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Abstract—The current trend in remote sensing image

super-resolution (SR) is to use supervised deep learning

models to effectively enhance the spatial resolution of

airborne and satellite-based optical imagery. Nonetheless,

the inherent complexity of these architectures/data often

makes these methods very difficult to train. Despite these

recent advances, the huge amount of network parameters

that must be fine-tuned and the lack of suitable high-

resolution remotely sensed imagery in actual operational

scenarios still raise some important challenges that may

become relevant limitations in existent Earth observation

data production environments. To address these problems,

we propose a new remote sensing SR approach that

integrates a visual attention mechanism within a residual-

based network design in order to allow the SR process to

focus on those features extracted from land-cover compo-

nents that require more computations to be super-resolved.

As a result, the network training process is significantly

improved, because it aims at learning the most relevant

high-frequency information while the proposed architec-
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ture allows neglecting the low-frequency features extracted

from spatially uninformative Earth surface areas by means

of several levels of skip connections. Our experimental

assessment, conducted using the UC Merced and GaoFen-2

remote sensing image collections, three scaling factors, and

eight different SR methods, demonstrates that our newly

proposed approach exhibits competitive performance in the

task of super-resolving remotely sensed imagery.

Index Terms—Remote sensing, single-image super-

resolution, deep learning, visual attention.

I. INTRODUCTION

Over the past years, super-resolution (SR) techniques

have become very helpful owing to their great potential

to overcome the physical resolution constraints of remote

sensing imaging sensors [1]. As a result, many of the

most important operational satellites are currently fo-

cused on providing super-resolved data products, mainly

because this kind of technology is able to generate

enhanced remotely sensed imagery which are very useful

to deal with current and future challenges and societal

needs [2], [3]. For instance, fine-grained satellite image

classification [4], [5], hyperspectral remote sensing data

analysis [6]–[9], remote target identification [10], [11]

and detailed land cover mapping [12]–[14] are some of

the most popular remote sensing applications in which

SR has provided important advantages.
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Broadly speaking, SR [15]–[17] refers to those algo-

rithmic tools aimed at increasing the spatial resolution of

remotely sensed data while providing spatial information

beyond the sensor resolution, that is, spatial details not

present in the lower-resolution (LR) image captured by

the sensing instrument. In the literature, it is possible to

distinguish between two different trends that have been

successfully adopted to super-resolve remotely sensed

data: multi-image SR [18] and single-image SR [19].

Whereas multi-image techniques require several multi-

angular shots within a very short time span, single-image

SR offers a more flexible scheme for remote sensing

applications, because the SR process is conducted using

a single LR image of the target scene. In particular, there

are two main factors that make single-image SR methods

particularly attractive in the context of remote sensing

applications. On the one hand, many of the currently

operational satellites can only offer a revisiting period

of at least several days [20], which does not allow using

the straightforward multi-image SR approach, because of

the existing temporal gap among different Earth observa-

tions. On the other hand, single-image SR can be applied

without the need of using any satellite constellation,

which eventually results in substantial cost savings and

provides a good opportunity for small platforms, with

low resolution and cheap instruments [21].

When focusing on the single-image SR domain [22],

it is also possible to identify two different kinds of

techniques, depending on the required training data:

unsupervised and supervised methods. Regarding the

unsupervised category, these SR approaches estimate

the high-resolution (HR) details present in the super-

resolved output from the LR input image itself. One

of the simplest unsupervised SR methods was devel-

oped by Irani and Peleg in [23], where several back-

propagation iterations were applied to gradually enhance

the gradient of the up-scaled LR image. Since then, other

more advanced unsupervised SR methods have been

successfully applied to remotely sensed data. This is the

case of the work published in [24], where the authors

present an innovative self-learning procedure based on

regularized patch-search criteria across scales to generate

the corresponding super-resolved result. Another relevant

work is [25], where the authors adopt a generative neural

network to address the SR problem from an unsupervised

perspective. Despite the evident benefits of not using

any external training set, the performance of the unsu-

pervised SR approach typically becomes rather limited

under the most challenging remote sensing scenarios,

because of the limited spatial information present in the

LR input image. Note that remote sensing images are

usually fully focused multi-band shots with plenty of

complex spatial details, which makes the SR process

particularly challenging [19].

In this sense, supervised methods are able to provide

a more robust SR scheme by learning the relationships

between LR and HR image domains by means of an

external training set. One of the most popular supervised

SR methods was introduced by Yang et al. [26], and it

was later adapted to remote sensing problems in [27].

These approaches take advantage of the fact that natural

images tend to be sparse when they are represented as

a linear combination of small patches. Therefore, it is

possible to learn a SR mapping by forcing the LR and

HR training images to share the same sparse codes.

Alternative works, such as [28]–[30], follow a similar

idea but using different image characterization spaces

which are able to provide specific advantages. Nonethe-

less, convolutional neural networks (CNN) represent

certainly one of the most important paradigms within

the supervised SR field, due to their great potential to

uncover high-level features from optical data. Hence,

multiple authors have successfully presented different

methods based on CNNs. For instance, Dong et al. [31]
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proposed a deep learning architecture to super-resolve

LR images. More specifically, this method initially up-

scales the input LR patches by means of a bi-cubic

interpolation, and then uses a 3-layer CNN to learn the

mapping between the LR and HR image domains. Other

authors have introduced additional improvements over

this baseline work in order to achieve superior results.

For instance, a relevant extension is presented in [32],

where the authors define a deeper architecture which

reduces the input feature space (and also removes the

initial interpolation step) by providing an actual end-

to-end mapping. Another important work is the one

described in [33], where Kim et al. propose a 20-

layer CNN architecture which considers image residuals

together with data augmenting and multi-scaling learning

schemes. Despite the remarkable performance achieved

by all these methods when considering standard images,

the special complexity of airborne and space-borne op-

tical data usually limits their SR performance in several

remote sensing tasks.

Consequently, other CNN-based SR methods have

been designed to specifically manage remotely sensed

imagery. For instance, Lei et al. [34] define a multi-level

CNN architecture able to capture multi-scale features,

which allow the network to simultaneously take into

account local and global image features when intro-

ducing new spatial details in the SR process. Another

relevant work was presented in [35], where the authors

introduce several improvements on the network design in

order to effectively super-resolve remotely sensed data.

Specifically, residual units and skip connections were

adopted to uncover more relevant features on both local

and global image areas. Additionally, the super-resolved

image reconstruction process was conducted using a

network-in-network architecture [36], which improved

model discriminability for different image features. In

spite of all the efforts directed to designing highly

accurate CNN-based SR models for remotely sensed

data, many of the existing approaches still face chal-

lenges related to the convergence of network parameters,

which eventually leaves room for improvement, espe-

cially when dealing with challenging remotely sensed

data. Note that the most advanced deep learning SR

models are very difficult to train because of their own

complexity, and also because of the lack of significant

training data [37], which may become an important

limitation in some pre-operational airborne and space-

borne optical acquisition scenarios.

With all these considerations in mind, this paper

presents a new supervised SR network architecture that

is especially designed to effectively super-resolve re-

motely sensed imagery. Some of the most recent CNN-

based SR methods used in remote sensing applications

assume that all the features extracted from the LR input

image are equally important [34], [35]. This fact is

fundamentally due to the behaviour of the convolutional

kernel itself, where a sliding weight window (defined

by the receptive field) is equally applied to the entire

volume of data. However, this assumption may result in

a lack of flexibility when analyzing the different kinds

of features that are typically present in aerial shots.

While the features extracted from smoother areas in

the surface of the Earth are not expected to incorporate

many HR spatial details, the SR process itself is mainly

focused on enhancing the most textured areas, where

the corresponding features are expected to introduce

new high-frequency information. In this scenario, our

newly proposed SR approach adopts a visual attention

mechanism [38]–[40] that guides the network training

process towards the most informative features, thus fo-

cusing the attention of the model on those Earth surface

features related to structural components which require

finer HR details. Note that convolutional kernels are able

to capture specific land-cover features from the input
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data. As a result, the considered attention mechanism

can provide competitive advantages to super-resolve re-

mote sensing data, since the network filters are able to

inherently involve multiple related spatial locations over

the surface of the Earth. Additionally, in order to take

full advantage of the information contained in the hier-

archical features obtained from the LR-image, our newly

proposed approach incorporates several residual units

associated with multiple levels of skip connections that

allow the network architecture to neglect low-frequency

features, which correspond to spatially irrelevant areas

on the surface of the Earth. Our experimental assessment,

conducted using the UC Merced and GaoFen-2 remote

sensing image collections, three scaling factors, and

eight different single-image SR methods, reveals that

the proposed approach exhibits competitive advantages

when compared to other state-of-the-art SR methods.

The rest of this paper is organized as follows. Sec-

tion II describes some related works. Section III and

describes our newly proposed architecture to super-

resolve remotely sensed data. Section IV describes our

experimental assessment, where eight different SR meth-

ods were tested using two different remote sensing image

collections in order to thoroughly discuss and validate

the performance of our newly developed approach. Fi-

nally, Section V concludes the paper with some remarks

and hints at plausible future research lines.

II. RELATED WORKS

A. CNNs as Feature Extractors

The CNN model has been widely used in a large

range of remote sensing applications (including object

detection [41], image classification [42], [43], segmen-

tation [44] and SR [45]) due to its great potential

for extracting highly discriminative mid- and high-level

abstract features from raw remote sensing data, without

Fig. 1. Graphical visualization of the l-th 2D convolutional layer of our

model, denoted by C(l) and composed by K(l) filters. Each filter is

defined by the receptive field of the layer, with dimensions k(l)×k(l),

creating a small window that slides over the input volume X(l) with

stride s(l). In each filter, the convolution of the window over the input

patches generates a feature, and the collection of features extracted by

a filter comprise its feature map. Finally, after applying the activation

function and the pooling (omitted for clarity), the resulting collection

of feature maps generate the output volume of the layer, X(l+1).

involving the hand-crafted selection of these features

[46], [47].

As any deep neural network (DNN), the CNN’s goal

is to approximate a function of the form f : X → Y

through the hierarchical concatenation of transformation

blocks. In this way, and focusing on the SR problem,

the basic performance of a CNN used for SR purposes

relies on the sequential and successive transformation of

the input LR data, which can be denoted as X = X ∈

Rn1×n2×n3 , obtaining a highly abstract and discrimina-

tive output representation composed by neuron activation

values, to which a final mapping is applied in order to

obtain the desired HR image Y = Y ∈ Rm1×m2×m3 ,

being n1 < m1, n2 < m2 and n3 = m3.

However, instead of adopting a standard fully-

connected (FC) architecture, the CNN model applies the

concept of local receptive field to connect the neurons

in the l-th layer to local smaller windows of each input

data X(l). This idea is inspired by the working mech-

anism of visual cortex neurons, which are excited by
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certain stimuli in their receptive area, producing a neural

response of higher or lower intensity depending on the

stimulus, an effect know as neuronal tuning [48]. That

is, these neuronal cells are able to look for specific char-

acteristics. Moreover, the neural tuning process becomes

more complex as we delve higher into visual areas. In

fact, it can be seen as a hierarchical structure, where the

visual information is stored in sequences of increasingly

complex patterns (feature representations) in sequential

order along the visual stream [49]. For instance, neurons

in the primary visual cortex (V1) usually respond to

simple stimuli, such as edges and shapes, while neurons

in higher-level visual respond to more complex stimuli,

such as familiar faces.

Two fundamental aspects are drawn from the way the

visual cortex operates: i) the hierarchical extraction of

higher-level abstraction features in a stacked-layer archi-

tecture, and ii) the local connectivity of neurons to small

areas of the input data. Regarding the first aspect, the

CNN model simulates the hierarchical transformations

of the visual stream by applying a deep architecture,

composed by a stack of trainable feature extraction

stages, while the application of these stages to the data is

performed by following a local connectivity design. Usu-

ally, each feature extraction stage is composed of three

main steps, indicated by Eq. (1): i) the convolutional

layer, ii) the non-linear layer and iii) the down-sampling

or pooling layer. The first one is the basic feature

extractor of the CNN model. It is defined by a kernel

of weights, whose dimensions determine the receptive

field of the layer. In this sense, the convolutional layer

acts as a traditional sliding-window algorithm, where the

linear kernel convolves (∗) its weights W(l) and bias

b(l) on local patches of the input data by sliding and

overlapping the filter over the input. At every location,

the convolutional layer applies an affine transformation

between the kernel’s weights and the current input data

location, obtaining an output volume (set of feature

maps), as shown by the first part of Eq. (1):

O(l+1) = W(l) ∗X(l) + b(l)

Ô(l+1) = H
(
O(l+1)

)
X(l+1) = Pk×k

(
Ô(l+1)

) (1)

Fig. 1 graphically illustrates the performance of a 2-

dimensional convolutional layer, denoted as C(l). This

layer receives X(l) ∈ Rn
(l−1)
1 ×n(l−1)

2 ×K(l−1)

as the

input volume. Such volume is characterized by two

spatial dimensions, i.e., the volume’s height and width

n
(l−1)
1 × n

(l−1)
2 , and by one spectral dimension, given

by the number of filters computed by the previous layer

K(l−1). It must be noted that, for C(1) (i.e. the first

layer), the number of channels of the input image is

given by K(0) = n3. The convolutional layer applies its

K(l) filters on the input volume X(l), with the receptive

field defined by k(l)× k(l). As it can be observed, those

kernels are slid over the input, using a stride value s(l)

(which usually performs a sub-sampling of the input

volume). Each application of those kernels performs a

linear element-wise multiplication between the kernel’s

weights and the current input data location, summing up

the obtained results in order to obtain the final feature,

which is allocated into the corresponding filter position

of the output volume. Eq. (2) gives the mathematical

expression of the obtained feature a
(l)z
i,j at the (i, j)-th

position of the z-th filter in the l-th convolutional layer.

a
(l)z
i,j =

(
W(l) ∗X(l) + b(l)

)
i,j

a
(l)z
i,j =

k(l)∑
î=1

k(l)∑
ĵ=1

x
(l)

(i·s(l)+î),(j·s(l)+ĵ) · w
(l)

î,ĵ
+ b(l)

(2)

Following the second part of Eq. (1), the obtained out-

put volume is passed through the non-linear layer, which

applies an element-wise non-linear activation function

H(·) in order to obtain an activity volume that encodes

non-linear internal structures and relationships that are
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hidden in the data. Usually H(·) is implemented as the

rectified linear unit (ReLU) [50].

Finally, at the end of the feature extraction stage,

a down-sampling step, performed by a pooling layer

Pk×k(·) with a kernel of dimensions k × k, is added

in order to comprise the obtained features in the output

volume X(l+1) ∈ Rn
(l)
1 ×n

(l)
2 ×K

(l)

, and to provide some

kind of invariance to small translations of the data.

B. Limitations of CNNs in Remote Sensing Image SR

The application of CNNs to feature extraction from

remotely sensed data, in general, and to single-image

SR, in particular, has been explored by plenty of works

[51], demonstrating very good performance. However,

CNN models still face two main limitations in this

context. The first one is the fact that there is a direct

relationship between the model’s depth (i.e., the level

of abstraction of data representations), and the quality

of the SR method [52], [53]. In this sense, (very)

deep CNNs are difficult to train due to the vanishing

gradient [54] and data degradation [55] problems, not to

mention the intrinsic complexity associated to the task

of optimizing a non-convex problem by means of fine-

tuning the model’s parameters, which can be hampered

by the presence of multiple local minima.

Residual learning [55] represents an important evolu-

tion in state-of-the-art DNNs, as it introduces an identity

mapping between groups of feature extraction stages,

denoted as residual units, whose operation on the input

data is indicated as F(·) and is affected by the weights

W and biases B of those convolutional layers that

compose the unit, as Eq. (3) shows:

O(l+1) = F
(
W,X(l),B

)
+X(l)

X(l+1) = H
(
O(l+1)

) (3)

Direct data propagation through residual and skip

connections can alleviate the data degradation problem,

thus leading to the development of very deep models

for single-image SR [52], [56]. However, despite the

fact that connection mechanisms improve information

propagation across layers, these CNNs still suffer from a

second limitation, related to the intrinsic characteristics

of remote sensing images and the internal operation of

the convolutional kernel. In particular, remotely sensed

image data suffer from certain degradations during their

acquisition process, due to atmospheric interferers and

sensor noise (among other factors). This often introduces

an important amount of noise and variability in the

data (in addition to abundant low-frequency information

[57]). An optimal feature extractor would be able to

discard such irrelevant (or even damaging) information

in order to enhance the system’s performance. However,

the convolutional kernel treats all image content equally,

without making any distinctions between relevant and/or

useless information, which in the end can hinder the

whole SR procedure.

Fig. 2. Graphical visualization of the l-th channel attention block of

our model, allocated in the ll-th residual group, B(ll)
l . It comprises

the first and second SC levels.

In order to overcome the aforementioned shortcom-

ings, certain efforts have been made to equip deep neural

network models with visual attention (VA) mechanisms,
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Fig. 3. Architecture of the proposed residual channel attention-based neural network model for remotely sensed image SR. Three different

parts of the implemented network can be clearly differentiated in the figure: i) a first convolutional layer C(1) that processes the original LR

image X ∈ Rn1×n2×n3 to extract an initial output volume composed of K(1) feature maps, which feeds ii) five residual groups (R(ll) with

ll = 1, · · · , 5) that are composed by ten channel attention blocks (B(ll)
l with l = 1, · · · , 10) and one final convolution layer, C(ll)

1 . Shortcut

connections of second and third level are applied in order to exploit low- and high-level features that enhance the network’s performance. The

output volume of R(5) is processed by the C(2) convolutional layer to perform feature extraction before adding the fourth skip connection level,

complementing the information extracted by the previous residual groups with the original features. This information is finally iii) up-sampled

and processed by C(3) to obtain the HR image Y ∈ Rm1×m2×m3 , with n1 < m1, n2 < m2 and n3 = m3.

allowing them to focus selectively on the most relevant

features [38], [39], [58], [59]. These mechanisms are

again inspired by the human visual cortex, where the

eye tracks those objects or regions in the scene that

stand out from the visual field, following two main

components [60]: i) bottom-up components, which are

stimulus-driven features extracted from raw data in an

automatical and involuntary way, i.e., without the un-

derstanding of the scene’s context information, and ii)

top-down components, which are task-driven or goal-

oriented features extracted through voluntary attention

to some scene characteristics, which implies the explicit

understanding of the scene’s context.

Usually, VA has been included into DNNs by adding a

mask or gating mechanism, computed from the original

data and applied to the features obtained by the network

in order to single-out the most relevant ones. In fact, VA

mechanisms allow to re-calibrate and refine the feature

maps obtained by the CNN model, leading to a more

effective training stage. The use of VA mechanisms

directed to spatial components of the image has been

extensively studied, along with other mechanisms to

improve the spatial encoding of data [61]. However,

no significant attention has been given as of yet to

the spectral component of the data, resulting in the

fact that there is currently a lack of methods able to

exploit channel relationships [62]. This greatly limits the

convolution’s flexibility and its representational capacity

[63].

III. DEEP RESIDUAL CHANNEL ATTENTION MODEL

FOR REMOTE SENSING IMAGE SUPER-RESOLUTION

In this section, we introduce a new convolutional-

based neural network for remote sensing image SR that

employs residual and skip connections to devise a very

deep architecture, transferring the information processed

at different levels of abstraction and alleviating data

degradation problems. At the same time, the internal fea-

ture extraction stages in our network have been equipped
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with VA mechanisms in order to efficiently take advan-

tage of this kind of techniques, which have demonstrated

to be very useful in many different high-level tasks

related to a wide rage of application domains [64], such

as natural image classification tasks [63]. Inspired by the

squeeze-and-excitation (SE) building blocks of [63], our

proposal integrates the attention technique into a deep-

learning-based architecture, adapting it to perform the

SR of remote-sensing images. In particular, channel at-

tention blocks (see Fig. 2) have been developed in order

to learn and recover high-frequency information, paying

attention to channel-wise feature responses and reducing

the computations related to low-frequency information.

Specifically, our newly developed network relies on

improving the obtained deep data representations by

modelling the relationships between the channels of the

convolved feature maps for each layer, applying a VA

gating mechanism over them to extract relevant and high-

frequency information. In this context, four levels of

skip connections have been included into the proposed

architecture in order to enforce different feature levels

across different groups of attention blocks, reinforcing

also the spatial details not captured in the LR domain

by the remote imaging sensor, as it is possible to see in

Figs. 2 and 3. Following other deep learning-based SR

approaches [25], [35], our newly developed network is

composed by three main parts: i) the network’s head, ii)

the feature processing body, and iii) the network’s tail.

1) Network’s head: The architecture of the proposed

network starts with a first convolutional layer C(1) that

transforms the original LR input data X ∈ Rn1×n2×n3

into a first-level feature representation, in order to pre-

pare the information that will be fed to the subsequent

parts of the network.

2) Network’s feature processing body: This can be

considered as the main architectural body of the network,

as it encodes its main structure. In this part, the data

flows through different levels of shortcut connections

(SCs) in order to facilitate the forward propagation

of the feature maps resulting from each block. These

SCs provide a direct and effective way to combine

low- and high-level features, improving the network’s

performance and enhancing its computational efficiency

[65]. In fact, the network’s body has been developed

under a residual paradigm, following a so-called ResNet

of ResNets (RoR) architecture [66] that creates four

levels of SCs to improve the optimization ability of

residual units. In this sense, each SC level groups the

network’s layers into different structural blocks, creating

an architecture of relatively simple blocks embedded into

more complex ones, as depicted in Figs. 2 and 3.

From the “internal” or simple structures to the more

“external” and complex ones, the network implements

the first and second SC levels, circumscribing the basic

building block of our SR model, denoted as channel

attention block. This block performs two steps: i) a

feature extraction step, and ii) a channel attention step.

In mathematical terms, we denote the input volume of

the feature extraction step in the l-th channel attention

block as X(l). Similarly, we denote the input and output

volumes of the channel attention step as X
(l)

FE and

X
(l)

CA, respectively. Finally, we denote the output of the

channel attention block as X(l+1). Fig. 2 provides a

graphical overview of these blocks. It can be observed

that the feature extraction step is performed by two

convolutional layers, C(l)
1 and C

(l)
2 , which are connected

through a non-linear layer. Each layer extracts more

refined features from X(l), while the non-linear layer

applies the ReLU function to obtain the activation values.

As a result, the X(l)

FE ∈ Rn
(l)
1 ×n

(l)
2 ×K

(l)

contains the K(l)

feature maps extracted by C
(l)
2 . These feature maps are

sent to the channel attention step to be re-calibrated. A

first average pooling layer is then applied over the spatial

dimensions in order to squeeze the spatial information,
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reducing the collection of feature maps to a channel

descriptor denoted as d̂ ∈ RK(l)

[63]. This vector

collects the global spatial information, where each vector

element dz is obtained by Eq. (4) as follows:

d̂z =
1

n
(l)
1 · n

(l)
2

·
n
(l)
1∑
i=1

n
(l)
2∑
j=1

x
(l)

FE(i,j)
, with z = 1, · · · ,K(l)

(4)

After the squeeze step, an excitation process is

adopted to fully capture the internal relationships and

dependencies between the feature channels. In this way, a

gating mechanism is implemented by a spectral encoder-

decoder architecture, where the encoder layer, C
(l)
3 ,

performs a channel down-scaling step followed by a

ReLU function, and the decoder layer, C
(l)
4 , recovers

the spectral dimension, performing a channel up-scaling

step (both layers comprise 1 × 1 kernels). Finally, the

sigmoid function is employed to obtain a scaled channel

descriptor d whose values lie in the interval [0, 1]. Eq. (5)

gives a mathematical expression for the aforementioned

excitation and scaling procedures:

d = Hσ
(
C

(l)
4

(
ReLU

(
C

(l)
3

(
d̂
))))

(5)

The channel-wise statistics contained in d act as a tradi-

tional VA mask, scaling the feature maps that comprise

the volume X
(l)

FE. As a result, the channel-attention

output volume X
(l)

CA is obtained by performing the first

SC level, as Eq. (6) indicates:

X
(l)

CA = d ·X(l)

FE (6)

The channel attention block ends with the aggregation of

the original input volume X(l) and the channel-attention

volume X
(l)

CA through the second SC level, given by Eq.

(7). This allows to improve the block’s input features,

thanks to the enhancement made by Eq. (6).

X(l+1) = X
(l)

CA +X(l) (7)

The third SC level groups several channel attention

blocks into a complex structure, denoted as residual

group: R(ll). As we can observe in Fig. 3, each R(ll)

is composed by ten channel attention blocks B
(ll)
l that

perform the deep feature extraction stage of the net-

work. A final convolutional layer, C(ll)
1 , is added before

conducting the aggregation between the residual group’s

input volume and the C
(ll)
1 output feature maps.

Finally, the network implements a fourth SC level

that directly connects the output of the network’s head

with the input of the network’s tail by means of an

aggregation function, circumscribing the network’s body.

This allows us to reuse the low-level features extracted

by the first convolutional layer, C(1), without any addi-

tional computational cost, and the more abstract features

obtained by the five implemented residual blocks which

are processed by the body’s final convolutional layer,

C(2), before the final aggregation.

3) Network’s tail: After the body of the network has

been executed, an output volume composed by very deep

feature maps is obtained. Inside, each channel has been

re-calibrated by the aforementioned channel attention

mechanism, creating a volume of highly informative

data. Based on this, up-sampling of the data cube is now

carried out, expanding the volume’s spatial dimensions to

those of the target HR image, i.e. Y ∈ Rm1×m2×m3 . In

this sense, the up-sampling procedure consists of several

pairs of convolution and pixel-shuffle layers, denoted

as Ui layers, whose number and associated parameters

depend on the considered scaling factor. Finally, at the

end of the network, the C(3) convolutional layer extracts

the necessary information –already scaled– to generate

the desired HR image Y.

The details of the network’s parameters are listed in

Table I. The architectural design of the proposed SR-

network has been inspired by some recent convolutional

models developed for image SR and available in the

remote sensing literature [34], [35], where convolutional

filters of size 3 × 3 have proven to be large enough
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Fig. 4. Examples of the land-use classes present in the UC Merced remote sensing image collection: (a) agricultural, (b) airplane, (c) baseball-

diamond, (d) beach, (e) buildings, (f) chaparral, (g) dense-residential, (h) forest, (i) freeway, (j) golf-course, (k) harbor, (l) intersection, (m)

medium-residential, (n) mobile-home-park, (o) overpass, (p) parking-lot, (q) river, (r) runway, (s) sparse-residential, (t) storage-tanks and (u)

tennis-court.

TABLE I

TOPOLOGY OF THE PROPOSED NETWORK ARCHITECTURE. FOR

SIMPLIFICATION, ONLY ONE RESIDUAL GROUP IS SHOWN.

ll = 1, · · · , 5 AND l = 1, · · · , 10. * UP-SAMPLING LAYERS EMPLOY

A FACTOR OF 2 FOR 2X AND 4X SCALES, AND A FACTOR OF 3 FOR

3X. ONE U LAYER IS EMPLOYED FOR 2X AND 3X, WHILE TWO

LAYERS, U1 AND U2 , IS EMPLOYED FOR 4X.

Network part Configuration: K(l) × k(l) × k(l) ×K(l−1)

Head C(1) 64× 3× 3× 3

Body R(ll)
B

(ll)
l

C
(l)
1 64× 3× 3× 64

C
(l)
2 64× 3× 3× 64

AV G.POOL 64

C
(l)
3 16× 1× 1× 64

C
(l)
4 64× 3× 3× 16

C
(ll)
1 64× 3× 3× 16

C(2) 64× 3× 3× 64

Tail
Ui∗ 64× 3× 3× 64

C(3) 3× 3× 3× 64

to take advantage of the spatial information contained

in neighbourhood windows without losing the level of

detail. Moreover, the proposed architecture has been

designed to maintain the size of the input volume until

reaching the upscaling step, being the layers of each

channel attention block the ones that reduce and recover

the spatial dimensions of the data volume. For instance,

giving an input LR image X ∈ R24×24×3, the network’s

head prepares the input, elongating the spectral infor-

mation from 3 to 64 channels and keeping constant the

spatial dimension by including zero-padding, obtaining

a volume of 24× 24× 64. In this regard, each channel

attention block B
(ll)
l compacts the spatial information

to a single element through the average pooling layer.

As Fig. 2 shows, the volume X
(l)
FE keeps the original

size of 24 × 24 × 64, and then the average pooling

obtains a spectral vector of size 1 × 1 × 64, which

is processed by C
(l)
3 and C

(l)
4 to obtain the channel

descriptor d ∈ R1×1×64. The multiplication of the

volume X
(l)
FE by the channel descriptor d gives as a
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result the feature volume X
(l)
CA ∈ R24×24×64, recovering

the original spatial dimensions. This process is repeated

by each block B
(ll)
l . At the end, the size of the input and

output volumes of the network’s body is kept constant

until reaching the upscaling layer Ui∗, which scales the

spatial dimensions of the feature volume depending on

a scale factor. For instance, if the scale factor is 2×, the

obtained volume will be of size 48 × 48 × 64. Finally,

the last convolutional layer C(3) reduces the spectral

dimension to 3 channels, giving as a result the output

volume Y′ ∈ R48×48×3.

In addition, the proposed network is trained to mini-

mize the error between the desired HR image, Y, and

the obtained one, Y′, as follows:

E = |Y −Y′| (8)

The ADAM optimizer [67] has been adopted to minimize

Eq. (8), using 100 epochs with a learning rate lr = 2e−4

and a learning decay of 10.

In the following section, a set of experiments have

been conducted to evaluate the performance of the

proposed network in SR problems involving remotely

sensed imagery collected from spaceborne and airborne

instruments.

IV. EXPERIMENTAL RESULTS

A. Datasets

The experimental part of this work has been conducted

using two different remote sensing image collections:

1) UC Merced [68]: This dataset is one of the most

popular image collections within the remote sens-

ing community. It contains a total of 2100 images

of the surface of the Earch, which are uniformly

distributed in 21 different land-use classes [see

Fig. 4: (a) agricultural, (b) airplane, (c) baseball-

diamond, (d) beach, (e) buildings, (f) chaparral, (g)

dense-residential, (h) forest, (i) freeway, (j) golf-

course, (k) harbor, (l) intersection, (m) medium-

residential, (n) mobile-home-park, (o) overpass,

(p) parking-lot, (q) river, (r) runway, (s) sparse-

residential, (t) storage-tanks and (u) tennis-court].

In particular, these images were originally down-

loaded from the United States Geological Survey

(USGS) National Map of different US regions, and

they consist of aerial RGB orthoimagery with size

of 256 × 256 pixels and spatial resolution of one

foot per pixel.

2) GaoFen-2 [34]: This data set consists of two dif-

ferent remotely sensed multi-spectral data products

acquired by the GaoFen-2 satellite over a region

in China. Specifically, both scenes have nominal

spatial resolution of 3.2 meters/pixel and only the

RGB channels from the visible spectrum have been

considered for the experiments. These data have

been provided by the authors of [34] and will be

used for qualitative assessment purposes.

B. Experimental Settings

In order to test the performance of the proposed

remote sensing SR model, two kinds of experiments

have been conducted on the UC Merced and GaoFen-

2 data sets, using the following supervised single-image

SR methods available in the literature: SC [26], SRCNN

[31], FSRCNN [32], CNN-7 [34], LGCNet [34] and

DCM [35]. It should be also mentioned that the the bi-

cubic interpolation algorithm (BC) is provided as the

baseline result.

On the one hand, the UC Merced collection has been

used to train and test the proposed network, taking into

account the high variety of classes and samples present

in this data set. Specifically, the UC Merced data collec-

tion has been randomly split into two balanced halves,

to generate equitable training and test partitions with
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1, 050 samples each. In addition, 20% of the available

training data (i.e., 10 images per class) is used for

validation purposes, to set the hyperparameters of the

proposed approach and the other tested SR methods.

Regarding the experimental protocol of the testing phase,

the original UC Merced HR images have been down-

sampled according to three different scaling factors: 2×,

3× and 4×, using the bi-cubic interpolation kernel to

generate the corresponding LR counterparts. Moreover,

five different Monte Carlo runs have been conducted for

each test image, which makes a total of 9, 450 runs per

SR method.

On the other hand, the GaoFen-2 dataset has been

employed to validate the generalization ability of the

proposed approach when considering a completely ex-

ternal test image collection. In particular, the 3× and 4×

scaling factors used for UC Merced training have been

adopted to super-resolve the two additional GaoFen-2

data products, with the ultimate goal of assessing the

performance of SR methods in the task of transferring

the knowledge learned from the UC Merced data set to

a different remote sensing image collection.

Regarding the assessment protocol, two different full-

reference image metrics have been used to quantitatively

evaluate the obtained SR results: the peak signal-to-

noise ratio (PSNR) [69], and the structural similarity

index (SSIM) [70]. Finally, the hardware and software

environments used for the experiments are made up

of the following components: an Intel Core i7-6700K

processor, a GPU NVIDIA GeForce GTX 1080, 40

GB of DDR4 RAM, a 2 TB Toshiba DT01ACA HDD,

an ASUS Z170 motherboard, Ubuntu 18.04.1 x64 as

operating system and Pytorch 0.4.1 with CUDA 9.

C. Results

Table II presents the PSNR (dB) and SSIM quantita-

tive assessment for the SR experiments carried out over

HR BC (27.53dB) SC (28.37dB)

SRCNN (28.85dB) FSRCNN (29.45dB) CNN-7 (29.36dB)

LGCNet (29.70dB) DCM (30.44dB) Proposed (30.78dB)

Fig. 5. Qualitative assessment of the UC Merced airplane test image

considering a 3× scaling factor.

the test set of the UC Merced collection. In particular, the

considered scaling factors are presented in rows, whereas

the different SR methods and metrics are provided

in columns. Additionally, Table III details the average

PSNR (dB) metric results per class, when considering a

3× up-scaling factor. We emphasize that that each table

contains the average values after five Monte Carlo runs

of the corresponding SR methods, and the best metric

results are highlighted using bold font.

For qualitative purposes, Figs. 5 and 6 display the

corresponding super-resolved outputs of the considered

SR methods when considering two test images of the UC

Merced airplane and road classes, and 3× and 4× scaling

factors, respectively. In addition, Figs. 7 and 8 show

the output results when super-resolving the GaoFen-2

airport and factory test images, respectively using the UC

Merced training information for the 3× and 4× scaling

factors.
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TABLE II

PSNR (DB) AND SSIM ASSESSMENT FOR THE CONSIDERED SR METHODS (IN COLUMNS) USING THREE DIFFERENT SCALING FACTORS (IN

ROWS).

Bicubic SC [26] SRCNN [31] FSRCNN [32] CNN-7 [34] LGCNet [34] DCM [35] Proposed

Scale PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

2 30.76 / 0.8789 32.77 / 0.9166 32.84 / 0.9152 33.18 / 0.9196 33.15 / 0.9191 33.48 / 0.9235 33.65 / 0.9274 34.37±0.930 / 0.9296±7.03e-5

3 27.46 / 0.7631 28.26 / 0.7971 28.66 / 0.8038 29.09 / 0.8167 29.02 / 0.8155 29.28 / 0.8238 29.52 / 0.8394 30.26±1.07e-2 / 0.8507±1.47e-3

4 25.65 / 0.6725 26.51 / 0.7152 26.78 / 0.7219 26.93 / 0.7267 26.86 / 0.7264 27.02 / 0.7333 27.22 / 0.7528 27.88±1.30e-3 / 0.7707±3.81e-4

TABLE III

CLASS-BASED UC MERCED QUANTITATIVE SR ASSESSMENT

CONSIDERING A 3× SCALING FACTOR.

Class Bicubic
SC SRCNN FSRCNN CNN-7 LGCNet DCM

Proposed
[26] [31] [32] [34] [34] [35]

1 26.86 27.23 27.47 27.61 27.59 27.66 29.06 30.17

2 26.71 27.67 28.24 28.98 28.81 29.12 30.77 31.18

3 33.33 34.06 34.33 34.64 34.59 34.72 33.76 34.36

4 36.14 36.87 37.00 37.21 37.22 37.37 36.38 36.15

5 25.09 26.11 26.84 27.50 27.39 27.81 28.51 29.75

6 25.21 25.82 26.11 26.21 26.22 26.39 26.81 28.10

7 25.76 26.75 27.41 28.02 27.89 28.25 28.79 29.43

8 27.53 28.09 28.24 28.35 28.35 28.44 28.16 28.57

9 27.36 28.28 28.69 29.27 29.16 29.52 30.45 32.19

10 35.21 35.92 36.15 36.43 36.39 36.51 34.43 34.13

11 21.25 22.11 22.82 23.29 23.32 23.63 26.55 27.66

12 26.48 27.20 27.67 28.06 27.99 28.29 29.28 29.83

13 25.68 26.54 27.06 27.58 27.48 27.76 27.21 27.80

14 22.25 23.25 23.89 24.34 24.30 24.59 26.05 27.73

15 24.59 25.30 25.65 26.53 26.19 26.58 27.77 29.01

16 21.75 22.59 23.11 23.34 23.37 23.69 24.95 25.84

17 28.12 28.71 28.89 29.07 29.03 29.12 28.89 28.79

18 29.30 30.25 30.61 31.01 30.93 31.15 32.53 32.85

19 28.34 29.33 29.40 30.23 29.94 30.53 29.81 29.22

20 29.97 30.86 31.33 31.92 31.87 32.17 29.02 31.08

21 29.75 30.62 30.98 31.34 31.32 31.58 30.76 31.51

AVG 27.46 28.27 28.66 29.09 29.02 29.28 29.52 30.26

D. Discussion

According to the quantitative results reported in Ta-

bles II and III, there are some relevant points that need

to be emphasized. The first important aspect concerns

the impact of the scaling factor on the final perfor-

mance of the tested SR methods. In this sense, Table II

reveals that both PSNR and SSIM metrics decrease

when considering higher scaling factors. This is because

the amount of available visual information logically

diminishes with the LR input image size. However, it

is also possible to observe that the proposed approach

HR BC (20.46dB) SC (21.51dB)

SRCNN (23.30dB) FSRCNN (24.23dB) CNN-7 (23.25dB)

LGCNet (25.67dB) DCM (27.60dB) Proposed (31.81dB)

Fig. 6. Qualitative assessment of the UC Merced road test image

considering a 4× scaling factor.

provides quantitative improvements with respect to the

other considered methods. When considering the PSNR

metric, the proposed architecture achieves the best av-

erage result, which is substantially higher than the one

obtained by any other SR method. More specifically, the

gains obtained by the proposed method with regards to

the other ones in terms of average PSNR are as fol-

lows: +0.71dB (DCM), +0.91dB (LGCNet), +1.10dB

(FSRCNN), +1.16dB (CNN-7), +1.41dB (SRCNN),

+1.66dB (SC), and +2.88dB when compared to the bi-
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LR BC SC SRCNN FSRCNN CNN-7 LGCNet DCM Proposed

Fig. 7. Qualitative assessment of the GaoFen-2 airport test image considering a 3× scaling factor.

LR BC SC SRCNN FSRCNN CNN-7 LGCNet DCM Proposed

Fig. 8. Qualitative assessment of the GaoFen-2 factory test image considering a 4× scaling factor.

cubic interpolation baseline. In the case of the SSIM

metric, the proposed approach also outperforms, on

average, DCM (+0.010 units), LGCNet (+0.023), FS-

RCNN (+0.029), CNN-7 (+0.030), SRCNN (+0.037),

SC (+0.041), and the bi-cubic interpolation (+0.079).

This initial quantitative comparison shows that the

most recent deep learning SR methods in the literature

(DCM, LGCNet and FSRCNN) provide the best results

for all the considered scaling factors. Nonetheless, the

proposed approach is able to obtain superior average

PSNR and SSIM results, especially when considering

the highest scaling factors, i.e. 3× and 4×. Note that

the remote sensing SR problem becomes particularly

challenging as the scaling ratio increases, because less

visual information is available for the SR process itself.

In this context, the novel attention mechanism integrated

within our newly presented architecture allows the pro-

posed approach to exploit better those LR image regions

that require more computations to effectively introduce

additional HR spatial details, and which cannot be easily

recovered from a global deep learning SR perspective (in

which all image features are equally relevant).

Another important point is related to the consistency

of the proposed approach regarding the obtained quan-

titative results per class (Table III). As it is possible to

observe, the proposed remote sensing SR architecture

obtains the best PSNR results in 15 of the 21 UC Merced

categories when considering a 3× scaling factor, which

certainly indicates that our approach exhibits a great

potential to manage a broader range of remotely sensed

imagery. Despite the fact that other recent deep learning

models, such as DCM and LGCNet, also exhibit a good

overall SR performance, the PSNR results per class re-

ported in Table III reveal that our method is particularly

effective when dealing with classes that contain spatially

detailed structures mixed with relatively invariant land-

cover surfaces, which is a typical scenario in remotely

sensed images. The PSNR performance improvements

obtained in some classes, such as harbor, mobile-home-

park or parking-lot, indicate that the implemented atten-

tion mechanism is able to effectively focus the network

computations towards the image components that require

most of the HR details, for example, boats, houses or

cars, providing competitive advantages (from a remote

sensing standpoint) with regards to other SR methods.

The effectiveness of the proposed approach is also

supported by the qualitative results displayed in Figs. 5-

8. Specifically, Figs. 5-6 show the super-resolved output
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of two UC Merced test images, i.e. airplane and road,

considering two different scaling factors, i.e. 3× and

4×, respectively. As these visual results show, each

specific SR model encourages a particular kind of fea-

ture on the super-resolved output. Whereas SC and

SRCNN methods appear to very sensitive to aliasing

and moire effects, because they are unable to distinguish

between the relevant high-frequency image components

and the up-scaling noise, the most recent deep learning

approaches, i.e. FSCNN, CNN-7, LGCNet, DCM and

the proposed approach can effectively attenuate these

undesirable anomalies. This is because these methods

use deeper architectures, which allows them to recover

more precise HR image patterns. A clear example of this

can be seen in the airplane wing of Fig. 5, where BC, SC

and SRCNN introduce a significant aliasing effect, while

the other methods are able to generate a super-resolved

result with higher quality.

Despite the fact that FSRCNN, CNN-7, LGCNet and

DCM are generally able to provide satisfactory SR

performance, it is possible to appreciate some important

advantages of the proposed architecture in the task of

super-resolving remote sensing data by analyzing the

visual results in more detail. Specifically, according to

Fig. 6, the proposed approach certainly provides the

sharpest edges and the most similar output with regards

to the corresponding ground-truth HR counterpart. In

fact, there is a main factor that differentiates the result

obtained by proposed approach result from the other

results: the image blur, and also the noise reduction.

As it is possible to observe in Fig. 5, the proposed

method is the most effective one when reducing the noise

present in the airplane wing. Besides, Fig. 6 shows that

the proposed approach is able to produce the clearest

road lines and the most homogeneous concrete surface.

In addition to all these observations, the qualitative SR

results presented in Figs. 7 and 8 also suggest the robust-

ness of the proposed approach in the task of transferring

the knowledge acquired from the UC Merced collection

to the GaoFen-2 dataset, in spite of the existing spatial

resolution differences. More specifically, it is possible

to see that the proposed method is able to reduce blur

and ringing artifacts, eventually leading to a better visual

quality in the super-resolved output.

At this point, it is important to emphasize that the

most recent deep learning-based SR methods, i.e. [33]–

[35], aim to enhance remotely sensed optical data by

using deeper architectures, which allows them to uncover

more representative convolutional features and introduce

additional HR components in the super-resolved result.

Nonetheless, these architectures often become very dif-

ficult to train because of their large number of hidden

layers and parameters, which eventually leads to a poor

propagation of activations and gradients in the back-

propagation process, i.e. the so-called vanishing gradi-

ent problem [37]. Precisely, these undesirable effects,

together with the special complexity of remotely sensed

imagery, generate a degradation of the convolutional

features that may introduce blur and noise artifacts in the

final result. The proposed remote sensing SR approach

mitigates these problems by implementing a novel atten-

tion mechanism over a residual block architecture, which

allows the network to focus on those image components

that require more computations to be super-resolved.

Note that this aspect takes on special importance when

dealing with remote sensing data, because Earth sur-

face acquisitions are rather complex aerial captures in

which different image regions typically demand different

processing levels. A clear example of this fact can be

observed in Fig. 6, where the concrete surface does not

require substantial changes (unlike the road lines, which

need to be completely recovered at a 4× scale). In this

sense, the proposed approach intelligently discards the

low-frequency image components through the network
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Fig. 9. Average PSNR evolution (per epoch) for the UC Merced validation set when considering 2× (left), 3× (center) and 4× (right) scaling

factors.

in order to focus on the most spatially relevant Earth

surface areas and, consequently, improve the network

convergence. Specifically, Fig. 9 presents the average

PSNR evolution per epoch for the UC Merced valida-

tion set, in order to illustrate the fast and consistent

convergence of our newly proposed architecture. As it

is possible to observe, the network is able to converge

after 30 epochs for the three considered scaling factors,

i.e. 2×, 3× and 4×. Accordingly, the improvements

introduced by the proposed approach lead to higher

remote sensing SR performance when compared to other

state-of-the-art methods.

V. CONCLUSIONS AND FUTURE LINES

This work presents a new single-image SR approach

which has been specially designed for dealing with

the particular complexity of remotely sensed imagery.

Specifically, the proposed deep learning architecture

incorporates a new attention mechanism into a residual-

based network design. Such mechanism allows our

method to focus the SR process on those Earth surface

components that require more computations to be super-

resolved. In this way, the less informative low-frequency

features (that is, visual characteristics extracted from

spatially irrelevant Earth surface areas) are intelligently

discarded by means of four different levels of skip

connections. Consequently, the performance of the pro-

posed SR approach improves significantly, since the

network convergence is driven by the most relevant

high-frequency information. Our experiments, conducted

using the UC Merced and GaoFen-2 remote sensing

image collections, three scaling factors, and eight differ-

ent single-image SR methods, reveal that the proposed

approach offers state-of-the-art performance when super-

resolving remotely sensed optical data.

One of the most important conclusions that arises from

this work is the importance of adopting an effective

attention mechanism within the network design when

super-resolving airborne and space-borne optical data

with deep learning models. Whereas the current trends in

CNN-based SR of remotely sensed data, e.g. [34], [35],

do not identify the most important convolutional features

from the input acquisition instrument, the qualitative and

quantitative SR results obtained by our newly proposed

approach reveal that guiding the network training process

towards the most informative high-frequency features

leads to very competitive performance with respect to

other state-of-the-art remote sensing SR models. Despite

the fact that the proposed approach exhibits remarkable

potential, our future work will be directed towards the

following improvements: 1) adapting the proposed archi-

tecture to the unsupervised self-learning SR paradigm, 2)

extending the model cost function to simultaneously as-

sess multiple image quality metrics, and 3) expanding the

network formulation to inter-sensor tandem platforms.
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