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Resumo 

A indústria da aviação é, hoje em dia, caraterizada por uma intensa 

competição global entre companhias aéreas. Os custos com combustível 

representam uma parte substancial das despesas operacionais e estão sempre 

sujeitos à volatilidade do mercado. Tanto a cobertura de risco financeiro como 

operacional estão ao dispor das companhias aéreas para contrariar a 

volatilidade e reduzir os custos em combustível. Sendo um dos poucos estudos 

a incluir companhias aéreas da Europa e da Ásia, esta investigação foca-se em 

43 companhias ao longo do período 2007-2017 e conclui que as transportadoras 

aéreas Europeias têm menor exposição ao risco do preço do combustível, do 

que as companhias Asiáticas ou Norte-Americanas. Também é realizada uma 

comparação entre tipos de companhias e é possível concluir que a exposição 

média ao preço do querosene é maior em companhias-bandeira do que nas de 

baixo custo. Pensamos que este será o primeiro estudo global a incluir três 

medidas de cobertura de risco operacional, sendo estes a diversidade da frota, a 

eficiência de combustível, e a utilização de aviões em leasing operacional. 

Treanor, Carter, Rogers, & Simkins (2013) estudaram estas medidas mas apenas 

em companhias Norte-Americanas. Usando modelos de efeitos-fixos, os nossos 

resultados sugerem que a cobertura do risco financeiro acaba por aumentar a 

exposição. Adicionalmente, as nossas evidências apontam para uma rejeição da 

hipótese de que a cobertura de risco operacional leva a uma diminuição da 

exposição ao risco do preço do querosene, em todas as nossas três proxies. 

 

Palavras-chave: hedging financeiro, hedging operacional, exposição ao risco, 

querosene, diversidade da frota, idade da frota, leasing operacional, companhia 

aérea, indústria da aviação. 

 

Códigos JEL: G32, L93 



 vi 

Abstract 

The airline industry is nowadays characterized by an intense competition 

among carriers around the globe. Jet fuel costs represent a substantial part of 

airlines’ operating expenses and are always subject to the market volatility. 

Both financial and operational hedging are at the disposal of airlines to offset 

the volatility and smooth these expenses across the years. Being one of the few 

studies to include airlines from Europe and Asia, this research focuses in 43 

airlines over the period 2007-2017 and finds that European carriers are less 

exposed to fuel price than Asian or North American airlines. We also test for 

types of carriers and find evidence that the average fuel exposure is higher on 

premium airlines, when comparing to low-cost carriers. To our knowledge, this 

is the first study to include three measures of operational hedging on a global 

sample of airlines, namely fleet diversity, fuel-efficiency and operating leased 

aircrafts. Treanor, Carter, Rogers, & Simkins (2013) studied these but only on a 

sample of North American airlines. Using fixed-effects’ models, our results 

suggest that financial hedging increases fuel risk exposure. Furthermore, our 

results lead to a rejection of the hypothesis that operational hedging decreases 

airlines’ exposure, on all three proxies we consider. 

 

Keywords: risk management, financial hedging, operational hedging, risk 

exposure, jet fuel, kerosene, fleet diversity, fleet age, operational leasing, airline 

industry. 

 

JEL Codes: G32, L93
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Chapter 1 
Introduction 

The International Air Transport Association (IATA) recently reported that 

fuel costs accounted for over 18.8% of airlines’ operating costs during the year 

of 2017, enhancing the importance of controlling these costs (IATA, 2018).  

Higher fuel costs are not fully charged to passengers by means of higher ticket 

fares, as the airline industry is very competitive, but there is a positive pass-

through effect from changes in crude oil prices to airfares (Gayle & Lin, 2017). 

As so, hedging is a mean through with airlines try putting their efforts on, with 

the goal of having fuel costs relatively lower than its competitors’. 

It is clearly stated in previous studies that current results regarding hedging 

effectiveness in the aviation industry are inconsistent and there is still a lack of 

research in this field (Berghöfer & Lucey, 2014; Treanor, Carter, Rogers, & 

Simkins, 2013). Moreover, Treanor (2008) mentioned that studies on the 

effectiveness of hedging are biased if they exclude operational hedging. 

Additionally, the biggest motivation for this study comes up with an enormous 

passion for the airline industry and its operating challenges. 

The main goal of this research is to test whether financial and operational 

hedging decrease airline companies’ jet fuel price risk exposure. This is done 

using a sample of 43 airlines based on Europe, North America and Asia, 

throughout a period of 11 years (2007-2017). To our knowledge, this is the first 
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study taking into account fleet fuel-efficiency and operational leasing, two 

important operational hedges, on a global sample of airlines. 

As a representative measure for financial hedging it is computed the next 

year’s percentage of fuel hedged (Berghöfer & Lucey, 2014). Three distinct 

operating hedges are added to test on its effectiveness on decreasing such fuel 

exposure. Particularizing, a company’s fleet diversity, measured by the number 

of operating aircraft models (ADI_M) or families (ADI_F), is defined as one of 

the operational hedges (Berghöfer & Lucey, 2014). Additionally, it is computed 

the weighted-average of a company’s fleet age on every single year, given that 

there is a negative relationship between a fleet’s age and its fuel-efficiency 

(Treanor et al., 2013). Moreover, the percentage of aircrafts being held in 

operating leasing contracts is taken into account as the third real option for 

operational hedging (Treanor et al., 2013).  This type of contract allows 

companies for an easier exchangeability of its rented fleet, manageable in 

accordance to their demand situation, and balancing the need for more fuel-

efficient aircrafts depending on the evolution of jet fuel prices. 

Other factors might also impact the exposure of airlines to the fuel price risk, 

such as the average flight distance or the passenger load factor. It is clear that 

the higher the number of passengers aboard, the greater dilution of some costs 

which are incurred regardless of the load factor, such as part of the fuel carried. 

We start with a brief literature review on Chapter 2, discussing the rationales 

for hedging, then going deeper within the airline industry and finally 

counterposing financial and operational hedging. Chapter 3 presents the 

characteristics of our data sample, manually introduced in Excel from the 

readings of 440 annual reports and 10-K fillings, followed by an analysis on the 

methodology used, presenting the different equations to be regressed and 

formulating our hypothesis to be tested. 
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On Chapter 4 we present descriptive statistics, being followed by our results 

and the discussing of our findings. We estimate a two-step model, the first with 

the intent to extract jet fuel exposure coefficients. From this, we find a similar 

percentage of negatively exposed carriers, when comparing to Berghöfer & 

Lucey (2014). We also get differences statistically significant (at a one percent 

level) between exposure coefficients between Europe and Asia, as well as 

between Europe and North America, in line with Berghöfer & Lucey (2014). On 

the other side, and against Berghöfer & Lucey (2014) findings, we did not get 

statistically significant differences on the exposure coefficients between North 

America and Asia. 

Our study also contributes to the vast research by testing for the difference 

on jet fuel exposure between premium and low-cost carriers, on a global scale. 

Although we could not find significant differences between carriers with a two-

sided t-test, we were able to prove, at a 10% significant level on a one-sided test, 

that premium carriers are more exposed than low-cost carriers. 

This study tests several distinct second-step fixed-effects’ models with panel 

data, controlling for airline and year, this way putting jet fuel price exposure 

under test against several proxies for financial and operational hedging. We do 

not find evidence that financial or operational hedging decrease airlines’ fuel 

exposure, contrary to Treanor, Simkins, Rogers, & Carter (2014b). In fact, we 

find evidence that financial hedging increases risk exposure, with five-percent 

significance. This could be explained by ineffective hedging and sector 

specificities, validating the policies followed by North American airlines in the 

past recent years, by decreasing their fuel hedges. Airlines must evaluate if the 

costs of entering into hedging do not exceed the potential benefits.  

Finally, on Chapter 5 we end up presenting the conclusions of our study, 

followed by some of the limitations a work on this field faces, due to the 

difficulty and inconsistency of gathering comparable information across annual 
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reports of companies around the Globe, and still providing some ideas for 

further researches on the impact of hedging in the airline industry. 

 



 

 

 

 

Chapter 2 
Literature Review 

In this chapter, we will review and discuss some literature on risk 

management theories, performing a brief analysis of which is the rationale 

behind the reason why firms hedge, and if this practice adds value to firms. 

This is followed by a deeper analysis on specific practices of hedging within the 

airline industry and ends counterposing both financial and operational hedges 

airlines have at their disposal. 

2.1 Risk Management Theory. Rationales for Hedging. 

Under perfect market conditions, firms would have no incentives to hedge 

with derivative instruments (Modigliani & Miller, 1958). Nonetheless, due to 

the existence of market imperfections, there may be room and rationale for 

hedging, in a way of trying to increase the expected value of a firm (Deshmukh 

& Vogt, 2005). 

Froot, Schafstein, & Stein (1993) note that a firm can reduce its variability of 

cash flows by hedging, ultimately resulting in an increase of firm value. Smith 

& Stulz (1985) share this opinion, however noticing that hedging will also 

reallocate wealth from shareholders to bondholders, with prejudice to the first. 

Moreover, Smith & Stulz (1985) suggest that hedging can reduce financial 

distress costs imposed by bond covenants, diminishing the probability of 

bankruptcy and this way increasing firm value, particularly on larger ones, 
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which present higher distress costs due to its size. These bond covenants have 

an important risk exposure for the companies, many times linked with 

accounting ratios, whose volatility should be carefully managed by the 

enterprise, avoiding bond covenants to become binding. Froot et al. (1993) 

further improve, considering hedging can be used as a way to increase debt 

capacity, once having debt in the capital structure is an advantage due to tax 

shields and also because financial distress is costly. 

Besides, Myers (1977) defends that firms with “debt overhang” might have to 

turn down some investment opportunities, and so, hedging could help 

reducing distortions, ultimately adding value. On its turn, Froot et al. (1993) 

extends previous studies by stating that companies which might need external 

funding and do not hedge, could be obliged to underinvest in some states, due 

to high costs of external capital, including deadweight costs. The article written 

by Carter, Rogers, & Simkins (2005) explains that according to the Froot et al. 

(1993) model, hedging allows companies to decrease their needs of external 

financing when its cost is higher. 

Froot et al. (1993) remember there is a strong evidence stating that 

investment is sensitive to internal cash flow levels. Indeed, firms will tend to 

hedge less when they have lower cash flows available, once this traduces itself 

in lower investment opportunities. On the other side, firms will have an 

increased desire for hedging when there is a higher correlation between their 

cash flows and their facility of obtaining external financing.  

Tufano (1998) improved in a certain way Froot et al. (1993) model by 

considering agency costs between shareholders and managers. He explains that 

when these agency conflicts get high proportions, managers and shareholders 

may sparkle and take different opinions regarding the optimal hedging policy, 

ultimately, destroying value. 
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According to Stulz (1984), managers are the ones who decide the hedging 

strategy of a firm, and not shareholders. On the other side, the latter are the 

ones determining managerial compensation, which has a fixed part, plus 

typically a variable one, tied to the firm’s value. Hence, there seems to be an 

arrangement for a compensation package in a way that shareholders' wealth is 

maximized as long as managers obtain a level of expected utility sufficiently 

great to persuade them on working for the shareholders (Stulz, 1984), which is a 

way of outbalancing managers’ risk aversion. Given this, managers would be 

influenced to reduce the total variance of the firm value, by enforcing hedging 

contracts. 

Froot et al. (1993) finds a weakness on the study computed by Stulz (1984), 

noticing it relies on the assumption that managers are confronted with 

substantial costs when “trading in hedging contracts for their own account”, 

because otherwise, they could fine-tune their risks without implying the firm 

explicitly in hedging events. 

Smith & Stulz (1985) develop one more theory of hedging behavior of value-

maximizing corporations. Given the structure of the tax code and assuming 

taxes as a convex function of earnings, hedging can be considered 

advantageous. Having in mind that hedging will tend to reduce the variability 

of a pre-tax firm value, the expected value for the corporate tax liability would 

also be lower. Consequently, and taking in account that hedging costs are 

relatively small, the expected post-tax firm value shall be higher. 

 

2.2 Does hedging enhance firm value? 

There are scarce studies on the impact of hedging on firm value creation, 

plus there is not a single clear conclusion. For instance, Allayannis & Weston 

(2001) study the impact of foreign currency derivatives in a sample of 720 U.S. 



 8 

nonfinancial firms for the years of 1990-1995. Taking Tobin’s Q as a proxy for 

the relative market value, they find a positive relation, meaning that hedging 

improves firm value. Opposing, Jin & Jorion (2006) develop another study, 

considering a smaller sample of 119 U.S. oil and gas producers for the years of 

1998-2001. They observe that hedging decreases a firm’s stock price sensitivity 

to gas and oil prices, however, concluding that hedging does not appear to 

affect market value, for that particular industry. As a final example, Carter et al. 

(2006) compute a narrower research, exclusively looking at U.S. airline 

companies for the years 1992-2003, for assessing the impact of jet fuel hedging 

on firm value. Their results show that there is a positive relation between jet 

fuel hedging and airline enterprise value. Additionally, they suggest a 

“hedging premium” of around 10% exists, being most of this premium due to 

the interaction of hedging with investment. They claim this is consistent with 

the statement that the reduction of underinvestment costs turns to be the main 

consequence and benefit of jet fuel hedging by airlines. 

 

2.3 Hedging in the airline industry 

Airlines use financial hedging in a way to manage their exposure to jet fuel 

prices (Treanor et al., 2014b). Hentschel & Kothari (2001) remember that there is 

a distinction between hedging, through which return volatility can be reduced, 

and speculation, which increases volatility and firm risk exposure. Dybvig & 

Marshall (1997) and Tokic (2012) highlight that concerning fuel hedging, 

commercial airlines have a long position, by acquiring future or forward 

contracts. The counterpart, being an oil/fuel company, or simply a trader, has 

the short position. Their payoffs are symmetrical. 

It should be noted that aviation fuel futures are not so frequently traded on 

the organized exchange-traded futures market, having to be arranged over-the-
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counter (OTC) alternatives (Berghöfer & Lucey, 2014). OTC derivatives have the 

ability of being easily customizable, enabling a dynamic hedging strategy. On 

the other hand, there is a counterparty risk of bankruptcy for both parts 

involved (Cobbs & Wolf, 2004). As so, airlines rather cross-hedge part of their 

fuel needs with plain vanilla instruments such as swaps, options, forwards and 

futures on similar commodities (Bessembinder, 1991). The most common 

underlying commodities used in financial hedging contracts, for jet fuel 

hedging purposes, are the jet fuel itself, crude oil or even heating oil (Carter, 

Rogers, & Simkins, 2004). The crack spread measures the differential between 

crude oil spot prices and jet fuel spot prices (Berghöfer & Lucey, 2014). This 

spread can be observed in the next two figures, one related to Crude oil WTI 

and other for the Brent Crude oil. 

 

Figure 1: Evolution of the Crude Oil WTI ‘crack spread’ along the years 2007-2017. Daily values1 

for Cushing, OK WTI Spot Price and U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price. 

 

Source: Own figure, using data from the U.S. Energy Information Administration (2019). 

 

 

 

                                                 
1 Source: http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm - Data obtained on 22/01/2019 for the period 2007-
2017. 
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Figure 2: Evolution of the Brent Crude Oil ‘crack spread’ along the years 2007-2017. Daily 

values2 for Europe Brent Spot Price and U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Price. 

 

Source: Own figure, using data from the U.S. Energy Information Administration (2019). 

 

Carter et al. (2004) state there are two key reasons why companies use 

different fuels rather than jet fuel itself, for jet fuel hedging purposes. Firstly, 

simply due to the nature of refining. When the crude oil is processed, the ‘top of 

the barrel’ product is gasoline, followed by the middle distillates (heating oil, 

diesel and kerosene), and then by the ‘bottom of the barrel’ fuel oil. Knowing 

that products from the same ‘level’ of the barrel present similar characteristics, 

plus, consequently, extremely correlated prices, and being jet fuel mainly pure 

kerosene with just a few additives, we have that heating oil is one of the chosen 

by airliners for hedging purposes. They also affirm crude oil prices are highly 

correlated with kerosene prices, therefore being another option of underlying 

for hedging. As final reason, the market for jet fuel is not liquid enough to allow 

for exchange-traded contracts, as already mentioned, reason why airlines prefer 

trading other similar commodities which are more liquid. However, this choice 

                                                 
2 Source: http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm - Data obtained on 22/01/2019 for the period 2007-
2017. 
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exposes airline companies to ‘basis risk’3, due to the difference between the 

price of the commodity being hedged and the price of the instrument used to 

hedge the price risk. 

Guay & Kothari (2003) state that financial derivatives are just employed to 

“fine-tune an overall risk management program that likely includes other 

means of hedging”. Many of the overall risks which non-financial firms face 

(e.g., operating risks) cannot be dealt with by using standard derivatives 

contracts. 

 

2.4 Financial versus Operational Hedging 

Analogous to some previous studies, both the studies of Allayannis, Ihrig, & 

Weston (2001) and Treanor et al. (2013) find evidence in the airline industry that 

operational and financial hedges are complements. However, the latter notices 

the evidence regarding the effectiveness of financial hedging is mixed: financial 

fuel derivatives have a positive impact on airlines’ value, contrary to fuel 

contracts, which diminish the value of airlines by locking in the price of fuel. 

Besides, if an airline solely uses operational hedges, its value is expected to 

decrease.  

Treanor et al. (2013) discuss three types of operational hedges in their 

studies. First, and commonly to Allayannis & Weston (2001), they account for 

the diversity of aircrafts in an airline’s fleet, which is based on the Hirschman-

Herfindahl concentration index. Secondly, they study airlines’ fleet’s fuel 

efficiency, which can be estimated by the aircraft’s average age. As last type of 

operational hedging, the authors evaluate the impact of companies which use 

operating leases on their fleets. 

                                                 
3 Basis risk can be defined as the risk that changes in a futures’ price over time will not follow accurately the 
value of the cash position (Figlewski, 1984). 
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Firms can engage in hedging activities both through derivatives (financial 

hedging) or by recurring to operational hedges, which are part of the real 

options a firm owns (Treanor et al., 2013). These authors also mention on their 

work that the study computed by Allayannis et al. (2001) tests the impact of 

using financial and operational hedging on firm value. Their results show that 

there is not a positive relationship between the value of a multinational 

company and its practice of operational hedging. On the other side, they find 

that by using both financial and operational hedges, there is a value-enhancing 

component up to a 16.7% premium facing a firm’s market to book ratio. 

 

2.5 Empirical Models 

Our main models are inspired in Berghöfer & Lucey (2014), who analyze 64 

airlines from Asia, Europe and North America, between 2002 and 2012, testing 

for the efectiveness of financial hedging, by considering the percentage of next 

year’s fuel hedged, and operational hedging, testing for two different measures 

of fleet diversity. They reject the hypotheses that financial or operational 

hedging decrease risk exposure. 

Treanor et al. (2013) test whether financial and operational hedging are 

substitutes or complements, and include two additional operational hedges, 

fleet fuel efficiency and whether a fleet is held in operating leasing. For their 

sample of U.S. airlines, throughout the period 1994-2006, they find that financial 

hedging increases firm value and operational hedging destroys value. 

Finally, Treanor et al. (2014b) also study U.S. airlines’ exposure to fuel prices 

for the period 1994-2008, finding that financial and operational hedging 

strategies are both effective at reducing airlines’ exposure. 
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Chapter 3 
Data and Methodology 

After reviewing the literature on risk management and hedging, the present 

chapter has the purpose of identifying the data used on this research, as well as 

identifying and describing the theoretical model and variables which are going 

to be used as proxies for testing whether financial and operational hedging can 

reduce airline companies’ jet fuel price risk. We believe this is the first study to 

include and test three distinct operational hedging measures on a global sample 

of airlines. 

3.1 Data Sample 

The period of analysis for this study is comprised between the years 2007 

and 2017, considering a sample of 43 airlines based on North America, Europe 

and Asia as a proxy for the global airline market. Therefore, a panel data is used 

in the regressions. Due to events such as mergers or withdrawal from publicly 

listed exchanges, some airlines might not have information available for the 

whole study period. 

 

The list of companies chosen consists on airlines which are, or at least were 

quoted, during part of the eleven-year sample, on international exchanges. 

Airlines from North America are classified with the code 4512 of the Securities 

and Exchange Commission (SEC) – scheduled air transportation, or also with 
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codes 4522 and 4513, for non-scheduled air transportation and air courier 

services, respectively. These last two are applied only to Atlas Air Worldwide 

and Air Transport Services, correspondingly. 

 

Airlines considered on our sample disclose, at least, four annual reports, out 

of the eleven periods in study. This was defined in order to include Wizz Air, 

an important European low-cost carrier, which is the only airline counting with 

four reports. Out of the low cost carriers hereby analyzed, six are based on 

Europe, one is headed in Asia and four have its headquarters in North America. 

 

Table 1: Overview of the airlines’ annual reports / 10-K fillings analyzed, from 2007 to 2017: 

 Asia Europe North America TOTAL LCC4 

Airlines 14 15 14 43 11 

Periods 144 151 145 440 104 

Average periods per airline 10.29 10.07 10.36 10.23 9.45 

Source: Own figure. 

 

On the next page, Table 2 presents an overview of the information manually 

collected. 

  

                                                 
4 LCC – abbreviation for “low cost carrier”. LCC’s included for Europe are EasyJet, FlyBe Group, Norwegian Air 
Shuttle, Pegasus Airlines, Ryanair and Wizz Air. North American low-cost carriers are Allegiant Travel, JetBlue 
Airways, Southwest Airlines and Spirit Airlines. The only Asian LCC is AirAsia. 
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Table 2: Overview of the data withdrawn from the annual reports and 10-K fillings. 

Variable 
Nº 

Obs. 

Total 

Disclosure 

(%) 

Disclosure 

Europe (%) 

Disclosure 

N. Am. (%) 

Disclosure 

Asia (%) 

% Next year fuel 

hedged 
292 66.36 73.51 82.76 42.36 

Jet Fuel Costs  

(% OPEX) 
422 95.91 100.00 100.00 87.50 

Max. maturity 

fuel hedges 

(months) 

351 79.77 93.38 82.07 63.19 

Underlying 

commodities 
276 62.73 80.79 60.00 46.53 

Exchange rate 

derivatives 
424 96.36 100.00 95.17 93.75 

Interest rate 

derivatives 
432 98.18 100.00 100.00 94.44 

CASK (CASM)5 386 87.73 92.72 83.45 86.81 

CASK (CASM) 

ex-fuel 
386 87.73 92.72 83.45 86.81 

Passenger Load 

Factor 
410 93.18 98.68 84.14 96.53 

Revenue 

Passenger 

Kms/Miles 

365 82.95 76.16 76.55 96.53 

Revenue 

Passengers 

Carried 

352 80.00 82.12 61.38 96.53 

Average Flight 

Distance 
357 81.14 82.78 64.14 96.53 

CPA6 152 34.55 20.53 83.45 0.00 

                                                 
5 CASK stands for “cost per airline seat-kilometer” and CASM is the “cost per airline seat-mile”. 
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Variable 
Nº 

Obs. 

Total 

Disclosure 

(%) 

Disclosure 

Europe (%) 

Disclosure 

N. Am. (%) 

Disclosure 

Asia (%) 

Fuel derivative 

instruments 
383 87.05 92.05 92.41 76.39 

Nº Aircrafts 435 98.86 100.00 100.00 96.53 

Nº Models 428 97.27 100.00 100.00 91.67 

Nº Families 428 97.27 100.00 100.00 91.67 

ADI_M 410 93.18 90.07 100.00 89.58 

ADI_F 410 93.18 90.07 100.00 89.58 

Fleet Age 334 75.91 82.12 92.41 52.78 

% Operational 

Leasing 
364 82.73 84.11 98.62 65.28 

Charter 440 100.00 100.00 100.00 100.00 

% Turboprop 431 97.95 100.00 100.00 93.75 

Total Assets  427 97.05 95.36 98.62 97.22 

OPEX7 422 95.91 95.36 98.62 93.75 

Average 381 86.52 88.90 89.49 81.03 

Source: Own figure. 

 

3.2 Methodology 

3.2.1 Financial Hedging 

Airlines use financial hedging in a way to manage their exposure to jet fuel 

prices (Treanor et al., 2014b). Also, jet fuel costs account for an important part of 

airlines’ operating expenses. Therefore, the proxy considered for financial 

hedging is the percentage of an airline’s jet fuel hedged for the following year 

                                                                                                                                               
6 CPA stands for Capacity Purchase Agreement. 
7 OPEX stands for Operating Expenses. 
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(Berghöfer & Lucey, 2014; Treanor et al., 2013; Treanor et al., 2014b). Another 

aspect of airlines’ financial hedging strategic plan is the maximum maturity of 

derivative instruments used for fuel hedging (Berghöfer & Lucey, 2014), which 

is also here included. 

3.2.2 Operational Hedging 

Previous studies with global samples only included one proxy for 

operational hedging, being the fleet composition (detailed on Chapter 3.2.2.1), 

as in the case of Berghöfer & Lucey (2014). The inclusion of fleet fuel-efficiency 

(Chapter 3.2.2.2) and operational leases (Chapter 3.2.2.3) are herewith firstly 

tested on a global sample. 

 

3.2.2.1 Fleet Composition  

Treanor et al. (2013, 2014b) emphasize a diverse fleet provides additional 

operational flexibility to airlines, once they can adjust their route’s supply of 

seats. Because there is a high cost on abandoning certain markets or routes 

during periods that are not economically favorable (e.g. high fuel prices), it is 

great having a real option through which an airline can replace larger aircrafts 

by smaller ones. Nevertheless, although possessing a diverse fleet has its perks, 

it also comes with a cost. Besides the need for more spare parts and additional 

storage for these, there might also be an increase of costs with maintenance, 

flight crew training and pilots’ type-ratings (Berghöfer & Lucey, 2014), in the 

cases where airlines subsidize these programs. 

Similarly to previous studies of Berghöfer & Lucey (2014) and Treanor et al. 

(2013, 2014b), the proxy for the fleet composition is analogous to the one used 

by G. Allayannis et al. (2001) as a geographic dispersion measure. Based on the 
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Hirschman-Herfindahl concentration index, it is computed an aircraft 

dispersion index (ADI), as entailed next: 

 
𝐴𝐷𝐼_𝑀𝑖 = 1 − ∑

(𝑁𝑜. 𝑜𝑓 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑚𝑜𝑑𝑒𝑙𝑗)2

(𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑖)2

𝑀

𝑗=1

 (1) 

 

Where M stands for the total number of different models operated on airline 

i's fleet, and j represents each aircraft model. The ADI index varies from 0 to 1, 

being one the highest degree of diversity, and zero meaning the airline i is 

operating one single aircraft model. 

 

An Airbus A319neo, for instance, fits a maximum of 140 seats in 1-class 

configuration8, while the A320neo holds space for up to 194 seats9. These two 

aircraft models can serve as substitutes depending on the passengers’ demand 

on a given time, acting as an important operational hedge. 

 

Berghöfer & Lucey (2014) introduce a rational improvement on the ADI 

calculation, comparing to the previous studies computed by Treanor et al. 

(2013, 2014b), presenting this way the same index but considering aircraft 

families. 

Additional costs arise more significantly when operating distinct aircraft 

families, rather than models. Distinct type ratings for cockpit and cabin crew, as 

well as specific maintenance such as spare parts, as already mentioned above, 

are usually specific for each aircraft family, and not per model. For instance, 

pilots who fly the Airbus A320, can also fly the A318, A319 and A321 with the 

same type rating, not incurring in additional costs for airlines. Flight attendants 

can also commute within these aircrafts without the need of extra-costs for 

airlines. 

                                                 
8 Source: https://www.airbus.com/aircraft/passenger-aircraft/a320-family/a319neo.html consulted on 30/07/2018. 
9 Source: https://www.airbus.com/aircraft/passenger-aircraft/a320-family/a320neo.html consulted on 30/07/2018. 

https://www.airbus.com/aircraft/passenger-aircraft/a320-family/a319neo.html
https://www.airbus.com/aircraft/passenger-aircraft/a320-family/a320neo.html
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As so, Berghöfer & Lucey (2014) add this new method, by treating all aircraft 

models of a specific family10 as a unit, as can be seen next: 

 
𝐴𝐷𝐼_𝐹𝑖 = 1 −  ∑

(𝑁𝑜. 𝑜𝑓 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑓𝑎𝑚𝑖𝑙𝑦𝑘)2

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑖)2

𝐹

𝑘=1

 (2) 

 

Where F stands for the total number of different families operated on airline 

i's fleet, and k represents each aircraft family.  The ADI index varies from 0 to 1, 

being one the highest degree of diversity, and zero meaning the airline i is 

operating one single aircraft family. 

 

When the 𝐴𝐷𝐼_𝑀𝑖 index is zero, meaning the airline operates just one aircraft 

model, the 𝐴𝐷𝐼_𝐹𝑖 index always turns zero, once it is logically not possible to 

operate multiple families with just one aircraft model. 

The opposite is not necessarily true: if the 𝐴𝐷𝐼_𝐹𝑖  takes the value zero, it 

means the airline operates a single family, but nothing can be concluded a priori 

regarding the 𝐴𝐷𝐼_𝑀𝑖  value. The airline might be operating just one type of 

aircraft, or many more, all belonging to the same family. 

 

The following considerations respect to the way of counting aircraft families 

and models, which is the basis for the calculation of the aircraft dispersion 

indexes. In a way to better understand the matter, here follows the explanation 

of how some specific cases were treated: 

 

a. Freighters are distinguished from passenger/combo aircraft in terms of 

aircraft types (models), but not regarding families. 

                                                 
10 Example: the Airbus 320 family includes the following aircraft models: A318, A319, A320 and A321, ranging 
the maximum seat capacity (considering 1-class configuration) from 100 up to 240 seats. Source: 
https://www.airbus.com/aircraft/passenger-aircraft/a320-family.html (visited on 30/07/2018). 

https://www.airbus.com/aircraft/passenger-aircraft/a320-family.html
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Example 1: Boeing 777-300 (passenger aircraft) and Boeing 777-F (cargo plane) 

are two different aircraft types, but belong to a common family (Boeing 777 

family). 

Example 2: Boeing 767-300F / -300BCF are considered different aircraft types, as 

the first is a freighter and the second has a passenger-to-freighter conversion 

possibility. Both belong to the same family (Boeing 767 family). 

 

b. Aircrafts only differing on engine types were considered different 

models (ex. A320neo and A320ceo). The designation “neo” stands for “new 

engine option”, while the “ceo” means “current engine option”. The new 

engines are more fuel-efficient11. 

 

c. Same models but different range (ER stands for “extended range”).  

Example 3: Boeing 777-300 / -300ER are hereby considered as two different 

types. Although they share a similar fuselage, they can serve different 

operational needs due to different range spectrums12. The difference between 

these versions is increased tank capacity and wingspan, with the comedown of 

a slight passenger capacity decrease in the ER version). 

 

Examples of some aircraft families (examples of aircraft models between 

brackets): 

1. Boeing13: 

a. 737 family (737-300, 737-400, 737-700, 737-800, 737-900…) 

b. 747 family (747-200, 747-300, 747-400, 747-800…) + Freighter (747-400 

Cargo) + Combo (747-400BCF) 

c. 757 family (757-200, 757-300…) 

                                                 
11  Source: Airbus (https://www.airbus.com/aircraft/passenger-aircraft/a320-family/a320neo.html), visited on 
10/02/2019. 
12 Source: Boeing (https://www.boeing.com/commercial/777/), visited on 29/12/2018. 
13 Source: Boeing (https://www.boeing.com), visited on 29/12/2018. 

https://www.airbus.com/aircraft/passenger-aircraft/a320-family/a320neo.html
https://www.boeing.com/commercial/777/
https://www.boeing.com/
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d. 767 family (767-200, 767-200ER, 767-300, 767-400…) + Freighter (767-

300F) 

e. 777 family (777-200, 777-200LR, 777-200ER, 777-300, 777-300ER…) + 

Freighter (777-F Cargo) 

f. 787 family (787-8, 787-9, 787-10) 

 

2. Airbus14: 

a. A320 family (A318, A319, A320, A321) 

b. A220 family - previously known as Bombardier C-Series - (A220-100, 

A220-300...) 

c. A330 family (A330-200, A330-300, A330-800, A330-900…) + Freighter 

(A330-200F) + Combo (A330P2F) 

d. A340 family (A340-200, A340-300, A340-500, A340-600…) 

e. A350 XWB family (A350-900, A350-1000) 

f. A380 family (A380-800) 

 

3. Bombardier15: 

a. CRJ Series – also known as Canadair Jet - (CRJ200, CRJ700, CRJ1000) 

b. Q Series - also known as De Havilland Dash 8 - (Q200, Q300, Q400) 

 

4. Embraer16: 

a. E-Jet Family (175, 170, 190) 

b. ERJ-Family (ERJ 140, ERJ 145, ERJ 170, ERJ 135) 

c. EMB Brasilia Family (EMB 170, EMB 120) 

 

                                                 
14 Source: Airbus (https://www.airbus.com/aircraft.html), visited on 29/12/2019. 
15  Source: Bombardier (https://www.bombardier.com/en/aerospace/commercial-aircraft.html), visited on 
29/12/2019. 
16 Source: Embraer (https://www.embraercommercialaviation.com/our-aircraft/), visited on 29/12/2019. 

https://www.airbus.com/aircraft.html
https://www.bombardier.com/en/aerospace/commercial-aircraft.html
https://www.embraercommercialaviation.com/our-aircraft/
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3.2.2.2 Fleet Fuel Efficiency 

Another important factor to take in account is a fleet’s fuel efficiency, given 

that a significant part of airline’s operational costs is given by jet fuel costs. 

Treanor et al. (2013, 2014b) remember that airlines which operate newer fleets 

are less exposed to fuel price fluctuations, once newer aircrafts are more fuel-

efficient. Treanor et al. (2013, 2014b) measure this type of operational hedge by 

using the natural logarithm of an airline’s weighted average fleet age. The fleet 

age is withdrawn annually from the 10-K reports for the North-American 

airlines, and from the annual reports for the remaining. When the fleet age is 

not reported, it is used the adjacent year’s value, whenever available. 

 

3.2.2.3 Operating Leases 

As third and last measure of operational hedge by airlines, operating leases 

comes up with great importance as it allows companies to easily adjust their 

fleets to market conditions. These are considered in the previous work of 

Treanor et al. (2013). As cited in this study, Brigham and Ehrhardt (2005) note 

that by recurring to leasing contracts, companies have more flexibility on 

switching some aircrafts for others more appropriate given the market 

conditions, for instance, when seats’ demand for certain routes change. 

Operating leasing contracts often include option clauses, which give airlines 

a real option of buying an airplane when the leasing contract ends, and/or to 

terminate or modify their leasing responsibilities before the contract ending. 

 

In this study, the proxy used for measuring the impact of leasing is the 

percentage of an airline’s fleet that is held on operating leasing, as did Treanor 

et al. (2013). This percentage is computed as the total number of aircrafts an 

airline has in operating leasing, divided by the total number of aircrafts which 
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are in operation, whether owned or leased. The leasing data is withdrawn 

manually from both the 10-K reports for the North-American airlines (when 

available), and from the annual reports for the remaining. 

3.2.3 Regressions 

In order to estimate the way airlines might decrease their fuel price exposure, 

it is computed a two-step procedure, as previously done by other authors 

(Berghöfer & Lucey, 2014; Treanor et al., 2014b). 

3.2.3.1 First-step regression 

For the estimation of airlines’ yearly exposure coefficients, we have the 

following equation: 

 

 𝑅𝑖,𝑤 = 𝛼𝑖 + 𝛽𝑖,𝑦𝑅𝑀𝐾,𝑤 + 𝛾𝑖,𝑦𝑅𝐽𝐹,𝑤 + 𝛿𝑅𝑈𝑆𝐷,𝑤 + 휀𝑖,𝑤 (3) 

 

Where: 

𝑅𝑖,𝑤 is airline i’s weekly log stock price return for week w, 

𝑅𝑀𝐾,𝑤 is the log return for the corresponding market index for week w, 

𝑅𝐽𝐹,𝑤 is the weekly log change in jet kerosene prices for week w, 

𝑅𝑈𝑆𝐷,𝑤 is the log change in the trade weighted U.S. dollar index for week w, 

𝛽𝑖,𝑦 is the coefficient for the market risk factor for airline i for year y, 

𝛾𝑖,𝑦 is the coefficient for jet fuel risk factor for airline i for year y, and 

휀𝑖,𝑤 designates the error term of airline i on week w. 

 

The dependent variable on this equation is 𝑅𝑖,𝑤 , and the explanatory 

variables are 𝑅𝑀𝐾,𝑤, 𝑅𝐽𝐹,𝑤 and 𝑅𝑈𝑆𝐷,𝑤. 
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For the estimation of this first equation, weekly stock prices and 

corresponding market indexes are gathered from Datastream in native currency. 

The same applies to the U.S. Gulf Coast and Singapore jet kerosene spot prices. 

As computed by Berghöfer & Lucey (2014), Singapore kerosene prices were 

used for Asian airlines and the Gulf Coast kerosene was attributed to European 

and North American carriers. Data used for computing 𝑅𝑈𝑆𝐷,𝑤 corresponds to 

the “Trade Weighted U.S. Dollar Index: Broad, Index Jan 1997=100, Weekly, Not 

Seasonally Adjusted” and was retrieved from the website of the “Federal 

Reserve Bank of St. Louis – Economic Research”. 

3.2.3.2 Second-step regression – Berghöfer & Lucey (2014) 

The following step computes the regression of jet fuel yearly risk exposure 

coefficients, previously obtained in the first step, on a series of operational and 

financial hedging measures, added of some control variables. The following 

equations17 (4) and (5) are exactly the same Berghöfer & Lucey (2014) did, only 

substituting ADI_M for ADI_F on Equation (5). On Section 3.2.3.3, there are 

presented own alternative versions for the second-step equation, including 

other variables, such as two additional measures of operational hedging. 

 

 |𝛾𝑖,𝑦| = 𝛼0 + 𝛼1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝛼2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝛼3(𝐴𝐷𝐼_𝑀𝑖,𝑦)

+ 𝛼4(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝛼5(𝐿𝑇𝐷𝐴𝑖,𝑦) + 𝛼6(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦)

+ 𝛼7(𝐿𝐹𝑖,𝑦) + 휀𝑖,𝑦 

(4) 

 

 |𝛾𝑖,𝑦| = 𝛼0 + 𝛼1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝛼2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝛼3(𝐴𝐷𝐼_𝐹𝑖,𝑦)

+ 𝛼4(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝛼5(𝐿𝑇𝐷𝐴𝑖,𝑦) + 𝛼6(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦)

+ 𝛼7(𝐿𝐹𝑖,𝑦) + 휀𝑖,𝑦 

(5) 

 

                                                 
17  Note: Even though the coefficient terms are displayed with the same notation across 

Equations 4 and 5, their estimation values will be distinct. 
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Where: 

𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦 is the percentage of next year’s fuel requirements hedged by the 

airline i on the year y, 

𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦 is the maximum maturity of fuel derivatives, in months, which the 

airline i has entered into, on year y, 

𝐴𝐷𝐼_𝑀𝑖,𝑦  stands for the airline i's aircraft dispersion index on year y, in a 

particular version which considers the counting of aircraft models, 

𝐿𝑁𝑇𝐴𝑖,𝑦 is the logarithm of total assets (included to control for firm size) of the 

airline i on year y, 

𝐿𝑇𝐷𝐴𝑖,𝑦  is the long-term debt to assets ratio (included to control for firm 

leverage) of the airline i on year y, 

𝐿𝑁𝐷𝐼𝑆𝑖,𝑦 is the logarithm of the average flight distance, in kilometers, for the 

airline i on the year y, 

𝐿𝐹𝑖,𝑦 is the passenger load factor of the airline i on the year y, and 

휀𝑖,𝑦 designates the error term of airline i on year y. 

 

The dependent variable on this equation is the module of 𝛾𝑖,𝑦 , and the 

explanatory variables are 𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦 , 𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦 , 𝐴𝐷𝐼_𝑀𝑖,𝑦 , 𝐿𝑁𝑇𝐴𝑖,𝑦 , 𝐿𝑇𝐷𝐴𝑖,𝑦 , 

𝐿𝑁𝐷𝐼𝑆𝑖,𝑦 and 𝐿𝐹𝑖,𝑦. 

 

The jet fuel price risk exposure 𝛾𝑖,𝑦 is considered in absolute values for the 

second equation, once it is assumed this exposure to be diminished towards 

zero with the use of hedging procedures (Berghöfer & Lucey, 2014; Treanor et 

al., 2014b). 

 

The natural logarithm of total assets (LNTA) is controlling for firm size18. 

Haushalter (2000) concluded from an oil and gas producers’ sample that firms 

                                                 
18 The choice for controlling firm size with the log of total assets is made in accordance with Berghöfer & Lucey 
(2014), Treanor et al. (2013) and Carter et al. (2006). 
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with higher total assets have a greater likelihood of hedging, meaning larger 

firms tend to diminish more their exposure than smaller ones do. Nance, Smith, 

& Smithson (1993) provide steady findings on the relation between hedging 

with derivatives and firm size, while assuming that economies of scale could 

apply to hedging costs, this way existing a positive correlation between 

enterprise risk management and firm size. 

Long-term debt to assets ratio (LTDA) is included to control for firm 

leverage. Here, the evidence is mixed. Tufano (1998b) verified that exposure has 

a positive relationship with firm leverage, while studying gold mining firms, 

and for that reason, Treanor et al. (2014b) include the variable LTDA on their 

equations, considering it could be applied the same reasoning to the airline 

industry. Still with the same results, Carter et al. (2006), while studying the U.S. 

airline industry, observe that firm leverage is negatively correlated with the 

volume of fuel hedged, and so, airlines with less financial constraints are the 

ones which hedge the most. On the other side, Haushalter (2000) find a positive 

relationship between firm leverage and the likelihood of hedging with 

derivatives, which ultimately means that higher leveraged firms tend to be less 

exposed to fuel by recurring to hedging. 

 Long-term debt to assets ratio (LTDA) and the logarithm of total assets 

(LNTA) are controlling for firm leverage, and size, respectively. Haushalter 

(2000) concluded from an oil and gas producers’ sample that firms with higher 

total assets and greater financial leverage have a greater likelihood of hedging. 

The variable 𝐿𝑁𝐷𝐼𝑆 is used as control for some operational issues (Berghöfer 

& Lucey, 2014). As the average sector length increases, airlines have lower 

possibilities of using undiversified fleets on operation. For instance, EasyJet 

cannot operate long-haul flights with their aircrafts’ configurations. On the 

other side, Lufthansa has a much more diverse fleet and can operate short, 

medium and long-haul flights. Another situation regards tankering, which 
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means taking extra-fuel on the inbound flight, for the outbound trip also. This is 

carried out by airlines when it is not viable to refuel the aircraft at the 

destination, such as for fuel shortage or high fuel prices at destination. The 

further the outbound flight, the need for carrying more fuel, and less the 

opportunity to carry on fuel for the return flight. As discussed by Berghöfer & 

Lucey (2014), this can be applied to the load factor as well. The greater the 

number of passengers carried, the lower is the capability of carrying fuel for the 

outbound flight, given maximum takeoff weight restrictions (commonly known 

as MTOW). 

 

In the cases where the variable 𝐿𝑁𝐷𝐼𝑆 cannot be withdrawn directly from the 

airlines’ annual reports or in its 10-K fillings, it can be computed through the 

following expression (Berghöfer & Lucey, 2014): 

 

 
𝐿𝑁𝐷𝐼𝑆 = ln (

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠/𝑚𝑖𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠
) (6) 

 

Whenever required, if there is no disclosure on the “Revenue passenger 

kilometers/miles” variable, it can be computed by the following formula 19 

(when in miles, we use 𝑅𝑃𝑀 and 𝐴𝑆𝑀, instead of 𝑅𝑃𝐾 and 𝐴𝑆𝐾, respectively): 

 

 
𝐿𝐹 =

𝑅𝑃𝐾

𝐴𝑆𝐾
⇔ 𝑅𝑃𝐾 = 𝐿𝐹 ∗ 𝐴𝑆𝐾 (7) 

 

Where: 

𝑅𝑃𝐾 is “Revenue Passenger Kilometers”, 

𝐴𝑆𝐾 is the “Available Seat Kilometers”, 

                                                 
19  Retrieved from Aegean Airlines 2017 annual report. All the distances in miles were then converted in 
kilometers, in order to make them comparable.  
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𝐿𝐹 is the passenger load factor. 

3.2.3.3 Alternative second-step regressions 

This section presents some alternative second-step equations, contemplating 

more variables than Berghöfer & Lucey (2014) regressions. These include new 

variables controlling for two additional measures of operational hedging, being 

fleet-fuel efficiency, measured by the average fleet age, and the percentage of 

fleet held on operating leasing, as well as other control variables. 

 

 |𝛾𝑖,𝑦| = 𝜃0 + 𝜃1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝜃2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝜃3(𝐹𝑋_𝐷𝐸𝑅𝑖,𝑦)

+ 𝜃4(𝐼𝑅_𝐷𝐸𝑅𝑖,𝑦) + 𝜃5(𝐴𝐷𝐼_𝑀𝑖,𝑦) + 𝜃6(𝐿𝑁𝐴𝐺𝐸𝑖,𝑦)

+ 𝜃7(𝑂𝑃𝐿𝐸𝐴𝑆𝐸𝑖,𝑦) + 𝜃8(𝑇𝑈𝑅𝐵𝑂𝑃𝑅𝑂𝑃𝑖,𝑦) + 𝜃9(𝐿𝐹𝑖,𝑦)

+ 𝜃10(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦) + 𝜃11(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝜃12(𝐶𝐹𝑆𝐴𝐿𝑖,𝑦) + 𝑢𝑖,𝑦 

(8) 

 

Where, besides the variables already explained on Chapter 3.2.3.2: 

- 𝐹𝑋_𝐷𝐸𝑅𝑖,𝑦 is a dummy variable which takes the value 1 if the airline i enters 

into foreign exchange derivatives in the year y, turning 0 if otherwise, 

- 𝐼𝑅_𝐷𝐸𝑅𝑖,𝑦 is a dummy variable taking the value 1 if the airline i enters into 

interest rate derivatives in the year y, turning 0 if otherwise, 

- 𝐿𝑁𝐴𝐺𝐸𝑖,𝑦 is the logarithm of the average fleet age, in years, of airline i in the 

year y, 

- 𝑂𝑃𝐿𝐸𝐴𝑆𝐸𝑖,𝑦  stands for the percentage of fleet held in operating leasing of 

airline i in the year y, 

-𝑇𝑈𝑅𝐵𝑂𝑃𝑅𝑂𝑃𝑖,𝑦 is the percentage of turboprop aircrafts on the operating fleet of 

airline i, in the year y, 

- 𝐶𝐹𝑆𝐴𝐿𝑖,𝑦 is the cash-flow to sales ratio of the airline i in year y, and 

- 휀𝑖,𝑦 designates the error term of the airline i on year y. 
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Dummy variables FX_DER and IR_DER are included in a similar way as 

Treanor et al. (2013) did on their analysis of whether financial and operational 

hedges are complements of substitutes, while studying the U.S. airline industry. 

While they create a single dummy, taking the value 1 if an airline uses currency 

derivatives, interest rate derivatives or has entered into a fuel pass-through 

agreement, we discard this last agreement due to the difficulty of obtaining 

such data on European and Asian carriers, and split interest-rate and currency 

derivatives into two separate dummies. This was not a problem since their 

correlation is pretty low20. Treanor et al. (2013) include this variable to control 

for relationships among fleets and the use of financial derivatives. These 

authors concretize, giving the example that airlines flying more international 

routes have a greater likelihood of entering into fuel and currency derivatives. 

They consider that the exclusion of this variable would cause bias on the 

diversity variable (ADI_M or ADI_F). 

One of the operational hedges not studied by Berghöfer, is related with a 

fleet’s fuel-efficiency. This is an important hedge and can be easily proxied by 

the logarithm of the average fleet age (Treanor et al., 2013; Treanor et al., 2014b). 

In our study, we always consider fleets in operation. 

The other operational hedge added in our equations is the percentage of a 

fleet that is held under operating leasing. This variable was included by Treanor 

et al. (2013) and measures airlines’ ability in response to high fuel prices or 

demand oscillations, which ultimately could diminish risk exposure. 

The variable TURBOPROP is included since smaller aircrafts turbo-propelled 

cannot be considered substitutes for larger jets, once their range and speed does 

not allow them to operate the same routes. On the other side, we have regional 

jets, which even though they are smaller than narrow-body aircrafts, can service 

most of their routes (Treanor et al., 2014b). 

                                                 
20 The correlation between IR_DER and FX_DER was ran on Stata and returned a very low value of 0.0172. 
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Finally, the cash-flow to sales ratio is recommended by Froot et al. (1993) and 

included by Treanor et al. (2014a) as an inverse proxy for financial constraints. 

The latter explains that firms with a greater ability for generating cash-flows 

have less probabilities of facing “binding constraints” in financial investments. 

Carter et al. (2006) note that the higher a firm’s cash-flows, the higher are 

investment opportunities and the higher the likelihood of hedging. On the other 

side, Froot et al. (1993) states that firms will tend to hedge less, the higher the 

correlation between cash-flows and future investment opportunities. On the 

other side, firms will hedge more if their cash-flows are highly correlated with 

their ability of raising external finance. 

 

From Equation 8 to Equation 9, the only difference is dropping the variable 

𝐶𝐹𝑆𝐴𝐿𝑖,𝑦. 

 

 |𝛾𝑖,𝑦| = 𝜃0 + 𝜃1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝜃2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝜃3(𝐹𝑋_𝐷𝐸𝑅𝑖,𝑦)

+ 𝜃4(𝐼𝑅_𝐷𝐸𝑅𝑖,𝑦) + 𝜃5(𝐴𝐷𝐼_𝑀𝑖,𝑦) + 𝜃6(𝐿𝑁𝐴𝐺𝐸𝑖,𝑦)

+ 𝜃7(𝑂𝑃𝐿𝐸𝐴𝑆𝐸𝑖,𝑦) + 𝜃8(𝑇𝑈𝑅𝐵𝑂𝑃𝑅𝑂𝑃𝑖,𝑦) + 𝜃9(𝐿𝐹𝑖,𝑦)

+ 𝜃10(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦) + 𝜃11(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝑢𝑖,𝑦 

(9) 

 

Finally, Equation 10 is the same as the previous Equation 9, except for the 

fleet diversity proxy, having now included ADI_F instead of ADI_M21. 

  

 |𝛾𝑖,𝑦| = 𝜃0 + 𝜃1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝜃2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝜃3(𝐹𝑋_𝐷𝐸𝑅𝑖,𝑦)

+ 𝜃4(𝐼𝑅_𝐷𝐸𝑅𝑖,𝑦) + 𝜃5(𝐴𝐷𝐼_𝐹𝑖,𝑦) + 𝜃6(𝐿𝑁𝐴𝐺𝐸𝑖,𝑦)

+ 𝜃7(𝑂𝑃𝐿𝐸𝐴𝑆𝐸𝑖,𝑦) + 𝜃8(𝑇𝑈𝑅𝐵𝑂𝑃𝑅𝑂𝑃𝑖,𝑦) + 𝜃9(𝐿𝐹𝑖,𝑦)

+ 𝜃10(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦) + 𝜃11(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝑢𝑖,𝑦 

(10) 

 

                                                 
21 Note: Even though the coefficient terms are displayed with the same notation across Equations 8-10, their 

estimation values will be distinct. 



 31 

3.2.4 Hypotheses 

Based on the literature review present in Chapter 2, and completing with the 

analysis performed on Chapter 3.2.3.2, here follows our predictions of the 

coefficient signs for Equation 4, on the table below. 

 

Table 3: Prediction of coefficient signs for the variables used on the estimation of Equations 4-5. 

Variables  
Predicted Coefficient 

Signs 

HDGPER (percentage of next year’s fuel hedged) - 

HDGMAT (max. maturity of fuel derivatives – months) - 

ADI_M (aircraft dispersion index – counting for models) - 

ADI_F (aircraft dispersion index – counting for families) - 

LNTA (logarithm of total assets) - 

LTDA (Long-Term Debt to Assets) ? 

LNDIST (logarithm of the average flight distance – kms) + 

LF (passenger load factor) - 

Source: Own figure. 

 

Following the same line of thought as in Berghöfer & Lucey (2014), in order 

to assess the impact of financial and operational hedging in the risk exposure 

airlines face, the following hypotheses are to be tested: 

H1: Airline companies are equally exposed to jet fuel prices regardless the 

continent where they are based (𝛾𝐸𝑈,𝑦 = 𝛾𝑁𝐴𝑀,𝑦 = 𝛾𝐴𝑆𝐼𝐴,𝑦). 

H2: Financial hedging diminishes airlines’ fuel price risk exposure (𝛼1 < 0). 

H3: Airlines experience a higher reduction in risk exposure, the wider its fleet 

diversity (𝛼3 < 0). 

H4: Airline companies’ fuel exposure increases with higher average flight 

distances (𝛼6 > 0). 

H5: A higher passenger load factor reduces airlines’ risk exposure (𝛼7 < 0). 
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Furthermore, we can also predict the signs for the variables added on 

Equations 8-10. 

 

Table 4: Prediction of coefficient signs for the variables estimated on Equations 8-10. 

Variables  
Predicted Coefficient 

Signs 

FX_DER (dummy for the use of currency derivatives) - 

IR_DER (dummy for the use of interest rate derivatives) - 

LNAGE (logarithm of the average fleet age in years) + 

OPLEASE (% of fleet held in operating leasing) - 

TURBOPROP (% of turboprop aircrafts on the total fleet) ? 

CFSAL (cash-flow to sales ratio) ? 

Source: Own figure. 

 

Given the additional variables included in our models, some additional 

hypotheses can be formulated: 

 

H6: Airlines’ exposure to fuel prices increases with fleet’s average age (𝜃6 > 0). 

H7: Airlines’ exposure to fuel prices decreases with the percentage of aircrafts 

held in operating leasing (𝜃7 < 0). 

H8: Airlines entering into currency derivatives are more likely to hedge with 

fuel derivatives, consequently their exposure is expected to decrease (𝜃3 < 0). 

H9: Airlines entering into interest rate derivatives are more likely to hedge with 

fuel derivatives, and so their exposure is expected to decrease (𝜃4 < 0). 
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Given we have a dummy variable in our data for differentiating between 

premium airlines and LCC, it should be interesting testing for the following 

hypothesis: 

 

H10: Airline companies are equally exposed to jet fuel prices regardless they are 

premium or low-cost carriers (𝛾𝑃𝑅𝐸𝑀𝐼𝑈𝑀,𝑦 = 𝛾𝐿𝐶𝐶,𝑦). 
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Chapter 4 
Results and Discussion 

In the present chapter, are presented descriptive statistics for financial and 

operational hedging variables, as well as statistics regarding passenger load 

factor.  This is followed by the results of the first-step equation, and finalized 

with the results for several second-step equation versions, the first six 

replicating Berghöfer & Lucey (2014) and three more formulations we propose. 

4.1 Descriptive Statistics 

4.1.1 Financial Hedging 

Of the total 440 annual reports and 10-K fillings analyzed, 57 had no 

information regarding the instruments used, 164 did not report the underlying 

commodity used on fuel hedging, and 89 did not report derivatives’ maturities. 
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Figure 3: Underlying commodities hedged by airlines between 2007 and 2017.

 
Source: Own figure. 

Note: Based on 276 observations. 

 

From the figure above it can be perceived that jet fuel still represents the 

main commodity used as an underlying, with a global value of 51%, once 

Berghöfer & Lucey (2014) reported approximately 42% for the period 2002-2012, 

although with a slightly different sample. The second and third choice for 

airlines are noticed to be crude oil, with 31 percent, followed by heating oil with 

12 percent, maintaining the same ranking of Berghöfer & Lucey (2014). Finally, 

the two less used underlyings are diesel oil and gasoil, with approximately 4 

and 2 percent, respectively. 
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Table 5: Overview per continent, as well as comparing low-cost carriers against premium 

airlines, on the underlying commodities, maturities and instruments used over the period 2007-

2017. The percentage of periods hedged is also included. 

 Europe 
North 

America 
Asia 

Low-cost 

carriers 

Premium 

carriers 

Commodity      

Jet Fuel 95.90% 56.32% 55.22% 84.93% 69.46% 

Crude Oil 18.03% 79.31% 46.27% 31.51% 48.77% 

Heating Oil 0.00% 52.87% 0.00% 15.07% 17.24% 

Gasoil 4.10% 0.00% 5.97% 0.00% 4.43% 

Diesel Oil 8.20% 9.20% 0.00% 0.00% 8.87% 

Maturity      

Average 22.01 12.15 14.32 16.04 16.92 

Median 24.00 12.00 12.00 12.00 12.00 

Instrument      

Options 45.32% 55.97% 55.45% 30.39% 59.79% 

Swaps 38.85% 40.30% 42.73% 36.27% 41.99% 

Collars 19.42% 39.55% 10.00% 25.49% 23.13% 

Futures 6.47% 6.72% 0.00% 0.00% 6.41% 

Forwards 54.68% 1.49% 1.82% 44.12% 12.46% 

% Periods 

Hedged 
97.46% 66.42% 56.52% 81.73% 71.25% 

Source: Own figure. 

 

Table 5 allows a wide analysis on multiple aspects of airlines’ choices for 

commodity, maturity and instruments used on fuel hedging. 

Both in Europe and Asia, the main choice for underlying asset is jet fuel, with 

95.90 percent of European carriers having hedged jet fuel during the years 2007-

2017. This value drops to 55.22 percent when mentioning Asian carriers, 
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nevertheless it is still their first choice. Finally, North American airlines do give 

a first preference to crude oil, with 79.31 percent of the companies choosing this 

commodity, followed by jet fuel with 56.32 percent and then by heating oil 

(52.87%). 

Hedging with other commodities may sound more appealing to airlines, 

given the fact there is more liquidity than there is with jet fuel, although it was 

already mentioned there are also some disadvantages, mainly the exposure to 

the called ‘basis risk’, as well as the counterparty risk, when trading in OTC 

markets (Cobbs & Wolf, 2004). 

Still regarding commodities, when comparing low-cost with premium 

carriers, the evidence remains the same, jet fuel is the main choice for both 

types of airlines, with crude oil as a second preference and heating oil as third. 

Gasoil and diesel oil present residual values for premium carriers, and are not 

even used by low-cost airlines. 

The global average percentage of next year’s fuel requirements hedged is 

33.73 percent for the following 16.68 months, with a median of 12.00 months. 

Low-cost and premium carriers register average maturities around 16-17 

months, and equal a 12-month median. If we compute the same analysis for 

continents where airlines are based in, European carriers hedge with an average 

maturity of 22.01 months, much higher than Asian and North American 

airlines, with 14.32 and 12.15 months, respectively. These last two continents 

present a median maturity of 12.00 months, half of the 24.00 months’ median of 

European carriers. 

Regarding derivative instruments used, the two main preferences in Europe 

are forwards and options, respectively, followed by swaps, collars, and then, 

with a minor expression of 6.47 percent, futures. In North America and Asia, 

options are the main choice, followed by swaps and collars. Futures and 

forwards have little expression in these last two continents. 
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If comparing across types of airlines, low-cost airlines used forwards in 44.12 

percent of the years, followed by swaps with 36.27 percent. On the other side, 

premium carriers preferred options with 59.79 percent, followed by swaps, 

which accounted for 41.99 percent. 

European carriers were the ones hedging the greater percentage of the 

periods in study (97.46%), tailed by North American and the Asian airlines, 

which accounted for 66.42 and 56.52 percent, respectively. While comparing 

between types of airlines, LCC hedge more than premium carriers in around 10 

percentual points. 

Low-cost carriers are generally characterized by a lower cost structure, while 

comparing to other carriers. Because fuel costs are more homogenous across 

airlines, it is logic that jet fuel costs make up a greater percentage of total 

operating costs on low-cost carriers, as can be observed on the next figure. The 

share of fuel costs on the total operating expenses decreased from 29.86 to 23.32 

percent, between the years 2007 and 2017. 

 

Figure 4: Evolution of the percentage of fuel costs over total operating expenses, between low-

cost and premium carriers, for the period 2007-2017. 

 
Source: Own figure. 

Note: Based on 410 observations of 42 airlines. 
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As can be seen in Figure 5, during the initial two years of the period 

analyzed, in parallel with the peak of the financial crisis, it is clear that 

European airlines had lower relative fuel costs than Asian and North American 

carriers. From 2011 onwards, it can be observed North American airlines 

steeped down their fuel cost percentages more than European and Asians, and 

remained since that time under the global average, represented in the figure by 

the black line. 

Asian carriers have always remained above the average values during the 

whole eleven-year period. European airlines have been showing values lower 

than the global average until 2014, year since which they have been slightly 

above the average percentage of fuel costs on the operating costs. 

 

Figure 5: Evolution of the percentage of fuel costs over total operating expenses, across 

continents, during the period 2007-2017. 

 
Source: Own figure. 

Note: Based on 410 observations of 42 airlines. 
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4.1.2 Operational Hedging 

4.1.2.1 Fleet Diversity 

The following table presents the results obtained for aircraft dispersion index 

(ADI) equations. ADI_M values are considering the diversity of aircraft models, 

and ADI_F values consider aircraft families. 

 

Table 6: Statistics for fleet diversity, measured by models (ADI_M) and families (ADI_F). 

 ADI_M ADI_F  

Year Europe NAm Asia Total Europe NAm Asia Total 
ADI_M-

ADI-F 

2007 0.6437 0.6781 0.8198 0.7099 0.5425 0.4831 0.7072 0.5714 0.1385 

2008 0.6479 0.6773 0.8225 0.7137 0.5247 0.4965 0.7099 0.5724 0.1413 

2009 0.6630 0.6626 0.7688 0.6971 0.5112 0.4799 0.6592 0.5471 0.1500 

2010 0.6476 0.6703 0.7392 0.6859 0.4863 0.5150 0.6483 0.5497 0.1362 

2011 0.6225 0.6608 0.7305 0.6720 0.4405 0.4887 0.6420 0.5241 0.1479 

2012 0.6130 0.6660 0.7493 0.6775 0.4286 0.4924 0.6683 0.5314 0.1461 

2013 0.6046 0.6759 0.7376 0.6710 0.4454 0.5016 0.6662 0.5344 0.1366 

2014 0.5676 0.6861 0.7312 0.6552 0.4200 0.4872 0.6611 0.5142 0.1410 

2015 0.5565 0.7093 0.7225 0.6585 0.4192 0.5122 0.6561 0.5231 0.1354 

2016 0.6049 0.7310 0.7280 0.6828 0.4544 0.5310 0.6624 0.5417 0.1411 

2017 0.6021 0.7359 0.7246 0.6866 0.4346 0.5388 0.6602 0.5415 0.1451 

Avg 0.6120 0.6863 0.7511 0.6820 0.4608 0.5024 0.6669 0.5410 0.1417 

Source: Own figure. 

Note: Based on 410 observations. 

 

It was always chosen operating fleets 22  for counting purposes, ignoring 

parked aircrafts, aircrafts in maintenance or not in service, as well as aircrafts 

subleased to un-affiliated entities. 

 

The following three figures help to better understand the choices airlines 

have been conceiving in the past years and its trend. 

                                                 
22 (Berghöfer & Lucey, 2014) note that the fuel risk airlines are exposed to, is better measured by the operating 
fleet, rather than entire fleets, which include, for instance, parked aircrafts. 
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Figure 6: Evolution of fleet diversity across the years 2007-2017, measured by models and 

families. 

 

Source: Own figure. 

Note: Based on 410 observations, from which 104 are of low-cost carriers. 

 

It is possible to understand there has been a decrease in the fleet diversity, 

especially from 2007 until 2014, but still true when comparing both ends of the 

period in analysis. This evidence is clear whether we are evaluating the number 

of aircraft families used or even the number of models. The tendency to reduce 

diversity may be associated with the need to cutting costs, such as trainings for 

pilots and cabin crew, as well as with spare parts. 

Nevertheless, not every continent-base seems to be following the same 

tendency. European carriers have decreased their fleet diversity on 6.5 percent 

(ADI_M) or 19.9 percent (ADI_F). On the other side of the Atlantic, North 

American airlines experienced an increase of 8.5 percent (ADI_M) or 11.5 

percent (ADI_F). Finally, Asian carriers kept the European tendency and 

diminished its fleet diversity by 11.6 percent (ADI_M) or 5.2 percent (ADI_F). 

These results are consistent with the results obtained by Berghöfer & Lucey 

(2014) for the period 2002-2012, except for one difference. While their study 

verified a decrease on the ADI_F for North American airlines, this present 

study finds an opposite result for 2007-2017. However, still regarding North 
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American companies, both our works find an increase on the ADI_M value. It 

should also be noted the airlines’ sample is not the exactly the same within 

these two studies, and the periods in analysis also differ, as their study was 

between 2002 and 2012. 

 

Figure 7: Overview of fleet diversity, measured by ADI_M, over the different continents, across 

the years 2007-2017. 

 
Source: Own figure. 

Note: Based on 410 observations, from which 104 are of low-cost carriers. 

 

From the figure above it is possible to conclude that the fleet diversity, 

measured by the number of aircraft models, has decreased approximately 6.5 

percent for European carriers, from 2007 until 2017. Asian airlines followed the 

same path and diminished its diversity by 11.6 percent. On the opposite side, 

North American carriers increased its fleet diversity by 8.5 percent. 
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Figure 8: Overview of fleet diversity, measured by ADI_F, over the different continents, across 

the years 2007-2017. 

 

Source: Own figure. 

Note: Based on 410 observations, from which 104 are of low-cost carriers. 

 

From the figure above it is possible to conclude that the fleet diversity, 

measured by the number of aircraft families, has decreased approximately 19.9 

percent in Europe, from 2007 until 2017. Asian carriers followed the same 

tendency and decreased diversity in 6.6 percent. On the other side, North 

American airlines increased its fleet diversity by 11.5 percent. Still, the diversity 

of families operated by Asian airlines is much higher than on the other 

continents, during the whole period in analysis. 
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4.1.2.2 Fleet Fuel Efficiency 

The following graphs provide some interesting statistics regarding the 

average age of airlines’ fleets. 

 

Figure 9: Evolution of airlines’ average fleet age per continent, for the years 2007-2017. 

 
Source: Own figure. 

Note: Based on 334 observations. 

 

The figure above clearly shows North American carriers have much older 

fleets than Asian or European ones. On all three cases, there has been an 

increase of age while comparing both ends of the period analyzed. Asian 

airlines are the ones with the lower average age in 2007, being 5.3 years, while 

comparing to the European average of 7.1 or the immensely higher North 

American average of 10.8 years. From 2009 until around mid-2011, European 

airlines had its fleet age under the Asian carriers, nevertheless, both their values 

remained the whole period under the global average, which can be explained 

by the great differences to North America. Still to notice, as of 2017, the average 

fleet age was of 6.8 years for Asian carriers, 7.9 for European and 12.4 for North 

American airlines. At this time, the global average was 9.3 years. 
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Figure 10: Comparison fleet age between premium and low-cost carriers, for the years 2007-

2017. 

 

Source: Own figure. 

Note: Based on 334 observations. 

 

It is interesting to observe in the graph above that low-cost carriers have, in 

fact, a lower average fleet age than premium carriers. This difference was much 

more substantial in the beginning of the period, in 2007, when the average age 

for low-costs was 7.9 years and premium carriers registered 10.1 years, but 

during the whole period the differential is clear. In 2017, the average age 

difference between types of carriers was of 2.2 years. 
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4.1.2.3 Operating Leases 

The following two figures provide an overview over airlines’ preferences for 

operating leases on their total operating fleets, whether owned or not. 

 

Figure 11: Evolution of fleets’ percentages held under operating leasing, per continent and 

across the years 2007-2017. 

 

Source: Own figure. 

Note: Based on 364 observations. 

 

The graph above shows the tendency and the practices adopted by airlines 

across continents throughout the years.  During the period studied, European 

carriers are the ones with the higher preference for operating leasing, with 

55.30% of the total fleet in 2007, then converging more with Asian and 

European carriers until around 2012, but still ahead of them until 2017. Asian 

airlines increased its operating leasing percentage in 5.14 percentual points 

between 2007 and 2017. 

On the other side, both European and North American carriers showed a 

decrease between both ends. The latter had 42.04 percent of its aircrafts under 

operating leasing in 2007 and finished 2017 with a huge drop throughout the 

11-year period, 18.06 less percentual points, resulting on 23.98 percent of its 

fleet under operating leasing. Finally, European airlines noticed a decrease of 
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7.82 percentual points, ending 2017 with 47.48 percent of its fleet under 

operating leasing. 

The global average ended up in 36.04 percent, after dropping 6.94 percentual 

points since 2007. 

 

Figure 12: Comparison of fleet percentage under operating leasing between low-cost and 

premium carriers, for the years 2007-2017. 

 
Source: Own figure. 

Note: Based on 364 observations. 

 

The figure above notices some differences between types of carriers. From 

2007 until 2010, values are similar and end up converging in 2010. From this 

year onwards, the gap increases, and starts closing in again around 2014. 

Nevertheless, and except for the year of 2010, premium carriers had always 

registered a lower percentage of its fleet under operating leasing, when 

comparing to low-cost carriers, in the same period. 
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4.1.3 Load Factor 

By analyzing the evolution of the passenger load factor on carriers around 

the globe, one can get a very interesting perspective on such an important key-

aspect as is the load factor on aviation, which reflects the global economy. 

 

Figure 13: Evolution of the passenger load factor per continent, across the years 2007-2017. 

 

Source: Own figure. 

Note: Based on 410 observations, of which 104 are of low-cost carriers. 

  

European airlines had the higher escalation in load factor during the period 

2007-2017, with an increase of around 7.6 percentual points. Asian carriers 

follow the trend with an increase of 5.9 percentual points, and North American 

airlines are the ones with the lightest variation, with a rise of approximately 3.3 

percentual points. Globally speaking, the increase is of 5.8 percentual points, or 

7.5 percent. 
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Figure 14: Evolution of the passenger load factor between premium and low-cost carriers, 

across the years 2007-2017. 

 

Source: Own figure. 

Note: Based on 410 observations, of which 104 are of low-cost carriers. 

 

The graph above allows to conclude that low-cost carriers felt the biggest 

increase on passenger load factor, along the years in analysis, with a variation 

of 10.6 percentual points. Premium carriers, on its side, did not record such a 

steep climb, and notice an increase of 4.6 percentual points. 

It can also be mentioned that the highest value for load factor was hit by 

Ryanair on 2017 with 95.0%, an European LCC which has maintained an 

average aircraft load of 85.9% over the period in analysis. Nevertheless, its low-

cost competitors WizzAir and EasyJet maintained higher average load factors, 

with 89.1 and 88.4 percent, respectively. 

On the other side, the lowest value was recorded by FlyBe Group on 2010, 

being also the company with the worst average load factor (67.8%). Along with 

this airline, the bottom three are completed with All Nippon Airways (67.9%) 

and Japan Airlines (71.8%). 
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4.2 Results 

In the current section, we will present the results obtained on the estimation 

of both first and second-step equations, followed by a critical analysis and 

subsequent discussion of the proposed hypotheses to test. 

4.2.1 First-step equation 

The following two tables present summary statistics for jet fuel exposure 

coefficients obtained after regressing the first-step equation (3). Afterwards, in 

order to decide whether the previously formulated hypothesis (H1) that airline 

companies are equally exposed to jet fuel prices regardless the continent where 

they are based (𝛾𝐸𝑈,𝑦 = 𝛾𝑁𝐴𝑀,𝑦 = 𝛾𝐴𝑆𝐼𝐴,𝑦) is valid or not, we present the results 

for a mean-comparison test. 

Table 7 reports the summary for jet fuel exposure coefficients. We can name 

high-exposed airlines to the ones more negatively exposed, and low-exposed to 

the ones more positively exposed (Berghöfer & Lucey, 2014). Of the 315 

observations withdrawn from the estimation of Equation (3), 93 belong to 

European carriers, 122 to North American and 100 to Asian airlines. The global 

average exposure coefficient is (-0.1483) and the median stands on (-0.1138). 

Comparing with the previous results of Berghöfer & Lucey (2014), they register 

a mean coefficient of (-0.131) for the period 2002-2012 with a slightly different 

set of global airlines, and a median of -0.091, both lower than our findings. Our 

standard errors are though very similar, with a value of 0.2261, comparing to 

Berghöfer & Lucey (2014) value of 0.223. Interestingly, they also find a 

minimum exposure coefficient of (-1.794), while our lowest value is of (-1.1264). 

 

 

  



 51 

Table 7: Summary statistics of jet fuel exposure coefficients. 

 TOTAL EUROPE 
NORTH 

AMERICA  
ASIA PREMIUM LCC 

Observations 315 93 122 100 215 100 

Mean 𝛾 -0.1483 -0.0548 -0.1934 -0.1802 -0.1649 -0.1126 

Median 𝛾 -0.1138 -0.0477 -0.1652 -0.1556 -0.1310 -0.0857 

Standard error 𝛾 0.2261 0.2155 0.2174 0.2466 0.2283 0.2213 

Minimum 𝛾 -1.1264 -0.8761 -1.1264 -1.0858 -1.1264 -0.8364 

Maximum 𝛾 1.8071 0.8175 1.8071 0.2279 1.8071 0.8175 

% Negative 𝛾 72.06% 61.29% 77.05% 76.00% 73.49% 69.00% 

% Significant at 10% 30.16% 22.58% 38.52% 27.00% 32.09% 26.00% 

       

Number 𝛾 significantly 

different from 0 
      

10% level 62 9 37 16 48 14 

5% level 40 5 24 11 33 7 

Number 𝛾 significantly 

less than 0 
      

10% level 85 16 42 27 61 24 

5% level 57 8 33 16 44 13 

Number 𝛾 significantly 

greater than 0 
      

10% level 10 5 5 0 8 2 

5% level 5 1 4 0 4 1 

Source: Own figure. 

Note: Based on 315 observations of 32 airlines. Jet fuel exposure coefficients are estimated using 

Equation (3): 𝑅𝑖,𝑤 = 𝛼𝑖 + 𝛽𝑖,𝑦𝑅𝑀𝐾,𝑤 + 𝛾𝑖,𝑦𝑅𝐽𝐹,𝑤 + 𝛿𝑅𝑈𝑆𝐷,𝑤 + 휀𝑖,𝑤. 
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In our findings, a great majority of airlines register negative exposure 

coefficients, in concrete, 72.06 percent. Treanor et al. (2014b) have similar results 

with 72% of negative exposure coefficients23, plus Berghöfer & Lucey (2014) 

recorded 67.86 percent of negative coefficients. 

From this estimation, we get around 30.16 percent significant coefficients at a 

10% level, similar to Berghöfer & Lucey (2014) value of 32.88 percent. Treanor et 

al. (2014b) got around 39.42 percent24 significant at 10%. 

Further, regarding comparison between low-cost and premium carriers, both 

our results and Berghöfer & Lucey (2014) come to a similar conclusion that 

premium airlines have a much higher average and median exposure than LCC. 

The percentage of negative coefficients is not very distinct between types of 

carriers on both studies. On our study, the percentage significant at 10% is 

slightly higher on premium carriers, while Berghöfer & Lucey (2014) has more 

significant values on LCC. Treanor et al. (2014b) do not distinguish between 

types of carriers. 

On Table 8, there is an extended overview on the individual fuel exposure 

coefficients, with details per company. Additionally, it is shown on the side the 

percentage of fuel hedged for the following year. 

  

                                                 
23 Stephen D Treanor et al. (2014b) study a sample of 27 U.S. Airlines for the period 1994-2008. 
24 Manually calculated, with data from the authors’ Table 2 – Panel B. 
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Table 8: Detailed statistics of airlines’ jet fuel price exposure and financial hedging engagement. 

Airline Mean Median SE Min Max % Neg 

% Significant 

at 10% level 

(one-side 

test) 

% of next 

year fuel 

hedged 

Aegean -0.0838 -0.0596 0.2142 -0.4457 0.0552 81.82% 9.09% 33.23% 

AF-KLM -0.2442 -0.1069 0.2162 -0.8761 0.0630 81.82% 36.36% 57.36% 

EasyJet -0.1314 -0.0938 0.2151 -0.3738 0.0814 90.91% 27.27% 71.27% 

Finnair 0.0769 0.0419 0.2120 -0.2190 0.3760 36.36% 27.27% 64.23% 

FlyBe Group 0.1072 0.0473 0.2360 -0.3519 0.8175 37.50% 25.00% 69.78% 

Lufthansa -0.1215 -0.0565 0.2129 -0.5347 0.1349 63.64% 18.18% 72.92% 

Norwegian -0.0799 -0.0142 0.2253 -0.3405 0.1461 45.45% 27.27% 25.67% 

Pegasus 0.1134 0.0261 0.2275 -0.0750 0.6245 40.00% 20.00% 30.06% 

Ryanair -0.0293 -0.0672 0.2091 -0.2523 0.1890 54.55% 9.09% 82.45% 

Wizz Air 0.0747 0.0548 0.1538 -0.0256 0.1950 33.33% 0.00% 62.00% 

Subtotal 

Europe 
-0.0548 -0.0477 0.2155 -0.8761 0.8175 61.29% 22.58% 59.74% 

Air Canada -0.0984 -0.1115 0.2211 -1.0083 0.5909 54.55% 54.55% 19.64% 

A.T. Services 0.1778 0.0470 0.2168 -0.2890 1.8071 36.36% 18.18% 0.00% 

Alaska Air -0.2946 -0.1651 0.2168 -0.8283 -0.0338 100.00% 36.36% 45.55% 

Allegiant T. -0.1666 -0.0977 0.2168 -0.6988 0.1980 72.73% 36.36% 0.18% 

Amer. Airl. -0.1739 -0.1739 0.1708 -0.5060 0.0930 80.00% 40.00% 16.27% 

Atlas Air 0.0236 -0.0107 0.2168 -0.4894 0.4426 54.55% 18.18% 0.00% 

Delta Airl. -0.3174 -0.2443 0.2233 -0.8882 -0.0485 100.00% 36.36% 37.00% 

Hawaiian -0.3512 -0.3461 0.2168 -0.6978 0.0166 90.91% 54.55% 37.28% 

JetBlue -0.3700 -0.4350 0.2168 -0.8364 0.0092 90.91% 63.64% 15.27% 

Southwest -0.1855 -0.1516 0.2168 -0.5256 0.0580 90.91% 9.09% 49.00% 

Spirit Airl. -0.0439 -0.0005 0.2426 -0.6053 0.4083 57.14% 28.57% 7.14% 

United Cont. -0.4556 -0.4181 0.2168 -1.1264 0.0609 90.91% 63.64% 19.67% 

Subtotal N. 

America 
-0.1908 -0.1573 0.2173 -1.1264 1.8071 77.05% 38.52% 19.02% 

Air China -0.2400 -0.1928 0.2367 -0.8970 0.0646 90.91% 45.45% 0.00% 

AirAsia -0.1826 -0.1703 0.2405 -0.4123 0.0270 81.82% 18.18% 26.71% 

China East. -0.1312 -0.1310 0.2367 -0.6897 0.2005 63.64% 27.27% 0.00% 

China South. -0.2456 -0.2015 0.2367 -0.6724 0.0754 90.91% 45.45% 0.00% 

Eva Air 0.0014 0.0110 0.2396 -0.1261 0.0652 40.00% 0.00% 0.00% 
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Airline Mean Median SE Min Max % Neg 

% Significant 

at 10% level 

(one-side 

test) 

% of next 

year fuel 

hedged 

Garuda Ind. -0.0552 0.0150 0.2669 -0.3179 0.2038 42.86% 0.00% 0.00% 

Japan Airl. -0.2144 -0.2262 0.3493 -0.5191 0.0480 83.33% 16.67% 71.00% 

Jet Airways -0.3122 -0.2598 0.2335 -1.0858 0.2279 81.82% 45.45% 0.00% 

Singapore A. -0.0965 -0.0446 0.2426 -0.2582 0.0391 81.82% 9.09% 29.50% 

Thai Air. -0.2791 -0.3031 0.2364 -0.8969 0.0223 90.91% 45.45% 45.75% 

Subtotal 

Asia 
-0.1844 -0.1595 0.2458 -1.0858 0.2279 74.44% 27.00% 13.84% 

TOTAL -0.1522 -0.1246 0.2268 -1.1264 1.8071 72.06% 30.16% 32.43% 

Source: Own figure. 

Note: Based on 315 observations of 32 airlines. Jet fuel exposure coefficients are estimated using 

Equation (3): 𝑅𝑖,𝑤 = 𝛼𝑖 + 𝛽𝑖,𝑦𝑅𝑀𝐾,𝑤 + 𝛾𝑖,𝑦𝑅𝐽𝐹,𝑤 + 𝛿𝑅𝑈𝑆𝐷,𝑤 + 휀𝑖,𝑤. 

 

 

The following table shows the results obtained for testing the validity of H1. 

 
Table 9: Results of a mean-comparison t-test for exposure coefficients between regions. 

Difference in regional exposure coefficients 
T-statistic between 

regions (two-sided) 

 

Europe – Asia 3.7228 *** 

North America – Asia -0.3235  

Europe – North America 3.4023 *** 

Source: Own figure. 

Note: *** denote p-values <0.01, ** denote p-values <0.05 and * denote p-values <0.10. 

 

Using Stata, it was computed a mean-comparison t-test, in order to find out if 

the exposure to fuel prices is identical across continents (H1). Being the null 

hypothesis a zero-difference between means, the results allow us concluding 

that for the sample here analyzed, the exposure for European and Asian carriers 

should be distinct, once a t-statistic of 3.7228 allows for the rejection of H0. 

Therefore, our H1 that airline companies are equally exposed to jet fuel prices 
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regardless the continent where they are based (𝛾𝐸𝑈,𝑦 = 𝛾𝑁𝐴𝑀,𝑦 = 𝛾𝐴𝑆𝐼𝐴,𝑦) can be 

rejected, going along with the results of Berghöfer & Lucey (2014). 

Similarly, there is a 1%-level significantly different exposure between Europe 

and North America, given by a t-statistic of 3.4023, reinforcing the rejection of 

H1. 

It is also possible to conclude that both Asian and North American carriers 

are more negatively exposed than European airlines, confirming again the 

results of Berghöfer & Lucey (2014). 

On the other side, we could not find differences on exposure levels between 

North America and Asia, contrary to the findings of Berghöfer & Lucey (2014), 

even though Asian airlines’ exposure was estimated with Singapore kerosene 

prices and North American carriers were estimated with Gulf Coast kerosene. 

In Figure 15, it is possible to notice that although US Gulf Coast price 

changes seem to be more contained, both usually vary on the same direction, 

during the period analyzed. 

 

Figure 15: Graphical representation of the magnitudes of weekly changes on US Gulf Coast 

Kerosene versus Singapore Kerosene Spot Prices, throughout the period of 2007 until 2017. 

 
Source: Own figure. 

Note: Based on 573 observations per each of the two US Gulf Coast Kerosene and Singapore 

Kerosene Spot Prices. Data retrieved from Datastream. 
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Using Stata, it was computed another mean-comparison t-test, this time in 

order to find out if the exposure to fuel prices is identical between premium 

and low-cost carriers (H10). The null hypothesis is a zero-difference between 

means. If we pursue a two-sided test as we did for testing the exposure across 

continents, the results do not show there is a significant difference between 

types of carriers, once the p-value (0.1158) is slightly above the minimum 10%-

level of significance needed to reject the null hypothesis. Nevertheless, if 

considering a one-sided t-test on the left, we can conclude that premium 

carriers are more exposed than low cost carriers, once a t-statistic of -1.5785 

allows for the rejection of H10. 

 

 

Table 10: Results of a mean-comparison t-test for exposure coefficients between types of 

carriers. 

Difference in carriers’ exposure coefficients 
T-statistic between 

regions (two-sided) 

 

Premium carriers – Low cost carriers -1.5785  

Source: Own figure. 

Note: *** denote p-values <0.01, ** denote p-values <0.05 and * denote p-values <0.10. 
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4.2.2 Second-step equation - Berghöfer 

Table 11 presents the summary statistics for the dependent and independent 

variables used to regress Models 2-3 and 5-6, replicating the same regressed by 

Berghöfer & Lucey (2014). 

 

Table 11: Summary of descriptive statistics for the data used on estimating Equations 4 and 5. 

Variables Mean Median Std. Dev. Min Max 

ABS_FUELEXP 0.2261 0.1546 0.2210 0.0005 1.0858 

HDGPER 0.3622 0.3500 0.3069 0.0000 0.9500 

HDGMAT 15.9273 12.0000 13.5896 0.0000 60.0000 

ADI_M 0.5975 0.6242 0.3063 0.0000 0.9506 

ADI_F 0.4653 0.5575 0.3364 0.0000 0.8759 

LNTA 15.9507 15.8991 1.2402 12.9932 18.1869 

LTDA 0.2401 0.2346 0.1389 0.0102 0.6882 

LNDIST 7.4630 7.4580 0.3576 6.5530 8.4288 

LF 0.8158 0.8160 0.0515 0.6600 0.9500 

Source: Own figure. 

Note: Based on 165 observations. ABS_FUELEXP stands for the absolute value of the variable 𝛾. 

 

 

The median airline in the cleaned sample has, in the median year, a jet fuel 

price risk exposure of 0.1546, in absolute value, and has hedged 35 percent of its 

next year fuel requirements with a median maturity of 12 months. This adds to 

a median fleet models’ diversity index of 0.6242 and of 0.5575 when measured 

by families. The median airline still has a flight distance of approximately 1,734 

kilometers, flies with a passenger load factor of 81.60 percent, has around 8,033 

million USD on total assets and its long-term debt to assets ratio is 23.46 

percent. 

 

Additionally, a matrix of correlations was ran on Stata, in order to evaluate if 

the variables tested were not highly correlated with each other. Gujarati (2003) 

suggests a good rule of thumb on this, by analyzing if the “pair-wise or zero-
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order correlation coefficient between two regressors” is high (over 0.8), then 

multicollinearity is a severe problem. 

As here analyzed for all six equations, multicollinearity is not a problem. 

Table 12 includes a correlation matrix, which serves Models 1-3 (using ADI_M), 

and Models 4-6 (using ADI_F). 

 

Table 12: Correlation matrix for the independent variables estimated on Models 1-6. 

 HDGPER HDGMAT ADI_M ADI_F LNTA LTDA LNDIST LF 

HDGPER 1.0000        

HDGMAT 0.5569*** 1.0000       

ADI_M -0.0725 0.1973** 1.0000      

ADI_F -0.0927 0.0562 0.8909*** 1.0000     

LNTA 0.1994 0.2237*** 0.3221*** 0.3194*** 1.0000    

LTDA -0.1467* -0.2019*** 0.1533** 0.3410*** 0.1610** 1.0000   

LNDIST -0.0031 0.1820** 0.6333*** 0.6856*** 0.3572*** 0.2764*** 1.0000  

LF 0.1708** -0.0553 -0.3354*** -0.3281*** 0.1897** -0.3235*** -0.0638 1.0000 

Source: Own figure. 

Note: *** denote p-values <0.01, ** denote p-values <0.05 and * denote p-values <0.10. 

 

 

Apart from the correlation between ADI_M and ADI_F, it is possible to 

observe on the previous table that there are no correlations higher, in absolute 

value, than 0.80, value of reference for Gujarati (2003) for the existence of 

multicollinearity problems. Nevertheless, these two ADI indexes are never used 

together in the same equation, being one a substitute for the other, so there 

seems to be no multicollinearity problems. 

 

On Table 13, we show the results for the Models computed by Berghöfer & 

Lucey (2014). It should be noticed that our results are for the time period of 

2007-2017, while Berghöfer & Lucey (2014) study between 2002-2012. Both 
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samples are of airlines from Asia, Europe and North America, although slightly 

distinct. 

 

All models, except for the OLS estimations, which are included for 

comparison purposes only, include year and firm dummies, not reported. 

Models 1-2 and 4-5 present heteroscedastic robust standard-errors. Models 3 

and 6 are clustered for airlines, controlling for heteroscedasticity and 

autocorrelation (Berghöfer & Lucey, 2014). 

Fixed effects’ models can measure for airline-specific variations in exposure 

that are not captured by the variables itself, and so, they are a suitable option 

model (Tufano, 1998c). The preference for fixed effect models has the advantage 

of being always consistent, despite the downturn of increasing standard-errors 

in such small samples. Nevertheless, studies within the airline industry cannot 

withdraw much bigger samples due to the great difficulty on obtaining 

consistent information across continents and along distant past years. Plus, 

most of the data has to be manually gathered from annual reports or 10-K 

fillings. 
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Table 13: Estimation results for the same equations computed by Berghöfer & Lucey (2014). 

 Models 

 Using ADI_M Using ADI_F 

 OLS 
Fixed 

Effects 

Fixed 

Effects/ 

Cluster 

OLS 
Fixed 

Effects 

Fixed 

Effects/ 

Cluster 

Variables (1) (2) (3) (4) (5) (6) 

HDGPER 
-0.1205** 

(-2.31) 

0.1421 

(1.44) 

0.1421* 

(1.75) 

-0.1319*** 

(-2.61) 

0.1475 

(1.53) 

0.1475* 

(1.86) 

HDGMAT 
0.0013 

(1.10) 

-0.0010 

(-0.47) 

-0.0010 

(-0.42) 

0.0019 

(1.62) 

-0.0008 

(-0.38) 

-0.0008 

(-0.34) 

ADI_M 
0.1360* 

(1.84) 

-0.1315 

(-0.63) 

-0.1315 

(-0.63) 

   

ADI_F    
0.1883*** 

(2.71) 

-0.0796 

(-0.43) 

-0.0796 

(-0.45) 

LNTA 
-0.0186 

(-1.26) 

-0.0723 

(-1.00) 

-0.0723 

(-0.94) 

-0.0204 

(-1.40) 

-0.0723 

(-0.93) 

-0.0723 

(-0.83) 

LTDA 
0.5337*** 

(3.61) 

0.2458 

(0.94) 

0.2458 

(0.71) 

0.4772*** 

(3.33) 

0.2570 

(0.96) 

0.2570 

(0.70) 

LNDIST 
-0.0566 

(-0.99) 

-0.2112 

(-1.28) 

-0.2112 

(-1.43) 

-0.0996 

(-1.63) 

-0.1964 

(-1.27) 

-0.1964 

(-1.43) 

LF 
0.9601*** 

(2.73) 

0.9468 

(1.50) 

0.9468** 

(2.38) 

1.0528*** 

(3.11) 

1.0175* 

(1.67) 

1.0175** 

(2.57) 

       

R-squared 0.1189 0.7279 0.7279 0.1368 0.7277 0.7277 

Overall F-

Test 
3.2100***   3.8400***   

Source: Own figure. 

Note: All Models include a constant term and are based on 165 observations of 23 airlines. 

Values for Models 1-3 are the results of the estimation of Equation (4): |𝛾𝑖,𝑦| = 𝛼0 +

𝛼1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝛼2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝛼3 (𝐴𝐷𝐼𝑀𝑖,𝑦
) + 𝛼4(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝛼5(𝐿𝑇𝐷𝐴𝑖,𝑦) + 𝛼6(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦) +

𝛼7(𝐿𝐹𝑖,𝑦) + 휀𝑖,𝑦. 

Values for Models 4-6 are the results of the estimation of Equation (5): |𝛾𝑖,𝑦| = 𝛼0 +

𝛼1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝛼2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝛼3 (𝐴𝐷𝐼𝐹𝑖,𝑦
) + 𝛼4(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝛼5(𝐿𝑇𝐷𝐴𝑖,𝑦) + 𝛼6(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦) +

𝛼7(𝐿𝐹𝑖,𝑦) + 휀𝑖,𝑦. 

T-statistics are presented between brackets. 

*** denote p-values <0.01, ** denote p-values <0.05 and * denote p-values <0.10. 
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While looking at the results of the fixed-effects’ regressions, one might notice 

high R-squared but not many significant t ratios. Gujarati (2003) states that if 

these R-squared were higher than 0.80, we could probably be facing a “classic 

symptom of multicollinearity”, but given the observed R-squared are smaller 

than 0.80, and the previously computed matrixes does not present high 

correlations, then our models should be valid. 

According to our hypothesis H2, financial hedging decreases airlines’ fuel 

price risk exposure. The results for Models 2 and 5 seem to suggest there is no 

impact on exposure, as our coefficient estimations for the variable HDGPER are 

not significant. On the other side, using a cluster on airline, capturing specific 

firm variations, we get statistically significant results at the 10% level, on 

Models 3 and 6, with coefficients of 0.1421 and 0.1475, respectively. The signal 

of our coefficient for HDGPER was predicted to be negative though, once it is 

expected that financial hedging through derivatives should decrease firms’ 

exposure. Our findings actually show that financial hedging actually increased 

airlines’ fuel exposure. Berghöfer & Lucey (2014) got positive but not 

statistically significant coefficients on the variable HDGPER. 

Regarding the coefficients estimated for HDGMAT, we conclude that the 

maturity of hedging does not seem to impact on exposure levels, along with the 

findings of Berghöfer & Lucey (2014). 

The third hypothesis we test is H3, that airlines decrease their risk exposure, 

the wider its fleet diversity. In Models 2-3 we test this using the ADI_M index 

and in Models 5-6 we use ADI_F. Our coefficient signs are negative, according 

to predictions, but they are not significant at a 10% level. So, we end up 

concluding that fleet diversity, whether measured by models or families, seems 

not to have impact on risk exposure. Berghöfer & Lucey (2014) also did not get 

statistically significant results on the same regressions, except for a positive 

coefficient on ADI_M (their ADI_1), significant at 10%, on the equivalent of our 
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Model 3, suggesting an increase in fleet diversity could actually increase 

exposure. This could be explained by the fact that, although there is a benefit of 

more flexibility by possessing a diverse fleet, there are also additional costs 

such as on spare parts and maintenance. 

Our results also do not provide support for H4, that longer flight distances 

increase fuel price exposure. Considering Models 2-3 and 5-6, we get negative 

non-significant coefficients for LNDIST, with t-statistics between -1.27 and -1.43. 

Along with the results of Berghöfer & Lucey (2014), we conclude there is no 

major impact of the average flight distance on risk exposure. 

According to our hypothesis H5, a higher load factor would decrease risk 

exposure. Our results are significant on Model 5, with a 90% confidence level, 

and on Models 3 and 6 with a significance level of 5%. Nevertheless, contrary to 

our predictions, we got positive coefficients, which seem to make no common 

sense, once aircrafts with higher load factors have more coverage of certain 

fixed costs, and so, their exposure to fuel prices should diminish. Berghöfer & 

Lucey (2014) had negative but not significant coefficients for the variable LF, on 

their equivalents to our Models 2-3 and 5-6. 

By analyzing the coefficients for the variable LNTA, our results do not show 

that firm size has an impact on exposure. Though, our coefficients are similar to 

the ones got by Berghöfer & Lucey (2014). For instance, comparing our Model 3 

with their equivalent, we get a coefficient of (-0.0723), while they get (-0.0660). 

Nevertheless, our results are not significant at a 10% level, and Berghöfer and 

Lucey (2014) study was able to conclude, at a 1% level on the same Model, that 

the larger an airline, the greater the effect on exposure reduction. 

Neither one of the previous fixed-effects’ models showed us that financial 

hedging, measured by the percentage of next year’s fuel hedged, or operational 

hedging, measured only by fleet diversity, decrease in fact airlines’ fuel price 

risk exposure. 
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4.2.3 Alternative second-step equations 

This section presents alternative second-step equations, contemplating more 

variables than Berghöfer & Lucey (2014) regressions, and trying to measure also 

the impact of two other measures of operational hedging: fleet-fuel efficiency, 

measured by the average fleet age, and the percentage of fleet held on operating 

leasing, to assess airlines’ flexibility in response to higher fuel prices or demand 

fluctuations, which ultimately could diminish risk exposure. 

The following table presents the summary statistics for the dependent and 

independent variables used to regress our Models 8-10. 

 

Table 14: Summary of descriptive statistics for the data used on estimating Equations 8-10. 

Variables Mean Median Std. Dev. Min Max 

ABS_FUELEXP 0.2249 0.1543 0.2171 0.0005 1.0083 

HDGPER 0.4177 0.4350 0.3018 0.0000 0.9500 

HDGMAT 18.8438 18.0000 13.7139 0.0000 60.0000 

FX_DER 0.7344 1.0000 0.4434 0.0000 1.0000 

IR_DER 0.7188 1.0000 0.4514 0.0000 1.0000 

ADI_M 0.6451 0.6921 0.2905 0.0000 0.9506 

ADI_F 0.5021 0.6499 0.3318 0.0000 0.8759 

LNAGE 2.0815 2.1972 0.4613 0.9933 3.1491 

OPLEASE 0.3321 0.2823 0.2241 0.0000 1.0000 

TURBOPROP 0.0445 0.0000 0.0792 0.0000 0.2943 

LF 0.8254 0.8200 0.0411 0.7120 0.9500 

LNDIST 7.4995 7.5307 0.3336 6.8477 8.4288 

LNTA 16.2588 16.4170 1.1409 13.7440 18.1869 

CFSAL 11.3228 10.1950 7.1168 -5.0300 28.1600 

Source: Own figure. 

Note: Based on 128 observations. ABS_FUELEXP stands for the absolute value of the variable 𝛾. 
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The median airline in the sample has, in the median year, a jet fuel price risk 

exposure of 0.1543, in absolute value, has hedged 43.50 percent of its next year 

fuel requirements with a median maturity of 18 months, and also entered into 

currency and interest rate derivatives. In addition, the same median airline 

registers a fleet models’ diversity index of 0.6921 and of 0.6499 when measured 

by families. This airline has a fleet with around 9 years of age, from which 28.23 

percent are held in operating leasing, and none is a turboprop. The median 

flight distance is of approximately 1,864 kilometers25 and its aircrafts fly with a 

median passenger load factor of 82.00 percent. Finally, this airline has around 

13,484 million USD26 on total assets and its cash-flow to sales ratio is of 10.1950. 

 

A new matrix of correlations was ran on Stata, in order to evaluate if the 

variables tested were not highly correlated with each other, and can be found 

on Appendix 1. From its analysis, and apart from the correlation between 

ADI_M and ADI_F, we do not observe correlations higher, in absolute value, 

than 0.80, value of reference for Gujarati (2003) for the existence of 

multicollinearity problems. However, these two ADI indexes are never used 

together in the same equation, being one a substitute for the other, therefore 

there are no multicollinearity problems. 

 

On the following page, the results for our three own Models are 

discriminated in Table 15. 

 

                                                 
25 From the obtained value of LNDIST=7.3507, we get that the median flight distance is approximately equal to 
e7.3507=1,864 kilometers. 
26 Given the value of LNTA=16.4170, we get that the value of total assets is approximately equal to e16.4170=13,484 
million USD. 
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Table 15: Estimation results of Models 7-9, based on equations 8-10, respectively. 

 Models 

 
Fixed Effects / 

Cluster 
Fixed Effects Fixed Effects 

Variables (7) (8) (9) 

HDGPER 0.1907** 

(2.27) 

0.2178** 

(2.41) 

0.1816* 

(1.91) 

HDGMAT 0.0005 

(0.17) 

0.0004 

(0.16) 

0.0007 

(0.27) 

FX_DER -0.0019 

(-0.02) 

0.0127 

(-0.10) 

0.0253 

(0.21) 

IR_DER 0.1231 

(1.60) 

0.1292** 

(2.08) 

0.1287** 

(2.03) 

ADI_M 0.3133 

(0.80) 

0.2771 

(0.82) 
 

ADI_F 
  

-0.1323 

(-0.39) 

LNAGE -0.2232** 

(-2.33) 

-0.2297** 

(-2.17) 

-0.2080** 

(-1.98) 

OPLEASE -0.2470 

(-0.61) 

-0.2532 

(-0.73) 

-0.2491 

(-0.67) 

TURBOPROP -0.0905 

(-0.12) 

-0.2101 

(-0.29) 

-0.1529 

(-0.20) 

LF 0.5863 

(0.63) 

0.7655 

(1.01) 

0.6076 

(0.80) 

LNDIST 0.1259 

(1.24) 

0.1014 

(0.50) 

0.0905 

(0.45) 

LNTA -0.0645 

(-0.56) 

-0.1022 

(-0.92) 

-0.0849 

(-0.75) 

CFSAL -0.0073** 

(-2.12) 
  

    

R-squared 0.7770 0.7727 0.7721 

Source: Own figure. 
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Note: All Models include a constant term and are based on 128 observations of 19 airlines. 

Model (7) results from the estimation of Equation (8): 

 

|𝛾𝑖,𝑦| = 𝜃0 + 𝜃1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝜃2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝜃3(𝐹𝑋_𝐷𝐸𝑅𝑖,𝑦) + 𝜃4(𝐼𝑅_𝐷𝐸𝑅𝑖,𝑦) + 𝜃5(𝐴𝐷𝐼_𝑀𝑖,𝑦)

+ 𝜃6(𝐿𝑁𝐴𝐺𝐸𝑖,𝑦) + 𝜃7(𝑂𝑃𝐿𝐸𝐴𝑆𝐸𝑖,𝑦) + 𝜃8(𝑇𝑈𝑅𝐵𝑂𝑃𝑅𝑂𝑃𝑖,𝑦) + 𝜃9(𝐿𝐹𝑖,𝑦)

+ 𝜃10(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦) + 𝜃11(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝜃12(𝐶𝐹𝑆𝐿𝑖,𝑦) + 𝑢𝑖,𝑦 

 

Model (8) is the result of the estimation of Equation (9): 

 

|𝛾𝑖,𝑦| = 𝜃0 + 𝜃1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝜃2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝜃3(𝐹𝑋_𝐷𝐸𝑅𝑖,𝑦) + 𝜃4(𝐼𝑅_𝐷𝐸𝑅𝑖,𝑦) + 𝜃5(𝐴𝐷𝐼_𝑀𝑖,𝑦)

+ 𝜃6(𝐿𝑁𝐴𝐺𝐸𝑖,𝑦) + 𝜃7(𝑂𝑃𝐿𝐸𝐴𝑆𝐸𝑖,𝑦) + 𝜃8(𝑇𝑈𝑅𝐵𝑂𝑃𝑅𝑂𝑃𝑖,𝑦) + 𝜃9(𝐿𝐹𝑖,𝑦)

+ 𝜃10(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦) + 𝜃11(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝑢𝑖,𝑦 

 

Model (9) results from the estimation of Equation (10): 

 

|𝛾𝑖,𝑦| = 𝜃0 + 𝜃1(𝐻𝐷𝐺𝑃𝐸𝑅𝑖,𝑦) + 𝜃2(𝐻𝐷𝐺𝑀𝐴𝑇𝑖,𝑦) + 𝜃3(𝐹𝑋_𝐷𝐸𝑅𝑖,𝑦) + 𝜃4(𝐼𝑅_𝐷𝐸𝑅𝑖,𝑦) + 𝜃5(𝐴𝐷𝐼_𝐹𝑖,𝑦)

+ 𝜃6(𝐿𝑁𝐴𝐺𝐸𝑖,𝑦) + 𝜃7(𝑂𝑃𝐿𝐸𝐴𝑆𝐸𝑖,𝑦) + 𝜃8(𝑇𝑈𝑅𝐵𝑂𝑃𝑅𝑂𝑃𝑖,𝑦) + 𝜃9(𝐿𝐹𝑖,𝑦)

+ 𝜃10(𝐿𝑁𝐷𝐼𝑆𝑖,𝑦) + 𝜃11(𝐿𝑁𝑇𝐴𝑖,𝑦) + 𝑢𝑖,𝑦 

 

T-statistics are presented between brackets. 

*** denote p-values <0.01, ** denote p-values <0.05 and * denote p-values <0.10. 

 

 

 

All the three models presented in Table 13 include year and firm dummies, 

not reported. Model 7 is clustered for airlines, controlling for heteroscedasticity 

and autocorrelation. Models 8 and 9 present heteroscedastic robust standard-

errors. 

Our hypothesis H2 states that financial hedging diminishes airlines’ fuel price 

risk exposure. According to Model 9, the estimated coefficient for HDGPER are 

positive (0.1816) and statistically significant at the 10% level, suggesting that 

financial hedging increases fuel exposure. As previously mentioned, our 

predictions would be a negative coefficient, but based on our sample, we reject 

H2 on all three cases. It can also be observed that the coefficients for HDGPER 

are positive and statistically significant at a 5% level on Models 7 and 8, 

enhancing our conclusions. 

Regarding the coefficients estimated for HDGMAT on all three models, we 

conclude that the maturity of hedging is not by itself a relevant variable to 

impact on exposure levels. 
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Our third hypothesis, H3, states that a more diverse fleet would decrease risk 

exposure. The estimated coefficients for ADI_M are positive on Models 7 and 8, 

but not significant, allowing us to reject H3, not being observed any reduction of 

exposure by altering fleet diversity, when measured by models. The same 

hypothesis was tested on Model 9, but substituting ADI_M by ADI_F. Results 

were also not significant, although we observed an opposite signal on our 

coefficient for ADI_F (-0.1323). Treanor et al. (2014b) concluded that an average 

U.S. airline would be 2.3% less exposed to jet fuel prices if their fleet diversity 

(measured by ADI_M) increased by one percentage point. 

The fourth hypothesis tested is H4, that higher average flight distances 

increase fuel exposure. Our results in all three models lead us rejecting our 

hypothesis, once the estimated coefficients are not significant at 10%. This way, 

we conclude there is not an impact of the average flight distance on fuel price 

exposure. 

According to our fifth hypothesis, H5, a higher load factor reduced exposure. 

Our results of Models 7-9 lead us to reject this hypothesis, concluding that there 

is no significant impact of the load factor on fuel price exposure. 

The sixth hypothesis, H6, tells that exposure to fuel prices increases with a 

fleet’s average age. Our results for the coefficient of the variable LNAGE are 

significant at 5% on all three models. Nevertheless, the estimated coefficients 

are negative on all models (e.g. -0.2232 on Model 7). According to our results, 

we should conclude that the higher a fleet’s age, the smaller exposure an airline 

is facing. In particular and according to our Model 7, for instance, by increasing 

fleet age by one year, there would be a decrease of approximately 11.89% in the 

jet fuel exposure coefficient27. This is contradictory and against the findings of 

                                                 
27 The 11.89% increase is calculated by multiplying the coefficient on the fleet age variable (-0.2232) by the 
difference of logarithms of 8.8568 (average fleet age in our sample) and 7.8568 (average fleet age less 1 year), then 
divided by the average airline fuel exposure coefficient of 0.2249. 
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Treanor et al. (2014b), who concluded that a reduction of one year on a fleet’s 

age would reduce jet fuel exposure on about eleven percent. 

Our seventh hypothesis, H7, pretended to test whether operational leases 

would help decreasing risk exposure. From Models 7-9, we come up with 

negative and non-significant coefficients, this way, concluding the percentage 

of fleets held in operating leasing do not impact on risk exposure. 

The hypothesis H8 mentions that airlines entering into currency derivatives 

should be less exposed to fuel prices, giving it would be more likely for these 

carriers to hedge fuel, as well. Based on our results, we do not reject the null 

hypothesis that there is no impact on risk exposure. 

According to hypothesis H9, airlines entering into interest rate derivatives 

should have its fuel exposure diminished, once it would be likely they would 

also hedge fuel. Our results are significant at a 5% level on Models 8 and 9, but 

coefficient signs are positive, therefore concluding that airlines hedging interest 

rates would also have more fuel price risk exposure. 

Finally, the estimated coefficient for the cash-flow to sales ratio on Model 7 

resulted negative (-0.0073) and significant at a 5% level. 
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Chapter 5 
Conclusions, Limitations and Further Research 

In the present chapter, we state the conclusions of our regressions, draw 

some of the difficulties a research in this particular field has, and, finally, end 

with some proposals of further research in the industry. 

5.1 Conclusions 

The airline industry is constantly being characterized by a growing  

competition among carriers around the globe, especially between premium and 

low-cost carriers, and for the need to rationalize costs and manage operations as 

efficiently as possible, to keep up with the fast pace. Jet fuel costs are a 

substantial part of airlines’ operating costs and accounted for over 18.8% of these, 

in 2017 (IATA, 2018). Jet kerosene and other similar commodities also hedged by 

airlines are always subject to the market volatility, difficulting airlines’ 

capability to steady results. Both financial and operational hedging are at the 

disposal of airlines to decrease volatility and smooth these expenses across 

time. Our study focused on 14 Asian, 15 European and 14 North American 

airlines, over the period 2007-2017, and meant to test whether financial and 

operational hedging could decrease airline companies’ jet fuel price risk 

exposure. To our knowledge, this is one of the few studies to include airlines 

from Europe and Asia, and should be the first one to include three distinct 

operational hedges on a global sample of airlines. 
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As a representative measure for financial hedging we computed the next 

year’s percentage of fuel hedged (Berghöfer & Lucey, 2014). As for operational 

hedges, this study takes into account fleet diversity and the percentage of 

aircrafts held in operating leasing, once they provide airlines with the real 

option of adjusting their capacity according to fuel prices and possible 

fluctuations on demand for seats. In particular, we measured fleet diversity by 

two ways, the number of operating aircraft models (ADI_M) or families 

(ADI_F), such as Berghöfer & Lucey (2014). These two aircraft dispersion 

indexes (ADI) are based on the Hirschman-Herfindahl concentration index. 

Additionally, we include a measure of fuel-efficiency, proxied by the 

logarithm of average annual fleet ages. This is important because newer 

aircrafts are more fuel-efficient and therefore help reducing airlines’ fuel price 

risk exposure. 

We find similar fuel exposure levels to the findings of Berghöfer & Lucey 

(2014), mainly while comparing the percentage of negatively exposed airlines. 

Our results allowed us to find significant differences, at a one-percent level, on 

the average exposure coefficients between Europe and Asia, as well as Europe 

with North America, extending the findings of Berghöfer & Lucey (2014) on a 

more recent sample. European airlines are less exposed than Asian or North 

American carriers. Nevertheless, contrary to their results, we could not find 

significant differences when comparing North America and Asia. 

This work contributes to the extension of previous research by testing for 

differences on the average jet fuel exposure coefficients between low-cost and 

premium carriers, on a worldwide scale. Even though we could not find 

significant differences between types of carriers while performing a two-sided 

t-test, we were able to prove, with 90 percent confidence level, on a one-sided 

test, that on average, premium carriers are more exposed to fuel prices than 

low-cost carriers. 
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We opted for fixed effects’ models, since these can measure for airline-

specific variations in exposure that are not captured by the variables itself 

(Tufano, 1998c), and have the advantage of being always consistent. As so, we 

estimated a total of seven fixed effects’ equations, four replicating Berghöfer & 

Lucey (2014) and three other computed on our own. From all these, and 

regarding financial hedging effectiveness, we got five statistically significant 

coefficients, three of which at a level of 10 percent, and two at a 5 percent level. 

Contrary to the findings of Treanor et al. (2014b) for the U.S. airline industry 

between 1994 and 2008, and to our predicted coefficient sign for HDGPER, we 

got a positive coefficient, concluding that financial hedging actually increased 

airlines’ fuel price risk exposure, between 2007 and 2017. Berghöfer & Lucey 

(2014) did not get significant coefficients on this. 

Regarding operational hedging, our findings do not show an impact of fleet 

diversity on risk exposure, whether estimating by ADI_M or ADI_F, once our 

coefficients were not significant. Nevertheless, its impact is contradictory on 

previous studies. Measuring by ADI_M, Berghöfer concludes that an increase of 

a one percentage point in fleet diversity would actually increase exposure 

coefficient on 1.83 percent. On the other side, Treanor et al. (2014b) have that 

the same increase in fleet diversity would lead to a reduction of the same 

exposure coefficient in about 11.0 percent. 

As a second measure of operational hedging, our evidence for fleet’s fuel-

efficiency is statistically significant at a 5% on Models 7-9, but contradictory, 

once our evidence would suggest that older aircrafts decrease fuel exposure. 

The third measure of operational hedging is the percentage of aircrafts in 

operating leasing. According to our results, we got negative coefficients as 

rationally predicted, but they are not significant at the 10 percent level. 

Our findings also do not find evidence that a higher load factor or shorter 

flights help decreasing airlines’ fuel risk exposure. In fact, two of our fixed-
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effects’ regressions suggest, with a 5% significance level, that a higher load 

factor would increase fuel exposure, which is not rational. 

Summing up, we did not find strong evidences that fuel risk exposure can be 

diminished by entering into financial or operational hedges. In fact, our results 

for the period 2007-2017 suggest financial hedging has had a negative impact on 

carriers, increasing their exposure. This could be explained by ineffective 

hedging and sector specificities, validating the policies followed by North 

American carriers in recent years, by decreasing their fuel hedges. Namely, the 

average percentage of next year’s fuel hedged by North American carriers 

decreased from 20.15% to 14.09%, from 2007 to 2017. Airlines should always 

carefully assess internally if the costs of entering into hedging do not exceed the 

potential benefits, whether regarding financial or operational hedges. As 

concluded by Guay & Kothari (2003), and concerning airlines using both 

operational and financial hedging, the latter is just used to fine-tune a risk 

management program in its whole. 

5.2 Limitations 

In order to compute a high number of descriptive statistics and regress 

several equations, the database for this work was manually built on an 

enormous Excel sheet database: 68 columns per 476 rows, with a total of 32,368 

cells. From this total, 6,188 were retrieved from Datastream, and the remaining 

26,180 were manually imputed during approximately three months, by 

consulting a total of 440 annual reports/10-K fillings available for the 

companies/periods chosen. 

The lacking of a global annual report template makes the analysis difficult to 

conceive, not to mention on the great variance on the quality of reports, even 

within the European continent. The easiest continent to analyze was North 
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America, as expected, since 10-K fillings are standardized, and that is the reason 

why the majority of studies is only based on American companies. 

Occasionally, there were inconsistencies on values reported within the same 

report. Example of Aegean Airlines’ annual report of 2017: on its page 27, the 

total group fleet disclosed is of 60 aircrafts. However, on page 8, they report an 

operating group fleet of 58 aircrafts. 

Companies across different countries have, sometimes, distinct fiscal years, 

and so, we had to adapt them in order to provide the best comparability 

possible. Sometimes it was also difficult to understand fleet’s disclosure, since 

companies do not always clearly specify what is part of the airline itself or what 

is being disclosed as part of their group. The same happened for other details 

regarding financial or operational hedging. 

Regarding financial hedging, it happens many times companies disclosing 

their policies regarding several types of derivative instruments or underlyings 

they are allowed to use, and not mentioning what did they use on a particular 

year. 

5.3 Further Research 

Current findings on hedging effectiveness in the aviation industry are 

inconsistent and there is still a lack of research in this field. 

It would be interesting to see throughout the following years if the 

application of the IFRS 16 will have an impact on the airlines’ choices between 

financial/operating leasing. This new standard requires lessees to recognize the 

majority of its leases on their balance sheets, not keeping them off-balance 

sheet, as it was the case of the operating leases. 
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Figure 16: Impact of the IFRS 16 standards on the balance sheet. 

 
Source: EY28. 

 

Figure 17: Impact of the IFRS 16 standards on the income statement. 

 
Source: EY29. 

 

An extension of current researches could also be done by applying most of 

the studies onto global samples of airlines, at least, from Europe, Asia and 

North America, given the great majority is only focused on the latter, due to the 

great availability of information. For instance, an analysis of whether financial 

and operational hedging are substitutes or complements should be interesting 

to perform on a global sample of airlines. Airlines based on South America, 

                                                 
28 Figure available on https://www.ey.com/Publication/vwLUAssets/ey-leases-a-summary-of-ifrs-16/$FILE/ey-
leases-a-summary-of-ifrs-16.pdf) , and consulted on 19/01/2019. 
29 Figure available on https://www.ey.com/Publication/vwLUAssets/ey-leases-a-summary-of-ifrs-16/$FILE/ey-
leases-a-summary-of-ifrs-16.pdf) , and consulted on 19/01/2019. 

https://www.ey.com/Publication/vwLUAssets/ey-leases-a-summary-of-ifrs-16/$FILE/ey-leases-a-summary-of-ifrs-16.pdf
https://www.ey.com/Publication/vwLUAssets/ey-leases-a-summary-of-ifrs-16/$FILE/ey-leases-a-summary-of-ifrs-16.pdf
https://www.ey.com/Publication/vwLUAssets/ey-leases-a-summary-of-ifrs-16/$FILE/ey-leases-a-summary-of-ifrs-16.pdf
https://www.ey.com/Publication/vwLUAssets/ey-leases-a-summary-of-ifrs-16/$FILE/ey-leases-a-summary-of-ifrs-16.pdf
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Middle East and Africa are not included in our study due to the difficulty of 

obtaining relevant data. A possible expansion of samples across new continents, 

including Oceania as well, and wider time windows would help to enforce 

findings in this industry. 
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Appendix 1: Correlation matrix for the independent variables estimated on Models 7-9.  

 HDGPER HDGMAT FX_DER IR_DER ADI_M ADI_F LNAGE OPLEASE TURBOPROP LF LNDIST LNTA CFSAL 

HDGPER 1.0000             

HDGMAT 0.4666*** 1.0000            

FX_DER 0.4138*** 0.0760 1.0000           

IR_DER 0.2438*** 0.1569* 0.0172 1.0000          

ADI_M -0.2769*** 0.1095 0.1229 0.0811 1.0000         

ADI_F -0.2539*** -0.0199 0.2379*** 0.0834 0.8776*** 1.0000        

LNAGE -0.1809** 0.0749 0.0261 -0.0696 0.6302*** 0.5667*** 1.0000       

OPLEASE -0.0441 0.0109 -0.0128 -0.1912** -0.0668 -0.1465* -0.3748*** 1.0000      

TURBOPROP -0.0769 0.0005 0.3081*** 0.1906** 0.3769*** 0.3970*** 0.3348*** 0.0771 1.0000     

LF 0.1328 -0.2773*** 0.0778 -0.3830*** -0.4340*** -0.4097*** -0.1176 0.0738 -0.1710* 1.0000    

LNDIST -0.1439 0.1645* 0.0423 -0.0044 0.6566*** 0.6967*** 0.3724*** -0.0724 0.0138 -0.2496*** 1.0000   

LNTA -0.0100 0.0497 -0.0736 0.1745** 0.2388*** 0.2287*** 0.2237** -0.5757*** -0.2296*** -0.0054 0.2144** 1.0000  

CFSAL -0.1693* -0.3572*** -0.1532* -0.1486* -0.4004*** -0.3945*** -0.0690 -0.1708* -0.2835*** 0.2883*** -0.2558*** 0.0990 1.0000 

Source: Own figure. 

Note: *** denote p-values <0.01, ** denote p-values <0.05 and * denote p-values <0.10. 


