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Abstract

Since its introduction by Shinbrot, numerous variations of parameter identification
based on the Modulating Function Technique (MFT) have been developed. Recently
researches have achieved to estimate also states through this method. In this thesis,
the MFT is utilized for the estimation, of both parameters and states, that lead to
observe the behaviour of the vertical suspension forces on a vehicle over time. In order
to deal with the frequency disturbances present by perturbations as measurement
noise and vibrations, the Fourier Modulating Function (FMF) as a kernel is proposed.
Furthermore, this method is implemented with the concept of sensor fusion. The
estimation that results after the implementation of an adaptive observer during the
present work is going to show the robustness of the studied technique.



Kurzfassung

Seit der Einführung der Modulationsfunktionstechnik (MFT) durch Shinbrot wur-
den zahlreiche Methoden zur Identifikation von Parametern entwickelt. Die aktuelle
Forschung hat inzwischen auch das Schätzen von Zustandsgrößen mit dieser Technik er-
reicht. In dieser Masterarbeit wird die MFT für die Zustands- und Parameterschätzung
verwendet um das dynamische Verhalten der vertikalen Federung an einem Fahrzeug
zu beobachten. Um mit Störungen durch Messrauschen und Vibrationen umzugehen
wird die Fouriermodulationsfunktion (FMF) als Kern vorgeschlagen. Des Weiteren
wird die Methode mit dem Konzept der Sensorfusion implementiert. Das Ergebnis ist
eine robuste Schätzung, wie in der vorliegenden Arbeit gezeigt wird.
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1 Introduction 1

1 Introduction

1.1 Motivation
Estimation of States is an area of great interest on the field of Control Engineering due
to the necessity of understanding the complete behaviour of the analysed plant. As
is known, there are internal states that cannot be directly determined, either due to
the impossibility of carrying out a direct measurement or the high cost of the required
measurement systems. A similar problem can be seen when trying to identify param-
eters, which may not be determined in beforehand. A wide range of identification and
estimation methods that solve this problematic have been developed through the years,
notwithstanding the complexity of systems can pose a major challenge regarding the
design of an observer and can cause great computational cost.

Safety systems of modern terrestrial vehicles are based on reading various sensors,
data that can be used for driver monitoring, as well as for automatic steering control,
such that dangers like rollover can be avoided. Nevertheless, these sophisticated sen-
sors considerably increase the price of those vehicle.

The content of this thesis is concerned with the design of an adaptive observer for
the identification of the necessary readings of Inertial Measurement Units (IMU) and
suspension deflection sensors based in the dynamics of a full car model. The method
chosen is the MFT based on the Fourier Transform, based on the work of Shinbrot
(1957).
The work is structured into six chapters. In the first one, the problem statement, as
well as the objectives, are given. The second chapter introduces the necessary defi-
nitions and theorems concerning the MFT. Also, the application of these principles
for parameters identification and states estimation is explained. In chapter three, the
mathematical relations that describe the car model utilised in the investigation are
given. In chapter four, the configuration of the employed sensors is presented, and the
content of the previous chapters are merged in such a way that an estimator and an
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1 Introduction 2

adaptive observer are developed. The model considerations, as well as the implemen-
tation of the developed work and the analysis of the results, are presented in chapter
five. Finally, the feasibility of using the Modulating Function approach during this
work is commented; the contribution of this investigation, some considerations and an
outlook on how the work could continue are given.

1.2 Problem Statement
As stated in the previous section, the identification of some states is necessary by
means of cheaper sensors. The IMU brings information as the angular rate and accel-
erations, however, most of the vehicle dynamics depends mathematically on the roll,
pitch and yaw angles. The identification of these angles cannot be realised by the
means of integration, due to the presence of bias, measurement noise and unknown
initial conditions, which causes accumulation of error. Furthermore, the knowledge of
some states is necessary to analyse the behaviour of vertical forces that can help to
understand the effect of the road on the vehicle. During the present work, the MFT
is utilized due to the robustness against noise effect.

1.3 Objectives
This work has as main objective to develop an adaptive observer using the Modulating
Function Technique based on the Fourier transform and employing the reading of the
aforementioned sensors that can allow to estimate the roll and pitch angles as well
as suspension deflection sensors readings that can allow to determine the effect of
the vertical forces on a 4-wheel terrestrial vehicle. The following figure outlines the
aforementioned:

Master Thesis Juan de Dios Segura Rojas
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Figure 1.1: Estimation scheme
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2 Modulating Function 4

2 Modulating Function

This chapter begins with a brief historical introduction of the approaches based in the
MFT. Then, the mathematical definition of the Modulating Function is given. This is
followed by the definition of the Modulation Operator, which allows to transform or
’modulate’ a function represented in time domain.

The Frequency Domain Modulating Function approach is introduced and defined in
section 2.2 as well as some representations of the components of a MF in this domain.
The next section gives a explanation of how to form a Left MF in the frequency do-
main and the chapter ends with the steps necessary to identify parameters and estimate
states using the approach.

2.1 Modulating Function Technique
This technique is an approach based on the work developed by Shinbrot in 1957 with
the objective of transforming a differential equation into an algebraic one. Among the
different Modulating Functions (MF) developed for parameters identification, Pearson
and Lee introduced the FMF in 1985 [PL85], which is based on the frequency domain
and is utilised in the present work. Consider the following definitions based on [Shi57].

Definition 2.1 (Modulating Function). Let ϕ ∈ CNd ([0, T ] → IR) be a Nd-times
continuously differentiable function that for the fixed time horizon T > 0 fulfils:

ϕ(i)(0) · ϕ(i)(T ) = 0 ∀ i ∈ {0, 1, ..., Nd − 1}.

The MF ϕ of order Nd is called

(i) Total Modulating Function (TMF) if

ϕ(i)(0) = ϕ(i)(T ) = 0 ∀ i ∈ {0, 1, ..., Nd − 1},

Master Thesis Juan de Dios Segura Rojas



2 Modulating Function 5

(ii) Left Modulating Function (LMF) if

ϕ(i)(0) = 0, ϕ(i)(T ) 6= 0 ∀ i ∈ {0, 1, ..., Nd − 1},

(iii) Right Modulating Function (RMF) if

ϕ(i)(0) 6= 0, ϕ(i)(T ) = 0 ∀ i ∈ {0, 1, ..., Nd − 1}.

Remark. It is important to consider that the integration horizon T represents a moving
horizon that maintains its length. So for any time t, the horizon will be defined as
[t− T, t].

Definition 2.2 (Modulation operator). Let f : [t − T, t] → IR be an integrable time
function, with t ∈ IR, T > 0 and the MF ϕ ∈ CNd ([0, T ] → IR). The Modulation
operator is defined for f under the MF ϕ as

Li[f ] :=
∫ t

t−T
(−1)iϕ(i)(τ − t+ T )f(τ)dτ (2.1)

The modulation operator abbreviates the integral transformation with respect to
the moving horizon [t− T, T ], where the MF acts as the kernel.

If in (2.1) f is replaced by its i-th derivative:

L0[f (i)] :=
∫ t

t−T
ϕ(τ − t+ T )f (i)(τ)dτ (2.2)

Theorem 2.1. Let f : [t − T, t] → IR be an integrable time function, with t ∈ IR,
T > 0 and TMF ϕ ∈ CNd be a TMF. Then

Li[f ] ≡ L0[f (i)] . (2.3)

Proof. The operator L0[f (i)] can be expanded through the concept of repeated inte-
gration by parts, which will be considered for the period from 0 to T for simplicity:

L0[f (i)] =

ϕ(τ)f (i−1)

∣∣∣∣∣∣
T

0

+ · · ·+ (−1)i−1ϕ(i−1)(τ)f

∣∣∣∣∣∣
T

0

+ (−1)i
∫ T

0
ϕ(i)(τ)fdτ

 (2.4)
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2 Modulating Function 6

Considering the boundary conditions defined for the TMF:

L0[f (i)] = (−1)i
∫ T

0
ϕ(i)(τ)f(τ)dτ

Remark. The modulating operator represents an integration, so it can be assumed that
the same properties of this operator are fulfilled for Li[f ].

An advantage that results of using this method is that the calculation of derivative
terms is avoided, the derivatives are transferred to the MF as proved.

2.2 Frequency Domain Modulating Function Approach
In addition to the MF with trigonometric or polynomial structure, which are com-
monly used, Pearson, Lee, Unbehauen et al. also developed frequency approaches,
which were unified by [ART14] into the representation called Frequency Domain Mod-
ulating Function (FDMF). These MF are based on the Hartley and Fourier Transform.
In the present work the latter one will be utilized, and from now on the MF based on it
will be denominated as FMF. The FMF has been chosen due to its filtering properties
against the noise as explained by [Agu14].

The Fourier Transform has a structure very similar to the one defined on (2.1). The
representation that fits better is defined below.

Definition 2.3 (Finite Fourier Transform). Let f : [t − T, t] → IR be an integrable
function, with t ∈ IR and T > 0. The Finite Fourier Transform is defined as

F(kω) = 1
T

∫ t

t−T
f(τ)e−jkω(τ−t+T )dτ,

where ω = 2π
T

and k ∈ Z.

Following the similarity with (2.1) mentioned before, the chosen kernel is Ψ(ω, t) =
e−jωt, where ω = [ω1, ..., ωNω]> is a vector of Nω multiples of ω, so

Ψ(ω, t) = e−jωt = [e−jω1t, ..., e−jωNωt]> (2.5)

If a right linear combination matrix Rm ∈ IR(Nω−Nd)×Nω is determined as will be
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2 Modulating Function 7

shown later, a MF with the structure ϕ(t) = 1
T
RmΨ(ω, t) can be obtained, with

Ψ(ω, t) ∈ IRNω .

Theorem 2.2. Let f : [t − T, t] → IR be an integrable time function, with t ∈ IR,
T > 0. The modulation operator has the form

Li[f ] := RmDi(ω)F(kω)

where Di follows from the time derivative of the kernel Ψ(ω, t).

Proof. Replacing the structure defined for ϕ(t) in (2.1) gives

Li[f ] := 1
T

(−1)iRm

∫ t

t−T
Ψ(i)(ω, τ − t+ T )f(τ)dτ. (2.6)

where the derivative of the kernel has the structure Ψ(i)(ω, t) = (−1)iDi(ω)Ψ(ω, t), or

Ψ(i)(ω, t) := (−1)i (j)i


ω1

ω2
. . .

ωNω



i

︸ ︷︷ ︸
Di(ω)


e−jω1t

e−jω2t

...
e−jωNωt


︸ ︷︷ ︸

Ψ(ω,t)

.

Then, replacing and reordering the terms in (2.6) gives

Li[f ] := RmDi(ω) 1
T

∫ t

t−T
f(τ)e−jωtdτ = RmDi(ω)F(kω) (2.7)

For a TMF, the equivalence (2.3) is fulfilled.

The kernel Ψ(ω, t) can not be 0, it does not matter the value of t. That is why it
is necessary to determine the combination matrix Rm. For its calculation, the struc-
ture of the FDMF after (2.5) is given:

ϕ(t) = [ϕ1(t), ..., ϕNw−Nd(t)]
> (2.8)

or ϕ(t) = Rm[Ψ(ω1, t), ...,Ψ(ωNw , t)]
>. This structure can be reshaped, so it includes

its derivatives. Also the boundary conditions for a TMF seen in Definition 2.1 are
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2 Modulating Function 8

considered. Then, (2.8) evaluated on T has the form:

[ϕ(T ), ϕ(1)(T ), ..., ϕ(Nd−1)(T )]> = [Ψ(ω, T ),Ψ(1)(ω, T ), ...,ΨNd−1(ω, T )]>Rm
>. (2.9)

This last representation can be rewritten asMRm
>. Due to the aforementioned bound-

ary conditions, (2.9) can be evaluated at 0. Finally, Rm is calculated as the transpose
of the null space of M .

2.3 Frequency Domain Modulating Function as LMF
In (2.5) the structure of the kernel is conformed by elements with the shape e−j(kω)t

for k ∈ {1, ..., Nw}. If this kernel is evaluated on the integration limits, one gets

e−j(kω)T = e−j(k
2π
T

)T = e−j2πk = 1 = e−j(kω)0, (2.10)

and can be noticed that the boundary conditions for a LMF can not be met, i.e if
ϕ(T ) = 0→ ϕ(0) = 0.

It can be concluded that a LMF based purely on the structure of Fourier Transform
cannot be obtained. In [Web17] a LMF is given, which keeps the properties of the
defined kernel. It has the structure of the TMF kernel extending it by a polynomial
term and fulfils the boundary conditions. Then, the new LMF is

ϕ(t) = 1
T
RmΨ(ω, t)tNd (2.11)

The equivalence (2.3) was defined due to the effect of the boundary conditions of a
TMF on equation (2.4). Analogously, for a LMF the boundary conditions must be
fulfilled, so in this case:

L0[f (i)] =

=
[
ϕ(T )f (i−1)(t) + · · ·+ (−1)i−1ϕ(i−1)(T )f(t) + (−1)i

∫ t

t−T
ϕ(i)(τ − t+ T )f(τ)dτ

]
(2.12)
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And can be simplified using also the equation (2.7) to get the structure

L0[f (i)] =
i∑

k=1
(−1)k−1ϕ(k−1)(T )f (i−k)(t) +RmDi(ω)F(kω)

=
i∑

k=1
(−1)k−1ϕ(k−1)(T )f (i−k)(t) + Li[f ]

(2.13)

Rm is determined similar to (2.9) with the consideration that the null space of M
must be evaluated only in t = 0. Due to this boundary condition, the LMF and its
derivatives are continuously growing over time as seen in Figure (5.7). The number
of frequencies Nw and the horizon T have to be chosen carefully to obtain a coherent
maximum value for ϕ.

2.4 Choice of Modulating Function
Choosing which kind of MF among the ones defined at the beginning of this chapter
depends mainly on what one needs to calculate. During this work, only the TMF and
the LMF are used for parameter identification and state estimation respectively.

The following equation

y(n) + an−1y
(n−1) + ...+ a0y = bn−2u

(n−2) + ...+ b0u, (2.14)

represents a SISO system. It will be used to give a better understanding of the following
subsections.

2.4.1 Parameters identification

For parameters identification, one choose the TMF. The boundary conditions of this
kind of MF can be interpreted as the unnecessariness of information storing. Also, the
equivalence (2.3) allows to avoid derivatives calculation. Following the example (2.14),
the whole differential equation is multiplied by ϕ(t) and integrated over the horizon:

Ln[y] + an−1L
n−1[y] + ...+ a0L

0[y] = bn−2L
n−2[u] + ...+ b0L

0[u] (2.15)

Master Thesis Juan de Dios Segura Rojas



2 Modulating Function 10

Equation (2.15) can be rearranged into the form z = η>θ, where η represents the
regressor and θ is the parameter vector:

Ln[y]︸ ︷︷ ︸
z

=
(
−Ln−1[y] ... − L0[y] Ln−2[u] ... L0[u]

)
︸ ︷︷ ︸

η>



an−1
...
a0

bn−2
...
b0


︸ ︷︷ ︸

θ

(2.16)

A classical online parameter estimation algorithm is the gradient method:

˙̂
θ := ∂J

∂θ̂
= −η(η>θ̂ − z), (2.17)

where J(θ̂) = 1
2

(
η>θ̂ − z

)> (
η>θ̂ − z

)
is the cost function. To get θ̂, (2.17) has to be

integrated over runtime. A nonlinear gradiend method and a extended form can be
found in [NRERM16].

The parameters can also be estimated using a simple inversion based approach. Util-
ising as many MF as number of parameter to estimate, a well posed system of linear
equations can be obtained. For n = 2:


L2

1[y]
L2

2[y]
L2

3[y]


︸ ︷︷ ︸

z

=


−L1

1[y] − L0
1[y] L0

1[u]
−L1

2[y] − L0
2[y] L0

2[u]
−L1

3[y] − L0
3[y] L0

3[u]


︸ ︷︷ ︸

η>


a1

a0

b0


︸ ︷︷ ︸

θ

Then, the parameter vector is estimated:

θ̂(t) = (ηη>)−1η z, (2.18)

which needs η to be full row rank.
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2 Modulating Function 11

2.4.2 State estimation

Once the parameters are identified, the states can be reconstructed utilising the LMF,
whose boundary conditions allow to observe the evolution of a state over time. For
(2.14) with n = 2, the differential equation is multiplied by ϕ and integrated over the
horizon:

ϕ(T )ẏ(t)− ϕ̇(T )y(t) + L2[y] + a1
(
ϕ(T )y(t) + L1[y]

)
+ a0L

0[y] = b0L
0[u] (2.19)

This equation can be rearranged so the states are isolated (based on [NBH+18]):

L2[y] + a1L
1[y] + a0L

0[y]− b0L
0[u]︸ ︷︷ ︸

q

=
(
ϕ̇(T )− a1ϕ(T ) − ϕ(T )

)
︸ ︷︷ ︸

δ

y(t)
ẏ(t)


︸ ︷︷ ︸

x(t)

(2.20)

The resulting equation q = δx(t) is augmented by as many distinct MF ϕi as the
number of states to estimate. Following the example:L2

1[y] + a1L
1
1[y] + a0L

0
1[y]− b0L

0
1[u]

L2
2[y] + a1L

1
2[y] + a0L

0
2[y]− b0L

0
2[u]


︸ ︷︷ ︸

Q

=
ϕ̇1(T )− a1ϕ1(T ) − ϕ1(T )
ϕ̇2(T )− a1ϕ2(T ) − ϕ2(T )


︸ ︷︷ ︸

∆

y(t)
ẏ(t)


︸ ︷︷ ︸

x(t)

It can be noticed that ∆ is constant and can be computed offline. Using least squares,
the states are reconstructed:

x̂(t) =
(
∆>∆

)−1
∆>Q (2.21)

In this chapter, the necessary knowledge for the development of this work is explained.
Also, an offline method to observe states using the MFT is given. For parameter
identification, an online estimator that uses the gradient method, as well as an offline
method based on a simple inversion, are explained. The former is implemented during
this work.
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3 Vehicle Dynamics 12

3 Vehicle Dynamics

The present chapter begins with a brief explanation of the chosen car model, as well as
the importance of it. Then, mathematical relations that group the vehicle dynamics
are given.

3.1 Car model
The most important requirement for the investigation of vehicle motion is an appro-
priate model of the vehicle dynamics. The number of Degrees of Freedom (DoF) of
the model varies from the classic ’bicycle model’ up to more realistic models, whose
complexity implies a higher number of differential equations. Choosing the right model
allows to understand the behaviour of the vehicle according to the properties that one
wants to analyse. This can be for example the applied forces, suspension or rotational
accelerations.

The following 14 DoF vehicle model based on [SWSI13] is given, in which the motion
in space of the vehicle body has six degrees of freedom (longitudinal, lateral, vertical,
roll, pitch and yaw motions).

3.1.1 Mathematical Relations

The following relations are based on the works of [Ell94], [SSS09] and [NBH+18]. Using
the described model in figure 3.1 as a reference, the displacement of sprung mass on
the vertical axis is defined by:

ms.z̈cg =
4∑
i=1

Fsi (3.1)

where ms represents the mass of the sprung and z̈cg is the vertical acceleration of the
body evaluated on its center of gravity (COG) without considering the effect of the
gravitational force. The forces Fsi are the result of combining the spring and damper

Master Thesis Juan de Dios Segura Rojas



3 Vehicle Dynamics 13

θ

a

b

tr

tf

zu3

zs3

zs4

zu4

ϕ

zs1

zu1
zs2

zu2

δ1

δ2

ψ
Z

Y
X

zcg

aym

Figure 3.1: 14 DOF vehicle model

forces (i is 1 for the front left, 2 for the front right, 3 for the rear left and 4 for the
rear right).

Fsi = Ksi(zui − zsi)︸ ︷︷ ︸
Springforce

+Csi(żui − żsi)︸ ︷︷ ︸
Damperforce

(3.2)

where zui and zsi represent the position on the Z-axis of the unsprung and sprung of
each of the 4 corners respectively. Ksi is the vertical stiffness coefficient of the respec-
tive suspension and Csi represents the vertical damping coefficient of each suspension.
Through the principle of the balance of moments, the pitch effect of the vehicle is given
by:

Iθθ̈ = −(Fs1 + Fs2)a+ (Fs3 + Fs4)b (3.3)

where Iθ is the moment of inertia around the pitch axis, θ̈ is the pitch acceleration, a
is the distance from the COG to the front axle and b is the distance from the COG to
the back axle. Similarly, the roll effect of the vehicle is represented by:

Iφφ̈ = (Fs1 − Fs2)Tf2 + (Fs3 − Fs4)Tr2 (3.4)

where Iφ is the moment of inertia about roll axis, φ̈ is the roll acceleration, Tf is the
length of the front track and Tr is the length of the back track.
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The equation of body roll motion, taken from [HBM04], is:

Iφφ̈+ Cφφ̇+Kφφ = −msaymhroll (3.5)

where Kφ is the combined roll stiffness of suspension and tires, Cφ is the combined roll
damping of suspension and tires and aym is the measured lateral acceleration. Equa-
tion (3.5) simplifies the calculation of aym, which can be compensated with the effect
of the gravity and the roll angle to obtain the acceleration in the Y-axis.

The following geometric relations allow to relate the corner dynamics to the rotational
angles:

zs1 = zcg − a sin θ + tf
2 sinφ,

zs2 = zcg − a sin θ − tf
2 sinφ,

zs3 = zcg + b sin θ + tr
2 sinφ,

zs4 = zcg + b sin θ − tr
2 sinφ

(3.6)

Throughout the present work, a small pitch angle is considered. This assumption is
valid due to the linear behaviour of the sine at small angles. Then, relations in (3.6)
have the form:

zs1 = zcg − aθ + tf
2 sinφ,

zs2 = zcg − aθ −
tf
2 sinφ,

zs3 = zcg + bθ + tr
2 sinφ,

zs4 = zcg + bθ − tr
2 sinφ

(3.7)

A last important dynamic component related with the mass of the suspension (or
unsprung mass) is the unknown road input. The relation with respect to the suspension
deflection, and que position of the sprung is given:

mui.z̈ui = −ksi(zui − zsi)− Csi(żui − żsi)− kui(zui − ui)− cui(żui − u̇i) (3.8)

As the wheel damping coefficient is very small compared with the other coefficients,
the component cui(żui − u̇i) seen in (3.8) can be ignored.
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Measurements:
accelerometer
displacement
angular

..

z

ms

mu

ksi

kui

csi

cui

Zsi

Zui

ui

Figure 3.2: 1 DOF vehicle model

3.1.2 Variables and parameters

The following table gives a summary of the variables defined so far:

Variable Description
zcg Vertical position of COG
zs1 Vertical position of front left sprung mass corner
zs2 Vertical position of front right sprung mass corner
zs3 Vertical position of rear left sprung mass corner
zs4 Vertical position of rear right sprung mass corner
zu1 Vertical position of front left unspung mass
zu2 Vertical position of front right unspung mass
zu3 Vertical position of rear left unspung mass
zu4 Vertical position of rear right unspung mass
u1 Road profile input in the front left wheel
u2 Road profile input in the front right wheel
u3 Road profile input in the rear left wheel
u4 Road profile input in the rear right wheel
θ Vehicle pitch angle
φ Vehicle roll angle

Table 3.1: Described variables
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The used parameters during this work where obtained from a Range Rover model
on CarMaker R© shared by the Automotive Engineering Group, TU Ilmenau:

Parameter description Value
ms Sprung mass weight 1661.95 kg
mu Unsprung mass weight 425.45 kg
a Distance from COG to front axle 1.0365 m
b Distance from COG to rear axle 1.6255 m
tf Front track 1.616 m
tr Rear track 1.613 m
hcog Heigh of COG 0.634 m
Ks1,2 Suspension’s vertical stiffness coefficient (front) 2.5.104N/m
Ks3,4 Suspension’s vertical stiffness coefficient (rear) 3.104N/m
Kui Wheel stiffness coefficient 7.5.104N/m
Cs1,2 Suspension’s vertical damping coefficient (front) 1.5.103N s/m
Cs3,4 Suspension’s vertical damping coefficient (rear) 1.5.103N s/m
Kφ Combined roll stiffness of suspension and tires 900 N m/rad
Cφ Combined roll damping of suspension and tires 60 Nm/(rad s)
Iθ Moment of inertia along pitch axis 3481.172 kg m2

Iφ Moment of inertia along roll axis 912.124 kg m2

Table 3.2: Technical parameters
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4 Adaptive observer

In this chapter, the algorithms for recursive joint estimation of parameters and states
are developed. These elements will compose what here is defined as an adaptive ob-
server.

On Table 3.2, some parameters like vertical stiffness coefficients and vertical damp-
ing coefficients are given. As any mechanical structure, gradual wear out over time
inevitably happens due to both internal and external factors. In consequence, their
parameters are altered slowly. Accurate information is necessary, so a calibration step
is fundamental before the development of an observer or any control structure. For this
purpose, the MFT will be used together with the readings of 5 IMUs and 4 suspension
deflection sensors. A scheme based on the full car model given in figure 4.1 shows the
distribution of the IMUs (represented in red) in each corner of the vehicle and in its
COG, as well as the suspension deflection sensors (represented in green):

Figure 4.1: Sensors configuration
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The following readings from the sensors are obtained:

Y =



aym + by

z̈cg + bz

z̈s1 + b1

z̈s2 + b2

z̈s3 + b3

z̈s4 + b4

∆z1 + b∆1

∆z2 + b∆2

∆z3 + b∆3

∆z4 + b∆4

θ̇ + bθ

φ̇+ bφ



+ η(t) =



yy

yz

y1

y2

y3

y4

∆y1

∆y2

∆y3

∆y4

yθ̇
yφ̇



(4.1)

where ∆zi is zui − zsi, b is the respective bias and η(t) represents the reading noise.
The vertical displacement of the sprung mass is obtained replacing (3.2) in (3.1):

ms.z̈cg =
4∑
i=1

(Ksi.∆zi + Csi∆żi) (4.2)

and can be rewritten in a way that only depends on the outputs and the bias:

ms.(yz − b) =
4∑
i=1

[Ksi(∆yi − b∆i) + Csi∆ẏi] (4.3)

For this first step, as parameters are to be determined, a TMF is used as explained in
subsection 2.4.1. As a result, the following equation is obtained:

L1[yz] =
(
L1[∆y1] L2[∆y1] ... L1[∆y4] L2[∆y4]

)


Ks1
ms
Cs1
ms...
Ks4
ms
Cs4
ms


(4.4)

As can be seen, the bias effect is not considered any more. This happens because it does
not change over time, so it is compensated, i.e, it is multiplied by ϕ(n)(t)−ϕ(n)(t−T ),
which gives 0 due to the boundary conditions of the TMF.

Master Thesis Juan de Dios Segura Rojas



4 Adaptive observer 19

Remark. Instead of multiplying for ϕ(t) one can choose a derivative of this MF, but it
will increase the computational cost.

The maximum derivative order of ϕ can be reduced by 1 if Φ(0) = Φ(T ) = 0, with
Φ̇ = ϕ, is guaranteed as proposed by [NBH+18]. From the equation of body roll
motion seen in (3.5), the second derivative of a MF ϕ is used due to the presence of
the unknown roll angle φ. This will allow to express it in function of its derivative:

∫ t

t−T
ϕ̈(τ − t+ T )φ(τ)dτ = −

∫ t

t−T
ϕ̇(τ − t+ T )φ̇(τ)dτ

= −
∫ t

t−T
ϕ̇(τ − t+ T )yφ̇dτ

= L1[yφ̇]

(4.5)

So the modulated equation is obtained:

IφL
3[yφ̇] + CφL

2[yφ̇] +KφL
1[yφ̇] = −mshrollL

2[yy], (4.6)

which is rearranged:

−L2[yy] =
(
L3[yφ̇] L2[yφ̇] L1[yφ̇]

)
Iφ

ms.hroll
Cφ

ms.hroll
Kφ

ms.hroll

 (4.7)

Following a similar process using relations seen in (3.7), one can take directly the
second derivative, e.g:

z̈s1 = z̈cg − aθ̈ + tf
2

(
∂2 sinφ
∂t2

)
(4.8)

and then represent it in function of the sensors readings:

y1 − b1 = yz − b2 − aẏθ̇ + tf
2

(
∂2 sinφ
∂t2

)
(4.9)

which can be modulated as in (4.4). This gives:

−L1[y1] = −L1[yz] + aL2[yθ̇]−
tf
2 L

3[sinφ] (4.10)

And consequently, the other relations are modulated in the same manner. After iso-
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lating the desired parameters:L1[yz − y1]
L1[yz − y2]

 =
L2[yθ̇] − L3[sinφ]

L2[yθ̇] L3[sinφ]

 a
tf
2


L1[yz − y3]
L1[yz − y4]

 =
−L2[yθ̇] − L3[sinφ]
−L2[yθ̇] L3[sinφ]

 b
tr
2

 (4.11)

One can notice that the roll angle φ is needed to be known for the modulation. The-
oretically, it can be calculated by integrating the roll rate yφ̇ that was measured by
the IMU; however, the presence of bias, the measurement noise as well as unknown
initial conditions cause large calculation error. The roll angle will be estimated later
during this work. Its estimation does not depend on the parameters identified in (4.11).

Among the sensors, the suspension deflection ones always need to be set to zero,
this due to the dependence of the load distribution to set their initial condition.

Figure 4.2: Example of initial condition of suspension deflection sensors [NPL+18]

Equation (4.3) can be modified, so instead it can depend of the derivative of the state
instead of the output:

ms.(yz − b) =
4∑
i=1

[Ksi(∆yi − b∆i) + Csi(żui − żsi)], (4.12)

as one needs to estimate the state, a LMF in utilized. This gives:

ms

(
−L1[yz]− ϕ(T )bz)

)
=

4∑
i=1

[
Ksi

(
−L1[∆yi]− ϕ(T )b∆i

)
+ Csi

(
ϕ̇(T )(∆zi)− L2[∆zi]

)]
(4.13)

The number of necessary modulations is reduced thanks to the properties of the definite
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integrals. Equation (4.13) is then restructured as follows:

L1
[
−ms.yz +

4∑
i=1

Ksi∆yi
]

+L2
[ 4∑
i=1

Csi∆yi]
]

=

msϕ(T )bz +
4∑
i=1

[(Csiϕ̇(T )−Ksiϕ(T ))b∆i + Csiϕ̇(T )∆zi]

(4.14)

Now, following least squares as shown in (2.21), estimation of the bias of the vertical
acceleration read by the IMU in the COG and the states ∆zi with their respective bias
can be performed. This allows the calibration of the suspension deflection sensors. It
is important to notice that to perform the estimation seen in (4.14) it is necessary the
use of 9 different MF. A similar procedure can be realized with decoupled relations as
(3.3) or (3.4), thus the four bias b∆i can be estimated in a previous step, what will
allow to reduce to 5 the number of different MF needed in (4.14).

As was explained in the previous section, roll and pitch angles have to be estimated.
For the former, body roll motion equation described in (3.5) is used. This time, the
equivalence (4.5) cannot be used due to the necessity of using a LMF for this step.
Instead, the boundary conditions allow to express the modulation of φ as a function
of the output, its bias and the angle itself:

∫ t

t−T
ϕ̈(τ − t+ T )φ(τ)dτ = ϕ̇(T )φ(t)−

∫ t

t−T
ϕ̇(τ − t+ T )φ̇(τ)dτ

= ϕ̇(T )φ(t)−
∫ t

t−T
ϕ̇(τ − t+ T )[yφ̇ − bφ]dτ

= ϕ̇(T )φ(t) + L1[yφ̇] + φ(T )bφ

(4.15)

After modulating, one gets:

Iφ
(
ϕ̈(T )yφ̇ + L3[yφ̇]

)
+ Cφ

(
L2[yφ̇]− ϕ̇(T )bφ

)
+Kφ

(
ϕ̇(T )φ(t) + L1[yφ̇] + ϕ(T )bφ

)
= −ms.hroll(L2[yy]− ϕ̇(T )by)

(4.16)
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and can be regrouped as follows:

IφL
3[yφ̇] + L2[Cφyφ̇ +mshrollyy] +KφL

1[yφ̇] =

=
(
−Iφϕ̈(T ) −Kφϕ̇(T ) mshrollϕ̇(T ) Cφϕ̇(T )−Kφϕ(T )

)

yφ̇
φ(t)
by

bφ


(4.17)

On a similar manner, the pitch angle θ can be estimated using the geometric relation
seen in (3.7) and using ...

ϕ as a LMF. Following the same process as before only for the
first geometric relation (front left), one gets:

L1[y1]− L1[yz] + aL2[yθ̇]−
tf
2 L

3[sinφ] =

=
(
ϕ̈(T ) − ϕ̇(T ) aϕ̈(T ) − ϕ(T ) ϕ(T ) aϕ̇(T )

)


zs1 − zcg
żs1 − żcg

θ

b1

bz

bθ



The concepts defined in chapter 2 and chapter 3 are utilised together to develop this
estimator. One can see how the characteristics of both TMF and LMF fit in the kind
of desired estimation. The algebraic character of the mathematical relations of the
estimation scheme and the recursivity between them allow to develop a simultaneous
estimation.

Also, it is possible to use more complex equations (due to coupling in the vehicle
dynamics) to estimate more parameters or states simultaneously, but this increases
significantly the computational cost and the error increases. Coupled relations can be
found in [SWSI13] and [Ell94].
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5 Simulations

5.1 Model Considerations
Hereinafter, a 7DOF model is implemented for validation with no load transfer effect.
The effect of the 7DOF that represent the handling model , i.e. the lateral and yaw
motions are not considered. As input, a different road profile is defined for both right
and left pair of wheels at constant speed as follows:

time t
0 5 10 15 20 25 30

u
1

0

1

2

3

4
input for FL

time t
0 5 10 15 20 25 30

u
2

-1

0

1

2

3
input for FR

time t
0 5 10 15 20 25 30

u
3

0

1

2

3

4
input for RL

time t
0 5 10 15 20 25 30

u
4

0

1

2

3

4
input for RR

Figure 5.1: Road profile input

As can be seen above, a persistent excitation is considered in order to guarantee the
convergence of the estimations. The significance of this element is explained in [Bes07].

5.2 Implementation
During the development of this work, MATLAB R© and Simulink R© were used for the
implementation of the models and estimators. The model was developed in accordance
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with the mathematical relations seen in Chapter 3.

The modulating functions were developed as a function in which one can freely choose
the number of derivatives of the MF, the number of frequencies considered in the ker-
nel, the time horizon and the desired type of MF with a structure according to chapter
2.2. For the inputs and the space-state representation of the model, a script was de-
veloped where the parameters (see Table 3.2) can be modified.

The implementation of the estimator is based on the implementation of an FIR filter
in Simulink that has as input the readings of the sensors, and gives the respective
Modulation Operator:

Figure 5.2: Estimator diagram

Figure 5.3: Modulation Operator

A sampling time of 10ms and ode4 (Runge-Kutta) as the solver are utilized during the
simulations.
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5.3 Analysis
First of all, a brief analysis with respect to the parameters of the MF is given. The
following figure shows the TMF utilized during simulation:

Figure 5.4: Total Modulation Function with T=5 and Nw=5

and now the same TMF if more frequencies are included, i.e Nω is higher:

Figure 5.5: Total Modulation Function for T=5 and Nw=10
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Up to this point, one can notice that the behaviour is similar. Now, considering the
same number of frequencies, now is shown what happens if T is increased: One can no-

Figure 5.6: Total Modulation Function for T=10 and Nw=10

tice that the amplitude of ϕ and its derivatives are smaller when the horizon increases
its value. On the one hand, this effect can be beneficial due to the minimization of
numerical error. On the other hand, it increases the computational cost, which is not
convenient for online estimation. It is important to consider that the estimation will
be relevant after the time of the horizon T has elapsed. Choosing a horizon too small
generates large deviation.

With respect to a LFM as a FDMF, figure (5.7) shows an example. As stated af-
ter (2.15), one can choose any derivative of the MF to multiply a signal, but one can
notice that each derivative increases significantly the amplitude, what amplifies the
error due to noise, so it is recommended to use the smaller that fits mathematically
with the equations and what one want to estimate and neglect. The choice of Nω also
directly affects the estimation, as the derivatives of ϕ depend directly on (j ∗diag(ω))i,
which increases the amplitude and causes the same issue.
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Figure 5.7: Left Modulation Function for T=10 and Nw=5

Interestingly, the proposition made after (4.4) can be achieved, as Φ(0) = Φ(T ) = 0:

Figure 5.8: Integral of ϕ(t)

So it is possible to reduce the derivative order by 1 if it can be proven that the prop-
erties of the Fourier MF are reflected on Φ.
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Now, the outputs will be shown, so one can notice the effect of the measurement
noise and the bias before the analysis of the estimations:

time t
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Figure 5.9: Vertical acceleration of COG

Figure 5.10: Pitch rate and Roll rate
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Figure 5.11: Vertical acceleration of sprung mass corners
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Figure 5.12: Suspension deflection sensors readings
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For the analysis of the parameter estimation, the relations described in (4.4) are used.
The MF described in figure 5.4 is utilized and gives:

time t
0 5 10 15 20 25 30

-2

0

2

4

6

8

10

12

14

16

Ks1/ms
Cs1/ms

time t
0 5 10 15 20 25 30

-2

0

2

4

6

8

10

12

14

16

Ks2/ms
Cs2/ms

time t
0 5 10 15 20 25 30

0

2

4

6

8

10

12

14

16

18

20

Ks3/ms
Cs3/ms

time t
0 5 10 15 20 25 30

0

2

4

6

8

10

12

14

16

18

20

Ks4/ms
Cs4/ms

Figure 5.13: Estimated parameters for T=5s and Nw=5
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The error is represented by a Lyapunov function:
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Figure 5.14: Error for T=5s and Nw=5
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A comparison with the estimation realized when the horizon T = 10 gives the fol-
lowing results:
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Figure 5.15: Estimated parameters for T=10s and Nw=5
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Figure 5.16: Error for T=10s and Nw=5

One can notice that the estimation is more precise. This validates what was stated in
the previous section. As was mentioned before, the estimation gives relevant informa-
tion after the integration horizon has elapsed, that is the reason why the behaviour
of the Lyapunov function is unexpected during the first T seconds. The small peaks
after that time are consequence of the noisy sensor data.
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Finally, the estimation of the roll angle φ is shown:

time t
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Figure 5.17: Roll angle estimation

It can be noticed that even for the big noise measurement seen in the reading of the
sensors on figures 5.9 and 5.10, the estimation is really fast.

The parameters estimation can be realized online or offline, based on the dependence
of the time varying parameters. For example, the vertical damping coefficient of a real
vehicle has a non-linear behaviour when the deflection is too small, and varies when
the suspension is compressed or stretched.

5.4 Comparison
Now, a Discrete Kalman Filter is implemented and the estimation is shown in Figure
5.18.

For this design, the bias is not compensated. Having the following State-Space repre-
sentation:

ẋ = f(x, u)

y = h(x) + b
(5.1)
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And one can restructure it as follows:

˙̃x︷ ︸︸ ︷ẋ
ḃ

 =

f̃(x̃)︷ ︸︸ ︷f(x, u) 0
0 0


x̃︷ ︸︸ ︷x
b


y = h(x) + b︸ ︷︷ ︸

h̃(x̃)

(5.2)

so the bias is compensated.
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Figure 5.18: Comparison with Kalman Filter

A small phase lag can be noticed. This is inherent to low pass filtering. The frequency-
domain properties that help to understand this behaviour are discussed in [GÅ87].

The developed observer shows a minimum phase lag and a more precise estimation.
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6 Conclusions

Within the frame of this thesis, an on-line state estimator as well as a parameter iden-
tificator based on the FDMF have been developed for a terrestrial vehicle model. The
results show that this approach is suitable for this kind of system. The noise and
offsets implemented were exaggerated, but even the results gave a satisfactory robust
estimation. As was stated at the beginning of this work, the idea of obtaining the
desired information using cheap sensors seems feasible so far.

This work contributes developing an simultaneous estimation of parameters and states
on a 4-wheel terrestrial vehicle. In [NBH+18], the time domain MF was utilised for a
similar work with the assumption that the pitch and yaw are already known. This in-
vestigation uses the angular rate as the output of a real IMU. Also, here the frequency
domain is utilised due to the properties of suppressing perturbing vibrations.

The implementation of an adaptive observer seems theoretically easy to design, but
it can be noticed that many a more precise mathematical model will have more cou-
pled relations between states and parameters, what increments the complexity. In this
work, some assumptions were made, but on a real system, this will reduce reliance on
the results. During the tests, some factors had to be considered such as choosing the
best time horizon T and the number of frequencies Nω, considering that incrementing
or decreasing those values can bring better estimations, but increase the computational
cost, as well as the simulation time. This approach gives good results on estimation
while no higher derivatives of the MF ϕ are needed. Reducing the amplitude of this
element only reduces the information carried during the modulation, and as a conse-
quence, one gets more error during the estimation.

As a future work, the implementation of this method will be done with a full car
model, and will be compared with the simultaneous estimator developed in [JR15].
Also, a comparison between this work and the estimation using Kalman Filtering
stated in [DCVL12] and validated in [DCV12] will be interesting. The development
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of an extended Kalman Filter to for the nonlinear behaviour of the full car model will
allow a better comparison. Also, taking advantage of the properties of a full car model,
it will be interesting to include encoders to read the velocities of the wheels, so the use
of the MFT will allow to estimate the velocity of the car. Knowing the velocity can
allow to decouple the mathematical relations that are used to estimate also the yaw
angle.
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