention (DIPP) study (Chapter IX).  
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(x) To develop discrimination models and search for panels of markers 

with capability to classify slaughtered pigs by their feeding regime 

(Chapter X). 80 samples of subcutaneous adipose tissue from Iberian 

pigs subjected to four different feedings were used. Data were 

obtained from the classical method for the determination of FAs based 

on GC–FID and from a method for determination of carbon isotopic 

abundances by isotope ratio mass spectrometry (IRMS). 

 

 The formation of the future PhD, which is the final objective of a 

Doctoral Thesis, has also included the master on “Chemistry” (Analytical 

Chemistry Specialization), in which the PhD student developed the mandatory 

courses. Also, the necessary steps to fulfill the requirements to achieve the 

International Doctorate mention were developed. In parallel to the above-

mentioned tasks and to the research in the main part of this Book, a wider 

formation of the PhD student has been sought by development of other activities 

summarized below as annexes: 

- Annex I: Collaborations with other members of the group and with 

other group, which has provided 2 published articles in high-impact 

international journals. 

- Annex II: Book chapter on a subject non-related to the Thesis: Soxhlet 

extraction. 

- Annex III: Oral and poster communications in national or 

international meetings. 

- Annex IV: Co-direction of two Final Degree Projects (TFGs) of Degree 

in Chemistry students (University of Córdoba, Spain). 

- Annex V: Co-direction of two Final Master Projects (TFMs) of Master 

in Chemistry students (University of Córdoba, Spain). 
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- Annex VI: Simultaneous research in education, which has provided 1 

published article and participation in a teaching innovation project.  
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 El objetivo básico de la investigación recogida en esta Memoria de Tesis 

fue desarrollar nuevas estrategias analíticas basadas en el uso de espectrometría 

de masas de baja y alta resolución para mejorar la detección y la cobertura de 

identificación en metabolómica. Estas nuevas estrategias se han apliado a lo largo 

de las principales etapas del proceso analítico (muestreo, preparación de la 

muestra, detección y análisis de datos) y permitieron mejorar características 

básicas como la sensibilidad, la selectividad y la precisión de los métodos de 

análisis metabolómico (dirigido y no dirigido) y su capacidad de detección. El logro 

de este objetivo básico condujo a métodos de análisis metabolómico capaces de 

proporcionar un mayor nivel de información, que es un hito clave para la 

resolución de problemas biológicos.  

Este objetivo se dividió en tres objetivos generales de acuerdo con los 

diferentes temas de esta investigación: 

• Aprovechar la versatilidad del analizador de triple cuadrupolo (QqQ) para 

mejorar la identificación/cuantificación de ciertas familias de metabolitos. 

• Desarrollar nuevas herramientas para mejorar la detección e identificación 

de metabolitos mediante técnicas cromatográficas acopladas a 

espectrometría de masas de alta resolución. 

• Crear estrategias para buscar biomarcadores potenciales en estudios 

clínicos y agroalimentarios.  

 

Cada objetivo general ha dado lugar a varios objetivos concretos: 

(i) Desarrollar un método cualitativo y cuantitativo automatizado basado 

en el acoplamiento en línea de extracción en fase sólida (SPE) y 

cromatografía líquida con detección por espectrometría de masas en 

tándem (LC–MS/MS) para maximizar la sensibilidad en la 
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determinación de ésteres de ácidos grasos y ácidos grasos hidroxilados 

(FAHFAs) en suero (Capítulo I). El método se aplicó a una cohorte de 

individuos para evaluar la influencia de la glicemia en los niveles de 

FAHFAs. 

(ii) Proponer una estrategia cualitativa/cuantitativa para la determina-

ción de lípidos polares en plasma humano por LC–MS/MS. Se 

combinaron dos métodos de adquisición MS/MS para identificar y 

confirmar la presencia de lípidos polares en plasma (Capítulo II). Esta 

propuesta se llevó a cabo en dos pasos: a) identificación de lípidos a 

través del patrón de fragmentación característico para cada familia; y 

b) confirmación de los lípidos detectados mediante la monitorización 

de iones producto correspondientes a los ácidos grasos (FAs) que los 

conforman u otros iones característicos. 

(iii) Estudiar las diferencias a nivel de metabolitos entre suero y plasma 

obtenidos con tubos convencionales (tubo de heparina para plasma) y 

tubos de gel polimérico mediante la aplicación de un enfoque no 

dirigido basado en cromatografía de gases con detección por 

espectrometría de masas con analizador de tiempo de vuelo (GC–

TOF/MS) (Capítulo III). Se seleccionó una cohorte de voluntarios para 

el muestreo de sangre utilizando cuatro tipos de  tubos (plasma, 

plasma-gel, suero y suero-gel). 

(iv) Evaluar la influencia de la preparación de muestra en la determinación 

de lípidos polares en tejido adiposo visceral (Capítulo IV). Se probaron 

dos disolventes para comparar su eficiencia en la extracción de lípidos 

polares, pero también su ineficiencia para la extracción de 

acilglicéridos (las principales interferencias en la detección de lípidos 

polares). Además, se evaluó la implementación de una etapa SPE con 

un sorbente selectivo para la retención de glicerofosfolípidos con el fin 

de verificar su influencia en la detección posterior de esta familia de 

lípidos. 
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(v) Maximizar la cobertura de metabolitos identificados encontrados en 

muestras fecales de cerdo a través del estudio de preparación de 

muestra (Capítulo V). Con este propósito, se combinaron dos 

plataformas analíticas como LC–QTOF MS/MS y GC–TOF/MS para 

evaluar su complementariedad en términos de identificación. 

Respecto a la preparación de la muestra, se probaron seis disolventes 

con diferente polaridad para evaluar el rendimiento de la extracción y, 

en el caso de GC–MS, se compararon dos protocolos de derivatización. 

(vi) Desarrollar un nuevo paquete estadístico, llamado MetaboQC, para 

estudiar y filtrar la variabilidad instrumental en conjuntos de datos 

generados mediante análisis por espectrometría de masas en 

secuencias desarrolladas durante varios días (Capítulo VI). Esta nueva 

herramienta utiliza controles de calidad (QCs) para corregir 

individualmente cualquier tendencia en las señales cuantitativas de 

metabolitos que puedan estar asociadas a la variabilidad instrumental. 

(vii) Estudiar, mediante análisis metabolómico no dirigido, la respuesta 

posprandial a la prueba oral de tolerancia a la grasa (OFTT) en el perfil 

metabólico plasmático (Capítulo VII). Las muestras de plasma 

recolectadas se analizaron por LC–QTOF MS/MS y GC–TOF/MS. 

Este estudio permite abrir la posibilidad de usar dicho test para el 

diagnóstico de un amplio abanico de patologías. 

(viii) Evaluar la capacidad predictiva de la aparición de diabetes mellitus 

tipo 2 (T2DM) mediante el examen de la respuesta posprandial 

(después de la OFTT) (Capítulo VIII). Con este objetivo se recogieron 

muestras de plasma de 215 pacientes (proyecto CORDIOPREV) justo 

antes y cuatro horas después de la prueba OFTT al inicio del estudio. 

107 personas desarrollaron diabetes después de cinco años. Las 

muestras de plasma recolectadas se analizaron por LC–QTOF MS/MS 

y GC–TOF/MS.  
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(ix) Dilucidar los eventos que preceden al inicio de la autoinmunidad de 

los islotes y la diabetes mellitus tipo 1 (T1DM) (Capítulo IX). Se utilizó 

la metabolómica para determinar los niveles de lípidos moleculares y 

metabolitos polares en células mononucleares de sangre periférica 

humana (PBMC) aisladas de muestras prospectivas recolectadas en el 

estudio de Predicción y Prevención de Diabetes Tipo 1 (DIPP). 

(x) Desarrollar modelos de discriminación y buscar paneles de 

marcadores con capacidad para clasificar a los cerdos por su régimen 

de alimentación (Capítulo X). Se utilizaron 80 muestras de tejido 

adiposo subcutáneo de cerdos ibéricos sometidos a cuatro regímenes 

de alimentación diferentes. Los datos se obtuvieron del método clásico 

para la determinación de FAs basado en GC–FID y de un método para 

la determinación de las abundancias isotópicas de carbono por 

espectrometría de masas con relación isotópica (IRMS).  

 

La formación de la futura doctora, que es el objetivo final de una Tesis 

Doctoral, también ha incluido el máster en "Química" (especialidad de Química 

Analítica), en el que la estudiante de doctorado desarrolló los cursos obligatorios. 

Además, se completaron los pasos necesarios para cumplir con los requisitos para 

lograr la mención del Doctorado Internacional. Paralelamente a las tareas 

indicadas anteriormente y a la investigación en la parte principal de la Memoria, 

se ha buscado una formación más amplia de la estudiante de doctorado mediante 

el desarrollo de otras actividades resumidas a continuación como anexos: 

- Anexo I: Colaboración con otros miembros del grupo y con otro grupo de 

investigación, que ha proporcionado 2 artículos publicados en revistas 

internacionales de alto impacto. 

- Anexo II: Capítulo de libro sobre un tema no relacionado con la Tesis: 

extracción Soxhlet. 
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- Anexo III: Comunicaciones orales y pósters en 20 congresos nacionales 

o internacionales. 

- Anexo IV: Codirección de dos Trabajos Fin de Grado (TFG) de 

estudiantes de Grado de Química (Universidad de Córdoba, España). 

- Anexo V: Codirección de dos Trabajos Fin de Máster (TFM) de 

estudiantes de Máster en Química (Universidad de Córdoba, España). 

- Anexo VI: Investigación simultánea en el área de educación, que ha 

proporcionado 1 artículo publicado y la participación en un proyecto de 

innovación docente.  
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This introduction section is intending to offer an overview of the 

metabolomics analysis and analytical steps considered in the research that 

constitutes this PhD Book. 

 

1. Metabolome and metabolomics: basic principles and 

concepts 

From the Latin suffix “ome”, the term “omics” means mass or many and is 

used to differentiate studies that involve a large number of measured parameters, 

typically genes (genomics), RNA (transcriptomics), proteins (proteomics), or 

metabolites (metabolomics).  

The term metabolome first appeared in September 1998, when Oliver et al. 

[1,2] measured the change in the relative concentrations of metabolites as the 

result of deletion or overexpression of a gene [1]. Metabolome was therefore used 

to address the entire set of metabolites an organism expresses [2]. In 2001, 

metabolomics was defined by Fiehn [3,4] as the comprehensive and quantitative 

analysis of all metabolites of the biological system under study. In addition, he 

pointed out that “metabolomic approaches must aim at avoiding exclusion of any 

metabolite by using well-conceived sample preparation procedures and analytical 

techniques” [4]. Currently, the most common definition of metabolomics is the 

systematic identification and quantification of the small molecule (low-molecular-

weight, <1 kDa) metabolic products (the metabolome) of a biological system (cell, 

tissue, organ, biological fluid, or organism) at a specific point in time. 

Endogenous metabolites can be classified into primary and secondary. The 

first ones are metabolism products generated during the growth phase of an 

organism to perform the physiological functions and support the overall 

development of the cell. On the other hand, secondary metabolites are the end 
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products of primary metabolism, synthesized after the growth phase has been 

completed and are important in ecological and other cell activities.  

Currently, 92.000 endogenous metabolites have been identified in human 

samples according to the Human Metabolome Database (HMDB) [5,6]. These 

metabolites are a consequence of all processes involved from gene expression to 

phenotype manifestation, as shows Figure 1.A, which schematizes the traditional 

central dogma of system biology. As can be seen, the information flow is considered 

unidirectional and goes from genes to their transcription at mRNA and their 

translation to proteins, macromolecules in charge of catalyzing metabolic 

reactions that affect the metabolome.  

Alterations in endogenous metabolite levels, which may result from disease 

processes, drug toxicity, or gene function, could be evaluated in cells, tissues, or 

biological fluids by metabolomics. Latent biochemical information obtained from 

metabolomics may be used for diagnostic or prognostic purposes. Such 

information reflects actual biological events rather than the potential for disease 

development, data provided by gene expression [7,8]. 

However, to understand biology at the system level, it is necessary to 

examine all cell and organism functions, rather than isolated parts of them. The 

integration of data from the primary omics (viz., genomics, transcriptomics, 

proteomics and metabolomics) constitutes what was known as systems biology, 

term coined by Nicholson and Wilson [9,10] to better understand the functioning 

of a given biological system. At present, systems biology is more frequently known 

as integrative omics [8,10]. Figure 1.B includes the scheme of the systems biology 

approach. As can be seen, the biological information flow from the central dogma 

of molecular biology is complemented with interaction among the different levels, 

breaking the traditional unidirectional flow of information. Thus, the flow of 

information takes place not only downstream but also upstream and explains the 

phenotype of an individual as the direct reflection of its metabolism. Furthermore, 

lower levels can provide information of upper levels that justify the situation of the 

former. 
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The metabolome is the level of this functional cascade that best reflects the 

physiological state of an organism, being not only the most sensitive to any change, 

either internal or external, since the metabolites are the real active regulating 

agents of homeostasis [11,12]. For example, alterations in a single enzyme can lead 

to a cascade of metabolic perturbations that are functionally related to the given 

phenotype [12]. Hence, metabolomics is one of the most powerful bioanalytical 

strategies as it allows obtaining a picture of the metabolites of an organism in the 

course of a biological process, being considered as a phenotyping tool, thus 

justifying its usefulness [12]. 

 

 

Figure 1. A) Traditional central dogma of molecular biology. B) General scheme of 

systems biology. 

 

Metabolomics includes different subdisciplines targeted at the study of 

specific groups of metabolites. Among them, lipidomics is the one with the most 

salient contributions. Lipidome first appeared in the literature in 2001 [13] and it 

has greatly advanced in recent years, largely due to the development of mass 

spectrometry (MS) [14–16]. The lipidome is composed by all biomolecules defined 
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as lipids, which encompass compounds of very different structural diversity and 

complexity [17]. Thus, lipidomics can be defined as the study of the structure and 

function of the complete set of lipids (lipidome) in a given cell or organism, as well 

as their interactions with other cellular components [16,18].  

 

2. Metabolomic strategies 

Metabolomics can be used for two major purposes: (i) to detect differences 

between global metabolic fingerprints of groups of individuals, or (ii) to 

understand given metabolic pathways, families or partitioning of metabolic 

products between cellular compartments and excretion [19]. Metabolomic analysis 

encompasses different strategies, which depend on the information required from 

the system under study [3]:  

a. Targeted analysis, which aims at qualitative and quantitative study of one 

or, more frequently, a small group of chemically similar metabolites. 

b. Untargeted analysis (also known as global metabolomics profiling), which 

allows detection of a broad range of metabolites by using a single analytical 

platform or a combination of complementary analytical platforms to obtain 

a comprehensive profile of the metabolome [20,21]. 

c. Metabolomics fingerprinting, a high throughput, fast methodology for 

analysis of biological samples that provides metabolic snapshots for sample 

classification and screening [22]. 

Obviously, the complexity of sample preparation for each strategy is 

different increasing from (c) to (a). The most recent trend leads to simplification 

by establishing distinction only between targeted and untargeted analysis [3,12].  

Each of these strategies has its own inherent advantages and disadvantages, 

but they can be highly complementary when used in combination. The detection 

techniques used also depend on the selected strategy [8]. For example, to obtain a 
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metabolomic fingerprint the detection technique should allow direct and rapid 

analysis of the sample. Nuclear magnetic resonance (NMR) spectroscopy, MS 

(depending on the complexity of the sample) and, to a lesser extent, infrared and 

Raman spectroscopies, are main tools used in this context.  

High-resolution separation approaches (usually GC or LC) are generally 

involved in both targeted and untargeted analysis prior to individual detection of 

the metabolites for their identification or quantification. Then, MS is the 

commonest detection technique in metabolomics, both for targeted and 

untargeted analysis, as it provides a high spectral resolution —and therefore a great 

accuracy in the measurement of the m/z ratio—, or an excellent sensitivity, 

depending on the given MS approach [8]. 

It is worth mentioning that both targeted and untargeted analysis have been 

applied for development of the research that constitutes the present Thesis Book.  

 

3. General metabolomics workflow 

In overall terms, the analytical process can be segmented into five steps: 

sample collection (sampling), sample preparation, detection, data processing, and 

statistical analysis. Figure 2 illustrates a general workflow of experiments in 

metabolomics. This workflow has been restricted to the most common strategies 

employed for targeted and untargeted analysis. 

The workflow starts with sampling, which is usually the limiting step in 

metabolomics and, ideally, should seek to be non-invasive and ensure 

representativeness [23]. The next step is the isolation of metabolites, that depends 

on the selected metabolomic strategy but also on the type of sample. In general, 

solid–liquid (SLE) and liquid–liquid extraction (LLE) are commonly used for solid 

and liquid samples, respectively. In some cases, it is necessary to carry out an SPE 

to concentrate metabolites or remove interferents. For the considered 

metabolomic approaches, the derivatization step is necessary when the 
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metabolites are going to be separated by GC and they are not volatile enough; but 

it can be used also to increase metabolites stability, selectivity or sensitivity. 

 

Figure 2. Basic scheme of the workflow in metabolomics analysis. 

 

As can be seen in Figure 2, the next steps are separation and detection of 

metabolites. As mentioned above, only untargeted and targeted metabolomic 

analysis have been considered. In these cases, separation of the metabolites (using 

typically GC [24] or LC [25]) is usually required when working with mass 

spectrometry as detection technique. So, the most frequently used analytical 

platforms are NMR, GC–MS and LC–MS.  
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After detection, the next step is data processing followed by data analysis, 

two steps that are also dependent on the metabolomic strategy [20,26]. In the 

following sections of this introduction all the steps of this workflow are discussed. 

 

3.1. Sampling in metabolomics 

In metabolomics, an experiment starts with selection of the biological 

material and sampling, which are frequently limiting steps that affect the data 

quality and, therefore, the accuracy of the biological interpretation [27]. The main 

challenges in sampling dealing with metabolomics analysis are: 

a. Selection of the biological material –usually biofluids (e.g., blood 

or urine) or tissues. Ideally, sampling of biofluids should seek to be 

non-invasive and reproducible [23]. 

b. Selection of the number of samples. A power analysis should be 

performed to ensure that a sufficient number of samples are included 

in the study to reduce the influence of biological variability and obtain 

statistically validated data [21]. However, in clinical studies to get a 

large cohort with a specific pathology and similar characteristics is 

difficult. The influence of diet, gender, age, and genetic factors have to 

be considered [21]. 

c. Selection of the sampling strategy. Biofluids are collected by using 

different approaches. For example, plasma can be collected in tubes 

containing different commercial anticoagulant agents. Also, sampling 

conditions (including processing prior to sample preparation) can 

significantly affect metabolites stability and should be attentively 

evaluated.  

The most common biofluid used in clinical and nutrition studies is blood 

(serum/plasma) [28,29]. The main reasons justifying the clinical applicability of 

blood are its minimally invasive sampling, its homogeneity as compared to saliva 

or urine, which are strongly influenced by the collection volume, and its direct 

relationship with systemic changes in the metabolome [28]. Plasma is obtained 
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from whole blood by addition of an anticoagulant followed by centrifugation to 

separate the aqueous plasma from the blood cells [29]. On the other hand, serum 

is achieved by collection into tubes without addition of anticoagulants, followed by 

clotting and centrifugation to eliminate not only blood cells, but also fibrinogen, 

then isolating the supernatant [29]. Collection of plasma is more reproducible as 

the extra step related to blood clotting is omitted [29]. 

Thus, the sampling strategy is specially of interest for blood, since there are 

several types of commercial tubes (with different tube wall, stopper, stopper 

lubricant, separator gel, clot activator, etc. [27]) for plasma or serum collection, 

which are widely used in metabolomics analysis. The selection of the commercial 

tubes is a key factor to be considered as it can introduce analytical bias and 

influence the quality of the observed metabolic profiles. This influence has been 

studied in the research of this Thesis (Chapter III). A similar situation was found 

with PBMCs used in Chapter IX. PBMCs are blood cells with a single round 

nucleus. These cells include T cells (~70%), B cells (~15%), monocytes (~5 %), 

dendritic cells (~1%) and natural killer (NK) cells (~10%). There are commercial 

kits with different anticoagulants for sampling and isolation of PBMCs, Figure 3 

shows an example of PBMCs isolation from blood. Thus, in this case it is also 

important to select the most adequate commercial kit for each particular study. 

 

Figure 3. Example of PBMCs isolation from blood [30]. 
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Concerning tissues as metabolomic samples, the sampling technique is 

conditioned by the location of the target tissue [31]. For example, adipose tissue is 

located in several anatomical locations. The abdominal adipose tissue (AT) is 

divided into subcutaneous adipose tissue (SCAT) and visceral adipose tissue (VAT) 

[32], being SCAT and VAT the most studied samples in metabolomic studies 

related to metabolic diseases [33–36]. In general, adipose tissue samples are 

collected by surgical procedure (incision), which allows collection of both VAT and 

SCAT, or by needle biopsy, the preferred option for SCAT [32,37]. Both VAT and 

SCAT are used in Chapters IV and X, respectively. 

Apart from biofluids and tissues, there are other less common biological 

samples like feces, a particular biological material, easily accessible, that provides 

a non-invasive [27] window to study the outcome of the diet–gut microbiota–host 

interaction through the analysis of remaining unabsorbed metabolites [38]. In 

spite of the relevance of the information that could be obtained from feces, the 

analysis of fecal samples for metabolic profiling has received attention only in the 

last years. In general, the protocol for sampling human feces is the self-collection 

[39–41]. In some cases, feces are collected prior to surgery or endoscopic 

examination [41]. On the other hand, feces from animals are collected directly from 

their intestine after sacrifice, or as pellets from their cages [41]. In this Thesis, pig 

fecal samples were used in Chapter V. 

 

3.2. Sample preparation in metabolomics 

The selection of the sample preparation approach is crucial to the success of 

metabolomic experiments [23]. Sample preparation aims to enrich metabolites of 

interest and remove interfering substances. The ideal sample preparation method 

should be simple, robust and with capability to preserve the integrity of the 

metabolites [42]. The choice of a sample preparation method affects both the 

observed metabolite profile and data quality. 
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Different approaches for sample preparation can be used in metabolomics; 

these approaches include extraction of metabolites into a solvent, 

preconcentration, clean-up of interferents, and derivatization of metabolites if 

required. Sample preparation depends on the selected strategy and the platform 

used [26]. Thus, targeted metabolomic analysis requires a highly selective 

extraction protocol that provides clean and concentrated extracts preferably 

containing only the compounds of interest. The extraction protocol is mainly 

conditioned by the target biological sample: for solid samples, SLE is the preferred 

technique, while, for liquid samples, metabolites could be extracted by LLE, SPE 

or solid-phase microextraction (SPME) [26]. SPE and SPME play a dual role: 

preconcentration of metabolites and removal of interferents. On the other hand, in 

untargeted analysis an unselective sample preparation approach is selected by the 

need to analyze a range of metabolites as wide as possible [43]. This is generally 

accomplished by using the simplest sample preparation procedures; for example, 

dilution or solvent precipitation [43]. Metabolite losses are further avoided by 

minimizing the overall number of steps in the procedure, and short sample-

preparation times facilitate high sample throughput [43]. 

Apart from metabolites extraction, additional sample preparation steps are 

needed in some cases. For example, the low volatility of many metabolites makes 

necessary derivatization (which is usually performed by silylation [26,44]) prior to 

GC–MS analysis. 

The sample preparation approach has been of paramount importance in the 

development of the research planned in the present PhD, concretely for the 

optimization of methods for analysis of feces and adipose tissue.  

 

3.3. Analytical platforms in metabolomics 

Currently, a range of analytical platforms are used for metabolomic analysis, 

including NMR, direct infusion in MS (DI–MS), GC–MS, LC–MS and capillary 

electrophoresis coupled to MS (CE–MS) [45]. For the purpose of the Thesis, LC–
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MS and GC–MS were preferentially used. In the following sections the separation 

and detection techniques used in the development of the Thesis are detailed. 

a. Separation techniques used in metabolomics: LC and GC 

The high number of metabolites in any vegetal or animal sample makes 

mandatory in targeted and untargeted methods an appropriate separation of the 

sample components before being subjected to detection. The main benefits 

ascribed to the implementation of separation techniques are the improvement of 

the sensitivity and the resolution power of the analysis. In addition, 

chromatographic separation provides extra information (retention time, RT) that 

facilitates the identification of metabolites, especially in untargeted metabolomic 

strategies. 

The most used separation techniques in metabolomics are GC and LC, 

selected depending on the nature of the target metabolites. GC allows the 

separation of volatile compounds, such as aromatic compounds, but also 

compounds that can become volatile after derivatization. The type of derivatization 

depends on the chemical structure of the target metabolites. The majority of 

metabolites to be separated by GC requires a laborious sample preparation step 

(hydrolysis, derivatization); thus, its use for large-scale studies is more limited. GC 

is essential for determination of certain families of metabolites such as amino 

acids, fatty acids, carboxylic acids or carbohydrates. On the other hand, in LC the 

most determining component is the analytical column, whose characteristics 

define the chromatographic mode. Reverse-phase columns, mainly those packed 

with silica (C18 or C8), are characterized by strong interaction with low-polarity 

compounds, whereas normal phase columns, such as those used in hydrophilic 

interaction liquid chromatography (HILIC), are more effective for separation of 

polar compounds, thus covering a wide range of metabolites with very different 

features. However, most metabolomics applications use reverse-phase columns 

[45,46]. 

The combination of methods based on GC and LC provides a higher level of 

analytical information due to their complementarity. As examples, there are 
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metabolites that are not volatile and do not yield volatile products, do not ionize 

adequately at atmospheric pressure or are thermolabile. Therefore, both GC and 

LC should be combined to attain the best detection coverage in a biological sample.  

b. Detection equipment used in metabolomics: mass spectro-

metry 

Metabolomics analysis demands detectors with high sensitivity and wide 

dynamic range to detect metabolites present at low concentrations and with 

variable concentrations in complex matrices, and high-resolution power for 

identifying them [47]. Attending to these requirements, MS is the most competitive 

detection technique [21,48].  

The main performance characteristics of a mass analyzer are [8,21,49,50]: 

(a) Mass accuracy of the measured m/z value provided by the mass 

analyzer, directly related to the mass resolving power and stability of the 

instrument. 

(b) Mass resolving power or ability of an MS to provide a specific value of 

mass resolution (i.e., the instrument generates distinct signals for two ions 

with a small m/z difference). 

(c) Mass range or limits of m/z within which an MS can detect ions or 

record a mass spectrum. 

(d) Transmission efficiency or ratio of the number of ions reaching the 

detector and the number of ions leaving the mass analyzer, related to the 

sensitivity of the mass spectrometer (i.e., the minimal concentration of a 

compound leading to a peak intensity greater than a specified signal-to-

noise ratio). 

(e) Scan speed or rate at which the analyzer measures over a certain mass 

range. 

(f) Scan cycle time or the time required to obtain a mass spectrum, also 
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known as duty cycle. 

Simplistically, a mass spectrometer consists of a sample inlet, an ion source, 

a mass analyzer, a detector and a data management system. The sample inlet has 

as function to introduce the sample molecules into the ion source, where they are 

ionized. The ion source generates gas-phase ions via an ionization technique, the 

mass analyzer separates the ions according to their mass-to-charge ratio (m/z), 

and the detector generates an electric current from the incident ions proportional 

to their abundances [21].  

The required ionization of the analytes prior to MS detection can be 

produced by different devices. The most common ionization sources in 

metabolomics are electron impact ionization (EI) and chemical ionization (CI), 

commonly used in GC–MS, and electrospray ionization (ESI) and atmospheric 

pressure chemical ionization (APCI), frequently employed in LC–MS [21]. 

Ionization is crucial for detection of metabolites in MS, being directly related to 

sensitivity. Figure 4 shows the applicability of different types of ionization 

according to the polarity and molecular weight of the metabolites to be detected 

[51–53]. For the purpose of this Thesis, ESI and EI were used for LC–MS and GC–

MS analysis, respectively. Thus, these two ionization sources are explained below. 

Figure 4. Applicability of ionization sources based on metabolite molecular weight and 

polarity. 
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(i) Electron impact ionization (EI) 

EI is well established and is considered the most common ionization 

technique in GC–MS [53]. The sample in gas phase enters the ion source from the 

GC–MS interface. Electrons emitted by a filament enter the ionization chamber, 

guided by a magnetic field. The high energy electrons interact with the sample 

molecules, ionizing and fragmenting them. For this reason, EI is considered a 

strong ionization technique. The positive voltage on the repeller pushes the 

positive ions into the lens stack, where they pass through several electrostatic 

lenses. These lenses focus the ions on a tight beam, which is directed into the mass 

filter. EI typically produces single-charged molecular ions and fragment ions 

(smaller parts of the original molecules), which are used for structural elucidation 

[54]. 

(ii) Electrospray ionization (ESI)  

ESI is a soft ionization technique in which the LC eluent is sprayed 

(nebulized) into a spray chamber at atmospheric pressure in the presence of a 

strong electrostatic field and heated drying gas. The electrostatic field occurs 

between the nebulizer, which is at ground in this design, and the capillary, which 

is at high voltage (Figure 5). 

 

Figure 5. Electrospray ion source [53].  
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Once the sample has been ionized, it is transported to the mass 

spectrometer. There are several types of mass analyzers, but we will focus on those 

used in the research of this Thesis: 

(i) Triple quadrupole mass spectrometer (QqQ) 

This MS detector is commonly used for quantitative analysis in targeted 

metabolomics [2]. A QqQ mass detector consists of the parts shown in Figure 6: an 

ion source followed by a set of lenses for ion transfer to the first quadrupole (Q1), 

consisting of four parallel bars to which specific direct current values and radio 

frequency voltages are applied to filter ions with one or more m/z values. The 

applied voltage is variable, so that sequentially some ions can be filtered and only 

they pass reaching the collision cell in which they are fragmented. This cell, which 

is generally called the second quadrupole (q2), is actually a hexapole filled with an 

inert gas, nitrogen or argon, in which the ion is fragmented by application of a 

determined voltage, and the fragments are sent to the third quadrupole (Q3) in 

which a second filtering stage allows isolating fixed product ions. Since the 

fragments are parts of the precursor molecule, they represent portions of its overall 

structure. This mode is called Multiple Reaction Monitoring (MRM) and is the 

preferred mode for quantitative and confirmatory analysis of a set of metabolites. 

The MRM mode delivers excellent selectivity (minimizes interferences) and great 

reduction in background chemical noise (yields higher signal-to-noise). 

 

 

Figure 6. General scheme of a triple quadrupole mass spectrometer. 
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Nevertheless, the QqQ can be operated in other modes, some of them also 

used for confirmation in targeted analysis through the development of data–

dependent methods (DDM). The different operating modes for QqQ are described 

below [53,55,56]: 

- Full Scan mode. This mode provides a full spectrum with universal 

detection of known or unknown compounds. Only Q3 is working, and this 

mass analyzer scans a concrete range of masses without interruption in a 

given segment of time. Full scan experiments are used to determine the 

m/z of the precursor ion of a compound or a mixture of compounds. 

- Selected Ion Monitoring mode (SIM). This mode is used for target 

detection of known compounds. Similarly to full scan mode, only Q3 is 

working, but in this case isolates one or a few selected m/z values. SIM 

generally provides higher sensitivity than the full scan mode as data 

acquisition is focused on concrete m/z values. 

- Precursor Ion Scan mode (PrIS). This acquisition mode is used to 

monitor the presence of compounds with a common fragmentation 

pattern. For this purpose, the Q3 is tuned at one or several specific m/z 

values, which are produced by fragmentation of these compounds in q2. 

Complementarily, Q1 operates in scan mode. Thus, the chromatograms 

obtained in PrIS mode are representative for all the precursor ions that 

produce a selected product ion by activation. 

- Product Ion Scan mode (PIS). Contrarily to the PrIS mode, ions 

formed in the ion source enter Q1 that filters precursor ions with specific 

m/z ratios. The selected precursor ions are then fragmented in the 

collision cell (q2), to yield product ions by meta-stable ion decomposition 

or by collision-induced dissociation. These ions enter Q3 operating in scan 

mode. Therefore, PIS chromatograms are useful to optimize MRM 

methods and to obtain MS/MS information for a list of precursor ions. 

- Neutral Loss Scan mode (NLS). In this case, both the Q1 and Q3 

are tuned by filtering over a fixed mass difference between precursor and 
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product ions. This mass difference corresponds to neutral losses produced 

in the fragmentation of the precursor ions in q2. Thus, NL chromatograms 

will contain peaks corresponding to precursor ions that loss a particular 

neutral mass by fragmentation in q2 and, thus, generate specific product 

ions that are filtered in Q3.  

(ii) Quadrupole-time of flight (QTOF) mass spectrometer 

Figure 7 shows the diagram of a QTOF mass analyzer. It is based on the same 

configuration as the QqQ, but replacing the last quadrupole by an acceleration tube 

as mass analyzer (usually in an orthogonal configuration) to filter out ions 

according to the kinetic energy equations.  

 

Figure 7. General scheme of a quadrupole time-of-flight mass spectrometer [57]. 

 

The QTOF can operate in MS mode with the TOF as scanning tool or in 

MS/MS mode for structural elucidation, in both cases by taking benefit from the 

high mass accuracy. This hybrid mass analyzer offers better selectivity than triple 

quadrupoles, meanwhile sensitivity is considerably lower. On the other hand, 

thanks to the good mass accuracy (below 2 ppm) highly reliable identification can 

be achieved, thus allowing its use for global metabolomic profiling [12]. 
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(iii) Isotope-ratio mass spectrometer (IRMS) 

IRMS is a specialized mass spectrometry mode because it measures the 

relative abundances of stable isotopes. In general, there are five main sections in 

an IRMS instrument: a sample introduction system, an electron ionization source, 

a magnetic sector analyzer, a Faraday-collector detector array, and a computer-

controlled data acquisition system [58]. Several different interfaces are used to 

introduce samples into the IRMS, the most common being elemental analyzers 

(EA–IRMS) [58].  

Figure 8 shows the diagram of EA–IRMS used in this Thesis. EA-IRMS is a 

bulk measurement technique that provides representative data for the average 

isotopic signal of the entire sample. Sample preparation in this technique is very 

simple as the bulk sample is weighed and placed into a tin or silver capsule, which 

is lowered into a combustion furnace through an autosampler carousel where the 

sample is combusted at elevated temperatures under a flow of oxygen into NOx, 

CO2, SO2, or H2O [58].  

Depending on the isotopes of interest, the combustion products may need 

to be specifically treated to reduce interferents. In the case of the research in this 

Thesis, carbon was the atom of interest to obtain a carbon isotope ratio analysis. 

The combusted sample is transported by a helium gas stream into a reduction 

chamber where nitrous oxides are converted into N2 and O2 in excess is removed. 

The chemical species are carried through a chemical trap to remove water that was 

produced from combustion, and then into the gas chromatograph where CO2 and 

N2 are separated. Effluent from the elemental analyzer is then sent to the IRMS 

[58]. The detector is a Faraday cup, especially useful to measure highly precise 

ratios of specific ion species as in IRMS [50]. 

The ratios of these isotopes are always measured relative to an isotopic 

standard to eliminate any bias or systematic error in the measurements [50]. These 

standards are internationally recognized standards, such as the Vienna Pee Dee 

Belemnite (VPDB) for carbon analysis. 
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Figure 8. General scheme of an isotope ratio mass spectrometer [59]. 

 

3.4. Statistical analysis in metabolomics 

Chemometrics is the discipline concerned with the application of statistical 

and mathematical methods to chemistry [60]. This discipline has been 

fundamental for the development of metabolomics, while growing with it [61,62]. 

Data treatment approaches employed in metabolomics are designed according to 

the selected strategy, being slightly different between targeted and untargeted 

analysis.  

3.4.1. Data pretreatment 

Data pretreatment is the first step of the workflow that attempts to prepare 

raw data for statistical analysis. Metabolomics data pretreatment encompasses 

several preprocessing steps crucial for data quality and interpretation of the 

results. The purpose of data pretreatment is the transformation of the raw data 

(those provided by the analytical instrument that are exclusive of its trademark) 

into clean data (universal format) for processing by suited softwares. The workflow 
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depends on the metabolomic strategy, with critical differences between targeted 

and untargeted analysis [20]: 

a. Data pretreatment in targeted metabolomic analysis 

In this case, the process is simple, since it mainly consists of obtaining the 

peak area corresponding to the target analytes. Later, these areas could be 

transformed into concentrations through calibration models and, then, different 

normalization strategies can be applied prior to statistical analysis. Thus, the data 

set contains the concentration of all metabolites in all samples from the cohort 

under study. 

b. Data pretreatment in untargeted metabolomic analysis.  

This scenario is more complex. The most critical step is the extraction from 

the raw data files of signals corresponding to all potential metabolites (typically 

called molecular features, MFs). The whole process could be divided into different 

steps [63]: 

- Filtering: The amount of data adquired in untargeted analysis 

makes mandatory a filtering step to remove undesired signals. One of the 

most common operations is to remove all signals below a specific peak 

height (number of counts). Other frequent filters are targeted at specific 

RT or m/z ranges. 

- Peak detection: the next step is to find potential metabolites 

present in the chromatogram. This process could be done by detection and 

extraction of potential MFs from LC–MS and GC–MS data. A critical task 

is the deconvolution, which is applied in both cases. However, for GC–MS 

data all ions with similar chromatographic profile are associated to a 

unique molecular feature, while for LC–MS data ions need to be also 

related through a main base peak. Therefore, all ions associated to an MF 

represent different adducts or neutral losses of the base peak. 

- Peak alignment. After extraction of all MFs in the set of samples, 
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it is neccesary to carry out an alignment of signals among samples; thus 

providing a data set containing the peak area values of all MFs in all 

samples. 

- Recursive extraction. The matrix obtained after alignment of 

chromatographic peaks could be improved through the implementation of 

an additional step for extraction of potential metabolites in samples in 

which they were not initially detected, probably because of the filtering 

step. This treatment allows reducing missing values, which is a crucial task 

prior to statistical analysis. 

- Identification of metabolites. There are different databases that 

could be employed for tentative identification of metabolites. In the case 

of GC–MS data, the most important database used is the Mass Spectral 

Library from U.S. National Institute of Standards and Technology (NIST). 

However, this database does not contain high resolution information, but 

identification can also be supported on the retention index (RI), which is 

calculated easily by analysis of a mixture of linear hydrocarbons [44]. On 

the other hand, there are several databases for LC–MS but none of them is 

complete enough for an integral identification. Furthermore, the use of 

MS/MS information to complete the assignation of metabolites in 

biological samples in LC–MS is mandatory. The most common databases 

for LC–MS analysis of biological samples are the HMDB [5,6], 

“Metabolites and Tandem MS Database (METLIN) [64] and LipidMaps 

[65].  

3.4.2. Data normalization 

The main objective of the normalization process is to remove unwanted 

variations among samples allowing quantitative comparison of them [63,66]. The 

selection of a proper normalization method depends on the type of biological 

sample to be analyzed and the analytical platform [66]. Furthermore, there are 

multiple normalization processes that could be applied simultaneously. In the case 
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of MS data the application of a logarithm transformation is frequently used to 

remove data heteroscedasticity [21,67]. Additionally, the instrumental variability 

in batches can be minimized by the normalization to the MS “total useful signal” 

(MSTUS), which uses the total intensity of peaks that are present in all samples 

under study as correction factor [66]. Both MSTUS and logarithmic 

transformation are the most common normalization strategies used in the research 

that constitutes this PhD Book. On the other hand, a common practice for culture 

cells is to normalize the data using the total protein content in cells [68], because 

it is commonly assumed that the metabolites concentration increases with the cells 

number. This strategy was used in Chapter IX by application of the Bradford 

method [69].  

The evaluation of normality influences the selection of statistical tests, 

which can be parametric or non-parametric [70]. The easiest way to check 

normality assumption is by using graphical methods, but it should be supported 

by numerical methods [71]. In the development of the present Thesis, both 

histograms representations and normality tests were employed.  

There are three normality tests commonly used from small to medium sized 

set of samples: Shapiro-Wilk (SW), Kolmogorov-Smirnov (KS) and Lilliefors (LF) 

tests [72]. These tests can only be applied under a certain condition, depending on 

the number of samples (n). If n<50 the SW test is the preferred option, while if 

n>50 both KS or LF tests can be applied. LF test is a modification of the KS test 

since the latter is only appropriate in a situation where the parameters of the 

hypothesized distribution are completely known. If these parameters are not 

known, the LF test should be preferably selected. 

3.4.3. Statistical analysis 

Different strategies can be used to assess the influence of a known factor 

(disease, diet, time, gender, etc.) in a batch of samples and identify the most altered 

metabolites. In this step many similarities and differences between targeted and 

untargeted metabolomic analysis are found [20,26]. 
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a. Statistical analysis for targeted metabolomics 

Statistical analysis in targeted metabolomics is typically initiated with the 

preparation of regression models to obtain the calibration curve for each 

metabolite. Once the target metabolites have been quantified, basic statistics can 

be carried out to look for significant differences between their levels found in 

classes. Univariate statistical tests such as the Student’s t-test or Wilcoxon test are 

used to identify the relevant variables after exploratory analysis. 

b. Statistical analysis for untargeted metabolomics 

The most used statistical analysis for untargeted metabolomics are: 

(i) Exploratory analysis by unsupervised analysis 

Unsupervised learning refers to those methods for analysis of data without 

measured/defined outcome (response) or when the outcome measure is not of 

primary concern [73]. Unsupervised learning uses procedures that attempt to find 

the natural patterns to facilitate the understanding of the relationship between the 

samples and to highlight the variables that are responsible for these relationships. 

By providing means for visualization, unsupervised learning aids in the discovery 

of unknown but meaningful categories of samples or variables that naturally fall 

together [26]. The main unsupervised analysis are clustering analysis (CA), 

principal component analysis (PCA), multidimensional scaling (MDS) and self-

organizing maps (SOM) [74]; being PCA the most used in metabolomics studies 

[26]. 

PCA is an orthogonal transformation of multivariate data, first formulated 

by Pearson (1901), and mostly used for exploratory analysis by extracting and 

displaying systematic variations [73]. PCA attempts to describe the maximal 

variance of the data, being a very useful tool for displaying purposes as it provides 

a low-dimension projection of the data (i.e., a window into the original K-

dimensional space) by transformation into a new coordinate system [26].  
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(ii) Classification by supervised multivariate analysis 

Supervised learning uses labeled data to classify samples or objects 

according to an observed response that generally includes several variables or 

metabolites [26]. This classification aims at producing general hypotheses based 

on a training set of samples identified by known labels corresponding to the 

existing classes.  

The list of supervised multivariate analysis included the k-nearest neighbor 

(KNN), supporting vector machine (SVM), probabilistic neural networks (PNN), 

linear discriminant analysis (LDA), random forests and partial least squares 

discriminant analysis (PLS-DA). Random forest and PLS-DA are the most used 

supervised multivariate analysis.  

Random forests were introduced by Breiman in 2001, and it is basically 

defined as a combination of tree predictors [75]. Each tree depends on the values 

of a random vector sampled independently and with the same distribution for all 

trees in the forest [75,76]. The random forest classifier uses bagging or bootstrap 

aggregating to form an ensemble of classification and regression tree (CART)-like 

classifiers [75]. Each node is split using the best among a subset of predictors 

randomly chosen at that node. This strategy performance could be better than 

many other classifiers, including LDA and SVM, and is robust against overfitting 

[75,77]. However, it does not provide a visual result of samples classification since 

it is mainly used to identify preset number of compounds with the highest 

frequency of occurrence in the tree branches generated by the application of this 

algorithm. This is the reason why this analysis is mainly used to rank the top 

potential biomarkers in metabolomics studies [78–83].  

PLS-DA was introduced by Barker and Rayens in 2003 [84]. Currently, it is 

included into most of the packages used by chemometricians, especially in 

metabolomics [85]. PLS-DA applies partial least squares (PLS) regression using as 

the response variable a dummy index that associates the same integer number to 

samples belonging to the same class [84]. This regression is particularly suitable 

for situations where the number of observations or samples (N) is lower than that 
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of measured variables (e.g., detected MFs, K). Its popularity has increased thanks 

to its ability to deal with noisy and intercorrelated variables. PLS also builds a low 

dimensional sub-space as the PCA, but the sub-space is based on combinations of 

the measured variables. PLS adjusts the model to capture the variation due to the 

classification of the samples, which can be expressed by a variation in X. Thus, the 

PLS-based classification generates data structures with intrinsic prediction power 

by maximizing the covariance between the measured variables and the 

classification assigned to the samples. The decomposition relies on latent variables 

that are computed sequentially to provide a good correlation with the remaining 

unexplained fraction of Y. In the context of classification, PLS discriminant 

analysis (PLS-DA) is performed to sharpen the partition between groups of 

observations to obtain the maximum separation between them. The model can 

then be analyzed to understand which variables carry the class-separating 

information. PLS-DA has demonstrated to be a potent tool for classification of 

metabolomics data.  

(iii) Univariate analysis: parametric and non-parametric tests 

There are multitude of test for performing univariate analysis. Nevertheless, 

the assumption or not of a normal distribution in data makes mandatory to 

distinguish between parametric and non-parametric tests. The former tests make 

certain assumptions about a data set; namely, the data are drawn from a 

population with a specific (normal) distribution. For this reason, these tests are 

only adequate to normal-distributed data sets, while non-parametric tests, which 

make fewer assumptions about the data set, are used in case of non-normal 

distribution of data [86,87]. In both cases there are parallel tests that can be used 

depending on the purpose of the study. Table 1 lists parametric and non-

parametric tests –they can be used to identify statistical differences between 

samples from different groups or time points [86]. The predictive power of each 

variable is assessed by finding statistically significant differences between the 

mean intensity values of a given signal, of which the calculated p-value is a 

straightforward indicator. Such procedures are easily understandable, but their 
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use is rather limited in dealing with thousands of highly correlated variables [26].  

False positives (type I error) are likely to occur when performing multiple 

comparisons. To reduce them, different strategies for post hoc analysis have been 

proposed [86]. Adjustments such as the Bonferroni or Benjamini correction have 

been introduced and are widely used to reduce false positives in statistical analysis 

[88].  

Table 1. Summary of analog parametric and non-parametric tests. 

 Parametric test Non-parametric test 

One sample One sample t-test Wilcoxon test 

Two samples 
Paired t-test Wilcoxon test 

Unpaired t-test Mann-Whitney test 

Many samples 

Analysis of variance 
(ANOVA)  

Kruskal-Wallis test 

2-way ANOVA Friedman test 

 

c. Statistical analysis to discover potential biomarkers 

There are some specific statistical strategies for discovery of potential 

biomarkers. In general, the biomarker selection is performed before building a 

definitive predictive model. However, whereas long lists of metabolites or large 

multivariate models are quite useful for understanding pathways and biological 

processes, they are not useful for developing cost-effective biomarker panels. 

Rather, a short list of 1–10 biomarkers is mathematically much more robust and 

far more practical for clinical testing purposes. For this reason, iterative 

methodologies for biomarker panel development, like the employed in the 

PanelomiX bioinformatics tool [89] or in the ROCCET on-line tool [90], are 

recommended.  

Apart from the tools for biomarker discovery, there are other statistical tools 

that can be used to determine the predictive power of a single or a group of 

metabolites; some of them are described below. 
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(i) Receiver operating characteristic (ROC) curve analysis 

The ROC curve analysis is the standard method to describe and assess the 

performance of diagnostic tests with binary classification [91,92]. ROC curves 

consider the frequency for production of true positives, true negatives, false 

positives and false negatives. These values are summarized into the proportion of 

actual positive cases that are correctly classified as positive (sensitivity), and the 

proportion of actual negative cases that are correctly classified as negative 

(specificity) [26]. An example of ROC curve is shown in Figure 9. 

 

Figure 9. ROC representation including the curve described for an ideal test, a test 

without predictive value and an actual test. 

 

Sensitivity can be considered as the probability of true positives (the positive 

result of the test from a subject that has an actual positive outcome), and specificity 

can be considered as the probability of true negatives (the negative result of the 

test from a subject that has an actual negative outcome) [26,91]. As the sensitivity 

and specificity of a test can vary depending on the biomarker decision boundary, 
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the best way to observe how this decision threshold affects sensitivity and 

specificity is through a ROC curve.  

The area under the curve (AUC) is the main parameter considered from a 

ROC curve analysis (Figure 9). This parameter can be interpreted as the probability 

of the diagnostic test or classifier for randomly ranking positive or negative values 

[91,92]. If all positive samples are ranked before negative samples (example of a 

perfect classifier), the AUC is 1.0. An AUC of 0.5 is equivalent to randomly classify 

subjects as either positive or negative (non-useful classifier). However, using the 

AUC may not be always appropriate and the partial AUC would be most useful 

when only certain regions of the ROC space (high sensitivity or high specificity) are 

of particular interest [54]. 

(ii) Cox regression analysis  

In long-term studies dealing with the diagnostic of a disease, it is important 

to evaluate the association between the concentration of a potential biomarker and 

the incidence of the pathology.  

The Cox (Cox’s proportional hazards) model [93] is the most commonly 

used multivariate approach for analyzing survival or incidence time data in clinical 

research (intervention and control groups). It is a regression model that describes 

the relationship between the event incidence, as expressed by the hazard function 

and a set of covariates [94]. Thus, this model is analogous to a multiple regression 

but the dependent variable is the hazard function that depends on all explanatory 

variables under consideration [95]. This hazard function described how hazard 

ratio (HR) varies in relation to changes in the explanatory variables and it is 

assumed that the HR does not depend on time [94,96]. The null value for the HR 

is 1, which indicates equality in the probability of occurrence of the event in both 

groups in the monitored time interval. An HR > 1 indicates more risk of occurrence 

of the event in the intervention group, and an HR < 1 a lower risk in the 

intervention group [95]. 
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4. Current limitations and challenges of metabolomic 

analysis 

One of the main limitations of metabolomics is the scarce number of 

completed databases as compared to those existing in other “omics” disciplines 

[97]. Probably, this limitation is not going to be solved in a short time period, since 

the number of metabolites is high enough to make this a difficult task owing to a 

long list of unknown metabolites in most biological samples.  

There are other more affordable limitations in metabolomics. For example, 

there are still no universal protocols for metabolomic analysis of specific types of 

samples, mainly owing to the lack of standardization. On the other hand, the 

identification of metabolites is influenced by other difficulties apart from the 

absence of updated databases, since there are not protocols that guarantee a good 

identification level without an exhaustive training of the personnel involved in this 

task. One other pending aspect is the lack of validation protocols that ensure the 

analytical quality of the results.  

All metabolomic limitations are a consequence of the great complexity of 

biological samples, which is basically explained by the huge variety of metabolites 

to be detected, the wide chemical diversity and ranges of concentrations covering 

several orders of magnitude. Thus, it is technically unfeasible to develop an 

analytical method that in a single analysis provides the detection of glucose, a polar 

metabolite present at the millimolar level, and calcitriol, a non-polar metabolite 

present at the picomolar level. In this sense, the presence of major compounds 

complicates the detection of metabolites present at low concentration. It is evident 

that there is a demand for more sensitive, more selective and more precise 

methodologies that provide greater detection capacity (also known as metabolomic 

coverage). 

Sample preparation has not received enough attention in metabolomics 

compared to detection, particularly by NMR and/or MS. However, metabolomics 

analysis cannot be efficiently completed without a well-planned sample-
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preparation protocol [23], and the quality of the results is largely related to the 

efficiency of sample preparation. Regarding the detection stage, the combination 

of analytical techniques ensures an increase in the detection and identification 

capacity in targeted analysis. However, a less implemented strategy is the 

development of data acquisition modes that allow improving the detection 

capacity.  

Finally, data analysis is other of the blocks to improve the capacity of 

detection and identification, also promoting adequate strategies for data 

processing. Data analysis in "omics" studies represents the new bottleneck in the 

workflow owing to the large amount of generated information. In this sense, the 

combination of bioinformatic tools with detection approaches supposes another 

strategy that can improve the detection capacity of metabolomics analysis 

methods. The combination of this type of innovations in the different stages of the 

analytical process applied in metabolomics can lead to a remarkable improvement 

of the metabolomic coverage. The highest present challenge in metabolomics is to 

maximize the detection capability of the analytical methods to achieve unequivocal 

identification of thousands of metabolites, thus making possible to generate 

representative results of complex metabolomes.  

The existing ways to increase the detection capability in metabolomics 

analysis make mandatory integration of the results obtained using complementary 

analytical techniques such as NMR and MS, either with direct infusion or coupled 

to a separation technique such as GC–MS or LC–MS platforms, and in a lesser 

extension, to CE–MS platforms. However, the integrated mode is only accessible 

to high budget laboratories because of the high acquisition and maintenance costs 

of these platforms.  

With these premises, the major current challenges in metabolomics 

analysis are: 

a. To improve the sample preparation protocols. 

b. To maximize the detection capacity of analytical methods to 

achieve the unambiguous identification of thousands of metabolites. 
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c. To develop strategies for identification of unknown metabolites. 

d. To improve the identification capability by creation of new 

databases with NMR or MS/MS information. 

The research developed in this PhD contributes to the development of 

strategies, tools and methods to address these challenges in metabolomics 

analysis, which will provide a greater capacity to obtain information from different 

samples and with higher analytical quality. Figure 10 shows the general workflow 

of the analytical process in metabolomics and indicates the Chapters that contain 

analytical contributions to address these challenges. 

 

Figure 10. General workflow of the analytical process and the chapters in which 

improvements in given steps have been done. 
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This section of the Thesis Book describes the different analytical tools and 

equipment used in the experimental part of the Thesis, which are described in 

more detail in the subsequent chapters. 

 

1. Samples 

The global objective of the Thesis research was to develop analytical 

strategies for improving the detection and identification by mass spectrometry in 

targeted and untargeted (global) metabolomic analysis applied to clinical and 

agro-food areas. Samples used in these two fields were:  

Clinical samples. Human serum and plasma from volunteers were used in 

Chapters I, II and VI. Serum samples used in Chapter III were obtained from 

patients recruited at the Cardiology Unit of Miguel Servet Hospital (Zaragoza, 

Spain). Human plasma from CORDIOPREV study (ClinicalTrials.gov, 

NTC00924937) recruited at the Reina Sofia University Hospital (Córdoba, Spain) 

were used in Chapters VII and VIII. PBMCs used in Chapter IX were isolated from 

prospective samples collected in the Finnish Type 1 Diabetes Prevention and 

Prediction Study (DIPP). Visceral adipose tissue was used in Chapter IV. These 

samples were obtained from a pool of individuals with morbid obesity undergoing 

bariatric surgery and recruited by the Lipids and Atherosclerosis Unit of the Reina 

Sofia University Hospital (Cordoba, Spain). All clinical experiments were carried 

out in accordance with the ethical principles of human medical research (World 

Medical Association, Helsinki Declaration, 2004). 

Agro-food samples. A pool of pig feces was prepared by homogenous mixing 

of samples from five pigs, then used in the research in Chapter V. All procedures 

of sample extraction were performed in accordance with the European regulations 

regarding the protection of animals used for experimental and other scientific 

purposes, under the supervision of the Ethical and Animal Welfare Committee of 
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the University of León (Spain). Subcutaneous pig fat, used in Chapter X, was 

collected following the established Spanish official method (B.O.E. 2004). In this 

case, eighty Iberian pigs were selected from different farms located at North of the 

Sevilla province (Spain).  

 

2. Systems for sample preparation 

The systems used for sample preparation can be classified into continuous 

and discontinuous systems. 

2.1. Continuous systems for sample preparation  

A continuous system was used for sample preparation prior to analysis of 

FAHFAs in serum, as described in Chapter I. It was an automated SPE workstation 

Prospekt-2 system from Spark Holland (Emmen, The Netherlands), which 

included an automatic cartridge exchanger (ACE) and a high-pressure syringe 

dispenser (HPD) for solvent delivery. The automated system was coupled to a 

Midas autosampler furnished with a 1 mL sample-loop. Full automation of the 

extraction step is controlled by Sparklink software version 2.10 from Spark 

Holland. This system allows direct connection with the chromatographic system. 

2.2. Discontinuous systems for sample preparation 

The majority of the research in the Thesis was based on untargeted analysis 

(metabolomics profiling). For this reason, a minimally invasive sample 

preparation was always adopted as strategy. In general terms, sample preparation 

consisted of extraction, centrifugation and preconcentration, the last step only if 

required (evaporation and reconstitution).  

However, for the extraction and preconcentration of phospholipids 

conventional SPE cartridges, packaged with zirconia coated silica, were necessary, 

as detailed in Chapter IV. In this chapter, the influence of the SPE cartridges on 

sample preparation is discussed. 
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3. Separation and detection systems 

The methods developed in the experimental part of this Doctoral Thesis 

have been based on a chromatographic separation (using LC or GC) and 

subsequent detection by mass spectrometry. 

3.1. Targeted analysis 

An Agilent (Agilent Technologies, Palo Alto, CA, USA) 1200 Series LC 

system coupled to an Agilent 6460 QqQ furnished with an Agilent JetStream 

Technology ESI was used in Chapter I for targeted analysis of FAHFAs. 

Chromatographic separation was performed with a C18 Mediterranea column (10 

× 4.6 mm i.d.; packed with 3 μm particle diameter size). Agilent MassHunter 

Workstation LC–QqQ (version B.3.01) was the software for data acquisition. 

A Thermo Scientific UltiMate 3000 series LC system coupled to a Thermo 

Scientific QqQ TSQ Quantum™ Access MAX detector (Waltham, MA, USA) was 

used in Chapter II for polar lipid analysis. The QqQ detector was equipped with a 

heated electrospray ionization (HESI) probe for spraying of chromatographic 

eluate. Chromeleon™ software (version 6.80) was used for controlling the LC 

system, TSQ Tune software (version 1.2.1) was used to control the detector 

parameters and, finally, Thermo Xcalibur™ software (version 3.0.63) was used for 

methods and worklists creation.  

The levels of polar metabolites —the target of Chapter IX— were measured 

by a GC–Q/MS. For this purpose, an Agilent 7890A Series GC system coupled to 

an Agilent 5977B single quad mass spectrometer equipped with an EI source was 

used. The gas separation was carried out by a fused silica HP-5 column (30 m × 

0.25 mm i.d., 0.25 µm film thickness capillary column) from Agilent Technologies. 

Agilent MassHunter Workstation GC–Q (version B.07.02) was the software for 

data acquisition. 

Two different platforms were used in Chapter X: GC–FID and IRMS. For 

separation and detection of FAMEs an Agilent 7820A GC System equipped with an 
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FID was selected. The GC was furnished with an autosampler and a split/splitless 

injector. An SPTM-2380 fused silica capillary column (60 m × 0.25 mm i.d., 0.2 µm 

film thickness capillary column) provided by Supelco (Bellefonte, PA, USA) was 

used as analytical column. EZ Chrom Elite Compact software (version 3.3.2 from 

Agilent Technologies) was used for acquisition and processing of data in the GC–

FID system. A Delta V Advantage Isotope Ratio Mass Spectrometer from Thermo 

Fisher Scientific (Bremen, Germany) was employed for determination of 13C/12C 

(carbon isotope ratio, δ13C). This system was equipped with a ConFlo IV Universal 

Interface for continuous flow analysis and a Flash 2000 HT elemental analyzer. A 

molecular sieve packed column (5 Å, 1 m × 1/8" × 2 mm) from Thermo Scientific 

(Bremen, Germany) was used for sample clean-up. Isodat Gas Isotope Ratio MS 

Software (version 3.0 from Thermo Scientific, Bremen, Germany) was used to 

acquire and process the signal obtained by IRMS analysis. 

3.2. Untargeted analysis 

An Agilent 1200 Series LC system coupled to an Agilent 6540 UHD 

Accurate-Mass QTOF hybrid mass spectrometer was used in Chapters V, VI, VII 

and VIII. The QTOF detector was equipped with a dual electrospray ionization 

source for simultaneous spraying of chromatographic eluate and a reference 

solution to calibrate continuously the detected m/z ratios. The liquid 

chromatographic separation was carried out with different columns in each 

Chapter, depending on the objective. Agilent MassHunter Workstation LC–QTOF 

acquisition software (version B.06) was used to control the instrument and acquire 

the data. 

An Agilent 7890A Series GC system coupled to an Agilent 7200 UHD 

Accurate-Mass QTOF hybrid mass spectrometer equipped with an EI source was 

used in Chapters III, V, VII and VIII. In all untargeted metabolomic studies, the 

gas chromatographic separation was carried out with a fused silica DB-5MS-UI (30 

m × 0.25 mm i.d., 0.25 μm film thickness capillary column) from Agilent 

Technologies. The analytical sample was thus monitored in high resolution mode. 

Agilent MassHunter Workstation GC–QTOF Acquisition software (version B.06) 
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was used to control data acquisition and set the parameters for optimum 

operation.  

The levels of molecular lipids, in Chapter IX, were measured by an LC–

QTOF MS/MS. For this purpose, an Agilent 1290 Infinity LC system coupled to an 

Agilent 6545 QTOF detector furnished with a dual JetStream Technology (dual 

ESI) was used. Chromatographic separation was performed using an Acquity 

UPLC BEH C18 column (100 mm × 2.1 mm i.d., 1.7 µm particle size) from Waters 

Corporation (Wexford, Ireland). Agilent MassHunter Workstation LC–QqQ 

Acquisition software (version B.08.00) was the software for data acquisition and 

set the parameters for optimum operation.  

 

4. Data processing 

4.1. Data processing for targeted analysis 

In Chapter I a quantitative method for analysis of FAHFAs was developed. 

MassHunter Workstation software was used to process all data obtained by LC–

QqQ in MRM mode. This software allowed generating a data set containing the 

peak area and RT of each metabolite in each sample. Calibration models were built 

using the peak areas obtained by analysis of serum spiked with multistandard 

solution at different concentration levels. The limit of detection (LOD) for each 

analyte was calculated as 3.3 × σ/S, where σ the standard deviation of the response 

of a blank analysis and S is the slope of the calibration curve for each analyte. The 

limit of quantitation (LOQ) was calculated as 10 × σ/S. 

In Chapter II a quantitative method for analysis of 398 polar lipids was 

developed. TraceFinderTM software (version 3.2.512.0, ThermoFisher Scientific) 

was used to process the data obtained by LC–QqQ in different work modes. A data 

set containing the peak area and RT of each lipid in each sample was obtained.  

In Chapter IX, the GC–Q/MS data were processed in MassHunter Quant 

(version 8, from Agilent Technologies). This software allowed generating a data set 
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containing the peak area and RT of each metabolite in all samples. The peaks were 

manually checked and corrected if needed for correct integration. The calibration 

models were built using the peak areas obtained by analysis of multistandard 

solution at different concentration levels.  

In Chapter X, EZ Chrom Elite Compact software (version 3.3.2 from Agilent 

Technologies) was used for acquisition and processing of data in the GC–FID 

system. This software allowed generating a data matrix containing the peak area 

and RT of each FAME. The concentrations of target FAs were expressed as a 

percentage in relative terms. Isodat Gas Isotope Ratio MS Software (version 3.0 

from Thermo Scientific, Bremen, Germany) was used to acquire and process the 

signals obtained by IRMS analysis. The results of δ13C analysis were reported as 

the per mil (‰) enrichment relative to the international standard, V-PDB  for 

carbon isotope ratio, according to the equation: X(‰) = [(Rsample/Rreference) - 1] × 

1000, where X is the ratio of the heavy to the light stable isotope (e.g. 13C/12C) in 

the sample (RSample) and in the standard (RReference). Finally, a matrix with data from 

both techniques was built. 

4.2. Data processing for untargeted analysis 

Untargeted analysis was performed in Chapters II, IV, V, VII and VIII. The 

strategy carried out was different depending on whether the data comes from LC–

QTOF MS/MS or GC–TOF/MS. 

4.2.1. Data from LC–QTOF MS/MS 

MassHunter Workstation software (version B7.00, Qualitative Analysis, 

Agilent Technologies) was used to process all data obtained by LC–QTOF in data-

dependent acquisition MS/MS mode. Treatment of raw data files started by 

extraction of potential MFs with the suited algorithm included in the software. For 

this purpose, the extraction algorithm considered all ions exceeding 500 counts for 

both polarities with a single charge state for the obtained chromatograms. These 

cut-off values were established taking into account the chromatographic 

background noise. Additionally, the isotopic distribution to consider MFs as valid 
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should be defined by two or more ions (with a peak spacing tolerance of m/z 

0.0025, plus 7.0 ppm in mass accuracy). Ions and adducts formation in the positive 

(+H, +Na, +K, +NH4) and negative ionization (−H, +HCOO, +Cl) modes, as well 

as neutral loss by dehydration were included to identify features corresponding to 

the same potential metabolite.  

A library (.cdb) with all identified metabolites (see section 5) was used to 

perform a targeted compound extraction analysis using a tolerance window of 0.8 

min and 5 ppm mass accuracy. This step was performed with Profinder Analysis 

(version B8.00, Agilent Technologies) in all chapters, except Chapter IX. A table 

with the peak area of all identified compounds in the different samples was 

obtained as a result. 

In the case of Chapter IX, a database (.csv file) was created with all identified 

lipids to perform a targeted compound extraction. For this purpose, open source 

software MZmine 2.33 was used using a tolerance window of 0.1 min and 5 ppm 

mass accuracy.   

4.2.2. Data from GC–TOF/MS 

Unknown Analysis software (version 7.0, Agilent Technologies) was used to 

unzip all data files obtained by GC–TOF/MS in full scan mode. Then, MassHunter 

software was used to process GC–TOF/MS data files. Treatment of raw data files 

started by deconvolution of chromatograms to obtain a list of MFs considered as 

potential compounds defined by the m/z value of one representative ion for each 

chromatographic peak and its RT. For this purpose, the deconvolution algorithm 

was applied to each sample by considering all ions exceeding 1500 counts for the 

absolute height parameter, the accuracy error at 50 ppm and the window size 

factor at 150 units. The list of MFs obtained for each analysis was exported as data 

files in compound exchange format (.cef files).  
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5. Identification of metabolites detected by untargeted 

analysis 

5.1. Identification of metabolites detected by LC–QTOF MS/MS 

Tentative identification of metabolites was supported on MS and MS/MS 

information that was searched in the METLIN MS and MS/MS databases 

(http://metlin.scripps.edu), the HMDB (version 3.6) and the LIPID MAPS website 

((http://www.lipidmaps.org), using in all cases the MFs obtained in data 

processing step. Once the tentative identification was finished, PCDL Manager 

software (version B0.07.00, Agilent Technologies) was used to create a library with 

the MS/MS spectra obtained for each metabolite. 

5.2. Identification of metabolites detected by GC–TOF/MS 

Tentative identification of metabolites was performed by searching each 

mass spectrum in the NIST database (version 11) using the RI value. The 

identification was firstly carried out by searching MS spectra on the NIST database. 

Only those identifications with a match factor and a reverse match factor higher 

than 700 were considered as valid. The RI values included in the NIST database 

were also taken into account to support identifications. An RI calibration model 

was built by plotting the RT obtained by analysis of the alkane standard mixture 

(C10 to C40 with an even number of carbons) with the chromatographic method 

used in this research and the RI values provided for each alkane by the NIST 

database. Then, the RI value was experimentally estimated for each identified 

compound by using the RT and the calibration equation. The requirement to accept 

NIST database identifications was that the difference between the experimental RI 

and the theoretical value provided by the NIST for each target compound should 

be below 100 units. The NIST database does not contain high resolution MS 

information as provided by the TOF detector. For this reason, a third step was 

included to validate identification of each compound by using high resolution MS. 

Thus, the molecular formula for the [M]+ ion and the most intense fragments for 

each MF should fit the NIST 11 identification by setting a cut-off value in mass 
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accuracy of 5 ppm.  

A library was created with the MS spectra obtained for each metabolite with 

the Library Editor (version B0.07.00, Agilent Technologies) software. 

 

6. Data pretreatment and statistical analysis 

Datasets including the peak area for all metabolites or potential metabolites 

detected in all samples were then processed for statistical analysis. According to 

the objective of the study different statistical tools were used. The main software 

and tools used in the development of the Thesis are described below: 

a. Normalization of the data was carried out with MassProfiler 

Professional software package (MPP, version 2.2, Agilent 

Technologies) and Metaboanalyst (version 4.0, URL: 

https://www.metaboanalyst.ca/). According to the objective of 

the study, the main standardizations were based on logarithmic 

transformation, Z-transform, autoscaling, and MSTUS. 

b. Statgraphics Centurion XVI (version 16.1.18), R program 

(interface R-studio, version 1.0.136) and PASW Statistics (version 

18) allow performing different parametric and non-parametric 

statistical analysis, and the graphic representation of the data. 

c. R program (interface R-studio, version 1.0.136) was used to apply 

and develop MetaboQC package by combination of different 

algorithms. 

d. MPP software and Metaboanalyst allow unsupervised analysis by 

PCA and supervised analysis by PLS-DA and random forests. 

e. Evaluation of the prediction capacity of metabolites and creation 

of prediction models was carried out using Random Forests 

Analysis and the ROC curves provided by the PanelomiX software 

(URL: https://www.panelomix.net/), ROCCET (URL: 

https://www.metaboanalyst.ca/rocanalysis) and Metaboanalyst 

https://www.metaboanalyst.ca/
https://www.panelomix.net/
https://www.metaboanalyst.ca/rocanalysis
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(URL: https://www.metaboanalyst.ca/), which allows the 

creation of marker panels and the evaluation of their predictive 

capacity. 

f. The evaluation of the occurrence incidence of a disease or 

condition was evaluated using PASW Statistics (version 18) by Cox 

regression analysis. 

g. Mapping Metabolites on Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (URL: http://www.genome.jp/kegg/), 

Metaboanalyst software and Ingenuity Pathway Analysis (IPA®) 

were used to know the metabolic pathways in which the significant 

metabolites were involved in order to find connections among 

them. 

 

https://www.metaboanalyst.ca/
http://www.genome.jp/kegg/
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Section I of this PhD Book is devoted to methodological development in 

targeted metabolomic analysis with the aim to confirm the presence of metabolites 

in biological samples as a preliminary step to their quantitative analysis. Low 

resolution mass spectrometry, with a QqQ detector, is an ideal tool to undertake 

quantitative and confirmatory analysis in metabolomics and, therefore, to work in 

targeted analysis. Also, the QqQ offers additional features that make it a suitable 

detector to play an important role in qualitative analysis. For this purpose, the 

development of DDM can be used to increase the identification power in certain 

families of compounds. The QqQ operational modes, once the fragmentation 

mechanisms of a particular family of compounds are known, can be used to 

confirm their presence by monitoring in the first or third quadrupole 

representative precursor or product ions, respectively. It is possible to do several 

scans to identify all the compounds belonging to a family present in a biological 

sample and, once confirmed their presence, proceed to its quantification by means 

of the MRM mode. With these premises, Chapter 1 and 2 were developed. 

Chapter 1 is devoted to confirm and quantify the presence of FAHFAs in 

human serum. The low nanomolar concentrations at which FAHFAs are present in 

serum make necessary the development of a method with enough sensitivity to 

quantify these compounds. For this purpose, an automated method based on on-

line SPE coupled to LC–MS/MS was developed. In Chapter 2 a qualitative/ 

quantitative strategy for determination of polar lipids was developed for 

application to biological samples. LC–MS/MS allowed detecting polar lipids in the 

presence of other concentrated fractions in plasma such as acylglycerides.  
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Confirmatory and quantitative analysis of fatty acid esters 

of hydroxy fatty acids in serum by solid phase extraction 

coupled to liquid chromatography tandem mass spectrometry 

María Asunción López-Bascón, Mónica Calderón-Santiago, Feliciano Priego-

Capote 

 

ABSTRACT 

A novel class of endogenous mammalian lipids endowed with antidiabetic and 

anti-inflammatory properties has been recently discovered. They are fatty acid esters of 

hydroxy fatty acids (FAHFAs) formed by condensation between a hydroxy fatty acid and 

a fatty acid. FAHFAs are present in human serum and tissues at low nanomolar 

concentrations. Therefore, high sensitivity and selectivity profiling analysis of these 

compounds in clinical samples is demanded. An automated qualitative and quantitative 

method based on on-line coupling between solid phase extraction and liquid 

chromatography–tandem mass spectrometry has been developed for determination of 

FAHFAs in serum with the required sensitivity and selectivity. Matrix effects were 

evaluated by preparation of calibration models in serum and methanol. Recovery factors 

ranged between 73.8 and 100% in serum. The within-day variability ranged from 7.1 to 

13.8%, and the between-days variability varied from 9.3 to 21.6%, which are quite 

acceptable values taking into account the low concentration levels at which the target 

analytes are found. The method has been applied to a cohort of human serum samples 

to estimate the concentrations profiles as a function of the glycaemic state and obesity. 

Statistical analysis revealed three FAHFAs with levels significantly different depending 

on the glycaemic state or the body mass index. This automated method could be 

implemented in high-throughput analysis with minimum user assistance. 

Keywords: Fatty acid esters of hydroxy fatty acids, solid phase extraction, serum, 

liquid chromatography–mass spectrometry, targeted analysis 
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1. Introduction 

In the last decades the prevalence of metabolic syndrome has increased in 

developed countries, mainly because of the rise of obesity [1]. Metabolic syndrome is a 

collection of risk factors associated to a higher risk for cardiac diseases, atherosclerosis, 

fatty liver disease and diabetes [1–3]. These diseases share risk factors, being the most 

important obesity and insulin resistance [1]. Nowadays, the most common disease in 

patients affected by metabolic syndrome is diabetes mellitus. In fact, type-2 diabetes 

mellitus (T2DM) is increasing worldwide at an epidemic rate, which is expected to reach 

592 million inflicted individuals by 2035 as compared to 382 million reached in 2013 

[1,4]. Obesity is one of the major risk factors for T2DM, since around 85% of subjects 

with T2DM are over-weighted or obese [5]. Thus, the body mass index (BMI) is not only 

associated with chronic low-grade inflammation and increased oxidative stress, but also 

with insulin resistance and metabolic dysregulation [2,5].  

Recently, a novel class of endogenous mammalian lipids endowed with 

antidiabetic and anti-inflammatory properties has been found [6–11]. Yore et al. in 2014 

referred to this class of natural-occurring lipids as fatty acid-hydroxy fatty acids, 

abbreviated as FAHFAs [6,7]. The authors identified 16 FAHFAs by different 

combinations of the main long-chain fatty acids (palmitate, oleate, stearate or 

palmitoleate) conjugated to a hydroxylated version of one of the same set of fatty acids 

[7]. In that research, the FAHFAs content of blood, serum and adipose tissue taken from 

diabetic mice were compared to that from normal mice. Yore et al. reported that 6 of the 

16 FAHFA species were upregulated by GLUT4 overexpression, the unique insulin-

sensitive glucose transporter protein [7]. The most dramatically upregulated FAHFA in 

the overexpressing GLUT4 was palmitic acid hydroxystearic acid (PAHSA) [7]. In 

humans, the authors observed a strong association between PAHSA and insulin 

sensitivity, being PAHSA levels significantly lower in insulin-resistant individuals as 

compared to insulin-sensitive cases [6,7]. Additionally, the characterization of the most 

common FAHFAs found in normal tissues and serum revealed that their levels were 

similar to other signalling lipids such as prostacyclins, prostaglandins, steroids and 

endocannabinoids [6]. Research on FAHFAs has revealed multiple effects that improve 



  Chapter I 

79 
 

glucose-insulin homeostasis, which suggests that restoring PAHSA levels in insulin-

resistant individuals could have beneficial metabolic effects. In fact, Yore et al. showed 

that administration of these fatty acids to mice improved glucose uptake from blood, 

enhanced insulin secretion and relieved obesity-associated inflammation, suggesting 

that these naturally occurring fats could be used for diabetes therapy [6].  

Despite the potential of these novel lipids for diabetes treatment [6,9,10], further 

studies are needed both to establish their normal physiological levels in humans and to 

study their evolution after a specific treatment. However, the low nanomolar 

concentrations at which FAHFAs are present in serum make necessary the development 

of a method with enough sensitivity to determine FAHFAs, even in deficiency state. One 

option is to preconcentrate FAHFAs by implementation of a solid-phase extraction 

(SPE) step, which has been used for quantitation of other compounds found at 

concentrations similar to FAHFAs such as prostaglandins [10], prostanoids [11,12], 

steroids [13,14], eicosanoids [15,16] or endocannabinoids [17,18]. 

In this research an automated qualitative and quantitative method based on on-

line coupling of SPE and liquid chromatography–tandem mass spectrometry (LC–

MS/MS) to maximize sensitivity has been developed for determination of FAHFAs. The 

method has been further applied to a cohort of individuals to evaluate the influence of 

the glycaemic state on FAHFA levels.  

 

2. Materials and methods 

2.1. Reagents 

Palmitic acid-12-hydroxy-stearic acid (12-PAHSA), palmitoleic acid-12-hydroxy-

stearic acid (12-POHSA), stearic acid-12-hydroxy-stearic acid (12-SAHSA) and oleic 

acid-12-hydroxy-stearic acid (12-OAHSA), all them in solutions, were purchased from 

Cayman Chemicals (Ann Arbor, MI, USA). Concretely, standard solutions contained 1 

mg of each FAHFA in 200 μL of methyl acetate (5000 mg L-1). Working solutions of 

each standard were prepared diluting the commercial standards at 500 μg L-1 in 

chromatographic grade methyl acetate from Scharlab (Barcelona, Spain). 
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Chromatographic grade methanol and ammonium hydroxide were purchased 

from Scharlab (Barcelona, Spain), while mass spectrometry grade ammonium acetate 

was purchased from Fluka (Spain). Deionized water from a Millipore Milli-Q water 

purification system was used for preparation of all aqueous solutions.  

2.2. Instruments and apparatus 

A microcentrifuge Sorvall Legend Micro 21R from Thermo Scientific (Waltham, 

MA, US) was used to separate the phases after protein precipitation. On-line sample 

preparation was carried out with an automated SPE workstation Prospekt-2 system 

from Spark Holland (Emmen, The Netherlands), which included an automatic cartridge 

exchanger (ACE) and a high-pressure syringe dispenser (HPD) for solvent delivery. The 

automated system was coupled to a Midas autosampler furnished with a 1 mL sample-

loop. Peek tube (0.25 mm i.d.) from VICI (Houston, TX, USA) was used for all 

connections between the different valves. Full automation of the extraction step was 

controlled by Sparklink software version 2.10 from Spark Holland.  

The SPE workstation system was on-line connected to an Agilent (Palo Alto, CA, 

USA) 1200 Series LC system for chromatographic separation furnished with a C18 

Mediterranea column (10 × 4.6 mm i.d.; packed with 3 μm particle diameter size) from 

Teknokroma (Barcelona, Spain). The chromatograph was coupled to an Agilent (Palo 

Alto, CA, USA) 6460 triple quadrupole detector (QqQ) furnished with an Agilent 

JetStream Technology electrospray ion source (ESI). Nitrogen as source gas was 

provided by a high purity generator from CLAN Tecnológica (Sevilla, Spain), while 

ultrapure nitrogen (99.999%) used as collision gas was from Carburos Metálicos 

(Sevilla, Spain). Agilent MassHunter Workstation was the software for data acquisition, 

qualitative and quantitative analysis. Both the SPE and LC systems were configured for 

complete automation of analysis sequences.  

2.3. Patient recruitment and selection 

Serum samples were obtained from patients recruited at the Cardiology Unit of 

Miguel Servet Hospital (Zaragoza, Spain). The cohort was formed by a total of 84 

individuals, who were diagnosed by atherosclerosis after evaluation through cardiac 
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catheterization (angiographic stenosis revealed a reduction of the arterial lumen ≥70%). 

The patients were classified according to their glucose level in blood and BMI. The 

distribution of individuals according to the created groups is shown in Table 1. The 

glucose level in blood was obtained by quantitative analysis using the autoanalyzers 

AU2700 and AU5400 from Beckman Coulter (Brea, CA, USA). All steps from blood 

extraction to analysis were performed in compliance with the guidelines dictated by the 

World Medical Association Declaration of Helsinki of 2004 [19]. Individuals selected 

for this study were previously informed to obtain consent. 

Table 1. Classification of patients according to body mass index (BMI) and glycaemic 

state. 

Body mass index (kg m-2) Glycaemic statea (mg dL-1) Individuals 

Normal weight 18.5<BMI<24.99 
Normoglycaemic 12 

Prediabetic 7 

Overweighed 25 <BMI<30 

Normoglycaemic 12 

Prediabetic 10 

Diabetic 7 

Obese BMI >30 

Normoglycaemic 12 

Prediabetic 10 

Diabetic 7 
aLevels of glucose in blood: normoglycaemic: between 60 and 100 mg dL-1; prediabetic: 

between 100 and 126 mg dL-1; and diabetic: >126 mg dL-1. 

 

2.4. Sample pretreatment 

Venous blood was collected in evacuated sterile serum tubes without additives 

(Vacutainer, Becton Dickinson, Franklin Lakes, NJ, USA). The blood samples were 

incubated for 30 min at room temperature to allow coagulation and centrifuged at 2000 

× g for 15 min at 4 ºC to isolate serum fraction (processing within 2 h after collection). 

Samples were placed in plastic ware tubes and stored at −80 ºC until analysis. 

Serum samples (500 μL) immersed in an ice bath were treated for deproteination 

by adding 1 mL methanol. The mixture was shaken for 1 min and the precipitate 

removed after centrifugation for 5 min at 4 ºC and 14500 × g. The upper phase was 

collected in a vial and stored at –80 ºC until analysis.  
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2.5. SPE–LC–MS/MS analysis 

Deproteinized serum samples were subjected to automated SPE coupled to LC–

MS/MS for FAHFAs analysis. Hysphere C8 cartridges (7 μm, 10 × 2.0 mm, Spark 

Holland) were used for the SPE step. Pumping of all solutions involved in the different 

SPE steps was carried out by the HPD unit. The analysis starts by solvation of the 

sorbent phase with 1 mL methanol and subsequent equilibration with 2 mL 20:80 (v/v) 

methanol–water before sample loading. After filling the 1-mL loop of the injection valve 

with the deproteinized sample, this is loaded into the C8 cartridge with 2 mL 20:80 

(v/v) methanol–water as carrier solution, which leads the injected volume to the SPE 

sorbent. Under these conditions, the FAHFAs are retained in the cartridge, which is 

rinsed with 2 mL methanol to remove potential interferents. Then, the mobile phase 

pumped by the chromatograph passes through the cartridge for 7 min for elution of 

FAHFAs using the programmed chromatographic gradient. Then, the cartridge is 

washed with 2 mL of organic mobile phase.  

The chromatographic conditions are based on the research proposed by Yore et al. 

[6], although this method was partially modified to reduce the analysis time. The 

chromatographic mobile phases are 5 mM ammonium acetate and 0.01% ammonium 

hydroxide in 98:2 methanol–water as organic mobile phase and 5 mM ammonium 

acetate and 0.01% ammonium hydroxide in 98:2 water–methanol as aqueous phase. 

The gradient used for LC separation starts with 97% organic mobile phase (maintained 

for 4 min) to 100% organic mobile phase in 12 min (also maintained for 4 min) at a flow 

rate of 0.8 mL min-1. The total analysis time is 20 min, 5 additional min being required 

to re-establish the initial conditions and equilibrate the column. The compartment for 

the analytical column is maintained at 25 ºC.  

The chromatographic eluate is directly introduced in the triple quadrupole 

detector QqQ for MS/MS detection in negative mode. The ESI parameters were set as 

follows: gas temperature, 350 ºC; drying gas, nitrogen 10 L min-1; nebulizer pressure, 

34 psi; sheath gas temperature, 350 ºC; sheath gas flow, 12 L min-1; capillary voltage, 

4000 V; and nozzle voltage, 300 V.  
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2.6. Quantitative analysis 

Calibration models were built using the peak areas obtained by analysis of 

multistandard solutions of commercial 12-FAHSAs at different concentrations. Two 

calibration models were prepared for each 12-FAHSA by spiking methanol and a serum 

pool prepared from the set of samples used in this study with the target analytes. The 

calibration range was built with twelve concentrations ranging from 0.01 to 25 mg L-1, 

which were analyzed in triplicate. Calibration curves obtained with commercial 

standards were used for quantitative analysis of the corresponding FAHSA. On the other 

hand, non hydroxy-stearic acid FAHFAs were relatively quantified by using the 

calibration model of the corresponding hydroxy-stearic acid FAHFAs. For example, the 

calibration model of PAHSA was used for quantitation of palmitic acid-hydroxy-oleic 

acid (PAHOA).  

The limit of detection (LOD) for each analyte was calculated as 3.3 × σ/S, where σ 

is the standard deviation of the response of a blank analysis and S is the slope of the 

calibration curve for each analyte. The limit of quantitation (LOQ) was calculated as 10 

× σ/S. 

 

3. Results and discussion 

3.1. Optimization of the LC–MS/MS method 

A standard solution containing the four commercial 12-FAHSAs (12-PAHSA, 12-

POHSA, 12-OAHSA and 12-SAHSA) was used to optimize the LC–MS/MS method. The 

multistandard solution was injected by direct infusion for selection of the precursor ion 

from all the commercial FAHSAs. All precursor ions, which are listed in Table 2 together 

with the optimum voltage set in Q1 for their efficient isolation, were identified as [M–

H]– ions. 

Fragmentation of the different FAHSAs was studied using collision energies from 

0 to 45 eV. Table 2 shows the product ions selected for each commercial FAHSA and 

their optimum collision energy values.  



Confirmatory and quantitative analysis of FAHFAs in serum by SPE–LC–MS/MS 

84 
 

Table 2. Main parameters of the LC–MS/MS MRM method for FAHSAs determination. 

Analyte 

Retention 

time 

(min) 

Precursor 

ion (m/z) 

Q1 

voltage 

(V)a 

Collision 

energy 

(eV) 

Quantitative 

transition 

(m/z)b 

Qualifier 

ions 

(m/z) 

PAHSA 6.4 537 160 20 537→255 299, 281 

POHSA 5.5 535 160 20 535→ 253 299, 281 

SAHSA 8 565 200 20 565→283 299, 281 

OAHSA 6.35 563 180 20 563→281 299, 281 

aVoltage for filtration of precursor ions; bTransition selected for quantitation: Precursor ion (m/z) 

→ Product ion (m/z). 

 

Figure 1 shows the fragmentation scheme for PAHSA as a model compound to 

explain the product ions selected for each FAHFA. As can be seen, three main product 

ions were formed according to this fragmentation scheme. The most intense product ion 

corresponded to the fatty acid —in this example to palmitic acid carboxylate ion at m/z 

255. The hydroxy fatty acid moiety fit the second product ion, which was formed by 

cleavage of the ester bound. This ion was obtained at m/z 299 for PAHSA. A third 

representative fragment was obtained by dehydration of the last ion—in this case at m/z 

281. According to the sensitivity of the different transitions from precursor to product 

ions, those leading to the fatty acid carboxylate fragments were selected for quantitative 

purposes, while the other two transitions were selected with qualitative interest in the 

multiple reaction monitoring (MRM) method. Additionally, FAHFAs were confirmed 

using the Neutral Loss scan mode (NL), considering two neutral losses for each 

compound. These were formed by generation of the two ions selected as qualifiers. The 

information of the NL selected for each compound is reported as Supplementary Table 

1. As can be seen, FAHFAs with the same main fatty acid in their structure were 

characterized by the same neutral losses. 

Once the MRM method was configured, different chromatographic gradients were 

tested to attain an appropriate resolution. The best separation was obtained with 

methanol–water (98:2) as organic mobile phase, and water–methanol (98:2) as 
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aqueous mobile phase using 5 mM ammonium acetate and 0.1% (v/v) ammonium 

hydroxide as ionization agent in both phases.  

 

 

Figure 1. PAHSA precursor ion, product ions and neutral losses in negative ionization 

mode. 

 

3.2. Development of the SPE protocol  

Low concentrations of FAHFAs, below 20 nmol L-1 and 150 pmol g-1, have been 

reported in serum and adipose tissue, respectively [8]. For this reason, an on-line SPE–

LC–MS/MS configuration was adopted to endow the method with enough sensitivity to 

analyze FAHFAs.  

An optimization study of the SPE process was designed by using a serum pool 

spiked with the four FAHSAs standards at 100 mg L-1 using the peak area as quantitative 

response. The optimization of the SPE protocol was divided into three main blocks: tests 

with sorbent materials, evaluation of the variables involved in each step of the SPE 

protocol and characterization of analytical features.  



Confirmatory and quantitative analysis of FAHFAs in serum by SPE–LC–MS/MS 

86 
 

The four commercial sorbents tested, packed with the same technology from Spark 

Holland (Emmen, The Netherlands) and based on non-polar interactions, were C8 

(end-capped silica- based octyl phase, particle size 10 µm), C18 (end-capped silica-based 

octadecyl phase, particle size 7 µm), C18HD (end- capped silica based phase with a high 

density of octadecyl chains, particle size 7 µm) and Resin SH (strong-hydrophobic 

modified polystyrene-divinyl benzene phase, particle size 20–50 µm).  

Table 3. Variables studied, range tested for each variable and selected value after 

optimization of the SPE protocol for preconcentration and clean-up of FAHFAs in 

deproteinized human serum prior to on-line elution to LC–MS/MS. 

Step Variable Range tested Selected value 

SPE sorbent  C8EC, C18EC, C18HD and 
Resin SH 

C8EC 

Solvation 

Composition (%)  Methanol 100% 

Volume (mL)  1 

Flow rate (mL min–1)  5 

Equilibration 

Composition (%) Methanol 0–30% Methanol 20% 

Volume (mL) 1–2.5 2 

Flow rate (mL min–1)  5 

Sample 
application 

Composition (%) Methanol 0–30% Methanol 20% 

Volume (mL) 1–2.5 2 

Flow rate (mL min–1)  2 

Wash cartridge 

Composition (%) 
Acetonitrile and methanol 50–

100% 
Methanol 100% 

Volume (mL) 0.5–3 2 

Flow rate (mL min–1)  1 

Elution Elution time (min) 5–15 7 

Wash cartridge 

Composition (%) Mobile phase and methanol Mobile phase 

Volume (mL)  2 

Flow rate (mL min–1)  1 

 

A generic reversed-phase protocol was applied to evaluate the retention/elution 

capability of these sorbents. It consisted of sorbent conditioning with 2 mL of methanol, 
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equilibration with 2 mL of water, sample loading with 1 mL of methanol and elution 

with the chromatographic gradient. The sorbent with the highest retention/elution 

capability for FAHSAs was C8, the less polar of the studied sorbents (Supplementary 

Figure 1). According to the result, this sorbent was selected for development of the SPE 

protocol. 

The variables involved in the SPE protocol were then optimized for C8 cartridge. 

The composition, volume and flow rate of solvents tested, as well as the optimum values 

obtained for each step are shown in Table 3. The most critical steps were sample loading, 

cartridge washing and elution of the target analytes. As can be seen, deproteinized 

samples were loaded in 20:80 (v/v) methanol–water so non-polar interactions of the 

FAHFAs and the sorbent are enhanced. A washing step with 2 mL methanol allowed 

removal of interferents such as glycerophospholipids that could promote ionization 

suppression effects. Losses of the target compounds by partial elution were not detected. 

Finally, the elution step was carried out according to the programmed chromatographic 

gradient thanks to the moderate alkaline pH of the mobile phase (pH 9) that is above 

the pKa of long-chain fatty acids. Therefore, the pH change favoured the elution of the 

FAHFAs as carboxylate forms. The elution time was also varied from 5 to 15 min and 

the optimum was 7 min.  

3.3. Validation of the SPE method 

The SPE method was characterized by preparation of calibration curves for the 

commercially available FAHSAs spiked in serum and methanol. In serum, the 

concentration of each FAHSA detected in non-spiked aliquots was taken into account to 

build the calibration models. The correlation coefficients, all above 0.99, and calibration 

ranges are shown in Table 4. The comparison of the slopes of the two calibration models 

revealed the presence of matrix effects. As can be seen, the sensitivity for compounds 

with long retention times was more affected by matrix effects. The sensitivity of the 

method was evaluated by estimation of the LOD and LOQ as described above. The 

absolute concentrations estimated as LOD and LOQ, expressed as pg mL-1, are also 

listed in Table 4. 
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Table 4. Calibration models prepared by SPE–LC–MS/MS analysis of methanol and human 

serum both spiked with variable concentrations of the target analytes. 

Methanol 

Analyte PAHSA POHSA SAHSA OAHSA 

Slope 13432 34102 9327.3 41186 

Intercept 536.64 6603.8 311.4 6406.2 

Coefficient of regression (R2) 0.9986 0.9988 0.992 0.9988 

Limit of detection (LOD)a 0.065 0.026 0.059 0.041 

Limit of quantification (LOQ)a 0.196 0.0796 0.180 0.0126 

Serum pool 

Analyte PAHSA POHSA SAHSA OAHSA 

Slope 8329 24929 2707 25023 

Intercept 23245 58815 7203.5 62848 

Coefficient of regression (R2) 0.9942 0.9962 0.9954 0.9957 

Limit of detection (LOD)a 0.065 0.003 0.098 0.004 

Limit of quantification (LOQ)a 0.198 0.01 0.296 0.126 

     aLOD and LOQ expressed as ng mL-1 

 

The recovery factor for the FAHSAs was assessed by analysis of non-spiked and 

spiked serum aliquots at three concentrations (1, 5, and 10 µg L-1). The recovery factor 

for the four compounds was studied with a two-cartridge configuration [20], in which 

two C8 cartridges were located in-series. Thus, after sample injection, the FAHSAs are 

mainly retained in the first cartridge, while the non-retained FAHSAs enter into the 

second cartridge to be trapped. The eluted fraction from both cartridges is sequentially 

injected into the QqQ analyzer to estimate the concentration retained in each cartridge. 

The recovery factor was calculated as amount retained in cartridge 1/(amount retained 

in cartridge 1 + amount retained in cartridge 2). Supplementary Table 2 lists the 

recovery factor (%) estimated for the four FAHSAs. These recoveries ranged between 

73.8 and 100% depending on the spiked concentration. The general tendency was a 

lower recovery factor for higher spiked concentrations. In addition, metabolites with 

longer retention times provided lower recoveries. The same strategy was adopted to 

evaluate the extraction efficiency by analysis of a serum pool. The extraction efficiency 
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was estimated for all FAHFAs detected in the serum pool. SAHSA was not detected in 

serum samples, and the extraction efficiency for the rest varied from 77.8 to 100%, 

which is quite acceptable taking into account their concentrations. 

The precision of the method was assessed by estimation of the within-day and 

between-days variability, both expressed as relative standard deviation (RSD). For this 

purpose, a single experiment with a serum pool and duplicate analysis per day [21] was 

planned for one week. The within-day variability ranged from 7.1 to 13.8%, and the 

between-days variability varied from 9.3 to 21.6%.  

3.5. Application of the SPE–LC–MS/MS method to human serum samples 

3.5.1. Sample analysis 

As previously emphasized, Yore et al. evidenced that FAHFAs levels can be related 

to diabetes and obesity. For this reason, the association among FAHFAs with glycaemic 

state and BMI has been here studied by application of the developed method to the 

selected human cohort. First of all, the SPE–LC–MS/MS method was applied to identify 

FAHFAs present in the samples. The analysis was carried out by the MRM method 

including all potential transitions for all FAHFA combinations considering palmitic 

acid, palmitoleic acid, oleic acid and stearic acid. The application of the method to the 

studied cohort allowed detecting 11 FAHFAs (Supplementary Table 2) in at least 75% of 

the samples; 4 of them were confirmed by comparison with commercial standards. 

Supplementary Figure 2 shows MRM chromatograms for the six most concentrated 

FAHFAs detected in a serum sample. All samples were analyzed in triplicate and the 

mean value was employed for absolute or relative quantitation as described.  

Figure 2 shows the profile of relative concentrations calculated as the percentage 

in the total amount of detected FAHFAs, for each group of individuals considering 

glycaemic state and BMI. As can be seen, similar levels were found for all detected 

FAHFAs in the three groups obtained considering obesity or glycaemic state. The most 

concentrated FAHFAs in serum were PAHSA and PAHOA, with concentrations around 

35 and 25%, respectively; followed by stearic acid-hydroxy-oleic acid (SAHOA), oleic 
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acid-hydroxy-oleic acid (OAHOA) and oleic acid-hydroxy-stearic acid (OAHSA), with 

relative concentrations from 5 to 15%.  

 

Figure 2. Relative concentration profile expressed in percentage of FAHFAs in 

individuals classified according to glycaemic state and BMI. 

 

3.5.2. Statistical analysis 

Spearman Rank correlation analysis, summarized in Table 5, revealed four high 

correlations (p-value < 0.0001 and R > 0.6), all of them positive, between the levels of 

the most concentrated FAHFAs. One of the correlations, corresponding to PAHOA–

OAHOA (R = 0.64), was between compounds with the common hydroxy fatty acid 

moiety; while three correlations, PAHPA–PAHSA (R = 0.72), OAHOA–OAHSA (R = 

0.70), and PAHSA–PAHOA (R = 0.66) were between compounds sharing the same fatty 

acid moiety.  
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Table 5. Spearman Rank correlation results for the pairs of serum FAHFAs showing high 

correlation. 

Analyte  PAHSA 

PAHPA 
R2 0.7221 

p-value <0.001 
   OAHOA 

PAHOA 
R2 0.6454 

p-value <0.001 
   OAHSA 

OAHOA 
R2 0.6986 

p-value <0.001 
   PAHOA 

PAHSA 
R2 0.6598 

p-value <0.001 

 

Statistical analysis by the Kruskal-Wallis test using the normalized quantitative 

response (peak areas normalized by logarithmic transformation) revealed that the level 

of three FAHFAs was significantly different among individuals with different glycaemic 

state or BMI. Considering glycaemic state, two compounds reported significant 

differences in their concentrations: palmitic acid-hydroxy-palmitic acid (PAHPA), 

which resulted significant between diabetic and prediabetic individuals (p-value 

0.0149); while palmitoleic acid-hydroxy-palmitoleic acid (POHPO) was significant for 

the comparison between prediabetic and normoglycaemic individuals (p-value 0.0251). 

Figure 3 illustrates the variability found in the concentration of both FAHFAs as a 

function of the glycaemic state. As can be seen, the POHPO levels were higher in 

prediabetics as compared to normoglycaemic individuals, while PAHPA was found in 

diabetics at concentration significantly higher than in prediabetics.  

On the other hand, BMI only contributed to explain the variability in the 

concentration of palmitoleic acid-hydroxy-palmitic acid (POHPA) when normal and 

overweighed individuals were compared (p-value 0.0300). As Figure 3 shows, the level 

of POHPA was found lower in overweight individuals as compared to normal weight 

individuals. 
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Figure 3. Means plots with 95% confidence level of significant FAHFAs for glycaemic 

state or BMI. 

 

 

4. Conclusions 

FAHFAs are endogenous mammalian lipids that had been associated to insulin 

sensitivity in humans [6]. These compounds are present at low nanomolar 

concentration in serum, thus hindering their detection. In this research, an automated 

method based on SPE on-line coupled to LC–MS/MS has been developed for 

determination of FAHFAs in serum. The developed research has provided the following 

conclusions: (i) the method shows excellent analytical features; (ii) eleven FAHFAs have 

been detected in serum by application of a confirmatory test; (iii) PAHSA and PAHOA 

were the most concentrated FAHFAs in serum; (iv) strong correlation has been detected 

between some FAHFAs; (v) PAHPA and POHPO reported significant differences among 

different glycaemic states, while only POHPA was found significantly different 

considering BMI.  
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Supplementary Information 

 

Supplementary Figure 1. MRM chromatograms obtained with the eluate from the SPE 

cartridges tested by SPE–LC–MS/MS in negative ionization mode for PAHSA. 

 

 

Supplementary Figure 2. MRM chromatograms of the six most concentrated FAHFAs 

detected in a serum sample. The name of the FAHFAs as well as the MRM transitions is 

specified above each peak. 
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Supplementary Table 1. Ions selected for identification and confirmatory analysis of FAHFAs 

in serum samples 

 

Analyte Precursor ion (m/z) Product ions (m/z)a Neutral loss (m/z)b 

POHSA 535 
253 254 

281, 299 236 

OAHSA 563 
281 280 

281, 299 264 

PAHSA 537 
255 256 

299, 281 238 

SAHSA 565 
283 284 

299, 281 266 

POHPO 505 
253 254 

251, 269 236 

POHOA 533 
253 254 

279, 297 236 

OAHPO 533 
281 280 

251, 269 264 

POHPA 507 
253 254 

253, 271 236 

PAHPA 509 
255 256 

253, 271 238 

PAHOA 535 
255 282 

279, 297 238 

OAHOA 561 
281 280 

279, 297 264 

SAHOA 563 
283 284 

279, 297 266 

SAHPA 537 
253 284 

253, 271 266 

PAHOA 535 
255 256 

279, 297 238 
aFirst column contains product ion for quantification; second column lists product ions for 

qualitative confirmation; bFirst neutral loss is formed by cleavage of fatty acid; second neutral 

loss is formed by cleavage of the hydroxy-fatty acid (see Figure 1). 
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Supplementary Table 2. Recovery factor, expressed as %, estimated for each analyte with 

two-cartridges configuration for spiked and non-spiked serum samples. 
 

   
Extraction 
efficiency 

(%) 
Recovery factor (%)b 

Analyte 
Retention 

time 
(min) 

Transitiona 
Non-

spiked 
1 ng mL-1 5 ng mL-1 10 ng mL-1 

POHSA 5.5 535→253 100 73.8 86.5 87.9 

OAHSA 6.35 563→281 100 91 93.4 90.5 

PAHSA 6.4 537→255 77.8 98.2 90 89.8 

SAHSA 8 565→281 - 100 100 90.6 

POHPO 3.5 505→253 93.2    

POHOA 4 533→253 78.5 
   

OAHPO 4.2 533→281 82.8 
   

POHPA 5.7 507→253 100 
   

PAHPA 6.7 509→253 93    

PAHOA 7.5 535→255 89.7    

OAHOA 9.3 561→281 100    

SAHOA 9.7 563→283 84.4    

aTransition selected in Q1 → Q3. Precursor ion (m/z) → Product ion (m/z); b Calculated as amount 

retained in cartridge 1/(amount retained in cartridge 1 + amount retained in cartridge 2)*100. 
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Development of a qualitative/quantitative strategy for 

comprehensive determination of polar lipids by LC–MS/MS in 

human plasma 

María Asunción López-Bascón, Azahara Díaz-Lozano, Mónica Calderón-Santiago, 

Feliciano Priego-Capote 

 

ABSTRACT 

Polar lipids, especially glycerophospholipids, constitute the main components of 

cell membranes and are precursors of signaling molecules in many cellular and 

physiological processes. For this reason, the development of methods with high 

capability for detection of polar lipids in biological samples is required. In this research, 

the objective was to develop a method for comprehensive qualitative/quantitative 

determination of polar lipids in plasma by combination of acquisition methods with a 

triple quadrupole mass analyzer. The strategy was optimized in two steps: a) a first step 

for detection of lipids by monitoring selective fragmentation patterns representative of 

each lipid family; and b) a second step for confirmation of lipid species by detection and 

identification of product ions associated with the conjugated fatty acids. The acquisition 

list was divided in two MRM methods to ensure the detection of all transitions with 

suitable instrumental sensitivity according to chromatographic retention time and 

relative abundance in plasma. The combination of the two MRM methods allowed the 

detection of 398 polar lipids in plasma in 64 min. This strategy has been applied to a 

cohort of 384 individuals in order to obtain a qualitative and quantitative distribution 

of polar lipids in human plasma. The most concentrated lipid families in relative terms 

were lysophospholipids, plasmalogens and phosphatydilcholines, with mean relative 

concentration of 58.0, 17.1 and 8.3%, respectively. Then, sphingomyelins and 

phosphatidylethanolamines reported a relative concentration of 2.0%, followed by 

phosphatidylserines, with 1.1%.  

Keywords: Lipidomics; polar lipids; LC–MS/MS; plasma; multiple reaction 

monitoring 
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Section II of this PhD Book is devoted to methodological development in 

untargeted metabolomics analysis with the main aim of helping to overcome some 

of the limitations of this strategy. The influence of aspects related to sampling, 

sample preparation, detection and data analysis on the identification coverage has 

been studied in this section. 

There is a great diversity of blood collection tubes for sampling serum or 

plasma, which are widely used in metabolomics analysis. In Chapter III, samples 

of serum or plasma collected in polymeric gel tubes were compared with those 

sampled in conventional tubes from a metabolomics perspective using an 

untargeted GC–TOF/MS approach. 

The influence of sample preparation on untargeted lipidomics analysis of 

polar lipids in adipose tissue by LC–MS/MS was the aim of Chapter IV. Two 

common extractants used for lipids isolation, methanol:chloroform 

(MeOH:CHCl3) and methyl tert-butyl ether (MTBE), were qualitatively and 

quantitatively compared for the extraction of the main families of lipids. Also, the 

implementation of an SPE step for selective isolation of glycerophospholipids prior 

to LC–MS/MS analysis was assayed to evaluate its influence on lipids detection 

coverage as compared to direct analysis.  

In Chapter V an analytical strategy was planned to maximize the 

identification coverage of metabolites found in pig fecal samples. For this purpose, 

two complementary platforms such as LC–QTOF MS/MS and GC–TOF/MS were 

used. Concerning sample preparation six extractant with different polarity grade 

were tested to evaluate the extraction performance and, in the particular case of 

GC–MS, two derivatization protocols were compared. A total number of 303 

compounds were tentatively identified by combination of all the extractants and 

analytical platforms. 
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The use of quality controls (QC) to remove instrumental variability has been 

studied in Chapter VI. A statistical package MetaboQC has been developed to study 

and filtrate instrumental variability in data sets generated by MS analysis of large 

sequences (programmed for several days). This tool uses QCs to individually 

correct any tendency on quantitative signals of metabolites that can be associated 

to instrumental variability.  
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Influence of the collection tube on metabolomic changes 

in serum and plasma 

María Asunción López-Bascón, Feliciano Priego-Capote, Ángela Peralbo-Molina, 

Mónica Calderón-Santiago, María Dolores Luque de Castro 

 

ABSTRACT 

Major threats in metabolomics clinical research are biases in sampling and 

preparation of biological samples. Bias in sample collection is a frequently forgotten 

aspect responsible for uncontrolled errors in metabolomics analysis. There is a great 

diversity of blood collection tubes for sampling serum or plasma, which are widely used 

in metabolomics analysis. Most of the existing studies dealing with the influence of 

blood collection on metabolomics analysis have been restricted to comparison between 

plasma and serum. However, polymeric gel tubes, which are frequently proposed to 

accelerate the separation of serum and plasma, have not been studied. In the present 

research, samples of serum or plasma collected in polymeric gel tubes were compared 

with those taken in conventional tubes from a metabolomics perspective using an 

untargeted GC–TOF/MS approach. The main differences between serum and plasma 

collected in conventional tubes affected to critical pathways such as the citric acid cycle, 

metabolism of amino acids, fructose and mannose metabolism and that of glycerolipids, 

and pentose and glucuronate interconversions. On the other hand, the polymeric gel 

only promoted differences at the metabolite level in serum since no critical differences 

were observed between plasma collected with EDTA tubes and polymeric gel tubes. 

Thus, the main changes were attributable to serum collected in gel and affected to the 

metabolism of amino acids such as alanine, proline and threonine, the glycerolipids 

metabolism, and two primary metabolites such as aconitic acid and lactic acid. 

Therefore, these metabolite changes should be taken into account in planning an 

experimental protocol for metabolomics analysis. 

Keywords: GC–TOF/MS, Metabolomics, plasma, serum, polymeric gel tubes, 

sampling tubes 
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1. Introduction 

Human blood is the most common biofluid used by clinicians [1]. The main 

reasons justifying the clinical applicability of blood are its minimally invasive sampling 

[2], its homogeneity as compared to saliva or urine, which are strongly influenced by 

the collection volume [3], and its direct relationship with systemic changes in the 

metabolome [4,5]. Nevertheless, blood presents several limitations ascribed to its 

complicated and variable composition, as it contains approximately 4000 metabolites 

covering a wide range of concentrations and chemical diversity [6].  

Two types of samples are obtained from blood, plasma and serum, which are used 

to evaluate various biochemical parameters demanded in the clinical field [4,5,7,8]. The 

collection of serum or plasma depends on allowing or blocking coagulation, respectively. 

During coagulation, fibrin clots are formed, then separated by centrifugation from 

serum together with blood cells and related coagulation factors, while platelets release 

proteins and metabolites into serum. On the other hand, plasma is obtained by addition 

of an anticoagulant (EDTA, heparin, citrate, etc.) before removal of blood cells by 

centrifugation [1]. There are no virtual interferences that can occur in serum owing to 

postcentrifugal coagulation [9,10]. Nevertheless, the presence of anticoagulants in 

plasma collection tubes can introduce some interferents, such as enzyme inhibitors, 

fibrinogen and cations [11]. The coagulation procedure creates some differences in the 

composition of metabolites between the two biofluids, such as in the levels of 

inflammatory markers. Thus, serum samples are preferred in assays to determine 

cardiac troponins, whereas plasma is recommended in glucose tolerance tests [1].  

The impact of blood sample collection procedures on variations in the 

concentration of metabolites present in plasma or serum has been tested in several 

clinical studies [5,7,12–19]. Thus, Jorgenrud et al. (2015) studied the influence of three 

collection tubes (the conventional tube for serum and those containing citrate or EDTA 

for plasma) on the stability of some metabolites identified by UHPLC–QTOF MS/MS 

and GC×GC–TOF/MS [17]. Also, Barri and Dargsted (2013) searched for differences in 

plasma collected in different tubes (with EDTA, citrate or heparin) and the conventional 
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tube for serum by using untargeted analysis based on UPLC–QTOF MS/MS [7]. 

However, this study did not consider the inter-individual variability that could mask the 

real behavior of certain metabolites. Wedge et al. (2011) considered the inter-individual 

variability, but their study was focused on the differences between plasma and serum 

samples of patients with small-cell lung cancer by using untargeted analysis based on 

UPLC–MS and GC–QTOF [14]. Breier et al. (2014) reported metabolite measurements 

generally higher in serum as compared to plasma for saturated acylcarnitines, amino 

acids, biogenic amines, glycerophospholipids, sphingolipids and hexose. Additionally, 

the study was targeted at stability conditions finding the majority of metabolites stable 

for 24 h both on cool packs and at room temperature in non-centrifuged tubes [18].  

There are several types of commercial tubes (tube wall, stopper, stopper 

lubricant, separator gel, clot activator, etc. [16] for collection of plasma or serum whose 

composition establishes the subsequent applicability of the collected sample. Among 

them, it is worth mentioning tubes containing a polymeric gel, an inert material that 

forms a barrier between the target sample (plasma or serum) and the rest of blood 

(packed cells) by centrifugation. The main benefits of separator gel tubes are an easy 

use, short processing time through clot activation, higher yield in the isolation of serum 

or plasma, reduced aerosolization of hazardous substances and a single centrifugation 

step [17]. On the other hand, some limitations of these tubes have also been described 

in the case of hydrophobic drugs such as phenytoin, phenobarbital, carbamazepine, 

quinidine and lidocaine, which could be adsorbed to the separator gel [17,20]. These 

tubes have been scarcely studied to assess their applicability in metabolomics analysis 

by comparison with the use of conventional tubes for serum or plasma. Breier et al. 

analyzed serum samples collected into conventional and gel-barrier tubes and found 

that serum metabolite concentrations were mostly unaffected by tube type, except for 

methionine sulfoxide that was significantly more concentrated in serum collected with 

gel-barrier tubes [18]. 

The objective of the present research was to study the differences at the 

metabolite level between serum and plasma obtained with conventional tubes (heparin 

tube for plasma) and polymeric gel tubes by application of an untargeted approach 
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based on GC–TOF/MS analysis. For this purpose, a cohort of volunteers was selected 

for blood sampling, then collected using four different tubes (plasma, plasma-gel, serum 

and serum-gel). Sample preparation was based on protein precipitation with an organic 

solvent followed by silylation as derivatization procedure. The differences between the 

two main clinical samples, plasma and serum, and those ascribed to their collection in 

polymer gel tubes were discussed taking into account the sources of intra-individual and 

inter-individual variability. 

 

2. Materials and methods 

2.1. Reagents 

Both MS-grade n-hexane from Sigma–Aldrich (St. Louis, MO, USA) and 

methanol from Scharlab (Barcelona, Spain) were used for sample preparation. Bis-

(trimethylsilyl) fluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS) from 

Sigma–Aldrich were used as silylation agents in the derivatization step. Pyridine from 

Merck (Darmstadt, Germany) was used as solvent for derivatization. Mass spectrometry 

grade perfluorotri-n-butylamine (PFTBA) from Agilent Technologies (Santa Clara, CA, 

USA) was used for daily mass calibration. An alkane standard mixture (from C10 to C40) 

designed for performance test in GC from Sigma–Aldrich was used to establish the 

retention index (RI) calibration. Triphenyl phospate (TPP, from Sigma–Aldrich) was 

used as external standard (ES) and standards of D-mannitol, D-fructose, D-sorbitol, 

myo-inositol, D-glucose and D-mannose were purchased to confirm identification of 

sugars. 

2.2. Apparatus and instruments 

A micro-centrifuge Sorvall Legend Micro 21R from Thermo Scientific (Waltham, 

MA, US) was used to separate the phases after extraction and protein precipitation. A 

speed-vac Concentrator Plus, from Eppendorf Ibérica (Madrid, Spain), was used to 

evaporate the methanol phase before derivatization. A block heater from Stuart 

Equipment (Staffordshire, OKA, USA) was used in the derivatization step.  
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An Agilent 7890A Series GC system coupled to an Agilent 7200 UHD Accurate-

Mass QTOF hybrid mass spectrometer equipped with an electron impact (EI) source 

(Santa Clara, CA, USA) was used for analysis. The analytical sample was thus monitored 

in high resolution mode. MassHunter GC QTOF Acquisition software (version B.06, 

Agilent Technologies) was used to control data acquisition and set the parameters for 

optimum operation.  

2.3. Samples 

All experiments were carried out in accordance with the ethical principles of 

human medical research (World Medical Association, Helsinki Declaration, 2004 [21]). 

The ethical review board of Reina Sofía University Hospital (Córdoba, Spain) approved 

and supervised the clinical study.  

The samples were obtained from thirteen healthy volunteers (3 men and 10 

women) at Reina Sofía University Hospital (Córdoba, Spain). The steps from blood 

extraction to analysis were supervised by specialized personnel pertaining to this 

hospital. Blood from each volunteer was collected into four different Vacutainer® tubes 

(Becton Dickinson): plastic serum tubes with spray-coated silica (serum), plastic serum 

tubes with spray-coated silica and a polymer gel to favor serum separation (serum-gel), 

spray-coated silica tubes with heparin for plasma (plasma) and heparin tubes with 

polymer gel to favor plasma separation (plasma-gel).  

The collected samples were processed by centrifugation for 15 min at 1000 × g 

for isolation of serum and plasma in conventional tubes, and at 2000 × g for gel 

separation tubes. The serum fraction was processed 1 h after collection to ensure 

complete coagulation.  

2.4. Untargeted analysis  

Plasma and serum samples (50 μL) were deproteinized with 150 μL of methanol. 

The mixture was vortexed for 1 min and subsequently cooled at –20 ºC for 3 min. The 

resulting precipitate was separated by centrifugation at 14000 × g for 15 min at 4 ºC 

and the methanol–aqueous phase was isolated, was dried by evaporation and the 

residue reconstituted with 5 μL of pyridine and 1 μL of formic acid. For derivatization, 
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45 μL of a 98:2 BSTFA–TMCS mixture was added to the reconstituted residue, shaken 

for 30 s and maintained at 30 °C for 30 min, and a small amount of anhydrous sodium 

sulfate was added to remove residual water before injection into the chromatograph. 4 

μL of each analytical sample was diluted in 192 μL of n-hexane and 4 μL of ES (140 μg 

L–1). All samples were prepared and analyzed in triplicate.  

GC–TOF/MS analyses were performed by EI ionization mode at 70 eV. 

Chromatographic separation was carried out with a fused silica DB-5MS-UI (30 m × 

0.25 mm i.d, × 0.25 μm) film thickness capillary column. The GC oven temperature 

program started at 60 °C (1 min held), followed by a temperature ramp of 10 °C min–1 

to final 300 °C (2 min held). Post-run time was programmed for 4 min up to 310 ºC to 

assure complete elution of the injected sample. Pulsed splitless injections of 1 μL of 

sample were carried out at 250 °C and ultrapure grade helium was used as carrier gas 

at 1.0 mL min–1 flow rate. The interface, ion source and quadrupole temperatures were 

set at 280, 300 and 200 °C, respectively. A solvent delay of 5.5 min was used to prevent 

damage in the ion source filament. The TOF detector was operated at 5 spectra s–1 in the 

mass range m/z 50–550 and the resolution was 8500 (full width half maximum, 

FWHM) at m/z 501.9706. A daily mass calibration was performed with PFTBA. 

Tentative identification of compounds was performed by searching MS spectra on the 

National Institute of Standards and Technology (NIST, version 11, 2011) database taking 

into account the RI values. 

2.5. Identification of metabolites 

Identification was firstly carried out by searching MS spectra on the NIST11 

database. Only those identifications with a match factor and a reverse match factor 

higher than 700 were considered as valid. The RI values included in the NIST database 

were also taken into account to support identifications. An RI calibration model was 

built by plotting the retention times obtained by analysis of the alkane standard mixture 

(C10 to C40 with an even number of carbons) with the chromatographic method used 

in this research and the RI values provided for each alkane by the NIST database. 

Supplementary Figure 1 shows the RI calibration graph and the equation fitting this 

model. Then, the RI value was experimentally estimated for each identified compound 
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by using the retention time and the calibration equation. The requirement to accept 

NIST identifications was that the difference between the experimental RI and the 

theoretical value provided by the NIST for each target compound should be below 100 

units.  

The NIST database does not contain high resolution MS information as provided 

by the TOF detector. For this reason, a third step was included to validate identification 

of each compound by using high resolution MS. Thus, the molecular formula for the 

[M]+ ion and the most intense fragments for each molecular feature (MF) should fit the 

NIST identification by setting a cut-off value in mass accuracy of 10 ppm. Additionally, 

five derivatized standards (D-mannitol, D-fructose, D-sorbitol, myo-inosiol, D-glucose 

and D-mannose) were injected for identification of sugars, thus confirming their 

presence in the samples.  

2.6. Data processing and statistical analysis 

Unknown Analysis software (version 7.0, Agilent Technologies, Santa Clara, CA, 

USA) was used to process all data files obtained by GC–TOF/MS in full scan mode. 

Treatment of raw data files started by deconvolution of chromatograms to obtain a list 

of MFs, which are considered as potential compounds defined by five m/z values of 

representative ions for each chromatographic peak (one quantifier and four qualifiers) 

and the retention time. For this purpose, the deconvolution algorithm was applied to 

each sample by considering all ions exceeding 1500 counts for the absolute height 

parameter, the accuracy error at 50 ppm and the window of 0.3 min. The list of MFs 

obtained for each analysis was exported as data files in compound exchange format (.cef 

files). These data files were treated with the Mass Profiler Professional (MPP) software 

package (version 12.1, Agilent Technologies, Santa Clara, CA, USA) to build the data set 

including quantitative information (expressed as peak area ratio) of MFs detected in 

each analysis for further processing. 

In the next step, the data were processed by alignment of the potential MFs across 

samples according to their retention time and m/z values using a tolerance window of 

0.3 min and an accuracy error of 15 ppm. Finally, the MFs resulting after data 

pretreatment were exported (.cef file) for recursive targeted analysis. For this purpose, 
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the Quantitative Analysis software (version 7.0, Agilent Technologies, Santa Clara, CA, 

USA) was used to reintegrate all potential metabolites found in all analyzed samples, 

using the corresponding characteristic quantifier and qualifiers. The data set was 

exported and reprocessed with MPP software package (version 2.2, Agilent 

Technologies, Santa Clara, CA, USA). The data exported were normalized prior to 

statistical analysis by logarithmic transformation. The MPP software also allowed 

unsupervised analysis by principal component analysis (PCA) and Mann-Whitney t-test 

corrected by the Benjamini-Hochberg algorithm to evaluate significant differences in 

concentration of each compound (p-value lower than 0.05) in the studied samples. 

Mapping Metabolites on Kyoto Encyclopedia of Genes and Genomes (KEGG) (URL: 

http://www.genome.jp/kegg/) was used to know the metabolomic pathways in which 

the significant metabolites were involved to find connections among them. 

 

3. Results and discussion 

3.1. Quality control study 

Quality control (QC) studies are crucial in metabolomics experiments dealing 

with biological samples such as serum or plasma because the variability sources 

potentially involved. The selection of an internal standard in untargeted analysis is a 

difficult task as clinical samples typically contain between 100 and 1000 metabolites 

covering a wide range of concentrations and structures. Even the selection of an internal 

standard representative for each family of compounds does not ensure to operate under 

quality conditions. For this reason, it is also frequent the selection of external standards 

to control external variability sources and accumulate repetitions of each sample to 

minimize the experimental variability. In this research, TPP was selected as ES due to 

its exogenous character and its intermediate retention time within the interval of the 

selected chromatographic method (elution at 21.6 min).  

A total number of 65 compounds were identified in the samples analyzed in this 

study. The compounds were identified at least in all the samples pertaining to one of the 

four target types (serum, plasma, serum-gel and plasma-gel). These compounds are 
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well-known metabolites previously detected in human blood such as amino acids, 

hydroxy acids, carboxyl acids, fatty acids or carbohydrates [1,4,6]. Supplementary Table 

1 lists the name of the metabolites, chemical class, code (if exists), retention time and 

fragments for each entry. As can be seen, the main classes of identified compounds were 

amino acids (14 metabolites), fatty acids (14 metabolites), carbohydrates (11 

metabolites), keto acids (5 metabolites) and carboxylic acids (4 metabolites). It is worth 

mentioning that several of them, particularly amino acids and derivatives, were 

exclusively detected in certain types of samples. One amino acid, proline, was only found 

in serum and serum-gel samples, while valine was detected in serum, serum-gel and 

plasma samples. No exclusive metabolites were detected in plasma-gel samples.  

It is practically impossible to obtain high accuracy and precision for all detected 

metabolites in untargeted metabolomics analysis [22]. In this context, before 

comparison of the metabolite profiles detected in the four types of samples, evaluation 

of the variability of the identified compounds is mandatory. Thus, the relative standard 

deviation (RSD) was calculated for each compound per individual and per type of 

sample by considering the thirteen individuals. A great number of metabolites reported 

an average intra-individual variability, expressed as RSD, above 30%, despite the use of 

ES. This variability could be assigned to instability according to the protocol used for 

analysis. Table 1 includes the list of metabolites that gave RSD values higher than 30% 

in the different samples. The general trend observed for these metabolites was that the 

relative concentration (expressed as peak area ratio) significantly decreased since the 

first injection to the third. Thus, metabolites such as urea, valine, proline, succinic acid 

or arachidonic acid experienced this pattern in one or several samples. This variability 

source has been pointed out by other authors both in serum and plasma [4,14], and it 

was attributed to metabolism activity or degradation produced during analysis  

The comparison among types of samples revealed that above 20 metabolites 

suffered this variability in serum (by setting the RSD cut off at 30%); on the other hand, 

only 8 compounds showed this behavior in plasma-gel samples.  
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Table 1. Identified metabolites with a relative standard deviation (RSD) higher than 30% in the 

four types of samples (serum, serum-gel, plasma and plasma-gel). 

Compound namea Serum Serum-gel Plasma Plasma-gel 

Acetic acid  X X X 

Alanine X    

Aminobutyric acid X    

Aminomalonic acid X    

Arachidonic acid X    

Ascorbic acid X    

Butyric acid  X X  

Cysteine X  X  

Erythronic acid X    

Glycine X  X X 

Lactic acid X  X  

Leucine X X X X 

Oxoglutarate X  X  

Phenylalanine X X X X 

Proline X X   

Pyroglutamic acid X X X X 

Serine X X X X 

Succinic acid X X X  

Threonine X  X  

Urea X X X X 

Uridine X   X 

Valine X X X X 
2,3-Dihydroxybutanoic 
acid  X   

3-Hydroxybutyric acid   X  
aThe identified compounds are TMS derivatives. 

In general, the samples collected in gel- separator tubes reported a lower number 

of metabolites affected by this variability source than those collected in conventional 

tubes, either plasma or serum samples. This result is in agreement with those reported 

by O’Keane et al. (2006) who found an enhanced metabolite stability in samples (serum 

or plasma) collected in tubes containing a polymeric gel [23]. Six metabolites (leucine, 

phenylalanine, serine, valine, pyroglutamic acid and urea) provided intra-individual 

variability higher than 30% in all types of samples. Other three metabolites (lactic acid, 
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threonine and cysteine) only led to a lack of precision in plasma or serum collected 

without gel separator. According to these results, the two most important chemical 

families affected by intra-individual variability were amino acids and carboxylic acids. 

Supplementary Figure 2 shows the bars diagram of the relative quantitative response of 

lactic acid, urea and alanine, as provided by the three replicates in the analysis of each 

of the four samples. As can be seen, the quantitative response for these three metabolites 

decreased from the first to the third replicate; decrease especially significant for urea, 

which was not detected in the third replicate of any sample. On the other hand, glycerol 

was characterized by the absence of variability between replicates. The two families with 

the lowest intra-individual variability were sugars and long chain fatty acids, except for 

arachidonic acid in serum. After this study, the quantitative response for the metabolites 

exceeding the intra-individual variability cut-off was estimated from one or two 

injections of the target analytical sample. 

Concerning sensitivity, the analysis of serum samples provided higher sensitivity 

than plasma samples, behavior that had been previously reported [1]. Figure 1 shows 

the base peak chromatograms (BPCs) obtained by analysis of serum, serum-gel, plasma 

and plasma-gel samples from the same volunteer using the untargeted protocol based 

on GC–TOF/MS. Some representative metabolites pertaining to different chemical 

families are numbered to facilitate comparison of the differences in the quantitative 

response provided by each of them. 

3.2. Metabolite differences between serum and plasma 

Once the data set was extracted from the raw data files, statistical analysis was 

applied to evaluate differences in the metabolite profile obtained by untargeted analysis 

of serum, plasma, serum-gel and plasma-gel. Theoretically, the inclusion of a gel to 

accelerate the process of serum or plasma separation should not change the metabolite 

composition of the samples because of the inertness of gel [17].  

However, the clinical use of these samples justifies the application of multivariate 

statistical tools by unsupervised analysis looking for discrimination patterns.  
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Figure 1. Base peak chromatograms (BPCs) from serum, serum-gel, plasma and plasma-

gel samples from the same volunteer obtained by GC–TOF/MS. 1) Lactic acid; 2) valine; 3) 

phosphoric acid; 4) glycerol; 5) α-D-mannopyranose; 6) sorbitol; 7) β-D-mannopyranose; 8) 

glucopyranose; 9) palmitic acid; 10) oleic acid; 11) stearic acid; 12) monopalmitin; 13) 

monostearin. 

Serum 

Plasma 

Serum-gel 

Plasma-gel 



  Chapter III 

181 
 

 

Figure 2. PCA scores plot in a 3D graph obtained from the analysis of the four types of 

samples: serum, serum-gel, plasma and plasma-gel. 

 

Figure 2 shows the 3D PCA scores plot obtained from the four types of samples 

that explains a variability of 52.1% and shows a clear separation in three groups that 

explains the main variability sources. Thus, separation between serum samples and 

serum-gel samples could be attributed to the effect of the polymeric gel. Apart from this 

discrimination, plasma and plasma-gel samples overlapped, forming a third group 

distributed in an area between the two types of serum samples. Therefore, the analysis 

of plasma or serum provides metabolite differences, but also the use of a polymeric gel 

to favor serum isolation promotes differences in the profile of the monitored 

metabolites. 

After detecting variability in the metabolite profile of serum and plasma samples, 

the metabolite differences between serum and plasma collected within the conventional 

tubes were analyzed. Figure 3 shows the 2D PCA scores plot explaining 46.98% of the 

total variability.  

Discrimination between the metabolite profile of serum and plasma had 

previously been demonstrated by other authors [1,4,11,14,18]. Among them, our study 



Influence of the collection tube on metabolomic changes in serum and plasma 

182 
 

can be considered complimentary of that by Breier et al. [18], who used LC–MS in 

contrast to GC–MS used in our case. As discussed in the introduction, the main result 

described by Breier et al. was that metabolite measurements were higher in serum as 

compared to plasma, with special emphasis on certain families of metabolites such as 

saturated short- and medium-chain acylcarnitines, amino acids, biogenic amines, 

glycerophospholipids, sphingolipids and hexose. 

Table 2. Identified metabolites with significant differences in their levels in plasma and serum 

samples. The pathways in which they are involved are also listed. 

Compounda p-valueb FCc Pathways 

Phenylacetic acid 0.0463 -1.4318 Phenylalanine metabolism 

Sorbitol 0.0401 3.6497 
Metabolims: fructose/mannose and 

galactose 

Lactic acid 0.0401 1.0148 
Glycolysis/gluconeogenesis and 

metabolism:  pyruvate, propanoate and 
fructose/mannose 

Tyrosine 0.0401 -16 
Metabolism: tyrosine, nitrogen, 

phenylalanine, ubiquinone and thiamine 

Mannose 0.0346 4.6908 
Metabolism: fructose/mannose and 

galactose 

Myo-inositol 0.0334 2.9793 Pentose and glucuronate interconversions 

Proline 0.0331 -16 
Biosynthesis amino acids and arginine 

and proline metabolism 

Glycerol 0.0234 -2.3692 
Pentose and glucuronate interconversions 

and metabolism: galactose and glycerolipid 

Monopalmitin 0.0234 10.808 Glycerolipid metabolism 

Dodecanol 0.0234 1.684 - 

Derivate of 
cholesterol 

0.018 16 
Biosynthesis of steroids by oxidation of 

colesterol or biosynthesis of primary bile acids 

Uridine 0.0078 -2.9412 
Pentose and glucuronate interconversions 

and galactose metabolism 

Threonine 6.00E-04 -6.9353 
Biosynthesis amino acids and glycine, 
serine and threonine metabolism 

Oxoglutaric acid 0 -5.7524 

Biosynthesis of amino acids and 
metabolism: 2-Oxocarboxylic acid, carbon, 

glyoxilate/dicarboxylate, 
Alanine/aspartate/glutamic, 

ascorbate/aldarate, vitamin B6, lisien, 
butanoate and histidine 

aThe identified compounds are TMS derivatives; bValue corrected by the Benjamini-Hochberg 
method; cFC: Fold change. 
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Most of these families, except for amino acids and hexose, are preferentially 

detected by LC–MS and, for this reason, the results obtained in the research proposed 

here could complement those reported by Breier et al. [18]. A Mann-Whitney t-test with 

Benjamini-Hochberg algorithm correction was applied to identify the metabolites with 

the highest statistical contribution to differentiate serum and plasma samples. Fourteen 

metabolites, listed in Table 2, presented significant different concentration in serum 

and plasma with a p-value < 0.05. As can be seen, most of them provided p-values 

between 0.05 and 0.01, except for three metabolites: threonine (p-value 0.0006), 

uridine (p-value 0.008) and a cholesterol derivative (p-value 0.0002).  

Table 3 lists the main pathways in which the identified metabolites are involved, 

and Supplementary Figure 3A shows these pathways and the connection among 

significant metabolites. Among them, it is worth mentioning oxoglutarate, involved in 

the citric acid cycle, and found at higher concentration in serum than in plasma, as 

Supplementary Figure 4 shows. The involvement of the metabolite in this cycle allows 

connecting this critical pathway to others dealing with the metabolism of amino acids, 

particularly ascorbate/aldarate, alanine/aspartate/glutamate and glutamine/glutamate 

pathways (Supplementary Figure 3A). One other metabolite reporting significant 

differences of its levels in plasma and serum was myo-inositol that takes part in the 

ascorbate/aldarate pathway as a precursor of glucuronate. The ascorbate/aldarate 

metabolic pathway is strongly linked to the fructose and mannose metabolism. Three 

metabolites involved in the last pathway (sorbitol, mannose and lactate) were found 

significantly different by comparing serum and plasma levels. Sorbitol, mannose, myo-

inositol and lactate were more concentrated in serum than in plasma, as Supplementary 

Figure 4 illustrates. Mannose is a key substrate of glycolysis, which is other relevant 

pathway also including the third metabolite previously mentioned (lactate, a precursor 

of pyruvate). Lactate is related to one other metabolite of the citric acid cycle: 

oxalacetate, which is first converted to pyruvate, and then to lactate. Oxalacetate is the 

precursor of aspartate, involved in the formation of proline and threonine, two amino 

acids with also different levels in plasma and serum in the selected cohort. In fact, 

proline was not detected in plasma samples, while threonine provided a small signal in 

this type of sample. The metabolism of phenylalanine showed also significant 
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differences depending on the sample; thus, this amino acid, precursor of tyrosine, was 

found significant and similarly to other amino acids not detected in plasma, and 

phenylacetate, a metabolite of phenylalanine that can be hydroxylated prior to 

participate in the metabolism of tyrosine. This derivative was found at higher 

concentration in plasma than in serum. 

Table 3. Identified metabolites with significant differences in their levels in serum and serum-

gel samples. The pathways in which they are involved are also listed. 

Compounda p-valueb FCc Pathways 

Aminomalonic 
acid 

0.0251 -4.9247 - 

Glycerol 0.0251 -1.7515 
Pentose and glucuronate interconversions and 
metabolism: galactose and glycerolipid 

Monopalmitin 0.0222 9.9298 Glycerolipid metabolism 

Monostearin 0.0185 -3.6099 
Biosynthesis: fatty acids and unsaturated fatty 

acids 

Proline 0.0166 -16.0000 
Biosynthesis amino acids and arginine and 

proline metabolism 

Aconitic acid 0.0166 -38.2050 - 

Dodecanol 0.0166 1.9543 - 

Lactic acid 0.0143 -1.6320 
Glycolysis/gluconeogenesis and metabolism:  

pyruvate, propanoate and fructose/mannose 

Threonine 0.0134 -7.4579 
Biosynthesis of amino acids and glycine and 

serine/threonine metabolism 

Alanine 0.0018 -16.0000 
Biosynthesis of amino acids and metabolism: 

Alanine/aspartate/ glutamate, cysteine/methionine, D-
alanine, taurine/hypotaurine and selenocompound 

Derivate of 
cholesterol 

0.0002 -3.8270 
Biosynthesis of steroids by oxidation of colesterol 

or biosynthesis of primary bile acids 
    aThe identified compounds are TMS derivatives; bValue corrected by the Benjamini-Hochberg 

method; cFC: Fold change. 

 

Oxoglutarate is involved in the pentose/glucuronate interconversion pathway, in 

which one important metabolite such as glycerol was also found at lower concentration 

in plasma than in serum samples. Glycerol, which is essentially produced by glycolysis, 

is the precursor of glycerophospholipids and acylglycerols, as illustrates Supplementary 

Figure 3A. Among them, monopalmitin was found at higher concentration in plasma 

than in serum. On the contrary, glycerol, inositol, sorbitol and mannose, products from 

galactose by the action of α-galactosidase, were characterized for a higher concentration 

in serum than in plasma. α-Galactosidase takes part in the galactose metabolism in 
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which UDP-glucose participates, which is the precursor of uridine, this latter also 

detected at different levels in both clinical samples.  

One other significant compound (p-value 0.0002) was a cholesterol derivative 

not found in serum. According to the databases, two candidates could fit the molecular 

formula C27H44O2 assigned by MS in high resolution mode. The two candidates are 

hydroxy derivatives obtained from cholest-4-en-3-one, which participate in two 

different pathways. Thus, 26-hydroxycholest-4-en-3-one is produced in the 

biosynthesis of steroids by oxidation of cholesterol, while 7-hidroxycholest-4-en-3-one 

is formed in the biosynthesis of primary bile acids by a similar mechanism. According 

to the structure of both compounds, it is impossible to elucidate the exact structure of 

this compound with the experimental method used in this study. The last compound 

was dodecanol, the origin of which should be mainly ascribed to exogenous sources 

through the diet. Anyway, this fatty alcohol was found at higher concentration in plasma 

than in serum samples (Supplementary Figure 4).  

3.3. Influence of the polymeric gel on the metabolomic analysis of plasma and 

serum 

The next step was targeted at detecting metabolite differences in serum and 

plasma collected in polymeric gel tubes as compared to conventional tubes. Despite the 

benefits ascribed to these tubes concerning pretreatment time, no analytical studies had 

been carried out to identify metabolite differences when compared with serum and 

plasma collected in conventional tubes. Initially, unsupervised analysis by PCA was 

applied to compare both the metabolite profile in serum vs. that found in serum-gel and 

plasma vs. plasma-gel. The variability explained was 67.01%. As Figure 3B shows, a 

clear discrimination exists between serum and serum-gel samples, which was previously 

seen in the PCA dealing with the four groups of samples. On the other hand, no 

discrimination seems to exist between plasma and plasma-gel samples; therefore, no 

statistical differences in the metabolite composition could be attributed to the use of 

plasma tubes or those containing the polymeric gel.  
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Figure 3. PCA scores plot in a 2D graph obtained from serum and plasma samples (A) 

and from serum and serum-gel samples (B). 

 

A Mann-Whitney t-test corrected by the Benjamini-Hochberg algorithm was 

performed to identify the metabolites with the highest contribution to differentiate 

serum from serum-gel samples. The results showed that eleven metabolites were found 

at significant different concentration in serum samples collected with both types of 

tubes, with p-value<0.05. Table 3 lists these metabolites together with the main 
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pathways in which they are involved. These significant metabolites were present at 

higher relative concentration in serum than in serum-gel samples, except for 

monopalmitin and dodecanol that reported the opposite situation. The most 

representative case corresponded to aconitic acid that was hardly detected in serum 

collected in polymeric gel tubes, thus indicating a high activity of the enzymes acting on 

this metabolite, a substrate of the citric acid cycle, as shows Supplementary Figure 3B. 

Other metabolites involved in the citric acid cycle were related to pathways in which 

other significant metabolites detected in this study play a key role. Thus, acetyl-CoA is 

related to the fatty acids metabolism in which a critical pathway is the synthesis of 

glycerolipids. The differences in concentration of glycerol and two monoacylglycerols 

(monostearin and monopalmitin) resulted significant in the comparative analysis 

between serum obtained with conventional and polymeric gel tubes. Other two 

carboxylic acids such as oxalacetic acid and fumaric acid allow connecting the citric acid 

cycle with two pathways dealing with the metabolism of the amino acids alanine and 

proline, which were also significantly different in the two types of serum samples. 

Similarly, pyruvate, which justifies the connection between the citric acid cycle and 

lactate through the glycolysis, is connected to the threonine metabolism that could 

explain the different level of this amino acid in serum collected with the two tubes. 

One other metabolite that provided significant differences between serum 

obtained with conventional tubes and polymeric gel tubes was aminomalonic acid, a 

dicarboxylic acid with one methylene group less than aspartic acid. Some studies have 

tentatively identified the origin of aminomalonic acid by elimination of sulfur 

containing cysteine [24]. The conversion of cysteine into aminomalonate could induce 

conformational changes important for ubiquitinylation and degradation of iron 

regulatory protein 2 (IRP2) [24]. Finally, dodecanol and the cholesterol derivative, 

which reported significant differences between serum and plasma samples, also 

provided levels statistically different in serum and serum-gel samples. 

Concerning plasma samples, no overall differences were found between plasma 

obtained with conventional tubes and polymeric gel tubes, as deduced from the PCA 

test. Nevertheless, the Mann-Whitney t-test allowed identifying five metabolites (four 
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amino acids: alanine, valine, tyrosine and glutamic acid, and phosphate) with different 

concentration in the two types of plasma samples.  

 

4. Conclusions 

Blood collection is a frequently forgotten aspect that can be responsible for 

uncontrolled variability sources in metabolomics analysis. Most of the studies dealing 

with the influence of blood collection tubes on metabolomics profiling have been 

restricted to conventional tubes for plasma and serum. However, the behavior of 

polymeric gel tubes had not been comparatively assessed. In this research, serum and 

plasma collected in polymeric gel tubes were compared with serum and plasma collected 

in conventional tubes using a GC–TOF/MS untargeted approach. Significant changes 

attributable to the polymeric gel were only detected in serum, while no differences were 

observed in plasma, which in overall terms provided a metabolite profile similar to that 

of plasma collected in conventional tubes. Changes occurring in serum were mainly 

found in the metabolism of amino acids, particularly, alanine, proline and threonine; in 

the metabolism of glycerolipids, detected through changes in the levels of glycerol and 

two important monoglycerides such as monopalmitin and monostearin, and in two 

metabolites (aconitic acid and lactic acid) involved in primary pathways. Although no 

overall changes were observed in plasma, significant differences in the concentration of 

five metabolites, four amino acids and phosphate, were found. It is essential to take into 

account these alterations when an experimental protocol for metabolomics analysis is 

planned. 

An additional issue was to evaluate the metabolite differences between serum and 

plasma collected from the same group of individuals in conventional tubes. These 

differences affected to critical pathways such as the citric acid cycle, the metabolism of 

amino acids, the fructose and mannose metabolism and that of glycerolipids, and 

pentose/glucuronate interconversions.  
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Supplementary Information 

 

 

Supplementary Figure 1. RI calibration graph and equation fitting this model. 

 

 

Supplementary Figure 2. Quantitative response of lactic acid, urea, alanine and 

glycerol in three consecutive injections of one sample of serum, plasma, serum-gel and plasma 

gel. 
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Supplementary Figure 3A. Scheme of the connections among the most important 

pathways including metabolites discriminating significantly: serum and plasma. Significant 

metabolites are in bold. The solid lines indicate metabolites conversions, and the dotted lines 

indicate metabolites involved in a particular pathway. 
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Supplementary Figure 3B. Scheme of the connections among the most important 

pathways including metabolites discriminating significantly: serum and serum-gel. Significant 

metabolites are in bold. The solid lines indicate metabolites conversions, and the dotted lines 

indicate metabolites involved in a particular pathway. 
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Supplementary Figure 4. Box-and-whisker plots provided by the comparison between 

serum vs. plasma of the normalized concentration of six identified metabolites. 
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Influence of sample preparation on lipidomics analysis of 

polar lipids in adipose tissue 

María Asunción López-Bascón, Mónica Calderón-Santiago, Julia Sánchez-Ceinos, 

Alejandro Fernández-Vega, Rocío Guzmán-Ruiz, José López-Miranda, María del Mar 

Malagón, Feliciano Priego-Capote 

 

ABSTRACT 

The main limitations of lipidomics analysis are the chemical complexity of the 

lipids, the range of concentrations at which they exist, and the variety of samples usually 

analyzed. These limitations particularly affect the characterization of polar lipids owing 

to the interference of neutral lipids, essentially acylglycerides, which are at high 

concentration and suppress ionization of low concentrated lipids in mass spectrometry 

detection. The influence of sample preparation on lipidomics analysis of polar lipids in 

adipose tissue by LC–MS/MS was the aim of this research. Two common extractants 

used for lipids isolation, methanol:chloroform (MeOH:CHCl3) and methyl tert-butyl 

ether (MTBE), were qualitatively and quantitatively compared for the extraction of the 

main families of lipids. The obtained results showed that each family of lipids is 

influenced differently by the extractant used. However, in general, the use of MTBE as 

extractant led to higher extraction efficiency for unsaturated fatty acids, 

glycerophospholipids and ceramides, while MeOH:CHCl3 favored the isolation of 

saturated fatty acids and plasmalogens. The implementation of a solid-phase extraction 

(SPE) step for selective isolation of glycerophospholipids prior to LC–MS/MS analysis 

was assayed to evaluate its influence on lipids detection coverage as compared to direct 

analysis. This step was critical to enhance the detection coverage of 

glycerophospholipids by removal of ionization suppression effects caused by 

acylglycerides. 

Keywords: Adipose tissue, lipidomics, sample preparation, liquid 

chromatography, mass spectrometry, extraction 
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1. Introduction 

Lipids constitute a wide variety of biological molecules involved in essential 

functions due to their role as structural components of cell membranes, energy storage, 

and intermediates in signaling pathways [1–4]. For this reason, lipidomics, a branch of 

metabolomics devoted to the qualitative/quantitative analysis of the lipidome, has 

experienced a drastic expansion [3]. Because of their biological importance, lipids are 

under tight homeostatic control and exhibit spatial and dynamic complexity at multiple 

levels [5,6]. Thus, it is not surprising that altered lipid metabolism plays a key role in 

the pathogenesis of common diseases.  

Adipose tissue is a complex, essential, and highly active metabolic and endocrine 

organ [2,7,8] whose lipid composition can be classified into two main groups: the 

neutral or non-polar lipids and the polar lipids. Neutral lipids, composed by 

acylglycerides (tri-, di- and monoacylglycerides), cholesteryl esters and cholesterol, 

constitute the most abundant group, while polar lipids with specific functional groups 

encompass essentially free fatty acids, the different families of glycerophospholipids 

and ceramides [8]. Adiposity, which represents the fraction of total body mass 

composed by neutral lipids, is closely related with key physiological parameters such as 

blood pressure, systemic insulin sensitivity, and concentration of molecules such as 

serum triglycerides and leptin [2,9,10]. Thereby, the excess of adipose tissue or obesity, 

particularly in the visceral compartment, is associated with insulin resistance, 

hyperglycemia, dyslipidemia, hypertension, and prothrombotic and proinflammatory 

states [2,7,11]. On the other hand, polar lipids are the main components of biological 

membranes, also in adipose tissue, and regulate cellular signalling to facilitate the 

transmission of biological information across them [12,13]. Additionally, polar lipids act 

as bioactive mediators that have been recognized as endogenous regulators of key 

cellular processes. Most of these bioactive mediators originate from the cleavage of lipid 

constituents of cellular membranes under the activity of phospholipases. Adipose tissue 

function, which has a crucial role in the development of obesity-related comorbidities 

including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in 

obese individuals with a key function of polar lipids [14]. According to these 
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associations, it is important to study the composition of adipose tissue under different 

biological circumstances or conditions. 

Main lipid species in human serum, liver and adipose tissue have already been 

characterized in several studies [15]. For this purpose, LC–MS/MS has proved a 

noticeable detection capability for analysis of the different families of lipids [8,9,16–20], 

except for free fatty acids that are better characterized by GC–MS after derivatization 

[21–24]. Nevertheless, LC–MS/MS is able to offer quantitative response for the most 

concentrated fatty acids found in biological samples. Concerning sample preparation, 

this critical step determines the type and concentration of isolated lipids and, for this 

reason, several preparation methods have been applied to biological samples with the 

goal of improving overall lipid coverage. The methods have been based on sample 

preparation techniques such liquid–liquid extraction, precipitation using organic 

solvents, and solid-phase extraction (SPE). Folch et al. [25] and Bligh–Dyer [26] 

proposed methods for general extraction of lipids based on methanol (MeOH) and 

chloroform (CHCl3) mixtures as extractants. These two methods differ in the extractants 

ratio —concretely (1:2, v/v) or (2:1, v/v) MeOH:CHCl3 for the Folch and Bligh–Dyer 

methods, respectively—, and the extractant–sample ratio. Specifically, the Folch 

method employs a higher extractant–sample ratio (roughly a 20-fold excess of 

extractant) as compared to the Bligh–Dyer protocol. According to the literature, the use 

of a MeOH:CHCl3 mixture for lipids extraction ensures the isolation of all major lipid 

classes, which are mostly enriched in the chloroform phase [27,28]. Later, Matyash et 

al. introduced a novel extraction procedure for isolation of lipids using as extractant a 

MeOH and methyl tert-butyl ether (MTBE) mixture in a 1.5:5 (v/v) ratio, then adding 

water to improve the separation step. This methodology avoids the use of a toxic and 

carcinogenic extractant as chloroform, thus reducing the environmental burden as well 

as the health risks for the exposed personnel [29]. This protocol, tested in four biological 

matrices, provided recoveries similar to or even better than either the Folch or Bligh–

Dyer methods for major lipid classes [29]. In any case, these overall extraction protocols 

are characterized by a dual limitation that affect in a different way to the two main lipid 

families in adipose tissue. Thus, neutral lipids are not quantitatively extracted with 

these protocols in complex samples such as adipose tissue, thus limitating the 
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identification of neutral lipids to the most concentrated species. On the other hand, the 

detection of polar lipids, less concentrated, is critically affected by the presence of 

neutral lipids that considerably exert ionization suppression effects. For this reason, 

Baker et al. proposed a dual extraction step for independent extraction of neutral lipids 

and polar lipids [8]. The first family was extracted by an isooctane:ethyl acetate solution 

using a protocol based on the work from Hutching et al., which allows separating 

approximately 90% of neutral lipids from polar lipids [30]. The latter were isolated by 

a modified Bligh-Dyer method with further clean-up of co-extracted neutral lipids by 

SPE with silica gel as sorbent [30]. A limitation of this protocol is associated to the 

concentration of acetic acid used to favor the isolation of polar lipids. This concentration 

could promote degradation of certain families of minor polar lipids such as 

plasmalogens [8]. 

Considering the limitations in the analysis of the different families of lipids in 

adipose tissue, which specially affect polar lipids, this research was planned to evaluate 

the influence of sample preparation on the determination of polar lipids in visceral 

adipose tissue. Two different extractants, MeOH:CHCl3 and MTBE, were tested to 

compare their efficiency for the extraction of polar lipids but also their inefficiency for 

extraction of acylglycerides: the main interferents in the detection of polar lipids. 

Additionally, the implementation of an SPE step with a selective sorbent for retention 

of glycerophospholipids was assessed to check its influence on the subsequent detection 

of this family of lipids. 

 

2. Materials and methods 

2.1. Chemicals and reagents 

Chromatographic mobile phase B was prepared using LC−MS grade acetonitrile 

(ACN) and 2-propanol (IPA) from Sigma–Aldrich (Madrid, Spain). MS-grade formic 

acid from Scharlab (Barcelona, Spain) and ammonium acetate from Sigma–Aldrich 

were used as ionization agents for LC–MS/MS analysis. Deionized water (18 MΩ·cm) 

supplied by a Milli-Q water purification system from Millipore (Bedford, MA, USA) was 
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used to prepare the chromatographic aqueous phase (phase A). Chromatographic grade 

CHCl3, MeOH, and MTBE from Scharlab were used for sample preparation. The buffer 

employed in this research for tissue homogenization was Dulbecco's phosphate buffered 

saline (D-PBS) from Lonza (Basilea, Switzerland). 

For identification of free fatty acids (FAs) the injection of commercial standards 

of these compounds in MeOH was necessary owing to the scant MS/MS information 

generated by fragmentation. The following commercial standards of FAs were acquired 

from Fluka Analytical (Buches, Switzerland): lauric (C12:0), myristic (C14:0), palmitic 

(C16:0), palmitoleic (C16:1), hepatadecanoic (C17:0), stearic (C18:0), oleic (C18:1), 

linoleic acid (C18:2), linolenic (C18:3), eicosanoic (C20:0), eicosadienoic (C20:2n6), 

eicosatrienoic (C20:3n6), eicosatetraenoic (C20:4), arachidonic (C20:4), behenic 

(C22:0), docosatetraenoic (C22:4), docosapentanoic (C22:5), docosahexaenoic (C22:6) 

and tetracosenoic (C24:0) acids. 

2.2. Adipose tissue samples 

100 mg of visceral adipose tissue were obtained from a pool of individuals with 

morbid obesity undergoing bariatric surgery and recruited by the Lipids and 

Atherosclerosis Unit of the Reina Sofia University Hospital (Cordoba, Spain). The 

subjects who participated in this study gave written informed consent. The study was 

conducted according to the Declaration of Helsinki [31] and was approved by the Reina 

Sofia Hospital Biomedical Research and University of Cordoba Biomedical 

Experimentation Ethical Committees. 

2.3. Apparatus and instruments 

A Teflon homogenizer (Kimble Kontes Vineland, NJ, USA) was used for 

homogenization of adipose tissue samples. A VisiprepTM SPE vacuum manifold 

(Supelco, PA, USA) with disposable liners (Supelco, PA, USA) was used for enrichment 

of glycerophospholipids isolated from adipose tissue. A Concentrator Plus speed-vac 

from Eppendorf (Hamburg, Germany) was used to evaporate the MeOH phase after SPE 

elution to concentrate the sample, and a vortex shaker from IKA (Wilmington, NC, USA) 

was used for sample agitation. 
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An Agilent 1200 Series LC system coupled to an Agilent 6540 UHD Accurate-

Mass QTOF hybrid mass spectrometer (Santa Clara, CA, USA) was used for analysis of 

the extracts. The QTOF detector was equipped with a dual electrospray ionization 

source for simultaneous spraying of chromatographic eluate and a reference solution to 

calibrate continuously the detected m/z ratios. Chromatographic eluates were 

monitored by tandem mass spectrometry in high resolution mode. The Agilent 

MassHunter Workstation software was used to control the instrument and acquire the 

data.  

2.4. Extraction of the lipid fraction 

100-mg aliquots of visceral adipose tissue were taken for homogenization with 

250 µL of D-PBS, as can be seen in Supplementary Figure 1. Tissue homogenization was 

performed on ice with a Teflon homogenizer (2 pulses of 25 s) and later, the samples 

were sonicated for 8 cycles of 30 s on ice for tissue disaggregation. Subsequently, the 

analytical sample was heated at 35 °C for 15 min to promote solubilization of the fatty 

material in the buffer and then chilled on ice for 30 min. Finally, the sample was 

centrifuged at 16000 × g for 15 min at 4 °C and the upper phase, which contains the 

dissolved lipids, was collected. This phase was divided into two fractions to test the two 

different methodologies for extraction of polar lipids. 

2.4.1. Extraction with 1:1 (v/v) MeOH:CHCl3  

This protocol was carried out by addition of 2.5 mL MeOH, 0.5 mL of 0.3% formic 

acid and 2.5 mL cold chloroform to each of the three aliquots of the analytical sample 

from the previous step. The mixture was vortexed for 2 min to favor lipids extraction. 

The mixture was then centrifuged at 1000 × g for 15 min at 4 °C. Then, the upper phase 

was discarded, the mid-phase saved for re-extraction, and the lower phase saved and 

mixed with the lower phase resultant from the re-extraction step. The extract was dried 

under N2 and kept at –20 °C until analysis. 

2.4.2. Extraction with MTBE  

This second approach involved the addition of 2.5 mL of MTBE containing 0.1% 

formic acid to the homogenized tissue (n=3). Then, the mixture was agitated for 1 h at 
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room temperature. To favor phases separation, 625 μL of distilled water was added and 

the system stirred for 10 min at room temperature; and was centrifuged at 1000 × g for 

10 min at 4 °C. Subsequently, the upper phase was saved and the lower phase used for 

re-extraction. The upper phases obtained from both the first extraction and the re-

extraction were mixed. Similarly, the extract obtained was dried under N2 and kept at –

20 °C until analysis. 

2.5. Solid-phase extraction for isolation of glycerophospholipids 

The dried samples were reconstituted in 210 μL of the extractant (1:1 v/v 

MeOH:CHCl3 or MTBE) and agitated for 5 min. Then, 100 µL of this fraction was put in 

a vial for direct analysis by LC–QTOF MS/MS. A second aliquot was used for analysis 

of glycerophospholipids that were isolated using 30 mg HybridSPE® cartridges from 

Supelco (PA, USA) with the following protocol [32]. A 100 μL aliquot of each lipid 

sample was mixed with 500 μL of ACN acidified with 1% formic acid (v/v) in the 

cartridge and left for 2 min for deproteination. Then, vacuum was applied to make the 

mixture to flow through the sorbent cartridge, which was then washed with 1 mL of ACN. 

Phospholipids were eluted by pH change using 1 mL of MeOH with 5% (v/v) ammonium 

hydroxide. The eluate was evaporated and the resulting residue was reconstituted with 

40 μL of the same solvent used for lipid extraction, shaken for 1 min and then injected 

into the LC–QTOF MS/MS equipment. 

2.6. LC–QTOF MS/MS analysis 

 Chromatographic separation was performed by using a Luna Phenomenex C8 

column (100 mm × 0.46 mm i.d., 2.5 μm particle size) which was thermostated at 25 °C 

and protected using a C8 precolumn from Phenomenex. The mobile phases were water 

(phase A) and 5:2 ACN:IPA (phase B), both containing 0.1% (v/v) formic acid and 5 mM 

ammonium acetate as ionization agents. The LC pump was programmed at a flow rate 

of 0.25 mL min–1 and the elution gradient was as follows: from min 0 to 30, the 

percentage of phase B was modified from 50% to 100%, and then, the final mobile phase 

was hold for 20 min. A post-time of 11 min was used to regain the initial conditions for 

the next analysis. Thus, the total analysis time per sample was 61 min (including 

postprocessing). The injected volume was 5 μL, and the injector needle was washed 10 
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times between injections with 80% MeOH. Also, the needle seat back was flushed with 

80% MeOH at 4 mL min–1 for 12 s to avoid cross contamination. The autosampler was 

kept at 4 °C to increase sample stability. The settings of the electrospray ionization 

source, which was operated in the negative and positive ionization modes, were as 

follows: capillary voltage ±3.5 kV, Q1 voltage 130 V, N2 pressure in the nebulizer 35 psi; 

N2 flow rate and temperature as drying gas 12 L min–1 and 325 °C, respectively. MS/MS 

data were acquired in both polarities using the centroid mode at a rate of 2.5 spectra s–

1 in the extended dynamic range mode (2 GHz). Accurate mass spectra in MS scan were 

acquired in the m/z range 40–1200, and in MS/MS mode in the m/z range 30–1200. 

The instrument gave typical resolution 15,000 FWHM at m/z 118.0862 and 30,000 

FWHM at m/z 922.0098. The instrument was calibrated and tuned as recommended 

by the manufacturer. To assure the desired mass resolution, continuous internal 

calibration was performed during analyses by using the signals at m/z 121.0509 

(protonated purine) and m/z 922.0098 [protonatedhexakis(1H,1H,3H-

tetrafluoropropoxy) phosphazine or HP-921] in the positive ion mode; while in the 

negative ion mode, ions with m/z 119.0362 (proton abstracted purine) and m/z 

966.0007 (formate adduct) were used. The collision energy was set at 20 V for the whole 

run. The analytical samples were analyzed in data-dependent acquisition (DDA) to 

obtain information from fragmentation of the target compounds. The maximum 

number of precursors selected per cycle was set at 2, with an exclusion window of 0.1 

min after 2 consecutive selections of the same precursor. 

2.7. Data pretreatment 

MassHunter Workstation software (version B7.00 Qualitative Analysis, Agilent 

Technologies, Santa Clara, CA, USA) was used to process all data obtained by LC–QTOF 

in auto MS/MS mode. Treatment of raw data files started by extraction of potential 

molecular features (MFs) with the suited algorithm included in the software. For this 

purpose, the extraction algorithm considered all ions with single charge state exceeding 

500 counts for both polarities. These cut-off values were established taking into account 

the chromatographic background noise. Additionally, the isotopic distribution to 

consider MFs as valid should be defined by two or more ions (with a peak spacing 
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tolerance of m/z 0.0025, plus 7.0 ppm in mass accuracy). Ions and adducts formation 

in the positive (+H, +Na, +NH4) and negative ionization (−H, +HCOO, +Cl) modes, as 

well as neutral loss by dehydration were included to identify features corresponding to 

the same potential metabolite.  

Identification of the fatty acids and acylglycerides was supported on MS and 

MS/MS information and search in the METLIN MS and MS/MS databases 

(http://metlin.scripps.edu), the Human Metabolome Database (HMDB, 3.6 version) 

and the LIPID MAPS website ((http://www.lipidmaps.org), using in all cases the MFs 

obtained in the previous step. Additionally, fatty acids identification was verified by 

injection of a multistandard solution containing the most common fatty acids at 10 mg 

mL–1. On the other hand, identification of glycerophospholipids was carried out by a 

search algorithm including characteristic product ions and neutral losses of each 

phospholipid class and ions ascribed to the alkanoyl chains. For all lipids, identification 

was validated with the aid of the METLIN MS and MS/MS databases 

(http://metlin.scripps.edu), the Human Metabolome Database (HMDB, version 3.5) 

and the Lipid Maps online tool for glycerophospholipids product ion calculation 

(http://www.lipidmaps.org). 

In the next step, a database with all identified metabolites was used to perform a 

targeted compound extraction analysis using a tolerance window of 0.8 min and 10 ppm 

mass accuracy. This step was performed by MassHunter Workstation software (version 

B6.00 Profinder Analysis, Agilent Technologies, Santa Clara, CA, USA). A table with the 

peak area of all identified compounds in the different samples was obtained as a result. 

 

3. Results and discussion 

3.1. Tentative identification of polar lipids in adipose tissue samples 

Lipid extracts obtained from human adipose tissue were analyzed by LC–QTOF 

in MS/MS acquisition mode both directly and after the SPE step. The inclusion of this 

step was proposed to improve the detection of minor glycerophospholipids that are not 

detected owing to the presence of other major lipids, particularly neutral lipids, which 
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suppress ionization of minor concentrated compounds. Both positive and negative 

ionization modes were tested to maximize the identification coverage. A total of 94 

compounds pertaining to 13 lipid classes were tentatively identified by MS/MS 

considering all the different experiments tested in this research (schemed in 

Supplementary Figure 1). The classes were fatty acids (FAs), ceramides (CEs), 

glycerophosphatidylcholines (PCs), glycerophosphatidylinositols (PIs), glycerol-

phosphatidylethanolamines (PEs), glycerophosphatidic acids (PAs), glycerol-

phosphatidylglycerols (PGs), glycerophosphatidylserines (PSs), plasmalogens (PLs, 

including O-alkyl and O-alkenyl glycerophospholipids), sphingolipids (sphingomyelins 

and the sphingoid precursors, SLs), monoacylgycerides (MGs), diacylglycerides (DGs) 

and triacylglycerides (TGs). Identified lipids encompassed 81 polar lipids and 13 neutral 

lipids, the latter representing the most concentrated species.  

Figure 1 shows the distribution of identified compounds belonging to each family. 

For glycerophospholipids it is worth emphasizing that lyso forms were also identified 

for two specific families, phosphatidylcholines and phosphatidylethanolamines. As can 

be seen, PEs, PIs and PLs were the two lipid families with a higher number of identified 

compounds: 13, 12 and 12% of the total identified lipids, respectively. The 13 identified 

families can be grouped in four main groups: fatty acids, ceramides, acylglycerides and 

glycerophospholipids. Supplementary Table 1 shows the chemical structure of the four 

classes, where fatty acids derivatives are also included. The complete list of identified 

lipids in adipose tissue appears in Supplementary Table 2, including the 

chromatographic retention time, precursor ion and the most characteristic product ions 

that supported the tentative identification of each lipid. As structural isomers may not 

be distinguished from the MS/MS spectra, no information about them has been 

included.  

The identification of FAs was carried out in negative ionization mode, and the 

observed precursor ion was [M–H]– that fits the R-COO– ion. Furthermore, FAs 

identification was verified by injection of a multistandard solution of the main FAs from 

C12:0 to C24:0. Nine fatty acids were identified in adipose tissue: C16:0, C16:1, C18:0, 

C18:1, C18:2, C18:3, C20:0, C20:4 and C22:0. Fatty acids represent 10% of the total of 
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identified lipids (Figure 1). The most concentrated FAs detected in the studied adipose 

tissue were saturated C16:0 and C18:0.  

 

Figure 1. Distribution of lipids identified in adipose tissue by the approach used in this 

research. FAs: fatty acids; PCs: glycerophosphatidylcholines; PAs: glycerophosphatidic acids; 

PIs: glycerophosphatidylinositols; PGs: glycerophosphatidylglycerols; PEs: 

glycerophosphatidylethanolamines; LysoPEs: lysoglycerophosphatidylethanolamines; LysoPCs: 

lysoglycerophosphatidylcholines; SLs: sphingolipids; PLs: plasmalogens; TGs: triacylglycerides; 

DGs: diacylglycerides; MGs: monoacylglycerides; and CEs: ceramides. 

 

The identified ceramides corresponded to 3% of total identified lipids, the family 

with the lowest number of detected compounds. They were better detected in positive 

ionization mode by the [M+H]+ and [M+H–H2O]+ precursor ions. Identification was 

supported on the detection of characteristic product ions at m/z 282.3578 and 264.2156 

formed by collision-induced dissociation (CID) of ceramides in the Q2 cell 

(Supplementary Table 3). These fragments were obtained by cleavage of the N-linked 

fatty acid moiety and loss of one or two molecules of water [31,33–35].  

A strategy similar to that used in a previous study by Calderón-Santiago et al. [24] 

was used for the identification of glycerophospholipids. The well stablished and known 

fragmentation pattern for glycerophospholipid families was used to identify them in 
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adipose tissue (Supplementary Table 3) [32]. Thus, PCs and sphingomyelins (SMs) have 

the same fragmentation pattern in positive ionization, with the product ion m/z 

184.0730 fitting the most characteristic fragment for both families. This ion 

corresponds to the phosphorylcholine moiety. Glycerophosphatidylethanolamines 

(PEs) were properly identified in both ionization modes by detection of representative 

neutral losses with m/z 141.0205 in positive ionization mode. Other less abundant 

families of glycerophospholipids give also a known fragmentation pattern. PIs were 

identified by a representative neutral loss with m/z 260.0651 in positive mode and a 

fragment of m/z 241.0135 in negative mode. Fragmentation of PAs was characterized by 

the product ion at m/z 152.9975 in negative ionization mode. These identifications were 

combined with detection of the product ions associated to alkanoyl chains ([R-COO–]) 

in negative ionization mode. This combination allowed elucidating the complete 

structure of glycerophospholipids.  

Apart from polar lipids, neutral lipids were identified in the complete set of 

experiments developed in this research. Thus, acylglycerides represented 15% of total 

identified lipids. The detection of acylglycerides was performed in the positive mode as 

[M+NH4]+ and [M+Na]+ precursor ions. The primary fragmentation of acylgycerides 

occurs at the ester bond, yielding product ions easily differentiated by the chain length. 

These fragments, together with intense signals from the precursor ions, allowed their 

tentative identification [32,36]. Thus, in the case of MGs the main precursor ion fit the 

dehydrated [M+H]+, although the [M+NH4]+ adduct was also observed for some MGs. 

DGs and TGs precursor ions fit the [M+H]+ and [M+NH4]+ ions, and product ions 

formed by loss of the fatty acids conjugated with the acylglyceride were also detected in 

MS/MS. 

3.2. Influence of the tested extractants on the analysis of polar lipids in adipose 

tissue 

This study was targeted at comparing the extraction efficiency of polar lipids from 

adipose tissue by testing MeOH:CHCl3 and MTBE as extractants. Therefore, 

comparative analysis considered only identified polar lipids, while the objective for 

acylglycerides was to minimize their co-extraction. Firstly, a qualitative comparison was 
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carried out with the number of polar lipids detected after application of all experiments 

planned in this research (Supplementary Figure 1). This study revealed that the number 

of compounds identified after using the two extractants was quite similar, 89 and 94 for 

MeOH:CHCl3 and MTBE, respectively. A Venn-diagram comparing the entities detected 

with each extractant is shown in Supplementary Figure 2. Five polar lipids were 

exclusively extracted with MTBE as compared to MeOH:CHCl3, which corresponded to 

three ceramides, lysoPC(18:1) and PC(34:1), all them low concentrated species. All polar 

lipids identified in the chloroform phase were also detected in the MTBE extract. 

Despite the protocols seem to be qualitatively similar in terms of identified lipids, a 

semiquantitative approach was necessary to clarify the efficiency of each protocol. With 

this purpose, each family of identified metabolites (fatty acids, ceramides, 

glycerophospholipids, and acylglycerides) was independently studied.  

 

Figure 2. Bars diagrams comparing the sum of quantitative responses (peak area signals) of 

unsaturated and saturated fatty acids identified in adipose tissue after isolation by the two 

tested extractants. Statistical analysis was carried out by t-test analysis (*p-value between 0.05 

and 0.01, **p-value between 0.01 and 0.001, and ***p-value < 0.001). 
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From the two extracts, the family of acylglycerides reported the signals with the 

highest intensity, which clearly dominate the base peak chromatogram (BPC). This is 

the main limitation in the analysis of polar lipids owing to acylglycerides typically 

provide wide chromatographic peaks interfering the ionization of minor concentrated 

lipids. On the contrary, ceramides provided the lowest intensity signals, which 

complicated their identification.  

Fatty acids were extracted in overall terms with a similar efficiency by both 

extractants, as shows Figure 2. However, some differences were found when saturated 

and unsaturated fatty acids were independently monitored. Thus, saturated fatty acids 

—particularly palmitic and stearic acids— more concentrated in adipose tissue were 

quantitatively extracted by either MeOH:CHCl3 or MTBE. Only a relative difference was 

found for stearic acid that was more concentrated in the extract obtained by 

MeOH:CHCl3. Nevertheless, this difference did not affect the detection of stearic acid in 

adipose tissue since this fatty acid was the most concentrated in these samples. 

Unsaturated fatty acids were characterized by a behavior that depended on the 

extractant. Thus, MTBE clearly provided a higher extraction efficiency of unsaturated 

fatty acids. This situation was especially critical for unsaturated C18 fatty acids such as 

oleic, linoleic and linolenic acids, as Figure. 2 shows. As can be seen, the ratios of peak 

area intensity between saturated and unsaturated fatty acids were around 10, which 

gives an added value to MTBE as extractant for isolation of unsaturated fatty acids in 

the presence of more concentrated saturated fatty acids. Glycerophospholipids 

represented 71% of total identified lipids (Figure 1), being the most important group in 

terms of variability. The structural variability of glycerophospholipids justifies the 

independent assessment of the detected families PAs, PCs, PEs, PGs, PIs, PLs and SLs, 

as well as the lyso forms of PCs and PEs. Specifically, the lyso forms, which 

encompassed several lysoPCs and lysoPE(20:4), experienced a common behavior since 

they were better extracted with MTBE. This is particularly significant for lysoPE(20:4) 

since the signal corresponding to this glycerophospholipid was the most intense among 

those provided by the detected glycerophospholipids in the MTBE extract.  
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Figure 3. Bars diagrams comparing the sum of quantitative responses (peak area signals) 

of glycerophospholipids identified in adipose tissue after isolation by the two tested extractants. 

Statistical analysis was carried out by t-test analysis (*p-value between 0.05 and 0.01, **p-value 

between 0.01 and 0.001, and ***p-value < 0.001). 



Influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue 

224 
 

Figure 3 shows the variability observed for the other glycerophospholipid 

families. It is worth mentioning that PCs, PEs, PIs, PAs and SLs reported similar results, 

since their extraction was favored by the use of MTBE as compared to MeOH:CHCl3. 

The only glycerophospholipid family that showed an opposite behaviour was that of 

PGs, since these compounds were better extracted by MeOH:CHCl3. Therefore, 

considering the main families of glycerophospholipids, it can be deduced that the 

extraction performance of MTBE is better than that of MeOH:CHCl3.  

 

 

Figure 4. Bar diagram comparing the sum of quantitative responses (peak area signals) of 

plasmalogens identified in adipose tissue after isolation by the two tested extractants. Statistical 

analysis was carried out by t-test analysis (***p-value < 0.001). 

 

Special attention was paid to plasmalogens that included O-1-alkyl and O-1-

alkenyl glycerophospholipids. The extraction performance of the two extractants for this 

particular family of lipids, shown in Figure 4, revealed that this minor family of 

glycerophospholipids was better extracted by MeOH:CHCl3. Finally, ceramides, the 

class giving the lowest intensity of chromatographic signals, were only detected in the 

extract obtained by MTBE.  
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3.3. Co-extraction of acylglycerides as interferents in the analysis of polar lipids 

in adipose tissue 

Acylglycerides, the lipid family more concentrated in adipose tissue, represent a 

relevant group of interferents in the analysis of polar lipids by LC–MS/MS. 

Acylglycerides are co-extracted with polar lipids by using generic protocols such as the 

Bligh-Dyer or Folch methods. There are selective protocols for isolation of neutral lipids, 

but generic protocols for extraction of polar lipids are not selective at all. This effect is 

visualized in Supplementary Figure 3 that illustrates the extraction efficiency of total 

identified acylglycerides as well as the extraction efficiency of TGs, DGs and MGs. As 

can be seen, acylgycerides were similarly extracted by the two extractants, which 

certifies the lack of selectivity of generic extraction protocols. In general terms, almost 

all acylgycerides were better extracted with MeOH:CHCl3 in comparison to MTBE. 

However, the most concentrated acylglyceride, TG(16:0/18:1/20:4), showed a preferred 

transfer from the homogenate of adipose tissue to the MTBE extractant. This effect 

compensates the lower extraction efficiency of MTBE observed for the rest of 

acylglycerides.  

With these premises, it is worth noting that the detection of polar lipids demands 

for an additional sample preparation step to increase selectivity by minimizing the 

contribution of acylgycerides. This step was based on SPE for selective retention of 

glycerophospholipids, subsequently eluted after removal of acylglycerides and other 

interferents. 

3.4. Enhancement of glycerophospholipids detection after SPE clean-up 

The capability of SPE as sample preparation step prior to LC–MS/MS analysis 

was tested to enhance the detection capability in lipidomics analysis of adipose tissue. 

For this purpose, an SPE sorbent especially suited for selective retention of 

glycerophospholipids was selected. The sorbent, zirconia coated silica, allows a selective 

interaction between the phosphate moiety of glycerophospholipids (Lewis base) and Zr 

atoms acting as a Lewis acid by accepting electrons in d-orbitals. The selectivity of this 

treatment enables removal of other lipids such as acylglycerides or proteins that could 

exert ionization suppression effects. The implementation of SPE clean-up allowed 
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significant improvement of the detection capability of lipids isolated from adipose 

tissue, as Figure 5 shows. Supplementary Figure 4 compares the BPCs obtained by direct 

analysis with those after the SPE protocol. Direct analysis of the extract from adipose 

tissue allowed identification of 65 lipids belonging to different families, whereas the 

implementation of the SPE protocol increased the identification coverage up to 94 lipids 

(Figure 5). Therefore, after clean-up of the extract 29 glycerophospholipids no detected 

by direct analysis were identified. These additional glycerophospholipids pertained to 

different families such as lyso forms, PAs, PCs, PEs, PGs, PIs, and SLs. It should be 

emphasized that all glycerophospholipids identified by direct analysis (31 compounds) 

were also identified after the SPE step, and they provided higher signals in the latter 

case. This behavior can be visualized in Supplementary Figure 5, which illustrates 

differences in sensitivity for five representative glycerophospholipids. The sensitivity 

improvement was supported on the clean-up effect (since no other families of lipids are 

detected after this preparation), but also on a concentration effect since the SPE 

protocol starts with 100 mL and, after evaporation, the residue is reconstituted in 40 

mL (concentration factor 2.5). It is evident that the treatment of the adipose tissue 

extract improves the detection capability by isolation of minor glycerophospholipids. 

 

Figure 5. Venn diagram comparing the identification coverage obtained by direct analysis 

of the MTBE extract vs. the additional implementation of an SPE protocol for selective isolation 

of glycerophospholipids. 
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4. Conclusions 

The influence of sample preparation on lipidomic analysis of polar lipids in 

adipose tissue was studied. Two different extractants for lipids isolation were assayed: 

MeOH:CHCl3 and MTBE. The conclusions provided by this research can be summarized 

as follows: (i) sample preparation is a key step for the identification of different families 

of lipids in adipose tissue; (ii) the use of MTBE as extractant led to higher extraction 

efficiency for unsaturated fatty acids, glycerophospholipids and ceramides, while 

MeOH:CHCl3 favored the isolation of saturated fatty acids and plasmalogens, aspect of 

especial importance taking into account that certain families are present at low 

concentrations; and (iii) the implementation of a clean-up step based on SPE improved 

the detection of minor glycerophospholipids as compared to direct analysis of the 

extract, increasing by 50% the number of detected glycerophospholipids. According to 

these results, the recommended sample preparation for analysis of polar lipids in 

adipose tissue would be liquid–liquid extraction combined with an SPE step to enhance 

detection of glycerophospholipids. Concerning the extractant, MTBE favored the 

detection of less abundant lipids such as ceramides and unsaturated fatty acids and, 

therefore, it would be suggested for untargeted analysis of polar lipids. 
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Supplementary Information 

 

 

Supplementary Figure 1. Experiments designed to study the influence of sample 

preparation on the lipidomics analysis of human adipose tissue. 

 

 

 

Supplementary Figure 2. Venn diagram for comparison of the lipids identified in 

human adipose tissue after isolation by the two tested extractants. 
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Supplementary Figure 4. Base peak chromatograms obtained by direct analysis of 

human adipose tissue subjected to extraction with MTBE and after SPE clean-

up/preconcentration of the extract. 

 

Supplementary Figure 5. Base peak chromatograms illustrate differences in sensitivity 

between direct analysis of the MTBE extract (red line) and analysis after SPE clean-

up/preconcentration (black line) for five representative glycerophospholipids. 
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Comprehensive analysis of pig feces metabolome by 

chromatographic techniques coupled to mass spectrometry in 

high resolution mode: Influence of sample preparation on the 

identification coverage 

María Asunción López-Bascón, Mónica Calderón-Santiago, Héctor Argüello, Luis 

Morera, Juan José Garrido, Feliciano Priego-Capote 

 

ABSTRACT 

Pig feces is an interesting biological sample to be implemented in metabolomics 

experiments by virtue of the information that can be deduced from the interaction 

between host and microbiome. However, pig fecal samples have received scant 

attention, especially in untargeted metabolomic studies. In this research, an analytical 

strategy was planned to maximize the identification coverage of metabolites found in 

pig fecal samples. For this purpose, two complementary platforms such as LC–QTOF 

MS/MS and GC–TOF/MS were used. Concerning sample preparation, six extractant 

solvents with different polarity grade were tested to evaluate the extraction performance 

and, in the particular case of GC–MS, two derivatization protocols were compared. A 

total number of 303 compounds by combination of all the extractants and analytical 

platforms were tentatively identified. The main identified families were amino acids, 

fatty acids and derivatives, carbohydrates and carboxylic acids. For GC–TOF/MS 

analysis, the recommended extractant is methanol, while methoxymation was required 

in the derivatization protocol since this step allows detecting the -keto acids, which are 

direct markers of the microbiome status. Concerning LC–QTOF MS/MS analysis, a dual 

extraction approach with methanol (MeOH) or MeOH/water and ethyl acetate is 

proposed to enhance the detection of polar and non-polar metabolites.  

Keywords: Feces samples, LC–QTOF MS/MS, GC–TOF/MS, metabolites, 

microbiome, pig 
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1. Introduction 

Intestinal pathologies caused by zoonotic pathogens such as Salmonella spp are 

considered one of the most important risk factors affecting pig farms [1]. Pigs are 

susceptible to intestinal diseases, which can also be transmitted to humans. Therefore, 

effective veterinary control of pigs aims firstly to the protection of consumers and, 

secondly, to the maintenance of animal productivity [1]. The pig is also extensively used 

as preferred animal model for analysis of a wide range of physiological functions and 

diseases.  

The majority (>90%) of the bacteria in the pig intestinal microbiome are 

classified into two main phyla: Firmicutes and Bacteroidetes. Additionally, the ileum 

has a high percentage of Proteobacterium phylum bacteria (up to 40%) [2]. The 

microbiota and the genes that comprise the microbiome play a key role in the health of 

organisms. The gut microbiota is involved in important functions such as providing 

specific dietary energy to the host with the generation of digestible carbohydrates and 

short chain fatty acids (SCFAs), or synthetizing compounds with antibiotic properties 

to protect against infectious diseases [3,4]. Therefore, dysbiosis of gut bacteria 

contributes to the occurrence of diseases and pathogenic invasion [5]. 

Metabolomics, thanks to the technology used nowadays, enables to measure the 

concentration of hundreds of small molecules in a biological sample, which may aid to 

elucidate biological mechanisms and facilitate early diagnosis of diseases. In this sense, 

untargeted metabolomic analysis is being increasingly employed since it allows the 

comprehensive determination of metabolic profiles from which novel biomarkers could 

be proposed. Despite sample preparation is critical for this type of analysis, this step has 

received scant attention, being the limiting factors both the matrix diversity and sample 

physiological variation.  

Urine and blood (serum and plasma) are the most commonly used biofluids for 

exploring systematic alteration of metabolites because they are reasonably easy to 

obtain and are collected in a relatively non-invasive way [5]. However, there are other 

biological samples of great interest for metabolomic analysis, which have been scarcely 
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considered. This is the case of feces samples that can reflect the microbial-mammalian 

interaction as an essential element in the study of mammalian metabolome [6,7]. 

The objective of this research was to maximize the identification coverage of 

metabolites found in pig fecal samples. For this purpose, two hyphenated detection 

techniques such as LC–QTOF MS/MS and GC–TOF/MS were combined to evaluate 

their additivity in terms of identification. Concerning sample preparation, six extractant 

solvents with different polarity were tested to evaluate the extraction performance and, 

in the particular case of GC–MS, two derivatization protocols were compared to check 

the influence of this step on the detection capability of metabolomics methods. 

 

2. Materials and methods 

2.1. Samples, chemicals and reagents 

Feces samples were aseptically collected from five pigs and poured in plastic tubes 

that were immediately frozen in liquid nitrogen. Frozen samples were kept at –80˚C for 

one week before being processed. A pool of pig feces was prepared by homogenous 

mixing of samples from the five animals. All procedures involving animals were 

performed in accordance with the European regulations regarding the protection of 

animals used for experimental and other scientific purposes, under the supervision of 

the Ethical and Animal Welfare Committee of the University of León (Spain). 

Mass spectrometry grade (MS-grade) methanol (MeOH), dichloromethane, n-

hexane and ethyl acetate from Sigma–Aldrich (Madrid, Spain) were used as extractants. 

Deionized water (18 MΩ·cm) supplied by a Milli-Q water purification system from 

Millipore (Bedford, MA, USA) was used to prepare the chromatographic aqueous phase 

(phase A) and also as extractant solvent. MS-grade acetonitrile (ACN) from Sigma–

Aldrich was used to prepare chromatographic mobile phase B. MS-grade formic acid 

and ammonium formate from Sigma–Aldrich were used as ionization agents for LC–

MS/MS analysis. Bis-(trimethylsilyl) fluoroacetamide (BSTFA), trimethylchlorosilane 

(TMCS) and methoxyamine hydrochloride from Sigma–Aldrich were used as silylation 
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and methoxymation agents in the derivatization step. Pyridine from Merck (Darmstadt, 

Germany) was used as solvent in the derivatization step. Mass spectrometry reference 

solution for ESI and MS grade perfluorotri-n-butylamine (PFTBA) from Agilent 

Technologies (Santa Clara, CA, USA) were used for daily mass calibration of LC–QTOF 

MS/MS and GC–TOF/MS instrumentation, respectively. An alkane standard mixture 

(from C10 to C40) from Sigma–Aldrich was used to establish the retention index (RI)–

retention time correlation in GC–TOF/MS. 

2.2. Apparatus and instruments 

A Teflon homogenizer from Kimble Kontes Vineland (NJ, USA) was used for feces 

sample–extractant homogenization and a block heater from Stuart Equipment 

(Staffordshire, ST15 OSA, UK) was used in the derivatization step. A concentrator Plus 

speed-vac from Eppendorf (Hamburg, Germany) was used to evaporate the solvents of 

extraction step and a vortex shaker from IKA (Wilmington, NC, USA) was used for 

sample agitation. 

An Agilent 1200 Series LC system coupled to an Agilent 6540 UHD Accurate-

Mass QTOF hybrid mass spectrometer was used for LC–MS/MS analysis of the extracts 

in both ionization modes. The QTOF detector was equipped with a Jet Stream 

Technology electrospray ion source for simultaneous spraying of chromatographic 

eluate and a reference solution to calibrate continuously the detected m/z ratios. 

Chromatographic eluates were monitored by tandem mass spectrometry in high 

resolution mode. For analysis by GC–MS an Agilent 7890A Series GC system coupled to 

an Agilent 7200 UHD Accurate-Mass QTOF hybrid mass spectrometer equipped with 

an electron impact (EI) source was used. The analytical sample was thus monitored in 

high resolution mode. The Agilent MassHunter Workstation software (version B.06, 

Agilent Technologies) was used to control the instrument and acquire the data in both 

instruments.  

2.3. Extraction of metabolites from feces samples 

Supplementary Figure 1 shows a scheme of sample preparation protocols. 

Eighteen 160-mg aliquots of feces pool sample were weighted in glass tubes for 
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extraction of metabolites with 4 mL of extractant. The tested extractants were deionized 

water, MeOH, 1:1 (v/v) deionized water:MeOH, ethyl acetate, hexane and 

dichloromethane, and each extractant was tested with three aliquots. The 

heterogeneous system thus formed in each tube was kept under agitation for 5 min in a 

Teflon homogenizer. Then, each tube was centrifuged at 12500 × g for 10 min at 4 °C, 

the supernatant was filtered through 0.2 μm filter and divided into three aliquots of 100 

μL that were put in three glass tubes and evaporated to dryness using a speed-vac. One 

aliquot was used for LC–QTOF MS/MS analysis in both ionization modes, while the 

other two aliquots were prepared for GC–TOF/MS. For this purpose, the resulting solid 

residues were reconstituted with the adequate solvent, which is specified in the protocol 

for each instrument. 

2.4. LC–QTOF MS/MS analysis 

For LC–QTOF MS/MS analysis, the resulting residues were reconstituted with 

100 μL of ACN and shaken in a vortex for 30 s (Supplementary Figure 1). All samples 

were analyzed in triplicate. Chromatographic separation was performed by using a 

Poroshell 120 EC-C18 column (50 mm × 2.1 mm i.d., 2.7 μm particle size) which was 

thermostated at 25 °C and protected using an EC-C18 precolumn (4.5 × 5 mm i.d., 2.7 

μm) from Agilent Technologies. The mobile phases were 95:5 water:ACN (phase A) and 

95:5 ACN:water (phase B), both containing 0.1% (v/v) formic acid and 5 mM 

ammonium formate as ionization agents. The LC pump was programmed at a flow rate 

of 0.4 mL min–1 and the elution gradient was as follows: 100% phase A as initial mobile 

phase was kept constant for 2 min, from min 2 to 11, the percentage of phase B was 

modified from 0% to 100% and then, the final percentage was hold for 10 min. A post-

time of 7 min was used to equilibrate the system to initial conditions for the next 

analysis. Thus, the total analysis time per sample was 29 min (including 

postprocessing). The injected volume was 5 μL, and the injector needle was washed 10 

times between injections with 80% MeOH. Also, the needle seat back was flushed with 

80% MeOH at 4 mL min–1 for 12 s to avoid cross contamination. The autosampler was 

kept at 4 °C to increase sample stability. The settings of the electrospray ion source, 

which was operated in the negative and positive ionization modes, were as follows: 
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capillary voltage ±3.5 kV, Q1 voltage 130 V, N2 pressure in the nebulizer 40 psi; N2 flow 

rate and temperature as drying gas 10 L min–1 and 325 °C, respectively, and sheath gas 

flow and temperature were set at 12 mL min-1 and 350 °C. MS/MS data were acquired 

in both polarities, using the centroid mode at a rate of 2.5 spectra s–1 in the extended 

dynamic range mode (2 GHz).  

The instrument gave typical resolution 18,000 Full Width at Half Maximum 

(FWHM) at m/z 118.0862 and 35,000 FWHM at m/z 922.0098. The instrument was 

calibrated and tuned as recommended by the manufacturer. To assure the desired mass 

resolution, continuous internal calibration was performed during analyses by using the 

signals at m/z 121.0509 (protonated purine) and m/z 922.0098 [protonatedhexakis-

(1H,1H,3H-tetrafluoropropoxy) phosphazine or HP-921] in the positive ion mode; while 

in the negative ion mode, ions with m/z 119.0362 (proton abstracted purine) and m/z 

966.0007 (formate adduct) were used. The analytical samples were injected in auto 

MS/MS acquisition mode to obtain information from fragmentation of the target 

compounds. The collision energy was set at 20 V for the whole run. The maximum 

number of precursors selected per cycle was set at 2, with an exclusion window of 0.1 

min after 2 consecutive selections of the same precursor. Accurate mass spectra in MS 

scan were acquired in the m/z range 40–1200, and in MS/MS mode in the m/z range 

30–1200. 

2.5. GC–TOF/MS analysis 

Two different derivatization protocols were tested for GC–TOF/MS analysis, as 

can be seen in Fig. S1. For the first derivatization protocol, the residues resulting from 

the sample preparation step were reconstituted with 20 μL of methoxyamine in pyridine 

(20 mg mL-1) and maintained at 30 °C for 90 min. Later, 180 μL of a 98:2 (v/v) BSTFA–

TMCS mixture was added to the reconstituted analytical sample, shaken for 30 s and 

maintained at 37 °C for 60 min. In the second derivatization protocol the 

methoxymation step was omitted and the residues were reconstituted in pyridine, and 

then, the mixture BSTFA–TMCS was added. All samples were analyzed in triplicate. 

GC–TOF/MS analyses were performed by EI ionization mode at 70 eV. 

Chromatographic separation was carried out with a fused silica DB-5MS-UI (30 m × 
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0.25 mm i.d, × 0.25 μm) film thickness capillary column from Agilent Technologies. The 

GC oven temperature program started at 60 °C (1 min held), followed by a temperature 

ramp of 10 °C min−1 to final 300 °C (2 min held). Post-run time was programmed for 4 

min up to 310 °C to assure complete elution of the injected sample. Pulsed splitless 

injections of sample (1 μL) were carried out at 250 °C and ultrapure grade helium was 

used as carrier gas at 1.0 mL min−1 flow rate. The interface, ion source and quadrupole 

temperatures were set at 280, 300 and 200 °C, respectively. A solvent delay of 5.5 min 

was used to prevent damage in the ion source filament. The TOF detector was operated 

at 5 spectra s−1 in the mass range m/z 50–550 and the instrument gave a resolution of 

8500 full width half maximum (FWHM) at m/z 501.9706. A mass calibration between 

samples was performed with PFTBA, as recommended by the manufacturer. 

2.6. Data processing, identification of metabolites and statistical analysis 

MassHunter Workstation software (version B7.00 Qualitative Analysis, Agilent 

Technologies) was used to process all data obtained by LC–QTOF in data-dependent 

acquisition MSMS mode. Treatment of raw data files started by extraction of potential 

molecular features (MFs) with the suited algorithm included in the software. For this 

purpose, the extraction algorithm considered all ions exceeding 1500 counts for both 

polarities with a single charge state. This cut-off value was established taking into 

account the chromatographic background noise. Additionally, the algorithm considered 

that an MF should have a valid isotopic distribution defined by two or more ions (with 

a peak spacing tolerance of m/z 0.0025, plus 7.0 ppm in mass accuracy). Ions and 

adducts formation in positive (+H, +Na, +K, +NH4) and negative ionization (−H, 

+HCOO, +Cl) modes, as well as neutral loss by dehydration were included to identify 

features corresponding to the same potential metabolite. Identification of metabolites 

was supported on MS and MS/MS information that was searched in the METLIN MS 

and MS/MS databases (http://metlin.scripps.edu), the Human Metabolome Database 

(HMDB, 3.6 version) and the LIPID MAPS website (http://www.lipidmaps.org, using 

in all cases the MFs obtained from the previous step. A database with all identified 

metabolites was used to perform a targeted compound extraction analysis using a 

tolerance window of 0.8 min and 6 ppm mass accuracy. This step was performed with 
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MassHunter software. A table with the peak area of all compounds identified in the 

different samples injected was obtained as a result.  

Unknown Analysis software (version 7.0, Agilent Technologies) was used to unzip 

all data files obtained by GC–TOF/MS in full scan mode. Then, MassHunter software 

was used to process GC–TOF/MS data files. Treatment of raw data files started by 

deconvolution of chromatograms to obtain a list of MFs considered as potential 

compounds defined by the m/z value of one representative ion for each 

chromatographic peak and its RT. For this purpose, the deconvolution algorithm was 

applied to each sample by considering all ions exceeding 1500 counts for the absolute 

height parameter, with an accuracy error of 5 ppm and a window size factor of 150 units. 

The list of MFs obtained for each analysis was exported as data files in compound 

exchange format (.cef files). Tentative identification of compounds was performed by 

searching each mass spectrum in the NIST database (v.11) using the RI or RT value, 

respectively. The identification was firstly carried out by searching MS spectra on the 

NIST database. Only identifications with a match factor and a reverse match factor 

higher than 700 were considered as valid. The RI values included in the NIST database 

were also taken into account to support identifications. An RI calibration model was 

built by plotting the retention times obtained by analysis of the alkane standard mixture 

(C10 to C40 with an even number of carbons) with the chromatographic method used 

in this research and the RI values provided for each alkane by the NIST database. Then, 

the RI value was experimentally estimated for each identified compound by using the 

retention time and the calibration equation. The requirement to accept NIST 

identifications was that the difference between the experimental RI and the theoretical 

value provided by the NIST for each target compound should be below 100 units. The 

NIST database does not contain high resolution MS information as provided by the TOF 

detector. For this reason, a third step was included to validate identification of each 

compound by using high resolution MS. Thus, the molecular formula for the [M]+ ion 

and the most intense fragments for each MFs should fit the NIST 11 identification by 

setting a cut-off value in mass accuracy of 10 ppm. A table with the peak area of all 

compounds identified in the different samples injected was obtained as a result.  
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MarvinSketch (v. 18.3.0) software from ChemAxon (http://www.chemaxon.com) 

was used for characterizing chemical structures of each compound by calculating 

polarizability (Å3). 

 

3. Results and discussion 

3.1. Identification of metabolites in pig feces samples 

The aim of this research was to maximize the detection coverage in the analysis 

of pig feces as a mandatory step to enhance the identification of metabolites in this 

sample. Previous studies dealing with feces metabolomics analysis have used frozen 

samples [7–9]. For this reason, frozen samples (see Section 2.1.) were selected to avoid 

physico-chemical alterations, particularly the loss of volatile components such as SCFAs 

[8,9], which may be of interest as potential biomarkers. Previous studies dealing with 

metabolomics analysis of fresh feces employed a simple MeOH extraction protocol to 

obtain fast and informative fecal fingerprints [10,11]. With the experimental plan 

adopted in this research, it was possible to tentatively identify a total number of 303 

compounds by combination of all the extractants and analytical platforms employed, 

namely, LC–MS/MS and GC–MS. The complete list of identified metabolites in fecal 

samples is listed in Supplementary Tables 1 and 2, which present the compounds 

classified in chemical families and includes parameters supporting the identification. 

Figure 1 shows the distribution of identified compounds belonging to the main chemical 

families. As can be seen, fatty acids, conjugates and derivatives, amino acids and 

analogues, carboxylic acids and derivatives, bile acids, bilirubins and derivatives, and 

carbohydrates and derivatives were the families with a high number of identified 

compounds: 59, 31, 25, 21 and 19 metabolites, respectively. Among identified 

compounds it is also worth mentioning the presence of exogenous metabolites that are 

ascribed to the animal feed. These encompassed amino acids (ornithine, betaine), 

alkaloids (trigonelline, quinoline, dioscoretine), terpenic compounds (saponin, 

farnesol), vitamins (α-tocotrienol), prenol lipids (α-carotenal) and phenolic compounds 

(hydrocaffeic acid, apigenin, diosmetin, trihydroxyflavone). 
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The results of chemical families identified in this research agreed with other 

studies about fecal samples from human or animals and involving similar or 

complementary detection techniques [10,12–14]. Nevertheless, it is worth mentioning 

that there are few references for untargeted metabolomic analysis in pig fecal samples 

and most of them were focused on finding significant differences in individuals 

subjected to different feeds. Sun et al. (2015) reported that bile acids, lipids such as fatty 

acids and glycerophospholipids, amino acids, and flavonoid conjugates are the final 

dietary metabolites in fecal samples from pigs subjected to different feeds [12]. The 

authors used UPLC–MS/MS in high resolution mode to identify 90 significantly altered 

metabolites [12]. Sun et al. (2016) detected 92 metabolites involved in multiple 

biochemical processes in the hindgut of pigs [15] by GC–MS analysis.  

 

Figure 1. Chemical classification of all metabolites tentatively identified in pig fecal samples by 

all the experiments performed in this research. 

 

These compounds encompassed organic acids, amino acids, fatty acids, 

saccharides, amines and lipids. Concerning human fecal samples, most of the existing 

studies have used a unique detection technique. For this reason, identification of 
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compounds has been frequently limited to amino acids, carboxylic acids, carbohydrates 

and phenols [8,15,16]. 

3.2. Influence of extractants on detection coverage for untargeted analysis by 

LC–MS/MS 

A total of 189 metabolites were tentatively identified when combining all the 

extracts from feces samples analyzed by LC–QTOF MS/MS (See Supplementary Tables 

1 and 3). Most compounds identified in feces samples pertain to chemical families 

previously described in the literature [8,9,11] such as fatty acids and derivatives, 

carnitines, bile acids and amino acids (Supplementary Table 1). It is also worth 

mentioning the presence of exogenous metabolites, particularly alkaloids such as 

quinoline or flavonoids such as apigenin.  

The polar extracts, obtained with water, MeOH and 1:1 water/MeOH provided a 

similar detection pattern with tentative identification of 123, 146 and 146 compounds, 

respectively, as Figure 2A shows. The use of MeOH and water/MeOH as extractants 

evidently improved the detection of mid-polar and non-polar families of metabolites, 

which were scarcely detected or non-detected in the water extract. On the other hand, 

subtle differences were observed in the comparison between MeOH and water/MeOH, 

mainly affecting to bilirubin, glycosylated bilirubin, tyrosine, glutamic acid, 

propionylcarnitine, dodecanoylcarnitine, flavidin and dimethylPGD2 (Supplementary 

Table 3). 

Concerning the non-polar extractants, 168 and 158 compounds were tentatively 

identified in ethyl acetate and dichloromethane, respectively, whereas 113 compounds 

were found in hexane extracts. As Figure 2B reveals, ethyl acetate and dichloromethane 

offered a complete view of the non-polar fraction. However, ethyl acetate allowed 

detecting 12 exclusive compounds, which encompassed phospholipids —LysoPC(14:0), 

LysoPC(22:6) and LysoPE(16:0)—, and flavonoids such as apigenin, daidzein and 

genistein (Supplementary Table 3). On the other hand, two compounds, 5-

methylcytidine and N(1-deoxy-1-fructosyl)leucine, were only found in the 

dichloromethane extract.  
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As previously mentioned, the most frequently used extractant for analysis of feces 

samples is MeOH [8]. In this research, a complementarity effect was observed by 

comparing the identification coverage of polar and non-polar extractants. 

Supplementary Figure 2 reports a heat map that shows the relative abundances of 

detected compounds ordered by retention time. As expected, polar extractants led to a 

more sensitive detection of metabolites eluting in the first part of the chromatogram, 

while non-polar extractants improved the detection of less polar compounds.  

 

Figure 2. Venn diagrams comparing the compounds tentatively identified in the 

extracts from pig fecal samples by LC–QTOF MS/MS: (A) extracts from polar solvents, (B) 

extracts from non-polar solvents and (C) comparison between the polar and non-polar 

extractants that offered the best performance. 

 

According to these results, a dual extraction with ethyl acetate and MeOH or 

MeOH/water should be recommended to fraction the metabolome of feces samples as 

an approach to increase the number of identified compounds. Comparing MeOH and 
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ethyl acetate, most compounds, 126, were commonly detected with both extractants 

(Figure 2C). However, 42 and 20 compounds were only detected in ethyl acetate and 

MeOH extracts, respectively. Among compounds exclusively identified in ethyl acetate 

extracts it is worth mentioning the presence of particular families of lipids such as fatty 

acids and derivatives, prenol lipids, sphingolipids and bile acids (Supplementary Table 

3).  

3.3. Influence of extractants and derivatization protocols on detection coverage 

for feces untargeted analysis by GC–MS 

A total of 126 compounds were tentatively identified in feces samples by GC–

TOF/MS analysis combining the 6 extractants and two derivatization protocols. 

Supplementary Table 4 lists the metabolites detected with each protocol. As can be seen 

in Supplementary Table 2, these compounds pertain mainly to the following families: 

carbohydrates (26 metabolites), amino acids (23), fatty acids (18), carboxylic acids (16) 

and SCFAs (6). As Figure 3 illustrates, all polar extractants were characterized by a very 

similar profile of compounds, with slight differences. Water/MeOH extractant allowed 

detecting all metabolites as compared with water and MeOH when they were used 

independently.  

 

Figure 3. Bar diagram comparing the compounds tentatively identified by GC–

TOF/MS in the six extracts obtained from pig fecal samples. The horizontal axis represents the 

compounds tentatively identified so that when the line corresponding to each extractant is 

colored (orange or yellow for non-polar or polar extractants, respectively) when the compound 

was detected in the extractant and grey when not. The number refers to the number of 

metabolites included in each color block. 
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Concerning non-polar extractants, ethyl acetate presented a wider coverage as 

compared to dichloromethane and hexane, since the former allowed the detection of 

some families of polar metabolites such as amino acids (homoserine, phenylalanine and 

leucine), carbohydrates (allofuranose, allopyranose, myoinositol, etc.) and carboxylic 

acids (2-aminobutyric acid). Nevertheless, ethyl acetate did not improve detection 

coverage as compared to the hydroalcoholic extractant. In fact, all compounds identified 

in the ethyl acetate extract were also found in the hydroalcoholic extract. On the other 

hand, amino acids such as methionine, histidine and proline were exclusively found in 

the latter (Supplementary Table 4). Therefore, the extraction with non-polar solvents 

does not contribute to expand the detection coverage by GC–MS analysis in contrast to 

LC–MS/MS. 

Figure 4. Venn diagram comparing the number of compounds identified in pig fecal extracts 

after derivatization with and without methoxymation prior to silylation. 

 

Derivatization is undoubtedly a crucial step in analytical protocols dealing with 

GC–MS. The most common derivatization protocol implemented in untargeted 

metabolomic analysis by GC–MS consists of a methoxymation followed by silylation 

[15,18,19]. Methoxymation protects ketones and aldehydes by conversion to 
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methoxyamine groups [20]. However, not all aldehyde or ketone groups are protectable; 

in fact, carbonyl groups adjacent to heteroatoms, such as nitrogen or oxygen, are not 

electropositive enough for nucleophilic attack by the methoxyamine reagent. Therefore, 

the methoxymation step does not alter some kind of metabolites, thus being optional or 

unnecessary [21,22]. The removal of this step not only reduces the derivatization time, 

but also gives more stability to the final products. Thus, two derivatization protocols 

were considered in this study: silylation with and without methoxymation.  

Figure 4 shows the Venn diagram comparing the compounds tentatively 

identified by both derivatization protocols, which are listed in Supplementary Table 2. 

As can be seen, 96 metabolites were commonly detected with both protocols, but some 

specific differences were found. Among the main families commonly detected with both 

derivatization processes, it is worth mentioning amino acids, carbohydrates, fatty acids 

and carboxylic acids. These results are in agreement with other studies previously 

reported in human fecal samples [17]. The inclusion of a methoxymation step only 

provided the tentative identification of three analytes that were not found when this step 

was omitted. These were three α-keto acids, particularly, 2-ketoisocaproic acid, 3-

methyl-2-oxovaleric acid and pyruvic acid, which require protection of ketones to make 

possible their detection. On the other hand, 27 metabolites were only identified when 

methoxymation was not carried out. Therefore, it is evident that the information level 

attained without methoxymation is higher than that achieved when this step is 

implemented. Nevertheless, it is worth mentioning that α-keto acids are important 

metabolites related to microbiome status and, in some cases, their detection could be 

crucial. For this reason, depending on the objective of the research, one or two 

derivatization protocols may be required to cover the metabolites of interest. 

3.4. Comparison between feces analysis by LC–QTOF MS/MS and GC–TOF/MS 

As commented above, 303 compounds were tentatively identified in extracts from 

pig fecal samples by using two analytical platforms, LC–MS/MS and GC–MS, both in 

high resolution mode. As Figure 5A shows, the LC–QTOF MS/MS platform allowed 

identifying a higher number of metabolites as compared to the GC–TOF/MS approach, 

189 vs. 126 compounds, respectively. However, the Venn diagram proved that both 
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platforms are complementary for untargeted analysis of pig feces. In fact, only 12 

compounds were commonly identified with both platforms. These metabolites were 

essentially free fatty acids, lactic acid and some amino acids, including aromatic amino 

acids such as phenylalanine and tyrosine. The common fatty acids (palmitic acid, stearic 

acid, linoleic acid, oleic acid and behenic acid) were also the most concentrated fatty 

acids in fecal samples from pigs. These common metabolites were also identified by Sun 

et al. (2016) in fecal samples from pigs [15].  

 

 

Figure 5. (A) Venn diagram comparing the number of compounds identified in fecal 

extracts by LC–QTOF MS/MS and GC–TOF/MS. (B) Histogram representing the number of 

compounds tentatively identified by LC–QTOF MS/MS in the two ionization modes and GC–

TOF/MS with the two derivatization protocols grouped by polarizability values (Å3). 



  Chapter V 

255 
 

On the other hand, numerous chemical families were exclusively detected with 

one of the platforms. Thus, carbohydrates were only identified by GC–TOF/MS, 

whereas carnitines, bile acids, bilirubin, alkaloids and prenol lipids were only found by 

LC–QTOF MS/MS. The complementarity of LC–MS/MS and GC–MS, both in high 

resolution mode, is also revealed in Figure 5B, which plots the number of identified 

compounds vs. polarizability (Å3) with each platform, namely LC–MS/MS in the two 

ionization modes and GC–MS with the two derivatization protocols. The polarizability 

profile enabled to discriminate two complementary areas, one for low polarizability 

compounds (between 5 and 15 Å3), with preferred detection of metabolites by GC–MS, 

and a second area with high polarizability (between 25 and 60 Å3), which included 

metabolites preferentially identified by LC–MS/MS. With these premises, it would be 

recommended to combine the two platforms to improve the identification coverage of 

metabolites in pig fecal samples. 

 

4. Conclusions 

The influence of sample preparation on the identification coverage for pig fecal 

samples analysis by LC–MS/MS and GC–MS has been studied in this research. A total 

number of 303 compounds by combination of all the extractants and analytical 

platforms were tentatively identified, being the main families amino acids, fatty acids 

and derivatives, carbohydrates and carboxylic acids. According to the results obtained, 

it should be recommended the utilization of MeOH/water as extractant for GC–MS 

analysis, but for LC–MS/MS analysis the extracts obtained with MeOH or MeOH/water 

and ethyl acetate can lead to a significant increase of identified. Concerning the 

derivatization step, the implementation of methoximation prior to silylation provided 

the identification of three α-keto acids that are not detected with the other tested 

strategies. Thus, since these are important metabolites related to microbiome status, 

the implementation of a double derivatization strategy could be of interest for some 

studies. Concerning the complementarity of the two analytical platforms evaluated in 

this research, LC–MS/MS and GC–MS, their combined use allowed the identification 

of 303 metabolites with only 12 common metabolites. Thus, it is obvious that both 
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techniques should be complemented to obtain a comprehensive view of the pig feces 

metabolome. 
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Supplementary information  

 

Supplementary Figure 1. Experimental set-up designed to study the influence of sample 

preparation on the metabolomics analysis of pig feces samples. 

 

Supplementary Figure 2. Heat map comparing relative concentrations of compounds 

tentatively identified in water, (1:1) water:methanol, methanol, ethyl acetate, dichloromethane 

and hexane extracts from fecal samples by LC–QTOF MS/MS. Color code indicates differences 

in normalized concentration for each metabolite. 
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MetaboQC: A tool for correcting untargeted metabolomics 

data with mass spectrometry detection using quality controls 

Mónica Calderón-Santiago, María Asunción López-Bascón, Ángela Peralbo-

Molina, Feliciano Priego-Capote 

 

ABSTRACT 

Nowadays most metabolomic studies involve the analysis of large sets of samples 

to find a representative metabolite pattern associated to the factor under study. During 

a sequence of analyses the instrument signals can be subjected to the influence of 

experimental variability sources. Implementation of quality control (QC) samples to 

check the contribution of experimental variability is the most common approach in 

metabolomics. This practice is based on the filtration of molecular entities experiencing 

a variation coefficient higher than that measured in the QC data set. Although other 

robust correction algorithms have been proposed, none of them has provided an easy-

to-use and easy-to-install tool capable of correcting experimental variability sources. In 

this research an R-package –the MetaboQC– has been developed to correct intra-day 

and inter-days variability using QCs analyzed within a pre-set sequence of experiments. 

MetaboQC has been tested in two data sets to assess the correction effects by comparing 

the metabolites variability before and after application of the proposed tool. As a result, 

the number of entities in QCs significantly different between days was reduced from 86 

to 19% in the negative ionization mode and from 100 to 13% in the positive ionization 

mode. Furthermore, principal component analysis allowed detecting the filtration of 

instrumental variability associated to the injection order. 

Keywords: Quality control; R package; batch effect; data pretreatment; 

instrumental variability 
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1. Introduction 

Metabolomics is the ‘omics’ concerned with the identification and/or quantita-

tion of small molecules or metabolites (generally < 1500 Da) present in biofluids, cells 

or organisms. Metabolomic studies can be performed by following three different 

strategies: fingerprinting analysis, targeted or untargeted analysis of metabolites [1]. 

Fingerprinting analysis is aimed at obtaining direct, fast snapshots of the metabolic 

state of the sample; while targeted analysis is focused on the determination of a known 

family of metabolites, and untargeted analysis deals with detection and/or identification 

of the greatest possible number of metabolites present in the sample, usually with the 

purpose of a (semi)quantitative comparison of the metabolic state of different groups of 

individuals. Separation techniques coupled to mass spectrometry detection (LC–MS, 

GC–MS and CE–MS) affords detection of a large number of metabolites in biological 

samples [2–6]. For this reason, the combination of chromatographic or electrophoretic 

techniques to mass spectrometry leads to three of the most employed analytical 

platforms in targeted and untargeted metabolomics analysis. 

The current trend in targeted/untargeted metabolomics workflows based on 

separation techniques coupled to MS detection is the analysis of large sets of samples to 

obtain representative information from the biological system under study. Thus, most 

studies require long periods to analyze samples in which the quantitative response can 

fluctuate by alteration of the instrument performance owing to accumulation of matrix 

components in different instrumental zones or simply by periodic practices such as 

instrument calibration or cleaning protocols. These sources of instrumental variability 

are generally corrected in targeted analysis by using isotopically labeled internal 

standards [7,8]. However, this is not viable in untargeted analysis owing to the wide 

chemical heterogeneity of metabolites that would force to spike the sample with an 

isotopically labeled standard per detected metabolite.   

The most common practice to monitor experimental variability (including 

instrumental variability) in untargeted analysis is the implementation of quality control 

samples (QCs), periodically inserted in the sequence of analyses programmed for each 

batch of samples [9–19]. Initially, most studies including QCs have been focused on 
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identifying metabolites reporting signals that experience fluctuations during the 

sequence. For this purpose, a cut-off value in terms of variability is set to filter molecular 

entities or metabolites in the final data set. This is the case of the metabolomics 

guidelines proposed by Dunn et al. [10] that were also lately adopted by Vinaixa et al. 

[11], or the protocol developed with liver samples proposed by Masson et al. [17]. 

Therefore, correction of quantitative or semi-quantitative signals for detected 

metabolites is not generally carried out before statistical analysis.  

More recently some researchers have proposed correction approaches based on 

QCs looking for the best option to minimize experimental variability. These correction 

tools are based on different mathematical strategies as that proposed by Karpievitch et 

al. [9], who used singular value decomposition to find systematic trends attributable to 

bias; or the use of a Gaussian process to reduce bias due to sample collection, sample 

treatment and instrumental variability through a normalization process [13]. 

Regression models has also constituted a common practice, and different regression 

methodologies such as support vector regression have been tested [18,19]. Recent 

studies have used local regression to correct a given general trend in batches of samples 

[10,12], but the procedure requires high computational capabilities and is quite sensitive 

to outliers. Other tools classify the metabolites according to their behavior along the 

sequence of analyses and use correction functions for each group to correct instrumental 

variability [9]. However, it is not the injection order the only factor contributing to 

instrumental variability, which can also be caused by periodic practices as those 

previously cited (viz., instrument calibration or clean-up protocols). With these 

premises, the desirable tool should allow correcting the signal of each metabolite by 

considering its own variability.  

The use of QCs to remove instrumental variability acts as a scaling tool, since the 

(semi)quantitative response of each compound is related to its response in a pool of 

samples. In this research the statistical package MetaboQC has been developed to study 

and filtrate experimental variability in data sets generated by MS analysis of sequences 

developed for several days. This new tool uses QCs to individually correct any tendency 

on quantitative signals of metabolites that can be associated to experimental variability. 
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MetaboQC considers the order of injections in batches, as well as the variability 

detected among different days. For this purpose, the package analyzes the trends of 

quantitative signals for each detected metabolite in the QCs to define a correction 

function that is subsequently applied to the batch of samples. It is worth mentioning 

that QCs should be preferentially prepared with a pool of samples of the cohort to be 

studied. In this way, representativeness of matrix effects and metabolome composition 

is ensured. The open source data analysis software R has been used to create the 

algorithms included in MetaboQC. The applicability of the proposed package has been 

demonstrated by testing two data sets obtained by analysis of serum samples from a 

large cohort. 

 

2. Materials and methods 

2.1. Chemicals 

LC–MS grade acetonitrile from Fisher Scientific (Madrid, Spain) and formic acid 

from Scharlab (Barcelona, Spain) were used to prepare chromatographic mobile phases. 

Deionized water (18 MΩ·cm) supplied by a Milli-Q water purification system from 

Millipore (Bedford, MA) was used for sample treatment and also to prepare the aqueous 

mobile phase. 

2.2. Instruments and apparatus 

A Sorvall Legend Micro 21R centrifuge from Thermo Scientific (Waltham, MS) 

was used to centrifuge samples after deproteination. An Agilent 1200 Series LC system 

coupled to an Agilent 6540 UHD Accurate-Mass QTOF hybrid mass spectrometer 

equipped with a dual electrospray (ESI) source (Santa Clara, CA) was used for sample 

analysis. Chromatographic eluates were monitored by tandem mass spectrometry in 

high resolution mode. 

2.3. Sample collection and pretreatment 

Venous blood was collected from 240 healthy donors in evacuated sterile serum 

tubes (Vacutainer, Becton Dickinson, Franklin Lakes, NJ, USA) containing no additives. 
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The tubes were incubated at room temperature for 10 min to facilitate coagulation, then 

centrifuged at 2000 × g for 15 min at 4 °C to isolate the serum fraction (processing 

within 2 h after collection). A serum pool was prepared to be used as QC by taking 100 

μL of each sample and mixing them. Both the serum pool (QC samples) and the samples 

were fractioned in 100 μL aliquots that were stored at –80 °C until analysis. 

All steps from serum sampling to analysis were performed in compliance with the 

guidelines dictated by the World Medical Association Declaration of Helsinki of 2004 

and supervised by specialist staff of the Maimonides Biomedical Research Institute 

(Cordoba, Spain). The study was approved by the ethics committee of the Reina Sofia 

University Hospital. The individuals selected for this study were previously informed to 

obtain consent.  

2.4. Sample preparation 

A 70% of the serum samples were analyzed using two protocols. The remaining 

30% were only analyzed using the first approach. For both protocols, serum pool 

aliquots of 100 μL were unfrozen slowly by immersion in an ice bath. The first protocol 

consisted of a simple deproteination. For this purpose, 200 μL of methanol was added 

to each aliquot for protein precipitation, vortexed for 10 min and centrifuged at 4 °C at 

13 800× g for 5 min. The second protocol consisted of a solid-phase extraction step to 

isolate phospholipids from the sample. The well-established procedure has been already 

described in a previous publication [20]. 

2.5. LC–QTOF MS/MS serum analysis 

Chromatographic separation was performed at 25 °C using a C18 reversed phase 

analytical column (100 mm × 4.6 mm i.d., 3 m particle size) Mediterranea from 

Teknokroma (Barcelona, Spain). The mobile phases used were water (phase A) and ACN 

(phase B) both containing 0.1% formic acid as ionization agent. The LC pump was 

programmed to operate at a flow rate of 0.8 mL min–1 with the following elution gradient 

for analysis of deproteinized serum: 3% phase B for 1 min; phase B ramp from 3 to 100% 

from min 1 to min 17; and hold at 100% for 3 min. For the analysis of phospholipids, the 

elution gradient was 30% phase B for 2 min, phase B ramp from 30 to 70% from min 2 
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to 17, from 70% to 100% from min 17 to 25, and hold at 100% for 5 min. The injected 

volume was in both cases 5 μL and the injector needle was washed 10 times with 80% 

ACN between injections. Also, the needle seat back was flushed with 80% ACN at 4 mL 

min–1 for 10 s to avoid cross contamination. The autosampler was kept at 4 °C to increase 

sample stability. 

The electrospray ionization source was operated in positive and negative 

ionization modes using the following settings: capillary and fragmentor voltage ±3.5 kV 

and 175 V, respectively; N2 nebulizer gas pressure 40 psi; and N2 drying gas flow rate 

and temperature 10 L min–1 and 325 °C, respectively. The instrument was daily 

calibrated and tuned as recommended by the manufacturer. MS and MS/MS data were 

collected in the centroid mode using a rate of 2.0 spectra per second in the extended 

dynamic range mode (2 GHz). Accurate mass spectra in auto MS/MS mode were 

acquired over the m/z range 60–1100, and MS/MS m/z range 31–1100. The instrument 

gave typical resolution 15 000 FWHM at m/z 118.0862 and 30 000 FWHM at m/z 

922.0098. Mass accuracy in recorded ions was assured by continuous internal 

calibration during analyses by using the signals at m/z 121.0509 (protonated purine) 

and 922.0098 [protonated hexakis(1H,1H,3H-tetrafluoropropoxy)-phosphazine or HP-

921] for positive ionization mode, while in negative ionization mode ions with m/z 

119.0362 (proton abstracted purine) and m/z 966.0007 (formate adduct of HP-921) 

were used. The auto MS/MS mode was configured with 2 maximum precursors per cycle 

and an exclusion window of 0.25 min after 2 consecutive selections of the same 

precursor ion. The collision energy selected was different in the three replicates of each 

analysis (10, 20 and 40 V) to increase the level of MS/MS information.  

2.6. Data processing and pretreatment 

The MassHunter Workstation software package (B.07.00 Qualitative Analysis 

and B.06.00 Profinder, Agilent Technologies, Santa Clara, CA) was used to process all 

data obtained by LC–QTOF in the MS/MS mode. The recursive feature extraction 

algorithm in the software MassHunter Profinder was used to extract and align potential 

molecular features in all injections carried out with each ionization mode. This 

algorithm initially deconvolutes chromatograms and aligns features across the selected 
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sample files in terms of mass accuracy and retention time; then, it uses the mass and 

retention time of each molecular feature for recursive targeted extraction. This two-step 

procedure reduces the number of both false negatives and false positives in feature 

extraction. The target parameters for feature extraction included a threshold of 1500 

counts for the monoisotopic peak and a maximum charge state of 2. In addition, the 

isotopic distribution of valid feature had to be defined by two or more ions, with a peak 

spacing tolerance of 0.0025 m/z, plus 10.0 ppm. Adduct formation (+Na, +K, +NH4 in 

positive ionization mode and +COOH-H for negative ionization mode) was also used 

together with protonated and deprotonated ions to identify features associated to the 

same metabolite. The features were aligned by using a tolerance window of 0.30 min 

and a mass accuracy of 10 ppm for retention time and m/z value, respectively, across all 

data files. 

The minimum absolute height required for feature extraction in the recursive step 

was set at 3000 counts for the sum of all peaks of the isotopic distribution of each 

molecular entity, which should be fulfilled in at least 75% of samples. Background 

contribution was removed by subtraction of entities linked to plasticizers, solvent 

impurities and other contaminants after analysing a blank. For this purpose, molecular 

features were also extracted from blanks raw data and those presented in the blank were 

excluded in the list of features detected in the samples. The resulting data set was 

exported as .csv file, containing the quantitative response expressed as peak area of the 

potential entities in each sample, and the main characteristics of these entities 

(retention time and neutral mass). Data pretreatment was based on baselining and 

normalization by quantile and logarithmic transformation to reduce relatively large 

differences among molecular features abundances. 

2.7. Statistical analysis 

The open source data analysis R program was used through its graphical user 

interface R-studio to apply and develop MetaboQC package by combination of different 

algorithms. The package is available at the Comprehensive R Archive Network (CRAN) 

Repository (https://cran.r-pro ject.org/index.html). 
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Statistical analysis was carried out by using the web based tool Metaboanalyst 

(http://www.metaboanalyst.ca/). The different data sets were transformed by 

logarithm prior to statistical analysis. A multivariate analysis by principal component 

analysis (PCA) was used to assess the variability of the cohorts. The METLIN, Human 

Metabolome Database (HMDB) and Massbank databases were used for metabolite 

identification from both MS and MS/MS information. 

 

3. Results and discussion 

3.1. Influence of experimental variability on metabolomics experiments 

As stated above, most untargeted metabolomic studies based on MS analysis 

require injection of large batches of samples or even the integration of data from batches 

analyzed at different times. The main problem associated to this operational mode is 

the influence of experimental variability, with special emphasis on that affecting the 

instrumental response. A representative example is found in the analysis of 

glycerophospholipids, a family of lipids only differentiated by the molecule attached to 

the phosphate group. According to the bibliography, ionization efficiency of glycero-

phospholipid molecular species is predominantly dependent on the polar head and only 

modestly dependent on the acyl chains [21]. Thus, the analysts could expect that the 

quantitative response for the different families of glycerophospholipids would be 

similarly affected by the instrumental variability since the only difference is the 

conjugated polar group. However, this is not the most frequent situation as can be seen 

in Figure 1, which shows the variability in the quantitative response of 

glycerophospholipids pertaining to four different families obtained by LC–MS/MS 

analysis of a set (n=42) of QCs periodically inserted in a batch of 208 samples. As can 

be seen, while glycerophosphatidylinositols (PI) and glycerophosphatidic acids (PAs) 

were characterized by a similar pattern along the sequence of analyses, other families 

such as lysophosphatidylethanolamines (lysoPE) and glycerophosphatidylcholines 

(PCs) were affected by different effects. Thus, lysoPE(22:6n3) and lysoPE(O-18:1) 

reported sensitivity increases at different times within the sequence –particularly in 
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QCs around the 150th sample of the sequence for lysoPE(22:6n3) or in QCs around 75th 

sample for lysoPE(O-18:1). On the other hand, lysoPE (20:2), (20:4) and (22:6n6) were 

characterized by a lower variability in the quantitative response as compared to previous 

lysoPEs. Concerning detected PCs, they experienced a sensitivity increase in the first 

part of the sequence (up to injection 60); while some of them suffered a sensitivity decay 

from injection 50 to injection 100. On the other hand, two of the most concentrated PCs 

–(40:6) and (38:5)– did not report this particular sensitivity decrease. These 

concentration-dependent effects are typical of the ESI device considering that most of 

these analogous set of lipids are eluted in a narrow interval; creating a real competition 

among coeluted lipids to be ionized. A common effect to the four families of 

glycerophospholipids is that observed in the first part of the analysis sequence. As can 

be seen in Figure 1, sensitivity is generally increased up to injection 50, which could be 

attributed to a stabilization effect of the matrix components in the ESI device or in the 

chromatographic column. 

A typical data preprocessing in metabolomics workflows using MS detection is 

known as Mass Spectrometry Total Useful Signal (MSTUS), frequently applied as such 

or after a logarithmic transformation. These two common normalization strategies 

(MSTUS with or without logarithmic transformation) were tested in the 

glycerophospholipids data set obtained by analysis of QCs to check the correction 

effects. Supplementary Figure 1 shows the variability trends resulting from plotting the 

two normalized data sets. The two normalization protocols reduced significantly, but 

not totally, the contribution of the experimental variability. Despite the use of QCs to 

monitor and correct instrumental variability has become more popular, there is not a 

defined optimum protocol to be implemented in sequences of metabolomics 

experiments to remove this source of variability. In fact, QCs are employed in most cases 

to filter metabolites that surpass preset cut-off values of variability. 
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Figure 1. Peak area variability according to the injection order obtained for four classes of 

detected glycerophospholipids in the QCs inserted in the sequence of samples. 

 

Based on this application, Dunn et al. proposed a cut-off value for variability in 

the quantitative response for each metabolite that should not surpass 20% in LC–MS 

data sets and 30% in GC–MS data sets [10]. According to this criterion all original data 

sets from glycerophospholipids would be filtered without normalization. On the other 

hand, only 20% of glycerophospholipids would be removed in the normalized data set 

by the MSTUS approach. Despite the normalization effect, the experimental variability 

is not completely removed, as Supplementary Figure 1 shows. Some other studies 

reported in the literature have described strategies for correction of experimental 

variability with the aid of QCs. These procedures are in some cases applied to the 

complete data set, which means that all metabolites detected in an experiment are 

equally treated [14]. However, it has been previously shown that not all metabolites are 

affected in the same way along a sequence of analyses or in batches of samples analyzed 

at different times. Other strategies only consider a unique variability factor such as the 
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injection order [18,19]. However, other factors such as the influence of daily cleaning or 

calibration procedures can introduce additional variability in the data set. 

3.2. Theoretical performance 

The package proposed here uses the QCs to examine the variability trends in the 

quantitative response of detected metabolites along the sequence of analysis, 

considering the number of batches and the injection order. For this purpose, QCs should 

be periodically inserted in the list of samples to be analyzed with the same method. The 

package performance can be split into three main steps, namely: (i) evaluation of 

variability trends in the quantitative response of each metabolite in QCs and samples; 

(ii) selection of an algorithm fitting the variability trend for each metabolite in the QCs; 

(iii) application of the algorithm to each metabolite in QCs and samples to evaluate its 

correction effect. The scheme of the operational pipeline is shown in Figure 2. The data 

inserted in the R-studio must include four columns with the following information: (i) 

sample name, (ii) injection order, (iii) classification code, sample or QC, and finally (iv) 

date of analysis. The data set is constituted by the response from the detected 

metabolites in each analysis (samples and QCs). 

The process starts with the study of the instrumental variability by monitoring 

the quantitative response of the metabolites detected both in the samples and QCs, the 

latter being injected at least three times per day. For this purpose, the package includes 

a function that shows the evolution of the quantitative response for each metabolite 

along the sequence to obtain its variability trend. This function, named graphQC, 

generates a .pdf file with one graph per compound representing the quantitative 

response (peak area) of the metabolite versus the injection order for samples and QCs. 

These graphs can aid either to detect general variability trends during the analysis time 

or to identify random variability effects between days. Furthermore, it can also help to 

assess the suitability of the QCs, particularly, if they have a similar behavior to samples, 

since the correction is performed for each compound by construction of the trend curve 

for QCs and correction of the samples according to this curve. 
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Figure 2. Experimental daily planning and operational pipeline of the MetaboQC 

package: (i) evaluation of variability trends in the quantitative response of each metabolite in 

QCs and samples; (ii) selection of an algorithm fitting properly the variability trend for each 

metabolite in the QCs; (iii) application of the correction algorithm for each metabolite in the 

QCs and samples to evaluate the correction effect. 

 

Different algorithms with the same objective were programmed in this package 

to fit the experimental variability observed in the quantitative response of QCs. These 

algorithms differ in the function employed to build the trend curve –which can be either 

polynomial or based on local polynomial regression (LOESS)–, and also in the number 

of generated models, one for the whole sequence or one model per day when between-

days variability is significant. Application of LOESS requires as many QCs per day as 

possible to obtain representative models. For this reason, when the number of QCs per 

day is below 4–5, this strategy should be applied by considering the complete sequence. 

To take into consideration applications involving three or a higher number of QCs 

injected per day, functions of polynomial equations with order 3, 4 and 6 can also been 

applied. The list of functions is included in the manual as Supplementary material S1. 
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The function reporting the best fit would be selected to correct the quantitative response 

of detected metabolites in the samples. Several functions can be tested to compare the 

correction effect. Additionally, the experimental variability can be estimated for each 

metabolite to compare the correction effect provided by each function. Once the 

correction algorithm is selected, it is applied to the complete data set obtained by 

analysis of the cohort under study. This operation generates a table in the workspace 

that can be easily exported to a .csv file containing the corrected responses, which are 

now ready for statistical analysis. It is worth mentioning that the graphQC function can 

be employed with any data set, normalized or not, original data sets or those from other 

software. Furthermore, since the process is easy and fast, the matrices obtained with 

different algorithms can be combined in case that some groups of metabolites perform 

better with regression models different from the rest of metabolites. 

The practical operability of the tool proposed here was tested using two 

independent data sets provided by the analysis of serum samples with two different 

sample treatments: protein precipitation and analysis of the supernatant phase and SPE 

for isolation of glycerophospholipids and subsequent analysis. Serum was selected to 

test the efficiency of this tool as it is the most common clinical biofluid used in 

metabolomics studies and contains a wide chemical diversity of metabolites. 

Deproteinized samples were injected for 8 days, while samples after SPE were injected 

for 12 days. In both cases, at least three QCs were injected per day: one at the beginning 

of the daily sequence, other in the middle and the last one at the end of the day.  

The selection of these two studies was supported on the experimental variability 

detected along the complete sequence of analysis. In fact, the two cases were identified 

as the two most common situations found by metabolomics analysts using MS based 

methods. In the case of glycerophospholipids analysis a variability trend was observed 

along the sequence of analysis with a clear increase of sensitivity. On the other hand, the 

analysis of deproteinized serum revealed variability trends with significant changes in 

sensitivity among days but also within a day. These two cases are separately exposed 

below. 
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3.3. Correction of variability trends along the sequence of analysis 

As stated above, the package includes a function that generates a set of plots that 

can be used to study either the suitability of QCs to correct instrumental variability 

and/or if this is dominated by between-days or within-day variability. With the data set 

provided by analysis of glycerophospholipids, the plots obtained after this first step 

showed a continuous trend along the complete sequence, as shows Figure 1. The 

variability for glycerophospholipids detected in the sequence of samples was quite 

similar to that found in QCs; therefore, the experimental variability affecting the 

quantitative response of the metabolites can be modeled with that observed in the QCs. 

As Supplementary Figure 2 shows for three dominating lysoPC forms –particularly, 

lysoPC(18:1), (18:3) and (22:6)–, the experimental variability was characterized by a 

common pattern with a sensitivity increase along the sequence. Nevertheless, the 

relative variation for lysoPC(18:1) was clearly higher than that observed for the other 

two lysoPC forms. The use of an internal standard, even if this is an isotopically labeled 

compound pertaining to the same chemical family –lysophosphatidylcholines–, would 

not exert an optimum correction since the three selected lysoPCs were affected by the 

instrumental variability in a different way. The application of an unsupervised analysis 

by PCA on QCs showed a clear discrimination between analyses carried out in the first 

four days (Figure 3); thus, the instrumental variability trend detected for most 

metabolites could be associated to the analysis sequence.  

In this scenario, the most adequate functions to fit these variability trends are 

those supported on a single equation either based on a polynomial model or on the 

LOESS algorithm. In the batch of samples under study, both functions were tested 

(QCcorrectionLOESS and QCcorrectionSinglePolyX, being X the grade of the 

polynomial function). 

In the case of the polynomial function, grade 3, 4 and 6 were tested to check the 

effect on the variability correction due to the high number of QCs considered to build 

the model. However, the classical polynomial regression sometimes causes wrong 

trends that are avoided in the case of LOESS. For this reason, LOESS provided better 

results in this example as compared to polynomial regression. 
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Figure 3. PCA obtained for the phospholipids data set before (A) and after (B) variability 

correction using MetaboQC package. 

 

Supplementary Figure 2 illustrates the variability plots provided by application 

of the LOESS and grade 4 and 6 polynomial algorithms that exhibit a noticeable 

correction effect. To compare in overall terms the correction effect for all detected 

metabolites, a visual alternative is to represent the corrected variability in QCs 

expressed as RSD percentage as compared to the variability of the original data set. An 

example of this is found in Figure 4 that shows the correction effect after application of 

the LOESS and grade 4 polynomial functions to the glycerophospholipids data set. 

Positive values imply a reduction of RSD attained by application of the algorithm, while 

negative values highlight that variability was not reduced by removal of experimental 

contribution.  

Several effects can be deduced from this representation. First of all, a different 

behavior of the two functions according to the ionization mode was detected. Thus, the 

polynomial function was able to reduce RSD more efficiently in the positive ionization 

mode than did the LOESS function. The opposite situation was found in negative 

ionization, where LOESS led to a more efficient correction in general, although some 

exceptions were observed. 
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Figure 4. Percentage of variability (expressed as RSD) corrected after application of the 

LOESS algorithm (grey) and the polynomial grade 4 algorithm (black). Negative values imply an 

increase in variability after the application of the algorithm. 

 

Thus, the most relevant change was found for glycerophosphatidylinositols, PI, 

for which the application of the LOESS function did not work properly. On the other 

hand, the LOESS function suitably corrected the instrumental variability in PCs and 

PEs. With these results, we could select the correction function to be applied for each 

ionization mode and, more exhaustively, the correction for each family of metabolites 

or even for each compound. With the application of the suited algorithm for each 

independent metabolite according to the corrected RSD, the effect was evaluated by 

comparing the number of metabolites presenting significant differences between days 

along the sequence. This number was considerably reduced from 50 (86%) to 11 

metabolites (19%) in negative ionization mode and from 38 (100%) to 5 metabolites 

(13%) in positive ionization mode, which means that the proportion of significant 

glycerophospholipids was reduced in both cases from more than 80% to less than 20%. 

Additionally, the corrected data set was analyzed by PCA to detect variability trends and 

no groupings as a function of the sequence day were detected, as Figure 3 shows. 
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3.4. Correction of between-days variability trends 

The experiment about untargeted analysis of serum samples was used as a model 

to correct between-days variability trends. This experiment was affected by a strong 

influence of experimental variability on the quantitative response. Figure 5 shows an 

example of this influence for four representative metabolites detected in serum, which 

were selected according to their retention time. The variability trends were completely 

different to those observed in the previous case. This experiment was characterized by 

implementation of a daily protocol for cleaning of the ESI source, which was always 

applied at the beginning of the day. Additionally, a protocol for calibration of the TOF 

instrument was also daily programmed. These practices are clearly the main reason 

contributing to the observed variability between two consecutive days. As can be seen, 

this strong between-days variability affected in the same way to QCs.  

In this particular case, it is recommended to use multiple models, one per day, to 

correct instrumental variability, as there is no a continuous trend along the complete 

sequence. As expected, the variability plots were different for the four representative 

metabolites, proving that the instrumental variability does not affect in the same 

manner to all the target compounds. The two available algorithms were used to prepare 

the corresponding functions to be applied along the different days of the sequence. 

These functions were named QCcorrectionMultiLOESS and QCcorrectionMultiPolyX, 

being X the grade of the polynomial function (typically 3, 4 and 6). Both the MultiLOESS 

and MultiPolyX functions are recommended in cases in which there are 4 or more QCs 

per day. On the other hand, when the number of QCs per day is limited to three, the 

QCcorrectionMultiPoly3 should give an optimum fit. 

Nevertheless, due to the simplicity of the process, all models can be easily tested 

to finally select the best for each specific case. In the present study, the 

QCcorrectionMultiPoly3 function was selected since only three QCs per day were 

implemented in the injections sequence. The application of this correction model leads 

to data following the distributions reported in Figure 6. As can be seen, the quantitative 

responses for the selected metabolites in QCs were scaled to one and the instrumental 

variability preliminary observed in the sequence of samples was considerably decreased. 
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Figure 5. Peak area variability according to the injection order of four characteristic 

compounds (LysoPC(18:1), caffeine, uric acid and tryptophan) detected in serum samples and 

QCs during the injections sequence. 

 

Similarly, to the previous study, the PCA for the uncorrected data showed a clear 

discrimination through PC1 for samples injected within the first four days and those 

injected from the fifth day until the end of the sequence. Additionally, PC2 allowed 

separating samples according to the injection order within each day. These separation 

trends were removed when the PCA was applied to the corrected data set since the PCA 

after correction does not show this separation or any trend that could be associated to 

the injection order.  

The reduction of instrumental variability can be also observed on the violin plots 

obtained for the four representative metabolites previously selected. The violin plot is a 

visual tool providing an idea of the distribution or density of a parameter in a data set. 

As can be seen in Supplementary Figure 3, the variability was reduced in all cases with 

special emphasis on the cases of lysoPC(18:1) and uric acid. 
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Figure 6. Peak area variability according to injection order for four compounds 

(lysoPC(18:1), uric acid, caffeine and tryptophan) detected in serum samples and QCs after 

application of a multipoly3 correction with the MetaboQC package. 

 

4. Conclusions 

A tool for correction of experimental variability associated to the instrumental 

quantitative response has been developed for implementation in metabolomics 

workflows based on MS detection. The proposed packaged is based on functions that 

can be used to correct variability on data sets obtained in metabolomics studies based 

on large set of samples. Different functions have been considered to make the package 

useful to remove experimental variability sources affecting long sequences of analysis 

but also those affecting within a given day. This type of tools can be particularly efficient 

in cases in which the use of internal standards is not operative due to chemical diversity 

of metabolome composition. 
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The strategy included in the proposed package involves that each metabolite is 

corrected according to the function that best fits its variability trend. Therefore, 

correction is independently applied to each metabolite. The only requirement for its 

application is the implementation of QCs, preferentially prepared with the same 

samples of the cohort, in the sequence of analysis following a given plan. 
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Supplementary Information 

 

 

Figure Supplementary 1. Peak area variation of some glycerophospholipids detected in the 

QCs injected along a sequence. Original data were normalized by MSTUS with and without the 

application of logarithmic transformation: (A) Data normalized by MSTUS, (B) Data normalized 

by MSTUS and transformed by application of base 2 logarithm. 

(A) 

(B) 
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MetaboQC 

Correct instrumental variability from metabolomic studies using quality controls 

 

Description: 

Use the peak area of each compound detected in quality control samples to find the 

instrumental variability trend and use the generated curve for correction in samples. 

Requirements: 

Required package: plyr 

Functions: 

 Function Description 

 graphQC 

Gives a pdf file with one graph per compound 

showing the variability of the peak area along a 

sequence of analysis 

Polynomial 

correction 

QCcorrectionSinglePoly 

Uses an order 3 polynomial function to fit the 

variability trend of the peak area of each 

metabolite  

QCcorrectionSinglePoly4 

Uses an order 4 polynomial function to fit the 

variability trend of the peak area of each 

metabolite 

QCcorrectionSinglePoly6 

Uses an order 6 polynomial function to fit the 

variability trend of the peak area of each 

metabolite 

QCcorrectionMultiPoly 

Uses an order 3 polynomial function to fit the 

variability trend of the peak area of each 

metabolite per day 

QCcorrectionMultiPoly4 

Uses an order 4 polynomial function to fit the 

variability trend of the peak area of each 

metabolite per day 

QCcorrectionMultiPoly6 

Uses an order 6 polynomial function to fit the 

variability trend of the peak area of each 

metabolite per day 
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LOESS 

correction 

QCcorrectionLOESS 

Uses local polynomial regression to fit the 

variability of the peak area of each metabolite 

along a sequence of analysis 

QCcorrectionMultiLOESS 

Uses local multipolynomial regression to fit the 

variability of the peak area of each metabolite 

along a sequence of analysis 

 

Performance: 

1. graphQC 

The data set is introduced in R as a .csv file containing the following columns: 

- A first column with sample name. 

- A second one with the injection order, called ‘Order’. 

- A third column specifies the quality control analysis. This column is named ‘QC’ and 

samples are represented by ‘0’ while QC are represented by ‘1’. 

- The 4th column includes the day of analysis. This column, called ‘Day’ contains a numeric 

value for each day. It is preferable to start with day 1 and, then, continue the list. 

- The following remaining columns contain the peak area of each potential metabolite 

detected in the sample list. 

 

The matrix should be introduced in the workspace using the read.table function, with the 

next parameters (sep=’’,’’, header=TRUE, row.names=NULL, as.is=1). 

Example: LCMSData<-read.table(file=”LCMSdata.csv”, sep=’’,’’, header=TRUE, 

row.names=NULL, as.is=1) 

Note: Files that are going to be incorporated to the workspace or environment should be 

in the working directory, so first of all it is recommended to establish the correspondent working 

directory.  

Usage: graphQC(LCMSData, N, “Text”) 
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Arguments: 

LCMSData 

The matrix that is going to be normalized (Sample Name, Order, QC, Day and 

multiple columns with the peak area of the compounds). 

It can be also a normalized data set 

N 
A number corresponding to the number of metabolites to be studied. A variability 

plot will be obtained per metabolite 

Text A text to be included as name of the pdf file generated to differentiate it 

 

The pdf file generated is called: ‘xy-Plot for N compounds form Text.pdf’ and each page 

contains a graph similar to that: 

 
As can be seen, QCs are represented in red color, odd days are represented by triangles, 

while even days are represented by circles. Furthermore, samples from odd days are colored in 

green, while that from even days are colored in blue. 

 

2. QCcorrection functions (QCcorrectionSinglePoly, QCcorrectionSinglePoly4, 

QCcorrectionSinglePoly6, QCcorrectionMultiPoly, QCcorrectionMultiPoly4, 

QCcorrectionMultiPoly6, QCcorrectionLOESS, QCcorrectionMultiLOESS) 

 

Usage: LCMSDataNormalized <- QCcorrectionfunction(LCMSData) 

Arguments: 

LCMSData 

The matrix that is going to be normalized (Sample Name, Order, 

QC, Day and multiple columns with the peak area of the 

compounds) 
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QCcorrectionfunction 
One of the functions used to fit the variability trend of 

metabolites detected in QC and and apply to samples 

LCMSDataNormalized 

The final dataset already normalized according to the function 

selected. This table can be exported into a .csv file using the 

write.table function (example: 

write.table(LCMSDataNormalized, 

file=”LCMSDataNormalized.csv”, sep=”,”, 

row.names=FALSE)) 

 

Example of the generated tables: 
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Metabolomics is an interesting tool for assessing the nutritional status of 

subjects, the food consumption, the biological consequences of following a 

nutritional intervention, or the study of metabolic mechanisms associated with a 

disease in response to a diet depending on a particular metabolic phenotype. 

Section III of this PhD Book is devoted to strategies for searching potential 

biomarkers in nutrimetabolomics with clinical and agro-food applications.  

Chapter VII, VIII and IX are focused on clinical applications. It is widely 

known that the postprandial response to a meal depends on many factors and 

involves multiple processes that include energy storage and metabolic switch in 

several organs such as liver, muscle and adipose tissue, accompanied by several 

compensating processes such as inflammation and oxidative stress. The aim of 

chapter VII was to detect postprandial alterations in the level of plasma 

metabolites after an OFTT. For this purpose, plasma samples were collected just 

before and four hours after the OFTT. These samples were analyzed by an 

untargeted approach using LC–QTOF MS/MS and GC–TOF/MS.  

For Chapter VIII the strategy was quite similar, but in this case the aim was 

to create a panel of biomarkers to predict the occurrence of T2DM by examining 

the postprandial response of 215 non-diabetic patients after OFTT. In the baseline, 

plasma samples were collected just before and four hours after the OFFT and 

analyzed by an untargeted approach using LC–QTOF MS/MS and GC–TOF/MS. 

Patients were clinically monitored for 5 years and, after this period, 107 patients 

were diagnosed with T2DM. Metabolic changes occurring in the postprandial 

OFTT were used to predict the development of the disease and were associated to 

the diagnostic date by Cox Regression Analysis. 

The last clinical application was aimed to elucidate the early events 

preceding the onset of islet autoimmunity and overt T1DM (Chapter IX). LC–

QTOF MS/MS and GC–Q/MS approaches were used to determine levels of 
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molecular lipids and polar metabolites in human PBMCs isolated from prospective 

samples collected in the DIPP study.  

On the other hand, Chapter X is focused on an agro-food application. 

Discrimination among the types of feeding regimes for Iberian pigs is currently a 

highly demanded challenge by the Iberian pig sector. For this reason, the 

combination of two analytical methods, previously used independently without 

success, was used to developed discrimination models and search panels of 

biomarkers with capability to classify slaughtered animals by their feeding regime. 

These analytical methods were based on FAMEs analysis by GC–FID and 

determination of δ13C by IRMS. 
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Postprandial metabolic response to the oral fat tolerance 

test (OFTT) by plasma metabolomics analysis 

María Asunción López-Bascón, Mónica Calderón-Santiago, Antonio Camargo, 

José López-Miranda, Feliciano Priego-Capote 

 

ABSTRACT 

Oral fat tolerance test (OFTT) is used to evaluate postprandial lipemia by 

monitoring the concentration of triglycerides after a weight-adjusted meal containing 

lipids, carbohydrates and proteins. With these premises, the present research is focused 

on detecting postprandial alterations in the level of plasma metabolites after the OFTT 

on 215 patients involved in the CORDIOPREV study. Samples were collected just before 

and four hours after the OFTT and analyzed by LC–QTOF MS/MS and GC–TOF/MS in 

two different batches including 57 and 158 individuals. A total number of 365 

metabolites were tentatively identified by combination of both analytical platforms. The 

paired t-test led to the identification of 33 metabolites significantly altered (p<0.05) in 

both batches due to the OFTT. Special attention was paid to fatty acids, their derivatives, 

bile acids and acylcarnitines, since these families comprised the 75% of significant 

metabolites. The most important pathways affected by OFTT were those involved in 

inflammatory and oxidative processes, de novo lipogenesis, metabolism of 

acylcarnitines and primary and secondary bile acids, and the synthesis of cortisol. In 

most cases, significant metabolites increased after OFTT, with special relevance of 

docosapentaenoic acid (C22:5n3) and palmitoleic acid (C16:1n7) that presented a fold-

change (FC) above 60, followed by octadecenoylcarnitine, which reported an FC above 

38. Within metabolites reducing their levels after OFTT, acetylcarnitine, carnitine and 

dodecanoylcarnitine presented the lower values with FC equal or below –0.8. This 

information opens the door to increase the applicability of the OFTT in the evaluation 

of lipemia as well as other metabolic diseases. 

Keywords: Oral fat tolerance test; metabolomics profile; plasma; postprandial 

period; untargeted analysis 
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Multimetabolite panels predict the occurrence of type 2 

diabetes mellitus by examining the postprandial 

response 

María Asunción López-Bascón, Mónica Calderón-Santiago, Antonio Camargo, 

José López-Miranda, Feliciano Priego-Capote 

 

ABSTRACT 

Understanding the pathogenesis of type 2 diabetes mellitus (T2DM) is a requisite 

for the development of preventive strategies. Particularly, the identification of early 

metabolic alterations is a promising challenge in the study of etiological pathways and 

may further help to identify high-risk individuals. The present research is focused on 

predicting the occurrence of T2DM in individuals by examining their postprandial 

response to the oral fat tolerance test (OFTT). For this purpose, plasma samples at 

baseline from 215 non-diabetic patients (107 out of them were diagnosed with T2DM in 

the following five years) were analyzed using a metabolomics untargeted approach. 

Sixty metabolites showed significant concentration changes in the postprandial 

associated with the development of T2DM. Two multimetabolite panels were created to 

predict the occurrence of T2DM by prioritizing specificity (panel 1) or sensitivity (panel 

2). The combination of both panels reported sensitivity of 86.6% and specificity of 

71.6%, while external validation led to 90.0% of sensitivity and 73.3% of specificity. The 

risk of T2DM development was evaluated by Cox Regression Analysis that provided 

Hazard Ratio values of 6.5 (3.7–11.4) and 5.4 (3.0–9.6) for panels 1 and 2, respectively. 

Metabolites included in the panels were associated to relevant pathways such as 

oxidation, insulin secretion, and mitochondrial and peroxisomes activity.  

Keywords: Metabolomics profile, type 2 diabetes mellitus, biomarkers, plasma, 

oral fat tolerance test, postprandial period 
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Metabolic alterations in human peripheral blood 

mononuclear cells associate with progression to islet 

autoimmunity and type 1 diabetes 

Partho Sen, Alex M. Dickens, María Asunción López-Bascón, Tuomas Lindeman, 

Esko Kemppainen, Santosh Lamichhane, Tuukka Rönkkö, Jorma Ilonen, Jorma 

Toppari, Riitta Veijola, Heikki Hyöty, Tuulia Hyötyläinen, Mikael Knip, Matej Orešič 

 

ABSTRACT 

Previous metabolomics studies suggest that type 1 diabetes (T1DM) is preceded 

by specific metabolic disturbances. Here we asked whether distinct metabolic patterns 

occur in peripheral blood mononuclear cells (PBMCs) of children later developing 

pancreatic β-cell autoimmunity or overt T1DM. In a longitudinal cohort setting, PBMC 

metabolomic analysis was applied in children who either (1) progressed to T1DM (PT1D, 

n=34), (2) seroconverted to ≥1 islet autoantibody without progressing to T1DM (P1Ab, 

n=27), or (3) remained autoantibody negative during follow-up (CTRL, n=10). During 

the first year of life, levels of most lipids and polar metabolites were lower in PT1D and 

P1Ab, vs. CTRLs. Pathway overrepresentation analysis suggested alanine, aspartate, 

glutamate, glycerophospholipid and sphingolipid metabolism were overrepresented in 

PT1D. Genome-scale metabolic models of PBMCs in T1DM progression were developed 

using available transcriptomics data and constrained with metabolomics data from our 

study. Metabolic modeling confirmed altered ceramide pathways as specifically 

associated with T1DM progression. 

Keywords: birth cohort, ceramides, genome-scale metabolic modeling, 

lipidomics, metabolomics, PBMCs, peripheral blood mononuclear cells, sphingolipid 

metabolism, type 1 diabetes mellitus 
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Determination of fatty acids and stable carbon isotopic ratio 

in subcutaneous fat to identify the feeding regime of Iberian 

pigs 

María Asunción López-Bascón, Feliciano Priego-Capote, Mónica Calderón-Santiago, 

Verónica Sánchez de Medina, José Manuel Moreno-Rojas, Juan María García-Casco, 

María Dolores Luque de Castro 

 

ABSTRACT 

Discrimination among the types of feeding regimes for Iberian pigs is currently a 

highly demanded challenge by the Iberian pig sector. In the present research, 

discrimination among feeding regimes has been achieved by combination of two 

analytical methods (based on FAMEs analysis by GC−FID and determination of δ13C by 

IRMS) previously used independently without success. In the present study, 80 samples 

of adipose tissue from Iberian pigs subjected to four different feedings were analyzed. 

The study of the variables more influenced by the feeding regime has allowed us to 

configure panels of markers with predictive power for the studied feedings by 

multivariate ROC analysis. The results provided values of specificity and sensitivity 

higher than 85% in most cases. The statistical combination of results from different 

analytical methods could be the key to develop models for the correct discrimination of 

Iberian pigs according to the feeding regime. 

Keywords: Iberian pig, subcutaneous fat, IRMS, GC−FID, feeding regimes, ROC 

analysis, fatty acid methyl esters, stable carbon isotopes. 
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1. Introduction 

The Iberian pig is well adapted to the environmental and ecological conditions of 

dehesa, where it eats basically acorns, the fruit of the genus Quercus. Studies have 

shown that this feeding habit yields Iberian pigs with large amounts of 

monounsaturated fatty acids (MFAs), triglycerides and phospholipids;1,2 therefore, the 

fat composition in these animals is characterized by a content of polyunsaturated fatty 

acids (PUFAs) lower than in those fed with prepared feeds.3 

In the last 30 years the increased demand for Iberian pork products has led to a 

rise in production, which has not been in-parallel with the available natural resources. 

The dehesa forest cannot support the density of animals demanded by consumers; 

therefore, Iberian pigs are most times fed with grains and prepared feeds4 and the 

obtained products are endowed with nutritional and organoleptical properties different 

from those of pigs subjected to montanera feeding (traditional name for the feeding 

regime exclusively based on the natural resources of the dehesa). Differences in the 

feeding regime have a direct impact on the economic value of cured products obtained 

from slaughtered pigs. The high economic value of cured products from animals fed 

under montanera regime has made mandatory regulation and identification of Iberian 

products. Therefore, a legislation (a Royal Decree, RD) to regulate their quality 

according to the animals feeding was promoted and approved in 2001.5 Designation of 

the different types of feeding has undergone changes along time, which are defined 

according to the Spanish RD6 as follows: 

1. Bellota (montanera): feeding based on acorns, grass and other natural resources 

present in the dehesa without any contribution of prepared feeds (mainly composed by 

cereals and legumes). 

2. Recebo: feeding up to a minimum weight in montanera conditions, then 

supplemented with prepared feeds. 

3. Cebo de Campo: feeding based on prepared feeds, but with a final stay in the dehesa 

for at least 60 days combined with prepared feeds. 
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4. Cebo: feeding based exclusively on prepared feeds. 

Currently, some modifications in the new RD of 2014,7 have included the Recebo 

class into the Cebo de Campo class. Thus, the new Cebo de Campo class is a type of 

feeding based on prepared feeds but also, in some cases, on acorns and grasses of the 

dehesa.  

Among the methods used for classification of products according to the feeding 

regime of Iberian pigs, the most common approach has been analysis of the relative 

proportions of FAs in adipose tissues by gas chromatography (GC) separation and flame 

ionization detection (FID).3,4 Analysis of FAs is of great interest in the meat industry 

because the technological, nutritional and sensory aspects resulting from their 

composition. Nevertheless, the determination of FAs in the subcutaneous tissue to be 

related with feeding regime of pigs has given rise to an increase of prepared feeds 

defined by a composition of FAs similar to that in acorns.8 Therefore, the composition 

of the most important fatty acids in animals fed with prepared feeds is very similar to 

that in those fed by montanera regime and the power of the analytical method to 

distinguish among the categories decreases as a result.4 

The feasibility of using near-infrared spectroscopy (NIRS) for discrimination 

among subcutaneous fat from Iberian pigs reared on different fattening diets has also 

been evaluated in diverse studies.9,10 This technology is based on the analysis of the 

spectra in the near infrared region provided by direct determination of cured products 

or fresh meat. Nevertheless, the models developed so far do not allow successful 

discrimination of all types of diets. It is clear that new and more specific analytical 

methods are needed at present to discriminate among feeding regimes. The application 

of isotope ratio mass spectrometry (IRMS) has become an interesting tool to analyze the 

quality and authenticity of food.8 Some of the methods based on this technique have 

been adopted as official in the EU —for example, for characterization of wine11 and fruit 

juices.12 Isotopic analysis of carbon and sulfur in adipose tissue has also led to an 

alternative method to discriminate between Bellota and Cebo regimes.13,14 Pioneers in 

the study of the influence of diet on  stable carbon isotope ratio in animals were De Niro 

et al.15 Their results showed the possibility to perform dietary analysis based on the 
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determination of the 13C/12C ratio. In the field of our research, González-Martín et al.13 

were pioneers in the determination of the isotopic 13C/12C ratio in subcutaneous fat of 

Iberian pigs to differentiate feeding regimes. Subsequently, other authors have studied 

the applicability of this technique in other fresh pig tissues —mainly muscle,13 liver,4,13–

16 adipose tissue 4,11,15 and intramuscular fat3,14,18,19 for prediction of feeding regimes in 

Iberian pigs4. In general, the different techniques presented difficulty in discerning 

between other feedings and Recebo. The authors emphasized that application of only 

one method is not enough for discrimination of four feeding categories; therefore, they 

combined several methods. Nevertheless, they did not combine their data to develop a 

unique discrimination model.  

The aim of the research here presented was to combine the classical method for 

determination of FAs based GC–FID and that for monitoring carbon isotopic 

abundances by IRMS to develop discrimination models and search for panels of 

markers with capability to classify slaughtered animals by their feeding regime. 

 

2. Materials and methods 

2.1. Samples 

Eighty Iberian pigs were selected in different farms located at the North of the 

province of Sevilla (Spain) within an area delimited by 25 km from South to North and 

50 km from East to West. Collection of samples was carried out in 2010 by personnel 

belonging to the National Institute of Agriculture and Food Research and Technology 

(INIA, Extremadura, Spain). The animals were classified into four groups according to 

the feeding regime as the Official Legislation6 set. Each group was composed of 20 

samples. Subcutaneous fat samples from slaughtered pigs were collected following the 

established Spanish official method.20 The fat tissues were cut and put into individual 

microwave-resistant glass containers, then heated in a domestic microwave oven (700 

W power and 2450 MHz microwave frequency) for 5 min at the maximum power, after 

which the melted samples were homogenized prior to sampling 5 mL of the liquid fat.21 

The treated samples were then stored at –20 ºC until analysis.  
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2.2. Reagents and standards 

n-Hexane from Scharlau (Barcelona, Spain) was used for fat solubilization. 

Commercial standards of FA methyl esters (FAMEs) were acquired from Fluka 

Analytical (Buches, Switzerland), and corresponded to the following acids: lauric 

(C12:0), myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1n9), hepatadecanoic 

(C17:0), stearic (C18:0), oleic (C18:1n9), eicosanoic (C20:0), eicosenoic (C20:1), 

eicosadienoic (C20:2n6), eicosatrienoic (C20:3n6), eicosatetraenoic (C20:4n3), 

arachidonic  (C20:4n6), eicosapentaenoic (20:5n3), behenic (C22:0), tetracosenoic 

(C24:0), docosatetraenoic (C22:4n6), docosapentanoic (C22:5n3), docosahexaenoic 

(C22:6n3), hexacosanoic (C26:0) and octacosanoic (C28:0). A mixture of cis/trans 

isomers of linoleic (C18:2) and linolenic (C18:3) FAMEs was from Supelco Analytical 

Sigma–Aldrich (St. Louis, MO, USA). Tridecanoic acid methyl ester (C13:0) was used as 

external standard (ES) in the determination step. It is not present in the samples and its 

physico-chemical properties are similar to those of the target FAs. Individual stock 

standard solutions and multistandard solutions at different concentrations were 

prepared by dilution in n-hexane. The concentrations were selected according to those 

of the FAs in subcutaneous fat in pork, and the solutions were stored at −20 ºC. The 

international isotopic standards (IIS) used for determination of δ13C values by IRMS 

were mineral oil (IAEA NBS22) and sacarose (IAEA CH6), provided by the International 

Atomic Energy Agency (IAEA, Vienna, Austria). 

2.3. Instruments 

An Agilent 7820A GC System equipped with an FID was used to separate and 

determine the esterified FAs in each extract. The GC was furnished with an autosampler 

and a split/splitless injector. An SPTM-2380 fused silica capillary column (60 m × 0.25 

mm I.D., 0.2 µm film thickness) provided by Supelco (Bellefonte, PA, USA) was used as 

analytical column. EZ Chrom Elite Compact software (version 3.3.2 from Agilent 

Technologies, Santa Clara, CA, USA) was used for acquisition and processing of data in 

the GC–FID system. A Delta V Advantage Isotope Ratio Mass Spectrometer from 

Thermo Fisher Scientific (Bremen, Germany) was also used. This system was equipped 

with a ConFlo IV Universal Interface for continuous flow analysis and a Flash 2000 HT 

https://www.google.es/search?biw=1024&bih=506&q=arachidonic+acid&spell=1&sa=X&ei=wsmaU6-VJaPU0QWEtIHwCg&ved=0CBoQvwUoAA
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elemental analyzer. A molecular sieve packed column (5 Å, 1 m × 1/8" × 2 mm) from 

Thermo Scientific (Bremen, Germany) was used for sample clean-up. Isodat Gas Isotope 

Ratio MS Software (version 3.0 from Thermo Scientific, Bremen, Germany) was used to 

acquire and process the signal obtained by IRMS analysis. 

Statgraphics Centurion XV Version 15.1.02 for Windows and Mass Profiler 

Professional (MPP) software package (version 2.0 from Agilent Technologies, Santa 

Clara, CA, USA) were used for statistical analysis of the generated data. Roccet software 

(Version on-line, URL http://www.roccet.ca/) was used for data pretreatment and 

analysis of Receiver Operating Characteristic (ROC) curves.  

2.4. Preparation of FAMEs 

Conversion of FAs into their more volatile FAMEs is mandatory prior to individual 

GC separation. 0.1 g of subcutaneous fat was shaken with 2 mL of hexane and vortexed 

for 1 min to complete solubilization. 0.2 mL of 2 M methanolic potassium hydroxide 

solution was added and the byphasic system was vortexed for 1 min. The two phases 

were easily separated and 1.5 mL of the upper phase —containing the esterified FAs— 

was pipetted in a glass vial. This solution was 1:100 (v/v) diluted in hexane and the 

resulting analytical sample was spiked with the ES (40 µg mL-1) prior to injection into 

the GC. 

2.5. Determination of FAMEs by GC–FID  

2 µL of each analytical sample was injected into the GC–FID equipment for 

analysis of FAMEs. The injector and detector were maintained at 250 and 295 ºC, 

respectively. All samples were prepared and analyzed in triplicate. The injection was 

1:10 split and the program of the temperature gradient was as follows: the initial oven 

temperature was kept at 50 ºC for 2 min, then raised at 15 ºC min-1 to a final temperature 

of 250 ºC, which was held for 15 min. The equilibration time was 3 min. The mobile 

phase was helium at a flow rate of 1 mL min-1. The corresponding standard was used to 

confirm identification of each FAME in the fat samples. Quantitative analysis was 

carried out by preparation of a calibration model for each FA by using the multistandard 

http://www.roccet.ca/
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solution at different concentrations spiked with the ES at 40 µg mL-1. The 

concentrations of the target FAs were expressed as percentage in relative terms. 

2.6. Determination of 13C/12C isotopic ratio by IRMS.  

Sacarose (δ13C–10.45‰) and NBS22-Oil (δ13C –30.03‰) were used as IIS within 

the ranges 350–450 and 550–750 µg, respectively, to achieve a signal intensity of 7600 

mV. Samples (within the range 320–420 µg) were weighed into a tin capsule (3.3 × 5 

mm, IVA Analysentechnik e.K., Düsseldorf, Germany). The analyses were carried out in 

batches of 10 samples, sandwiched by standards as internal control. The carrier and 

reference gas (He in both cases) were circulated at 80 and 200 mL min-1, respectively. 

The temperatures of the elemental analyzer were set at 65 and 1020 ºC for the oven 

temperature and combustion reactor, respectively. The results of the carbon isotope 

ratio (δ13C) analyses were reported as the per mil (‰) enrichment relative to the 

international standard, V-PDB (Vienna Pee Dee Belemnite) for carbon isotope ratio, 

according to the equation: 

X(‰) = [(Rsample/Rreference) - 1] × 1000, 

where X is the ratio of the heavy to the light stable isotope (e.g. 13C/12C) in the sample 

(RSample) and in the standard (RReference)22 The fat samples were analyzed in duplicate with 

a variability less than 0.20‰ for δ 13C measurements. 

2.7. Statistical analysis 

The raw data files were used to create a data set formed by samples (columns) and 

the quantitative variables (concentrations of FAs and δ13C values). The data set, formed 

by 11 variables × 80 samples, was exported as comma separated value files (.csv) into 

the Roccet and MPP softwares for processing. 

Normalization by logarithmic transformation was used as pre-processing step 

since the data obtained from the two different analyses were combined. An ANOVA test 

was executed with the normalized data to evaluate the significance of each variable (p-

value lower than 0.05). Statistical analysis was carried out by Principal Component 

Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). In the latter 
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case, an N-Fold cross-validation model was used. With this model, the classes of the 

input data are randomly divided into N equal parts; N-1 parts are used for model 

training, and the remaining part is used for testing. The process is iteratively repeated 

N times using each time a different subset for testing. Thus, each row is used at least 

once in training and once in testing, and a confusion matrix is generated. This whole 

process can then be repeated as many times as specified by the number of repetitions. 

Ten repetitions and a fold number of three were selected in all PLS-DA models. 

The ROC curves were individually obtained for different panels of variables in 

order to find discrimination trends between pairs of feedings. 

 

3. Results and discussion 

3.1. Development of calibration models for analysis of FAMEs 

The calibration models were prepared from 25 FAMEs prior to analysis of the 

samples by using multistandard solutions at different concentrations as a function of 

the abundance of each compound in subcutaneous pork fat.1,3,23 The most concentrated 

FAs —C16:0, C18:0, and particularly, C18:1n9— ranged from 1.8 to 187.5 µg mL-1; a 

second set (C14:0, C:16:1n9 and the C18:2 isomers) ranged from 0.90 to 93.75 µg mL-1, 

and a third calibration range (from 0.48 to 48.75 µg mL-1) was applied to C12:0, C17:0, 

C18:3 isomers, C20:1n9, C20:2, C20:3 and C20:4. Finally, the rest of FAs were modelled 

from 0.125 to 12.5 µg mL-1. Six dilutions (1:2, 1:5, 1:10, 1:25, 1:50, 1:100 and 1:250) of 

the multistandard stock solution, each injected in triplicate, were used to run the 

calibration curves. All the solutions at the different concentrations were spiked with the 

ES at 40 µg mL-1.  

The calibration curves were obtained by plotting the ratio between the peak area 

for each FA and the peak area of the ES. The calibration equations and regression 

coefficients are listed in Supplementary Table 1. As can be seen, the regression 

coefficients were above 0.99 for all the compounds. It is also worth mentioning that the 

eight C18:3 isomers could not be independently quantified, except for the t,t,t and c,c,c 
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isomers. A similar situation was found for C20:3 and C20:4 owing to overlapping of 

their chromatographic peaks.  

3.2. Analysis of FAs in the target samples by GC–FID and IRMS characterization 

Taking into account the variable concentration of the FAs in subcutaneous pig fat, 

different dilution factors were tested for analysis of the derivatized samples to obtain 

quantitative information of the maximum number of FAs. Thus, an 1/100 (v/v) dilution 

factor was adopted for analysis of the 10 most concentrated FAs (C14:0, C16:0, C16:1n9, 

C17:0, C18:0, C18:1n9, c, c C18:2, c,c,c C18:3, C20:0 and C20:2), while the rest of FAs 

were detected at lower dilution factors at which quantitative analysis of the most 

concentrated FAs was compromised; therefore, they were discarded from the results 

obtained at dilutions lower than 1/100. Supplementary Figure 1 shows a GC–FID 

chromatogram obtained by analysis of subcutaneous fat from a Bellota sample. 

After analysis, the data were processed to obtain the FAs concentration profile from 

each sample. Table 1 summarizes the results provided by the 80 samples with 

information of the maximum and minimum concentrations found for each FA and the 

mean concentration and standard deviation for each target feeding. The δ13C value is 

also included to show the variability of this parameter. As Table 1 shows, four FAs 

(C18:1n9, C16:1n9, C18:0 and c,c C18:2) clearly dominated the concentration profile of 

subcutaneous fat, which is in agreement with characterization studies previously 

reported.1,3 The rest of FAs were present at relative concentrations below 5%. 

The comparison of the FAs profile among the four types of samples grouped by 

feeding revealed that the content of major FAs was similar for Cebo and Cebo de Campo 

feedings (p-value above 0.0713), while samples from Recebo and Bellota also provided 

a similar profile (p-value above 0.1239); a quite foreseeable behavior taking into account 

that these two feedings are the most similar among the four classes under study. It is 

also worth emphasizing that C18:1n9 was the most concentrated FA in the four groups 

of samples (about 50% of relative concentration), but mean values were higher for 

Recebo and Bellota (56.03 and 55.44%, respectively) that could be ascribed to similarity 

between these two feeding regimes. Animals subjected to Recebo regime are fattened in 
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montanera conditions up to they reach a cut-off weight, while Bellota animals are fed 

under montanera conditions up to they are slaughtered. 

 

Table 1. Maximum, minimum and mean concentration values expressed as percentage of FAs 

and δ13C as per thousand as a function of the feeding regime. 

 

The only official method for discrimination of feeding regimes of Iberian pigs was 

based on GC–FID analysis of FAs composition in subcutaneous adipose tissue.6,18 This 

method was discarded as official method in 2007 as it was not able to detect frauds 

imvolving Iberigan pigs fed with prepared feeds.18 B.O.E. 200420 includes a summary of 

the criteria used for classification of the three defined feedings: Cebo, Recebo and 

Bellota. The relative standard deviation (RSD %) was quite similar among the four 

groups under study (Table 1): below 10% for all FAs, except for the two most relevant: 

C16:0 and C18:1.  

The δ13C values (see Supplementary Figure 1 that shows an IRMS spectrum 

provided by analysis of a subcutaneous adipose Bellota sample) ranged from –28.01 to 
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–24.54‰, with RSD below 3‰. Attending to this variability, the inclusion of δ13C in 

classical discrimination models based on FAMEs analysis could aid to feedings 

classification. In this research, only carbon isotopic ratios were studied. The isotopic 

analysis of hydrogen and oxygen has been applied mainly for geographical 

discrimination of different types of food such as durum wheat semolina and 

potatoes.4,16,25-30 Geographical discrimination is out of the scope of the present research 

as all samples were collected in a delimited area, as specified under materials and 

methods.  

3.3. Influence of feeding on the FAs profile and δ13C value 

The data set was normalized by logarithmic transformation because of the two 

analytical methods used. The effect of this pre-processing step was proved by 

application of the Kurtosis and Skewness tests. Then, the normalized data set was 

analyzed by ANOVA to evaluate the influence of the feeding type on both the 

concentration of FAs and the value of 13C/12C isotopic ratio (dependent variables).  

Table 2 summarizes the results provided by ANOVA of the 11 dependent variables 

as a function of the predictive factor, the feeding type. The variance is decomposed into 

two components: between-groups variability (inter-groups) and within-group 

variability (intra-group). As can be seen, most of the variables reported a very high 

significance with p-values below 0.001, except for C17:0 and c,c C18:2 that did not show 

any level of significance. Therefore, the feeding factor exerted a noticeable influence on 

the FAs profile and 13C/12C ratio. In fact, feeding was identified as the main variability 

source to explain the levels of the most concentrated FAs (C16:0, C18:0, C18:1n9 and 

C20:0) as well as the 13C/12C ratio, which was deduced by comparing the sum of squares 

between and within the target groups.  

Figure 1 shows the Box-and-Whisker plots obtained by normalized concentrations 

of the significant variables, which allowed detecting some differences among the four 

groups. Thus, the δ13C values revealed differences between Cebo de Campo samples and 

the other three feedings. On the other hand, C16:0, C16:1n9 and C18:0 were 

characterized by a similar trend since they were clearly more concentrated in Cebo de 

Campo and Cebo samples than in those from Bellota and Recebo. The opposite situation 
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was observed with C18:1n9, which was more concentrated in animals subjected to 

montanera regime during a given period. A different trend was observed for C20:0, 

which provided discrimination in concentration between Cebo de Campo and Cebo 

samples, while Bellota and Recebo samples gave levels between the two previous 

groups. 

 

Table 2. Sum of squares between and within groups, mean square and significance (p-values) 

obtained after application of the ANOVA test. 

Compound Variability 
Sum of 
squares 

D.f. Mean square p-Value 

C14:0 Between-groups 0.95 3 0.32 0.000 
 Within-group 1.93 76 0.03  
 Total 2.88 79   

C16:0 Between-groups 1.32 3 0.44 0.000 
 Within-groups 1.03 76 0.01  
 Total 2.35 79   

C16:1n9 Between-groups 2.15 3 0.72 0.000 
 Within-groups 3.66 76 0.05  
 Total 5.82 79   

C17:0 Between-groups 0.13 3 0.04 0.826 
 Within-groups 10.71 76 0.14  
 Total 10.83 79   

C18:0 Between-groups 2.92 3 0.97 0.000 
 Within-groups 2.83 76 0.04  
 Total 5.75 79   

C18:1n9 Between-groups 1.68 3 0.56 0.000 
 Within-groups 0.78 76 0.01  
 Total 2.46 79   

c, c, C18:2 Between-groups 0.18 3 0.06 0.121 
 Within-groups 2.31 76 0.03  
 Total 2.50 79   

c, c, c C18:3 Between-groups 3.52 3 1.17 0.000 
 Withn-groups 7.19 76 0.09  
 Total 10.71 79   

C20:0 Between-groups 6.96 3 2.32 0.0000 
 Within-groups 5.35 76 0.07  
 Total 12.32 79   

C20:2 Between-groups 5.06 3 1.69 0.000 
 Within-groups 14.19 76 0.19  
 Total 19.25 79   

δ13C Between-groups 0.15 3 0.05 0.000 

 Within-groups 0.09 76 0.00  
 Total 0.24 79   
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Figure 1. Box-and-whisker plots provided by comparison of normalized concentrations of 

significant FAs (%) and δ13C (‰) according to the feeding regime. 

 

The influence of feeding on the FAs profile and δ13C values led to apply multivariate 

analysis to find discrimination trends among groups. Thus, PCA was first applied to 

check the incidence of the breeding type on the FAs profile and the 13C/12C ratio. The 

three-dimensional PCA scores plot with samples identified by symbols as a function of 

the type of feeding is shown in Supplementary Figure 2. The 3D-plot allowed explaining 

a 70.6% of the total variability. One cluster formed by Cebo de Campo samples can be 

clearly differentiated from the other three groups. Thus, the Cebo de Campo class was 

the feeding type providing the most discriminating pattern in the FAs profile and the 

13C/12C ratio. On the other hand, a partial separation can be observed for the other three 

feeding classes (Cebo, Recebo and Bellota), which allows setting differences. A 

particular behavior was visualized for Cebo samples as two sub-clusters were found, one 

of them completely separated, and a second sub-cluster that overlapped with Recebo 

and Bellota samples. No details were provided by farmers about this result, but it could 

be associated with differences in the provided feeding. The results obtained with the 



Determination of fatty acids and δ 13C in fat to identify the feeding regime of Iberian pigs 

448 
 

PCA seems to be quite logical since the maximum overlapping was detected between 

Recebo and Bellota samples that constitute the most similar classes since animals 

subjected to Recebo feeding must reach a minimum weight in the dehesa (montanera 

regime).  

 

Figure 2.PLS-DA scores plot (different views) of samples from slaughtered pigs subjected to 

different feeding regimes.X-axis, t0; Y-axis, t1; Z-axis, t2. Explained variability: X-axis, 40.95%; 

Y-axis, 19.56%; Z-axis, 9.65%. Squares, Bellota; circles, Cebo de Campo; triangles, Cebo; 

rhombuses, Recebo. 

 

The next step was application of supervised statistical analysis by PLS-DA to 

evaluate the capability of the data set for development of predictive/discrimination 

models. Figure 2 shows the PLS scores plot that allows discrimination between Cebo de 

Campo and Cebo samples, while Bellota and Recebo samples overlapped. This behavior 

was checked in the confusion matrix provided by this PLS-DA model both in the training 

and validation steps, which were carried out by cross-validation. Thus, Bellota, Cebo de 

Campo and Cebo were classified with accuracy above 90%, while the model failed in the 

classification of Recebo samples with a 45% of accuracy. In fact, the model confused 

35% of the Recebo samples, which were erroneously classified as Bellota samples.  

3.4. Multivariate analysis between pairs of feedings 

Since the variability in the concentrations of FAs and δ13C values does not allow 

complete discrimination of the four groups of feedings, multivariate analysis was 
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applied to pairs of feedings to precise the patterns that differentiate them. For this 

purpose, one PLS-DA model was created for each pair of feedings, and then, ANOVA 

analysis revealed the main statistical differences in subcutaneous fat of animals 

subjected to each feeding (Supplementary Figure 3).  

Supplementary Table 2 shows the discrimination capability for training and 

cross-validation obtained from the six cases. As expected, high-discriminating models 

were found in all pairs of feedings, except for that involving Bellota and Recebo samples, 

which provided discrimination capabilities above 75% in the training step and 65% in 

the validation step. Supplementary Figure 3 shows the 3D-plots obtained by PLS-DA 

with clear separation between each pair of feedings. Therefore, if the variability study is 

focused on two types of feedings the discrimination models gain in prediction capability, 

even for Bellota and Recebo samples, which seems to be the two most similar feedings.  

After supervised analysis, an ANOVA test was independently applied to each pair 

of feedings to evaluate its influence on the concentration of FAs and δ13C. Table 3 lists 

the variables that are significantly different by comparison of two feedings and the p-

values obtained for them. As can be seen, the δ13C value was significantly altered by the 

feeding in all cases, with p-value below 0.001, except for the pair Recebo vs. Cebo. The 

most concentrated FAs in subcutaneous fat, C16:0, C18:0 and C18:1n9, were significant 

in most of the evaluated pairs, except for Cebo de Campo vs. Cebo and Recebo vs. 

Bellota. It is worth mentioning that the significance level was quite high in all cases with 

p-values below 0.001. Only two FAs, C17:0 and c,c C18:2, were not significantly affected 

by the type of feeding.  

3.5. Prediction analysis by multivariate ROC analysis 

The influence of feeding on the variability of FAs concentration and δ13C values in 

subcutaneous fat from Iberian pigs supports the assessment of predictive models based 

on panels formed by combination of significant variables according to the ANOVA test. 

ROC curves are generally considered the method of choice for evaluating the 

performance of potential biomarkers associated to biological processes. In this research, 

panels were prepared by multivariate ROC analysis, which involves a preliminary study 
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of the individual predictive capability of all the variables and, then, the combination of 

variables in panels to maximize the predictive capability. 

Table 3. p-Values obtained by application of ANOVA test between pairs of regimes. 

 

Taking into account that Bellota is the most appreciated class, prediction models 

were created for classification of Bellota vs. Cebo de Campo, Bellota vs. Cebo and 

Bellota vs. Recebo. Other panels with commercial interest were also configured for 

discrimination between Cebo vs. Cebo de Campo and Cebo vs. Recebo. Predictive 

models were developed by dividing the set of samples into training and validation sets, 

which included 75% and 25% of the samples of each condition, respectively. The samples 

used for validation were not included in the training step, which means that this was 

carried out with an external set. The algorithm used for classification and selection of 

variables in the panels was PLS-DA with three latent variables. All the panels were 

formed by three variables, except for Bellota vs. Recebo, in which the best predictive 

behavior was provided by δ13C, and no improvement provided the inclusion of 

additional variables. In the studies involving other combinations of feeding regimes, the 

sensitivity and/or specificity was not improved by inclusion of more variables either. It 

is also worth mentioning that all panels constituted by three variables were formed by 

δ13C and the most concentrated FA: oleic acid. Additionally, stearic acid contributed to 
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predict Bellota vs. Cebo de Campo and Bellota vs. Cebo, while palmitic acid and 

eicosanoic acid improved the models for discrimination of Cebo vs. Recebo and Cebo vs. 

Cebo de Campo, respectively. The models involving Bellota vs. Cebo de Campo and 

Cebo reported high sensitivity and specificity, always above 90%, which lead to quite 

good predictive models. The most complicated case was the model involving Bellota vs. 

Recebo, based on a unique variable, δ13C, which reported a specificity of 80%, while 

sensitivity decreased to 63%. This result agrees with that provided by the PLS-DA study 

for the same two feeding regimes. The efficiency of this model can be compared with 

that provided by previous studies based on IRMS analysis, such as that carried out by 

García Casco et al.,4 who provided a model based on the analysis of stable isotopes of 

carbon (δ13C) and sulphur (δ34S) with lower discrimination capability than the model 

obtained in this research. The sensitivity and specificity of the models for discrimination 

of Cebo vs. Recebo and Cebo vs. Cebo de Campo were 93% and 85%, respectively. The 

most compromised case was the model involving Recebo vs. Bellota that reported a 

specificity of 80% and sensitivity of 63%. Thus, these models enabled to classify samples 

according to their feeding regimes. These good prediction parameters can be explained 

by the ROC curves illustrated in Figure 3. 

The results of sensitivity and specificity for each panel can be combined with the 

estimations of prediction capability for each class and the false positive rates listed in 

Supplementary Table 3. Thus, these values associated with the validation set were quite 

consistent with the results provided by the training set. As the validation set was formed 

by samples not included in the training set, the quality and statistical support is 

considerably enhanced.  

At present, there are not discrimination methods able to identify the feeding 

regime used with capability to detect frauds. Different techniques have been 

independently assayed. However, no methods based on the application of different 

analytical techniques had been combined so far. In view of these results, the statistical 

combination of the results obtained by different analytical methods could be the key for 

the correct discrimination of feeding regimes in the sector of Iberian pig. Taking into 

account the demand for methods to discriminate feeding regimes, this approach could 
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be implemented in routine laboratories since the analysis of fatty acids is already carried 

out at this level, while IRMS analysis is frequently used in reference food laboratories. 

 

Figure 3. Individual ROC curves obtained from panels of biomarkers for discrimination 

between pairs of diets. The thick line corresponds to validation (external) and the fine line 

corresponds to training. Bellota vs. Cebo de Campo variables: δ13C, C18:1n9, C18:0; Bellota vs. 

Cebo variables: δ13C, C18:1n9, C18:0; Cebo vs. Cebo de Campo variables: δ13C, C18:1n9, C20:0; 

Bellota vs. Recebo variables: δ13C; Cebo vs. Recebo variables: δ13C, C18:1n9, C16:0. 
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Supplementary information 

 

 

Supplementary Figure 1. GC–FID chromatogram (A) and IRMS spectrum (B) both from a 

sample of Bellota subcutaneous fat. 

 

Supplementary Figure 2. PCA score plots (different views) associated to FAs and δ13C as a 

function of the feeding regime. 
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Supplementary Figure 3. 3D-plots obtained by PLS-DA analysis of FAs and δ13C to 

discriminate pair of diets. 
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Supplementary Table 1. Calibration models for quantitative analyses of FAMEs by GC–FID. 

Compound Name 
RT 

(min)* 

Calibration 
Range  

(μg mL-1) 

Calibration 
equation** 

Regression 
coefficient 

(R2) 

Methyllaureate,C12:0 27.6 48.75–0.4875 Y=0.0864·X–0.0171 0.9994 

Methyltridecanoate,C13:0 29.6 External standard 

Methylmyristate,C14:0 31.5 0.9375–93.75 Y=0.4403·X-0.1007 0.9964 

Methylpalmitate,C16:0 35.2 1.875–187.5 Y=0.0209·X+0.0191 0.9999 

Methylpalmitoleate,C16:1n9 36.2 0.9375–93.75 Y=0.0041·X+0.0081 0.9992 

Methylheptadecanoate,C17:0 36.8 0.4875–48.75 Y=0.0131·X+0.0061 0.9997 

Methylstearate,C18:0 39.1 1.875–187.5 Y=0.0258·X-0.0806 0.9998 

Methyloleate,C18:1n9 39.3 1.875–187.5 Y=0.0544·X+0.1724 0.9998 

t9,t12Methyllinoleate,C18:2 40.1 

0.9375–93.75 

Y=0.0974·X+0.0063 0.9999 

c9,t12Methyllinoleate,C18:2 40.4 Y=0.0039·X+0.0028 0.9999 

t,9c12Methyllinoleate,C18:2 40.5 Y=0.004·X-0.0009 0.9999 

c9,c12Methyllinoleate,C18:2 40.6 Y=0.0261·X+0.0094 0.9990 

t9,t12,t15Methyllinolenate,C18:3 41.3 

0.4875–48.75 

 

Y=0.0079·X+0.004 0.9990 

t9,t12,c15Methyllinolenate,C18:3 
41.6 Y=0.0293·X+0.001 0.9984 

t9,c12,c15Methyllinolenate,C18:3 

c9,t12,t15Methyllinolenate,C18:3 
41.7 

Y=0.0034·X+0.0053 0.9973 
c9,c12,t15Methyllinolenate,C18:3 

c9,t12,c15Methyllinolenate,C18:3 
42.0 

t9,c12,c15Methyllinolenate,C18:3 

c9,c12,c15Methyllinolenate,C18:3 42.2 Y=0.0085·X+0.003 0.9941 

Methyleicosanoate, C20:0 42.3 0.125–12.5 Y=0.0736·X+0.0126 0.9997 

Methyleicosenoate, C20:1n9 41.6  Y=0.0293·X+0.001 0.9984 

Methyleicosadienoate, C20:2 43.6 0.4875–48.75 Y=0.0264·X+0.0076 0.9999 

Methylbehenate, C22:0 44.5 0.125–12.5 Y=0.0359·X+0.0037 0.9997 

Methyleicosatrienoate, C20:3n6 

45.1 0.4875–48.75 Y=0.025·X+0.0061 0.9999 Methyleicosatetraenoate, C20:4n3 

Methylaraquidonate, C20:4n6 

Methyldocosadienoate, C22:2n6 46.3 0.125–12.5 Y=0.0245·X+0.0035 0.9996 

Methyleicosapentaenoate, C20:5n3 46.6 0.125–12.5 Y=0.0221·X+0.0058 0.9994 

Methyltetracosenoate, C24:0 47.1 0.125–12.5 Y=0.033·X+0.004 0.9995 

Methyldocosatetraenoate, C22:5n6 47.9 0.125–12.5 Y=0.0316·X+0.0058 0.9996 

Methyldocosapentanoate, C22:5n3 49.4 0.125–12.5 Y=0.041·X+0.0141 0.9984 

Methylhexacosanoate, C26:0 49.6 0.125–12.5 Y=0.0505·X+0.0027 0.9990 

Methyldocosahexaenoate, C22:6n3 49.9 0.125–12.5 Y=0.016·X+0.0079 0.9947 

Methyloctacosanoate, C28:0 51.9 0.125–12.5 Y=0.0308·X+0.0409 0.9938 

*RT: retention time; **Y: peak area of the target FAME/peak area of the ES; X: concentration. 

 



Chapter X 

459 
 

Supplementary Table 2. Accuracy values (expressed as %) for the training and validation 

sets obtained by PLS-DA as a function of feeding regime. 

 

 

Validation Predicted Samples 

 [B] [R] [CA] [C] Accuracy 

Bellota[B] 18 2 0 0 90 

Recebo[R] 7 9 2 2 45 

CebodeCampo[CA] 0 1 19 0 95 

Cebo[C] 0 0 1 19 95 

Average     81.25 

 

 

Supplementary Table 3. Prediction capability values and false positive rates (expressed as %) 

obtained for the training and validation models created for different pairs of diets. 

 

Bellota vs. 
Cebo de 
Campo 

Bellota 
Prediction 
Capability 

Cebo de 
Campo 

Prediction 
Capability 

False Positive 
for Bellota 

False 
Positive for 

Cebo de 
Campo 

Training model 100 93.3 6.3 0 

Validation model  100 100 0 0 

     

Bellota vs. 
Recebo 

Bellota 
Prediction 
Capability 

Recebo 
Prediction 
Capability 

False Positive 
for Bellota 

False 
Positive for 

Recebo 

Training model 80 73.3 25.0 21.4 

Validation model  100 60 28.57 0 

     

Training Predicted Samples 

 [B] [R] [CA] [C] Accuracy 

Bellota[B] 19 1 0 0 95 

Recebo[R] 7 9 2 2 45 

CebodeCampo[CA] 0 0 20 0 100 

Cebo[C] 0 0 1 19 95 

Average     83.75 
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Bellota vs. 
Cebo  

Bellota 
Prediction 
Capability 

Cebo 
Prediction 
Capability 

False Positive 
for Bellota 

False 
Positive for 

Cebo 

Training model 100 86.7 1.27 0 

Validation model  100 60 28.58 0 

     

Cebo vs. 
Recebo 

Cebo 
Prediction 
Capability 

Recebo 
Prediction 
Capability 

False Positive 
for Cebo 

False 
Positive for 

Recebo 

Training model 86.7 86.7 13.39 13.3 

Validation model  80 100 0 16.6 

     

Cebo de 
Campo vs. 
Cebo 

Cebo de 
Campo 

Prediction 
Capability 

Cebo 
Prediction 
Capability 

False Positive 
for Cebo de 

Campo 

False 
Positive for 

Cebo 

Training model 100 93.3 6.3 0 

Validation model  100 100 0 0 

 

 

 

 

 



  

 

 
 

 

 

 

 

 

DISCUSSION OF THE 

RESULTS 

 

 
 
 



  

 

  



Discussion of results 

463 

 

The present Thesis Book is based on the format of articles compilation 

(published or next to publication) regulated by University of Córdoba. Therefore, 

articles were included as such. A joint discussion of the results obtained according 

to the objectives initially planned is necessary to provide a global vision of the main 

results derived from the Doctoral Thesis. 

The highest present challenge in metabolomics is to maximize the detection 

capability of the analytical methods to achieve unequivocal identification of 

thousands of metabolites, thus making possible to generate representative results 

of complex metabolomes. Associated to this challenge, the general objective of this 

Doctoral Thesis was to propose innovations in the different stages of the analytical 

process involving sampling, sample preparation, detection and data analysis to 

improve the detection capacity of analytical methods. The research developed in 

this Thesis Book is divided into three sections according to the aim and the specific 

metabolomic strategy used for each purpose. Thus, Section I is concerned to 

demonstrate that the versatility of the triple quadrupole analyzer allows improving 

the identification/quantification of certain families of metabolites. Section II deals 

with untargeted metabolomics analysis to study those aspects related with the 

detection coverage with the aim of improving the identification. By contrast, 

Section III focuses on strategies for searching potential biomarkers in 

nutrimetabolomics studies, with clinical and agro-food applications. 

In this part of the Doctoral Thesis Book the most relevant results obtained 

throughout the experimental development proposed in the different chapters are 

presented. One common link among sections is the main detection technique: 

mass spectrometry with several variations. The analytical sensitivity, selectivity, 

accuracy, precision and resolution of mass spectrometry make this technique the 

most preferred detection tool for targeted and untargeted metabolomic analysis.  
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Section I. Methodological development in targeted 

metabolomics analysis: versatility of the triple quadrupole 

mass spectrometer 

Low resolution mass spectrometry, essentially with a QqQ configuration, is 

an ideal tool to undertake quantitative and confirmatory analysis in metabolomics 

and, therefore, to work in targeted analysis. However, the QqQ mass spectrometer 

offers additional features that make it a detector that can play an important role in 

qualitative analysis [1,2]. For this purpose, in Section I, the development of DDM 

was used with the aim of increasing the identification power in the analysis of 

certain families of lipids: FAHFAs and polar lipids (ceramides, glycero-

phospholipids and sphingolipids).  

A novel class of endogenous mammalian lipids endowed with antidiabetic 

and anti-inflammatory properties were recently discovered: FAHFAs formed by 

condensation between a hydroxy fatty acid and a fatty acid [3]. Research on 

FAHFAs has revealed multiple effects that improve glucose-insulin homeostasis. 

FAHFAs are present in human serum and tissues at low nanomolar 

concentrations, similar to other signaling lipids such as endocannabinoids. 

Therefore, high sensitive and selective profiling analysis of these compounds in 

clinical samples is demanded.  

For this purpose, in Chapter I, an automated qualitative and quantitative 

method based on SPE–LC–MS/MS has been developed for determination of 

FAHFAs in serum with the required sensitivity and selectivity. Matrix effects were 

evaluated by preparation of calibration models in serum and methanol. Recovery 

factors ranged between 73.8 and 100% in serum. The within-day variability ranged 

from 7.1 to 13.8 %, and the between-days variability varied from 9.3 to 21.6 %, 

which are quite acceptable values taking into account the low concentration levels 

at which the target analytes are found.  

The fragmentation scheme for PAHSA, as a model compound to explain the 

product ions selected for each FAHFA, is shown in Figure 1. As can be seen, three 
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main product ions were formed according to this fragmentation scheme. The most 

intense product ion corresponded to the fatty acid —in this example to palmitic 

acid carboxylate ion at m/z 255. The hydroxy fatty acid moiety fit the second 

product ion, which was formed by cleavage of the ester bound. This ion was 

obtained at m/z 299 for PAHSA. A third representative fragment was obtained by 

dehydration of the last ion — in this case at m/z 281. 

 

Figure 1. PAHSA precursor ion and product ions in negative ionization mode. 

According to the sensitivity of the different transitions from precursor to 

product ions, those leading to the fatty acid carboxylate fragments were selected 

for quantitative purposes, while the other two transitions were selected with 

qualitative interest in the MRM method. Additionally, FAHFAs were confirmed 

using the NLS, considering two neutral losses for each compound (example in 

Figure 2). These were formed by generation of the two ions selected as qualifiers. 

Therefore, the MRM method was configured for quantification of FAHFAs in real 

samples. 

 

Figure 2. PAHSA precursor ion and neutral losses in negative ionization mode. 
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The method was applied to a cohort of human individuals to evaluate the 

influence of the glycaemic state and BMI on FAHFA levels. The application of the 

method to the studied cohort allowed detecting 11 FAHFAs in at least 75% of the 

samples. The most concentrated FAHFAs in serum were PAHSA and PAHOA, with 

relative concentrations around 35 and 25%, respectively; followed by SAHOA, 

OAHOA and OAHSA, with relative concentrations from 5 to 15%. Considering the 

glycaemic state, two compounds reported significant differences in their 

concentrations: PAHPA, which resulted significant between diabetic and 

prediabetic individuals (p-value 0.0149); while POHPO was significant for the 

comparison between prediabetic and normoglycaemic individuals (p-value 

0.0251). On the other hand, the BMI only contributed to explain the variability in 

the concentration of POHPA when normal and overweighed individuals were 

compared (p-value 0.0300). This automated method could be implemented in a 

similar matrix, such as plasma, with minimum user assistance. 

Polar lipids, especially glycerophospholipids, constitute the main 

components of cell membranes and are precursors of signaling molecules in many 

cellular and physiological processes. For this reason, the development of methods 

with high capability for multiple detection of polar lipids in biological samples is 

required.  

In Chapter II, the objective was to develop a method for massive 

qualitative/quantitative determination of polar lipids in plasma by combination of 

acquisition methods with a triple quadrupole mass analyzer. The methods have 

been targeted at the following families of polar lipids: CERs, SMs, SBs, LPLs, PCs, 

PEs, PAs, PGs, PIs, PSs and plasmalogens (O-alkyls and O-alkenyls). The strategy 

was optimized in two steps: a) a first step for detection of lipids by monitoring 

selective fragmentation patterns representative of each lipid family; and b) a 

second step for confirmation of lipid species by detection and identification of 

product ions associated with the conjugated fatty acids.  

A practical example of strategy used for lysoPC(18:0) is shown in Figure 3. 

In the first step the representative fragment of PCs, which corresponds to the 
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phosphorylcholine moiety m/z 184.1, was monitored in positive ionization mode, 

while the R-COO– ion of stearic acid (m/z 283.3) was monitored in negative 

ionization mode in the second step. The retention time in both steps was the same. 

Figure 3. Practical example of the strategy used for development of the methods. 

 

The acquisition list was divided in two MRM methods to ensure the 

detection of all transitions with enough instrumental sensitivity according to 

chromatographic retention time and relative abundance in plasma. 

The combination of the two MRM methods allowed the detection of 398 

polar lipids in plasma in 64 min (32 min per run). This strategy has been applied 

to a cohort formed by 384 individuals in order to obtain a qualitative and 

quantitative distribution of polar lipids in human plasma. The most concentrated 

lipid families in relative terms were LPLs, plasmalogens and PCs, with mean 

relative concentration of 58.0, 17.1 and 8.3%, respectively. Then, SMs and PEs 

reported a relative concentration of 2.0%, followed by PSs with 1.1%.  

The proposed method could be used in lipidomic analysis of biological 

samples to provide qualitative and semiquantitative information of lipid polar 

families. The QqQ analyzer combines the qualitative potential of DDMs, namely 

NLS, PIS and PrIS, with the quantitative possibilitities of the MRM mode once the 

suited transitions have been defined. 
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Section II. Methodological development in untargeted 

metabolomics analysis: improvement of the analytical 

process 

As mentioned, one of the main challenges of metabolomics is to improve the 

detection capacity and, subsequently, the identification of metabolites. This is 

specially relevant in untargeted analysis, where it is also critical to reduce 

instrumental variability in large batches of samples. These weaknesses of 

untargeted analysis by mass spectrometry are generally associated to a critical step 

of the analytical process: detection. However, other steps such as sampling, sample 

preparation and data analysis should be also considered. For this reason, the main 

aims of Section II were to develop new strategies applied throughout these other 

steps of the analytical process —sampling (Chapter III), preparation of the sample 

(Chapter IV and V) and data analysis (Chapter VI)— to improve the detection and 

identification capacity in untargeted metabolomic analysis or to reduce the effect 

of variability sources on large sets of samples. The results provided by each step 

(sampling, sample preparation and data analysis) are summarized below. 

Sampling 

Human blood is the most common biofluid used by clinicians, but blood 

collection is a frequently forgotten aspect that can be responsible for uncontrolled 

variability sources in metabolomic analysis [4,5]. There are several types of 

commercial tubes (with different stopper, stopper lubricant, separator gel, clot 

activator, etc.) for sampling serum or plasma, which are widely used in 

metabolomic analysis [6]. However, most of the studies dealing with the influence 

of blood collection tubes on metabolomics profiling have been restricted to 

conventional tubes for plasma and serum [4,5]. Polymeric gel tubes, which are 

frequently proposed to accelerate the separation of serum and plasma, had not 

been studied.  

The research described in Chapter III is focused on the study of the 

differences at metabolite level between serum and plasma obtained with 
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conventional tubes and polymeric gel tubes from 13 healthy volunteers. This study 

was addressed by application of an untargeted approach based on GC–TOF/MS 

analysis.  

A total of 65 metabolites were identified in the analyzed samples. The 

metabolites were identified at least in all the samples pertaining to one of the four 

target types (serum, plasma, serum-gel and plasma-gel). The main classes of 

identified compounds were amino acids (14 metabolites), fatty acids (14 

metabolites), carbohydrates (11 metabolites) and keto acids (5 metabolites).  

The main metabolic differences between serum and plasma collected in 

conventional tubes affected to critical pathways such as the citric acid cycle, 

metabolism of amino acids, fructose and mannose metabolism and that of 

glycerolipids, and pentose and glucuronate interconversion.  

On the other hand, significant changes attributable to the polymeric gel were 

only detected in serum, while no differences were observed in plasma, which in 

overall terms provided a metabolite profile similar to that of plasma collected in 

conventional tubes. Changes occurring in serum were mainly found in the 

metabolism of amino acids, particularly alanine, proline and threonine; in the 

metabolism of glycerolipids, detected through changes in the levels of glycerol and 

two important monoglycerides such as monopalmitin and monostearin, and in two 

metabolites (aconitic acid and lactic acid) involved in primary pathways. Although 

no overall changes were observed in plasma, significant differences in the 

concentration of five metabolites, four amino acids and phosphate, were found. An 

additional issue was to evaluate the metabolite differences between serum and 

plasma collected from the same group of individuals in conventional tubes. These 

differences affected to critical pathways such as the citric acid cycle, the 

metabolism of amino acids, the fructose and mannose metabolism and that of 

glycerolipids, and pentose/glucuronate interconversions.  

It is essential to take into account these alterations when an experimental 

protocol for metabolomic analysis, using serum or plasma, is planned to select the 

most adequate sample. 
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Sample preparation 

The influence of sample preparation on detection coverage was studied in 

Chapters IV and V with two applications: lipidomics analysis of human adipose 

tissue and untargeted metabolomics analysis of fecal samples from pigs to be lately 

correlated with microbiota alterations (Annex I).  

The main limitations of lipidomics analysis are the chemical complexity of 

the different families of lipids [7,8], the range of concentrations at which they exist 

[8], and the diversity of samples usually analyzed. These limitations particularly 

affect the characterization of polar lipids owing to the interference of neutral lipids, 

essentially acylglycerides, which are at high concentration and suppress ionization 

of low concentrated lipids in mass spectrometry detection [9].  

Chapter IV was planned to evaluate the influence of sample preparation on 

lipidomics analysis of polar lipids in visceral adipose tissue by LC–QTOF MS/MS. 

Two common extractants used for lipids isolation, MeOH:CHCl3 and MTBE, were 

qualitatively and quantitatively compared for the extraction of the main families of 

lipids. Also, the implementation of an SPE step for selective isolation of 

glycerophospholipids prior to LC–MS/MS analysis was assayed to evaluate its 

influence on lipids detection coverage as compared to direct analysis. This step was 

critical to enhance the detection coverage of glycerophospholipids by removal of 

ionization suppression effects caused by acylglycerides. 

A total of 94 compounds pertaining to 13 lipid classes were tentatively 

identified by LC–QTOF MS/MS. The PEs, PIs, and plasmalogens were the families 

with a higher number of identified compounds: 13%, 12% and 12% of the total 

identified lipids, respectively.  

The influence of the extractants on the analysis of polar lipids was evaluated. 

The number of metabolites identified was quite similar, 89 and 94 for 

MeOH:CHCl3 and MTBE, respectively. Despite the protocols seem to be 

qualitatively similar, in terms of identified lipids, a semiquantitative approach was 

necessary to clarify the efficiency of each protocol. With this purpose, each familiy 
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of lipids was idependently studied. In general, the use of MTBE as extractant led 

to higher extraction efficiency for unsaturated fatty acids, glycerophospholipids 

and ceramides, while MeOH:CHCl3 favored the isolation of saturated fatty acids 

and plasmalogens. 

Concerning the implementation of SPE for selective isolation of 

glycerophospholipids, this step clearly improved the detection of minor 

glycerophospholipids as compared to direct analysis of the extracts, increasing by 

50% the number of detected glycerophospholipids. 

According to these results, the recommended sample preparation for 

analysis of polar lipids in adipose tissue would be liquid–liquid extraction 

combined with an SPE step to enhance detection of glycerophospholipids. 

Concerning the extractant, MTBE favored the detection of less abundant lipids 

such as ceramides and unsaturated fatty acids and, therefore, it would be suggested 

for untargeted analysis of polar lipids. 

Regarding Chapter V, blood (serum and plasma) is the most commonly used 

biofluid for examinig alteration of metabolites because they are reasonably easy to 

obtain and are collected in a relatively non-invasive manner [5]. However, feces 

are an interesting biological sample to be implemented in metabolomics 

experiments by virtue of the information that can be deduced from the interaction 

between host and microbiome [10,11]. Despite of this fact, fecal samples have 

received scant attention, especially in untargeted metabolomics studies. 

With these premises, an analytical strategy was planned in Chapter V to 

maximize the identification coverage of metabolites found in pig fecal samples. 

Intestinal pathologies caused by zoonotic pathogens such as Salmonella spp are 

considered one of the most important risk factors affecting pig farms. This 

intestinal disease can be transmitted to humans. Furthermore, the pig is 

extensively used as preferred animal model for analysis of a wide range of 

physiological functions and diseases. For these reasons, untargeted metabolomic 

analysis of pig fecal samples can be key to elucidate biological mechanisms and 

facilitate early diagnosis of pig diseases. 
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The influence of sample preparation on the identification coverage for 

analysis of pig fecal samples by LC–MS/MS and GC–MS has been studied in this 

research. Concerning sample preparation six extractants with different polarity 

grade were tested to evaluate the extraction performance and, in the case of GC–

MS, two derivatization protocols were compared.  

A total of 303 compounds by combination of all the extractants and 

analytical platforms were tentatively identified. The main identified families were 

amino acids, fatty acids and derivatives, carbohydrates and carboxylic acids. 

According to the results obtained, it should be recommended the utilization of 

MeOH/water as extractant prior to GC–MS analysis. This extractant allowed 

identifying 126 metabolites by this approach. On the other hand, for LC–MS/MS 

analysis a dual extraction approach with MeOH or MeOH/water, and ethyl acetate 

is proposed to enhance the detection of polar and non-polar metabolites, 

respectively. 20 and 42 metabolites were identified exclusively by MeOH/water 

and ethyl acetate, respectively. Therefore, a fractionation of the metabolome by 

LLE improved the identification coverage. Concerning the derivatization step, the 

implementation of methoximation prior to silylation provided the identification of 

three α-keto acids that are not detected with the other tested strategies. Since these 

are important metabolites related to microbiome status, the implementation of a 

double derivatization strategy could be of interest for some studies.  

Regarding the complementarity of the two analytical platforms evaluated, 

LC–MS/MS and GC–MS, their combined use allowed the identification of 303 

metabolites with only 12 common metabolites. Thus, it is obvious that both 

platforms should be combined to obtain a comprehensive view of the pig feces 

metabolome. 

Data analysis 

Chapter VI was focused on the final stage of the analytical process: data 

analysis. The current trend in metabolomics workflows is the analysis of large sets 

of samples to obtain representative information from the biological system under 

study. Thus, most studies require long periods to analyze samples in which the 
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quantitative response can fluctuate by alteration of the instrument performance 

owing to accumulation of matrix components in different instrumental zones or 

simply by periodical practices such as instrument calibration or cleaning protocols. 

These sources of instrumental variability are generally corrected in targeted 

analysis by using isotopically labeled internal standards [12]. However, this is not 

viable in untargeted analysis owing to the wide chemical heterogeneity of 

metabolites that would force to spike the sample with an isotopically labeled 

standard per detected metabolite.  

Implementation of QC samples to check the contribution of experimental 

variability is the most common approach in metabolomics [13–15]. This practice is 

based on filtration of molecular entities experiencing a variation coefficient higher 

than that measured in the QC data set. Although other robust correction 

algorithms have been proposed, none of them has provided an easy-to-use and 

easy-to-install tool capable of correcting experimental variability sources [14,16].  

In this chapter an R-package —MetaboQC— was developed to correct intra-

day and inter-days variability using QCs analyzed within a pre-set sequence of 

experiments. The proposed package is based on functions that can be used to 

correct variability on data sets obtained in metabolomics studies based on large set 

of samples. Different functions have been considered to make the package useful 

to remove experimental variability sources affecting long sequences of analysis, 

but also those affecting within a given day. The strategy included in the proposed 

package involves that each metabolite is corrected according to the function that 

best fits its variability trend. Therefore, correction is independently applied to each 

metabolite. The only requirement for its application is the implementation of QCs, 

preferentially prepared with the same samples of the cohort, in the sequence of 

analysis following a given plan. 

MetaboQC has been tested in two data sets to assess the correction effects 

by comparing the metabolites variability before and after application of the 

proposed tool. As a result, in QCs the number of entities significantly different 

between days was reduced from 86 to 19% in the negative ionization mode and 
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from 100 to 13% in the positive ionization mode. Furthermore, principal 

component analysis allowed detecting the filtration of instrumental variability 

associated to the injection order. 

This type of tools can be recommended in cases in which the use of internal 

standards is not operative owing to chemical diversity of metabolome composition. 

 

Section III. Strategies for searching potential 

biomarkers in clinical and agro-food studies 

Metabolomics affords detailed characterization of metabolic phenotypes 

and enables to address precision medicine at different levels, including the 

characterization of metabolic derangements that underlie a disease, and discovery 

of biomarkers that may be used to either diagnose disease or dietary patterns 

[17,18]. This section is focused on strategies for searching potential biomarkers for 

food intake, dietary patterns and diseases.  

Metabolomics allows to evaluate the metabolic response to intake with the 

aim of predicting metabolic alterations. Modifications on food related metabolome 

include variations in the concentrations of metabolites directly derived from the 

ingestion of diet components. These aspects have been studied in clinical (Chapter 

VII) and agro-food (Chapter X) applications. On the other hand, strategies for 

searching potential biomarkers of diseases have been considered in Chapter VIII 

and IX, being T2DM and T1DM the studied diseases.  

Clinical applications 

It is widely known that the postprandial response to a meal depends on 

many factors and involves multiple processes that include energy storage and 

metabolic switch in several organs such as liver, muscle and adipose tissue [19]. In 

addition, this metabolic response is accompanied by several compensating 

processes such as inflammation and oxidative stress. Therefore, analysis of the 

metabolic response after meal ingestion indicate a shift in metabolic pathways 
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from catabolic (fatty acid oxidation) to anabolic (suppression of ketogenesis and 

lipolysis) conditions [20]. This shift can be associated with incident pathologies, 

such as metabolic syndrome and T2DM. In this context, metabolomics studies can 

lead to the identification of metabolites involved in the mechanisms of a disease by 

monitoring metabolite changes in predisposed individuals compared with healthy 

cases.  

Chapter VII is focused on detecting postprandial alterations in the level of 

plasma metabolites after the OFTT, which consisted of a weight-adjusted meal (0.7 

g fat and 5 mg cholesterol per kg body weight) with 12% SFAs, 10% PUFAs, 43% 

MUFAs, 10% protein, and 25% carbohydrates. Meal preparation for the OFTT was 

performed by nutritionists using olive oil, skimmed milk, white bread, cooked egg 

yolks, and tomatoes [21]. Plasma samples were collected from 215 patients, just 

before and four hours after the OFTT. These plasma samples were analyzed by LC–

QTOF MS/MS and GC–TOF/MS in two batches including 57 and 158 individuals, 

respectively.  

A total number of 365 metabolites were tentatively identified by 

combination of both analytical platforms. The paired t-test led to the identification 

of 18 metabolites significantly altered (p<0.05) due to the OFTT in both batches. 

It is worth mentioning that main metabolic alterations affected fatty acids and 

derivatives, bile acids, bilirubins and neurotransmitters. The significant 

compounds showed FC positive values, except for taurodeoxycholic acid, four fatty 

acids, C20:4n6, C20:2n6, C20:5n3 and C20:3n3, and five acylcarnitines. The most 

important pathways and processes affected by OFTT were inflammatory and 

oxidative processes, de novo lipogenesis, primary and secondary bile acids 

synthesis and cortisol synthesis.  

Palmitoleic acid (C16:1n7) increased its concentration considerably in the 

OFTT postprandial since its mean FC value is 63.7. Palmitoleic acid is a unique 

fatty acid that serves as a marker for de novo lipogenesis, a process that converts 

glucose to fatty acids. The level of palmitoleic acid in the diet is limited and, 

consequently, its concentration is low in tissue. Nevertheless, the concentration of 
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palmitoleic acid can quickly and substantially increase upon activation of de novo 

lipogenesis. Cao et al. identified palmitoleic acid as an adipose tissue-derived lipid 

hormone that strongly stimulates muscle insulin action and suppresses 

hepatosteatosis [22]. These authors proved that adipose tissue uses palmitoleic 

acid as a signal to communicate with distant organs and regulate metabolic 

homeostasis [22]. This situation would explain the increased levels of palmitoleic 

acid in the postprandial OFTT. 

Regarding PUFAs, comprising the omega-6 (n-6) and omega-3 (n-3) fatty 

acids, they have received considerable attention due to their important effects on 

human health [23,24]. In this study, n-3 and n-6 fatty acids did not report a 

common pattern after OFTT. Docosapentaenoic acid (C22:5n3) and 

docosatetraenoic acid (C22:4n6), significant PUFAs, increased their concentration 

in plasma levels after OFTT (69.9 and 2.8 FC values). Emerging evidence suggests 

that C22:5n3, the intermediate fatty acid between EPA and docosahexanoic acid 

(C22:6n3), may also play a role in imparting the health benefits previously 

attributed solely to EPA and C22:6n3 [23]. On the other hand, EPA and 

arachidonic acid, precursors of C22:5n3 and C22:4n6, decreased their 

concentration significantly according to the FC values (–0.16 and –0.07 

respectively). EPA and arachidonic acid are precursors of series 3 and 2 

prostaglandins, thromboxanes and leukotrienes, which are directly involved in the 

inflammatory process. The decrease of EPA and arachidonic acid is supported by 

activation in the production of eicosanoids and increase in the concentration of 

C22:5n3 and arachidonic acid, the latter dependent of elongase activity. 

Also, three bile acids experienced significant metabolic alterations in the 

OFTT postprandial. These were glycohoclic acid, a primary bile acid, and 

glycoursodeoxycholic acid and taurodeoxycholic acid, two secondary bile acids. 

The concentration of glycocholic acid and glycoursodeoxycholic acid were 

increased after the OFTT (0.78 and 5.5 FC value), while taurodeoxycholic acid was 

decreased (–0.06 FC value). 
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Fourteen acylcarnitines experienced significant metabolic alterations after 

OFTT. All acylcarnitines do not follow the same behavior after the OFTT. 

According to the FC values, half of them increased their concentration and the 

other half decreased their levels. Free carnitine decreased in the postprandial 

OFTT, which may be due to its conversion into acylcarnitines [40]. The 

acylcarnitine that reported a greater increase after OFTT in postprandial time was 

octadecenoylcarnitine (38.4 FC value). This result is in concordance with the 

composition of OFTT, with 43% of MUFAs, being oleic acid (C18:1) the most 

concentrated MUFA in olive oil.  

Although other authors have studied the change produced in acylcarnitines 

after a specific meal, there is no consensus about their behavior, since the 

concentration of acylcarnitines is significantly affected by individual anthro-

pometric factors, nutritional composition and duration of the test, etc. Shrestha et 

al. reported similar results in human serum after a specific meal intake, but in this 

case five acylcarnitines reported a decrease after meal [25], including 

octadecenoylcarnitine and hexadecanoylcarnitine, which increased after OFTT 

(38.4 and 0.05 FC values, respectively) in our study. 

Other important processes affected to cortisol, bilirubin and biliverdin. 

Increased cortisol production (5.4 FC value) was observed in the OFTT 

postprandial. Cortisol is considered a stress hormone involved in the response to 

physical and/or emotional stress and participates in several actions involved in the 

homeostatic maintenance: blood pressure, immune system, metabolism of 

proteins and carbohydrates, and anti-inflammatory action [26–30]. On the other 

hand, bilirubin and biliverdin have been recognized as potent antioxidants [31–

33] and both increased after OFTT according to FC values (5.5 and 17.9, 

respectively).  

This identification of postprandial metabolic alterations occurring during 

the OFTT can lead to interpret deviations associated to metabolic diseases. 
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T2DM is the most prevalent metabolic disease in the world and is 

characterized by defects in insulin secretion and peripheral insulin resistance in 

the skeletal muscle, adipose tissue and liver [34]. However, the pathogenesis of 

T2DM is still not fully dilucidated and seems to involve multiple factors. As 

mentioned above, metabolomics studies allow discovering metabolites involved in 

a disease mechanism [35,36]. Thus, multimetabolite panels with predictive 

capacity of T2DM can be developed.  

Chapter VIII is focused on predicting the occurrence of T2DM in individuals 

by examining their postprandial response to the OFTT between non-T2DM and 

incident-T2DM. For this purpose, plasma samples from 215 individuals (107 

classified as incident-T2DM and 108 as non-T2DM regarding T2DM development 

in the following 5 years) were analyzed using a metabolomic untargeted approach.  

This research allows identifying 60 metabolites that showed significant 

differences associated with the development of T2DM. Significant metabolites 

were used to develop multimetabolite panels with predictive capacity. Two 

multimetabolite panels were created to predict the occurrence of T2DM by 

prioritizing specificity (panel 1) and sensitivity (panel 2). The combination of both 

panels reported a sensitivity of 86.6% and specificity of 71.6%, while external 

validation led to 90.0% of sensitivity and 73.3% of specificity. The risk of T2DM 

development was evaluated by Cox Regression Analysis that provided HR values 

of 6.5 (3.7–11.4) and 5.4 (3.0–9.6) for panels 1 and 2, respectively.  

Finally, the pathways and processes affected by OFTT between non-T2DM 

and incident-T2DM were studied, being the most important the oxidation process, 

insulin secretion and, mitochondrial and peroxisomes activity.  

T1DM is a chronic, immune-mediated disease characterized by selective loss 

of insulin-producing β-cells in the pancreatic islets of genetically susceptible 

individuals [37,38]. Over the past few decades, the incidence of T1DM in most 

Western countries has been increasing, particularly among children below the age 

of five [39]. About 70% of children with T1DM carry increased risk-associated 
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genotypes in HLA loci. On the other hand, only 3–7% of the population with the 

same risk alleles develop T1DM [40]. 

Previous metabolomics studies suggest that T1DM is preceded by specific 

metabolic disturbances. Here, we asked whether distinct metabolic patterns occur 

in PBMCs of children later developing pancreatic β-cell autoimmunity or overt 

T1DM. In a longitudinal cohort setting, PBMC metabolomic analysis was applied 

in children who either (1) progressed to T1DM (PT1D, n=34), (2) seroconverted to 

≥1 islet autoantibody without progressing to T1DM (P1Ab, n=27), or (3) remained 

autoantibody negative during follow-up (CTRL, n=10).  

The observed metabolic changes in PBMCs were dominated by 

glycerophospholipids, triacylglycerols, sphingomyelins, ceramides, amino acids 

and fatty acids. During the first year of life, levels of most lipids and polar 

metabolites were lower in PT1D and P1Ab, versus controls. These results suggest 

that progression to T1DM is accompanied by metabolic abnormalities in PBMCs. 

These changes may be related to impaired de novo lipogenesis and metabolism of 

amino acids, glycerophospholipids and sphingolipids. Since specific differences 

were also observed between progressors and non-progressors to T1DM after their 

seroconversion to islet autoimmunity, our findings also highlight specific pathways 

in immune cells, such as sphingolipid metabolism, which appear to play a role in 

protection from and progression to T1DM. 

Agro-food application 

Concerning the agro-food area, discrimination among the types of feeding 

regimes for Iberian pigs is currently a highly demanded challenge by the Iberian 

pig sector [41]. At present, there are not discrimination methods able to identify 

the feeding regime used with capability to detect frauds. Different methods have 

been independently assayed [42–44]. However, no methods based on the 

application of different analytical techniques had been combined so far.  

In Chapter X, discrimination among feeding regimes was achieved by the 

combination of two analytical methods (based on FAMEs analysis by GC−FID and 
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determination of δ13C by IRMS) previously used independently without success. 

For this purpose, 80 samples of adipose tissue from Iberian pigs subjected to four 

different feedings were analyzed.  

An ANOVA test was independently applied to each pair of feedings to 

evaluate its influence on the concentration of FAs and δ13C. The most concentrated 

FAs in subcutaneous fat, C16:0, C18:0, and C18:1n9, were significant in most of the 

evaluated pairs, except for Cebo de Campo vs. Cebo and Recebo vs. Bellota. It is 

worth mentioning that the significance level was quite high in all cases with p-

values below 0.001. Only two FAs, C17:0 and C18:2, were not significantly affected 

by the type of feeding. The study of the most influenced variables by the feeding 

regime allowed configuring panels of markers with predictive power for the 

studied feedings by multivariate ROC analysis. Taking into account that Bellota is 

the most appreciated class, prediction models were created for the classification of 

Bellota vs. Cebo de Campo, Bellota vs. Cebo, and Bellota vs. Recebo. The models 

involving Bellota vs. Cebo de Campo and Cebo reported high sensitivity and 

specificity, always above 90%, which led to quite good predictive models. The most 

complicated case was the model involving Bellota vs. Recebo, based on a unique 

variable, δ13C, which reported a specificity of 80%, while sensitivity decreased to 

63%.  

In view of these results, the statistical combination of the data obtained by 

different analytical methods could be the key for the correct discrimination of 

feeding regimes in the sector of Iberian pig. Taking into account the demand for 

methods to discriminate feeding regimes, this approach could be implemented in 

routine laboratories since the analysis of fatty acids is already carried out at this 

level, while IRMS analysis is frequently used in reference food laboratories. 

The next step in the research in Section III is to validate the developed 

methods with more subjects to prove the robustness of the proposed models. 
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 The research conducted in this Doctoral Thesis was aimed at developing 

new analytical strategies based on the use of low- and high-resolution mass 

spectrometry to improve the detection and identification coverage in metabolomic 

analysis.  

The most salient conclusions drawn from this work can be summarized as 

follows according to the objectives: 

1. Benefits derived from the versatility of the triple quadrupole analyzer to 

improve the identification/quantification of certain families of 

metabolites. 

i) An automated method based on SPE on-line coupled to LC–

MS/MS has been developed for determination of FAHFAs in 

serum. Eleven FAHFAs have been identified and quantified in 

relative terms in serum by application of a confirmatory test. 

PAHSA and PAHOA were the most concentrated FAHFAs in 

serum. PAHPA and POHPO reported significant differences 

between glycaemic states, while only POHPA was found 

significantly different considering BMI.  

ii) A dual analysis strategy for massive quantitative determination of 

polar lipids by LC–MS/MS with a QqQ analyzer was optimized. A 

combination of two MRM methods enabled to monitor 398 polar 

lipids in 64 minutes (32 minutes per run) after application of a 

simple protocol for sample preparation. The proposed method can 

be used in lipidomics analysis of biological samples to provide 

qualitative and semiquantitative information of lipid polar 

families.  
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2. Improvement of the analytical process (sampling, sample preparation and 

data analysis) through methodological development in untargeted 

metabolomics analysis. 

Sampling 

(iii) It is essential to take into account that metabolic alterations occur 

in applying experimental protocols for metabolomics analysis in 

blood sampled. Serum and plasma collected in polymeric gel tubes 

were compared with serum and plasma obtained in conventional 

tubes using a GC–TOF/MS untargeted approach. Significant 

changes attributable to the polymeric gel were only detected in 

serum, while no differences were observed in plasma, which in 

overall terms provided a metabolite profile similar to that of 

plasma collected in conventional tubes. An additional issue was to 

evaluate the metabolite differences between serum and plasma 

collected from the same group of individuals in conventional 

tubes. These differences affected to critical pathways such as the 

citric acid cycle, the metabolism of amino acids, the fructose and 

mannose metabolism and that of glycerolipids, and pento-

se/glucuronate interconversions.  

Sample preparation 

(iv) The influence of sample preparation for lipidomics analysis of 

polar lipids in adipose tissue was studied. According to these 

results, the recommended sample preparation for analysis of 

polar lipids in adipose tissue would be LLE combined with an SPE 

step to enhance detection of glycerophospholipids. Concerning 

the extractant, MTBE favored the detection of less abundant lipids 

such as ceramides and unsaturated fatty acids and, therefore, it 

would be recommended for untargeted analysis of polar lipids. 
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(v) The influence of sample preparation on the identification 

coverage for pig fecal samples analysis by LC–MS/MS and GC–

MS has been evaluated. A total number of 303 compounds by 

combination of all the extractants and analytical platforms were 

tentatively identified. According to the results obtained, it should 

be recommended the utilization of MeOH/water as extractant for 

GC–MS analysis, but for LC–MS/MS analysis the combined 

analysis of extracts obtained with MeOH or MeOH/water and 

ethyl acetate can lead to a significant increase of identified 

compounds. Concerning the derivatization step, the implement-

tation of methoximation previous silylation provided the 

identification of three α-keto acids that are not detected by the 

other tested strategies. Regarding the complementarity of the two 

analytical platforms, it is obvious that both approaches should be 

combined to obtain a comprehensive view of the pig feces 

metabolome. 

Data analysis 

(vi) A tool for correction of experimental variability associated to the 

instrumental quantitative response has been developed for 

implementation in metabolomics workflows based on MS 

detection. The proposed package is based on functions that can be 

used to correct variability on data sets obtained in metabolomics 

studies with large set of samples. The strategy included in this 

package involves that each metabolite is corrected according to 

the function that best fits its variability trend. Therefore, 

correction is independently applied to each metabolite. The only 

requirement for its application is the implementation of QCs, 

preferentially prepared with the same samples of the cohort, 

following a given planning in the sequence of analysis. 
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3. Development of strategies for searching potential biomarkers in clinical 

and agro-food applications. 

Clinical applications 

(vii) Postprandial alterations in the level of plasma metabolites after 

the OFTT were studied by combination of LC–QTOF MS/MS and 

GC–TOF/MS. The most important metabolic alterations affected 

inflammatory and oxidative processes, synthesis of primary and 

secondary bile acids and cortisol production. This study revealed 

that OFTT can be used to interpret deviations associated to 

metabolic diseases, increasing its usefulness. 

(viii) The capability of metabolic changes occurring in the OFTT 

postprandial to predict the development of T2DM has been 

assessed. Taking into account the complexity of T2DM 

pathogenesis, two multimetabolite panels were configured to 

identify future T2DM patients. The combination of the two panels 

led to a model with sensitivity of 86.6% and specificity of 71.6%. 

The HR obtained for both panels, 5.4 (3.0–9.6) and 6.5 (3.7–11.4), 

revealed the predictive power, which reflected metabolic 

alterations associated to oxidation, insulin secretion and 

mitochondrial and peroxisomes activity. 

(ix) Metabolic patterns occurring in PBMCs of children developing 

pancreatic β-cell autoimmunity or overt T1DM have been studied. 

Pathway analysis suggested that alanine, aspartate, glutamate, 

glycerol phospholipid and sphingolipid metabolism were 

overrepresented in PT1D. Genome-scale metabolic models of 

PBMCs in T1DM progression were developed using available 

transcriptomics data and constrained with metabolomics results. 

Metabolic modeling confirmed altered ceramide pathways as 

specifically associated with T1DM progression.  
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Agro-food application 

(x) The statistical combination of the results obtained by different 

analytical methods (concretely fatty acids determination by GC–

FID and δ13C by IRMS analysis) could be the key for the correct 

discrimination of feeding regimes in the sector of Iberian pig. 

Taking into account the demand for methods to discriminate 

feeding regimes, this approach could be implemented in routine 

laboratories since the analysis of fatty acids is already carried out 

at this level, while IRMS analysis is frequently used in reference 

food laboratories. 
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La investigación realizada en esta Tesis Doctoral tenía como objetivo 

desarrollar nuevas estrategias analíticas basadas en el uso de espectrometría de 

masas de baja y alta resolución para mejorar la capacidad de detección y la 

cobertura de identificación en análisis metabolómico. 

Las conclusiones más destacadas de este trabajo de acuerdo con los 

objetivos inicialmente propuestos, se resumen a continuación:  

1. Beneficios derivados de la versatilidad del analizador de triple cuadrupolo 

para mejorar la identificación/cuantificación de ciertas familias de 

metabolitos. 

i) Se ha desarrollado un método automatizado basado en SPE en 

línea acoplada a LC–MS/MS para la determinación de FAHFAs en 

suero. El método permitió identificar y cuantificar en términos 

relativos 11 FAHFAs en suero mediante el desarrollo de una 

estrategia de análisis confirmatorio. Los FAHFAs más 

concentrados en suero fueron PAHSA y PAHOA. Se han detectado 

diferencias significativas en los niveles de PAHPA y POHPO en 

función del estado glucémico, y de POHPA en función del BMI. 

ii) Se ha optimizado una estrategia de análisis para la identificación 

y cuantificación masiva de lípidos polares por LC–MS/MS con un 

analizador QqQ. La combinación de dos métodos MRM permitió 

monitorizar 398 lípidos polares en 64 minutos (32 minutos por 

cada método) después de la aplicación de un protocolo de 

preparación de muestra simple. La estrategia propuesta puede 

usarse en el análisis lipidómico de muestras biológicas para 

proporcionar información cualitativa y semicuantitativa de 

familias de lípidos polares. 
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2. Mejora del proceso analítico (muestreo, preparación de muestra y análisis 

de datos) a través del desarrollo metodológico en el análisis metabolómico 

no dirigido. 

Muestreo 

(iii) Es esencial tener en cuenta las alteraciones que se producen en los 

protocolos experimentales de análisis metabolómico cuando se 

toman muestras de sangre. Se han comparado suero y plasma 

recogidos en tubos de gel polimérico con suero y plasma obtenidos 

en tubos convencionales utilizando un enfoque no dirigido 

mediante GC–TOF/MS. Se detectaron cambios significativos 

atribuibles al gel polimérico en suero, mientras que no se 

observaron diferencias en el plasma, que proporcionó un perfil de 

metabolitos similar al del plasma recogido en tubos convencio-

nales. Adicionalmente, se han evaluado las diferencias de 

metabolitos entre suero y plasma recolectado en tubos 

convencionales del mismo grupo de individuos. Estas diferencias 

afectaron a rutas importantes como el ciclo del ácido cítrico, el 

metabolismo de los aminoácidos, de la fructosa y la manosa y de 

los glicerolípidos, y las interconversiones pentosa/glucuronato. 

Preparación de la muestra 

(iv) Se ha estudiado la influencia de la preparación de la muestra en el 

análisis lipidómico de lípidos polares en tejido adiposo. Según los 

resultados obtenidos, se recomienda la LLE seguida de una etapa 

SPE para mejorar la detección de glicerofosfolípidos. Respecto al 

extractante, el MTBE favoreció la detección de lípidos menos 

abundantes como ceramidas y ácidos grasos insaturados y, por lo 

tanto, se recomienda para el análisis no dirigido de lípidos polares. 

(v) Se ha evaluado la influencia de la preparación de la muestra en la 

capacidad de detección de metabolitos en el análisis de muestras 

de heces de cerdo mediante LC–MS/MS y GC–MS. Se han 
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identificado tentativamente un total de 303 compuestos mediante 

combinación de todos los extractantes y plataformas analíticas 

estudiadas. Según los resultados obtenidos, se recomienda la 

utilización de MeOH/agua como extractante para el análisis GC–

MS. Sin embargo, para LC–MS/MS el análisis combinado de 

extractos obtenidos con MeOH o MeOH/agua y acetato de etilo 

puede conducir a un aumento significativo de los compuestos 

identificados. Respecto a la etapa de derivatización por sililación, 

la implementación de una metoximación previa proporcionó la 

identificación de tres α-cetoácidos que no se detectan con las otras 

estrategias probadas. Con respecto a la complementariedad de las 

dos plataformas analíticas, es obvio que ambas deben combinarse 

para obtener una visión integral del metaboloma de las heces de 

cerdo. 

Análisis de datos 

(vi) Se ha desarrollado una herramienta para la corrección de la 

variabilidad experimental asociada a la respuesta cuantitativa 

instrumental y su implementación en flujos de trabajo de 

metabolómica basados en la detección por MS. El paquete 

propuesto se basa en funciones que pueden usarse para corregir 

la variabilidad en los datos obtenidos en estudios de 

metabolómica con un gran conjunto de muestras. La estrategia 

incluida en este paquete implica que cada metabolito se corrige de 

acuerdo con la función que mejor se adapte a su tendencia de 

variabilidad. Por lo tanto, la corrección se aplica independien-

temente a cada metabolito.  
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3. Desarrollo de estrategias para la búsqueda de biomarcadores potenciales 

en aplicaciones clínicas y agroalimentarias. 

Aplicaciones clínicas  

(vii) Se han estudiado las alteraciones metabólicas producidas en el 

postprandio del OFTT, mediante la combinación de LC–QTOF 

MS/MS y GC–TOF/MS. Las alteraciones metabólicas más 

importantes afectaron a los procesos inflamatorios y oxidativos, la 

síntesis de ácidos biliares primarios y secundarios, la síntesis de 

carnitinas y la producción de cortisol. Este estudio reveló que el 

OFTT se puede utilizar para interpretar las desviaciones asociadas 

a enfermedades metabólicas, aumentando su utilidad. 

(viii) Se ha evaluado la capacidad predictiva de los cambios metabólicos 

que ocurren en el postprandio del OFTT para el desarrollo de 

T2DM. Teniendo en cuenta la complejidad de la patogénesis de 

T2DM, se configuraron dos paneles multimetabolitos para 

identificar futuros pacientes con T2DM. La combinación de los 

dos paneles condujo a un modelo con una sensibilidad del 86,6% 

y una especificidad del 71,6%. El HR obtenido para ambos 

paneles, 5.4 (3.0–9.6) y 6.5 (3.7–11.4), reveló su poder predictivo, 

los cuales reflejan alteraciones metabólicas asociadas a la 

oxidación, la secreción de insulina, y la actividad mitocondrial y 

de los peroxisomas. 

(ix) Se han estudiado los patrones metabólicos que se producen en las 

PBMCs de niños que han desarrollado autoinmunidad en las 

células β pancreáticas o T1DM. El análisis de rutas metabólicas 

sugirió que el metabolismo de la alanina, el aspartato, el 

glutamato, los glicerofosfolípidos y los esfingolípidos estaban so-

breexpresados en PT1D. Se han desarrollado modelos metabólicos 

a escala del genoma de las CMSP en la progresión de la T1DM 

utilizando los datos transcriptómicos disponibles y los resultados 
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del análisis metabolómico. Los modelos desarrollados mostraron 

alteraciones en la ruta metabólica de las ceramidas, asociadas 

específicamente con la progresión de la T1DM.  

Aplicación agroalimentaria 

(x) La combinación estadística de los resultados obtenidos por 

diferentes métodos analíticos (concretamente la determinación de 

ácidos grasos por GC–FID y de δ13C por análisis IRMS) podría ser 

la clave para la correcta discriminación de los regímenes alimen-

ticios en el sector del cerdo ibérico. Teniendo en cuenta la 

demanda de métodos para discriminar los regímenes de 

alimentación, este enfoque podría implementarse en laboratorios 

de rutina ya que el análisis de ácidos grasos ya se lleva a cabo a 

este nivel, mientras que el análisis IRMS se usa con frecuencia en 

laboratorios alimentarios de referencia. 
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PROMOTION OF SELF-EMPLOYED WORK IN THE LABORATORY 
PRACTICES OF STUDENTS OF THE DEGREE IN CHEMISTRY: CASE 

STUDY 
 

FOMENTO DEL TRABAJO AUTÓNOMO EN LAS PRÁCTICAS DE 
LABORATORIO DE ALUMNOS DEL GRADO DE QUÍMICA: CASO DE 

ESTUDIO 

 
María Asunción López-Bascón, Natividad Jurado-Campos, Encarnación Romera-

García, Feliciano Priego-Capote, Lourdes Arce 
 

Abstract: 

In this study we have sought to increase the participation of students in laboratory 
practices. The main reason has been to prevent the student from memorizing the 
theoretical concepts without being able to apply them to the resolution of real 
problems, and thus acquire useful competences for when entering into the working 
world. The new methodology was developed in the optional subject of the Degree 
in Chemistry, Applied Analytical Chemistry. In laboratory sessions, the common is 
to carry out a practical exercise following a script established by the teaching staff. 
Therefore, it was proposed that they themselves elaborate the protocols of three 
practices, on three subjects proposed by the teaching staff, and that they carried 
them out independently in the laboratory. 
The evaluation of the students' work was carried out through three activities: 
preparation of the practical protocols, carrying out of the laboratory practices (using 
a rubric) and interactive questionnaire on theoretical concepts (using the Kahoot 
tool). Finally, the degree of acceptance of the new teaching methodology by the 
students was evaluated. This allowed to detect the aspects to be improved for the 
implementation of this methodology in the next academic year. 
 
Key words: laboratory work, competences, chemistry, criterion-referenced 
evaluation, self-employed work 
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AAG, alanine, aspartate and glutamate metabolism 

ACE, automatic cartridge exchanger  

ACN, acetonitrile 

ADA, American Diabetes Association 

ANOVA, analysis of variance 

APCI, atmospheric pressure chemical ionization 

APPI, athmospheric pressure photo ionization 

AUC, area under the curve 

BCAA, branched chain amino acid 

BMI, body mass index 

BPC, base peak chromatogram 

BSTFA, bis-(trimethylsilyl)-fluoroacetamide 

CA, clustering analysis 

CCM, central carbon metabolism 

CE, capillary electrophoresis 

CI, chemical ionization 

Ci, confidence interval 

CID, collision-induced dissociation 

CHO, carbohydrate 

CMPF, 3-carboxy-4-methyl-5-propyl-2- furanpropionic acid 

CORDIOPREV, Coronary Diet Intervention with Olive Oil and Cardiovascular 

Prevention study 

CTRL, control 

DDA, data-dependent acquisition 
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DDM, data-dependent methods 

DEG, differential expression of genes 

DG, diglyceride 

D-GAP, Diabetes-Genes, Autoimmunity and Prevention 

DI, direct infusion 

DIPP, Type 1 Diabetes Prediction and Prevention study 

D-PBS, Dubelcco’s phosphate buffered saline 

EA, elemental analyzer 

EFA, esterified fatty acid 

EI, electron impact ionization 

EIC, extracted ion chromatogram 

EPA, eicosapentaenoic acid 

ES, external standard 

ESI, electrospray ionization 

FA, fatty acid 

FAHFA, fatty acid ester of hydroxy fatty acid 

FAME, fatty acid methyl ester 

FC, fold change 

FDR, false discovery rate 

FID, flame ionization detector 

FT-IR, Fourier transformation infrared 

FWHM, full width at half maximum 

GADA, glutamic acid decarboxylase 
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GC, gas chromatography 

GEMs, genome-scale metabolic models 

GHT, global hypergeometric test 

GPF, gas phase fractionation 

GSMM, genome-scale metabolic modeling 

GST, glycine, serine and threonine metabolism 

HbA1c, glycated hemoglobin A1c 

HDL, high density lipoprotein 

HESI, heated electrospray ionization  

HETE, hydroxyeicosatetraenoic acid 

HILIC, hydrophilic interaction liquid chromatography 

HLA, human leucocyte antigen 

HMDB, Human Metabolome Database 

HODE, hydroxyoctadecadienoic acid 

HP-921, hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazine 

HPD, high pressure dispenser 

HpODE, hydroperoxyoctadecadienoic acid 

HR, hazard ratio 

IAA, autoantibody against insulin 

IA-2A, insulinoma-associated antigen 

IIS, International Isotope Standard 

INIA, Institute of Agriculture and Food Research and Technology 

IRMS, isotope ratio mass spectrometry 
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IRP2, iron regulatory protein 2 

IS, internal standard 

IPA, 2-isopropanol 

JDFU, Juvenile Diabetes Foundation Unit 

KEGG, Kyoto Encyclopedia of Genes and Genomes 

KNN, k-nearest neighbor 

KS, Kolmogorov-Smirnov 

LC, liquid chromatography 

LDA, linear discriminant analysis 

LF, Lilliefors 

LLE, liquid–liquid extraction 

LOD, limit of detection 

LOESS, local polynomial regression 

LOQ, limit of quantitation 

LPC, lysophosphatidylcholine 

LPE, lysophosphatidylethanolamine 

MDS, multidimensional scaling 

MeOH, methanol 

METLIN, Metabolites and Tandem MS Database 

MetS, metabolic syndrome 

MF, molecular feature 

MG, monoacylglycerol 

MIDAS, autosampler 
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Mo, month 

MPP, mass profiler professional 

MRM, multiple reaction monitoring 

MS, mass spectrometry 

MSTUS, mass spectrometry total useful signal 

MTBE, methyl tert-butyl ether 

MUFA, monounsaturated fatty acid 

N, observations 

NIRS, near-infrared spectroscopy 

NIST, National Institute of Standards and Technology 

NLS, neutral loss scan mode 

NMR, nuclear magnetic resonance 

OA, oleate 

OAHOA, oleic acid-hydroxy-oleic acid 

OAHSA, oleic acid-hydroxy-stearic acid 

OFTT, oral fat tolerance test 

OGTT, oral glucose tolerance test 

OLTT, oral lipid tolerance test 

PA, glycerophosphatidic acid 

PAHOA, palmitic acid-hydroxy-oleic acid 

PAHPA, palmitic acid-hydroxy-palmitic acid 

PAHSA, palmitic acid hydroxystearic acid 

PBMC, peripheral blood mononuclear cell 
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PO, palmitoleate 

POHPA, palmitoleic acid-hydroxy-palmitic acid 

POHPO, palmitoleic acid-hydroxy-palmitoleic acid 

pAUC, partial area under the curve 

PC, glycerophosphatidylcholine 

PCA, principal component analysis 

PE, glycerophosphatidylethanolamine 

PFTBA, perfluorotri-n-butylamine 

PG, glycerophosphatidylglyceride 

PIS, product ion scanning 

PISc, pathway impact score 

PLS, partial least squares 

PLS-DA, partial least squares discriminant analysis 

PNN, probabilistic neural networks 

POA, pathway overrepresentation analysis 

PrIS, precursor ion scanning 

PS, glycerophosphatidylserine 

PT1D, children that developed type 1 diabetes mellitus  

PUFA, polyunsaturated fatty acid 

P1Ab, children not diagnosed with type 1 diabetes mellitus 

QC, quality control 

QqQ, triple quadrupole 

Q1, first quadrupole 
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q2, collision cell (second quadrupole) 

Q3, third quadrupole 

QTOF, quadrupole–time of flight 

RI, retention index 

RM, reporter metabolite 

ROC, receiver-operating characteristic 

ROS, reactive oxygen specie 

RSD, relative standard deviation 

RT, retention time 

RU, relative unit 

SA, stearate 

SAHOA, stearic acid-hydroxy-oleic acid 

SCFA, short chain fatty acid 

SD, standard deviation 

SFA, saturated fatty acid 

SIM, selected ion monitoring 

SLE, solid–liquid extraction 

SM, sphingomyelin 

SMM, sphingolipid metabolism 

SOM, self-organizing map 

SPE, solid-phase extraction 

SPME, solid-phase microextraction 

SRM, selected reaction monitoring 
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SVM, support vector machine 

SW, Shapiro-Wilk 

T1DM, type 1 diabetes mellitus 

T2DM, type 2 diabetes mellitus 

TG, triglyceride 

TIC, total ion current 

TMCS, trimethylchlorosilane 

TMS, trimethylsilyl 

TPP, triphenyl phosphate 

TUDCA, tauroursodeoxycholic acid 

UPLC, ultra-performance liquid chromatography 

V-PDB, Vienna Pee Dee Belemnite  

VIP, Variable Importance in Projection 

1H NMR, proton nuclear magnetic resonance 

12-PAHSA, palmitic acid-12-hydroxy-stearic acid 

12-POHSA, palmitoleic acid-12-hydroxy-stearic acid 

12-SAHSA, stearic acid-12-hydroxy-stearic acid  

12-OAHSA, oleic acid-12-hydroxy-stearic acid 





 




