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Abstract: A circular economy is a current tenet that must be implemented in the field of construction.
That would imply the study of the possibilities of the use of waste generated, for obtaining materials
the used in construction as replacements for the raw material used. One of these possibilities is
the substitution of the cement by slag, which contributes to the reduction of cement consumption,
decreasing CO2 emissions, while solving a waste management problem. In the present paper, different
types of concrete made by cement substitution with different type of slags have been studied in order
to evaluate the properties of these materials. Cement is replaced by slag from different steel mills,
both blast furnace and ladle furnace slag. The percentages of slag substitution by cement are 30%,
40% and 50% by weight. Mechanical, physical and environmental properties have been evaluated.
Compressive and flexural strength have been analysed as the main mechanical properties. As far
as physical properties go, density and porosity tests were be reported and analysed, and from an
environmental point of view, a leachate study was performed. It has been found that some kinds
of slag (blast furnace slag) are very suitable as substitutes for cement, providing properties above
those of the reference concrete, while other types (ladle furnace slag) could be valid for non-structural
applications, contributing in both cases to a circular economy.

Keywords: concrete; slag; valorisation; cement; circular economy

1. Introduction

A circular economy is a currently accepted tenet, in which the traditional linear economy is
transformed into a circular economy, where every activity is conceived as a cycle, where waste materials
are considered as potential new resources, instead of by-products to discard.

In the field of construction, the challenge is to exploit the possibilities of the waste generated in
the building industry as raw materials to be integrated in the same construction cycle.

One of the fields where this strategy is feasible is the incorporation of the slag generated during
the steel production into concrete production. It has been used in many processes in the cement
production and paving industries. It is interesting to focus attention on this problem and to study,
thoroughly, all the possibilities that the steel by-product presents.

The substitution of the cement by slag provides two clear advantages; the first one is the use of a
waste that must be managed in a landfill, and the second one, even more relevant, is the reduction in
cement consumption, so the reduction of CO2 emissions needed for its production.

Nowadays, there is already a lot of research that supports the adequacy of steel slag for the
production of cementitious matrices [1–6]. Additionally, many studies in which aggregates are replaced
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by those types of by-products exist; e.g., blast furnace slag, copper slag, electric arc and fume dust
have been used [2,7–16].

There are also some studies on the substitutions of cement by ground granulated blast furnace slag
(GGBFS) [5,17–20], even getting up to 80% of the cement removed by this type of slag. Khatib et al. [21]
replaced up to 80% of cement by GGBFS making different substitutions. Good results were obtained
in the substitutions up to 60%, since compressive strengths similar to conventional concrete were
obtained. After 28 and 90 days, the strength was increased. Nevertheless, worse results were obtained
when replacing 80% of the slag, and in the first days of setting, the strength of the reference concrete
was not reached.

Less attention has been paid to the substitution of cement by ladle furnace slag (LFS). In previous
works, different types of slag have been studied and compared, with a maximum amount of 25% of
cement replaced [22]. These studies provided promising results.

In this paper, different types of concrete have been elaborated on, in which the cement is replaced
by slag from different steel mills, both blast furnace and ladle furnace slag.

The percentages of slag substitution by cement were 30%, 40% and 50% by weight. The substitution
of cement was made in each mix by types of slag from different factories in Spain. According to
different studies, it is known that the component with the highest influence over the durability of
cementitious mixtures is SiO2. In this work, we will focus on the relationship between the amount of
this component in each slag and the mechanical properties.

Compressive and flexural strength were analysed as the main mechanical properties, making a
comparison between all of them to evaluate which one provides the best characteristics.

Additionally, some of the physical and environmental properties evaluated were included in the
present paper. For physical properties, density and porosity test were reported and analysed. For a
sake of brevity, other tests made are omitted. From an environmental point of view, a leachate study
of the material was carried out, since it was essential, considering that waste material was being put
into service.

The paper is structured as follows. In Sections 2 and 3, the materials studied and the tests
performed have been briefly described. A longer Section 4 is devoted to the results obtained, along
with a broad discussion with a special attention to the analysis of the mechanical properties. Finally,
conclusions are outlined in Section 5.

2. Materials

In this work, a 52.5 R Portland cement (PC) is used; this cement was chosen as it is free of
any additives; that is to say, composed of clinker between 95%–100% and between 0%–5% of minor
components, without other additives that change their composition. The substitutions were made for
the different types of slag that are shown below:

â Slag 1 (GGBFS): Granulated blast furnace slag ground in ball mill.
â Slag 2 (LFS1): Ladle furnace slag (LFS).
â Slag 3 (LFS2): Ladle furnace slag (LFS).

LFS1 and LFS2 are ladle furnace slag with different origins and composition. Slag 1 (GGBFS)
has a particle size <0.063 µm provided by the company, while the LFSs were sieved in the laboratory
to obtain equal granulometry from them. This is an important fact to keep in mind, since it would
be interesting to see what would happen if the LFS slags were also treated in the same way as the
GGBFS, but the companies that provided us with that type of slag did not have the technology to do so.
Therefore, it was decided to carry out the study with screened slags to study its results.

Three different concrete mixes were designed by substituting 30%, 40% and 50% of the weight of
the cement with slag obtained from three different steel mills in Spain.

The most characteristic chemical values of these slags are shown in Table 1. These values were
determined by X-ray fluorescence (XRF). This test was performed with the LFS slags once screened.
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Table 1 shows the major components of the slags studied; the rest of secondary compounds are
described in another paper which used the same slags [22].

Table 1. Cement and slag chemical composition.

Cement and Slag
Origin/Chemical Composition

SiO2 Al2O3 Fe2O3 CaO MgO

% % % % %

PC 16.6 ± 0.5 4.25 ± 0.5 3.02 ± 0.02 67.92 ± 0.5 1.43 ± 0.05

GGBFS 32.3 ± 0.5 10.7 ± 0.5 0.29 ± 0.02 47.14 ± 0.5 7.64 ± 0.05

LFS1 13.7 ± 0.5 9.1 ± 0.5 1.57 ± 0.02 55.18 ± 0.5 16.9 ± 0.05

LFS2 18.8 ± 0.5 12.5 ± 0.5 2.34 ± 0.02 54.9 ± 0.5 6.99 ± 0.05

The main components (CaO, SiO2, Al2O3) of each of the slags are transcribed on a ternary diagram
(Figure 1). Observe how the blast furnace slags are those that have better pozzolanic properties,
by containing a higher percentage of SiO2.
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Figure 1. Ternary diagram indicating the compositions of Portland cement (PC), ground granulated
blast furnace slag (GGBFS) and ladle furnace slag (LFS) in the system.

The different concrete mixtures were named as follows:

Mix 1 (MPC): Ordinary concrete without slag.
Mix 2 (MGGBFS): Concrete with 30%, 40% or 50% cement replaced with processed slag.
Mix 3 (MLFS1): Concrete with 30%, 40% or 50% cement replaced with unprocessed slag.
Mix 4 (MLFS2): Concrete with 30%, 40% or 50% cement replaced with stainless steel slag.

Table 2 shows the dosages and the percentages of substitution to be made in each mixture.
The W/C (Cement water ratio) (ratio is 0.5; the tests are the continuation of the paper belonging to this
research group, in which only substitutions were made up to 25% [22]. Additional details can be found
in that reference.
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Table 2. Concrete mixture proportion.

Binder Aggregates

Mix
Water
(w/b

Ratio)
Dosage Cement Slag

Additive
(Superpla-
Sticizer)

Dosage
Fine
Sand

0–2 mm

Sand
0–4
mm

Gravel
4–16
mm

MPC

0.5
300

kg/m3

100% 0%

3.9 kg/m3 2033.8
kg/m3 15% 35% 50%

M30GGBFS 70% 30%

M40GGBFS 60% 40%

M50GGBFS 50% 50%

M30LFS1 70% 30%

M40LFS1 60% 40%

M50LFS1 50% 50%

M30LFS2 70% 30%

M40LFS2 60% 40%

M50LFS2 50% 50%

3. Tests’ Descriptions

Concrete mixes defined in the preceding section were subject to different tests. The main objective
of these tests was to evaluate the effects on the mechanical characteristics (flexural and compressive
strength), when cement is replaced by slag.

Concrete was made with the proportions shown in Table 2, where a 30%, 40% and 50% of
the PC was substituted by the different slag according to Table 1, providing the different samples
previously described.

The different mixture proportion was made according to the EN 12390-2 norm [23] for testing
hardened concrete.

3.1. Physical Properties

The densities and porosities of the new materials were studied. They were obtained according to
the EN 12390-7 norm [24].

A cubic specimen of 10 cm of edge were used for this test. Two specimens for each type of concrete
were tested. The determination of the parameters was made for concrete of more than 28 days of age.

The formulation that was used to obtain the parameters is the following:

Density D =
Ps

Psss − Psum
(1)

Porosity P = 100
Psss − Ps

Psss − Psum
(2)

The parameters are obtained in the following way:

• Psum: Weight obtained by the hydrostatic balance (submerged weight), placing the specimen
inside. This test piece must be completely saturated with water

• Psss (saturated surface dry weight): Obtained by drying the surface water with a damp cloth.
• Ps (dry weight): It is obtained by drying the test pieces in the oven and checking every 24 hours

that the mass loss is not less than 0.2%, at a temperature of 105 ± 5 ◦C. As indicated in the
EN_12390-7 [24] standard, to carry out the test, the hydrostatic balance is used, to which a
basket is attached where the test piece is introduced. In that way, one obtains the weight of the
submerged sample.
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3.2. Mechanical Properties

In order to obtain the compressive strength of the concrete specimens, we used cubes with edges
of 10 cm and an automated press with a 2.000 kN capacity. The specimens were made according to the
normative EN 12390-3 [25] and EN 12390-4 [26]; the fresh mixes were vibrated on a vibrating table and
they were cured in a water bath 20 ± 2 ◦C. Then, they were tested at the ages of 1, 7, 28 and 90 days.
For each of the mix proportions (Table 2), three different mixtures were made, and two specimens were
tested at the different concrete ages (see reference [16] for details).

For the flexural strength, tests prismatic specimens were used with dimensions 4 × 4 × 16 cm3,
made of the same kneaded as for the rest of the trial. That parameter was calculated using the uniform
application of centred load. The same type of curing as the compressive test specimens was applied.
This test was performed at 28 and 90 days. The prismatic test specimen was subjected to a bending
moment by applying a load through upper and lower rollers, registering the maximum applied load
calculating the flexural strength by EN-12390-5 [27]

3.3. Leachate

Finally, the mixtures are subjected to leachate tests. The cement substitution percentage chosen
was 30% for every mixture. Additionally, we carried the test out using a 50% slag substitution
percentage for GGBFS, since throughout the research, it showed similar behaviour to conventional
concrete. Specimens were immersed in 1 litre of distilled water for 2 days. The treatment that was
made to the water sample in the laboratory was to sieve the sample with a 0.45 µm filter, and acidify
them to pH < 2. Once that process was done, it was introduced into the spectrometer.

4. Results and Discussion

The results obtained for the physical (density and porosity), mechanical (compressive and flexural)
and environmental (leachate) tests for each of the mixtures and their different substitutions are shown
below, making a comparison between the percentages of loss and gains of strength, and the differences
between the varieties.

4.1. Density

In the differently manufactured mixtures, it was observed (Table 3) that the density varied very
little with respect to the standard mixture, decreasing only in the mixtures made with the slag LFS1;
therefore, this indicates that LFS1 aerates the mixture more. It was significant, and the porosity of the
material also increased significantly. For the mixtures with the other two types of slags, there were
no significant differences; therefore, replacing them in the mixtures would not pose any problem for
this property.

Table 3. Density of the mixtures.

Density (kg/m3)

PC GGBFS LFS1 LFS2

30% 2500 ± 100 2490 ± 100 2450 ± 50 2530 ± 10
40% 2500 ± 100 2490 ± 100 2370 ± 30 2510 ± 10
50% 2500 ± 100 2490 ± 100 2370 ± 40 2510 ± 10

4.2. Porosity

The results of the porosity test are shown in the Table 4 and plotted in Figure 2.
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Table 4. Porosity of the mixtures.

Porosity (%)

PC GGBFS LFS1 LFS2

0% 1.81 ± 0.5 - - -
30% - 1.51 ± 0.2 4.01 ± 0.5 0.91 ± 0.1
40% - 1.27 ± 0.2 6.1 ± 0.5 0.78 ± 0.1
50% - 1.53 ± 0.2 6.60 ± 0.5 -
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Figure 2. Porosity.

This property is tightly linked to the durability of the concrete. Taking as reference the PC
mixture, for the mixtures with GGBFS, we see that it is practically constant for all the substitutions,
even decreasing its porosity by 25% in the 50% substitution, with respect to conventional concrete.
Regardless of the percentages of cement substitution, it was observed that the mixtures with slag LFS1
had a high porosity, since its porosity increased significantly. We saw in point Section 4.1, that for the
mixture LFS1, the porosity increased up to 60%, so it was confirmed that this type of slag increases the
incorporation of air into the concrete. On the contrary, it is observed that those made with slag LFS2,
obtained a lower porosity, reaching up to a 43% improvement of results with respect to conventional
concrete; this indicates that the links between particles that occur within the mixture are greater with
this type of slag, without increasing its density by the same percentage; therefore, they provide better
mixing conditions at the time of commissioning.

In short, the GGBFS and LFS2 mixtures’ lower porosity means a better performance in the long
run, as this makes it more difficult for external agents to lead to the deterioration of the material, which
affects the steel frame, in the case of reinforced elements. The opposite occurs with the LFS1 mixtures;
it has a higher porosity, which can lead to the material having a shorter shelf life thanks to external
agents that can damage it.

4.3. Compressive Strength

Results of mixtures for slag substitution.

4.3.1. Slag GGBF

Figure 3 shows the compressive strength over time and how the GGBF slag influences concrete
properties, from 1 day to 90 days of testing. These data are mean values for six samples per test (for the
different concrete age). Results show that the compressive strength in the first days of hardening
was lower than in conventional mixtures, becoming equal after 7 days and even increasing after



Materials 2019, 12, 2845 7 of 15
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Figure 4 shows the percentages of loss or increase in strength at day one and after 90 days. It is
easy to visualize how, at one day there was up to 50% less strength than the conventional mixture.
Nevertheless, after 90 days, it acquired up to 10% more compressive strength in the 30% replacement.
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4.3.2. Slag LFS1

Figure 5 shows the mean values obtained for the samples made with slag LFS1. This average has
been made with six test specimens for each of the four mixtures.
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Figure 5. Compressive strength LFS1.

The results show that in the LFS1 slag there was a lesser strength for day one, but in this case the
compressive strength decreased over time. The loss at 90 days with a 50% substitution of cement was
of almost 70% of PC’s strength, as shown in Figure 6. The loss of strength is maintained at both day
one and after 90 days.
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4.3.3. Slag LFS2

Figure 7 shows the mean values for the specimens made of slag LFS2. Again, six specimens per
mixture and age were tested.
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With the slag LFS2, it was observed, as in the mixtures with slag LFS1, that there was a decrease
of the strength both on day one, and over time. At 90 days and with a 50% replacement of cement, the
loss was 40% (Figure 8).
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The results lead us to think that, for high percentage substitutions, specimens with ladle furnace
slag (LFS) substitutions have a higher strength loss compared with conventional concrete than those
with blast furnace slag (GGBFS) substitutions. Particularly, the mixtures with LFS1 substitutions
showed the worst behaviour at compressive strength tests, obtaining up to a 70% of compressive
strength loss, when the cement substitution percentage was 50%.

4.3.4. Comparison between the Mixtures

In Figure 9, the comparison of compressive strength for 90 day is shown for the different mixtures.
In order to complete the figure, results previously reported with a 25% cement replacement [16] have
also been included in the Figure.

It is observed how GGBFS slag presents an increase in strength; it provides pozzolanic benefits to
the mixture. On the contrary, what occurs in those made with LFS slags has already been observed by
other researchers, like Manso [30,31]. In this figure, it can be seen that the proportion of loss of strength
is not the same in the two cases being the substitution up to 30% of LFS2 admissible for concretes with
minor strength needs.

Materials 2019, 12, x FOR PEER REVIEW 9 of 15 

 

With the slag LFS2, it was observed, as in the mixtures with slag LFS1, that there was a decrease 
of the strength both on day one, and over time. At 90 days and with a 50% replacement of cement, 
the loss was 40% (Figure 8). 

 
Figure 8. Percentage of loss in compressive strength LFS2. 

The results lead us to think that, for high percentage substitutions, specimens with ladle furnace 
slag (LFS) substitutions have a higher strength loss compared with conventional concrete than those 
with blast furnace slag (GGBFS) substitutions. Particularly, the mixtures with LFS1 substitutions 
showed the worst behaviour at compressive strength tests, obtaining up to a 70% of compressive 
strength loss, when the cement substitution percentage was 50%. 

4.3.4. Comparison between the Mixtures 

In Figure 9, the comparison of compressive strength for 90 day is shown for the different 
mixtures. In order to complete the figure, results previously reported with a 25% cement replacement 
[16] have also been included in the Figure. 

It is observed how GGBFS slag presents an increase in strength; it provides pozzolanic benefits 
to the mixture. On the contrary, what occurs in those made with LFS slags has already been observed 
by other researchers, like Manso [30,31]. In this figure, it can be seen that the proportion of loss of 
strength is not the same in the two cases being the substitution up to 30% of LFS2 admissible for 
concretes with minor strength needs. 

 
Figure 9. Comparison compressive strength to 90 days, for the three different slag. 

We can conclude that the blast furnace slag (GGBFS) is a good substitute for cement in terms of 
compressive strength. On the other hand, there is such a loss of strength on the other two ladle 
furnace slags (in the best of cases, 23%), that rule out any possibility of using this concrete as structural 

-60%

-50%

-40%

-30%

-20%

-10%

0%
M000 M30LFS2 M40LFS2 M50LFS2

%
 P

er
ce

nt
ag

e

Mixure

Loss in compressive strength

% 90 days

% 1 day

Linear (% 90 days)

Linear (% 1 day)

62
.6

9 71
.5

1

70
.8

2

68
.2

2

68
.4

5

62
.6

9

37
.0

7

32
.6

3

28
.9

4

19
.7

9

62
.6

9

51
.5

4

50
.1

5

44
.9

0

38
.8

4

0% 25% 30% 40% 50%

M
Pa

Substitution percentage

Comparison compressive strength  to 90 days

MGGBFS

MLFS1

MLFS2

Linear (MGGBFS)

Linear (MLFS1)

Linear (MLFS2)

Figure 9. Comparison compressive strength to 90 days, for the three different slag.



Materials 2019, 12, 2845 10 of 15

We can conclude that the blast furnace slag (GGBFS) is a good substitute for cement in terms
of compressive strength. On the other hand, there is such a loss of strength on the other two ladle
furnace slags (in the best of cases, 23%), that rule out any possibility of using this concrete as structural
material. Nevertheless, they could be acceptable, being able to withstand medium-environmental
pressure for situations in which the strength needs are lesser.

Returning to the ternary diagram in Figure 1, it is clear that a higher amount of SiO2, means better
pozzolanic characteristics in the mixture, and in this case, it was observed that the mixtures with slag
LFS1 were those that obtained the worst compressive strength, a cause not only of the greater porosity,
and therefore greater amount of voids that weaken the mixture, but the slag also contained less SiO2.

4.4. Flexure Strength Tests

A similar study has been made to evaluate the flexure strength. In this case, the results obtained for
all the mixtures are shown in Figures 10 and 11, breaking the test pieces at 28 and 90 days, respectively.
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Following a similar trend to the previous section, the mixtures made with ladle furnace slag (LFS)
obtained worse strength than the mixture without substitution. On the contrary, those made with blast
furnace slag (GGBFS) were equal to and even improved the reference concrete.
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This loss or increase in strength was observed not only at 28 days, but also at 90 days (Figure 10).
It also shows that mixtures with substitutions LFS1 behave worse than LFS2; additionally, showing
clear differences between them. This behaviour is due to the chemical composition of the slag.

The percentages of loss of flexure strength of each one of the cases are shown in Figure 12, where
it is seen how the GGBFS contributes to the material, the same characteristics as the PC, increasing its
strength by 4% with a substitution of 50%.
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4.5. Comparison between 90-Day Flexure and Compressive Strength

The significance of this study is highlighted in the comparison of the gain or loss of the strength
against flexure and compression combined. We will focus on that point in this section.

In Figure 13, the comparison in percentage of the strength, both compressive and flexural, in each
of the mixtures made, highlights that the losses of flexural strength of the mixtures with slag LFS are
much lower than those of compressive strength. This decrease in strength is practically half in most
cases. In the strength of the mixtures with GGBFS does not increase twice as much in the flexural
strength, as would be expected by the previous results, but only half. Apart from substitutions of 50%,
this percentage of 4% is maintained.Materials 2019, 12, x FOR PEER REVIEW 12 of 15 
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This indicates the feasibility of LFS slag in non-structural elements, valuing a waste as a by-product,
reducing the production of cement that generates a large amount of CO2 into the environment.

In all the investigations where the laws of mechanical behaviour (constitutive models) for materials
are established, outcomes are considered a representative volumetric element of the same. It is assumed
that the material behaves as a continuous medium; that is, it has the same elastic properties at each point.

4.6. Leachate

The results obtained are shown in Table 5.

Table 5. Leachate of the mixtures.

Chemical
Element PC GGBFS

(30%)
GGBFS
(50%) LFS1 (30%) LFS2 (30%) CFR 40/261.24

(mg/L)

[Mg] µg/L 20.2 ± 1.0 21.3 ± 0.2 28.1 ± 1.0 26.0 ± 1.2 31.3 ± 1.0 -

[Si] µg/L 8.60 ± 0.33 13.1 ± 1.0 13.3 ± 1 9.30 ± 0.40 7.90 ± 0.73 -

[Ti] µg/L <0.100 <0.100 <0.100 <.0,100 <0.100 -

[Crtotal] µg/L 15.6 ± 0.6 1.10 ± 0.05 0.394 ± 0.013 0.673 ± 0.040 0.162 ± 0.023 5

[Mn] µg/L 0.100 ± 0.010 0.180 ± 0.010 0.190 ± 0.04 0.150 ± 0.020 0.101 ± 0.01 -

[Fe] µg/L 18.2 ± 0.7 17.0 ± 0.2 10.6 ± 0.03 1.82 ± 0.03 8.23 ± 0.20 -

[Ni] µg/L 0.270 ± 0.030 0.510 ± 0.020 0.280 ± 0.012 0.150 ± 0.013 0.270 ± 0.021 -

[Cu] µg/L 1.92 ± 0.10 4.3 ± 0.36 8.80 ± 0.033 1.50 ± 0.03 4.00 ± 0.04 -

[Zn] µg/L 6.60 ± 0.20 6.10 ± 0.12 3.90 ± 0.20 2.92 ± 0.10 4.40 ± 0.14 -

[As] µg/L <0.200 <0.200 <0.200 <0.200 <0.200 5

[Cd] µg/L <0.100 <0.100 <0.100 <0.100 <0.100 1

[Sn] µg/L <0.100 <0.100 <0.100 <0.100 <0.100 -

[Pb] µg/L 0.543 ± 0.022 2.02 ± 0.02 0.230 ± 0.010 0.190 ± 0.001 0.333 ± 0.002 -

In general terms, it can be observed how most of the values obtained had a decrease in relation to
conventional concrete. The most significant is to see how the amount of chromium in the mixtures
with slag, compared with the conventional concrete mixture, decreased.

It is significant how one of the most harmful elements in the leachate is chromium, and this
element decreases with respect to the master mix. This is interpreted as the encapsulation of the slag
being diluted into the cementitious matrix absorbing this metal, without generating any environmental
danger when it is used.

There are some values which are slightly above those obtained with the reference concrete (PC);
however, all these leachate ranges fall within the values allowed by the Code of Federal Regulations
(CFR) 40CFR/261.24.

According to those maximum values the encapsulation of the slag in the concrete not only does
not leach contaminant, but also reduces the leachate of one of the more dangerous components that are
measured in the CFR—the Cr, not exceeding the limit of 5 mg/L.

5. Conclusions

According to the results described, we can outline the following conclusions:

→ The results lead us to think that, for high percentage substitutions, specimens with ladle furnace
slag (LFS) substitutions have a higher strength loss compared with conventional concrete than
those with blast furnace slag (GGBFS) substitutions. Particularly, the mixture with LFS1 slag
substitutions showed the worst behaviour in compressive strength tests, obtaining up to a 72% of
compressive strength loss with a cement substitution percentage of 50%.

→ On the other hand, specimens with blast furnace slag substitution showed an increase in
compressive strength of 10% at 90 days. Mixtures using this type of slag substitution showed
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a slower hardening process, with a compressive strength reduction at day one, but gaining a
compressive strength similar to or even above the conventional concrete after 7 days.

→ The chemical characteristics of the slag influence the mixtures and strength. It was observed
in this study, that for essential components such as SiO2, the lower the percentage, the lower
the strength. As it can be seen in the mixes made with LFS1 and LFS2 slags, the lack of that
compound makes them work worse. GGBFSs are the best performers, having twice the amount
of that compound, increasing its strength even with respect to conventional concrete. The good
pozzolanic activity that contributes to those types of cementitious mixtures was verified.

→ Another characteristic result of this investigation is the difference of compressive and flexural
strength among the different mixtures. LFS presents a loss of flexural strength that is the half of
the loss of compressive strength. This suggests that they could be used in other fields of civil
engineering with lower strength requirements.

→ Leaching test confirmed that slag does not cause damage to the environment. The results of
the leaching tests of concrete mixtures with slag are similar to the results of traditional concrete.
Therefore, slag encapsulation into the concrete seems to be a good strategy to manage this
waste product, instead of it being deposited in landfills where it will pollute the environment
by leaching.

As a final conclusion, it is clear that blast furnace slag (GGBFS) is suitable for the production
of a sustainable concrete, and as a substitute for cement, since it has been proven to bring the same
characteristics to the mixture as cement.

For the other two types of mixtures with slag (LFS), a non-structural application would be suitable.
This would put a value on the residue, avoiding the consumption of raw material and reducing the
landfill deposit.

Concrete production with slag is a clear example of circular economics, since the steel manufactured,
necessary to build structures, generates waste that can be incorporated to the same building cycle.
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