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Abstract 
 

Although phage display-based enrichments became a standard procedure, they still suffer from 

some drawbacks. Nonspecific phage binding limits the enrichment that can be achieved per se-

lection round and therefore, in most cases, at least three or four rounds are required to identify the 

antigen binding nanobodies (Nbs) from the library. Moreover, the release of the phages captured 

via their antigen-specific Nb on the immobilized antigen is accomplished most often, by a pH 

shock that will also release the a-specific absorbed phages, thereby generating an unwanted back-

ground. However, the biggest shortcoming is the difficulty to identify the Nb of best binding 

affinity. We now have to ferment and purify all individual Nb clones to homogeneity and measure 

their affinity parameters one after the other. This is very tedious, certainly, as the identified Nbs 

often share a high degree of amino acid sequence identity, which makes it impossible to predict 

the one having the best affinity. The objective of this thesis aimed to modify the phage display 

vector so that one round of selection will be sufficient, while the affinity of all antigen-positive 

Nbs can be compared immediately after ELISA. 

Firstly, a vector containing the Calmodulin Binding Peptide (CBP) tag was created, by substitut-

ing the hemagglutinin (HA) tag present in a pMECS-GG plasmid by the CBP tag. Moreover, 6 

Nbs with well-known and variable kinetic binding rates were also inserted into the vector 

pMECS-CBP. 

Next, the vector was used in a phage display setting, where two mini libraries comprising the 6 

Nbs were made. One library had the conventional pMECS vector while the other was made using 

the pMECS-CBP vector. Although an enrichment of 1000 times was achieved using pMECS, 

pMECS-CBP failed to show any enrichment, supporting the hypothesis that Nb-CBP encountered 

serious expression problems. To investigate the validity of this hypothesis, periplasmic expression 

of Nb-CBP was performed and compared with that of the Nb without the tag. While the Nb 

yielded almost 4 mg per liter of culture media, the Nb-CBP could only be obtained at 0.63 mg 

per liter culture. Moreover, the Nb-CBP couldn’t be detected on a western blot. Several methods 

were used, such as adding lysozyme to improve the periplasmic extraction step, expressing 5 

different colonies to check if there was a homogeneity of expression between them. In all meth-

ods, the amount produced always remained below 1 mg per liter and Nb-CBP protein couldn’t be 

detected in any step of expression by Coomassie stained SDS-PAGE or western blot. 

Additionally, a high yield expressing-protein (SIRPα) was cloned into the CBP vector to identify 

whether the expression problem was caused by the peptide tag itself or by the Nb-CBP combina-

tion. Even though SIRPα was obtained at a yield of 8.7 mg/L of culture when expressed from a 

vector not containing the CBP, its expressed yield using the CBP vector, dropped to 0.7 mg/L of 

culture, indicating that the CBP tag is incompatible with good periplasmic expression. 

Lastly, a nucleotide alignment of our CBP tag with a previously reported one, revealed differences 

in two Arginine codons, two Alanine codons and one Lysine codon. Moreover, our sequence 

employed two codons, AGA and CGG, rarely used in E. coli, which might be linked to the re-

duced expression levels that we observed during this thesis.  

Keywords: Phage Display, Nanobodies, Periplasmic Protein Expression 
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Resumo 
 

Apesar dos enriquecimentos através de phage display se terem tornado um procedimento habitual, 

ainda possuem alguns inconvenientes. As ligações inespecíficas dos fagos limitam o enriqueci-

mento que pode ser atingido por ronda de seleção e, dessa forma, pelo menos três a quatro rondas 

são necessárias para identificar os nanocorpos de uma biblioteca que se ligam ao antigénio. Além 

disso, a libertação dos fagos capturados através do seu nanocorpo específico para antigénio imo-

bilizado é frequentemente realizada por um choque de pH, que também irá libertar os fagos ab-

sorvido inespecificamente, gerando background indesejado. No entanto, o maior inconveniente é 

a dificuldade em identificar o nanocorpo com melhor afinidade. Neste momento, tem que se pro-

duzir e purificar todos os clones individualmente e medir os seus parâmetros de afinidade um 

após o outro. Isto é muito trabalhoso, uma vez que, com frequência, os nanocorpos apresentam 

sequências de aminoácidos idênticas, o que torna impossível prever qual poderá ter melhor afini-

dade para o alvo. Esta tese foi criada com o objetivo de modificar o vetor de phage display, para 

que apenas uma ronda de seleção seja necessária, enquanto a afinidade de todos os nanocorpos 

que se liguem positivamente ao antigénio possa ser comparada imediatamente após ELISA. 

Primeiro, um vetor que contivesse uma tag do péptido de ligação à calmodulina (CBP) foi criado, 

através da substituição da tag da hemaglutinina contida no plasmídeo pMECS-GG. Além disso, 

6 nanocorpos com constantes de ligação variáveis e bem estabelecidas, foram também inseridos 

no vetor pMECS-CBP. 

De seguida, o novo vetor foi usado em phage display, onde duas mini bibliotecas compostas por 

6 nanocorpos foram criadas. Uma das bibliotecas continha o vetor pMECS convencional, en-

quanto a outra foi construída usando o vetor pMECS-CBP. Apesar de um enriquecimento de 1000 

vezes ter sido observado usando o pMECS, o vetor pMECS-CBP não apresentou qualquer enri-

quecimento, sustentando a hipótese de que os nanocorpos conjugados com o CBP teriam proble-

mas de expressão. Para perceber a veracidade desta hipótese, expressão periplasmática dos nano-

corpos conjugados com o CBP foi realizada e comparada com a dos nanocorpos sem a tag. En-

quanto na expressão dos nanocorpos mais de 5 mg por litro de cultura foram produzidos, a ex-

pressão dos nanocorpos conjugados com o CBP apenas obteve 0,63 mg por litro de cultura. Para 

além disso, os nanocorpos conjugados não foram detetados via western blot. Outros métodos fo-

ram testados, tais como a adição de lisozima para melhorar a fase de extração periplasmática e a 

expressão de 5 colónias diferentes de cada nanocorpo para verificar se havia uma homogeneidade 

de expressão entre elas. Em todas as tentativas, a quantidade produzida permaneceu sempre 

abaixo de 1 mg e os nanocorpos conjugados com o CBP não conseguiam ser detetados em ne-

nhuma fase da expressão usando SDS-PAGE e western blot. 

Posteriormente, uma proteína com elevada expressão (SIRPα) foi clonada no vetor pMECS-CBP, 

para perceber se o problema de expressão era causado pela tag peptídica ou pela conjugação 

nanocorpo e CBP. Apesar de o SIRPα ter produzido 8,7 mg/L de cultura quando expresso com o 

vetor que não continha o CBP, a quantidade produzida usando o vetor pMECS-CBP baixou para 

0,7 mg/L de cultura, indicando que a tag CBP é incompatível com uma boa expressão periplas-

mática. 

Por fim, um alinhamento de nucleótidos entre o CBP tag utlizado e outro previamente descrito, 

revelou diferenças entre dois codões de Arginina, dois codões de Alanina e um codão de Lisina. 

Notou-se ainda que a sequência usada no decorrer desta tese continha dois codões, AGA e CGG, 

raramente usados em E. coli, o que pode estar ligado aos reduzidos valores de expressão obser-

vados no decorrer da tese. 

Palavras-chave: Phage Display, Nanocorpos, Expressão periplasmática de proteína 
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1 Introduction 

1.1 Phage Display 

Phage display, firstly introduced by G. Smith in 1985 1, is a well-established molecular screening 

technique whereby a library of genes with a randomized region is expressed and exposed as pep-

tide or protein on the surface of bacteriophages that are available for selection 2. Its advantages 

include being robust, easy to perform, highly versatile and inexpensive 3. 

The unique feature of the method relies on the physical linkage that is established between the 

genotype and the phenotype of the phage particle 2. A ligand’s coding sequence of interest is fused 

to the sequence of one of the phage coat proteins and, after expression and subsequent incorpora-

tion of this new vector on phages, the ligand is presented on its surface, while having the corre-

sponding genetic material inside 4. This critical linkage allows a rapid analysis and identification 

(when compared with other techniques), after selection, of the phage particles with the desired 

binding specificities 5. 

Usually, there are 5 key steps involved in phage display (Figure 1.1). It all starts with the con-

struction of a library, which is crucial since the final results will directly depend on the quality of 

the designed library 6. Then, the specific ligands of the library will be retrieved, typically via 

biopanning, which will select them based on their expression level and the capacity to recognize 

the target 7. Usually, 3 to 5 cycles of biopanning are required to enrich the clones of highest 

affinity 8. The clones with highest affinity are identified after re-amplification and production of 

their ligand in Echerichia coli (E. coli). Finally, experiments are performed to confirm the speci-

ficity, to measure the affinity parameters and to reveal the sequence of the selected ligand 8. 

 

Figure 1.1 - Illustration of the key steps involved in phage display 8. 
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Phage display can have diverse applications, such as: studies of protein-protein interactions 9, 

epitope mapping 10, identification of mimic epitopes (mimotopes) 11, discovery and development 

of new biological drugs 12, in vivo imaging of tumors 13 and improvement or modification of 

affinity of proteins to their binding partners 14. This allowed major breakthroughs in the field of 

immunology, cell biology, pharmacology and drug discovery 2. In recognition of these major 

achievements, half of the Nobel Prize in Chemistry was awarded in 2018 to George Smith and 

Sir Greg Winter “for the phage display of peptides and antibodies” 15. 

1.1.1 Phage Display Vectors 

Bacteriophages, are viruses that can infect a variety of Gram-negative bacteria 6. Different bacte-

riophage DNA can be used as phage display vector to transform or infect E. coli, such as T4, T7, 

lambda and filamentous phages, the latter being the preferred one 4.  

Among E.coli-infective filamentous bacteriophages, the most used and best studied group is the 

nonlytic F pilus-specific phages (also known as Ff), which include the strains M13, f1 and fd 16. 

This group is closely related, being 98.5% identical in their DNA sequence, and infect male E. 

coli  after a specific interaction between the phage and the tip of the F-pilus produced by the 

bacteria 8 17. Since they are nonlytic phages, the assembly is done in the periplasmic environment 

and then they are secreted out of the bacterial cell 4. Although the growth rate of the bacteria 

decreases significantly, they survive phage infection 4. 

There are some unique characteristics that make filamentous bacteriophages suitable vectors for 

phage display 4. The infections can be controlled, since these phages infect only E. coli strains 

that express the F-pilus 4. Moreover, since there is an immediate depolymerization of the F-pilus 

after infection, a bacterium can only be infected once, thus each bacterium secretes a unique phage 

with the encoded peptide 4. Larger foreign sequences inserted in the phage genome simply results 

in the production of longer phage particles, since DNA replication and the assembly of phages is 

not limited by the size of the inserted DNA sequence 4 17. Filamentous phages are stable under a 

variety of very harsh conditions, such as extreme pH, high and low temperatures, presence of 

DNase, enzymatic cleavage and nonaqueous solutions 4 6 18. 

We will limit ourselves to the description of M13 as it is the most widely used and considered the 

model of filamentous bacteriophages 8 19. 

1.1.1.1 M13 Bacteriophage Structure 

M13 has a semi-flexible, extended tube-like shape (Figure 1.2A), with 6.5 nm in diameter and 

900 nm long 3 8 19. The phage contains a genome of single-stranded DNA (ssDNA) with 6407 bp, 

consisting of 9 genes encoding 11 different proteins (Figure 1.2B) 3. These proteins are grouped 

according to their function, five of them are coat proteins, major coat protein (pVIII) and minor 

coat proteins (pIII, pVI, pVII and pIX), while the other six are involved in replication (pII, pV, 

and pX)  and assembly/secretion of the phage (pI, pIV and pXI) 3 20. 

 

 

 

 

 

 

 

 

 

Figure 1.2 – A - Structure of M13 bacteriophage. Adapted from 16. B – Schematic representation of Ff bacteriophages 

genome with the function of each gene. Adapted from 21. 

A B 
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M13 consists of 2700 copies of the major coat protein pVIII, a 50 amino acids (aa) residue protein, 

which polymerizes along the length of the genome 4 8. The minor coat proteins are located in pairs 

at each tip of the phage 8. At one end of the virion, there are 5 molecules of each hydrophobic 

proteins: pVII, a 33 aa residue protein, and pIX, a 32 aa residue protein 19. The other end contains 

5 copies each of the pIII (406 aa residue protein) and the pVI (112 aa residue protein) 19. These 

last two proteins are required for the structural stability, completion of assembly and release of 

the virion 16. 

1.1.1.2 M13 Bacteriophage Life Cycle 

Upon infection of  F+ E. coli strains, M13 induces a state in which the infected bacteria produce 

and secrete new phage virions into the growth medium (Figure 1.3) 6. 

 

Figure 1.3 - Life Cycle of M13 bacteriophage 16. 

Infection is initiated with the adsorption process, occurring by the attachment of the N2 domain 

of pIII to the tip of the F-pilus 3. When the phage binds the F-pilus, a depolymerization of the 

pilus will occur, bringing the virion closer to the surface of the bacterium and allowing the N1 

domain of pIII to bind TolA located between the inner and outer membranes of the host cell 3. 

Although it is understood that the complex TolQRA present in E. coli, containing the proteins 

TolA, TolR and TolQ, is essential for infection and translocation of the ssDNA into the bacterium, 

the exact contribution of this complex is still unknown 3 8. It is only established that this sequence 

of events, involving pIII binding, contraction of pili and virion passage through the outer mem-

brane, will end up at the injection of the circular ssDNA M13 genome, referred to as infective 

form (IF), into the host cytoplasm 4 8 21. Inside the host, the bacterial DNA synthesis machinery 

will synthetize a DNA strand complementary to the ssDNA to produce circular supercoiled dou-

ble-stranded DNA (dsDNA), also known as replicative form (RF) 3. The replication starts when 

pII cleaves the ori site in the RF (+) strand and binds covalently to its 5’ end 3 4. The exposed 3’ 

end serves as a primer and will be elongated by the DNA polymerase using the (-) strand as a 

template 3 4. After the replication completes a full circle, pII nicks and ligates the free ends, re-

sulting in a ssDNA IF and dsDNA RF 21. In the early stages of infection, the IF is converted in 
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new RF and the production of RFs, via rolling cycle replication (described above), continues, 

until pV is expressed in sufficient levels to sequester the IF 4 21. Late in the infection, the high 

level of pV inhibits both the RF production and the translation of pII and pX, which leads to the 

accumulation of the IF 21. Although the exact mechanism remains unclear, pX plays an essential 

role in the stable accumulation of IF 3. Moreover, pV starts to bind to the IF, leading to the change 

of the circular appearance of the ssDNA to a more rod shaped appearance and initiating the virion 

assembly 3 8. The entire IF is covered with pV, except for an exposed hairpin loop, the packing 

signal, which is required for packing of phage genome 3. Assembly is initiated by the binding of 

pVII and pIX to the packing signal, which occurs in the inner membrane of the host 21. Then, the 

pV is replaced by pVIII, until the entire phage genome is coated with the major capsid protein 

and pIII and pVI bind the virion and allow its release from the bacterium 3 21. This process of 

phage secretion involves ATP hydrolysis and the complete phages are extruded through the mem-

brane channels created by pII and pIV complex 4. 

As mentioned before, M13 assembly is a nonlytic process, therefore newly assembled mature 

virions will continuously be extruded from the infected host, which continue to grow and divide, 

even if at a reduced rate (a generation time of around 50% longer than for uninfected bacteria) 17 
19. Moreover, taking into consideration that there is a lack of replication regulation and an ability 

of the episome to be transferred to daughter cells during cellular division, it is expected that the 

viral stock reaches a high titer (~1013 phages /ml of culture) 8. 

1.1.1.3 Phage or Phagemid? 

While phage DNA can be used as a cloning vector, sometimes it is advantageous to mix 

interesting features of phages with that of bacterial plasmids to arrive at chimeric phagemid 

vectors. Phage display can be performed using phage or phagemid vectors, however since they 

have different properties they result in different kinds of display 8. 

Ligand’s genes can be cloned directly into the phage genome that includes the origin of replication 

and all essential genes required for propagation 8. As a result, all phage particles will contain only 

the viral genome and will display the peptide in all coat proteins choosen for the display, which 

usually results in multivalent display (except when proteolysis degradation results in loss of some 

of the displayed peptide) 3 22. 

In the case of using phagemids, there are three key elements to consider: 1) an antibiotic resistance 

marker for the selection and propagation of the wanted phages, 2) the gene encoding the displayed 

ligand, 3) all the M13 genome elements essential for replication and assembly of phages 3. 

Phagemids contain the replication origins of both, an E. coli plasmid and M13, in conjunction 

with an antibiotic resistance marker 17. Moreover, it usually incorporates an amber stop codon 

between the C-terminus of the cloned gene and the start of the capsid protein gene, allowing for 

an easy switch between the production of a fusion protein or autonomous soluble protein 17. A 

peptide tag is encoded as well, which can be used, at later stage of phage display, for purification 

methods of the desired ligands 17. Having these characteristics, the phagemid can produce a large 

amount of the recombinant displayed ligand, however it is unable to produce phages unless the 

bacterium is co-infected with a helper phage 22. The helper phage, such as M13KO7 or VSCM13, 

carries all the genes necessary for the infection, replication and assembly of phage particles 3. An 

antibiotic resistance marker is also encoded and a truncated origin of replication, which ensures 

a preferential packaging of the phagemid DNA over the helper phage genome 8 23. Employing a 

phagemid usually results in monovalent display of the ligand, which is desired when ligands of 

highest intrinsic affinity are required, without having to worry about avidity effects 8. 

Most of the times, phagemids are preferred over phage vectors for library constructions, due to 

their higher transformation efficiencies that lead to larger and more diverse libraries 3 18. The 

variety of restriction enzyme sites present in phagemids facilitates gene manipulation, simplifying 

the cloning processes of the recombinant peptides 18. Also, phagemids tend to be genetically more 

stable after multiple rounds of propagation, due to relative resistance to deletions of extraneous 

genetic material, when compared with recombinant phages 18 22. 
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A list of properties that have to be considered when choosing between phage or phagemid vectors 

to create a phage display library that is suitable for a specific goal is summarized in Table 1.1. 

Table 1.1 – Advantages and disadvantages of each vector for GIII phage display 22. 

Phage Phagemid 
GIII mutated phage first 

round, normal subsequent 

Three to five copies of Ab per 

phage 

Only 1-10% of phagemids have 

one copy of the displayed Ab 

Three to five copies of Ab per 

phage 

Difficult to transfect and make 

DNA 
Easy to handle Easy to handle 

Faster to select and easier to use 
Slower to select (helper phage 

needed) 

Slower to select (helper phage 

needed) 

Must subclone to make soluble 

Ab 
Soluble Ab made directly Soluble Ab made directly 

Phenotypic and genotypic homo-

geneity 

Phenotypic and genotypic heter-

ogeneity 

Phenotypic and genotypic heter-

ogeneity 

Genetically less stable (dele-

tions) 
More stable genetically More stable genetically 

Greater diversity of Abs selected Lower diversity of Abs selected 
Greater diversity of Abs proba-

bly selected 

Lower affinity Abs also selected 

due to avidity effects 

Higher affinity Abs selected due 

to monomeric display 

Selection can be directed to-

wards higher affinity Abs 

Not suitable for affinity matura-

tion due to avidity effects 
Better for affinity maturation 

May be suitable for affinity mat-

uration 

1.1.2 Phage Display Systems 

Since the discovery of phage display, all M13 coat proteins have already been explored as possi-

ble display platforms (Figure 1.5) 8. Depending on the capsid protein, multiple configurations can 

be achieved on the displayed peptide/protein 8. 

 

Figure 1.4 - M13 Phage Display Systems 8. 

The density of display will depend on which coat protein the ligand is attached 8. For high-density 

display, the major coat is used, since it has a high number of copies 8. However, the size of the 

ligand will have a major influence on the density level that can be accomplished due to steric 

hinderance 8. Usually only peptides with 6-7 residues can guarantee unbiased display in pVIII 
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systems, so if a peptide is larger, a wild-type pVIII has to be present as well 16. Furthermore, the 

density can also be controlled by the availability of wild-type pVIII proteins during virion assem-

bly (more pVIII wild-type, less density) 8. In the minor coat proteins, valency is also controlled 

by presence or absence of wild-type coat protein 8. Moreover, fusions of the encoded recombinant 

peptides can be done to N-, C- or both termini, nevertheless this will depend on structural and 

functional constraints 8.  

Selection of the system to use will be dependent on the aims that one wants to achieve with the 

technique. To increase the chances of selecting ligands, usually a high density and polyvalent 

display is preferred 8. In cases where avidity has an impact on retrieving specific targets, a poly-

valent display is required 17. However, if highest affinity ligands are required, monovalent dis-

plays on the minor coat proteins are preferred 17.  

Although all coat proteins can be used as a display platform, most of the times pIII and pVIII are 

preferred 17. When comparing both systems, pIII display tolerates larger ligand fusions and has a 

better performance 17. 

1.1.3 Types of Displayed Ligands 

Depending on the specific aims of the study undertaken, two types of displayed ligands are widely 

used – peptides and antibodies (Abs) 24. 

Random peptide libraries are generally constructed using (NNK)n codon degeneracy, where N is 

an equimolar of all four nucleotides and K is a 1:1 mixture of guanine and thymine 24. This de-

creases the number of stop codons that can appear in the randomization, since there is a reduction 

of the number of stop codons that can be formed from three to one (TAG, the amber stop codon) 
24. These libraries are inserted at the N-terminal of the coat proteins and range between 6 and 43 

aa in length, since longer peptides can possibly interfere with the infectious activity or capsid 

assembly of the virion 25. 

Since Abs, such as IgG, are quaternary structures, with a size of 150 kDa, composed of two heavy 

and two light chains, each with variable and constant domains, it is very challenging for bacteria 

to express into functional proteins 8 15. Moreover, their display on the surface of phages, is seri-

ously compromised due to limitations in the bacteria folding machinery 17. Therefore, Ab libraries 

created to replace conventional immunization and hybridoma techniques, involve the design of 

combinatorial libraries of heavy-chain variable domains (VH) and light-chain variable domains 

(VL) from B lymphocytes, which are ligated as a pair in a phagemid 8 25. Apparently, these dis-

played, smaller, monovalent Ab fragments retain the affinity properties of intact Abs 15. 

1.1.3.1 Antibody Fragments and Nanobodies 

Several Ab formats (Figure 1.5) were already used for the construction of libraries, with each one 

having advantages and limitations (Table 1.2) 26. 

 

Figure 1.5 - Types of antibody fragments that can be displayed on the surface of bacteriophages 8. 
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The first two types of Ab fragments successfully displayed on the surface of bacteriophages were 

antigen-binding fragments (Fab) and single-chain variable fragments (scFv) 17.  

Fabs are composed of the full length of variable regions of heavy and light chains (VH and VL), 

as well as a constant region for each chain (CH1 and CL) linked by a disulfide bond 8 27. They 

have a tendency to form homodimers which interfere in finding the fragment with highest affinity 
27. However, if the final goal is to find Abs that bind to a specific target, these fragments are a 

good solution 24. Fabs possess better stability, pharmacokinetic and pharmacodynamic properties 

when compared to scFvs 28. The main disadvantage of using Fab libraries is their lower expression 

level in E.coli since there is a chance of producing toxic material to the cell (due to the large size 

of the fragments), in comparison with scFv 24. 

An scFv is composed of the variable regions VH and VL, connected by a flexible serine-glycine 

linker to mimic the binding cavity upon folding 24 27. Additionally, this linker serves the purpose 

of increasing the folding, flexibility and stability, as well as the solubility of the fragment 24 27. 

These fragments are smaller than Fabs, what make them advantageous in imaging, since they can 

penetrate tissues much more rapidly and efficiently 26. Moreover, due to their small size, scFv are 

easier to clone and can bind to cryptic or sterically restricted epitopes 17 26. Yet, their main disad-

vantage is their propensity to aggregate, which can interfere with selection and characterization 
17. Furthermore, scFv’s tend to become unstable when stored over prolonged periods of time 17. 

These two Ab fragments might also be engineered and converted into other formats with different 

characteristics that can be used, as well, for libraries (Table 1.2) 26. Even though scFv and Fab 

fragments are significantly less complex than conventional Abs, it is still challenging to produce 

them, due to their requirement of proper domain association 8. 

Table 1.2 – Characteristics of different antibody formats 26. 

Antibody format Size (kDa) Paratope (valency) Fc mediated functions 

IgG 150 2 Yes 

scFv 28 1 No 

Fab 50 1 No 

F(ab)2 110 2 No 

scFv-Fc 110 2 Yes 

Diabody 55 2 No 

Single domain antibody (VHH) 15 1 No 

A major breakthrough in the generation of Ab phage display libraries was the discovery of natu-

rally occurring functional heavy chain only antibodies (HCAbs) in sera of Camelids by Hamers 

and colleagues 8 29. HCAbs lack light chains, as well as the first constant domain (CH1), so the 

antigen association occurs solely with the heavy chain variable region (VHH) 30. The designation 

VHH was introduced to emphasize the differences between the heavy chain variable regions in 

camelids and conventional Abs 31. Even though both contain four conserved framework regions 

and three CDR regions, their general consensus is somewhat different (Figure 1.6) 32. Further-

more, key hydrophobic amino acids of framework-2 involved in binding the VL region in con-

ventional Abs are substituted by hydrophilic or smaller residues conferring VHH solubility and 

explaining the absence of VL association 32. In comparison with VH, VHH have also an extended 

CDR1 and longer CDR3, consequently having the ability to adopt novel paratope conformations 

for antigen recognition 32.  

VHH, also known as nanobodies (Nbs), are characterized by their small size (15 kDa),  high 

thermal stability and solubility, resistance to denaturation, ease of manipulation, high affinity and 

specificity (similar to conventional Abs), higher tissue penetration and low immunogenicity 31 33. 

Moreover, they are expressed to a high level in bacterial organisms, routinely with yields of sev-

eral milligrams per liter of culture 30. 

The generation of Nb libraries involves the immunization of camelids with a cocktail of antigens 

(Ags), the isolation of mRNA from peripheral blood lymphocytes and synthesis of cDNA by 
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reverse transcription 33. Nbs, with an encoded gene of around 360bp, can, then, be amplified by 

polymerase chain reaction (PCR) and ligated into a cloning vector 33. 

 

Figure 1.6 – Schematic representation of the sequence organization of the VH versus VHH with frameworks and 

CDRs. The crucial amino acid substitutions in framework-2 are described. Adapted from 30 

1.1.4 Selection Methods 

The selection of phage displayed libraries aims to enrich clones that recognize a target or Ag of 

interest 34. Briefly, it involves phage binding to the target, washes to remove nonspecific phages 

and elution to retrieve specific binding phages 17. Ideally only one round of selection should be 

enough, however due to limitations of enrichment and nonspecific phage binding 3 to 5 rounds 

of selection are required to obtain the best clones from a library 34.  

There are some important considerations to keep in mind while planning a selection. To reduce 

nonspecific phage binding, it is important to use a suitable protein-binding site blocking agent, as 

well as Tween-20 during the washing step 22. Moreover, the first selection round should not be 

too stringent to ensure that all binding phages are recovered for subsequent amplification, includ-

ing those present in very few copies 22. Selections on impure Ags are more challenging, since 

there is a chance of enriching phages specific for non-relevant Ags 34. 

Various methods can be envisaged, whereby different strategies can be designed to drive selection 

into the required direction by controlling specific criteria (Figure 1.7) 17. These strategies can be 

separated in two groups: those which attempt to isolate binders against a known Ag and those 

which use phage binders as a research tool to target unknown Ags 22. Although the outcome of a 

selection process depends on the quality of the constructed library, the biopanning strategy influ-

ences the ability to select clones not only with the required affinity and specificity, but also phys-

ical properties and functionality 17. In Figure 1.7, the most popular strategies are listed on the top 

(panels A-E), including biopanning on immobilized Ag coated on solid supports or columns, bi-

opanning in solution with biotinylated Ags and selection on cells 35. 

Biopanning on immobilized Ag coated on plastic surfaces by (passive) adsorption is the preferred 

selection procedure 25. Biopanning involves following steps 22 25 (see Figure 1.1, 2. Library 

screening):  

1) Ag immobilization: The Ag can be immobilized by passive adsorption to a modified 96-well 

polystyrene microtiter plates. The unbound Ag is washed away, and the residual protein binding 

sites in the well is saturated with a blocking agent, such as BSA or (semi-)skimmed milk powder; 
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2) Phage binding: The phage display library is added to an Ag coated well. For a better chance of 

isolating the best binders, it is important to start the first round with a large and highly variable 

library; 

3) Removing unbound phage: In the first round the washes are shorter and less stringent, to re-

cover a high yield of the fittest phage clones over the background. The stringency of selection is 

increased in subsequent rounds by more extensive and longer washes to isolate phage with higher 

affinity; 

4) Phage elution: The specific elution of the target bound phage can be performed in solution 

either with free target or a competing ligand. Taking advantage of phage stability, extreme pH, 

denaturants, ionic strength, limited proteolysis or sonication can be used for non-specific elution 

of the antigen bound phage.  

The eluted phage is amplified and the biopanning process is repeated 25. During this process, the 

enrichment achieved per round is monitored to evaluate the efficiency and to understand if a 

redesign of the strategy might be needed for selection of the better binders 17. 

 

Figure 1.7 - Selection strategies for obtaining specific phage ligands. A – Affinity selection from libraries by biopan-

ning on Ag absorbed onto a solid support, such as wells in microtiter plates. B – After washing, the specific binders 

can be eluted with acidic or basic solutions, as well as with Ab or excess of Ag. C – to avoid conformational changes 

during coating, selections on biotinylated Ag captured on coated streptavidin are preferred. D – the Ag can also be 

immobilized on Sepharose and loaded onto columns for affinity selection. E – Panning directly on cell monolayers or 

cell suspensions can also be used as a selection strategy. F- In this type of selection the cells of interest are fluores-

cently labeled and separated from the others by cell sorting. G – Tissue or organ specific binders can be obtained by 
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selection on tissue slides. H – Non-purifiable or unknown Ags may be separated on SDS-PAGE and blotted onto 

membranes for selection. I – Selection in vivo is also possible. J – Pathfinder selection. K – Infection-mediated selec-

tion 35. 

A particular problem of direct adsorption of Ag onto solid surfaces is that the epitope may be 

partially denatured or hidden, when the adsorption provokes conformational changes in the Ag 17 
22. This may lead to selection of binders that don’t recognize the native Ag, particularly for small-

size Ags 17 22. Even though this is not a common event, it can be avoided by presenting the Ag in 

solution, via biotinylated Ag, and by any other indirect coating 17 22. 

1.1.5 Screening Methods 

Once the selection procedure is complete, a fast and robust screening assay of individual clones 

is required, such as Enzyme Linked Immunosorbent Assay (ELISA),  Fluorescence-Activated 

Cell Sorting (FACS), nucleotide sequencing and immunocyto- or histochemistry 22. 

For a first screen, ELISA-based assays in combination with PCR and restriction fragment poly-

morphism of the Ab-encoding DNA are typically performed to narrow the potential candidate 

clones to the best and different candidates 22 35. ELISA is a biochemical assay that uses Abs and 

an enzyme-mediated color change to detect the presence of either Ag or Ab in a given sample 36. 

In this case, usually an anti-M13 phage Ab and either Alkaline Phosphatase (AP) or Horseradish 

Peroxidase (HRP) are used for the detection 37. The Ab expression level in E. coli is dependent 

on its primary sequence and can be extremely variable, making it impossible to correlate the af-

finity parameters with the signal intensity obtained from ELISA 22. A positive binding event can 

either be due to a high affinity or a high expression level (or both) 38. Thus, it is necessary to 

develop a screening assay that differentiates between clone variants that differ in affinity or in the 

kinetics of binding 35. The determination of dissociation rates to differentiate among the clones is 

performed using sophisticated instruments such as BIAcore or Octet 17. 

Additional screening methods might be carried out for a better characterization of the binders 

regarding their specificity, functionality and stability 17. 

After screening assays, it is important to sequence all the positive binders and clone them into 

vectors suitable for mass production 17 22. 

1.2 Calmodulin 

Calmodulin (CaM) is a small (17 kDa, comprised by 148 aa residues), well-conserved protein 

with a key role in intracellular signal transduction 39 40. CaM participates in signaling pathways 

by interacting with a variety of proteins, including kinases, phosphatases, ion channels and cyto-

skeleton proteins 40 41. It plays important roles in muscle contraction, cell proliferation, inflam-

mation, learning and memory, exo- and endocytoses, immune response and growth 40 41. 

CaM is a dumbbell-shape protein consisting of two lobes, N-lobe and C-lobe, connected by a 

highly flexible helical linker that allows a variety of conformations when bound to different tar-

gets 40 42. Each lobe contains a pair of EF-hand motifs which allow the binding of four Ca2+ ions, 

followed by a change of conformation from a hydrophilic structure to a more hydrophobic state 

that allows CaM to bind amphipathic α-helices in target proteins with very high affinity 39 40 41 42. 

Most of the times, the binding is reversible by the addition of calcium chelators, making this 

system an interesting candidate for biotechnological applications 39. 

1.2.1 Calmodulin Binding Peptide 

The CaM binding proteins are a large group of proteins that don’t show amino acid sequence 

homology, however can share unique structural features, such as an α-helical propensity, specific 

distribution of hydrophobic residues (two hydrophobic anchor residues spaced by a certain num-

ber of aa) and net positive charge (Figure 1.8) 43. 

Among these CaM binding proteins is a peptide residue of 19 aa (RWKKAFIAVSAANRFKKIS) 

derived from wild type skeletal muscle myosin light chain kinase 39 44. This CaM binding peptide 
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(CBP) has an ultra-high affinity (KD 2 pM) promoted by a mutation on N5A 44. This affinity 

enhancement guarantees that the CBP can resist vigorous washing steps and can be released from 

the immobilization substrate by addition of a calcium chelator, such as EDTA 44. Moreover, it has 

been shown that when fused into a target, it does not affect its expression 44. 

 

Figure 1.8 - Schematic representation of the interaction between calmodulin and the calmodulin binding peptide. Pro-

vided by Prof. Dr. Serge Muyldermans. 

1.3 Description of the New Phage Display Selection Approach 

Based on the binding properties between CaM and CBP 44, as well as studies with biotinylated 

Nbs that aim to normalize the captured amount 38, a new approach for phage display was devel-

oped (Figure 1.9 and Figure 1.10). 

 

Figure 1.9 - Schematic representation of new biopanning approach. 

First a new biopanning method will be developed (Figure 1.9). An Ag-CBP fusion from crude 

extracts will be captured by CaM indirectly adsorbed into microtiter plate using a buffer contain-

ing Ca2+ and impurities will be washed away. Then, we will add the phage particles rescued from 

the pMECS-CBP library carrying Nbs from an immunized camelid. Since all CaM are already 

loaded with Ag-CBP, it is expected that the phages will not be captured on CaM, but instead via 

their affinity for the captured Ag. After a short incubation and a few washes, a buffer with EDTA 

will be added, to release only those phages that were binding to the Ag via their Nb. Consequently, 

it is expected that the a-specific-bounded phage particles will not be disrupted, remaining attached 

into the wells and reducing the amount of background generated. For this reason, it is thought that 

one single round or maximum two consecutive rounds of panning might be sufficient, instead of 

three to five rounds using classical phage display and pH shock elution. A fraction of the eluted 
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pMECS-CBP virions will be used to infect WK6 cells, which will be grown individually and 

induce the expression of Nb-CBP in the periplasm. 

After obtaining individual Nb-CBP fusion proteins, a screening modified method of PE-ELISA 

will be developed (Figure 1.10). The Nb-CBP fusion proteins from a crude periplasmic extract 

will be captured on a limited and fixed amount of CaM, immobilized on wells of microtiter plates, 

in presence of Ca2+ ions. After washing away the impurities, the Nb-CBP (a fixed amount corre-

sponding to the moles of CaM coated in the wells) will be rescued by a short incubation with a 

buffer containing EDTA. Then, this Nb-CBP will be added to a well coated with Ag, followed by 

the addition of alkaline phosphatase fused with CaM in the presence of a calcium-containing 

buffer. In the presence of AP substrate, the ELISA signal will be monitored. Since a fixed amount 

of binder is used for ELISA, the discrepancies between expression levels of the different clones 

are no longer taken into account, so it is expected that the signal from ELISA will directly corre-

late with the affinity parameters. To verify if this correlation exists, 6 Nbs with well-established 

and variable association and dissociation kinetic rate constants are going to be used as proof of 

concept.  

 

Figure 1.10 - Schematic representation of new PE-ELISA approach. 

1.4 Aims of the Project 

Although phage display-based enrichments became a standard procedure, they still suffer from 

some drawbacks. To overcome these drawbacks this thesis was initiated with the purpose of 

changing a phage display vector so that one round of selection will be enough, while the affinity 

of all antigen-positive Nbs can be compared immediately after ELISA. More specifically, the 

main goals of the study are: 

• Create a new vector containing the CBP tag that can be used for phage display 

• Immobilize CaM on wells and test the effectiveness and efficiency of the interaction be-

tween the CBP and the CaM with different buffers, concentrations and incubation times 

• Develop a new phage display approach to normalize the amount of expressed Nb before 

ELISA 

• Find the correlation between the ELISA signal and the antigen-binding parameters. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Buffers, Reagents and Culture Media 

Table 2.1 - List of all the buffers, reagents and media used throughout the experiments. 

Buffer/Media/ 

Reagent 
Composition Source City, Country 

1% Agarose Gel 

4 g Agarose 

400 mL TBE buffer 

Boil until agarose dissolves 

Lonza 

 

 

Basel, Switzerland 

 

 

10x TBE Buffer 

(1 L) 

108 g Trizma®Base 

55 g H3BO3 

93 g EDTA 

Adjust final volume to 1 L with 

milli-Q H2O 

Sigma Aldrich 

Sigma Aldrich 

Duchefa Biochemie 

 

 

St. Louis, USA 

St. Louis, USA 

Haarlem, Netherlands 

 

 

20% D-Glucose 

(100 mL) 

20 g Glucose 

Adjust final volume to 100 mL with 

milli-Q H2O 

Autoclave 

Duchefa Biochemie 

 

 

 

Haarlem, Netherlands 

 

 

 

20% Ethanol SEC 

(1 L) 

200 mL Ethanol 

Adjust final volume to 1 L with 

milli-Q H2O 

Filter and degas 

Fisher Scientific 

 

 

 

Loughborough, UK 

 

 

 

20x MES Buffer 

(1 L) 

195.2 g MES Hydrate 

121.2 g Trizma®Base 

20.0 g SDS 

7.44 g EDTA disodium dihydrate 

Adjust final volume to 1 L with 

milli-Q H2O 

Sigma Aldrich 

Sigma Aldrich 

Duchefa Biochemie 

Duchefa Biochemie 

 

 

 

St. Louis, USA 

St. Louis, USA 

Haarlem, Netherlands 

Haarlem, Netherlands 

 

 

 

2x TY Medium 

(1 L) 

16 g Tryptone 

10 g Yeast Extract 

5 g NaCl 

Adjust final volume to 1 L with 

milli-Q H2O 

Autoclave 

Duchefa Biochemie 

Duchefa Biochemie 

Fischer Scientific 

 

 

 

Haarlem, Netherlands 

Haarlem, Netherlands 

Loughborough, UK 

 

 

 

Ampicillin  

(100 mg/mL) 

5 g Ampicillin 

50 mL 70% Ethanol 

Filter with 0.22 µm filter 

Sigma Aldrich 

Fischer Scientific 

Orange Scientific 

St. Louis, USA 

Loughborough, UK 

Braine-l’Alleud, Belgium 

Chloramphenicol 

(25 mg/mL) 

1.25 g Chloramphenicol 

50 mL 100% Ethanol 

Filter with 0.22 µm filter 

Sigma Aldrich 

Fischer Scientific 

Orange Scientific 

St. Louis, USA 

Loughborough, UK 

Braine-l’Alleud, Belgium 

Coating Buffer 

pH 8.2 (1 L) 

8.5 mg Na2CO3 

Adjust pH to 8.2 

Adjust final volume to 1 L with 

milli-Q H2O 

Merck 

 

 

 

Darmstadt, Germany 

 

 

 

Coomassie Bril-

liant Blue  

(1 L) 

0.125 g Coomassie® Brilliant Blue 

R250 

50% Methanol 

10% Acetic Acid 

Adjust final volume to 1 L with 

milli-Q H2O 

Fluka 

 

Acros Organics 

Merk 

 

 

Buchs, Switzerland 

 

Geel, Belgium 

Darmstadt, Germany 

 

 

Destaining Solu-

tion (1 L) 

10% Acetic Acid 

40% Methanol 

Adjust final volume to 1 L with 

milli-Q H2O 

Merck 

Acros Organics 

 

 

Darmstadt, Germany 

Geel, Belgium 
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Buffer/Media/ 

Reagent 
Composition Source City, Country 

Ethidium Bro-

mide (10 mg/mL) 
1 g Ethidium Bromide 

100 mL of milli-Q H2O 

Merck 

 

Darmstadt, Germany 

 

HisPureTM Ni-

NTA Resin 
- 

Pierce (Thermo Sci-

entific) 
Rockford, USA 

Imidazole 0.5M in 

PBS pH 7.5 (100 

mL) 

3.4 g Imidazole 

Solubilize in 90 mL PBS 

Adjust pH to 7.5 

Adjust final volume to 100 mL with 

PBS 

Store in the dark 

Sigma Aldrich 

 

 

 

 

 

St. Louis, USA 

 

 

 

 

 

IPTG 1 M  

(50 mL) 

11.92 g IPTG 

50 mL milli-Q H2O 

Filter with 0.22 µm filter 

Duchefa Biochemie 

 

Orange Scientific 

Haarlem, Netherlands 

 

Braine-l’Alleud, Belgium 

Kanamycin  

(70 mg/mL) 

3.5 g Kanamycin 

50 mL milli-Q H2O 

Filter with 0.22 µm filter 

Duchefa Biochemie 

 

Orange Scientific 

Haarlem, Netherlands 

 

Braine-l’Alleud, Belgium 

LB Agar 

Amp/Chl/Glu  

(1 L) 

25 g LB Broth high salt 

15 g Micro Agar 

Adjust final volume to 900 mL with 

milli-Q H2O 

Autoclave 

1 mL Ampicillin (100 mg/mL) 

1 mL Chloramphenicol (25 mg/mL) 

100 mL 20% Glucose 

Duchefa Biochemie 

Duchefa Biochemie 

 

 

 

 

 

 

Haarlem, Netherlands 

Haarlem, Netherlands 

 

 

 

 

 

 

LB Agar 

Amp/Glu (1 L) 

25 g LB Broth high salt 

15 g micro agar 

Adjust final volume to 900 mL with 

milli-Q H2O 

Autoclave 

1 mL Ampicillin 100 mg/mL 

100 mL 20% Glucose 

Duchefa Biochemie 

Duchefa Biochemie 

 

 

 

 

 

Haarlem, Netherlands 

Haarlem, Netherlands 

 

 

 

 

 

LB Medium  

(1 L) 

10 g Tryptone 

5 g Yeast Extract 

10 g NaCl 

Adjust final volume to 1 L with 

milli-Q H2O 

Autoclave 

Duchefa Biochemie 

Duchefa Biochemie 

Fischer Scientific 

 

 

 

Haarlem, Netherlands 

Haarlem, Netherlands 

Loughborough, UK 

 

 

 

MgCl2 (2 M) 

20.33 g MgCl2 

Adjust final volume to 50 mL with 

milli-Q H2O 

Autoclave 

Merck 

 

 

 

Darmstadt, Germany 

 

 

 

NaAc (3 M) 

3.69 g NaAc 

Adjust pH to 5.2 

Adjust final volume to 15 mL with 

milli-Q H2O 

Sigma Aldrich 

 

 

 

St. Louis, USA 

 

 

 

NaOH-NaCl SEC 

(1 M) 

40 g NaOH 

58.44 g NaCl 

Solubilize in 900 mL milli-Q H2O 

5 mL 10% NaN3 

Adjust final volume to 1 L with 

milli-Q H2O 

Filter and degas 

Fischer Scientific 

Fischer Scientific 

 

Duchefa Biochemie 

 

 

 

Loughborough, UK 

Loughborough, UK 

 

Haarlem, Netherlands 

 

 

 

NuPage® LDS 

Sample Buffer 

(4x) 
- Life Technologies California, USA 
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Buffer/Media/ 

Reagent 
Composition Source City, Country 

NuPage® Sample 

RA (10x) - Life Technologies California, USA 

Orange G DNA 

Loading Dye (6x) 

50 mL 100% Glycerol 

0.5% orange G powder 

Adjust final volume to100 mL with 

milli-Q H2O 

Store in the dark 

Duchefa Biochemie 

Sigma Aldrich 

 

 

 

Haarlem, Netherlands 

St. Louis, USA 

 

 

 

PBS pH 7.4 (10x) 

400 g NaCl 

10 g KCl 

90 g Na2HPO4 

12 g NaH2PO4 

Adjust final volume to 5 L with 

milli-Q H2O 

Autoclave 

Fischer Scientific 

Merck 

Merck 

Merck 

 

 

 

Loughborough, UK 

Darmstadt, Germany 

Darmstadt, Germany 

Darmstadt, Germany 

 

 

 

PBS SEC (1 L) 1 L 1x PBS 

Filter and degas 
  

PBS-Milk 2% 
1 g Milk powder 

Adjust final volume to 50 mL with 

PBS 

Nestle 

 

 

Supermarket 

 

 

PBS-Tween 

0.05% 
0.05% Tween-20 

Adjust final volume with PBS 

Sigma Aldrich 

 

St. Louis; USA 

 

PEG-NaCl (1 L) 

20% PEG w/v PEG 6000 

145.28 g NaCl 

Adjust final volume to 1 L with 

milli-Q H2O 

Duchefa Biochemie 

Fischer Scientific 

 

 

Haarlem, Netherlands 

Loughborough, UK 

 

 

TB Medium  

(1 L) 

2.3 g KH2PO4 

16.4 g K2HPO4.3H2O 

12 g Tryptone 

24 g Yeast Extract 

4 mL 100% Glycerol 

Adjust final volume to 1 L with 

milli-Q H2O 

Autoclave 

Merck 

Merck 

Duchefa Biochemie 

Duchefa Biochemie 

Duchefa Biochemie 

 

 

 

Darmstadt, Germany 

Darmstadt, Germany 

Haarlem, Netherlands 

Haarlem, Netherlands 

Haarlem, Netherlands 

 

 

 

TEA pH 10.0 
70 µL TEA 

Adjust final volume to 5 mL with 

milli-Q H2O 

Sigma Aldrich 

 

 

St. Louis, USA 

 

 

TES pH 8.0  

(1 L) 

24.23 g Trizma®Base 

0.15 g EDTA 

171.15 g Sucrose 

Adjust pH to 8 

Adjust final volume to 1 L with 

milli-Q H2O 

Sigma Aldrich 

Merck 

Duchefa Biochemie 

 

 

 

St. Louis, USA 

Darmstadt, Germany 

Haarlem, Netherlands 

 

 

 

TES/4 pH 8.0  

(1 L) 

250 mL TES 

Adjust final volume to 1 L with 

milli-Q H2O 

  

TPA Buffer 

14.63 g NaCl 

1.4 g Trizma®Base 

Adjust pH to 7.5 

Adjust final volume to 500 mL with 

milli-Q H2O 

Fischer Scientific 

Sigma Aldrich 

 

 

 

Loughborough, UK 

St. Louis, USA 

 

 

 

Transfer Buffer 

6 g Trizma®Base 

28.8 g Glycine 

400 mL Methanol 

Adjust final volume to 2 L with 

milli-Q H2O 

Sigma Aldrich 

Sigma Aldrich 

Acros Organics 

 

 

St. Louis, USA 

St. Louis, USA 

Geel, Belgium 
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Buffer/Media/ 

Reagent 
Composition Source City, Country 

Tris-HCl pH 8.0 

(1 M) 

121.14 g Trizma®Base 

Solubilize in 500 mL of milli-Q H2O 

Adjust pH to 8.0 with 37% HCl 

Adjust final volume to 1 L with 

milli-Q H2O 

Sigma Aldrich 

 

Merck 

 

 

St. Louis, USA 

 

Darmstadt, Germany 

 

 

Tris-HCl pH 8.0 

SEC (200 mM) 

200 mL 1 M Tris-HCl pH 8.0 

5 mL 10% NaN3 

Adjust final volume to 1 L with 

milli-Q H2O 

Filter and degas 

 

Duchefa Biochemie 

 

 

 

 

Haarlem, Netherlands 

 

 

 

WB Development 

Solution 

18 mg 4-chloro-1-napthol 

6 mL Methanol 

30 mL PBS 

18 μL H2O2 

Sigma Aldrich 

Acros Organics 

 

Merck 

St. Louis, USA 

Geel, Belgium 

 

Darmstadt, Germany 

2.1.2 Antibodies, Nanobodies and Antigens 

Table 2.2 – List of antibodies, nanobodies and antigens used throughout the experiments. 

Antibodies/Nanobodies/Antigens Source City, Country 

Goat anti-mouse HRP Sigma Aldrich St. Louis, USA 

Mouse anti-HIS tag Serotec Munich, Germany 

Nb SH30 In house Brussels, Belgium 

Nb SH61 In house Brussels, Belgium 

Nb SH67 In house Brussels, Belgium 

Nb SH68 In house Brussels, Belgium 

Nb SH69 In house Brussels, Belgium 

Nb Sm75 In house Brussels, Belgium 

SIRPα Human In house Brussels, Belgium 

SIRPα Mouse In house Brussels, Belgium 

2.1.3 Plasmids 

Table 2.3 – List of plasmids with their main features specified used throughout the experiments. 

Plasmid Main Features Source City, Country See Figure 

pMECS 

• Plac Promotor 

• PelB Leader Signal Sequence 

• Fd GIII 

• HA Tag 

• HIS Tag 

• Ampicillin Resistance 

In house Brussels, Belgium Figure 2.1 

pMECS-GG 

• Plac Promotor 

• PelB Leader Signal Sequence 

• Fd GIII 

• HA Tag 

• HIS Tag 

• Ampicillin Resistance 

• Chloramphenicol Resistance 

• ccdB Gene 

In house Brussels, Belgium Figure 2.2 
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Figure 2.1 – Schematic representation of pMECS vector 45. 

 

Figure 2.2 - Schematic representation of pMECS-GG vector 46. 
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2.1.4 DNA Manipulation Reagents and Sequences 

Table 2.4 – List of all the DNA manipulation reagents used throughout the experiments. 

Reagent Composition Source 
City, 

Country 

10x O Buffer - 
Thermo 

Scientific 

Vilnius, 

Lithuania 

10x T4 DNA 

Ligase Buffer 
- 

Thermo 

Scientific 

Vilnius, 

Lithuania 

5x Colorless 

GoTaq® Reac-

tion Buffer 

- Promega 
Madison, 

USA 

DNase  

(50 µg/mL) 
- 

Sigma  

Aldrich 

St. Louis, 

USA 

dNTPs  

(10 mM) 

dATP, 100 mM 

dCTP, 100 mM 

dGTP, 100 mM 

dCTP, 100 mM 

All diluted 1:10 in dH2O 

Thermo 

Scientific 

Rockford, 

USA 

EcoRI  

(10 U/µL) 
Restriction Site: 5’…G^AATTC…3’ 

      3’…CTTAA^G…5’ 

Thermo 

Scientific 

Rockford, 

USA 

EXO-I  

(20 U/µL) - 
Thermo 

Scientific 

Rockford, 

USA 

FastAP Ther-

mosensitive 

Alkaline Phos-

phatase  

(1 U/µL) 

- 
Thermo 

Scientific 

Rockford, 

USA 

GoTaq® DNA 

Polymerase  

(5 U/µL) 
- Promega 

Madison, 

USA 

NcoI, 10 U/µL 
Restriction Site: 5’…C^CATGG…3’ 

      3’…GGTAC^C…5’ 
Thermo 

Scientific 

Rockford, 

USA 

NotI, 10 U/µL 
Restriction Site: 5’…GC^GGCCGC…3’ 

            3’…CGCCGG^CG…5’ 
Thermo 

Scientific 

Rockford, 

USA 

Primer CBP-

insert 

5’-GCTCTTCCAGCGGCCGCAAGATGGAA 

AAAGGCCTTTATTGCGGTGAGCGCGGC 

GAACCGGTTTAAAAAAATTAGCGGCAG 

CGGTTCCCACCACCATCACCATCACTAG-

3’ 

Sigma 

Aldrich 

St. Louis, 

USA 

Primer GIII 5’-CCACAGACAGCCCTCATAG-3’ 
Sigma 

Aldrich 

St. Louis, 

USA 

Primer M13 

FWD (FP) 
5’-CGCCAGGGTTTTCCCAGTCACGAC-3’ 

Sigma 

Aldrich 

St. Louis, 

USA 

Primer MP57 5’-TTATGCTTCCGGCTCGTATG-3’ 
Sigma 

Aldrich 

St. Louis, 

USA 

T4 DNA Li-

gase (5 U/µL) - 
Thermo 

Scientific 

Rockford, 

USA 
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2.1.5 Kits 

Table 2.5 - List of kits used throughout of the experiments. 

Kit Source City, Country 

GenEluteTM PCR-Clean-Up Sigma Aldrich St. Louis, USA 

GenEluteTM Plasmid Mini-Prep Sigma Aldrich St. Louis, USA 

QIAquick Gel Extraction Kit QIAGEN Hilden, Germany 

2.1.6 Phages 

Table 2.6 - List of phages used throughout the experiments. 

Phage Main Features Source City, Country 

M13KO7 

• Lacks the infectivity domains N1 and N2 of 

pIII 

• Kanamycin resistance 

Invitrogen California, USA 

2.1.7 Bacterial Strains 

Table 2.7 – List of bacterial strains used throughout the experiments. 

Bacterial 

Strain 
Genotype Source City, Country 

TG1 
K12, Δ(lac-pro), supE thil, hsD5/F’traD36, 

laclq, lacZΔM15, proA+B+ 
In House Brussels, Belgium 

WK6 
K12, Δ(lac-proAB), galE, StrA/F’, laclq, 

lacZΔM15, proA+B+ 
In House Brussels, Belgium 

2.1.8 Molecular Weight Markers 

The Smartladder (Eurogentec, Seraing, Belgium) ranging from 200 bp to 10 kbp was used for 

molecular weight (MW) estimation of nucleic acids during 1% agarose gel electrophoresis (Fig-

ure 2.3A). The PageRulerTM Prestained Protein Ladder (Thermo Scientific, Rockford, USA) rang-

ing from 10 kDa to 180 kDa was used in SDS-PAGE analysis (Figure 2.3B). 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

Figure 2.3 - Molecular Weight Markers used throughout the experiments. A – Smartladder (200bp–10kbp) and B – 

PageRulerTM Prestained Protein Ladder (10-180kDa). 
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2.2 Methods 

2.2.1 Cloning Strategies 

2.2.1.1 Amplification of pMECS-GG Using CBP-Insert and FP Primers 

The pMECS-GG empty plasmid was amplified using a mutagenic primer (CBP-Insert) with the 

purpose of adding the CBP tag to the amplified fragment. The primer was designed so that it 

contained the CBP tag sequence and an overlapping region in the vector (HA tag). The amplifi-

cation occurred through a polymerase chain reaction (PCR) using the PCR mix (50 μL per reac-

tion) from Table 2.8. Eight reactions were made to ensure that enough material for the subsequent 

steps was produced. 

Table 2.8 – PCR mix used for one reaction for the PCR of pMECS-GG using CBP-Insert and FP primers. 

Reagent Volume (µL) 

Sterile H2O 35.5 

5x Colorless Go Taq® Reaction Buffer 10 

dNTPs (10mM) 1 

CBP-Insert primer (20µM) 1 

RP primer (20µM) 1 

Go Taq® G2 DNA Polymerase (5U/μL) 0.5 

Template 1 

The PCR strips were placed in the Westburg T3 thermo cycler from Biometra® and a PCR pro-

gram started. Since a large fragment should be amplified, the designed program used a longer 

extension step to have sufficient time to synthesize the full-length amplicon. The program con-

tained an initial denaturation step at 95°C for 5 mins, followed by 28 cycles of 45 seconds at 

94°C, 45 seconds at 55°C and 1 min at 72°C, at the end an extension step at 72°C for 10 mins 

was included. 

The amplified product was verified by gel electrophoresis (see section 2.2.1.8) to assess the cor-

rect fragment amplification (around 1300 bp) and was purified with the GenEluteTM PCR Clean-

Up Kit according to the manufacturer’s instructions. 

2.2.1.2 Amplification of Nbs Using MP57 and GIII Primers 

The pMECs plasmids encoding for the SIRPα human Nbs 30, 61, 67, 68, 69 and the SIRPα mouse 

Nb75 (all provided by Ema Romão, Cellular and Molecular Immunology Laboratory, Vrije Uni-

versiteit Brussel) were taken as template for amplification using GIII and MP57 primers. This 

was a way of obtaining a large amount of Nb fragments without using a lot of template. Moreover, 

it assured that after digestion, the majority of the product was the fragment containing the Nbs, 

therefore the purification using the GenEluteTM PCR Clean-Up Kit was enough. Amplification 

via PCR occurred according with Table 2.9. Eight reactions were made to ensure that enough 

material for the subsequent steps was produced. 

 Table 2.9 – PCR mix used for one reaction for the PCR of pMECS containing the Nbs using MP57 and GIII primers. 

Reagent Volume (µL) 

Sterile H2O 35.5 

5x Colorless Go Taq® Reaction Buffer 10 

dNTPs (10mM) 1 

GIII primer (20µM) 1 

MP57 primer (20µM) 1 

Go Taq® G2 DNA Polymerase (5U/μL) 0.5 

Template 1 

The Westburg T3 thermo cycler from Biometra® was used for the PCR reaction. The PCR strips 

containing the PCR reaction were placed in the PCR thermocycler and underwent a denaturation 
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step at 95°C for 3 mins, followed by 28 cycles of 30 seconds at 94°C, 30 seconds at 57°C and 45 

seconds at 72°C, finally an extension step at 72°C for 10 mins was included. 

The amplified products were verified by gel electrophoresis (see section 2.2.1.8) for the correct 

fragment amplification (around 600-800 bp) and were purified with the GenEluteTM PCR Clean-

Up Kit according to the manufacturer’s instructions. 

2.2.1.3 Digestion of Amplification CBP Fragment and pMECS with Not I and EcoRI 

Digestion of amplification fragment: To 5 μg of the CBP amplification fragment, 1 μL NotI (10 

U/μL) and 1 μL EcoRI (10 U/μL) were added. 10x buffer O was also added to the mixture to 

reach a final concentration of 1x and the volume was adjusted with sterile H2O. The digestion 

was performed for 3 h at 37°C. The digested product was purified with the GenEluteTM PCR 

Clean-Up Kit according to the manufacturer’s instructions. 

Digestion of pMECS: To 5 μg of the pMECS vector 1 μL NotI and 1 μL EcoRI were added. 10x 

buffer O was also added to the mixture to obtain a final concentration of 1x and the volume was 

adjusted with sterile H2O. The digestion was performed for 3 h at 37°C. Afterwards, the entire 

reaction volume was loaded on a 1% agarose gel electrophoresis (see section 2.2.1.8). The band 

of digested vector was cut out of the agarose gel and purified with the QIAquick Gel Extraction 

Kit following the manufacturer’s protocol. 

2.2.1.4 Digestion of pMECS-CBP, pMECS-GG, Amplification Nbs Fragments and 

pHEN18 containing SIRPα mouse with NotI and NcoI 

Digestion of pMECS-CBP: To 5 μg of pMECS-CBP, 4 μL NcoI and 1 μL NotI were added. 10x 

buffer O was also added to the mixture to reach a final concentration of 1x and the volume was 

adjusted with sterile H2O. The digestion was performed for 3 h at 37°C. The digested product was 

purified with the GenEluteTM PCR Clean-Up Kit according to the manufacturer’s instructions. 

Digestion of pMECS-GG (to insert Golden Gate): To 5 μg of the pMECS-GG vector 4 μL NcoI 

and 1 μL NotI were added. 10x buffer O was added to the mixture to obtain a final concentration 

of 1x and the volume was adjusted with sterile H2O. The digestion was performed for 3 h at 37°C. 

Afterwards, the entire reaction volume was loaded on a 1% agarose gel electrophoresis (see sec-

tion 2.2.1.8). The band of digested vector was cut out of the agarose gel and purified with the 

QIAquick Gel Extraction Kit following the manufacturer’s protocol. 

Digestion of amplification Nbs fragments: To 5 μg of each Nbs amplification fragments, 4 μL 

NcoI and 1 μL NotI were added. 10x buffer O was also added to the mixture to reach a final 

concentration of 1x and the volume was adjusted with sterile H2O. The digestion was performed 

for 3 h at 37°C. The digested product was purified with the GenEluteTM PCR Clean-Up Kit ac-

cording to the manufacturer’s instructions. 

Digestion of pHEN18 containing SIRPα mouse: To 5 μg of the pHEN18 vector containing SIRPα 

mouse 4 μL NcoI and 1 μL NotI were added. 10x buffer O was also added to the mixture to have 

a final concentration of 1x and the volume was adjusted with sterile H2O. The digestion was 

performed for 3 h at 37°C. Afterwards, the entire reaction volume was loaded on a 1% agarose 

gel electrophoresis (see section 2.2.1.8). The band of digested vector was cut out of the agarose 

gel and purified with the QIAquick Gel Extraction Kit following the manufacturer’s protocol. 

2.2.1.5 Ligation of Fragment to Wanted Vector 

The ligation was performed overnight (O/N) at 16°C with 30 ng of the fragment to insert, 100 ng 

of vector, 1 μL T4 DNA ligase and 2 μL T4 DNA ligase 10x buffer for a total volume of 20 μL. 

The ligation was followed by purification using phenol-chloroform DNA precipitation. Sterile 

H2O (80 μL) was added to the ligation product to make a final volume of 100 μL. Then 100 μL 

of the lower phase of 25:24:1 phenol/chloroform/isoamyl (Sigma Aldrich, St. Louis, USA) was 

added and shaken vigorously before centrifugation (Eppendorf Centrifuge 5417R) at 14000 rpm 

for 5 mins. After centrifugation, the upper phase was transferred to a new Eppendorf tube, 10 μL 
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3 M NaAc pH 5.2 and 250 μL 100% ethanol were added to the ligation product and it was stored 

for at least 1 h at -80°C for DNA precipitation. Next, the ligation product was centrifuged for 30 

mins at 14000 rpm and 4ºC. Subsequently, the ethanol was removed, the pellet was dried on the 

heat block (Thermolyne type 16500 Dri Bath) and resuspended in 5 μL of sterile H2O. 

The ligations were made between: amplificon of CBP fragment and pMECS, Golden Gate and 

pMECS-CBP, amplificon of Nb fragments and pMECS-CBP, as well as SIRPα mouse and 

pMECS-CBP. 

2.2.1.6 Plasmid Transformation in Electrocompetent Bacterial Cells 

Transformation of the plasmids in bacterial host cells was required to perform a colony PCR and 

DNA sequencing for identification of correct constructs. The bacterial cells needed to be made 

competent so that they were capable to take up extracellular DNA from their surroundings. WK6 

E. coli cells were made electrocompetent (ECC) as described in 45. 

The plasmid transformation was carried out by mixing 50 μL ECC with 2 μL of ligation product, 

followed by an incubation on ice for 5 mins. After setting the electroporation apparatus E. coli 

Pulser® (Bio-Rad Laboratories, Hercules, California, USA), the cells were loaded into an electro-

poration cuvette (Bio-Rad Laboratories, Hercules, California, USA). Then, the cuvette was placed 

into the electroporation chamber and a pulse of 1.8 kV was applied. The cuvette was removed 

and 500 µL of LB was immediately added and transferred to an Eppendorf tube. The cuvette was 

rinsed with another 500 µL of LB, that were pooled to the same Eppendorf. The cell suspension 

was incubated at 37ºC for 1h on a shaker (200 rpm). 100 μL of the obtained culture were plated 

on a round LB Agar. The remaining culture was centrifuged for 3 mins at 2000 rpm. The pellet 

was also plated on fresh LB agar and the plates were incubated O/N at 37°C. On vectors where 

the Golden Gate killer cassette was present, the LB agar plates used were Amp/Chl/Glu, while on 

the other vectors the plates were only supplemented with Amp/Glu. 

2.2.1.7 Colony PCR and DNA Sequencing 

For screening of the new vectors created after transformation, some isolated colonies were picked 

from the round LB agar Amp/Glu plate or LB agar Amp/Chl/Glu (depending on the vector used) 

with a sterile tip, scratched on a new LB agar plate and submerged in the PCR mix (Table 2.10) 

in the well of the PCR strip. After the colonies were marked on the LB agar plate, the plate was 

incubated O/N at 37°C and stored at 4°C subsequently. 

Table 2.10 - PCR mix used for one reaction of colony PCR 

Reagent Volume (µL) 

Sterile H2O 37.25 

5x Colorless Go Taq® Reaction Buffer 10 

dNTPs (10mM) 0.5 

GIII primer (20µM) 1 

MP57 primer (20µM) 1 

Go Taq® G2 DNA Polymerase (5U/μL) 0.25 

The PCR strips were placed in the Westburg T3 thermo cycler from Biometra® and a PCR pro-

gram started. Since the introduction of the Golden Gate generated a large fragment (around 1500 

bp) between the primers, the program comprised an initial denaturation step at 95°C for 5 mins, 

followed by 28 cycles of 45 seconds at 94°C, 45 seconds at 55°C and 1 min at 72°C, a final 

extension step at 72°C for 10 mins was performed. For the other constructs, the fragment between 

MP57 and GIII primers was around 400-800 bp, so there was no need for the program to include 

a long elongation step. The program was an initial denaturation step at 95°C for 3 mins, followed 

by 28 cycles of 30 seconds at 94°C, 30 seconds at 55°C and 45 seconds at 72°C, a final extension 

step at 72°C for 10 mins was performed. 

Next, the amplicons were verified by gel electrophoresis (see section 2.2.1.8). Constructs with 

the right size, depending on the construct (sequence length between MP57 and GIII primers), 
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were selected and purified with the ExoSAP procedure. 1.5 μL of the selected constructs were 

treated with 0.2 μL of ExoI (20 U/μL) and 0.4 μL of FastAP (1 U/μL), 12.9 μL of sterile H2O was 

added as well. The primers and dNTPs degradation occurred by activation of the enzymes at 37°C 

for 15 mins, followed by an immediate inactivation at 80°C for another 15 mins.  

To the cleaned PCR products was added 2 μL of MP57 primer (10 μM) and it was sent for DNA 

sequencing at Eurofins Genomics. The resulting sequences were analyzed with CLC Main Work-

bench 7.9.1 software (CLC Bio, Qiagen Bioinformatics). 

Using a construct with the correct insertion by picking the corresponding colony from the LB 

agar plate mentioned before, a preculture of 5 mL supplemented with 1/1000 ampicillin stock was 

made and incubated O/N at 37ºC and 200 rpm. The preculture was used for plasmid extraction 

with the GenEluteTM Plasmid Mini-Prep kit according to the manufacturer’s instructions. The 

purified plasmids were sequenced again for confirmation of the sequences and stored at -20ºC. 

2.2.1.8 Agarose gel Electrophoresis 

A 1% agarose gel solution was poured in a gel frame with a well frame and ethidium bromide 

(0.5 μg/mL) was added and stirred into the gel solution. The gel was solidified for at least 30 mins 

and then immersed in a tank (Bio-rad Mini-Sub® Cell GT, Bio-Rad Laboratories, Hercules, Cal-

ifornia, USA) filled with 1x TBE. 10 μL of each sample was supplemented with 2 μL of orange 

G DNA loading dye 6x and loaded into the wells of the gel. A 5 μL aliquot of the Smartladder 

MW ladder (Eurogentec, Seraing, Belgium) was also loaded into in one of the wells. The gel was 

connected to an EC250-90 Electrophoresis Power Supply (E-C Apparatus Corporation) at 115 V 

for 35 mins. After running, the gels were then visualized on a Vilber Lourmat UV transilluminator 

(Germany) and photographed with CCD video camera (Rainbow CCTV RMB92) connected to 

Mitsubishi P91 printer (Mitsubishi electric). 

2.2.2 Phage Display of Nanobodies 

2.2.2.1 Preparation of the Libraries 

The purpose of this phage display was not to select Nbs of highest affinity, but rather understand 

if the new vector created with the CBP was suitable for this technique. For that reason, the mini-

library made was a little bit different, since it was already known that the Nbs used were binders 

of human SIRPα. 

For the creation of these libraries, 100 ng of vectors pMECS and pMECS-CBP containing the 

Nbs were inserted into TG1 E. coli cells, by transformation via electroporation (see section 

2.2.1.6). TG1 E. coli cells were made ECC as described in 45. Instead of plating the cell suspen-

sions, these were inoculated into 300 mL 2x TY supplemented with 1/1000 dilution Ampicillin 

stock (100 mg/mL) and 15 mL glucose stock (20%). Two bottles were used, one had all 6 Nbs 

without any modification, while the other had all Nb with the CBP tag. The bottles were incubated 

on a shaker (220 rpm) at 37°C O/N to allow the phagemid vector to grow and were used as 

precultures.  

Two mini libraries comprising the 6 Nbs each were created: “Nbs against SIRPα” and “Nbs-CBP 

against SIRPα”. 

2.2.2.2 Inoculation of the Libraries 

Medium of 300 mL 2xTY supplemented with 1/1000 dilution Ampicillin stock was prepared, 

allowing only TG1 E. coli cells containing the phagemid vector to grow. Also, 15 mL glucose 

stock was added to suppress the LacZ promoter, thus preventing leaky expression of the Nb pro-

tein, since this could interfere with the infection of TG1 E. coli cells with bacteriophages. The 

medium was inoculated with a 1 mL aliquot of TG1 E. coli cells from the mini libraries “Nbs 

against SIRPα” and “Nbs-CBP against SIRPα” (from section 2.2.2.1), which had been growing 

O/N (therefore in stationary phase). The bottles were incubated on a shaker (250 rpm) at 37°C 

until the OD600nm reached 0.6-0.8 (usually 2-3h), meaning they had reached the exponential 
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growth phase. Following, approximately 1012 M13KO7 helper phages preserved in glycerol were 

added and incubated at 37°C without shaking for 30 mins to allow the phages to attach to the F-

pilus of E. coli. The cells were centrifuged in 50 mL tubes for 10 mins at 2700 rpm and the 

supernatant was removed. The cell pellets were resuspended in 300 mL 2xTY supplemented with 

1/1000 dilution of Ampicillin stock and 1/1000 dilution of Kanamycin stock (70 mg/mL). Incu-

bation O/N at 37°C on a shaker (225 rpm)  allowed the production of recombinant phages con-

taining a Nb at their tip. 

2.2.2.3 Preparations for Panning 

To prepare for panning, a single well of a Nunc Maxisorp ELISA 96-well plate (Thermo Scien-

tific, Denmark) was coated with 10 μg of SIRPα human in 100 μL of Coating Buffer pH 8.2 and 

stored at 4°C O/N. TG1 E. coli cells were plated on a LB Agar Amp/Glu plate and incubated O/N 

at 37°C so that a single colonies grown could be used to make a preculture for further steps. 

2.2.2.4 Panning 

Phage preparation: 300 mL O/N bacterial culture infected with M13KO7 helper phage (from sec-

tion 2.2.2.2) were centrifuged for 30 mins at 8000 rpm and 8°C. Following, 40 mL supernatant 

was added to 10 mL PEG/NaCl (20%) until all the supernatant was in contact with the PEG/NaCl 

solution. After inverting the tubes several times, these were kept on ice for 30 mins and, subse-

quently, centrifuged for 30 mins at 4000 rpm and at 4°C. The supernatant was discarded and the 

pellet containing the phages was resuspended in 1 mL sterile PBS. The solution was centrifuged 

for 2 mins at 14000 rpm and the supernatant was collected. The OD260nm was measured so that 

approximately 1011 phages per well were added, taking into account that OD260nm of 1 = 3x1010 

particles/mL 

ELISA-plate preparation: Non-bound antigen of the 96-well plate (from section 2.2.2.3) was re-

moved by inverting the plate. The plate was washed 5x with PBS-Tween (PBST) and the positive 

well (with antigen), as well as an empty well (negative control), were blocked with 200 μL of 

PBS-Milk blocking buffer for at least 1h. After the blocked wells have been washed 5x with 

PBST, 100 μL of phages was added to both wells, followed by incubation of at least 1h at room 

temperature (RT), to allow the Nb-displayed phages to recognize and bind to the coated antigen. 

Next, the wells were washed 20x with PBST and the bound phages were eluted after 10 mins of 

addition of 100 μL TEA solution. Finally, the solution with the phages was transferred into an 

Eppendorf tube that contained 100 μL Tris-HCl 1 M pH 8.0 to neutralize the solution. All proce-

dures were performed on the positive and negative control wells. 

TG1 preculture preparation: At the same time of phage preparation, TG1 colonies were inoculated 

onto 5 mL LB medium to make a preculture and onto a second 5 mL LB medium to which 1/1000 

dilution of Ampicillin stock was added, with the purpose of having a negative control. This was 

incubated at 37°C on a shaker (200 rpm) until the cells reached the exponential growth phase.  

2.2.2.5 Visualization of Enrichment Factor 

Two columns (positive and negative) of a 96 round-bottom-well plate (Corning Incorporated, 

New York, USA) were filled with 90 μL of sterile PBS in each well and two additional columns 

were filled with 90 μL TG1 cells of the preculture (from section 2.2.2.4). Next, 10 μL of the 

positive phages (from section 2.2.2.4) were diluted by transferring them to the first well of the 

PBS column, mixing and adding to the second well, generating a 1/10 serial dilution but leaving 

the last row as control, meaning without phages.10 μL of all these dilutions was transferred to the 

corresponding wells of the column with TG1 cells. The same procedure was performed to the 

negative phages in different columns of the plate. 

After an incubation for 30 mins up to 1 h that allowed the phages to infect the TG1 cells, 10 μL 

of each well were transferred onto a square LB Agar Amp/Glu and the suspension was spread to 
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obtain two columns of serial dilutions, a positive and a negative control. After an O/N incubation 

at 37°C, the enrichment was determined. 

Enrichment is a representation of the chance to find better Nb binders and can be calculated by 

counting the colonies of the positive and negative lines where single colonies can be seen and 

then dividing the number of positive colonies by the number of negative colonies, considering the 

dilution factor where they can be seen. The larger this enrichment factor, the higher the chances 

for finding better binders. 

2.2.3 Periplasmic Expression and Purification of Nanobodies and 

SIRPα mouse 

The expression of the Nbs and Ag (SIRPα mouse) containing or not the CBP tag was done to 

understand if there was a problem of expression with any of the constructs. All of the procedures 

mentioned bellow were based on 45.  

2.2.3.1 Transformation into Electrocompetent WK6 E. coli Cells 

For production and purification of Nbs, the vector containing the Nb-insert was introduced into 

WK6 E. coli cells. These cells are a non-suppressor strain that can not to read through the vector’s 

amber stop codon between gene III and the Nb-insert. This will allow the Nb expression as a 

soluble protein in the periplasm of the bacterial cells.  

The introduction of the vectors containing the Nb or Ag into the ECC WK6 E. coli cells was 

performed through an electroshock, as described in section 2.2.1.6., but instead of 2 μL of plas-

mid, 100 ng were added. 

2.2.3.2 Precultures of WK6 E. coli 

To prepare for Nb expression, a WK6 colony containing the Nb or Ag of interest with and without 

the CBP tag was used to inoculate 5 mL LB medium supplemented with 1/1000 dilution of Am-

picillin stock. This was done three times for each clone to obtain a final volume of 15 mL inocu-

lated medium and ensure that in the next day there was material to proceed. After an O/N incu-

bation at 37°C on a shaker (200 rpm), the precultures of the same clone that shown turbidity were 

pooled and used for inoculation. Also, 5 mL of this preculture was used for plasmid extraction by 

GenEluteTM
 Plasmid Mini-prep kit. This was sent for sequencing to Eurofins Genomics to confirm 

the cloned Nb/Ag insert. 

2.2.3.3 Expression in WK6 E. coli 

To obtain 1 L of WK6 culture, three baffled shaker flasks containing 330 mL TB medium sup-

plemented with 1/1000 Ampicillin stock and 1.5 mL glucose stock. Each flask was also inoculated 

with 2 mL preculture (from section 2.2.3.2). This was incubated at 37°C on a shaker (220 rpm) 

for 2-3 h until the OD600nm reached 0.6-0.9, which meant that the cells have reached the exponen-

tial growth phase. Then, 1 mM IPTG was added to induce the periplasmic expression of the Nbs 

or Ag and the flasks were incubated O/N at 28°C on a shaker (220 rpm). 

2.2.3.4 Periplasmic Extraction 

The next day, the Nbs or Ag were extracted from the periplasm of WK6 cells via osmotic shock. 

The first flasks of each O/N culture were centrifuged for 8 mins at 8000 rpm. The supernatant 

was discarded, and this was repeated for the other two flasks whereby the same centrifugation 

bottle was used per clone in order to obtain one pooled pellet of 1L of media (three pellets). The 

pellet was dissolved in 12 mL TES and the bottles were incubated for 1 h at 4°C on a shaker (200 

rpm). Subsequently, 24 mL TES/4 was added to each bottle to create an osmotic shock, which 

caused the Nbs and other proteins from the periplasm to exit the cells. When the lysozyme was 

added to enhance the periplasmic extraction, 300 µL of 2 M MgCl2, DNase (50 µg/mL) and Ly-

sozyme (5 mg/mL) were also added to each bottle. The bottles were further incubated for 2 h at 

4°C on a shaker (200 rpm) and centrifuged for 30 mins at 8000 rpm. The supernatant, which 
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contained the Nbs, was collected in 50 mL tubes and stored at 4°C. The periplasmic extraction 

was repeated to maximize the yield from each pellet by dissolving it again in TES and doing an 

osmotic shock with TES/4, however this time the incubation was performed for 4 h and O/N. 

Again, when the lysozyme was added to enhance the periplasmic extraction, it was on the step of 

the TES/4, adding 300 mL of 2 M MgCl2, DNase (50 µg/mL) and Lysozyme (5 mg/mL), as well. 

The next day, a centrifugation for 30 mins at 8000 rpm was done and the supernatant was col-

lected. 

2.2.3.5 First Purification Step: IMAC 

Immobilized metal affinity chromatography (IMAC) is a purification method that isolates pro-

teins containing a His tag based on the high affinity binding of histidine to metal ions, such as 

nickel. The Ni-beads needed to be washed, by using 1 mL of HisPure Ni-NTATM Resin suspension 

per liter of culture and adding PBS to a final volume of 50 mL. This was centrifuged for 7 mins 

at 1400 rpm and the excess of PBS was discarded. Subsequently, 500 μL of the washed Ni-beads 

suspension was added to each 50 mL tube containing the periplasmic extracts (section 2.2.3.4) 

and the tubes were incubated for 1 h at RT on a shaker (100 rpm) to allow binding of the Nbs to 

the Ni-beads. The suspension was poured into a PD-10 column (GE Healthcare Life Sciences) 

containing a filter to retain the Ni-beads conjugated with the Nbs and allow the periplasmic extract 

to flow through. The tubes were rinsed with 50 mL PBS and then the solution was also added into 

the column. When the solution had flown through, the column was sealed, and 1 mL of 0.5 M 

Imidazole in PBS was added to elute the Nbs. Since, imidazole is identical to the R group of 

Histidine, it will be a competitive binder for Nickel beads. Nevertheless, it is used in such a high 

concentration that it causes the His tagged Nbs to elute. After 10 mins of incubation with imidaz-

ole in PBS, the flow through containing the Nbs was collected into Eppendorf tubes. This step 

was repeated 5 times to obtain 5 Eppendorf tubes of 1 mL eluted IMAC containing the Nb. The 

protein concentration of each tube was measured in the Nanodrop spectrophotometer (Isogen Life 

Sciences ND 1000) at OD280nm considering the theoretical extinction coefficient of each Nb/Ag, 

calculated by the ProtParam tool (http://www.expasy.ch/tools/protparam.html). Next, the frac-

tions with concentration higher than 0.1 mg/mL were pooled. In the cases where the total concen-

tration of the 5 fractions was lower than 1 mg/mL, all the fractions were pulled and concentrated. 

In the cases a concentration of the fractions was needed, the pulled fraction was loaded into a 

Vivaspin 5000 MW HY (Vivascience – Sartorius) and centrifuged at 2000 g for 20 mins or until 

reaching the final volume of 500 µL. 

2.2.3.6 Second Purification Step: SEC 

To further purify the Nbs, size exclusion chromatography (SEC) was done using fast protein liq-

uid chromatography (FPLC), thus the separation was done according to their molecular weight 

(MW). The samples collected from IMAC (section 2.2.3.5) were loaded onto a Superdex 75 col-

umn (16/600) on AktaXpress or a Superdex 75 column (10/300) on AktaXplorer10S (all from GE 

Healthcare) depending on the concentration of the samples. The column was equilibrated with 

PBS, which was also the running buffer. The run was carried out following standard operating 

procedures present in the lab. The OD280nm was measured during the run to determine which of 

the eluted fractions contained the Nb protein and needed to be pooled. The concentration of these 

pooled protein fractions was measured in the Nanodrop spectrophotometer (Isogen Life Sciences 

ND 1000) at OD280nm considering the extinction coefficient of each Nb/Ag, to calculate the final 

yield of purified Nb. 

Between two SEC runs, the column was decontaminated with one column volume of NaOH-NaCl 

(1 M) SEC buffer, neutralized with two volumes of Tris-HCl (200 mM) SEC buffer, maintained 

in one volume of 20% ethanol SEC buffer and equilibrated for the next run with one volume of 

PBS SEC buffer. 
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2.2.3.7 SDS-PAGE 

To check the purity/presence of the obtained Nbs/Ag, a sodium dodecyl sulphate polyacrylamide 

gel electrophoresis (SDS-PAGE) was performed. Therefore, 5 μg of Nb protein and of a positive 

control (SIRPα human) were mixed with 4x NuPAGE® LDS Sample Buffer and 10x NuPAGE® 

Sample Reducing Agent. Additionally, several aliquots were taken during the crucial steps of 

production and purification to evaluate the enrichment. In this case, the aliquots that could have 

been directly quantified, 5 μg were added, for the samples that couldn’t, 13 μL were added. The 

samples were heated in a heat block for 10 mins at 100°C. Subsequently, a 12 % NuPAGE® Bis-

Tris polyacrylamide gel was placed in a Bio-Rad X-cell SureLockTM
 SDS-PAGE tank that was 

filled with 300 mL of 1x MES buffer. The samples were loaded onto the gel along with 5 μL of 

the PageRulerTM
 Prestained Protein Ladder to determine the MW of the samples. The gel was run 

at 115 V for at least 1 h to allow the migration of the proteins. Next, it was stained with Coomassie 

Blue staining solution and placed on a shaker for 1 h to allow coloring of the proteins in the gel. 

Finally, a destaining solution was added for at least 3 h while shaking to allow visualization of 

the proteins. 

2.2.3.8 Western Blot 

For the western blot, the polyacrylamide gel electrophoresis was done the same way as described 

for the SDS-PAGE (section 2.2.3.7). After obtaining the gel with the separated proteins, it was 

transferred onto a nitrocellulose blotting membrane (Amersham Protran 0.45 NC, GE Healthcare) 

and placed into a western blot holder (BioRAD mini protean® II cell) that contained transfer buffer 

and an ice block to reduce the heating during transfer. The transfer of the proteins within the gel 

to the membrane was run for 1 h at 100 V. Afterwards, the membrane that contained the trans-

ferred proteins needed to be developed the same way as an ELISA. Briefly, protein binding sites 

on the membrane were blocked with PBS-Milk for at least 1 h while shaking, washed three times 

with PBS, incubated for at least 1 h with a 1/2000 dilution of α-HIS mAb in PBS while shaking, 

washed again three times, incubated for at least 1 h with a 1/2000 dilution of α-Mouse IgG - HRP 

conjugate in PBS, while shaking, and washed three times. The proteins were visualized by addi-

tion of the western blot developing solution and incubation of the membrane for 5-10 mins in the 

dark. The reaction was stopped and rinsed with distilled water. 
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3 Results and Discussion 

3.1 Design of new Vector 

This project started with the substitution of the Hemagglutinin (HA) peptide detection tag down-

stream of the Nb cloning site from pMECS-GG phage display vector with a new CBP tag using 

a mutagenic primer (CBP-Insert). While designing the cloning strategy, it became clear that this 

could not be done in only one step. First, the CBP tag had to be cloned into the original pMECS 

vector. This was achieved by amplifying via PCR a pMECS-GG fragment, using CBP-insert and 

FP as primers. Then, the amplified fragment and pMECS vector were digested using EcoRI and 

NotI and, after purification, these fragments were ligated to obtain the vector pMECS-CBP. This 

construct was then transformed into a non-suppressor WK6 E. coli strain. Fourteen bacterial col-

onies were picked to perform a PCR in order to check which of these contained the CBP insert 

(Figure 3.1). Analysis of the 1% agarose gel, it seems that not all the colonies had the right insert. 

Considering that the only difference between the two vectors is the CBP (a 19 aa peptide), the 

apparent MW is only marginally different. However, it is still possible to see which colonies have 

the correct insert. For example, the samples 5 and 12 have the pMECS-CBP vector, while the 

samples 7 and 13 had the self-ligated vector (pMECS). Two or three plasmids with putative cor-

rect inserts were sent for sequencing to guarantee that the correct vector was selected, followed 

by plasmid preparation using the putative correct colonies. 

 

Figure 3.1 – 1% agarose gel after colony PCR with primers MP57 and GIII to examine which have the CBP insert. 

The first lane contains the DNA SmartLadder. 1-14 Randomly selected WK6 E. coli colonies. 

A re-cloning of the Golden Gate killer cassette was performed to pMECS-CBP. The restriction 

enzymes used for this re-cloning were NotI and NcoI. After digestion, a gel extraction to purify 

the fragment containing the Golden Gate killer cassette was necessary. Since the fragment wanted 

for the ligation was the smaller (1500 bp), purification only by PCR CleanUp Kit wouldn’t re-

move the larger digested fragment and, consequently, it would promote self-ligation 47, leaving 

less amplicon available for the wanted ligation. For a better understanding of what is happening 

during cloning, a digestion profile can be performed (Figure 3.2). The profile reviews all steps of 

digestion, including before and after purification steps to ensure that fragments used in ligation 

are pure. Analyzing the contents within lanes 6 and 7 (Figure 3.2), it is observed that the 1500 bp 

fragment was indeed purified, since the larger fragment disappeared. Most of the times, when a 

larger fragment disappears is due to gel extraction. A way of understanding if the restriction en-

zymes are efficient is comparing the digested product with the undigested plasmid (lanes 2 and 

3, for example). An undigested plasmid is characterized by three bands on agarose gel that corre-

spond to three different isoforms (supercoiled, linear and open circular) 48. The electrophoretic 

migration is dependent on size and conformation, due to differences in hydrodynamic interactions 

and degree of chain entanglement 48 49. Thus, the supercoiled conformation is the one that migrates 

faster, since there are less conformational restrictions, followed by linear conformation and being 
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open circular the one that migrates less 48. Analyzing the contents of lanes 2, 5 and 9 it is observed 

that all isoforms mentioned previously were present in all pure plasmids. If after digestion, a 

similar result to undigested plasmid is obtained, a problem occurred, and a new digestion must be 

done. Since all digestion steps seemed acceptable, a ligation was done followed by transformation 

in bacterial cells for colony PCR with MP57 and GIII as primers. Fourteen bacterial colonies were  

picked to check which had the vector pMECS-GG-CBP (Figure 3.3). 

Insertion of Golden Gate killer cassette was expected to be around 1500 bp (lane 3, for example), 

while pMECS-CBP self-ligation was expected to be around 400 bp (lane 8, for example). Se-

quencing confirmed the construction of the correct vector and plasmids were prepared using the 

correspondent colonies. 

 

Figure 3.3 – 1% agarose gel after colony PCR with primers MP57 and GIII to examine which have the Golden Gate 

insert. The first lane is the DNA SmartLadder. 1-14 Randomly selected WK6 E. coli colonies. 

Also, 6 Nbs with well-established and different association and dissociation kinetic rate constants 

(provided by Ema Romão) were inserted in the vector pMECS-CBP. NotI and NcoI were the 

restriction enzymes used for digestion, and, after ligation, the vectors were transformed in WK6 

E. coli and colony PCR with primers MP57 and GIII was, once more, used to discover the colonies 

Figure 3.2 – A – DNA SmartLadder used as a marker for the size of the bands (expressed in bp). B – 1% agarose gel 

of digestion profile of re-cloning Golden Gate killer cassette into pMECS-CBP. 1 – DNA SmartLadder. 2 – Undi-

gested pMECS-CBP. 3 – Digested pMECS-CBP with NotI and NcoI, not purified. 4 - Digested pMECS-CBP with 

NotI and NcoI, purified. 5 – Undigested pMECS-GG. 6 - Digested pMECS-GG with NotI and NcoI, not purified. 7 - 

Digested pMECS-CBP with NotI and NcoI, purified. 8 – ligation product pMECS-GG-CBP. 

A B 
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with the right constructs (Figure 3.4). Vectors with Nbs genes had amplification fragments around 

600 bp and were sent for sequencing. Plasmids for each Nb were prepared to be used in further 

experiments.  

 

Figure 3.4 - 1% agarose gel after colony PCR with primers MP57 and GIII to examine which have the Nb30 insert. 

The first lane is the DNA SmartLadder. 1-14 Randomly selected WK6 E. coli colonies.  

Sequences of all vectors created were analyzed using CLC Main Workbench 7.9.1 software, to 

guarantee not only the right insertions, but also that all key elements were functional. Figure 3.5 

summarizes all modifications made to pMECS, to transform it into all forms of pMECS-CBP, 

with the red region being a variable sequence depending on the Nb/Golden Gate that were in-

serted. The vector was designed either for phage display or periplasmic expression of the Nb 

encoded 45. The lac promoter/operator is inducible by IPTG and repressed by glucose 50. The 

periplasmic transport is provoked by the N-terminal signal peptide pelB, which enables transport 

through the inner membrane of bacteria 51. In each Nb there is a CDR3 encoded, which defines a 

Nb family 52. Due to deriving from the same B-cell lineage, Nbs from the same family bind to the 

same epitope on the target 52. The His tag allow  simultaneously immunodetection and purification 

via IMAC 53. All these elements can be seen on the vectors created (Figure 3.5), along with the 

inserted CBP domain, which might indicate that the expression of the Nb-CBP could occur. 

 

Figure 3.5 - Schematic representation of all modifications made to pMECS to create all pMECS-CBP vectors. 

 



32 

 

3.2 Phage Display of Nanobodies 

After obtaining the new phage display vector, two mini libraries were created to test the effec-

tiveness of the construct on phage display.  

Since the goal wasn’t to isolate the Nbs of highest affinity, but rather understand if the new vector 

was suitable for phage display, a different approach was used. The mini libraries created included 

6 Nbs that were already selected in the lab against human SIRPα and the difference between them 

was the vector used. One library was generated in the pMECS vector, producing the original Nbs 

discovered by phage display. Thus, even with just one round of panning it was expected that an 

enrichment occurred. The other library was generated in the new pMECS-CBP vector, to evaluate 

if a similar enrichment could be achieved. Moreover, the libraries were created by simply trans-

forming the same amount of each Nb in TG1 cells (which suppress the amber stop codon 54), 

using electroporation and then allowing all the cells to grow O/N while shaking. The next day, 

these precultures were used for library inoculation and the cells were infected with M13 helper 

phages. The next day the phages were purified, and a single round of panning was performed. A 

comparison between to libraries was done by observing the enrichment on LB Agar Amp/Glu 

pates (Figure 3.6). 

The library in pMECS showed an enrichment by a factor of 1000 or more, whereas the mini 

library in pMECS-CBP failed to show any enrichment. Since both libraries were comprised by 

the same Nbs, lack of enrichment on the one using pMECS-CBP might indicate a problem of 

expression, despite statements on the contrary 44.  

 

Figure 3.6 – LB Agar Amp/Glu plates that show enrichment after one round of panning with Nbs previously selected 

for human SIRPα. A – A conventional pMECS vector was used for the construction of the library Nbs against SIRPα. 

Positive results (Antigen incubated phages) are shown on the left side of the plate, while negative results (phages 

against empty well) are shown on the right side. B – New vector with a CBP tag was used for the construction of the 

library Nbs-CBP against SIRPα. Positive results (Antigen incubated phages) are shown on the left side of the plate, 

while negative results (phages against empty well) are shown on the right side.  

3.3 Periplasmic Expression and Purification of Nanobodies 

To better understand the lack of enrichment on phage display with Nbs previously selected to the 

target, expression of Nbs with and without the CBP tag was performed. Moreover, the Nb-CBP 

tags that might be produced, would later be used to evaluate if the capturing of the tagged Nb on 

CaM and its subsequent gentle release was efficient. Plasmid DNA of both pMECS and pMECS-

CBP was transformed into non-suppressor WK6 E. coli strain. In these cells the amber codon 

downstream of the His tag and upstream the gene for p III is recognized, therefore Nb is expressed 

as a protein and not fused to gene III protein 45. This is important because gene III protein can 

A B 
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cause false positives and might interfere with the Nb binding to its target. The Nbs were expressed 

as periplasmic proteins with the assistance of disulfide-bond catalysts, isomerases and chaperones 

by induction of the lac promoter with IPTG 53. The periplasmic extract was collected via an os-

motic shock and two purification steps were performed, IMAC followed by SEC. Although the 

CBP peptide is supposed to enhance the production yield 44, the amount obtained for CBP-tagged 

Nbs was far below 1 mg/L, while the same Nbs without the CBP could be express without any 

problems. Moreover, these Nbs could not be detected in any step of expression on western blot. 

Other attempts were made by adding lysozyme to improve the periplasmic extraction step. Even 

though the amount after IMAC was higher, when SEC was performed a higher number of con-

taminants was also revealed (Figure 3.7). Comparing all elution profiles of the different clones, it 

can be observed that even in well expressed Nbs, contaminants still elute earlier than the Nb, even 

if at a small scale. This observation is in accordance with the fact that IMAC is not sufficient to 

avoid the presence of protein contaminants 53. Moreover, at the time when imidazole is eluted, it 

causes a change in conductivity, represented by the orange line. In the cases where Nb is ex-

pressed with CBP, a seriously contaminated sample is noted and much less material at the elution 

time of Nb is observed.  

 

 

Figure 3.7 – Size Exclusion Chromatography of SH Nb 30 (A); SH Nb 30 extract using lysozyme for the improve-

ment of periplasmic extraction (B); SH Nb 30 CBP (C) and SH Nb 30 CBP with addition of lysozyme during 

periplasmic extraction (D). The blue line represents the elution profile of the proteins, whereas the orange represent 

the conductivity. 

An overview of the expression can be seen in Figure 3.8 and Figure 3.9. Aliquots of crucial steps 

during Nb expression and purification steps were loaded onto a polyacrylamide gel and proteins 

visualized after Coomassie staining or western blot for the detection of the Nb. As seen in Figure 

3.8, protein expression was obtained after IPTG induction. The periplasmic extract obtained by 

osmotic shock released a variety of proteins, which can be noted in the lanes 4 and 5 of the SDS-

PAGE. In the subsequent purification, a variety of proteins were being eliminated as noted in 

lanes 6 and 7, which correspond to the flow-through and wash of the IMAC. After IMAC elution, 

there were still some contaminating proteins present, as seen in lane 8. A further step of purifica-

tion was necessary to obtain pure Nbs. After SEC, lane 10, most of contaminants of higher MW 

were removed and the sample applied on gel in reducing conditions represents a pure Nb protein 

with MW of 15 kDa. In the western blot it can be seen that the Nb 30 was detected in all steps of 

expression and purification.  

A B 

C D 
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Figure 3.8 -  SDS gel  and western blot of the expression profile of SH30 and SH30 with addition of lysozyme for 

periplasmic extraction improvement. 1- positive control (SIRPα), 2- SH30 culture before induction, 3- SH30 culture 

after induction, 4- SH30 1st extraction, 5- SH30 2nd extraction, 6- SH30 wash PBS, 7-SH30 flow through, 8- SH30 

IMAC, 9- SH30 1st peak SEC, 10- SH30 2nd peak SEC, 11- marker, 12- marker, 13– SH30 Lysozyme 1st extraction, 

14- SH30 Lysozyme 2nd extraction, 15- SH30 Lysozyme flow through , 16- SH30 Lysozyme wash PBS, 17- SH30 

Lysozyme IMAC, 18- SH30 Lysozyme 1st peak SEC, 19- SH30 Lysozyme 2nd peak SEC, 20- SH30 Lysozyme 3rd 

peak SEC, 21- SH30 Lysozyme 4th peak SEC, 22- positive control (SIRPα). 

In the SDS-PAGE of Nb SH30 CBP (Figure 3.9), most of the earlier stages look similar to the Nb 

SH30, however, a band around the MW of the Nb is never observed. Since a positive control 

(human SIRPα containing a His tag) was added to the western blot, presence of a clear band 

indicated that the antibodies, conjugates and substrates we used were functional. Thus, not de-

tecting Nb SH30 CBP could be a sign that this Nb was not being properly expressed. 

A comparison between the amounts obtained for the Nb with and without CBP tag are shown in 

Table 3.1. Note that since nothing could be detected on western blot, measurements for the 

amount of SH Nb 30 CBP after SEC weren’t done. However, analyzing the data of SH Nb 30, 

there were indications that some Nb material was lost and that impurities were still present after 

IMAC. Moreover, measurements of concentration in a solution with imidazole are not the most 

accurate which can lead to overestimating the amounts after IMAC. 

Comparing the amounts obtained with and without the addition of lysozyme, as well as the SDS-

PAGE bands of 1st and 2nd extractions (5-6 with 13-14 of Figure 3.8), it was shown that lysozyme 

improved the periplasmic extraction step. 

Table 3.1 - Amounts obtained after IMAC and SEC of SH Nb 30, SH Nb 30 with periplasmic extraction enhance-

ment by the addition of lysozyme, SH Nb 30 CBP and SH Nb 30 CBP 30 with periplasmic extraction enhancement 

by the addition of lysozyme. 

Clone 

Amount (mg) ob-

tained after IMAC 

from 1 L culture  

Amount (mg) obtained after 

SEC from 1 L culture 

SH Nb 30 3.96 2.43 

SH Nb 30 + Lys 5.05 3.78 

SH Nb 30 CBP 0.63 Not applicable 

SH Nb 30 CBP + Lys 1.3 Not applicable 
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Figure 3.9 -  SDS gel and western blot of the expression profile SH30 CBP and SH30 CBP with addition of lysozyme 

for periplasmic extraction improvement. 1- positive control (SIRPα), 2- SH30CBP before induction, 3- SH30CBP 

after induction, 4- SH30CBP 1st extraction, 5- SH30CBP 2nd extraction, 6- SH30CBP flow through, 7- SH30CBP 

wash PBS, 8- SH30CBP Lysozyme 1st extraction, 9- SH30CBP Lysozyme 2nd extraction, 10- SH30CBP Lysozyme 

flow through, 11- SH30CBP Lysozyme wash PBS, 12- marker, 13- marker, 14- SH30CBP IMAC, 15- SH30CBP 

Lysozyme IMAC, 16- SH30CBP 1st peak SEC, 17- SH30CBP 2nd peak SEC, 18- SH30CBP 3rd peak SEC, 19- 

SH30CBP 4th peak SEC, 20- SH30CBP 5th peak SEC, 21 SH30CBP 6th peak SEC, 22- SH30CBP Lysozyme 1st 

peak SEC, 23- SH30CBP Lysozyme 2nd peak SEC, 24- SH30CBP Lysozyme 3rd peak SEC, 25- SH30CBP Lyso-

zyme 4th peak SEC, 26- positive control (SIRPα). 

To ensure that the expression of all Nbs is similar and to exclude that we choose by accident a 

poor expressing Nb, we tested the expression of 5 additional Nb clones, each of which was tagged 

with CBP. Table 3.2 summarizes the highest amount achieved of each tagged Nb, while using 

330 mL of medium. As observed in all attempts, it was not possible to detect Nbs in any step of 

the expression. 

Table 3.2 – Amount obtained after IMAC for each Nb fused to the CBP as measured by UV absorption at 280 nm. 

The extinction coefficient of the Nb predicted from the amino acid content was used to calculate those amounts. 

Clone 
Max amount (in mg) obtained after 

IMAC from 330 mL culture 

Extinction Coefficient 

(L/g.cm) 

SH Nb 30 CBP 0.43 1.636 

SH Nb 61 CBP 0.24 2.155 

SH Nb 67 CBP 0.48 1.853 

SH Nb 68 CBP 0.43 1.570 

SH Nb 69 CBP 0.29 1.922 

Sm Nb 75 CBP 0.44 1.636 

3.4 Re-Cloning of SIRPα mouse  

To better understand the expression problem, an Ag with high expression yield (mouse SIRPα) 

was re-cloned in the pMECS-CBP vector, using NotI and NcoI as restriction enzymes. After li-

gation, the construct was transformed into E. coli bacterial cells and a colony PCR using MP57 

and GIII was performed to select colonies with the right insertion (Figure 3.10).  

The Ag mouse SIRPα has a size of around 200 bp, meaning that right insertions had an expected 

size of 600 bp (lane 9, for example), while self-ligation of pMECS-CBP had an expected size of 

400 bp (lane 2, for example). From all re-cloning strategies this was the one with lower insertion 
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percentage. This could be explained by bad quality of DNA obtained during digestion, as shown 

in Figure 3.11, lane 3. The digested product didn’t show two clean bands, but rather a smear 

between the two bands of the expected size. Even though the percentage was low, sequencing 

confirmed that colonies with fragments around 600bp contained the right insert. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 – 1% agarose gel of  digestion profile of re-cloning mouse SIRPα into pMECS-CBP. 1 – DNA SmartLad-

der. 2 – Undigested  pHEN18 with SIRPα mouse. 3 – Digested pHEN18 with mouse SIRPα cut with NotI and NcoI, 

not purified. 4 - Digested pHEN18 with mouse SIRPα cut with NotI and NcoI, purified. 5 – Undigested pMECS-

CBP. 6 - Digested pMECS-CBP, cut with NotI and NcoI, not purified. 7 - Digested pMECS-CBP cut with NotI and 

NcoI, purified. 8 – ligation product pMECS- SIRPα-CBP. 

3.5 Periplasmic Expression and Purification of SIRPα mouse 

The vectors containing the mouse SIRPα were transformed into WK6 E. coli. The expression was 

initiated by the addition of IPTG to the culture, which promoted the production of SIRPα with 

and without the CBP tag. This antigen was chosen due to its high production yields. A significant 

drop in yield will be observed if the CBP was impeding the expression level. The SDS-PAGE 

results showed that SIRPα is present even at early stages of the expression and the SIRPα antigen 

was pure after IMAC (Fig 3.12). In contrast, a band corresponding to the size of SIRPα-CBP 

couldn’t be revealed, neither in Coomassie stained gels nor after western blot. This is similar to 

what we observed for Nb-CBP expressions. 

Figure 3.10 – A – DNA SmartLadder used as a marker for the size of the bands (expressed in bp). B – 1% agarose gel 

after colony PCR with primers MP57 and GIII to examine which have the mouse SIRPα insert. 1 DNA SmartLadder. 

2-17 Randomly selected WK6 E. coli colonies. 

A 
B 
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Figure 3.12 – Expression profiles of SIRPα mouse and SIRPα-CBP in bacterial periplasm. A – SDS-PAGE and west-

ern blot of SIRPα. 1 - Ladder, 2 – SIRPα before induction, 3 – SIRPα after induction, 4 – 1st extraction, 5 – 2nd ex-

traction, 6 – Flow through, 7 – Wash with PBS, 8 – IMAC, 9 – SEC, 10 – Positive control (SIRPα human). B – SDS-

PAGE and western blot of SIRPα-CBP. 1 – Ladder, 2 – SIRPα-CBP before induction, 3 – SIRPα-CBP after induc-

tion, 4 – 1st extraction, 5 – 2nd extraction, 6 – Flow through, 7 – Wash with PBS, 8 – IMAC, 9 – SEC 1st peak, 10 – 

SEC 2nd peak, 11 – positive control (SIRPα human). 

Comparing the elution profiles of SEC (Figure 3.13), a high peak corresponding to the Ag was 

noted, whereas multiple low intensity peaks were observed in case of SIRPα-CBP. A comparison 

between elution times of the Nbs and SIRPα is also feasible. SIRPα has a slightly lower MW 

compared to Nbs, thus it was expected to have a slightly longer retention time on the size exclu-

sion column. This was not observed, on the contrary. A faster elution for SIRPα than Nb could 

be explained if SIRPα does not have a globular shape, but an elongated architecture 55 with a 

larger hydrodynamic volume than the globular Nb.  

 

Figure 3.13 - Size Exclusion Chromatography of SIRPα mouse (A) and SIRPα-CBP 

The comparison of the amount of SIRP α and SIRPα-CBP, when produced in 1 L of media (Table 

3.3), revealed a sharp drop for the latter construct, which might indicate that CBP itself is respon-

sible for the obstruction of the recombinant protein.  

 

A 

B 
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Table 3.3 - Amounts obtained after IMAC and SEC of SIRP α and SIRPα-CBP 

Clone 

Amount (mg) ob-

tained after IMAC 

from 1 L culture  

Amount (mg) obtained after 

SEC from 1 L culture 

SIRPα mouse  8.75 4.56 

SIRPα mouse CBP 0.7 Not applicable 

3.6 Vectors and CBP Analysis 

After suspecting that the problem of expression might be caused by the CBP, further analysis 

were made. First all the vectors used were analyzed to verify if any other changes occurred while 

cloning was performed. A comparison between the original pMECS and pMECS-CBP can be 

seen in Figure 3.14, where it is noted that the only changes that occurred to the vector was the 

insertion of the CBP sequence (yellow region) comprised in the mutagenic primer used. The rest 

of the amino acids sequence was maintained, before and after the insertion. 

 

Figure 3.14 – Alignment of original pMECS and pMECS-CBP using CLC Main Workbench 9.9.1 software. 

A comparison between all pMECS-CBP vectors was also performed (Figure 3.15). In these, the 

insertions were made using NcoI and NotI as restrictions enzymes. As it was expected, the se-

quence differences occurred between those restriction enzymes, while the remaining sequence 

was conserved, including the CBP domain and the His tag used for purification and immunode-

tection of the proteins using western blot. Thus, a problem of expression due to incorrect assembly 

of the vectors is not probable. 

 

Figure 3.15 – Alignment of all pMECS-Nb-CBP and pMECS-SIRPa-CBP using CLC Main Workbench 9.9.1 soft-

ware. 
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Since the presence of CBP was likely causing the expression drop, we wonder whether it was the 

protein or the nucleotide sequence that was responsible. We, therefore, compared the coding se-

quences of our clones with that of a CBP tag that was described previously and that was reported 

to give good expression levels 44 (Figure 3.16).  

 

Figure 3.16 – Alignment of CBP used and CBP described in literature 44 using CLC Main Workbench 9.9.1 software. 

By comparing the sequence, it became apparent that even though both are encoding the same 

amino acid sequence, 5 nucleotide mutations were observed, two in Arginine, two in Alanine and 

one in Lysine codons. These different nucleotide sequences of the tag might cause a different 

mRNA secondary structure that prevents optimal translation 56. Alternatively, the preferred codon 

usage of E. coli could be responsible for the reduced expression as well 57. Among the rare codons 

are AGA and CGG, two codons that were occurring in our CBP design. Additionally, one of these 

Arginines is the first codon of the CBP peptide, which could be directly related to the expression 

problems encountered throughout the experiments. If this hypothesis is correct, then the design 

of a new mutagenic primer and consequently a new gene for the CBP tag might solve (or reme-

diate) the expression problems we encountered and might allow to proceed with this project.  

Although changes on the sequence were found, it is justified to question whether the problem 

could be related with the exportation of the Nb-CBP to the periplasm through the Sec pathway 58. 

If this was correct, a cytoplasmic expression should be performed, using a T7 expression vector 

without the peptide signal pelB. Even though the expression might be enhanced, another problem 

will rise using M13 bacteriophages for phage display. The propagation mechanism of M13 re-

quires that all components of the phage particle can be translocated across the bacterial inner 

membrane before they are assembled into the phage 59. Thus, if CBP could only be expressed in 

the cytoplasm, its exportation to the inner membrane would not be possible and enrichment by 

phage display would not occur and alternatives to this project needed to be found.
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4 Conclusions 
The aim of this master thesis was to develop a new phage display vector that would improve 

selection and screening methods of the technique. 

The first goal was to create a vector containing the CBP tag that would be compatible for phage 

display. To this end, the HA tag located downstream of the Nb cloning site present in pMECS-

GG was substituted by the CBP tag. Moreover, 6 Nbs with well-known and variable kinetic rates 

were also inserted into the pMECS-CBP vector. 

Next, the vector was used in a phage display setting, with already selected Nbs to verify that it 

could be used for biopanning.  For this purpose, two mini libraries comprising the 6 Nbs were 

made. One library was made with the conventional pMECS vector while the other was made 

using the pMECS-CBP vector. Although a 1000-fold enrichment on antigen was achieved using 

pMECS, the virions from pMECS-CBP failed to show any enrichment. After that failure, it was 

suspected that an expression problem might have occurred. 

Trying to express the Nbs with the CBP tag became a real challenge, especially because express-

ing them without the CBP tag was so easy and yielded around 3 mg/L of culture were observed. 

Several approaches were amended, such as adding lysozyme, to improve the periplasmic extrac-

tion step and expressing 5 different colonies to check for possible correlations. 

All these attempts failed to improve on the Nb expression. We therefore inserted a totally different 

protein in the CBP containing vector to discriminate between the Nb-CBP fusion and the CBP 

itself as the core of the expression problems. A high yield expressor (SIRPα) was cloned into the 

CBP vector. Even though SIRPα expressed at levels above 8 mg/L of culture, the expression from 

a vector that would attach a CBP at the recombinant protein suffered from a severe reduction in 

yield to a level below 1 mg per L of culture. 

A further analysis of the CBP tag was performed, following an alignment of our CBP sequence 

with that of a CBP tag, described to be an enhancer of expression. While having the same amino 

acid sequence, it was found that 5 codons differed, two Arginine codons, two Alanine codons and 

one Lysine codon. Moreover, among these codons were two codons rarely used in E. coli. We 

surmise that this unfortunate choice of codons might provoke a reduced expression noted in this 

thesis. 
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5 Future Perspectives 
Phage display is a widely used molecular screening technique for the selection of the Nb binders 

against a specific target. However, it still suffers from some drawbacks, such as limits of enrich-

ment that can be achieved per round of selection, undesired background created and a time-con-

suming screening to identify the Nbs with the best binding affinity. To solve these problems this 

thesis was created, however soon another problem came across us, expressing the CBP tag. 

Although the E. coli expression system is the most used for the production of proteins, it is still 

often that researchers find difficulties of expression 60. Factors that affect the processes of  tran-

scription, mRNA processing, translation, post-translational modification, protein folding and as-

sembly and protein expression can influence product yield 56. Moreover, most of the times, prob-

lems with the interference on processes of expression are related with the sequence of the protein 

expressed 50. In this case, we found that that could be the reason for the reduced expression noted 

throughout this thesis. Further steps could be the creation of a new CBP tag that was more E. coli 

friendly so that it could be expressed and used as a phage display vector. Another strategy could 

be changing the strain used for expression since some E. coli strains, such as Rosetta (DE3) from 

Novagen or BL21-CodonPlus from Stratagene, can supply tRNAs that recognize rare codons in 

the organism 61. However, to be used with this pMECS-CBP vector, these strains need to be able 

to suppress the amber codon present in this vector, while being used for phage display. 

After solving the problems of expression, the discovery of the best conditions, such as buffers, 

concentrations and incubation times, for the effective and efficient reversible binding between 

CaM and CBP is also crucial for the success of this project, since the only information known is 

that they bind in the presence of Ca2+ ions and are released in the presence of a calcium chelator, 

such as EDTA 44. 

Even though changes to the sequence were found, problems with secretion of the Nb-CBP to the 

periplasmic space through the Sec pathway could still be occurring. A cytoplasmic expression 

might solve the problem by using a T7 expression vector 58 62. In this system, T7 RNA polymerase 

is under the control of a pLac promoter in the host cells, such as BL21 (DE3), while the Nb-CBP 

should be under the control of a T7 promoter 61. After being induced by IPTG, T7 RNA polymer-

ase is expressed, thus the expression of Nb-CBP is also induced to the cytoplasm 61. If the cyto-

plasmic expression is efficient, the usage M13 bacteriophages for phage display may not be pos-

sible due to the requirement of all components of the phage particle in the inner membrane before 

assembly 59. Thus, if CBP could only be expressed in the cytoplasm, phage display using this 

vector might not be possible and other alternatives to this new phage display system should be 

found. 

Another direction could be using a different system that has the same features as the one presented 

here between CaM and CBP. A recently presented tag called ALFA-tag could be a good alterna-

tive, since it shows a reversible high affinity (nanomolar) with an engineered Nb 63. This affinity 

is reversible by the addition of free ALFA peptide 63.
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