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Abstract

Pearson’s chi-square test is widely employed in social and health sciences to analyse categorical

data and contingency tables. For the test to be valid, the sample size must be large enough to

provide a minimum number of expected elements per category. This paper develops functions for

regrouping strata automatically, thus enabling the goodness-of-fit test to be performed within an

iterative procedure. The usefulness and performance of these functions is illustrated by means

of a simulation study and the application to different datasets. Finally, the iterative use of the

functions is applied to the Continuous Sample of Working Lives, a dataset that has been used in

a considerable number of studies, especially on labour economics and the Spanish public pension

system.
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1. Introduction

Empirical studies require data samples to be representative of the target population with

respect to the principal characteristics. There are many papers on the issue of selecting

representative samples, including Ramsey and Hewitt (2005), Grafstörm and Schelin

(2014), Kruskal and Mosteller (1979a), Kruskal and Mosteller (1979b), Kruskal and

Mosteller (1979c), Kruskal and Mosteller (1980), Omair (2014). One way of determin-
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ing whether a sample is representative of a population is to use a goodness-of-fit test to

check whether the data fits the population distribution. The goal is to test whether the

sample data fits a distribution from a certain population. One procedure commonly used

is Pearson’s χ2 goodness-of-fit test. When the variables under study are grouped in given

categories or strata in the population, the data in the sample are organized in the same

way in order to apply this test. The strata are constructed so that the population is divided

into major categories that are relevant to the research interest. In each category the test

statistic compares the observed frequency in the sample with the expected frequency in

the theoretical or known population.

Pearson’s χ2 and the likelihood ratio test statistic G2 are arguably the two most

widely used statistics in contingency table analysis (see Cai et al. 2006). Both can

be used to test independence between categorical variables in contingency tables and

to test homogeneity to determine whether frequency counts are distributed identically

across different populations. These statistics may also be used to assess goodness-of-

fit in multivariate statistics such as in logistic regression (Hosmer et al. 1997, Hosmer

and Lemeshow 2000), log-linear modelling (Bishop, Fienberg and Holland, 1975, Fien-

berg 2006) and Latent Class Analysis (LCA) (Lazarsfeld and Henry 1968, Goodman

1974). Under some conditions, these statistics have an asymptotic chi-square distri-

bution, where the validity of the test results depends on a minimum size of expected

cell frequencies. As a rule of thumb, that number is established in practice as 5. It is

well known (Cochran 1952) that when some expected cell frequencies or probabilities

are small, their reference asymptotic distribution is not suitable for assessing p-values

or the size of the test. This problem arises frequently in social sciences, biomedical

and health sciences and psychometrics applications (Cai et al. 2006, Bartholomew and

Tzamourani 1999) with sparse contingency tables (Agresti 2002).

Delucchi (1983) reviewed the research conducted after the paper by Lewis and Burke

(1949) in an attempt to address the problems listed by them and to form recommenda-

tions regarding the use and misuse of the chi-square test. The various papers examined

by Delucchi (1983) regarding the problem of working with excessively small expected

frequencies recommend different minimum sizes depending on the type of test for all

the strata or for a percentage of them, with fixed values or values depending on the

number of categories, etc. Along the same lines, Moore (1986) and Wickens (1989) es-

tablished some criteria for the selection of the minimum size. Garcı́a Pérez and Nuñez-

Antón (2009) found, via simulation, that Pearson’s χ2 was sufficiently accurate and

only showed minor misbehaviour when table density was less than two observations per

cell for testing independence or homogeneity in two-way contingency tables. To solve

these limitations, various alternative approaches have been proposed in the literature.

One of them is to use resampling methods such as the parametric bootstrap to obtain

an empirical p-value (Lin, Chang and Pal, 2015, Bartholomew, Knott and Moustaki,

2011, Bartholomew and Tzamourani 1999, Collins et al. 1993). The use of resampling

methods has become increasingly popular given the power of today’s computers. Cai

et al. (2006) pointed out that resampling methods are not very practical from a compu-
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tational perspective given that in comparing the fit of different models the resampling

procedure must be repeated for each model. Moreover, Tollenaar and Mooijaart (2003)

showed that the validity of a bootstrap-based test depends critically on what statistic is

being bootstrapped. In particular, bootstrapping Pearson’s χ2 or the likelihood ratio test

statistic G2 does not provide immediate Type I error rate control under sparseness.

Other alternatives call for Yate’s continuity correction1 to be used (Yates 1934), ap-

plying exact tests such as Fisher’s exact test (Fisher 1935, Mehta and Patel 1983) to test

independence2, or trying to estimate the cumulative distribution function (CDF) of the

statistics (Tsang and Cheng 2006). One last proposal, which has proved very popular in

practice, is to pool or regroup cells to reach the desired minimum number of expected

frequencies. If the test is to be conducted just once and regrouping is the option chosen

(in spite of its limitations3), it could be carried out exogenously before the statistic is

computed.

However, tests can often be used repeatedly in successive studies, or more impor-

tantly there may be techniques that use a test in an iterative process. An example of

the latter would be to carry out sampling or subsampling (Pérez-Salamero González,

Regúlez-Castillo and Vidal-Meliá, 2017), including the goodness-of-fit test in mathe-

matical programming problems. Similar examples could be found (Marsaglia 2003) in

the analysis of random number generation processes, where tests have to be performed

a number of times or in the sequential analysis of goodness-of-fit for different models

using contingency tables. Therefore, if researchers choose to regroup the strata in order

to solve the failure on the minimum size requirement in the goodness-of-fit chi-square

test, automatic re-grouping procedures in statistical software would be very useful, es-

pecially when tests are applied sequentially.

The paper is organized as follows. Section 2 presents an example to motivate the

problem to be solved, and extensively analyse the software that carries out the Pearson’s

χ
2 goodness-of-fit test in order to check whether there is any automatic regrouping in

the strata to satisfy the desired requirement of a minimum size. We conclude that, in

general, there is not. Section 3 shows the flowchart that inspired the development of

the proposed functions for regrouping the strata to satisfy the desired minimum require-

ment, independently of whether they are in the tails or in the middle. Section 4 shows

some simulation results to illustrate the performance of the procedure in terms of nomi-

nal significance levels under different settings. Section 5 presents three more examples:

one to illustrate the utility of the functions and to analyse the behaviour of the test in

different software packages, a second to illustrate the use of the regrouping functions

1. This correction reduces the numerical value of the test statistic, and hence weakens the power and significance
level of the test, making it overly conservative (Haviland 1990, Hirji 2006, Agresti 2002, Lydersen, Fagerland and
Laake, 2009).

2. Campbell (2007) and Kroonenberg and Verbeek (2018) compare and discuss the problem of selection from these
alternatives.

3. See for example Bosgiraud (2006) and Bartholomew and Tzamourani (1999) for an excellent discussion on this
issue.
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when it is necessary to estimate parameters of the distribution and finally, an example

that shows the iterative use of the regrouping functions in a mixed integer programming

framework. This is a real problem based on the Continuous Sample of Working Lives

(CSWL), a dataset widely used in numerous studies, especially on labour economics

and the Spanish public pension system. The paper ends with some concluding remarks

and further research proposals. In addition, we provide three appendices in the supple-

mentary material. The first appendix provides a summarized review of selected software

packages as regards whether they include Pearson’s χ2 goodness-of-fit test, or at least

functions that enable that test to be conducted. The second includes the mathematical

approach to the real problem explained in Section 5, i.e. the selection of the larger sub-

sample that verifies the goodness-of-fit χ2 test. The authors can be contacted to supply

the codes developed in Microsoft Excel 2016 and Microsoft Excel VBA (Visual Ba-

sic for Applications 7.1) and Mathematica4 that make automatic regrouping and the

correct application of the χ2 test possible.

2. Illustration of the problem and software review

The χ2 goodness-of-fit test approach can be found in any basic manual of statistical

inference. It is due to the pioneering work of Pearson (1900). It is a nonparametric test

which can be applied to categorical, discrete, and continuous random variables. The

statistic for the test is given by the following expression:

χ
2 =

k∑

i=1

(Oi −Ei)
2

Ei

, (1)

with Oi being the observed values and Ei the expected or theoretical values. For large

samples it is proved that this statistic is distributed under the null hypothesis as a χ2

with v = k − r − 1 degrees of freedom, where k is the number of categories or strata,

depending on how the population and the sample are organized, and r is the number

of parameters estimated using the observed data in the sample. The χ2 goodness-of-fit

test is carried out by comparing the sample value of the statistic with the corresponding

critical value obtained from the χ2 distribution with v degrees of freedom and a level α

of significance. If the test statistic is less than the critical value, then the null hypothesis

that the sample (observed values) has the same distribution as the population (expected

values) is not rejected. The test can also be used based on the p-value obtained from the

sample value of the statistic.

To illustrate the problem that we seek to address with our procedure, we propose the

following example that we call “No Moore rules.” In this example, the dataset does not

4. Mathematica is a registered trademark of Wolfram Research Inc. version 11.
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meet the rules indicated by Moore (1986) for the minimum size required to carry out the

χ
2 goodness-of-fit test. Moore established a general minimum size of 1, but it should be

5 in 80% of the categories. As shown in Table 1, in this example the size of the expected

values is below 5 in 5 of the 10 categories, and below 1 in 3 of them. Moreover, there

are intermediate categories that do not satisfy the minimum size requirement, i.e. bins 6

and 7 with values lower than 5. The population distribution used is a multinomial with

probabilities as shown in the second column of Table 1.

Table 1: Example featuring “No Moore rules” conditions. Values for the goodness-of-fit χ2 test statistic,

degrees of freedom (df) and p-values are also reported.

Category Pop. prob.
Original Regrouped

Obs. Exp. Obs. Exp.

1 0.161926968 9 8.0963 9 8.0963

2 0.168545644 3 8.4273 3 8.4273

3 0.037262021 5 1.8631

4 0.162660577 10 8.1330 15 9.9961

5 0.015025858 1 0.7513

6 0.017927913 4 0.8964

7 0.109949741 3 5.4975 8 7.1452

8 0.099373226 5 4.9687

9 0.037554998 3 1.8777 8 6.8464

10 0.189773053 7 9.4887 7 9.4887

Total 1 50 50 50 50

22.5925 7.0503

df 9 6

p-value 0.007 0.217

χ
2

There are problems in conducting the test in software packages in general, because

there is no automatic regrouping of the small size categories. The ways in which this

issue is treated in some programs are outlined in Appendix A in the supplementary ma-

terial so as to illustrate the response a potential user would have when carrying out this

test with this kind of data. Applying the automatic regrouping of strata with the proce-

dure developed in this paper as introduced in the next section and the custom functions

in Excel and Mathematica that we present in the supplementary material in Appendix

C, the data are regrouped into 6 categories. The last two columns of Table 1 show how

the categories are regrouped. Considering the 6 categories after regrouping, the sam-

ple value obtained for the χ2 statistic with 5 degrees of freedom gives a p-value equal

to 0.217. It can be seen that without regrouping the categories the null hypothesis is

rejected, but when the custom functions regroup to meet the minimum size require-

ment it is not rejected. If the minimum size requirement for validating the test is not
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taken into account, the results could be wrong and, in this case, opposite to the case of

regrouping.

After a comprehensive review of the software that can carry out this test, Table A1

in Appendix A in the supplementary material summarizes whether selected software

packages can be used for statistical purposes to check whether Pearson’s χ2 goodness-

of-fit test, or at least whether specific functions that enable it to be implemented are

available in them. It also reports whether automatic re-grouping of strata is possible if

the test statistic (1) is computed. Many computer programs have the option of filtering

and/or grouping data before the test is run, but they do not offer automatic regrouping in

the internal instructions for computing the test. There are only two programs that offer

the possibility of automatic regrouping of strata when the required or desired minimum

size is not reached:

a. MATLAB, which allows users to choose the minimum size so as to regroup giving

a positive integer as the value for the argument because the number zero indicates

that there is no regrouping of strata in terms of the size of the expected values. The

chi2gof function in MATLAB regroups only the strata at the extreme end of either

tail, but it does not combine the interior bins.

b. SSJ 3.2.0 Stochastic Simulation written in Java. This tool allows regrouping

but not in a single step. To use this facility, one must first construct an Outcome-

CategoriesChi2 object by entering the expected number of observations for each

original category into the constructor. By calling up the method regroupCate-

gories the program will then regroup categories in such a way that the expected

number of observations in each category reaches a given threshold minExp. The

procedure starts by analysing the size of the expected value in the first category. If

it finds a category that does not reach the minimum size required, minExp, then it

will be added to the next category. It follows the same regrouping criterion down

to the end, where if the last category does not have the minimum size it will be

added to the nearest one where the condition holds. The method then counts the

number of elements in each category and calls up chi2 to compute the chi-square

test statistic value.

Therefore, there is consistent evidence to suggest that there are very few computer

tools and statistical packages that have the possibility of automatic regrouping, not only

at the extreme end of either tail but also in the interior bins. Hence, it is worth develop-

ing an automatic regrouping method that could be easily adapted to different software

environments without having to perform the regrouping exogenously to the procedure

each time the minimum size for the expected values is not met.
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3. Automatic regrouping of strata: the procedure

The automatic regrouping of categories or strata is a sequential procedure that starts with

an individual analysis of the size of each stratum. Before the procedure is applied, one

must know the observed and expected values to be compared in the test. The expected

values can either come from a fully specified population distribution or from a theo-

retical distribution with unknown parameters to be estimated from the observed sample

values. The second step is to regroup the categories that do not meet the minimum size

requirement, if necessary, together with the adjacent ones, such that the resultants reach

the desired minimum value. It might be of interest to regroup not only the strata at

the extreme ends of the tails but also those in intermediate categories. Prime examples

are, for example, geographical grouping to follow economic variables, the population

at risk from certain diseases, the distribution of passengers on a track between impor-

tant cities (for hours or cities with shutdown), visitor flows to shopping centres, and

online submissions of tax return forms within the deadline. In particular, the automatic

strata regrouping procedure proposed analyses their size in increasing order from the

first strata to the last. The ordering is determined by the variable that is at the origin of

the stratification procedure. The regrouping starts from the first category and goes down

to the last one. If a category does not reach the minimum size it is added to the smallest

adjacent category. If there are adjacent categories of the same size the proposed pro-

cedure will add it to the next one, the one with a larger numbering index. A flowchart

of the algorithm is given in Figure 1. Three enlargements of parts of this flowchart

are given in Figures 2, 3 and 4, showing the steps involved in the regrouping process

on which the subsequent computation procedure is based. The main elements and the

dynamics of the chart displayed in the aforementioned figures are as follows:

1. The observed and expected values needed to calculate the goodness-of-fit test,

together with the required minimum size value for the strata, min, are introduced.

2. Check whether the number of observed values in the strata, k, is equal to the

number of expected values, m. If not, the data entry stage must be revised. If

the two dimensions coincide, continue.

3. The variable i, representing the index of a specific observed and expected value, is

given an initial value of 1 within the corresponding vector of values. The variable

last is given an initial value of 0, and represents the indicator for the last group

with a regrouped size equal to or greater than the minimum.

4. Check whether the expected value for the first category reaches the minimum size,

min.

5. If the expected value for the first category does not reach the minimum value and

given that it does not have a previous category, its elements will be added to the

second category.
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Figure 1: Flowchart. Automatic regrouping of strata.
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Figure 2: Flowchart: Steps 1 to 9. Automatic regrouping of strata.

6. If the expected value for the first category reaches the minimum size, min, it will

be stored in the variable last, to be, initially, the last category to reach this mini-

mum.

7. If the expected values for the first category have been added to the second one,

then the values of the first category will be initialized to zero.

8. The index i will increase to proceed with the analysis of the subsequent categories.

9. Check whether the last stratum or category has been reached by comparing the

stratum index, i, with the total number of strata, k. If the last stratum has not yet
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been reached, continue with the next step. If the last stratum is reached, i = k, go

to step 21 (see Figure 3).
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Figure 3: Flowchart: Steps 9 to 24. Automatic regrouping of strata.

10. The expected value in stratum i, n
exp
i , is compared with the minimum size es-

tablished at the beginning, min. It is worth mentioning that, except for the first

category or stratum, the size of the expected value in a category to be compared

with the minimum is that obtained after the loop 9-8-4-9 is performed, where step

4 is only performed for i = 1. In other words, it might be the result of the sum of

the original value for this category and previous ones which have failed to reach

the required minimum size.

11. If the expected value of a category reaches the minimum size, min, it is stored in

the variable last, to be the last category to reach this minimum. Then proceed to

check the next one (i.e. steps 8-9).

12. If the size of the expected value in a category does not reach the minimum, check

whether the previous one is empty (i.e. it takes a value of zero).
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13. If the value of a category i does not reach the minimum and the immediately

previous category i− 1 is empty, check whether there is a previous non-empty

category, that has a size greater than the minimum, last> 0.

14. If the value of a category i does not reach the minimum, the previous one, i− 1,

is empty and there is a previous category that is not empty, last> 0, then compare

the expected value of the next adjacent category, i+1 with the one of the previous

non-empty category that reaches the minimum value; that is, the category with the

index of last.

15. If the value of a category i does not reach the minimum, the previous one, i− 1,

is empty, there is a previous category that is not empty, last> 0, and the expected

value of the next adjacent category is greater than the previous non-empty one that

reaches the minimum value, then the values of the category analysed, i, are added

to the nearest previous non-empty category, last.

n
exp

last = n
exp

last +n
exp
i

nobs
last = nobs

last +nobs
i

After that, the values of the category analysed are reset (i.e. step 20), and the next

one is then analysed (i.e. steps 8-9).

16. From the second category, the values of the category analysed are added to the

following one, n
exp
i+1 = n

exp
i+1+n

exp
i , nobs

i+1 = nobs
i+1 +nobs

i when the expected value does

not reach the minimum, min, and some of the following conditions are met:

• The immediately previous category, already analysed, is not empty because

it reached the minimum size required, but its expected value is greater than

or equal to the value of the next category, n
exp
i−1 ≥ n

exp
i+1;

• There is no previous category already analysed that meets the minimum size

requirement (i.e. all are empty), so that last = 0;

• The immediately previous category, already analysed, is empty. That is, there

is a one previous category that reached an expected value equal to or greater

than the minimum, but at the same time is not minor than the next category

to be analysed, n
exp
i+1 ≤ n

exp

last .

17. If the expected value of the category analysed does not reach the minimum, min,

and the previous category is not empty, compare the size of the previous category

with that of the subsequent one, n
exp
i−1 ≥ n

exp
i+1.

18. If the expected value of the category analysed does not reach the minimum, min,

and the previous category is smaller than the subsequent one, n
exp
i−1 < n

exp
i+1 but not
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empty, the values of the category analysed are added to the previous category

because it is the smallest size adjacent category.

n
exp
i−1 = n

exp
i−1 +n

exp
i

nobs
i−1 = nobs

i−1 +nobs
i

19. Once the values of the category analysed have been added to the previous one (in

step 18) the index of that category is stored in the variable last= i−1 because it is

the last one to reach the minimum value.

20. Once the values of the category analysed have been added to the previous one (in

step 18), the subsequent one (in step 16) or to the one with the index last (in step

15), the category analysed is initialized, n
exp
i = 0, nobs

i = 0, and the next category

is then analysed.

21. Once the last category of expected values is finally reached, its accumulated ex-

pected value, n
exp
k , is compared with the minimum, min.

22. If the accumulated expected value for the last category, n
exp

k , does not reach the

minimum, min, the relevant value is added to the last one which did reach the

minimum size, n
exp
last = n

exp
last +n

exp
i , and the same is done with the observed value of

the original last one, nobs
last = nobs

last +nobs
i . If the accumulated expected value for the

last group reaches the minimum, then it remains unchanged.

23. After the expected and observed values of the last category, k, are added to the

category last (in step 22), reset them all to zero.

24. The indexes for the categories (original and regrouped) are initialized, i= 1, j = 1.

25. Start a new loop (steps 25-29) to put together the vector of regrouped expected and

observed values obtained in the previous steps. This loop is performed for all the

expected values of the different strata, from the first to the last, k, i.e. for all i ≤ k.

26. Check whether the accumulated expected value is greater than 0, n
exp
i > 0, which

means, given what is mentioned in step 20, that it will be greater than the mini-

mum.

27. If after regrouping the accumulated expected value of the i-th category is greater

than 0 and, therefore, greater than the minimum, that value is assigned as the j-th

component of a new vector of regrouped expected values, n
exp

j = n
exp
i , and the i-th

updated observed value is assigned to the j-th component of the new vector of

regrouped observed values n
obs

j = nobs
i .

28. Count the number of regrouped strata put together up to this point, adding 1 to the

index variable of regrouped strata in the new vectors (i.e., j = j+1).
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29. Increment the index i for the original categories of the expected values: i = i+1,

up to the maximum, k.

30. Once the loop in steps 25-29 ends, the final number of regrouped categories in the

new vector of expected values, catreg = j, is obtained.

31. The information that enables Pearson’s chi-square goodness-of-fit test (χ2, df, p-

value) to be carried out after the regrouping of strata is now available: {n
exp

1 ,n
exp

2 ,

. . . ,n
exp

catreg
}= {n

obs

1 ,n
obs

2 , . . . ,n
obs

catreg
}: total strata regrouped.

= 1

= 1

> 0
NO

= + 1

=

=
= + 1

RESULTS

= , ,

= , , ( )
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24
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Figure 4: Flowchart: Steps 25 to 31. Automatic regrouping of strata.

The procedure for the regrouping of strata or categories given a minimum size is

written in Excel VBA. As reported by McCullough (2008), it is well known that there

are quite a few shortcomings in this statistical package; however he also pointed out,

as Wilkinson (1994) and Ripley (2002) claimed, that it is the most commonly used

software in basic statistical calculations. This is one of the main reasons for analysing

its precision (Keeling and Pavur 2011), and to provide functions that can be incorpo-

rated into the Microsoft Excel Function Library to help other users, as other authors

have already done (e.g., Okeniyi and Okeniyi 2012) or, for example, to improve Excel

as a useful tool for teaching (Quintela-del-Rı́o and Francisco-Fernández 2017). In the

specialized literature there is an example of using Visual Basic (Khan 2003) and its

relation to Fisher’s exact test (FET). This test calculates the probability value for the

relationship between two dichotomous variables in a 2× 2 contingency table. FET is
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used when a chi-square test is to be conducted but at least one of the cells has an ex-

pected frequency of five or less. FET can be used regardless of how small the expected

frequency is. Khan (2003) emphasizes the potential utility of Visual Basic because of

the user friendliness of the program, its object-oriented feature and the fact that most

users are familiar with a Microsoft Windows environment, especially in biomedical ap-

plications. Furthermore, the procedure is written in Mathematica to illustrate that the

proposed functions can be generalized to other software. As for example McCullough

(2000) pointed out, Mathematica cannot be really categorized as a statistical package,

but it has complements for carrying out statistical analysis with more precision than

other statistical packages. The functions are inspired by the work of Ross (2015) and

Pérez-Salamero González (2015), the latter being written in VBA. More specifically,

the programming adopts functions defined by the user which yield the values for the

elements needed to calculate the χ2 test. In other words, the programming relies on the

functions already available which are related to the test.

Listing 1 and Listing 2 (the latter for Mathematica) in the supplementary material

in Appendix C include the code of the functions that yield the value of the χ2 statistic

after automatic regrouping starting from a minimum value set by the user. The length

of the code can be attributed more to explanatory purposes than to an effort to keep it

short. There is a difference between the functions that yield the observed and expected

values in VBA and Mathematica. In the former we choose to define a matrix function

such that the result appears in many cells because the user does not know exactly when

the function will need to be used or how many regrouped categories will result. The

function is written in such a way that it selects two columns and as many rows as there

were original categories, so that the user can see the regrouped categories as well as

those with zero values. In the case of Mathematica, the function that returns the vec-

tors of observed and expected values is designed to put together the categories, showing

only those regrouped with values above the minimum (i.e. those with non-zero values

are eliminated) as indicated in the flowchart loop (steps 25-29). Listing 3 in the sup-

plementary material in Appendix C includes the code for the functions written in VBA.

These functions give the number of regrouped strata in order to determine the degrees of

freedom for the test. Likewise, Listing 4 shows the code for a matrix function in Excel

which yields the output of the observed and expected values of the regrouped categories.

Finally, for the case of Mathematica we incorporate the number of categories (see List-

ing 5 in the supplementary material in Appendix C), the p-value for the test (Listing 6).

Finally, Listing 7 shows the relevant information resulting from the regrouping proce-

dure, such as the value of the χ2 statistic, the p-value, and the regrouped strata (observed

and expected).
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4. Simulation study

The purpose of this simulation study is to illustrate the performance of the proposed

regrouping procedure on the goodness-of-fit chi-square test. The simulation study will

focus on showing whether or not the proposed regrouping procedure attains the nominal

significant level. We consider two different settings:

S1. The null hypothesis includes a fully specified model, so there are no parameters to

be estimated.

S2. The null hypothesis includes a partially specified model in which parameters need

to be estimated to compute the theoretical expected frequencies under the null

hypothesis before the value of the goodness-of-fit chi-square test statistic is com-

puted.

4.1. Fully Specified Population Distribution

Simulation 1. The complete simulation steps are described below:

1. Six different combinations of the number of observations available, N, and the

number of categories, k, are considered: A (N = 50, k = 10) , B (N = 75, k = 15),

C (N = 100, k = 20), D (N = 1000, k = 20), E (N = 500, k = 20) and F (N = 250,

k = 20).

2. For each combination, 5000 samples are generated from 100 different, fully spec-

ified multinomial populations under the null hypothesis, covering a wide range of

possible multinomial probabilities distributions.

3. Once the 5000 samples have been generated for each combination and under each

different multinomial population, we use the goodness-of-fit chi-square test statis-

tic to test whether the data fits the theoretical distribution without regrouping. Un-

der the null hypothesis, the chi-square statistic follows a chi-square distribution

with (k−1) degrees of freedom. We use three different nominal significance lev-

els, (α=0.10, 0.05 and 0.01). Hence, the significance levels attained are computed,

corresponding to the number of times that the null hypothesis is rejected for each

of the 5000 samples.

4. To assess the behaviour of the procedure proposed the same thing is done, but

in this case, the categories are regrouped in those samples where the procedure

proposed suggests that regrouping of some of the adjacent categories is necessary.

In this case, the chi-square statistic follows a chi-square distribution with (k− 1)

degrees of freedom under the null if it is not necessary to regroup, and with (k∗−1)
degrees of freedom if it is, where k∗ is the number of classes remaining after

regrouping. Three different nominal significance levels are used, (α=0.10, 0.05

and 0.01), and the significance levels attained are computed as before.
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5. Finally, the significance levels attained for the three nominal significance levels

under study are compared, without no regrouping procedure and with the regroup-

ing procedure proposed here.

Table 2 summarizes the results of the simulation study described above. Because it is

realized that the different settings mean that these results cannot really be combined, the

table includes the mean and standard deviation of the significance levels attained for the

5000 simulations in each of the six (N,k) combinations considered for the 100 different

multinomial populations in the null hypothesis. The results shown in the table lead us

to conclude that the regrouping procedure proposed provides mean attained significance

levels closer to the nominal ones than those obtained by not regrouping. Moreover,

standard deviations for the attained nominal significance levels are smaller when the

regrouping procedure proposed is used.

Table 2: Simulation 1. Mean attained and standard deviations from nominal significance levels for the

5000 simulations in each of the six (N,k) combinations considered for the 100 different multinomial popu-

lations in the null hypothesis of a fully specified population distribution for the chi-square goodness-of-fit

test.

nominal significance level

populations
α = 10% α = 5% α = 1%

do not reg reg do not reg reg do not reg reg

A
mean 0.1019 0.0974 0.0558 0.0484 0.0168 0.0099

st. dev. 0.0097 0.0037 0.0103 0.0031 0.0105 0.0013

B
mean 0.1049 0.0980 0.0585 0.0489 0.0175 0.0101

st. dev. 0.0092 0.0045 0.0097 0.0031 0.0077 0.0013

C
mean 0.1073 0.0985 0.0613 0.0491 0.0200 0.0101

st. dev. 0.0093 0.0042 0.0088 0.003 0.0079 0.0014

D
mean 0.1021 0.1011 0.0527 0.0508 0.0119 0.0104

st. dev. 0.0968 0.0044 0.0041 0.0035 0.0024 0.0015

E
mean 0.1020 0.0998 0.0532 0.0506 0.0127 0.0106

st. dev. 0.1048 0.0036 0.0044 0.0029 0.0028 0.0016

F
mean 0.1027 0.0996 0.0540 0.0501 0.0137 0.0103

st. dev. 0.1018 0.0043 0.0052 0.0031 0.0040 0.0015

ALL mean 0.1036 0.0989 0.0562 0.0495 0.0157 0.0102

For the sake of brevity, Tables A2 to A7 in the supplementary material show results

for only 10 selected different multinomial populations out of the 100 considered in this

simulation study, where the theoretical probabilities under the null hypothesis are de-

scribed at the top of the tables for the different sample sizes N and numbers of categories
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k considered in the simulation study. As indicated above, 5000 simulations from each

of these populations were simulated for different N and k, and three different nominal

significance levels were considered. Significance levels attained by using the procedure

without regrouping and those obtained using the regrouping procedure proposed here

are reported at the bottom of the tables for each setting. From the results reported in

Tables A2 to A7 in the supplementary material, and given that the significance levels

attained are very close to the nominal significance levels considered here for all the dif-

ferent combinations of sample sizes, population distributions, and nominal significance

levels considered in the study, it can be concluded that the regrouping procedure pro-

posed performs reasonably well compared to the results obtained without regrouping in

the case of a chi-square goodness-of-fit test to a fully specified distribution.

4.2. Partially Specified Population Distribution

Simulation 2. The complete simulation steps are described below:

1. 5000 samples are generated from a known distribution, with no loss of generality:

a N(0,1) distribution, for 6 different combinations of the number of observations

available, N, and the number of categories, k: A (N = 50, k = 10) , B (N = 75,

k = 15), C (N = 100, k = 20), D (N = 1000, k = 20), E (N = 500, k = 20) and F

(N = 250, k = 20).

2. For each sample and each setting, the mean µ and the standard deviation σ of the

normal distribution are estimated using the maximum likelihood method.

3. For the 6 different combinations of N and k, each of the 100 different multinomial

probability combinations is assigned to each of the k categories.

4. The different k categories (i.e. the interval limits for each class or category) in

the estimated distribution N(µ̂, σ̂2) are built up so that these intervals match the

probability of belonging to this class in the estimated distribution N(µ̂, σ̂2) with

that in the corresponding multinomial population considered.

5. Once the 5000 samples have been generated for each combination and under

each different multinomial populations, we use the goodness-of-fit chi-square test

statistic to test wether the data fits the theoretical distribution without regrouping.

Under the null hypothesis, the chi-square statistic follows a chi-square distribution

with (k− r−1) = (k−2−1) = (k−3) degrees of freedom. Three different nom-

inal significance levels are used: (α=0.10, 0.05 and 0.01). Hence, the significance

levels attained are computed, corresponding to the number of times that the null

hypothesis is rejected for each of the 5000 samples.

6. To assess the behaviour of the proposed procedure, the same is done, but in this

case, the categories are regrouped in those samples where the procedure proposed
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suggests that regrouping of some of the adjacent categories is necessary. In this

case, the chi-square statistic follows a chi-square distribution with (k−3) degrees

of freedom under the null if it is not necessary to regroup, and with (k∗−3) degrees

of freedom if it is, where k∗ is the number of remaining classes after regrouping.

Three different nominal significance levels are used: (α=0.10, 0.05 and 0.01), and

the significance levels attained are computed as before.

7. Finally, the significance levels attained are compared for the three nominal signifi-

cance levels under study without and then with the regrouping procedure proposed.

Table 3 summarizes the results obtained of the simulation study described above.

Because it is realized that the different settings mean that these results cannot really be

combined, the table includes the mean and standard deviation of the significance levels

attained for the 5000 simulations in each of the six (N,k) combinations considered for

the 100 different multinomial population distributions for a partially specified goodness-

of-fit test of the null hypothesis of a normal distribution. The results shown in the table

lead us to conclude that the regrouping procedure proposed provides mean nominal

significance levels closer to the nominal ones than those obtained by not regrouping,

with the exceptions of the combinations A, for α = 10% and 5%, and B, for α = 10%.

Moreover, standard deviations for the attained nominal significance levels are smaller

when the regrouping procedure proposed is used.

For the sake of brevity, Tables A8 to A13 in the supplementary material show re-

sults for only 10 selected different multinomial probability distributions out of the 100

considered in this simulation study for the null hypothesis of a normal population distri-

bution, where the theoretical probabilities assigned to each of the classes under the null

hypothesis are described in the top part of the tables for the different sample sizes N and

numbers of categories k considered in the simulation study. As indicated above, 5000

simulations from a standard normal population were simulated for different N and k,

and three different nominal significance levels were considered. Significance levels at-

tained by using the procedure without and then with the regrouping procedure proposed

here are reported at the bottom of the tables for each setting. From the results reported

in Tables A8 to A13 in the supplementary material, and given that the significance lev-

els attained are very close to the nominal significance levels considered here for all of

the different combinations of sample sizes, population distributions, and nominal sig-

nificance levels considered in the study, it can concluded that the regrouping procedure

proposed performs reasonably well compared to the results obtained without regrouping

in the case of a chi-square goodness-of-fit test to a partially specified distribution where

parameters needed to be estimated.
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Table 3: Simulation 2. Mean attained and standard deviations from nominal significance levels for the

5000 simulations in each of the six (N,k) combinations considered for the 100 different multinomial pop-

ulations in the null hypothesis of a partially specified normal population distribution for the chi-square

goodness-of-fit test.

nominal significance level

populations
α = 10% α = 5% α = 1%

do not reg reg do not reg reg do not reg reg

A
mean 0.1134 0.1378 0.0617 0.0689 0.0180 0.0135

st. dev. 0.0097 0.0183 0.0107 0.0101 0.0114 0.0020

B
mean 0.1375 0.1422 0.0890 0.0862 0.0461 0.0404

st. dev. 0.0099 0.0049 0.0110 0.0032 0.0084 0.0013

C
mean 0.1107 0.1087 0.0624 0.0539 0.0202 0.0106

st. dev. 0.0087 0.0047 0.0092 0.0030 0.0087 0.0013

D
mean 0.1063 0.1056 0.0554 0.0536 0.0129 0.0113

st. dev. 0.1128 0.0041 0.0053 0.0032 0.0032 0.0014

E
mean 0.1080 0.1063 0.0566 0.0545 0.0137 0.0116

st. dev. 0.1080 0.0035 0.0045 0.0028 0.0031 0.0015

F
mean 0.1059 0.1036 0.0563 0.0526 0.0142 0.0110

st. dev. 0.1150 0.0036 0.0054 0.0025 0.0042 0.0013

ALL mean 0.1143 0.1185 0.0643 0.0624 0.0216 0.0169

5. Further illustrative examples

We use three additional examples and datasets to illustrate the use of the customized

functions defined in Excel and Mathematica, where the regrouping of strata or cate-

gories could arise. In the first, the functions proposed in this paper are compared with

some of the software tools described in Appendix A in the supplementary material.

Some of them do not automatically regroup and others, e.g. MATLAB, do so but only at

the extreme ends of the tails. The second example illustrates the use of the regrouping

functions when it is necessary to estimate parameters in the theoretical distribution. The

third shows the iterative use of the regrouping functions with application to analyse the

Continuous Sample of Working Lives (CSWL) survey from Spain.

5.1. Case 1. Pearson’s Illustration V

The data labeled “Illustration V” comes from the paper by Pearson (1900). Table 4

shows that 6 of the 17 categories considered in the example have positive expected val-

ues lower than 5, with 4 of them being values smaller than 1. Those strata are all located
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in the bins at the extreme ends. The null hypothesis is the fully specified population

distribution with probabilities described in Pearson (1900).

Table 4: Case 1. Illustration V example. Observed and expected values are reported, as well as results for

the goodness-of-fit chi-square test for fully specified distributions with no regrouping of categories and with

the regrouping procedure proposed here.

Category Original Regrouped

Observed Expected Observed Expected

1 0 0.18

2 3 0.68

3 7 13.48 10 14.34

4 35 45.19 35 45.19

5 101 79.36 101 79.36

6 89 96.10 89 96.10

7 94 90.90 94 90.90

8 70 71.41 70 71.41

9 46 48.25 46 48.25

10 30 28.53 30 28.53

11 15 14.94 15 14.94

12 4 6.96 10 11.34

13 5 2.88

14 1 1.06

15 0 0.34

16 0 0.10

17 0 0.00

Total 500 500.36 500 500.36

χ
2 11.75 10.51

df 16 9

p-value 0.101 0.31083538

Source: Own work based on Pearson (1900)

Pearson (1900) considered there to be 17 categories, though the expected value of the

last one is zero. Taking into account all the strata and with no regrouping, the value of the

χ
2 test statistic compared to a chi-square distribution with 16 degrees of freedom results

in a p-value of 0.101. Moreover, the functions defined in Excel and Mathematica,

presented in the supplementary material included in Appendix 2, regroup them into 10

categories. The last two columns of Table 4 show how the proposed functions regroup
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the original categories. Considering the 10 categories resulting after regrouping, the

value of the χ2 test statistic, when compared to a chi-square distribution with 9 degrees

of freedom results in a p-value of 0.311. The problems a potential user would have when

using the different software tools available for the analysis of this dataset are outlined in

Appendix A in the supplementary material.

5.2. Case 2. Example of a partially specified population distribution

This example illustrates the use of the regrouping functions once the parameters of a

partially specified theoretical distribution have been estimated by the maximum likeli-

hood method using the sample data provided in Table A14 in the supplementary ma-

terial. The example is based on the second simulation study described in Section 4.

The null hypothesis states that the population follows a partially specified normal dis-

tribution and its parameters, its mean and standard deviation, are unknown and must

therefore be estimated from the values reported in Table A14 in the supplementary ma-

terial. Parameters are estimated by maximum likelihood, using the fitdistrib function

in the MASS library in R. Therefore, the null hypothesis states that the data follows a

N(µ̂, σ̂) = N(0.056497994,0.842599379) distribution. To test this hypothesis and ob-

tain the goodness-of-fit chi-square test statistic for partially specified distributions, there

are originally k = 10 categories and (k − 3) degrees of freedom for test statistic chi-

square distribution in the case of not regrouping. In the case of regrouping, the degrees

of freedom are (k∗− 3), where k∗ is the number of remaining categories after the re-

grouping procedure proposed is applied. In order to force the necessity for regrouping,

different probabilities are randomly assigned to the k = 10 categories used for this test.

Given the estimated parameters and the probabilities assigned to each category, we ob-

tain the interval limits for these categories by using the procedure previously described

in the Simulation 2 settings. Table 5 reports the information required to perform the test

and the resulting p-values obtained with and without regrouping. Under the regrouping

procedure proposed the null hypothesis is not rejected, but it is clearly rejected if there

is no regrouping, at least at the 10% and 5% significance levels.

5.3. Case 3. Example with the Continuous Sample of Working

Lives dataset

This example illustrates the iterative use of the proposed regrouping functions. The χ2

test statistic value is included as a constraint that requires that the null hypothesis not

be rejected in an optimization problem written in Excel. This example is taken from

Pérez-Salamero González et al. (2017). The sample data used is the Continuous Sample

of Working Lives (CSWL) survey from Spain for calendar year 2013 (DGOSS 2014).

A comprehensive overview of this dataset can be found in Pérez-Salamero González,

Regúlez-Castillo and Vidal-Meliá (2016, 2017) and MESS (2017). The Continuous
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Sample of Working Lives (CSWL) is a simple random sample of around 4% of the

reference population defined as individuals who have had some connection (through

contributions, pensions or unemployment benefits) with the Social Security System at

some time during the year of reference. It contains administrative data on working lives,

which provide the basis for this sample taken from Spanish Social Security records,

and comprises anonymized microdata with detailed information on individuals. Us-

ing a post-stratification process, Pérez-Salamero González et al. (2017) obtain from the

CSWL for the calendar year 2013, the data corresponding to the number of male pen-

sioners classified as permanently disabled, organized by age in 18 categories or strata.

The population distribution is known as of December 31st (INSS 2014), which means

that the relative expected frequencies are also known, and hence so are the expected

values (i.e. this is a fully specified population distribution test setting). Table 6 reports

the observed values from the CSWL and the expected values from the theoretical popu-

lation under the null hypothesis, along with the corresponding fully specified chi-square

goodness-of-fit test results with and without regrouping. From the results reported in

Table 6, we conclude that the null hypothesis is clearly rejected whether regrouping is

performed or not. That is, the null hypothesis is clearly rejected in the case of automatic

regrouping and also in the case of no regrouping of strata. The chisq.test function writ-

ten in Excel is used for the regrouping procedure proposed. Moreover, the fit of the

sample to the population could be improved, since the null hypothesis is rejected, and

given that the p-value is very small. If a subsample from the CSWL is selected such

that its distribution does not reject the null hypothesis for a given significance level, this

would provide a more representative subsample of the permanently disabled male pen-

sioner population by age than the original sample, which is one of the main objectives

for practitioners in the area.

To further show the utility of the customized functions used iteratively which enable

the χ2 test to be conducted with automatic regrouping of strata that violate the minimum

size requirement, we propose an optimization problem with constraints. The aim is

to find the largest subsample contained in the CSWL subject to the non rejection of the

null hypothesis of the assumed theoretical distribution for the population. The search for

the largest subsample is justified by an attempt to ensure that as few pension records as

possible are missed out, so as not to overlook diversity in pensioners’ working lives. The

mathematical development of the problem is shown in Appendix B in the supplementary

material. It is implemented in Excel by using the functions defined in the supplementary

material in Appendix C, which allows for an automatic regrouping procedure. The

problem is solved by using the Solver by Frontline Systems. Given its non-linearity,

the method for solving the problem is GRG Nonlinear. Moreover, we omit the integer

constraint (6) on the variables (see Appendix B).
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Table 6: CSWL 2013. Permanent Disability: Males. Observed and expected values are reported, as well

as results for the goodness-of-fit chi-square test for completely specified distributions without regrouping

categories and with the regrouping procedure proposed here.

Age Category Original Regrouped

Observed Expected Observed Expected

15-19 0 0.04

20-24 29 30.04 29 30.08

25-29 198 195.33 198 195.33

30-34 606 581.48 606 581.48

35-39 1,201 1,203.73 1,201 1,203.73

40-44 2,014 1,982.02 2,014 1,982.02

45-49 3,106 3,050.46 3,106 3,050.46

50-54 4,281 4,230.30 4,281 4,230.30

55-59 5,710 5,706.36 5,710 5,706.36

60-64 7,151 7,269.83 7,151 7,269.83

65-69 3 58.48 3 58.48

70-74 6 3.28

75-79 7 4.28 13 7.56

80-84 14 10.88 14 10.88

≥ 85 17 16.48 17 16.48

Total 24,343 24,343 24,343 24,343

χ
2 62.76 62.66

df 14 12

p-value p-value<0.0001 p-value<0.0001

Source: Own work based on Pérez-Salamero González et al. (2017)

Accuracy in compliance with constraints is set to 0.0000001. We select the option

“Multistart” to use the multistart method for global optimization with a population size

of 100,000 and a random seed value of 100,000, using “Central” to estimate deriva-

tives through central differencing. After 100,000 subproblems are solved, a non-integer

solution is reached (“Solver found a probability of reaching a global solution”). The

solution is then rounded and it is finally checked that the one obtained is contained in

the original sample. Constraint [2.] in Appendix B, related to the improvement of the

goodness-of-fit, is not satisfied by a small error of 0.000000722, the difference between

the sample value of the test and the critical value at the 5% significance level, with a

reported p-value of 0.0499993. The emergence of this solution, with no attention paid

to the minimum size requirement for the strata, is due to the functions defined in the sup-
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plementary material in Appendix C. These functions regroup the original 15 strata into

12, with the regrouping being carried out at different times during the iterative process.

This highlights the need for an automatic regrouping process because it is completely

impossible to regroup exogenously in the procedure within each iteration.

Table 7: Subsample from the CSWL 2013. Permanent disability: Males. Observed and expected values

are reported, as well as results for the goodness-of-fit chi-square test for completely specified distributions

without regrouping categories and with the regrouping procedure proposed here. In addition, results for the

subsample obtained with the proposed algorithm are also reported.

Age Category
Original sample CSWL Subsample (before rounding)

Observed Observed Observed Expected Observed Expected
(regrouped) (regrouped) (regrouped)

15-19 0 0 0.02

20-24 29 29 13.03 12.98 13.03 13.00

25-29 198 198 84.59 84.41 84.59 84.41

30-34 606 606 251.80 251.27 251.80 251.27

35-39 1,201 1,201 521.25 520.15 521.25 520.15

40-44 2,014 2,014 858.27 856.46 858.27 856.46

45-49 3,106 3,106 1,320.94 1,318.14 1,320.94 1,318.14

50-54 4,281 4,281 1,831.85 1,827.97 1,831.85 1,827.97

55-59 5,710 5,710 2,471.03 2,465.80 2,471.03 2,465.80

60-64 7,151 7,151 3,148.06 3,141.39 3,148.06 3,141.39

65-69 3 3 3 25.27 3 25.27

70-74 6 2.25 1.42

75-79 7 13 0.25 1.85

80-84 14 14 5.48 4.70 7.99 7.97

≥ 85 17 17 7.14 7.12 7.14 7.12

Total 24,343 24,343 10,518.94 10,518.94 10,518.94 10,518.94

χ
2 62.76 62.66 21.69 19.68

df 14 12 14 11

p-value p <0.0001 p <0.0001 0.0851783 0.0499993

Source: Own work based on Pérez-Salamero González et al. (2017)

The results of the optimization process and the size of the strata associated with the

solution obtained are presented in Table 7. The first two columns in Table 7 correspond

to the first and third columns of Table 6, and we report them back in order to improve

the comparison between the original sample and the subsample obtained. The last four

columns in Table 7 have the same structure as the ones shown in Tables 1, 4, 5 and 6.
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Table 7 shows that the p-value of 0.085 obtained for the χ2 goodness-of-fit test in the

subsample with no regrouping of strata results in no rejection of the null hypothesis,

whereas the p-value of 0.04999928 obtained after regrouping is at the limit of rejection

of the null hypothesis, both at the 5% significance level.

In relation to this example, Pérez-Salamero González et al. (2017) conduct a similar

analysis for the CSWL for 2010. They simultaneously consider five types of pension and

both genders and obtain the largest representative subsample contained in the original

sample with 146 strata, reaching the last iteration and regrouping them into 115 cate-

gories to carry out the corresponding goodness-of-fit test. This illustrates the importance

of having automatic regrouping when a large-scale iterative procedure is used.

6. Summary, conclusions and further research

In empirical studies where Pearson’s goodness-of-fit χ2 test is conducted, it is a common

practice to regroup strata to attain a minimum size of expected frequencies for the test

to be valid and its conclusions reliable. In general, after a comprehensive review of the

software that can carry out this test, we conclude that there is no automatic regrouping

of strata to meet this requirement, although it would be very useful if such a feature were

available. Having such automatic regrouping available in other packages would be of

great help to researchers in many areas, such as social sciences, biomedical and health

sciences, and others where this test is usually required in empirical research. This paper

proposes some functions that enable automatic regrouping to take place. This process is

not only applied at the extreme ends of the tail strata, as in the case of MATLAB, but also

when intermediate categories do not meet the minimum size requirement, as in SSJ (a

Java library for stochastic simulation).

A simulation study shows that the regrouping functions proposed in this paper work

reasonably well compared to the test without regrouping. We find that the nominal

significance levels attained with regrouping are suitable and slightly better than those

obtained without regrouping. They guarantee that the hypotheses of the minimum size

are satisfied, reducing the risk of a wrong conclusion on the goodness-of-fit chi-square

test. The customized functions developed here have the advantage of being easier to im-

plement than SSJ in an iterative process, where the test statistic must be calculated and

the regrouping carried out in each iteration. Moreover, they offer an alternative way of

regrouping that solves the asymmetry problem in the test results. This type of process is

illustrated with a real case example in the resolution of mathematical optimization prob-

lems. MATLAB also has this advantage, but it does not allow regrouping in intermediate

categories. Therefore, those functions enable Pearson’s goodness-of-fit chi-square test

to be carried out with the possibility of regrouping categories, which we believe is quite

a major improvement on the current software available for basic statistical analysis, both

in the case of the most widely used program, Excel, and other more precise packages
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such as Mathematica. We also believe that these proposals could be very useful to

make the automatic regrouping of categories or strata available in the iterative use of the

test statistics used in Big Data and Data Mining (Larose and Larose, 2014), for example,

at the instance selection and association analysis stages, among others.

Finally, based on the proposals included and results reported in this paper, one pos-

sible direction for future research would be to adapt the code of the proposed functions

to other languages and optimization environments such as AMPL, GAMS, LINGO, R,

etc, in order to be able to integrate them into the numerical resolution of problems of

this type. It would also be interesting to make the regrouping process automatic, but

based on other, more general criteria, such as, for example, sample size or number of

categories, and to explore alternative ways of regrouping. This would require analysing

the effect of the different regrouping proposals on the goodness-of-fit chi-square test re-

sults for different sample sizes, number of categories and theoretical distributions under

study. This is out of the current scope of this paper, but could be the objective of future

research.
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