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Abstract

While it has long been recognised that active management is an important issue in the
area of mutual fund performance, little consensus has been reached about the value managers’
abilities can add. This study examines funds’ and managers’ characteristics in an attempt
to understand their influence on mutual fund efficiency. We explore these issues in a two-
stage approach, considering partial frontier estimators (order-m, order-α) to assess performance
in the first stage, and quantile regression in the second stage to isolate the determinants of
efficiency. This combination of methodologies has barely been considered to date in the field of
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shed light on the differences among funds as well as among managers. Our analysis provides
some arguments to guide fund selection and points to some managerial features investors might
consider taking into account. In addition, some of the differences in performance among funds
are rather intricate because both the magnitude of the estimated regression coefficients and
their significance varies depending on the quantile of the distribution of fund performance,
suggesting that some relevant trends might be concealed by conditional-mean models such as
Tobit or OLS.
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1. Introduction

Performance evaluation of mutual funds has attracted the interest of researchers and industry

participants alike for some decades now. Although in its early stages this literature focused mainly

on the design and empirical applications of methodologies to analyse performance (or efficiency),

today the factors related to the decision-making process and their consequences for fund efficiency

are arousing growing academic attention. In this context, the literature on portfolio evaluation has

evolved dramatically since the late eighties. This has partly paralleled the evolution of asset pricing

models that consider different methodological approaches, sources of risk and other variables to

adjust returns. Since most investments are handled by professional managers, it is important to

consider the role they are playing and, if possible, to measure how they can affect performance.

Managers have the ultimate power to design a portfolio consistent with their set of objectives and

policies.

The role of the manager or the team of managers is gaining prominence in fund efficiency

analysis. Managers have always enjoyed the limelight because their decisions are directly related

to investors’ profits. From a manager’s point of view, the reward scheme is primarily based on

economic incentives (fees), although other motivations such as reputation, contracts, or job loss

might also underlie their expectations (Brown et al., 1996; Goetzmann et al., 2003; Alexander et al.,

2007; Kempf et al., 2009). These and other related priorities may be affected by the decisions taken

by each manager or team of managers.

Funds have traditionally been managed by individual specialists. However, even in cases where

an auxiliary management team is involved, the final decision usually rests with the principal

manager. Nowadays, for a significant share of managed funds, teams tend to reach a consensus

prior to executing an order. From the point of view of the investor it could seem that the risk of

error is more diversified (or more indirect), since the decision does not depend solely on one person.

From an academic viewpoint, the way decisions are made has prompted several research initiatives

on mutual fund management. Academics are becoming aware of managerial characteristics that can

be measured, the influence of which is closely related to the fund’s performance and/or efficiency.

It is generally accepted that mutual funds, considered jointly, underperform the market or

benchmarks; according to Ferson (2010), performance is typically negative when averaged across

funds. However, other approaches, such as those of Ippolito (1989) or Cohen et al. (2005), argue

that managers display some skills that enable the funds they manage to beat the market. Our study

explores this possibility in an attempt to understand managers’ influence as a source of differences

in mutual fund efficiencies. Specifically, in relation to the structure of management, there is

no consensus as to whether individual or team management might generate efficiency differentials.
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Therefore, as well as estimating the degree of efficiency for each fund, in a second stage of this study

we also analyse the determinants of mutual fund performance and/or efficiency, with an explicit

focus on the role of managers, in order to identify which factors influence better performance.

However, although the study focuses more closely on the role of managers, we split the analysis

of determinants into two main sources of variation, or types of information that may influence

fund efficiencies, namely: (i) the structure and features of the fund; (ii) some characteristics of the

manager or team of managers.

We consider frontier techniques to measure efficiency in this study. Specifically, as noted

recently by Glawischnig and Sommersguter-Reichmann (2010), interest has been growing in the

application of the deterministic data envelopment analysis (DEA) method (without losing sight of

more standard methodologies) to measure the performance of financial investments, particularly

mutual funds (see also Tarnaud and Leleu, 2018). In this study, we propose going beyond the DEA

and related approaches (such as free disposal hull, FDH, its non-convex counterpart) considered

so far in the literature to measure the degree of efficiency of each fund since, despite their virtues

for measuring mutual fund performance, these methods also have some shortcomings. Specifically,

they suffer from a lack of robustness because they are envelopment estimators, and as such they are

very sensitive to extremes and/or outliers in the output direction. This ultimately results in poor

estimation of the corresponding efficiencies. However, the literature has evolved and has recently

proposed two new estimators, namely, the order-m estimator (Cazals et al., 2002) and the order-α

estimator (Aragon et al., 2005), both of which are qualitatively robust and bias robust.

In this paper we are particularly interested in providing some answers to the puzzling question

of whether active fund managers are able to add value. To this end, our second-stage strategy

takes into account the fact that the distributions of mutual fund performances can have peculiar

shapes, or be heavy-tailed. Under such circumstances, it may be misleading to use regression

techniques that focus on the “average effect for the average fund”. Instead, we use a quantile

regression approach (Koenker, 2001), which allows us to examine the relationship between the

set of managers’ characteristics we consider (along with other likely determinants) at a range of

points in the conditional mutual fund performance distribution. This approach is more informative

than an OLS regression, for instance, since it might be the case that managerial abilities are more

relevant for certain funds—for instance, the highest performing ones—than for the average fund. In

addition, whilst the optimal properties of standard regression estimators are not robust to modest

departures from normality, quantile regression results are characteristically robust to outliers and

heavy-tailed distributions (Coad and Rao, 2008).

From an Operations Research (OR) point of view, this is particularly important given that
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performing a second-stage regression can be problematic when the first stage yields efficiency scores

obtained via either DEA or FDH (and, to a lesser extent, order-m and order-α). This point has

been convincingly made by Léopold Simar and Paul W. Wilson (Simar and Wilson, 2007, 2011),

and has had a remarkable impact on the OR literature, resulting in the publication of several

contributions on the topic including Banker and Natarajan (2008), Hoff (2007), McDonald (2009),

among others. However, the combination of linear programming (OR) techniques to measure

efficiency in the first stage, with quantile regression to evaluate the determinants of efficiency in

the second stage has barely been contemplated in either the OR or mutual fund performance

literatures. When the specific aim is to analyse how different managers’ characteristics might

influence funds’ performance combining the two approaches (i.e., DEA/FDH and the like in the

first stage, quantile regression in the second stage) the number of studies is virtually zero.

Thus, the contribution of this paper is three-fold. First, we explore fund managers’ character-

istics and their potential effects on portfolio efficiency. For this purpose, several features of the

manager are analysed, focusing particularly on the rise of team-managed funds in the US mutual

fund industry—without discriminating other variables that have also gained importance in recent

times. We detect that teams of managers are positively associated with fund efficiency. This is a

topic that enriches the literature dealing with active management and mutual fund performance,

on which contributions based on OR techniques are scarce. Second, building on Abdelsalam et al.

(2014), and following recent proposals in the field (Chen, 2019), we propose using a two-stage

method which consists of evaluating mutual fund performance via partial frontier estimators in

the first stage, in combination with quantile regression in the second stage. In the specific area of

manager characteristics and their impact on fund performance, which is thriving (see, for instance

Bessler et al., 2018; Ma et al., 2019; Moreno et al., 2018), this approach has not been previously

considered. In addition, and from a more methodological point of view, it contributes to the debate

in an area in which the issue of the role of environmental variables has not been fully addressed, as

shown by Bădin et al. (2014), among others.1 Our results actually show that because the effect of

managers’ characteristics (in combination with other fund characteristics) is not constant across

the distribution of efficiency scores, it is easy to miss the global impact of covariates, particularly

when inspecting the upper and lower tails (best and the worst funds). Finally, our methods are

applied to a large updated sample of US mutual funds, classified into several different categories.

This is not a contribution per se, but makes the study more appealing to a broader audience.

1Actually, in some fields such as the determinants of local government performance, some surveys have specifically
revised the literature on its determinants (see, for instance Aiello and Bonanno, 2019; Narbón-Perpiñá and De Witte,
2018). More recently, and for the interested reader, Daraio et al. (2019) have reviewed all empirical surveys that, in
the field of efficiency and productivity analysis using frontier techniques, are available so far.

3



The remainder of this paper is organised as follows. Section 2 presents the methods selected

to measure performance and to analyse its determinants. Section 3 describes the data, the fund

attributes and the set of determinants. Results are reported and discussed in Section 4. Finally,

Section 5 presents some concluding remarks.

2. Methodology

2.1. Order-m and order-α estimators

As Simar and Wilson (2008) point out, Farrell (1957) first attempted to empirically estimate

efficiency scores for a set of observed production units—in our case, mutual funds (Simar and

Wilson, 2008, p.421). This first requires us to define the set of attainable combinations of inputs

(x) and outputs (y), i.e., the production set, Ψ, which is:

Ψ = {(x,y) ∈ R
p+q
+ |(x,y) are attainable} (1)

where x ∈ R
p
+ is the vector of inputs and y ∈ R

q
+ is the vector of outputs. For all possible output

values we can define the section of possible values of x as

X(y) = {x ∈ R
p
+|(x,y) ∈ Ψ} (2)

In this particular setting the Farrell (1957) measure of input-oriented efficiency of a given

mutual fund with input-output mix (x,y) is defined as

θ̃(x,y) = inf{θ : (θx,y) ∈ Ψ} = min{θ : θx ∈ X(y)}, (3)

where θ(x,y) is the proportionate reduction of inputs required for a mutual fund with the input-

output mix (x,y) to become efficient, i.e., to achieve the value of 1, since the efficient frontier

corresponds to those funds whose θ̃(x,y) = 1.

In the case of output efficiency scores, the production set Ψ is characterized by the output

feasibility sets defined for all x ∈ R
p
+. In this case, for all possible input values we define the set

of possible values of y as

Y (x) = {y ∈ R
q
+|(x,y) ∈ Ψ} (4)

In this output-oriented setting the Farrell (1957) measure of output-oriented efficiency of a
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given mutual fund (x,y) is defined as

θ̃(x,y) = sup{θ : (x, θy) ∈ Ψ} = max{θ : θy ∈ Y (x)}, (5)

According to either DEA or FDH, the efficiency measure is obtained by comparing with the

full frontier of all observations, defining the maximum output that is technically feasible with a

given level of inputs. Alternatively, according to the order-m estimators, what is actually used as

a benchmark is the expected maximum output achieved by any m funds chosen randomly from

the population, which employs at most input level x.

Therefore, for any y, the expected maximum level is defined as:

y∂ = θ̃y. (6)

When we choose a high value for m (m → ∞), the order-m estimator gives the same benchmark

as FDH, yielding the same results. Therefore, the most interesting cases are those for which we

define a finite value for m. In these cases the order-m does not envelop all the data, as it is more

robust to data outliers.

Note that the order-m efficiency scores are not bounded by 1 as in the case of DEA or FDH. In

these cases, values equal to unity correspond to efficient funds, whereas values higher than unity

correspond to inefficient funds. Order-m can yield values for θ lower than one, indicating that the

fund operating at the level (x,y) is more efficient than the average of m peers randomly drawn

from the population of units using fewer inputs than x.

Formally, the proposed algorithm (Cazals et al., 2002) to compute the order-m estimator com-

prises the following steps, for n funds, i = 1, . . . , n:

1. For a given level of x0, draw a random sample of size m with replacement among those xi,

such that xi ≤ x0.

2. Obtain the efficiency measures, θ̃i.

3. Repeat steps 1 and 2 B times and obtain B efficiency coefficients θ̃bi (b = 1, 2, . . . , B). The

quality of the approximation can be tuned by increasing B, but in most applications B = 200

seems to be a reasonable choice (and this coincides with ours).

4. Compute the empirical mean of B samples as:

θ̄mi =
1

B

B∑

b=1

θ̃bi (7)
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A similar estimator to order-m, and that shares some of its underpinnings is the order-α

quantile-type frontier. The idea of order-α is the opposite of order-m: whereas the m parameter

of order-Malmquist serves as a trimming parameter for tuning the percentage of points that lie

above the frontier, in the case of order-α the frontier is determined by first fixing the probability

(1 − α) of observing points above the order-α frontier. Therefore, with order-α we reverse the

causation and choose the proportion of the data lying directly above the frontier.

Order-α partial frontiers were originally proposed by Aragon et al. (2005) in the univariate case

and were extended to the multivariate case by Daouia and Simar (2007). Similarly to the order-m

estimators, order-α estimators also have better properties than the usual nonparametric frontier

estimators (either DEA or FDH). They are
√
n-consistent estimators of the full frontier, since the

order of the frontier is allowed to grow with sample size. They are asymptotically unbiased and

normally distributed with a known expression for the variance (see Aragon et al., 2005). It has

also been shown (see Daouia and Simar, 2007) that order-α frontiers are more robust to extremes

than order-m frontiers (see Daraio and Simar, 2007, p.74).

Yet the main virtue of order-α estimators is the same as that of order-m, i.e. the fact that in

finite samples, order-α estimators do not envelop all the data, and they are therefore more robust

to outliers than FDH or DEA. These outliers which, in the particular output-oriented case we

are dealing with have an efficiency score of 1, are considered as super-efficient with respect to the

order-α frontier level.

In addition, analogously to order-m partial frontiers, where a mutual fund operating at (x,y)

is benchmarked against the expected maximum output (recall we are dealing with the output-

oriented case) among m peers drawn randomly from the population of funds with output levels of

at least y, in the case of order-α quantile frontiers the benchmark is the output level not exceeded

by (1− α)× 100% of funds among the population of funds providing input levels of at least x.

Following Simar and Wilson (2008), for α ∈ (0, 1], the α-quantile output efficiency score for

the mutual fund operating at (x,y) ∈ Ψ can be defined as

θα(x,y) = sup{θ|Fy|x(θy|x) > 1− α} (8)

We have that θα(x,y) converges to the FDH estimator θ(x,y) when α → 1. As indicated in

Daraio and Simar (2007), in cases where θα(x,y) = 1, the fund is “efficient” at the level α×100%,

since it is dominated by mutual funds providing less input than x with probability 1 − α. In

those cases where θα(x,y) > 1 the unit (x,y) has to increase its output to the level θα(y,y)x to

achieve the output efficient frontier of level α× 100%. We can also apply the plug-in principle to

obtain an intuitive nonparametric estimator of θα(x,y) = 1 by replacing Fy|x(·|·) with its empirical
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counterpart to obtain:

θ̂α,n(x,y) = sup{θ|F̂y|x,n(θy|x) > 1− α} (9)

2.2. Analyzing the determinants of mutual fund performance using regression quan-

tiles

Typical linear models such as ordinary least squares (OLS) or logistic regression models (e.g. To-

bit) have for years been the workhorse of applied economics and finance researchers. They provide

the analyst with information that, albeit extremely valuable, is confined to the analysis of average

impacts of the covariates on the variable of interest—in our case, mutual fund performance. Un-

fortunately, this implies missing relevant information, since the impact over the entire conditional

distribution of efficiencies could vary depending on different parts of the distribution such as the

upper and lower tails or, more generally, on each particular quantile (Coad and Hölzl, 2009).

The analysis of the differential impact on each quantile is actually possible using quantile

regression (see, for instance Buchinsky, 1998; Taylor and Bunn, 1999), the main advantage of

which is its capability to estimate the conditional quantiles of a response variable distribution—

which in our case would be the performance of mutual funds—in a linear model providing a

fuller view of the likely causal relationships between the variables considered in the analysis.

Quantile regression has additional advantages that are particularly suited to the application we

are dealing with, since social phenomena are usually plagued with non-standard conditions such

as non-normality or heteroskedasticity. These conditions make it difficult to meet the assumptions

on which OLS models are based. For instance, managerial finance data such as the dispersion of

the annual compensation of chief executive officers is usually expected to increase with firm size,

suggesting the existence of heteroskedasticity. Taking into account the advantageous features of

quantile regression, applications have flourished over the last few years, a compendium of which is

provided by Fitzenberger et al. (2002).

Therefore, in the setting we deal with here, quantile regression allows us to consider the entire

distribution of mutual fund performances when analysing how the different covariates impact

on performance, providing us with a more complete view of the relationship among variables.

Accordingly, we can examine whether the sign and significance of the determinants is the same

for low-performance mutual funds (i.e. those corresponding to the lower quantiles) as for high-

performance funds (i.e. those corresponding to the highest quantiles). It is then possible to more

precisely disentangle the factors which cause mutual fund performance to differ. These arguments

imply that we consider both high- and low-performance funds to be of interest per se, as well as

those corresponding to other quantiles of the conditional distribution.
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In the field of finance and mutual fund evaluation, the relatively modest number of studies

using quantile regression methods has been growing in the last few years. For instance, Bassett Jr

and Chen (2001) use regression quantiles to extract additional information from the time series of

returns by identifying the way style affects returns at places other than the average. Meligkotsidou

et al. (2009) introduce the idea of modelling the conditional quantiles of hedge fund returns using

a set of risk factors, whereas Luo and Li (2008) investigate whether and how futures market

sentiment and stock market returns heterogeneously affect the trading activities of institutional

investors in the Taiwan spot market. The aims of our paper are closer to those of Füss et al.

(2009), who analyse the impact of experience and size of hedge funds on performance, or Chen

and Huang (2011), who study the relation between mutual fund performance and Morningstar

fiduciary grades, in both cases using quantile regression. However, none of these contributions

has considered partial frontier methods to evaluate performance in the first stage of the analysis,

nor have they taken an explicit approach to analyse how the covariates that more closely reflect

managers’ characteristics influence mutual fund performance.

It can, however, be troublesome to consider a two-stage method in which efficiencies are ob-

tained using, for instance, DEA or FDH in the first stage, and then analysing determinants in

the second stage. Simar and Wilson (2007) proposed a bootstrap method that overcame many of

the difficulties found in the previous literature—which were mostly related to the combination of

nonparametric methods such as DEA or FDH in the first stage with parametric methods such as

OLS or Tobit regressions in the second stage.2 Other approaches to deal with this issue include,

for instance, Banker and Natarajan (2008). In the particular case of mutual fund performance

evaluation, Daraio and Simar (2006) have proposed alternative nonparametric methods to over-

come the problems derived from estimating regressions where the dependent variable is obtained

by solving linear programming problems.

In this scenario, an additional advantage of using quantile regression in the context of evaluating

the determinants of mutual fund performance is that the standard least-squares assumption of

normally distributed errors does not hold for our data because the location patterns follow a fat-

tailed distribution (Coad and Hölzl, 2009). However, although standard regression estimators are

not robust to departures from normality, the quantile regression estimator is characteristically

robust to outliers on the dependent variable (Buchinsky, 1998). Furthermore, quantile regression

also relaxes the restrictive assumption that the error terms are identically distributed at all points

of the conditional distribution. Avoiding this assumption makes it easier to analyse discrepancies

in the relationship between the endogenous and exogenous variables at different points of the

2For instance, the efficiency scores obtained using linear programming techniques are dependent by construction.
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conditional distribution of the dependent variable, i.e. mutual fund efficiencies.

The regression quantiles specify the τ th quantile of the conditional distribution of yi, where yi

is the variable containing the performance of mutual funds which, in our case, are either θ̄mi or

θ̂α,n, given x as a linear function of the covariates. Estimation is performed by minimizing the

following equation:

Min
β∈Rk

∑

i∈{i:yi≥x′β}

τ |yi − x′β|+
∑

i∈{i:yi<x′β}

(1− τ)|yi − x′β| (10)

where k is the number of explanatory variables, τ represents the vector containing each quantile,

and the vector of coefficients to be estimated, β, differs depending on the particular quantile.

3. Data and sample

3.1. Data sources

We obtained equity fund data from Morningstar. Our data correspond to US mutual funds, and

the sample period runs from January 1st, 2000, to December 31st, 2016. The sample comprises the

universe of open-end funds domiciled and available in the US, and comprising different categories

of funds, as shown in Table 1. Although the nine main categories of funds correspond to the

combinations of large, mid-cap and small with value, blend and growth, there are also some other

categories which we also included in the sample. However, these other categories contain a much

lower number of funds (737 fund-year pairs) compared to the 32,222 corresponding to the nine

main categories. Therefore, a total of 32,959 fund-year pairs are classified in all categories, and

we consider monthly average returns for the aforementioned period (i.e., the number corresponds

to the sum of the available funds for each of the 17 sample years, and the number of funds varies

depending on each year due to unavailable information or fund creation/disappearance). For

each mutual fund, Morningstar provides historical information on some fund characteristics and

managerial attributes, as well as the variables that we label as inputs or outputs. Unfortunately,

the sample is somewhat smaller than what a priori it could be due to unavailable information for

several inputs and outputs for some years.

The Morningstar dataset provides information on all mutual funds operating during the period

considered. Thus we consider both funds that disappeared during the period and new funds

incorporated and, consequently, the data used is free of survivorship bias.

3.2. Input and output selection

9



To apply our methodological approach we define some variables as inputs and outputs. The main

output we consider is the daily mean return over the sample period (y1), assuming reinvestment of

all income and capital gain distributions. The other output (skewness, measuring the asymmetry

of the distribution, y2) was also computed from the monthly average return distribution. The

inputs are the risk of the fund, measured by the standard deviation of the monthly average returns

(x1), and kurtosis (x2),
3 also computed from the monthly average returns. In some of the proposed

models the degree of active management and costs of the fund are also considered as inputs. Two

variables are considered to include them, namely, the expense ratio, representing the percentage

paid as management fees including managers’ compensation and operating expenses (x3), and the

annualized turnover ratio, as a measure of trading activity or the manager’s propensity to trade

(x4). We also consider the beta as an input, x5, since it measures the systematic risk, also known as

“undiversifiable risk” or “market risk”. Finally, we consider size as a possible source of economies

of scale in mutual fund management. We measured size as the average of the amount of managed

assets over the sample period.

The descriptive statistics for inputs and outputs are presented in Table 1, which also displays

the different fund classes considered. Part of the information in this table deserves additional

explanations. On average (as well as for the median), the beta for “growth” funds is higher than

that for either “blend” or “value” funds, since they invest in stocks with higher levels of systematic

risk. The beta is reported by Morningstar, which computes mutual funds’ beta by adjusting the

market index depending on the fund’s category. Table 1 also shows that, in the case of “growth”

funds, the turnover (x4) for the first quartile is, for both the mean and the median, much higher

than that corresponding to the other two categories (either “blend” or “value”), which might be

indicative of active management.

3.3. Determinants of mutual fund performance

In order to match our study more closely to the literature on the determinants of mutual fund

performance, we define a set of fund-related variables, in addition to considering the aforementioned

fund classification—small/mid-cap/large, blend/growth/value. Specifically, we consider two sets

of likely determinants of fund performance, some of which are fund characteristics, whereas others

are managers’ attributes. The fund characteristics considered are: (i) fund size (in logs), deemed as

an indicator of economies of scale; and (ii) age of the fund (in years), assumed to be a reasonable

proxy for the competitiveness of the fund. Characteristics of managers or teams of managers

3In the case of non-normal distributions, Glawischnig and Sommersguter-Reichmann (2010) consider taking non-
central measures by using information about skewness and kurtosis. See also Briec et al. (2007) and Brandouy et al.
(2013). We dealt with the negative values found both for both skewness and kurtosis by rescaling both variables.
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considered are: (i) managerial ownership, a dummy variable taking a value of 1 in the case of

manager ownership, 0 otherwise; (ii) manager structure, also a dummy variable taking the value

of 1 for multiple managers and 0 in the case of a single manager; (iii) number of funds under the

same management (i.e., funds managed per manager or team of managers); (iv) tenure of active

management, related to managers’ experience which should be an indicator of their investing

abilities; and (v) number of funds under the same management (i.e., funds managed per manager

or team of managers).

3.3.1. Fund characteristics

According to Chen et al. (2004), the expected impact of FS (fund size) is that small funds out-

perform large funds. Ferreira et al. (2013) also find that small US mutual funds perform better

than large funds, but this negative size effect is not consistent when non-US funds are considered.

However, other scholars such as Carhart (1997) suggest that a positive relationship between fund

size and performance may arise from the benefits of economies of scale. The literature assessing

the impact of size on performance is therefore not conclusive, and some of these disparate results

are reviewed in Bertin and Prather (2009). Our methodologies might fit this context particularly

well, since an inconclusive link could be related to varying coefficients for the different quantiles of

the conditional distribution of performance. Regarding the other covariate related intrinsic to the

fund, Hu and Chang (2008) found that the expected impact of fund age (FA) is that performance

worsens with the age of the fund. However, Chen et al. (2004) and Ferreira et al. (2013), among

others, find no evidence of a relation between fund age and performance. Again, the evidence is

mixed.

3.3.2. Managers’ characteristics

We assess whether managerial ownership is related to positive past performance. In this regard,

Khorana et al. (2007a) find a positive relation between fund manager ownership and performance,

observing in particular a link between positive managerial ownership and future performance. They

reinforce this evidence considering both the incentives to generate higher performance and also the

superior level of information the managers participating in the funds may have. In the same vein,

Evans (2008) argues that funds with higher managerial ownership exhibit better performance. In

addition, Fu and Wedge (2011) investigate the impact of the investment behaviour—measuring

the disposition effect as an anomaly, according to which investors tend to sell winning assets

while keeping losing value assets—together with manager ownership and portfolio performance.

These authors partly justify the superior performance achieved by the funds that participated
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with higher managerial ownership in combination with the absence of the disposition effect. In

contrast, Kumlin and Puttonen (2009) report conflicting evidence showing no relation between

performance and manager ownership. More recently, Hornstein and Hounsell (2016) find that the

positive relation between manager ownership and performance is consistent for solo management,

but diluted for team-managed funds.

The role of multiple (team) or single managers (MM) varies, according to studies by Chen

et al. (2004), or Bär et al. (2011); team performance has a negative impact compared with single

managers’ performance. In contrast, Han et al. (2017) find a positive impact of team management

on mutual fund performance. Mid-way between these conflicting views, Prather and Middleton

(2002) find no differences in the performance of funds handled by a single manager or by a team

of managers.

The literature has also considered whether managers’ tenure (TEN), namely, their years of

experience, might also have an impact on fund performance. Malhotra et al. (2007) find no

empirical evidence to support this effect. In contrast, Golec (1996) claim a positive relation

between tenure and performance. In the same vein, Khorana et al.’s (2007b) results indicate that

the best performance is related to longer managerial tenure, similarly to Agarwal et al. (2009),

who conclude that experienced managers outperform their inexperienced counterparts. Although

the studies supporting the positive link dominate, there are differing views such as those of Boyson

(2010), who found that the link is actually negative—performance deteriorates with managerial

experience.

The effect of the number of mutual funds under the same management (MF ) is examined by

Prather et al. (2004), among others, who find that performance worsens when managers handle

more than two funds, as a result of reduced effectiveness due to the dispersion of effort, time and

consciousness. This result is supported by Hu and Chang (2008), whose findings indicate that a

fund’s performance falls when the number of managed funds increases. However, other authors

such as Huij and Derwall (2011) conclude that the more concentrated the portfolios, the better the

performance, due to some pernicious effects derived from diversification that contribute to eroding

performance.

Also related to managers’ characteristics, it is interesting to consider other features such as sub-

advising. As Moreno et al. (2018) have recently pointed out, mutual funds’ managers outsource

portfolio management in pursuit of several benefits such as access to talent that is not available in-

house. This allows them to expand their mutual fund family to include new investment styles and,

ultimately, increase the volume of assets under management. Outsourcing can therefore improve

the efficiency of the portfolios offered, and firms’ managers can gain market share in the mutual
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fund industry. The literature is not unanimous on this respect, however, since empirical evidence

from Chen et al. (2013) shows that outsourced funds underperform those internally managed.

In sum, these are some of the variables that the most relevant literature has considered to anal-

yse how managerial and other related characteristics affect fund performance. However, although

much of the reviewed literature has identified strong links between the variables under analysis, in

some cases the findings are contradictory. We consider that the methodologies used in this paper,

both in the first and second stage of the analysis, can partly explain some of these conflicting views

on how the different covariates might impact on fund performance.

——————–

4. Results

4.1. Expected order-m and order-α efficiency estimates

Tables 2, 3, 4 and 5 report summary statistics (mean, 1st quartile, median, 3rd quartile and

standard deviation) for mutual fund efficiencies obtained using order-m and order-α. In both

cases results are reported for different choices of the tuning parameters. Specifically, we report

results for m = 75 and m = 150, in the case of order-m, and for α = 0.95 and α = 0.99, in the

case of order-α. Recall that, for both order-m and order-α, the higher the values of the tuning

parameters, the higher the similarities with the results obtained for FDH.

The joint evaluation, for all 32,959 fund-year pairs (whose efficiency is measured yearly), is

reported in the last row of each panel in Tables 4 and 5. Results are also reported for different

classifications of mutual funds. Specifically, we provide results using the manager classification

(managerial ownership, MC), multiple vs. single manager classification (MM), and sub-advising

(SADV ). The results according to fund classification are reported in Table 2 (order-m) and Table 3

(order-α), whose upper and lower panels correspond to different values of the trimming parameters

(m and α, respectively). As for the interpretation of efficiencies, since we are maximising in the

sense Farrell describes, the higher the value of the score, the lower the efficiency level. Therefore,

efficiency scores closer to unity indicate that the fund is actually more efficient.

A cursory look at the summary statistics reveals that performance varies remarkably across

categories of funds (small vs. mid-cap vs. large funds, blend vs. growth vs. value funds, funds

with managerial ownership vs. non-managerial ownership, funds managed by single managers vs.

funds managed by multiple managers, or the practice of sub-advising), across efficiency measures

(order-m vs. order-α), as well as different trimming parameters (m, α). Some stylized facts,

however, are robust to these sources of variation. For instance, the funds in the “blend” category
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are more efficient (lower efficiency values), on average, than either “growth” or “value” funds. This

result holds regardless of the summary statistic considered—not only the mean but also the 25th,

50th (the median) and 75th quantile. This robustness is also present for funds managed by a single

manager, whose efficiency is consistently worse than that of funds managed by multiple managers,

regardless of the summary statistic, efficiency measure or trimming parameter chosen (see Tables

4 and 5).

However, when comparing funds with managerial ownership with those without managerial

ownership (MC), patterns are not entirely robust across any of the dimensions considered. Under

such circumstances, one could a priori be inclined to conclude that the differences in performance

between these two types of funds are probably not significant. This conclusion calls for a specific

test, however. We examine this issue in greater detail in the next few paragraphs.

Although it is helpful to use several summary statistics as well as the mean when describing the

distributions of efficiency scores, it is even more informative to consider the graphical representation

of the entire distributions of efficiencies—obtained either using order-m or order-α. There are

several methods to do so, including univariate density functions estimated via kernel smoothing,

box plots, or their combination, namely, violin plots. In our view, this convenient combination of

densities and box plots makes violin plots a reasonable choice. In this case, the density trace is

plotted symmetrically to the left and right of the (vertical) box plot (i.e. there is no difference in

the density traces apart from the direction in which they extend). By adding these two densities

and the box plot we can compare distributions more easily (our purpose) than using density traces

only.

Figure 1 represents the violin plots for mutual fund efficiencies. It contains three subfigures

corresponding not only to order-m and order-α, but also to the non-robust DEA and FDH method-

ologies, in order to see more clearly how results vary depending on the methods used to measure

performance. Thus, Figure 1a provides violin plots for efficiencies obtained using DEA and FDH.

Since we are maximising in the sense Farrell describes, the minimum value is one. Efficiencies above

this threshold indicate that the analysed fund could increase its output using the same amount of

inputs as those funds on the efficient frontier. As expected, dropping the convexity assumption

naturally leads to a much higher number of efficient funds, a result that we can observe in the

violin plot corresponding to FDH.

The violin plots for order-m are not entirely coincidental. As shown in Figure 1b, results are

quite robust to the specification of the trimming parameter (m)—in this case, we considered an

additional parameter (m = 100) to see more clearly how results evolve depending on its value.

Recall that this parameter allows adjustment of the number of outliers. However, because we
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allow for the existence of outliers, we have a substantial amount of probability mass below unity,

which causes the shape of the violins to differ markedly from those obtained for DEA and FDH.

In fact, we have proper violins for order-m.

Finally, Figure 1c displays the violin plots for efficiencies obtained using order-α. In this case we

corroborate the magnitude of the impact of modifying the α parameter, which sets the percentage

of outliers, as in the order-m case; we also considered an additional parameter (α = .90) to see

more clearly how results evolve depending on the trimming parameter. We can also corroborate

that order-α results come close to those for FDH when a sufficiently high α parameter is set, as

shown by the third violin plot (α = .99).

The plots in Figure 1 therefore provide us with a graphical illustration of some features corre-

sponding to each of the techniques considered to measure mutual fund efficiency. Whereas Figure

1a clearly indicates that DEA and FDH do not allow for outliers, Figure 1b and Figure 1c plainly

show that the same does not hold for either order-m or order-α. However, in the case of order-α

the impact of the trimming parameter can be very strong, as shown by the violin plots correspond-

ing to α = .90 and α = .95, for which the number of outliers (efficiencies below unity) is quite

substantial.

4.2. The determinants of mutual fund performance: fund and managers’ character-

istics

Results on the determinants of mutual fund performance, considering the methods to measure

performance, are provided in Tables 6 (order-m, m = 75), 7 (order-m, m = 150) and 8 (order-α,

α = 0.99). We select a high value of α because it provides results close to those yielded by FDH.

Reporting results for other values of the trimming parameter and for other efficiency measurement

methods lends additional robustness to the analysis.

These tables provide coefficients and standard errors for selected quantiles (τ =

{.10, .25, .50, .75, .90}). Note that the quantile τ = .50 refers to the median of the conditional

distribution. Whilst OLS regressions report estimates based on the mean, quantile regression

based on τ = .50 provides an analogous result for a different moment of the distribution—i.e.

the median. Therefore, this median-regression model can be used to achieve the same goal as

conditional mean-regression modeling, namely, to represent the relationship between the central

location of the response and a set of covariates. However, as Hao and Naiman (2007) indicate,

when the distribution is highly skewed, which is the case of efficiency scores (many efficiency scores

are located in the vicinity of one), the mean can be difficult to interpret, whereas the median re-

mains highly informative (Hao and Naiman, 2007, p.3). The results in Tables 6, 7 and 8 go further
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in this respect, reporting results not only for the median (τ = .5) but also for other quantiles, and

are therefore much more informative.

In each of these tables (6–8) we provide quantile regression results for all selected covariates

(FS, FA, MC, MF , MM , TEN , MFS and SADV ). For each table, the dependent variable is

the efficiency of each fund yielded by order-m (with m = 75 and m = 150) and order-α (α = .99).

Recall that, as indicated above, since we are maximising in the sense Farrell describes, the higher

the value of the score, the lower the efficiency level (efficiencies closer to unity indicate higher

efficiency).

4.2.1. Fund characteristics

The results reported in these three tables clearly show the relevance of this type of analysis because

some conclusions could not be reached using other regression techniques such as OLS, or censored

regression. For instance, as shown in Table 6, taking into account the values obtained for the

first of the funds characteristics’ covariates, namely, fund size (FS), the impact on performance

is positive and significant (1%) throughout—recall that we are maximising in the sense Farrell

describes, so higher values indicate worse performance, therefore negative coefficients should be

interpreted inversely. This result is maintained across quantiles—i.e., regardless of the tau param-

eter considered—adding additional robustness to the finding. Robustness is also preserved, both in

terms of sign and significance of the coefficient, not only when setting other trimming parameters

for order-m (m = 150, see Table 7), but also when considering order-α (see Table 8). These strong

results do not entirely coincide with previous literature such as Choi and Murthi (2001), who found

no links between size and performance and, in general, with our conclusion in section 3.3 that the

evidence is inconclusive. Our results therefore suggest that economies of scale might emerge when

large fund performance is compared with that obtained for small funds—which might be more

inefficient than their larger counterparts due to the associated costs.

If conclusions had been based on a conditional-mean model (such as OLS), the information

obtained would have been constrained to the average effect. In our case, the conditional-median

effect (revealed by τ = .50) would indicate that the median effect is also positive and significant

and, in addition, we obtained information for the rest of the quantiles.

As for the other variable related to the funds’ characteristics, fund age (FA), its effect on

performance is mostly negative (positive coefficient) and significant. In addition, the magnitude of

the estimated coefficient is relatively stable—although it is larger for the lowest quantiles (τ = .10)

in the case of order-m with m = 75 (Table 6) and order-α (Table 8). This result is very robust,

not only for the different quantiles but also for the different measurement methods (order-m and
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order-α) and even for the different trimming parameters considered (m = 75 and m = 150). This

inverse relation between age and performance is also found in Hu and Chang (2008), implying that

performance decreases with the age of the fund or, older funds do not necessarily perform better

than newer ones.

4.2.2. Manager characteristics

We also provide results for the variables related to ownership. Managerial ownership (MC), which

can be either positive (MC = 1) or zero (MC = 0), has a generally negative impact (positive

coefficient), whose magnitude is large and significant throughout—regardless of the quantile τ or

trimming parameter (m) considered (see Tables 6 and 7). Results are robust when extending the

analysis to order-α (Table 8). We only find some differences when focusing on the magnitude of

the estimated coefficients, which are generally larger for order-m. However, the trend of higher

magnitude coefficients for the lowest quantiles is shared both for order-m (Tables 6 and 7) and

order-α (Table 8). This result is not entirely in line with the empirical evidence to date. Taking

into account the literature revised on page 12, only a few authors such as Kumlin and Puttonen

(2009) find this negative association between managerial ownership and performance. However,

none of the reviewed contributions considers regression quantiles and, therefore, cannot find that

the effect is particularly strong for the best performing funds (higher coefficients). These relatively

conflicting views imply that more research is needed, using different methods—if possible.

The multiple manager (team) or single manager variable (MM) is a dichotomous variable

taking a value of 1 (in the case of a team of managers) or 0 (in the case of a single manager).

Similarly to the manager classification variable (MC) the pattern is mostly negative (positive

coefficients) and significant for the vast majority of the quantiles. The only exception is for τ = .90

for order-munder m = 75, although the coefficient is not significant at the usual levels (see Table

6). Therefore, given the demonstrated robustness of the results for the different methodologies,

trimming parameters (α, m) and quantiles (τ), we may conclude there is a strong link between

performance and whether managers operate in a team or individually which, in this case, does

not favour teams of managers. It should be noted that previous empirical evidence comparing the

performance of team or individual managed funds is mixed. Some early studies found that team-

managed funds underperform individual-managed due to higher monitoring and coordination cost

(Chen et al., 2004). But Karagiannidis (2010) found mixed evidence and pointed out that previous

underperform of team-manager funds could be driven by funds that employed many investment

advisors with unknown management structures. More recently, Patel and Sarkissian (2017) have

found that using more accurate Morningstar Direct data (the same base data that we use), team-
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managed funds outperform single-managed funds. In this regard, Adams et al. (2018) suggest the

benefits of team management, mainly linked to the presence of active board monitoring. Therefore,

in line with this recent evidence, our results suggest that team management improve mutual fund

efficiency.

When analysing the impact of active manager tenure (TEN), the effect is weak and quite

unstable compared to the covariates evaluated above. For the particular case of order-m (Tables

6 and 7), the effect is not significant for any quantile (τ) considered; in the case of order-α, it is

only significant for the central quantiles (Table 8). Regardless of significance, the effect is volatile,

being negative (positive coefficient) for few quantiles τ = .25 and τ = .50 in the case of order-

m, which would indicate that tenure is not positive for fund performance, an effect which is even

stronger under order-α (only for τ = .90 is the coefficient positive, i.e., negative effect). This might

suggest a possible effect of overconfidence among more experienced managers, as well as some lack

of motivation. However, in line with evidence from Hambrick and Mason (1984) and Malhotra

et al. (2007), we also found that even in cases where the impact of tenure on performance was not

negative, it had no effect, i.e. it was not significant.

In contrast, the MF variable (number of funds under the same management) has a negative

impact (positive coefficient) throughout, which is mostly significant (1%) regardless of the partial

frontier method (order-m, order-α) and trimming parameter considered (m = 75, m = 150), with

the exception of the highest quantile (τ = .90). This would imply that the larger the number of

funds under the same management, the worse the performance of the fund, with the exception of

the worst performing funds, for which this effect would be irrelevant. In addition, this result is

quite robust, since even when switching to order-α (Table 8) not only is the sign of the impact

preserved for all quantiles but also significance does not change in any case. The magnitude of

the impact, in contrast, varies depending on the quantile selected, as it is especially high (in

absolute terms) for the lower quantiles, a result that is also robust across methods and trimming

parameters. Once more, these are results that are usually concealed by OLS regressions. The

reasons for this inverse relationship between performance and the number of managed funds are

explained, for instance, in Prather et al. (2004) and Hu and Chang (2008). According to these

authors, effectiveness is reduced when managers handle more than two funds. In addition, problems

related to diversification might emerge, as noted by Huij and Derwall (2011).

Finally, the sub-advising covariate (SADV ) has a negative impact on performance (due to the

positive sign of the coefficient), which is strongly significant throughout methodologies, trimming

parameters and quantiles. Only for the highest quantile (corresponding to the most inefficient

funds), i.e., τ = .90, does the effect becomes either unstable or non-significant. The former

18



occurs for order-m, m = 150, since the sign of the coefficient changes (see Table 7), whereas

the latter corresponds to both order-m, m = 75, and order-α (Tables 6 and 8, respectively). Our

results indicate that those mutual funds that outsource their management obtain a lower efficiency,

especially in the case of the best funds, while for the worst funds this effect is irrelevant. This

result, globally evaluated, is in line with previous evidence in the literature. For instance, Chen

et al. (2013) find that outsourced funds underperform those managed internally and suggest this

might be due to contractual externalities and incentives. However, our methodology clarifies the

importance of the asymmetry of this effect: it is relevant to reduce the efficiency of the best

funds, but not to characterise the worst funds whose results are possibly attributable to poor

management, regardless of their degree of outsourcing

Previous studies, as indicated, focused on similar issues but considered sets of statistical tools

not always similar to the ones we considered here (especially combining partial frontier techniques

in the first stage and quantile regression in the second stage), as well as different samples, periods

and countries. Golec (1996), Annaert et al. (2003a), Hu and Chang (2008) and Ferreira et al.

(2013) stressed the importance of including not only the age of the fund and other non-manager

related factors but also some managers’ characteristics similar to those considered in our study.

Specifically, Golec’s (1996) study for 530 mutual funds for the 1988–1990 period, which indirectly

deals with the issues we deal here, concludes that older funds do not necessarily achieve better

performance—although the significance of this result was weak. In contrast, Annaert et al. (2003b)

do not find any relation between fund age and performance for a sample of 179 European equity

funds over the 1995–1998 period. Hu and Chang (2008) identify a negative link between perfor-

mance and the funds’ age in a study of 156 Taiwanese funds for 2005 and 2006. In research with

a much longer time span (similar to ours), Ferreira et al. (2013) conduct a cross-country study for

27 countries which includes 16,316 funds for the 1997–2007 period; their findings suggest that in

countries outside the US there is an inverse relationship between fund performance and age.

5. Conclusions

The mutual fund industry has been one of the fastest growing sectors within the capital markets

in many countries during recent decades. Although the 2007/08 international financial crisis led

to a slowdown in many countries, especially in those most affected by the crisis, the share of the

population that now own a mutual fund has increased dramatically in a relatively short period of

time. In parallel, the literature on mutual fund performance evaluation has also grown considerably.

A specific field of this literature is the analysis of whether managers add value to the performance

of the mutual funds they handle. The present study falls within this field.

19



In contrast to the traditional methodologies for measuring mutual fund performance, our ap-

proach uses nonparametric (partial) frontiers due to certain key advantages they offer such as the

ability to simultaneously handle multiple factors while still providing the analyst with a single real

number as a performance index—the so-called efficiency scores. Although DEA (data envelopment

analysis) has been, by and large, the most intensely used frontier technique (considering both non-

parametric and parametric approaches), in recent years this literature has evolved and some of the

estimators used now are superior in several aspects, especially in terms of robustness.

After measuring performance in this first stage of the analysis, the second stage analysed the

determinants of mutual fund performance. This was not an easy task for two reasons, one sub-

stantive, the other methodological. The substantive reason relates to the difficulties encountered

by the mutual fund literature in finding conclusive evidence on the impact of certain variables on

performance. The methodological reason concerns the difficulties in conducting inference in the

second stage of the analysis when efficiencies are yielded by linear programming methods in the

first stage. The quantile regression methods we use offer an advantage on both counts. On the

one hand, they provide information as to whether the estimated coefficients might differ (in terms

of sign, magnitude and significance) depending on the quantile of the conditional distribution of

performance, which would ultimately allow some of the conflicting views found in the literature to

be reconciled. On the other hand, quantile regression methods are much more robust to both the

existence of outliers and skewed distributions of the dependent variable.

Our results are therefore robust in various dimensions. The first stage of the analysis was

performed considering several partial frontier techniques, and several tuning parameters (m, in the

case of order-m, and α, in the case of order-α), i.e., two levels of robustness. In the second stage of

the analysis, a third level of robustness was added, since results were provided for five quantiles of

the conditional distribution of performance. The findings suggest that, indeed, the links among the

variables considered are intricate, and difficult to summarise in an average effect. Only in the case

of the age of the fund did we find an effect whose magnitude, sign, and significance is broadly robust

across the three levels of robustness—the higher the age, the worse the performance. However,

in the case of the variables reflecting managers’ characteristics, the different methodologies and

tuning parameters indicate that the findings cannot be boiled down to an average effect for the

average fund.

Therefore, we consider our paper constitutes an innovative application in the sense that it eval-

uates how different managerial characteristics, some of which have been gaining great importance

in recent times (see Moreno et al., 2018), affect funds’ performance using a combination of OR

(partial frontiers) and regression strategies (based on quantile regression) that had barely been
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considered previously. This combination offers several advantages over previous studies, due to

the robustness of the order-m and order-α methods used in the first stage, and the possibility to

ascertain whether the selected covariates impact differently on the best and the worst funds—a

finding which makes this field of research very promising.

While the research has largely analysed the role of fund characteristics, managers’ character-

istics are also attracting interest due the important role they play in this scenario. However, this

is one of the few studies that simultaneously provide detailed insights on this issue. Additionally

the methodologies applied suggest a new path for continued exploration in other fund industries.

The results suggest that the manager is just as important as the fund; thus, before reaching their

selection decision, investors should be aware of the variables that can have an indisputable impact

on their wealth.
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Moreno, D., RodrÃguez, R., and Zambrana, R. (2018). Management sub-advising in the mutual fund

industry. Journal of Financial Economics, 127:567–587.
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Table 1: Descriptive statistics for inputs and outputs, mutual funds (2000–2016)a

Inputs Outputs

Fund category
Std.dev.
(%, x1)

Kurtosisb

(x2)

Expense
ratio (%,
x3)

Turnover
(x4)

Beta (x5)
Returns
(%, y1)

Skewnessb

(y2)

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median
Number
of
funds

US Fund, Small Blend 5.176 4.429 0.228 0.209 1.352 1.300 74.725 54.000 1.193 1.194 0.595 0.611 0.476 0.485 3,022
US Fund, Small Growth 5.782 5.003 0.200 0.174 1.480 1.400 111.340 87.000 1.258 1.197 0.578 0.579 0.486 0.483 3,480
US Fund, Small Value 5.097 4.336 0.249 0.222 1.403 1.417 90.303 54.000 1.158 1.179 0.602 0.621 0.469 0.478 1,441

US Fund, Mid-Cap Blend 4.707 3.939 0.238 0.207 1.258 1.295 90.830 54.000 1.110 1.090 0.583 0.581 0.479 0.472 1,849
US Fund, Mid-Cap Growth 5.218 4.343 0.211 0.182 1.397 1.360 107.724 79.000 1.176 1.126 0.569 0.563 0.504 0.493 3,146
US Fund, Mid-Cap Value 4.602 3.893 0.255 0.232 1.271 1.272 82.363 61.000 1.083 1.082 0.589 0.594 0.471 0.464 1,369

US Fund, Large Blend 4.080 3.655 0.244 0.233 1.114 1.150 69.133 44.000 0.991 0.999 0.563 0.565 0.482 0.477 6,468
US Fund, Large Growth 4.495 4.020 0.214 0.181 1.292 1.260 89.045 64.000 1.075 1.047 0.559 0.557 0.514 0.505 6,653
US Fund, Large Value 4.086 3.693 0.260 0.248 1.210 1.193 65.745 47.000 0.972 0.978 0.575 0.598 0.465 0.466 4,787

Other categoriesc 4.074 3.532 0.271 0.254 1.120 1.190 68.781 38.000 0.989 0.997 0.558 0.557 0.477 0.463 737

a The table presents some descriptive statistics of the mutual fund sample. The sample period runs from January 1st, 2000 to December 31st, 2016. The size
is measured by the assets in millions of US dollars and management fees and loads costs are shown as percentages of the assets. Return (y1) is the monthly
average return.

b Both kurtosis and skewness have been rescaled in order to facilitate the computation of efficiencies.
c The remainder categories correspond to: (i) US Fund, Allocation 50%-70% Equity; (ii) US Fund, Allocation 70%-85% Equity; (iii) US Fund, Allocation 85%
Equity; (iv) US Fund, Convertibles; (v) US Fund, Diversified Emerging Markets; (vi) US Fund, Health; (vii) US Fund, Infrastructure; (viii) US Fund, Long
Short Equity; (ix) US Fund, Market Neutral; (x) US Fund, Option Writing; (xi) US Fund, Tactical Allocation; (xii) US Fund, Technology; (xiii) US Fund,
World Allocation; (xiv) US Fund, World Large Stock; (xv) US Fund, World Small Mid Stock; (xvi) US Insurance, Mid Cap Growth; (xvii) US Insurance, Small
Growth.
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Table 2: Order-m efficiencies, mutual funds classified by classes (2000–2016)

m = 75

Type (class)
of fund

Mean
1st quar-
tile

Median
3rd quar-
tile

Std.dev.
Number
of funds

US Fund, Small Blend 110.1599 97.4173 108.6496 124.6439 22.0991 3,022
US Fund, Small Growth 117.6822 100.0000 114.9646 130.6111 23.8668 3,480
US Fund, Small Value 112.5306 99.2623 111.1111 127.5575 23.1035 1,441

US Fund, Mid-Cap Blend 106.5866 94.4394 104.6611 121.6193 23.2098 1,849
US Fund, Mid-Cap Growth 113.2369 98.8539 108.8549 125.0933 22.4221 3,146
US Fund, Mid-Cap Value 108.3717 97.4597 106.5523 120.6636 20.0978 1,369

US Fund, Large Blend 98.7155 89.2269 99.8575 111.2096 21.0954 6,468
US Fund, Large Growth 106.5694 97.1857 103.5739 115.8931 19.3512 6,653
US Fund, Large Value 103.2680 94.1664 101.9159 112.5203 16.4970 4,787

Other categories 95.5304 85.5361 99.0580 109.0915 27.0469 737

m = 150

Type (class)
of fund

Mean
1st quar-
tile

Median
3rd quar-
tile

Std.dev.
Number
of funds

US Fund, Small Blend 115.1678 99.9096 112.8846 129.8225 21.9680 3,022
US Fund, Small Growth 122.7411 102.4154 119.5132 136.8287 25.1715 3,480
US Fund, Small Value 116.8999 100.0000 113.9083 132.7299 23.3588 1,441

US Fund, Mid-Cap Blend 111.9636 98.7781 108.6437 126.3061 22.6507 1,849
US Fund, Mid-Cap Growth 117.9224 100.0000 112.5968 130.0983 23.6887 3,146
US Fund, Mid-Cap Value 112.6753 99.8143 109.7854 124.8919 19.8973 1,369

US Fund, Large Blend 104.1777 95.2937 102.1892 115.4275 19.3492 6,468
US Fund, Large Growth 110.9463 99.7277 106.8563 120.5548 19.5686 6,653
US Fund, Large Value 107.7184 98.1378 105.1422 116.6539 16.0547 4,787

Other categories 101.6579 91.7662 100.3297 114.0628 24.9505 737
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Table 3: Order-α efficiencies, mutual funds classified by classes (2000–2016)

α = .95

Type (class)
of fund

Mean
1st quar-
tile

Median
3rd quar-
tile

Std.dev.
Number
of funds

US Fund, Small Blend 92.7574 79.6866 97.1950 108.6412 24.6143 3,022
US Fund, Small Growth 100.5426 88.8800 100.0000 113.4176 22.9598 3,480
US Fund, Small Value 97.2450 86.3387 100.0000 111.2495 23.6440 1,441

US Fund, Mid-Cap Blend 88.3921 74.3701 94.1996 105.5489 27.0747 1,849
US Fund, Mid-Cap Growth 96.9683 84.8545 99.2362 109.2374 21.8777 3,146
US Fund, Mid-Cap Value 94.1400 83.4380 97.2608 106.3647 20.4308 1,369

US Fund, Large Blend 80.5497 65.8393 87.9253 100.0000 27.0952 6,468
US Fund, Large Growth 92.0186 82.8483 94.8287 102.0384 20.1950 6,653
US Fund, Large Value 88.1208 78.0987 90.9299 100.0000 19.6245 4,787

Other categories 78.8368 62.6340 85.2607 100.0000 29.8133 737

α = .99

Type (class)
of fund

Mean
1st quar-
tile

Median
3rd quar-
tile

Std.dev.
Number
of funds

US Fund, Small Blend 109.8701 100.0000 108.3785 123.8978 22.5341 3,022
US Fund, Small Growth 117.0833 100.0000 114.2252 129.4983 23.2474 3,480
US Fund, Small Value 112.3023 100.0000 110.6190 127.1966 23.5873 1,441

US Fund, Mid-Cap Blend 105.7627 97.0676 103.7964 120.5743 24.2307 1,849
US Fund, Mid-Cap Growth 112.7204 100.0000 108.1778 124.2101 22.0359 3,146
US Fund, Mid-Cap Value 108.4726 100.0000 106.5301 120.0000 19.0130 1,369

US Fund, Large Blend 98.4102 90.9091 100.0000 110.3470 21.9428 6,468
US Fund, Large Growth 106.3806 100.0000 102.6353 115.1691 18.7312 6,653
US Fund, Large Value 102.6777 95.4742 100.6865 111.6739 17.2657 4,787

Other categories 95.7725 86.3587 100.0000 108.8412 26.8258 737
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Table 4: Order-m efficiencies, mutual funds (2000–2016)

m = 75

Type of fund Mean
1st quar-
tile

Median
3rd quar-
tile

Std.dev.

Manager
classification (MC)

MC = 1 106.3411 96.2404 103.9388 117.5943 20.4949
MC = 0 107.1374 95.5973 104.4936 119.5831 22.9645

Multiple/single
managers (MM)

Multiple managers (MM = 1) 105.6185 95.6763 103.5769 117.0645 20.5373
Single manager (MM = 0) 108.1592 96.2779 105.0343 120.5853 23.3049

Fund Sub-advisor
(SADV )

SADV = 1 107.4193 96.6628 104.9330 119.1863 20.3717
SADV = 0 106.3600 95.3916 103.7291 118.2859 22.7807

All funds 106.7742 95.9318 104.2181 118.6600 21.8761

m = 150

Type of fund Mean
1st quar-
tile

Median
3rd quar-
tile

Std.dev.

Manager
classification (MC)

MC = 1 110.8839 99.4191 107.2442 122.1266 20.3021
MC = 0 112.2491 99.1563 108.2764 124.2469 22.7753

Multiple/single
managers (MM)

Multiple managers (MM = 1) 110.3483 99.1591 106.9402 121.5702 20.1086
Single manager (MM = 0) 113.1581 99.4476 108.9200 125.4588 23.3591

Fund Sub-advisor
(SADV )

SADV = 1 112.1076 99.5921 108.4192 123.6441 20.3175
SADV = 0 111.3174 99.0245 107.3074 123.0144 22.5267

All funds 111.6264 99.2896 107.7375 123.2558 21.6927
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Table 5: Order-α efficiencies, mutual funds (2000–2016)

α = .95

Type of fund Mean
1st quar-
tile

Median
3rd quar-
tile

Std.dev.

Manager
classification (MC)

MC = 1 90.9923 80.4453 94.8678 103.5736 22.6159
MC = 0 90.0280 78.1971 94.0908 104.7345 25.3621

Multiple/single
managers (MM)

Multiple managers (MM = 1) 89.6411 79.1091 94.1192 103.2258 23.6198
Single manager (MM = 0) 91.4595 79.6137 94.9059 105.5797 24.7423

Fund Sub-advisor
(SADV )

SADV = 1 91.2189 80.8319 94.7657 104.5577 22.8790
SADV = 0 89.9827 78.3758 94.2780 103.9464 24.9295

All funds 90.4676 79.3064 94.4556 104.1953 24.1531

α = .99

Type of fund Mean
1st quar-
tile

Median
3rd quar-
tile

Std.dev.

Manager
classification (MC)

MC = 1 106.1173 99.1617 103.1052 117.1875 20.5662
MC = 0 106.6643 98.2213 103.6309 118.7164 23.0754

Multiple/single
managers (MM)

Multiple managers (MM = 1) 105.2586 98.1008 102.7616 116.5850 20.8396
Single manager (MM = 0) 107.8025 99.2694 104.1581 119.8087 23.1752

Fund Sub-advisor
(SADV )

SADV = 1 106.8381 99.1076 104.1728 118.2873 20.7652
SADV = 0 106.1417 98.2192 102.7958 117.8603 22.7074

All funds 106.4149 98.6466 103.3883 118.0144 21.9683
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Table 6: Regression quantiles for mutual fund performance, order-m (m = 75)

Quantile (τ )

Covariates

0.10
(best

performance)
0.25 0.50 0.75

0.90
(worst

performance)

(Intercept) 95.748
(4.928)

98.673
(2.103)

111.558
(1.946)

131.512
(2.550)

162.999
(5.169)

FS −1.792
(0.149)

−1.048
(0.087)

−1.121
(0.086)

−1.738
(0.108)

−2.539
(0.150)

FA 0.143
(0.014)

0.078
(0.016)

0.078
(0.014)

0.072
(0.012)

0.093
(0.021)

MC 7.817
(0.835)

4.663
(0.399)

2.698
(0.363)

2.236
(0.449)

1.967
(0.528)

MM 2.853
(0.843)

1.750
(0.415)

1.940
(0.348)

2.003
(0.466)

−0.023
(0.620)

TEN 0.030
(0.050)

−0.040
(0.031)

−0.028
(0.029)

0.010
(0.032)

0.046
(0.048)

MFS 0.048
(0.016)

0.022
(0.007)

0.016
(0.007)

0.013
(0.008)

0.011
(0.011)

SADV 4.084
(0.759)

2.700
(0.357)

1.642
(0.354)

1.383
(0.427)

0.122
(0.562)

FS: fund size; FA: fund age; MC: managerial ownership (dichotomous variable, which takes value
of 1 when it exists, zero otherwise); MM : multiple/team of managers (dichotomous variable, 1: team
of managers; 0: otherwise); TEN : active manager tenure; MFS: number of funds under the same
management; SADV : sub-advisor ((dichotomous variable, 1: yes; 0: no).

Table 7: Regression quantiles for mutual fund performance, order-m (m = 150)

Quantile (τ )

Covariates

0.10
(best

performance)
0.25 0.50 0.75

0.90
(worst

performance)

(Intercept) 98.800
(3.247)

101.422
(1.943)

115.814
(1.549)

138.500
(3.450)

172.621
(4.294)

FS −1.135
(0.101)

−0.651
(0.060)

−1.147
(0.080)

−1.936
(0.119)

−2.728
(0.144)

FA 0.093
(0.009)

0.049
(0.012)

0.076
(0.012)

0.083
(0.017)

0.091
(0.014)

MC 4.727
(0.545)

2.719
(0.259)

2.467
(0.348)

2.348
(0.494)

2.091
(0.535)

MM 1.958
(0.542)

1.122
(0.260)

1.839
(0.328)

1.866
(0.567)

0.370
(0.747)

TEN 0.003
(0.028)

−0.005
(0.022)

−0.025
(0.027)

0.045
(0.038)

0.046
(0.047)

MFS 0.025
(0.010)

0.014
(0.005)

0.018
(0.007)

0.009
(0.010)

0.012
(0.011)

SADV 2.873
(0.424)

1.774
(0.242)

1.554
(0.324)

1.401
(0.462)

−0.225
(0.538)

FS: fund size; FA: fund age; MC: managerial ownership (dichotomous variable, which takes value
of 1 when it exists, zero otherwise); MM : multiple/team of managers (dichotomous variable, 1: team
of managers; 0: otherwise); TEN : active manager tenure; MFS: number of funds under the same
management; SADV : sub-advisor (dichotomous variable, 1: yes; 0: no).

32



Table 8: Regression quantiles for mutual fund performance, order-α (α = .99)

Quantile (τ )

Covariates

0.10
(best

performance)
0.25 0.50 0.75

0.90
(worst

performance)

(Intercept) 80.277
(7.573)

86.953
(3.449)

98.232
(3.137)

118.421
(2.481)

133.909
(2.098)

FS −3.148
(0.270)

−2.099
(0.150)

−1.398
(0.089)

−1.510
(0.084)

−1.921
(0.103)

FA 0.286
(0.051)

0.171
(0.016)

0.098
(0.014)

0.090
(0.012)

0.061
(0.020)

MC 16.833
(1.125)

9.693
(0.755)

4.096
(0.449)

2.460
(0.371)

1.827
(0.418)

MM 5.454
(1.348)

3.882
(0.725)

2.212
(0.442)

1.595
(0.372)

0.606
(0.426)

TEN −0.096
(0.089)

−0.098
(0.047)

−0.081
(0.031)

−0.065
(0.029)

0.017
(0.040)

MFS 0.075
(0.028)

0.044
(0.013)

0.024
(0.008)

0.013
(0.007)

0.000
(0.009)

SADV 6.723
(1.171)

5.047
(0.598)

1.746
(0.390)

1.562
(0.332)

0.109
(0.421)

FS: fund size; FA: fund age; MC: managerial ownership (dichotomous variable, which takes value
of 1 when it exists, zero otherwise); MM : multiple/team of managers (dichotomous variable, 1: team
of managers; 0: otherwise); TEN : active manager tenure; MFS: number of funds under the same
management; SADV : sub-advisor (dichotomous variable, 1: yes; 0: no).
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