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ABSTRACT 

Regenerative Medicine is a well-established field of science that aims to replace, engineer 

and regenerate human cells, damaged tissues or organs to restore their normal function. 

This branch of translational research finds a deep interest in the Science of Biomaterials; 

indeed, the knowledge acquired in that field goes proportionally with the development of 

novel biomaterials. There is a great need in developing advanced biomaterials capable to 

fulfil the requirements of stability and bioactivity for their application in biomedicine. 

Moreover, considering the complexity of the human body, this system needs a certain 

rate of versatility in order to be tailored to a specific area of application. For all these 

reasons, recombinant proteins are an interesting approach, in which, elastin-like 

recombinamers (ELRs) represent one of the most promising biomaterials. ELRs are 

obtained through DNA recombinant technology, which allows the precise control at the 

genetic level, affording exquisite control over final protein functionality. ELRs are protein-

based polypeptides that comprise repetitive units of the Val−Pro−Gly−X−Gly (VPGXG)n 

pentapeptide, in which X (guest residue) could be any amino acid except L-proline. In 

terms of biomaterial design, ELRs show several outstanding properties. ELRs are inspired 

by elastin, which is a component of natural extracellular matrix (ECM), showing excellent 

biocompatibility. One of the most important features of ELRs is that they exhibit thermo-

responsiveness; this is due to the change of protein conformation above the so-called 

transition temperature (Tt), which depends on the amino acid composition of the 

polymer. Moreover, according to the ELRs design, they can be processed as several 

supramolecular structures, such as micelles, nanoparticles, films, and hydrogels. The large 

variety of ELRs, both in terms of structures and bioactivity, permits the application of 

these protein-based biomaterials to diverse biomedical applications.  

This Thesis represents a sort of journey towards the exploration of the evolution of ELRs 

as a powerful tool with great potential in the biomedical field. The first part of this Thesis 

is dedicated to the description of the history of ELRs from their ancient chemical origin as 

ELPs (Elastin-like Polypeptides) to the most cutting‐edge bioproduction techniques 

becoming into ELRs. Moreover, it is reported an exhaustive explanation of how ELRs can 

be processed in many forms (aggregates, fibers, layers, nanoparticles, or hydrogels), 
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giving examples of their great potential in many fields, including drug delivery, tissue 

engineering, protein purification, anticancer gene therapies, and nanovaccines. 

Moreover, considering their large interest, one chapter of this Thesis is dedicated to the 

ELRs as biomaterial forming hydrogels for tissue regeneration and repair. The different 

mechanisms of gelation are reported, and it is given an overview of the possible 

applications in tissue engineering, such as osteochondral application, (cardio-)vascular 

tissue regeneration, and ocular prostheses. 

The first experimental work of this Thesis is dedicated to the development of novel ELRs-

based hydrogel for cartilage repair. Tissue engineering for cartilage repair requires 

biomaterials that show rapid gelation and adequate mechanical properties. Although the 

use of hydrogel is the most promising biomaterial, it often lacks in rigidity and anchorage 

of cells when they are surrounded by synovial fluid while they are subjected to heavy 

loads. In this work, it has been developed and produced the Silk Elastin-Like co-

Recombinamer (SELR), which contains both the physical interaction from elastin motifs 

and from silk motifs. In the first part of this study, it was set up and optimized a pre-

annealing treatment based on the evolution of silk motifs into β-sheet structures in order 

to fulfil the required mechanical properties of hydrogels for cartilage repair. The new pre-

annealed SELRs (pA(EIS)2-(I5R)6) were characterized with the combination of several 

experimental techniques (CD, TEM, SEM, and rheology) to provide a deep insight into the 

material features. Finally, the regeneration properties of the pA(EIS)2-(I5R)6 hydrogel 

embedded with chondrocytes were evaluated. After 4 weeks of culturing in a 

standardized and representative ex vivo model, the biochemical and histological analysis 

revealed the production of glycosaminoglycans and collagen. Finally, the 

immunohistochemistry showed the absence of fibro-cartilage and the presence of hyaline 

cartilage, which leads to the successful regeneration of hyaline cartilage in an ex vivo 

model. 

Not only the physically cross-linked hydrogels have been investigated; indeed, an in situ 

chemically cross-linked hydrogels have been developed for osteochondral repair. 

Moreover, another bioactive composition of this biomaterial has been tested; this ELRs-

based hydrogel has been designed containing bioactive sequences, such as the well knows 

adhesion sequences RGD and REDV, and the elastase target domain VGVAPG that 



24 
 

provides proteolytic sensitivity to the biomaterial. Compared to the previous study 

reported in this Thesis, where the ex vivo platform was used, the regeneration properties 

of the chemically cross-linked ELRs hydrogel were evaluated with an in vivo study. 

Furthermore, it has been made a comparison between the usage of that biomaterial itself, 

and the biomaterial embedded with cells (tissue engineering). Both the ELR-based 

hydrogel alone and the ELR-based hydrogel embedded with rabbit Mesenchymal Stem 

Cells (rMSCs) were tested for the regeneration of critical subchondral defects in 10 New 

Zealand rabbits. Thus, cylindrical osteochondral defects were filled with an aqueous 

solution of ELRs. The animals were sacrificed at 4 months for histological and gross 

evaluation of features of biomaterial performance, including integration, cellular 

infiltration, surrounding matrix quality and evaluation of the new matrix in the defects. 

Although both groups helped cartilage regeneration, the results suggest that the specific 

composition of the rMSCs-containing hydrogel permitted adequate bone regeneration, 

whereas the ELR-based hydrogel alone led to an excellent regeneration of hyaline 

cartilage. In conclusion, the ELR cross-linker solution can be easily delivered and forms a 

stable, well-integrated hydrogel that supports infiltration and de novo matrix synthesis. 

As it has been reported above, the aim of this Thesis is to explore the possibilities of ELRs 

as a powerful tool capable of containing various bioactivities with great potential in the 

biomedical field. As a further step in the evolutional process towards advanced bioactive 

ELRs, one objective of this Thesis is to combine these two diametrically opposed 

approaches in a new hybrid biomaterial. Biomaterial design in tissue engineering aims to 

identify appropriate cellular microenvironments in which cells can grow and guide new 

tissue formation. Despite the large diversity of synthetic polymers available for 

regenerative medicine, most of them fail to fully match the functional properties of their 

native counterparts. In this work, we have combined the strategy of synthetic peptides 

with the DNA recombinant techniques generating a new hybrid biomaterial. Human 

umbilical vein endothelial cells (HUVECs) adhesion and proliferation were studied over 

the ELRs covalently functionalized with each three high-affinity and selectivity αvβ3- and 

α5β1-binding bicyclic RGD peptides. Next, to the bicycles, ELRs were also functionalized 

with various integrin-binding benchmark peptides, i.e. knottin-RGD, cyclo-[KRGDf] and 

GRGDS, allowing for better classification of the obtained results. Covalent 
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functionalization with the RGD peptides, as validated by MALDI-TOF analysis, guarantees 

flexibility and a minimal steric hindrance for interactions with cellular integrins. In addition 

to the covalently modified RGD-ELRs, it was also synthesized another benchmark ELR 

comprising RGD as part of the backbone. HUVECs adhesion and proliferation analysis 

using the PicoGreen® assay revealed a higher short-term adhesion and proliferative 

capacity of cells on ELR surfaces functionalized with high affinity, integrin-binding bicyclic 

RGD-peptides compared with the ELRs containing RGD in the backbone. 

Finally, in order to move forward the evolution of ELRs as advanced biomaterial showing 

multiple modular behaviours, it has been developed a new smart ELRs with the aim of 

targeting complex biomedical system. Taking advantages by the recombinant DNA 

techniques, it has been developed a smart biomaterial based on Elastin-like 

Recombinamers with allosteric control of RNase A activity.  The ELRs design comprised 

bioactive sequences sensible to external stimuli; It was designed containing ten consensus 

sequence phosphorylation sites regularly distributed along the ELR, and by the 

Ribonuclease A active sequence (RNase A). According to the position of RNase A relative 

to the ELR backbone, several variants of the smart-ELR have been produced. The smart-

ELRs were further characterized by several experimental techniques (SDS-PAGE, FTIR and 

HPLC-HR-MS), showing the capacity to be fully phosphorylated and further de-

phosphorylated. This reversible system was then investigated by turbidity analysis, 

demonstrating an evident shift in Temperature transition (Tt) value due to the (de-

)phosphorylation. Finally, the allosteric control of the RNase A catalytic activity was 

evaluated for all the different variants of the smart-ELR. The allosteric control of RNase A 

activity by the selective phosphorylation was demonstrated. Moreover, the different 

designs of the smart-ELRs exhibited different catalytic activity, showing the importance of 

the RNase A position according to the ELR backbone. 

In summary, the works reported in this Thesis provides an overview of the ELRs as 

engineering responsive and biomimetic material for the biomedical application. 

Specifically, it describes in the first part the base knowledge of this class of recombinant 

protein, focussing on the different structures that can be formed and their great potential 

in many biomedical fields. Furthermore, special interest has been dedicated to the 

potential of ELRs as biomaterial forming hydrogels for tissue regeneration and repair. 
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Following this trend, for osteochondral repair application, two types of ELRs based 

hydrogel showing different bioactivities and gelation mechanisms have been developed 

and tested with an ex vivo and an in vivo study. Finally, taking advantages from the DNA 

recombinant technology which allows the precise control at the genetic level, news 

advanced ELRs have been developed. A new class of hybrid ELRs combining the synthetic 

synthesis of peptides with the DNA recombinant techniques has been designed, and a 

new generation of smart-ELRs with allosteric control has been obtained.  
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INTRODUCTION 

The worship for the “universe” that surrounds the human body, both spiritual and physical 

found manifest (in ancient times) in religions and cultural myths and more recently in 

Medicine and Science. Since the beginning of time, Mankind has used his intelligence to 

find solutions to all the different diseases and aging effects that affect the human body. 

The knowledge and possibilities to “repair” the ultra-complex human-body machine has 

increased with technology. This branch of translational research is called Regenerative 

Medicine. It seeks to repair or replace tissues and organs that have been damaged; one 

approach considers an external substance implanted in the area affected by disease or 

trauma (1). Many different types of materials have been used along with the history of 

humanity, from wood to ceramics passing through scaffolds based on metals (2). As the 

competences of intervention on the human body have improved, also the materials have 

evolved towards various approaches with the aim of imitating the complex system for 

which they are though (Biomaterials). The science of biomaterials has evolved along the 

years exploring several types of solutions from natural sources, such as alginate (3) and 

collagen (4) to synthetic polymers such as polyethylene glycol (PEG) (5) and Poly(N-

isopropylacrylamide) (PNIPAAm) (6,7) among others. The indispensable feature of a 

biomaterial is the biocompatibility, namely the ability of a material to perform with an 

appropriate host response in a specific application (8). Indeed, it is necessary that the 

material used in surgical implants does not show cause any harmful or toxic reaction to 

living tissue. Moreover, simultaneously to the knowledge gained over the complexity of 

the different tissues of the human body, advanced biomaterials with different 

compositions have been developed for the different areas of application. In that sense, 

recombinant proteins represent a powerful tool in the field of biomaterials. Among all the 

advantages of this class of proteins, the biggest one is the precise control over the design 

and the composition of the biomaterial. Indeed, this capacity allows to obtain tailored 

biomaterials, targeting the different tissue applications.  

Elastin-like recombinamers (ELRs) 

Over the last decades, recombinant DNA techniques have proven to be very powerful 

tools for the development of novel protein-based biomaterials. This class includes elastin-
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like recombinamers (ELRs), which are protein-based polypeptides that comprise repetitive 

units of the Val−Pro−Gly−X−Gly (VPGXG)n pentapeptide, in which X (guest residue) could 

be any amino acid except L-proline (9). ELRs shows several advantages of designing 

biomaterials. They are inspired by elastin, which is a component of natural extracellular 

matrix (ECM), showing excellent biocompatibility (10,11). One of the most important 

features of ELRs, is that they exhibit thermo-responsiveness in acqueous media; this is 

due to the change of protein conformation above the so-called transition temperature 

(Tt), which itself depends on the amino acid composition of the polymer (12). Moreover, 

according to the ELRs design, it can be obtained several supramolecular structures, such 

as micelles, nanoparticles, films and hydrogels (13). Furthermore, as it will be described 

ahead, due to the DNA recombinant technology it is possible to include bioactive 

sequences in the final composition of the protein (14). An extended explanation about the 

thermo-sensitiveness property of ELRs and their capacity to self-assembly in several 

supramolecular structures can be found in Chapter 1. 

Hydrogel-based on ELRs  

As it has been extensively studied, hydrogels have become a popular option for 

regenerative medicine applications (15). The use of hydrogels as a scaffold to regenerate 

damaged tissues could provide both basic support, in case of hydrogel itself, and could 

promote an added repopulation contribution when embedded with cells. ELRs allows to 

obtain several types of biomaterial for a broad variety of applications. According to the 

amino acid composition, several structures can be formed, such as particles, micelles or 

hydrogels (13). Regarding the hydrogel structure, in this Thesis, two different gelation 

mechanisms have been explored: chemically & physically cross-linked hydrogels. 

Following the evolution of biomaterials, this is a clear example of how it is necessary to 

find out new solutions to more precise requests. In the case of chemically cross-linked 

hydrogels, the ELR sequence comprises amino acids having a functional group on the side 

chain, which, could be modified in order to confer a sort of reactivity; such as lysine that 

contains ε-amino. This ε-amino group from lysine can be chemically functionalized to 

provide a concrete reactivity to the ELRs molecule. In our case, we will take advantage of 

the 1-3 Huisgen cycloaddition to perform a crosslinking between ELRs molecules. The 

chemical cross-link can occur by catalyst-free click chemistry, allowing immediate gelation 
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of the hydrogel even at a small concentration (16). On the other hand, according to the 

amino acid composition of the polymer, ELRs exhibit thermo-responsiveness, indeed, 

above the Tt the protein conformation is translated into a hydrophobically driven self-

assembly of the molecules toward supramolecular hydrogels (17). Moreover, it has been 

already demonstrated that the amino acid sequences GAGAGS hexapeptide (G: Glycine, 

A: Alanine, S: Serine) found in Bombyx mori silk fibroin, can be included in the ELR 

sequence by DNA recombinant technique. It has been found that this silk domain is 

responsible for the supramolecular rearrangement into β-sheets, giving stability to the 

hydrogel (18). In the light of the definition of Tissue Engineering, as the combination of 

cells with engineered materials to improve or replace biological functions, these two 

different mechanisms of gelation represent two different approaches for the tissue repair 

application. As it is reported above, ELR-based hydrogels are one of the most promising 

solutions for Tissue Engineering, along the last decades they have gained interest in the 

most challenging fields of tissue regeneration (19). Chapter 2 of this Thesis is an 

exhaustive overview of the possible applications of the ELRs in Tissue Engineering field. 

Both approaches reported above (chemically & physically cross-linked hydrogels) have 

been investigated in this Thesis; two comprehensive examples of physically and 

chemically cross-linked hydrogels for osteochondral repair can be found in Chapter 3 and 

Chapter 4.  

Advanced ELRs with gained bioactivity 

The evolution of ELRs as a versatile solution for biomedical application passes through the 

ability to form different supramolecular structures according to the designed composition 

of the polymer. The capacity of comprehending any sort of bioactivity represents another 

important milestone towards advanced materials that can be tailored for certain 

applications. The capacity to confer bioactivity is possible thanks to the DNA recombinant 

technology that allows the fusion of the desired sequences with the ELR counterpart (20). 

As it is reported in the literature, many ELRs containing diverse bioactive sequences have 

been investigated (21,22). In terms of adhesion capacities of the biomaterial, one of the 

most extensively used bioactive sequences is the triple peptide Arginine - Glycine - 

Aspartic acid (RGD), which supports cell adhesion via integrins (23). Another bioactive 

sequence that provides cell adhesion is the CS5 human fibronectin REDV (Arginine - 
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Glutamic acid – Aspartic acid - Valine) which improve the selectivity for endothelial cells 

(24). At the same time, the design of ELRs comprising the elastase target domain (human 

leukocyte elastase I) VGVAPG (L-Valine – Glycine - L-Valine - L-Alanine - L-Proline - Glycine) 

provides proteolytic sensitivity to the biomaterial (25). In this Thesis is reported the 

development of novel biomaterials based on ELRs containing the listed sequence in order 

to evaluate their effectiveness in the most emerging fields. Moreover, generally speaking, 

it has to be taken into consideration that combining opposite approaches may 

compensate the drawbacks shown by each one if taken individually. For example, the 

recombinant synthesis has limitations on the incorporation of non-canonical amino acids 

and does not allow the formation of cyclized peptides (26). In that sense, the recombinant 

technique of ELR can be combined with the strategy of designing novel and efficient 

peptides (27). As a further step in the evolutional process towards advanced bioactive 

ELRs, one objective of this Thesis is to combine these two diametrically opposed 

approaches in a new hybrid biomaterial. In Chapter 5 is reported the combination of 

synthetic peptides with the ELR backbone that can be obtained using copper-free click 

chemistry (15).  

A new frontier of ELRs 

Target complex systems require new approaches capable to combine modular features in 

multi-capable material. Due to its potentiality, smart materials have gained widespread 

interest in material science (28). Smart (or stimuli-responsive material) derived from the 

development of materials that show large conformational changes in response to small 

environmental stimuli such as temperature, ionic strength, solvent polarity, 

electric/magnetic field, or light (29). In that sense, ELRs represent a promising tool for the 

generation of a new frontier of biomaterials. As it has been reported above, the ELRs 

exhibit several advantages as biomaterials, such as their compatibility, and their thermo-

sensitivity; however, the most important remains the precise control at the genetic level, 

affording exquisite control over final protein functionality. There are many examples of 

smart biomaterials based on ELR (smart-ELR); for biomedical and biomimetic applications 

(30-34). Moreover, recent works have explored a new type of ELRs, which are not only 

enzyme-responsive but also contain their own activity due to the fusion of selected 

catalytic domains at the genetic level (35,36). Following this strategy, another aim of the 
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Thesis was to explore a new generation of ELRs. In Chapter 6 is reported the experimental 

work regarding the design of a new smart ELR containing consensus sequences for 

enzymatic responsiveness and a catalytic domain for allosteric control.  

The common ground of this Thesis is the ELRs technology with its outstanding properties; 

the leitmotiv is represented by the development of engineering material in a sort of 

journey towards the exploration of new possibilities, mashing approaches and crossing 

boundaries. 
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PROBLEM STATEMENT AND HYPOTHESIS 

The Biomaterial field is a branch of translational research that evolves with technology. 

Many types of technology have a crucial impact in this scientific field, both for the 

development of biomaterials and for the application of those biomaterials in the 

biomedical field. Along the last decades, the scientific community came up with several 

types of biomaterials from natural sources to synthetic polymers. Despite the large variety 

of biomaterials, only a few of them are able to show adequate properties of bioactivity 

and versatility for being applied to different biomedical applications. Nowadays, a partial 

wrong approach is the tendency to use a “one-type” biomaterial to address diverse 

biomedical issues. The strategy of developing one type of biomaterial for a large variety 

of biomedical applications may results successful for some, but unsuccessful for the 

others. Every issue in the biomedical field needs to be targeted with tailored therapies. 

One of the biggest challenges of today is to develop tailored biomaterials for specific 

applications. In this Thesis, we propose to explore the potential of Elastin-like 

Recombinamers (ELRs) as an engineering responsive and biomimetic material, towards 

the development and the optimization of tailored solutions for specific biomedical 

applications. 

The following points represent the hypothesis of the research planning of this Thesis:  

 

- Considering that the DNA recombinant technique allows an exquisite control at 

the genetic level, we hypothesize to generate several ELRs comprising diverse 

combinations of bioactive domains. Furthermore, we aim to bio-produced the 

designed ELRs in Escherichia coli taking advantage of their thermo-responsiveness 

whereby depending on the composition of the ELRs several structures could be 

formed. 

 

- It is well known that hydrogels based on specifically designed ELRs can be formed 

by different gelation mechanisms and that these mechanisms influence the 

mechanical properties of the hydrogels. We hypothesize that the different 

gelation mechanism (chemical or physical cross-linking) has a crucial influence for 
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the generation of a 3D hydrogel embedded with cells as a successful scaffold for 

osteochondral repair. 

 
- It is well described in the literature that ELR can be modified in order to be reactive 

for click chemistry reaction. We hypothesized that the strategy of copper-free click 

chemistry allows the incorporation of non-canonical amino acids and the 

formation of cyclized peptides, (which represents a limitation shown by the 

recombinant synthesis) in order to generate a new class of hybrid biomaterials. 

 
- The consensus sequence sensible for the kinase/phosphorylase can be included in 

the ELR composition in combination with the RNAse A catalytic domain in order to 

verify the allosteric domain regulation. Indeed, new combinations of ELR with 

bioactive sequences can be explored.   
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OBJECTIVES 

 The main purpose of this Thesis is to develop engineered responsive materials 

capable to overcome some limitations shown by the existing solutions for 

biomedical applications. Our research focuses on the potentiality of using elastin-

like recombinamers (ELRs) as the common ground for the development of 

different biomimetic materials. Different aspects will be touched within this 

Thesis, lining up a sort of evolution in the complexity of the ELR-based 

biomaterials.  

 

 The first concrete scope of the Thesis is to design and produce bioactive hydrogels 

for Tissue Engineering (TE) application. Specifically, the goal is to develop bioactive 

hydrogels for osteochondral repair. The need to include bioactive domains in the 

ELR’s composition will be investigated focussing on different bioactive domains 

such as adhesion sequence and proteases sensitiveness, we aim to find the right 

ratio of bioactive sequences in order to permit the replacement of the scaffold for 

the regenerated tissue. ELRs containing tailored bioactive motifs will be obtained 

through recombinant DNA technology. Moreover, two different gelation 

mechanisms of hydrogels by chemical (covalent bonds) or by physical cross-linking 

will be investigated and characterized by different methods such as rheology and 

Scanning Electronic Microscopy (SEM).  

 

 Secondly, the cyto-compatibility of the designed hydrogels will be assessed by in 

vitro analysis. Moreover, the effective regeneration enhancement of the designed 

ELR-based hydrogels for osteochondral application will be evaluated by ex vivo and 

in vivo studies. In the first case, the study will be carried forward in collaboration 

with LifeTec Group, using an ex vivo platform for cartilage repair. On the other 

hand, we intend to assess the osteochondral regeneration of a critical defect with 

animal study trials. In both cases, the regeneration rate will be evaluated with 

different techniques, such as histology and immunohistochemistry (IHC). 
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 Furthermore, a new hybrid ELRs containing bioactive sequences will be generated 

combining the recombinant technique of the elastin-like recombinamers with the 

strategy of designing novel and more efficient synthetic peptides (in collaboration 

with PepScan). The potentiality of combining these two diametrically opposed 

approaches in a new hybrid biomaterial for broad biomedical application will be 

explored. Indeed, the adhesion capacity of the new material will be evaluated by 

different techniques such as DNA quantification and Morphological analysis for 

HUVECs. Thereby, we intend to discover the enhanced adhesion capacity of the 

hybrid material at short-term or long term, and that may be used as a new tool for 

biomedical applications.  

 
 Finally, a new class of smart-ELRs with an allosteric domain will be investigated. 

We will take advantages from the recombinant technique of ELRs to include 

bioactive consensus sequences and enzymatic activity. A new smart-ELR 

containing the Kinase/Phosphatase consensus sequence will be produced, and the 

thermo-sensitiveness modulation will be evaluated according to the 

phosphorylation/de-phosphorylation of the smart-ELRs. Moreover, in order to aim 

the allosteric control of the smart-ELR, different variants of smart-ELR having fused 

the RNase A catalytic domain will be produced. Then, the smart-ELRs will be 

characterized by several techniques such as mass analysis and turbidity; 

furthermore, the allosteric control of the RNase A catalytic will be assessed by RNA 

quantification analysis.  
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1. INTRODUCTION 

Etymologically, the term protein comes from the Greek proteios, which means “holding 

first place”, or could come from the god Proteus which name suggests “primal”, 

“firstborn” and it is associated to the facility of this God to change his form and opinion. 

The name itself indicates the crucial role that proteins have in the living beings and the 

diverse forms in which we can find them in nature. If the importance of water is well 

known in the composition of the human beings, around 60% in adult males (1), proteins 

are not less important. In fact, more than 50% of the dry weight of our bodies is formed 

by proteins. They may have very different functionalities in the living systems, and some 

of them are large molecules that help to form the structure of our tissues irrespective of 

their location. In this way, we can find them forming really hard structures like bones, 

nails, horns or scales but they are also present in softer tissues like liver, muscles or 

connective tissue. Furthermore, proteins are not only involved in these structural tasks 

but they play a paramount role in the activation or deactivation of gene expression, or 

having regulatory functions helping to organize several processes or regulating 

metabolism or even taking part in muscle contractions. 

Among these proteins, elastin is one of the most important proteins that can be found 

composing the extracellular matrix (ECM) which provides structural integrity to the organs 

and tissues in the living beings. Elastin is not only an important protein within the 

composition of the ECM, but it also possesses certain features that make it unique. For 

instance, it is extremely durable and with a very low turnover in healthy tissues, the 

estimated half-life of this protein is around 70 years (2). Elastin confers elasticity and 

resilience to many tissues like ligaments, tendons, arteries or lungs among others (3). This 

elasticity is given by the presence of hydrophobic regions within the structure of the 

monomers of elastin that tend to aggregate and self-assemble contributing to the 

polymeric organization of the elastin (4). Along the last decades of the 20th century not 

few researchers were interested in this self-assemble property and started to explore the 

synthesis and production of artificial polypeptides based on these hydrophobic domains 

that conferred such properties to the elastin molecule (5-8). They found that the most 

frequent fragment of pentapeptides in the structure of the natural elastin was the 

sequence VPGVG, appearing up to 50 times in a single elastin molecule. It was discovered 
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that synthetic polymers of (VPGVG)n (n ≤ 150) were soluble in water below 25°C but they 

aggregated suffering a phase transition above this temperature (8). This change in the 

conformation of the protein leads to a viscoelastic state in which the amount of polymer 

is around 50% and the other 50% is water. This process is common to all the elastin-like 

polymers (ELPs) and it is accompanied by a halving of the length of the polymer and a 

release of a great amount of energy (9). All this process is driven by a change in the 

structure of the ELP, from an extended conformation below the transition temperature 

(Tt), to a β-spiral with three units of the basic pentamer VPGVG, forming a type II β-turn 

per turn of the spiral, above the Tt (5) (Figure 1). The Tt can be tuned by changing the 

fourth amino acid of the pentamer VPGXG, where X could be any amino acid except 

proline, because its structure destabilizes the β-turn impeding the correct packing of the 

chains of the polymer. The Tt of an ELP is clearly influenced by the nature of the guest 

amino acid on the X position in the sequence (VPGXG)n (apolar residues decrease the Tt, 

while polar ones increase the value of the Tt) and by the overall polymer length (n). The 

effect of these two parameters has been deeply investigated and described by Urry and 

coworkers (10). Moreover, the Tt is sensitive to other external factors as for instance ionic 

strength, pH, pressure, light or chemical modifications (9). 

 

Figure 1. Schematic representation of the conformational change of the ELP and ELR backbone 

depending on the temperature. 
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Chemical synthesis of various polypeptides based on elastin were successfully obtained 

by using standard chemical processes as demonstrated by Urry, Prasad and others (11,12), 

but some problems arise when more complex structures or simply larger polymers want 

to be synthetized, like problems in purification and polydispersity and, even if these 

amounts of mixture of products are obtained in small quantities, they can drastically affect 

the physical properties of the final product (13). The arrival of the recombinant DNA 

technology opened a new way to design and produce synthetic proteins. The old 

nomenclature of ELPs was changed to ELRs (elastin-like recombinamers) pointing out the 

recombinant origin of this new family of elastin-based polymers. With this new approach, 

some of the problems derived from the old chemical synthesis, like polydispersity, need 

for organic solvents and the further elimination of their residues, were overcome while a 

higher control over the amino acid sequence was obtained. Moreover, the purification 

process changed from classical chemical purification pathways to one based exclusively 

on the thermal behavior of the ELRs. After some inverse transition cycles (ITC), which 

imply heating and cooling of the suspension containing ELRs above and below their 

inverse temperature transition (ITT), they can be easily purified without the need of the 

addition of chemical agents or solvents that should be removed afterwards. During the 

last decade, a better control over the recombinant techniques and the use of more 

specific and accurate enzymes has led to the precise biotechnological processes that are 

nowadays applied in the production of the ELRs. 

ELRs are biological polymers that due to their flexibility in the design, their self-assembly 

properties, easy chemical modification allowing the introduction of many interesting 

functionalities, versatility to be processed in many forms (aggregates, fibers, layers, nano-

particles or hydrogels) and excellent cyto- and biocompatibility, have a high potential in 

many fields, from drug-delivery to tissue engineering, including others such as protein 

purification, anti-cancer gene therapies or nano-vaccines. 

In the next pages, we will explore the evolution of ELRs from their ancient chemical origin 

to the most cutting-edge bioproduction techniques, exploring the several hosts that can 

be used to bioproduce them and their versatility in the design. We will also immerse in 

the several structures that ELRs can form and their possibilities in the numerous medical 

fields where they can be applied. 
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2. ELASTIN-LIKE RECOMBINAMERs ENGINEERING, 

BIOPRODUCTION AND DESIGN 

2.1. History and evolution of the synthesis of elastin-like 

recombinamers 

1.3.1. Ancient times (the “chemistry ages”) 

The finding of repetitive sequences in porcine elastin by Gray et al., in 1973 (14), led to 

the chemical synthesis of different versions of some of these oligopeptides, being one of 

them the pentapeptide Val-Pro-Gly-Val-Gly (VPGVG in single-letter amino acid code). 

There was a lot of enthusiasm to study the conformational properties of these peptides 

in an attempt to shed light into the features of natural elastin, a polymeric protein that 

gathered a lot of attention due to its relationship with several diseases (15,16). Hence, 

Urry’s laboratory began synthetizing elastin-derived peptides and soon became one of the 

leading research groups in this field. However, the synthetic strategies required complex 

methods including the use of diverse precursors and solvents, while the overall yield and 

the length of the polypeptide were very limited (17). Despite the limitations, these 

synthetic approaches allowed the attaining of VPGVG (poly)pentapeptides to perform 

conformational studies (17,18), even by covalent cross-linking of these peptides, which 

also led to morphological studies by scanning electron microscopy (SEM) and to the 

determination of stress-strain curves (19). Finally, all these early studies resulted in the 

development of molecular dynamics calculations which gave more information about the 

secondary structure of the protein and about the backbone torsion angles ψ and φ of the 

amino acid residues in the polypeptide, both in its relaxed and extended state (20). 

2.1.2. Modern times (the “recombinant ages”) 

By that time, the last years of the 80´s, recombinant DNA technology had arisen as a very 

promising tool for the biotechnological synthesis of proteins in heterologous hosts, mainly 

Escherichia coli. Therefore, researchers started to use this technology for the expression 

of polymeric proteins to overcome the disadvantages of both chemical synthesis and 

extraction from natural sources. The first biosynthetic strategy for the production of ELRs, 
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in this case fused to silk-like sequences (repetitions of the GAGAGS hexapeptide), was 

reported by Cappello et al. in 1990 (21). Nevertheless, the molecular biology methods that 

led to the obtaining of the elastin-like gene were described two years before in a patent 

by Ferrari et al. (22). This document explains the head-to-tail concatemerization of the 

elastin-like gene by self-ligation of cohesive DNA ends leading to a final gene encoding the 

amino acid sequence (VPGVG)160. Hence, this self-ligation method allowed the synthesis 

of ELR genes with different lengths, although in an uncontrolled manner and without the 

guarantee of achieving a gene with the desired length. This process was further explained 

by Tirrell et al. for the genetic engineering and expression of protein polymers in general, 

also discussing the potential issues derived from the use of the recombinant DNA 

technology (23). 

2.1.3. Contemporary times (the “seamless recursive ages”) 

After these first steps towards genetic engineering of ELRs, new methods were developed 

to overcome some disadvantages, like the low number of endonucleases recognizing non-

palindromic cleavage sites needed for the self-ligation in a correct head-to-tail 

orientation. Hence, some procedures described for general cloning were used in the 

context of ELRs. This is the case of the “seamless cloning” technique that allowed the 

cleavage of DNA outside the recognition sequence by the use of the type IIs restriction 

endonuclease Eam1104I and, therefore, avoided the introduction of extraneous 

nucleotides (nts) in the cloned sequence (23). This method was first used successfully by 

Conticello and co-workers for the synthesis of ELR genes, suggesting that it could be a 

more rapid and efficient system for the bioproduction of protein polymers (25). 

Nonetheless, they still relied in concatemerization to achieve the desired length of the 

gene. To overcome this limitation, Meyer and Chilkoti proposed a new method termed 

“recursive directional ligation” (RDL) (26). In their work, they described the use of two 

different restriction endonucleases with well-defined features, namely PflMI and BglI, to 

synthetize ELR genes. These two restriction enzymes leave single-stranded DNA ends 

upon cleavage that are cohesive one with the other, so one of them can be used to extract 

the ELR insert, while the other one is used to linearize the cloning vector. Both molecules 

were then mixed together for ligation to achieve the final construction. The plasmid vector 

was designed so the restriction sites were maintained after each cloning step, allowing 
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subsequent insertions of ELR-coding genes. As an evolution of this method, Chilkoti and 

co-workers described a new RDL strategy termed plasmid reconstruction (PRe)-RDL (27). 

In this case, they introduced type IIs restriction endonucleases to RDL for a more efficient 

seamless cloning. Moreover, it avoided self-ligation of the vector and nonproductive 

circularization of the insert by cutting both the insert-donor plasmid and the receptor 

vector in halves with two different type IIs endonucleases that leave non-complementary 

overhangs. Therefore, a circular plasmid is only achieved when both insert and vector 

have been ligated. 

Despite the great improvement in the genetic engineering of ELRs reached so far, there 

were still some limitations that should be overcome, like complexity in plasmid design. In 

this regard, Rodríguez-Cabello et al. described a new method for the easy and rapid 

generation of ELR gene constructs and their expression in heterologous hosts (28). For 

this purpose, they relied on the seamless cloning approach through two type IIs 

endonucleases, namely the aforementioned Eam1104I and SapI. The only difference 

between them is that SapI recognizes a 7-nt sequence, while Eam1104I recognizes a 6-nt 

one (GCTCTTC and CTCTTC, respectively), being the latter included in the SapI one. With 

this strategy, it is possible to engineer a plasmid so it can include two Eam1104I restriction 

sites, being one of them also a SapI recognition sequence. For this purpose, two 

commercially available plasmids, one being the pDrive cloning vector and the other one 

the pET-25b(+) expression vector, were modified by site-directed mutagenesis to exclude 

inherent Eam1104I and SapI restriction sites and only include the desired ones. On the 

other hand, it allows controlled concatemerization following the previous guidelines for 

RDL. Furthermore, it avoids self-ligation in a very simple way by treating the receptor 

plasmid with a shrimp alkaline phosphatase, hence eluding the need of cutting plasmids 

in halves as described above. This procedure, named iterative-recursive method, is a good 

example of how molecular biology methods can be fine-tuned to achieve well-defined 

repetitive genes coding for protein polymer sequences very efficiently. 

A schematic representation of the multiple options in ELR design and genetic engineering 

can be observed in Figure 2. 
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Figure 2. Schematic representation of the different approaches for the design and genetic 

engineering of protein polymers in general and ELRs in particular. Adapted with permission from 

(29). 
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2.2. Hosts for the expression of elastin-like 

recombinamers 

2.2.1. Prokaryotic hosts 

2.2.2.1 The gold standard: Escherichia coli 

Like in the case of many other proteins produced by recombinant DNA technology, E. coli 

was used for the heterologous expression of ELRs in the first place, as is the case for all 

the works commented above. This is mainly due to the well-studied metabolism and 

culture conditions of this Enterobacteriaceae. Furthermore, ELRs do not undergo post-

translational modifications and their folding is correctly achieved without the mediation 

of eukaryotic chaperones or any similar system. Hence, E. coli arose from the beginning 

as a good host to achieve an optimal expression and yield of ELR biosynthesis. However, 

although expression was easily achieved for short (30) and long ELRs (31), there was still 

plenty of room for optimization. First, Guda et al. compared the expression of the gene 

coding for G-(VPGVG)119-VPGV in Luria Broth (LB) culture medium following induction 

with isopropylthio-β-D-galactoside (IPTG) and Terrific Broth (TB) without induction (32), 

and they found that the expression was very much higher in the case of TB culture after 

24 hours. This TB medium had shown before a favorable effect on plasmid stability, while 

the use of lactose in TB made it a good auto-induction medium (33). 

Other approaches regarding the optimization of ELR bioproduction explored the 

supplementation of E. coli culture medium with amino acids that are highly repeated in 

the ELR sequence: glycine, valine, proline, and alanine. In this way, depletion of 

intracellular amino acid pools in E. coli could be avoided. Therefore, Chow et al. studied 

the expression of ELR and the final yield in terms of grams of ELR per liter of culture, both 

with LB culture medium followed by IPTG induction, and with TB medium (34). In this 

work, the authors showed that the use of glycerol, phosphate buffer and proline as 

supplements of TB medium enhanced 6-fold the ELR yield compared to the basal TB, from 

an initial 0.27 g/L to 1.6 g/L, with the subsequent reduction in cost. Furthermore, their 

results suggest that, surprisingly, supplementation of amino acids other than those 

abundant in ELRs (asparagine, aspartic acid, glutamine and glutamic acid) also enhanced 
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protein yields, indicating that regulatory mechanisms in the control of intracellular amino 

acid pools that are more complicated than it could be expected in the first place may exist. 

Other works have reported a high-level expression of ELRs fused to silk-like domains, 

hence making silk-elastin-like recombinamers (SELRs). Machado et al. showed a 

volumetric yield of 150 mg/L, being 6-fold higher than previously reported productivities, 

just by using auto-induction TB medium supplemented with lactose and controlling the 

temperature at 37°C (35). However, cell densities were too low compared with lactose 

supplemented TB at the same conditions, so the process could still be optimized. 

Furthermore, it was a low-scale batch production and some parameters influencing 

bacterial culture were uncontrolled. Henceforth, a comprehensive and detailed study was 

carried out by Collins et al., even though it was performed again in low-scale fermentation 

systems (shake flasks) (35). Cultures were performed at different conditions by changing 

medium and medium composition, initial pH, incubation temperature, flask volume to 

culture volume ratio, agitation rate, IPTG induction concentration, elapsed fermentation 

time at induction and induction period. Though the chosen approach was ‘one-factor-at-

a-time’ and therefore the study had some limitations. Despite these limitations, it was 

found that the best yield of 500 mg/L is achieved at 37°C with TB at pH 6-7.5, a 10:1 flask 

volume: culture volume ratio, agitation speed of 200 rpm and induction at the beginning 

of the stationary phase with 0.5 mM IPTG for 4 hours. Further studies were performed by 

the same group, in this case using a fed-batch approach and a 3 L bioreactor, allowing a 

more powerful and deeper experimental design (36). Then, they evaluated the effect of 

the pre-induction and post-induction growth rates, dissolved oxygen concentration, dry 

cell weight at induction, and IPTG concentration for induction. Furthermore, they could 

control pH, O2 concentration and feeding of a glucose solution during all the fermentation 

process. With this experimental setting, they showed that they obtained a yield of 4.3 g/L 

of SELR in the best conditions. This is 9-fold higher than the data previously reported by 

them. 
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2.2.2. Eukaryotic hosts 

2.2.2.1 Aspergillus nidulans fungus 

One of the first attempts to produce ELRs in eukaryotic hosts was made by Herzog et al. 

in Aspergillus nidulans (A. nidulans) fungus (37). They inserted the gene encoding for G-

(VPGVG)119-VPGV mentioned above into an expression vector designed for A. nidulans 

under the control of a constitutive promoter. Their results showed that they were able to 

isolate different fungus colonies that integrated the plasmid with varying copies into their 

own genome. However, the translational efficiency was low, and they suggest that this 

effect could be due to some codons found in the ELR gene (cloned from an E. coli-

optimized plasmid) that are rarely used in A. nidulans. Despite the proposal made by the 

authors towards the optimization of ELR bioproduction through A. nidulans, no other 

examples have been found in the literature. 

2.2.2.2 Yeast 

On the other hand, the well-studied Pichia pastoris (P. pastoris) yeast has become a model 

eukaryotic organism for recombinant protein expression and there are some examples in 

the literature in which it has been chosen for the biosynthesis of ELRs. In the first case 

reported, Schipperus et al. produced secreted ELRs in P. pastoris with a yield of 255 mg of 

ELR per liter of culture medium (38). They suggest that this low-scale system is completely 

scalable, easily purifying ELRs without the need of cell disruption, even though times for 

culturing and inducing expression in yeast are substantially longer than in the case of E. 

coli. Furthermore, this expression host allows glycosylation and/or formation of disulfide 

bonds, so it is proposed as a good system for the expression of ELR fusion proteins that 

may undergo any of these post-translational modifications. Almost at the same time, 

Sallach et al. described the expression in P. pastoris of non-repetitive ELR genes with 

identical amino acid sequences, taking advantage of the degenerate genetic code (39). 

They propose the same advantages than the previous work, but they also emphasize that 

in a yeast expression system there is no need to remove bacterial lipopolysaccharide, 

achieving an endotoxin-free product after simple ITC purification. In another study by 

Schipperus et al. comparing the secretion of ELRs with different transition temperatures 

(Tt) by P. pastoris, they found that higher yields are obtained for shorter and more 

hydrophilic ELRs (39). Therefore, they suggest that below Tt the ELRs are soluble and more 
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easily secreted. However, the conclusion to this work seems too ambitious since only 

three ELRs were designed and produced for the comparison, and none of them was 

strongly hydrophilic. 

2.2.2.3 Plants 

As regards other expression systems, recombinant protein production in plants has been 

widely developed since the beginning of the recombinant DNA era and, hence, ELRs have 

been produced in this system too. In the first work describing ELR production in plant cells, 

Zhang et al. transformed tobacco cells physically by particle bombardment (biolistics) for 

the expression of the gene encoding (GVGVP)121 (41). They showed the integration of the 

ELR gene in the genome of the cells (2-5 copies) and expression of the elastomeric protein, 

although at very low quantities. As a next step, the following article by this group showed 

the feasibility to express the same ELR in transgenic tobacco (Nicotiana tabacum) plants 

(42). Nonetheless, only 0.5 to 5 µg per g of fresh weight of leaf tissues were obtained, 

being approximately 0.003 to 0.03% of total soluble proteins, while 0.01 to 0.05% was 

observed by Western blot prior to purification. Even though there are many other 

examples of expression of ELRs in transgenic plants, they mostly use them as fusion tags 

to improve the stability of the expression and the purification efficiency of different 

recombinant proteins, which will be briefly described below. However, there is a very 

recent work by Heppner et al. that describes the bioproduction of a fusion protein 

comprising spider silk and ELR sequences in tobacco leaves (43). The spider silk block is 

not excised from the whole protein after purification, so it can be taken as an example of 

ELR expression in plants. Authors showed a yield of 400 mg per 6 kg of leaves (66.7 mg/kg 

or µg/g) which is more than a 13-fold increase when compared to the results commented 

above, although the comparison is limited because in this last case ELR is fused to spider 

silk. The expression of ELRs in all the heterologous hosts described in this section is 

summarized in Table 1. 
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Host 
(VPGXG)n 

composition 
Main achievements Refs. 

Prokaryotic Escherichia 
coli 

(VPGVG)160 First recombinant 
production of an ELR 
combined with silk-like 
sequences 

(22) 

(VPGVG)20 First biotechnological 
production of an ELR by 
itself 

(30) 

(VPGVG)251 First reported expression 
of extremely long ELRs 

(31) 

(VPGVG)120 Comparison between 
culture media of different 
composition 

(32) 

[(VPGVG)2-
VPGGG-VPGAG-
(VPGVG)3-
VPGGG-VPGAG-
VPGGG]9 (also 
called ELP-90) 

Supplementation of 
medium with amino acids 
highly repeated in ELRs to 
avoid depletion 

(34) 

(VPAVG)20 and 
(VPAVG)9 

SELR with high yield by 
using auto-induction 
medium 

(35) 

(VPAVG)9 ‘One-factor-at-a-time’ 
optimization of the 
bioproduction of a SELR in 
shake flask cultures (low 
scale) 

(36) 

(VPAVG)9 Optimization of the 
bioproduction of a SELR in 
fed-batch culture in a 
bioreactor obtaining the 
highest yield reported to 
date 

(37) 

Eukaryotic Aspergillus 
nidulans 
fungus 

(VPGVG)120 
Unique example of ELR 
expression in fungal hosts 

(38) 
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Pichia 
pastoris 
yeast 

ELP-90 First reported expression 
of secreted ELRs in yeasts 

(39) 

[(VPGVG)2--
VPGEG-
(VPGVG)2]21 

Suggestion of avoidance 
of LPS removal 

(40) 

ELP-90 

ELP-40 

[(VPGVG)2-
VPGGG-VPGLG-
(VPGVG)3-
VPGGG-VPGLG-
VPGGG]4 

Higher yields for shorter 
and more hydrophilic 
ELRs 

(41) 

Nicotiana 
tabacum 
cells and 
plants 

(VPGVG)121 First work describing ELR 
production in plant cells 

(42) 

(VPGVG)121 First expression of an ELR 
in plants 

(43) 

ELP-100 ELR fused to a spider silk 
protein produced through 
a simple and scalable 
method 

(44) 

 

Table 1. Table describing the heterologous hosts used for the bioproduction of ELRs to date. 

2.3. Novel design of elastin-like recombinamers with 
different features 

Taking advantage of the genetic engineering, which may allow the inclusion of changes in 

the amino acid sequence of ELRs or even the fusion of different proteins, the features of 

ELRs can be tuned and/or improved, increasing the complexity of these protein polymers 

(44). 

2.3.1. Substitution of the guest amino acid 

One of the first choices regarding the modification of the ELR sequences is the amino acid 

in the fourth position (guest residue) of the elastin-derived pentapeptide, or the X in 

VPGXG, as described above. Since this choice may change completely the physicochemical 



62 
 

properties of the ELR, the Tt above all, it is a common way to differently design ELRs and 

has been extensively evaluated (45). Moreover, the molecular biology methods used in 

the synthesis of ELR genes permit the construction of elastin-like block corecombinamers 

(ELbcR) that arise as a result of the combination of elastin-like sequences with different 

substitutions in the guest residue. This approach may confer different properties to a 

single ELR molecule (46), and also leads to more complex self-assemblies above the Tt as 

evaluated in different works (47,48). In addition, Meyer et al. studied the effect of the 

length and concentration on the Tt for different ELRs, showing that there is a higher 

decrease of Tt for ELRs with lower molecular weight (MW) when the concentration is 

increased, while this effect is lower for ELRs with higher MW (49). Furthermore, they 

proposed equations that may allow the prediction of the Tt for other ELRs. Some years 

later, the same group further evaluated the changes of Tt depending on alanine content 

as the guest residue, and on MW of the ELR and concentration, developing a model to 

predict Tt by changing these conditions (50). Through the combination of two different 

factors affecting Tt, i.e. the arrangement of blocks with different guest residues and the 

length of these blocks, Ribeiro et al. showed that it is not only the mean polarity what 

influences variations in Tt and enthalpy (ΔH) of the transition, but also the distribution and 

length of the polar/apolar blocks within the ELbcR molecule (51). 

2.3.2. Fusion of other protein polymers 

Many studies have explored the possibility of using ELRs in combination to other protein 

polymers like silk, collagen or resilin to improve or change their properties in different 

applications, most of them within the field of tissue engineering (52). 

The first examples of this section have already been shown above in relation to SELRs. 

Silk-like domains derive from the repetition of the GAGAGS hexapeptide found in Bombyx 

mori silk fibroin, which is known to self-assemble into β-sheet secondary structures, 

conferring high strength, toughness and ductile elongation to materials (21). They have 

been widely fused to elastin-like blocks by different groups. For example, Nagarsekar et 

al. described the design and production of different silk-elastin-like block co-

recombinamers (SELbcRs) that showed sensitiveness to diverse stimuli like pH and 

temperature (53). In another study, Wang et al. developed a high-throughput for the 

screening of SELRs matching specific material functions (54). For this purpose, they 
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expressed a library of different SELRs in E. coli cultured in 96-well plates and purified the 

recombinamers in situ. Then, they performed a physicochemical and mechanical 

characterization on those SELRs without taking them out of the plates, suggesting that it 

could be a rapid and powerful tool to elucidate the properties of recombinant materials. 

In another work, Bracalello et al. designed and produced a chimeric resilin-elastin-

collagen-like recombinamer that showed a different self-assembling pattern than any of 

each protein polymer had shown separately, with great tendency to form higher order 

fibrillar structures (55). 

2.3.3. Fusion of bioactive domains 

In order to generate extracellular matrix-like materials, cell adhesion motifs have been 

fused to ELR sequences by genetic engineering as described by different groups. In a first 

example, Panitch et al. combined a VPGIG repeated sequence with the REDV peptide 

found in the CS5 region of fibronectin that promotes endothelial cell attachment and 

spreading, but not smooth muscle cells or platelets (56). In their work, they showed a 

successful attachment of cells on surfaces coated with the ELR, compared to the control 

surfaces. Similarly, Girotti et al. fused the REDV sequence to an ELR including lysine-

containing blocks that could be cross-linked to form artificial matrices, as demonstrated 

(57). 

Regarding other cell-adhesion sequences, Urry and co-workers used the RGD tripeptide 

(58) for the first time to successfully enhance cell attachment on ELR-based matrices 

cross-linked by γ-irradiation (59). However, this first case of RGD modification was 

performed with chemically synthetized polypeptides. On the other hand, the first example 

found in the literature of a recombinantly produced ELR including RGD sequences was 

reported by Liu et al. who compared the cell response between RGD and REDV sequences 

(60). In their study, they found that RGD promoted a faster attachment while being 

stronger than in the case of REDV. Most probably because of that finding, many other 

groups have included RGD domains within ELR molecules since then to improve cell 

adhesion. 

In addition to these works regarding cell-adhesion sequences, other motifs have been 

fused to ELRs to undergo dimerization, therefore modifying the structural properties of 



64 
 

their supramolecular assembling. This is described in the work by Fernández-Colino et al., 

where they showed the fusion of a leucine zipper domain, containing a cysteine residue, 

to an ELbcR (61). This domain was shown to be able to form dimers stabilized by a disulfide 

bond, hence allowing the cross-linking of hydrogels based on this zipper-containing ELbcR 

in a reversible manner, depending on the redox conditions of the system. On the other 

hand, Zhang et al. designed and bioproduced ELRs including either a SpyTag short 

polypeptide or a SpyCatcher protein (62). This protein is able to recognize the SpyTag 

polypeptide undergoing an autocatalytic bond formation between them. The 

combination of ELRs comprising these Spy sequences resulted in different supramolecular 

structures that were further characterized.  

As can be deduced from the above paragraphs, many different sequences can be 

recombinantly introduced within the backbone of the ELRs depending on the physical, 

chemical and biological requirements of the final protein and the subsequent application. 

2.3.4. Fusion of full-length proteins 

In order to anticipate the properties of ELRs when fused to different proteins, Chilkoti and 

co-workers studied the effect of the arrangement of four proteins in the final fusion 

product, i.e. C-terminus or N-terminus, on the expression levels and yields of purified 

protein (63). By their results, they could conclude that the yield was higher when the 

proteins were placed at the C-terminus, and that the specific activity of the fused proteins 

was higher in that case for three out of four proteins. However, as they comment 

themselves in the manuscript, these results are applicable only to an ELR with a specific 

sequence, and to four particular proteins. Additionally, the same group was able to 

develop a model to predict the effect of hydrophilic proteins on the thermal behavior of 

ELR fusion proteins, showing that the presence of charged residues is the most important 

parameter affecting the Tt of the ELR when compared to the ELR itself (64). 

Many other proteins have been fused to ELRs to date. Some of them used ELRs as tags, 

taking advantage of their facile purification by ITC (31) to produce recombinant proteins 

(65) that are finally excised from the ELRs by different methods, namely intein self-

cleavage (66), protease-mediated cleavage (67), or by including the self-processing 

module from Neisseria meningitides FrpC (68). There are many examples in which this 
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approach has been employed in the expression of recombinant proteins in Nicotiana 

tabacum plants (69), like an anti-human TNF antibody (70), and in tobacco cell 

suspensions to produce human IL-10 (71). Furthermore, this strategy has been also shown 

to be successful to produce antimicrobial peptides in E. coli efficiently (72,73). 

3. STRUCTURES AND PHYSICAL CHARACTERISTICS OF 
ELASTIN-LIKE RECOMBINAMERs 

Materials based on ELRs underlie a high potential, characterized by the extraordinary 

biocompatibility, tunable mechanical properties and the variety of structures that can be 

generated (i.e. micelles, nanoparticles, hydrogels, films, and nanofibers). Besides the 

introduction of bioactive sequences into the ELR-based structures, ELRs can be designed 

to self-assemble into either micelles, physical hydrogels, nanoparticles, or solvent casted 

films (Figure 3). Furthermore, reactive cues can be introduced in the sequence to allow 

chemical modification. 

 

 

Figure 3. The diversity of ELR structures and their sequential origin.  
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3.1. Micelles and nanoparticles 

The first self-assembling ELRs were achieved with polymers containing blocks of different 

polarity, inspired by block-copolymers and their related properties, like phase separation, 

micelle formation, etc. The difference between block-copolymers and amphiphilic ELRs, is 

that in amphiphilic ELRs the blocks of different polarity retain the ELR pentapeptide 

sequence (VPGXG), and the changes in polarity are introduced through the X amino acid. 

The influence of the X amino acid, has been methodically described by Urry (74). As well 

as block-copolymers, elastin-like block co-recombinamers (ELbcRs) showed the ability to 

form micelles in solution. The hydrophobic block tends to be embedded in the core, 

hidden from the water solution, while the hydrophilic block(s) forms the corona exposed 

to the outer part of the structure. It has been shown that the formation of stable 

nanoparticles requires a relatively high molecular weight of at least 48 pentapeptides. 

Furthermore, the particle size and the molecular weight of the ELR are directly related 

(75). The ITT of the ELRs, depending on the characteristics of the micelles, can either lead 

to coalescence of micelles into lyotropic gels (76), through polydisperse microparticles 

(77), or to a simple swelling and deswelling of the micelles, accompanied by size changes. 

Typical sizes of ELR nanoparticles reported are usually in the range of 10 to 100 nm (78-

83), but due to the temperature sensitivity and related agglomeration, also micro sized 

particles have been reported (77, 84). The ability to trigger the formation of nanoparticles 

by the swelling and shrinking kinetics, intensified the research on the tuning of the micelle 

sizes and the Tt related changes. Several methods have been explored to either stabilize 

ELR-based micelles. For instance, the concentration of the ELR solution, which has been 

found to have a clear effect in the particle size (76); another method is the addition of 

surfactants that can stabilize or destabilize the ELR particles (85); salt concentration is 

crucial, higher compensation of the charges of the hydrophilic blocks through counter ions 

can lead to stronger agglomeration of particles (80, 81, 83); and last but not least, the pH 

affects the stability and size, depending on the chemical properties of the guest amino 

acid in the fourth position of the basic pentamer (VPGXG) of the hydrophilic block. In the 

case of cationic amino acids the charge is reduced at high pH, on the other hand, anionic 

amino acids show the same behavior at low pH (80). Moreover, more specific sensors for 

changes in salt concentrations have been designed. For instance, the introduction of a 
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calcium selective sequence amplified the influence of calcium concentration, by reducing 

the transition temperature of the corresponding ELR from 70°C to 35°C (86). Even when 

the general shape of homogenous micelles is round, it can be tuned to more anisotropic 

cylindrical shapes by varying the architecture of the ELRs introducing amphiphilic blocks 

of different sizes in the protein sequence (87). In principle, each ELR has one clear 

transition temperature, but in the case of amphiphilic ELRs with different blocks, long 

enough to develop an own intrinsic transition, the effect of temperature on the particles 

shows two temperature-induced changes. First, the rearrangement of the hydrophobic 

core, driven by a change in the secondary structure from random coil and β-sheets to 

type-II β-turns. This change as well corresponds with the exhibition of a cylindrical shape 

of the particles. This effect is also known as critical micelle temperature (CMT). The second 

and more prominent change is due to the collapse of the hydrophilic part, which is 

responsible for the coalescence, agglomeration and precipitation of the micelles (75). 

Other reported rearrangements describe the change from micelles to vesicles by 

reorganizations of the hydrophobic blocks. Here, vesicles could be obtained either by an 

increase of the length of the hydrophilic block, or by addition of another hydrophilic block 

to a triblock copolymer of the structure hydrophilic-hydrophobic-hydrophilic (48). 

3.2. ELR-coatings and films 

The generation of ELR coatings has a great interest for the creation of either antimicrobial, 

anti-fibrotic coatings, or for the deposition of a bioinductive layer that allows cellular 

interaction driving to a good implant integration within the surrounding tissues. In theory, 

there are two ways to accomplish a coating: physisorption by intermolecular interactions 

(hydrophobic and/or electrostatic interactions), or a grafting approach by covalent 

binding (Figure 3). For completion, a third possibility could be possible, which is the 

creation of elastin-like brushes by a grafting approach, but due to the relatively high 

molecular weight of ELRs, and the related cost to generate such proteins in a synthetic 

way, this approach is still a hypothetical option. Additionally, these proteins would not be 

ELRs since they are not obtained by recombinant techniques so they should be classified 

as ELPs (8, 19, 88, 89). 
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Physisorption of ELRs has been deeply studied and applied in different works. It was 

described by Srokowski et al. that longer ELRs formed more stable coatings by 

physisorption than ELRs with lower MWs (90). Another approach targets on the 

endothelialization of CoCr alloys, that could be enhanced by physically adsorbed or 

covalently bond ELRs that bear a REDV sequence (91). ELR coatings also proved to reduce 

platelet activation and smoothening of surface topographies when coated PTFE 

substrates by a layer-by-layer approach (92). This was corroborated by other studies that 

showed that longer ELR sequences not only have a better deposition, but also decrease 

platelet activation more than short ELRs (90). In an earlier study, the patency time of non-

thrombogenic ELR coatings could be more than doubled (93), and thrombus formation 

reduced (94). 

Further micelle solutions have been used to adsorb ELRs to surfaces under retention of 

their nano- and microtopography. For the generation of surfaces that induce bone 

mineralization nanotopographies, it was performed a coating with an ELR containing a 

human salivary statherin sequence (95). The coating of previously generated orientated 

electrospun fibers with ELRs led to a conserved orientation in the scaffold, which guided 

human vocal fold fibroblasts (96). The transition temperature of the ELRs was also used 

to enhance the physisorption by thermally induced deposition. Here, surfaces with a low 

RGD concentration were formed, high enough to allow cell adhesion, but too little to form 

a cellular monolayer. Thus cells were forced to cluster and semi-functional pseudoislets 

could be formed (97). The good mechanical performance of SELR hybrids further led to 

the development of coatings for osteochondral applications (98). Besides the deposition 

of ELRs in order to induce or avoid attachment of cells or proteins, the ability of the ELRs 

themselves to influence the microenvironment by temperature changes is of great 

interest, for example for biosensors, or drug delivery systems. By changing the 

temperature, features like the wettening of the surface (77), the release kinetics of drugs 

embedded in the coating (84), or the accessibility of active groups inside the ELR sequence 

in swelling and deswelling ELR/RGD brushes (99), can be controlled. 
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3.3. ELR-based hydrogels 

In tissue engineering, hydrogels have been the predominant matrices for application in 

the human body in the last 40 years (100). A high water content leads to convenient 

mechanical properties and stimuli-responsiveness, which in many cases chimes with the 

properties of natural tissues (101,102). ELRs, inspired in a natural protein such as elastin, 

are excellent candidates for many researchers focused on the generation of artificial 

matrices that can be used as scaffolds for biomedical applications. The ECM is a very 

complex system in which the physical properties (elasticity, stiffness), the nano-

topography, the presence of signaling molecules, protease-sensitive sites and adhesion 

domains are of great importance, and gathering as many of these properties as possible 

is a major requirement that have to be demanded to any material that might be used in 

tissue engineering. The generation of hydrogels from linear ELRs requires paying special 

attention to the mechanism that will drive the cross-linking of different ELRs molecules. 

These cross-linking methods can be either of covalent or physical nature and the position 

of cross-linking points along the ELR backbone can be fully controlled through genetic 

engineering to get a precise tuning of the mechanical properties. Polypeptide-based 

block-copolypeptides, for example, manage to self-assemble into stable hydrogels (103), 

which can be further stabilized when flanked by protein segments with coiled-coil 

secondary structure (104, 105). Another approach is the use of recombinant segments of 

elastin, silk and collagen (106-108). In contrast to general methods for the formation of 

hydrogels by radically or photo-polymerized acrylate cross-links, ELR hydrogels can be 

thoroughly controlled (e.g. chain and segment length, number of cross-links per chain). 

This leads to more homogeneous matrices, and to the reduction of artifacts, which could 

impair the mechanical properties of the resulting hydrogels (109). 

Cross-linking mechanisms for ELRs can be as versatile as ELRs themselves: ionic or 

hydrophobic interactions, reaction of complementary groups, or enzymatically induced 

cross-links (Figure 4) (110, 111). All these strategies can provide a very tight control over 

the length and the molecular weight of the proteins by the selection of the cross-linking 

sites, which usually correspond to lysine groups (112, 113). Besides the control of the 

cross-linking, aforementioned bioactivities can be introduced into ELRs, so that the matrix 

is able to interact with the organism, improving the good integration of the generated 
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tissue. The basic ELR sequence (VPGXG) is biocompatible, but lacks cellular adhesion sites. 

Nevertheless, the possibility of a tailored genetic design permits changes in the transition 

temperature, integration of protease-sensitive sites (114, 115), cellular adhesion motifs 

(59, 116), or biological triggers (117-119). 

 

Figure 4. Common ELR crosslinking strategies: A) ionic interaction, B) chemical crosslinking, C) 

hydrophobic interactions, D) enzyme triggered crosslinking. 

Physical cross-linking of ELRs can be obtained by several strategies. One approach is a 

cross-linking based on ionic interactions by segments of opposite charge (e.g. cationic and 

anionic amino acids in the X position of the ELR). Even though ionic interactions are 

relatively weak, a specific design of complementary charged strands (120, 121) helps to a 

better strengthening of these interactions which leads to obtain stable ELR hydrogels at 

room temperature and physiological pH (122). Potentially, the presence of ions could 

trigger the formation of hydrogels, since some ELRs are sensible to salts concentration 

changes, especially to chelating ions like calcium (121). More advanced approaches 

including ELR/chitosan blends, could be stabilized by sodium ions (123), and modification 

with monosaccharide side chains allowed a complexation with potassium (124). A second 

way of physical cross-linking is obtained by the introduction of self-assembling motifs, i.e. 

amphiphilic blocks, or interaction of protein secondary structures (β-sheets, leucine 

zippers). The self-organization is basically driven by aggregation of different segments. In 
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the case of amphiphilic block ELRs this self-assembling is due to the aggregation process 

of the hydrophobic segments. On the other hand, the interaction of secondary structures 

is triggered by the aggregation of β-sheets or pairing of leucine zippers. 

Hydrophobic blocks are generated when the ELR sequence has several hydrophobic amino 

acids (like alanine (Ala), leucine (Leu), isoleucine (Ile), valine (Val), phenylalanine (Phe), 

tryptophan (Trp), tyrosine (Tyr) or methionine (Met)) on the X position. This results in 

segments of distinct polarity within the same protein chain and leads to mutual repulsion 

between the different blocks, that tend to segregate. The segregation is locally 

constrained by the “forced cohabitation” of the blocks within the same ELR chain, 

resulting in a separation into different domains, which as a consequence, self-assemble 

into periodic nanostructures (125). Amphiphilic blocks can be designed to form stable 

hydrogels that even persist in vivo. One way to enhance stability is to create longer 

sequences with several blocks of alternating polarity (108, 126, 127). 

The interaction of intermolecular secondary structures, on the other hand, follows the 

key-lock-principle with the assembly of matching structures of similar polarity. From the 

tailor perspective, almost any protein secondary structure that is able to form a stable link 

with itself or contrary groups could be implemented. It has to be considered that in one 

component systems gelation can occur easily, and solvation is limited. Furthermore, the 

effect on the ELRs Tt has to be considered. 

The recent approaches to include physical cross-linking cues into ELRs are inspired by 

natural silk sequences that enable crystalline-like β-sheets formation with unique 

mechanical properties (128-132). The repetitive sequence responsible for the β-sheet 

formation and for the intrinsic strength is the GAGAGS hexapeptide (Bombyx mori 

silkworm) (133). In this silkworm, the blocks are stabilized by hydrophilic compartments 

within the protein and a complex mixture of stabilizing agents (134). The integration into 

ELRs needs to consider the stability of the resulting bonds and the amount of silk domains 

govern the manipulation of the material. Silk-ELR (SELR) hybrid materials reveal a two-

step gelation process when heated above the Tt. The ELR transition occurs first, enabling 

the thermodynamically driven annealing of silk sequences, hence forming stable 

physically cross-linked hydrogels in situ (108). SELRs are biocompatible and performed 

well in in vivo studies (135-137). Moreover, they have been forged into a variety of 
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structures like hydrogels, films, 3D porous matrices and submicron to macroscale fibers 

(138). 

Lately, ELRs physically cross-linked by leucine zipper domains (139-145) gained interest. 

The leucine zippers are capable to dimerize with other leucine zipper domains driven by 

hydrophobic interactions (139,146-148), and ionic interactions (149-151). On account of 

its novelty, ELRs with leucine zipper motifs have been less explored than SELRs, and the 

complete potential remains to be discovered. Nevertheless, the human origin of the 

domain and the conserved nature of the structure alleviate concerns regarding the 

biocompatibility. First studies on ELR-Zippers support the biocompatibility and showed 

enhanced stability when compared to pure amphiphilic block ELRs (61). Furthermore, a 

recent in vivo study regarding zipper-based scaffolds revealed no foreign body reaction 

(152). 

The introduction of amino acids bearing functional groups in the X position can be used 

for subsequent reactions without losing the pH and temperature sensitivity of the ELRs. 

The majority of published works used the free ε-amine of lysine residues within the ELR 

chain for chemical modification due to its reactivity. (153, 154) Regarding the cross-linking 

process, the MW, concentration and the number of cross-links are important to form 

stable hydrogels (155). ELRs with high molecular weight have a higher entanglement and 

are more prone to establish a sufficient number of cross-links to stabilize the hydrogel 

network. Due to the tailored design of the ELR sequence, the number of cross-linking sites 

and the segment length between cross-links can be precisely controlled, enabling the 

tuning of relevant features such as pore size, gelation time, stiffness and degradability. 

Functionalization of ELRs aims to introduce bioactive sequences, adhesion sites, 

inhibitors, antibodies or anchor and signaling molecules (156). Degradation can be further 

controlled through the introduction of protease-sensitive sequences, or through the 

introduction of labile chemical linkages (157). 

One drawback of common chemical linkages is that they are reactive under conditions 

that require organic solvents or other chemical reagents to avoid hydrolysis. To elude 

removal of this undesired components, the typical cross-linking of hydrogels is based on 

the reaction of complementary groups (158), enzymatic cross-linking (159-161), 

condensation reactions (162), or high-energy irradiation (163). The classical cross-linking 
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reactions of ELRs are solvent dependent, in organic solvents, due to the absence of a lower 

critical solution temperature (LCST). The obtained hydrogels are very homogenous, 

whereas in water the diffusion of active sites is limited above the LCST (112). The fusion 

of several ELR strands by cross-linking results in stable hydrogels, which remain stable 

when cooled below the ELRs Tt. Using enzymatic cross-links, hybrid protein hydrogels of 

ELR and other functional proteins can be obtained. Mild covalent cross-linking strategies 

without organic solvents and cytotoxic reactants have some important advantages, such 

as that the gelation can be performed in the implantation site, without further purification 

in situ, without the diffusion out of the injection site. Ravi et al. showed that an 

ELR/fibronectin gel cross-linked by genipin performed well in vitro. (164) Moreover, the 

Huisgen reaction has been introduced in the past years to form ELR networks in water 

(165, 166). The reaction of complementary groups can be used further to fuse ELRs of 

different bioactivity together (167), and to generate hybrid materials. This method has 

been used for the creation of non-thrombogenic stents (165). 

4. ELASTIN-LIKE RECOMBINAMERS: APPLICATIONS 

4.1. ELRs for gene delivery applications 

Gene therapy provides a unique approach to deliver a therapeutic gene into specific 

human tissues or cells; the modification of patient’s altered gene expression can be 

performed by gene addition, gene correction, gene knockdown or their combination (168, 

169). The concept of gene therapy is based on nucleic acids being used as pharmaceutical 

products to obtain in vivo production or silencing of therapeutic proteins (170, 171); the 

therapeutic material can be integrated into the host chromosome or remained as an 

episomal plasmid with transient expression (168, 172). The successful expression of the 

deficient gene product at physiological levels (168, 173) is based on an appropriate 

delivery system (174). The most important properties that a delivery vector must have are 

the biocompatibility and the ability to release the cargo into a specific target. 

Gene delivery systems can be divided into two categories: viral and non-viral vectors. 

Despite approximately 65% of clinical trials use a viral vector for DNA delivery (175), non-

viral vectors have been widely studied over the past few years and constitute the most 

promising alternative for overcoming the immunogenicity problems inherent to viral 
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vectors; moreover, they are easier to produce on a large scale (176, 177). Cationic 

polymers can form a complex with DNA by electrostatic interactions with the negatively 

charged phosphates from nucleic acids. The formed polyplex is able to protect the genetic 

material from degradation by nucleases (178). PEI (polyethylenimine), PEG 

(polyethyleneglycol), PLL (poly-L-lysine), chitosan, PLGA (polylactic-coglycolic acid), and 

PDMAEMA (polydimethylaminoethyl methacrylate) are some of the most widely used 

non-viral gene delivery vehicles (169, 179-181). The cytocompatible nature of the 

biomaterial forming the polyplexes and their ability to be internalized into the cell 

determine the success of the system (177, 179, 182-184). Nevertheless, most of the 

cationic polymers mentioned above are not ideal for drug delivery application. For 

instance, the main problem of PEI is its cytotoxicity, causing cell apoptosis in a wide 

number of human cell lines (185). Regarding PEG, not only hypersensitivity reactions occur 

when it is injected intravenously, but also cutaneous application can cause allergic 

reactions, such as contact dermatitis (186). 

Thus, it is required a new design of gene delivery vectors able to address the individual 

rate-limiting steps along the gene delivery process (187). ELRs have grown in popularity 

in the field of protein-inspired biomimetic materials, and they are becoming increasingly 

important in different fields of biomedicine (165, 188-190). ELRs are non-immunogenic, 

and according to with their biodegradability and biocompatibility for human tissue, blood, 

and other fluids, they can play a key role as carriers in delivery systems (189, 191, 192). 

ELRs have been previously used as oligo-lysine carriers by Furgerson’s group to deliver an 

EGFP−plasmid inside cells in in vitro assays (193). The use of specifically designed ELRs 

joined to functional peptides as agents shows promising results for delivering genes in 

vitro (190). Moreover, cellular transfection can be improved through the formation of 

charged polyplexes and their further interaction with the negatively charged components 

on the cell membrane, such as proteoglycans and cell-surface receptors (194, 195). In this 

study, taking advantage of the recombinant DNA technology to design and produce ELRs, 

functional motifs were incorporated into a basic ELR sequence. Then, imidazole groups 

were covalently bound, obtaining stable polyplexes composed of plasmid DNA and ELRs 

(190). Several studies have demonstrated the use of ELRs fused to a cell penetrating 

peptide (CPP) as a drug delivery vector for solid tumors (182, 196, 197). In this sense, a 
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similar combination of ELRs fused to CPPs was utilized to deliver therapeutic peptides into 

target tumor cells (198). Finally, Piña et al., specifically designed a lysine-enriched ELR in 

order to complex and protect the therapeutic DNA, forming stable polyplexes. In this 

work, for the first time, cancer-specific aptamers were incorporated into ELR polyplexes 

with potential application in the treatment of breast cancer (199). 

4.2. ELRs as vaccine delivery systems 

In the past recent years, due to the increasing knowledge about the mechanisms of 

protective immune responses, and about new biotechnology techniques, newer vaccine 

designs have been considered. For instance, a novel approach based on genetic 

engineering in order to obtain non-pathogenic vaccine strains, naked plasmid DNA 

vaccines, or for the preparation of relevant recombinant proteins that may lead to 

adequate immunity (199). Certainly, the ability to isolate and produce pure proteins and 

peptide antigens that are safer than traditional vaccines has enhanced the vaccine efficacy 

(201-203). However, a limiting factor with antigens made by recombinant DNA technology 

is that they are often weakly immunogenic on their own, thus it is often required the 

inclusion of immune adjuvants to enhance the resultant immune responses (204, 205). 

Adjuvants have the ability to activate antigen-presenting cells (APCs), and despite their 

clear relevance and essential role, only adjuvants that induce minimal adverse effects are 

acceptable for standard prophylactic immunization in healthy individuals. 

Certainly, the relative lack of antigenic carriers approved for the usage in humans suggests 

that better materials and new strategies are needed to generate successful nanovaccines. 

As it has been already described, biomaterials play a key role in the therapeutic field 

regarding vaccine development. The engineering of materials that can modulate the 

immune system, known as immunobioengineering, is playing an increasingly important 

part for the development of new particulate vaccines and adjuvants carrying the desired 

epitopes for immunization (201, 206, 207). Therefore, because of one of the most 

powerful strategies to form very small particles is based on self-assembled di-block co-

polymers, many different materials displaying stimuli-responsiveness with different 

molecular architectures have been investigated (207). 
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Several factors such as particle size, surface properties, particle shape, and hydrophobicity 

(201, 208, 209), affect the nature of the immune response caused by biomaterial-based 

nano-objects. It has been shown that the particles themselves are intrinsically recognized 

as a sign of danger (210), and considering that the particle size is the primary control 

parameter, a particulate vaccine can target several pathways depending on its size. 

Biomaterial particles can include specific functional domains such as targeting ligands that 

are able to bind specific receptors for endocytosis, promoting an increase of specific 

cellular uptake (204, 211). In addition, another important parameter is the hydrophilicity 

in the nanoformulation, that can modulate the amount of proteins adsorbed onto the 

surface of nanoparticles after the administration, increasing their residence time in 

circulating blood (212). 

ELRs play a key role in several biomedical applications due to the ability to control and 

manipulate the interface between them and the biological components. In this sense, the 

American Society for Testing and Materials (ASTM) has demonstrated their extraordinary 

biocompatibility, while the feasibility of tuning and controlling the shape and topology of 

ELRs has been previously explored (213, 214). In addition, elastin-like block co-

recombinamers (ELbcRs) are able to form multimeric nanoparticles by self-assembling, 

and considering the ability to control their hydrophobicity, molecular weight and block 

rearrangement, ELRs are exceptional candidates as carriers in vaccine-delivery 

approaches (191, 215). The recombinant production of ELRs allows obtaining a highly 

monodisperse, multivalent and biocompatible properties of the resulting constructions 

by a simple, affordable, reproducible and easy to scale up the process of bioproduction 

(216, 217). Furthermore, ELbcRs can be subjected to secondary processes such as 

sterilization, drying, packaging, and reconstitution of the resulting dried powder (126, 

218). 

Another advantage of the ELRs about the vaccine formulation regards the possibility to 

develop a single-gene product that self-assembles into a nanoparticle with the desired 

antigenic sequence. Therefore, thanks to the fusion strategy to produce ELR-based 

constructions, it is not required the use of bioconjugate chemistry to fuse other proteins 

to the nanoparticles. It has been already described the potential use of this strategy for 
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many biomedical applications such as protein purification (219) or as drug and gene 

delivery systems (216). 

Previous works (48, 51, 216) describe the nanoparticle structure of an ELbcR obtained by 

recombinant process, having the antigenic sequence(s) at the hydrophilic terminus 

gene(s); the genetically encoded synthesis does not affect the assembly of the 

nanoparticles, in fact, the elastin contribution serves as hidden support, whereas the 

antigen molecule(s) is oriented towards the outside of the particle. García-Areválo et al., 

developed a new ELbcR-based vaccine carrier that self-assembles into highly 

monodisperse and stable nanovesicles that can be used to present low antigenic peptides, 

for example, from the bacterium M. tuberculosis (189). In another work, it was described 

the expression and immunogenicity of a construct produced by combining plant-based 

production and the ELR fusion strategy in order to produce a potential vaccine candidate 

containing two major antigens from M. tuberculosis (220). 

4.3. ELR-based hydrogels for tissue engineering 

applications 

Widely defined, tissue engineering is the process of restoring, maintaining, or enhancing 

living, physiological, three-dimensional tissues and organs utilizing specific combinations 

of cells, scaffolds, and/or signals, both chemical and physical. The process involves mainly 

four components: a material scaffold, functional cells, biomolecules (e.g. growth factors, 

extracellular matrix (ECM) molecules, and other biological), and dynamic forces (221). 

Thanks to the recombinant DNA technology, ELRs allow the tailoring at the genetic level 

of the mechanical and biological properties to satisfy end-user application, thus offering 

numerous choices for the development of cell culture matrices for a specific tissue (222). 

Several studies have shown how different types of ELRs can be addressed over the most 

challenging fields in tissue regeneration, such as cardiovascular, ocular prosthesis and 

osteochondral applications, among others. 

Biofunctional materials require advanced design and preparation with the purpose of 

matching the sophisticated recognition ability of biological systems. The biocompatibility 

of any biomaterial has a critical importance and must be assessed prior to any clinical trial. 
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As regards the purity of the biomaterial, any contamination with (globular) proteins 

entails one of the greater risks, namely the development of immunological responses that 

preclude their application in regenerative medicine and tissue engineering. Thus, the 

biomaterial is required to pass the toxicological test that takes into account the duration 

and the type of tissue in contact with the tested one. 

As it has previously mentioned, ELRs have been used for the development of novel protein 

peptide biomaterials obtained through recombinant DNA technology that are playing an 

increasingly important role in a diverse range of applications such as drug delivery, tissue 

engineering, biosensors and a wide variety of ‘smart’ systems. Sallach et al. have 

described the production of a recombinant elastin-mimetic triblock copolymer and the 

further application in vivo for more than 1 year. During this time, the ELR-based hydrogel 

showed a minimal inflammatory response, confirming its high and extraordinary 

biocompatibility (127). 

Considering the ability of the ELRs to self-assemble into different structures such as 

hydrogels, and taking into account that ELRs completely fulfill the prerequisites of 

biocompatibility and bioactivity, ELRs play a key role for the development of scaffolds and 

advanced systems for application in the fields of regenerative medicine and tissue 

engineering. In this sense, specific requirements of ELRs, such as topographic, chemical 

configuration and viscoelastic patterns, determine the hydrogel properties. Hence, they 

can be tuned specifically to match proteins at the nanometer scale and cells at the 

micrometer scale. In the light of this, numerous reports have largely demonstrated 

requests from in vitro experiments (192, 223, 224). 

In vascular tissue, elastin is an essential extracellular matrix protein that plays an 

important biomechanical and biological signaling role. Elastin-like recombinamers are 

able to mimic the structure and function of native elastin, representing a practical 

alternative to the native elastic fiber (which is difficult to extract from tissues) for vascular 

applications. Several studies have demonstrated that stent surface endothelialization is a 

well-known methodology to inhibit restenosis and thrombosis (91, 225-227). The use of 

active ELR coatings with endothelial cell adhesion sequences onto stents surfaces is a 

great strategy to recover a healthy endothelium. In vivo studies have demonstrated how 

ELR scaffolds support the neovascularization in the total absence of an immune response 
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(91). In this sense, González de Torre et al. have shown the applicability of recently 

developed ELRs as a coating for vascular stents with the ultimate goal of producing a new 

endovascular device (165). The ELR applied on the stent gain a full endothelialization in a 

short time (2 weeks), showing high biocompatibility and a reduced response of the 

immune system. Finally, another approach by Weber et al. was to generate tissue-

engineered heart valves (TEHVs) by multi-step injection molding using ELR as a hybrid 

system with fibrin (228). 

In 2015, Mata’s group demonstrated the supramolecular interaction between peptides 

and ELRs to generate complex 3D architectures through a dynamic self-assembly system, 

forming a stable multilayer membrane. This membrane can be spatiotemporally 

controlled and can be used to form bioactive tubular scaffolds which may support and 

lead the growth of different cell lines (229). This tubular morphogenesis could play an 

important role in tissue engineering applications that requires the formation of tubular 

structures that usually are complex to obtain in the milli- and micro scale. 

According to the elastin-like nature of the hydrogel and the high percentage of elastin 

present in the native chondral matrix, ELR-based hydrogels are likely to simulate the 

properties of hyaline cartilage (230, 231). The hyaline articular cartilage is a highly 

specialized tissue characterized by its unique mechanical features and it is formed by a 

matrix that embeds chondrocytes. Considering that the articular hyaline cartilage does 

not repair itself and that the generally regenerated fibrocartilage is unable to maintain 

the biomechanical characteristics of articular cartilage (232, 233), ELR hydrogels could be 

used as scaffolds for osteochondral tissue engineering. As it has been previously described 

above, ELRs show thermo-sensitivity, on that regard is possible to form hydrogels stable 

at body temperature, whenever the transition temperature (Tt) of the ELR is lower than 

the body temperature. Moreover, ELRs containing bioactive sequences, such as the well-

known RGD cell-adhesion sequence found in fibronectin, which promotes specific cell 

attachment via integrins (162), are able to form a bioactive scaffold that improves the 

regenerative potential of the implanted hydrogel. 

Vila et al. showed how ELR coatings are able to improve the well-known biocompatible 

and bone regeneration properties of calcium phosphate-based materials (234). 
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Due to the development of novel tissue-engineering methods (52, 235), it has been 

considered the use of mesenchymal stromal cell (MSC) therapy (236, 237) for the 

treatment of musculoskeletal lesions (238, 239). For articular defect applications, the use 

of a hydrogel serves as a vehicle for the MSCs to acquire a 3D structure that could mimic 

the properties of the ECM providing a cell-friendly environment in order to increase the 

persistence of the implanted cells at the site of injury. According to ELRs properties, a 

homogeneous embedding of MSCs in the ELR solution can be achieved at a temperature 

below Tt, and further applied as a cell-scaffold system for injectable therapies (Figure 5). 

 

Figure 5. ELR-based injectable hydrogel for osteochondral applications. 

Moreover, ELRs might also have beneficial applications in the field of ocular tissue 

engineering. Cornea wound healing requires cell adhesion and proliferation on a substrate 

with ligands such as fibronectin, secreted by corneal epithelial cells and stromal 

fibroblasts during the first steps of corneal wound healing (240). Nevertheless, the ocular 

surface, unwounded cornea and conjunctiva do not express elastin. Therefore, several 

metalloproteinases (MMPs) have been described in pathological ocular processes such as 

dry eye (241) or conjunctivochalasis (242), while some other MMP present at the ocular 

surface are able to degrade elastin fibers (241). Thus, ELRs are a potential candidate for 

Bruch´s membrane prosthesis. Martínez-Osorio et al.  showed how a blend of ELRs was 

able to promote epithelial cell adhesion from human conjunctiva-derived primary cells 

(192). Finally, ELRs application as ocular implants was studied by Srivastasa et al., which 

confirmed ELRs as a suitable carrier for the transplantation of autologous RPE cells for the 

treatment of age-related macular degeneration (AMD) (243). 
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4.4. ELRs for surface bio-functionalization 

The ELRs properties of elasticity and self-assembling allow the formation of a wide range 

of biomaterial-based constructs such as aggregates (51), films (77), fibers (224), micelles 

(48, 244), nanoparticles (245), and hydrogels (246). Another advantage of this 

recombinant biomaterial is the capacity to form hybrid systems with materials having 

different origins, in order to obtain several morphologies and functional possibilities for a 

diverse range of applications such as functionalized surfaces, fibers, and drug delivery. 

Therefore, the recombinant technologies by which ELRs are obtained, allow a perfect 

control of their sequence, length and stereochemistry; moreover, for functionalized 

surfaces even a nanometric control of their position displayed by these systems is 

possible. 

Chilkoti’s group has created what they refer to as the "Thermodynamically Reversible 

Addressing of Proteins" (TRAP) (247), where an ELR is covalently micropatterned onto a 

glass surface obtaining a spatial-temporal system for protein binding that can be applied 

as a microsensor for detecting single biomolecules in bioanalytical applications. 

Additionally, different approaches based on controllable properties (stimuli-responsive) 

of the biofunctionalized surfaces have been studied in order to obtain a cell sheet 

harvesting system from a culture dish. In this sense Okano et al., have developed a smart 

surface with PIPAAm polymer (and its derivates) that can switch between a cell-adherent 

and non-adherent state as a result of a change in temperature (248). Despite this 

approach led a significant progress in this field (249-251), PIPAAm polymer lacks specific 

bioactivity, meaning that cellular membrane proteins, such as integrins, are not able to 

directly bind to the surface. To address this issue, Pierna et al. developed a smart surface 

system by covalent coupling of tailored ELRs onto glass surfaces by click chemistry 

methods. This cell sheet harvesting system leads to the exposition of the bioactive RGD 

motif to the water interface at physiological temperature, producing a cell adherent 

surface (252) (Figure 6). Na et al. also took advantage of the rapid response to external 

stimuli of a smart material surface created by adsorption of ELRs for use in cell-based 

biochips. The smart transition of ELR-based micropatterns between a hydrophilic and a 

hydrophobic surface glass at Tt allows to revert cell adhesion by way of the incubation 

temperature (253). 



82 
 

 

Figure 6. Schematic representation of a system based on ELRs for cell sheet harvesting. 

Layer-by-layer (LbL) techniques are one of the most versatile and easy-to-apply of the 

numerous surface-modification tools. They are based on the spontaneous adsorption of 

materials onto a substrate, generally a polymer, biomolecule, or inorganic particle, and 

allow the sequential formation of a nanostructured film, hence having a great interest in 

tissue-engineering applications (254-257). Layer-by-layer deposition of alternating ELR-

polyelectrolytes generated bioactive surfaces (258). In this work, it was developed a 

thermoresponsive thin coating by electrostatic self-assembly (ESA); the deposition of an 

ELR containing the bioactive RGD motif can be exploited for tunable cell adhesion and 

controlled protein adsorption by nanoscale surface tailoring (77). Another example of 

biomimetic surface-modification regards the chemical functionalization of ELRs in order 

to obtain metallic (Commercial pure titanium, Cp Ti) dental implants with 

osteostimulative capabilities by the covalent immobilization of biomolecules on the Cp Ti 

(259). Finally, Costa et al. demonstrated the feasibility of LbL synthesis using natural 

marine-based polysaccharides (chitosan and alginate) and ELRs (260) for possible 

application in wound dressings and drug-delivery systems (261, 262). Furthermore, ELR 

molecules can be used for the functionalization of surfaces in order to obtain stronger and 

faster cell responses on the tissue–biomaterial interface, thus promoting better implant 

integration than short peptides functionalization; for instance, ELRs have been used to 

enhance the properties of poly-methylmethacrylate (PMMA) surfaces. Although PMMA 

has a great usage in several biomedical applications (263-269), this study showed that 
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ELR-functionalized PMMA surfaces can enhance the cellular attachment efficiency and the 

cell anchorage strength (270). Finally, ELRs were thoroughly investigated as biocompatible 

vasculogenic surface coatings and smooth muscle cells (SMC) showed enhanced 

attachment under retention of their contractile phenotype on similar ELR-coated 

electrospun fibers (271). 
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1. INTRODUCTION 

1.1. Elastin-like recombinamers 

The prerequisites for the use of materials in tissue regeneration include biocompatibility 

and bioactivity. As such, elastin-like recombinamers (ELRs), which are novel biomaterials 

inspired by elastin, a component of the natural extracellular matrix (ECM), meet both 

these requirements (1). Elastin is a fibrous and insoluble protein that constitutes one of 

the most important structural and functional components of the ECM, allowing for high 

deformations without damage (2). It is abundant in the lungs (3-7%), skin (2-3%), blood 

vessels (28-32%) and elastic ligaments (50%) (3), where its elastic properties are essential. 

Elastin, the main function of which is to provide elasticity to organs and tissues, is an 

excellent example of how all the properties displayed by biological materials and systems 

are determined exclusively by the physicochemical properties of the monomers and their 

sequence (4, 5). Indeed, a single repeated pentapeptide sequence has been shown to be 

responsible for the elastic behavior in elastin and, as such, forms the basis of all ELRs (6, 

12).  

The most widely studied pentapeptide is (VPGXaaG), namely poly(Val-Pro-Gly-Val-Gly), 

where Xaa is any natural amino acid except proline. All functional ELRs present a reversible 

lower critical solution temperature (LCST) in aqueous solution with sharp responsiveness 

(13). According to Urry’s model, the polymer chains fold hydrophobically and undergo a 

conformational transition that leads to phase separation above this temperature (14, 15). 

It has been proven that the amino acid sequence has a significant influence on the LCST 

of ELRs (16). Thus, substitutions of the amino acid at the fourth position (Xaa) of the 

pentamer modify the LCST to an extent that depends on the polarity of the amino acid 

side-chain. The transition temperature of an ELR sequence based on (VPGXG)n can be 

controlled and adjusted to the desired applications by varying Xaa (hydrophobic AAs 

decrease Tt and hydrophilic AAs increase it) (16), the segment length n (longer ELR 

sequences have a lower Tt) (17, 18), concentration (higher ELR concentrations decrease 

Tt) (17), pH (19) and salt concentration in the selected solvent (20-22).  

Biotechnology provides us with a powerful set of tools, such as recombinant DNA design 

(23), that can be used to successfully control the physicochemical features of the amino 
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acid side-chains and their association (24, 25), or to include any protein-based 

functionality, such as protease active sites, which become important when degradation 

of the scaffold has to be adjusted to the growth rate of new tissue (26).  

1.2. Mechanisms to form ELR matrices for tissue-
engineering applications 

The predominant matrices for tissue regeneration, which were also the first to be applied 

in humans (27), are hydrogels. Indeed, due to their high water content, resemblance to 

natural tissue, biocompatibility and stimuli-responsiveness, these compounds have 

attracted increasing interest in the last 40 years (28, 29). However, as traditional methods 

of hydrogel synthesis lack an exact control over cross-linking points, chain length and 

sequence, the resulting three-dimensional structure may contain defects that can impair 

the mechanical properties of the material (30). These problems have been addressed by 

the development of novel polypeptide-based responsive hydrogels, including block-

copolypeptides (31), or recombinant co-polypeptides flanked by two coiled-coil blocks 

(32, 33) and recombinant segments of elastin, silk and collagen (34-36).  

The integration of crosslinking motifs that lead to a stable hydrogel is a prerequisite for 

the formation of ECM-like matrices from ELRs. This crosslinking can be of either a physical 

or a covalent nature, with the possible cross-linking mechanisms being as versatile as the 

ELRs themselves, ranging from ionic and hydrophobic interactions and the reaction of 

complementary groups to bioinspired protein crosslinks (37, 38).  

ELRs have the potential to form a material that is both biocompatible and has specific 

mechanical properties, and can also interact with the body to improve the natural 

regeneration of tissue. Although the repetitive ELR pentapeptide (VPGXG) itself does not 

facilitate adhesion, its extraordinary design means that adhesive (RGD) (39, 40) and 

degradation sequences (41, 42), as well as sequences that allow the inclusion of 

temperature-related or biological triggers, can readily be integrated (43-45). All these 

strategies can provide very close control over the length and molecular weight of the 

proteins by careful selection of the crosslinking sites, which usually correspond to the 

lysine groups (46, 47).   
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1.3. Physically Cross-linked ELR Hydrogels  

Several strategies can be applied to prepare physically crosslinked ELR hydrogels. Some of 

the most popular are described below. 

1.3.1. Crosslinking via ionic interactions  

Ionic crosslinking motifs are based on ELR segments of opposite charge, or the 

introduction of groups that can chelate multivalent cations into the ELR backbone, which 

can be further controlled by varying the salt concentration.  

Peptide sequences with alternating charges and with complementary ionic sites have 

been shown to perform well in physical crosslinking. Such sequences are classified into 

different moduli, depending on the size of the equally charged ionic blocks (1-4 amino 

acids): modulus I, – + – + – + –+; modulus II, – – + + – – + +; modulus III – – – + + +; and 

modulus IV – – – – + + + +. A modulus I sequence reported by Holmes et al. (48) exhibited 

salt-induced in situ gelation (49). Ion complexation is obtained by including glutamic and 

aspartic acid residues in the ELR sequence accompanied by the addition of Ca2+ ions. The 

resulting hydrogels can be stabilized at room temperature and at physiological pH (50) 

and are sensitive to chelating agents, which reduces the number of accessible Ca2+ ions. 

Another approach by Yeo et al. (51) involved the addition of monosaccharides to the side 

chains of the ELRs, thus allowing them to form stable complexes with potassium. 

Furthermore, ELR/chitosan blends have been shown to form stable films in the presence 

of sodium ions (52).  

1.3.2. Self-assembly of amphiphilic blocks and graft copolymers  

Hydrogels can be obtained by aggregation between the hydrophobic segments of multi-

block ELR copolymers. The hydrophobic functionalities are provided by alkyl-rich amino 

acids such as alanine (Ala), leucine (Leu), isoleucine (Ile), valine (Val), phenylalanine (Phe), 

tryptophan (Thp), tyrosine (Tyr) or methionine (Met). The resulting amphiphilic blocks 

have been shown to be stable in vivo (36, 53, 54). Furthermore, it is common to find 

protein polymers characterized by alternating blocks of essentially hydrophilic and 

essentially hydrophobic amino acids. The presence of chemically distinct segments within 

the same protein chain causes a mutual repulsion between the different blocks, which 
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tend to segregate. However, this segregation is constrained by the “forced cohabitation” 

of these blocks within the same molecule. As a result, they simply separate into different 

domains, thereby forming periodic nanostructures (55).  

1.3.3. Intermolecular interaction of secondary protein structures  

Structure design offers the possibility to include almost any sequence that is able to form 

intramolecular interactions via secondary structures into the ELR backbone using a 

recombinant approach. The limiting factors in this approach are the need to retain the 

ELR temperature transition and the fact that complex folding might not occur.  

One bioinspired approach involved the inclusion of natural silk sequences that are known 

to form intramolecular beta-sheets which self-assemble into crystalline regions and have 

unique mechanical properties (56-60). These silk-based materials can be used to form a 

variety of structures, such as hydrogels, films, 3D porous matrices and submicron to 

macroscale fibers (61). Furthermore, silk scaffolds have been proven to be biocompatible 

and to perform well in vivo (62-64). As regards the silkworm (Bombyx mori), the repetitive 

hydrophobic sequence GAGAGS has been shown to be responsible for the strength of silk 

fibers (65). These blocks are stabilized by hydrophilic compartments in the protein and a 

complex mixture of stabilizing proteins (66). Fernandéz-Colino et al. have shown that the 

GAGAGS sequence can be successfully integrated into an ELR, thereby facilitating in situ 

gelation of the material and its use as an injectable system (36).  

A more complex crosslinking has been achieved by using coiled-coil induced 

oligomerization via leucine zipper motifs, which include sequences that are known to form 

well-defined secondary structures (67-69). Leucine zippers are characterized by heptad 

repeating peptide units that form a distorted α-helix, designated as “abcdefg”, where the 

“a” and “d” positions are occupied by hydrophobic residues such as leucine and “b”, “c”, 

“e”, “f” and “g” are usually of a hydrophilic nature (see Figure 1) (70). The oligomerization 
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of different α-helices is primarily driven by hydrophobic interactions (71-74), and partly 

by electrostatic interactions (75-77) and the number of heptad repeats (72, 78, 79).  

 

Figure 1. Hydrophobic interaction of two leucine zipper heptad units. 
 

The potential extrapolation of these domains to the creation of bioinspired domains has 

been explored to a much lesser extent than in the case of their elastin or silk counterparts, 

thus meaning that fewer studies available concerning their biocompatibility are available. 

However, their human origin and the conserved nature of the sequence of these domains 

alleviate any concerns regarding their biocompatibility. To further support this notion, in 

vivo implantation of the leucine zipper based scaffolds in a mouse model was recently 

reported and no foreign body reaction to the scaffold was detected (80).  

Protein-based physical crosslinks are ubiquitous in nature, therefore it can be assumed 

that those reported to date are merely the tip of the iceberg.  

1.4. Functionalization of ELRs and covalent cross-linked 

ELR hydrogels  

Post-translational modification of ELRs is obtained by reaction of the functional groups in 

the protein backbone. In ELRs, this can be facilitated by including active amino acids into 

the X position of the (VPGXG) sequence, thus maintaining the pH- and temperature-
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sensitivity of the resulting ELRs (81, 82). These active amino acids facilitate both 

crosslinking reactions and chemical modifications. The concentration, molecular weight 

and lysine content of ELRs are key parameters in the hydrogel formation. Thus, below a 

critical concentration (83), the hydrogel network is not formed due to the lack of sufficient 

intermolecular contacts to allow a continuous entanglement of the ELR chains. Under 

these low concentration conditions, it is possible to form stable nanogels that already 

possess the thermal sensitivity found in the macroscopic ELR-based hydrogels (84). ELRs 

with a high number of potential crosslinking points are more prone to establishing a high 

number of intermolecular contacts that promote network formation. ELRs with a high 

lysine content are the most widely used in the preparation of hydrogel networks given the 

ability of the amino group on lysine to form covalent bonds between ELR chains. 

Furthermore, relevant features of the hydrogel, such as gelation time, network pore size, 

stiffness and degradability, can be closely controlled by varying the nature and 

concentration of the crosslinking agent. Labile chemical linkages that can be broken either 

enzymatically or chemically under physiological conditions can also be formed (85). 

Chemical crosslinking strategies have some important advantages. For instance, the 

covalent bonds avoid hydrogel network dilution and prevent components diffusing out 

from the site where the hydrogel is implanted. As a drawback, chemical crosslinking 

usually requires organic solvents and reagents that have to be exhaustively removed after 

synthesis of the network. To overcome this problem, click chemistry has been of growing 

interest for the formation of ELR-based networks in the past five years as this technique 

avoids the need for organic solvents (86, 87). In addition, it can be used to fuse ELRs with 

different bioactivities (88) or even to form hybrid ELR systems in an in situ gelation 

manner. This method has also been used to create non-thrombogenic stents (89).  

Chemical crosslinking can be achieved using the following techniques: 1) radical 

polymerization (acrylates), 2) coupling of complementary groups (click reaction, Michael 

addition (90), condensation (91)), 3) high-energy irradiation (92), or 4) enzymatic 

crosslinking (transglutaminase) (93-95). Typical functionalization motifs include bioactive 

sequences with adhesion sites (such as RGD (96)), inhibitors, antibodies and anchor or 

signalling molecules.  
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Permanent or chemical hydrogels are covalently cross-linked networks that may contain 

clusters dispersed within regions of low crosslinking density and high water swelling. Free 

chain ends also cause defects in the gel and do not contribute to the elasticity of the 

networks. Both aqueous and organic media can be used to form ELR networks, with 

crosslinking in an organic solvent resulting in hydrogels with a more uniform structure due 

to the absence of transitions. Conversely, the behavior of ELR molecules in water is 

governed by the LCST (47). Some organic solvents, such as tris-succinimidyl 

aminotriacetate, can react with the lysine residues of different ELR chains to form a 

network. Crosslinking confers structural stability on the hydrogel, which is insoluble in 

water even upon cooling. Intermolecular crosslinks between proteins can also be 

obtained using genipin, as shown for an ELR/fibronectin hybrid (97).  

2. IN VITRO CYTO- AND BIOCOMPATIBILITY OF ELRs 

Biofunctional materials require advanced design and preparation in order to match the 

sophisticated recognition capabilities of biological systems. Moreover, in order to ensure 

the safety and effectiveness of devices containing these materials, it is fundamental to 

clearly understand their effects on surrounding tissues. Thus, materials are required to 

pass a toxicological test, known as a biocompatibility test, that takes into account the 

duration and type of tissue that it may come into contact with, along with all the 

functional requirements of the corresponding host response (98).  

Any material proposed for use in biomedical applications must be biocompatible and 

highly pure as the contamination thereof with (globular) proteins that may provoke an 

immunological response is one of the most common factors precluding the use of 

biomaterials in such applications. However, it is also important to note that peptide-based 

materials are often touted as biocompatible in the absence of hard experimental 

evidence. Indeed, as noted by Chow et al. (5), there is no intrinsic reason for peptide-

based materials to be biocompatible other than the somewhat naive notion that they 

must be, simply because they are composed of building blocks that are native to all 

organisms. As an important counterexample, it should be noted that many peptides and 

protein drugs are immunogenic, so the potential immunogenicity of all peptide-based 

materials must be considered, especially peptides that are “non-self”. In contrast to 
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classical materials, biocompatibility studies, especially innate immunity induction, 

cytotoxicity and fibrosis, are often lacking for many novel biomaterials, including 

recombinant protein-based materials, as has been extensively explored in the scientific 

literature. 

ELRs have grown in popularity in the field of protein-inspired biomimetic materials and 

have found widespread uses in biomedical applications. These materials are playing an 

increasingly important role in a diverse range of applications such as drug delivery, tissue 

engineering, biosensors and a wide variety of “smart” systems. The great potential of ELRs 

in several biomedical applications is due to their ability to control and manipulate the 

interface between themselves and biological components, thus maintaining their 

biocompatibility. 

Given their recombinant production in Escherichia coli bacteria, ELRs could be affected by 

a potential source of risks in terms of biocompatibility. In this regard, the standard analysis 

recommended by the American Society for Analysis of Materials for materials in contact 

with tissues and fluids has demonstrated the extraordinary biocompatibility of ELRs (99). 

As has already been described, ELRs don’t provoke a. immunogenic response. In addition, 

given their biodegradability and biocompatibility for human tissue, tissue fluids, and 

blood, these polymers play a key role as carriers in delivery systems (99-101). ELRs used 

for tissue engineering have specific requirements in terms of biocompatibility that must 

be combined with topographic, chemical and viscoelastic patterns on materials to match 

proteins at the nanometer scale and cells at the micrometer scale. In this regard, 

numerous studies have clearly demonstrated both these requirements in in vitro 

experiments (102-104).  

Additional findings corroborating the in vivo biocompatibility of ELRs have come from 

studies published by Rincon et al., who evaluated the cytotoxic effects of microparticles 

prepared from poly(VPAVG) and showed that the particles did not induce any cytotoxicity 

or inflammatory response after subcutaneous injection in rats. These authors also 

demonstrated intraocular tolerance after intravitreal injection into pigmented rabbits 

(105). Herrero-Vanrell et al. also observed a poor inflammatory response when they used 

poly(VPAVG) as a vehicle for intraocular drug-delivery systems (1). Other studies by 

Sallach et al., who developed a recombinant elastin-mimetic triblock copolymer in the 
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absence of either chemical or ionic crosslinking, showed a minimal inflammatory response 

and robust in vivo stability for periods exceeding one year, thereby further highlighting 

the high and extraordinary biocompatibility of ELRs (53). Similarly, Gonzalez et al. have 

shown the applicability of recently developed ELRs as a coating for vascular stents with 

the ultimate goal of producing a new endovascular device (89). The ELRs used to cover 

the stent supported full endothelialization in less than two weeks in vitro and showed high 

biocompatibility, physiological hemo-compatibility and a reduced response of the 

immune system. Other medium- and long-term viability studies have revealed a good 

cyto-compatibility with respect to several human primary cell types in both surface and 

3D cultures (86). Furthermore, ELR molecules can be used to functionalize surfaces in 

order to obtain stronger and faster cell responses at the tissue–biomaterial interface, thus 

promoting better implant integration than functionalization with short peptides (106). For 

instance, functionalization of CoCr metallic surfaces with ELRs for cardiovascular 

applications may offer an efficient alternative to enhance rapid endothelialisation (107). 

As noted above, the biocompatibility of these materials is of vital importance given their 

wide-ranging potential applications in biomedical fields such as regenerative medicine 

and tissue engineering. The cyto- and biocompatibility of ELRs, along with their interesting 

possibilities in terms of functionalization via recombinant DNA technology, make them 

ideal candidates for the development of scaffolds and advanced systems for applications 

in the biomedical field. 

3. ELASTIN-LIKE RECOMBINAMERS FOR TISSUE-

ENGINEERING APPLICATIONS 

3.1. Osteochondral applications  
Musculoskeletal disorders include more than 150 different diseases and syndromes, the 

majority of which are progressive and painful. Such disorders can be classified as joint 

diseases, physical disabilities, vertebral disorders and trauma-related conditions. The 

most affected joint is the knee, followed by the hip, ankle and shoulder, all of which, but 

especially the knee, are liable to suffer cartilage degeneration. Chondral and 

osteochondral injuries, both traumatic and non-traumatic, produced in the articular 
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cartilage of the knee and in other joints progress with time to degenerative osteoarthritis, 

which is usually treated by total replacement of the joint by a prosthesis (110). These 

incurable injuries entail disability, and all treatments applied to date to restore the 

articular surface are unsatisfactory. 

The articular cartilage is formed by a matrix in which chondrocytes are embedded. This 

matrix is fundamentally made of various types of collagen (mainly type II) and 

proteoglycans (109). Articular hyaline cartilage, which covers the articular surfaces, is one 

of several types of cartilage (110). This cartilage is a highly specialized tissue characterized 

by its unique mechanical properties. It is a smooth layer, pearly bluish in colour, with a 

width of 2-4 mm, that is located between the bone and articular surface and has an 

extremely low friction coefficient due to its endurance to compression forces and 

elasticity. Articular hyaline cartilage has two main roles, namely to absorb the pressure 

overload at the articular surface and to allow the friction-less sliding of this surface (110-

114). Mature articular hyaline cartilage has no vascular or lymphatic vessels or nerves, 

therefore (115) renewal of this matrix is very slow and the chondrocytes are usually 

dormant, with few mitoses. Furthermore, articular hyaline cartilage does not repair itself 

and regenerated cartilage is generally rich in type I collagen (fibro cartilage) instead of the 

type II collagen essential for the articular hyaline functional properties. This fibro cartilage 

is therefore unable to maintain the biomechanical characteristics of normal articular 

cartilage (116, 117).  

Biomaterials play a fundamental role in the field of tissue engineering. There are several 

methods for obtaining biomaterials, the most common being by chemical reaction or 

purification from natural sources. In addition to these, recombinant DNA techniques have 

proven to be very powerful tools for the development of protein-based biomaterials, such 

as ELRs, over the last few decades (54). As mentioned previously, ELRs are able to self-

assemble into different structures, such as hydrogels, and may find uses in biomedical 

applications (23, 118).  

From another biological viewpoint, the development of novel tissue-engineering methods 

(119, 121) involving mesenchymal stromal cells (MSCs) (121, 122), which are pluripotent 

cells that can differentiate into diverse cell types (including chondrocytes and osteocytes) 
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and exert immunomodulatory properties, means that such methods are good candidates 

for the treatment of musculoskeletal lesions (123, 124). 

For articular defect applications, the suspension of MSCs needs a scaffold as a cell-carrier 

in order to acquire a 3D structure that could be re-populated by these cells and to increase 

the persistence of the implanted cells at the injury site. Moreover, the hydrogels used as 

vehicles for MSCs should closely mimic the properties of the ECM and provide a cell-

friendly environment that supports their regenerative potential. 

As described previously, elastin-like recombinamers are based on a repetition of the 

VPGXG pentapeptide found in natural elastin, in which X can be any amino acid except 

proline. Given the elastin-like nature of the hydrogel and the high percentage of elastin 

present in the native chondral matrix, ELR-based hydrogels are likely to be similar to 

hyaline cartilage (125, 126). Furthermore, ELRs show thermo-sensitivity, thus meaning 

that it should be possible to form hydrogels that are stable at body temperature provided 

the transition temperature (Tt) of the ELR is lower than body temperature. In addition, as 

they are soluble at low temperatures, ELRs can be injected at low temperature and rapidly 

form a gel at physiological temperature, thereby representing a good candidate for use in 

arthroscopy to reduce the invasiveness of the treatment (Figure 2). 

This remarkable property permits MSCs to be homogeneously embedded in the ELR 

solution at a temperature below Tt and to self-assemble into hydrogels above Tt, thus 

allowing the use of the cell-scaffold system in injectable therapies. Finally, in addition to 

the significant advantages of ELRs described in this chapter, they can also be designed to 

contain bioactive sequences, such as the well-known RGD cell-adhesion sequence from 

fibronectin, which promotes specific cell attachment via integrins (96), in order to achieve 

a bioactive scaffold that provides a cell-friendly environment, thereby improving the 

regenerative potential of hydrogel implantation. 
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Figure 2. ELR-based injectable hydrogel for osteochondral applications 

3.2. ELRs for (cardio-)vascular tissue regeneration 
Elastin is an essential extracellular matrix protein in vascular tissue that plays an important 

biomechanical and biological signaling role. However, as native elastin is insoluble and is 

difficult to extract from tissues, its use for the manufacture of vascular tissue engineering 

scaffolds remains relatively rare. ELRs that mimic the structure and function of native 

tropoelastin represent a practical alternative to the native elastic fiber for vascular 

applications, especially in cardiovascular implants, where metal-based stents are known 

to cause in-stent restenosis (ISR) and late thrombosis diseases (107). The most common 

surgeries in cardiovascular disease are coronary angioplasty and stent insertion (127,128), 

with stent thrombosis (ST) and ISR being the main reasons for the failure of bare metal 

stents after implantation. This effect is decreased to less than 10% with the use of drug-

eluting stents (DES), but remains critical (129), thus emphasizing the need for more 

efficient coatings. The coating of active ELRs containing adhesion sequences onto stent 

surfaces is one strategy for recovering a healthy endothelium. However, the bioactive 

sequences required to selectively promote endothelial growth remain unclear. 

ELRs have been thoroughly investigated as biocompatible vasculogenic surface coatings 

(53), with smooth muscle cells (SMC) showing enhanced attachment and retention of 

their contractile phenotype on similar ELR-coated electrospun fibers (130). It has also 

been shown that ELR coatings are able to reduce blood platelet activation on synthetic 
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scaffolds (131), which delays the formation of healthy endothelium due to the need for 

anti-proliferative drugs and leads to late ST, thereby increasing the time patients are 

required to take anti-platelet therapy (132), thus addressing a negative side-effect of DES. 

Several studies have also demonstrated that stent surface endothelialization is suitable 

for inhibiting restenosis and thrombosis (107, 132-134). In addition, ELRs including 

endothelial adhesion sequences (REDV) have been shown to facilitate endothelialization 

of CoCr alloys by an early HUVEC cell-adhesion response (107). These findings indicate an 

involvement of elastin-laminin in the initial SMC/ELR contact (130).  

de Torre et al. recently used catalyst-free click chemistry to cover stents by injection 

molding with an in situ gelating ELR system. Full endothelialization was obtained in a flow-

controlled bioreactor and enabled by REDV and RGD sequences in less than two weeks. 

Minimal platelet adhesion and fibrin adsorption were detected and the ELR-coated stents 

exhibited mechanical stability even under high flow conditions (89). A more 

heterogeneous approach by Weber et al. involved generating tissue-engineered heart 

valves (TEHVs) by multi-step injection molding using an ELR as a hybrid system with fibrin 

(135). Conditioning of TEHVs in bioreactor systems is necessary to achieve an adequate 

ECM to withstand the mechanical loads in bodily circulation, with 3D printing (136) and 

orientated electrospinning (137) also being used in TEHVs to address the stress 

differences. Since heart valves are elaborate and highly complex structures in the 

circulatory system, the spatial diversity of this hybrid system was considered to meet the 

challenges raised by the structural and mechanical anisotropy and optimal function of 

such valves. Thus, different materials were used for the wall (fibrin) and leaflets 

(fibrin/ELR) to maintain the functionality of the TEHVs and to address the problems of 

poor elastogenesis in tissue-engineered constructs (135, 138), which is of particular 

importance for their long term durability (139).  

In vivo studies of ELR-based scaffolds with leucine zipper motifs and RGD adhesion sites 

showed that they were able to support neovascularization without further growth factor 

treatment and an absence of immune responses, thereby underlining the potential of 

elastin-like materials for vascular tissue regeneration (80).  
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3.3. ELRs for ocular prostheses 

Corneal wound healing requires cell adhesion and proliferation, both of which are 

mediated by the binding of epithelial membrane-bound integrins to substrate ligands, 

such as fibronectin. The secretion of fibronectin by corneal epithelial cells and stromal 

fibroblasts increases exponentially in the first steps of corneal wound healing (140).  

However, the ocular surface, undamaged cornea and conjunctiva do not express elastin. 

Instead, a “diffusible factor” (141) secreted by the corneal epithelium has been implicated 

in maintaining the cellular and physiological homeostasis of the ocular surface. Several 

metalloproteinases (MMP) have been reported to be involved in pathological ocular 

processes such as dry eye (142) or conjunctivochalasis (143). As such, MMP-3 (Stromelysin 

1), MMP-7 (Matrilysin 1), and MMP-9 (Gelatinase B), which are present at the ocular 

surface and are able to degrade elastin fibers (142), are potential candidates for Bruch’s 

membrane prostheses. In this regard, Martínez-Osorio et al. (102) showed that an ELR 

blend containing four different types of building blocks was able to achieve an adequate 

balance of properties and to foster epithelial cell adhesion from human conjunctiva-

derived primary cells. This ELR consisted of VPGIG, which has outstanding biocompatibility 

(99) and appropriate mechanical behaviour (144), a lysine-containing block (VPGKG) for 

crosslinking purposes, a CS5 human fibronectin REDV domain for efficient cell attachment 

(145) and an elastase target domain to enhance bioprocessing by naturally occurring 

enzymes. The resulting biomaterial maintained the growth, phenotype and functional 

characteristics of the primary cell line and did not exhibit any cytotoxicity. The 

performance of ELRs as ocular implants was further confirmed by Srivastasa et al. (146), 

who retained the efficiency of retinal pigment epithelial (RPE) cells and demonstrated that 

ELRs could be suitable carriers for the transplantation of autologous RPE cells for the 

treatment of age-related macular degeneration (AMD). 

3.4. Other applications of ELRs 

Even though the excellent and tunable mechanical properties and very low 

thrombogenicity of these materials make them excellent candidates for applications 

related to traumatology or cardiovascular diseases, ELRs also have a wide range of 

possibilities in the wider field of tissue engineering. As noted above, elastin-like 
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recombinamers are a novel peptide-based biomaterial, therefore their full potential 

remains to be explored. For instance, very few studies have been performed concerning 

the application of ELRs in neural injuries such as spinal cord injuries, traumatic brain 

injuries, or nerve transection. As an example, two studies have shown how surface-

adsorbed recombinant protein can be used to modulate the behavior and differentiation 

of neuronal cells in vitro (147) and the biological activity of neurotrophin-ELR fusion 

proteins via in vitro culture models (148). As such, the potential applications of ELRs could 

be many and diverse. Indeed, they are currently being investigated for use in fields as 

disparate as diabetes treatment or in vitro fertilization. 

 

4. CONCLUSIONS 

This chapter has described elastin-like recombinamers, a family of novel protein peptide 

biomaterials obtained using recombinant DNA techniques. Moreover, ELRs meet all the 

prerequisites of biocompatibility and bioactivity for use in the field of tissue regeneration. 

Given that the predominant matrices for tissue regeneration are hydrogels, and that ELRs 

are able to self-assemble into different structures, including hydrogels, these biomaterials 

play a key role in the development of scaffolds and advanced systems for applications in 

the biomedical field. 

As noted previously in this chapter, numerous techniques can be used to form different 

ELR matrices via physical or covalent crosslinking or by functionalization. Furthermore, 

the range of tissue-engineering applications for ELRs is very extensive, with recent studies 

having shown how different types of ELRs can be applied in the most challenging areas of 

tissue regeneration, such as cardiovascular, ocular prosthesis and osteochondral 

applications or even in nerve regeneration, diabetes and in vitro fertilization.  

Finally, one of the greatest advantages of elastin-like recombinamers is that their 

biological and mechanical properties can be readily tailored at the genetic level to satisfy 

end-user applications, thus offering numerous choices for the development of cell-culture 

matrices for tissue engineering (149).  
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In order to address the objectives of this Thesis, several ELRs have been designed and 

produced. In Table 1 it is reported the amino acid sequence of each ELR, which has a 

specific composition comprising bioactive sequences. Moreover, in Figure 1 it is reported 

a scheme of all the ELRs, where the coloured blocks represent the disposition of the 

bioactive domains of each ELR.  

 

Code Name Sequence MW 

(Da) 

A (EIS)2-(I5R)6 MESLLP-{[(VPGVG)2-VPGEG-(VPGVG)2]10-(VGIPG)60-

[V(GAGAGSG)5]2G}-[(VPGIG)5-AVTGRGDSPASS]6V 

 

 

121012 

B VKVx24 MESLLP-VGVPGVG 

[VPGKG(VPGVG)5]23VPGKGVPGVGVPGVGVPGVGVPGV 

 

60451 

C HRGD6 MGSSHHHHHHSSGLVPRGSHMESLLP-{[(VPGIG)2-(VPGKG)-

(VPGIG)2]2-AVTGRGDSPASS-[(VPGIG)2-(VPGKG)-

(VPGIG)2]2}6V 

60660 

D REDV MESLLP-

[(VPGIG)2VPGKG(VPGIG)2EEIQIGHIPREDVDYHLYP(VPGIG)2VP

GKG(VPGIG)2(VGVAPG)3]10V 

 

80813 

E TI MESLLP-[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]10V 65075 

F TR MESLLP-

[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]10VETAAAKFERQHMD

SSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADVQAVC

SQKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAYKTTQA

NKHIIVACEGNPYVPVHFDASV        

78618 
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G RT MESLLP-

VETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPV

NTFVHESLADVQAVCSQKNVACKNGQTNCYQSYSTMSITDCRET

GSSKYPNCAYKTTQANKHIIVACEGNPYVPVHFDAS-

[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]10V 

78618 

H TRT MESLLP-

[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]5VETAAAKFERQHMDS

STSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADVQAVCS

QKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAYKTTQAN

KHIIVACEGNPYVPVHFDAS-

[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]5V 

78618 

 

Table 1. ELRs used during the Thesis. Coloured sequences correspond to bioactive sequences as 

represented in Figure 1. 
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Figure 1. Scheme of all the ELRs used during the Thesis. 

ELR A has been used in Chapter 3; ELR B has been used in Chapter 4 and Chapter 5; ELRs 

C and D have been used in Chapter 4; ELRs E, F, G and H have been used in Chapter 6. All 

the ELRs have been produced and characterized according to the following methods. 

ELR biosynthesis and purification  

The gene construction was performed by molecular biology and recombinant DNA 

technique following standard methods previously described (1, 2). Briefly, the genes 

encoding the different polypeptides, both ELR and bioactive sequences are synthesized 

by an external service (NZYTech), and cloned in the pDriveAll plasmid. For the molecular 

cloning steps, they were used two restriction enzymes without interruptions ("seamless 

cloning"): EarI and SapI (Thermo Scientific). These two restriction enzymes are type IIS 

that have endonuclease activity on a sequence contiguous to the recognition, so they are 

optimal for this type of cloning. Once the final gene construct was obtained, it was 

extracted from the cloning plasmid and a subcloning was carried out in the expression 

plasmid pET7, resulting from different modifications on the commercial vector pET-25b 
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(+) (Novagen). Subsequently, this plasmid was used to transform expression strains of 

Escherichia coli, in particular BLR (DE3) (Novagen). BLR strain was cultured in a 15 L 

bioreactor (Applikon Biotechnology) under controlled conditions of pH, temperature, 

agitation and O2 concentration, in order to guarantee a correct bioproduction of the 

different ELRs. Subsequently, the bacterial cells were disrupted by a mechanical process 

(disruption model: TS 0.75KW, Constant Systems). Moreover, the ELRs were purified from 

the rest of cellular content taking advantage of their thermo-sensitivity; the purification 

process was carried out by several centrifugations preceded by inverse transition cycling 

(3). The pure ELRs were finally obtained, they were dialyzed and filtered through 0.22 μm 

filters (Nalgene) to achieve sterile ELR solutions which were then lyophilized (FreeZone 1, 

LABCONCO) for a better long term preservation.  

Physical - Chemical characterization of ELRs 

Analysis of the level of endotoxins 

The level of endotoxins was determined for all the ELRs used in vivo by the Limulus 

amebocyte lysate assay (LAL) with the Endosafe-PTS system (Charles River Laboratories). 

The Endosafe® cartridge technology is a fast and high sensitivity method to perform the 

analysis of the level of endotoxins (4). The cartridge technology eliminates a significant 

amount of the raw material and accessories required for traditional LAL methods. The 

cartridges are pre-loaded with all of the reagents required to perform a LAL test, 

eliminating the preparation of multiple reagents; thus only the ELRs solution was loaded 

for the endotoxins analysis. The endotoxin levels of the ELRs used for the in vivo 

experiments were measured, resulting in a maximum of 2 endotoxin units/mg ELR for the 

ELRs used at a lower concentration. ELRs used at higher concentrations (up to 300 mg / 

mL) contained less than 0.01 EU / mg ELR. Thus, even at the highest ELR concentrations, 

endotoxin levels remained below the limit set by the FDA (EU 20 / biomedical device). 

Polyacrylamide gel electrophoresis with SDS (in denaturing conditions, 
SDS-PAGE) 

SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis) is a variant of 

polyacrylamide gel electrophoresis, an analytical method for the separation of charged 
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molecules in mixtures by their molecular masses in an electric field. It uses sodium dodecyl 

sulfate (SDS) molecules to help identify and isolate protein molecules. SDS acts as a 

surfactant, covering the proteins' intrinsic charge and conferring them very similar charge-

to-mass ratios. The electrophoresis in polyacrylamide gels with SDS (5), entails the 

denaturation of the proteins (ELRs in our case) and the homogeneous distribution of 

negative charge for a migration dependent on their size. Considering that the migration is 

not dependent by the charge of the ELR or by the folding of the protein, this methodology 

allows to know the molecular weight (MW) of the ELRs, as well as the level of purity and 

degradation thereof. In this Thesis, it was used the vertical electrophoresis system 

"MiniVE" of Hoefer (Amersham Pharmacia Biotec). For the analysis by electrophoresis, 

around 1 mg/mL of ELR were loaded, according to the size of the well. After the 

electrophoresis, the polyacrylamide gels were stained with a 0.3 M solution of copper 

chloride. This staining works in a negative way; indeed, it does not stain the proteins, but 

copper interacts electrostatically with the SDS that contains the gel itself. Thus, the area 

containing the proteins are unstained, which appear as dark bands (6). The images of the 

gels were taken with the Gel Logic 100 Imaging System (Eastman Kodak) and analyzed 

with the Kodak 1D Image Analysis (Eastman Kodak) program. 

Mass Spectrometry (MALDI-TOF) 

In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization 

technique that uses a laser energy absorbing matrix to create ions from large molecules 

with minimal fragmentation (7). MALDI methodology is a three-step process (Figure 2). 

First, the sample is mixed with a suitable matrix material and applied to a metal plate. 

Second, a pulsed laser irradiates the sample, triggering ablation and desorption of the 

sample and matrix material. Finally, the analyte molecules are ionized by being 

protonated or deprotonated in the hot plume of ablated gases, and then they are 

accelerated towards the detector (8). The type of a mass spectrometer most widely used 

with MALDI is the TOF (time-of-flight mass spectrometer), mainly due to its large mass 

range. The TOF measurement procedure is also ideally suited to the MALDI ionization 

process since the pulsed laser takes individual 'shots' rather than working in continuous 

operation. Mass spectrometry of the type "Matrix-assisted laser desorption / ionization - 
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Time-of-flight" (MALDI-TOF) allows to know exactly the MW. It is more accurate than the 

SDS-PAGE technique, hence it can be considered complementary to it. Mass Spectrometry 

has been carried out in the Laboratory of Instrumental Techniques (LTI) of the University 

of Valladolid (UVa) in the MALDI-TOF Voyager STR (Applied Biosystems). 

 

Figure 2. Schematic representation of the MALDI-TOF spectrometry. 

Amino acid analysis (HPLC) 

High-performance liquid chromatography (HPLC) is a technique used to separate, identify, 

and quantify each component in a mixture. It relies on pumps to pass a pressurized liquid 

solvent containing the sample mixture through a column filled with a solid adsorbent 

material. Each component in the sample interacts slightly differently with the adsorbent 

material, causing different flow rates for the different components and leading to the 

separation of the components as they flow out of the column. These interactions are 

physical in nature, such as hydrophobic (dispersive), dipole–dipole and ionic, most often 

a combination. HPLC is distinguished from traditional ("low pressure") liquid 

chromatography because operational pressures are significantly higher (50–350 bar), 

while ordinary liquid chromatography typically relies on the force of gravity to pass the 

mobile phase through the column. The analysis of ELR samples previously hydrolysed by 

"High-Performance Liquid Chromatography" (HPLC) allows to know the amino acid 

composition of the ELR molecules. First, ELR are hydrolyzed with 6M HCl, 1% phenol 

during 2.5 hours at 155˚C, and subsequently dried. Resulting powder is resuspended in 

20mM HCl and diluted 1/10 for separation by HPLC. Quantification is done by comparing 

to standard patrons. A schematic representation of the process can be seen in Figure 3. 

This method has been carried out in the LTI of the UVa with the Waters 600 gradient HPLC 

equipment coupled to a Waters 2487 UV detector (Waters). 
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Figure 3. Schematic representation of the experimental set for amino acid analysis. 

Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry, or DSC is a thermoanalytical technique in which the 

difference in the amount of heat required to increase the temperature of a sample and 

reference is measured as a function of temperature. Both the sample and reference are 

maintained at the same temperature throughout the experiment. In our case, the sample 

is the ELR solution dissolved in milliQ water or in saline solution, whereas the reference is 

the corresponding solution without the ELR. In this Thesis, DSC analysis has been used to 

measure the Tt of the ELRs. The basic principle underlying this technique is that when the 

sample undergoes a physical transformation such as phase transitions, more or less heat 

will need to flow to it than the reference to maintain both at the same temperature. 

Whether less or more heat must flow to the sample depends on whether the process is 

exothermic or endothermic. When a phase change or transition occurs, if the amount of 

heat necessary to be supplied to the ELR solution to increase the temperature is greater 

than the reference, then it is an endothermic process. This means that the process 

consumes part of the energy supplied to the system during the transition. The ELRs were 

dissolved at 50 mg/mL in milliQ water or in PBS, the Tt was measured at different pH 

values. The experimental procedure consisted of a first isothermal stage at 0 °C for 10 

minutes, followed by a heating step, from 0 to 60 °C, at a speed of 5 °C / min. 
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Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier-transform infrared spectroscopy (FTIR) is a technique that can be used to obtain 

information about the functional groups of the sample analyzed. The theory behind the 

technique resides in measuring how much light a sample absorbs at each wavelength. The 

molecules absorb specific frequencies that are characteristic of their structure. Fourier-

transform spectroscopy shines a beam containing many frequencies of light at once and 

measures how much of that beam is absorbed by the sample. Next, the beam is modified 

to contain a different combination of frequencies, giving a second data point. This process 

is rapidly repeated many times over a short timespan. When the frequency of the IR is the 

same as the vibrational frequency of a bond, the absorption occurs. Afterwards, a 

computer takes all this data and the examination of the transmitted light reveals how 

much energy was absorbed at each frequency (or wavelength) revealing the presence of 

a certain chemical structure. In our case, the pure ELRs in the dry state were analyzed with 

a Bruker FTIR spectrophotometer (Bruker, USA). For each spectrum, a 512-scan 

interferogram was collected at single beam absorption mode with a 2 cm-1 resolution 

within the 4000 - 600 cm-1 region. For each sample, several FTIR absorption spectra were 

collected. Five measurements were averaged to obtain the final FTIR absorption spectrum 

of the sample. Residual water vapour absorption was interactively subtracted from the 

sample spectra. Finally, the spectral calculations were performed by the OPUS (version 

4.2) software (MATTSON INSTRUMENT, INC.). 

Proton nuclear magnetic resonance 1H-NMR Spectroscopy 

Proton nuclear magnetic resonance (1H-NMR) is the application of nuclear magnetic 

resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules 

of a substance, in order to determine the structure of its molecules (9). Nuclear magnetic 

resonance spectroscopy (NMR) studies the behaviour of certain atomic nuclei in the 

presence of an external magnetic field. When an atomic nucleus with non-zero total 

angular momentum is placed in an external electromagnetic field, they interact via the 

nuclear magnetic dipole moment. The applied magnetic field produces a split of the 

degenerated energy levels of the nuclear spin, so that transitions between them can be 

induced as a result of absorption of the adequate electromagnetic radiation. This specific 
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orientation of spins depends on the molecular structure and, therefore, is different for 

each molecule; and the whole NMR spectrum of a molecule can be considered as a 

fingerprint of it. Moreover, the proton NMR spectrum (1H-NMR) of the bioproduced ELRs 

allows us to verify the absence of impurities for each one of them. The NMR analysis was 

performed with the NMR 500 (Agilent Technologies) equipment of the LTI. The 

measurements were carried out at 298 K with samples of 20–30 mg of the ELRs, purified 

and dissolved in DMSO-d6. The peak areas corresponding to three kind of hydrogen, 

namely -NH2, -CH3 and -CH- from the chain, were electronically integrated and compared 

to the calculated theoretical values. 

Following ELRs characterization 

Furthermore, according to the biomedical application for what the ELRs were designed, 

other analyses has been performed. For instance, in Chapter 3 it is reported the 

mechanical characterization of hydrogels by rheological measurements. In Chapter 4 the 

therapeutic capacity of the hydrogel-based on ELRs was evaluated with an in vivo study 

for osteochondral repair. Moreover, in Chapter 5 other types of characterization such as 

X-ray Photoelectron Spectroscopy and cell adhesion assay have been used to describe the 

new ELR-Peptide generated. Finally, in Chapter 6 an RNase A activity assay was assessed 

in order to monitor the allosteric control of the smart-ELRs generated. Many more 

methods of biomaterial characterization have been used along this Thesis, and they are 

all described in the following chapters. 

Statistical analysis 

All the values shown in this Thesis are expressed as mean ± standard deviation (n ≥ 3 

according to the specific experiment conditions). Depending on the group of data 

collected by each specific experiment, different statistical analyses has been used. Data 

were analyzed by performing the normality test Shapiro-Wilk. The parametric data were 

analyzed by one-way analysis of variance (ANOVA) followed by Tukey’s Honestly 

Significant Difference (HSD) post hoc test; if only two groups were being compared, an 

unpaired t-test was used instead of ANOVA to assess the statistical difference. The 

nonparametric data were analyzed performing the Kruskal-Wallis test followed by Dunn’s 
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multiple-comparison test. All statistical analyses were performed with GraphPad Prism. In 

all the cases, a P-value lower than 0.05 was considered statistically significant. 
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Abstract 

Tissue engineering for cartilage repair requires biomaterials that show rapid gelation and 

adequate mechanical properties. Although the use of hydrogel is the most promising 

biomaterial, it often lacks in rigidity and anchorage of cells when they are surrounded by 

synovial fluid while they are subjected to heavy loads. We developed and produced the 

Silk Elastin co-Recombinamer (SELR), which contains both the physical interaction from 

elastin motifs and from silk motifs. In the first part of this work, we set up and optimized 

a pre-annealing treatment based on the evolution of silk motifs into β-sheet structures in 

order to fulfill the required mechanical properties of hydrogels for cartilage repair. The 

new pre-annealed SELRs (pA(EIS)2-(I5R)6) were characterized with the combination of 

several experimental techniques (CD, TEM, SEM, and rheology) to provide a deep insight 

into the material features. Finally, the regeneration properties of the pA(EIS)2-(I5R)6 

hydrogel embedded with chondrocytes were evaluated. After 4 weeks of culturing in a 

standardized and representative ex vivo model, the biochemical and histological analysis 

revealed the production of glycosaminglycans and collagen. Moreover, the 

immunohistochemistry showed the absence of fibro-cartilage and the presence of hyaline 

cartilage. Hence, we conclude that the pA(EIS)2-(I5R)6 hydrogel presents improved 

mechanical properties while conserving the injectability, which leads to successful 

regeneration of hyaline cartilage in an ex vivo model.  
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1. INTRODUCTION 

Articular cartilage is central to the proper functioning of synovial joints. It covers the 

opposing articulating bones and, through its properties of high resiliency and 

deformability, it protects them from compressive joint loads (1). Moreover, it provides a 

smooth and gliding surface with a very low coefficient of friction (2). Many people suffer 

from cartilage degeneration due to genetic abnormalities, trauma, or osteoarthritis (3). 

One of the main issues in this regard is that articular cartilage possesses limited 

regeneration ability due to its avascular character, and the fact that only one cell type 

(chondrocytes) is present (4,5).  

Because of the absence of self-repair abilities, various surgical interventions and 

biomaterials have been explored to facilitate regeneration of cells and cartilaginous 

matrix (5). The physical properties of the extra cellular matrix (ECM) often refer to its 

rigidity, porosity, insolubility, topography, and other characteristics that are essential for 

its scaffolding role in supporting tissue structure and integrity, and for its role in migration 

and anchorage of the cells (6). Moreover, another important parameter to take into 

account is the permeability of cartilage; it contributes to several tissue functions like the 

transport of nutrients to chondrocytes, the ability to carry heavy loads, and the 

maintenance of a lubricating fluid film between opposing articular surfaces (7). 

Permeability is a measure of the ability of fluid to flow through a porous-permeable 

material, such as an ECM, and is inversely proportional to the friction drag exerted by the 

fluid (8). The low permeability of articular cartilage prevents fluid from being quickly 

squeezed out of the matrix (9).  

The purpose of surgery is the regeneration of the chondral defects to ultrastructural and 

biomechanical competent hyaline cartilage. From a scientific point of view, the clinical 

treatments are limited in their ability to functionally regenerate cartilage defects, as they 

often result in the formation of fibrotic tissue, which consists mainly of collagen type I and 

is therefore mechanically inferior to native cartilage.  

Biomaterials with an elastic modulus in the range of 1-10 kPa are of widespread interest, 

as many native tissues also have moduli in this range (10,11). The hydrogels developed to 
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repair joint cartilage are more effective when their stress relaxation behavior matches 

with the native tissue, since such behavior affects load transfer and nutrient transport 

(12,13). Up to 80 % of articular cartilage wet weight consists of water (14). To replicate 

this environment, hydrogels have become a popular option for cartilage regeneration in 

situ and cartilage engineering in vitro (15-17). The purpose of these types of scaffold is 

not only to provide support for cell attachment and spreading, but also to have 

mechanical stability at the defect site; although it is important to take into account that, 

the aim of these scaffolds is not to substitute for the tissue, but to improve cartilage 

regeneration in order to obtain a mature tissue.  

Natural polymers such as collagen and hyaluronic acid have some limitations; for instance, 

the insufficient mechanical integrity and the short lifetime in inflamed defects due to 

degradation by matrix metalloproteinases (18). From a biological point of view, the major 

drawback of synthetic polymer hydrogels such as polyglycolic acid (PGA) and polylactide 

acid (PLA) is that they do not provide specific biological functions (19). Moreover, 

synthetic polymer hydrogels do not fully recapitulate the chemical and biological features 

of ECM, considering that they generally regenerated fibro cartilage instead of hyaline 

cartilage (20).  

Over the last few decades, recombinant DNA techniques have proven to be very powerful 

tools for the development of novel protein-based biomaterials that are able to self-

assemble into different structures, such as hydrogels (21). These biomaterials include 

elastin-like recombinamers (ELRs), which are protein based polypeptides that comprise 

repetitive units of the Val−Pro−Gly−X−Gly (VPGXG)n pentapeptide, in which X (guest 

residue) could be any amino acid except L-proline. Moreover, they show thermo-

responsiveness due to the change of the protein conformation above the so-called 

transition temperature (Tt), which itself depends on the amino acid composition of the 

polymer (22). Therefore, taking into account two ELRs with the same amino acid 

composition except for the guest amino acid, the Tt can be tuned depending on the 

polarity of the side chain for the guest residue in the X position of the pentapeptide (23, 

24). Furthermore, ELRs can be designed so the phase transition occurring above the Tt is 

translated into a hydrophobically driven self-assembly of the molecules toward 

supramolecular hydrogels (25).  
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In this work we have used previously described amphiphilic Silk-Elastin-like 

Recombinamers (SELR) (26, 27) including two types of elastin-like domains, one 

hydrophilic and the other one hydrophobic. SELR also contains the amino acid sequences 

derived from other structural proteins like the GAGAGS hexapeptide (G: Glycine, A: 

Alanine, S: Serine) found in Bombyx mori silk fibroin, hence giving rise to SELR (28). 

Furthermore, the final sequence also contains the well-known RGD cell-adhesion 

sequence, which promotes specific cell attachment via integrins that provide a cell-

friendly environment (29). This recombinamer contains a dual physical interaction that 

triggers gel formation, in order to obtain a rapid and stable gel that can be delivered into 

the area of interest via a simple injection. The elastin motifs have been reported to form 

elastomeric hydrogels, in which the hydrophilic blocks provide conformational elastic 

properties, and the hydrophobic blocks form cross-links by hydrophobic aggregation (30, 

31). The silk motifs have been reported to be responsible for the supramolecular 

rearrangement into β-sheets, which increases the moduli of the hydrogels (26). However, 

the rearrangement of silk motifs into β-sheets with the consequent formation of a 

fibrillary structure takes time; the long time needed represents a drawback in terms of 

surgical application for the cartilage environment, which is surrounded by synovial fluid.  

Furthermore, recent works have demonstrated that physical and structural features of 

the ECM, such as fibrils, are essential for its scaffolding role in supporting tissue structure 

and integrity (6, 32). The nanofiber environment plays an essential role in the migration 

and anchorage of the cells. Considering that one difficulty in nanofiber technology has 

been the placement of cells within a nanofibrillar structure (33), the purpose of this work 

is to design a system based on supramolecular self-assembly to form nanofibrillar 

matrices in situ, around the cells, without cellular damage.  

This study focuses on the correlation between the elastin motifs and silk motifs, in order 

to understand how to improve the gelation properties of the hydrogel to obtain a system 

capable of forming an ECM fibrillary structure directly after injection. We set up and 

optimized a thermal treatment (pre-annealing treatment), which accelerates the β-sheet 

formation without losing the injectability of the material. The new pA(EIS)2-(I5R)6 were 

characterized either with molecular analysis (Circular Dichroism and Transmission 

Electron Microscopy) or with rheological characterization, in order to investigate the 
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impact of the pre-annealing treatment on the arrangement of the silk motifs into β-sheet 

conformation. Moreover, the morphology of the hydrogel was checked using Scanning 

Electron Microscopy in order to verify the interconnected structure and an adequate 

porosity and permeability.  

The incorporation of cells into biomaterial scaffolds include multiple aspects in cartilage 

repair; thus, considering that cells are the driving force of cartilage formation, they can 

significantly help orchestrate regeneration and overcome some of the limitations of using 

cells or biomaterials alone (34). The use of mature chondrocytes is based on the premise 

that native mature cells are best suited to guide regeneration (34). Moreover, the 

remarkable property of ELRs permits a homogeneous embedding of cells in the ELR 

solution at a temperature below Tt, while molecules can self-assemble into hydrogels 

above the Tt, thus allowing the use of the cell-scaffold system in injectable therapies 

perfectly suitable to the shape of the injured area (35). Therefore, although other ELR-

based hydrogels have shown a minimal inflammatory response, confirming its high and 

extraordinary biocompatibility (36), we performed an in vitro study evaluating the 

metabolic activity of the chondrocytes embedded in the 3D hydrogel. 

The potential properties of pA(EIS)2-(I5R)6 hydrogel in cartilage repair were evaluated in 

an ex vivo osteochondral culture platform (37). The use of bioreactors has some 

advantages: first, bioreactors are devices in which biological or biochemical processes 

develop under a closely monitored and tightly controlled environment (38). Second, it 

must be taken into account that cartilage defect models in rodents and mature rabbits 

show spontaneous self-repair (39). In addition, there are some other disadvantages using 

an animal model: the limited control over physiological parameters, and the limited 

possibilities for monitoring and controlling the healing progress from a biological and 

biomechanical point of view, as well as the high costs of animal care and ethical issues 

(39, 40).  
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2. MATERIALS AND METHODS 

2.1.  (EIS)2-(I5R)6 Design 

Amino acid sequence: MESLLP-{[(VPGVG)2-VPGEG-(VPGVG)2]10-(VGIPG)60-

[V(GAGAGSG)5]2G}-[(VPGIG)5-AVTGRGDSPASS]6V 

The composition of this (EIS)2-(I5R)6 is based on previously synthetized block co-

recombinamers, which have silk-like motifs (SELR) (26, 41). The original block co-polymer 

was designed to comprise a hydrophobic block (containing isoleucine as the guest residue) 

with a low Tt, and a hydrophilic block (containing glutamic acid with a carboxylic group) 

with a high Tt (27). The final composition was further functionalized to include RGD cell-

adhesion sequences (Figure 1). Initial SELRs were kindly provided by Technical Proteins 

Nanobiotechnology. 

 

Figure 1. Graphical scheme of the composition of (EIS)2-(I5R)6. 

2.2. ELR biosynthesis and purification  

The cloning and molecular biology for gene construction of (EIS)2-(I5R)6 were performed 

using standard genetic-engineering methods. Production was carried out using 

recombinant techniques with Escherichia coli as the cell system, as described previously 

(42-45). Purification was performed using several cooling and heating purification cycles 

(Inverse Transition Cycling) following centrifugation.  

2.3. Pre-Annealing treatment  

The lyophilized recombinamer was dissolved in ultrapure water at a concentration of 50 

mg/ml, and incubated at 37 °C for different time points: 12, 24, 36 and 48 h. The 50 mg/ml 

concentration for the pre-annealing treatment was selected considering the inability to 

form a gel even when using a long incubation time (up to 48 h). Afterwards, the solution 

was frozen and the polymer lyophilized again to finally obtain the pre-annealed SELRs: 

pA(EIS)2-(I5R)6. The purity and molecular weight of the ELRs were verified by sodium 



151 
 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy using a Voyager STR 

apparatus from Applied Biosystems. Amino acid composition analysis was also performed. 

Additional characterization of ELRs was accomplished using infrared spectroscopy (FTIR), 

differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR) 

techniques (46) (Supporting Information Figures S1 - S5). 

2.4.  Circular Dichroism (CD)  

Circular dichroism is an excellent method for rapidly evaluating the secondary structure 

and folding of proteins (47). It is known that the ELR conformational state is temperature-

dependent as consequence of the ITT (Inverse Temperature Transition) behavior 

experienced by this class of molecules (41). For performing CD experiments, 

recombinamers (EIS)2-(I5R)6 and pA(EIS)2-(I5R)6 were dissolved at a final concentration of 

1 mg/mL and were kept overnight at 4 °C. Just before performing each measurement, a 

1:10 dilution was made. The CD spectrum was acquired using a Jasco J-815 150-S 

spectrometer (Servicios Centrales de Investigación, University of Almeria). A quartz 

cuvette with a path length of 0.1 cm was used. The scans were obtained over the 

wavelength range of 190−260 nm at the experimental temperatures of 4, 37 and 60 °C by 

acquiring points every 0.5 nm using a scan speed of 50 nm/min. Before each 

measurement, samples were equilibrated for 15 min. Spectra were corrected by 

subtraction of the corresponding blank solvent readings. The data was expressed as molar 

ellipticity [θ], which was calculated as follows:  

[𝜃𝜃] =
𝜃𝜃

𝑑𝑑 × 𝑀𝑀 × 10
 

where θ is the ellipticity, d is the path length (cm) and M is the concentration (mol/L). 

2.5.  Transmission Electron Microscopy (TEM) 

Nanostructure formation was checked by TEM. Solutions of (EIS)2-(I5R)6 and pA(EIS)2-(I5R)6 

were prepared by dissolving pure, lyophilized products in Milli-Q water to a concentration 

of 25 μM. These solutions were kept at 4 °C overnight to allow complete dissolution of 

the proteins. The samples were incubated at 37 °C for 15 min and analyzed directly. TEM 
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measurements were performed using a JEOL JEM-1230 electron microscope operating at 

120 kV. The specimens were prepared by placing a drop of the solution on a plasma-

treated carbon-coated copper grid, followed by water evaporation at 37 °C. 

2.6. Visualization and characterization of the Sol-Gel 

behavior 

In order to check the capacity of pA(EIS)2-(I5R)6 to rapidly form hydrogel and to remain 

stable in an excess of water, the pure recombinamers were dissolved in PBS (Phosphate-

buffered saline) at 4 °C for 16 h at the concentrations of 100, 120, 150 and 180 mg/ml. 

Once the recombinamers were in a liquid state at 4 °C, they were placed inside an oven 

at 37 °C for 15 min and the Sol-Gel behavior was qualitatively observed tilting the 

Eppendorf containing the solution. Afterwards the hydrogels were removed and placed in 

an excess of water at 37 °C.  

2.7. Rheological characterization 

A strain-controlled AR-2000ex rheometer (TA Instruments) was employed to perform 

rheological experiments by using parallel plates of nonporous stainless steel (diameter = 

12 mm).  

Oscillatory measurements were carried out in shear deformation mode. The volume of 

the gel was 150 µl, a gap higher than 1000 μm was always reached after the sample 

relaxed until equilibrium. Measurements were performed at 37 °C, with the sample 

temperature being controlled and maintained using a Peltier device.  

Firstly, the solution of pA(EIS)2-(I5R)6 dissolved in PBS was placed over the plate at 37°C, 

and a time sweep experiment was performed up to 30 min with 1 % strain amplitudes and 

a frequency of 1 Hz; in this case, in situ gelation took place. Then, once the time sweep 

was over, two different measurements were carried out sequentially. First, the dynamic 

shear modulus was measured as a function of strain by a dynamic strain sweep with 

amplitudes ranging between 0.01% and 20% at a frequency of 1 Hz. This measurement 

was done to determine the range of strain amplitudes over which the gel exhibited a linear 

region of viscoelasticity. A second measurement consisted of the dynamic frequency 
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sweep between 0.1 and 50 Hz at a fixed strain (selected within the hydrogel linear region), 

with the aim of obtaining the dependence of the dynamic shear modulus and loss factor 

on the frequency. Rheological evaluation provided the storage modulus (G′), the loss 

modulus (G″), the complex modulus magnitude |G*|, (|G*|2 = (G′)2 + (G″)2), and the loss 

factor tan δ ≡ (G″)/(G′), where δ is the phase angle between the applied stimulus and the 

corresponding response as a function of strain amplitude or frequency. 

In order to obtain the evolution of the viscosity of the pA(EIS)2-(I5R)6 solutions with the 

shear rate, flow measurements were carried out at 4 °C. In this case, a parallel plate of 40 

mm of diameter was used to improve the measurement sensitivity; the corresponding 

volume of the gel was 1300 µl. Initially, a conditioning step was accomplished at a 

constant shear rate of 0.1 s-1 for 1 min. Next, the shear rate was swept from 0.1 to 500 s-

1 using a continuous ramp in a logarithmically ascending series of discrete steps. 

Specifically, 10 points were acquired for each order of magnitude and the complete 

measure took 5 min. 

2.8. Scanning electron microscopy (SEM) 

Scanning electron microscopy was employed to investigate the morphology of the 

hydrogel. Fully hydrated gels were dropped into liquid nitrogen, physically fractured, and 

immersed into liquid nitrogen again. Finally, they were freeze-dried. Images of lyophilized 

hydrogels were obtained by using a FEI Quanta 200 FEG with no prior coating procedures. 

Pictures were collected by SEM at Landing E of 7.00keV and Pressure of 0.7 Torr; 

afterwards they were analyzed with Image-J software. 

2.9. Chondrocytes isolation 

Pig chondrocytes were isolated from knee joints of Dutch Land Raise Hybrid pigs, male or 

female, 5-7 months of age, 100-110 kg live weight. Small cartilage pieces were removed 

from the cartilage of the knee joints and were digested in a solution of 0.5% (v/v) 

collagenase (PrepoTech) in high glucose DMEM (supplemented with 10% (v/v), fetal 

bovine serum (FBS; HyClone, (South America) Research Grade, GE Healthcare, Eindhoven, 

NL), 1% (v/v) penicillin/streptomycin (Lonza, Westburg, Leusden, NL), 1% (v/v) 

amphotericin B (Life Technologies, Bleiswijk, NL). Digestion in 8 ml collagenase solution 
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per gram of cartilage was executed for 16 h on a roller bank in the incubator. 

Subsequently, the cells were washed and filtered three times and stored in a cartilage 

medium until further use. The cartilage medium consisted of high glucose DMEM medium 

supplemented with 1% (v/v) penicillin/streptomycin, 1% (v/v) amphotericin B, 1 mM 

sodium pyruvate (LifeTechnologies, Bleiswijk, NL), 40 μg/ml L-proline (Sigma-Aldrich, 

Zwijndrecht, NL), 50 μg/ml L-ascorbic acid-2-phosphate (Sigma-Aldrich, Zwijndrecht, NL), 

1% (v/v) ITS+ Premix (Corning, Fisher Scientific, Landsmeer, NL) and 100 nM 

dexamethasone (Sigma-Aldrich, Zwijndrecht, NL). 

2.10. Hydrogel formation and embedding with chondrocytes 

Freeze dried pA(EIS)2-(I5R)6 was dissolved in plain DMEM (Dulbecco´s modified Eagle 

medium; Life Technologies, Bleiswijk, NL) for 16 h at 4 °C at 120 mg/ml. Afterwards, the 

solution was placed at 37 °C for 15 min and the gel was formed. For the hydrogel 

embedded with chondrocytes (20 million cells/ml), the cells were mixed with the solution 

of pA(EIS)2-(I5R)6 dissolved in plain DMEM at 4 °C. The mixture was placed at 37 °C for 15 

min, and the cell embedding gel was formed.  

2.11. Cell viability assay 

The viability of isolated chondrocytes embedded in pA(EIS)2-(I5R)6 hydrogels at 120 mg/ml 

was assessed by measuring the metabolic activity with PrestoBlue® assay (A-13261, 

Invitrogen). Chondrocytes were isolated and mixed into the hydrogel according to the 

protocol described above. Of each hydrogel condition, 100 μl were pipetted into a 24 well 

Transwell® tissue culture plate (Costar, Kennebunk, USA) in quadruplicate and topped 

with 2 ml of cartilage medium. Culture time was 4 weeks at 37°C and 5% CO2. After letting 

the cells adapt overnight, metabolic activity measurements were conducted on day 0, 14 

and 28. For this purpose, 2 ml of a solution of cartilage medium containing 10 % 

PrestoBlue® Viability Reagent (Life Technologies, Eugene, USA) replaced the culture 

medium and was incubated in darkness for 2 h. Afterwards, 100 μl of medium from within 

the Transwell® insert, directly above the gel, was pipetted into a black 96 well plate in 

triplicate and fluorescence was read out at an excitation wavelength of 560 nm and an 

emission wavelength of 590 nm with a plate reader (CLARIOstar microplate reader, BMG 
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LABTECH GmbH, Ortenberg, D). The cell viability assay is not an end point measurement 

analysis, thereby, after each measurement the solution was removed and replaced with 

2 ml of fresh cartilage medium. 

2.12. In vitro Study  

In order to evaluate the performance of the pA(EIS)2-(I5R)6 hydrogel embedded with 

chondrocytes, a 4-week in vitro study was conducted. Firstly, silicone cylinders were 

produced with an inner diameter of 4 mm and a height of 2 mm, in correspondence to 

the simulated cartilage defect in the ex vivo study. After autoclaving, these silicone 

cylinders were attached to the bottom of a 24 well plate. 150 μl of the pre-annealed (EIS)2-

(I5R)6 hydrogel embedded with chondrocytes (20 million chondrocytes/ml), and the 

pA(EIS)2-(I5R)6 hydrogel itself (as a control) were pipetted into the cylinders. After a 

gelation period of 15 min in the incubator at 37 °C, the cartilage compartment was topped 

with 3 ml of cartilage medium. The culture time was 28 days with medium changes every 

3-4 days.  

2.13. Ex vivo Study  

2.13.1. Osteochondral explant isolation 

Osteochondral explants (n=12) were isolated from knee joints of Dutch Land Raise Hybrid 

pigs, male or female, 5-7 months of age, 100-110 kg live weight. The knees were opened 

in a sterile manner and three explants were drilled from each medial femoral condyle with 

a dental drill bit of 8 cm diameter (MF Dental, Mantel, D). The site was cooled with cold, 

sterile phosphate-buffered saline (PBS; Sigma-Aldrich, Zwijndrecht, NL) with 2% (v/v) 

penicillin/streptomycin and 2% (v/v) amphotericin B and the explants were broken off 

from the bone with a custom-made tool. Successively, they were sewn to a bone length 

of 4 mm and incubated overnight in cartilage medium. 

2.13.2      Cartilage defect creation, hydrogel incorporation and 

culture 

To test the regenerative potential of the pA(EIS)2-(I5R)6 hydrogel for cartilage repair, full 

depth cartilage defects of 4 mm diameter were created with a biopsy punch (PFM Medical 
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AG, Cologne, D) and the defect site was cleaned of remaining cartilage with a sharp spoon 

(MF Dental, Mantel, D) (Figure 2A). These osteochondral explants with defects were then 

mounted in an osteochondral culture platform developed by LifeTec Group BV as 

previously described (37). Briefly, the explants were mounted in an insert with an O-ring 

situated at the exact interface between the bone and the cartilage (Figure 2C). This insert 

was then suspended in a custom made six well plate, thereby resulting in two separate 

compartments for the bone and the cartilage. By using respective tissue-specific media, 

complete preservation of native extra cellular matrix composition was achieved over 56 

days, thereby allowing regeneration studies in this ex vivo model. Once the explants were 

mounted in the described way into the insert, the pA(EIS)2-(I5R)6 hydrogel itself (control), 

and the pA(EIS)2-(I5R)6 hydrogel embedded with chondrocytes (20 million 

chondrocytes/ml) were pipetted into the defects (Figure 2B). In this manner, 30 μl of 

hydrogel itself, and 30 μl of hydrogel loading 600,000 chondrocytes filled each defect. 

After a gelation period of 15 min in the incubator at 37 °C, the cartilage compartment was 

topped with 3 ml of cartilage medium. The bone compartment was filled with 3 ml of bone 

medium consisting of high glucose DMEM medium supplemented with 10% (v/v) FBS, 1% 

(v/v) penicillin/streptomycin, 1% (v/v) amphotericin B, 50 μg/ml L-ascorbic acid-2-

phosphate, 10 nM β-glycerophosphate (Sigma-Aldrich, Zwijndrecht, NL), and 100 nM 

dexamethasone. The medium was changed every 3-4 days and explants were cultured for 

28 days at 37°C and 5% CO2. 
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Figure 2. Ex vivo osteochondral culture platform mounting scheme. A: Creation of the full 

cartilage defects of 4 mm diameter with a biopsy punch. B: Filling of the defects with 30 μl of 

pA(EIS)2-(I5R)6 hydrogel loaded with 600,00 chondrocytes and 30 μl of pA(EIS)2-(I5R)6 hydrogel 

itself (control). C: Mounting of the explant in the insert with the O-ring situated at the exact 

interface between the bone and the cartilage. 

2.14. Biochemical analysis  

2.14.1. DNA quantification 

The hydrogel samples were carefully and fully removed from the silicone cylinders (for the 

in vitro study), and from the osteochondral defect (for the ex vivo study) after the 

respective culturing period. They were then digested by a homogenizer (T 10 basic Ultra-

Turrax® IKA) until the gel was completely disrupted. The DNA content was determined by 

Pico Green® assay. Briefly, Pico Green® analysis for DNA content was performed in 96-well 

plates with standard fluorescein wavelengths (excitation: 480 nm and emission: 520 nm) 

according to the manufacturer’s instructions (Invitrogen) using an automated plate reader 

(Bionova Cientifica, Molecular Devices).  
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2.14.2. GAG quantification 

GAG content was determined with a modified DMMB (Dimethylmethylene Blue) assay 

according to Farndale et al. (48). After the respective culturing period, the gels were 

removed, digested and centrifuged in the same manner as for the DNA analysis. In brief, 

40 μl of centrifuged samples were pipetted into 96-well plates; the same volume was 

pipetted for standards, which are a shark cartilage chondroitin sulfate reference (Sigma, 

Zwijndrecht, NL). Afterwards, 150 μl of DMMB solution (containing 1-9-

dimethylmethylene blue (Sigma-Aldrich, Zwijndrecht, NL)) was added in each well. 

Immediately afterwards, absorbance at 540 and 595 nm was measured with a plate reader 

(CLARIOstar microplate reader, BMG LABTECH GmbH, Ortenberg, D) and the GAG 

concentrations were calculated.  

2.15. Histological analysis 

For the histological analysis, all the samples were fixed in 4% formaldehyde in PBS 0.05M 

(pH 7.3) at 4°C for about 18 h. Afterwards the samples were dehydrated and infiltrated by 

paraffin following the automatic procedure performed by the MICROM Tissue Processor. 

The resulting blocks were cut using a rotary microtome (Leica RM 2125 RTS, Leica 

Biosystems, Germany) into slices with a thickness of 4 µm. For general histo-

morphological evaluation, the sections were stained with Hematoxylin and Eosin (H/E) 

according to standard protocols. In order to evaluate the collagen and glycosaminoglycan 

content produced by chondrocytes, the sections were stained with Picro-Sirius Red Stain 

and Safranin-O/Fast Green, respectively, according to common methods. 

Immunohistochemistry for collagen type I and II was performed on 4 μm paraffin sections 

following the manufacturer’s instructions and well-established protocols. The samples 

were immunostained with primary antibody Mouse monoclonal anti-collagen type I 

(dilution 1:100, Sigma), and with primary antibody Mouse monoclonal anti-collagen type 

II (dilution 1:00, Merck), then incubated with the secondary antibody Goat anti Mouse IgG 

conjugated with HRP (dilution 1:100, abcam). Immunostaining was developed using DAB 

(Thermo Scientific) followed by Hematoxylin counterstaining (Sigma, St. Louis, MO).  
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2.16. Statistical analysis  

Values are expressed as mean ± standard deviation (SD). The data was examined with a 

one-way analysis of variance (ANOVA) followed by Tukey’s Honestly Significant Difference 

(HSD) post hoc test. If only two groups were being compared, an unpaired t-test was used 

instead of ANOVA to assess the statistical difference. All statistical analyses were 

performed with GraphPad Prism. A P-value lower than 0.05 was considered statistically 

significant. 

3. RESULTS 

3.1. Circular dichroism  

Circular dichroism (CD) was performed in order to investigate the impact of the pre-

annealing treatment on the (EIS)2-(I5R)6 on the consequent arrangement of the silk motifs 

into β-sheets. The silk motifs represented around 16% of the complete sequence of the 

(EIS)2-(I5R)6. The conformational state of ELRs is temperature-dependent as a 

consequence of the Tt behavior experienced by this class of molecules (49); thus, the CD 

spectra were recorded at different temperatures (4, 37 and 60 °C) in order to verify if such 

temperature dependence remained operational for pA(EIS)2-(I5R)6 with 12, 24, 36 and 48 

h of pre-annealing time. A sample of (EIS)2-(I5R)6 without pre-annealing was used as a 

control sample.  

At 4 °C, (Figure 3A) an intensely negative band at 197 nm is displayed for all the curves, 

which indicates a predominant disordered structure; however, it is possible to see clearly 

the differences along the curves. The signal of the (EIS)2-(I5R)6 (control) reaches lower 

values compare to the pA(EIS)2-(I5R)6 values with different pre-annealing times. At this 

temperature, in the band at 197 nm, a trend is appreciable (corresponding to the pre-

annealing samples) between the 4 curves regarding the different pre-annealing times. The 

12 h curve values are lower than the 24, 36 and 48 h; moreover, the 24 h and 36 h curves 

show the same behavior, whereas the 48 h curve values are higher, showing a more 

ordered structure. Such a reduced negative band at 197 nm suggests the presence of a 

mixture of β-turns and β-sheet structures, and agrees with the contribution of elastin and 

silk moieties to the final conformation (50). A shoulder is also present at 4 °C at 210 nm 
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for all the curves where the signal of the control reaches lower values compare to the 

pA(EIS)2-(I5R)6 values with a different pre-annealing time; all the curves maintain the same 

trend seen at 197 nm. 

At 37 °C (Figure 3B), the CD spectra for all the curves clearly displays a less negative signal 

at 197 nm compared to 4 °C. Yet, at 37 °C, a clear difference is still present between the 

control curve and the pA(EIS)2-(I5R)6 curves with different pre-annealing times. 

Furthermore, almost no difference is appreciable between the pre-annealed curves, apart 

from the 12 h curve which shows lower values compare to the 24, 36 and 48 h curves. 

Moreover, for all the curves, the magnitude of the signal at 210 nm increased, and such 

trend is also maintained when increasing the temperature to higher values (60 °C) (Figure 

3C) which suggests the induction of a type II β-turn conformation with an increase in 

temperature, as it has previously been observed for EL macromolecules (47,49).  

Finally, also at 60 °C, the 197 nm values recorded for the control curve are lower compared 

to the pA(EIS)2-(I5R)6 curves with different pre-annealing times, which all show similar 

values.  
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Figure 3. Circular dichroism spectra for (EIS)2-(I5R)6 (control) and pA(EIS)2-(I5R)6 with 12, 24, 36 

and 48 h of pre-annealing time. CD spectra were recorded for the samples at 0.1 mg/mL in 

deionized water. For each sample, CD spectra was recorded at different temperatures. A: 4 °C; B: 

37 °C: C: 60 °C. 

3.2. Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM) was used to visualize the supramolecular 

structures comparing (EIS)2-(I5R)6 and pA(EIS)2-(I5R)6 with 12, 24, 36 and 48 h of pre-

annealing time. The TEM image for the (EIS)2-(I5R)6 indicated the ability of this SELR to 

form spherical nanoparticles (Figure 4A). The TEM images for pA(EIS)2-(I5R)6 with 12, 24, 

36 and 48 h of pre-annealing time revealed the emergence of additional and different 

fibrillary structures (Figure 4B-4E). Moreover, a difference is appreciable in the density of 

the network of fibers between the 12 h treatment (Figure 4B) and the group of 24, 36 and 



162 
 

48 h (Figure 4C,4E), where a more dense network of fibers is evident for this group. Thus, 

the pre-annealing treatment enhanced the ability of the recombinamer to form a fibrillary 

structure. 

 

Figure 4. TEM images of the self-assembled nanoparticles formed by (EIS)2-(I5R)6 at the 

concentration of 25 µM in Milli-Q water (A) and pA(EIS)2-(I5R)6 with 12 h (B), 24 h (C), 36 h (D) 

and 48 h (E) of pre-annealing time. 

3.3. Visualization of the Sol-Gel behavior 

The pure recombinamers pA(EIS)2-(I5R)6 at each pre-annealing time (12, 24, 36, 48 h) were 

dissolved in PBS at 4°C for 16 h at a concentration of 100, 120, 150 and 180 mg/ml. 

Afterwards the solutions were placed in an oven at 37 °C for 15 min. For all the pre-

annealed (EIS)2-(I5R)6 at different annealing times, the lowest concentration possible to 

form a hydrogel within 15 min was 120 mg/ml (Figure 5). Moreover, the solution of the 

(EIS)2-(I5R)6 (without pre-annealing) subjected to the same procedure showed the 

incapacity to form a stable hydrogel. As it was already demonstrated by Fonseca et al., 

where the minimum concentration to form a gel was 145mg/ml (27). In order to verify the 

stability of the hydrogel, identical parameters to our application were selected (see 
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hydrogel formation in Materials and Methods). The hydrogel at 120 mg/ml was placed in 

an excess of water and showed the ability to remain stable after 1 week at 37 °C (Figure 

5E,F). 

 

Figure 5. Pictures showing the visualization of the Sol-Gel behavior. 24 h pA(EIS)2-(I5R)6 hydrogel 

at 100 mg/ml before (A) and after the incubation at 37 °C for 15 min (B). 24 h pre-annealed 

pA(EIS)2-(I5R)6 hydrogel at 120 mg/ml before (C) and after the incubation at 37 °C for 15 min (D); 

finally, the hydrogel was placed in an excess of water (E) showing the ability to remain stable 

after 1 week at 37 °C (F). 

3.4. Characterization of the Sol-Gel behavior 

In order to understand the driving force of the gelation of the pA(EIS)2-(I5R)6, a rheology 

study was performed. First of all, an in-situ gelation experiment was carried out for a 

solution of 120 mg/ml. The solutions dissolved in PBS at 4 °C for 16 h were placed in the 
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rheometer plate at 37 °C, where a time sweep experiment was carried out for 30 min 

(Figure 6A). The complex modulus increased with time in agreement with the study 

performed by Colino et al. (26). As can be seen, a clear difference is present between the 

(EIS)2-(I5R)6 curve (control) and the pA(EIS)2-(I5R)6 curves with different pre-annealing 

times. Along the pre-annealing conditions, no noticeable differences were observed in the 

complex modulus for the pre-annealing times of 24, 36 and 48 h at the end of the 

measuring time (around 1 kPa). Yet, a final complex modulus around 200 Pa was found 

for a pre-annealing time of 12 h.  

Therefore, the pre-annealing time of 24 h was selected and several concentrations were 

considered (100, 120, 150 and 180 mg/ml) (Figure 6B). A clear difference was observed 

between the concentration of 100 mg/ml and the rest of the concentrations, in agreement 

with the Sol-Gel behavior qualitatively observed in Figure 5.  
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Figure 6. Time Sweep measurement at 37°C for A: (EIS)2-(I5R)6 & pA(EIS)2-(I5R)6 hydrogels at 120 

mg/ml with 12, 24, 36 and 48 h of pre-annealing; B: pA(EIS)2-(I5R)6 hydrogels with 24 h of pre-

annealing at 100, 120, 150 and 180 mg/ml, and pA(EIS)2-(I5R)6 hydrogel with 48 h of pre-

annealing at 100 mg/ml. 

Finally, the effect of the pre-annealing time for different concentrations can be found in 

Figure 6B, where the concentration of 100 mg/ml was pre-annealed for 48 h. It could be 

expected to find similar modulus for samples pre-annealed for 48 h at a concentration of 

100 mg/ml and for samples pre-annealed for 24 h at a concentration of 120 mg/ml, 

considering that the lower concentration could be compensated by longer times of pre-

annealing. Instead, as can be seen, the curves of 100 mg/ml for 24 and 48 h in Figure 6B 

are similar, and a lower complex modulus was obtained with respect to the concentration 

of 120 mg/ml pre-annealed for 24 h. 

Therefore, the concentration of 120 mg/ml pre-annealed for 24 h presents a threshold for 

gelation, and these conditions were selected as the most suitable candidate for an 

injectable hydrogel for cartilage repair.  

3.5. Viscosity measurements of the solutions 

Rheological flow measurements were carried out in order to find the evolution of the 

viscosity of the pre-annealed (EIS)2-(I5R)6 dissolutions with the shear rate. Since viscosity 

is the resistance of a fluid to flow upon the application of stress, the viscosity value and 
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its dependence on shear rate provide some insight about the interactions between the 

micro/nanostructures in our dissolution. These measurements provide some insight into 

the injectability of the solutions of 120 mg/ml for different pre-annealing times. To 

guarantee injectability, the solution should be of sufficiently low viscosity to allow the use 

of a small gauge needle (51).  

In Figure 7, the dependence of the viscosity on the shear rate has been plotted in a lin-log 

scale for the control sample (without annealing), and for four pre-annealed samples at 

several annealing times (12, 24, 36 and 48 h). As can be seen, when the shear rate is higher 

than 200-300 s-1 all the curves overlap on a viscosity value around 70-80 mPa∙s. Yet, a 

significantly different evolution of the viscosity is observed in the shear rate range of 0.1 

- 50 s-1. Whereas no evolution of the viscosity with the shear rate is observed for the 

control sample (Newtonian fluid), the annealed samples show a decrease of the viscosity 

(shear thinning) with an evident linear dependence of the viscosity in the lin-log scale. 

Specifically, two slopes are detected in the experimental data. 

On the contrary, as can be seen in Figure S6 in Supporting Information (SI) obtained for 

an identical recombinamer lacking the silk motifs, no dependence of the viscosity with the 

shear rate for any annealing time was detected. 

A noticeable difference was observed in the viscosity of samples for 24, 36 and 48 h with 

respect to the sample for 12 h (Figure 7). The viscosity for the sample at 48 h was slightly 

higher than that of the samples at 24 h and 36 h. This trend for pA(EIS)2-(I5R)6 with 

different annealing time corroborates the behavior recorded with CD for at 4 °C (Figure 

3A).  
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Figure 7. Dependence of the viscosity on the shear rate in a scale lin-log for (EIS)2-(I5R)6 & 

pA(EIS)2-(I5R)6 hydrogels with 12, 24, 36 and 48 h of pre-annealing. These parameters were 

calculated by numerical fitting of the experimental data to Equation (1). In each fitting R2 > 0.990 

was found. 

Thus, from the viewpoint of injectability, the pre-annealing time of 24 h seems to be the 

most appropriate, considering enough maturation of the β-sheet structures and an 

adequate viscosity to make the injection process easier. 

3.6. Rheological characterization of the hydrogels  

Immediately after the 30 min of the in situ gelation of the hydrogels was finished, 

oscillatory rheological measurements were done, with special attention paid to the 

concentration of 120 mg/ml pre-annealed for 24 h. First, a sweep in the amplitude of the 

test signal was carried out in a strain sweep test, which provided the linear range where 

the rheological characterization should take place. According to Figure S7 (SI), a wide 

linear range was obtained. As a trade-off between linearity and noise, a strain of 1% was 

chosen for every subsequent rheological measurement. Moreover, this Figure also 

includes the results for the concentrations of 100, 150, and 180 mg/ml, showing a clear 

trend: the higher the concentration, the higher the complex modulus. 
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Dynamic frequency sweep measurements were performed in the frequency range of 0.1 

and 50 Hz. The evolution of the storage modulus (G´), and the loss modulus (G´´) as a 

function of the frequency were represented in Figure 8A. Whereas a dependence of G’ on 

frequency is observed, no significant dependence of G’’ is found up to 10 Hz. It should be 

pointed out that the value of G´ is significantly higher than G´´, which is calculated by the 

loss factor tan δ ≡ G´´/G´ (Data not shown). Specifically, δ is around 12 - 13° for the 

frequency of 1 Hz, indicating a visco-elastic hydrogel behavior. 

 

Figure 8. (A): Frequency dependence of the storage (G’) and loss (G’’) moduli for the pA(EIS)2-

(I5R)6 hydrogels at 120 mg/ml with 24 h of pre-annealing. (B): Dependence of the magnitude of 

the complex modulus on f½ for the concentration of 120 mg/ml. The dashed lines correspond to 

the least-squares linear regressions of each linear region. In every case, R2 is better than 0.990. 

Each curve corresponds to the average of three different samples measured. 

In order to obtain some information about the physical mechanisms that determine the 

frequency dependence of |G*|, the dependence of |G*| on f1/2 for the hydrogel of 120 

mg/mL has been drawn in Figure 8B. A linear dependence based on two different slopes 

was found in the frequency range considered.  

3.7. Scanning electron microscopy 

pA(EIS)2-(I5R)6 hydrogel at 120 mg/ml shows a pore size of 10.23 ± 2.87 µm and wall 

thickness of 0.71 ± 0.12 µm (Figure 9). pA(EIS)2-(I5R)6 hydrogels at 150 & 175 mg/ml show, 

respectively, a pore size of 6.97 ± 2.30 µm & 5.22 ± 1.87 µm; and wall thickness of 1.85 ± 



169 
 

1.40 µm & 2.85 ± 1.11 µm (SI Figure S8). The pA(EIS)2-(I5R)6 hydrogels at all of the 

concentrations showed a 3D porous environment with an interconnected structure. 

 

Figure 9. Representative SEM pictures for pA(EIS)2-(I5R)6 hydrogel at 120 mg/ml at different 

magnifications. 

3.8. Cell viability assay 

The chondrocytes (20 million cells/ml) were mixed with the hydrogel as described in 

Material and Methods. The mixture was further stained with DAPI (nuclear counterstain) 

according to the standard protocol. As it can be seen in Figure S9 (SI) the cells were 

uniformly distributed. A metabolic activity assay was performed for the in vitro study at 

time 0, 2, and 4 weeks of culture. The cell viability analysis revealed an increase of 

metabolic activity, especially within the first 2 weeks, most likely due to the increase in 

number of cells; moreover, the viability of the cells remained high throughout the 4 weeks 

of culture, proving a suitable concentration of pA(EIS)2-(I5R)6 hydrogel (Figure 10). 
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Figure 10. Cell viability test of pA(EIS)2-(I5R)6 with 24h of pre-annealing at 120 mg/ml 3D gel 

embedded with pig chondrocytes (20 million/ml) at different time points (**P<0.01). 

3.9. Biochemical analysis  

In order to quantify the GAG and the DNA content of the hydrogel embedded with 

chondrocytes for the in vitro and ex vivo study at day 0 and 28, a biochemical analysis was 

performed. In both studies, an increase in DNA content was recorded with more 

significance in the ex vivo study (Figure 11). Moreover, at day 28 the DNA content of the 

ex vivo study was higher compare to the in vitro study with a significant difference 

(P<0.001). 

The GAG content at day 0 has revealed the complete absence of polysaccharides, whereas 

at day 28 we recorded a large presence of glycosaminoglycan in both studies (Figure 11). 

Comparing the GAG content at day 28, the content was significantly higher in the ex vivo 

study than the content in the in vitro study (P<0.05) (Figure 11). Biochemical analysis of 

the hydrogel itself was performed for the in vitro and ex vivo study at day 0 and 28. As it 

can be seen in Figure S10 (SI), in both studies the values remained approximately zero, 

meaning the absence of contribution in GAG and DNA content from the surrounding tissue 

(in the case of ex vivo study).  
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Figure 11. DNA and GAG content of the hydrogels embedded with chondrocytes for the in vitro 

and ex vivo study at day 0 and 28. All the values have been normalized for 30 µl volume of 

hydrogel (*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001). 

3.10. Histological analysis 

Histological analyses were performed for the hydrogels embedded with chondrocytes at 

day 28 for the in vitro (Figure 12) and ex vivo study (Figure 13). For general 

histomorphological evaluation, the sections were stained with H/E; moreover, in order to 

evaluate the general collagen and GAG content produced by chondrocytes, the sections 

of hydrogels were stained with Picro-Sirius Red Stain and Safranin-O/Fast Green, 

respectively. For both studies, the H/E staining reveled a very homogenous distribution of 

chondrocytes embedded in the hydrogel. The Picro-Sirius Red Stain and Safranin-O/Fast 

Green demonstrated how the cells started to produce and secrete collagen and GAG, and 

thus began forming their own ECM, in Figure 12 (B & C) for the in vitro study and in Figure 

13 (B & C) for the ex vivo study. 
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Figure 12. Histology of in vitro study with different staining, pictures collected at different 

magnifications (A&B): 1: H/E; 2: Collagen staining; 3: GAG staining. 

 

Figure 13. Histology of the ex vivo study with different staining, pictures collected at different 

magnifications (A&B): 1: H/E; 2: Collagen staining; 3: GAG staining. 

3.11. Immunohistochemistry (IHC) 

The sections of the samples from in vitro study and ex vivo study at day 28 were 

immunostained with primary antibody anti-collagen type I, and anti-collagen type II, in 

order identify the types of collagen stained by the general Picro-Sirius. The 
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immunohistochemistry revealed the absence of collagen type I produced by chondrocytes 

in both studies (Figure 14, B). The positive control for collagen type I was obtained 

embedding the hydrogel with HFF1 (Human foreskin fibroblasts 1). It’s well known that 

HFF1 are responsible for the production of collagen type I, which is a sign of fibro-cartilage 

formation (52). Diversely, in both studies the IHC showed a clear signal for the antibody 

against collagen type II (hyaline cartilage), which is a sign of adequate cartilage 

regeneration (Figure 14, A).  

 

Figure 14. Immunohistochemistry of the in vitro and ex vivo study with Ab anti-collagen type II 

and Hematoxylin (respectively 1A & 2A). Immunohistochemistry of the in vitro study and of the 

ex vivo study with Ab anti-collagen type I and Hematoxylin (respectively 1B & 2B). 3A: Ctrl-: 

absence of Ab anti collagen type II; 3B: Ctrl+: IHC with Ab anti collagen type I and hematoxylin of 

hydrogel embedded with HFF1 cultured 21 days. 

4. DISCUSSION 

Tissue engineering for cartilage repair lacks biomaterials that have adequate mechanical 

properties capable of rapidly forming a gel that can be delivered into the area of interest 

via sample injection. Considering the unique properties of ELRs and silk, we have focused 

our attention on SELR obtained by recombinant techniques. The composition of this SELR 

is based on synthetized block co-recombinamers, which have silk motifs, elastin motifs 

and bioactive sequence (RGD). This SELR sequence contains the optimal content of silk 
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motifs for adequate thermosensitive properties and for the expression in bacteria (28). 

Moreover, a repetition of six RGD sequences was included in order to have a good cellular 

adhesion response (53). The elastin motifs were designed to comprise a hydrophobic and 

hydrophilic block. The copolymer structures have been reported to form elastomeric 

hydrogels, in which the hydrophilic blocks provide conformational elastic properties and 

the hydrophobic blocks form cross-links by hydrophobic aggregation (30, 31). Thus, SELR 

hydrogels are formed by the physical interactions from elastin motifs and silk motifs. In 

the first part of this study, we set up and optimized a pre-annealing treatment based on 

the evolution of silk motifs into β-sheet structures, in order to fulfill the required 

mechanical properties of hydrogels for cartilage repair. We finally obtained the proposed 

pA(EIS)2-(I5R)6. Afterwards, we have carried out the characterization of our material with 

the combination of several experimental techniques (CD, TEM, SEM, and rheology), 

providing a deeper insight into the material features. 

The CD spectra recorded at all the temperatures indicates a predominantly disordered 

structure, where a proportional trend towards a more ordered structure can be 

appreciated for increasing pre-annealing times. This trend is based on the increase of the 

magnitude of the signal at 210 nm and at 197 nm, associated with the presence of β-turns 

and β-sheet structures, respectively. Thus, CD has shown that the pre-annealing 

treatment speeds up the arrangement of silk motifs into β-sheet conformation. 

It has already been investigated that a closely related ELR containing silk motifs is able to 

self-assemble into nanofibers through an evolution which is not immediate (26). The 

nanostructure formation of the pA(EIS)2-(I5R)6 checked by TEM (Figure 4), shows how 

these gels are able to form a dense network of fibers immediately after injection. This is 

due to the phenomenon of thermal memory, by which the supramolecular rearrangement 

of the silk motifs into β-sheets has been enhanced by the pre-annealing treatment (and 

conserved by the freeze-drying step). The density of the network of fibers for the 12 h 

pre-annealing time appears lower than for the group of 24, 36 and 48 h. 

The TEM results corroborate the CD analysis, where a similar trend has been observed. 

The visualization of sol-gel behavior (Figure 5) has shown that the rearrangement of silk 

motifs into β-sheet conformation has a direct influence on the gelation process, allowing 
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the gel formation at a lower concentration. Thereby, the gelation process for all the 

pA(EIS)2-(I5R)6 processes was investigated by rheological characterization. 

At the end of the measuring time (30 min) the corresponding complex modulus are: 100 

mg/ml: 512 Pa; 120 mg/ml: 1537 Pa; 150 mg/ml: 2040 Pa; 180 mg/ml: 3190 Pa (Figure 

6B). This modulus increase with the concentration is possibly attributed to the increase of 

the hydrophobic interactions between the elastin motifs.  

When the concentration is fixed (120 mg/ml), the dependence of moduli with the pre-

annealing time shows a lower stiffness for the pre-annealing time of 12 h, compared to 

longer annealing times. At the end of the measuring time (30 min), a similar modulus 

(around 1 kPa) is observed for the annealing time of 24, 36 and 48 h (Figure 6A). Since in 

this case the percentage of elastin is constant, these moduli are related to the presence 

of β-sheets. Thus, a similar maturation of β-sheets is suggested for annealing times from 

24 to 48 h. This result agrees with the results obtained by using CD and TEM.  

It has been reported that the concentration of 120 mg/ml represented a cut-off to obtain 

a significant effects of the pre-annealing treatment. Moreover, Figure 6B shows how for 

the pA(EIS)2-(I5R)6 at 100 mg/ml there are no changes for 24 and 48 h annealing times. 

The higher the concentration of pA(EIS)2-(I5R)6 in the hydrogel, the more difficult it is to 

dissolve the material, but also to mix in cells, while still achieving a homogeneous cell 

distribution, due to the high viscosity. It can also be expected that more gel is lost during 

handling by attachment to syringes or pipet tips. Thus, solution viscosity is a significant 

parameter during the injection process. 

The pre-annealing treatment affects the viscosity. It has been previously reported that the 

annealing time impacts the formation and maturation of the β-sheets existing in silk-

based ELRs (26). Thus, this increased viscosity may be related to the different β-sheet 

structures induced by the annealing process. The dependence of viscosity on the shear 

rate (Figure 7) suggests modeling according to the equation 

𝜂𝜂 (𝑠𝑠ℎ − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =  𝜂𝜂∞ +  ∑ 𝐺𝐺𝐺𝐺 ∙  𝑒𝑒𝑒𝑒𝑒𝑒−𝜏𝜏𝜏𝜏 ∙(𝑠𝑠ℎ−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2
𝑖𝑖=1   (1) 
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based on a series of two decreasing exponential functions (Maxwell dependence), where 

τi are the relaxation time constants, and Gi are the weight of the τi-type relaxation to the 

overall relaxation process that is mainly dominated by each time constant within the 

corresponding shear rate range. Finally, η∞ corresponds to the viscosity at an enormous 

(infinite) shear rate.  

The impact of the different annealing times on the viscosity corroborates the behavior 

recorded in the CD analysis at the same temperature (4 °C) (Figure 3A). Rheological flow 

measurements are in agreement with supramolecular analysis like CD and TEM. 

Moreover, considering that the temperature of the analysis for CD and rheological flow 

measurements is lower than the Tt of the SELRs, we can assume that the β-sheet 

structures formed by the pre-annealing treatment are conserved even after the freeze-

drying step. 

The experimental data of Figure 7 has been numerically fitted to Equation (1) and all the 

parameters have been obtained (Figure 15A and 15B). As can be seen, a threshold is again 

observed for the pre-annealing of 12 h both for the weights and the time constants of 

relaxation. For a fixed relaxation process, no noticeable changes are found for samples 

annealed for 24, 36 and 48 h, although for G1 the weight for the 48 h annealed sample is 

slightly higher. Relaxation process 1 shows a very short relaxation time (lower than 0.1 s), 

while the time constant of the second relaxation process is higher than 1 s. 

Thus, the annealing time of 24 h has been selected in our work as a trade-off between 

enough maturation of the β-sheet structures and to make the injection process easier. 

The rheological properties of the pA(EIS)2-(I5R)6 hydrogels with 24 h of pre-annealing at 

120 mg/ml are in agreement with the soft tissue engineering properties of hydrogel for 

biomedical application (54, 55). Dynamic frequency sweep measurements show at the 

frequency of 1 Hz a G’: 1489 Pa and a G’’: 334 Pa. As can be seen (where G’ >> G’’), the 

values of delta (specifically, δ is around 12 - 13° for the frequency of 1 Hz) for the pA(EIS)2-

(I5R)6 hydrogels at 120 mg/ml are in agreement with the viscoelastic behavior that has also 

been demonstrated in cartilage (56).  
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As for the physical mechanisms taking part in the rheological behavior of the hydrogel, 

the linear dependence of the complex modulus with f1/2 (Figure 8B) indicates that a 

poroelastic mechanism dominates the viscoelastic behavior in this frequency range. In the 

poroelastic mechanism, viscous drag of interstitial fluid (water) through the porous 

recombinamer network and fluid–solid frictional interactions due to fluid pressurization 

are predominant (57, 58).  

The slope is related to the hydrogel permeability that is a macroscopic measure of the 

ease with which a fluid can flow through the hydrogel matrix. In our case, two slopes are 

observed, whose values were numerically fitted: 282 ± 6 Pa/Hz1/2 for f1/2 < 2.5 Hz1/2, and 

753 ± 28 Pa/Hz1/2 for f1/2 > 2.5 Hz1/2. Thus, the slope increases when the frequency exceeds 

6.25 Hz. A slope increase was associated with a decrease in hydrogel permeability (54, 

59). A similar behavior was reported for elastin-like catalyst free click gels (54) and hybrid 

elastin-like recombinamer-fibrin gels (60). However, in both cases, a single slope was 

obtained throughout the frequency range analyzed.  

The pre-annealing treatment does have an effect on the gelation process. In fact, the 

observed increase in the storage modulus of pA(EIS)2-(I5R)6 hydrogels (Figure 6A) indicates 

the contribution of the pre-annealing treatment on the gelation process by the increase 

of the crosslinking network. Moreover, the pre-annealing treatment has an impact on the 

concentration of the hydrogel, allowing the formation of the hydrogel at a lower 

concentration than observed by Fonseca et al. (27).  

Fernandez-Colino et al. reported how the elastin contribution leads to the rapid and early 

formation of a hydrogel, whereas the silk domains can increase the modulus of the 

hydrogel over time (26). The same behavior has been recorded with the pA(EIS)2-(I5R)6 

hydrogels, with regards to the pre-annealing treatment that accelerate the β-sheet 

formation. CD and TEM confirms this phenomenon of thermal memory based on the 

growth-boosting of the β-sheet formation, which exerts an indirect influence on 

temperature trigger gelation.   

Therefore, taking into account the two slopes observed both in the evolution of the 

complex modulus with f ½ and in the viscosity dependence on the shear rate, we 
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tentatively suggest that these two slopes are related to the two interactions existing in 

our silk-based ELR: the hydrophobic interaction associated with elastin, and the β-sheet 

interaction due to the silk-block. Both of them contribute to the crosslinking network of 

the physical hydrogel. In the oscillatory measurements, the higher slope, corresponding 

to a higher hindrance of the fluid flow through the hydrogel structure, might be associated 

with the β-sheet structures, which are stiffer and more rigid than the elastin interaction.  

As for flow measurements, since more rigid blocks take more time to respond, the first 

process (characterized by G1 and τ1) might be related to the β-sheet structures. Following 

this idea, Figure 11 shows that both the β-sheets and the hydrophobic elastin interactions 

are affected by the pre-annealing time, although the former to a greater extent. Thus, it 

is suggested that both physical interactions are not independent, but that the maturation 

of the β-sheet structures the spatial location of the hydrophobic blocks modifies, altering 

this interaction, as it has been recently reported by Fonseca et al. (27).  

 

Figure 15. Fitted parameters according to Equation (1) obtained from the numerical fitting of the 

experimental curves of Figure 4. A: G1 and G2; B: τ1 and τ2. 

The morphology of the pA(EIS)2-(I5R)6 hydrogels at 120, 150 and 180 mg/ml was 

investigated by SEM (Figure 9 and Figure S8). The fibrillary structure, obtained by the pre-

annealing treatment, does not negatively influence the porosity of the hydrogel; in fact, 

pA(EIS)2-(I5R)6 hydrogels show a homogeneous porous environment with an 

interconnected structure. Porosity plays a critical role in the outcome of a tissue-

engineered scaffold; the cells seeded in there rely heavily on the void spaces within the 

construct for cellular in-growth, exchange of nutrients, and removal of waste products 
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(61). In addition, the extent of ECM secretion also increases by increasing pore size (62). 

Moreover, the chondrocytes are the exclusive cells in articular cartilage, with a size of 10–

13 µm diameters and are involved in the synthesis of the cellular matrix constituents (63). 

Considering the pore size of the pA(EIS)2-(I5R)6 hydrogels at 120 mg/ml: 10.23 ± 2.87 µm, 

pA(EIS)2-(I5R)6 hydrogel at 120 mg/ml presents a suitable pore size to create a 3D matrix 

embedded with chondrocytes. 

In summary, the first part of the study intended to characterize the material proposed, 

and to understand the physical contribution of the silk motifs in relation to the elastin 

motifs for the cross-linkage of the hydrogel. We have paid particular attention to the 

characterization of the pA(EIS)2-(I5R)6 hydrogels with different annealing times (12, 24, 36 

and 48 h) and different concentrations (100, 120, 150, 180 mg/ml). From the combination 

of the experimental results obtained by various techniques, the concentration of 120 

mg/ml pre-annealed for 24 h established a threshold for gelation, and these conditions 

were selected as the most suitable candidate as injectable hydrogel for cartilage repair. 

The second part of the study focused on the potential of the selected pA(EIS)2-(I5R)6 

hydrogels with 24 h of pre-annealing at 120 mg/ml, as a good candidate for cartilage 

repair. 

A well-accepted tissue-engineering paradigm is that, the most successful scaffold for 

tissue repair is a biomaterial that mimics the functional properties of native tissue extra 

cellular matrix (ECM), facilitates encapsulation of reparative cells and is supportive of cell 

repair activities, including proliferation and de novo production of ECM (64). Although, 

the biocompatibility of ELR-based hydrogels formed through physical cross-linking has 

been extensively studied (53), in this study we have performed for the first time a 4 week 

culturing metabolic activity assay of the pA(EIS)2-(I5R)6 hydrogel embedded with 

chondrocytes. The cell viability analysis has revealed that the selected concentration (120 

mg/ml) supports cell viability and metabolic activity. In order to evaluate the regenerative 

abilities of our newly developed hydrogel-scaffold systems, a well established ex vivo 

model as a culture platform was used (37, 65). The biggest advantage of using this ex vivo 

model is to test biomaterials in a native environment for relevant culture period, with the 

possibility to oversee the healing process monitoring the physiological and biochemical 

contents of the regenerated tissue. 
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In Figure 11 DNA and GAG content is shown. In both cases, the content is obtained for a 

given volume of hydrogel analyzed (66, 67). The increase in DNA and GAG content 

recorded through biochemical analysis shows how the pA(EIS)2-(I5R)6 hydrogel is an 

appropriate scaffold for chondrocytes embedding involved in cartilage repair. 

Furthermore, comparing the biochemical contents of the in vitro study with the ex vivo 

study, the DNA quantification shows how the osteochondral culture platform facilitates a 

better proliferation of chondrocytes. The same trend was observed with respect to GAG 

content, where the glycosaminoglycan content of the ex vivo study was higher compare 

to the in vitro study. According to the bibliography, the GAG density observed in our study 

was still not in the same range of mature cartilage (68). This was expected, considering 

that 28 days is a short time to obtain a mature regenerated cartilage. Anyway, comparing 

our scaffold with other hydrogel systems for cartilage repair, the media GAG content 

normalized to DNA obtained for our system (427 µg of GAG per µg of DNA), demonstrated 

a larger production of glycosaminoglycan (69).  

The biochemical analysis for GAGs and DNA confirms that the ex vivo osteochondral 

culture platform is a good and representative model to evaluate the healing progress in 

created cartilage defects.  

Histological analysis confirms the biochemical results, showing a higher amount of GAGs 

stained by Safranin-O/Fast Green in the ex vivo study. Moreover, the Picro-Sirius Red Stain 

staining revealed a larger production of collagen by the chondrocytes cultured in the ex 

vivo osteochondral culture platform. Finally, for both studies, the H/E staining 

demonstrated a very homogenous distribution of chondrocytes embedded in the 

hydrogel, showing efficient mixing of the matrix with the cells achieved by the adequate 

concentration of the hydrogel.  Some cells look like they underwent a mitosis step (Figure 

12: 1A, 2A and Figure 13: 1A, 2A), which results are in accordance with the values obtained 

by biochemical analysis for the DNA content.  

Immunohistochemistry for collagen type I and collagen type II revealed the absence of 

collagen type I (a sign of undesired fibro-cartilage formation) in both studies. Diversely 

the IHC in both studies showed a clear signal for the antibody against collagen type II 

(hyaline cartilage); furthermore, the IHC revealed a better production and secretion of 
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collagen type II in the ex vivo study compared to the in vitro study. The absence of collagen 

type I and the production of collagen type II, which gives tensile strength to cartilage (70), 

proves that pA(EIS)2-(I5R)6 hydrogel is an excellent candidate for osteochondral repair.  

As it is widely reported in literature, agarose and PEG hydrogels are considered ones of 

the best alternative for cartilage tissue engineering, due to the good biological and 

mechanical properties (66,71,72). However, they do not provide specific biological 

functions, which could be obtained by the recombinant protein technique used in our 

study for a bioactive hydrogel. Moreover, after 28 days of culturing in the ex vivo platform, 

our hydrogel demonstrated a GAG production per µg of DNA around 10 times more than 

in the case of PEG or agarose based scaffolds (69).  

Finally, the analysis recorded for the ex vivo study with the osteochondral culture platform 

confirms the importance of a native environment for the production of hyaline cartilage 

by mature chondrocytes. 

5. CONCLUSIONS 

We developed and produced the pre-annealed Silk Elastin co-Recombinamer (pA(EIS)2-

(I5R)6), which shows unique properties as a promising candidate for tissue engineering 

applications. We have focused on the need for biomaterials for cartilage repair, capable 

of being delivered into the area of interest, showing a rapid gelation and adequate 

mechanical properties when surrounded by synovial fluid. We have set up and optimized 

a pre-annealing treatment based on the evolution of silk motifs into β-sheet structures 

and on the phenomenon of thermal memory. In this study, we have carried out the 

physical characterization of our material in order to provide a deeper insight into the 

material features, analyzing the contribution of each component (Silk and Elastin) for the 

cross-linking formation. The pA(EIS)2-(I5R)6 has shown a fast gelation, improved 

mechanical properties, and the presence of a fibrillary structure directly after injection of 

the hydrogel. Moreover, culturing the hydrogel embedded with chondrocytes in the ex 

vivo culture platform for weeks has exhibited good biocompatibility and remarkable 

advantages; such as the de novo ECM formation, the absence of fibro-cartilage and the 

production of hyaline cartilage. The addition of the silk allows to make hydrogels with 
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lower concentration, leading to larger pores, which is most likely responsible for better 

cell spreading, and proliferation. In conclusion, the pA(EIS)2-(I5R)6 has shown to have new 

outstanding properties, which make the hydrogel a promising injectable scaffold in the 

field of cartilage regeneration. 
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SUPPORTING INFORMATION 

 

 

Figure S1. Molecular weight and purity assessment by SDS-PAGE and MALDI-TOF mass 

spectrometry for pA(EIS)2-(I5R)6. MALDI-TOF spectra represent non-quantitative intensity (a.u.) 

against m/z (mass divided by net charge of the molecule) of the ELR. 

 

 

Amino acid Theoretical Experimental 

ASP+ASN 6+0 5.78 

GLU+GLN 21 27.82 

SER 39 31.91 

HIS - - 

GLY 576 577.62 

THR 6 4.82 

ARG 6 4.58 

ALA 52 48.53 

TYR - - 

CYS - - 
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VAL 341 339.11 

MET 1 1.45 

TRP - - 

PHE - - 

ILE 150 154.44 

LEU 2 2.36 

LYS - - 

PRO 257 257.24 

 

Figure S2. Comparison between the theoretical number of each amino acid in pA(EIS)2-(I5R)6 and 

the experimental values. 

 

Figure S3. FTIR of pA(EIS)2-(I5R)6. 
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Figure S4. DSC graph of pA(EIS)2-(I5R)6 showing the experimental Tt in PBS at physiological pH. 

 

 

 

 

Figure S5. H-NMR spectrum of pA(EIS)2-(I5R)6 showing the integration of the peaks corresponding 

to the different types of hydrogens. 
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Figure S6: Dependence of the viscosity on the shear rate in a scale lin-log for an identical 

recombinamer hydrogels of (EIS)2-(I5R)6 lacking the Silk blocks with 12 h, 24 h, 36 h and 48 h of 

pre-annealing. 
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Figure S7. Strain dependence of |G*| for the 24 h pre-annealed pA(EIS)2-(I5R)6 hydrogels at 100, 

120, 150 and 180 mg/ml with a frequency of 1 Hz at 37°C. 

 

 

 

 

Figure S8. Representative SEM pictures for the pA(EIS)2-(I5R)6 hydrogels at 150 mg/ml (A, B,C) 

and 180 mg/ml (D, E, F) at different magnification. 
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Figure S9. Fluorescent microscope image of the hydrogel embedded with chondrocytes after 

DAPI staining. The cell nuclei are in blue. The bluish background is due to the fluorescence of the 

hydrogel. 

 

 

Figure S10. DNA and GAG content of the hydrogel itself for the in vitro and ex vivo study at day 0 

and 28. All the values have been normalized for 30 µl volume of hydrogel. 
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Abstract 

The aim of this study was to evaluate injectable, in situ cross-linkable elastin-like 

recombinamers (ELRs) for osteochondral repair. Both the ELR-based hydrogel alone and 

the ELR-based hydrogel embedded with rMSCs were tested for the regeneration of critical 

subchondral defects in 10 New Zealand rabbits. Thus, cylindrical osteochondral defects 

were filled with an aqueous solution of ELRs and the animals sacrificed at 4 months for 

histological and gross evaluation of features of biomaterial performance, including 

integration, cellular infiltration, surrounding matrix quality and the new matrix in the 

defects. Although both approches helped cartilage regeneration, the results suggest that 

the specific composition of the rMSC-containing hydrogel permitted adequate bone 

regeneration, whereas the ELR-based hydrogel alone led to an excellent regeneration of 

hyaline cartilage. In conclusion, the ELR cross-linker solution can be easily delivered and 

forms a stable, well-integrated hydrogel that supports infiltration and de novo matrix 

synthesis. 
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1. INTRODUCTION  

Chondral and osteochondral defects in the articular cartilage of the knee and in other 

joints caused by traumatic and non-traumatic injuries tend to progress to degenerative 

osteoarthritis over time. This scenario usually leads to total replacement of the joint with 

a prosthesis.(1) Several types of cartilage are known, including the articular hyaline 

cartilage, which is a smooth, pearly bluish layer with a width of 2 to 4 mm that covers the 

articular surfaces.(2) Articular hyaline cartilage is a highly specialized tissue characterized 

by its unique mechanical properties;(2) it has a structural role adsorbing the pressure 

overload the cartilage, and a functional role allowing the friction-less sliding of the 

articular surface.(3,4) When the cartilage layer is damaged, the structural components of 

hyaline cartilage (proteoglycans and glycosaminoglycans) tend to leak from it, reducing 

the ability to absorb the pressure overload.(5) Consequently, the functional capacity of 

friction-less sliding decreases, indeed, due to the remodeling of the layer, the water 

diffusion into the cartilage is reduced. Hyaline cartilage diseases bring synovitis, which 

progress to the inflammation of the articular layer.(6) In mammals, the ability of articular 

cartilage to durably repair decreases soon after birth and is almost completely lost by early 

adulthood.(7) Generally, the regenerated cartilage is rich in type I collagen (fibro cartilage) 

instead of containing type II collagen. Collagen type II provides tensile ability to the 

cartilaginous matrix and is essential for articular hyaline functional capacities,(8) whereas 

fibro cartilage is unable to maintain the biomechanical characteristics of articular 

cartilage.(2,4,5) All treatments currently used to restore the hyaline articular surface are 

unsatisfactory,(2) although several alternatives have been probed to promote the 

regeneration of damaged cartilage. In particular, the development of novel tissue-

engineering methods has started to play an important role.(9,10) Mesenchymal stromal 

cell (MSC) therapy(11-13) is a method that utilizes pluripotent cells, which can 

differentiate into various cell types, such as chondrocytes and osteocytes. As a result, 

these cells are good candidates for the treatment of musculoskeletal lesions.(14,15) MSCs 

are available from different auto-, allo- and xenogeneic sources.(16) The first two options 

offer an immunologically safer approach, whereas the latter hugely increases the 

availability of MSCs.(17) Although there are several studies with successful results using 

xenogeneic MSCs in different animal hosts,(18) only autologous(19) or allogenic cells(13) 
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have been successfully used in humans, with negligible immunological response.(20) 

Moreover, in the case of osteochondral application, it must be taken into account that 

articular cartilage is considered an immunoprivileged tissue, indeed, due to its 

avascularity, the immune system has some limitations for the detection of the implanted 

tissue.(21) The suspension of MSCs in a scaffold as a cell-carrier enhances the persistence 

of the implanted cells at the treatment site.(2) Taking into account that the majority of 

wet articular cartilage is formed by water,(22) hydrogels represent one of the most 

promising solutions for cartilage repair applications. Moreover, it is important to consider 

that, during surgery, it is crucial to minimize the severity of the intervention.(23) One 

advantage of the arthroscopic technique is that it can reduce infection risk and recovery 

time compared to open joint surgery. In the light of this, the use of injectable hydrogels is 

of special interest because they are compatible with arthroscopic methods.(23)  

The use of recombinant DNA techniques has brought new materials to the biomedical 

field, discovering new matrices for Tissue Engineering (TE) applications. An important role 

is played by elastin-like recombinamers (ELRs); they are based on the repetitive 

pentapeptide sequence Val−Pro−Gly−X−Gly (VPGXG)n, where the guest residue (X) is any 

amino acid except L-proline.(24) The thermo-sensitivity shown by ELRs is defined by the 

transition temperature (Tt). It depends on the charge of protein conformations and on the 

polarity of the amino acids that composed the ELRs.(25,26) Moreover, a great advantage 

of the ELRs is the ability to form different structures, among which a hydrogel is one of 

the most common for regenerative medicine application.(9) As pointed out above, ELRs 

show thermo-sensitivity, thus meaning that hydrogels, which are stable at body 

temperature, can be formed whenever the transition temperature (Tt) of the ELR is lower 

than this temperature.(27) Several studies have shown how different types of ELRs can be 

used in some of the most challenging fields of tissue regeneration, such as 

cardiovascular,(28) ocular prosthesis(29) and osteochondral applications,(30,31) among 

others.(27)  

The incorporation of cells into biomaterials can help to overcome some limitations of 

using cells or biomaterials alone. For instance, an ELR-based hydrogel can serve as a 

scaffold to allow MSCs to orchestrate tissue regeneration. Moreover, considering the 
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extraordinary compatibility of ELRs, the 3D hydrogel structure can mimic the properties 

of the ECM, thereby supporting the regeneration process.   

In this study, in order to promote cell attachment and stimulate matrix production, we 

developed an appropriate ELR-based bioactive hydrogel composition that provides an 

adequate balance of properties, such as mechanical support,(32) to foster cell adhesion 

and proliferation. Given their recombinant nature, ELRs were designed to contain 

bioactive sequences, such as the extensively studied RGD sequence, which supports cell-

adhesion via integrins,(33) CS5 human fibronectin REDV for efficient cell 

attachment(28,34) and VGVAPG as an elastase target domain (human leukocyte elastase 

I) to provide increased proteolytic sensitivity and increased functionality to the 

scaffold.(35,36) In this study, we obtained a homogeneous embedding of rMSCs (rabbit 

mesenchymal stromal cells) in the ELR solution at a temperature below body 

temperature, and injected this composition as a cell-scaffold system for osteochondral 

repair. This ELR-based bioactive hydrogel exhibited a cell-friendly environment, thus 

improving cartilage regeneration both with and without rMSCs embedded.  

2. MATERIALS AND METHODS 

2.1. Ethical approval 

All procedures regarding the collection of rabbit MSCs (rMSCs) specified below were 

approved by the Ethics Committee of the University Hospital of Valladolid (Spain) in 

accordance with the Declaration of Helsinki (1975), as revised in 2013. All animal 

experiments were conducted in accordance with the institutional guidelines for the care 

and use of experimental animals of the University of Valladolid (Spain) in accordance with 

Directive 2010/63/EU (Resolution Number 2010/2/23). 

2.2. Rabbit Mesenchymal Stem Cell collection 

Bone marrow was extracted from the tibias and fibulas of white New Zealand male rabbits 

and collected in sterile tubes (Falcon® A Corning Brand, Ref. 352070) previously damped 

with a heparinized saline solution of Phosphate Buffered Saline (PBS, Gibco Ref. 20012-
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068) and 5% Heparin Sodium (Chiesi Spain S.A.U) to avoid coagulation. Bone marrow 

samples were kept at 4 °C until they were processed within 24 hours. A fraction of 

mononuclear cells (MNCs) was selected using a density gradient method with Ficoll-Paque 

PREMIUM (GE Healthcare Ref. 17-5442-02). At the end of this process, counting and 

viability controls were performed using the Trypan Blue exclusion method with a 

Neubauer Chamber. After the selection process, MNCs were seeded at a density of 

190·103 cells/cm2 and kept in culture at 37 °C and 10% CO2 with DMEM 4.5 g/L D-Glucose 

(Gibco, Ref: 31966-021 ) supplemented with 0.041 mg/mL of gentamicin (Gibco, Ref: 

15710-049) and 20% Fetal Bovine Serum (FBS, Gibco). Every 3 or 4 days, the appearance 

of the cell monolayer was observed with an inverted microscope and the percentage 

growth recorded. If confluence was less than 60-80%, a change of medium was performed 

until cells covered 80% surface of culture. Then, dissociation and cellular expansion 

(passage) were carried out and the subcultures developed in order to increase and purify 

the MSC cell line. The cells obtained during this first step were cryopreserved in FBS and 

10% DMSO (Dimethyl sulfoxide, Sigma Ref. D2650), and stored in liquid nitrogen at -196 

°C. Then, when the cells were needed for the assays, they were thawed at 37 °C, seeded 

at a density of 1000 cells/cm2 and kept in culture for approximately 7-10 days before use, 

changing the medium every 3 or 4 days.   

2.3. ELR biosynthesis and purification 

The gene construction was performed by molecular biology and recombinant DNA 

technique following standard methods previously described;(37,38) the purification 

process was carried out by several centrifugations preceded by inverse transition cycling. 

The ELRs obtained in this manner were dialyzed against MilliQ (MQ) water and lyophilized. 

Three ELRs extensively studied by Gonzalez et al., namely VKVx24, HRGD6 and REDV, were 

employed in this study(28) (Figure 1). HRGD6 was designed to contain the extensively 

studied RGD sequence, which supports cell-adhesion via integrins; REDV was designed to 

contain bioactive sequences such as the CS5 human fibronectin REDV for efficient cell 

attachment and VGVAPG as an elastase target domain (human leukocyte elastase I). The 

ELRs were further characterized by electrophoresis gel (SDS-PAGE), mass spectroscopy 

(MALDI-TOF), nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR) and 
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differential scanning calorimetry (DSC).(39) The ELRs obtained were chemically modified 

and characterized by the transformation of the Ɛ-amine group in the lateral lysine chain 

to produce the cyclooctyne and azide groups necessary for subsequent “click chemistry” 

reactions, as reported previously.(28,40) The characterization results are provided in the 

Supporting Information (Figure S1- S9). 

 

Figure 1. Graphical scheme of the ELR compositions: A: VKVx24; B: HRGD6; C: REDV. 

2.4. Gel formation  

Freeze-dried ELRs were dissolved in plain DMEM (Dulbecco´s modified Eagle medium) for 

16 h at 4 °C at a concentration of 75 mg/mL.  The ELR-cyclooctyne solution comprised 

entirely VKVx24-cyclo, whereas the ELR-azide solution comprised REDV-N3 and HRGD6-N3 

(in equal amounts). To prepare the hydrogel embedded with rMSCs, the cells were mixed 

with the solution of VKVx24-cyclo and dissolved in neat DMEM at 4 °C. For gel formation, 

cold solutions of VKVx24-cyclo and REDV-N3 and HRGD6-N3 were mixed together and the 

gel formed using catalyst-free click reactions between an azide group and an activated 

cyclooctyne group.  

2.5. Rheological characterization 

Rheological experiments were performed using a strain-controlled AR-2000ex rheometer 

(TA Instruments) with the hydrogel submerged in water. Cylindrical swollen gel samples 

were placed between parallel, nonporous stainless steel plates (diameter = 12 mm). The 

gap between the plates was adjusted by applying the minimum normal force to prevent 
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slippage. Before the measurements started, all the samples were relaxed until 

equilibrium; the temperature was controlled and maintained at 37 °C using a Peltier 

device. Shear deformation measurements were carried out. The dynamic shear modulus 

was measured by performing a dynamic strain sweep with amplitudes having a range 

between 0.1% and 20% at a fixed frequency of 1 Hz. Thus, the linear region of 

viscoelasticity was determined. Afterwards, a dynamic frequency sweep was carried out 

between 0.05 and 70 Hz at a fixed strain amplitude (1%), thus the dependence of the 

dynamic shear modulus and the loss factor on the frequency was obtained. Finally, the 

rheological characterization presented the storage modulus and the loss modulus, G′ and 

G″ respectively. As a results of those, the magnitude of the complex modulus |G*| (|G*|2 

= (G′)2 + (G″)2), and the loss factor (tan δ ≡ (G″)/(G′), where δ is a function of frequency or 

strain amplitude) were calculated. 

2.6. Scanning electron microscopy (SEM) 

The morphology of the hydrogel was investigated by SEM using a FEI Quanta 200 FEG 

instrument. No coating procedures were used during the sample preparation; briefly, 

hydrated hydrogels were submerged into liquid nitrogen, mechanically fractured and 

freeze-dried. Afterwards, the pictures were collected using the microscope at Landing E 

of 7.00keV and a pressure of 0.7 Torr and finally the images were analyzed using image-J 

software. 

2.7. Cell viability assay 

The viability of isolated rMSCs embedded in ELRs at 75 mg/mL was evaluated using the 

Alamar Blue assay (Invitrogen) according to the manufacturer’s guidelines. Briefly, rMSCs 

were isolated according to the protocol described above and mixed with the hydrogels at 

a concentration of 8 million cells/mL. A 100 μL aliquot was then pipetted into a 24-well 

Transwell® tissue culture plate. After allowing the cells to adapt for four hours, the 

hydrogels were washed twice with PBS and metabolic activity measurements were 

conducted at 0, 3, 6, 9, 12 and 15 days of culture. For this purpose, 2 mL of a DMEM-

containing 10% Alamar Blue solution was used to replace the culture medium and the 

cells were incubated in darkness for 2 h at 37 °C and under a 5% CO2 atmosphere. 
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Subsequently, 70 µL of the reduced medium was transferred to a 96-well plate. The 

hydrogels were washed twice with PBS and the corresponding growth medium was added 

and incubated again in order to determine the metabolic activity at different times. 

Fluorescence (excitation: 560 nm; emission 590 nm) was measured using a SpectraMax 

M5e (Molecular Devices) microplate reader.(41) The fluorimetric reduction of 10% Alamar 

Blue reagent in the culture medium by the cells was measured at regular time intervals. 

Samples for the phase-contrast epifluorescence were fixed at 4% paraformaldehyde 

(Sigma-Aldrich) for 40 min. Staining was carried out after permeabilization of the sample 

with 0.2% Triton X-100 (Sigma-Aldrich) and stained with the fluorescent dyes Phalloidin–

Alexa Fluor488R and DAPI (Invitrogen). 

2.8. In vivo experimental model 

Ten female New Zealand white rabbits with an age of 6 months and an average weight of 

3 kg were used for the creation and treatment of the osteochondral defects. The number 

of animals was determined by power analysis and consideration of previous studies,(42-

44) following the 3Rs principles formulated by Russell and Burch for animal 

experimentation.(45) The animals were anesthetized intramuscularly with medetomidine 

(0.5 mg/kg) (Braun) and ketamine (25 mg/kg) (Ritcherpharma). Afterwards, both knees 

were shaved and cleaned. The surgical procedure involved a parapatellar incision of the 

skin, which was performed under sterile conditions in order to expose the distal femur. A 

critical-size (4 × 4 mm full-thickness) osteochondral lesion was created with a drill (Figure 

2A), following well-established surgical procedures.(46-49) The defect was deep enough 

to reach the osteochondral bone. The ELR-cyclooctyne and ELR-azide solutions were then 

mixed together and the cold solution (below Tt) was pipetted completely into the defect 

(Figure 2B). The gel was immediately formed by a catalyst-free click reaction between the 

azide group and activated cyclooctyne groups, filling the lesion created with the drill 

entirely (Figure 2C). Each animal was surgically operated at both knees and hydrogels with 

and without rMSCs embedded were pipetted into the right/left knee defects at random. 

Carprofen (50 mg/kg) (Norbrook) was administrated four hours after the surgical 

procedure. All animals were fed and watered ad libitum during the study period and 

maintained in individual cages. Animals were euthanized intravenously with pentobarbital 
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(200 mg/kg) at four months post-treatment and the distal femora extracted for further 

analysis.(17)  

 

Figure 2. A: Creation of the osteochondral defect with critical size; B: Pipetting of the ELR 

solutions with and without cells embedded inside the defect; C: Formation of the gel via a 

catalyst-free click reaction, thereby entirely filling the lesion created. 

2.9. Gross morphology 

The entire knees of each rabbit were dissected and the distal part of each femur was 

extirpated. Samples for each group were photographed and examined for evaluation as 

per the International Cartilage Repair Society (ICRS) gross morphology assessment scale 

for cartilage repair.(50,51)  

2.10. Histological analysis 

A blind macro- and microscopic analysis was performed by trained histologists for all the 

samples previously fixed in 4% formaldehyde in PBS 0.05 M (pH 7.3) at 4 °C. The sections 

were stained with several stains: Hematoxylin and Eosin (H&E), Picro-Sirius Red Stain and 

Safranin-O/Fast Green, for collagen and glycosaminoglycan (GAGs) stains, respectively. 

The staining procedures were performed according to common methods. Moreover, 

immunohistochemistry was performed with primary antibody Mouse monoclonal anti-

collagen type I and anti-collagen type II. Samples from each rabbit (n = 10 for each group) 

were graded by two observers using the ICRS visual histological assessment scale for 

cartilage repair.(52)  
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2.11. Statistical analysis 

Values are expressed as mean ± standard deviation. Statistical analysis was evaluated by 

one-way analysis of variance using the Tukey’s method. A P-value lower than 0.05 was 

considered statistically significant. 

3. RESULTS 

3.1. Rheological characterization 

The linear viscoelastic region of the ELR hydrogels comprising 50% VKVx24-cyclo, 25% 

REDV-N3 and 25% HRGD6-N3 at 75 mg/mL was determined by using strain sweep 

measurements from 0.01–20% strain at a frequency of 1 Hz (Figure 3A). The complex 

modulus (|G*|) at 75 mg/mL shows a constant value of 964 ± 156 Pa (at 1% strain) in this 

strain range. As such, a 1% strain was selected to carry out the dynamic frequency sweep 

measurements. Evolution of the storage (G’) and loss moduli (G’’) is represented in Figure 

3B. At a frequency of 1 Hz, the value of G’ is 960 ± 162 Pa, whereas the value of G’’ is 28 ± 

19 Pa. Moreover, the evolution of δ as a function of the frequency is represented in Figure 

3C (the value of δ at 1 Hz is 1.6 ± 0.9°).  
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Figure 3. Rheological measurement for the ELR hydrogel at 37 °C and 75 mg/mL. A: Strain 

dependence of the complex modulus (|G*|); B: Frequency dependence of the storage (G’) and 

loss (G’’) modulus; C: Frequency dependence of δ. Each curve corresponds to the average of 

three different sample measurements. 

3.2. Scanning electron microscopy (SEM) 

ELR hydrogels at 75 mg/mL show a porous environment, with pore sizes ranging from 

around 3 µm to 20 µm and a wall thickness of 1.11 ± 0.34 µm (Figure 4). This large variety 

of pore size is due to the internal interconnected structure of the ELR, where small pores 

are able to merge to form larger pore structures.  
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Figure 4. Representative SEM images for the ELR hydrogel at 75 mg/mL and different 

magnifications. 

3.3. Cell viability assay  

A cell viability assay was performed for two-week culturing of the ELR hydrogel at 75 

mg/mL when embedded with rMSCs (8 million/mL). Assay data were recorded at different 

time points (0, 3, 6, 9, 12 and 15 days) in order to gain a better understanding of the 

metabolic activity of the rMSCs. The cell viability analysis revealed an increment in 

metabolic activity, with a significant difference between 0 and 3 days and a constant 

increase from day 3 to day 15 during the culture process (Figure 5). The biocompatibility 

demonstrated by our ELR-based hydrogel is in agreement with similarly cross-linked 

hydrogels previously studied.(53) Moreover, the curve trend of this viability assay was in 

accordance with typical cell-growth behavior, whereby the number of cells increases 

exponentially in the first part of the culture, subsequently reaching a stable value.  
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Figure 5. Cell viability test of a 3D ELR gel (75 mg/mL) embedded with rMSCs at different time 

points (****P<0.0001). 

Furthermore, the Dapi/Phalloidin analysis (Figure 6) showed the morphology of the rMSCs 

embedded in the 3D structure after 15 days of culture. Mesenchymal stem cells are 

pluripotent cells that are able to differentiate into multiple cell-types widely used in both 

tissue engineering and regenerative medicine.(41) An extended and elongated cell shape, 

with long cytoplasmic processes, can be seen in all the different magnifications, thereby 

confirming colonization of the hydrogel over 15 days. The cells showed a well-spread 

morphology, with large extensions of their cytoskeleton actin filaments (green stained). 

The pictures collected at different magnifications (Figure 6A-C) help to visualize both the 

homogeneous distribution of the rMSCs and the colonization of the hydrogel at different 

focal points.  
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Figure 6. Optical microscope images of hydrogel colonization by rMSCs after culture for 15 days. 

Pictures collected at different magnifications (A,B,C). 

3.4. In vivo study results  

3.4.1. Macroscopic observation of repaired cartilage  

Rabbits were euthanized 4 months after the surgical procedure and the performance of 

cartilage repair initially evaluated by macroscopic observation. The surface of the defects 

(Figure 7) showed that the defects in the central area of the trochlea were completely 

filled at 4 months post-surgery in all animals from both groups (ELR hydrogels & ELR 

hydrogels embedded with rMSCs). In addition, the defects were covered by a white layer 

of fibrous tissue in both groups. The regenerated tissue had a greyish color and could be 

easily recognized in both cases. As such, the regenerated tissue showed a good integration 

with the surrounding tissue; indeed, there was no clear boundary between the injured 

region and the surrounding chondral tissue. The regeneration rate was further evaluated 

based on macroscopic observation of the regenerated knee cartilage.  
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Figure 7. Macroscopic appearance of defects in the trochlear groove (4 mm in diameter) at 4 

months post-surgery. A: ELR-based hydrogel embedded with rMSCs; B: ELR-based hydrogel 

alone. Defects are indicated with a black dashed line. 

As noted above, the samples were evaluated using the ICRS gross morphology assessment 

scale. Briefly, this gross evaluation takes into consideration three parameters, namely the 

degree of defect repair, integration with the border zone and macroscopic 

appearance.(54) Each of these parameters is evaluated on a scale of 0 to 4, with a total 

score ranging from 0 to a maximum of 12. The average score for the ELR hydrogel group 

was 9.7 ± 1.3, whereas the ELR hydrogel embedded with rMSCs scored 9.5 ± 1.9 (Figure 

8A). 

 

Figure 8. International Cartilage Repair Society (ICRS) macroscopic assessment scale. A: Gross 

morphology assessment; B: Histological and immunohistochemical assessment. Values are 

expressed as mean ± SD (n=10). 

3.4.2. Histological analysis of repaired cartilage  

Histological analyses were performed on the sections of the ELR-based hydrogel 

embedded with rMSCs (Figure 9) and on the ELR-based hydrogel alone (Figure 10). For 

histological analysis, all the sections were stained with H/E, Picro-Sirius Red Stain and 

Safranin-O/Fast Green, for morphological evaluation and detection of collagen and GAGs, 

respectively.  
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Histological analysis of the ELR-based hydrogel embedded with rMSCs (Figure 9) shows 

the absence of the hydrogel and that de novo bone tissue formation is present. It can also 

be seen that the new bone tissue exhibits the same porous and morphological structure 

as the native surrounding tissue. The upper bone region (underneath the cartilage layer) 

shows a less intense staining due to the degradation of the hydrogel combined to the 

uncompleted regeneration of the bone layer. Moreover, the collagen staining has the 

same intensity when comparing the regenerated cartilage with the native one. The 

regenerated cartilage layer also contained small egg-shaped cells, which is typical of the 

fibrocartilage-like tissue. Moreover, although GAG staining revealed glycosaminoglycan’s 

production and secretion in the cartilage layer, metachromatic Safranin-O staining 

appeared to be less intense for the regenerated cartilage than for the surrounding 

cartilage. Furthermore, although the regenerated tissue at the articular surface of the 

samples exhibited an adequate thickness in comparison with the adjacent non-injured 

articular cartilage, the tissue had a fibrotic appearance. Finally, the subchondral bone was 

mostly regenerated.  

 

Figure 9. Representative histological staining of repaired cartilage for ELR-based hydrogel with 

rMSCs. 

The first aspect that can be seen from the histological analysis of the ELR-based hydrogel 

alone (Figure 10) is the continued presence of the hydrogel within the created defect. 

Although the hydrogel remained intact in the inner part, it started to degrade from the 

periphery towards the center of the hydrogel. H/E staining clearly showed a difference 



213 
 

between native bone tissue and the hydrogel. In addition, in the boundary area of the 

hydrogel, a higher concentration of cells (revealed by the higher intensity of the staining) 

enrolled in the degradation of the hydrogel and in the de novo formation of bone tissue 

can be seen. Safranin-O staining revealed the presence of proteoglycan in the relatively 

thin repaired tissue. In addition, collagen staining indicated that the new tissue secretes 

an extracellular matrix. Histological staining revealed a columnar arrangement of the 

chondrocytes (typical of native cartilage) in the regenerated cartilage. The peripheral 

migration of these types of cells from the surrounding tissue towards the defect area 

displayed a smooth and regular surface of the regenerated cartilage, which, exhibited a 

complete integration with the adjacent non-injured cartilage. Moreover, the regenerated 

cartilage showed no structural differences with respect to healthy cartilage. 

 

Figure 10. Representative histological staining of repaired cartilage for the ELR-based hydrogel 

alone. 

The section of the ELR-based hydrogel embedded with rMSCs and the section of the ELR-

based hydrogel alone were further analyzed by immunohistochemistry with primary 

antibody anti-collagen type I (fibro cartilage) and anti-collagen type II (hyaline cartilage), 

for detection of different types of collagen previously revealed by the general Picro-Sirius 

stain. 

In the case of the ELR-based hydrogel embedded with rMSCs (Figure 11), no collagen type 

II was detected in the regenerated cartilage. This result is in accordance with the 
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histological analysis previously described, where a non-columnar arrangement of 

chondrocytes was revealed. The presence of collagen type II in the native cartilage 

ensures a correct staining performed for collagen type II. Moreover, the staining for 

collagen type I appears in a spot-like distribution throughout the section, possibly due to 

high exposure to this antibody, which is the signal for the non-appearance of collagen type 

I in the regenerated area. We can, therefore, conclude that the regenerative tissue in the 

ELR-based hydrogel embedded with rMSCs was mainly fibrous tissue with a small amount 

of hyaline-like tissue. 

 

Figure 11. Representative immunohistochemistry study with anti-collagen type I & II for the 

cartilage regenerated using ELR-based hydrogels with rMSCs. 

Notably, in the case of the ELR-based hydrogel alone (Figure 12), a marked production of 

collagen type II revealed the presence of hyaline cartilage in the regenerated layer. In 

addition, this result is in accordance with the histological analysis described previously, 

which exhibited a columnar disposition of the chondrocytes. Moreover, the 

immunohistochemistry study revealed how the chondrocytes involved in the 

regeneration process did not produce collagen type I, showing the absence of fibro 

cartilage. 
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Figure 12. Representative immunohistochemistry study with anti-collagen type I &II for the 

cartilage regenerated using the ELR-based hydrogel alone. 

As reported above, the samples were evaluated according to the ICRS visual histological 

assessment scale. The resulting score ranges from 0 to a maximum of 18, with the final 

score being the sum of six parameters, namely surface, matrix, cell distribution, cell 

population viability, subchondral bone and cartilage mineralization. Each of these 

parameters is given a value from 0 to 3. The average score in the ELR hydrogel group was 

11.4 ± 3.1, whereas the ELR hydrogel embedded with rMSCs scored 11.3 ± 3.3 (Figure 8B). 

4. DISCUSSION 

It is well known that articular cartilage has a limited regeneration capacity after disease 

or trauma and that fibro cartilage is produced where the cartilage regeneration takes 

place.(55,56) This type of cartilage can easily degenerate and develop into 

osteoarthritis.(57) Considering that the clinical treatment of defective cartilage remains 

problematic,(58) the purpose of surgery is to regenerate the chondral defects in order to 

obtain a structurally and biomechanically competent hyaline cartilage. From a functional 

point of view, clinical treatments are not able to promote the proper regeneration of 
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cartilage defects; TE represents a new approach for articular cartilage repair,(51) it 

consists in reconstructing living tissue by associating cells with biomaterials. The 3D 

structure of the biomaterial plays a supporting role for the cells, thus helping them to 

proliferate under physiological conditions.(59) The application of new materials in tissue-

engineered scaffolds has received particular interest,(60) and several studies have 

demonstrated how bioinspired materials can simulate the physiological characteristics, 

thereby enhancing the biological properties of the scaffold.(61-63) In this study, we have 

designed and developed an ELR-based hydrogel composed by VKVx24-cyclo, REDV-N3 and 

HRGD6-N3, as reported in Figure 1. The specific composition of the ELR-based construct 

has been previously investigated by Staubli et al., demonstrating a good composition of 

the hydrogel tailored for a TE study; indeed, whereas the ELR VKV counterpart gives 

stability to the hydrogel, the combination of ELRs containing RGD sequence and elastase 

target domain is crucial for cell infiltration and material colonization.(64) In the light of 

this previous study, we designed our ELR-hydrogel to contain 25% of an ELR bearing the 

elastase target domain, thus allowing a slower degradation of the scaffold. Moreover, it 

has to be taken into account that natural polymers showed some limitations in terms of 

mechanical integrity. Indeed, both collagen and hyaluronic acid have a short lifetime due 

to degradation by matrix metalloproteinases.(65)  

The composition of the hydrogel permits immediate gelation by click chemistry as it has 

been demonstrated by González et al.,(53) thus conferring the benefit of being an 

injectable scaffold on our system. The mechanical features of the scaffold are a crucial 

factor affecting cartilage repair. As it has been demonstrated, chemical cross-linkable ELR-

hydrogels having similar Molecular Weight to our hydrogel,(53,66) showed no 

dependence between the swelling ratio and the concentration for the range 50 mg/mL - 

150 mg/mL at 37 °C, maintaining a swelling ratio below 2. On the other hand, the 

hydrogel’s concentration directly influences the mechanical properties of the hydrogel. 

Considering the remarkable results obtained in the application of this material at a 

concentration of 75 mg/mL in TE,(28) we decided to use our hydrogel at the same 

concentration. The rheological characterization of the ELR-hydrogel at 75 mg/mL showed 

a complex modulus of around 1 kPa, which is in accordance with the elastic modulus of 

many native tissues(67) and with the mechanical features of efficient scaffolds for TE 
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applications.(53,64) Moreover, the low values of δ obtained for the ELR hydrogel agree 

with the viscoelastic behavior demonstrated in the cartilage layer.(68) As it has been 

reported above, the δ is the phase angle between the applied stimulus and the 

corresponding response as a function of strain amplitude or frequency; the constant 

values of δ calculated demonstrated a highly elastic energy storing hydrogel at different 

frequency values. It is important to take into account that articular cartilage has unique 

biological properties (such as permeability and viscoelasticity) when compared with other 

cartilage.(69) Indeed, the structure and physiochemical properties of articular cartilage 

are similar to those of hydrogels. SEM analysis revealed the morphology of the hydrogel 

at 75 mg/mL, which shows an interconnected structure with adequate porosity and 

permeability, along with an appropriate pore size for the creation of a 3D scaffold 

embedded with rMSCs. The pore size determines the exchange of nutrients and waste 

products as a result of the void spaces where the cells are seeded and influences the de 

novo secretion of ECM.(70) Moreover, the fluid movement in the hydrogel determined by 

the pore size plays a fundamental role in the regeneration process, and in order to 

guarantee a good regeneration, it should be similar to that for native tissue.(71)  

Cells play a critical role in the regeneration process; when incorporated into a biomaterial 

they can enhance tissue regeneration. Although it is well known that chondrocytes only 

form 1-5% volume of the mature articular cartilage,(72) it has been demonstrated that a 

higher MSCs seeding density results in better chondrogenesis.(73-76) We selected a 

seeding density of 8 x 106 cells/mL considering the outcomes of previous studies 

performed with a similar cell density.(77,78) The cell viability analysis revealed an 

increment in metabolic activity throughout the 15 days of culture, thus showing that the 

ELR-based hydrogel is a biocompatible scaffold for cell repopulation. Moreover, 

considering that the highest increase of metabolic activity was recorded within the first 

three days, the rMSCs appear to be more active when the hydrogel has a lower cell 

density, reaching a more quiescent state once the hydrogel starts to be repopulated. 

The Dapi/Phalloidin analysis showed the morphology of the rMSCs embedded in the 3D 

structure after 15 days of culture. The specific composition of the ELR hydrogel, which 

contains RGD and REDV bioactive domains, permitted efficient cell attachment. Indeed, 

the colonization process indicates that this specific composition of the scaffold is able to 
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support the culture of embedded cells. Assuming that a suitable scaffold for TE should 

mimic the ECM functional properties, the in vitro study showed an adequate composition 

of the ELR hydrogel, thereby facilitating the encapsulation of reparative cells into a 3D 

matrix.(79) Moreover, the elastase target domain (VGVAPG sequence) fosters cell-

mediated remodeling of the artificial scaffold. In addition, cell proliferation, and thus 

colonization of the scaffold, is guaranteed because of the action of proteases during the 

synthesis of new extracellular matrix. 

In this study, we tested the ELR-based hydrogel embedded with rMSCs and the ELR-based 

hydrogel alone to repair cartilage defects in vivo. Macroscopic examination of the surface 

of the defects (Figure 7) showed that the defects were completely covered 4 months after 

the surgery in all animals. The scores on the ICRS gross morphology assessment scale for 

the two hydrogels are practically the same, thus suggesting that both groups aid cartilage 

regeneration, allowing for the defects to be filled. However, histological analysis of the 

dissected knees was necessary to determine which type of cartilage was regenerated, and 

whether the gel was fully replaced by newly formed tissue. 

The H/E staining results for both groups showed no evident inflamed cells, such as 

neutrophilic granulocytes or lymphocytes, thus indicating that the ELR hydrogel has 

excellent biocompatibility. However, in contrast to the macroscopic evaluation, the 

histological analysis showed two different responses from the two groups as regards 

tissue, bone and cartilage. For the bone area, in the case of ELR-based hydrogel alone, a 

large quantity of intact hydrogel was present, whereas in the rMSCs group no intact 

hydrogel was present. In the boundary area of the ELR-based hydrogel alone, it was 

observed a higher concentration of cells enrolled in the degradation of the hydrogel and 

in the de novo formation of bone. This inflammatory cells infiltration in the hydrogel and 

the consequent degradation of the scaffold was mainly due to the presence of the elastase 

target domain. This behavior is in accordance with previous studies performed with ELR-

based hydrogel containing protease target domains.(64) Moreover, in this case, the 

degradation came only from the surrounding tissue and the tissue-replacement process 

was not complete at 4 months post-surgery. 

Finally, it is important to take into account that the rejection of engraftment depends 

essentially by the host immune response, whereby the proportion between inflammation 
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and pro-resolution is the key for successful implantation of the engineered tissue.(64,80) 

In contrast, the group treated with the ELR-based hydrogel containing rMSCs showed a 

much more marked degradation. Indeed, in that case, the degradation occurred both 

from the surrounding tissue and from the cells embedded in the hydrogel. For the 

cartilage layer, the histological and IHC staining showed how the group treated with the 

ELR-based hydrogel alone exhibited better cartilage regeneration compared to the group 

treated with the ELR-based hydrogel containing rMSCs. The group with no rMSCs 

exhibited all the typical features of hyaline cartilage, such as the columnar disposition of 

chondrocytes, excellent GAG staining, and the presence of collagen type II, that provides 

the tensile ability to the cartilage layer.(8) Moreover, the absence of fibro cartilage 

confirms that ELR-hydrogel is an attractive solution for cartilage regeneration. Although 

there is no significant difference in the scores for the ICRS visual histological assessment 

scale, we can conclude that the ELR-based hydrogel containing rMSCs leads to faster 

regeneration of the bone tissue and worse cartilage regeneration. In contrast, the ELR-

based hydrogel alone enhanced the quality of the regenerated cartilage but the 

degradation of the hydrogel in the bone area was not complete. During the repair process, 

the hydrogel was gradually replaced by de novo tissue formation. Starting with the 

assumption that the purpose of this scaffold is to promote the bone and cartilage 

formation instead than merely substitute the tissue, it is important to evaluate either the 

capacity to support the cell adhesion and proliferation and the mechanical stability at the 

defect site. A crucial aspect was played by the 25% of the ELR containing the elastase 

domain, which allows for degradation of the hydrogel. As such, it could be of interest to 

test other hydrogel candidates that have different percentages of protease sequences in 

order to synchronize bone regeneration and cartilage repair. Moreover, another 

important aspect to take into consideration is the proportion between the RGD sequence 

and the REDV domain; as discussed recently by Flora et al., the ratio between these two 

bioactive domains can tailor the selectivity of the biomaterial towards specific cell 

lines.(81) Generally speaking, the degradation time of materials should match the 

production speed of the new tissue. Rapid degradation of the scaffold affects both 

repopulation of the hydrogel by rMSCs and their differentiation or the colonization of 

chondrocytes from the surrounding native tissue. A slow degradation could hinder cell 

proliferation and matrix secretion,(82,83) although we found that a high density of rMSCs 
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in our scaffold increased the regeneration of fibro cartilage instead of hyaline cartilage. 

Another important aspect that has to be taken in consideration is the cell-cell contact in 

the hydrogel, which regulates not only the cell behavior and the MSCs differentiation, but 

it is also crucial for the development of the tissue architecture. This parameter is strongly 

correlated to the cells density of the hydrogel. One of the major challenges for 

osteochondral repair is to obtain regenerated cartilage with adequate mechanical 

properties. This outcome is not completely fulfilled by synthetic hydrogels, which do not 

show the biological features of ECM and tend to regenerate fibro cartilage.(84)  

Our ELR-hydrogel has been shown to have an adequate composition, with tunable 

degradation rate and adhesion behavior, exhibiting a good balance between the 

degradation rate and adhesion behavior, and allowing for the colonization of 

chondrocytes with an optimal secretion of extracellular matrix-collagen type II at the 

periphery of the hydrogel. Moreover, we observed excellent cartilage repair without the 

need for cellular implantation, which is a significant advantage in terms of eluding all the 

technical and ethical complications of cell implantation. Finally, these results are 

promising as regards the testing of other ELR-based hydrogels with higher degradation 

rates for bone regeneration, thus leading to an optimal system for osteochondral repair.  

5. CONCLUSIONS 

One of the biggest challenges in TE is to discover a new biomaterial that guarantees an 

adequate regeneration of either bone or cartilage tissue. In this study, we took advantage 

of the recombinant DNA technique to develop a bioactive ELR-based hydrogel with a 

specific composition as an injectable scaffold for osteochondral repair. The specific 

composition of this hydrogel allowed for faster bone regeneration when embedded with 

rMSCs compared to the injection of the hydrogel alone. Similarly, the specific composition 

of this bioactive hydrogel allowed for the infiltration and the recruiting of native cells 

(chondrocytes) to promote the repair and remodelling of articular cartilage. According to 

the outcomes revealed by this study, a promising therapy for osteochondral repair could 

be to develop a bilayer system based on ELR-hydrogels. This system would consist of a 

bottom layer composed by the hydrogel embedded with MSCs, which fill the sub-chondral 

bone cavity; whereas the upper layer would be composed by the hydrogel itself. In 
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conclusion, our bioactive ELR-based hydrogel alone was able to resemble native tissue in 

terms of hyaline cartilage content and the absence of fibro-cartilage, thus proving to be a 

promising scaffold for cartilage repair. 

Acknowledgments 

This project has received funding from the European Union’s Horizon 2020 research and 

innovation programme under the Marie Sklodowska-Curie grant agreement No 642687. 

The authors are grateful for the funding from the European Commission (NMP-2014-

646075), the Spanish Government (PCIN-2015-010, MAT2015-68901-R, MAT2016-78903-

R, MAT2016-79435-R), Junta de Castilla y León (VA015U16) and Centro en Red de 

Medicina Regenerativa y Terapia Celular de Castilla y León. The authors also wish to thank 

Maria Victoria Saez Velasco for her important contribution to cell culture experiments. 

Conflict of Interest 

The authors declare no competing financial interest.  

  



222 
 

References 

1. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 
1982;64:460-6. 

2. Rodríguez Cabello JC, De Torre IG, Cipriani F et al. 12 - Elastin-like materials for tissue 
regeneration and repair A2 - Barbosa, Mário A. In: Martins MCL (ed). Peptides and Proteins as 
Biomaterials for Tissue Regeneration and Repair: Woodhead Publishing, 2018, 309-327. 

3. Altman RD, Lozada CJ. Practice guidelines in the management of osteoarthritis. Osteoarthritis 
and Cartilage 1998;6:22-24. 

4. Sharma A, Wood LD, Richardson JB et al. Glycosaminoglycan profiles of repair tissue formed 
following autologous chondrocyte implantation differ from control cartilage. Arthritis Research & 
Therapy 2007;9:R79. 

5. Gagliardi JA, Chung EM, Chandnani VP et al. Detection and staging of chondromalacia patellae: 
relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J 
Roentgenol 1994;163:629-36. 

6. Smolen JS, Aletaha D, Steiner G. Does damage cause inflammation? Revisiting the link between 
joint damage and inflammation. Ann Rheum Dis 2009;68:159-62. 

7. Correa D, Lietman SA. Articular cartilage repair: Current needs, methods and research 
directions. Seminars in Cell & Developmental Biology 2017;62:67-77. 

8. Knudson CB, Knudson W. Cartilage proteoglycans. Seminars in Cell & Developmental Biology 
2001;12:69-78. 

9. Girotti A, Orbanic D, Ibáñez-Fonseca A et al. Recombinant Technology in the Development of 
Materials and Systems for Soft-Tissue Repair. Advanced Healthcare Materials 2015;4:2423-2455. 

10. Kerker JT, Leo AJ, Sgaglione NA. Cartilage Repair: Synthetics and Scaffolds: Basic Science, 
Surgical Techniques, and Clinical Outcomes. Sports Medicine and Arthroscopy Review 
2008;16:208-216. 

11. Vaquero J, Forriol F. Knee chondral injuries: Clinical treatment strategies and experimental 
models. Injury 2012;43:694-705. 

12. Vijayan S, Bartlett W, Bentley G et al. Autologous chondrocyte implantation for osteochondral 
lesions in the knee using a bilayer collagen membrane and bone graft. a two- to eight-year follow-
up study 2012;94-B:488-492. 

13. Vega A, Martin-Ferrero MA, Del Canto F et al. Treatment of Knee Osteoarthritis With 
Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial. 
Transplantation 2015;99:1681-90. 

14. Kessler MW, Ackerman G, Dines JS et al. Emerging Technologies and Fourth Generation Issues 
in Cartilage Repair. Sports Medicine and Arthroscopy Review 2008;16:246-254. 

15. Trattnig S, Ba-Ssalamah A, Pinker K et al. Matrix-based autologous chondrocyte implantation 
for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. 
Magnetic Resonance Imaging 2005;23:779-787. 

16. Zhang J, Huang X, Wang H et al. The challenges and promises of allogeneic mesenchymal stem 
cells for use as a cell-based therapy. Stem Cell Research & Therapy 2015;6:234. 



223 
 

17. Pescador D, Ibanez-Fonseca A, Sanchez-Guijo F et al. Regeneration of hyaline cartilage 
promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-
based bioactive hydrogels. J Mater Sci Mater Med 2017;28:115. 

18. Li J, Ezzelarab MB, Cooper DKC. Do mesenchymal stem cells function across species barriers? 
Relevance for xenotransplantation. Xenotransplantation 2012;19:273-285. 

19. Orozco L, Munar A, Soler R et al. Treatment of knee osteoarthritis with autologous 
mesenchymal stem cells: a pilot study. Transplantation 2013;95:1535-41. 

20. Garcia-Sancho J, Sanchez A, Vega A et al. Influence of HLA Matching on the Efficacy of 
Allogeneic Mesenchymal Stromal Cell Therapies for Osteoarthritis and Degenerative Disc Disease. 
Transplant Direct 2017;3:e205. 

21. Revell CM, Athanasiou KA. Success rates and immunologic responses of autogenic, allogenic, 
and xenogenic treatments to repair articular cartilage defects. Tissue Eng Part B Rev 2009;15:1-
15. 

22. Muir H. The chondrocyte, architect of cartilage—biomechanics, structure, function and 
molecular-biology of cartilage matrix macromolecules. Bioessays 1995;17:1039-48. 

23. Hou Q, Bank. PAD, Shakesheff KM. Injectable scaffolds for tissue regeneration. J Mater Chem 
2004;14:1915-1923  

24. Meyer DE, Chilkoti A. Genetically Encoded Synthesis of Protein-Based Polymers with Precisely 
Specified Molecular Weight and Sequence by Recursive Directional Ligation:  Examples from the 
Elastin-like Polypeptide System. Biomacromolecules 2002;3:357-367. 

25. Ribeiro A, Arias FJ, Reguera J et al. Influence of the Amino-Acid Sequence on the Inverse 
Temperature Transition of Elastin-Like Polymers. Biophysical Journal 2009;97:312-320. 

26. McDaniel JR, Radford DC, Chilkoti A. A unified model for de novo design of elastin-like 
polypeptides with tunable inverse transition temperatures. Biomacromolecules 2013;14:2866-
2872. 

27. J. Carlos Rodriguez‐Cabello AIF, Matilde Alonso, Leander Poocza, Filippo Cipriani, Israel 
González de Torre. Elastin-Like Polymers: Properties, Synthesis, and Applications. In: Wiley (ed). 
Encyclopedia of Polymer Science and Technology, 2017, 1-36. 

28. de Torre IG, Wolf F, Santos M et al. Elastin-like recombinamer-covered stents: Towards a fully 
biocompatible and non-thrombogenic device for cardiovascular diseases. Acta Biomaterialia 
2015;12:146-155. 

29. Srivastava GK, Martín L, Singh AK et al. Elastin-like recombinamers as substrates for retinal 
pigment epithelial cell growth. Journal of Biomedical Materials Research Part A 2011;97A:243-
250. 

30. Vila M, García A, Girotti A et al. 3D silicon doped hydroxyapatite scaffolds decorated with 
Elastin-like Recombinamers for bone regenerative medicine. Acta Biomaterialia 2016;45:349-356. 

31. Cipriani F, Kruger M, de Torre IG et al. Cartilage Regeneration in Preannealed Silk Elastin-Like 
Co-Recombinamers Injectable Hydrogel Embedded with Mature Chondrocytes in an Ex Vivo 
Culture Platform. Biomacromolecules 2018;19:4333–4347. 

32. Meller D, Li DQ, Tseng SCG. Regulation of Collagenase, Stromelysin, and Gelatinase B in Human 
Conjunctival and Conjunctivochalasis Fibroblasts by Interleukin-1β and Tumor Necrosis Factor-α. 
Investigative Ophthalmology & Visual Science 2000;41:2922-2929. 



224 
 

33. Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: A versatile cell recognition signal. Cell 
1986;44:517-518. 

34. Di Zio K, Tirrell DA. Mechanical Properties of Artificial Protein Matrices Engineered for Control 
of Cell and Tissue Behavior. Macromolecules 2003;36:1553-1558. 

35. Rodríguez-Cabello JC, Martín L, Alonso M et al. “Recombinamers” as advanced materials for 
the post-oil age. Polymer 2009;50:5159-5169. 

36. Rodríguez-Cabello JC, Pierna M, Fernández-Colino A et al. Recombinamers: Combining 
Molecular Complexity with Diverse Bioactivities for Advanced Biomedical and Biotechnological 
Applications. In: Nyanhongo GS, Steiner W, Gübitz G (eds). Biofunctionalization of Polymers and 
their Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 145-179. 

37. Girotti A, Reguera J, Arias FJ et al. Influence of the Molecular Weight on the Inverse 
Temperature Transition of a Model Genetically Engineered Elastin-like pH-Responsive Polymer. 
Macromolecules 2004;37:3396-3400. 

38. Rodríguez-Cabello JC, Girotti A, Ribeiro A et al. Synthesis of Genetically Engineered Protein 
Polymers (Recombinamers) as an Example of Advanced Self-Assembled Smart Materials. In: 
Navarro M, Planell JA (eds). Nanotechnology in Regenerative Medicine: Methods and Protocols. 
Totowa, NJ: Humana Press, 2012, 17-38. 

39. Costa RR, Custódio CA, Arias FJ et al. Layer-by-Layer Assembly of Chitosan and Recombinant 
Biopolymers into Biomimetic Coatings with Multiple Stimuli-Responsive Properties. Small 
2011;7:2640-2649. 

40. Baskin JM, Bertozzi CR. Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. 
QSAR & Combinatorial Science 2007;26:1211-1219. 

41. Testera AM, Girotti A, de Torre IG et al. Biocompatible elastin-like click gels: design, synthesis 
and characterization. J Mater Sci Mater Med 2015;26:105. 

42. Dormer NH, Singh M, Zhao L et al. Osteochondral interface regeneration of the rabbit knee 
with macroscopic gradients of bioactive signals. Journal of biomedical materials research. Part A 
2012;100:162-170. 

43. Løken S, Jakobsen RB, Årøen A et al. Bone marrow mesenchymal stem cells in a hyaluronan 
scaffold for treatment of an osteochondral defect in a rabbit model. Knee Surgery, Sports 
Traumatology, Arthroscopy 2008;16:896-903. 

44. Dashtdar H, Rothan HA, Tay T et al. A preliminary study comparing the use of allogenic 
chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of 
full thickness articular cartilage defects in rabbits. J Orthop Res 2011;29:1336-42. 

45. Franco NH, Olsson IAS. Scientists and the 3Rs: attitudes to animal use in biomedical research 
and the effect of mandatory training in laboratory animal science. Laboratory Animals 2013;48:50-
60. 

46. Lam J, Lu S, Lee EJ et al. Osteochondral defect repair using bilayered hydrogels encapsulating 
both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit 
model. Osteoarthritis and cartilage 2014;22:1291-1300. 

47. Kim K, Lam J, Lu S et al. Osteochondral tissue regeneration using a bilayered composite 
hydrogel with modulating dual growth factor release kinetics in a rabbit model. Journal of 
Controlled Release 2013;168:166-178. 



225 
 

48. Holland TA, Bodde EWH, Cuijpers VMJI et al. Degradable hydrogel scaffolds for in vivo delivery 
of single and dual growth factors in cartilage repair. Osteoarthritis and Cartilage 2007;15:187-197. 

49. Guo X, Park H, Young S et al. Repair of osteochondral defects with biodegradable hydrogel 
composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomaterialia 
2010;6:39-47. 

50. van den Borne MPJ, Raijmakers NJH, Vanlauwe J et al. International Cartilage Repair Society 
(ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous 
Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage 2007;15:1397-
1402. 

51. Cao L, Yang F, Liu G et al. The promotion of cartilage defect repair using adenovirus mediated 
Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 2011;32:3910-
3920. 

52. Mainil-Varlet P, Aigner T, Brittberg M et al. Histological assessment of cartilage repair: a report 
by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone 
Joint Surg Am 2003;85-A Suppl 2:45-57. 

53. González de Torre I, Santos M, Quintanilla L et al. Elastin-like recombinamer catalyst-free click 
gels: Characterization of poroelastic and intrinsic viscoelastic properties. Acta Biomaterialia 
2014;10:2495-2505. 

54. Jia S, Wang J, Zhang T et al. Multilayered Scaffold with a Compact Interfacial Layer Enhances 
Osteochondral Defect Repair. ACS Applied Materials & Interfaces 2018;10:20296-20305. 

55. Roach HI, Aigner T, Soder S et al. Pathobiology of Osteoarthritis: Pathomechanisms and 
Potential Therapeutic Targets. Current Drug Targets 2007;8:271-282. 

56. Richter W. Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med 
2009;266:390-405. 

57. Peterson L, Vasiliadis HS, Brittberg M et al. Autologous Chondrocyte Implantation: A Long-
term Follow-up. The American Journal of Sports Medicine 2010;38:1117-1124. 

58. Wakitani S, Goto T, Young RG et al. Repair of large full-thickness articular cartilage defects with 
allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 1998;4:429-44. 

59. Iwasa J, Engebretsen L, Shima Y et al. Clinical application of scaffolds for cartilage tissue 
engineering. Knee Surgery, Sports Traumatology, Arthroscopy 2009;17:561-577. 

60. Fong EL, Watson BM, Kasper FK et al. Building bridges: leveraging interdisciplinary 
collaborations in the development of biomaterials to meet clinical needs. Adv Mater 
2012;24:4995-5013. 

61. Perka C, Spitzer RS, Lindenhayn K et al. Matrix-mixed culture: new methodology for 
chondrocyte culture and preparation of cartilage transplants. J Biomed Mater Res 2000;49:305-
11. 

62. Lee KY, Mooney DJ. Hydrogels for Tissue Engineering. Chemical Reviews 2001;101:1869-1880. 

63. Jin R, Moreira Teixeira LS, Dijkstra PJ et al. Injectable chitosan-based hydrogels for cartilage 
tissue engineering. Biomaterials 2009;30:2544-51. 

64. Staubli SM, Cerino G, Gonzalez De Torre I et al. Control of angiogenesis and host response by 
modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. 
Biomaterials 2017;135:30-41. 



226 
 

65. Nagaya H, Ymagata T, Ymagata S et al. Examination of synovial fluid and serum hyaluronidase 
activity as a joint marker in rheumatoid arthritis and osteoarthritis patients (by zymography). Ann 
Rheum Dis 1999;58:186-188. 

66. Trabbic-Carlson K, Setton LA, Chilkoti A. Swelling and Mechanical Behaviors of Chemically 
Cross-Linked Hydrogels of Elastin-like Polypeptides. Biomacromolecules 2003;4:572-580. 

67. Erkamp RQ, Wiggins P, Skovoroda AR et al. Measuring the Elastic Modulus of Small Tissue 
Samples. Ultrasonic Imaging 1998;20:17-28. 

68. Hayes WC, Bodine AJ. Flow-independent viscoelastic properties of articular cartilage matrix. 
Journal of Biomechanics 1978;11:407-419. 

69. Broom ND, Oloyede A. The importance of physicochemical swelling in cartilage illustrated with 
a model hydrogel system. Biomaterials 1998;19:1179-88. 

70. Annabi N, Nichol JW, Zhong X et al. Controlling the porosity and microarchitecture of hydrogels 
for tissue engineering. Tissue Eng Part B Rev 2010;16:371-83. 

71. Mow VC, Holmes MH, Michael Lai W. Fluid transport and mechanical properties of articular 
cartilage: A review. Journal of Biomechanics 1984;17:377-394. 

72. Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. 
British Medical Bulletin 2008;87:77-95. 

73. Erickson IE, Kestle SR, Zellars KH et al. Improved cartilage repair via in vitro pre-maturation of 
MSC-seeded hyaluronic acid hydrogels. Biomed Mater 2012;7:024110. 

74. Hui TY, Cheung KM, Cheung WL et al. In vitro chondrogenic differentiation of human 
mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen 
concentration. Biomaterials 2008;29:3201-12. 

75. Huang CY, Reuben PM, D'Ippolito G et al. Chondrogenesis of human bone marrow-derived 
mesenchymal stem cells in agarose culture. Anat Rec A Discov Mol Cell Evol Biol 2004;278:428-36. 

76. Goldberg A, Mitchell K, Soans J et al. The use of mesenchymal stem cells for cartilage repair 
and regeneration: a systematic review. Journal of orthopaedic surgery and research 2017;12:39-
39. 

77. Li Z, Kupcsik L, Yao SJ et al. Chondrogenesis of human bone marrow mesenchymal stem cells 
in fibrin-polyurethane composites. Tissue Eng Part A 2009;15:1729-37. 

78. Jia Z, Liu Q, Liang Y et al. Repair of articular cartilage defects with intra-articular injection of 
autologous rabbit synovial fluid-derived mesenchymal stem cells. Journal of translational 
medicine 2018;16:123-123. 

79. Guilak F, Estes BT, Diekman BO et al. 2010 Nicolas Andry Award: Multipotent Adult Stem Cells 
from Adipose Tissue for Musculoskeletal Tissue Engineering. Clinical Orthopaedics and Related 
Research 2010;468:2530-2540. 

80. Crupi A, Costa A, Tarnok A et al. Inflammation in tissue engineering: The Janus between 
engraftment and rejection. Eur J Immunol 2015;45:3222-36. 

81. Flora T, de Torre IG, Quintanilla L et al. Spatial control and cell adhesion selectivity on model 
gold surfaces grafted with elastin-like recombinamers. European Polymer Journal 2018;106:19-
29. 



227 
 

82. Bettinger CJ. Biodegradable elastomers for tissue engineering and cell-biomaterial 
interactions. Macromol Biosci 2011;11:467-82. 

83. Kosuge D, Khan WS, Haddad B et al. Biomaterials and scaffolds in bone and musculoskeletal 
engineering. Curr Stem Cell Res Ther 2013;8:185-91. 

84. Armiento AR, Stoddart MJ, Alini M et al. Biomaterials for articular cartilage tissue engineering: 
Learning from biology. Acta Biomaterialia 2018;65:1-20. 

 

  



228 
 

SUPPORTING INFORMATION 

Differential Scanning Calorimetry (DSC) measurements 
DSC experiments were performed using the Mettler Toledo 822e DSC with a liquid 
nitrogen cooler accessory and under a nitrogen atmosphere. All samples were 
equilibrated for 5 min at 0 °C inside the sample chamber before the experiment started, 
and then, heated from 0 to 60 °C with a speed of 5 °C/min.  

 

 

Figure S1. DSC graph of HRGD6-N3 showing the experimental Tt in PBS at physiological pH. 
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Figure S2. DSC graph of REDV-N3 showing the experimental Tt in PBS at physiological pH. 

 

Figure S3. DSC graph of VKV-Cyclo showing the experimental Tt in PBS at physiological pH. 

 

Fourier Transform Infrared Spectroscopy (FTIR).  

FTIR analysis was carried out using a Bruker FTIR spectrophotometer (Bruker, USA), 
whereas the spectral calculations were performed by the OPUS (version 4.2) software 
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(Mattson Instrument INC.). For each spectrum, a 512-scan interferogram was collected at 
single beam absorption mode with a 2 cm-1 resolution within the 4000- 600 cm-1 region. 
Measurements were performed in triplicates and averaged to obtain the final FTIR 
absorption spectrum of the sample. Residual water vapour absorption was interactively 
subtracted from the sample spectra. 

 

 

Figure S4. FTIR of HRGD6-N3. 
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Figure S5. FTIR of REDV-N3. 

 

Figure S6. FTIR of VKV-Cyclo. 

 

Proton nuclear magnetic resonance 1H-NMR Spectroscopy 

NMR analysis was carried out using a 400 MHz Agilent Technologies equip with an Agilent 
MR console 400 and a One NMR probe. The measurements were carried out at 298 K with 
samples of 20–30 mg of the modified elastin like recombinamers, purified, and dissolved 
in DMSO-d6. Chemical shifts (δ) are given in ppm. 

The no deuterated dimethyl sulfoxide peaks at d ¼ 2.5 ppm and d ¼ 39.51 ppm were used 
as internal reference for 1H and 13C NMR spectra, respectively. 

 



232 
 

 

Figure S7. H-NMR spectrum of HRGD6-N3 showing the integration of the peaks corresponding to 
the different types of hydrogens. 

 

 

Figure S8. H-NMR spectrum of REDV-N3 showing the integration of the peaks corresponding to 
the different types of hydrogens. 
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Figure S9. H-NMR spectrum of VKV-Cyclo showing the integration of the peaks corresponding to 
the different types of hydrogens. 

  



234 
 

  



235 
 

  



236 
 

CHAPTER 5 

BICYCLIC RGD PEPTIDES WITH INTEGRIN αvβ3 AND α5β1 AFFINITY PROMOTE 

CELL ADHESION ON ELASTIN-LIKE RECOMBINAMERS 

Filippo Cipriani,1 Dominik Bernhagen,2 Carmen García-Arévalo,3 Israel González de Torre,1,3 Peter 

Timmerman,2,4 José Carlos Rodríguez-Cabello,1,3 

1 Technical Proteins Nanobiotechnology S.L., Paseo Belén 9A, 47001 Valladolid, Spain 

2 Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands 

3 Bioforge, University of Valladolid CIBER-BNN, Paseo de Belén 19, 47001 Valladolid, Spain  

4 Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH 

Amsterdam, the Netherlands 

F. Cipriani, D. Bernhagen, C. García-Arévalo, I. González de Torre, P. Timmerman, J.C. Rodríguez-Cabello. 

Bicyclic RGD peptides with high integrin αvβ3 and α5β1 affinity promote cell adhesion on elastin-like 

recombinamers. Biomedical Materials (2018). doi: 10.1088/1748-605X/aafd83 

  



237 
 

Abstract 

Biomaterial design in tissue engineering aims to identify appropriate cellular 

microenvironments in which cells can grow and guide new tissue formation. Despite the 

large diversity of synthetic polymers available for regenerative medicine, most of them 

fail to fully match the functional properties of their native counterparts. In contrast, the 

few biological alternatives employed as biomaterials lack the versatility that chemical 

synthesis can offer. Herein, we studied the HUVEC adhesion and proliferation properties 

of elastin-like recombinamers (ELRs) that were covalently functionalized with each three 

high-affinity and selectivity αvβ3- and α5β1-binding bicyclic RGD peptides. Next to the 

bicycles, ELRs were also functionalized with various integrin-binding benchmark peptides, 

i.e. knottin-RGD, cyclo-[KRGDf] and GRGDS, allowing for better classification of the 

obtained results. Covalent functionalization with the RGD peptides, as validated by 

MALDI-TOF analysis, guarantees flexibility and minimal steric hindrance for interactions 

with cellular integrins. In addition to the covalently modified RGD-ELRs, we also 

synthesized another benchmark ELR comprising RGD as part of the backbone. HUVEC 

adhesion and proliferation analysis using the PicoGreen® assay revealed a higher short-

term adhesion and proliferative capacity of cells on ELR surfaces functionalized with high 

affinity, integrin-binding bicyclic RGD-peptides compared with the ELRs containing RGD in 

the backbone.  
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1. INTRODUCTION 

A central goal of research in tissue engineering and regenerative medicine is the design of 

biomaterials that can be used to control critical aspects of cellular behaviour. Such 

materials should guide cells toward the phenotypes and architectures that are needed to 

restore tissue function or induce cells from surrounding tissue to infiltrate implanted 

matrices (1), including vascular grafts (2), bone grafts (3), wound dressings (4), and 

injectable drug depots (5). One major problem that still remains is the inadequate 

interaction between polymer and cells, which leads to foreign body reactions such as 

inflammation, infections, and implant encapsulation, as well as thrombosis and 

embolization, in vivo. Research into the surface modification of polymeric materials to 

guide cellular activity in biomaterials (6-8) designed for tissue-engineering applications 

has mostly focused on the use of natural extracellular matrix (ECM) proteins and short 

peptides such as the integrin-binding tripeptide RGD (9,10). The use of small peptides 

offers several advantages, such as straightforward synthesis and a low immunogenic 

potential (11, 12). Moreover, they tend to exhibit high stability towards sterilization 

conditions, heat treatment, pH-variation and storage (13, 14). However, it is important to 

take into account that the peptide stability is strongly dependent on the sequence. In 

particular, peptides containing methionine, cysteine or tryptophan are prone to oxidation 

with resultant loss of bioactivity (15).  

While a large variety of modified synthetic polymers have been extensively explored in 

regenerative medicine, only a few biological materials, mostly purified proteins from 

animal tissues, have been studied in detail to date (16). In this regard, recombinant 

proteins have recently received interest as an attractive alternative for tissue-engineering 

applications and surface functionalization (17, 18). Elastin-like recombinamers (ELRs) are 

some of the most intensively studied groups of recombinant proteins over the past 

decade (19). ELRs comprise repetitive sequences comprising the pentapeptide “Val-Pro-

Gly-X-Gly”, where the guest residue “X” can be any amino acid except proline. These 

polypeptides are highly flexible due to weak hydrophobic interactions and hydrogen 

bonds that enable the chains to extend and retract similarly to a spring (20-22). ELRs can 

be codified in synthetic genes and expressed in Escherichia coli in large quantities, thus 
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allowing greater control of the amino acid sequence and molecular weight when 

compared with the chemical synthesis of large polypeptides (18). Furthermore, due to 

their inverse temperature transition property, they can easily be separated from the raw 

protein mixture (23), thereby resulting in a purified, biocompatible, biodegradable, and 

non-immunogenic engineered protein (24). ELRs have several advantages as regards 

tissue engineering applications, such as their defined macromolecular structure, 

controlled swelling behaviour and porosity, degradability, and controllable mechanical 

properties (25, 26).  

First described in 1992 by Nicol et al. (27), ELRs comprising integrin-binding motifs such 

as RGD (1, 28-30) or REDV (30, 31) have been investigated as possible materials for 

biomaterial applications. However, thus far, recombinant synthesis has limitations in the 

incorporation of non-canonical amino acids and does not allow the formation of cyclized 

peptides (32). Despite this, ELR hydrogels covalently functionalized with a peptide mimic 

of the receptor-binding region of VEGF (vascular endothelial growth factor) showed 

enhanced HUVEC proliferation over non-functionalized hydrogels (33).  

One drawback of the non-integrin-selective RGD sequence is the inability to elicit 

responses based on closely defined intracellular pathways (34). An elegant approach to 

circumvent this limitation, and an additional lever for the control of cell adhesion and 

proliferation, is orthogonal post-functionalization with peptides via modified lysine side-

chains, for example, via maleimide-thiol coupling (34). Functionalization via biorthogonal 

chemistry is a well-known strategy for the manufacturing of hydrogels and multifaceted 

cell culture scaffolds (35, 36). Another possibility to functionalize biomaterials with 

peptides is via copper-free click chemistry (37). For instance, Krause et al. applied a metal 

free click reaction to functionalize alginate with a cyclic RGD peptide (38).  

The integrin-binding RGD motif is generally applied in either linear or cyclic format, with 

the cell adhesion-promoting properties of these peptides depending on the material 

applied. Linear RGD derivatives, such as GRGDS, are still the most widely applied cell-

adhesion sequences despite the fact that cyclic RGD peptides or RGD peptidomimetics 

provide much higher integrin affinities and selectivities (39, 40). For example, ELRs 

functionalized with cyclo-[KRGDf] showed a 100% improved mouse osteoblast adhesion 

in comparison with ELRs functionalized with linear FGRGDS (16). However, this study 



240 
 

focused on the chemical functionalization of ELRs and did not include recombinant 

synthesized RGD-ELRs as a benchmark. In contrast, spider silk proteins genetically fused 

to GRGDSPG showed similar fibroblast adhesion and proliferation properties compared to 

spider silk proteins covalently modified with cyclo-[KRGDf] (41).  

Recently, Bernhagen and coworkers reported short bicyclic RGD-peptides that bind to 

either integrin αvβ3, or to both integrins α5β1 and αvβ3, with high affinity (42). For example, 

for integrin α5β1, the bicyclic peptide CT3RGDCT3AYJCT3 (J: D-Leucine, CT3 represents 

cysteines that were constrained using the trivalent scaffold 1,3,5-

tris(bromomethyl)benzene) exhibited much higher inhibition (IC50: 90 nM) compared with 

monocyclic RGD-peptide cyclo-KRGDf or linear GRGDS (each IC50: >10 μM) (43). Hence, 

bicyclic RGD-peptides potentially represent a new group of ligands that boost cellular 

adhesion and proliferation in biomaterials more than commonly applied linear RGD 

peptides. 

In this study, we have created RGD-functionalized ELRs by conjugating various high-

affinity integrin-binding bicyclic RGD-peptides to ELRs using copper-free click chemistry 

(44). We then evaluated the cell adhesion and proliferation properties of peptide-ELR 

conjugates for HUVECs. ELRs functionalized with high-affinity bicyclic peptides were 

compared with ELRs functionalized with benchmark RGD peptides and ELRs that 

comprised RGD as part of their backbone at the short, medium and long term.   

2. MATERIALS AND METHODS 

2.1. ELR biosynthesis, modification and characterization 

The ELRs used in this work were obtained using standard genetic engineering techniques 

(31). They were purified using several cycles of temperature-dependent reversible 

precipitations by centrifugation below and above their transition temperature (Tt), thus 

making use of the intrinsic thermal behavior of these compounds (31). The ELRs were 

subsequently dialyzed against purified water and freeze-dried. Two different ELRs, namely 

VKVx24, a structural recombinamer lacking a bioactive sequence, and HRGD6, a 

recombinamer containing the universal cell adhesion epitope (RGD) repeated six times 

per ELR molecule, were obtained. The purity and chemical characterization of these ELRs 
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were verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) 

and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) amino acid composition analysis, differential scanning calorimetry (DSC) and 

nuclear magnetic resonance (NMR) spectroscopy (31, 45). ELRs were chemically modified 

by the transformation of the Ɛ-amine group in the lateral lysine chain to bear azide groups 

(46, 47). VKVx24-N3 and HRGD6-N3 were prepared and characterized by NMR, Fourier 

transform infrared spectroscopy (FTIR), and DSC (Supporting information).  

2.2. Reagents and chemicals 

Incubation and washing buffers were prepared using standard protocols. Amino acids 

were purchased from Iris Biotech (Marktredwitz, Germany) and Matrix Innovation 

(Quebec, Canada). Resins were purchased from Rapp Polymere (Tübingen, Germany) and 

Merck (Darmstadt, Germany). 1,3,5-Tris(bromomethyl) benzene (T3) and (1R,8S,9S)-

Bicyclo[6.1.0]non-4-yn-9-ylmethyl N-succinimidyl carbonate (BCN-NHS) were purchased 

from Sigma-Aldrich (Steinheim, Germany). 2-Azidoethyl (2,5-dioxopyrrolidin-1-yl) 

carbonate was purchased from GalChimia (A Coruña, Spain).  

2.3. Peptide synthesis 

Linear peptide 3c and linear precursor peptides of 1a-1c, 2a-2c, 3a and 3b (Figure 1) were 

synthesized using a fully automated peptide synthesizer from Gyros Protein Technologies 

(Symphony) by Fmoc-based solid-phase peptide synthesis on Rink-amide resin using 

standard coupling protocols. Folding of knottin-RGD peptide 3a and backbone cyclization 

of cyclic RGD peptide 3b were performed according to previously published protocols 

(48). For the formation of bicyclic peptides (1a-c, 2a-c), purified linear peptides were 

dissolved at 0.5 mM in 1:3 MeCN/H2O, and 1.1 equiv. 1,3,5-tris(bromomethyl) benzene 

(T3) dissolved in MeCN (10 mM) and 1.4 equiv. ammonium carbonate (0.2 M in H2O) were 

added. After completion (30-60 min, monitored by UPLC/MS), the reaction was quenched 

with 10% TFA/H2O to pH < 4, followed by lyophilization. All peptides were purified by 

preparative HPLC on an RP-C18 column (Reprosil-Pur 120 C18-AQ 150x20 mm, Dr. Maisch 

GmbH, Ammerbuch, Germany) using a MeCN/milliQ gradient (5-65%) including 0.05% TFA 

followed by lyophilization (Christ Alpha 2-4 LDplus). An overview of all peptides can be 

found in Table 1.  
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2.4. Synthesis of peptide-cyclooctyne conjugates 

BCN-NHS ester (1.1 equiv.) and 10 equiv. N,N-diisopropylethylamine were added to the 

peptides dissolved in DMSO (5 mM, TEC218 10 mM). After completion of the reaction (15-

30 min, monitored by UPLC/MS), the reaction was quenched with 10% TFA/DMSO to pH 

< 4. The product was directly purified by preparative HPLC using a MeCN/milliQ gradient 

(5-65%) including 0.05% TFA, followed by lyophilization. Conjugation was verified by 

matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy 

using a Voyager STR apparatus from Applied Biosystems.   

2.5. Formation of peptide-functionalized ELRs 

The ELRs comprising 5% or 10% peptide functionalization were modified based on the 

following calculations: azide-functionalized ELRs (62809 Da) comprised 24 lysine 

molecules, 80% of which were functionalized with azides (NMR), corresponding to 19.2 

azide groups per ELR molecule. The application of 1 equiv. BCN-functionalized peptide 

would result in the functionalization of 5.21% of the azide groups. Hence, application of 

0.96/1.92 equiv. BCN-functionalized peptide would result in 5%/10% functionalization. As 

such, the application of 3 equiv. and 4 equiv. BCN-functionalized peptide would result in 

15% and 20% functionalization. The conjugation of ELRs with BCN-functionalized peptides 

was performed as follows: azide-functionalized ELRs were dissolved in milliQ water (4 °C, 

20 mg/mL). BCN-functionalized peptides were dissolved at 5 mM in milliQ water (2a in 

50% MeCN/milliQ) and added to the ELR solutions. After shaking the copper-free click 

reactions for at least 24 h at 4 °C, the products were freeze-dried. Conjugation was 

subsequently verified by MALDI-TOF MS. 

2.6. Analysis of turbidity by UV/Vis-spectroscopy 

The ELRs comprising 5% or 10% peptide functionalization were dissolved in milliQ water 

(4°C, 1 mg/mL), and turbidity measurements were performed at a wavelength of 350 nm 

(Agilent Technologies Cary Series UV/Vis Spectrophotometer). The transition temperature 

(Tt) of each RGD peptide-functionalized ELR (ELR-Peptide) was detected by performing a 

temperature ramp analysis.  
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2.7. Adsorption of peptide-functionalized ELRs on TCPS 

The ELRs comprising 5% or 10% peptide functionalization were dissolved at 1 mg/mL in 

DPBS (Dulbecco’s Phosphate Buffered Saline) –Ca –Mg (O/N at 4 °C) then added to a 96-

well tissue culture polystyrene (TCPS) plate for incubation with ELR-Peptide solution O/N 

at 4 °C with gentle shaking. A positive control was obtained by incubating fibronectin at 

10 μg/mL in DPBS –Ca –Mg, whereas a negative control was obtained by incubating BSA 

at 5 mg/mL in DPBS –Ca –Mg. The plates were subsequently sterilized using an ultraviolet 

(UV) lamp for 20 min, the solutions removed and the wells washed twice with DPBS –Ca 

–Mg. Plates were then incubated with a 5 mg/mL BSA blocking solution at 37 °C for 2 h. 

Finally, the solution was removed and the plates washed twice with DPBS –Ca –Mg prior 

to cell seeding.  

2.8. Contact Angle measurements 

Contact angle (CA) measurements were performed using the sessile drop method on a 

Data Physics OCA20 System instrument. The drop profile images during micro-syringe 

dispensation were recorded using an adapted CCD video camera. Measurements were 

taken at ambient temperature 5 s after application of the drops to the surfaces. The 

contact angle values are the average of ten measurements, including standard deviation, 

for different locations on each surface in order to ensure a representative value of the 

contact angle. 

2.9. X-ray Photoelectron Spectroscopy (XPS) 

XPS experiments were carried out using a Physical Electronics (PHI) 5500 spectrometer 

equipped with a monochromatic X-ray source (Al Ka line, energy: 1486.6 eV and 350 W). 

The pressure inside the analysis chamber was 10-7 Pa. All measurements were performed 

at an angle of 45° with respect to both the X-ray source and analyzer. Survey scans were 

taken in the range 0–1100 eV, with a beam diameter of 200 µm, and high-resolution scans 

were obtained for C1s, N1s, O1s. The elemental surface composition was estimated from 

the area of the different photoemission peaks taken from the survey scans modified by 

their corresponding sensitivity factors.  
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2.10. Cell culture and cell adhesion assay  

Human umbilical vein endothelial cells (HUVECs) (Cat.# C-015-10C; Gibco) at passage 2 

were used in all experiments. HUVECs were cultured in Medium 200 (Gibco) 

supplemented with Low Serum Growth Supplement (LSGS) kit (Gibco), thus resulting in 

the following final concentrations: fetal bovine serum (FBS) 2% (v/v); hydrocortisone 1 

µg/mL; human epidermal growth factor 10 ng/mL; basic fibroblast growth factor 10 ng/mL 

and heparin 10 µg/mL. A separate vial of Gentamicin/Amphotericin solution (Gibco) was 

also incorporated at a final concentration of 10 and 0.25 μg/mL, respectively. HUVECs 

were incubated at 37 °C and 5% CO2 and harvested at 90% confluence by trypsin–EDTA 

treatment. 

HUVECs were seeded at a density of 5300 cells/cm2 in serum-free Medium 200 (Gibco) for 

30 min on different surfaces (n = 3), and allowed to adhere for 30 min, after which time 

Medium 200 was removed and the cells cultured in LSGS-supplemented Medium 200 for 

14 days. HUVEC adhesion and spreading were evaluated after incubation for 30 min, 4 h 

and 1, 3, 5, 7 and 14 days. Cultures were provided with fresh media daily, up to the time 

of the staining period or DNA quantification.  

2.11. DNA Analysis  

DNA content was determined using the PicoGreen® assay after incubation for 4 h and 1, 

3, 5, 7 and 14 days. Briefly, the cells were lysed with a solution of 0.1% Triton X-100 (Sigma 

Aldrich) in phosphate buffered saline (PBS) (v/v) (49), and the PicoGreen® analysis for DNA 

content was performed in 96-well plates at standard fluorescein wavelengths (excitation 

at 480 nm and emission at 520 nm) according to the manufacturer’s instructions 

(Invitrogen) using an automated plate reader (Bionova Cientifica, Molecular Devices). 

Fluorescence intensities were transformed into cell numbers using a calibration curve 

obtained by measuring the fluorescence of defined cell amounts (n = 0, 100, 1000, 10,000 

and 100,000): 

n = (y+4.4615)/0.0157 (n: number of cells, y: fluorescence emission) 
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2.12. 2D Immunofluorescent Staining  

Immunofluorescent staining of actin (red), vinculin (green), and nuclei (blue) were 

performed to visualize the HUVECs on different surfaces. After cell culture, cells were fixed 

with 4% (w/v) paraformaldehyde, permeabilized with 0.1% Triton-X 100 and blocked with 

1% bovine serum albumin (BSA) in PBS solution. Focal contact formation was evaluated 

by incubating overnight at 4 °C antivinculin rabbit monoclonal antibody (AlexaFluor® 488) 

(1:200) (Abcam). Cell actin cytoskeletons and nuclei were stained with Rhodamin 

phalloidin (1:80) (Invitrogen) and DAPI (1:10000) (Lonza), respectively. Cell adhesion and 

morphological changes were examined using an inverted fluorescence microscope (Nikon 

Eclipse Ti E) and its associated software. A scan of each surface at low magnification (10x) 

was analyzed for this study. The images are representative of the morphology found in 

the samples studied, with at least two to three captures per well being taken. Quantitative 

image analysis of cell spreading area has been performed at short time incubation (4h); 

the cell area was calculated by the software associated with the microscope Nikon Eclipse 

Ti E. 

2.13. Statistical analysis  

Values are expressed as mean ± standard deviation (SD). Data were analyzed by 

performing the normality test Shapiro-Wilk. The parametric data were analyzed by one-

way analysis of variance (ANOVA) followed by Tukey’s Honestly Significant Difference 

(HSD) post hoc test; if only two groups were being compared, an unpaired t-test was used 

instead of ANOVA to assess statistical difference. The nonparametric data were analyzed 

performing the Kruskal-Wallis test followed by Dunn’s multiple-comparison test. All 

statistical analyses were performed with GraphPad Prism. A P-value lower than 0.05 was 

considered to be statistically significant. 

3. RESULTS 

3.1. Selection and synthesis of RGD peptides  

For this work, we selected three high-affinity integrin αvβ3- and α5β1/αvβ3-binding bicyclic 

peptides for the synthesis of peptide-cyclooctyne conjugates (Figure 1). The αvβ3-binding 
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peptides are K(BCN)-linker-CT3HPQcT3RGDcT3 (1a), K(BCN)-linker-CT3HPQCT3RGDcT3 (1b), 

and K(BCN)-linker-CT3HSQCT3RGDcT3 (1c), whereas the α5β1/αvβ3-binding peptides are 

K(BCN)-linker-CT3RGDcT3AYJCT3 (2a), K(BCN)-linker-CT3RGDcT3AWGCT3 (2b), and K(BCN)-

linker-CT3RGDcT3AYaCT3 (2c). The linker sequence PPPSG-(Abz)-SG was designed based on 

the HexPPP spacer reported by Pallarola et al. (50) “T3” stands for the scaffold derived 

from 1,3,5-tris(bromomethyl) benzene, “Abz” represents 4-aminobenzoic acid, and “J” 

stands for D-Leucine. The selection of the linker will be explained below. In addition to 

these bicycles, we selected K(BCN)-linker-knottin-RGD (3a), cyclo-[K(K(BCN)-linker-)RGDf] 

(3b) and K(BCN)-linker-GRGDS (3c) as benchmark peptides. 

 

Figure 1. Overview of RGD-peptide–cyclooctyne conjugates for the functionalization of ELRs. 1a: 

K(BCN)-linker-CT3HPQcT3RGDcT3; 1b: K(BCN)-linker-CT3HPQCT3RGDcT3; 1c: K(BCN)-linker-

CT3HSQCT3RGDcT3; 2a: K(BCN)-linker-CT3RGDcT3AYJCT3 (J: D-Leu); 2b: K(BCN)-linker-

CT3RGDcT3AWGCT3; 2c: K(BCN)-linker-CT3RGDcT3AYaCT3; 3a: K(BCN)-linker-GCS-SRPRPRGDNPPLTCS-

SSQDSDCS-SLAGCS-SVCS-SGPNGFCS-SG (K(BCN)-linker-knottin-RGD); 3b: cyclo-[K[K(BCN)-

linker]RGDf]; 3c: K(BCN)-linker-GRGDS. Abz: 4-aminobenzoic acid. 
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For the synthesis of peptide-cyclooctyne conjugates, we chose an approach in which the 

integrin-binding sequence was coupled to a peptide linker in solid phase peptide 

synthesis. Pallarola et al. explored the role of the linker system attached to cyclic RGD 

peptides in the inhibition of binding of immobilized vitronectin to the soluble integrin αvβ3 

(50); in their study, linkers comprising a triple- (HexPPP), hexa- (HexPPPPPP) or 

nonaproline (HexPPPPPPPPP) motif did not significantly decrease the inhibition ability. 

Hence, we added a linker that is similar to the HexPPP linker, but with some variations, to 

all the RGD peptides. In order to improve solubility in water-based solvents, we included 

two additional serine residues, and for practical reasons, we used 4-aminobenzoic acid 

instead of a triazole group. Furthermore, we incorporated an N-terminal acetylated lysine 

comprising a free amine in the side chain that allows for conjugation with BCN. Linear 

peptides comprising RGD in one loop and a tripeptide motif providing integrin-selectivity 

and additional affinity in the other, both enclosed by cysteine residues, were transformed 

into bicyclic peptides via trivalent scaffold 1,3,5-tris(bromomethyl)benzene followed by 

reaction with BCN-NHS to form bicyclic RGD peptide-cyclooctyne conjugates. A table of 

calculated and theoretical molecular weights obtained via UPLC/MS analysis can be found 

in the Supporting Information (Table S1). 
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Table 1. Overview of ELRs investigated in this study, including degree of functionalization, RGD 

peptide, and integrin selectivity. ELR labels containing “P0” serve as controls that were not 

covalently modified via copper-free click reaction. * Data from competition ELISA (43). 

3.2. ELR functionalization and MALDI-TOF MS analysis  

We subsequently functionalized the ELR azides with the peptide-cyclooctyne conjugates 

via copper-free click chemistry. This orthogonal reaction does not require catalysts and 

can be performed at room temperature at short reaction time (below one hour). Due to 

the need to maintain the ELRs in solution (below the Tt), the functionalization of ELRs and 

ELR azides was performed at 5 °C overnight. Six bicyclic RGD-peptides (1a-c, 2a-c) and 

three non-selective RGD-peptides (3a-c) were used to functionalize either 5% or 10% of 

the ELR azide groups to receive a total of 18 ELR-peptide conjugates (Table 1). MALDI-

ELR 
reference

Azide functionalization 
degree [%] ELR modification or coating Integrin 

selectivity

P1a 5
P1a-10 10

P1b 5
P1b-10 10

P1c 5
P1c-10 10

P2a 5
P2a-10 10

P2b 5
P2b-10 10

P2c 5
P2c-10 10

P3a 5 αvβ3,
P3a-10 10 α5β1, αvβ5*

P3b 5
P3b-10 10

P3c 5
P3c-10 10

P0-RGD ─ RGD as part of the ELR-backbone multiple

P0 ─ ─ ─

P0-FN ─ Fibronectin

P0-BSA ─ Bovine serum albumin (BSA) ─

J: D-Leu

αvβ3, α5β1

α5β1, (αvβ3)*

K(BCN)-linker-GRGDS

αvβ3, αvβ5*

multiple*

K(BCN)-linker-CT3HPQcT3RGDcT3

K(BCN)-linker-CT3HPQCT3RGDcT3

K(BCN)-linker-CT3HSQCT3RGDcT3

K(BCN)-linker-CT3RGDcT3AYJCT3

K(BCN)-linker-CT3RGDcT3AWGCT3

K(BCN)-linker-CT3RGDcT3AYaCT3

K(BCN)-linker-GCoxPRPRGDNPPLTCox

QDSDCoxLAGCoxVCoxGPNGFCoxG

cyclo -[DfK(K(BCN)-linker)RG]

αvβ3*

αvβ3*

αvβ3*

α5β1, (αvβ3)*

α5β1, (αvβ3)*
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TOF-MS analysis was performed to verify functionalization of the ELRs with the RGD 

peptides. Selected spectra (P0, P1a, P2a, and P3a–c) are shown in Figure 2. The peaks at 

around m/z 62,200 represent non-functionalized ELR, whereas additional peaks reveal 

ELRs that were mono-, di-, tri- or even tetra-functionalized with RGD peptides (Table 2).  

5% Mono-functionalization 

10% Di-functionalization 

15% Tri-functionalization 

20% Tetra-functionalization 

 

Table 2. Comparison between the different rates of functionalization and the peaks detected 

during MALDI-TOF MS analysis. 

All the spectra in Figure 2 reveal differences between 5% functionalization and 10% 

functionalization. In the spectra representing ELRs with 5% peptide functionalization, the 

peaks for monovalent functionalization have a higher intensity than those for bivalent 

functionalization. In contrast, the spectra representing ELRs with 10% peptide 

functionalization show different peak ratios, with the mono- and di-functionalization 

peaks showing higher intensity than the respective peaks for 5% functionalization. 

Moreover, additional peaks for tri- and tetravalent-functionalization of ELRs appear in the 

spectra for ELRs with 10% peptide functionalization. 
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Figure 2. MALDI-TOF MS spectra for non-functionalized ELR and ELRs functionalized with 

5%/10% of bicyclic RGD peptides 1a, 2a and control RGD peptides 3a–c. 

3.3. Analysis of turbidity by UV/Vis-spectroscopy   

A turbidity study was performed for all the functionalized ELRs. In all the cases, a slight 

shift in Tt to lower values was observed as compared to the non-functionalized ELR (VKV-

N3). The turbidity measurements are reported in the Supporting Information (Figures S9-

S11). 
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3.4. Contact Angle   

Static aqueous contact angle analysis was performed in order to verify the correct 

adsorption of ELRs and ELR-Peptides onto tissue culture polystyrene surfaces (TCPS). 

Measurements were taken using ultrapure water drops on four different surfaces: TCPS, 

VKV adsorbed on TCPS (VKV), VKV-N3 adsorbed on TCPS (VKV-N3), ELR bearing peptides 

adsorbed on TCPS (ELR-Peptide). The results (Figure 3) show that TCPS is moderately 

hydrophobic (Ɵ= 71.6° ± 0.5°), whereas VKV and VKV-N3 are markedly hydrophilic (Ɵ= 

24.2° ± 1.5° and Ɵ= 23.3° ± 3.3°, respectively). ELR-Peptides was the most hydrophilic (Ɵ= 

15.6° ± 1.6°), with the difference with respect to VKV-N3 being significant (p < 0.0001), 

thereby suggesting a hydrophilic contribution from the peptides. Measurements were 

repeated in different regions in order to confirm the homogeneous adsorption of ELRs 

and ELR-peptide onto TCPS.  

 

 

Figure 3. Contact angle analysis performed 5 s after application of the drops to the surfaces: 

TCPS; VKV adsorbed on TCPS (VKV); VKV-N3 adsorbed on TCPS (VKV-N3); ELR-bearing peptides 

adsorbed on TCPS (ELR-Peptide). (*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001). 
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3.5. XPS   

XPS was used to characterize the TCPS surface adsorbed with ELRs and ELR-Peptides. The 

surface compositional results from XPS analysis, shown in Table 3, indicate a reduction in 

C1s upon comparing untreated TCPS with VKV-N3 adsorbed on TCPS (VKV-N3) and ELR-

bearing peptides adsorbed on TCPS (ELR-Peptide). XPS analysis also revealed a clear 

enrichment of nitrogen, passing from 0.8% for TCPS to 16.49% and 13.97%, respectively, 

for VKV-N3 and ELR-Peptide. Finally, oxygen also exhibited a slight increase compared with 

the TCPS surface.  

 C1s         N1s         O1s   
TCPS 85.64 ± 1.82       0.74 ± 0.09             13.63 ± 1.73               
VKV 68.69 ± 0.57       15.13 ± 0.28             16.18 ± 0.28               
VKV-N3 68.28 ± 1.29       15.71 ± 1.10             16.01 ± 0.20               
ELR-Peptide 69.79 ± 0.20       14.33 ± 0.51             15.89 ± 0.32               

 

Table 3. XPS analysis performed on different surfaces: TCPS; VKV adsorbed on TCPS (VKV); VKV-

N3 adsorbed on TCPS (VKV-N3); ELR-bearing peptides adsorbed on TCPS (ELR-Peptide). All the 

measurements were performed in triplicate. Values are expressed in % (average ± st. dev). 

 

3.6. Cell-adhesion assay   

3.6.1. Time-dependent cell quantification studies 

The capacity to promote cell adhesion and proliferation of HUVECs on the modified ELRs 

was evaluated at short, medium and long term. Figure 4 shows the time-dependent cell 

quantification for VKV-N3 (P0) and ELRs functionalized with 5% (P1a) and 10% 

modification (P1a-10). The cell count for all time points (except after 14 d) show a 

significant difference upon comparing P0 with P1a and P1a-10. However, no significant 

difference was observed between P1a and P1a-10 at any time point. Similar behavior was 

found for the remaining ELR-peptides (Supporting Information, Figure S7), and the various 

high-affinity integrin-binding peptides used in this study did not show any difference for 

the two concentrations used. As such, we decided to analyze the results for ELR-peptides 

functionalized at 5% (Figures 5–7).  
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Figure 4. Time-dependent cell quantification for VKV-N3 (P0), P1a 5% (P1a) and P1a 10% (P1a-

10) at different time points (30 min, 4 h, 1 d, 3 d, 5 d, 7 d, 14 d). All experiments were carried out 

in triplicate and error bars show standard deviations (*P<0.05; **P<0.01; ***P<0.001; 

****P<0.0001). There was no statistically significant difference between P1a and P1a-10 at any 

time point. 

All the PicoGreen® data collected were subdivided into different groups based on the 

different time points: short-term (30 min, 4 h, 1 d; Figure 5), medium-term (3 d, 5 d; Figure 

6) and long-term (7 d, 14 d; Figure 7). In order to make the bar charts clearer, the ELR-

Peptides have been arranged and clustered into different groups: ELRs functionalized with 

αvβ3-binding bicycle peptides 1a–c (red bars); ELRs functionalized with αvβ3 and α5β1-

binding bicyclic peptides 2a–c (green bars); and benchmark RGD peptides 3a–c (blue 

bars). The grey scale bars represent other controls, namely the RGD in the ELR-backbone 

(P0-RGD), ELR with no RGD peptide (P0), fibronectin coating (P0-FN) and coating with BSA 

(P0-BSA). The positive (P0-FN) and negative controls (P0-BSA) remained between the 

highest and lowest, respectively, thus confirming the reliability of the study.  
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Figure 5. Short-term time-dependent cell quantification (30 min, 4 h, 1 d). Number of cells 

determined for ELRs containing bicyclic peptides 1a–c (red bars) and 2a–c (green bars), and 

control RGD peptides 3a–c (blue bars), RGD in the ELR-backbone (P0-RGD), ELR with no RGD 

peptide (P0), fibronectin coating (P0-FN) and coating with BSA (P0-BSA). The amount of cells was 

calculated from fluorescence intensities using a calibration curve. All experiments were carried 

out in triplicate and error bars show standard deviations. (*P<0.05; **P<0.01; ***P<0.001; 

****P<0.0001). 

For the short-term study (30min, 4h, 1 d; Figure 5), the peptides included after click 

modification supported higher levels of cells than the recombinant ELR-RGD (P0-RGD). At 

30 min all the ELR-Peptides, except for P3c, showed the maximum statistical difference 

with P0-RGD. The differences in cell numbers remained high for almost all ELR-Peptides 

when compared with the P0-RGD for the whole short-term study. In contrast, no 

significant difference was observed between the recombinant ELR-RGD (P0-RGD) and the 
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ELRs lacking RGD (P0). The second comparison (indicated by a dashed line) shows the 

differences between the ELR-Peptide groups, in other words bicyclic peptides 1a–c (red 

bars), 2a–c (green bars), and control RGD peptides 3a–c (blue bars). Essentially no 

significant differences were found between the bicyclic peptide groups, with the only 

exception being for the group of non-selective RGD-peptides (3a-c), for which a greater 

variability and significance were evident. The ELR functionalized with 3a supported cell 

adhesion most efficiently within this group, with cell counts similar to those for ELRs 

functionalized with integrin-selective bicycles (1a-c and 2a-c), whereas 3c showed the 

lowest number of cells among the covalently functionalized ELRs at this time point, albeit 

still higher than for P0-RGD.  

The data collected at 4 h are similar to those obtained at 30 min, with all ELR-Peptides 

except P3c showing the same statistical difference with respect to P0-RGD. The inter-

group comparisons were in accordance with the trend observed at 30 min, with the 

bicyclic peptide groups 1a–c (red bars), 2a–c (green bars) showing no significant 

differences except for the group of non-selective RGD-Peptides (3a-c). 

After 1 day, the differences between groups tended to decrease further, although the 

previous trends were maintained. A slight increase in cell counts at this time point 

suggests an incipient proliferation, although this is not particularly pronounced at this cell 

stage.  
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Figure 6. Medium-term time-dependent cell quantification (3 d, 5 d). Number of cells 

determined for ELRs containing bicyclic peptides 1a–c (red bars) and 2a–c (green bars), and 

control RGD peptides 3a–c (blue bars), RGD in the ELR-backbone (P0-RGD), ELR with no RGD 

peptide (P0), fibronectin coating (P0-FN) and coating with BSA (P0-BSA). The number of cells was 

calculated from fluorescence intensities using a calibration curve. All experiments were carried 

out in triplicate and error bars show standard deviations. (*P<0.05; **P<0.01; ***P<0.001; 

****P<0.0001). 

In the medium-term study (3 d, 5 d; Figure 6), the number of cells practically doubled for 

almost all conditions, with a similar trend as for the initial adhesion, although with some 

exceptions. However, the comparison between the ELR-Peptides and P0-RGD appears less 

clear than for the short-term culture. Thus, despite showing good initial adhesion, P2b 

proliferation on slowed down over longer time periods. In contrast, the difference 

between P0-RGD and P0 became more evident. A comparison within the same group 

revealed statistically significant differences only for P2a-c and P3b - P3c at day 3, and P2a 

- P2b and P3b - P3c at day 5. 

 

Figure 7. Long-term time-dependent cell quantification (7 d, 14 d). Number of cells determined 

for ELRs containing   bicyclic peptides 1a–c (red bars) and 2a–c (green bars), and control RGD 

peptides 3a–c (blue bars), RGD in the ELR-backbone (P0-RGD), ELR with no RGD peptide (P0), 

fibronectin coating (P0-FN) and coating with BSA (P0-BSA). The number of cells was calculated 

from fluorescence intensities using a calibration curve. All experiments were carried out in 

triplicate and error bars show standard deviations. (*P<0.05; **P<0.01; ***P<0.001; 

****P<0.0001). 
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Long-term proliferation studies (7 d, 14 d) revealed that HUVEC growth tends to reduce 

the difference in the ability to promote cell adhesion by the various high-affinity integrin-

binding peptides (Figure 7). Thus, after 7 days almost all the bicyclic peptides, i.e. P1a-c, 

P2a and P2c, showed a significant difference compared with P0-RGD, whereas P3a-c and 

P2b exhibited no clear difference. No significant difference was found within ELR-Peptide 

groups. Finally, after 14 days all conditions except the negative control P0-BSA exhibited 

similar amounts of cells. Indeed, cell counts after 14 days were approximately threefold 

higher that after culture for 7 days under all conditions.  

3.6.2. Morphology studies 

The ELR-Peptides were also characterized by morphological in vitro studies to investigate 

cell attachment, cell spreading, cytoskeletal reorganization and formation of focal 

adhesions. In order to investigate the time-dependent morphology of the cells, they were 

stained with rhodamin/phalloidin (actin skeleton), DAPI (nuclei) and a fluorescent mAb 

(vinculin) and examined by fluorescence microscopy (Figures 8 and 9).  

 

Figure 8. Immunostaining of actin (red), vinculin (green), and nuclei with DAPI (blue) of HUVEC 

cells cultured for different time points (30 min, 4 h, 1 d, 3 d, 5 d, 7 d) on ELRs functionalized with 

bicycles 1a–c (P1a-c) and 2a–c (P2a-c). Scale bars: 100 μm. 
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Figure 9. Immunostaining of actin (red), vinculin (green), and nuclei with DAPI (blue) of HUVEC 

cells cultured for different time points (30 min, 4 h, 1 d, 3 d, 5 d, 7 d) on ELRs functionalized with 

controls 3a–c (P3a-c), and comprising RGD in the ELR-backbone (P0-RGD), no RGD peptide (P0), 

fibronectin coating (P0-FN) and coating with BSA (P0-BSA). Scale bars: 100 μm. 

Since non-adhered cells were discarded after seeding for 30 minutes, those that remained 

adhered, although small and spherically shaped, nevertheless showed small protrusions 

at the periphery or ring-shaped adhesions at the onset of cell culture (30 min) under 

practically all conditions tested (Supporting Information, Figure S8). At early time points, 

the focal contacts are circumscribed to the perinuclear zone, whereas at longer times a 

yellow coloration was found when overlapping actin and vinculin captures.  
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Figure 10. Quantitative image analysis of cell spreading area after 4 h. Cell area has been 

determined for ELRs containing bicyclic peptides 1a–c (red bars) and 2a–c (green bars), and 

control RGD peptides 3a–c (blue bars), RGD in the ELR-backbone (P0-RGD), ELR with no RGD 

peptide (P0) and fibronectin coating (P0-FN). A minimum of 25 images have been analyzed per 

sample, except for P1c, P2b, P3b-c and P0 where the number of images were less than 25 but in 

any case more than 10. The results correspond to a single independent experiment. The values 

are is expressed µm2; the error bars show standard deviations. (*P<0.05; **P<0.01; ***P<0.001; 

****P<0.0001). 

 

The quantitative image analysis of cell spreading area has been performed after short time 

incubation (4 h) (Figure 10). P1a-b, P2c and P3a showed the highest statistical difference 

as compared with P0-RGD, whereas the difference between P3b and P2a was less 

significant. All the remaining ELR-Peptides (P1c, P2b and P3c) did not exhibit significantly 

different cell spreading as compared with P0-RGD. In any cases, no significant differences 

were found within the same peptide group. P2b showed the largest error bars, reflecting 

the vast population of cells having a different spreading area (Figure 10). In contrast, the 

negative control P0-BSA does not appear since no cells were present, (Figure 9). The data 

collected by quantitative image analysis after 4 h are similar to those obtained by cell 

quantification analysis reported in Figure 5. In both analyses, P2b and P3c showed less 

difference as compared with P0-RGD. With respect to the cell spreading area analysis, 
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also P3b and P2a showed a less significant difference compared to P0-RGD, whereas for 

P1c no significant differences were found. When comparing cell spreading areas on ELRs 

within the same group, the trends observed were in accordance with cell quantification 

analysis, where no significant differences were shown, except for the group of non-

selective RGD-Peptides (3a-c).  

4. DISCUSSION 

The focus of biomaterials research often lies with the biomaterial itself rather than the 

cell-adhesion sequence (51), especially given that the surface-protein interaction 

determines the nature of subsequent cell-surface behavior. Herein we have created 

peptide-functionalized ELRs by conjugating various high-affinity integrin-binding, bicyclic 

RGD-Peptides to ELRs via copper-free click chemistry in order to overcome the known 

limitations of recombinant synthesis; for instance, the inability to incorporate non-

canonical amino acids and to form cyclized peptides. Furthermore, this strategy allows 

the bioactive ligand to maintain the flexibility and minimal steric hindrance required for 

cellular interactions. The purpose of this study was to improve the cell-adhesion and 

proliferation abilities of the recombinant and biocompatible substrate ELRs by 

conjugating a very small number (one or two molecules per ELR) of high integrin affinity 

peptides. The choice of the different conditions and peptides was based on very recent 

studies by Bernhagen et al., who reported an exhaustive investigation of high-affinity 

integrin αvβ3- and α5β1-binding bicyclic RGD-Peptides (42, 43). Remarkably, in the same 

studies the researchers also found that linear GRGDS (non-functionalized version of 3c), 

which is probably the most common cell-adhesive ligand in hydrogels, showed relatively 

low integrin αvβ3 and α5β1 affinity, whereas the monocyclic peptide cyclo-KRGDf (non-

functionalized equivalent to 3b) showed a high affinity for integrins αvβ3 and α5β1. 

Similarly, the 32-mer knottin-RGD peptide (origin of 3a) published by Kimura et al. (52) 

non-selectively bound all integrins αvβ3, αvβ5 and α5β1 with high affinity. Finally, a battery 

of nine RGD-Peptides was successfully synthesized and conjugated with cyclooctyne using 

an approach in which the integrin-binding sequence was coupled to a peptide linker. 

Moreover, and discussed above, the solubility in water-based solvents was improved by 

the inclusion of additional serine residues. All the cyclooctyne-functionalized peptides 
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were conjugated to ELR azides via copper-free click chemistry. Functionalization was 

carried out as a mono-functionalization (5%) and di-functionalization (10%), and the ELR-

Peptides were further analyzed by MALDI-TOF MS. Although MALDI-TOF MS analysis does 

not allow the degree of functionalization to be determined quantitatively, a comparison 

of the spectra in Figure 2 reveals different degrees of functionalization depending on the 

type and amount of peptide applied, thus confirming the successful conjugation of two 

different quantities of peptides on the ELRs. Furthermore, a turbidity study was 

performed for all the functionalized ELRs, with a slight shift in Tt to lower values beings 

observed for all ELR-Peptides in comparison with the non-functionalized ELR. This 

essentially negligible Tt shift is likely due to the very small quantity of peptide molecules 

conjugated to the ELRs (one molecule for 5% functionalization and two molecules for 10% 

functionalization) and to the low molecular weight of the peptides. These data show how 

this functionalization strategy does not affect the physical properties of the ELR, 

represented by the Tt value (Supporting Information, Figures S9-S11). 

The ELRs comprising 5% or 10% peptide functionalization were adsorbed onto TCPS in 

order to further investigate the cell adhesion behavior and proliferation over these 

surfaces. XPS and CA analysis were used to confirm the correct adsorption. Thus, XPS 

analysis revealed a change in the surface composition, as can be seen from Table 3 for 

ELRs and ELR-Peptides, with a clear enrichment in nitrogen and a reduction in carbon, and 

oxygen increasing slightly compared with the TCPS surface. These changes in chemical 

composition confirm an adequate adsorption of ELRs and ELR-Peptides onto TCPS (53-55). 

CA measurements help to characterize the affinity of a solution or suspension towards a 

certain surface, with the CA value decreasing as the number and strength of these 

interactions increases. The adsorption of ELRs onto the surface increases the 

hydrophilicity with respect to TCPS and, given the XPS results, this is likely due to the 

enrichment in electronegative atoms like nitrogen and oxygen and to the reduction in 

carbon. This enrichment in electronegative atoms increases the number and strength of 

interactions, such as hydrogen bonds, with the aqueous solution. Surprisingly, the ELR 

containing peptides adsorbed on TCPS was the most hydrophilic surface, with the 

difference with respect to the other ELRs being significant. This suggests a hydrophilic 

contribution from the peptides, which likely expose their electronegative atoms 
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outwards, thereby increasing the number and strength of interactions with the aqueous 

solution. As reported previously, the hydrophilicity of a solid surface is an essential 

requirement for cell-surface interactions (56) and, in this case, combines with a correct 

exposure of RGD peptide sequences.  

HUVECs were chosen to investigate the cell adhesion behavior, proliferation and 

morphology by culture thereof on ELR and ELR-Peptide adsorbed surfaces. Endothelial 

cells form part of a highly specialized tissue for vessel formation that provides stable 

structural support for new vessels. Endothelial cells cover the blood vessels and are 

metabolically very active, being responsible for maintaining vascular homeostasis. In this 

study we have synthesized a battery of nine peptides, which can be sub-divided into 

groups of three with high affinity for αvβ3, α5β1/αvβ3, and multiple integrins (Table 1). 

According to the literature, the remodeling of blood vessels and concomitant 

reorganization of the cytoskeleton requires the involvement of integrins (57). In 

mammals, this family of integrins comprises at least 20 different αβ heterodimers, which 

are expressed on the surface of endothelial cells (57). Different combinations of integrin 

subunits on the cell surface allow cells to recognize and respond to a variety of 

extracellular matrix proteins under different physiological conditions; for example, the 

αvβ1 and α5β1 fibronectin receptors are highly expressed in quiescent endothelial cells, 

whereas the αvβ3 fibronectin and vitronectin receptor is expressed only during 

angiogenesis (57, 58). Herein we have evaluated either the functional avidity or 

proliferation of HUVECs on ELR and ELR-peptide adsorbed surfaces. Loosely adhered or 

unbound cells were removed from the surfaces after incubation for 30 min in order to 

determine the cell fate as a function of the extent of initial attachment to the different 

surfaces and, therefore, the avidity of the cells for the adhesion sequences exposed.  

The adhesion behavior was investigated in a short-term study (up to 1 day, Figure 5), 

which revealed that ELR-bearing peptides supported higher levels of cells than the 

recombinant ELR-RGD. This difference involves either the bicyclic peptides 1a–c or 2a–c, 

each of which exhibits high-affinity for αvβ3 and α5β1/αvβ3 integrins, or the control RGD 

peptides, which exhibit high affinity for multiple integrins 3a–c. It should be noted that 

the backbone-RGD functionalized ELR (P0-RGD) comprises six RGD motifs per molecule, 

while the covalently functionalized ELR-Peptides only comprise one RGD moiety per 
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molecule. This suggests either a higher adhesion capacity for the high-affinity integrin-

binding peptides to HUVECs or a better exposure of these peptides after protein 

adsorption. It is well known from the literature that cell attachment is influenced by 

several factors, one of the most important of which is the RGD concentration (59-61). By 

creating RGD-Peptides functionalized via copper-free click chemistry, we have improved 

the cell attachment capacity while reducing the RGD concentration on the surface, 

although the RGD-concentration function varies for each different bioactive surface and 

cell line (62, 63). 

Surprisingly, the adhesion and proliferation results for the different high-affinity integrin-

binding peptides used in this study showed no difference when compared with the same 

ELR-Peptide for the two concentrations selected. This identical behavior for ELRs having 

5% and 10% peptide functionalization is likely due to the similar and very low number of 

peptide molecules (one and two molecules for 5% and 10%, respectively) on the ELR 

substrate. In contrast, the presence of RGD in the backbone (P0-RGD) did not affect the 

adhesion behavior of cells in the short-term culture when compared with the ELR lacking 

RGD (P0). This could be related to the adsorption process of ELR-RGD molecules, which 

may have not allowed an optimal outwards exposure of the RGD sequence. Overall, the 

short-term results demonstrate a greater avidity of the cells for the bicycle-functionalized 

ELRs. According to the cell adhesion and proliferation results obtained for ELR-Peptides 

functionalized at 5%, the differences observed in the short-term cultures could be 

explained by considering that signal transduction after interaction with a specific integrin 

can trigger different or preferential cellular responses (proliferation, migration and/or 

organization into networks characteristic of early angiogenesis, for example). A 

comparison within the same groups of ELR-Peptides also revealed clear differences for 

various peptides at certain time points. However, these differences do not follow a trend 

as they arise due to the design and synthesis of the different peptides which, although 

they have the same composition, exhibit different affinities for the integrins expressed on 

the HUVEC membrane. The PicoGreen® study is in accordance with the morphological 

study, whereby the focal contacts, which are initially circumscribed to the perinuclear 

zone, give way to vinculin clustering of activated integrins, as can be inferred from the 

yellow coloration found when overlapping actin and vinculin captures. In addition, these 
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were numerous and not restricted to the nuclear periphery. The morphological study 

reveals that short-term capability to support cell adhesion is higher for the surface 

adsorbed with bicycle-functionalized ELRs than for all the other benchmarks. Moreover, 

the cell spreading area at a short time incubation (4 h) followed the same trend of cell 

adhesion, suggesting that bicyclic RGD peptides support cell adhesion and cell 

cytoskeleton. 

The differences in cell numbers were highest in the short-time study for almost all the 

peptide-bearing ELRs when compared with the recombinant ELR-RGD. However, a 

comparison between the ELR-Peptides and ELR-RGD showed much smaller differences in 

the long term, with HUVEC growth tending to minimize the initial difference in the ability 

to promote cell adhesion by the various high-affinity integrin-binding peptides. 

Differences within the same groups of ELR-Peptides were also relatively small. 

Intercellular contacts between HUVECs inhibit their proliferation and growth stops. A 

possible explanation for the similar cell numbers in long-term cultures (7 d, 14 d, Figure 

7) is that the rapid proliferation corresponds to the earlier confluence with respect to the 

cells that do not exhibit intercellular contacts. However, in contrast to the group of non-

selective RGD-Peptides, which exhibit high affinity for multiple integrins, almost all the 

bicyclic peptides exhibited the highest proliferation data at longer times, showing a 

significant difference with respect to ELR-RGD. The cell quantification data show that 

essentially similar proliferation rates were observed for the bicyclic peptides optimized 

for both αvβ3 and α5β1 affinity/selectivity, thus enabling either active or quiescent HUVECs 

to be targeted. The morphological study shows how the surfaces that have performed a 

better adhesion at short times, are those where the cells exhibit more expanded and less 

sharped morphology at longer times. Given that a similar situation is found for cells 

cultured on fibronectin (positive control), the peptide-bearing ELRs appear to be a better 

substrate for cell stretching compared with the recombinant-synthesized ELR-RGD (P0-

RGD) and ELR itself (P0). However, these differences became less apparent as cell cultures 

were maintained for longer periods, probably as a result of the analysis chosen for this 

cell type.  

In the light of these results, the various high-affinity integrin-binding peptides used in this 

study appear to play an important role, especially during short-term culture. RGD Peptide-
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functionalized ELRs enhance the ability to promote cell adhesion compared with 

recombinant-synthesized ELR-RGD, irrespective of the lower net RGD concentration of 

covalently functionalized ELRs. Moreover, taking into account the limitations of in vitro 

culture, an in vivo study would be required to determine whether active HUVECs involved 

in angiogenesis could be selectively targeted with bicycle-functionalized ELRs optimized 

for high αvβ3 integrin affinity (P1a-P1c). Similarly, bicycle-functionalized ELRs optimized 

for α5β1 affinity (P2a-P2c) could exhibit a specific interaction with endothelial cells in a 

quiescent state. Finally, we have opened up a new application for ELRs as a biocompatible 

substrate in studies to determine which integrins need to be targeted for optimal cell 

adhesion and proliferation. 

5. CONCLUSIONS 

The in vitro studies of ELRs functionalized with high-affinity integrin αvβ3- and α5β1-binding 

RGD bicycles suggest that these bicycles provide an interesting alternative to promote fast 

cell adhesion on 2D biomaterial surfaces compared with well-known linear or monocyclic 

RGD peptides. Our initial hypothesis that high-affinity integrin-binding RGD bicycles, as 

determined in solid-phase immunoassays (43), should improve integrin-mediated cell 

adhesion and proliferation to a significantly greater extent than monocyclic and linear 

RGD was partially verified. Furthermore, we have shown that covalent RGD-

functionalization of ELRs via copper-free click reaction is more efficient for inducing 

integrin-mediated cell adhesion and proliferation than the recombinant synthesis of ELRs 

comprising RGD as part of their backbone. This strategy could be used to ensure correct 

exposure of the bioactive sequence, thereby guaranteeing an optimal cell-material 

interaction. Finally, we believe that ELRs functionalized with integrin-selective RGD-

bicycles represent an attractive and efficient way to design integrin-selective polymer 

surfaces with the potential to evaluate cell-adhesion behavior and tailor high integrin 

peptides for specific biomedical applications.    

Notes 

Pepscan is the inventor of the CLIPS technology and holds a patent on the synthesis of 

bicyclic peptides using this technique. 
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SUPPORTING INFORMATION 

Differential Scanning Calorimetry (DSC) measurements 

DSC experiments were performed on a Mettler Toledo 822e DSC with a liquid nitrogen 
cooler accessory.  

Both temperature and enthalpy were calibrated with an indium standard at the same 
experimental conditions used for the studied materials. Water solutions of ELRs at 50 mg 
mL-1 were prepared at different values of pH. In a typical DSC run, 20 µL of the solution 
was placed inside a standard 40 µL aluminium pan hermetically sealed. The same volume 
of water was placed in the reference pan. As for ELR-hydrogel analysis, 20 mg of the 
hydrated hydrogel was placed in the sample pan. To account for the exact amount of 
polymer in the assayed hydrogel, the sample was lyophilized and weighted after DSC run.  

All samples were equilibrated for 10 min at 0ºC inside the sample chamber just before the 
beginning of each experiment, and then, heated from 0 to 60 ºC at a heating rate of 
5ºC/min. The scans were run under a nitrogen atmosphere.  

 

 

Figure S1. DSC graph of HRGD6-N3 showing the experimental Tt in PBS at physiological pH. 
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Figure S2. DSC graph of VKV-N3 showing the experimental Tt in PBS at physiological pH. 

 

Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR analysis was conducted with a Bruker FTIR spectrophotometer (Bruker, USA). For 
each spectrum, a 512-scan interferogram was collected at single beam absorption mode 
with a 2 cm-1 resolution within the 4000- 600 cm-1 region. For each sample several FTIR 
absorption spectra were collected. Five measurements were averaged to obtain the final 
FTIR absorption spectrum of the sample. Residual water vapour absorption was 
interactively subtracted from the sample spectra. 

Spectral calculations were performed by the OPUS (version 4.2) software (MATTSON 
INSTRUMENT, INC.).  
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Figure S3. FTIR of HRGD6-N3. 

 

Figure S4. FTIR of VKV-N3. 

 

Proton nuclear magnetic resonance 1H-NMR Spectroscopy 

NMR analysis was carried out using a 400 MHz Agilent Technologies equip with an Agilent 
MR console 400 and a One NMR probe. The measurements were carried out at 298 K with 
samples of 20–30 mg of the modified elastin like recombinamers, purified and dissolved 
in DMSO-d6. Chemical shifts (δ) are given in ppm. 
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The no deuterated dimethyl sulfoxide peaks at d ¼ 2.5 ppm and d ¼ 39.51 ppm were used 
as internal reference for 1H and 13C NMR spectra, respectively. 

 

 

Figure S5. H-NMR spectrum of HRGD6-N3 showing the integration of the peaks corresponding to 

the different types of hydrogens. 
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Figure S6. H-NMR spectrum of VKV-N3 showing the integration of the peaks corresponding to the 

different types of hydrogens. 

 

 

Table S1. Molecular weights of all cyclooctyne (BCN)-functionlized RGD peptides as obtained 

from UPLC/MS analysis. Calculated masses were determined using ChemDraw software. 

Peptide Sequence Mfound [Da] Mcalc [Da]

1a K(BCN)PPPSG[Abz]SG-CT3HPQcT3RGDcT3 2176,78 2176,47
1b K(BCN)PPPSG[Abz]SG-CT3HPQCT3RGDcT3 2176,59 2176,47
1c K(BCN)PPPSG[Abz]SG-CT3HSQCT3RGDcT3 2166,43 2166,43
2a K(BCN)-PPPSG[Abz]SG-CT3RGDcT3AYJCT3 2162,34 2161,50
2b K(BCN)-PPPSG[Abz]SG-CT3RGDcT3AWGCT3 2129,34 2128,43
2c K(BCN)-PPPSG[Abz]SG-CT3RGDcT3AYaCT3 2119,40 2119,41
3a K(BCN)-PPPSG[Abz]SG-knottin-RGD 4337,85 4336,81
3b cyclo -[K(K(BCN)-PPPSG[Abz]SG)RGDf ] 1648,57 1648,84
3c K(BCN)-PPPSG[Abz]SG-GRGDS 1534,37 1534,65

J: D-Leu
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Figure S7. Time-dependent cell quantification for ELRs containing peptides at 5% and 10%; 1a–c 

(red bars) and 2a–c (green bars), and control RGD peptides 3a–c (blue bars), at different time 

points (30 min, 4 h, 1 d, 3 d, 5 d, 7 d, 14 d). All experiments were carried out in triplicate and 

error bars show standard deviations. There was no statistically significant difference between 5% 

and 10% at any time point. 
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Figure S8. Some examples of magnified captures of immunostained HUVEC cells seeded on P1a 

(A), P3a (B), P2c (C); P0-RGD (D), P0-FN (E) and P0-BSA (F) that remained adhered after 30 min of 

incubation and washing. Actin is stained in red, vinculin in green, and nuclei with DAPI in blue. 

Small protrusions are marked with white arrows. Scale bars are 50 µm. 
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Figure S9. Turbidity analysis of VKV-N3 and ELRs functionalized with bicycles 1a–c at 5% (P1a-c) 

and 10% (P1a-c-10). 

 

Figure S10. Turbidity analysis of VKV-N3 and ELRs functionalized with bicycles 2a–c at 5% (P2a-c) 

and 10% (P2a-c-10). 

 



281 
 

 

Figure S11. Turbidity analysis of VKV-N3 and ELRs functionalized with controls 3a–c at 5% (P3a-c) 

and 10% (P3a-c-10). 
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Abstract 

A new generation of smart biomaterials that show multiple modular behaviour is a real 

challenge for targeting complex biomedical system. Herein we developed a smart 

biomaterial based on Elastin-like Recombinamers with allosteric control of RNase A 

activity. Taking advantages by the recombinant DNA techniques, we obtained a smart-

ELRs containing bioactive sequences sensible to external stimuli. It was designed 

containing 10 consensus sequence phosphorylation sites regularly distributed along the 

ELR, and by the Ribonuclease A active sequence (RNase A). According to the position of 

RNase A relative to the ELR backbone, several variants of the smart-ELR have been 

produced. The smart-ELRs were further characterized by several experimental techniques 

(SDS-PAGE, FTIR and HPLC-HR-MS), showing the capacity to be fully phosphorylated and 

further de-phosphorylated. This reversible system was then investigated by turbidity 

analysis, demonstrating an evident shift in Temperature transition (Tt) value due to the 

(de-)phosphorylation. Finally, the allosteric control of the RNase A catalytic activity was 

evaluated for all the different variants of the smart-ELR. The allosteric control of RNase A 

activity by the selective phosphorylation was demonstrated. Moreover, the different 

designs of the smart-ELRs exhibited different catalytic activity, showing the importance of 

the RNase A position according to the ELR backbone. 
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1. INTRODUCTION 

Research is moving towards the development of new materials capable to combine 

modular features in order to tailor custom applications. Smart materials have gained 

widespread interest in material science, they have been used in a large variety of 

applications (1-4). In particular, this new class of material opened new frontiers in the 

biomedical fields, such as for tissue engineering, regenerative medicine application and 

for medical diagnostics (5, 6).  The concept of smart, intelligent or stimuli-responsive 

materials derived from the development of materials that show large conformational 

changes in response to small environmental stimuli such as temperature, ionic strength, 

solvent polarity, electric/magnetic field, or light (7). Above the variety of all the stimuli 

that can be employed, an increasingly important concept is about biomaterials with 

enzyme responsiveness due to the enzyme’s ability to perform in mild conditions, and to 

their high selectivity in reaction they catalyze (8). The escalation in the development of 

enzyme-responsive materials is driven by the motivation to mimic bio-molecular 

recognition processes (9). One of the most common application is therapeutic delivery; 

for instance, Fouladi et al. developed enzyme-responsive liposomes for delivery of 

anticancer drugs (10). Moreover, it is important to take into account the versatility of this 

new class of biomaterial, considering which type of biomaterial has been chosen to be 

engineered and for which purpose. For example, Overstreet at al. developed a novel 

thermoreversible copolymer of poly-NIPAAm with collagenase-sensitive solubility 

behaviour (11). Considering that for the most biomedical applications based on enzymes 

it is often essential to switch on or off the enzymatic reaction, Kim et al., performed a 

study where the use of conducting polymers was employed for building a “bio-switch 

chip” based on nanostructured polymers and entrapped enzyme; the authors 

demonstrated the switching of enzyme (glucose oxidation) in real time (12). Therefore, 

enzyme-responsive smart biomaterials can be applied not only in biomedical applications; 

Yang e al. created a controllable switching of enzyme activity by Poly(N-

isopropylacrylamide)-based microgels through mineralization of calcium carbonate in 

high-pressure CO2 (13). Allosteric regulated enzymes are very functional; in many cases, 

protein functionality is related to changes in the conformational state of certain parts of 

the molecule; whereby these changes render molecules active or inactive. The features 
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that have to be taken into account for the development of smart biomaterial with 

allosteric domains are the ability to be post-translationally and reversibly modified by 

enzymatic reaction, and the capacity to exhibit a movable solubility frontier close to the 

body temperature. The common strategy for the development of enzyme-responsive 

material is to covalently link enzymatic substrates to amphiphilic copolymers (14, 15). In 

addition to that strategy, there is also a supramolecular strategy for the preparation of 

enzyme-responsive biomaterials, which features the non-covalent integration of 

enzymatic substrates into assemblies (16, 17). A promising and powerful strategy 

extensively study for the design of bioactive biomaterials is the genetic engineering 

strategy based on recombinant DNA techniques (18). One of the most important 

biomaterials taking part in this category is Elastin-like Recombinamers (ELRs). ELRs are 

protein based polypeptides that comprise repetitive units of the Val−Pro−Gly−X−Gly 

(VPGXG)n pentapeptide, in which X (guest residue) could be any amino acid except L-

proline. ELRs shows several advantages of designing smart biomaterials. First, they exhibit 

thermo-responsiveness due to the change of the protein conformation above the so-

called transition temperature (Tt), which itself depends on the amino acid composition of 

the polymer (19). ELRs are soluble below their Tt and become insoluble and aggregate at 

a temperature above their Tt, thereby, ELRs are close to a frontier between solubility and 

insolubility (20-22). This feature is important considering that gives the possibility to begin 

the design of temperature triggered self-assembling polymers using a repeated motif that 

is intrinsically responsive to its environment (23). Second, the genetic engineering method 

enables biosynthesis of fusion constructs with precise control over chain length and 

protein position which, makes their sensitivity to the environment highly tuneable (24, 

25). Third, the design of the ELR can be engineered in order to be responsive to other 

triggers in the context of self-assembly (26, 27). Finally, taking advantage from the ability 

of ELRs to modify the activity of functional proteins, they can be used for the development 

of natural systems with added allosteric control of their function (28, 29). 

There are many examples of smart biomaterials based on ELR (smart-ELR); for biomedical 

and biomimetic applications (30-34), some of them are smart-ELR with enzyme-

responsiveness (23, 35-37). Du et al. fused an ELR to the D-amino acid oxidase, thereby 

increasing the solubility and stability of that enzyme (38). Later, in a paper from the same 
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group, Gao et al. (39) fused ELRs to two enzymes to form ELR-fusion R-ω-transaminase 

and ELR-fusion D-amino acid oxidase, which, at temperatures above the Tt of the ELR part, 

assembled to form two-enzyme complexes with significantly improved catalytic 

efficiency. Herein, we propose a new type of enzymatic responsive smart-ELR with 

allosteric control of enzymatic activity. The smart-ELR enzyme was designed containing 

the consensus sequence for the Kinase/Phosphorylase enzyme. Furthermore, it was 

engineered with the sequence of RNase A which is a type of digestive enzyme used to 

specifically cleave single-stranded RNA (40). RNase A was chosen as the modular enzyme, 

considering its relatively small protein structure consisting of only 124 amino acid (41), 

and its well-known optimal refolding properties (42, 43). Finally, taking into account that 

the folding of the smart-ELR into the 3D structure can alter the enzymatic activity it was 

carefully designed three different variants of the smart-ELR according to the position of 

the RNase A domain relative to the ELR backbone. Finally, the RNase A activity modulated 

by the enzymatic phosphorylation/de-phosphorylation was evaluated, and a comparison 

between the different variants has been made.    

2. MATERIALS AND METHODS 

2.1. ELR biosynthesis and purification 

The cloning and molecular biology for gene construction were performed using standard 

genetic-engineering methods (44). In this study, four different smart-ELRs were designed 

(Figure 1). The four smart-ELR designed differ among each other for the composition of 

bioactive sequences and for the disposition of those sequences. All of the smart-ELRs were 

designed containing ten consensus sequence for the Kinase/Phosphorylase enzyme (45); 

in order to provide a better exposition of the consensus sequence, the consensus 

sequence was flanked by hydrophilic sites. Moreover, all the smart-ELRs were composed 

by hydrophobic blocks having Isoleucine as the guest amino acid. Finally, the smart-ELRs 

was further engineered with the RNase A sequence. According to the position of the 

RNase A domain relative to the ELR backbone, four different types of smart-ELRs were 

generated: TI, TR, RT and TRT.  
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TI is composed of the hydrophilic sequence and the hydrophobic block. MESLLP-

[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]10V 

TR has the same composition of TI, plus the RNase A sequence at the N-terminal. 

MESLLP[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]10VETAAAKFERQHMDSSTSAASSSNYCNQM

MKSRNLTKDRCKPVNTFVHESLADVQAVCSQKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNC

AYKTTQANKHIIVACEGNPYVPVHFDASV  

RT has the same composition of TR, plus the RNase A sequence located at the C-terminal. 

MESLLPVETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLADVQAVCS

QKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAYKTTQANKHIIVACEGNPYVPVHFDAS-

[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]10V 

TRT has the identical composition of TR and RT, but in this case, the RNase A domain was 

located exactly in the middle of the ELR backbone sequence.  

MESLLP[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]5VETAAAKFERQHMDSSTSAASSSNYCNQMM

KSRNLTKDRCKPVNTFVHESLADVQAVCSQKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCA

YKTTQANKHIIVACEGNPYVPVHFDAS-[(VDLDVPIPGRFDRRVSVAAE(VGIPG)10]5 V 

 

Figure 1. Graphical scheme of the smart-ELRs. The hydrophilic sequence containing the 

consensus sequence is represented by the blue block; according to the key, the consensus 

sequence is marked in bold, and the Serine residue where occurs the phosphorylation/de-

phosphorylation is marked in red. The hydrophobic block is represented by the red block. RNase 

A sequence is represented by the green block. 

Production was carried out by recombinant techniques using Escherichia coli as the cell 

system, as described previously (44, 46-48). Purification was performed by several cooling 

and heating purification cycles (Inverse Transition Cycling) following centrifugation; the 

ELRs obtained in this manner were dialyzed against MilliQ (MQ) water and lyophilized. 
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The purity and molecular weight (MW) of the ELRs were verified by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Amino acid composition analysis 

and infrared spectroscopy (FTIR) was also performed (49). The characterization results are 

provided in the Supporting Information (Figure S1 – S7). 

2.2. Smart-ELRs phosphorylation and de-phosphorylation 

Phosphorylation and de-phosphorylation reactions were performed to modulate the 

smart-ELR state. The smart-ELRs were dissolved at a concentration of 5 mg/mL either for 

phosphorylation or de-phosphorylation reaction. Specific buffers were prepared for the 

two reactions. For the phosphorylation: the phosphorylation buffer was composed by 

NEBuffer for protein Kinases (PK) 1X (New England BioLabs), Adenosine 5’-Triphosphate 

(ATP) 200 µM (New England Biolabs), and milliQ water. The concentration of ATP was in 

excess according to the stoichiometry of the reaction (2,6 times more), in order to 

guarantee the presence of phosphates groups for complete phosphorylation of the ELRs. 

The cAMP-dependent Protein Kinase (PKA) catalytic Subunit (New England BioLabs) was 

added to the solution buffer with a ratio of 5000 Units of enzyme per mL of reaction 

buffer. The solution was further incubated 3 h at 20 °C (temperature on which the ELRs 

were at dissolved state) under shaking. For the de-phosphorylation: the de-

phosphorylation buffer was composed by CutSmart Buffer 1X (New England BioLabs), and 

milliQ water. The Alkaline Phosphatase, Calf Intestinal (CIP) (New England BioLabs) was 

added to the solution buffer with a ratio of 100 Units of enzyme per mL of reaction buffer.  

The solution was further incubated 3 h at 20 °C under shaking. According to the design of 

the biomaterial, ten phosphate groups can theoretically be transferred/removed to each 

smart-ELR. After both the reactions, the enzymes (PKA and CIP) were removed in the same 

way: the solution was heated up to 80 °C for 15 min in order to inactivate and unfold the 

enzyme. Afterwards, quick centrifugation was performed and the pellet was re-dissolved 

in MilliQ water at 1 mg/mL O/N at 4 °C under shaking. Then, quick centrifugation at 4 °C 

was performed to remove the unfolded enzyme from the solution. Finally, the solution 

went through dialysis and freeze-drying steps.  
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Figure 2. Graphical scheme of the phosphorylation and de-phosphorylation reaction of the 

smart-ELRs. Ten phosphate groups can theoretically be transferred/removed to each smart-ELR. 

2.3. Mass analysis (HPLC-HR-MS) 

The phosphorylation/de-phosphorylation rate of the four different smart-ELRs was 

analyzed by High-Performance Liquid Chromatography-High Resolution-Mass 

spectrometry (HPLC-HR-MS). Mass spectra were performed using an ultra-high‐resolution 

QTOF instrument (MAXIS II, BRUKER, Bremen-Germany). Electrospray ionization source in 

positive mode was used for all the analyses and the parameters were adjusted as follows: 

Capillary voltage 3400 V, End plate offset 500 V, in-source Collision Induced Dissociation 

energy (isCID) 130 eV. Nitrogen was used as nebulizer gas (pressure of 3 Bar) and drying 

gas (heated to 250°C, flow 4 L/min). The scans of MS spectra were conducted in the m/z 

range of 1000 to 12000. For accurate high-resolution mass spectrometry (HRMS) external 

calibration was performed after each chromatographic run by means of a mixture of 

phosphazenes. Prior to mass detection samples were separated in a HPLC instrument 

(HP1100 Series, Agilent Technologies) using a Vydac-C4 Protein column (300 Å, 250 mm, 

4.6 mm id, 5 mm particle size), the flow rate was set to 0.5 mL/min, solutions of 0.2% 

trifluoroacetic acid in water (v/v) and 0.1% trifluoroacetic acid in acetonitrile (v/v) were 

used as mobile phases A and B respectively. For each sample, a 4 mg/mL solution was 

prepared in DMSO and 100 µL of it was loaded on the column. The separation was 

achieved by a 25 min linear gradient from 30% to 80% B, afterwards, isocratic conditions 

were kept for a 60 min total run time. Finally, the MaxEnt algorithm was applied to the 
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protein spectrum to de-convolute the multi-charged signals in order to obtain the neutral 

intact mass protein. 

2.4. Turbidity analysis 

The Tt of all the ELRs was verified by Turbidity using the Cary Series UV-Vis 

Spectrophotometer (Agilent Technologies). The analysis for the determination of the Tt 

shift before and after the phosphorylation and the de-phosphorylation was recorded for 

ELRs at 5 mg/mL. For all the turbidity analysis (including buffer and concentration 

dependence experiments), a thermal ramp was carried out at 1 °C/min and the turbidity 

was recorded at a wavelength of 350 nm.   

2.5. Dynamic Light Scattering (DLS) 

Light scattering measurements were performed using a BI-200SM multi-angle goniometer 

(Brookhaven Instrument, Holtsville, NY) with a 33mWHe−Ne vertically polarized laser at a 

wavelength of 632.8 nm and a digital correlator (BI-9000AT). All the ELRs solutions were 

prepared by dissolving the ELRs in RNase buffer, thus stored at 4 °C overnight to allow the 

complete dissolution of the smart-ELRs and filtered using 0,45 µm PVDF syringe filter. 

Afterwards, the samples were introduced into the polystyrene cuvette and stabilized for 

5 min at 37 °C to allow supramolecular assembly. DLS measurements were performed to 

calculate the size distribution (Volume mean (nm)) and polydispersity index (PDI). All the 

measurements were performed in triplicates. 

2.6. RNase A activity analysis 

The RNase A activity of each smart-ELRs was evaluated either for the phosphorylated or 

dephosphorylated state. The assay was performed following the general ribonuclease 

assay using methylene blue (50). The buffer of the assay was adjusted for the RNase A 

activity. Briefly, the RNase buffer was prepared (50 mM Tris HCl, 250 mM KCl, 3 mM 

MgCl2, 10 mM DTT); Methylene Blue buffer was obtained dissolving Methylene Blue 

(Sigma-Aldrich) in RNase buffer at 0,1 mg/mL, whereas RNA solution was obtained 

dissolving RNA from yeast (Roche) in RNase buffer at 10 mg/mL. RNA solution (100 µL) 

was mixed with the methylene blue buffer (400 µL) and pre-incubated at 37 °C for 10 min 

in the dark. Afterwards 500 µL of the ELRs solution (1 mg/mL) was added to reach a final 
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volume of 1 mL and an ELRs concentration of 0,5 mg/mL. Afterwards the solution was 

incubated at 37 °C for 15 min in the dark, and then the spectrophotometer analysis was 

performed at 688 nm. 

2.7. Statistical analysis 

Values are expressed as mean ± standard deviation (SD). The data were examined with a 

one-way analysis of variance (ANOVA) followed by Tukey’s Honestly Significant Difference 

(HSD) post hoc test. All statistical analyses were performed with GraphPad Prism. A P-

value lower than 0.05 was considered statistically significant. 

 

3. RESULTS 

3.1. Smart-ELRs phosphorylation and de-phosphorylation 

The design of our smart-ELR was composed by the inclusion of ten (de-)phosphorylation 

consensus sequence regularly distributed along the ELR, moreover, the consensus domain 

was flanked by a hydrophilic sequence for better accessibility to the Kinase (PKA) and 

Phosphatase (CIP). Finally, the Isoleucine was selected as a guest amino acid in order to 

have a counter hydrophobic-part tailoring our smart-ELR for mild conditions. 

Furthermore, according to the position of RNase A sequence in relation to the ELR 

backbone, three different versions of the smart-ELRs were obtained by DNA recombinant 

techniques (TR, RT, TRT) (Figure 1). 

The phosphorylation/de-phosphorylation rate of all the smart-ELRs was analyzed by HPLC-

HR-MS. Mass Spectrometry spectra are shown in Supporting Information (Figure S8-S11). 

In table 1 there are reported the values of all the smart-ELRs in different states, where 

Native means before phosphorylation, Phosphorylated means after phosphorylation, and 

De-Phosphorylated means after De-phosphorylation. 
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HPLC-HR-MS 

(Da) 

Native Phosphorylated Dephosphorylated Δ Native - 

Phosphorylated 

TI 65077 65873 65075 796 

TR 78611 79410 78612 799 

RT 78612 79412 78610 800 

TRT 78609 79411 78613 802 

 

Table 1. HPLC-HR-MS of all the smart-ELRs in different states. Native: before Phosphorylation; 

Phosphorylated: after Phosphorylation; De-Phosphorylated: after De-phosphorylation. Mass 

values are expressed in Dalton (Da). 

In the case of TI, the mass measured in the native state is 65077 Da; whereas the 

phosphorylated state showed a mass of 65873 Da; finally, the de-phosphorylated TI mass 

was 65075 Da. The difference between the Native and the Phosphorylated Mass of TI was 

796 Da, which coincides with the difference in MW recorded between the Phosphorylated 

and the De-phosphorylated state of TI (798 Da). On the other hand, the mass values 

recorded for TR, RT and TRT in their native state are higher than the mass of TI in the 

native state, due to the presence of RNase A sequence. These values were 78611 Da for 

TR, 78612 Da for RT and 78609 Da for TRT; whereas after the phosphorylation it was 

recorded 79410 Da, 79412 Da and 79411 Da, for TR, RT and TRT respectively. As it was 

recorded for TI, also for TR, RT and TRT the difference between the Native and the 

Phosphorylated Mass was in around 800 Da, which coincides, also for the last ones, with 

the difference recorded between the Phosphorylated and the de-Phosphorylated state.  

The thermally driven aggregation of the ELRs was investigated using the turbidity 

approach. The increment in temperature beyond the critical point results in a sharp 

increase in turbidity (51, 52). The Tt is defined as the temperature at 50% maximal 

turbidity (51). Turbidity was measured as a function of the temperature of ELR solutions 

to investigate the aggregation temperature. The turbidity analysis was performed for all 

smart-ELRs in order to verify the smart-ELR state modulation by the enzymatic 

phosphorylation and de-phosphorylation. As it has reported above, a thermal ramp was 

recorded before and after the phosphorylation (Figure 4, red lines), and before and after 

the de-phosphorylation (Figure 4, black lines). All the smart-ELRs showed a sharp peak in 
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turbidity when they turned to aggregate states; this subsequently stabilized over the 

entire temperature range analyzed, with a maximum optical density (OD) of around 2.5.  

In all the cases, a clear shift in temperature was recorded. The difference in Tt for TI 

between before and after phosphorylation was of 15 °C, passing from 26 °C to 41 °C. 

Whereas for TR, RT and TRT the Tt shift was around 12 °C in all the cases. The smart-ELRs 

dissolved in the phosphorylase buffer showed lower Tt compared to the kinase buffer due 

to the different saline composition (Figure 4, red dashed line compared to the black 

continuous line). The difference in Tt between the smart-ELRs before and after de-

phosphorylation was in all the cases less evident than after the phosphorylation. After the 

de-phosphorylation, TI showed a Tt shift of 13 °C; whereas for TR, RT and TRT the Tt shift 

was around 8 °C. Although the delta (Δ) in Tt shift recorded after the de-phosphorylation 

was lower than after the phosphorylation, the Tt of the de-phosphorylated smart-ELRs 

was similar to the Tt of the native smart-ELRs in all the cases. Indeed, for TR, RT and TRT 

the Tt before phosphorylation (Figure 4 B, C, D red continuous lines) coincides with the Tt 

after the de-phosphorylation (Figure 4 B, C, D black dashed lines). The turbidity analysis 

for TI before phosphorylation (Figure 4 A red continuous lines) showed a Tt slightly higher 

(26 °C) than the Tt after the de-phosphorylation (24 °C) (Figure 4 A black dashed lines).  

 

 



296 
 

 

 

 

 



297 
 

 

 

Figure 4. Turbidity analysis of TI (A), TR (B), RT (C), TRT (D). All the samples were measured at 5 

mg/mL carrying out thermal ramp at 1 °C/min for the range between 5 and 65 °C. Red lines show 

the turbidity behavior of the smart-ELR before phosphorylation (continuous line) and after 

phosphorylation (dashed line). Black lines show the turbidity behavior of the smart-ELR before 

de-phosphorylation (continuous line) and after de-phosphorylation (dashed line). 

 

In order to see the effect of saline buffer on the Tt, a turbidity analysis was performed 

dissolving TI in milliQ (Figure 5A). The Tt shift recorded in MQ was much higher than the 

Tt shift in saline buffer. Indeed, the Tt shift caused by phosphorylation was of 41 °C, passing 

from 35 °C for the TI before phosphorylation to 76 °C for the TI after phosphorylation. 

Moreover, the Tt before phosphorylation (Figure 5A, black line) coincides with the Tt after 

the de-phosphorylation (Figure 5A, orange line). 
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Figure 5. (A): Turbidity analysis performed in milliQ at 5 mg/mL carrying out thermal ramp at 1 

°C/min for the range between 5 and 65 °C of TI before phosphorylation (black line), after 

phosphorylation (light blue line) and after de-phosphorylation (orange line). (B) Turbidity 

analysis of TR performed in RNase buffer at different concentration carrying out thermal ramp at 

1 °C/min for the range between 5 and 45 °C. For all the measurements a thermal ramp was 

carried out at 1 °C/min and the turbidity was recorded at a wavelength of 350 nm. 

In order to see the dependence of concentration on the Tt, a comparison between 

concentrations was also performed as it is reported in Figure 5B. A turbidity analysis was 
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performed dissolving TR in RNase buffer at several concentrations. The highest 

concentration analyzed was 2 mg/mL, showing a Tt of 24 °C; whereas the lowest 

concentration analyzed was 0,05 mg/mL, showing a Tt of 32 °C. The concentration of 0,5 

mg/mL showed a Tt of 27 °C, and it was selected for RNase A activity analysis.  

Once that the concentration was fixed at 0,5 mg/mL, a turbidity analysis of the smart-ELRs 

in RNase buffer was performed. As it is reported in Figure 6, the turbidity behavior of each 

smart-ELRs was evaluated in its three different forms: native-ELR (before the 

phosphorylation) represented with the black, phosphorylated smart-ELR (after the 

phosphorylated) represented with the blue line, and de-phosphorylated smart-ELR (after 

the de-phosphorylated) represented with the light green line. TI showed a Tt shift of 25 °C 

after the phosphorylation, passing from around 29 °C to 54 °C. Whereas for TR and RT the 

Tt shift was around 28 °C. On the other hand, TRT showed a Tt shift around 19 °C; in this 

case, the native and de-phosphorylated TRT showed a Tt of 36 °C, which was higher 

compared to the Tt of the other smart-ELRs in the same state. Moreover, all the smart-

ELRs containing RNase A sequence showed a less sharply curved, especially at the 

phosphorylated state compared to TI. Finally, the Tt shifts recorded for every smart-ELRs 

dissolved in RNase buffer at 0,5 mg/mL (Figure 6) are much higher than the ones recorded 

in Kinase or Phosphatase buffer at 5 mg/mL (Figure 4). 
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Figure 6. Turbidity analysis of TI (A), TR (B), RT (C), TRT (D) dissolved in RNase buffer at 0,5 

mg/mL carrying out thermal ramp at 1 °C/min for the range between 5 and 70 °C. Black lines 

show the turbidity behavior of the smart-ELRs before phosphorylation; blue lines show the 

turbidity behavior of the smart-ELRs after phosphorylation; light green lines show the turbidity 

behavior of the smart-ELRs after de-phosphorylation. For all the measurements the turbidity was 

recorded at a wavelength of 350 nm. 

In all the cases, the temperature of 37 °C has comprised in the Δ Tt occurred by the (de-

)phosphorylation. Indeed, the smart-ELRs in the native and de-phosphorylated state are 

aggregated, whereas the smart-ELRs in the phosphorylated state are dissolved. Finally, in 

all the curves obtained by turbidity measurements, it can be observed a small shoulder 

for the smart-ELRs around 15 °C, which, always showed values less than 0,5 OD.  

3.2. Dynamic Light Scattering  

The temperature-dependent self-assembly of smart-ELR into supramolecular structures 

was investigated by DLS to determine their size and polydispersity. As it has been reported 

in Material and Methods section, the DLS measurements for all the smart-ELRs was 

performed at 0,5 mg/mL in RNase buffer at 37 °C. The DLS analysis provided the size 

distributions for the different smart-ELRs (TI, TR, RT, TRT) at the native and de-
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phosphorylated state (Table 2). The DLS measurements showed that smart-ELRs native 

and dephosphorylated formed aggregate at 37 °C. The volumes of the smart-ELR 

aggregates in the native form were, TI: 3076 ± 299 nm; TR: 2812 ± 318 nm; RT: 2804 ± 551 

nm; TRT: 2782 ± 267 nm. The smart-ELRs in the phosphorylated state were dissolved at 

37 °C; indeed, no aggregates were recorded by DLS analysis. Moreover, the volume of the 

smart-ELR aggregates in the de-phosphorylated form were, TI: 2852 ± 538 nm; TR: 1553 ± 

417 nm; RT: 1457 ± 110 nm; TRT: 1837 ± 154 nm. In this case, only TI kept the same volume 

size than the smart-ELR in the native state. For TR, RT and TRT the volume size of the 

aggregates for the de-phosphorylated state was lower compared with the native ones. 

Finally, the DLS analysis showed a Polydispersity Index (PDI) less than 0,2 in all the cases. 

Volume (nm) (± SD) 

[PDI] 

Native De-phosphorylated 

TI 3076 ± 299 

[0,11] 

2852 ± 538 

[0,07] 

TR 2812 ± 318 

[0,16] 

1553 ± 417 

[0,15] 

RT 2804 ± 551 

[0,16] 

1457 ± 110 

[0,17] 

TRT 2782 ± 267 

[0,19] 

1837 ± 154 

[0,16] 

 

Table 2. Volume (± SD) and Polydispersity Index [PDI] from three different measurements of the 

different smart-ELRs at 0,5 mg/mL in RNase buffer at 37 °C. 

3.3. RNase A activity analysis 

As it has been described above, the RNA quantification was performed over the smart-

ELRs solutions at 0,5 mg/mL in RNase buffer by the spectrophotometer analysis at 688 nm 

after 15 min of incubation at 37 °C in the darkness. Figure 7 shows the outcomes of the 

set of the smart-ELRs (TI, TR, RT, TRT). The RNase A activity of each one was evaluated in 

different states: The native state of ELRs (N) is represented with the grey bars; the 
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phosphorylated state of ELRs (P) is represented with blue bars; whereas the de-

phosphorylated state of ELRs (D) is represented with green bars. 

 

Figure 7. RNA quantification of the solutions containing the different smart-ELRs dissolved in 

RNase buffer at 0,5 mg/mL after 15 min of incubation in the darkness at 37 °C. Control: black bar 

(RNase buffer solution without any smart-ELR); grey bars: smart-ELRs in native state (TI-N, TR-N, 

RT-N, TRT-N); blue bars: phosphorylated smart-ELRs (TI-P, TR-P, RT-P, TRT-P); green bars: de-

phosphorylated smart-ELRs (TI-D, TR-D, RT-D, TRT-D). For all the measurements, the absorbance 

was recorded at a wavelength of 688 nm. All experiments were carried out in triplicate and error 

bars show standard deviations (*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001). 

The comparison between the control and all the rest of the conditions showed statistical 

difference with all the smart-ELRs at the different state except for TI-P, RT-D and TRT-D. 

This may be due to the presence of the polymer, that affected by default the 

measurement at 688 nm. In order to make the bar charts clearer, the RNA quantification 

outcomes have been clustered by the smart-ELR type (TI, TR, RT, TRT) in different states. 

The comparison within each group of smart-ELRs has revealed that no difference in RNA 

quantification was recorded between the different states of TI. The same trend was 
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presented by TRT smart-ELR, where no difference in RNA quantification was recorded 

between the native, phosphorylated and de-phosphorylated state. On the other hand, the 

absorbance recorded for the TR-P solution after 15 min of incubation revealed a 

significant decrease in the amount of RNA when compared with TR-N and TR-D. 

Comparing the phosphorylated state (TR-P) with the de-phosphorylated state (TR-D), it 

was recorded a reduction in RNA amount of 17% on average. Moreover, no significant 

difference was recorded between TR-N and TR-D. The RT smart-ELRs presented similar 

values than TR. Indeed, a significant reduction (20%) in RNA amount was recorded for the 

RT-P compared with the RT-D. In addition, no significant difference was recorded 

comparing RT-N and RT-D.  

4. DISCUSSION 

There is a great need of new biomaterials capable to undergo a reversible change in 

response to small variations in solution conditions, showing a fine modulation, such as 

allosteric control (53). The aim of the study was to develop an enzymatic responsive 

smart-ELR with allosteric control of the enzymatic activity, which, allow the 

communication between the biological environment and the material. The allosteric 

control was given by the consensus sequence which, was selectively recognized by Kinase 

and Phosphatase enzymes for phosphorylation/de-phosphorylation. It has already been 

demonstrated that the enzymatic (de-)phosphorylation which, is commonly used in 

biology to alter structural features of proteins, can also modulate the Tt and induce 

gelation of other polymers kind (54-57). Indeed, the change in hydrophobicity is the key 

to the subsequent conformational rearrangements shows by the hydrophobic domains. 

The increase in polarity by phosphorylation moves the frontier of solubility to a higher 

temperature, as the complementary effect of de-phosphorylation moves the frontier 

back. Furthermore, considering that smart-biomaterials are commonly developed as 

enzymatic substrates rather than playing an active role in an enzymatic reaction, RNase A 

was chosen as a single domain protein to confer a catalytic enzyme-responsiveness. As it 

is reported above, the native enzyme was modified at the genetic level by adding at the 

amino or carboxyl end the ELR-counterpart containing (de-)phosphorylation consensus 

sites. Thus, it was obtained an enzymatic responsive smart-ELR with allosteric control of 
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RNAse A activity. Finally, three different variants of smart-ELRs were obtained by DNA 

recombinant techniques (TR, RT, TRT), where the position of RNase A domain change in 

relation to the ELR backbone sequence.  

The first step towards the development of the smart-ELR with allosteric control was to 

verify that TI had complete responsiveness to the Kinase/Phosphatase. Mass 

spectrometry is an excellent method for detecting protein molecular weight and 

quantifying its change. Protein phosphorylation events are detected by increases in 

amino-acid residue mass of +80 Da, which report the addition of HPO3 (58). As shown in 

Table 1, the precise HPLC-HR-MS analysis for TI revealed a difference between TI before 

and after phosphorylation of around 800 Da in molecular weight. The incorporated 

consensus sequence was specifically recognized by the enzyme(s); the phosphorylation 

occurred completely, indeed, ten phosphate groups (which corresponds to 800 Da) were 

transferred above the ten consensus sequences. Also, the (de-)phosphorylation occurred 

completely, indeed the difference between the TI phosphorylated and TI de-

phosphorylated was again of around 800 Da, demonstrating the complete reversibility of 

the ELR state. These results showed optimal accessibility by the enzyme(s) to the 

substrate, due to the adequate exposition by the hydrophilic loop flanking the consensus 

sequence. Furthermore, the same results were obtained for the three smart-ELRs 

containing the RNase A sequence (TR, RT, TRT), where the difference between the 

phosphorylated and the de-phosphorylated state was again around 800 Da. The presence 

of the RNase A domain does not prevent the recognition of the consensus sequence by 

the Kinase/Phosphatase enzyme(s). Moreover, the different position of the RNase A 

domain does not avoid the complete transferral of ten phosphate groups, meaning that 

the consensus sequence keeps optimal accessibility to the enzyme even when linked to 

the RNase A domain. Finally, the complete phosphorylation and de-phosphorylation of 

the smart-ELRs were accomplished in all the cases; indeed, the theoretical number of 

phosphate groups that can be transferred was fulfilled in all the cases, showing a 100% 

effectiveness of the system developed.  

All the smart-ELRs before and after (de-)phosphorylation were further analyzed by 

turbidity (Figure 4). First, it is important to notice that, both reactions were performed at 

a lower temperature (20 °C) than the Tt of the ELRs, in order to guarantee the efficiency 
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of the reactions. Although, the turbidity analysis revealed an evident shift in Tt between 

the smart-ELR before and after the (de-)phosphorylation in all the cases, for TI the Δ Tt 

was slightly higher than for the smart-ELRs (TR, RT, TRT). This is due to the presence of 

RNase A domain, which, increment the size of the protein, reducing the impact of the ten 

phosphates groups over the Tt shift. Moreover, no difference in Δ Tt was recorded 

between TR, RT and TRT, demonstrating that the position of the RNase A sequence does 

not affect the Tt. In any case, the turbidity corroborated the reversibility of the system 

validated by mass spectrometry, showing the capacity of all the smart-ELRs to be driven 

back and forth between association (insolubility) and dissociation (solubility) by selective 

enzymatic activity. The smart-ELR demonstrated to be enzyme-responsive, the allosteric 

domains were able to switch between association and dissociation as a consequence of 

polarity changes caused by post-translational modification (phosphorylation). Moreover, 

also the effect of the saline buffers was observed; in fact, all the smart-ELRs dissolved in 

the phosphorylase buffer showed lower Tt compared to the kinase buffer (Figure 4). The 

effect of saline buffer on the Tt was highlighted by the turbidity analysis performed 

dissolving TI in milliQ (Figure 5A). As it has been extensively studied, an increase in saline 

concentration has a significant effect on the Tt (59). Due to the absence of salts, the 

contribution of the phosphate groups was more evident for the milliQ solution, indeed, 

the Δ Tt recorded in milliQ was much higher than the Tt shift recorded in saline buffer. 

Finally, in all the turbidity curves it can be observed a shoulder for the smart-ELRs around 

15 °C. ELRs formed aggregates with a significant increase recorded at OD 350 nm, due to 

their conformational change and self-organization. This behavior was already reported by 

García-Arévalo et al., where a similar ELR containing Isoleucine as the guest amino acid 

was used (48). These low OD values indicate that neither of the ELRs forms the typical 

coacervate state (60), rather, the small absorbance increase suggests the formation of 

nanoaggregates (23, 61).  

Pattaniak et al., have already demonstrated how the Tt of an ELR could be modulated by 

(de-)phosphorylation; however, they developed a system capable to be only partially 

phosphorylated, showing the effectiveness of 23% (54). In this work, we have developed 

an optimal design for the selective enzyme-responsive smart-ELR, with the ability to be 

completely (de-)phosphorylated, showing the effectiveness of 100%. As it is reported in 
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the literature, the polymer concentration has a significant effect on the altering of Tt (19). 

This correlation was also demonstrated for our system, where decreasing the 

concentration of smart-ELR it corresponded an increase in Tt (Figure 5B). In the light of 

this, a certain concentration was fixed in order to evaluate the modulation of the ELRs 

from the dissolved state (phosphorylated smart-ELR), to aggregate state (de-

phosphorylated smart-ELR) and viceversa at mild conditions.  

The turbidity behaviour for all the smart-ELRs dissolved at 0,5 mg/mL in RNase buffer 

(Figure 6) demonstrated that 37 °C was a temperature in which, smart-ELRs in the native 

and de-phosphorylated state are aggregated, and smart-ELRs in the phosphorylated state 

are dissolved. Moreover, the Δ Tt recorded in RNase buffer is much higher than the one 

recorded in Kinase or Phosphatase buffer. As it has been explained above, this difference 

depends on the concentration of the polymer and on the saline buffer of the solution. 

Moreover, the Tt shift of the smart-ELRs appeared slightly different comparing TR and RT 

with TRT; indeed, the lower concentration of polymers highlighted the small difference in 

self-assembly behavior. Finally, all the smart-ELRs containing RNase A domain showed a 

less sharply curved due to higher MW, especially for the phosphorylated state, which also 

showed higher Tt.  

The formation of aggregates was further corroborated by DLS analysis. These 

measurements showed that smart-ELRs in the native and dephosphorylated state formed 

aggregate at 37 °C, whereas all the smart-ELRs in the phosphorylated state were dissolved, 

indeed no aggregates were recorded. Furthermore, the DLS analysis revealed a decrease 

in volume aggregates between the native TR, RT and TRT and the de-phosphorylated ones; 

this unexpected result can be due to some sort of reorganization after the (de-

)phosphorylation reactions between the RNase A sequence and the ELR backbone, since 

it appeared only for TR, RT and TRT and not for TI (Table 2). A possible explanation for the 

unexpected smaller aggregates after the (de-)phosphorylation could be that there would 

be some ionic rearrangements between the ELRs backbone and the RNase domain during 

the phosphorylation reaction; this new charges interaction favours a tighter aggregation 

when the de-phosphorylation occurred. Finally, the outcomes showed above 

demonstrated that all the smart-ELRs assemblies were responsive to the enzymatic 

activities. Upon the addition of PKA, the multiple-charged ATP molecules were hydrolyzed 
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into ADP molecules and phosphate groups were transferred to the serine residues. The 

supra-amphiphilic self-assembled aggregates underwent disassembly upon addition of 

PKA. On the other hand, upon the addition of CIP, the phosphate groups were removed 

from the serine residue, causing the supra-amphiphilic self-assembled aggregates. As 

shown above, the system was completely reversible (Figure 2).  

The allosteric control of the RNase A activity was analyzed monitoring the RNA 

quantification of the solutions in mild conditions. These results revealed a different 

behaviour of the smart-ELRs. TI does not contain the RNase A domain; indeed, it has 

shown no RNase A activity. Either the phosphorylated TI (TI-P) or de-phosphorylated TI 

(TI-D) does not have any impact over the RNA quantification, meaning that the state of 

the polymer does not have any cleavage activity over the RNA in the solution. On the other 

hand, the three variants of smart-ELR containing the RNase domain (TR, RT and TRT) 

showed a different RNase A activity comparing the phosphorylated state with the de-

phosphorylated state. Both TR-P and RT-P exhibited a significant reduction in RNA 

quantification, showing a gained catalytic activity due to the selective phosphorylation. 

The conformation changes caused by the phosphorylation distorted the overall 3D 

structure of the hybrid ELR-enzyme altering its efficiency. The complete phosphorylation 

allowed to the TR-P and RT-P to be in its dissolved state, where the RNase A domain 

resulted to be free to active. The reduction in RNA amount of 17% in the case of TR and 

20% in the case of RT demonstrated the capacity of our system to switch from an inactive 

state (de-phosphorylated) to an active state (phosphorylated) by a selective enzymatic 

activity performed by Kinase/Phosphatase. Contrary, TRT exhibited no significant 

difference between the dissolved state (TRT-P) and aggregate state (TRT-D). In this case, 

the RNase A catalytic site remained inactive even when the state of the smart-ELR was 

modulated by Kinase/Phosphatase. This phenomenon could be due to a sort of steric 

hindrance, where the accessibility of the RNA molecule to the catalytic site was blocked 

by the flanked ELR backbone, or perhaps because of the catalytic site of RNase A is 

stretched by the ELR backbone altering the performance of the catalytic site (Figure 8). It 

is well known that, when enzymatic domains are incorporated into polymer assemblies, 

the accessibility of the substrate to the enzyme becomes susceptible to several factors, 

such as the affinity and the permeability of the assemblies to the enzymes, and other 
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factors that can affect the kinetics of the enzyme-responsive behaviour (62-65). In this 

study, the accessibility of the substrate (RNA) to the catalytic site of RNase A is selectively 

regulated by the phosphorylation-responsive behavior. Therefore, we have demonstrated 

that the sequence design of the biomaterial has a crucial influence on the allosteric 

regulation of the enzymatic activity. 

 

Figure 8. Schematic illustration of TR, RT and TRT allosteric control over the RNase A activity. 

 

5. CONCLUSIONS 

In this study, we have developed a smart biomaterial based on Elastin-like 

Recombinamers with allosteric control of RNase A activity. We have obtained an optimal 

design for the Kinase/Phosphatase-responsive behaviour, whereby, the 100% of 

phosphorylation of the smart-ELR was responsible to move the frontier of solubility. This 

system has demonstrated to be completely reversible, moving back and forth between 

association (insolubility) and dissociation (solubility) by (de-)phosphorylation. The 

allosteric regulation of the RNAse A activity was successfully demonstrated; the RNase A 

catalytic activity depended by the assembled state of the biomaterial, which, is selectively 

regulated by the phosphorylation-responsive sites in the assemblies. Moreover, the 
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design principles of phosphatase-involved self-assembling systems can stimulate the 

development of other smart self-assembling systems responding to other important 

enzymes. These designs are interesting by themselves, considering that their varying and 

tailored molecular architectures mean that they can be used in several areas such as thin 

films, hydrogels, micelles, nanofibers, microstructural surfaces. Finally, the allosteric 

control demonstrated for the RNase A activity represents an initial proof-of-concept for a 

new class of responsive macromolecules, which, can be involved in the modulation of 

intracellular signalling activity. 
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SUPPORTING INFORMATION 

 

Figure S1. Purity assessment by SDS-PAGE for TI, TR, RT and TRT. 

 

Figure S2. FTIR of TI. 
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Figure S3. FTIR of TR. 

 

 

Figure S4. FTIR of RT. 
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Figure S5. FTIR of TRT. 

 

Amino acid Theoretical Experimental 

ASP+ASN 30 30.35 

GLU+GLN 11 10.89 

SER 11 9.37 

HIS - - 

GLY 210 210.88 

THR - - 

ARG 30 27.86 

ALA 20 19.73 

TYR - - 

CYS - - 

VAL 130 127.13 

MET 1 1 

TRP - - 

PHE 10 9.37 

ILE 110 112.76 
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LEU 12 12.68 

LYS - - 

PRO 121 124.99 

 

Figure S6. Comparison between the theoretical number of each amino acid and the 

experimental values for TI. 

  TR RT TRT 

Amino acid Theoretical Experimental Experimental Experimental 

ASP+ASN 45 44.33 42.10 46.95 

GLU+GLN 23 19.5 18.10 21.37 

SER 26 18.26 17.87 20.24 

HIS 4 2.85 3.19 3.56 

GLY 213 233.17 238.69 222.38 

THR 10 4.53 5.71 7.22 

ARG 34 35.15 33.07 34.6 

ALA 32 33.91 28.96 33.1 

TYR 6 3.73 3.91 5.03 

CYS 8 8.12 8.32 7.84 

VAL 150 144.27 151.31 143.5 

MET 5 3.8 3.21 4.86 

TRP - - - - 

PHE 13 11.83 11.69 12.3 

ILE 113 122.58 125.04 117.13 

LEU 14 18.87 13.26 16.75 

LYS 9 8.96 10.72 10.3 

PRO 125 123.95 124.85 125.68 

 

Figure S7. Comparison between the theoretical number of each amino acid and the 

experimental values for TR, RT, TRT. 
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Figure S8. HPLC-HR-MS Spectra for TI-N (red spectra), TI-P (blue spectra) and TI-D (green 
spectra). 
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Figure S9. HPLC-HR-MS Spectra for TR-N (blue spectra), TR-P (light green spectra) and TR-D 
(black spectra). 
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Figure S10. HPLC-HR-MS Spectra for RT-N (red spectra), RT-P (green spectra) and RT-D (blue 
spectra).  
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Figure S11. HPLC-HR-MS Spectra for TRT-N (dark green spectra), TR-P (light green spectra) and 

TR-D (purple spectra). 
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CONCLUSIONS AND FUTURE DIRECTIONS 

Genetic engineering, bioproduction and characterization of ELRs   

In this Thesis, it has been shown the development of several ELRs, each one containing 

bioactive sequences for tailored biomedical application. The hyphosesis to generate 

several ELRs comprising diverse combinations of bioactive domains was demonstrated. In 

terms of cell adhesion, RGD and REDV bioactive sequences have been included in the ELRs 

composition. For hydrogel-forming ELRs the amino acid sequences GAGAGS hexapeptide 

found in Bombyx mori silk fibroin was included in the ELR sequence giving stability to the 

hydrogel. Moreover, in the case of ELRs-based hydrogel for osteochondral repair an 

elastase target domain was also included in order to permit the replacement of the 

scaffold for the regenerated tissue. Furthermore, it was developed a series of ELRs 

containing the consensus sequence sensible for the kinase/phosphorylase in combination 

with the RNase A catalytic domain for allosteric domain’s regulation. Characterization 

techniques such as SDS-PAGE and MALDI-TOF confirmed the theoretical MW of the ELRs. 

Moreover, the Tt was assessed through DSC for all the ELRs; confirming that it was below 

the physiological temperature for the ELRs forming hydrogels when injected in vivo. 1H-

NMR and HPLC for amino acid analysis assessed the purity of each batch of the different 

ELRs, while the FTIR analysis showed good agreement of the theoretical composition of 

the ELR with the experimental functional groups analyzed. Finally, the analysis of 

endotoxins ensured the purity of the ELRs for in vivo application. 

 

Development of ELRs-based hydrogel with different gelation 

mechanisms for osteochondral repair  

An important part of this Thesis focusses on the development of bioactive hydrogel for 

Tissue Engineering (TE) application. We hypothesized that the gelation mechanism had a 

crucial influence for the generation of a 3D hydrogel embedded with cells for 

osteochondral repair. Different ELRs-based hydrogels for osteochondral repair having two 
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different gelation mechanisms of hydrogels have been produced, either by chemical 

(covalent bonds) or by physical cross-linking. In both cases, injectable hydrogels were 

obtained. In the case of the chemically cross-linked hydrogel, the ELRs concentration 

selected demonstrated adequate mechanical properties for the osteochondral 

application. In the case of physically cross-linked hydrogels, the pre-annealing treatment 

applied to the Silk Elastin co-Recombinamer has shown to improve the mechanical 

properties of the hydrogel, guarantying fast gelation and the presence of a fibrillary 

structure directly after injection of the hydrogel. For both scenarios, SEM analysis showed 

a homogeneous porous environment with an interconnected structure. Although the ELR-

based hydrogels developed in this Thesis had different gelation mechanisms, in both 

cases, the rheological study demonstrated how the concentration of the hydrogel could 

modulate the mechanical properties. For instance, according to the ELRs composition and 

its MW, the chemically cross-linked hydrogel allows the gelation of the hydrogel at a lower 

concentration than the physically cross-linked hydrogel; this thereby allows the cells 

embedded in the hydrogel matrix to have more space available, and also to play with a 

higher amount of cells for the formation of the 3D matrix. On the other hand, the 

physically cross-linked hydrogel does not contain covalent bonds and considering the 

slower process of gelation, this could provide a better environment for cells embedding.  

In conclusion, both gelation mechanisms demonstrated immediate gelation, conferring 

the benefit of being an injectable scaffold. Moreover, both systems offer tuneable 

features, such as the possibility to choose between a range of hydrogel’s concentration 

and cell’s density, which give the advantage of making the therapy as much tailored as 

possible. For instance, moving forward in the field of Tissue Engineering for osteochondral 

repair, it could be formed a scaffold which comprises both proposed hydrogels; it could 

be designed a double layer hydrogel containing a chemically cross-linked hydrogel for the 

bone area, whereas a physically cross-linked hydrogel could support the regeneration of 

cartilage layer. 
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In vitro, ex vivo and in vivo evaluation of ELRs-based hydrogel for 

osteochondral repair 

The ELRs-based hydrogels containing different bioactive sequences were tested for the 

osteochondral application. The physically cross-linked hydrogel containing the bioactive 

sequence RGD which supports cell adhesion via integrins was embedded with 

chondrocytes. This biomaterial has demonstrated the capacity to form a high cells density 

3D hydrogel and to be delivered into the area of interest. The biocompatibility was proved 

by in vitro study; the addition of the silk allows to make hydrogels with a lower 

concentration, leading to larger pores, which is most likely responsible for better cell 

spreading, and proliferation. The regeneration capacities for cartilage repair were 

evaluated using an ex vivo culture platform. After four weeks of culturing, the hydrogel 

embedded with chondrocytes exhibited remarkable advantages; such as the de novo ECM 

formation, the absence of fibro-cartilage and the production of hyaline cartilage. On the 

other hand, the chemically cross-linked hydrogel was designed in order to contain the 

listed bioactive sequences: RGD and REDV to support cell adhesion via integrins and 

improve the selectivity for endothelial cells, and VGVAPG which provides proteolytic 

sensitivity to the biomaterial. This ELRs-based hydrogel was further embedded with MSCs 

and the biocompatibility was proved by an in vitro study, whereas the regeneration 

properties were evaluated by an in vivo study. Femoral bone defects were created in New 

Zealand rabbits, which were subsequently filled with the hydrogel embedded with MSCs 

and the hydrogel itself; then, after four months the samples were extracted and the 

regeneration was assessed by different methods. This ELR-hydrogel has been 

demonstrated to have an adequate composition; indeed it has shown a right ratio of 

bioactive sequences exhibiting a good balance between the degradation rate and 

adhesion behaviour, allowing for the colonization of chondrocytes with optimal secretion 

of extracellular matrix-collagen type II. Finally, it was demonstrated that the specific 

composition of this hydrogel allowed a faster bone regeneration when embedded with 

rMSCs compared to the injection of the hydrogel alone. On the other hand, the 

comparison of the regeneration between the hydrogel embedded with MSCs and the 

hydrogel itself has shown an excellent cartilage repair without the need for cellular 
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implantation. We demonstrated that the gelation mechanism has a crucial influence for 

the generation of a successful scaffold for osteochondral repair, especially when 

embedded with cells. 

In conclusion, the outcomes collected using the different hydrogel’s compositions with or 

without the cellular contribution open up other possibilities in design and combination of 

hydrogels, perhaps creating a scaffold composed by different layers, each one having its 

own composition, gelation mechanism, and cellular contribution.  

 

Development of a new ELR-peptides hybrid biomaterial 

The hypothesis that the strategy of copper-free click chemistry allows the incorporation 

of non-canonical amino acids and the formation of cyclized peptides on ELRs was 

demonstrated. A new hybrid material comprising the recombinant technique of ELRs and 

the strategy of the synthesis of bicyclic peptides was developed. Indeed, ELRs were 

covalently functionalized with each three high-affinity and selectivity αvβ3- and α5β1-

binding bicyclic RGD peptides and with various integrin-binding benchmark peptides. The 

covalent functionalization was validated by MALDI-TOF analysis, guarantees flexibility and 

minimal steric hindrance for interactions with cellular integrins. Moreover, the objective 

to explore the potentiality of the new hybrid biomaterial for biomedical application was 

achieved; indeed, after the adsorbtion of the ELR-Peptides over tissue culture plate 

surface (TCPS), the adhesion capacity of HUVECs was evaluated. The in vitro studies of 

ELRs have shown that covalent RGD-functionalization of ELRs via copper-free click 

reaction is more efficient for inducing integrin-mediated cell adhesion and proliferation 

than the recombinant synthesis of ELRs comprising RGD as part of their backbone. The in 

vitro studies of ELRs functionalized with high-affinity integrin αvβ3- and α5β1-binding RGD 

bicycles represent an interesting alternative to promote fast cell adhesion on 2D 

biomaterial surfaces compared with well-known linear or monocyclic RGD peptides.  

In conclusion, a new system based on two diametrically opposed strategies was 

developed, demonstrating that combining approaches could be a new manner to explore 

new frontiers. In this case, we believe that ELRs functionalized with integrin-selective 
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RGD-bicycles have a great potential to evaluate cell-adhesion behavior and tailor high 

integrin peptides for specific biomedical applications.     

 

A new class of smart-ELRs with allosteric domain 

As a final stage of this journey, in this Thesis we have explored a new class of ELRs. A smart 

biomaterial based on ELRs with allosteric control of RNase A activity was developed. 

Firstly, the consensus sequence phosphorylation site was introduced and regularly 

distributed (ten times) along the ELR sequence. The HPLC-HR-MS analysis demonstrated 

the ability to fully phosphorylate/de-phosphorylate the ELRs, and the reversibility of this 

system. Furthermore, the turbidity analysis demonstrated an evident shift in Temperature 

transition (Tt) value due to the transfer/removal of the phosphate groups. Secondly, 

taking advantage of the recombinant technique, the Ribonuclease A catalytic domain 

(RNase A) was fused to the smart-ELR at the genetic level. According to the position of 

RNase A relative to the ELR backbone, three variants of the smart-ELR were produced and 

all of them demonstrated the capacity to fully phosphorylated/de-phosphorylated. The 

DLS and turbidity analysis performed at 37 °C, at the mild condition for a selected 

concentration, showed that the system was completely reversible, moving back and forth 

between association (insolubility) and dissociation (solubility) by (de-)phosphorylation. 

Finally, the RNase A catalytic activity showed dependency by the state of the biomaterial. 

Indeed, the RNase A activity was selectively enhanced by the phosphorylation of the ELR 

consensus sequences. The allosteric regulation of the RNase A activity was successfully 

demonstrated, showing that the design of the sequence has a central role in the activity 

of the selected enzyme. However, a next step would be to find a finer methodology to 

assess the allosteric regulation of the RNase A activity. 

In conclusion, the allosteric control demonstrated for the RNase A activity represents an 

initial proof-of-concept for a new class of responsive macromolecules, the design 

principles of phosphatase-involved self-assembling systems can stimulate the 

development of other smart self-assembling systems responding to other important 

enzymes. 
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Final remarks 

Along this journey towards the discovery of the evolution of ELRs, we have strived to 

explore the potential of ELRs towards the development of tailored solutions for 

Biomedical applications. Across the fulfilment of the objectives of this Thesis, we came 

out with new outstanding biomaterials capable to overcome some limitations of the 

existing ones. However, this is not an ending point; it is rather an ongoing process on 

which we humbly gave our small contribution to scientific discovery. The leitmotiv of this 

Thesis has been described as a sort of journey towards the evolution of Biomaterial 

science. Along with the PhD program, we have learned how important is to address the 

complex problems from different point of views. The final take-home message is about 

the importance of keeping an open mindset considering all the pieces that compose the 

whole picture. We strongly believe that collaboration and cooperation are essentials to 

do “good science”; because it is only combining diverse strengths and skills that we are 

able to break the wall between us and the new discoveries.  



330 
 



331 
 

  



332 
 

ADDITIONAL 

Publications 

2019 

 L. Poocza, F. Cipriani, M. Alonso Rodrigo, J.C. Rodríguez-Cabello. Hydrophobic 

cholesteryl moieties trigger substrate cell-membrane interaction of elastin-

mimetic protein coatings in vitro. ACS Omega (2019). 

doi.org/10.1021/acsomega.9b00548. 

 F. Cipriani, B. Ariño Palao, I. González de Torre, A. Vega Castrillo, H. José Aguado 

Hernández, M. Alonso Rodrigo, A. J Àlvarez Barcia, V. García, Monica Lopez Peña, 

J.C. Rodríguez-Cabello. An elastin-like recombinamer-based bioactive hydrogel 

embedded with mesenchymal stromal cells as an injectable scaffold for 

osteochondral repair. Regenerative Biomaterials (2019). 

doi.org/10.1093/rb/rbz023. 

 F. Cipriani, D. Bernhagen, C. García-Arévalo, I. González de Torre, P. Timmerman, 

J.C. Rodríguez-Cabello. Bicyclic RGD peptides with high integrin αvβ3 and α5β1 

affinity promote cell adhesion on elastin-like recombinamers. Biomedical 

Materials (2019). doi: 10.1088/1748-605X/aafd83. 

2018 
 F. Cipriani, M. Krüger, I. González de Torre, L. Quintanilla Sierra, M. Alonso 

Rodrigo, L. Kock, J.C. Rodríguez-Cabello. Cartilage Regeneration in Preannealed 

Silk Elastin-Like Co-Recombinamers Injectable Hydrogel Embedded with Mature 

Chondrocytes in an Ex Vivo Culture Platform. Biomacromolecules (2018). doi: 

10.1021/acs.biomac.8b01211. 

 J.C. Rodríguez-Cabello, I. G. de Torre, F. Cipriani, L. Poocza. Elastin-like materials 

for tissue regeneration and repair. Peptides and Proteins as Biomaterials for Tissue 

Regeneration and Repair (2018). doi: 10.1016/B978-0-08-100803-4.00012-7. 

 



333 
 

2017 

 J.C. Rodríguez-Cabello, A. Ibáñez-Fonseca, F. Cipriani, L. Poocza, I. González de 

Torre, M. Alonso. Elastin-like Polymers: Properties, Synthesis and Applications. 

Encyclopedia of Polymer Science and Technology (2017). doi: 

10.1002/0471440264.pst656. 

Conferences 

2019 

Tissue Engineering and Regenerative Medicine International Society 

(TERMIS)- EU Congress 2019. Rhodes (Greece) 

ORAL COMMUNICATION:  

- Dual enzyme-responsive smart-ELRs for switchable catalytic activity. 

2018 

WORLD TERMIS Congress 2018. Kyoto (Japan) 

ORAL COMMUNICATION(S):  

- Specific Detection of Proteases using novel-protein substrates for Zymographic Methods. 

- Hydrophobic cholesteryl moieties trigger substrate cell-membrane interaction of elastin-

mimetic protein coatings in vitro. 

POSTER COMMUNICATION:  

- Silk Elastin-like co-Recombinamers bioactive hydrogel embedded with mature 

chondrocytes as injectable scaffolds for cartilage regeneration in an ex vivo culture 

platform. 

Kárman Conference – Materials for Life. Bensberg (Germany) 

POSTER COMMUNICATION:  

- Silk Elastin-Like Co-Recombinamers bioactive hydrogel for osteochondral repair in an ex 

vivo culture platform. 



334 
 

International Workshop on Advanced Materials for Healthcare 

Applications. Reykjavik (Iceland). 

POSTER COMMUNICATION:  

- A new class of SMART Elastin-Like Recombinamer with enzyme responsiveness. 

2017 

6th China-Europe Symposium on Biomaterials in Regenerative Medicine. 

Porto (Portugal). 

ORAL COMMUNICATION:  

- Elastin-Like Recombinamer bioactive hydrogel embedded with MSCs as injectable 

scaffolds for osteochondral repair. 

POSTER COMMUNICATION:  

- Functional Hybrids of elastin-like recombinamers and polyisocyanates. 

TERMIS-EU Congress 2017. Davos (Switzerland) 

POSTER COMMUNICATION:  

- Osteochondral tissue regeneration with biofunctional hydrogel scaffolds based on MSCs 

embedded in an Elastin-Like Recombinamers matrix. 

European Society for Biomaterials (ESB) Congress 2017. Athens (Greece). 

ORAL COMMUNICATION:  

- Elastin-Like Recombinamer with ATP responsiveness. 

POSTER COMMUNICATION: 

- Elastin-like Recombinamers and Polyisocyanates: A Functional Hybrid System for Tissue 

Engineering 

Future Investigators of Regenerative Medicine (FIRM) Congress. Girona 

(Spain). 



335 
 

ORAL & POSTER COMMUNICATION:  

- Elastin-Like Recombinamers bioactive hydrogel in tissue engineering for osteochondral 

repair. 

Advanced Materials for Biomedical Applications (AMBA) Congress. Ghent 

(Belgium). 

POSTER COMMUNICATION:  

- A new class of SMART Elastin-Like Recombinamer with enzyme responsiveness. 

International Symposium on Bioinspired macromolecular systems (ISBMS) 

Congress. Aveiro (Spain). 

FLASH TALK & POSTER COMMUNICATION:  

- “Dual” SMART Elastin-Like Recombinamer. 

2016 

BIOGEL Conference. Ringberg Castle (Germany). 

ORAL COMMUNICATION:  

- Elastin-like Recombinamers (ELRs): From Bioinspired Motifs to Biomedical Application. 

POSTER COMMUNICATION:  

- Self-assembled injectable ECM hydrogels from Elastin-like Co-Recombinamers 

biomaterials.  

Courses and certifications 

- Time and Project Management. Bpmsat (Spain). 

- Statistical Validation and Experimental Design. Biostatech (Spain). 

- Leadership and coaching techniques. University of Valladolid (Spain). 

- Research ethics and integrity. Organized by BIOGEL project. 

- Mechanical properties of the biomaterials. Radboud University. Nijmegen (the 

Netherlands). 

- Biomimetic hydrogels. Organized by BIOGEL project. 



336 
 

- Skills you really need when you apply for a job. Organized by BIOGEL project. 

- The Route to Academia: How to fail successfully. Organized by BIOGEL project. 

- Hydrogel Imaging. Austrian Institute of Technology (AIT). (Wien) Austria. 

- In vitro, ex vivo, and in vivo models. LifeTec Group. (Eindhoven) the Netherlands. 

- Synthesis of Biomaterials. University of Thessaloniki. Thessaloniki (Greece). 

- Critical thinking for public discourse. University of Amsterdam (The Netherlands). 

- Certification “In vivo experimentation for the design and realization of animal trials”. 

University of Salamanca (Spain). 

- The Whole Scientist. Jackson Laboratory. Bar Harbor (USA).  

Marie Curie Fellowship for Early Stage Research Training  

Attendance of the listed progress meetings with scientific communication: 

- Network Meeting at TPNBT, 14th December, 2015. Valladolid (Spain). 

- Network Meeting at Radboud University, 22th June, 2016. Nijmegen (the Netherlands). 

- Network Meeting at University of Valladolid, 12th December, 2016. Valladolid (Spain). 

- Network Meeting organized by the Centre for Research & Technology Hellas (CERTH), 

14th June, 2017. Poros (Greece). 

- Network Meeting at Austrian Institute of Technology (AIT), 30th January, 2018. (Wien) 

Austria. 

- Network Meeting at DWI-Leibniz Institute for Interactive Materials, 25th July, 2018.  

(Aachen) Germany. 

- Network Meeting at DWI-Leibniz Institute for Interactive Materials, 14th December, 

2018. Aachen (Germany).  

Awards 

Chair-Elect TERMIS Student and Young Investigator Section- Europe (SYIS-

EU). 

Organization of SYIS activities at TERMIS congresses. TERMIS-SYIS provides a platform for 

the "next generation" of scientists and engineers in the field of tissue engineering and 

regenerative medicine to interact. 

Best Social Outreach at FIRM conference 2017 (Girona, Spain). 



337 
 

SYIS-TERMIS Debate Competition Winner at TERMIS-EU Congress 2017 

(Davos, Switzerland). 

In concordance with the TERMIS 2017 theme on ‘Personalised Therapies for Regenerative 

Medicine’, the topic of the debate: “Will 3D-Printing or Decellularised organs rescue the 

donor-based organ scarcity for transplantation?” 

Teaching 

Supervision of the scientific training of the student Sandra Ramos at the University of 

Valladolid (Spain). The Workshop title: "POLÍMEROS RECOMBINANTES TIPO ELASTINA 

PARA APLICACIONES APLICACIONES BIOMÉDICAS".  

 


	Portada Filippo Cipriani
	Thesis Filippo  Submission v1
	ABSTRACT
	INTRODUCTION
	PROBLEM STATEMENT AND HYPOTHESIS
	OBJECTIVES
	STATE OF THE ART
	CHAPTER 1
	1. INTRODUCTION
	2. ELASTIN-LIKE RECOMBINAMERs ENGINEERING, BIOPRODUCTION AND DESIGN
	2.1. History and evolution of the synthesis of elastin-like recombinamers
	1.3.1. Ancient times (the “chemistry ages”)
	2.1.2. Modern times (the “recombinant ages”)
	2.1.3. Contemporary times (the “seamless recursive ages”)

	2.2. Hosts for the expression of elastin-like recombinamers
	2.2.1. Prokaryotic hosts
	2.2.2.1 The gold standard: Escherichia coli

	2.2.2. Eukaryotic hosts
	2.2.2.1 Aspergillus nidulans fungus
	2.2.2.2 Yeast
	2.2.2.3 Plants


	2.3. Novel design of elastin-like recombinamers with different features
	2.3.1. Substitution of the guest amino acid
	2.3.2. Fusion of other protein polymers
	2.3.3. Fusion of bioactive domains
	2.3.4. Fusion of full-length proteins


	3. STRUCTURES AND PHYSICAL CHARACTERISTICS OF ELASTIN-LIKE RECOMBINAMERs
	3.1. Micelles and nanoparticles
	3.2. ELR-coatings and films
	3.3. ELR-based hydrogels

	4. ELASTIN-LIKE RECOMBINAMERS: APPLICATIONS
	4.1. ELRs for gene delivery applications
	4.2. ELRs as vaccine delivery systems
	4.3. ELR-based hydrogels for tissue engineering applications
	4.4. ELRs for surface bio-functionalization

	Abbreviations
	References

	CHAPTER 2
	1. INTRODUCTION
	1.1. Elastin-like recombinamers
	1.2. Mechanisms to form ELR matrices for tissue-engineering applications
	1.3. Physically Cross-linked ELR Hydrogels
	2.2.
	2.3.
	2.4.
	1.3.1. Crosslinking via ionic interactions
	1.3.2. Self-assembly of amphiphilic blocks and graft copolymers
	1.3.3. Intermolecular interaction of secondary protein structures

	1.4. Functionalization of ELRs and covalent cross-linked ELR hydrogels

	2. IN VITRO CYTO- AND BIOCOMPATIBILITY OF ELRs
	3. ELASTIN-LIKE RECOMBINAMERS FOR TISSUE-ENGINEERING APPLICATIONS
	3.1. Osteochondral applications
	3.2. ELRs for (cardio-)vascular tissue regeneration
	3.3. ELRs for ocular prostheses
	3.4. Other applications of ELRs

	4. CONCLUSIONS
	References

	PLANNING OF RESEARCH
	ELR biosynthesis and purification
	Physical - Chemical characterization of ELRs
	Analysis of the level of endotoxins
	Polyacrylamide gel electrophoresis with SDS (in denaturing conditions, SDS-PAGE)
	Mass Spectrometry (MALDI-TOF)
	Amino acid analysis (HPLC)
	Differential Scanning Calorimetry (DSC)
	Fourier Transform Infrared Spectroscopy (FTIR)
	Proton nuclear magnetic resonance 1H-NMR Spectroscopy
	Following ELRs characterization
	Statistical analysis

	References

	RESULTS
	CHAPTER 3
	Keywords
	Abstract
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.
	2.1.  (EIS)2-(I5R)6 Design
	2.2. ELR biosynthesis and purification
	2.3. Pre-Annealing treatment
	2.4.  Circular Dichroism (CD)
	2.5.  Transmission Electron Microscopy (TEM)
	2.6. Visualization and characterization of the Sol-Gel behavior
	2.7. Rheological characterization
	2.8. Scanning electron microscopy (SEM)
	2.9. Chondrocytes isolation
	2.10. Hydrogel formation and embedding with chondrocytes
	2.11. Cell viability assay
	2.12. In vitro Study
	2.13. Ex vivo Study
	2.13.1. Osteochondral explant isolation
	2.13.2      Cartilage defect creation, hydrogel incorporation and culture

	2.14. Biochemical analysis
	2.14.1. DNA quantification
	2.14.2. GAG quantification

	2.15. Histological analysis
	2.16. Statistical analysis

	3. RESULTS
	3.1. Circular dichroism
	3.2. Transmission Electron Microscopy (TEM)
	3.3. Visualization of the Sol-Gel behavior
	3.4. Characterization of the Sol-Gel behavior
	3.5. Viscosity measurements of the solutions
	3.6. Rheological characterization of the hydrogels
	3.7. Scanning electron microscopy
	3.8. Cell viability assay
	3.9. Biochemical analysis
	3.10. Histological analysis
	3.11. Immunohistochemistry (IHC)

	4. DISCUSSION
	5. CONCLUSIONS
	ASSOCIATED CONTENT
	Acknowledgment
	References
	SUPPORTING INFORMATION

	CHAPTER 4
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Ethical approval
	2.2. Rabbit Mesenchymal Stem Cell collection
	2.3. ELR biosynthesis and purification

	2.4. Gel formation
	2.5. Rheological characterization
	2.6. Scanning electron microscopy (SEM)
	2.7. Cell viability assay
	2.8. In vivo experimental model
	2.9. Gross morphology
	2.10. Histological analysis
	2.11. Statistical analysis
	3. RESULTS
	3.1. Rheological characterization
	3.2. Scanning electron microscopy (SEM)
	3.3. Cell viability assay
	3.4. In vivo study results
	3.4.1. Macroscopic observation of repaired cartilage
	3.4.2. Histological analysis of repaired cartilage
	4. DISCUSSION
	5. CONCLUSIONS
	Acknowledgments
	References
	SUPPORTING INFORMATION

	CHAPTER 5
	Abstract
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. ELR biosynthesis, modification and characterization
	2.2. Reagents and chemicals
	2.3. Peptide synthesis
	2.4. Synthesis of peptide-cyclooctyne conjugates
	2.5. Formation of peptide-functionalized ELRs
	2.6. Analysis of turbidity by UV/Vis-spectroscopy
	2.7. Adsorption of peptide-functionalized ELRs on TCPS
	2.8. Contact Angle measurements
	2.9. X-ray Photoelectron Spectroscopy (XPS)
	2.10. Cell culture and cell adhesion assay
	2.11. DNA Analysis
	2.12. 2D Immunofluorescent Staining
	2.13. Statistical analysis

	3. RESULTS
	3.1. Selection and synthesis of RGD peptides
	3.2. ELR functionalization and MALDI-TOF MS analysis
	3.3. Analysis of turbidity by UV/Vis-spectroscopy
	3.4. Contact Angle
	3.5. XPS
	3.6. Cell-adhesion assay
	3.6.1. Time-dependent cell quantification studies
	3.6.2. Morphology studies


	4. DISCUSSION
	5. CONCLUSIONS
	Notes
	Acknowledgments
	References
	SUPPORTING INFORMATION

	CHAPTER 6
	Abstract
	1.
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. ELR biosynthesis and purification
	2.2. Smart-ELRs phosphorylation and de-phosphorylation
	2.3. Mass analysis (HPLC-HR-MS)
	2.4. Turbidity analysis
	2.5. Dynamic Light Scattering (DLS)
	2.6. RNase A activity analysis
	2.7. Statistical analysis

	3. RESULTS
	3.1. Smart-ELRs phosphorylation and de-phosphorylation
	3.2. Dynamic Light Scattering
	3.3. RNase A activity analysis

	4. DISCUSSION
	5. CONCLUSIONS
	References
	SUPPORTING INFORMATION

	CONCLUSIONS AND FUTURE DIRECTIONS
	Genetic engineering, bioproduction and characterization of ELRs
	Development of ELRs-based hydrogel with different gelation mechanisms for osteochondral repair
	In vitro, ex vivo and in vivo evaluation of ELRs-based hydrogel for osteochondral repair
	Development of a new ELR-peptides hybrid biomaterial
	A new class of smart-ELRs with allosteric domain
	Final remarks

	ADDITIONAL
	Publications
	Conferences
	Courses and certifications
	Marie Curie Fellowship for Early Stage Research Training
	Awards
	Teaching



