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1 Symbols and Abbreviations

1.1 Symbols

It will be taken by notation, in bold capital letters the variables associated with matrices.
Similarly, the vectors will be written in small letters and bold.

Symbol Definition
d distance
ζ Kernel function
κ Characteristic kernel function
φ Mapping function
X input space
N Number of samples
H Reproducing Kernel Hilbert Space
〈·, ·〉H Dot product in RKHS
σ Characteristic kernel hyperparameter
µ Marginal embedding operator
P,Q Probability distribution functions
p, q Probability density functions
p̂, q̂ Probability density functions estimation
α, β Parameters probability density functions estimation
α Parameters vector
A Matrix A
b Vector b
c Scalar c
|c| Absolute value of scalar c

1.2 Abbreviations

• RKHS:Reproducing Kernel Hilbert Space

• HMMs: Hidden Marcov Models

• KAFs: Kernel Adaptive Filters

• QKLMS: Quantized Kernal Least Mean Square

• EM: Espectation.Maximization
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• IPV: Information Potential Variability

• CKA: Centered Kernel Alingment

• MB: Models-based

• DB: Distances-based

• DTW: Dynamic Time Warping

• GPs: Gaussian Processes

• SVMs: Support Vectors Machines

• ED: Euclidean distance

• KL: Kullback-Leibler

• HSD: HMMs stationary distance
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3 Abstract

Time series classification is a fundamental task in the areas of machine learning and pattern
recognition, due to the multiple applications that exist in state of the art, such as analysis in
stock markets, medicine, sensor networks, scientific experiments of moving objects, biology [1]
and classification of forms [2]. Most data-based models assume that the observations are
independent and identically distributed [3], [4]. However, by assuming the above, certain
discriminating factors may be overlooked. Therefore, there is a need to represent the time
series from models that take into account the sequential nature of the data. In the literature,
there are two main approaches to the representation of time series: representation based on
models (Models-based, MB) and representation based on distances (Distances-based, DB) [1].
However most of the MB depend on free parameters that must be previously tuned [5], [6], [7].
On the other hand, the DB approaches allow the construction of dissimilarity matrices in
order to train classifiers based on close neighbors [1]. In this case, the most promising methods
are based on RKHS embedding, because they allow to represent time series as points in
Hilbert spaces of high dimensionality. However, these methods alone can not encode the
information related to the temporal dependency, and in addition, the mapping to the RKHS
depends strongly on the tuning of the parameter associated with the characteristic kernel [8].
This project seeks to build a methodology for the representation and classification of time
series in RKHSs taking into account the temporal dependence and the automatic selection
of the characteristic kernel hyperparameter.
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4 Problem statement

In the real world, all physical phenomena can be understood as a time serie, that is why in
the last decades the classification of time series has been gaining relevance [9], [10]. Sequences
of numerical measurements occur at regular or irregular time intervals in vast quantities in
almost all application domains, such as stock markets, medicine, sensor networks, scientific
experiments on moving objects and biology [1]. Even the contours of static objects can be
transformed into time series [11], [2], to which then the time series classification methods [12]
can be applied.

Most data-based models assume that the observations are independent and identically
distributed [3], [4]. However, by assuming the above, certain discriminating factors may be
overlooked. Therefore, there is a need to represent the time series from models that take into
account the sequential nature of the data. In the literature, there are two main approaches
to the representation of time series: representation based on models (Models-based, MB)
and representation based on distances (Distances-based, DD) [1]. In the first case, the MB
representations allow coding the temporal dependencies of the data coming from time series
from a set of parameters associated with the model, which take into account the relevance
of each of the samples. Some of the most used models in the state of the art are: the hidden
Markov models (HMMs) [5], the adaptive filters (AFs) [6], the Gaussian processes (GPs) [7],
among others. HMMs allow to represent the data from a sequence of hidden states that
encode the temporality of the samples; nevertheless, an appropriate choice of the topology
of the model is required, that is, the form of the covariance matrix and the associated
parameter to the number of hidden states [13]. In the case of AFs, they allow recursive
learning of the time series using an optimal performance criterion and give prominence to
the most relevant samples of the data set. However, for this type of models, the parameters
associated with the quantization size and the error tolerance of the filter [14] must be properly
tuned. The GPs are a stochastic process that allows Bayesian representation of a time
series, taking into account the uncertainty of the data at each instant of time. Although
GPs are nonparametric models, training these models is often computationally expensive
due to the calculation of the inverse of a matrix that depends on the number of samples
when calculating the posterior distribution [7]. On the other hand, the representation DD
is based on the construction of a space of dissimilarity from matrices of distances between
the data, which are later used to train classifiers based on close neighbors [15]. Within the
main representations in spaces of dissimilarity are those based on the Euclidean distance,
the distance Dynamic time warping (DTW) and the methodologies based on reproducing
kernel Hilbert space (RKHS) embedding. Although the representations based on ED are the
simplest and easiest to implement, it is necessary to clarify that this distance does not take
into account the temporal dependence of the data [16], also, the ED can only be applied at
the time of discriminate series of the same length [17]. The DTW is one of the most common
algorithms in the state of the art when classifying time series because it can be seen as a
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generalization of the ED exclusively for time series. In the case of the DTW, it is necessary
to tune the parameter associated with the percentage of warping [18]. RKHS based methods
are a promising approach used in various machine learning tasks nowadays. The basic idea of
this method consists of the representation of probability distributions as points in an RKHS
through an injective operator that depends on a characteristic kernel. This method has
the following properties: it is a generalization of traditional methods based on kernel [19]
and is very flexible when applied to high-dimensional statistical models [8]. However, these
methods usually do not take into account the temporal dependence of the data, in addition
to the classification performance that can be affected by the inadequate selection of the
Hilbert space to which the time series is mapped, that is, it is necessary to find the optimal
space in terms of separability between classes. This space depends closely on the bandwidth
parameter of the characteristic kernel. In the state of the art this parameter is tuned in a
heuristic way [20], [21], [22]. Based on the above, the following research question is posed: Is
it possible to construct a methodology for the classification of time series from the mapping to
RKHSs of sequential models that encode the temporary information and additionally build
a scheme of the appropriate search of said space that guarantees the separability among
classes?
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5 Justification

Time series classification is a fundamental task in the areas of machine learning and pattern
recognition, due to the multiple applications that exist in state of the art, such as analysis in
stock markets, medicine, sensor networks, scientific experiments of moving objects, biology [1]
and classification of forms [2].

One of the approaches in the state of the art are the representations from models that are
suitable for modeling time series since they encode the temporal dependence of the data.
Some of the most used models are HMMs, AFs, and GPs. However, most of these models
depend on free parameters that must be previously tuned [5], [6], [7]. On the other hand, there
are distance-based approaches that allow the construction of dissimilarity matrices in order
to train classifiers based on close neighbors [1]. In this case, the most promising methods are
based on RKHSE, because they allow representing time series as points in Hilbert spaces of
high dimensionality. Without a system, these methods alone can not encode the information
related to the temporal dependency, and in addition, the mapping to the RKHS depends
strongly on the tuning of the parameter associated with the characteristic kernel [8].

With the development of this work, we seek to develop a methodology that allows the
construction of a hybrid representation, that is, based on models and distances, that allows
the sequential models to be mapped to the RKHS in order to codify the temporal dependence
as well as to build classifiers based on dissimilarity. It also seeks to implement strategies for
the adequate search of the RKHS that guarantees better results when classifying the time
series.
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6 Objectives

6.1 General Objective

To develop a methodology for time series classification using reproducing kernel Hilbert
spaces, that allows finding the Hilbert space with the most suitable reproductive kernel in
order to improve the separability between classes, regardless of the model used to learn the
time series.

6.2 Specific objectives

1. To develop a measure of distance in reproducing kernel Hilbert spaces between
sequential models learned from time series.

2. To implement a reproducing kernel Hilbert space selection method, which allows finding
the highest separability between samples using unsupervised learning.

3. To implement a reproducing kernel Hilbert space selection method, which allows finding
the highest separability between samples using supervised learning.

Valencia-Marin, Cristhian Kaori 12
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7 Background

In this section we describe the fuoundations required to introduce the proposed methodology
as well as some previous time series classificaton definitions which motivates this work.
Firtsly, we describe the fundamentals of RKHS embeddings and the construction of the
RKHS-based metric how a dissimilarity measure in order two discriminate between two
general models learned from time series, represented as probability distributions. Finally,
describe some models used to estimate the RKHS-based metric.

7.1 Fundamentals of RKHS embeddings

7.1.1 Kernel-based methods

Kernel-based methods are based on the theoretical framework of Hilbert spaces generated
by kernels (Mercer’s Theorem), allowing non-linear versions of linear algorithms [23]. These
methods are based on the kernel function (or kernel), κ(x, y) : X × X → R, which can be
seen as a special case of a measure of similarity between two observations of the same input
space X . Formally a kernel κ(·, ·) is a dot product 〈·, ·〉 in a hight dimensional space, possibly
infinite, called features space H. Let X a observations set, and x, y ∈ X , then

κ(x, y) = 〈φ(x), φ(y)〉H, (1)

where φ : X → H is a non-linear mapping of the input space X to features space H.

Another concept that will be used in this work is that of the kernel matrix or Gram
matrix. Let a samples set i.i.d {xl}Nl=1, the kernel matrix is denoted as κ and it’s inputs are
defined as κi,j = κ(xi, xj). If κ is used to evaluate the dot products in a feature space H
with mapping function φ, then the inputs associated with the kernel matrix are given by

κi,j = 〈φ(xi), φ(xj)〉H,

where i, j = 1, 2, . . . N .

7.1.2 Reproducing kernel Hilbert Space

Let a topological space R, and a kernel function κ : X × X → R, then a reproducing kernel
Hilbert space (RKHS) H with kernel κ(x, x′), for x, x′ ∈ X , is a space of functions g : X → R
that fulfill the following properties:
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1. For all x ∈ X , κ(x, ·) : X → R, where κ(x, ·) ∈ H.

2. 〈g(·), κ(x, ·)〉H = g(x).

From these properties the following properties arise as a consequence

a) 〈κ(x, ·), κ(y, ·)〉H = κ(x, y).

b) κ(x, x′) = 〈φ(x), φ(x′)〉H.

The proof can be seen in [24].

7.1.3 Distance between probability distributions on Hilbert space embeddings

Let P be the space of all probability distributions and let X, Y⊂X be two random variables
that follow the distribution functions P and Q, respectively; then P , Q ∈ P , x ∈ X, and y ∈
Y . Let µ(·) be a marginal embedding operator that maps samples x ∈ X to a Reproducing
Kernel Hilbert Space (RKHS) H, as follows:

µ(P ) = EX [φ(x)] =

∫
X
φ(x)dP (x),

where µ : X → R and φ : X → H. This embedding of probability distributions into RKHS
allows us to compute distances between them. According to [25], the RKHS-based distance
d : X × X → R over the probability measures P and Q, yields:

d2
HE(P,Q) = ‖µ(P )− µ(Q)‖2

H . (2)

Equation (2) can be rewritten as

d2
HE(P,Q) =

∥∥∥∥∫
X
φ(x)dP (x)−

∫
X
φ(y)dQ(y)

∥∥∥∥2

H
. (3)

Afterward, we define a function κ(x, x′) = 〈φ(x), φ(x′)〉H, ∀x, x′ ∈ X as a reproducing
characteristic kernel on H [26]. If the probability distributions P (x) and Q(y) admit density
functions p(x) and q(y), respectively, we have dP (x) = p(x)dx and dQ(y) = q(y)dy, then
equation (3) can be written as

d2
HE(P,Q) =

∫
X

∫
X
κ(x, x′)p(x)p(x′)dxdx′ +

∫
X

∫
X
κ(y, y′)q(y)q(y′)dydy′

− 2

∫
X

∫
X
κ(x, y)p(x)q(y)dxdy. (4)

The expression (4), is an analytical metric function in RKHS for probability distributions,
that is, dHE must fulfill the following properties [26]:
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• dHE(x, y) ≥ 0.

• dHE(x, y) = 0→ x = y.

• dHE(x, y) = dHE(y, x).

• dHE(x, z) ≤ dHE(x, y) + dHE(y, z).

In this paper we seek to construct RKHS-based metrics, then we train a 1-NN classifier whose
distance among neighbors is the RKHS metric. Note that distance equation (4) depends to
the probability density functions (PDFs), p(x) and q(y), and the characteristic kernel κ.
Therefore, both PDFs and κ should be previously estimated.

7.2 Probability density function estimation

In order to code the relevance on each of the samples in the metric (4), we built estimators
for PDFs. There are two approaches for PDFs estimation: parametric and nonparametric
models. In the case of no-parametric models, there is Gaussian Mixture Models (GMMs)
and its extended version based on Parzen windows [6]. Analytically, the density functions
p(x) and q(y) can be computed as a dot product between a function f ∈ F and the mapping
ϕ into the RKHS F , e.g,

p(x) = 〈f, ϕ(x)〉F =

∫
X
αx′ϕ(x)dx′, (5)

where ϕ : X → F and αx′ ∈ [0, 1]. Next, we rewrite d2
κ(P,Q) in terms of the α and β

parameters as follows

d2
HE(P,Q|αx, βy) =

∫
X

∫
X
αxαx′κ(x, x′)ζ(x, x′)dxdx′ +

∫
X

∫
X
βyβy′κ(y, y′)ζ(y, y′)dydy′

− 2

∫
X

∫
X
αxβyκ(x, y)ζ(x, y)dxdy, (6)

where ζ(x, x′) = 〈ϕ(x), ϕ(x′)〉F . The expression in (6) can be seen as a weighted enhancement
of the well-known maximum mean discrepancy distance (MMD) with regard to the mapping
function ϕ in the p(x) and q(y) estimation. Note that in the equation (6), the expression∫

X
p(x)dx =

∫
X

∫
X
αx′ζ(x, x′)dx′dx = 1,

then, the kernel ζ should be normalized, that is,
∫
X ζ(x, x′)dx′ = 1. Thus, the sum of all

weights αx′ is the unity, ∫
X
p(x)dx =

∫
X
αx′dx = 1.
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In general, the density of probability estimation can be computed as:

p̂(x) =
∑
x′∈X

αx′ζ(x, x′) q̂(y) =
∑
y′∈X

βy′ζ(y, y′). (7)

Hence, the estimation for distance function in the expression (6) as given as

d̂2
HE(P,Q|αx, βy) =

∑
x∈X

∑
x′∈X

αxαx′κ(x, x′)ζ(x, x′) +
∑
y∈X

∑
y′∈X

βyβy′κ(y, y′)ζ(y, y′)

− 2
∑
x∈X

∑
y′∈X

αxβyκ(x, y)ζ(x, y). (8)

Then, we can write the equation (8) in matrix form as follows

d̂2
HE(Pn, Pn′) = α>nκ

n,nαn − 2α>nκ
n,n′αn′ +α

>
n′κ

n′,n′αn′ , (9)

where αn is a vector of weights where each entry represents the weighting of each sample

i
x

X

X
µ

µ

Figure 1: Mapping of probability distributions P and Q to an RKHS H from a fine set of
samples

x′ and κn,n
′

represent the kernel characteristic matrix between Pn and Pn′ distributions. To
compute the expression (9), we must estimate the free hyperparameter of the characteristic
kernel and the weights α. Weights can be estimated using different machines according to
the application. We can use some of the algorithms most used in the state-of-the-art to
model time series, such as HMMs, KAFs, SVMs, GPs, and others. In this work we show
some aplications using particularly KAFs and HMMs machines.
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7.2.1 Maximum Mean Discrepancy MMD

Maximum Mean Discrepancy (MMD) distance measure is the most simple RKHS-based
metric and was introduced by Gretton et al. in [8]. In the MMD distance, the distributions
P and Q have assumed empirics, it means

p̂(x) =
1

N

N∑
n=1

δ(x− x′), q̂(y) =
1

M

M∑
m=1

δ(y − y′),

where δ(·) is the Delta distribution, N and M is the number of samples from distributions
P and Q, respectively. Hence, according to (8), the RKHS-based MMD distance estimation
is given by

d̂2
HE(P,Q) =

1

N2

∑
n,m=1

ζ(x, x′) +
1

M2

∑
n,m=1

ζ(y, y′)− 2

NM

∑
n,m=1

ζ(x, y),

where ζ is the kernel function defined in 7.2. Note that according to equation (8) αx = 1/N
and βy = 1/M , it means that in the MMD distance it is assumed that all samples have the
same relevance.

7.3 Hidden Markov Models (HMMs)

Formally, an HMM models a sequence of observations X = {x1,x2, . . . ,xn} by assuming
that the observation at index i (i.e xi) was produces by an emission process associated to the
k-valued discrete hidden state hi and that sequences of hidden states h = {h1, h2, . . . , hn}
was produces by a first-order Markov process. Therefore, the complete-data likelihood for a
sequence of length n can be written as

p(X,h|A,π,θ) = p(h1|π)p(x1|h1,θ)
n∏
i=2

p(hi|hi−1,A)p(xi|hi,θ)

where A = {aj,j′} denotes the hidden state transition matrix, π = {πj} is the initial
hidden state probability mass function and θ represents the set of emission parameters for
each hidden state. The problem of how estimate the HMM parameters φ = {A,π,θ} is
well-known and solutions for particular choices of emision processes have been proposed [5] [2].

7.4 Quantized Kernel Least Mean Square(QKLMS)

Kernel adaptive filters (KAFs) implement a nonlinear transfer function using kernel methods
[27]. In these methods, the signal is mapped to a high-dimensional linear feature space and a
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nonlinear function is approximated as a sum over kernels, whose domain is the feature space.
If this is done in a reproducing kernel Hilbert space, a kernel method can be a universal
approximator for a nonlinear function.

The quantized kernel least mean square (QKLMS) is a particular KAFs that take account a
quantization method which compress the input space u ∈ U ⊆ Rm. The QKLMS algorithm
can be obtained by just quatizing the feature vector ϕ(i) in the weight-update equation
Ω(i) = Ω(i− 1) + ηe(i)ϕ(i), which can be expressed as

Ω(0) = 0

e(i) = d(i)−Ω(i− 1)>ϕ(i)

Ω(i) = Ω(i− 1) + ηe(i)Q[ϕ(i)]

(10)

where Q[·] denotes a quantization operator in an inner product space F and d = f(u) is the
output signal. Since the dimensionality of the feature space is very high, the quantization
is usually performed in the original input space U . In this situation, the learning rule for
QKLMS is 

f0 = 0

e(i) = d(i)− fi−1(u(i))

fi = fi−1 + ηe(i)ζ(Q[u(i)], ·)

(11)

where Q[·] is a quantization in U and ζ is a Gaussian kernel with hyperparameter σx . More
information about QKLMS filters can be found in [28].

7.5 The HSD and KL measures

The measures between HMMs proposed in this work are compared with the HMMs stationary
distance (HSD) and Kullback-Leibler divergence (KL) . We follow the definition from [29]: if
ρ1 and ρ2 are two HMMs and X = (X1, X2, · · · , XT ) is a sequence of length T generated by
ρ1, then

D (ρ1, ρ2) =
1

T

(
T∑
i=1

log p(xi)− log q(xi)

)
,

is the KL measure where p and q are the probability functions of ρ1 and ρ2, respectively,
and they are estimated as in Equation (14). To achieve a more reasonable KL measure in
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the experiments, KL is computed with the symmetric version as follows,

KL (ρ1, ρ2) =
1

2
(D (ρ1, ρ2) +D (ρ2, ρ1))

The HSD measure is defined as in [29]: if ρ1 and ρ2 are two HMMs, then

HSD (ρ1, ρ2) =

∫
X
|F1(x)− F2(x)| dx,

where F1(x) =
∫
X p(x)dx and F2(x) =

∫
X q(x)dx with p and q are stationary distributions

of ρ1 and ρ2 (respectively), and they are estimated as in Equation (14). The HSD metric is
calculated numerically.
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8 Materials and Methods

8.1 RKHS-based distance using QKLMS

In this case, we propose to learn the time series in (6) towards a kernel adaptive
filtering (KAF) technique. Namely, the quantized kernel least mean square (QKLMS)
algorithm is selected as a straightforward solution [28]. So, the densities are computed
from an input-output pair of samples {xn+1, xn}N−1

n=1 and QKLMS predictions: x̂n+1 =∑
x′∈Ωn

βx′ζ(xn+1, x
′), being Ωn the filter codebook at the n-th iteration and βx′ ∈ R.

Therefore, QKLMS estimates the time serie into a RKHS following a Markovian constraint to
preserve the temporal dependencie. Besides, the QKLMS includes a novelty criterion (NC)
based on the euclidean distance dE(xn,Ωn−1), with i ∈ {1, 2, . . . , N}. Later, given two time
series from X and Y , that is, {xn}Nn=1 ∼ P and {ym}Mm=1 ∼ Q, the densities are computed
as:

p̂(x) =
∑

x′∈Ωx
N−1

α̂x′ζ(x, x′) q̂(y) =
∑

y′∈Ωy
N−1

β̂y′ζ(y, y′). (12)

Furthermore, to preserve the metric properties in (9), the weights are normalized as: αx′ =
|βx′ |/

∑
βx′∈Ωx

N−1
|βx′ | and βy′ = |βy′|/

∑
βy′∈Ωy

M−1
|βy′|. Finally, the equation (8) can be written

as

d̂2
HE(P,Q|αx, βy) =

∑
x,x′∈Ωx

N−1

αxαx′κG(x, x′|σ + 2σx)

+
∑

y,y′∈Ωy
M−1

βyβy′κG(y, y′|σ + 2σy)− 2
∑

x∈Ωx
N−1,y∈Ωy

M−1

αxβyκG(x, y|σ + σx + σy), (13)

where σ, σx, σy ∈ R+ are the bandwidth values for the characteristic and the QKLMS kernels,
respectively. We have named (13) as HE-QKLMS.

8.2 RKHS-based distance using HMMs

In this work, we aim is classify time series from their representation in distributions from
stationaries HMMs. According to equation (7) , the correspondings estimators of HMM
stationary distributions p and q are given as

p̂(x) =
N∑
i=1

πPs,ib̂
P
i (x), and q̂(y) =

M∑
i=1

πQs,ib̂
Q
i (y), (14)
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where πPs,i and πQs,j are the stationary probabilities of the probability distributions P and Q.
Since the emission probabilities are given by GMMs, we obtain

b̂Pi (x) =

HP∑
j=1

δi,jN (x|µi,j ,Σi,j), and b̂Qi (y) =

HQ∑
j=1

γi,jN (y|νi,j .Λi,j),

Here, βi,j is the prior probability, νi,j is the mean parameter, and Λi,j is the variance
parameter for the component j of state i. Then, the mean parameter for the component
j of state i and Λi,j is the variance parameter for the component j of state i. Then, the mean
maps for the distributions are given by

µ̂X(P) =

∫
X
k(·, x)p̂(x)dx, and µ̂Y (Q) =

∫
X
k(·, y)p̂(y)dy. (15)

Now, replacing the expressions from Equation (15) in (6), and assuming a characteristic
kernel k(x, y; `), where ` is known as the bandwidth, then we obtain the RKHS-based distance
between the distributions P and Q given by

d̂2
HE (P,Q) =

NP∑
i,j=1

MP∑
k,l=1

πPs,iπ
P
s,jαi,kαj,lκ̂ (µi,k, µj,l; Σi,k,Σj,l, `)

+

NQ∑
i,j=1

MQ∑
k,l=1

πQs,iπ
Q
s,jβi,kβj,lκ̂ (νi,k, νj,l; Λi,k,Λj,l, `) (16)

− 2

NP ,NQ∑
i,j=1

MP ,MQ∑
k,l=1

πPs,iπ
Q
s,jαi,kβj,lκ̂ (µi,k, νj,l; Σi,k,Λj,l, `) .

If the kernel κ(x, y|σ) = exp (−σ‖x− y‖2
2) is Gaussian, then

κ̂ (x, y; Σ,Λ, σ) =

√
σ√

Σ + Λ + σ
exp

(
− (x− y)2

2(Σ + Λ + σ)

)
, (17)

where Σ,Λ, σ must be previously estimated. We have named (16) as HE-HMM.

8.3 Parameters estimation

This section describes the methods and strategies used to tune the parameters associated
with the RKHS-based metrics, specifically the parameters of the KAFs, the HMMs and the
characteristic kernel hyperparameter σ.
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8.3.1 QKLMS parameters estimation

With respect to the QKLMS parameters, a grid of 100 values is build, varying εU from
1 to 10, while et is computed based on the input data standard deviation. The kernel
bandwidth σx is fixed according to a Parzen-based density estimation of each curvature
sequence. Further, the characteristic kernel bandwidth σ is tuned in terms of the classification
accuracy, building a grid of 5 points from 0.003 to 0.3 in 99-Shape Database, and from 0.001
to 0.03 in MPEG-7 CE-Shape-1 Part B. The QKLMS learning rate is set as 0.9 for both
experiments [27].

8.3.2 HMMs parameter estimation

The problem of estimating the model parameters φ = {A,π,θ} given a sequence of
observations X = {x1,x2, . . . ,xn} is addressed in this section. A commonly used approach
for training an HMM consists in choosing the parameters φ in such a way that p(X|φ) is
maximized. This is known as a maximum-likelihood estimate for φ.

It turns out that the form of p(X|φ) can not be directly maximized in a closed-form way.
We then rely on the Expectation-Maximization (EM) algorithm [30] to estimate φ which
is an iterative procedure used for parameter estimation of probabilistic models with latent
variables.

8.3.3 Characteristic kernel hyperparameter estimation

According to equation (9), the RKHS-based metrics depend to characteristic kernel that
in turn depends on the σ hyperparameter. In general, this parameter is a matrix whose
size depends on the dimensionality of the data. In the case of univariate time series this
matrix is given as σI, where I is the identity matrix. However hyperparameter which must
be accurately tuned for estimating an RKHS. Otherwise, a wrong bandwidth value leads
to distinct not fulfilling the learning task. In most applications, the characteristic kernel
hyperparameter is adjusted based on cross-validation heuristic techniques [20] [22] [21].
These approaches require the construction of a grid of possible values in order to evaluate
the performance obtained for each one, which can lead to inaccurate values because the
optimal value may not be contained in the grid. Also, the cross-validation is a procedure
with high computational cost [31].

In this work, we propose two automatic selections of the characteristic kernel hyperparameter
of the RKHS-based metrics [8]. The main goal is to construct a suitable RKHS for time series
classification. Inspired by the approach [32], we use the potential information variability
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(IPV) from a Parzen-based probability density estimator as an unsupervised estimation
method and acording [33] we use a metric learnig supervised method for the hyperparameter
estimation.

8.3.4 Kernel Function Estimation from Information Potential Variability

In order to estimate the characteristic kernel σ hyperparameter of (9), we used an automatic
selection strategy based on IPV developed in [32]. The method is described as follows: let
Λ a set of observable data, then a density function p(λ, σ) is estimated using a Gaussian
Parzen-window density estimator, that is:

p̂(λ, σ) =
1

NT

NT∑
i,j=1

1

(2πσ2)D/2
exp

(
‖λi − λj‖2

2σ2

)
, (18)

where λ⊂Λ, D is the dimensionality of the input space and NT is the total number of
samples. In this sense, p̂(λ, σ) depends on a Gaussian kernel and can be written concerning
the Euclidean distance as seen in equation (18). Then, we seek an RKHS maximizing the
overall (IPV) respect to σ. To this end, the variability of p̂(λ, σ) is maximized in terms of
kernel bandwidth parameter as:

σ∗ = arg max
σ

var{p̂(λ, σ)}, (19)

where var{p̂(λ, σ)} = E{(p̂(λ, σ) − E{p̂(λ, σ)})2}. Deriving (19) with respect to σ, the
optimal parameter value can be written in terms of information potential (IP) V (Λ) and
information force (IF) F (λi|λj) as

d

dσ
var{p̂(λ, σ)} =

2(N2
T +NT )

σ

σ2
NT∑
i,j=1

F 2(λi|λj)− V (Λ)

NT∑
i,j=1

(F (λi|λj))>(λi − λj)

.
Finally, equaling the above equation to zero, the fixed point update rule becomes:

σ2
k+1 =

Vk(Λ)E{(Fk(λi|λj))
>(λi − λj) : ∀i, j ∈ [1, NT ]}

E{F 2
k (λi|λj) : ∀i, j ∈ [1, NT ]}

, (20)

where Vk(Λ) and Fk(λi|λj) are the IP and conditional IF obtained when σ = σk, respectively.
In this way, we obtained a scale rule as a function of the IFs, which are induced by a kernel
applied over a finite sample set. This approach is named for authors as Kernel Function
Estimation from Information Potential Variability (KEIPV) [32]. Notably, the optimization
problem described in the equation (19) is non-convex, that is, the σ value may converge to
a local minimum. Therefore, the performance of the optimization process may be affected
unless it is initialized suitability.
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8.3.5 Centered Kernel Alingment

In this section we describe an alternative approache to tune the characteristic kernel
hyperparameter of (9) based on supervised learning, especifically we use and metric learning
algorithm knowledge as Centered Kernel Alingment (CKA) [33] [34]. The basic idea consist
in to maximize a similarity measure between kernels or kernel matrices. The kernels we
want to alingn are the centered version of the kernel matrix l computed from the labels, and
the centered version of the characteristic kernel matrix κ. The centered kernel matrices
corresponding to l, and κ are given by l̃ = HlH, and κ̃ = HκH, respectively, with

H = I − 1

N
11>. Hyperparameter σ, or in general Σ matrix, for multidimensional times

series, is obtained solving

Σ∗ = arg max
Σ

[log ρ(l,κ)], (21)

where

ρ(l,κ) =
〈̃l, κ̃〉F
||̃l||F ||κ̃||F

. (22)

In the expression above 〈·, ·〉F stands for the Frobenius product, and ||·||F for the Frobenius
norm. The Frobenius product between matrices A ∈ RN×N , and B ∈ RN×N is defined by

〈A,B〉F = tr(A>B), and ||A||F=
√
〈A,A〉F . (23)

Expression for log ρ(l,κ) can also written as

log ρ(l,κ) = log tr(lHκH)− log
√

tr(κHκH)− log
√

tr(lHlH), (24)

where we have used the property 〈̃l, κ̃〉F = 〈l, κ̃〉F = 〈̃l,κ〉F . Expresion for Σ∗ can then be
written as

Σ∗ = arg max
Σ

[log tr(lHκH)− log
√

tr(κHκH)− log
√

tr(lHlH)]. (25)

Finally, to obtain Σ∗, we use a gradient-descend algorithm.
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9 Experiments

In this section the capability of the proposed methodology for learning time series and
classifying them is evaluated. In the first part this validation is done using synthetic and real
datasets.

9.1 Shape classification

Here, we introduce a shape classification approach based on a curvature-based representation
and an RKSH-based metric HE-QKLMS described in (13). Namely, a kernel adapting
filtering (KAF) strategy is carried out to learn salient patterns from curvature-based
features [27]. In turn, such patterns are used to compute the probability density of each
object shape from a RKHS-based perspective. Lastly, a k-nearest neighbors classifier is
trained using the HE-QKLMS metric to discriminate shapes from binary images. As a
benchmark, we employ the stochastic model hinge on likelihood maximization presented
in [35], and a straightforward MMD algorithm [36]

The binary images preprocessing is described as follows: given a binary image M ∈ RW×H

holding W ×H pixels, a Canny filter is applied as edge detector to reveal the object shape.
Then, some morphological operations are carried out to prevent non-closed trajectories and
a set of curvature coefficients {xn ∈ R}Nn=1 is extracted based on first order changes. In
fact, the trajectories are extracted from farthest horizontal point to the right, getting each
curvature point from this first coordinate in a counter-clockwise manner.

To assess the HE-QKLMS metric we used two databases (DB): the 99-Shape Database 1,
and the MPEG-7 CE-Shape-1 Part B 2, holding 9 and 13 classes, respectively (see figure
2). Both datasets comprise binary images with different resolutions and perturbations, e.g.,
occlusion and rotation. To get the shape curvatures we replicate the feature estimation
methodology presented by authors in [2], tuning experimentally the length parameter to
compute the curvature at each spatial point. We implement a 1-NN classifier from the
RKHS-based distances among shapes. For concrete testing, a training-testing validation is
carried out fixing the training set as the 80% and 50% of the input images for 99-Shape
Database MPEG-7 CE-Shape-1 Part B, respectively. QKLMS parameter were estimated
according to secction 8.3.1. As baseline, we test two state-of-the art techniques: a HMM
classifier based on highest likelihood as discussed in [35], and a 1-NN classifier from a MMD
representation [36] using equation (10). Figure 3 left, shows a data sample contour plot from
99-Shapes DB. As seen, points holding high curvature coefficient values (see color intensities)

1http://vision.lems.brown.edu/content/
2http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
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Figure 2: Left: 99-Shapes DB which has 11 samples per class. Right: MPEG-7 DB which
has 20 samples per class.

are related to extremities, whose has greater morphological changes concerning the rest of
the shape. Besides, from marker sizes, the QKLMS-based relevance analysis is able to code
the main shape variations. Now, Figure 3 right shows the filter prediction against the target
curvature sequence. Curvature beginning is labeled by x0, and as was exposed previously,
following counter-clockwise it is found the midpoint of the sequence, labeled as x40. In general,
it is clear that the KAF-based adjustment is low concerning the curvature predictions. Since
our goal is to classify shapes towards a relevant curvature representation, the codebook and
the filter weights are more appropriate for further discrimination task, e.g., the 1-NN-based
classification, than for the curvature value prediction. So, the training stage requires a
trade-off between classification and filtering fitting. In addition, Table 1 shows the results
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Figure 3: Left: {xn}Nn=1 for image 63 in the 99-Shape, where color indicates a xn value and
marker size code the QKLMS-based relevance. Right: QKLMS curvature prediction.

of classification for the 99-Shapes DB. Overall, the accuracy obtained in this experiment
was 77.8%, which is lower than the HMM and MMD approaches. However, in Quadrupeds,
Humans, Hands, Rays, Rabbits, and Wrenches classes, our proposal achieves the highest
performances. Moreover, for the Airplanes class, our methodology fails; this is ought to sharp
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changes along its contour and low curvature sequences in comparison to the other classes,
which induces biased prediction results in the QKLMS filter. Further, Table 2 presents the
classification results for the MPEG-7 CE-Shape-1 DB. This experiment was successful since
our methodology overcomes MMD and HMM schemes. However, for Shoe and Bone classes,
their outcomes could be due to their class heterogeneity. For Bottle, Children, Flatfish, and
Fountain classes, our proposal allows discriminating each of them properly.

In general, our HE-QKLMS distance is competitive with other state-of-the-art methodologies.
Previous results allow us to say that our methodology performs better than HMM models
proposed by [35]. This outcome could be possible ought to our method introduces the NC
(see Section 7.4) [28], which avoids using redundant curvature sequences. Moreover, these
input filters are embedded into an RKHS, which allows to maps nonlinear shape structures.

Table 1: 99-Shapes classification results.
Class HE-QKLMS HMM MMD

TP(%) TP(%) TP(%)
Quadrupeds 100.0 100.0 50.0
Humans 100.0 100.0 100.0
Airplanes 0.0 81.8 50.0
Grebes 50.0 100.0 50.0
Fish 50.0 72.7 100.0
Hands 100.0 90.9 100.0
Rays 100.0 90.9 100.0
Rabbits 100.0 81.8 100.0
Wrenches 100.0 72.7 100.0
Accuracy(% ) 77.8 87.9 83.3

Table 2: MPEG-7 classification results.
Class HE-QKLMS HMM MMD

TP(%) TP(%) TP(%)
Bone 60.0 100.0 60.0
Glas 100.0 100.0 100.0
HCircle 90.0 80.0 80.0
Heart 90.0 90.0 70.0
Misk 100.0 80.0 100.0
Apple 70.0 80.0 60.0
Bottle 100.0 70.0 90.0
Children 100.0 90.0 90.0
Face 100.0 90.0 90.0
Flatfish 100.0 80.0 90.0
Fountain 100.0 80.0 90.0
Shoe 50.0 60.0 90.0
Teddy 80.0 90.0 100.0
Accuracy(%) 87.7 83.8 85.4

9.2 Automatic Assessment of Voice Quality

A technique that has been developed to detect pathologies associated with the voice quality
is the acoustic analysis. This technique is non-invasive and is based on the digital processing
of the speech signal. Through this processing, a time series or spectral features can be
extracted from the voice signal, which is supposed to be related to its quality [?,?]. In this
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section, we evaluate the performance of the HE-HMM metric described in (16) concerning
the Kulback-Leibler (KL) divergence and the Dynamical Time Warping (DTW) algorithm
in a voice database. The voice database used in this article was the Massachusetts Eye and
Ear Infirmary Disordered Voice Database from the Kay Elemetrics company. Specifically,
the subset of 226 voice records described by [?].

Description of the voice database: the dataset contains the characterization of 226
voice samples from the cepstral coefficients in the Mel frequency scale. Each voice sample
is divided into windows with a duration of ten milliseconds. Finally, each window is
characterized using: twelve cepstral coefficients, an energy term, the first derivative of the
coefficients and the second derivative of the coefficients. In this sense, each voice window
will be parameterized by a total of thirty-nine characteristics, and each signal belongs to one
of the two classes, pathological voice or a healthy voice. Finally, in this experiment, we use
a 1-NN classifier again with HE-HMM, KL, and DTW distances. We configured the HMMs
as follows section 8.3.2. For DTW-based classifier, we used the originals signals speech.
To test the statistical significance, we realized ten repetitions of each one of the classifiers

Table 3: Accuracy results using the HE-HMM, KL and DTW metrics for K = 1. The mean
µ and the standard deviation σ are shown for ten reps of each experiment (µ± σ).

HE −HMM KL DTW

0.8745± 0.0100 0.8679± 0.0267 0.8481± 0.0196

using Hold-out partitions. According to Table 3 it is observed that the HE-HMM metric
has better accuracy in classification than DTW measure for the voice database. In another
hand, HE-HMM obtained similar performance regarding KL. To asses the statistical
signicance between the different measures, we applied a Lilliefors test for normality over
the ten repetitions of each classifier. If the null hypothesis for normality is rejected, we
perform a Kruskal-Walls test to compare average performances among the classifiers. If the
null hypothesis for equal medians is rejected, we perform multiple comparison tests using
Tukey-Kramer to study further wich classifiers are different. All the significance levels are
measured at 5% [37]. We found that the accuracy results of the HE-HMM and DTW metrics
are statistically different, and results for the HE-HMM and KL metrics are statistically
equal. Probably a reason for the better performance of the HE-HMM metric with respect
to the DTW measure is that this last measure is not suited to multichannel signal speech
recognition [?].

9.3 UCR data repository

In this section we show the results of testing our proposed methodology on public datasets
from to University of California in Riverside (UCR) time series classification repository.

Valencia-Marin, Cristhian Kaori 28



Master Thesis: 9.3 UCR data repository

Then, we used thirty-one binary datasets corresponding to synthetic and real-world
problems. Each one of datasets come previously partitioned in train and test datasets. Table
4 shows the sizes of the training and testing sets and the length of the time series. We test
our proposals selection methods for characteristic kernel hyperparameters IPV and CKA for
HE-HMM and MMD RKHS-based metrics. First, to show the performance of IPV approach

Table 4: The thirty-one binary databases with the size of training set and size of testing set,
used in this paper to compare the performance of the distance measures proposed.

Dataset Train size Test size Length
DistalPhalanxOutlineCorrect 115 161 222 378 80

ShapeletSim 10 10 90 90 500
ToeSegmentation1 20 20 120 108 277

Computers 125 125 125 125 720
Herring 39 25 38 26 512

Ham 52 57 51 54 431
Wine 30 27 27 27 234
Wafer 97 903 665 5499 152
Coffee 14 14 15 13 286

Strawberry 132 238 219 394 235
ECGFiveDays 14 9 428 433 136

MoteStrain 10 10 675 577 84
ProximalPhalanxOutlineCorrect 194 406 92 199 80

BirdChicken 10 10 10 10 512
Earthquakes 104 35 264 58 512

SonyAIBORobotSurfaceII 11 16 365 588 953
ItalyPowerDemand 34 33 513 516 24

Lightning2 20 40 28 33 637
ECG200 31 69 36 64 96

GunPoint 24 26 76 74 150
BeetleFly 10 10 10 10 512

SonyAIBORobotSurface 6 14 343 258 601
PhalangesOutlinesCorrect 628 1172 332 526 80

TwoLeadECG 12 11 569 570 82
MiddlePhalanxOutlineCorrect 125 166 212 388 80

ToeSegmentation2 18 18 106 24 343
WormsTwoClass 33 44 76 105 900

HandOutlines 133 237 362 638 2709
Yoga 137 163 1393 1607 426

FordA 681 639 1846 1755 500
FordB 401 409 1860 1776 500

for automatic selection of characteristic kernel hyperparameter described in section 8.3.4 ,
we test this method using the Wafer dataset from UCR repository. We use the training
set Λ ∈ R1000×152 as input space, then we projected Λ to Z ∈ R1000×2 using Principal
Components Analysis (PCA) representation. Thus, we represent time series as points in the
projected space. Figure 4(a) shows that for σ = 1× 10−3 low similarities between pair-wise
of time series (particles) and low magnitude IFs are computed due to Gaussian kernel κ
reduces the scaling of the Euclidean distance between particles. For this reason, particles
are forced to apart from each other. In another hand, in Figure 4(b), we can see how
IFs magnitudes change regardless their directions, that is, close particles according to the
Euclidean distance get high pairwise similarities while far ones have low similarities using the
σ∗ parameter obtained through IPV. Therefore, IPV finds an RKHS where time series share
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widely spread IF magnitudes. Figure 4(c) shows the accuracy in terms of σ values chosen
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Figure 4: Figure 4(a) illustrates the IFs when the σ = 1×10−3, in this case, particles tend to
apart from each other and IPV is slow. Figure 4(b) shows that for the selected parameter using
KEIVP, IFs magnitudes change regardless of their directions. Figure 4(c) shows the accuracy
obtained using the CV approach, the blue point is the optimal using KEIVP methodology, and
red point is the highest value obtained with CV. Figure 4(d) exhibits the comparison between
our approach and CV, red points shows the accuracies values from columns 6 and 7 of Table
5. Points above black line represent the accuracies where our method is better than CV.
Points below black line vice versa.

as of cross-validation (CV) for Wafer dataset. The accuracy obtained using CV for Wafer
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dataset was 94.66%, similar to accuracy obtained using IPV methodology (95.30%). We can
see that the automatic selection of σ parameter using IPV achieves find an optimal value
(blue point) close to the one that makes the best performance using CV (red mark). Besides,
Table 5 shows the results of classification for thirty-one binary datasets from UCR repository.
Overall, the mean of accuracies obtained using our methodology was 64, 95% (column 7),
which is lower than the MMD-based 1-NN classifier using CV (column 6). However, our
approach succeeded to win for five-ten datasets, while CV approache achieve to win over
four-teen datasets. Figure 4(d) exhibits the comparison between our proposal and CV; red
points show the accuracies values for the thirty-one binary datasets from UCR. Points above
the black line represent the accuracies where our method is better than CV. Points below
black line vice versa. For GunPoint and Ham datasets, both methodologies obtained equal
performance (points on the black line). In addition, our methodology achieves improve
the performance of CV when the proportion between the sizes of training and validation
sets is similar (see Table 4). Otherwise, our approach achieves low performance when the
training set is small with respect to the validation set because IPV takes advantage of the
information provided by all training set Λ according to section 8.3.4. In general, MMD IPV
methodology is competitive with respect to MMD using CV. Previous results allow us
to say that our approach achieves tune hyperparameter σ suitability, allows estimating
RKHSs favoring data class separability in comparison with a heuristic way (cross-validation).

Now, we show the performance of automatic selection of characteristic kernel hyperparameter
using an approache based-on CKA described in section 8.3.5. We test CKA method using
the BeetleFly dataset from UCR repository. We use the training set Λ ∈ R20×512 as input
space, then we projected Λ to Z ∈ R20×3 using a multi-scale representation based on Singular
Value Decomposition (SVD). Thus, we represent time series as points in the projected
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space. Figure 9.3(b) show that CKA achive rotate the original dissimilarity space (Figure
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9.3(a)) getting a better representation in terms of separability of the samples and therefore
facilitating the task of discrimination between these. The first five columns from Table 5
show the accuracy classification for the thirty-one binary data sets from UCR repository
using 1-NN classifier based on defferents distance between HMMs. First and second column
show results obtained using two baseline, KL and HSD. Third column show results using
HE-HMM proposed metric tunning the characteristic kernel hyperparameter in a heuristic
way (cross-val). Fourth and fifth column show HE-HMM using IPV and CKA methods of
selection, respectively. We can see that the performance of our proposal is generally better
than that of KL (59, 84%) and competitive with HSD (68, 59%). The last three columns
show accuracy results using MMD distance with CV, IPV and CKA, respectively. As we
mentioned earlier, IPV for kernel hyperparameter tuning, achive to find a suitable RKHS in
classification terms. However, CKA-based strategy is better than IPV in terms of accuracy.
That is, by rotating the representation space it is possible to guarantee better separability
in the samples, which leads to better classification results (last column). In general MMD
with CKA achive win over twenty of thirty-one datasets.
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Table 5: The thirty-one binary databases used to compare the performance of the RKHS-based
metrics HE-HMM and MMD with respect to the KL and HSD measures using the 1-NN
algorithm for thirty-one binary datasets from UCR repository. We test out methodology
using IPV and CKA methods of selection for characteristic kernel hyperparameter.

Dataset KL HSD HE-HMM HE-HMM IPV HE-HMM CKA MMD MMD IPV MMD CKA
BeetleFly 85,00 65,00 70,00 72,30 65,00 65,00 55,00 75,00

BirdChicken 75,00 85,00 85,00 85,53 80,00 70,00 65,00 80,00
Coffee 64,29 75,00 57,14 59,00 89,29 60,71 67,86 92,86

Computers 52,40 66,40 62,80 63,63 62,00 68,40 72,25 69,20
DistalPhalanxOutlineCorrect 59,67 66,50 62,67 61,45 74,50 59,17 59,00 80,83

ECG200 49,00 68,00 55,00 72,00 70,00 62,00 69,00 76,00
ECGFiveDays 60,16 79,44 75,84 74,42 77,82 72,24 71,34 87,34
Earthquakes 69,57 69,57 70,19 81,98 81,99 81,99 81,98 79,81

FordA 51,07 55,07 50,82 51,06 54,18 53,18 48,73 55,57
FordB 48,16 54,98 52,26 52,34 53,42 51,02 51,15 53,44

GunPoint 91,33 83,33 74,67 85,78 68,67 82,00 82,00 75,33
Ham 48,57 51,43 48,57 48,57 53,33 48,57 48,57 68,57

HandOutlines 61,10 63,10 59,10 62,30 60,40 67,60 65,60 65,62
Herring 51,56 45,31 40,62 55,98 57,81 59,38 62,50 68,75

ItalyPowerDemand 50,63 75,12 71,23 71,23 88,82 54,81 52,85 78,91
Lightning2 73,77 73,77 70,49 65,64 60,66 75,41 70,32 78,69

MiddlePhalanxOutlineCorrect 37,50 63,33 57,83 58,00 60,83 63,17 62,33 73,67
MoteStrain 75,24 74,92 72,76 70,43 71,96 73,96 77,15 80,91

PhalangesOutlinesCorrect 40,09 64,69 58,74 57,63 70,63 55,94 57,58 73,89
ProximalPhalanxOutlineCorrect 30,58 72,51 70,79 71,24 72,51 68,38 68,76 80,07

ShapeletSim 51,11 51,67 45,00 50,00 58,89 55,56 50,00 79,44
SonyAIBORobotSurface 81,36 74,88 66,39 61,37 59,57 67,39 69,95 74,71

SonyAIBORobotSurfaceII 72,30 64,64 56,03 62,46 75,97 61,80 63,45 79,75
Strawberry 48,45 76,84 69,33 69,33 82,22 68,35 66,13 90,70

ToeSegmentation1 70,61 72,81 69,74 70,47 67,11 71,49 71,78 74,12
ToeSegmentation2 50,77 68,46 60,77 61,32 63,85 81,54 83,15 69,23

TwoLeadECG 59,09 69,27 70,32 72,38 67,25 54,43 55,00 73,84
Wine 51,85 61,11 61,11 62,92 62,96 61,11 59,00 68,52

WormsTwoClass 51,38 62,43 58,01 59,00 60,22 58,01 59,24 65,75
Wafer 75,83 96,45 92,83 95,42 95,42 94,66 95,30 97,16
Yoga 67,80 75,23 67,70 58,97 59,13 64,60 51,46 56,93

Average 59,84 68,59 63,99 65,94 68,59 65,54 64,95 74,99
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10 Conclusions and Future works

10.1 Conclusions

In this work a general distance measure between times series using RKHS embedding is
proposed. We build, as special cases two metrics based on HMMs and QKLMS filter in order
to code temporal dependencies in the data. Also, we propose two strategies of selection (IPV
and CKA) of the most suitable RKHS in order to guarantee separability of the samples and
thus obtain better classification results. We test our methodologies in different applications
using synthetic and real data obtaining in most cases competitive results with respect to the
other methods of the state of the art.

10.2 Research Outcomes

In terms of scientific production we achived:

• Blandon, J. S., Valencia, C. K., Alvarez, A., Echeverry, J., Alvarez, M. A., & Orozco, A.
(2018, June). Shape classification using Hilbert space embeddings and kernel adaptive
filtering. In International Conference Image Analysis and Recognition (pp. 245-251).
Springer, Cham.

• Valencia, C. K., Álvarez, A., Valencia, E. A., Álvarez, M. A., & Orozco, Á. (2018,
November). Information Potential Variability for Hyperparameter Selection in the
MMD Distance. In Iberoamerican Congress on Pattern Recognition (pp. 279-286).
Springer, Cham.

• Valencia, E. A., Valencia, C. K., Lopez-Lopera, A.F,& Álvarez, M. A. (2019) Distance
measures for hidden Markov models based on Hilbert space embeddings for time series
classification. Advances in Data Analysis and Classification. Springer (submitted)

10.3 Future Work

We consider the following possible ways of extending this work:

• To build an extension for RKHS-based metric using not stationary HMMs and GPs.

• In order to codify space-time dependencies, extend the proposed methodology for
graphic models such as Random Marcov Fields.
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• An alternative estimation for characteristic kernel hyperparameter based on Bayesian
Optimization.
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