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The mathematical structure of the Poisson equation of Modified Newtonian Dynam-
ics (MOND) is studied. The appropriate setting turns out to be an Orlicz-Sobolev
space whose Orlicz function is related to Milgrom’s μ-function, where there exists
existence and uniqueness of weak solutions. Since these do not have in principle
much regularity, a further study is performed where the gravitational field is not
too large, where MOND is most relevant. In that case the field turns out to be
Hölder continuous. Quasilinear MOND is also analyzed. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4817858]

I. INTRODUCTION

Modified Newtonian Dynamics (MOND) was proposed by M. Milgrom1, 2 as an explanation of
the observed dynamical properties of galaxies without the need to invoke the presence of hidden
(dark) matter. This hypothesis has been rather successful from a phenomenological viewpoint3 and
given a fully relativistic foundation.4, 5 Obviously objections have been raised,6–8 but on the whole
this theory has emerged rather unscathed and is still an active subject of research. What seems to
be absent is a mathematical study of the basic MOND-Poisson equation. Milgrom himself proved
uniqueness of solutions by an essentially correct method,9 and several exact solutions were later
found,10 but neither the general existence of solutions nor their regularity seems to have been studied
so far. Recently, Milgrom proposed a simpler version of MOND.11

The essence of the MOND proposal in its simplest form is that the Newtonian gravitational
field does not describe correctly the forces when the gradient is very small. This may be translated
by substituting Poisson’s equation for the gravitational potential u,

�u = 4πGρ, (1)

by the equation

∇ ·
(

μ

( |∇u|
a0

)
∇u

)
= 4πGρ, (2)

where μ(x) is an increasing function that behaves like x when x → 0, and tends to 1 when x → ∞,
so that the field is essentially Newtonian if |∇u| � a0. The value of a0 is 10−10 m s−2 and as usual
ρ is the material density. The effects of (2) will be more apparent at weak fields (e.g., in the far
reaches of a galaxy, affecting its rotation curves; this was the initial motivation of MOND). There
exist more accessible points of weak field, such as the neutral point between two massive bodies, a
fact which has been used to propose a test method.12 Unfortunately, the mathematical difficulties of
(2) are considerable; not only it is a nonlinear equation, but also it is not elliptic in the presence of
critical points of the field. It has been solved analytically in a few cases, and numerically in several
others, but no general theorem about it has been stated. Our arguments will hold for a wide variety
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of functions μ, but we will use for concretion the form

μ(x) = x

1 + x
, (3)

which has been used rather successfully to model galaxy rotation. After a rescaling, we may take a0

= 1 and absorb 4πG into the density to obtain

∇ · (μ(|∇u|)∇u) = ρ. (4)

It will be useful to define associated functions which approximate μ in areas of weak field: those are

με(x) = εx + (1 − ε)μ(x). (5)

II. THE MAIN THEOREM

We will work in a bounded open set � with smooth boundary, and use some spaces of Orlicz-
integrable functions defined in �. For Orlicz spaces the most classical (and still the best) reference
is Ref. 13; Orlicz-Sobolev spaces may be consulted, e.g., in Refs. 14 and 15. We will recall the basic
facts. Let M be a continuous, positive, increasing, convex function defined in [0, ∞) such that

lim
x→∞

M(x)

x
= ∞, (6)

lim
x→0

M(x)

x
= 0. (7)

Assume that M satisfies the �2 property: there exist k, x0 such that

M(2x) ≤ k M(x) ∀x ≥ x0. (8)

Then,

L M (�) = { f : � → C :
∫

�

M(| f (x)|) dx < ∞} (9)

is a separable Banach space, contained in L1(�). The complementary function

N (x) = sup
y≥0

(y|x | − M(y)) (10)

satisfies the same properties as M, except for �2; this holds if M satisfies that there exist r > 1, x0

≥ 0 such that

M(x) ≤ 1

2r
M(r x) ∀x ≥ x0. (11)

If (11) holds, then LM(�) is reflexive. In fact every continuous linear functional on LM(�) has the
form

u →
∫

�

vu dx (12)

for a certain v ∈ L N (�). The norms in these spaces are rather cumbersome to define: see Ref. 13.
The inequality ∣∣∣∣

∫
�

uv dx

∣∣∣∣ ≤ ‖u‖L M ‖v‖L N (13)

holds.
We will consider the functions

Mε(x) = με(x)x2 = εx3 + (1 − ε)
x3

1 + x
. (14)
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It is easy to see that (8) holds for k = 8 and (11) for r = 2. Thus, the Banach space LM(�) is separable
and reflexive.

The Orlicz-Sobolev space W 1,M (�) is (roughly) formed by the functions u such that u, ∇u ∈
LM(�), with norm

‖u‖W 1,M = (‖u‖2
L M + ‖∇u‖2

L M

)1/2
. (15)

The closure of C∞
c (�) in W 1,M (�) is denoted by W 1,M

0 (�). There the norm may be reduced to the
term in ∇u in (15).

Lemma 1. Assume that u, v ∈ W 1,Mε (�). The integral

(με(|∇u|)∇u,∇v) =
∫

�

με(|∇u|)∇u · ∇v dx (16)

is finite for any ε ∈ [0, 1].

Proof. Obviously ∫
�

|με(|∇u|)∇u · ∇v| dx ≤
∫

�

Mε(|∇u|)
|∇u| |∇v| dx . (17)

Since

Nε

(
Mε(x)

x

)
≤ Mε(x) (18)

(see Ref. 14, p. 137), the function με(|∇u|)∇u lies in L Nε (�). The result follows from (13).
We will denote by Aε the operator

Aε : W 1,M (�) → L N (�)

Aε(u) = με(|∇u|)∇u. (19)

Lemma 2. The operator Aε is hemicontinuous: for u, v, w ∈ W 1,M (�), the mapping R → C

λ → (Aε(u + λv),∇w), (20)

is continuous.

Proof. Since obviously the mapping

λ → με(|∇(u + λv)(x)|)∇(u + λv)(x) · ∇w(x) (21)

is continuous for every point x ∈ �, we only need to bound the integrand by an integrable function
uniformly in a neighbourhood of every λ to apply Lebesgue’s theorem on the continuity of parametric
integrals. Since the function

Fε : x → xμε((x) (22)

is convex and increasing, we conclude

Fε(|∇u + λ∇v|) ≤ Fε(|∇u| + |λ||∇v|) ≤ 1

2
Fε(2|∇u|) + 1

2
Fε(2|λ||∇v|). (23)

If we take λ with |λ| ≤ k, we obtain

Fε(|∇u + λ∇v|) ≤ 1

2
Fε(|∇2u|) + 1

2
Fε(|∇2kv|). (24)

Since both 2u and 2kv lie in the space W 1,Mε (�), the conclusion follows from Lemma 2.

Lemma 3. The operator Aε is monotone, meaning

(Aε(u) − Aε(v),∇u − ∇v) ≥ 0. (25)
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When u, v ∈ W 1,Mε

0 (�), equality only holds if u = v.

Proof. The increasing character of Fε means

(y − x)Fε(x) ≤ (y − x)Fε(y), (26)

and equality only holds if x = y. Therefore,

(με(x) + με(y))xy ≤ με(x)x2 + με(y)y2 (27)

with the same caveat. Hence∫
�

(με(|∇u|)∇u − με(|∇v|)∇v) · (∇u − ∇v) dx

≥
∫

�

με(|∇u|)|∇u|2 + με(|∇v|)|∇v|2

−(με(|∇u|) + με(|∇v|))|∇u||∇v| dx ≥ 0. (28)

Equality demands |∇u| = |∇v|, ∇u · ∇v = |∇u||∇v|; thus, ∇u = ∇v almost everywhere in �.
Since both u and v vanish at ∂�, they are identical.

Lemma 4. Let u ∈ W 1,M
0 (�). Then

1

‖∇u‖L Mε

∫
�

με(|∇u|)|∇u|2 dx = 1

‖∇u‖L Mε

(Aε(u),∇u) (29)

tends to ∞ when ‖∇u‖L Mε → ∞.

Proof. We will use the so-called Luxemburg norm in L Mε , which is equivalent to the standard
one; we will denote it by ‖u‖Mε

. Since Nε satisfies the �2 condition, we have∫
�

Mε

( |∇u|
‖∇u‖Mε

)
dx = 1 (30)

(see Ref. 13, p. 78). Therefore,

1 =
∫

�

με

( |∇u|
‖∇u‖Mε

) |∇u|2
‖∇u‖2

Mε

dx . (31)

Since με is increasing, when ‖∇u‖Mε
grows we obtain

‖∇u‖Mε
≤ 1

‖∇u‖Mε

∫
�

με(|∇u|)|∇u|2 dx, (32)

which proves the result.
Recall that the function u ∈ W 1,Mε

0 (�) is called a weak solution of the problem

∇ · (με(|∇u|)∇u) = ρ,

u |∂�= 0, (33)

if for every v ∈ W 1,Mε

0 (�), the relation∫
�

με(|∇u|)∇u · ∇v dx = −
∫

�

ρv dx (34)

holds.
We state the main theorem: the standard MOND case corresponds to ε = 0.

Theorem 1: For every ε ∈ [0, 1], the mapping

Tε : W 1,Mε

0 (�) → (W 1,Mε

0 (�))′

Tε(u)(v) = (Aε(u),∇v) (35)
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is an isomorphism. Therefore, for every ρ in the dual space (W 1,Mε

0 (�))′ there exists a unique weak
solution of (33).

Proof. Lemmas 1–3 show that Tε satisfies the conditions in p. 171–173 of Ref. 16. The result
follows.

For the non-homogeneous Dirichlet problem

∇ · (με(|∇u|)∇u) = ρ,

u |∂� = g, (36)

we must assume the existence of an extension of g to a certain w ∈ W 1,Mε

0 (�). Defining v = u − w,
we must solve

∇ · (με(|∇(v + w)|)∇(v + w)) = ρ,

v |∂� = 0. (37)

It is easy to check that the operator

Bε(v) = Aε(v + w) (38)

satisfies the same properties as Aε , so there exists again a unique solution.

III. REGULARITY OF THE MOND POTENTIALS

There exist two problems with these apparently general theorems. The first one is that while

L∞(�) ⊂ L Mε (�) ⊂ L1(�), (39)

and therefore

L∞(�) ⊂
(

W 1,Mε

0 (�)
)′

⊂ M(�), (40)

it is difficult to precise exactly the admissible densities. Certainly Dirac measures are not there, so
we cannot use point masses. This, however, is more a problem of convenience than a physical one;
we can always assume that densities are bounded measurable functions. It would be unreasonable
to demand more; solid planets yield a noncontinuous density in the Solar System.

The second problem is that the pertinence of the MOND potential to W 1,Mε (�) does not say
a lot about the regularity properties of it. In the classical theory of linear and quasilinear elliptic
equations, the more regular is the independent term the more regular is the solution; thus, when
ρ ∈ L∞(�), the solution u belongs to a Hölder class C0,α(�).17, 18 Even this is not entirely acceptable,
since we would like the gradient of u, which is the real physical force, to be at least bounded. This
is partially solved by the fact that these results are local; if ρ is smooth enough in a domain, so is u
in any subdomain whose closure is contained there.

For the MOND case, however, the lack of ellipticity is a major obstacle. However, we must
recall that MOND dynamics are relevant when the size of ∇u is small (i.e., when the equation is less
elliptic); even for moderately large gravitational fields, it coincides very precisely with Newtonian
predictions. If we make the hypothesis that within our region of interest |∇u| ≤ R, for any given
constant δ we may take ε small enough (εR2 ≤ δ) for

|με(|∇u|) − μ(|∇u|)| ≤ δ, (41)

and presume that the MOND potential and the ε-MOND one will differ very little. With this
admittedly pragmatical hypothesis in place, we may obtain nice regularity results.

Theorem 2: Assume that ρ is measurable and bounded in a region �. For any ε ∈ (0, 1] and
any relatively compact domain �′ such that �′ ⊂ �, there exists α > 0 such that the solution to (31)
lies in the space C1,α(�′).
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Proof. The vector

a(x, z, p) = με(|p|)p (42)

satisfies

a(x, z, 0) = 0, (43)

∑
i, j

∂a j

∂pi
ξiξ j = (ε + (1 − ε)μ′(|p|)) (p · ξ )2

|p|

+ε|p|ξ 2 + (1 − ε)μ(|p|)ξ 2 ≥ ε|p|ξ 2, (44)

∑
i, j

∣∣∣∣∂a j

∂pi

∣∣∣∣ =
∑
i, j

(
ε

pi p j

|p| + (1 − ε)μ′(|p|) pi p j

|p|
)

+3ε|p| + 3(1 − ε)μ(|p|) ≤ K |p|, (45)

for some constant K. Then we may apply Theorem 1 of Ref. 19 to obtain the result. (The remaining
conditions are trivially satisfied. Notice that there is a misprint in Eq. (1.4) of this paper.)

Thus, the solutions to the ε-MOND equation are more regular than those of the Newtonian
Poisson equation. In particular ∇u ∈ C0,α , so the gradient is continuous. That this cannot be improved
is shown by the well known spherical solution

u(x) = 3

2
|x|3/2, (46)

which satisfies

∇ · (|∇u|∇u) = 3. (47)

IV. QUASILINEAR MOND

This new version of MOND11 satisfies the following system. First take the Newtonian potential

�uN = ρ, (48)

and then consider the new Poisson equation

�u = ∇ ·
(

ν

( |∇uN |
a0

)
∇uN

)
. (49)

ν is related to the function μ by ν(y) = 1/μ(x), where xμ(x) = y. For the function μ given in (3),
this yields

ν(y) = 1 + 2

y +
√

y2 + 4y
, (50)

so that ν(y) ∼ 1/
√

y when y → 0 and ν(y) → 1 when y → ∞. It is not clear if we must take different
boundary conditions for uN and u; presumably they must be taken as zero when considering a large
domain, with no matter near the boundary. Anyway, our bounds will hold as long as the boundary
conditions are smooth enough.

Theorem 3: Assume that ρ ∈ Lp(�), p ∈ (1, ∞). For p < 3, u ∈ W 1,q (�), with q = 6p/(3 − p).
Therefore, u ∈ C0,α(�) for α = 3(p − 1)/(2p). For p ≥ 3, u ∈ W 1,r (�) for any r < ∞, so that
u ∈ C0,α(�) for any α < 1.
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Proof. For ρ ∈ Lp(�), p ∈ (1, ∞), it is well known that the Newtonian potential uN ∈ W 2,p(�).20

Using Sobolev’s injection lemmas,

|∇uN | ∈ L p∗
(�), p∗ = 3p

3 − p
, if p < 3 (51)

|∇uN | ∈ Lr (�), for any r < ∞ if p ≥ 3. (52)

Since ν(y) ≤ k/
√

y for some constant k,

ν(|∇uN |)|∇uN | ≤ k|∇uN |−1/2|∇uN | ∈ L2p∗
(�) if p < 3, (53)

or any Lr, r < ∞, if p ≥ 3. Therefore

∇ · (ν(|∇uN |)∇uN ) ∈ (W 1,2p∗
0 (�))′, (54)

for p < 3. Notice that 2p* = (6p)/(3 − p). For p ≥ 3, any r < ∞ is valid. By the classical theorems on
the linear Poisson equation, for smooth enough boundary conditions, u ∈ W 1,2p∗

(�) (respectively
u ∈ W 1,r (�), any r < ∞). The remaining points follow from Sobolev’s lemmas on the imbedding
of Sobolev in Hölder spaces.

We see that quasilinear MOND yields less regularity than Newtonian dynamics, but still enough
to guarantee a physically admissible behaviour.

V. CONCLUSIONS

Modified Newtonian dynamics is an unconventional proposal to explain the observed behaviour
of galaxies’ rotation without recourse to the presence of dark matter. It is still an active object of
research in the astrophysical community, but the mathematics of the basic nonlinear Poisson equation
has been rather neglected. This equation is problematic as it lies halfway between strictly elliptic
quasilinear equations and the p-Laplace equation, being neither one nor the other, so that none of the
usual existence theorems apply directly. To prove this existence, we need to define an appropriate
Orlicz-Sobolev space for an Orlicz function directly related to the Milgrom function which scales
the effect of the gravitational force. The resulting existence and uniqueness theorem is somewhat
unsatisfactory as it provides for a wide class of admissible densities and does not yield much regularity
of the solutions. However, we also show that in the regions where MOND differs substantially from
Newtonian mechanics, i.e. where the gravitational force is low, we may approximate the MOND
equation by a Poisson-like equation that yields for bounded densities a gravitational field whose
gradient is Hölder continuous, which represents a higher degree of regularity than the Newtonian
one. A later proposal, quasilinear MOND, is also studied.
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17 O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations (Academic Press, New York, 1968)

[Russian Edition, Nauka, Moscow (1964)].
18 J. Serrin, “Local behavior of solutions of quasilinear equations,” Acta Math. 111, 247–302 (1964).
19 P. Tolksdorf, “Regularity for a more general class of quasilinear elliptic equations,” J. Differ. Equations 51, 126–150

(1984).
20 D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, New York, 1998).

http://dx.doi.org/10.1086/164021
http://dx.doi.org/10.1111/j.1365-2966.2009.16184.x
http://dx.doi.org/10.1103/PhysRevD.73.103513
http://dx.doi.org/10.1007/BF02391014
http://dx.doi.org/10.1016/0022-0396(84)90105-0

