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Betaproteobacteria are predominant in drinking water: are there reasons 1 

for concern? 2 

 3 

Abstract  4 

Betaproteobacteria include some of the most abundant and ubiquitous bacterial genera that 5 

can be found in drinking water, including mineral water. The combination of physiology and 6 

ecology traits place some Betaproteobacteria in the list of potential, yet sometimes neglected, 7 

opportunistic pathogens that can be transmitted by water or aqueous solutions. Indeed, some 8 

drinking water Betaproteobacteria with intrinsic and sometimes acquired antibiotic 9 

resistance, harboring virulence factors and often found in biofilm structures, can persist after 10 

water disinfection and reach the consumer. 11 

This literature review summarizes and discusses the current knowledge about the occurrence 12 

and implications of Betaproteobacteria in drinking water. Although the sparse knowledge 13 

on the ecology and physiology of Betaproteobacteria thriving in tap or bottled natural 14 

mineral/spring drinking water (DW) is an evidence of this review, it is demonstrated that DW 15 

holds a high diversity of Betaproteobacteria, whose presence may not be innocuous. 16 

Frequently belonging to genera also found in humans, DW Betaproteobacteria are ubiquitous 17 

in different habitats, have the potential to resist antibiotics either due to intrinsic or acquired 18 

mechanisms, and hold different virulence factors. The combination of these factors place DW 19 

Betaproteobacteria in the list of candidates of emerging opportunistic pathogens. Improved 20 

bacterial identification of clinical isolates associated with opportunistic infections and 21 
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additional genomic and physiological studies may contribute to elucidate the potential impact 22 

of these bacteria.  23 
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Introduction 30 

The access to safe drinking water (DW) is defined as one of the Sustainable Development 31 

Goals and an important human right 32 

(https://www.un.org/sustainabledevelopment/sustainable-development-goals/). By 33 

definition, DW is suitable for human consumption, washing/showering and domestic food 34 

preparation (EuropeanComission 1998; Bartram et al. 2003; WHO 2011). DW comprises i) 35 

tap water originating from a surface water (river, lagoons, alluvial wells) or groundwater 36 

source that, when necessary may be subjected to treatment before distribution to the 37 

consumer, and ii) the bottled natural mineral or spring water originating from a groundwater 38 

table or deposit that emerges from a spring or borehole exit (Barrell et al. 2000). While the 39 

so-called tap-water needs treatment in most world regions, due to the widespread 40 

contamination of water sources, the natural mineral or spring water is “microbiologically 41 

wholesome” and must not receive any treatment capable of changing the original chemical 42 

and microbiological composition (EuropeanComission 2009). Mineral and spring waters are 43 

commonly bottled before distribution to the consumer. 44 

The natural mineral and spring waters microbiomes comprise the autochthonous bacterial 45 

community, although the structure of that bacterial community may change after bottling and 46 

storage (Flemming et al. 2016). Otherwise, the tap water microbiome occurring in the water 47 

that reaches the consumer does not necessarily mirror that thriving in the water source. This 48 

is due to the successive alterations that take place from the source to the tap, shaped mainly 49 

by a complex interplay between treatment, reactivation, and piping (Norton and LeChevallier 50 

2000; Hoefel et al. 2005; Eichler et al. 2006; Lautenschlager et al. 2010; Vaz-Moreira et al. 51 

2013; Lautenschlager et al. 2014). Indeed, the bacterial diversity of tap water results from 52 
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the persistence of some autochthonous bacterial community members that survive the 53 

treatment (e.g. chlorination, ozonation or UV irradiation), together with potential intrusions 54 

of bacteria throughout the system from the source to the tap. The properties of water and 55 

specific physicochemical factors, such as total organic content or hydrodynamic regime, the 56 

conditions of the pipes, the range of temperature and pH, the residence time, among others, 57 

may influence the shape of the bacterial community (Pepper et al. 2004; Lautenschlager et 58 

al. 2010; Pinto et al. 2012; Douterelo et al. 2013; Lautenschlager et al. 2014). Another 59 

important driver of the tap water bacterial community composition and structure is the 60 

formation of biofilms along the distribution systems, which may rule the release of biofilm 61 

bacteria into the circulating water (Batté et al. 2003). Despite the specificities of each water 62 

source, piping and treatment conditions, Proteobacteria (mainly of the classes Alpha, Beta 63 

and Gamma) are among the predominant populations in DW, tap or mineral/spring, 64 

worldwide (Leclerc and Moreau 2002; Hoefel et al. 2005; Loy et al. 2005; Eichler et al. 2006; 65 

Poitelon et al. 2009; Revetta et al. 2010; Pinto et al. 2012; Vaz-Moreira et al. 2014). Dias et 66 

al. (2019) recently described that the Proteobacteria profile changes from the distribution 67 

system to tap water, with Alphaproteobacteria being dominant in the distribution system 68 

(92% vs. 65% in tap waters), whereas Betaproteobacteria prevalence in tap water was higher 69 

than in the distribution system (18% vs. 2%). This variation was attributed to the higher 70 

chlorine tolerance observed in members of the class Alphaproteobacteria when compared to 71 

members of the class Betaproteobacteria (Williams et al. 2004; McCoy and VanBriesen 72 

2012; Dias VCF et al. 2019). 73 

Although water Alphaproteobacteria, and mainly Gammaproteobacteria, that include some 74 

well-known pathogens (e.g. the Alphaproteobacteria Rickettsia and Bartonella spp.; or the 75 
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Gammaproteobacteria Legionella, Escherichia coli, Vibrio spp., Salmonella, Acinetobacter 76 

baumannii and Klebsiella pneumoniae) have been frequently discussed, Betaproteobacteria 77 

are, comparatively, a neglected group. This gap of information was a major motivation to 78 

bring forward the current review, focused on DW Betaproteobacteria.  79 

DW is an important source for the dissemination and transmission of microbial agents to 80 

humans, meaning that the DW microbiome may pose important potential risks for human 81 

health. In a previous study, Vaz-Moreira and colleagues (2017) observed that Proteobacteria 82 

genera can persist after DW treatment, being ubiquitous along the DW source-treatment-83 

distribution-tap thread. In that study, the ubiquity of Betaproteobacteria in the DW system 84 

was evidenced, confirming previous studies conducted in other clean environments, such as 85 

filtered water, antiseptics or disinfectants (Hahn 2004; Weber et al. 2007). These results are 86 

also in line with data reported in studies about bottled natural mineral water, which identify 87 

Betaproteobacteria among the predominant bacterial groups (Leclerc and Moreau 2002; Loy 88 

et al. 2005; França et al. 2015). The remarkable capacity to form biofilm in freshwater 89 

habitats (Manz et al. 1999; Araya et al. 2003) and the survival to disinfectants and 90 

disinfection processes (Mi et al. 2015; Becerra-Castro et al. 2016) are probably part of the 91 

explanation for the observed ubiquity of Betaproteobacteria in DW. These evidences claim 92 

for the attention of the scientific community mainly because some of the DW 93 

Betaproteobacteria genera may comprise opportunistic pathogens and/or drug resistant 94 

bacteria. In this review, we were interested in overviewing what is known about 95 

Betaproteobacteria ecology, intrinsic or acquired antibiotic resistance and virulence factors, 96 

as background information for discussing potential human health implications and, if 97 

justified, identifying relevant knowledge gaps.  98 
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 99 

Context and approach 100 

Based mainly on phylogenetic evidence, recently Parks et al. (2018) proposed that the class 101 

Betaproteobacteria would be better reclassified into the order Betaproteobacteriales, within 102 

the class Gammaproteobacteria. For practical reasons, this review followed the NCBI 103 

Taxonomy database (https://www.ncbi.nlm.nih.gov/Taxonomy/), in which the class 104 

Betaproteobacteria comprises 23 families and a large group of unclassified 105 

Betaproteobacteria, including some groups with Candidatus statute (accessed in 106 

https://www.ncbi.nlm.nih.gov/Taxonomy/ in August 2019). Most of these 23 families (17) 107 

have been reported in DW habitats (Figure 1). This is not surprising, given the ubiquity of 108 

Betaproteobacteria, whose colonized habitats include soil and rhizosphere, plants, foods, 109 

clinical samples, among other (Garrity et al. 2005), as well as aquatic environments, 110 

particularly DW (Leclerc and Moreau 2002; Hoefel et al. 2005; Loy et al. 2005; Eichler et 111 

al. 2006; Poitelon et al. 2009; Revetta et al. 2010; Pinto et al. 2012; Vaz-Moreira et al. 2014).  112 

For this review were selected studies that approach the bacterial diversity in water destined 113 

for human consumption, both treated tap water and bottled natural mineral/spring water. This 114 

selection included also the bacterial diversity of treated drinking water biofilms, since 115 

biofilms are known to strongly influence and result from the tap water bacterial diversity 116 

(Berry et al. 2006; Srinivasan et al. 2008). For the review were selected papers published 117 

after 1998, most of which based on culture-independent methods, although some relied also 118 

on culture-dependent methods. Were excluded the studies in which bacterial identification 119 

relied exclusively on phenotypic methods. Because human health implications may result 120 
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from a transient or resident bacterial colonization, we also explored if the Betaproteobacteria 121 

genera detected in DW have been reported in the human microbiome. These analyses were 122 

based on the Human Microbiome (https://hmpdacc.org/catalog/) and Human Oral 123 

microbiome (http://www.homd.org/) catalogs, and the NCBI database 124 

(www.ncbi.nlm.nih.gov) filtering by “Host: Homo sapiens”, accessed in June 2018. Our 125 

rationale was that closely related bacteria, as are the members of the same genera or species, 126 

tend to share an important part of the core genome, including housekeeping functions that 127 

may also serve for colonization and infection in a host (Wu HJ et al. 2008; Linz et al. 2016; 128 

Wu Y et al. 2018). In contrast, the gain or loss of some functions and genes may be part of 129 

the adaptation process to a given environment and may be the basis of the speciation 130 

transformation (Lawrence 2002). In this process, it is observed that some traits may be even 131 

strain specific (Bentley 2009; D'Auria et al. 2010). However, the demonstration that in a 132 

given bacterial group some traits can be observed, is a good indication of the potential 133 

occurrence in the whole species or genus. This is particularly relevant in ubiquitous bacterial 134 

groups, the focus of this review, in which adaptation and speciation may be hindered or at 135 

least shaped by a permanently changing environment. 136 

The filters used led to a list of 24 Betaproteobacteria genera that were detected both in tap 137 

and bottled natural mineral/spring water and whose association with humans was also 138 

reported. Members of these genera were examined for their potential as 139 

carriers/disseminators of virulence or of antimicrobial resistance determinants. The virulence 140 

factors were compiled from the literature available and from the Virulence Factors Database 141 

(VFDB, http://www.mgc.ac.cn/VFs/), accessed in July 2018. Intrinsic and acquired 142 

antimicrobial resistance was compiled from the literature available. 143 

https://hmpdacc.org/catalog/
http://www.homd.org/
http://www.ncbi.nlm.nih.gov/
http://www.mgc.ac.cn/VFs/
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 144 

Betaproteobacteria in drinking water 145 

As mentioned above, a total of 17 Betaproteobacteria families, belonging to six orders, were 146 

reported in DW habitats. The most commonly reported families (Comamonadaceae, 147 

Oxalobacteraceae, Burkholderiaceae, Alcaligenaceae, and unclassified Burkholderiales), 148 

represented by 54 out of 83 genera, belong to the order Burkholderiales (Figure 1). A total 149 

of 63 bacterial genera were identified in bottled natural mineral/spring water and 55 in tap  150 

DW. Among those, 36 genera were reported in both mineral/spring and tap DW. These 151 

bacteria were members of 5 of the 6 orders of Betaproteobacteria described in DW: 152 

Burkholderiales (25 genera), Rhodocyclales (5 genera), Neisseriales (2 genera), 153 

Nitrosomonadales (2 genera), Hydrogenophilales (1 genus), and Methylophilales (1 genus) 154 

(Figure 1). This distribution suggests the endemic character of bacteria of these orders to 155 

DW, independently of being tap or bottled mineral/spring water. In contrast, some 156 

Betaproteobacteria were only reported in bottled mineral water habitats, and, to our 157 

knowledge, were never reported in treated tap DW (e.g. Pseudorhodoferax, Brachymonas, 158 

Ottowia, Caenimonas, Alicycliphilus, Ramlibacter, Diaphorobacter, Xenophilus, Xylophilus, 159 

Leptothrix, Piscinibacter, Tepidimonas, Oxalobacter, Telluria, Paucimonas, Derxia, 160 

Alcaligenes, Methylobacillus, Sulfuritalea, Azoarcus, Deefgea, and Ferritrophicum) (Figure 161 

1). This may suggest the influence of physiologic and metabolic properties of these bacteria 162 

and/or their susceptibility to water treatment.  163 

As expected, most of the bacterial genera observed in treated DW biofilms were also 164 

observed in the tap water (27 out of 33 genera), being the exception the genera Sutterella, 165 
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Undibacterium, Neisseria, Methylibium, Methylotenera, and Methylovorus. Most of the 166 

genera observed to be ubiquitous in DW were also reported in association with humans (24 167 

out of the 36: Achromobacter, Ralstonia, Limnobacter, Burkholderia, Cupriavidus, 168 

Acidovorax, Delftia, Polaromonas, Curvibacter, Variovorax, Comamonas, Pelomonas, 169 

Malikia, Herminiimonas, Janthinobacterium, Herbaspirillum, Massilia, Aquabacterium, 170 

Ideonella, Chromobacterium, Methylophilus, Dechloromonas, Propionivibrio, and 171 

Azospira) (Figure 1). Members of these genera represent candidates for possible interaction 172 

with the human microbiome, leading to the eventual resident colonization or transfer of 173 

acquired traits, such as virulence or resistance to antibiotics. However, the possible risks to 174 

human health are obviously dose dependent, and therefore any risk discussion should rely 175 

also on quantitative analyses rather than only on qualitative diversity assessments. However, 176 

the use of diverse sampling and analyses methods in the supporting literature seriously limit 177 

the possibility of doing accurate quantitative comparisons. Not much is known about the 178 

influence of DW bacteria in the human gut and in what conditions DW bacteria can represent 179 

a risk for human health. The importance of DW as a vehicle of Betaproteobacteria was 180 

highlighted by Lee et al. (2010), who used germ-free mice to demonstrate a correlation 181 

between the bacterial communities originating in the DW and those present in the 182 

gastrointestinal tract, with the Betaproteobacteria Ralstonia representing one of the bacterial 183 

genera transported to the gastrointestinal tract via DW. Recently, Dias et al. (2018) studied 184 

the response of the mouse gut bacterial community to the ingestion of different types of DW. 185 

After 23 days of water consumption, it was observed a significant increase in feces of the 186 

relative abundance of Firmicutes for the different types of water, and of Acinetobacter and 187 

Staphylococcus spp. for treated tap water. 188 
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 189 

Survival strategies 190 

Betaproteobacteria comprise bacteria with the capacity to survive disinfectants or 191 

disinfection processes (Williams et al. 2004; Garrity et al. 2005; Mi et al. 2015), which 192 

facilitate the persistence of these bacteria in DW treatment systems. Although the 193 

mechanisms responsible for this increased survival capacity are not fully understood, they 194 

are supposed to result from the complex interplay of different physiological and structural 195 

properties, such as the oligotrophic and auxotrophic character, detoxification, efficient stress 196 

responses or charity mechanisms among community members (Chapman 2003; Davin-Regli 197 

and Pages 2012; Mi et al. 2015). For example, detoxification is hinted by the capacity of 198 

some Betaproteobacteria (e.g. Burkholderia cepacia, Ralstonia spp., and Delftia spp.) to 199 

biodegrade disinfection byproducts (Field and Sierra-Alvarez 2004; Miyake-Nakayama et al. 200 

2006; Bull et al. 2011). These properties may explain the Betaproteobacteria dominance in 201 

treated DW, and their fitness to survive the water treatment, becoming the largest 202 

proteobacterial class in treated water and associated biofilms (Kalmbach et al. 2000; Mi et 203 

al. 2015). In a study aiming to identify the microorganisms and genes involved in the 204 

biodegradation of benzalkonium chlorides and quaternary ammonium compounds, Ertekin 205 

et al. (2016) highlighted the capacity of Proteobacteria, with Achromobacter spp. (members 206 

of the class Betaproteobacteria) among the most abundant species, to survive and degrade 207 

benzalkonium chlorides. Interestingly, such a capacity was associated with multidrug 208 

resistance (mainly multidrug resistance efflux proteins), oxidative stress response (e.g. 209 

glutathione S-transferases), gene expression regulation (e.g. members of the LysR, LysE, 210 

MerR, rpiR, AraC and AsnC families of transcriptional regulators), catabolic reactions 211 
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(mainly dehydrogenases and FAD dependent oxidoreductases), protein metabolism, outer 212 

cell structure modification, and transport (Ertekin et al. 2016; Duangurai et al. 2018). The 213 

exposure to sub-inhibitory concentrations of quaternary ammonium compounds, as well as 214 

to other antimicrobials, creates (oxidative) stress. The response to that stress may boost gene 215 

transfer and recombination events via prophages, transposons, integrons and integrative-216 

conjugative elements (ICEs) (Tezel and Pavlostathis 2015). Those mobile genetic elements 217 

are frequently described in Betaproteobacteria (Riccio et al. 2001; Shin et al. 2005; Ryan et 218 

al. 2009; Rhodes and Schweizer 2016). These mechanisms have also implications in the 219 

microbial community charity. In addition, the oligotrophic and/or auxotrophic character, as 220 

well as, the efficient stress response of some of these bacteria are related with the resilience 221 

of Betaproteobacteria, demonstrated to occur as contaminants of sterile solutions or of 222 

disinfectant solutions (Weber et al. 2007). For example, Ralstonia spp. are often reported as 223 

contaminants in blood culture medium, sterile saline solution or other medical solutions 224 

(Gardner and Shulman 1984; McNeil et al. 1985; Roberts et al. 1990; Lacey and Want 1991; 225 

Maki et al. 1991; Luk 1996; Labarca et al. 1999; Maroye et al. 2000; Boutros et al. 2002; 226 

Gröbner et al. 2007). Also, Burkholderia spp. (Magalhaes et al. 2003; Doit et al. 2004; Nasser 227 

et al. 2004; Estivariz et al. 2006; Held et al. 2006; Ko et al. 2015), and Achromobacter spp. 228 

(Vu-Thien et al. 1998; Tena et al. 2005; Turgutalp et al. 2012; Hugon et al. 2015) have been 229 

reported as contaminants of disinfectants solutions and medications. This capacity to survive 230 

disinfectants or disinfection processes may explain the high diversity of Betaproteobacteria 231 

observed in treated tap water (Figure 1).  232 

Associated with the capacity to survive treatment processes (e.g. disinfectants, toxic metals, 233 

antibiotics), the capacity of Betaproteobacteria to form biofilms is frequently described (Mah 234 
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and O'Toole 2001; Emtiazi et al. 2004; Schwering et al. 2013; Ertekin et al. 2016; Flemming 235 

et al. 2016; Ferro et al. 2019). The association between both characteristics may have two 236 

explanations: i) the bacteria with increased fitness to survive antimicrobial agents are those 237 

able to form or incorporate biofilm structures, or ii) the biofilm provides an increased 238 

protection against external attacks (e.g. disinfectants) working as a kind of shield by 239 

inhibiting the antimicrobial diffusion by the extracellular polymeric substance (EPS) 240 

molecules or by a direct consequence of the slow growth state of the biofilm cells avoiding 241 

drugs that target metabolic processes occurring during growth (Lewis 2001; Berry et al. 2006; 242 

Anderson and O'Toole 2008; Dufour et al. 2010; Schwering et al. 2013; Flemming et al. 243 

2016). Indeed, both mechanisms are probably combined, as is reported for example for 244 

Ralstonia pickettii, able to survive disinfectant solutions and form biofilm in industrial and 245 

pharmaceutical high-purity water systems (Kulakov et al. 2002; Adley et al. 2005; Ryan et 246 

al. 2011). In DW, it was observed that most of the bacterial genera reported in biofilms were 247 

also reported in tap water (e.g. Ralstonia, Limnobacter, Burkholderia, Cupriavidus, 248 

Acidovorax, Delftia, Polaromonas, Curvibacter, Variovorax, Janthinobacterium, 249 

Herbaspirillum, Aquabacterium, Dechloromonas), suggesting that these bacteria exist in a 250 

dynamic equilibrium between the planktonic and biofilm state. However, some genera, 251 

described mainly in biofilms rather than in the planktonic state in DW, such as Sutterella, 252 

Undibacterium, Neisseria, Methylibium, Methylotenera, and Methylovorus, may benefit 253 

from the protective biofilm structure (Figure 1). That protective effect was demonstrated for 254 

instance in Neisseria gonorrhoeae observed to be more resistant to non-thermal atmospheric 255 

pressure plasma treatment in the biofilm-resident state than in the planktonic form (Xu et al. 256 

2011). Also UV disinfection may enhance the biofilm metabolic activity (Schwartz et al. 257 

2003).  258 
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Other mechanisms, such as the association with free-living amoebas, may also explain the 259 

good fitness of the Betaproteobacteria in DW. The free-living amoebas can easily resist the 260 

DW treatment and are important in the bacterial community modulation since they feed on 261 

bacteria, by phagocytosis (Delafont et al. 2016). However, some bacteria developed 262 

mechanisms of amoeba-digestion resistance, and instead of dying when internalized by 263 

amoeba, they survive and multiply, being later released back to the environment. Among the 264 

bacterial characteristics described as relevant for their increased survival to amoeba grazing 265 

are features as the cell surface properties, the production of bioactive metabolites, the 266 

swimming speed, the microcolony formation or the cell-to-cell communication (Matz and 267 

Kjelleberg 2005). As happens with other taxa, Betaproteobacteria comprise amoeba-268 

resistant members, as for example the genera Achromobacter, Burkholderia, 269 

Chromobacterium, Delftia, and Ralstonia (Thomas et al. 2010). Curiously, all of these genera 270 

have been reported in both tap and bottled mineral DW as well as in the human microbiome 271 

(Figure 1). 272 

 273 

 274 

DW Betaproteobacteria as potential carriers of virulence factors  275 

Virulence factors are molecules that enable a microorganism to establish itself on or within 276 

a host and enhance its potential to cause disease. The virulence of a pathogen depends on its 277 

ability to accomplish the different steps required to cause infection: adhesion, colonization, 278 

invasion, immune response inhibition and/or production of toxins. In general, the success of 279 

the pathogen relies, among other factors, on the diversity and sophistication of the invasion, 280 
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proliferation and defense mechanisms. With modest virulence machinery, opportunistic 281 

pathogens are commensal or environmental bacteria, often innocuous for a healthy 282 

individual. However, these bacteria, have the potential to cause disease in individuals with 283 

diminished defenses (e.g., disease, wound, medication, prior infection, immunodeficiency, 284 

ageing), due to the presence of virulence factors that facilitate invasion and or proliferation 285 

in the host (Brown et al. 2012). Some of the Betaproteobacteria found in DW have a distinct 286 

array of virulence factors and, therefore, meet the criterion of opportunistic pathogens (Table 287 

1). 288 

Virulence factors or homologous genes have been described in 11 out of the 24 289 

Betaproteobacteria genera detected in both DW (tap and mineral) and in the human 290 

microbiome (Table 1). The fact that only these 11 genera were reported as potential carriers 291 

of virulence factors suggests a major knowledge gap about ubiquitous and potentially 292 

hazardous microbial groups. Curiously, not even for species associated with outbreaks, as 293 

Ralstonia pickettii and R. mannitolilytica, were described virulence factors (Labarca et al. 294 

1999; Maroye et al. 2000; Daxboeck et al. 2005; Gröbner et al. 2007; Coman et al. 2017). 295 

Virulence factors may be divided into membrane proteins, capsule, secretory proteins, and 296 

others (Table 1). The membrane proteins are mainly associated with the increased capacity 297 

of adhesion of the bacteria to the host cells (Wu HJ et al. 2008). Specifically, type IV 298 

secretion systems (T4SS), only described in Gram-negative bacteria and common among 299 

these bacteria, were frequently reported in DW Betaproteobacteria, in six different genera 300 

(Table 1). The presence of a capsule, a key virulence determinant that can mediate resistance 301 

to both phagocytosis and complement-mediated killing (Reckseidler-Zenteno et al. 2005; 302 

Abreu and Barbosa 2017), was described in Burkholderia species. The secretory proteins 303 
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include the systems of transport of toxins, the toxins, and immune response inhibitors, as 304 

well as other siderophores or proteins, all of them observed in DW Betaproteobacteria (Table 305 

1). Secretion systems (SS) are used by bacteria to secrete virulence factors from the cytosol 306 

into host cells or the host environment, and can span the inner and outer membrane (e.g. RND 307 

efflux systems, T1SS, T2SS, T3SS, T4SS, T6SS) or only the outer membrane (e.g. T5SS) 308 

(Costa et al. 2015). In human-associated DW Betaproteobacteria, the most common 309 

secretion systems seem to be T2SS, T3SS, and T6SS (Table 1). One of those, the T3SS, also 310 

known as “injectisome”, has an important role in the proteins export from the bacterial 311 

cytoplasm into the host eukaryotic cells (Cornelis 2006; Puhar and Sansonetti 2014), being 312 

the mechanism used by B. pseudomallei to cause melioidosis in mammals or R. 313 

solanacearum to cause plant bacterial wilt (Stevens et al. 2002; Valls et al. 2006; Puhar and 314 

Sansonetti 2014). The multidrug RND (resistance nodulation cell division) efflux pumps, 315 

described for B. pseudomallei (Table 1), may be responsible for intrinsic resistance to several 316 

antimicrobials (Munita and Arias 2016; Rhodes and Schweizer 2016). T4SS, only described 317 

in B. cenocepacia and A. xylosoxidans (Table 1), allow the transport of DNA and may have 318 

an important role in the transfer of genetic material (Cascales and Christie 2003; Green and 319 

Mecsas 2016). Toxin production is described in members of the genera Burkholderia, 320 

Chromobacterium, and Achromobacter (Table 1).  321 

Quorum-sensing (QS) rules a bacterial cell-to-cell communication process, based on auto-322 

inducer signaling, enabling bacteria to adjust the cell density and gene expression, regulating 323 

activities such as bioluminescence, sporulation, competence, antibiotic production, biofilm 324 

formation, or virulence factor secretion (Rutherford and Bassler 2012). QS is important in 325 

biofilm formation and also for the activation of virulence factors (Dufour et al. 2010; Soto 326 
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2013). These communication processes have been described in Burkholderia spp. and 327 

Chromobacterium violaceum, Ralstonia solanacearum, or Polaromonas spp. (Table 1).  328 

This review on virulence factors reveals that the machinery for host colonization, invasion 329 

and infection, typical of opportunistic pathogens, is available in DW Betaproteobacteria that 330 

can also be associated with the human microbiome. Potential virulence may not be eliminated 331 

by disinfection as was demonstrated by previous studies that showed that chlorination may 332 

promote the increase of the relative abundance of virulence proteins in drinking water (e.g. 333 

translocases, transposons, Clp proteases, and flagellar motor switch proteins) (Huang et al. 334 

2014). Potential virulence combined with disinfection resilience put DW Betaproteobacteria 335 

among the potentially relevant safety biomarkers. 336 

 337 

Antimicrobial resistance in DW Betaproteobacteria  338 

In addition to the ubiquitous character and virulence potential, some Betaproteobacteria 339 

exhibit resistance to different antibiotics (Vaz-Moreira et al. 2014; Khan et al. 2016; Vaz-340 

Moreira et al. 2017), which may increase the risk associated with their presence in DW. Jia 341 

et al. (2015) demonstrated that the relative abundance of antibiotic resistance genes (ARGs) 342 

increased after DW chlorination, being Betaproteobacteria Acidovorax spp. among the 343 

bacterial groups that most contributed to that shift. Also in natural mineral/spring water, not 344 

subjected to any kind of treatment, the presence of Betaproteobacteria yielding antibiotic 345 

resistance phenotypes has been reported (Messi et al. 2005; Falcone-Dias et al. 2012). These 346 

evidences suggest the important contribution of Betaproteobacteria to the DW resistome. 347 
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Although most of the antimicrobial resistance mechanisms detected in the environment can 348 

be intrinsic, meaning they are a phenotypic expression of a gene that is common to all 349 

members of a given species or genus, they can still contribute to the failure of antibiotic 350 

therapy (Cox and Wright 2013; Perry et al. 2014). A well-known example of intrinsic 351 

resistance is the presence of the outer membrane (OM) in Gram-negative bacteria that may 352 

modify their porin channels to confer impermeability to different molecules or the presence 353 

of efflux pumps that allow the reduction of the intracellular concentration of a given drug 354 

contributing to multidrug resistance (MDR) phenotype (Cox and Wright 2013; Perry et al. 355 

2014; Pothula et al. 2016). The intrinsic resistance is inherited vertically, from one generation 356 

to the next.  357 

Different intrinsic antimicrobial resistance mechanisms are described in Betaproteobacteria 358 

species, although this information is available for a reduced number of species, specifically 359 

for six out of the 36 genera reported in both tap and bottled mineral water (Table 2). This 360 

information scarcity is also related with the limited attention that has been given to this group 361 

of bacteria, with the exception of a few species that are considered of high clinical relevance 362 

(e.g. Achromobacter xylosoxidans and Burkholderia cepacia). The DW Betaproteobacteria 363 

intrinsic resistance is frequently against penicillins and cephalosporins, as well as to other 364 

antimicrobial agents, as fosfomycin (Table 2). It is important to note that some of the species 365 

related to the bacterial genera commonly found in DW habitats present intrinsic resistance to 366 

some drugs that are considered last-resort drugs, being only used in clinical settings. For 367 

example, the colistin (polymyxin E) is the only clinically approved therapeutic agent that 368 

inhibits the OM and efflux systems (Cox and Wright 2013). However, some Burkholderia 369 

spp., Chromobacterium violaceum and Janthinobacterium lividum are described as being 370 
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intrinsically resistant to colistin (Table 2), and are also reported as infectious agents 371 

(Patjanasoontorn et al. 1992; Jones et al. 2001; Sirinavin et al. 2005; Yuan et al. 2006; 372 

Kennedy et al. 2007; Yang and Li 2011; Hu C-h and Wang 2012). Also beta-lactams are 373 

frequently used as front-line treatments in combinations antibiotic/beta-lactamase inhibitor 374 

(e.g. sulbactam, clavulanate, tazobactam) (Cox and Wright 2013). However, also to these 375 

combinations were detected intrinsic resistance phenotypes in Achromobacter xylosoxidans 376 

and Burkholderia cepacia (Table 2). Aminoglycosides resistance, described in Burkholderia 377 

spp. or A. xylosoxidans (Table 2), is supposedly intrinsic and may be associated to the 378 

presence of RND multidrug efflux pumps (e.g. BpeAB-OprB, AmrAB-OprA or AxyXY-379 

OprZ) (Buroni et al. 2009; Bador et al. 2013). This is particularly relevant when some studies 380 

show that the occurrence of the RND efflux systems increases in DW after chlorination (Jia 381 

et al. 2015). The association of these efflux systems to an increased tolerance or resistance to 382 

aminoglycosides is curious because previous studies have shown a higher prevalence of 383 

resistance to aminoglycosides after DW treatment (Armstrong et al. 1982; Vaz-Moreira et al. 384 

2011; Vaz-Moreira et al. 2012; Narciso-da-Rocha et al. 2013; Ma et al. 2017). Although 385 

intrinsic resistance has a low potential to be transferred to other bacteria, it may jeopardize 386 

the treatment of infections caused by these bacteria. 387 

In addition, some of the described Betaproteobacteria characteristics may contribute to their 388 

capacity to acquire new resistance to antibiotics, as the capacity to form biofilms and the 389 

presence of type 4 secretion systems (T4SS) (Table 1). While the T4SS allows the transport 390 

of DNA, the biofilm formation allows a close proximity between cells, facilitating both the 391 

dissemination of resistance genes between cells by horizontal gene transfer (HGT) (Cascales 392 

and Christie 2003; Flemming et al. 2016; Green and Mecsas 2016). Król et al. (2013) 393 
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observed that conjugation can be up to 700-fold more efficient in biofilms than in free-living 394 

bacterial cells. Described examples are the A. xylosoxidans acquired resistance to 395 

ciprofloxacin, ceftazidime and carbapenems, in clinical isolates from cystic fibrosis patients 396 

(Amoureux et al. 2013) and the acquisition of new genetic elements associated to mobile 397 

genetic elements (Riccio et al. 2001; Iyobe et al. 2002; Shin et al. 2005; Neuwirth et al. 2006; 398 

El Salabi et al. 2012; Yamamoto et al. 2012; Hu Y et al. 2014), or the Burkholderia spp. 399 

acquired antibiotic resistance to fluoroquinolones, trimethoprim among others (Pitt et al. 400 

1996; Thibault et al. 2004; Rhodes and Schweizer 2016). Apart from these two genera, based 401 

on our literature search, no information is available for possible acquired antibiotic resistance 402 

mechanisms.  403 

Of special interest in Betaproteobacteria, are the processes of co-resistance or cross-404 

resistance. While co-resistance is mainly due to genetic linkage (e.g. antibiotic and metal 405 

resistance in the same genetic element), cross-resistance is due to broad spectrum resistance 406 

mechanisms (e.g. MDR efflux pumps). In both cases,  resistance to the exposure to a specific 407 

agent (e.g. antibiotics, metals, disinfectants) may facilitate the selection of populations 408 

resistant to different antimicrobial agents (Chapman 2003; Baker-Austin et al. 2006).  409 

 410 

Concluding remarks and future research challenges 411 

Water quality is a central issue for human health and wellbeing. On average, an adult ingests 412 

about 1 L of water per day, every day. This makes of water the food product ingested at the 413 

highest amounts during a person lifetime. Simultaneously, water is also an important way of 414 

dissemination of bacteria and chemical compounds, including contaminants (WHO 2012). 415 
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For these reasons, DW microbiome may play an important role in human health and 416 

wellbeing, with relevant implications of the major populations, such as Betaproteobacteria. 417 

While some DW bacteria may be beneficial or innocuous, others may represent a risk for 418 

human health. The latter may be due to some DW Betaproteobacteria.  419 

Betaproteobacteria are abundant and diverse in DW or DW biofilms, being some of them 420 

ubiquitous to tap and bottled natural mineral/spring water (Figure 1). Moreover, some DW 421 

Betaproteobacteria are also reported in humans. The human health risk posed by DW 422 

Betaproteobacteria can be inferred from their resistance to disinfection, the presence of 423 

virulence factors and intrinsic antibiotic resistance. Some of the virulence factors described 424 

in Betaproteobacteria, such as adherence factors or the capacity to form biofilms, may 425 

contribute to explain the ability of these bacteria to survive in water habitats. Hypothetically, 426 

all these are factors that may increase the probability of causing opportunistic infections, 427 

being here highlighted in the need for further research in this field.  428 

From this literature review, three bacteria genera seem to stood out: Achromobacter, 429 

Burkholderia, and Ralstonia. Members of these genera were also those previously associated 430 

with infection outbreaks. Given the phylogenetic and physiologic proximity, other 431 

Betaproteobacteria genera might share similar properties still unknown, given the scarcity 432 

of information. This was, indeed, a major conclusion of this review. Bacteria that are not 433 

considered primary pathogens are, most of the times, not screened in routine monitoring 434 

analyses in clinical situations. For example, Ralstonia spp. occasionally associated with 435 

infection episodes, may be a misidentified opportunistic pathogen, if it is not included in the 436 

screened pathogen database (Daxboeck et al. 2005; Ryan et al. 2006; Ryan and Adley 2014; 437 

Coman et al. 2017).  438 
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The first step to improve the current knowledge is to have a good overview of the 439 

Betaproteobacteria diversity in DW and their possible association with humans, virulence, 440 

adaption potential, and genome dynamics for antimicrobial resistance or virulence 441 

acquisition. This review is a first step to fill in this gap. Because some of those characteristics 442 

will be better understood based on culture methods, additional investment in culturomic 443 

approaches are most welcome in the DW microbiology field (Greub 2012; Lagier et al. 2012).  444 

Although DW is considered important for human health and well-being, many questions are 445 

still requiring our attention. It is important to understand how/if the DW microbiota, 446 

including the Betaproteobacteria group, focused in this review, may direct or indirectly 447 

influence human health.  448 
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Table 1. Described virulence factors or homologous genes (*) in Betaproteobacteria genera observed in tap and bottled mineral 1110 

drinking water and described as human-associated bacteria 1111 

Classification Sub-classification Examples Drinking-water associated bacteria References 

Membrane 

proteins 

Adhesion Burkholderia oligomeric coiled-coil adhesin A 

(BoaA) and b (BoaB). 

Burkholderia pseudomallei (Balder et al. 2010) 

  
Pilus structural proteins (Type IV pili) B. pseudomallei; Burkholderia 

cenocepacia; Acidovorax avenae subsp. 

avenae; Acidovorax citrulli; Ralstonia 

solanacearum; Limnobacter thiooxidans 

(*); Chromobacterium violaceum (*) 

(Liu et al. 2001; Kang et al. 2002; 

Alves de Brito et al. 2004; Essex-

Lopresti et al. 2005; Bahar et al. 2009; 

Holden M. T. et al. 2009; Burdman 

and Walcott 2012; Ibrahim et al. 2012; 

Stone et al. 2014; Har et al. 2015)   
Chaperone-usher type fimbriae B. cenocepacia (Holden M. T. et al. 2009)   
Flp-type pili B. cenocepacia; Cupriavidus taiwanensis 

(*) 

(Amadou et al. 2008; Holden M. T. et 

al. 2009) 
  

Hemagglutinin/hemolysin related B. pseudomallei (*); L. thiooxidans (*); 

Achromobacter xylosoxidans (*) 

(Dowling et al. 2010; Li et al. 2013; 

Har et al. 2015)   
Mannose-fucose binding lectin (LecM) R. solanacearum (Meng et al. 2015) 

  
22-Kda adhesion protein AdhA B. cenocepacia (Holden M. T. et al. 2009) 

  
BuHA family of proteins B. cenocepacia (Holden M. T. et al. 2009) 

 
  BcaA autotransporter protein B. pseudomallei (Campos et al. 2013; Stone et al. 

2014) 

  poly-β-1,6-N-acetyl-D-glucosamin (pga 

operon) 

A. xylosoxidans (*) (Jakobsen et al. 2013) 

  Outer Membrane Protein (Omp21) Delftia acidovorans (Baldermann et al. 1998) 
 

Actin-based 

intracellular motility 

Burkholderia intracellular motility A (BimA) B. pseudomallei, Burkholderia mallei; 

Burkholderia thailandensis 

(Stevens et al. 2005; Sitthidet et al. 

2010; Sitthidet et al. 2011) 
 

Invasion and 

colonization 

Polar flagella B. pseudomallei; B. cenocepacia; A. 

citrulli 

(Chua et al. 2003; Inglis et al. 2003; 

Urban et al. 2004; Burdman and 

Walcott 2012) 
 

  BuHA family of autotransporting membrane 

proteins 

B. cenocepacia (Holden M. T. et al. 2009) 
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Surface components LPS core oligosaccharide B. cenocepacia; A. xylosoxidans (*); C. 

violaceum (*) 

(Alves de Brito et al. 2004; Loutet and 

Valvano 2010; Li et al. 2013)  
  EPS (extracellular polysaccharide) R. solanacearum (Genin and Denny 2012) 

 
Others HtrA protease B. cenocepacia (Flannagan et al. 2007) 

    cbb3-Type Cytochrome c Oxidase R. solanacearum (Colburn-Clifford and Allen 2010) 

Capsule Antiphagocytosis Type I O-polysaccaharide (capsule I) B. pseudomallei (DeShazer et al. 1998; Reckseidler-

Zenteno et al. 2005; Wikraiphat et al. 

2009) 
  

Cepacian polysaccharide B. cenocepacia (Holden M. T. et al. 2009) 

    Capsular polysaccharides (CPS)  B. pseudomallei, B. thailandensis (Reckseidler-Zenteno et al. 2005; 

Cuccui et al. 2012; Marchetti et al. 

2015) 

Secretory 

proteins 

Immune response 

inhibitors 

Mip-like (macrophage infectivity potentiator) C. taiwanensis (*) (Amadou et al. 2008) 

  
Proteases B. pseudomallei (*) (Dowling et al. 2010) 

  
Phospholipases B. pseudomallei (*) (Dowling et al. 2010) 

 
  TssM (BPSS1512) deubiquitinase B. pseudomallei (Tan et al. 2010) 

 
Toxins HicA toxin B. pseudomallei (Butt et al. 2014) 

  
Bcc toxin Burkholderia cepacia complex (Thomson and Dennis 2012) 

  
Burkholderia Lethal Factor 1 (BLF1) B. pseudomallei (Cruz-Migoni et al. 2011) 

 
  Hemolysin B. cepacia; B. pseudomallei (*); C. 

violaceum (*) 

(Hutchison et al. 1998; Alves de Brito 

et al. 2004; Dowling et al. 2010) 

  RTX toxin A. xylosoxidans (*) (Li et al. 2013) 

  Colicin V and exoenzyme regulatory protein 

(AepA) 

A. xylosoxidans (*); C. violaceum (*) (Alves de Brito et al. 2004; Jakobsen 

et al. 2013)  
Transport of toxins RND efflux pump (e.g. BpeAB-OprB) B. pseudomallei (Chan and Chua 2005; Mima and 

Schweizer 2010) 

  Type I secretion system (T1SS) B. pseudomallei; B. cenocepacia; C. 

violaceum (*) 

(Alves de Brito et al. 2004; Holden 

Matthew TG et al. 2004; Holden M. T. 

et al. 2009) 
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Type II secretion system (T2SS) B. pseudomallei; B. mallei; B. 

cenocepacia; R. solanacearum; A. avenae 

subsp. avenae (*); A. citrulli (*); C. 

taiwanensis (*); L. thiooxidans (*); C. 

violaceum (*); A. xylosoxidans (*) 

(Holden Matthew TG et al. 2004; 

Amadou et al. 2008; Holden M. T. et 

al. 2009; Persson et al. 2009; 

Poueymiro and Genin 2009; Burdman 

and Walcott 2012; Ibrahim et al. 2012; 

Har et al. 2015)   
Type III secretion system (e.g. Bsa T3SS) B. pseudomallei; B. mallei; B. 

thailandensis; B. cenocepacia; R. 

solanacearum; A. citrulli; Herbaspirillum 

rubrisubalbicans; A. avenae subsp. 

avenae (*); C. taiwanensis (*); 

Limnobacter sp. (*); C. violaceum (*); A. 

xylosoxidans (*) 

(Stevens et al. 2003; Alves de Brito et 

al. 2004; Holden Matthew TG et al. 

2004; Genin et al. 2005; Amadou et 

al. 2008; Cullinane et al. 2008; 

Whitlock et al. 2008; Holden M. T. et 

al. 2009; Poueymiro and Genin 2009; 

Muangman et al. 2011; Ibrahim et al. 

2012; Schmidt et al. 2012; Jakobsen et 

al. 2013; Li et al. 2013; Kondo et al. 

2017)   
Type IV secretion system (T4SS) B. cenocepacia; A. xylosoxidans (*) (Engledow et al. 2004; Li et al. 2013) 

  
Type V secretion system (T5SS) B. pseudomallei; B. mallei; B. 

cenocepacia; Limnobacter sp. (*) 

(Holden Matthew TG et al. 2004; 

Holden M. T. et al. 2009; Persson et 

al. 2009)  
  Type VI secretion system (e.g. T6SS-5) B. pseudomallei; B. mallei; B. 

cenocepacia; B. thailandensis; A. avenae 

subsp. avenae; A. citrulli; C. taiwanensis 

(*); L. thiooxidans (*); Limnobacter sp. 

(*); A. xylosoxidans (*) 

(Amadou et al. 2008; Schell et al. 

2008; Holden M. T. et al. 2009; 

Persson et al. 2009; Schwarz et al. 

2010; Ibrahim et al. 2012; Jakobsen et 

al. 2013; Burtnick et al. 2014; Har et 

al. 2015; Tian et al. 2015) 
 

Other Zinc metalloproteases ZmpA and ZmpB B. cenocepacia (Holden M. T. et al. 2009)   
Phospholipases C B. cenocepacia (Holden M. T. et al. 2009) 

  
Siderophores (e.g. ornibactin, salicylic acid, 

pyochelin, staphyloferrin B, micacocidin) 

B. cenocepacia; R. solanacearum; L. 

thiooxidans (*) 

(Sokol et al. 1999; Bhatt and Denny 

2004; Holden M. T. et al. 2009; 

Kreutzer et al. 2011; Har et al. 2015)   
bipB, bipC and bipD proteins B. pseudomallei (Stone et al. 2014; Vander Broek and 

Stevens 2017) 
  

Malleipeptin A and malleipeptin B B. pseudomallei (Biggins et al. 2014) 



 

53 
 

  
MprA serine metalloprotease B. pseudomallei (Valade et al. 2004; Burtnick et al. 

2014) 

    MgtC protein B. cenocepacia (Rang et al. 2007) 

Others Biofilm production FixLJ system B. cepacia complex (Schaefers et al. 2017) 

  
Lys-R type regulator B. cenocepacia; R. solanacearum (Brumbley et al. 1993; Schell 2000; 

Bernier et al. 2008) 
 

  Mannose-fucose binding lectin (LecM) R. solanacearum (Meng et al. 2015) 
 

Phenylacetic acid 

catabolic pathway 

  B. cenocepacia (Law et al. 2008) 

 Denitrification Nitrate reduction (e.g. Nos system, NirV) A. xylosoxidans (*) (Jakobsen et al. 2013) 
 

Signalling c-di-GMP-specific phosphodiesterase (CdpA)  B. pseudomallei (Lee HS et al. 2010) 
  

CepIR Quorum-sensing system most Burkholderia spp. (Lewenza et al. 1999; Ulrich et al. 

2004; Chan and Chua 2005; Song et 

al. 2005; Subsin et al. 2007; Holden 

M. T. et al. 2009; Subramoni and 

Sokol 2012)   
CciIR Quorum-sensing system B. cenocepacia (Baldwin et al. 2004) 

  
BDSF, nonhomoserine lactone signal molecule B. cenocepacia (Boon et al. 2008) 

  
BviIR Quorum-sensing system B. vietnamiensis (Malott and Sokol 2007) 

  
PmlI-PmlR Quorum-Sensing System B. pseudomallei (Valade et al. 2004) 

  Violacein (CviI/R AHL QS system) C. violaceum (Steindler and Venturi 2007)  
  other Quorum sensing systems A. citrulli; R. solanacearum; 

Polaromonas spp. (*) 

(Spirig et al. 2008; Johnson and 

Walcott 2013; Meng et al. 2015; 

Wang et al. 2016) 
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Table 2. Described intrinsic antimicrobial resistance in Betaproteobacteria species belonging to bacterial genera detected in both tap 1113 

and bottled natural mineral/spring drinking water. 1114 

Species Beta-lactams Aminogly-

cosides 

Polype-

ptides 
Quinolones Sulfonamides 

Tetracycline

s 
Others References 

Penicillins Cephalosporins Carbapenems Monobactam        

Achromobacter 

xylosoxidans 

Ampicillin,  

Amoxicillin-

clavulanate, 

Cefazolin, 

Cefotaxime, 

Ceftriaxone, 

Cefepime 

Ertapenem Aztreonam + n.i. n.i. n.i. n.i. Trimethoprim, 

Fosfomycin 

(Almuzara et al. 

2010; Bador et 

al. 2013; 

Leclercq et al. 

2013; Abbott and 

Peleg 2015) 

Burkholderia 

cepacia 

Ampicillin, 

Amoxicillin, 

Piperacillin, 

Ticarcillin, 

Ampicillin-

sulbactam, 

Amoxicillin-

clavulanate, 

Piperacillin-

tazobactam, 

Ticarcillin-

clavulanate 

Cefotaxime, 

Ceftriaxone, 

Ceftazidime, 

Cefepime, 

Cefsulodin 

Cefazolin. 

Imipenem, 

Meropenem, 

Ertapenem 

Aztreonam + Colistin Ciprofloxacin Trimethoprim-

sulfamethoxazole 

Tetracyclines Tigecycline, 

Trimethoprim, 

Fosfomycin, 

Chloramphenicol 

(Baxter et al. 

1997; Palleroni 

2005; Leclercq et 

al. 2013; Abbott 

and Peleg 2015; 

CLSI 2015)  

Burkholderia 

gladioli 

Ticarcillin,  

Ticarcillin-

clavulanate 

Cefsulodin Imipenem n.i. + Colistin n.i. n.i. n.i. Fosfomycin (Baxter et al. 

1997; Palleroni 

2005)  

Burkholderia 

mallei 

Ticarcillin n.i. n.i. n.i. n.i. n.i. Norfloxacin n.i. n.i. Fosfomycin, 

Clindamycin 

(Thibault et al. 

2004)  

Burkholderia 

pseudomallei 

Ticarcillin Cefoxitin n.i. n.i. Gentamicin, 

Streptomycin, 

Erythromycin 

n.i. Norfloxacin n.i. n.i. Fosfomycin, 

Clindamycin 

(Thibault et al. 

2004; Buroni et 

al. 2009)  

Chromobacterium 

violaceum 

Penicillin, 

Ampicillin 

Cephaloridine n.i. n.i. n.i. Colistin n.i. Sulfafurazole n.i. Vibriostatic 

agent O/129 

(Gillis and Logan 

2005a)  

Herbaspirillum 

seropedicae and H. 

rubrisubalbicans 

Pennicilin n.i. n.i. n.i. n.i. n.i. Nalidixic 

acid 
n.i. n.i. Novobiocin, 

Rifampicin 

(Baldani et al. 

2005)  

Janthinobacterium 

agaricidamnosum 

Pennicilin n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. Vancomycin (Lincoln et al. 

1999; Gillis and 

Logan 2005b)  
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Janthinobacterium 

lividum 

Pennicilin n.i. n.i. n.i. n.i. Colistin n.i. n.i. n.i. Nitrofurantoin, 

Vibriostatic 

agent O/129 

(Gillis and Logan 

2005b)  

Variovorax 

paradoxus 

Ampicillin, 

Methicillin 

n.i. n.i. n.i. n.i. n.i. n.i. n.i. n.i. Novobiocin (Willems et al. 

2005) 

+, described intrinsic resistance; n.i., no information available.1115 
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  1116 

Figure 1. Diversity of Betaproteobacteria in drinking water habitats and in the Human microbiome. The black symbol means 1117 

“detected”, the white “non-detected”. The dendrogram was constructed with the iTOL – interactive tree of life (Letunic and Bork 1118 

2016), based on the taxon ID codes. 1119 


