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Abstract

Four Beauveria bassiana and three Metarhizium brunneum isolates were evaluated, as soil
drenches, against Spodoptera littoralis prepupae. Treatment efficacy was determined by asses-
sing total mortality during development from prepupae through to pupae and adults; mortal-
ity and sub-lethal effects on reproduction were also quantified for adults emerging from
surviving prepupae/pupae. All isolates were pathogenic but overall mortality varied between
31.7 and 83.3% (0% for control); average survival time was 7.5–10.5 days (14.0 days for con-
trol). From 1.7–15.0% of adults emerging from surviving prepupae/pupae were deformed (0%
in control). Contact with fungal suspensions as prepupae/pupae caused a significant reduction
in fecundity of emerging adult females (15–58.9%), and a significant reduction in egg viability
(6.8–28.4%) compared with controls. Two isolates were selected for virulence evaluation
against S. littoralis prepupae. The LC50s were 1.7 × 107 and 1.8 × 107 conidia ml−1 and the
median survival times were 7 and 6 days for isolates EAMa 01/58-Su and EAMb 09/01-Su,
respectively. Destruxin A was present in pupae developing from prepupae treated with isolates
EAMa 01/58-Su (0.010 ± 0.002 µg pupae−1) and EAMb 09/01-Su (0.015 ± 0.003 µg pupae−1).
The use of entomopathogenic fungi as soil drenches could be a key component of S. littoralis
IPM strategies due to direct reductions in the number of soil-dwelling life stages and, also, the
significant reduction in reproductive potential of surviving adults.

Introduction

The cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), is present in
approximately 80 countries across Europe, Asia and Africa (EPPO, 2018). This species is
highly polyphagous and feeds on more than 100 host plants, many of them of economic
importance (EPPO, 2015). Female moths lay eggs on the leaves. Larvae feed on the leaves;
late instars feed mainly when it is dark, moving to the base of the plant/soil surface during
the day. Last instar larvae (prepupae) burrow into the soil where they construct a clay ‘cell’
or cocoon in which they pupate. Adults emerge during the night and have a life span of 5–
10 days (Salama and Shoukry, 1972; Pinhey, 1975; CABI and EPPO, 2011). Economic losses
are associated with damage to the foliage which can lead to yield losses of approximately 50%
(Russell et al., 1993).

Synthetic insecticides and Bacillus thuringiensis Berliner are the most commonly used con-
trol strategies. However, they have become ineffective due to resistance and cross-resistance
(Mosallanejad and Smagghe, 2009; Siegwart et al., 2015). The new regulatory framework in
Europe, defined by European regulation (CE) no. 1107/2009 and Directive 2009/128/CE of
the European Parliament and of the Council, highlights the use of bio-insecticides as alterna-
tives for the control of insect pests. They are compatible with integrated pest management
(IPM) practices and considered to be environmentally friendly (Lacey, 2017). Furthermore,
it has been shown that EPFs can be used successfully to control a large variety of lepidopteran
pests, including S. littoralis (Vänninen and Hokkanen, 1997; Schulte et al., 2009;
Quesada-Moraga et al., 2013; Resquín-Romero et al., 2016a).

Control of S. littoralis by EPFs has been achieved by: applying (spraying) them directly as
mycoinsecticides; applying their insecticidal secondary compounds; or a combination of both
(Resquín-Romero et al., 2016a). Most recently, EPFs have been used as endophytes
(Quesada-Moraga et al., 2006a; Sahab and Sabbour, 2011; Resquín-Romero et al., 2016a;
Sánchez-Rodríguez et al., 2018). To date, studies on control of S. littoralis have focused on
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targeting the larvae on the plant, and ignored the soil-dwelling
prepupae and pupae. However, EPSs are increasingly seen as an
important crop protection tool for soil-dwelling insect pests
(Jaronski, 2010). EPFs can survive in the soil by cycling and
multiplying in insects or roots (Leger, 2008Q3 ). As such they
represent an opportunity for control of S. littoralis prepupae
and pupae, as seen for other soil-dwelling insects (Jackson
et al., 2000; Quesada-Moraga et al., 2006b). The aim of the cur-
rent study was to evaluate three Metarhizium brunneum Petch.
and four Beauveria bassiana Bals. (Vuill.) isolates applied as
soil drenches against the soil-dwelling life stages (prepupae and
pupae) of S. littoralis. We also evaluated the sub-lethal effects of
these treatments on adults that emerged from surviving pupae.
The selected isolates had shown high virulence against S. littoralis
and other pests in previous studies (Quesada-Moraga et al.,
2006a; Ortiz-Urquiza et al., 2009, 2010; Lozano-Tovar et al.,
2013).

Material and methods

Insects

Spodopera littoralis larvaewere obtained from a stock colony held at
the Department of Agricultural and Forestry Sciences of the
University of Cordoba (Spain), and maintained at 26 ± 2°C, 70 ±
5% RH, in a photoperiod of 16:8 (L:D) h. Larvae were fed on artifi-
cial diet consisting of 85 g of alfalfa meal, 34 g of brewer’s yeast, 32 g
of wheat germ, 18 g of agar-agar (Industrias ROKO, S.A., Spain),
14 g of casein (Merck KGaA, Germany); 4.5 g of ascorbic acid
(Scharlab, Spain), 1.3 g of benzoic acid (Scharlab, Spain), 1.1 g of
nipagin (Guinama S.L.U., Spain), 5 ml 10% formalin (formalde-
hyde 37–38% w/w stabilized with methanol) (Panreac, Spain) and
800 ml of distilled water (Santiago-Álvarez, 1977).

Fungal isolates

Four isolates of B. bassiana and three ofM. brunneum were used in
this study (table 1). These isolates are held in the culture collection
of the Department of Agricultural and Forestry Sciences (AFS) of
the University of Cordoba. For experiments they were grown for
15 days on malt agar (MA) in 90 cm diameter Petri dishes at 25°
C in darkness. Conidial suspensions were prepared by scraping
conidia from the agar into a sterile aqueous solution of 0.1%
Tween 80 and filtering through a piece of cheesecloth and vortex
mixing to encourage conidia into suspension. Germination tests
using the methods of Yousef et al. (2014) were done onMA supple-
mented with 500 mg l−1 streptomycin sulfate salt (Sigma-Aldrich

Chemie, China) and used to determine conidial viability; germin-
ation always exceeded 90%. The concentration of conidia in suspen-
sion was determined using a Malassez chamber and adjusted to
1.0 × 108 conidia ml−1 by the addition of 0.1% Tween 80.

Pathogenicity and virulence of entomopathogenic fungi as soil
drenches targeted at Spodoptera littoralis prepupae

Pathogenicity assays were done in transparent containers
(80 mm × 80 mm × 55 mm) containing 30 g of sterilized sub-
strate. The substrate was compost enriched with coconut fibre
and sterilized three times in an autoclave at intervals of 24 h.
Then, the substrate was sieved (2 mm mesh) and dried at 60°C
for 72 h. The substrate was inoculated by adding 1.7 ml of a
1.8 × 107 conidia ml−1 suspension and the soil was homogenized
by hand mixing, providing a concentration of 1.0 × 106 conidia g−1

of substrate, and a water potential of −0.47 MPa (9.0% [wt.: wt.])
(Garrido-Jurado et al., 2011). Control containers were treated in
the same way but inoculated with 0.1% Tween 80 without conidia.
Prepupae of S. littoralis were released into the substrate and incu-
bated at 26 ± 2°C, 70 ± 5% RH, in a photoperiod of 16:8 h (L:D)
until adult emergence. Mortality during development from prepu-
pae to pupae and through to adult was recorded daily for up to 14
days. Pupae that failed to emerge were surface sterilized in 1%
sodium hypochlorite for 5 min, rinsed twice with sterile water,
and placed under humid conditions to promote fungal outgrowth
and identify cause of mortality. There were three replicates, each
with ten prepupae for each isolate and the control; the entire
experiment was done on two occasions.

In a second series of assays, isolates that had causedmore than50%
mortality in the pathogenicity assayswere selected and their virulence
determined using the same application method. Four concentrations
of conidia were evaluated using the same method as described previ-
ously: 1.0 × 105, 1.0 × 106, 1.0 × 107 and 1.0 × 108 conidia ml−1 and
sterile 0.1% aqueous Tween 80 for the control. The bioassay
was done at 26 ± 2°C and 70 ± 5% RH. Three replicates of ten pre-
pupae were used for each treatment and control; the entire experi-
ment was done on two occasions. Mortality was recorded daily for
up to 10 days. Pupae that failed to emerge were surface sterilized
and incubated as described previously to identify cause of
mortality.

Sub-lethal effects of entomopathogenic fungi in treatments
targeted at Spodoptera littoralis prepupae as soil drenches

Development of pupae that had survived until day 14 of the two
pathogenicity assays was followed until they emerged as adults.

Table 1. Fungal isolates used this study

Isolate reference Fungal species Origin Ecosystem Habitat

EABb 01/33–Su Beauveria bassiana El Bosque (Cádiz, Spain) Traditional olive orchard Soil

EABb 01/88–Su Beauveria bassiana Vila Velha de Ficalho (Portugal) Sunflower crop Soil

EABb 01/103–Su Beauveria bassiana Constantina (Sevilla, Spain) Holm oak forest Soil

EABb 09/07-Fil Beauveria bassiana Castilblanco de los Arroyos (Sevilla, Spain) Holm oak forest Plant

EAMb 09/01–Sua (CECT 20784) Metarhizium brunneum Castilblanco de los Arroyos (Sevilla, Spain) Holm oak forest Soil

EAMa 01/58–Sua (CECT 20764) Metarhizium brunneum Hinojosa del Duque (Córdoba, Spain) Wheat crop Soil

EAMb 09/03–Su Metarhizium brunneum Castilblanco de los Arroyos (Sevilla, Spain) Holm oak forest Soil

aIsolates deposited in the Spanish collection of culture types (CECT) with accession number included in parenthesis.

2 I. Garrido-Jurado et al.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Inmaculada Garrido Jurado
Done. It is ok



Specifically, just prior to the onset of the scotophase on the 10th

day, male and female pupae from each treatment replicate and
control were individually weighed and placed, in pairs (one
male and one female), into new containers. As adults emerged
they were placed, in their pairs, into oviposition chambers consist-
ing of a cylindrical filter paper (150 mm × 120mm × 10 mm),
closed at both ends by a layer of filter paper. Cotton wool mois-
tened with a 10% honey solution was placed inside as food. The
chambers were observed daily and egg clusters collected,
surface-sterilized by immersion in 10% formalin for 10 min,
and then rinsed three times with sterile water to remove any for-
malin residues. The disinfected egg clusters were then placed on
pieces of filter paper to remove the water. Filter papers bearing
egg clusters from the same replicate were placed in plastic con-
tainers (300 mm × 200 mm × 120 mm) with perforated covers
and observed daily until they hatched. The total number of eggs
laid per female and the proportion that hatched was recorded
for each replicate.

Determination of destruxin A in Spodoptera littoralis pupae

Destruxin A production in S. littoralis was determined for M.
brunneum isolates EAMb 09/01-Su and EAMa 01/58-Su only.
Prepupae were treated by soil drenching, as described previously
for the pathogenicity assay, with the exception that they were trea-
ted individually (n = 10 per isolate) and not in groups. Mortality
was recorded up until adult emergence. Destruxin A was extracted
from all pupae following the protocol of Ríos-Moreno et al.
(2017). Briefly, individual pupae were lyophilized and powdered
in a porcelain mortar. The powder from each pupa was then
mixed with 5 ml of dichloromethane: ethyl acetate (1:1 v/v), sha-
ken for 2.5 h at 100 rpm and sonicated for 30 min before evapor-
ation in a flow chamber. The pellet was re-suspended in 1 ml of
methanol: acetonitrile (1:1 v/v) and filtered through a 0.2 µm fil-
ter. Dextruxin A content was analyzed by a research support ser-
vice (SCAI) from the University of Cordoba (Spain), using an
Agilent Technologies 1200-HPLC tandem mass spectrometry Q
Trap AB Sciex 5500 (AB SCIEX, Darmstadt, Germany). Briefly,
a Phenomenex C18 (150 mm Kinetex × 2.10 mm, 2.7 µm) column
set at 35°C was used for separation, and 10 µl samples from each
replicate were injected. The mobile phase consisted of 0.01% aque-
ous formic acid solution (solvent A) andMeOH (solvent B) at a flow

of 0.25 ml min−1. The eluent gradient profile was as follows: 0 min,
5% B; 15 min, 65% B; and 15.50 min, 90% B. The eluent was
returned to 5% B after 0.5 min and maintained for 2 min to allow
column equilibration.

Statistical analysis

Mortality data and female fertility data were analyzed using a gen-
eralized linear model with binomial distribution and logit link
function. Female fecundity data were modeled using a generalized
linear model with a Poisson distribution and log link function
using JMP 8 software. Treatment comparisons were made using
a χ2 test (P < 0.05). Average survival times (ASTs) were obtained
using Kaplan–Meier survivorship analysis and compared using
the log-rank test calculated with IBM SPSS 25.0 software.
Median lethal concentrations (LC50) were estimated by probit
analysis (Finney, 1971), and the median survival time (MST)
were calculated using IBM SPSS 25.0 software. Destruxin A data
were analyzed by ANOVA and the means were compared using
the Tukey’s honest significant difference (HSD) test.

Results

Pathogenicity of entomopathogenic fungi as soil drenches
targeted at Spodoptera littoralis prepupae

Significant differences in total mortality were found between the
isolates [χ2(7) = 140.23, P < 0.001]. Total mortality ranged
between 31.7 and 83.3% for EABb 09/07-Su and EAMb 09/
01-Su, respectively (table 2). Average survival times ranged
between 10.7 days for EAMa 09/03-Su and 7.5 days for EABb
01/103-Su and EAMb 09/01-Su, respectively (table 2). No mortal-
ity was observed in the controls. With respect to mortality that
could be directly attributed to the fungus (i.e. cadavers with fungal
outgrowth), significant differences were also found between the
isolates [χ2(7) = 79.48, P < 0.001]. Confirmed fungus-induced
mortality ranged between 30 and 58.3% for EABb 09/07-Su and
EAMa 01/58-Su, respectively (table 2). When we consider the life-
stage at which mortality occurred we can see that 30 and 58.3%
mortality due to isolates EAMb 09/07-Su and EAMa 01/58-Su
occurred between the prepupal and pupal stage; mortality
between the pupal and adult stage was related to deformity of

Table 2. Pathogenicity of entomopathogenic fungi as soil drenches (1.0 × 108 conidia ml−1) in treatments targeted at Spodoptera littoralis prepupae

Mortality (mean ± SE) (%)a Kaplan–Meier survival analysis

Total mortality Fungal outgrowth ASTb (mean ± SE) CI (95%)

Control 0 ± 0 a 0 ± 0 a 14.0 ± 0.0 c 14.0–14.0

EABb 09/07-Su 31.7 ± 3.1 b 30.0 ± 3.7 b 8.7 ± 0.4 b 7.9–9.5

EABb 01/33-Su 51.7 ± 3.1 c 41.6 ± 4.0 bc 8.5 ± 0.3 ab 7.9–9.1

EAMa 09/03-Su 55.0 ± 4.2 c 45.0 ± 4.3 bc 10.7 ± 0.3 b 10.2–11.3

EABb 01/88-Su 55.5 ± 3.7 c 36.6 ± 4.9 b 10.4 ± 0.3 ab 9.9–10.9

EABb 01/103-Su 58.3 ± 5.4 c 46.7 ± 3.3 bc 7.5 ± 0.3 a 7.0–8.0

EAMa 01/58-Su 80.0 ± 6.8 d 58.3 ± 4.0 c 8.4 ± 0.3 ab 7. 9–8.8

EAMb 09/01-Su 83.3 ± 2.1 d 55.0 ± 2.2 c 7.5 ± 0.3 a 7.0–8.0
aWithin the same column means with the same letter are not significantly different to each other (χ2 test, P≤ 0.05) according to the generalized linear model.
bAST: Average survival time was limited to 14 days. Within the same column means with the same letter are not significantly different to each other (P≤ 0.05) according to the log-rank test.
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pupae and ranged between 1.7% for EAMb 09/07-Su and 25% for
EAMb 09/01-Su, respectively (fig. 1).

Virulence of entomopathogenic fungi as soil drenches targeted
at Spodoptera littoralis prepupae

Virulence (multiple dose) assays were done with isolates that
attained 50% mortality in the pathogenicity assays (EABb 01/
33-Su, EAMa 09/03-Su, EABb 01/88-Su, EABb 01/103-Su,
EAMa 01/58-Su and EAMb 09/01-Su). However, only M. brun-
neum isolates EAMb 09/01-Su and EAMa 01/58-Su achieved
50% mortality in the virulence assay. Maximum mortalities
achieved by the other isolates were: 36.7% for EABb 01/88-Su;
41.7% for EABb 01/33-Su; 45% for EAMa 09/03-Su; and 46.7%
for EABb 01/103-Su. Therefore, probit analysis was only possible
for isolates EAMb 09/01-Su and EAMa 01/58-Su (table 3). No χ2

values were significant (α = 0.05), indicating a good fit of the
regression lines. Isolate EAMa 01/58-Su was the most virulent
with an LC50 of 1.7 × 107 conidia ml−1( = 9.6 × 105 conidia g−1of
substrate), but there was no statistically significant difference
between the two isolates. The shortest MST was observed for iso-
late EAMa 01/58-Su at 6.0 days, but it was not significantly
shorter than the MST for isolate EAMb 09/01-Su, which was
7.0 days (table 3). Both regression lines had low slopes (0.3 and
0.2 for EAMb 09/01-Su and EAMa 01/58-Su, respectively) indi-
cating only small changes in activity per unit change in conidial
concentration. The relative potency and the 95% fiducial limits
of isolate EAMa 01/58-Su compared with isolate EAMb 09/
01-Su was 1.08 (0.1–12.4) (table 3).

Sub-lethal effects of entomopathogenic fungi on Spodoptera
littoralis prepupae when applied as soil drenches

Fungal treatments had no significant effect on the weight of
pupae [χ2(7) = 0.6423, P = 0.9987], but significantly affected the
number of deformed adults emerging from them [χ2(7) = 67.03,
P < 0.001] and their fecundity [χ2(7) = 189.98, P < 0.001] and fer-
tility [χ2(7) = 599.21, P < 0.001] (table 4). Mean pupal weight ran-
ged between 185 mg for EABb 01/33-Su and 285.3 mg for EAMa
09/03-Su, respectively. The mean weight of the control pupae was

253.1 mg. There was a significant increase in the proportion of
deformed adults emerging from surviving prepupae/pupae treated
with isolates EABb 01/88-Su, EABb 01/103-Su, EAMa 01/58-Su
and EAMb 09/01-Su. No deformed adults emerged from control
prepupae/pupae or from prepupae/pupae treated with isolates
EAMa 09/03-Su, EABb 09/07-Su and EABb 01/33-Su.

Highest mean values for fecundity were 65 and 62.1 eggs per
female and was achieved by adults emerging from surviving pre-
pupae/pupae treated with isolate EABb 01/88-Su and the control,
respectively; there was no statistically significant difference
between these values. The lowest fecundity (25 eggs per female)
was achieved by adults emerging from prepupae/pupae treated
with isolate EAMb 09/01-Su and it was significantly lower than
all the values achieved in the other treatments. The lowest mean
egg fertility (as measured by hatch rate) was 69.4% for adults
emerging from surviving prepupae/pupae treated with isolates
EABb 01/88-Su and EAMb 09/01-Su. Egg fertility of adults emer-
ging from the fungus treatments was significantly lower than for
control adults (96.9%).

Determination of destruxin A in Spodoptera littoralis pupae

Production of destruxin A by both isolates was confirmed in
infected S. littoralis pupae; there was no significant difference in
the titer of destruxin A between the two isolates (P = 0.29).
Despite this, EAMb 09/01-Su-infected pupae contained a
1.5-fold higher titer of destruxin A than EAMa 01/
58-Su-infected pupae. The mean titer of destruxin A per infected
pupa was 0.015 ± 0.003 and 0.010 ± 0.002 µg for isolates EAMb
09/01-Su and EAMa 01/58-Su, respectively.

Discussion

This is the first study to report the successful use of soil drenching
with EPFs for control of the soil-dwelling stages of S. littoralis
(prepupae, pupae and adults emerging from surviving prepu-
pae/pupae). There has been only one other study on pathogenicity
of EPF against S. littoralis in the soil, but in this case the prepupae
and pupae were inoculated by immersion in the EPF (Cordyceps
fumosorosea) before being placed on the soil (Hussein et al.,
2013). The results of our current study indicate variation in sus-
ceptibility of S. littoralis prepupae to the EPFs we evaluated and
that this was independent of fungal genera. Greatest mortality
(exceeding 80%) was achieved when M. brunneum isolates
EAMa 01/58-Su and EAMb 09/01-Su were used as the soil
drench. This figure is similar to that obtained in the aforemen-
tioned study by Hussein et al. (2013) who achieved 83.3 and
64.5% mortality using C. fumosorosea against prepupae and
pupae of S. littoralis, respectively. However, our results are in con-
trast with the results of Ahmed and El-Katatny (2007) and
El-Katatny (2010) who reported low/no mortality in pupae
(10%) and prepupae (0%) of S. littoralis larvae treated with B.
bassiana isolate IMI 386701, although they did observe higher lar-
val (90%) and pupal mortality (80%) when spraying B. bassiana
isolate IMI 382302 at 108 conidia ml−1. Also, Amer et al. (2008)
reported mortality rates of 60% (2nd instar larvae of S. littoralis)
and 55% (4th instar larvae of S. littoralis) after exposure to filter
papers sprayed with a suspension of M. anisopliae conidia.

The high virulence of isolates EAMa 01/58-Su and EAMb 09/
01-Su against prepupae and pupae is consistent with our previous
studies on these isolates with other pest species. For example,
these isolates also achieved high mortality in prepupae and
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Figure 1. Relative percent mortality during development from prepupae to pupae
(solid bars) and proportion (%) of deformed adults emerging (lined bars) of
Spodoptera littoralis treated with soil drenches of fungi (1.0 × 108 conidia ml−1).
Within the same column means with the same letter are not significantly different
to each other (χ2 test, P ≤ 0.05) according to the generalized linear model.
Mortality limited to 14 days.
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pupae of the dipteran fruit flies, Ceratitis capitata Wied. and
Bactrocera oleae Rossi (Garrido-Jurado et al., 2011; Yousef
et al., 2013). This is interesting as EPFs often have no or low effi-
cacy against pupae of dipterans because the dipteran puparium is
a barrier to penetration and outgrowth of EPFs (Kaaya and
Munyinyi, 1995; De la Rosa et al., 2002; Cossentine et al.,
2010). Lepidoptera have obtect pupae with appendages attached
closely to the body and surrounded by a cocoon, while Diptera
have coarctate pupae enclosed in the cuticle of the third stage lar-
vae (Alfaro-Moreno, 2005Q4 ), which may negatively affect fungal
penetration.

Fungal infection represents a challenge to the insect immune
system which responds by producing phenoloxidase (PO)
(González‐Santoyo and Córdoba‐Aguilar, 2012). In Spodoptera
litura, and in dipteran and coleopteran hosts, PO activity
increases with increasing larval instar and decreases in pupae
(Dorrah, 2009; Shi and Sun, 2010). PO activity decreases in larvae
when fungal infection occurs (Bali and Kaur, 2013). Therefore,
differences in PO activity in lepidopteran larvae and pupae can
modulate susceptibility to fungal infection (Kaur et al., 2011).

The currentwork shows that the soil drenching techniquewith iso-
lates EAMa01/58-Su andEAMb09/01-Su (at 1.8 × 107 conidia ml−1)
achieved high levels of mortality in prepupae and pupae of S. lit-
toralis within 6–7 days. Similar results were obtained against the
rice cutworm Spodoptera litura Fab. pupae after soil drenching
with suspensions of 2.4 × 108 conidia ml−1 of M. anisopliae
(85.8% mortality) or Lecanicillium muscarium (79.5% mortality);
this was higher than that achieved following soil drenching with
1.2 × 106 conidia ml−1 B. bassiana suspensions (50% of mortality)
against 6th instar S. litura larvae (Anand et al., 2009; Agrawal and
Simon, 2017). Overall, soil drenching has great potential for con-
trol of soil-dwelling stages of pests.

The fungal treatments had no effect on pupal weight, which
was similar to the study of Gosselin et al. (2009), following appli-
cations of spinosad against Agrotis ipsilon Huf. In contrast,
Resquín-Romero et al. (2016b) found that the weights of S. littor-
alis larval decreased, compared with the control, when they fed on
plants colonized endophytically with EPFs. Leckie et al. (2008)
also observed a decrease in the weight of Helicoverpa zea larvae
fed on diets supplemented with B. bassiana, compared with the
control.

Compared with the control, there was also an increase in the
proportion of deformed adult S. littoralis emerging (1.7–15%)
in treatments receiving fungal soil drenches. However, not all iso-
lates resulted in adult deformity. This is consistent with Hussein
et al. (2013) who reported that 6.7% of C. fumosorosea- treated
larvae and 32.3% of C. fumosorosea- treated pupae emerged as
malformed adults. Malformation in adults has been described
previously following exposure of 2nd and 4th instar S. littoralis

larvae to M. anisopliae-sprayed filter papers (Amer et al., 2008).
In our study, B. bassiana isolates EABb 01/88-Su and EABb 01/
103-Su caused the highest proportions of deformed adults
(15%). Both these isolates are known to produce toxic proteins
that enhance their virulence; their extracts cause temporary tet-
anic paralysis in Galleria mellonela (L.) larvae (Ortiz-Urquiza
et al., 2010). Tetanic paralysis occurs as a result of the membrane
Ca2+ channels opening; it influences chitin synthesis which can
result in deformities (Doucet and Retnakaran, 2016).

There was also a significant decrease (15–58.9% reduction) in
fecundity of S. littoralis adults emerging from pupae that had sur-
vived in the fungus treatments. It has been reported previously
that application of the ethyl acetate fraction of volatiles from sev-
eral EPFs can result in a similar reduction in the number of eggs
laid by S. litura adults (Moorthi et al., 2015). With respect to egg
fertility, all fungal treatments significantly decreased the propor-
tion of eggs that hatched compared with the control (6.8–28.4%
reduction). This is consistent with the study of Malarvannan et al.
(2010) on S. litura although less extreme; they found total inhibition
of egg hatch after application of a 2.4 × 107 conidia ml−1 suspension
of B. bassiana to adults. Similarly, Pirali-Kheirabadi et al. (2007)
reported a 10–90% reduction in hatch rate of Rhipicephalus
(Boophilus) annulatus (Say) eggs treated with M. anisopliae, B.
bassiana and Lecanicillium psalliotae isolates. Gindin et al. (2006)
and Dembilio et al. (2010) found that egg hatch in
Rhynchophorus ferrugineus (Olivier) treated with B. bassiana was
reduced by 80–82% and 32.8%, respectively. In all these experi-
ments fungal applications were made to adults or directly on to
eggs; in our experiment the inoculumwas received by the prepupae,
but we still observed a significant reduction in egg hatch rate.

The destruxin A content of pupae was 0.015 ± 0.003 and 0.010
± 0.002 µg pupa−1 for isolates EAMb 09/01-Su and EAMa 01/
58-Su, respectively. These values are low compared with the
study of Ríos-Moreno et al. (2018), who found 0.031 µg g−1 in
S. littoralis larvae. Destruxins target different components of the
host, inhibiting pupal and wing development (Meng et al.,
2013). Interestingly, deformed pupae were only observed when
isolates EABb 01/88-Su, EABb 01/103-Su, EAMa 01/58-Su and
EAMb 09/01-Su were used. Isolates EABb 01/88-Su and EABb
01/103-Su are known to produce toxic proteins, as described pre-
viously, while isolates EAMa 01/58-Su and EAMb 09/01-Su are
known to produce destruxin A (Ortiz-Urquiza et al., 2010;
Garrido-Jurado et al., 2017; Ríos-Moreno et al., 2017). Moorthi
et al. (2015) also found a relationship between deformed pupae
in S. litura (4–18%) and secretion of metabolites in B. bassiana,
Paecilomyces varioty and C. fumosorosea.

In conclusion, this study reveals the potential of soil drenching
with EPFs for control of S. littoralis prepupae in soil and the sub-
sequent reduction in reproductive potential of the adults that

Table 3. Probit analysis of the log-dose mortality response and Median Survival Time (MST) of Spodoptera littoralis prepupae treated with soil drenches of two
isolates of Metarhizium brunneum

Isolate
Regression
equation Sea χ2 (2 d.f.) LC50 (conidia ml−1)

Confidence interval
(CI 95%, conidia

ml−1)

Relative
potency

MST
(days)

Confidence
interval

(CI 95%, days)

Lower Upper Lower Upper

EAMb 09/01–Su y = 0.3x + 3.2 0.075 0.544 1.8 × 107 3.6 × 106 4.5 × 108 1 7.0 5.5 8.5

EAMa 01/58–Su y = 0.2x + 3.3 0.074 0.059 1.7 × 107 3.6 × 106 4.6 × 108 1.08 6.0 4.8 7.2

aSlope error.
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emerged from surviving pupae. As the intention of this study was
to evaluate the direct effects of EFP on S. littoralis prepupae in the
soil, it was necessary to remove other biotic factors in the soil, i.e.
we used an artificial sterile substrate; this may have affected the
viability of the fungi. Further studies in non-sterile soil should
now be done with the most promising isolates to obtain more
realistic data. However, these preliminary results show that soil
drenching with EPFs could contribute to the suppressive potential
of the soil and has potential for use in S. littoralis IPM strategies
that disrupt the pest life cycle. This would also contribute to redu-
cing the number of insecticide applications made during the crop
season.
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