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Resumo 

Nesta tese analisamos o poder de previsão out-of-sample do term-spread e dos 

seus domínios de frequência sobre prémios de risco de mercado. A variável term 

spread representa a diferença entre taxas de juro de longo e curto prazo de 

obrigações do governo e a sua decomposição em domínio de frequência é feita 

através do método Maximum Overlap Discrete Wavelet Transform.  

Foi comprovado pela literatura que no mercado dos Estados Unidos da 

América a componente de baixa frequência do term spread tem uma performance 

forte e robusta em exercícios out-of-sample sobre prémios de risco de mercado. 

Nesta tese, abordamos a possibilidade de este indicador ter a mesma 

performance em mercados internacionais (Alemanha, França, Japão, Reino 

Unido, Canada, África do Sul e Australia). Até então, esta alternativa ainda não 

foi abordada na literatura, e consideramos muito importante a sua análise para 

os mais diversos investidores, tanto locais como internacionais.  

A principal conclusão desta tese é que a série original em domínio temporal e 

a componente de baixa frequência do term spread tem uma performance out-of-

sample forte e robusta a prever prémios de risco de mercado para além dos 

Estados Unidos da América, na Alemanha, na França e no Canada. 

 

Palavras-chave: Prémio de Risco de Mercado, Term Spread, Domínio de 

Frequência 
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Abstract 

In this thesis we analyze the equity risk premium out-of-sample forecasting 

power of the term spread and its frequency components. The term spread is the 

difference between long and short term governmental interest rates and its 

frequency decomposition is done by applying a Maximum Overlap Discrete 

Wavelet Transform approach.  

It has been shown in the literature that, in the United States of America equity 

market, the low frequency of the term spread is a strong and robust out-of-

sample predictor of equity risk premium. In this thesis we address the empirical 

question if in alternative geographic zones (Germany, France, Japan, United 

Kingdom, Canada, South Africa and Australia) that continues to be the case. 

This question has not been addressed so far in the literature and we foresee it 

as highly relevant for both local and international diversified equity investors. 

Our main conclusion is that the original time series and the low frequency 

component of the term spread are a strong and robust out-of-sample predictors 

of the equity risk premium beyond United States of America, namely in 

Germany, France and Canada.  

 

Keywords: Equity Risk Premium, Term Spread, Frequency Domain
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Introduction 

Forecasting Equity Risk Premiums (ERP) is a crucial input for investors in their 

process of dynamic portfolio adjustments. Additionally, an improved exercise of 

forecasting ERP plays a crucial rule in finance because it helps to understand 

some factors that command ERP and improve the ability to use more realistic 

asset pricing models.  

Since a long time ago, the predictability of equity risk premiums has been an 

active research question for academic researchers (e.g., Dow (1920), Rapach and 

Zhou (2013)) and a very important topic in empirical finance.   

The literature on this topic is very extensive and extremely difficult to 

embrace. Its majority is unanimous on the fact that ERP are predictable but is 

rather weak on the consensus about where does come from the forecasting power 

of the equity risk premium. Several studies in the last decades, have asked 

whether ERP can be predictable by macroeconomic variables such as dividend-

price ratio, interest rate spread, consumption wealth ratio while other researchers 

focus on technical indicators to test this predictability. These predictors have 

been tested both in-sample (IS) and out-of-sample exercises (OOS) (e.g., Goyal 

and Welch 2008), although they have a very poor performance in out-of-sample 

exercises. Moreover, the extensive research on this topic is mostly dedicated to 

the United States (US) market.  
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In this paper we focus our analysis in the out-of-sample predictability of the 

equity risk premium given that in order to effectively predict ERP in real-time 

the out-of-sample exercise is the most suitable one.  

We focus on one specific predictor: the spread between long and short 

governmental interest rates (term spread). We consider this variable very 

attractive once it is closely related with the business cycle1 and it is very easy to 

compute using public available data. Furthermore, researchers as Campbell 

(1987) and Fama and French (1989), state that the term spread has predictability 

power over equity risk premiums, although the forecasting power of the term 

spread performs rather poorly when tested out-of-sample2, as it is the case of 

many other variables. Being in line with that, we are particularly motivated by 

the findings of Faria and Verona (2018) which found out that the low frequency 

(long-term dynamics) of the term spread is a strong and robust predictor of the 

equity risk premium in out-of-sample exercises for the United States (U.S).  

The major novelty of this thesis is that we extend this analysis beyond the U.S 

market to seven additional markets: Germany, France, Japan, United Kingdom, 

Canada, South Africa and Australia. This has not been addressed in the literature 

so far and we foresee it as highly relevant for both local and internationally 

diversified equity investors.  

In line with that, the main research question is: “Is the original time series or 

any frequency component of the term spread a good out-of-sample predictor of 

the equity risk premium in international countries?”.   

We closely follow the method used in Faria and Verona (2018) to test out-of-

sample forecasting power of different frequency components of term spread over 

equity risk premiums. Using a frequency domain approach allow us to extract 

hidden information from the predictor that can be highly important to forecast 

                                                 
1 As it is showed by Wheelock and Wohar (2009)  
2 See Goyal and Welch (2008) 
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ERP. Particularly, Ferreira and Santa Clara (2011) found that different frequency 

components of some indicators (earnings growth, dividend-price ratio) capture 

different frequencies of ERP. Similarly, Bandi, Perron, Tamoni, and Tebaldi 

(2018) and Faria and Verona (2018) succeeded on improving ERP predictability 

by having in account frequency components dependence between ERP and its 

predictors.  The different frequency components of the term spread are computed 

using a Maximum Overlap Discrete Wavelet Transform method and are tested 

to forecast horizons of 1,3,6,12 and 24 months.    

In this paper was found that the original time series and the low frequency 

component of the term spread have significant forecasting power on Germany, 

France, United States of America and Canada.  

The dissertation is divided as follows: In Chapter 1 we provide a review on 

related stands of literature, while placing our contribution. In Chapter 2 is 

explained the data and the methodology. In Chapter 3 are presented the main 

results as well as a robustness analysis.  
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Chapter 1  
Literature Review  

Forecasting the equity risk premium has been in the mind of a lot of 

researchers in the last decades. Despite its extreme importance in Finance and 

the fact that many economists have tried to forecast ERP using different methods 

and predictors, the truth is that the predictability of this variable continues to 

motivate a lot of active research. 

1.1 Forecasting Equity Risk Premium  

Since the very beginning of the XX century, (e.g. Dow (1920)), the 

predictability of the equity risk premium has been an active research topic. This 

happens because the equity risk premium is a very important indicator for equity 

investors. The ERP tell us on an ex-ante basis how much additional return the 

investors demand as a premium for taking additional risks carried from stock 

ownership. Indeed, when we buy a stock its actual price is known, but investors 

do not know what expected returns are being priced on it. The equity risk 

premium offers an idea of how much is worth (or not) to invest on a stock against 

the alternative of investing in risk-free instruments. 

As early as 1984, Rozeff (1984) explored the relationship between ERP and 

dividend yields, pointing out that “Stock market returns are not a random walk 

and that the current dividend yield provides a clue to future return 
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predictability.” According to his studies, as dividend yield increases, the stock 

market returns tends to move in the same direction.  

Fama and French (1989) studied the relationship between expected returns on 

bonds and stocks. According to their research, the expected excess returns on 

stocks move together with expected excess returns on corporate bonds, which is 

in line with the fact that dividend yields, which are commonly used to forecast 

stock returns, are found to be also good predictors to forecast bond returns. 

Moreover, Fama and French (1989) share findings that associate other predictors 

to business cycles conditions. They specifically pointed out that the major 

movements in dividend yields and default spreads are connected to long term 

business conditions, whereas the term spread is associated to shorter business 

cycles. The term spread exhibits lower values across business-cycle peaks and 

higher values around troughs.  

Martin Lettau and Sydney Ludvigson (2001) debated “whether expected 

returns vary at cyclical frequencies and with macroeconomic variables” arguing 

that returns are predictable because they represent a rational response of 

economic agents to economic conditions driven by risk aversion and by time-

varying investment opportunities, against the hypothesis of inefficient markets. 

Following this idea and assuming that markets are efficient, it is reasonable to 

believe that macroeconomic variables occupy an important position concerning 

the prediction of stock returns.  

Many more studies consider these and other macroeconomic variables to 

predict ERP, including nominal interest rate and interest rate spread (Keim and 

Stambaugh 1986, Campbell 1987, Fama and French 1989), inflation rate (Nelson 

1976, Fama and Schwert 1977, Campbell and Vuolteenaho 2004), consumption 

wealth ratio (Lettau and Ludvigson 2001), dividend yield ( Rozeff 1984, Campbell 

and Shiller 1988, Fama and French 1988, Campbell and Yogo 2006,), price-

earnings ratio (Campbell and Shiller 1988, …), among others. 
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Nevertheless, the predictors of the equity risk premium considered in the 

literature are not limited to macroeconomic variables. Some researchers 

proposed the inclusion of technical indicators.  

As stated by Pring (2002): “The technical approach to investment is essentially 

a reflection of the idea that prices move in trends that are determined by the 

changing attitudes of investors toward a variety of economic, monetary, political, 

and psychological forces.” Research on technical analysis in this topic has 

received less attention, although it is possible to identify the study of trading 

strategies based on some technical indicators, for example, Fama and Blume 

(1966) proposed filter rules, Conrad and Kaul (1998) introduced momentum and 

Brock, Lakonishok and LeBaron (1992) presented moving averages.  

Neely, Rapach, Tu and Zhou (2014) analyzed the capability of technical 

indicators to directly predict equity risk premium and compared their 

performance with macroeconomic variables’ performance. Their findings 

support the existence of predictability power of both types of predictors, 

although they capture different information about the ERP. They argue that 

macroeconomic variables perform better in detecting increases in the equity risk 

premium near business cycle troughs and technical analysis is dominant when it 

comes to predicting declines in the equity risk premium near business cycle 

peaks, sustaining the inclusion of both indicators to better forecast stock returns. 

The fact is that macroeconomic variables and technical indicators are 

considered by part of the literature to have predictive power over the equity risk 

premium. Following Neely, Rapach, Tu and Zhou (2014) the economic 

explanation is based on asset pricing models: the changes on macroeconomic 

trends are tracked by macroeconomic variables and the time varying expected 

stock returns are mostly driven by the future state of the economy. Concerning 

technical indicators, the economic explanation is not so clear; four models exist 

to explain their predictive power and they require market inefficiency.   



 27 

This dissertation reassess the equity risk premium predictability of the term 

spread by considering its different frequencies components. We start by running 

an in-sample analysis and then we move to an out-of-sample exercise which is 

the principal analysis.  

Recently, on this continuous search for a good predictor of the ERP, Faria and 

Verona (2018) found that in the U.S market, the low frequency of the term spread 

performs very well on forecasting equity risk premiums and better than that, the 

predictor has greater levels of predictability both in-sample and out-of-sample 

exercises. We are particularly surprised by the performance of the term spread 

on their research and motivated by this conjecture we study the out-of-sample 

forecasting power of the term spread and its frequency components over ERP in 

international markets. The term spread represents the difference in interest rates 

between two sovereign bonds with different maturities. Usually this difference 

is the difference between long-term and short-term governmental interest rates, 

and it is a proxy for the slope of the yield curve.  

A great deal of effort has been made in the last century in order to test 

expectation models about the term structure of interest rates, which states that 

the slope of the yield curve (difference between long-term and short-term rates) 

reflects the market forecast about the changes in interest rates. When the forward 

interest rate equals the expected future spot rate and thus the expectation 

hypothesis holds, it is reasonable to use the yield curve to anticipate market 

expectations concerning future states of the economy. Under this hypothesis, low 

current short-term spot rates and high long-term rates are a sign of future 

economic growth.  

However, the expectations theory about the term structure of interest rates has 

been rejected by some researchers, such as Campbell and Shiller (1991).  

In 1987, Campbell showed that the variables which have been used in the 

expectations model as proxies for risk premium on twenty-year treasury bonds 
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also predict excess stock returns, which is in line with the findings of Fama and 

French (1989): expected excess returns on corporate bonds and stocks move 

together.   

Regarding the out-of-sample approach which is the main analysis of this 

thesis, we consider the most reasonable approach to use once it uses information 

available until the moment of forecasting to forecast, being that way a real-time 

forecasting. 

Goyal and Welch (2008), instead of keep looking for another predictor or 

another method which could improve the results of forecasting ERP exercise, 

decided to test on in-sample and out-of-sample exercises all variables considered 

as good predictors of ERP in the literature. Their findings state that most of the 

variables perform poorly in out-of-sample exercises and as they say: “OOS, most 

models not only fail to beat the unconditional benchmark (the prevailing mean) 

in a statistically or economically significant manner but underperform it 

outright.”  Later, Faria and Verona (2018) found out that the low-frequency of the 

term spread is a good predictor of ERP in out-of-sample exercises.  This is very 

relevant because the indicators performing well out-of-sample are almost 

inexistent which is the reason why this thesis focus on this predictor, following 

Faria and Verona (2018) to international markets. In the next subsection is 

provided a very brief summary of the authors that used the out-of-sample 

approach to financial purposes 

1.1.1 Out-of-Sample Forecast 

A considerable number of recent papers use the out-of-sample approach to 

test the predictive performance of equity risk premiums, using variables such as 

book-to-market ratios, dividend-to-earnings, consumption-to-wealth ratios and 

term spread. Lettau and Ludvigson (2001), Campbell and Thomson (2007), and 

Rapach et. al, (2005) are some examples of authors that make use of these models. 
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Goyal and Welch (2003, 2004) argue that the variables purposed as predictors 

of future ERP do not provide predictive gains on in-sample exercises. They stated 

that “Our paper has systematically investigated the empirical real-world out-of-

sample performance of plain linear regressions to predict the equity premium. 

We find that none of the popular variables has worked – and not only post-1990 

… Our profession has yet to find a variable that has had meaningful robust 

empirical equity premium forecasting power, at least from the perspective of 

real-world investor.” Authors such as Campbell and Thomson (2007) disagree 

with Goyal and Welch’s opinion, arguing that by implementing some restrictions 

when constructing out-of-sample forecasts, strong evidence emerges in regard to 

the out-of-sample predictive power in excess stock returns. 

1.1.2 International Evidence 

The literature about the prediction of the equity risk premium is extensive, 

although it is mostly dominated by the U.S market. This paper is a contribution 

for the study of equity risk premium predictability in international markets, i.e., 

beyond U.S. market. 

There are a few papers studying the predictability of equity risk premium in 

international markets. Asprem (1989) explored the relationship between stock 

indexes, asset portfolios and macroeconomic variables in ten European countries. 

The findings of this paper state that inflation, imports, interest rates and 

employment are inversely related to stock indexes. Campbell and Hamao (1992) 

explored the U.S and Japan markets and found that variables such as dividend-

price ratio and interest rates help to forecast excess monthly returns in both 

countries.  

More recently, Schemeling (2009) explored how consumer confidence affects 

expected stock returns in 18 industrialized countries, and concluded that when 

the sentiment is low, future stock returns tend to be higher and when an investor 
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sentiment is high the future stock returns tend to be low. McMillan and Wohar 

(2011) used sum of parts modeling method to study the predictability of ERP. 

They found that in Italy, UK, USA and Korea this approach outperforms the 

alternative models. Later, Kumar Narayan, Seema Narayan and Thuraisamy 

(2014) tested the predictability of excess stock return and found evidence of in-

sample predictability for 15 countries. They used a mean variance investor 

framework and argued that investors, in most of these emerging markets 

countries, can make significant profits if they adopt dynamic trading strategies. 

Moreover, Jordan, Vivian and Wohar (2014) stated that “macro and technical 

indicators can (statistically) improve forecast accuracy and generate gains to 

investors; in contrast to the U.S. results, predictability in our sample of European 

countries exists in recent data.” 

 

1.2. Frequency Domain Analysis and Wavelet Methods  

Financial analysis is mainly based on time series3 methods, which can track 

the movements of any variable that changes over time.  

The most popular approach used to study time series is time domain analysis, 

which represents the analysis of the signals displayed by the times series with 

respect to time. Moreover, the time domain analysis allows the study of the 

temporal properties of a given economic variable whose records occur at one 

determined frequency. The problematic issue here is whenever the occurrences 

of the variable are not visible in just one frequency (which would be the original 

time-series), but they occur in several different frequencies (which only 

frequency domain approach is able to identify). Whenever this happens, the time 

domain approach is not able to correctly process all the information contained in 

                                                 
3 A time series is a set of data points that are recorded at specific moments in time. 
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the time series. Multiscale features is an important item of financial time series 

which translates the several structures observed in the time series, each one 

occurring in a different time scale. At this point, it is important to mention the 

definition of frequency domain analysis as a complementary tool for time 

domain analysis, so as to surpass the issues that may occur with time domain as 

described earlier. In opposition to time domain, frequency domain focuses on the 

analysis of mathematical functions in respect to frequency rather than time and 

investigates the significance of the different frequency levels on the behavior of 

the variable. Put simply, the time domain illustrates the extent at which the signal 

varies over time, whereas the frequency domain represents the extent at which a 

signal resides within each certain frequency band over an interval of frequencies.  

Wavelet analysis takes into account both approaches, as it has the capacity to 

decompose the time series in a group of sub-time series each one associated to a 

given time scale. Wavelet methods offer a different view for the researcher, 

working as a zoom tool on details and offer a larger picture of the features of the 

series. As pointed by Ranta (2010): “…with wavelet methods we are able to see 

both the forest and the trees.” They are regarded as very attractive since they 

allow us to break down economic activity in different frequency components and 

to study them separately. In other words, wavelets methods can be employed to 

study an indicator’s time evolution which depends on the interface of a mix of 

different frequencies components.  

The Fourier transform is a traditional approach in the frequency domain 

analysis and possesses the capacity to show how much each frequency exists in 

the signal.  However, it does not have the capacity to identify the moment in time 

when these frequencies exist because it uses constant length windows. This 

implies a great probability that the fixed time windows contain a large number 

of high frequencies cycles and a small number of low frequencies, preventing an 

adequate examination for all frequencies. On the other hand, the wavelet 
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transform supports windows of different size, improving the time resolution of 

the high frequencies and the frequency resolution of low frequencies. The reason 

for that is that high frequencies are better located in time, whereas the low 

frequencies are better located in frequency. Another big disadvantage of the 

Fourier transform is that it requires the time series to be stationary 4 , while 

wavelets work well when it comes to non-stationary data. This fact is particularly 

relevant because numerous economic and financial time series are scarcely 

stationary.  These methods allow gathering information about a phase 

(expansion or regression) or the length of a cycle (e.g. business cycle). 

In recent decades, wavelet methods have become more popular in a 

considerable number of areas, such as geophysics, medicine and engineering.  

In finance, some examples using wavelet’s methods are: Capobianco (2004) 

that uses wavelet methods to study Nikkei stock index data and argues that it 

matches perfectly on the analysis of financial data, Crowly and Lee (2005) which 

applied wavelet multiresolution analysis to analyze different frequency 

components of European business cycles and Gençay et al. (2001a) investigating 

the scaling properties of foreign exchange rates.  

 
 

 

 

 

 

 

                                                 
4 A stationary time series means that its joint probability distribution does not change over time, that is, its 

mean and variance are constant over time. 
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Chapter 2 
Data and Methodology  

The aim of this thesis is to analyze the out-of-sample predictability power of 

the equity risk premium by the term spread and of its different frequencies 

components in international markets. 

A detailed description of the data and the method used will be presented in 

the following two sub-sections.  

2.1 Data  

The sample set covers eight countries: Germany, France, Japan, United States 

of America, United Kingdom, Canada, South Africa and Australia. We use 

monthly observations from March 1973 to August 2018 and data was gathered 

from DataStream database, Organization for Economic Cooperation and 

Development (OECD), Federal Reserve Economic Data (FRED) and International 

Monetary Fund (IMF). A more detailed description of the variables and their 

source is provided below. 

 

• Equity Risk Premium (ERP): This variable is calculated as the log 

return on the country’s stock index minus the log return on a one-

month governmental bond of the corresponded country as follows: 

𝐸𝑅𝑃𝑖,𝑡 = log(1 + 𝑠𝑟𝑖,𝑡) − log(1 + 𝑡𝑟𝑖,𝑡)                   (1) 
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where 𝐸𝑅𝑃𝑖,𝑡 corresponds to the equity risk premium of the country 

i in the month t, the s𝑟𝑖,𝑡  corresponds to the stock return of the 

country i in the month t, and the 𝑡𝑟𝑖,𝑡  corresponds to one-month 

government bond return rate of the country i in the month t.  

 

• Stock Returns (s𝒓𝒊,𝒕): The stock returns are calculated according to 

the following formula:  𝑠𝑟𝑖,𝑡 = (
𝑆𝑖,𝑡

𝑆𝑖,𝑡−1
) − 1, where 𝑆𝑖,𝑡 represents the 

Stock Index of the country i in the month t. 

 

• Stock Index (𝑺𝒊,𝒕): The stock index is from Thomson DataStream, 

Global Equity Index, which is adjusted for dividends and stock 

splits. The codes5 on the database are TOTMK** and the ** denote 

the code for each country.  

 

• Return on one-month government bond rate (𝒕𝒓𝒊,𝒕): Like in stock 

returns, the return on the one-month rate is calculated as follows: 

𝑡𝑟𝑖𝑡 = (
𝑟𝑓1𝑖,𝑡

𝑟𝑓1𝑖,𝑡−1
) − 1, where the 𝑟𝑓1𝑖,𝑡 is the one-month  government 

bon rate of the country i  in the month t. 

 

• One-month government bond rate (𝒓𝒇𝟏𝒊,𝒕): The one-month rate is 

calculated as follows:  𝑟𝑓1𝑖,𝑡 = [(1 + 𝑟𝑓3𝑖,𝑡)
1/12

− 1] 6, where 𝑟𝑓3𝑖,𝑡 

represents the three-months rate. This variable had to be estimated 

due to lack of data. 

 

                                                 
5  Germany: TOTMKBD; France: TOTMKFR; Japan: TOTMKJP; U.S: TOTMKUS; U.K: TOTMKUK; Canada: 
TOTMKCN; South Africa: TOTMKSA; Australia: TOTMKAU 
6 As in, Thomadakis (2016) 
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• Three-months government bond rate (𝒓𝒇𝟑𝒊,𝒕): The three-months 

government bond rate corresponds to the governmental rate on 

three-month bonds of the correspondent country and is gathered 

from Organization for Economic Cooperation and Development 

(OECD) and International Monetary Fund (IMF). The reason why 

two different databases were used7 in this variable was the range of 

the period, for which records for the chosen countries did not exist 

for the entire period in just one database.  

 

• Term Spread (𝑻𝑴𝑺𝒊,𝒕): This variable is calculated as the difference 

between long-term and short-term governmental rates of the 

different countries. The formula is: 𝑇𝑀𝑆𝑖.𝑡 = 𝑟𝑓10𝑖,𝑡 − 𝑟𝑓3𝑖,𝑡 , 

representing the 𝑟𝑓10𝑖,𝑡 the ten-years rate on governmental bonds, 

the long-term government bond. 

 

• Ten-years government bond rate ( 𝒓𝒇𝟏𝟎𝒊,𝒕) : The data for this 

variable was obtained on Federal Reserve Bank of St. Louis, Federal 

Reserve Economic Data section and is related to the rate on ten-

years governmental bonds of the country in question. 

 

 

 

 

 

                                                 
7 However, to reinforce the validity of the data, correlations between the records on common periods for each 
country were carried out, which presented high levels of correlation (about 98%). 
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2.2 Method 

This paper extends Faria and Verona (2018) to international countries. We 

therefore use exactly the same forecasting method. As in Faria and Verona (2018), 

the forecasting power of ERP from the original time series of term spread is 

studied, as well as three different components of the latter. 

The three frequencies of the term spread computed are: High frequency 

expressed as 𝑇𝑀𝑆𝐻𝐹 , Business Cycle frequency denoted by 𝑇𝑀𝑆𝐵𝐶𝐹  and Low 

frequency symbolized by 𝑇𝑀𝑆𝐿𝐹 . We used a J=5 level MODWT MRA8, with a 

Haar filter reflecting boundary conditions and a J=6 level MODWT MRA analysis 

to compare and complement the study as a robustness analysis. This is possible 

because the sample set covers the necessary number of observations to run a J=6 

level, as the number of observations limits the level of J9. An explanation of these 

methods is provided in the next sub-section 2.2.1..  

 

2.2.1 Wavelet Methods 

The term wavelet means small wave and, as mentioned earlier, the wavelet 

method has the capacity to decompose an original signal into several sub-series, 

each one occurring at a different frequency.  In the following explanation, in this 

sub-section, we closely follow Ramsey (2002), Masset (2008), Ranta (2010) and 

Rua (2011). 

There are two types of wavelet transform: The Continuous Wavelet Transform 

(CWT) and the Discrete Wavelet Transform (DWT).  The continuous wavelet 

transform quantifies the variation in a signal at a given frequency and at a 

particular point in time. The wavelets are created from a single basic wavelet, the 

                                                 
8 Maximum Overlap Discrete Wavelet Transform, Multiresolution Analysis  
9 Regarding the choice of J, the number of observations decides the maximum number of frequency bands that are 
possible to use. In this case, the in-sample period has N=202 observations, so J is such that J ≤  log2 𝑁  ≃ 7,7. 
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mother wavelet, which captures high frequency details of the time series which 

is translated and scaled as: 

𝜓𝑢𝑠(𝑡) =
1

√𝑠
𝜓 (

𝑡−𝑢

𝑠
)                                                (2) 

where u translates the location, s the scale and the term 
1

√𝑠
  guarantees that the 

norm of 𝜓𝑢𝑠(𝑡) equals 1.  

To access the features of a signal on a large scale, or a low frequency 

component, the value of s should be large, whereas the characteristics of a series 

on a small scale, or a high frequency component, are reached by small values of 

s. 

 On the other hand, the Discrete Wavelet Transform differs from the 

Continuous Wavelet Transform in the sense that it uses limited number of 

translated and dilated combinations of the mother wavelet to decompose. Here, 

u and s are chosen in a way that minimizes the number of wavelet coefficients to 

summarize the signal. This objective is achieved by verifying the following 

conditions: 

 

𝑠 =  2𝑗   and    𝑢 = 𝑘2𝑗                                    (3)(4) 

 

where k and j are integers that represent the set of discrete dilations and 

translations. This implies that the Discrete Wavelet Transform of the original 

form is calculated at dyadic scales, that is, at scales of 2𝑗. This condition implies 

that for a time-series with N observations, the bigger number of scales used on 

the DWT equals the Integer J, such that,  𝐽 ≤  
log(𝑇)

log(2)
 . 

 As mentioned before, the discrete wavelet transform decomposes a times 

series into its constituent multiresolution components. The approximation of the 

orthogonal wavelet series to a time series is well-defined by the following 

equation:  
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𝑦(𝑡) =  ∑ 𝑠𝐽,𝑘∅𝐽,𝑘(𝑡) + ∑ 𝑑𝐽,𝑘𝜓𝐽,𝑘(𝑡) +𝑘𝑘  ∑ 𝑑𝐽−1,𝑘𝑘 𝜓𝐽−1,𝑘(𝑡) + ⋯ +  ∑ 𝑑1,𝑘𝜓1,𝑘(𝑡)𝑘         (5) 

  

where J represents the number of scales (or multiresolution levels) and k varies 

from one to the number of coefficients of the corresponding component, defining 

the length of the filter.  Moreover, the terms 𝑠𝐽,𝑘 , 𝑑𝐽,𝑘 , 𝑑𝐽−1,𝑘 , … and 𝑑1,𝑘   on 

equation (5) represent the wavelet transform coefficients, which provide a 

measure of the influence of the given wavelet function to the signal, and are given 

by: 

 

𝑆𝐽,𝑘 =  ∫ 𝑦(𝑡)∅𝐽,𝑘(𝑡) 𝑑𝑡 ,                                                  (6) 

𝑑𝑗,𝑘 =  ∫ 𝑦(𝑡)𝜓𝑗,𝑘(𝑡) 𝑑𝑡 ,        𝑗 = 1,2,3, … , 𝐽                                  (7) 

 

 which are a function of ∅𝐽,𝑘  and 𝜓𝑗,𝑘 , the father and the mother wavelet 

respectively. The father wavelet, or scaling function, works like a low-pass filter, 

capturing the smooth and the low frequency component of the series. On the 

other hand, the mother wavelet captures the detail and the high frequency 

components. The mother wavelet (𝜓𝑗,𝑘) and the father wavelet (∅𝐽,𝑘) are given 

by the following expressions:  

 

∅𝐽.𝑘(𝑡) = 2−𝐽/2∅ (
𝑡 − 2𝐽𝑘

2𝐽
),                                                (8) 

𝜓𝑗.𝑘(𝑡) = 2−𝑗/2𝜓 (
𝑡 − 2𝑗𝑘

2𝑗
) ,       𝑗 = 1,2,3, … , 𝐽                             (9) 

 

Assuming that 𝑆𝐽(𝑡) = ∑ 𝑠𝐽,𝑘∅𝐽,𝑘(𝑡)𝑘 ,  𝐷𝐽(𝑡) = ∑ 𝑑𝐽,𝑘𝜓𝐽,𝑘(𝑡)𝑘 , 𝐷𝐽−1(𝑡) =

∑ 𝑑𝐽−1,𝑘𝑘 𝜓𝐽−1,𝑘(𝑡) , and 𝐷1(𝑡) = ∑ 𝑑1,𝑘𝜓1,𝑘(𝑡)𝑘 , it is possible to state that 

equation (5) can be rewritten as:  
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𝑦(𝑡) = 𝑆𝐽(𝑡) + 𝐷𝐽(𝑡) + 𝐷𝐽−1(𝑡) + ⋯ + 𝐷1(𝑡)                                    (10) 

 

The previous expression represents the decomposition of the series y(t) into 

orthogonal components, 𝑆𝐽(𝑡) , the smooth component and 𝐷𝑗(𝑡)  for 𝑗 =

1,2,2, … , J, the detail components, at distinctive resolutions constituting the 

multiresolution analysis decomposition. Given the J multiresolution 

components, the signal y(t) will have J detail components and a smooth 

component. The detail components track the high frequency features of y(t) 

whereas the smooth component captures the low frequencies characteristics of 

y(t). 10 

When it comes to the levels of frequency, a high J that is compressed by a 

wavelet function captures slowly changing features, that is, low frequencies, 

whereas a small J compacted by a wavelet function catches fast changing details, 

or in other words, high frequencies.  

2.2.1.1. Maximal Overlap Discrete Wavelet Transform Multiresolution 

Analysis (MODWT MRA) 

The maximal overlap discrete wavelet transform (MODWT) Multiresolution 

Analysis (MRA) was the wavelet method used to compute these frequency 

components. This method was created as a solution to overpass some Discrete 

Wavelet Transform (DWT) limitations such as (Masset (2008)): 

• It requires a dyadic length series ( 𝑇 = 2𝐽 ) 

• Discrete Wavelet Transform troughs or peaks in the original time-series 

may not be appropriately aligned with similar events in the 

multiresolution analysis. 

                                                 
10 Further details about the wavelet decomposition methods can be found in Ramsey (2002), Masset (2008), 

Vaasa (2010) and Rua (2011). 
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• Discrete Wavelet Transform is not shift invariant, which means that if 

the series is shifted one period to the right, the multiresolution 

coefficients will not be equal.  

 

This method of wavelet transform supports any sample size, is invariant to 

translation, offers a higher resolution at greater scales and is more efficient in 

terms of wavelet variance.  

The main difference between the two methods is related to the fact that in 

MODWT we consider every integer translations, i.e., u=k (and not and  𝑢 = 𝑘2𝑗 

as in DWT). In other words, this means that the Maximal Overlap Discrete 

Wavelet Transform achieves a complete resolution of the time series at each 

different frequency. Moreover, no matter what wavelet scale is considered, the 

length of the original time-series will always be equal to the length of the wavelet 

and scaling coefficients. 

 Considering a signal s(n) of length N where 𝑁 = 2𝐽 for some integer J, a 

low-pass filter, ℎ1(𝑛), and a high-pass filter, 𝑔1(𝑛), defined by an orthogonal 

wavelet, at the first level of MODWT, ℎ1(𝑛) and 𝑔1(𝑛) are applied to s(n) in order 

to obtain detail and approximation coefficients. 𝑔1(𝑛) is used to obtain detail 

components, 𝑑1(𝑛) , and ℎ1(𝑛)  is used to obtain approximation components, 

𝑎1(𝑛), as represented in the following expressions:  

 

𝑎1(𝑛) = ℎ1(𝑛) ∗ 𝑠(𝑛) = ∑ ℎ1(𝑛 − 𝑘) 𝑠 (𝑘)

𝑘

                              (11) 

 

𝑑1(𝑛) = 𝑔1(𝑛) ∗ 𝑠(𝑛) = ∑ 𝑔1(𝑛 − 𝑘) 𝑠 (𝑘)

𝑘

                              (12) 

If the time-series is not subsampled 𝑎1(𝑛) and 𝑑1(𝑛) have the length N and not 

N/2 as would be the case of Discrete Wavelet Transform. However, as long as the 

level of MODWT increases, 𝑎1(𝑛) is filtered using the same system but with 
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different filters: ℎ2(𝑛) and 𝑔2(𝑛), which are obtained by a dyadic subsampling 

ℎ1(𝑛) and 𝑔1(𝑛). This process continues for j=1,2,3,…, J-1 as illustrated in the 

following figure:  

 

 

 

 

 

 

 

 

 

 

 

   Figure 1: Decomposition of Maximum Overlap Discrete Wavelet Transform (Source: Matlab 

Tech Talks: Kirthi Devleker) 

 

 

 

As mentioned previously, this dissertation tests a J=5 level MODWT MRA to 

compute the frequency components of the Term Spread. In addition, a J=6 level 

MODWT MRA is also computed and tested as a robustness analysis. As so, and 

taking into account that monthly observations are used, the detail and smooth 

components capture oscillations between:  

 

 

 

 

 

 

 

 

 

 



 43 

Table 1: Months captured by the oscillations of detail and smooth components 

 

Thenceforth, in the presence of J=5 level, the high frequency component of the 

term spread corresponds to 𝑇𝑀𝑆𝐻𝐹,𝑡 = ∑ 𝑇𝑀𝑆𝑡

𝐷𝑗3
𝑗=1 , the business cycle frequency 

is computed as 𝑇𝑀𝑆𝐵𝐶𝐹,𝑡 = ∑ 𝑇𝑀𝑆𝑡

𝐷𝑗5
𝑗=4  and the smooth or low frequency 

component represents 𝑇𝑀𝑆𝐿𝐹,𝑡 =  𝑇𝑀𝑆𝑡
𝑆5 . In the case of J=6 level, the high 

frequency component of the term spread corresponds to 𝑇𝑀𝑆𝐻𝐹,𝑡 = ∑ 𝑇𝑀𝑆𝑡

𝐷𝑗3
𝑗=1 , 

the business cycle frequency is computed as 𝑇𝑀𝑆𝐵𝐶𝐹,𝑡 = ∑ 𝑇𝑀𝑆𝑡

𝐷𝑗6
𝑗=4  and the 

smooth or low frequency component represents 𝑇𝑀𝑆𝐿𝐹,𝑡 =  𝑇𝑀𝑆𝑡
𝑆6. Furthermore, 

by summing the three different components, the original time series is obtained.  

The exercise of summing is possible because the different times-series defined 

in each individual frequency are orthogonal. 

 

 

 

 

 

 

 

 J=5 J=6 

𝑇𝑀𝑆𝑡
𝐷1 2 and 4 months 2 and 4 months 

𝑇𝑀𝑆𝑡
𝐷2 4 and 8 months 4 and 8 months  

𝑇𝑀𝑆𝑡
𝐷3 8 and 16 months 8 and 16 months 

𝑇𝑀𝑆𝑡
𝐷4 16 and 32 months  16 and 32 months  

𝑇𝑀𝑆𝑡
𝐷5 32 and 64 months 32 and 64 months 

𝑇𝑀𝑆𝑡
𝐷6 Nonexistent  64-128 months 

𝑇𝑀𝑆𝑡
𝑆5 Exceeding 64 months Nonexistent 

𝑇𝑀𝑆𝑡
𝑆6 Nonexistent Exceeding 128 months 
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Chapter 3 
Empirical Results 

In this section we present the set of the main results obtained from our 

empirical analysis. Regarding the U.S. market the results will also be compared 

with Faria and Verona (2018). This chapter is divided as follows: Frequency 

components of the term spread, In-Sample Predictability results and Out-of-

Sample predictability results including some Robustness Analysis.  Details such 

as summary statistics, correlations and a graph of the detail (𝑇𝑀𝑆𝑡

𝐷𝑗 ) and the 

smooth (𝑇𝑀𝑆𝑡
𝑆𝑇) components are provided in the Appendix.  

3.1 Frequency components of the term spread 

We consider the original time series of the term spread, calculated as the 

difference between a long and short term governmental rates, and three of its 

frequency components (high frequency, business cycle frequency and low 

frequency) as equity risk premium predictors. As explained in section 2.2, the 

method used to extract these frequency components is the Maximum Overlap 

Discrete Wavelet Transform Multiresolution Analysis (MODWT MRA), using 

J=5 level of details. The next set of figures 2-9 illustrate, for each of the eight 

countries under analysis, the dynamics of the original term spread time series as 

well as for its three frequencies under analysis. The blue line represents the 

original time series of the term spread, the orange line denotes the high frequency 
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component of the term spread, the yellow line represents the business cycle 

frequency and the purple line reflects the low frequency of the term spread.  

 

Germany 

  

 

France 

 

 

Japan 

 

 

Figure 2: Time series of the term spread and of its different components for Germany 

Figure 3: Time series of the term spread and of its different components for France 

Figure 4: Time series of the term spread and of its different components for Japan 
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United States of America 

 

 

 

United Kingdom 

 

Canada 

 

 

Figure 5: Time series of the term spread and of its different components for U.S.A 

Figure 6: Time series of the term spread and of its different components for U.K 

Figure 7: Time series of the term spread and of its different components for Canada 
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South Africa 

 

 

Australia 

 

 

 

 

 

 

Figure 8: Time series of the term spread and of its different components for South Africa 

Figure 9:Time series of the term spread and of its different components for Australia 
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3.2   In-Sample Forecasting 

Following Faria and Verona (2018), let 𝐸𝑅𝑃𝑖,𝑡  represent the equity risk 

premium of the country i in month t. For each predictor 𝑥𝑖,𝑡 , the predictive 

regression is:  

 

𝐸𝑅𝑃𝑖,𝑡:𝑡+ℎ =  𝛼 +  𝛽𝑥𝑖,𝑡 + 𝜀𝑖,𝑡:𝑡+ℎ          ∀𝑡 = 1, … , 𝑇 − ℎ                         (13)   

 

where h represents the forecasting horizon and 𝐸𝑅𝑃𝑖,𝑡:𝑡+ℎ is also given by: 

 

𝐸𝑅𝑃𝑖,𝑡:𝑡+ℎ =  
𝐸𝑅𝑃𝑖,𝑡+1 + ⋯ +  𝐸𝑅𝑃𝑖,𝑡+ℎ

ℎ
                                           (14) 

 

In the In-Sample predictability analysis we estimate the predictive regression 

(13), throughout ordinary least squares (OLS), to obtain the 𝛽’s and test their 

significance. Nevertheless, there are few constraints related to Stambaugh (1999) 

bias and Campbell and Yogo (2006) in the predictive regression (13). In order to 

avoid this bias, it was used a heteroscedasticity and autocorrelation-robust t-

statistic and a wild bootstrapped p-value was calculated to test the null 

hypothesis 𝐻0: 𝛽 = 0  against the hypothesis  𝐻1 = 𝛽 > 0  in the predictive 

regression (13). Additionally, each predictor variable was standardized to have a 

standard deviation of one.  

Therefore, 546 observations exist for one-month ahead (h=1), 544 observations 

for three months ahead or one quarter forecasting horizon (h=3), 541 observations 

for six months ahead or one semester ahead (h=6), 535 observations for one year 

ahead (h=12) and 523 observations for two years ahead (h=24).  

In the next subsections are provided the results of each country for the in-

sample analysis for each country. 
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3.2.1 Results  

The following tables report, for each forecasting horizon and each country, the 

𝛽 estimates of the predictive model by OLS and the resultant 𝑅2 statistics (given 

in percentages). Brackets below the 𝛽  coefficients represent the 

heteroscedasticity and autocorrelation robust t-statistic for 𝐻0: 𝛽 = 0  against  

𝐻1 = 𝛽 > 0 . Moreover, *** denote a significance level of 1%, ** denote a 

significance level of 5% and * denotes a significance level of 10%, according to 

bootstrapped p-values. The sample period starts in March 1973 and ends in 

August 2018. 

3.2.1.1 – Germany 

Table 2: In-Sample predictive regression results for Germany 

 

The original time series, the business cycle frequency and the low frequency 

of the term spread, have predictability power of the equity risk premium in all 

forecasting horizons, although the levels of significance at which the predictors 

are significant, are decreasing as the forecasting horizon increases.  When it 

comes to the coefficient of determination (𝑅2) we can see that they are rather 

small, although they increase as the forecasting horizon increases. This is in line 

with the literature.  

 

 

Predictor  h = 1 h = 3 h = 6 h = 12 h = 24 

𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 

𝑇𝑀𝑆𝑇𝑆  0,46 0,78 0,43 1,89 0,42 3,27 0,39 5,67 0,25 4,97 

[2,27]*** [2,51]*** [2,56]** [2,47]** [1,87]* 

𝑇𝑀𝑆𝐻𝐹  -0,06 0,01 -0,20 0,39 -0,10 0,19 0,02 0,02 0,01 0,02 

[-0,25] [-1,07] [-0,65] [0,22] [0,31] 

𝑇𝑀𝑆𝐵𝐶𝐹  0,48 0,86 0,47 2,24 0,43 3,54 0,38 5,25 0,24 4,42 

[2,12]** [2,45]** [2,37]** [2,26]** [1,84]* 

𝑇𝑀𝑆𝐿𝐹  0,43 0,70 0,45 2,02 0,41 3,25 0,37 5,08 0,24 4,59 

[2,23]** [2,63]** [2,64]** [2,34]** [1,70]* 
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3.2.1.2 – France 

Table 3: In-Sample predictive regression results for France 

 

It is possible to verify the existence of In-Sample predictability power for 

France of the original time series, the business cycle component and the smooth 

component, however it is decreasing as the forecasting horizon increases. Again, 

the coefficient of determination increases as the forecasting horizon increases.  

3.2.1.3 – Japan  

Table 4: In-Sample predictive regression results for Japan 

 

    For Japan there is no evidence of in-sample predictability power of the equity 

risk premium from the term spread or any of its frequencies (exception is the low 

frequency at one-month horizon). 

 

 

 

Predictor h = 1 h = 3 h = 6 h = 12 h = 24 

𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 

𝑇𝑀𝑆𝑇𝑆  0,54 0,87 0,58 2,77 0,55 4,40 0,48 6,47 0,36 7,82 

[1,96]** [2,30]** [2,11]** [2,03]* [2,30]* 

𝑇𝑀𝑆𝐻𝐹  -0,22 0,14 -0,07 0,04 -0,07 0,08 -0,01 0,00 -0,03 0,04 

[-0,75] [-0,29] [-0,43] [-0,10] [-0,42] 

𝑇𝑀𝑆𝐵𝐶𝐹  0,76 1,68 0,66 3,60 0,55 4,34 0,33 3,02 0,15 1,42 

[2,71]*** [2,65]** [2,04]** [1,48] [0,93] 

𝑇𝑀𝑆𝐿𝐹  0,42 0,51 0,47 1,81 0,51 3,75 0,53 7,71 0,47 13,27 

[1,68]* [2,15]** [2,33]** [2,35]** [2,55]** 

Predictor h = 1 h = 3 h = 6 h = 12 h = 24 

𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 

𝑇𝑀𝑆𝑇𝑆  -0,01 0,00 0,13 0,16 0,21 0,65 0,19 1,06 0,25 3,37 

[-0,03] [0,64] [0,99] [0,97] [1,48] 

𝑇𝑀𝑆𝐻𝐹  -0,83 2,40 -0,36 1,14 -0,08 0,11 -0,11 0,37 -0,01 0,00 

[-2,72] [-2,06] [-0,64] [-1,51] [-0,21] 

𝑇𝑀𝑆𝐵𝐶𝐹  0,01 0,00 -0,05 0,02 -0,11 0,19 -0,11 0,36 -0,10 0,66 

[0,06] [-0,25] [-0,47] [-0,45] [-0,74] 

𝑇𝑀𝑆𝐿𝐹  0,29 0,29 0,30 0,80 0,30 1,40 0,30 2,58 0,35 5,97 

[1,40]* [1,46] [1,41] [1,45] [1,80] 
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3.2.1.4 – United States of America  

Table 5: In-Sample predictive regression results for U.S. 

 

This table demonstrates one more country where it is possible to observe the 

significance of the predictors, yet in a different way. For the United States of 

America, we can observe the presence of significant predictors mostly for 

forecasting horizons of one month.  The original times and the high frequency 

component are significant at 1% level, whereas the business cycle frequency and 

the low frequency component, though significant, are relevant at minor levels of 

significance. Again, the coefficients of determination are increasing as the 

forecasting horizon increases.  

3.2.1.5 – United Kingdom  

Table 6: In-Sample predictive regression results for U.K 

 

The empirical evidence of in-sample predictability in United Kingdom has a 

similar with that of Japan. There are almost no significant predictors with the 

exception of forecasting horizons of twelve and twenty-four months. Even 

Predictor h = 1 h = 3 h = 6 h = 12 h = 24 

𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 

𝑇𝑀𝑆𝑇𝑆  0,48 1,11 0,35 1,75 0,26 1,78 0,25 3,39 0,19 4,46 

[2,36]*** [1,85]* [1,50] [1,64] [1,75] 

𝑇𝑀𝑆𝐻𝐹  0,55 1,49 0,18 0,47 -0,04 0,05 0,00 0,00 -0,02 0,04 

[2,60]*** [1,05] [-0,39] [-0,01] [-0,63] 

𝑇𝑀𝑆𝐵𝐶𝐹  0,40 0,78 0,35 1,77 0,27 1,96 0,19 1,86 0,10 1,16 

[1,86]** [1,76]* [1,43] [1,25] [0,75] 

𝑇𝑀𝑆𝐿𝐹  0,25 0,30 0,25 0,91 0,26 1,85 0,28 4,18 0,25 7,26 

[1,33] [1,53]* [1,57] [1,75]* [2,41]* 

Predictor h = 1 h = 3 h = 6 h = 12 h = 24 

𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 

𝑇𝑀𝑆𝑇𝑆  0,03 0,00 0,12 0,15 0,17 0,55 0,24 2,42 0,21 5,33 

[0,10] [0,48] [0,81] [1,55] [1,83]* 

𝑇𝑀𝑆𝐻𝐹  -0,20 0,14 0,07 0,05 0,07 0,10 0,19 1,42 0,03 0,08 

[-0,73] [0,24] [0,33] [1,29]* [0,53] 

𝑇𝑀𝑆𝐵𝐶𝐹  0,12 0,05 0,18 0,32 0,25 1,20 0,28 3,35 0,13 2,03 

[0,42] [0,74] [1,15] [1,32] [1,27] 

𝑇𝑀𝑆𝐿𝐹  0,03 0,00 0,05 0,03 0,07 0,11 0,12 0,61 0,21 5,49 

[0,12] [0,22] [0,36] [0,78] [1,85]* 
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considering the significance of these predictors, they are all significant only at 

10%. In addition, the 𝑅2are increasing as the forecasting horizon increases, but 

they are slightly lower than the 𝑅2 verified in the other countries.  

 

3.2.1.6 – Canada  

 

Table 7: In-Sample predictive regression results for Canada 

 

For Canada, it is observable that the two significant predictors are the original 

time series and the business cycle frequency. Furthermore, we can see the 

significance of lower frequency, for forecasting horizons of 12 and 24 months, of 

10% and 5% respectively. The coefficient of determination does not always 

increase as the forecasting horizon increases, although we can verify that it is 

rather small when the predictor is not significant.  

3.2.1.7 – South Africa  

Table 8: In-Sample predictive regression results for South Africa 

 

Predictor h = 1 h = 3 h = 6 h = 12 h = 24 

𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 

𝑇𝑀𝑆𝑇𝑆  0,35 0,63 0,30 1,25 0,33 2,81 0,34 5,88 0,23 7,23 

[1,82]** [1,73]* [1,98]* [2,18]* [2,93]** 

𝑇𝑀𝑆𝐻𝐹  0,05 0,01 -0,15 0,31 -0,08 0,17 0,04 0,10 -0,01 0,03 

[0,27] [-0,89] [-0,74] [0,47] [-0,33] 

𝑇𝑀𝑆𝐵𝐶𝐹  0,45 1,03 0,46 2,86 0,46 5,34 0,33 5,76 0,12 2,13 

[2,14]** [2,42]** [2,55]** [2,13]* [1,28] 

𝑇𝑀𝑆𝐿𝐹  0,22 0,25 0,23 0,75 0,25 1,58 0,28 4,11 0,28 10,77 

[1,15] [1,41] [1,50] [1,79]* [2,76]** 

Predictor h = 1 h = 3 h = 6 h = 12 h = 24 

𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 

𝑇𝑀𝑆𝑇𝑆  0,07 0,01 0,06 0,02 0,05 0,04 0,06 0,12 0,01 0,00 

[0,20] [0,20] [0,20] [0,24] [0,04] 

𝑇𝑀𝑆𝐻𝐹  0,29 0,20 0,18 0,23 0,04 0,02 0,12 0,47 0,01 0,01 

[0,94] [0,83] [0,20] [1,13]* [0,16] 

𝑇𝑀𝑆𝐵𝐶𝐹  0,15 0,05 0,21 0,30 0,27 0,96 0,30 2,51 0,19 2,13 

[0,61] [1,05] [1,31] [1,41] [1,31] 

𝑇𝑀𝑆𝐿𝐹  -0,02 0,00 -0,03 0,00 -0,02 0,00 -0,03 0,02 -0,04 0,10 

[-0,06] [-0,08] [-0,06] [-0,10] [-0,20] 
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 The only country belonging to the African continent seems to have similar 

results to Japan and United Kingdom. There is extremely little evidence of in-

sample predictability power of the term spread and its frequency components 

over the equity risk premium. 

3.2.1.8 – Australia   

Table 9: In-Sample predictive regression results for Australia 

 

 Obtained results for Australia are similar to those found in the group of Japan, 

United Kingdom and South Africa. There is no evidence supporting the existence 

of in-sample predictability power for none of the predictors and for none of the 

forecasting horizons. 

 

 

Overall, this set of empirical results support the existence of a subsample of 

countries (Germany, France, United States of America and Canada) where it is 

found statistically significant in-sample predictability of the equity risk 

premium, using both the original time series of the term spread and of its 

frequencies and for different horizons, while for other of countries (Japan, United 

Kingdom, South Africa and Australia) there is no evidence of in-sample 

predictability.  

 

 

Predictor h = 1 h = 3 h = 6 h = 12 h = 24 

𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 𝛽̂ 𝑅2 

𝑇𝑀𝑆𝑇𝑆  0,34 0,39 0,32 0,97 0,23 0,96 0,09 0,29 -0,01 0,01 

[0,87] [0,85] [0,83] [0,52] [-0,14] 

𝑇𝑀𝑆𝐻𝐹  0,28 0,26 0,25 0,58 0,12 0,25 0,03 0,05 0,00 0,00 

[0,52] [0,63] [0,49] [0,37] [0,02] 

𝑇𝑀𝑆𝐵𝐶𝐹  0,36 0,42 0,35 1,14 0,25 1,16 0,04 0,06 -0,11 1,24 

[0,89] [0,92] [0,86] [0,24] [-1,33] 

𝑇𝑀𝑆𝐿𝐹  0,10 0,03 0,10 0,09 0,11 0,21 0,10 0,35 0,08 0,57 

[0,37] [0,38] [0,48] [0,52] [0,74] 
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3.3 Out-Of-Sample Forecasting  

In recent decades, out-of-Sample predictability has become a relevant method 

of forecasting financial variables. This method is particularly relevant in financial 

and economic terms because is closed to real-world prediction once it uses 

information available until the moment of predictability to predict. 

We start with an in-sample period from March 1973 until December 1989 in 

order to make the first OOS estimate. Afterwards, the sample increases by one 

observation, as the OOS forecast is generated using a sequence of expanding 

windows and the process runs until the end of the sample.  

The three OOS periods considered are: the full OOS period that starts in 

January 1990 and ends in August 2018. The next two periods are a division of this 

full period and run from January 1990 to December 2006 and January 1997 till 

August 2018.  

Following Faria and Verona (2018), the equation that represents the h-step-

ahead forecast of equity risk premium is given by: 

 

𝑟̂𝑡:𝑡+ℎ =  𝛼̂𝑡 + 𝛽̂𝑡𝑥𝑡                                                      (15) 

 

where 𝑟̂𝑡:𝑡+ℎ  denotes the h-step-ahead forecast equity risk premium of the 

month t until month t+h, and 𝛼̂𝑡 and 𝛽̂𝑡 represent the OLS estimators of  and  

respectively of month t, using observations from the beginning of the dataset 

until month t.  

As in Faria and Verona (2018), the evaluation of OOS forecasting performance 

is done throughout Campbell and Thomson (2007) 𝑅𝑂𝑆
2  statistic. As it is standard 

in the literature, the historical mean (HM) forecast 𝑟̅𝑡 , which represents the 

average returns up to time t, is the benchmark model.  
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The 𝑅𝑂𝑆
2  statistic is calculated in the following way: 

 

𝑅𝑂𝑆
2 = 100 (1 −

𝑀𝑆𝐹𝐸𝑃𝑅𝐸𝐷

𝑀𝑆𝐹𝐸𝐻𝑀
)                                               (16) 

 

where 𝑀𝑆𝐹𝐸𝑃𝑅𝐸𝐷 is the mean squared forecast error of the predictive model, 

while 𝑀𝑆𝐹𝐸𝐻𝑀 represents the mean squared forecast error of the historical mean 

given by:  

 

𝑀𝑆𝐹𝐸𝑃𝑅𝐸𝐷 =  ∑ (𝑟𝑡:𝑡+ℎ − 𝑟̂𝑡:𝑡+ℎ)2
𝑇−ℎ

𝑡=𝑡0

                                    (17) 

 

𝑀𝑆𝐹𝐸𝐻𝑀 =  ∑ (𝑟𝑡:𝑡+ℎ − 𝑟̅𝑡:)
2

𝑇−ℎ

𝑡=𝑡0

                                         (18) 

 

where 𝑟̂𝑡:𝑡+ℎ represents the excess return forecast from the model with each of 

the alternative predictors.  

 

The 𝑅𝑂𝑆
2  therefore measure the reduction in the mean squared forecast error 

from the usage of the predictive model relative to the historical mean.  

The predictive model outperforms (underperforms) historical average in 

terms of MSFE if the 𝑅𝑂𝑆
2  is positive (negative).  

 

Similarly to Rapach, Ringgenberg, and Zhou (2016) and Faria and Verona 

(2018) the statistical significance of the results is analyzed using the Clark and 

West (2007) statistic. Here, the null hypothesis is verified when the MSFE of the 

historical mean is smaller or equal to the MSFE of the predictive model and the 

alternative hypothesis is validated when the MSFE of the historical mean is 

greater than the MSFE of the predictive model (𝐻0: 𝑅𝑂𝑆
2  ≤ 0 against 𝐻𝐴: 𝑅𝑂𝑆

2  > 0). 
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3.3.1 Analysis of Results 

The following tables present 𝑅𝑂𝑆
2  (in percentages) for the equity risk premium 

forecast of the full OOS period (1990:01 – 2018:08) for the same forecasting 

horizons considered in the in-sample analysis, of each predictor. Moreover, 

asterisks denote the significance of OOS MSFE-adjusted statistic of Clark and 

West (2007). *** represent significance at 1%, ** denote significance at 5% and * 

symbolizes significance at 10%. 

3.3.1.1 Germany 

       Table 10: Out-of-Sample R-squares for Germany 

 

By analyzing the results, we can state that the original time series  

(𝑇𝑀𝑆𝑇𝑆)  and the low frequency component ( 𝑇𝑀𝑆𝐿𝐹 ) of the term spread 

outperform the historical mean benchmark (positive and statistically significant 

𝑅𝑂𝑆
2 ) for almost all forecast horizons. On the other hand, the high frequency  

(𝑇𝑀𝑆𝐻𝐹) and the business cycle (𝑇𝑀𝑆𝐵𝐶𝐹) components are poor OOS predictors, 

as they have a negative or non-significant 𝑅𝑂𝑆
2  (excepting for forecasting horizons 

of 12 and 24 months in the business cycle frequency). 

 

 

 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

𝑇𝑀𝑆𝑇𝑆 0,76** 1,74** 3,09** 5,54** 4,87* 

𝑇𝑀𝑆𝐻𝐹 -0,18 -0,63 -0,70 -0,35 -0,07 

𝑇𝑀𝑆𝐵𝐶𝐹 0,02 0,06 0,48 2,25* 3,00* 

𝑇𝑀𝑆𝐿𝐹 0,96** 2,24** 3,52* 4,87** 3,00 



 58 

3.3.1.2 France 

       Table 11: Out-of-Sample R-squares for France 

 

France has a very similar behavior to Germany but with smaller 𝑅𝑂𝑆
2 . Again, 

the original time series appears to be a good OOS predictor with positive 𝑅𝑂𝑆
2  and 

significant for forecasting horizons starting at 3 months. However, the low 

frequency of the term spread loses value for historical mean benchmark for 

forecasting horizons superior to twelve months. Nevertheless, 𝑇𝑀𝑆𝐿𝐹 beats the 

HM benchmark in forecasting horizons up to 6 months. The high and business 

cycle frequency of the term spread reveal to be a poor OOS predictor of the term 

spread, which is surprising given the statistical significance of the business cycle 

in in-sample analysis. 

3.3.1.3 Japan 

     Table 12: Out-of-Sample R-squares for results for Japan 

 

When it comes to the OOS analysis for Japan, all the predictors appear to have 

no predictive power in all forecasting horizons. The 𝑅𝑂𝑆
2  are all negative, which 

means that the predictive model does not beat the historical mean benchmark. 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

𝑇𝑀𝑆𝑇𝑆 0,16 1,25** 2,59** 3,48** 6,85** 

𝑇𝑀𝑆𝐻𝐹 0,19 0,12 0,04 -0,56 -2,17 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,82 -0,88 -0,64 -0,11 -1,63 

𝑇𝑀𝑆𝐿𝐹 0,77* 1,41** 1,37** -2,78 -8,16 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

𝑇𝑀𝑆𝑇𝑆 -2,33 -3,08 -4,03 -10,04 -13,32 

𝑇𝑀𝑆𝐻𝐹 -2,14 -1,38 -0,93 -2,31 -7,62 

𝑇𝑀𝑆𝐵𝐶𝐹 -1,04 -3,51 -5,63 -9,82 -8,71 

𝑇𝑀𝑆𝐿𝐹 -0,83 -3,28 -6,93 -12,87 -23,23 
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3.3.1.4 United States of America  

       Table 13: Out-of-Sample R-squares for for U.S 

 

 

The United States of America is the first country where we can observe clear 

evidence of the predictability power of the low frequency component of the term 

spread on all forecasting horizons.  

Here, the 𝑇𝑀𝑆𝐿𝐹 has a positive and statically significant 𝑅𝑂𝑆
2  for all forecasting 

horizons, meaning that the smooth component outperforms the historical mean 

benchmark. This result matches the results obtained by Faria and Verona (2018) 

who found that “the low frequency component of the term spread, when 

extracted using wavelet filtering methods, has remarkably robust empirical 

equity premium OOS forecasting power.” 

3.3.1.5 United Kingdom  

    Table 14: Out-of-Sample R-squares for U.K 

 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

𝑇𝑀𝑆𝑇𝑆 -0,89 -1,64 -1,60 0,22 4,32** 

𝑇𝑀𝑆𝐻𝐹 -0,74 -0,72 -0,26 -0,45 0,61 

𝑇𝑀𝑆𝐵𝐶𝐹 -2,49 -7,24 -10,21 -7,34 1,07 

𝑇𝑀𝑆𝐿𝐹 0,31* 1,01** 2,26** 5,74*** 11,21*** 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

𝑇𝑀𝑆𝑇𝑆 -0,33 -0,36 -0,07 0,42 -9,89 

𝑇𝑀𝑆𝐻𝐹 0,40 -0,65 -1,02 -4,59 -13,51 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,16 -0,56 -1,46 -5,11 -15,51 

𝑇𝑀𝑆𝐿𝐹 -0,24 -0,48 -0,40 -0,43 -7,20 
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The United Kingdom is similar to Japan, in that there is no evidence of 

forecasting power of any predictor on none forecasting horizon, as the  

𝑅𝑂𝑆
2  are almost all negative and not significant.  

3.3.1.6 Canada 

 

        Table 15: Out-of-Sample R-squares for Canada 

 

Canada joins the group of Germany, France and United States. Once more, 

Canada reflects an improvement of historical mean benchmark model in the 

original time series and low frequency component of the term spread. We have 

the highest 𝑅𝑂𝑆
2  observed in sample, 11.92, significant at 5%.  

3.3.1.7 South Africa 

      Table 16: Out-of-Sample R-squares for South Africa 

 

The 𝑅𝑂𝑆
2  for South Africa are almost all negative, meaning that the OOS 

forecast from the term spread or any of its frequencies do not beat historical 

mean. 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

𝑇𝑀𝑆𝑇𝑆 0,58* 1,12* 1,89* 4,11* 9,79** 

𝑇𝑀𝑆𝐻𝐹 -0,01 -0,47 -0,21 0,31 2,19 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,70 -2,22 -4,42 -4,79 1,33* 

𝑇𝑀𝑆𝐿𝐹 0,55* 1,04* 1,83** 3,46** 11,92** 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

𝑇𝑀𝑆𝑇𝑆 -1,18 -2,98 -4,61 -14,47 -25,70 

𝑇𝑀𝑆𝐻𝐹 -2,93 -1,93 -0,34 -2,19 -2,89 

𝑇𝑀𝑆𝐵𝐶𝐹 -1,01 -3,96 -9,66 -30,19 -25,03 

𝑇𝑀𝑆𝐿𝐹 -0,59 -2,00 -3,09 -7,81 -20,95 
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3.3.1.8 Australia 

       Table 17: Out-of-Sample R-squares for Australia 

 

For Australia, all the 𝑅𝑂𝑆
2  are negative, alluding to the fact that OOS forecasting 

power of the term spread and its frequencies is weaker than that of the historical 

mean benchmark.  

 

3.3.2 – Cumulative sum of squared forecast errors 

In order to analyze the consistency over time of the out-of-sample 

performance of the predictors, it is important to look at the dynamics of the 

difference between the cumulative square forecasting error for the historical 

mean forecasting and the cumulative square forecasting error when 𝑇𝑀𝑆𝑇𝑆 , 

𝑇𝑀𝑆𝐻𝐹, 𝑇𝑀𝑆𝐵𝐶𝐹 and 𝑇𝑀𝑆𝐿𝐹 are used as equity risk premium predictors.  

The following figures denote the difference between the cumulative square 

forecasting error for the historical mean forecasting model and the cumulative 

square forecasting error based on the predictive regression (15) for 𝑇𝑀𝑆𝑇𝑆 

(original time series of the term spread which is denoted by the black line), 

𝑇𝑀𝑆𝐻𝐹 (high frequency of the term spread denoted by the green line), 𝑇𝑀𝑆𝐵𝐶𝐹 

(business cycle frequency of the term spread denoted by the red line) and 𝑇𝑀𝑆𝐿𝐹 

(low frequency of the term spread denoted by the blue line).  

The results should be read as follows: when one of the lines rises (falls), the 

predictive regression correspondent to that line outperforms (underperforms) 

the historical mean benchmark. If a given line has a positive slope, then it means 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

𝑇𝑀𝑆𝑇𝑆 -1,21 -1,80 -1,97 -2,40 -8,99 

𝑇𝑀𝑆𝐻𝐹 -1,69 -2,26 -1,23 -1,21 -7,98 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,29 -0,35 -0,08 -2,77 -10,12 

𝑇𝑀𝑆𝐿𝐹 -0,84 -2,69 -6,38 -12,32 -57,81 
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that this predictive regression consistently outperforms HM. Moreover, when the 

end point is above the zero-axis line, the 𝑅𝑂𝑆
2  is positive.  

 

 

Germany 

 

 

France 
 

 

 

 

Figure 10: Cumulative sum of squared forecast errors for Germany 

Figure 11: Cumulative sum of squared forecast errors for France 
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Japan 

 

United States of America 

 

 

United Kingdom 

                     Figure 14: Cumulative sum of squared forecast errors for U.K. 

Figure 12: Cumulative sum of squared forecast errors for Japan 

Figure 13: Cumulative sum of squared forecast errors for U.S. 
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Canada 

 

South Africa 

 

                      Figure 16: Cumulative sum of squared forecast errors for South Africa 

 

 

Australia 

 

                      Figure 17:  Cumulative sum of squared forecast errors for Australia 

Figure 15: Cumulative sum of squared forecast errors for Canada 
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From the above graphics, we can see that, in a general way, the predictive 

regressions outperform the historical mean benchmark in Germany, in France 

from 2010, in the United States for the low frequency component and in Canada 

especially for forecasting horizons of 24 months on the original time series and 

the low frequency component.  In what concerns to positive R-squares, they are 

present in Germany excepting for the high frequency component, in France 

mainly for forecasting horizons of 1 and 6 months, in the United States 

principally for the low frequency component and for Canada for forecasting 

horizons starting at 6 months. 
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3.4 Robustness Analysis  

3.4.1 Different Sample Periods 

As a robustness exercise, we studied for the different countries under analysis 

the predictability power of their equity risk premium of the predictors in 

different OOS periods. The method is exactly the same as the full OOS period 

method but now is tested for different subsamples. The full OOS period used in 

the section 3.3 (1990:01-2018:08) is now divided into two subsamples: the first one 

runs from January 1990 until December 2006, just before the emergence of the 

Great Financial Crisis, and the second one runs from January 2007 until August 

2018.  

The following tables report OOS R-squares (in percentage) of the equity risk 

premium forecasts at h = 1,3,6,12 and 24 forecasting horizons given by equation 

(5), for each predictor. Asterisks denote the significance of OOS MSFE-adjusted 

statistic of Clark and West (2007). *** represent significance at 1%, ** denote 

significance at 5% and * symbolize significance at 10%. 

 

Germany  

Table 18: Out-of-Sample R-squares of sub-samples for Germany 

 

 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

1
9

9
0

-2
0

0
6

 𝑇𝑀𝑆𝑇𝑆 0,32 0,67 1,84 3,51 3,42 

𝑇𝑀𝑆𝐻𝐹 -0,08 0,43 0,00 -0,29 -0,42 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,36 -0,93 -1,07 -0,84 2,24 

𝑇𝑀𝑆𝐿𝐹 0,83* 1,98* 3,60* 5,22* 2,35 

2
0

0
7

-2
0

1
8

 𝑇𝑀𝑆𝑇𝑆 1,45** 3,52** 5,09* 9,24* 8,56* 

𝑇𝑀𝑆𝐻𝐹 -0,35 -2,37 -1,83 -0,46 0,81 

𝑇𝑀𝑆𝐵𝐶𝐹 0,63 1,68* 2,97** 7,90** 4,94 

𝑇𝑀𝑆𝐿𝐹 1,16 2,68 3,40 4,23 4,65* 
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France 

 

Table 19: Out-of-Sample R-squares of sub-samples for France 

 

 

 

Japan 

 

Table 20: Out-of-Sample R-squares of sub-samples for Japan 

 

 

 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

1
9

9
0

-2
0

0
6

 𝑇𝑀𝑆𝑇𝑆 -0,95 -1,82 -1,30 -0,84 8,58 

𝑇𝑀𝑆𝐻𝐹 0,52 0,63 1,03 -0,58 -1,56 

𝑇𝑀𝑆𝐵𝐶𝐹 -2,27 -3,83 -4,34 -3,51 -1,59 

𝑇𝑀𝑆𝐿𝐹 0,38 0,38* 0,21** -5,00** -8,81** 

2
0

0
7

-2
0

1
8

 𝑇𝑀𝑆𝑇𝑆 2,07** 6,29** 8,02* 9,45 3,59 

𝑇𝑀𝑆𝐻𝐹 -0,39 -0,73 -1,33 -0,53 -3,31 

𝑇𝑀𝑆𝐵𝐶𝐹 1,66* 3,98** 4,51* 4,58** -1,71 

𝑇𝑀𝑆𝐿𝐹 1,45 3,10 2,99 0,27 -6,94 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

1
9

9
0

-2
0

0
6

 𝑇𝑀𝑆𝑇𝑆 -3,17 -4,08 -4,72 -13,17 -16,23 

𝑇𝑀𝑆𝐻𝐹 -1,59 -1,43 -1,36 -3,14 -11,32 

𝑇𝑀𝑆𝐵𝐶𝐹 -1,57 -5,38 -8,59 -14,09 -11,25 

𝑇𝑀𝑆𝐿𝐹 -0,71 -3,35 -7,69 -14,21 -24,56 

1
0

0
7

-2
0

1
8

 𝑇𝑀𝑆𝑇𝑆 -0,90 -1,59 -3,08 -5,76 -8,93 

𝑇𝑀𝑆𝐻𝐹 -3,08 -1,31 -0,33 -1,16 -2,02 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,14 -0,69 -1,53 -3,98 -4,87 

𝑇𝑀𝑆𝐿𝐹 -1,01 -3,17 -5,87 -11,03 -21,20 
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United States of America  

 

Table 21: Out-of-Sample R-squares of sub-samples for U.S.A 

 

 

United Kingdom  

 

Table 22: Out-of-Sample R-squares of sub-samples for U.K 

 

 

 

 

 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

1
9

9
0

-2
0

0
6

 𝑇𝑀𝑆𝑇𝑆 -2,87 -5,19 -5,52 -4,07 2,69 

𝑇𝑀𝑆𝐻𝐹 -2,73 -2,87 -0,23 -0,64 0,96 

𝑇𝑀𝑆𝐵𝐶𝐹 -4,05 -11,02 -16,79 -12,62 3,06 

𝑇𝑀𝑆𝐿𝐹 -0,11 -0,03 0,65* 3,24** 10,04*** 

2
0

0
7

-2
0

1
8

 𝑇𝑀𝑆𝑇𝑆 0,90* 1,71* 1,52 4,73** 7,05*** 

𝑇𝑀𝑆𝐻𝐹 1,07 1,31 -0,28 -0,25 0,03 

𝑇𝑀𝑆𝐵𝐶𝐹 -1,07 -3,66 -4,97 -1,81 -2,27 

𝑇𝑀𝑆𝐿𝐹 0,68 1,98* 3,54* 8,36** 13,16*** 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

1
9

9
0

-2
0

0
6

 𝑇𝑀𝑆𝑇𝑆 -0,43 -0,65 -0,62 -0,04 -6,79 

𝑇𝑀𝑆𝐻𝐹 0,21 -0,45 -1,44 -8,19 -14,92 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,28 -1,34 -4,62 -12,49 -17,96 

𝑇𝑀𝑆𝐿𝐹 -0,49 -1,05 -0,94 0,77 1,73 

2
0

0
7

-2
0

1
8

 𝑇𝑀𝑆𝑇𝑆 -0,18 0,05 0,56 0,94 -15,77 

𝑇𝑀𝑆𝐻𝐹 0,68 -0,95 -0,54 -0,50 -10,83 

𝑇𝑀𝑆𝐵𝐶𝐹 0,02 0,56 2,13 3,31 -10,85 

𝑇𝑀𝑆𝐿𝐹 0,11 0,34 0,21 -1,80 -24,18 
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Canada  

 

Table 23: Out-of-Sample R-squares of sub-samples for Canada 

 

 

South Africa   

 

Table 24: Out-of-Sample R-squares of sub-samples for South Africa 

 

 

 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

1
9

9
0

-2
0

0
6

 𝑇𝑀𝑆𝑇𝑆 0,62* 1,32 2,79 4,45* 18,59*** 

𝑇𝑀𝑆𝐻𝐹 -0,08 0,03 -0,06 0,29 4,84** 

𝑇𝑀𝑆𝐵𝐶𝐹 -1,35 -4,27 -10,20 -13,87 1,84 

𝑇𝑀𝑆𝐿𝐹 0,78* 1,88* 3,88** 8,26*** 32,29*** 

2
0

0
7

-2
0

1
8

 𝑇𝑀𝑆𝑇𝑆 0,54 0,88 0,99 3,66 -4,99 

𝑇𝑀𝑆𝐻𝐹 0,08 -1,06 -0,36 0,33 -2,26 

𝑇𝑀𝑆𝐵𝐶𝐹 0,19 0,21 1,36  7,54*** 0,49 

𝑇𝑀𝑆𝐿𝐹 0,23 0,05 -0,22 -3,06 -22,30 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

1
9

9
0

-2
0

0
6

 𝑇𝑀𝑆𝑇𝑆 -1,48 -3,59 -5,90 -20,79 -39,07 

𝑇𝑀𝑆𝐻𝐹 -3,46 -1,74 0,86* 0,01 -0,60 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,85 -2,85 -7,70 -36,19 -31,01 

𝑇𝑀𝑆𝐿𝐹 -0,81 -2,58 -4,37 -11,50 -32,06 

2
0

0
7

-2
0

1
8

 𝑇𝑀𝑆𝑇𝑆 -0,21 -0,89 -1,35 -3,25 -7,15 

𝑇𝑀𝑆𝐻𝐹 -1,21 -2,57 -3,36 -6,10 -6,06 

𝑇𝑀𝑆𝐵𝐶𝐹 -1,54 -7,73 -14,64 -19,54 -16,72 

𝑇𝑀𝑆𝐿𝐹 0,09* -0,01 0,14 -1,25 -5,53 
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Australia    

 

Table 25: Out-of-Sample R-squares of sub-samples for Australia 

 

 

Germany stills to present most of 𝑅𝑂𝑆
2  positive in both subsample periods 

beating the historical mean benchmark on the original time series and low 

frequency of the term spread. In what concerns to France, the results are slightly 

different in the sense that the original time series of 1990-2006 period have 

negative  𝑅𝑂𝑆
2  for almost all forecasting horizons. Although the results of 2007-

2018 match with the full OOS sample results. Moreover, for the low frequency 

component of the term spread stills presenting positive 𝑅𝑂𝑆
2 .  U.S. presents a 

similar OOS results to the full sample except for forecasting horizons of 1 and 3 

months on the first subsample period. Canada still match full sample OOS results 

for original time series and low frequency of the term spread. Regarding the 

countries that did not present forecasting power until this point, the results are 

not surprising, there is not a pattern that justifies predictability power on none of 

the predictors used. 

 

 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

1
9

9
0

-2
0

0
6

 𝑇𝑀𝑆𝑇𝑆 -3,16 -6,00 -6,76 -1,32 -2,46 

𝑇𝑀𝑆𝐻𝐹 -3,20 -5,11 -2,94 1,28 -1,73 

𝑇𝑀𝑆𝐵𝐶𝐹 -1,64 -3,56 -2,81 -0,37 -5,45 

𝑇𝑀𝑆𝐿𝐹 -1,86 -5,71 -14,66 -25,76 -139,10 

2
0

0
7

-2
0

1
8

 𝑇𝑀𝑆𝑇𝑆 0,78* 1,78 1,16 -3,06 -12,59 

𝑇𝑀𝑆𝐻𝐹 -0,16 0,17 -0,11 -2,75 -11,43 

𝑇𝑀𝑆𝐵𝐶𝐹 1,09* 2,39* 1,70 -4,24 -12,69 

𝑇𝑀𝑆𝐿𝐹 0,19 -0,11 -0,95 -4,04 -13,05 
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3.4.1 J=6 level MODWT MRA 

In this subsection, the OOS results are computed using a J=611 level MODWT 

MRA. The sample and the method are exactly the same, except for the fact that 

the business cycle and the smooth component are computed in a different way. 

The following tables report the 𝑅𝑂𝑆
2  (in percentage) for the ERP forecasts for 

the h-month horizon of the full OOS period (1990:01 – 2018:08). The predictors, 

original time-series and frequency components of the term spread were 

computed throughout wavelets decomposition using a J=6 MODWT MRA level.  

Moreover, asterisks denote the significance of OOS MSFE-adjusted statistic of 

Clark and West (2007). *** represents significance at 1%, ** denotes significance 

at 5% and * symbolizes significance at 10%. 

 

Germany 
 

Table 26: Out-of-Sample R-squares computed with J=6 MODWT MRA for Germany 

 

 

 France 
 

Table 27: Out-of-Sample R-squares computed with J=6 MODWT MRA for France 

                                                 
11 J has to be chosen such that:  J ≤  log2 202  ≃ 7,7. So it is possible to run J=6 level MODWT MRA 

Predictor 
𝑅𝑂𝑆

2   

h = 1 h = 3 h = 6 h = 12 h =24 

J 
= 

6
 

𝑇𝑀𝑆𝑇𝑆 0,76** 1,74** 3,09** 5,54** 4,87* 

𝑇𝑀𝑆𝐻𝐹 -0,18 -0,63 -0,70 -0,35 -0,07 

𝑇𝑀𝑆𝐵𝐶𝐹 0,48* 1,38* 2,72** 5,65** 7,14** 

𝑇𝑀𝑆𝐿𝐹 0,38 0,34 0,04 -1,75 -5,14 

Predictor 
𝑅𝑂𝑆

2   
h = 1 h = 3 h = 6 h = 12 h =24 

J 
= 

6
 

𝑇𝑀𝑆𝑇𝑆 0,16 1,25** 2,59** 3,48** 6,85** 

𝑇𝑀𝑆𝐻𝐹 0,19 0,12 0,04 -0,56 -2,17 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,49 -0,43* -0,20* 1,36 6,19* 

𝑇𝑀𝑆𝐿𝐹 0,28 0,23 -0,49 -5,56 -18,29 
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Japan 

Table 28: Out-of-Sample R-squares computed with J=6 MODWT MRA for Japan 

 

 

United States of America 

Table 29: Out-of-Sample R-squares computed with J=6 MODWT MRA for U.S. 

 

United Kingdom 

Table 30: Out-of-Sample R-squares computed with J=6 MODWT MRA for U.K 

 

 

 

 

 

Predictor 
𝑅𝑂𝑆

2  
h = 1 h = 3 h = 6 h = 12 h =24 

J 
= 

6
 

𝑇𝑀𝑆𝑇𝑆 -2,33 -3,08 -4,03 -10,04 -13,32 

𝑇𝑀𝑆𝐻𝐹 -2,14 -1,38 -0,93 -2,31 -7,62 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,51 -2,58 -5,28 -10,48 -12,93 

𝑇𝑀𝑆𝐿𝐹 -1,03 -3,57 -6,75 -12,53 -26,40 

Predictor 
𝑅𝑂𝑆

2  
h = 1 h = 3 h = 6 h = 12 h =24 

J 
= 

6
 

𝑇𝑀𝑆𝑇𝑆 -0,89 -1,64 -1,60 0,22 4,32** 

𝑇𝑀𝑆𝐻𝐹 -0,74 -0,72 -0,26 -0,45 0,61 

𝑇𝑀𝑆𝐵𝐶𝐹 -1,18 -3,43 -4,93 -3,91 1,56 

𝑇𝑀𝑆𝐿𝐹 1,01*** 3,10*** 5,88*** 11,49*** 16,07*** 

Predictor 
𝑅𝑂𝑆

2  
h = 1 h = 3 h = 6 h = 12 h =24 

J 
= 

6
 

𝑇𝑀𝑆𝑇𝑆 -0,33 -0,36 -0,07 0,42 -9,89 

𝑇𝑀𝑆𝐻𝐹 0,40 -0,65 -1,02 -4,59 -13,51 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,46 -1,33 -2,93 -7,26 -16,38 

𝑇𝑀𝑆𝐿𝐹 -0,66 -1,82 -2,84 -3,95 -7,59 
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Canada 

Table 31: Out-of-Sample R-squares computed with J=6 MODWT MRA for Canada 

 

 

South Africa 

Table 32: Out-of-Sample R-squares computed with J=6 MODWT MRA for South Africa 

 

Australia 

Table 33: Out-of-Sample R-squares computed with J=6 MODWT MRA for Australia 

 

 

Predictor 
𝑅𝑂𝑆

2  

h = 1 h = 3 h = 6 h = 12 h =24 

J 
= 

6
 

𝑇𝑀𝑆𝑇𝑆 0,58** 1,12* 1,89* 4,11* 9,79** 

𝑇𝑀𝑆𝐻𝐹 -0,01 -0,47 -0,21 0,31 2,19 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,32 -1,04 -2,34 -3,09 4,72** 

𝑇𝑀𝑆𝐿𝐹 0,26 0,34 0,90 1,34* 5,58* 

Predictor 
𝑅𝑂𝑆

2  
h = 1 h = 3 h = 6 h = 12 h =24 

J 
= 

6
 

𝑇𝑀𝑆𝑇𝑆 -1,18 -2,98 -4,61 -14,47 -25,70 

𝑇𝑀𝑆𝐻𝐹 -2,93 -1,93 -0,34 -2,19 -2,89 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,45 -1,63 -3,72 -14,80 -22,77 

𝑇𝑀𝑆𝐿𝐹 -0,68 -2,24 -3,30 -5,99 -11,32 

Predictor 
𝑅𝑂𝑆

2  
h = 1 h = 3 h = 6 h = 12 h =24 

J 
= 

6
 

𝑇𝑀𝑆𝑇𝑆 -1,21 -1,80 -1,97 -2,40 -8,99 

𝑇𝑀𝑆𝐻𝐹 -1,69 -2,26 -1,23 -1,21 -7,98 

𝑇𝑀𝑆𝐵𝐶𝐹 -0,54 -1,16 -1,70 -2,33 -9,43 

𝑇𝑀𝑆𝐿𝐹 -0,77 -2,21 -4,04 -4,98 -18,04 
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The conclusions that can be taken from this set of results are very similar to 

the OOS results computed with a J=5 MODWT MRA. Germany has positive and 

significant 𝑅𝑂𝑆
2 , although this significance appears to be stronger on the business 

cycle-frequency. This can be explained by the fact of the business cycle frequency 

computed with a J=6 level MODWT MRA capture oscillations between 16 to 128 

months whereas the 𝑇𝑀𝑆𝐵𝐶𝐹 computed with a J=5 level MODWT MRA capture 

oscillations between 16 to 64 months. France continues to present positive and 

statically significant 𝑅𝑂𝑆
2 , although they are more evident on the original time 

series of the term spread. U.S. present interesting results where is possible to 

clearly observe the significance of the low frequency of the term spread. This 

result leads to exactly the same conclusion as Faria and Verona (2018). Canada 

stills evidencing that the original time series and the low frequency component 

of the term spread are good predictors with most of 𝑅𝑂𝑆
2  positive and some of 

them statically significant. In what concerns to Japan, United Kingdom, South 

Africa and Australia the results continue to lead to the same conclusion, the 𝑅𝑂𝑆
2  

are almost all negative meaning that the predictors are not good forecasters of 

the ERP in these countries. 
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Conclusion 

In this thesis was studied the forecasting power of the equity risk premium 

from the original time-series of the term spread and its different frequency 

components for eight countries: Germany, France, Japan, U.S., United Kingdom, 

Canada, South Africa and Australia. To decompose the frequency components of 

the term spread was used the Maximum Overlap Discrete Wavelet Transform 

Multiresolution Analysis method and the predictors were tested both in-sample 

and out-of-sample exercises. In this paper we focus our analysis in the out-of-

sample predictability of the equity risk premium and in order to effectively 

predict ERP in real-time the out-of-sample exercise is the most suitable one.  

The major novelty of this thesis is that we extend the equity risk premium 

analysis beyond the U.S market to seven additional markets: Germany, France, 

Japan, United Kingdom, Canada, South Africa and Australia. This has not been 

addressed in the literature so far and we foresee it as highly relevant for both 

local and internationally diversified equity investors.  

We found that the original time-series and the low frequency component of 

the term spread are a strong and robust out-of-sample equity risk premium 

predictors for a set of international countries namely: Germany, France, United 

States of America and Canada. Its out-of-sample forecasting performance is 

strong for forecasting horizons from one month to two years.   Unfortunately, it 

is not possible to consider the original time series of the term spread or its 

frequency components good predictors of equity risk premium across all markets 

studied, although with this research we found out that the equity risk premium 

and the term spread (and its frequency components) are not independent 

variables and the analysis of their relation can be very useful for equity risk 

premium forecasting exercises both in U.S and international markets. 
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  The attractiveness of the term spread is that it is easy to compute from public 

available data which is crucial for investors with little databases access to use in 

their asset allocation decisions. 

Moreover, in this thesis we show that the term spread can be a good variable 

to study the prediction of the equity risk premium, not just because of the 

evidence of its original time-series, but also because of the fact that the frequency 

domain approach allowed the extraction of the frequency segments that have the 

highest predictability power. Furthermore, one of the goals of this paper was to 

compare the U.S results with Faria and Verona (2018) which worked as a 

robustness analysis of their paper, given that were used different databases and 

our results support their conclusions.  

The principal limitation of this paper was on the searching for data to compute 

the variables, as it were used different databases to collect the data for the 

different countries, even though the databases present high levels of correlation 

(about 98%). 

 For researchers interested on this topic it is proposed an analysis of the 

predictability power of the U.S. term spread and its frequency components above 

the equity risk premium of international countries.  
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Appendix 

Summary Statistics, correlations and detail and smooth component of the 

term spread for Germany 

 
Variable Mean Median 1st 

percentile  

99th 

percentile  

Std. 

Deviation 

Minimum Maximum 

ERP 0,0040 0,0028 -0,1485 0,1283 0,0520 -0,1828 0,7767 

𝑇𝑀𝑆𝑇𝑆 1,0092 1,2017 -3,7400 4,3724 1,4990 -4,7900 4,6200 

𝑇𝑀𝑆𝐻𝐹 0,0000 0,0062 -1,1119 0,8605 0,3169 -1,4458 2,4628 

𝑇𝑀𝑆𝐵𝐶𝐹 0,0000 0,0894 -3,7951 2,7937 1,1236 -4,1735 2,8700 

𝑇𝑀𝑆𝐿𝐹 1,0092 1,0478 0,0770 1,6665 0,3998 0,0716 1,6706 

 

Variable TMS_TS TMS_HF TMS_BCF TMS_LF 

𝑇𝑀𝑆𝑇𝑆 1    

𝑇𝑀𝑆𝐻𝐹 0,4328 1   

𝑇𝑀𝑆𝐵𝐶𝐹 0,9601 0,2740 1  

𝑇𝑀𝑆𝐿𝐹 0,7082 0,0599 0,5722 1 
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Summary Statistics, correlations and detail and smooth component of the 

term spread for France 

 

Variable Mean Median 1st 

percentile  

99th 

percentile  

Std. 

Deviation 

Minimum Maximum 

ERP  0,0048 0,0041 -0,1452 0,1366 0,0534 -0,1792 0,7677 

𝑇𝑀𝑆𝑇𝑆 1,0851 1,3184 -2,7463 3,1500 1,2878 -4,2873 3,7500 

𝑇𝑀𝑆𝐻𝐹 0,0000 0,0236 -1,2556 0,8849 0,3950 -2,4533 1,4609 

𝑇𝑀𝑆𝐵𝐶𝐹 0,0000 0,1032 -2,3575 1,9400 0,8044 -2,4925 2,1081 

𝑇𝑀𝑆𝐿𝐹 1,0851 1,2752 -0,3828 1,6821 0,5628 -0,3878 1,6848 

 

  

 

 

 

 

 

 

Variable TMS_TS TMS_HF TMS_BCF TMS_LF 

𝑇𝑀𝑆𝑇𝑆 1    

𝑇𝑀𝑆𝐻𝐹 0,5202 1   

𝑇𝑀𝑆𝐵𝐶𝐹 0,8804 0,3281 1  

𝑇𝑀𝑆𝐿𝐹 0,6647 0,0195 0,3548 1 
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Summary Statistics, correlations and detail and smooth component of the 

term spread for Japan 

 

 

Variable TMS_TS TMS_HF TMS_BCF TMS_LF 

𝑇𝑀𝑆𝑇𝑆 1    

𝑇𝑀𝑆𝐻𝐹 0,3816 1   

𝑇𝑀𝑆𝐵𝐶𝐹 0,4889 0,1890 1  

𝑇𝑀𝑆𝐿𝐹 0,8620 0,0032 0,1028 1 

 

 

 

 

 

 

 

Variable Mean Median 1st 

percentile  

99th 

percentile  

Std. 

Deviation 

Minimum Maximum 

ERP  0,0052 0,0020 -0,7503 0,6493 0,1941 -1,3254 0,9800 

𝑇𝑀𝑆𝑇𝑆 1,7126 1,6340 0,1275 3,5922 0,8984 0,0190 4,3230 

𝑇𝑀𝑆𝐻𝐹 0,0000 0,0056 -0,8658 0,8164 0,2819 -1,1872 1,3235 

𝑇𝑀𝑆𝐵𝐶𝐹 0,0000 0,0054 -0,9216 0,6697 0,3097 -1,0044 0,7332 

𝑇𝑀𝑆𝐿𝐹 1,7126 1,9026 0,2619 2,8159 0,7417 0,2586 2,8176 
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Summary Statistics, correlations and detail and smooth component of the 

term spread for United States of America 

 

Variable Mean Median 1st 

percentile  

99th 

percentile  

Std. 

Deviation 

Minimum Maximum 

ERP  0,0031 0,0028 -0,0889 0,1227 0,0361 -0,2203 0,2131 

𝑇𝑀𝑆𝑇𝑆 1,0790 1,3400 -4,2000 3,5000 1,6372 -5,8100 3,5700 

𝑇𝑀𝑆𝐻𝐹 0,0000 0,0184 -1,4940 1,5988 0,5057 -3,5283 2,6980 

𝑇𝑀𝑆𝐵𝐶𝐹 0,0000 -0,0162 -2,5009 2,1921 1,1124 -2,6775 2,2102 

𝑇𝑀𝑆𝐿𝐹 1,0790 1,2840 -0,5040 2,0737 0,6973 -0,5128 2,0755 

 

 

 

 

 

 

 

 

 

Variable TMS_TS TMS_HF TMS_BCF TMS_LF 

𝑇𝑀𝑆𝑇𝑆 1    

𝑇𝑀𝑆𝐻𝐹 0,4504 1   

𝑇𝑀𝑆𝐵𝐶𝐹 0,8682 0,1964 1  

𝑇𝑀𝑆𝐿𝐹 0,6362 0,0190 0,3008 1 
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Summary Statistics, correlations and detail and smooth component of the 

term spread for United Kingdom 

 

Variable Mean Median 1st 

percentile  

99th 

percentile  

Std. 

Deviation 

Minimum Maximum 

ERP  0,0037 0,0048 -0,1073 0,1473 0,0638 -0,6297 0,7399 

𝑇𝑀𝑆𝑇𝑆 0,9991 1,0956 -3,2461 5,3306 1,6850 -4,0060 5,7837 

𝑇𝑀𝑆𝐻𝐹 0,0000 -0,0129 -0,9664 1,1453 0,3692 -1,5369 1,5437 

𝑇𝑀𝑆𝐵𝐶𝐹 0,0000 -0,0214 -2,6887 2,5486 1,0495 -2,8233 2,7984 

𝑇𝑀𝑆𝐿𝐹 0,9991 1,0324 -0,8457 2,6288 0,9065 -0,8571 2,6366 

 

 

Variable TMS_TS TMS_HF TMS_BCF TMS_LF 

𝑇𝑀𝑆𝑇𝑆 1    

𝑇𝑀𝑆𝐻𝐹 0,4158 1   

𝑇𝑀𝑆𝐵𝐶𝐹 0,8391 0,2966 1  

𝑇𝑀𝑆𝐿𝐹 0,7180 0,0222 0,2813 1 
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Summary Statistics, correlations and detail and smooth component of the 

term spread for Canada 

 

 

Variable Mean Median 1st 

percentile  

99th 

percentile  

Std. 

Deviation 

Minimum Maximum 

ERP  0,0028 0,0037 -0,0868 0,0921 0,0279 -0,1067 1,1427 

𝑇𝑀𝑆𝑇𝑆 0,6948 0,8207 -3,7824 3,3243 1,5357 -5,5625 3,5750 

𝑇𝑀𝑆𝐻𝐹 0,0000 0,0006 -1,5677 1,2385 0,4538 -2,4641 2,5312 

𝑇𝑀𝑆𝐵𝐶𝐹 0,0000 0,0480 -2,6583 1,7194 1,0140 -3,0965 1,7690 

𝑇𝑀𝑆𝐿𝐹 0,6948 0,8270 -0,5323 1,7755 0,7031 -0,5355 1,7803 

 

 

Variable TMS_TS TMS_HF TMS_BCF TMS_LF 

𝑇𝑀𝑆𝑇𝑆 1    

𝑇𝑀𝑆𝐻𝐹 0,4846 1   

𝑇𝑀𝑆𝐵𝐶𝐹 0,8590 0,2745 1  

𝑇𝑀𝑆𝐿𝐹 0,6325 0,0172 0,2568 1 
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Summary Statistics, correlations and detail and smooth component of the 

term spread for South Africa 

 

 

Variable Mean Median 1st 

percentile  

99th 

percentile  

Std. 

Deviation 

Minimum Maximum 

ERP  0,0044 0,0069 -0,1032 0,1237 0,0501 -0,7060 0,2468 

𝑇𝑀𝑆𝑇𝑆 5,6934 6,8805 -5,7424 12,1876 3,8302 -7,7200 12,4900 

𝑇𝑀𝑆𝐻𝐹 0,0000 0,0204 -2,2588 1,7673 0,6717 -3,4152 2,8856 

𝑇𝑀𝑆𝐵𝐶𝐹 0,0000 0,2607 -4,3922 2,7975 1,5666 -4,9808 2,9189 

𝑇𝑀𝑆𝐿𝐹 5,6934 6,3668 -0,4722 10,0917 3,0252 -0,4907 10,0983 

 

Variable TMS_TS TMS_HF TMS_BCF TMS_LF 

𝑇𝑀𝑆𝑇𝑆 1    

𝑇𝑀𝑆𝐻𝐹 0,2786 1   

𝑇𝑀𝑆𝐵𝐶𝐹 0,6230 0,2310 1  

𝑇𝑀𝑆𝐿𝐹 0,8816 0,0111 0,2196 1 
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Summary Statistics, correlations and detail and smooth component of the 

term spread for Australia 

 

 

Variable Mean Median 1st 

percentile  

99th 

percentile  

Std. 

Deviation 

Minimum Maximum 

ERP  0,0028 0,0043 -0,0676 0,0687 0,0273 -0,2010 0,0932 

𝑇𝑀𝑆𝑇𝑆 0,1231 0,3300 -5,1640 3,9448 1,7879 -13,3000 4,6100 

𝑇𝑀𝑆𝐻𝐹 0,0000 0,0121 -1,8589 1,9089 0,7067 -8,2186 2,4077 

𝑇𝑀𝑆𝐵𝐶𝐹 0,0000 0,0014 -3,4178 2,3792 1,1030 -4,1849 2,7105 

𝑇𝑀𝑆𝐿𝐹 0,1231 0,0903 -1,2544 1,7498 0,7750 -1,2606 1,7578 

 

 

Variable TMS_TS TMS_HF TMS_BCF TMS_LF 

𝑇𝑀𝑆𝑇𝑆 1    

𝑇𝑀𝑆𝐻𝐹 0,5714 1   

𝑇𝑀𝑆𝐵𝐶𝐹 0,8358 0,2747 1  

𝑇𝑀𝑆𝐿𝐹 0,5965 0,0153 0,2544 1 

 

 

 

 

 


