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ABSTRACT 

 

The European limitations associated with the use of fluorinated refrigerants have affected one 

of the most extended solutions used in commercial refrigeration in warm countries. Traditional 

cascade systems with R404A or R134a, in the high-temperature cycle, and R744 (CO2), in the 

low side, will be prohibited from 2022 onwards unless the refrigerants used have a GWP100 

lower than 150. Since practically all the available refrigerants with low-GWP100 are flammable, 

a simple but effective modification can be adopted upgrading the current direct expansion 

system to an indirect one. Accordingly, the aim of this work is to determine the energy and 

environmental impact of converting an R134a/CO2 direct expansion cascade to an indirect one 

using the low-GWP100 refrigerants R152a, R1234ze(E), R290 and R1270. The experimental 

analysis is performed at three different heat rejection temperatures (from 23.3 to 43.6 ºC), 

maintaining the cooling service product at temperatures of 2ºC and -20ºC on average.  

 

KEYWORDS 

 

Cascade, Indirect expansion, R152a, R1234ze(E), R290, R1270   

 

HIGHLIGHTS  

 

 Conversion of a direct R134a/R744 cascade to an indirect one is analysed energetically. 

 Low-GWP100 refrigerants R152a, R1234ze(E), R290 and R1270 are also analysed. 

 Indirect arrangement increases the energy consumption from +2.5% to +17.1%. 

 The Indirect arrangement reduces the refrigerant mass charge on average 58.5%. 

 The environmental impact (TEWI) of the indirect arrangement is reduced by 30%. 

 R152a is the best option for an indirect upgrading.  
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Nomenclature  
COP coefficient of performance 
DX direct expansion  
E energy consumption (kW·h) 

GWP global warming potential 
HFO hydrofluoroolefins 
HT high-temperature 
HX heat-exchanger 
IX indirect expansion 
L annual leakage rate 

LF load factor 
LT low-temperature 
m refrigerant mass charge (kg) 
n operating time horizon 
P pressure (bar) / power consumption (W) 

PAG polyalkylene glycol oil 
POE polyolester oil q�  volumetric flow rate (m3·h-1) 
RH relative humidity 
t time (sec) 
T temperature (ºC) 

TEWI Total Equivalent Warming Impact 
  

Greek Symbols  

 variation (increment or decrement) 
α refrigerant recycling factor 
β indirect emission factor (kg CO2 / kW·h) 
  

Subscripts  
Cab cabinet 
Cas cascade 

cham climatic chamber 
CO2 LT-cycle 
Com compressor 
Dis discharge 

dry-bulb it refers to dry-bulb temperature 
HT high temperature cycle 
in inlet / inner 
K condenser 
LT low temperature cycle 
MT medium temperature 
O evaporator 

Pump secondary fluid pump 
RefHT HT-cycle 

SF secondary fluid 
Total total 

w water 
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1. Introduction 

 

Cascade refrigeration systems are widely used in commercial refrigeration because of their 

compactness and their ability to provide two different cooling demands at medium and low 

temperature with high values of COP compared with single-stage vapour compression cycles 

[1]. They consist of two vapour compression cycles thermally connected by a heat exchanger 

commonly known as a cascade heat exchanger. The low-temperature cycle (LT-cycle) provides 

cooling capacity at the low-temperature level (~ -35ºC) while the high-temperature cycle (HT-

cycle) provides cooling capacity at the medium temperature level (~ -10ºC). Since both cycles 

are independent, the refrigerant used in each one can be improved according to the operating 

conditions in order to maximize the global COP of the facility. Thus, for LT-cycle, CO2 is 

commonly used due to its low-cost, environmental advantages and the high working pressures 

at low temperatures. For the HT-cycle, R134a (GWP100: 1300) and R404A (GWP100: 3943), as 

well as its corresponding drop-ins, are the most used solutions due to its feasibility, availability 

and good performance [2-4]. However, at present, Regulation EU no. 517/2014 (F-Gas) [5] 

restricts the use of fluorinated refrigerants in cascade systems depending on its arrangement. 

According to Section 13 of Annex II, for direct expansion configurations with a rated capacity of 

40kW or more, the maximum GWP100 of refrigerants used in both cycles are limited to 150. If 

an indirect expansion is used, Regulation introduces an exception that includes primary circuits 

for cascade systems where fluorinated gases with GWP100 below 1500 may be used. 

Considering how widely used R134a and R404A are used as the primary refrigerants in cascade 

refrigerating plants, it is necessary to replace those refrigerants with others allowed by the F-

Gas Regulation. Nevertheless, the vast majority of low-GWP solutions for existing refrigeration 

plants are classified as flammable [6,7], so the progress towards a CO2 direct emission 

reduction turns into a flammability problem where ATEX certification must be used. 

 

Focusing on cascade refrigeration systems, there are several works where flammable 

refrigerants are used in the high-temperature cycle in accordance with the limitations 

presented above. Thus, Bingming et al. [8] and Dopazo and Fernández-Seara [9] experimentally 

evaluated the performance of an NH3/CO2 cascade refrigeration system driven by screw 

compressors (first) and reciprocating compressors (second). The results obtained for a range of 

evaporating temperatures from -50 to -30ºC justify in both cases the convenience of using 

cascade systems instead of single-stage systems, for evaporating temperatures below -35/-

40ºC. Cabello et al. [10] also evaluated experimentally the use of R152a as drop-in of R134a in 

an R134a/CO2 cascade refrigeration facility. The results revealed that R152a performs better as 

the temperature difference between the hot and cold source is greater. Moreover, the 

discharge temperature of R152a is approximately 10 to 15ºC greater than R134a, which entails 

the need for a better cooling system for the high-temperature compressor.  Bhattacharyya et 

al. [11] from a theoretical point of view studied an R290/CO2 cascade system for simultaneous 

refrigeration and heating. The results provide an optimum operating condition and 

demonstrate that R290 offers a wider operating range instead of NH3 for simultaneous 

refrigeration and heating. Dubey et al. [12] also from a theoretical approach, analyze the 

possibility of using a transcritical CO2/R1270 cascade using propylene as the refrigerant of the 

low-temperature cycle. The results confirmed better system performance than subcritical 

cascade cycle. Xiao et al. [13] presented a theoretical analysis of an R32/CO2 cascade working 
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at different operating conditions. Recently, Bellos and Tzivanidis [14] theoretically assessed 

different alternatives for a CO2/CO2 cascade system replacing the refrigerant of the HT-cycle. In 

this case 17 pairs of refrigerants where analyzed energetically and environmentally verifying 

that the refrigerants R152a, NH3, R1270, R600, R600a and R290 are the most suitable to 

reduce the refrigerating plant energy consumption and the overall environmental impact.    

 

In commercial refrigeration systems where both evaporative levels are used to provide cooling 

capacity at medium and low-temperature levels, the use of a direct expansion with flammable 

refrigerants is prohibited for security reasons. Accordingly, a simple but effective solution 

consists in using an indirect expansion system in the medium temperature level, where a 

secondary fluid is cooled by the main cycle and then pumped to the corresponding cooling 

services [15,16]. This arrangement allows reducing substantially the refrigerant’s leak rate up 

to 90% [17] as well as the amount of refrigerant used in the system [18]. However, indirect 

layout uses a fluid pump and an additional heat exchanger that increases the energy 

consumption of the refrigerating facility due to the power consumed by the pump and the 

extra temperature difference required in the secondary fluid cooler [19-21].  

 

Once again, focusing on cascade systems, Zhang [22] published a theoretical study comparing 

different refrigerating systems including a parallel rack with R404A in direct expansion and an 

R290/CO2 cascade with CO2 as secondary fluid in the medium temperature level. The results 

from the study revealed that cascade indirect system only supposed an increment of 1% in 

terms of energy with a TEWI reduction of 66.6%. Beshr et al. [23] from a theoretical approach, 

compare an R448A/CO2 direct expansion system with an indirect one using pumped CO2 for 

the medium temperature level. Their results showed that for ambient temperatures higher 

than 5 °C the indirect cascade offered the best energy performance. Sawalha et al. [24] 

experimentally tested an indirect NH3/CO2 cascade system under laboratory conditions, using 

an indirect CO2 pumped loop for the medium temperature services. The results were 

compared with a single-stage R404A system for medium and low temperature using an 

indirect loop for the medium temperature service. From tests, the cascade system offers up to 

60% better performance than the R404A configuration. Finally, Sánchez et al. [25] also 

compared experimentally the energy impact of converting an R134a/CO2 direct expansion 

cascade to an indirect one using Propylene-glycol 40% and Temper® -20 as secondary fluids for 

the medium temperature level. The results obtained at three different rejection temperatures 

maintaining a cabinet for fresh-product and a freezer cabinet, revealed an increment in the 

energy consumption up to 14% for Propylene-glycol and up to 11.1% for Temper®.   

 

Despite the large number of works summarized below, there is a limited number of 

experimental analysis that evaluate energetically the use of low-GWP refrigerants in a cascade 

HT-cycle. Accordingly, the aim of this work is focused on analyzing the energy consumption of 

an indirect R134a/CO2 cascade when the R134a is replaced with different low-GWP 

alternatives including R152a, R1234ze(E), R290 and R1270. To carry out this aim, an R134a/CO2 

direct expansion cascade designed to provide cooling capacity at two cooling services at 2°C 

and -20°C has been used as reference. Tests were performed quantifying the energy 

consumption of each configuration working during 24 hours at three different heat rejection 
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temperatures. To sum up the analysis, an environmental impact study was performed 

determining the TEWI index at three Spanish cities assuming different operating conditions.  

2. Experimental setup and test methodology 

 

2.1 Experimental setup 

 

The refrigerating plant used to perform the experimental tests is a conventional R134a/R744 

cascade system equipped with two vapour compressor cycles thermally connected by a 

brazed-plate heat exchanger (from now on HX-cascade) (7) as can be shown in Figure 1. The 

low-temperature cycle (LT-cycle) is designed to operate with CO2 with a direct expansion 

arrangement in a frozen-product glass-door cabinet with a cooling capacity of 1.5 kW and 

dimensions of 1875 (L) x 1170 (H) x 1000 (W) mm. The cycle is composed by a semi-hermetic 

compressor (9), an oil separator (10), a gas-cooler to cool down the refrigerant before to enter 

in the HX-cascade [26] (11), a liquid receiver of 12 litters (12), an electronic expansion valve 

(13), and a finned-tube heat exchanger installed inside the frozen cabinet (14). As will be 

stated in section 2.3, the rotation speed of the CO2 compressor was fixed to 1300 rpm in all the 

performed tests in order to adjust the cooling provided with the cooling demand. This 

reduction may slightly penalize the compressor global efficiency, but it is necessary since no 

smaller semi-hermetic compressor has been found. 

 

 

Figure 1. Schematic diagram of the cascade’s refrigeration cycle with direct expansion arrangement 

 

The high-temperature cycle (HT-cycle) is designed to cool down simultaneously the LT-cycle 

and a fresh-product glass-door cabinet with a total cooling capacity of 2 kW and dimensions of 

1875 (L) × 2071 (H) × 890 (W) mm. The refrigerant used in this circuit is R134a with a direct 

expansion arrangement according to the schematic diagram of Figure 1. In this case, the cycle 

is composed by a semi-hermetic compressor (1), an oil separator (2), a brazed-plate condenser 

(3), a liquid receiver of 19 litters (4), two electronic expansion valves (8 and 5), and two parallel 

evaporators that provides the cooling effect to the medium temperature cabinet (finned-tube 
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heat exchanger) (6) and to the low temperature cycle (HX-cascade) (7). The expansion valves 

are managed by a controller that is upgraded according to the refrigerant used. The semi-

hermetic compressor of the HT-cycle has been selected to cover the heat rejected by the LT-

cycle and the cooling demand from the medium temperature cabinet working with the direct 

expansion arrangement. The refrigerant used in this selection was R134a.   

 

Both cabinets were installed inside a class 3 climatic chamber [27] that maintains a relative 

humidity of 55% and a dry temperature of 25ºC throughout the experimental tests. 

 

Figure 2 presents the simplified diagram of the modified cascade refrigeration system with a 

closed indirect expansion system (from now on IX-system). As can be noted, the new 

arrangement has an extra close loop that thermally connects the refrigeration facility with the 

medium temperate cabinet. This loop includes a brazed-plate evaporator (16), a recirculation 

pump (15), a “Y” filter, an expansion vessel and a finned-tube heat exchanger similar to the 

one used in the DX-system (17). The secondary fluid used in the experimental tests was 

Temper®-20. The main refrigerants tested in the HT-cycle were R134a, R152a and R1234ze(E) 

using the same semi-hermetic compressor installed in the direct expansion arrangement. For 

R290 and R1270, the compressor was changed to one with ATEX-certification. The 

displacement of this compressor was set to 6.71 m3·h-1 in order to extend its use to other 

hydrocarbons with lower volumetric capacity. However, it should be highlighted that this value 

can be reduced.  

 

 

Figure 2. Schematic diagram of the cascade’s refrigeration cycle working with indirect expansion arrangement 

 

Table 1 summarizes the main characteristics of the components installed in the facility. The IX-

system has a liquid receiver smaller than the DX-system according to [17].      
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Number Component Location Description 

1 Semihermetic compressor HT-cycle 
For HFCs: BITZER compressor with 6.5 m3·h-1 (1450 rpm) Oil: POE SL32. 
For HCs: DORIN compressor with 6.71 m3·h-1 (1450 rpm) Oil: PAG 68. 

2 / 10 Oil separator HT-cycle The oil separator is different depending on the compressor. 

3 Brazed-plate condenser HT-cycle SWEP heat exchanger with 40 plates and 2.39 m2 of heat transfer area. 

4 Liquid receiver HT-cycle 19 dm3 for DX-system and 11 dm3 for IX-system. 

5 / 8 / 13 Electronic expansion valve HT/LT-cycle Electronic valve CAREL working as thermostatic.  

6 Finned-tube evaporator HT-cycle 
SEREVA heat exchanger with a tube of 5/8’ staggered array and a fine 

spacing of 8 mm. Inner tube heat transfer area: 1.76 m2.   

7 Brazed-plate cascade HT/LT-cycle SWEP heat exchanger with 30 plates and 1.76 m2 of heat transfer area. 

9 Semihermetic compressor LT-cycle DORIN compressor with 1.12 m3·h-1 (1450 rpm) Oil: POE C85E. 

11 Finned-tube gas-cooler LT-cycle 
SEREVA heat exchanger with a tube of 1/4’ staggered array and a fine 

spacing of 3 mm. Inner tube heat transfer area: 0.6 m2.   

12 Liquid receiver LT-cycle 12 dm3 with external cooling for high ambient temperatures (if necessary)   

14 Finned-tube evaporator LT-cycle 
SEREVA heat exchanger with a tube of 3/8’ staggered array and a fine 

spacing of 8 mm. Inner tube heat transfer area: 1.35 m2.   

15 Secondary fluid pump SF-loop 
WILO recirculation pump with a maximum flow rate of 2 m3·h-1 and a 

maximum supply pressure of 13 wcm. 

16 Brazed-plate evaporator SF-loop SWEP heat exchanger with 30 plates and 1.79 m2 of heat transfer area. 

Table 1. Characteristics of the components installed in the cascade refrigeration system 

2.2 Measurement elements 

 

The refrigeration facility presented in Figures 1 and 2 is fully instrumented. The location of the 

sensors in the experimental setup is depicted in Figures 1 and 2 where (P) means pressure, (T) 

and (T’) temperature, (RH) relative humidity, (Pxx) electrical power consumption, (�� ) volumetric 

flow rate and (�� ) mass flow rate. Table 2 gathers the measurement range and the accuracy of 

these elements according to the manufacturer’s data. 

 

Measured Variable Measurement device Calibration Range Calibrated accuracy 

Temperature  T-type thermocouple -40 to 125 ºC ± 0.5 ºC 

Pressure (HT-cycle)  Pressure gauge 0 to 25 bar ± 0.15 bar 

Pressure (HT-cycle) Pressure gauge 0 to 10 bar ± 0.06 bar 

Pressure (LT-cycle) Pressure gauge 0 to 100 bar ± 0.60 bar 

Pressure (LT-cycle) Pressure gauge 0 to 60 bar ± 0.36 bar 

Mass flow rate (HT-cycle) Coriolis mass flow meter 0 to 0.5 kg · s-1 ± 0.1 % of reading 

Mass flow rate (LT-cycle) Coriolis mass flow meter 0 to 0.15 kg · s-1 ± 0.1 % of reading 

Volume flow rate  Magnetic flow meter 0 to 6 m3 · h-1 ± 0.25 % of reading 

Secondary fluid flow rate  Magnetic flow meter 0 to 20 l · min-1 ± 0.25 % of reading 

Power consumption 
(compressors) 

Network analyser 0 to 2000 W ± 0.5 % of reading 

Power consumption (cabinets) Network analyser 0 to 2500 W ± 0.5 % of reading 

Power consumption (secondary 
fluid pump) 

Network analyser 0 to 100 W ± 0.1 % of reading 

Environmental temperature and 
relative humidity 

Humidity/Temperature 
transducer 

5 to 90 % 
-20 to 80 ºC 

± 0.2 % 

± 0.2 ºC 

Table 2 – Measurement elements 

 

Temperature sensors marked as (T) are placed over pipes and insulated from the environment 

with foam with an average thermal conductivity of 0.04 W·m-1·K-1 according to ISO 13787. 

Thermocouples marked as (T’), are installed inside the refrigeration facility in direct contact 

with the fluid (refrigerant or secondary fluid). For the measurement of the product 
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temperature, 10 certified M-test packages (ISO-15502) with T-type thermocouples and 

dimensions of 200 × 100 × 50 mm were used. 

 

Data from sensors are acquired by a data acquisition system cRIO-9074 from National 

Instruments® connected to a personal computer with a register time of 5 seconds. 

Thermophysical properties of the refrigerant and the secondary fluids are calculated with the 

software RefProp v.9.1 [28] and SecCool v.1.33 [29]. 

 

2.3 Test methodology 

 

To compare the energy consumption of both configurations, a series of energy consumption 

tests were performed in a wide range of operating conditions. These tests consist of measuring 

the energy consumption of the refrigerating plant during 24 hours under certain operating 

conditions that includes three heat rejection temperatures (18.8, 31.6 and 42.2ºC) and a 

temperature of 2ºC for fresh-product and -20ºC for frozen-product. Those temperatures were 

obtained as an average on the 10 M-test packages fixing the set point of the cabinet controller 

to 1ºC for the MT-cabinet and -23ºC for the LT-cabinet.  

 

To adopt this kind of methodology the following considerations have been taken into account:  

 

- Cabinets: Regardless of the configuration adopted, the cabinet controls the indoor air with 

an on/off controller that enables or disables the cooling system. Thus, for DX-system the 

controller manages the electronic expansion valve (4) installed in the finned-tube heat 

exchanger (5 and 10), while for the IX-system it handles the electronic expansion valve of 

the brazed-plate evaporator (11). The useful superheating adopted in each controller was 

7K for the MT-cabinet and 15K for the LT-cabinet. Additionally, controllers manage the 

defrosting process with electrical resistors every 8 hours. The defrosting period ends when 

the temperature over the cabinet’s finned-tube heat exchanger reaches 5°C. 

 

- Cascade heat exchanger: The evaporation process in the cascade heat exchanger is 

controlled by an electronic expansion valve with useful superheating of 5K. The 

condensing process has been left free with no control on the subcooling. 

 

- Compressors: LT and MT compressors are controlled by two pressure switches installed at 

the compressor suction port with an on/off strategy depending on the pressure level. 

Thus, for the MT-compressor the pressure switch was adjusted to provide a low-cut 

temperature of −21°C and a cut-in temperature of −3.5°C regardless of the refrigerant 

used. For the LT-compressor the low-cut temperature was adjusted to -42ºC and the cut-in 

temperature to -32ºC. In both cases, the oil return was controlled automatically by the oil 

separators installed in the discharge line (Figures 1 and 2). The rotation speed of the LT-

compressor was 1300 rpm while the rotation speed for the MT-compressor was 1450 rpm.  

 

- Secondary fluid pump: For the presented analysis the secondary fluid pump has been 

maintained always on excepting during the defrosting period. Since the pump is a variable-

speed one, the flow rate of the secondary fluid was set to 2 l · min-1 in all cases. 
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- External heat rejection conditions: The water used in the brazed-plate condenser is 

controlled by an external unit that maintains the desired temperature and flow rate of the 

fluid. The present analysis covers a wide range of heat rejection temperatures (TWi): 18.8, 

31.6 and 42.2ºC, maintaining a constant flow rate of 1 m3·h-1. 

 

- Testing sequence: The sequence of tests performed in the cascade refrigeration facility 

was distributed as follows: 1st direct expansion in MT using R134a. 2nd indirect expansion in 

MT using R134a. 3rd similar to the previous one but using R152a as a refrigerant in MT. 4th 

similar to the previous one but using R1234ze(E) in MT. 5th indirect expansion in MT using 

R290 as a refrigerant in an ATEX-certified compressor. Finally, 6th, similar to the previous 

one but using R1270 as a refrigerant. In all cases, CO2 has been used in direct expansion. 

Before starting with a new refrigerant, the frost from cabinets was removed maintaining 

an ambient temperature of 25ºC.   

 

3. Experimental results 

To evaluate experimentally the energy consumption of each configuration, a total set of 18 

tests were performed according to the considerations described in subsection 2.3. Table 3 

summarizes the reference parameters averaged from tests including their standard deviation. 

 

REFERENCE PARAMETERS 

Configuration TW.in (ºC) �� W (m
3
·h

-1
) RHCham (%) TCham (ºC) TMT (ºC) TLT (ºC) �� SF (l·min

-1
) 

R134a – DX 18.8 ± 0.2 1.0 ± 0.0 53.4 ± 5.2 24.9 ± 0.8 2.1 ± 0.1 -19.7 ± 0.4 - 

R134a – IX 18.8 ± 0.2 1.0  ± 0.0 53.5 ± 5.1 25.0 ± 0.8 2.1 ± 0.1 -19.9 ± 0.3 2.0 ± 0.2 

R152a – IX 18.8 ± 0.2 1.0 ± 0.0 53.6 ± 5.1 24.8 ± 0.8 1.9 ± 0.1 -19.9 ± 0.4 2.0 ± 0.2 

R1234ze(E) – IX 18.7 ± 0.2 1.0 ± 0.0 53.6 ± 5.1 25.0 ± 0.8 2.0 ± 0.1 -20.0 ± 0.3 2.0 ± 0.2 

R290 – IX 18.9 ± 0.2 1.0  ± 0.0 53.3 ± 4.8 24.8 ± 0.8 2.1 ± 0.1 -19.9 ± 0.3 2.0 ± 0.2 

R1270 – IX 18.9 ± 0.2 1.0 ± 0.0 53.4 ± 4.8 24.9 ± 0.9 2.0 ± 0.1 19.8 ± 0.3 2.0 ± 0.3 

R134a – DX 31.4 ± 0.4 1.0 ± 0.0 53.4 ± 5.1 25.0 ± 0.7 2.0 ± 0.1 -19.7 ± 0.4 - 

R134a – IX 31.7 ± 0.3 1.0 ± 0.0 52.8 ± 5.3 25.3 ± 0.8 2.1 ± 0.1 -19.9 ± 0.3 1.9 ± 0.2 

R152a – IX 31.7 ± 0.2 1.0 ± 0.0 53.5 ± 5.2 24.8 ± 0.8 2.0 ± 0.1 -19.8 ± 0.4 2.0 ± 0.2 

R1234ze(E) – IX 31.6 ± 0.2 1.0  ± 0.0 53.4 ± 5.1 25.0 ± 0.8 2.0 ± 0.1 -19.9 ± 0.3 1.9 ± 0.2 

R290 – IX 31.8 ± 0.2 1.0  ± 0.0 53.2 ± 4.9 24.9 ± 0.9 2.1 ± 0.1 -20.0 ± 0.3 2.0 ± 0.2 

R1270 – IX 31.6 ± 0.2 1.0 ± 0.0 52.3 ± 4.6 24.8 ± 0.8 2.0 ± 0.1 -19.8 ± 0.3 2.1 ± 0.2 

R134a – DX 42.2 ± 0.3 1.0 ± 0.0 53.2 ± 5.2 24.9 ± 0.7 1.9 ± 0.1 -19.8 ± 0.5 - 

R134a – IX 42.0 ± 0.3 1.0 ± 0.0 52.6 ± 5.3 24.8 ± 0.7 2.0 ± 0.1 -20.6 ± 0.3 1.9 ± 0.2 

R152a – IX 42.2 ± 0.1 1.0 ± 0.0 53.3 ± 5.2 24.9 ± 0.8 2.1 ± 0.1 -19.9 ± 0.3 2.0 ± 0.2 

R1234ze(E) – IX 42.3 ± 0.1 1.0 ± 0.0 53.0 ± 5.1 25.0 ± 0.7 2.2 ± 0.1 -19.9 ± 0.3 1.9 ± 0.2 

R290 – IX 42.2 ± 0.2 1.0  ± 0.0 53.1 ± 4.8 25.0 ± 0.9 2.1 ± 0.1 -19.6 ± 0.5 2.0 ± 0.2 

R1270 – IX 42.1 ± 0.2 1.0 ± 0.0 51.2 ± 4.6 25.0 ± 0.9 2.1 ± 0.1 -19.8 ± 0.3 2.1 ± 0.2 

Table 3 – Reference parameters 

 

Due to the significant number of data, this section has divided into fourth subsections. The first 

one is devoted to analysing the temperature indicators as the discharge temperature of each 

compressor and the change-phase temperatures in the cabinets. The second one is devoted to 

comparing the power consumption of the different active elements: compressors, cabinets 

and secondary fluid pump. The third subsection is focused on the energy consumption of the 

refrigeration plant according to the different configurations. And finally, the last subsection 

presents an environmental analysis based on the index of TEWI. 
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3.1 Temperature indicators  

 

For each configuration three temperatures have been analysed: the condensing temperature, 

the evaporating level and the discharge temperature. 

 

The condensing temperatures of the HT-cycle (TK.HT) and the LT-cycle (TCas.LT) have been 

obtained assuming liquid saturated conditions using the pressure measurements. Similarly, the 

evaporating temperature of the LT-cycle (TCab.LT) has been calculated with the pressure 

measurements of vapour assuming vapour saturated conditions. Finally, the evaporating 

temperatures at the cascade heat exchanger (TCas.HT) and the medium temperature service 

(TCab.HT) were obtained from the pressure measurements assuming vapour saturated 

conditions. If the indirect expansion is adopted, both evaporating temperatures are assumed 

equal since the heat exchangers of the cascade and the secondary fluid are installed in parallel 

and they share the same pressures at the inlet/outlet ports. However, if a direct expansion 

arrangement is used, each evaporating temperature is calculated using the vapour pressure 

measurements at the evaporator outlet port. The adoption of this methodology allows 

considering the pressure drops introduced by the pipe lines installed from the machinery room 

to the MT-service.  

 

Additionally, the temperature difference in the cascade heat exchanger (ΔTcas) has been 

included as a relevant indicator. This temperature difference has been determined through the 

Expression 1 with the condensing temperature of the LT-cycle (TCas.LT) and the evaporating 

temperature at the cascade heat exchanger (TCas.HT). 

 

∆T�	
 = T�	
.
� − T�	
.�� (1) 

 

All the measured data have been averaged during the 24-hour tests only when both 

compressors are running to reduce the variability of data. Table 4 summarizes all the indicators 

commented above including its standard deviation during tests. 

 

Configuration TW.in (ºC) TK.HT (ºC) TDis.HT (ºC) TCab.HT (ºC) TCas.HT (ºC) TCas.LT (ºC) TDis.LT (ºC) TCab.LT (ºC) ΔTCas (K) 

R134a – DX 18.8 ± 0.2 21.5 ± 0.4 69.4 ± 2.7 -10.9 ± 2.5 -13.3 ± 2.8 -11.0 ± 2.7 82.8 ± 5.2 -37.4 ± 4.1 2.2 ± 2.6 

R134a – IX 18.8 ± 0.2 21.3  ± 0.4 65.7 ± 3.2 -16.1 ± 2.4 -11.8 ± 2.5 76.8 ± 7.9 -38.5 ± 4.2 4.2 ± 2.5 

R152a – IX 18.8 ± 0.2 22.3 ± 0.3 69.3 ± 3.5 -12.8 ± 2.5 -10.0 ± 2.2 81.8 ± 6.4 -37.1 ± 4.1 3.3 ± 2.3 

R1234ze(E) – IX 18.7 ± 0.2 27.6 ± 0.4 62.7 ± 2.1 -11.2 ± 2.3 -7.4 ± 2.5 87.1 ± 5.4 -36.8 ± 3.6 4.0 ± 2.5 

R290 – IX 18.9 ± 0.2 22.0  ± 0.5 61.3 ± 2.9 -14.3 ± 2.9 -10.9 ± 2.4 86.2 ± 6.5 -37.1 ± 3.9 3.7 ± 2.7 

R1270 – IX 18.9 ± 0.2 22.5 ± 0.5 66.0 ± 4.2 -14.0 ± 2.5 -12.2 ± 2.5 83.1 ± 5.4 -37.0 ± 4.4 2.2 ± 2.6 

R134a – DX 31.4 ± 0.4 33.7 ± 0.8 82.2 ± 2.9 -9.2 ± 1.7 -11.9 ± 2.0 -10.5 ± 2.3 83.0 ± 5.6 -37.8 ± 3.7 2.1 ± 2.6 

R134a – IX 31.7 ± 0.3 33.5 ± 0.8 79.3 ± 2.0 -16.2 ± 1.8 -9.0 ± 2.5 81.4 ± 5.1 -34.7 ± 3.6 3.4 ± 1.9 

R152a – IX 31.7 ± 0.2 34.6 ± 1.9 83.6 ± 3.3 -10.5 ± 2.9 -7.8 ± 2.0 84.3 ± 5.6 -36.0 ± 4.4 3.1 ± 1.8 

R1234ze(E) – IX 31.6 ± 0.2 37.8  ± 0.3 71.1 ± 1.7 -9.7 ± 1.7 -5.6 ± 2.3 88.2 ± 6.7 -36.7 ± 4.1 4.1 ± 2.2 

R290 – IX 31.8 ± 0.2 34.8  ± 0.9 72.9 ± 3.4 -13.1 ± 3.0 -10.2 ± 2.1 87.6 ± 5.8 -37.2 ± 3.9 3.0 ± 2.0 

R1270 – IX 31.6 ± 0.2 34.8 ± 0.5 79.4 ± 4.8 -14.3 ± 2.6 -12.2 ± 2.5 81.9 ± 5.6 -37.1 ± 4.1 2.1 ± 1.8 

R134a – DX 42.2 ± 0.3 44.6 ± 0.7 93.0 ± 1.7 -8.7 ± 1.7 -11.3 ± 1.8 -9.5 ± 2.1 83.3 ± 6.2 -37.4 ± 2.4 1.6 ± 2.4 

R134a – IX 42.0 ± 0.3 43.9 ± 0.9 83.3 ± 1.5 -15.4 ± 0.7 -5.8 ± 0.9 81.9 ± 1.1 -35.9 ± 1.5 2.9 ± 1.8 

R152a – IX 42.2 ± 0.1 45.0 ± 1.7 95.6 ± 2.1 -8.7 ± 1.8 -6.5 ± 1.1 84.9 ± 5.4 -34.3 ± 4.3 2.8 ± 1.6 

R1234ze(E) – IX 42.3 ± 0.1 47.4 ± 0.2 80.8 ± 1.1 -7.7 ± 1.8 -3.4 ± 2.3 79.1 ± 5.8 -34.1 ± 5.6 4.6 ± 2.4 

R290 – IX 42.2 ± 0.2 45.1  ± 0.5 82.3 ± 3.3 -11.4 ± 3.1 -9.0 ± 2.4 92.0 ± 4.7 -36.6 ± 3.9 2.6 ± 1.9 

R1270 – IX 42.1 ± 0.2 45.3 ± 0.5 89.6 ± 5.1 -13.1 ± 2.9 -10.5 ± 2.4 83.5 ± 5.4 -36.9 ± 3.9 2.7 ± 1.8 

Table 4 – Temperature Indicators 
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Figures 3 and 4 graphically represent the phase-change temperatures from Table 4 where the 

base cycle (DX-system) is presented in a solid colour with a dotted line. The error bars plotted 

in both Figures are the standard deviation from Table 4. 

 

 

Figure 3. Phase change temperatures for the HT-cycle 

 

 

Figure 4. Phase change temperatures for the LT-cycle 

 

Taking into account the information presented in Table 4 and Figures 3 and 4, some aspects 

can be highlighted. At first, the use of a direct expansion system provides two evaporating 
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temperatures at the medium temperature level: TCab.HT and TCas.HT. This difference is due to the 

pressure drops and the heat gains introduced by the pipe lines installed from the machinery 

room to the MT-service. Thus, as shown in Table 4, the evaporating temperature of the 

medium temperature cabinet (TCab.HT) is always higher (~ +2.6 K higher) than the evaporating 

level of the cascade heat exchanger (TCas.HT). In case of using and indirect arrangement, this 

difference is negligible since the cascade heat exchanger and the heat exchanger for the 

secondary fluid are installed in parallel within the refrigeration plant. 

 

Secondly, focusing on the HT-cycle with R134a, the use of additional fluid to cool down the 

MT-service reduces the evaporating temperature of the cabinet (TCab.HT) 6.3 K on average due 

to the addition of an extra temperature difference in the system. The main consequence of 

this variation can be seen in Figure 4 for the LT-cycle where the levels of evaporation and 

condensation grow up to 3.1K and 3.8K, respectively, with regard to the DX-system levels. 

Notwithstanding, due to the transient operation of the refrigerating plant, it is difficult to 

predict with accuracy these trends. 

  

Regarding the use of different refrigerants in the HT-cycle for the indirect arrangement, is 

evident that the HFC R134a decreases the the evaporating level of the HT-cycle while the HFO 

R1234ze(E) raises it. That means that the heat transfer area for this last refrigerant should be 

greater than the actual value, which is in accordance with the work presented previously by 

Sánchez et al. [30] in an IX-system for a medium temperature service. Focusing on the 

refrigerant R152a, it maintains a similar condensing level compared to the other refrigerants 

but with a higher evaporating temperature. Finally, the use of hydrocarbons R290 and R1270 

increase the evaporating level of the HT-cycle with regard to the IX-system with R134a.  

 

Concerning the LT-cycle, the transient operation of the system makes difficulty to obtain 

relevant trends in temperatures TCas,LT and TCab,LT. Notwithstanding it seems that the use of 

R1234ze(E) or R152a in the HT-cycle increases the condensing and evaporating temperature 

with a trend similar to R134a. Hydrocarbons R290 and R1270 do not show important variations 

with regard to R134a and their values are almost invariable with regard to the heat rejection 

temperature. 

 

The third temperature indicator selected for the analysis is the discharge temperature. 

According to Figure 5, the discharge temperature rises with the heat rejection temperature in 

both compressors due to the increment of the condensing pressure. In general, the conversion 

from DX-system to an indirect one reduces slightly the discharge temperature of both 

compressors. The use of R152a as a refrigerant in the HT-cycle rises the discharge temperature 

up to 2.7K, while the use of R1234ze(E) reduces it up to 12.1K on average. 
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Figure 5. Discharge temperatures for the HT and LT-cycle 

 

Finally, the temperature difference in the cascade heat exchanger indicates how effective the 

heat transfer process through the heat exchanger is. Since the evaporating pressure of the HT-

cycle will depend on the capacity of the medium temperature service and the heat rejected by 

the LT-cycle, the data presented in Table 4 always consider both compressors running. 

  

Taking into account the experimental results, it can be shown that the conversion from a direct 

expansion system to an indirect one entails an increment of the ΔTcas value regardless of the 

heat rejection temperature tested. Moreover, the use of different refrigerants in the HT-cycle 

also affects the ΔTcas value with a minimum average value of ~0 K for R1270 and a maximum 

difference of 3 K for R1234ze(E). These results reveal that the use of R1234ze(E) requires more 

heat transfer area in order to reduce the temperature difference. Notwithstanding, it must be 

remarked that no important differences between ΔTCas have been detected. 

 

3.2 Energy consumption  

 

The energy consumption of the refrigerating plant depends on the power consumption of the 

active elements and their operating time. Since the experimental data is acquired every 5 

seconds, energy consumption of each individual element ‘i’ can be evaluated numerically by 

means of Expression 2 as a summation of n-terms using the trapezoidal integration method. In 

this expression ‘P’ means the active element, ‘t’ is the time when the data is acquired and ‘j’ is 

referred to each data measurement during the 24-hour tests. 

 

E� = 1
36 � 10� � � P��t� � dt� !

"
≃ 1

36 � 10� � $ %&P��j� ( P��j − 1�
2 * � +t�j� − t�j − 1�,-

� !

./0
 (2) 
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Table 5 presents the average power consumption of each element averaged in a 24-hour 

period excepting the power consumption of compressors which were averaged only when they 

are in operation. 

 

ELECTRICAL POWER CONSUMPTION 

Configuration TW.in (ºC) PCom.HT (W) PCab.HT (W) PCom.LT (W) PCab.LT (W) PPump (W) 

R134a – DX 18.8 ± 0.2 942 ± 60 91 ± 6 683 ± 73 438 ± 7 - 

R134a – IX 18.8 ± 0.2 945 ± 63 80 ± 6 657 ± 79 432 ± 12 7 ± 0 

R152a – IX 18.8 ± 0.2 888 ± 39 80 ± 6 673 ± 63 436 ± 9 7 ± 0 

R1234ze(E) – IX 18.7 ± 0.2 841 ± 28 80 ± 6 682 ± 55 437 ± 9 7 ± 0 

R290 – IX 18.9 ± 0.2 1208 ± 118 79 ± 6 666 ± 68 440 ± 8 7 ± 0 

R1270 – IX 18.9 ± 0.2 1407 ± 169 81 ± 6 659 ± 72 441 ± 8 7 ± 0 

R134a – DX 31.4 ± 0.4 1081 ± 65 91 ± 6 669 ± 72 433 ± 11 - 

R134a – IX 31.7 ± 0.3 1105 ± 69 80 ± 6 667 ± 72 430 ± 11 7 ± 0 

R152a – IX 31.7 ± 0.2 1055 ± 52 80 ± 6 681 ± 62 436 ± 9 7 ± 0 

R1234ze(E) – IX 31.6 ± 0.2 943 ± 31 80 ± 6 687 ± 64 435 ± 14 7 ± 0 

R290 – IX 31.8 ± 0.2 1404 ± 78 80 ± 6 670 ± 54 441 ± 8 7 ± 0 

R1270 – IX 31.6 ± 0.2 1631 ± 129 80 ± 6 649 ± 72 439 ± 8 7 ± 0 

R134a – DX 42.2 ± 0.3 1200 ± 69 90 ± 6 675 ± 66 431 ± 13 - 

R134a – IX 42.0 ± 0.3 1238 ± 65 80 ± 6 694 ± 52 439 ± 8 7 ± 0 

R152a – IX 42.2 ± 0.1 1194 ± 52 80 ± 6 709 ± 58 441 ± 7 7 ± 0 

R1234ze(E) – IX 42.3 ± 0.1 1030 ± 29 80 ± 6 720 ± 53 438 ± 8 7 ± 0 

R290 – IX 42.2 ± 0.2 1572 ± 100 81 ± 6 673 ± 71 438 ± 8 7 ± 0 

R1270 – IX 42.1 ± 0.2 1853 ± 121 81 ± 6 668 ± 73 440 ± 7 7 ± 0 

Table 5 – Electrical power consumption of the main active elements 
 

From the results presented in Table 5 it can be noted that the average power consumption of 

cabinets and secondary fluid pump remain practically constant during tests. It means that the 

effect of defrosting periods is similar in all configurations and no special differences have been 

found between direct and indirect arrangements. However, the effect over the compressors is 

noticeable, especially for the compressor installed at the HT-cycle. According to Table 5, the 

conversion from a direct system to an indirect one entails a reduction of the electrical power 

consumed by the HT-compressor as the heat rejection temperature increases. This reduction 

can be rated between +0.7 and -3.6% while the effect over the LT-compressor increases its 

power consumption from -5.9% to +7.9%.  

 

The use of different low-GWP alternatives on the HT-cycle mainly affects the power 

consumption of the HT-compressors. Thus, it can be clearly seen that the hydrocarbons R290 

and R1270 increase the power consumption of the HT-compressor up to +34.5% and +57.3%, 

respectively, regarding the direct expansion arrangement with R134a. A similar trend can be 

assessed for R152a which power consumption varies from -2.5% to +3.4%. On the other hand, 

the use of R1234ze(E) provokes a reduction rated from -8.1% to –11.5% being the best option 

to reduce the power consumption of the HT-compressor.  

 

Focusing on the operating time of the main components, cabinets of MT and LT are always 

running since they are equipped with air-fans, interior lights and anti-fogging electrical 

resistors. The secondary fluid pump is operating 98.9% of the test-time excepting in the 

defrosting process. Finally, the percentage of operating time or duty cycle for the compressors 

is showed in Figure 6 remarking the running time of the DX-system with R134a.   
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Figure 6. Duty-cycle of compressors 
 

Comparing direct and indirect arrangements with R134a, it is obvious that upgrading the 

refrigeration facility from a direct to an indirect system entails an increment in the 

compressor’s duty-cycle. The main reason of this difference is the reduction of the evaporation 

temperature on the HT-cycle (TO.Cab), which affects the cooling capacity of the system and 

consequently, the operation time of compressors. This evidence is in accordance with the 

results published previously by authors in a cascade refrigeration system [24]. 

 

Regarding the use of different refrigerants in the HT-cycle, the refrigerants R134a, R152a, 

R1234ze(E) or R290 increase the operation time of the HT-compressor, but in the case of the 

R1234ze(E) the effect is more prominent with increments rated between +29.5% and +34.1%. 

This effect is related with the volumetric capacity of R1234ze(E) which is lower than the other 

refrigerants tested. Accordingly, a higher compressor displacement is necessary to 

compensate for it.   

 

Using the hydrocarbon R290 as a refrigerant, the operation time is slightly higher than the DX-

system (2.1% in average), but the use of propylene (R1270) reduces the operating time of the 

compressor in a range from -7.6% to -10.6%. The main reason of this difference can be found 

in the volumetric capacity of the hydrocarbon compressor which is higher than the required by 

the refrigerating facility.  

 

In terms of LT-compressor, all the configurations tested in this work increment its operating 

time excepting the use of R1270 which reports a reduction up to -1.8%. The maximum 

increment is reported with R1234ze(E) with a maximum of +7.1%. 
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Finally, Table 6 presents the energy consumption of active elements during the 24-hour tests 

with the corresponding relative error obtained indirectly by using the partial derivative 

analysis. The Compressor’s drivers, defrosting system and cabinet’s control units are also 

included in the energy consumption of each element.   

 

ENERGY CONSUMPTION DURING 24 HOURS 

Configuration TW.in (ºC) ECom.HT (kW·h) ECab.HT (kW·h) ECom.LT (kW·h) ECab.LT (kW·h) EPump (kW·h) ETotal (kW·h) 

R134a – DX 18.8 ± 0.2 13.2 ± 0.03 2.5 ± 0.01 12.6 ± 0.05 11.9 ± 0.01 - 40.2 ± 0.12 

R134a – IX 18.8 ± 0.2 14.8  ± 0.03 2.2 ± 0.01 12.5 ± 0.04 11.7 ± 0.01 0.2 ± 0.0 41.4 ± 0.12 

R152a – IX 18.8 ± 0.2 14.6 ± 0.03 2.4 ± 0.01 12.3 ± 0.04 11.7 ± 0.01 0.2 ± 0.0 41.2 ± 0.12 

R1234ze(E) – IX 18.7 ± 0.2 16.0 ± 0.03 2.4 ± 0.01 13.0 ± 0.04 11.8 ± 0.01 0.2 ± 0.0 43.4 ± 0.12 

R290 – IX 18.9 ± 0.2 17.3  ± 0.03 2.4 ± 0.01 12.5 ± 0.04 12.0 ± 0.01 0.2 ± 0.0 44.4 ± 0.12 

R1270 – IX 18.9 ± 0.2 18.1 ± 0.03 2.6 ± 0.01 12.1 ± 0.04 11.9 ± 0.01 0.2 ± 0.0 44.9 ± 0.13 

R134a – DX 31.4 ± 0.4 16.9 ± 0.03 2.5 ± 0.01 12.3 ± 0.05 11.8 ± 0.01 - 43.5 ± 0.12 

R134a – IX 31.7 ± 0.3 19.2  ± 0.03 2.3 ± 0.01 12.7 ± 0.04 11.8 ± 0.01 0.2 ± 0.0 46.2 ± 0.13 

R152a – IX 31.7 ± 0.2 18.0 ± 0.03 2.5 ± 0.01 12.6 ± 0.04 11.7 ± 0.01 0.2 ± 0.0 45.0 ± 0.12 

R1234ze(E) – IX 31.6 ± 0.2 19.3 ± 0.03 2.3 ± 0.01 13.4 ± 0.04 11.8 ± 0.01 0.2 ± 0.0 47.0 ± 0.12 

R290 – IX 31.8 ± 0.2 22.5  ± 0.03 2.4 ± 0.01 12.8 ± 0.04 11.9 ± 0.01 0.2 ± 0.0 49.8 ± 0.13 

R1270 – IX 31.6 ± 0.2 23.6 ± 0.04 2.5 ± 0.01 11.8 ± 0.04 11.8 ± 0.01 0.2 ± 0.0 49.9 ± 0.13 

R134a – DX 42.2 ± 0.3 20.5 ± 0.03 2.5 ± 0.01 12.5 ± 0.04 11.8 ± 0.01 - 47.3 ± 0.13 

R134a – IX 42.0 ± 0.3 23.0  ± 0.03 2.3 ± 0.01 12.9 ± 0.03 11.9 ± 0.01 0.2 ± 0.0 50.3 ± 0.13 

R152a – IX 42.2 ± 0.1 21.9 ± 0.03 2.4 ± 0.01 13.1 ± 0.04 11.9 ± 0.01 0.2 ± 0.0 49.5 ± 0.13 

R1234ze(E) – IX 42.3 ± 0.1 22.5 ± 0.03 2.5 ± 0.01 13.8 ± 0.04 11.9 ± 0.01 0.2 ± 0.0 50.9 ± 0.14 

R290 – IX 42.2 ± 0.2 27.8  ± 0.04 2.3 ± 0.01 13.0 ± 0.04 11.9 ± 0.01 0.2 ± 0.0 55.2 ± 0.15 

R1270 – IX 42.1 ± 0.2 28.5 ± 0.04 2.5 ± 0.01 12.4 ± 0.04 11.8 ± 0.01 0.2 ± 0.0 55.4 ± 0.15 

Table 6 – Energy consumption for each element during the 24h-tests 

 

Figure 7 plots in a bar-chart those individual energy consumptions as accumulative to highlight 

the importance of each one. From this Figure, it is important to remark the small influence of 

the secondary fluid pump over the total energy consumption. However, it should not be 

forgotten that the refrigeration plant used in this manuscript corresponds to a small-scale 

cascade-system so in a real plant this values can vary significantly.    

 

From the experimental results, it can be affirmed that the use of an indirect expansion system 

always reports an increment of energy consumption due to the presence of a secondary fluid 

between the refrigeration facility and the cooling service. Using R134a as a refrigerant, the 

described increment goes from +3.0% to +6.6% as the heat rejection temperature rises from 

18.8ºC to 42.2ºC.  

 

Changing the refrigerant of the HT-cycle, the increment of the IX-system energy consumption 

reaches a minimum with R152a (from +2.5% to +4.4%) and a maximum with R1270 (from 

+11.4% to +17.1%). The use of R1234ze(E) as a drop-in of R134a entails an increment rated 

between +7.5% and +8.5%, while the use of R290 as a natural solution increases the energy 

consumption of the system from +10.4% to +16.5%. In view of these results, it can be 

concluded that the HFC R152a is the best option in a cascade upgrade from direct to indirect 

expansion system.   
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Figure 7. Average energy consumption of the refrigerating plant 
 

Looking at the individual consumptions, no significant differences have been found for 

cabinets and the secondary fluid pump regardless of the configuration adopted. The average 

electrical energy consumption registered were 2.4 ± 0.1 kW·h for the MT cabinet, 11.8 ± 0.1 

kW·h for the LT cabinet, and 0.2 ± 0.0 kW·h for the secondary fluid pump.  

 

Concerning the compressors, results from Table 6 evidence that the main cause of the energy 

differences between configurations are the compressors. In average, the energy consumed by 

the LT compressor is 12.7 ± 0.5 kW·h whatever the arrangement adopted. However, the 

averaged electrical energy consumption for the HT compressor is 19.9 ± 4.3 kW·h which 

evidences the proper selection of the refrigerant and the compressor for the HT-cycle.  

 

In global terms, the 52.6% of the energy consumed by the experimental cascade is linked to 

the low-temperature circuit while the 47.4% is associated with the high-temperature cycle. 

This means that the relation between the MT and LT cooling capacities are almost 1:1 contrary 

to the typical relation of 3:1 reported by Sawalha et al. [31] for supermarkets in Northern 

Europe. The tested relation brings more weight to the LT-cycle which affects the evaporating 

temperature of the HT-cycle. However, in a typical relation of 3:1 or 4:1, this effect will be 

weakened by the MT-services.  

 

4. Environmental analysis  

 
4.1 Mass charge reduction  
 

An important advantage of using indirect expansion system is the reduction of the refrigerant 

mass charge [17] [32]. To exploit this benefit, a small liquid receiver was installed in the facility 

when the IX-system was adopted. The main characteristics of this liquid receiver are 

summarized in Table 1. Taking into account this particular modification and the use of a 



https://doi.org/10.1016/j.ijrefrig.2019.05.028 

18 
 

brazed-plate heat exchanger instead of a finned-tube one (Figures 1 and 2), a significant 

reduction of refrigerant charge mass was reported according to Table 7.  

 
REFRIGERANT MASS CHARGE 

Configuration mTotal (kg) ΔmTotal (%) 

R134a – DX 10.50 ± 0.02 - 
R134a – IX 6.02 ± 0.02 -42.7 % 
R152a – IX 3.98 ± 0.02 -62.1 % 

R1234ze(E) – IX 5.00 ± 0.02 -52.4 % 
R290 – IX 3.30 ± 0.02 -68.6 % 

R1270 – IX 3.50 ± 0.02 -66.7 % 

Table 7 – Refrigerant mass charge used in tests 

 
4.2 Total Equivalent Warming Impact (TEWI) 
 
The parameter of TEWI is devoted to determining the environmental impact of a refrigeration 

facility in terms of CO2 equivalent emissions (eq. kg CO2). This parameter not only considers 

the environmental impact due to the refrigerant mass charge (direct effect), but also the 

electrical energy consumption of the refrigerating plant in a specific period of time (indirect 

effect). Expression 3 determines the value of TEWI where the direct effect is divided into two 

terms, the corresponding with the HT-cycle and the associated with the LT-cycle.  

 
TEWI = �GWP456�� ∙ L456�� ∙ n� ( +GWP ∙ m456�� ∙ �1 − α456���, ( �GWP�<� ∙ L�<� ∙ n�

( +GWP ∙ m�<� ∙ �1 − α�<��, ( =E>5	? ∙ β ∙ nA 
(3) 

 

From Expression 3 the following assumptions have been adopted: 

 

a) GWP100 represents the global warming potential of the corresponding refrigerant with a 

time horizon of 100 years. The suffix “RefHT” indicates the refrigerant of the HT-cycle 

while “CO2” is referred to the LT-cycle. Values for this term are obtained from the IPCC’s 

5th Assesment Report [33]. 

b) L is the annual leakage rate that basically depends on the configuration of the refrigerating 

plant and its age. From literature, a common value of 15% has been used for DX-systems 

[34] while for IX-systems a lower value of 5% has been assumed. 

c) n is the operating time-horizon for the refrigerating plant. A typical value of 15 years has 

been assumed. 

d) m is the charge mass of refrigerant according to Table 7. The mass charge of CO2 was 10 kg 

in all cases. 

e) α is the refrigerant recycling factor when the facility is repaired or modified. From 

experimental tests, we have calculated this value with the portion of refrigerant not 

recovered. In average, this factor has a value of 89% for the HT-cycle, while for the LT-cycle 

a recycling factor equal to 0% has been considered since CO2 was not recovered.    

f) β is the indirect emission factor due to the electricity generation and depends on the 

country. For the TEWI evaluation, we have considered the conversion factor of Spain 

according to the technical data published by IDAE in 2016 [35]: 0.357 eq. kg CO2 / kW·h.  

g) Eyear is the yearly energy consumption of the refrigerating plant assuming a working period 

of 24 hours a day all year round, and specific conditions of heat rejection temperature and 

cooling demand. In this case, we have assumed the same experimental conditions at the 
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cooling demand but different heat rejection temperatures according to the dry-bulb 

ambient temperatures of the Spanish cities of Almería, Bilbao and Valencia [36]. Taking 

into account these conditions, the yearly energy consumption of each configuration can be 

obtained by using the Expression 4 assuming 365 days a year. 

  

E>5	? = $ E�
BC� E	>


�/0
= $ $ E�.

�  !

./0

BC� E	>


�/0
 (4) 

 

The daily energy consumption Ei is calculated as a sum of the energy consumption per 

hour Eij at the corresponding condensing temperature (Tk,HT). This temperature can be 

determined every hour with the dry-bulb temperature (Tdry-bulb) assuming a constant 

temperature difference of 12 K according to Expression 5. 

 

TF,��HIJKL = TE?>MNOPNIJKL ( 12 (5) 

 

Using the information from the EnergyPlus software, the maximum and the minimum 

condensing temperature (Tk,HT) for each location are Almería: max. 42.8°C min. 21°C; 

Bilbao: max. 37.5°C min. 17.7°C; Valencia: max. 41.4°C min. 18.1°C. Accordingly, this 

temperature varies from 18.1 to 42.8°C and it fits with the experimental data obtained 

from tests. Because of this, the energy consumption of the refrigerating plant can be 

determined from the experimental tests by applying a mathematical interpolation.  

 

To make a more accurate analysis, the following cooling load profile at day has been 

considered taking into account the operating period presented in references [37, 38]: 

100% of the cooling capacity from 7:00 to 22:00 and 50% from 22:00 to 7:00. This 

assumption means that the energy consumption decreases by up to 50% when the 

supermarket or store is closed. 

 

The results from the environmental analysis are presented in Figure 8 and Table 8 for each 

indirect cascade configuration at each location analyzed. Below the name of the location, the 

annual average temperature of the location is also included.    

 



https://doi.org/10.1016/j.ijrefrig.2019.05.028 

20 
 

 

Figure 8. Annual parameter of TEWI for three different Spanish cities  
 

  TEWI 

Location Configuration 

Direct Effect 
Indirect Effect 

(eq. Tn CO2) 

TOTAL    

(eq.Tn CO2) 
Leakages  

(eq. Tn CO2) 

Maintenance 

(eq. Tn CO2) 

Bilbao 
(Tavg year: 14.0°C) 

R134a – DX 40.93 31.36 % 1.51 1.16 % 88.06 67.48 % 130.50 

R134a – IX 7.87 7.82 % 0.87 0.87 % 91.97 91.31 % 100.71 
R152a – IX 0.58 0.64 % 0.07 0.08 % 90.04 99.28 % 90.69 

R1234ze(E) – IX 0.04 0.04 % 0.01 0.01 % 91.42 99.95 % 91.46 
R290 – IX 0.04 0.04 % 0.01 0.01 % 98.13 99.95 % 98.18 

R1270 – IX 0.04 0.04 % 0.01 0.01 % 98.61 99.95 % 98.66 

Valencia 
(Tavg year: 16.7°C) 

R134a – DX 40.93 30.96% 1.51 1.14% 89.75 67.90% 132.18 
R134a – IX 7.87 7.64% 0.87 0.85% 94.25 91.51% 103.00 
R152a – IX 0.58 0.63% 0.07 0.08% 91.97 99.30% 92.62 

R1234ze(E) – IX 0.04 0.04% 0.01 0.01% 93.42 99.95% 93.46 
R290 – IX 0.04 0.04% 0.01 0.01% 100.69 99.95% 100.74 

R1270 – IX 0.04 0.04% 0.01 0.01% 101.07 99.95% 101.12 

Almería 
(Tavg year: 18.5°C) 

R134a – DX 40.93 30.73% 1.51 1.13% 90.73 68.13% 133.17 
R134a – IX 7.87 7.54% 0.87 0.84% 95.62 91.62% 104.37 
R152a – IX 0.58 0.62% 0.07 0.08% 93.08 99.31% 93.73 

R1234ze(E) – IX 0.04 0.04% 0.01 0.01% 94.60 99.95% 94.65 
R290 – IX 0.04 0.04% 0.01 0.01% 102.20 99.95% 102.25 

R1270 – IX 0.04 0.04% 0.01 0.01% 102.51 99.95% 102.56 

Table 8 – Indirect and Direct emission values 

 

Comparing the conversion from direct to indirect expansion, the use of an indirect 

arrangement allows reducing the TEWI about 22% on average when R134a is used as a 

refrigerant. This reduction is higher as lower the annual average temperature is which means 

that there is an important dependence between TEWI and the environmental temperature 

(location). Focusing on the direct effect related with annual refrigerant leakages, it represents 

about 31.0% of TEWI in the direct expansion arrangement, and an average of 7.7% when 

indirect expansion is adopted with R134a. Regarding the direct effect by maintenance 

operations, it has a marginal influence on TEWI rated between 0.84 to 1.16%. Finally, the 

impact of the indirect effect on TEWI is higher as higher the heat rejection temperature is. The 
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maximum impact on TEWI due to the direct expansion arrangement is 68.13% while the 

maximum one for the indirect layout is 91.62%. 

  

Concerning the use of low-GWP refrigerants in the HT-cycle, from Table 8 it can be affirmed 

that they reduce the total direct effect to almost 0% (maximum of 0.72%). As consequence, 

the main effect on TEWI is related with the energy power consumption (indirect effect) 

regardless the refrigerant used. Thus, the use of the R152a allows reducing TEWI up to 30% on 

average with respect to the direct expansion arrangement. Similar result is obtained with the 

HFO R1234ze(E) which reduces TEWI up to 29% on average when it is used as a direct R134a 

drop-in. Regarding the hydrocarbons, R290 and R1270 allow shorter the index of TEWI nearly 

24% taking into account that a compressor substitution is mandatory in the refrigerating plant.   

 

According with the results presented above, it worth to remind that these results are obtained 

with a relation between the MT and LT cooling capacities of almost 1:1 contrary to the typical 

relation of 3:1 used in supermarkets [31]. Moreover, the refrigerant mass charge is relative 

small in comparison with a grocery store or a supermarket [32], so it is expected that the 

values of TEWI presented in Figure 8 as well as its trends, will change in other configurations.  

 

5. Conclusions 

 

In this manuscript, a direct expansion R134a/R744 cascade refrigerating plant is experimentally 

analysed and compared with an indirect arrangement using different low-GWP refrigerants in 

the high-temperature circuit. The refrigerating facility provides a cooling capacity to a medium 

temperature cabinet and a horizontal freezer for low temperature, keeping a relation of 1:1 

between cooling capacities. The refrigerants used in the HT-cycle corresponds to R134a (A1), 

R1234ze(E) (A2L), R152a (A2), R290 (A3) and R1270 (A3). For the hydrocarbons propane and 

propylene, a new compressor was used for security reasons.      

From the experimental results is demonstrated that the use of an indirect arrangement always 

penalizes the energy consumption of the refrigerating plant mainly due to the highest 

operating time of the HT-cycle compressor. Thus for a heat rejection temperature of 31.6ºC, 

the increment of energy varies from +14.7% for R1270 and +3.4% for R152a obtaining similar 

trends with the others temperature levels.    

 

The use of an indirect arrangement allows reducing the refrigerant mass charge on average 

58.5% with a maximum of 68.5%. These values were obtained without optimizing the 

refrigerating plant, so they can be enhanced by adjusting the capacity of the liquid receiver. 

The reduction of the mass charge affects the parameter of TEWI which is highly influenced by 

the energy consumption of the refrigerating facility. The combined effect of both, mass charge 

and energy consumption provides a TEWI reduction up to 30% when indirect expansion system 

is used with R152a. 

 

Taking into account the analysis, it can be affirmed that the HFC- R152a with a GWP100 of 138 

according to the last IPCC’s Assessment Report [33], is the best option for an indirect 

expansion reconversion in the medium temperature level. It allows reducing the mass charge 
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of the refrigerant up to 62.1% with an average energy consumption increment of +3.4% and a 

TEWI reduction of 30%. Moreover, it can be used as a direct drop-in taking into account 

adequate safety measures according to [10] and [30].  
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