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Abstract

Manufacturing processes are based on human labour and the symbiosis between hu-

man operators and machines. The operators are required to follow predefined sequences

of movements. The operations carried out at assembly lines are repetitive, being identi-

fied as a risk factor for the onset of musculoskeletal disorders.

Ergonomics plays a big role in preventing occupational diseases. Ergonomic risk

scores measure the overall risk exposure of operators however these methods still present

challenges: the scores are often associated to a given workstation, being agnostic to the

variability among operators. Observation methods are most often employed yet require a

significant amount of effort, preventing an accurate and continuous ergonomic evaluation

to the entire population of operators. Finally, the risk’s results are rendered as index

scores, hindering a more comprehensive interpretation by occupational physicians.

This dissertation developed a solution for automatic operator risk exposure in as-

sembly lines. Three main contributions were presented: (1) an upper limb and torso

motion tracking algorithm which relies on inertial sensors to estimate the orientation of

anatomical joints; (2) an adjusted ergonomic risk score; (3) an ergonomic risk explanation

approach based on the analysis of the angular risk factors. Throughout the research, two

experimental assessments were conducted: laboratory validation and field evaluation.

The laboratory tests enabled the creation of a movements’ dataset and used an optical

motion capture system as reference. The field evaluation dataset was acquired on an au-

tomotive assembly line and serve as the basis for an ergonomic risk evaluation study. The

experimental results revealed that the proposed solution has the potential to be applied

in a real environment. Through direct measures, the ergonomic feedback is fastened, and

consequently, the evaluation can be extended to more operators, ultimately preventing,

in long-term, work-related injuries.

Keywords: Ergonomics, Industry, Musculoskeletal disorders, Inertial sensors, Motion

capture, Risk score.
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Resumo

Os processos de manufatura são baseados no trabalho humano e na simbiose entre

operários e máquinas. Os operários devem seguir sequências predefinidas de movimentos.

As operações realizadas nas linhas de montagem são repetitivas, constituindo um fator

de risco para o desenvolvimento de lesões musculoesqueléticas.

A ergonomia desempenha um papel fulcral na prevenção de doenças ocupacionais.

Os índices de risco ergonómico medem a exposição geral dos operários, contudo, ainda

apresentam desafios: os índices de risco são associados às estações de trabalho, sendo

agnósticos à variabilidade entre os operários. Os métodos observacionais, embora empre-

gues mais frequentemente, exigem uma quantidade significativa de esforço, impedindo

uma avaliação precisa e contínua para todos os trabalhadores. Por fim, os resultados do

risco são apresentados como índices, dificultando a interpretação de médicos do trabalho.

Esta dissertação desenvolveu uma solução para avaliação automática da exposição

ao risco ergonómico do operário em linhas de montagem. Três contribuições são apre-

sentadas: (1) um algoritmo de monitorização do membro superior e do tronco que se

baseia em sensores inerciais para estimar a orientação das articulações anatómicas; (2)

uma pontuação de risco ergonómico ajustado; (3) uma abordagem explicativa do risco

ergonómico baseada na análise dos fatores de risco angulares. Ao longo desta investiga-

ção foram realizadas duas avaliações experimentais: validação laboratorial e avaliação de

campo. Os testes de laboratório criaram um conjunto de dados de movimentos e utilizou

um sistema ótico de captura de movimento como referência. O conjunto de dados de

avaliação de campo foi adquirido numa linha de montagem automóvel e serve de base

para um estudo de avaliação de risco ergonómico. Os resultados revelaram que a solução

proposta tem potencial para ser aplicada em ambiente real. Através de medidas diretas,

a resposta ergonómica é acelerada e, consequentemente, a avaliação pode ser estendida a

mais operários, prevenindo a longo prazo lesões relacionadas com o trabalho.

Palavras-chave: Ergonomia, Indústria, Lesões musculoesqueléticas, Sensores inerciais,

Captura de movimento, Pontuação de risco.
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1
Introduction

1.1 Context

Work-related Musculoskeletal Disorders (WMSDs) prevail as the most common occu-

pational disease in the European Union, impacting employees from different working

sectors [1]. According to the World Health Organization, musculoskeletal conditions are

the second largest contributor to disability worldwide and they are predicted to rise as

the global population ages [2]. Due to the growth of case reports and its impact on pro-

duction the interest in this type of injuries has increased thus, becoming one of the main

concerns for workers health and safety [3]. In 2013, it was estimated that musculoskeletal

injuries covered about 60% of the total occupational diseases [4], as shown in Figure 1.1.

60%
16%

5%

4%

4%

11%

Work-related musculoskeletal disorders

Stress, depression, anxiety

Headache, eyestrain

Cardiovascular disorders

Pulmonary disorders

Others

Figure 1.1: Distribution of people (aged 15-64), from European Union countries, report-
ing work-related health problems by type of problem, in 2013. Data source [4].
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Work-related musculoskeletal injuries are often due to trauma resulting from extreme

movements or positions. Additionally, upper limb disorders account for 20% to 45% of

WMSDs. Within these, elbow diseases are the most prevailing [5, 6].

For prevention, it is necessary to monitor field activities and properly address work-

ers’ concerns about the conditions of the work environment. This motivated researchers

to explore different methods to collect work-related data and to identify the potential

hazards from the collected information [7]. With the arrival of the fourth Industrial Rev-

olution, shown in Figure 1.2, manufacturing business are integrating robots, automation

and other technologies into their workflows.

Industry 4.0, a subset of the fourth Industrial Revolution, describes the trend towards

smart and intelligent machines, 3D technology, the Internet of Things (IoT), factory vir-

tualisation, and many other emerging technologies [8]. Companies are launching pilot

projects in which they try to embed these technologies in their current manufacturing

process [8, 9].

Mechanization, 
water power, 
steam power

Mass production,
assembly line,

electricity

Computer and
automation

Cyber physical
system

Maturation of new
cyber physical
technologies

(arti�cial 
intelligence, 3-D

printing, robotics)

Data analytics 
driving e�cacy

and e�ectiveness 
and new business

models

Pervasive 
sensing

and 
actuation

Ubiquitous
connectivity
throughout
the supply

chain

Unprecedented
levels of data 
and increased

 computing powers

Figure 1.2: Industrial revolutions: the 1st Industrial Revolution was steam engine-driven;
the 2nd involved innovations from Henry Ford’s assembly line; the 3rd applied microelec-
tronics and computer power on factories; the 4th applies cyber-physical systems. Adapted
from [10].
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1.2. MOTIVATION

Although robots are becoming more common in manufacturing environments, opera-

tors are still essential. However, the concept of an operator is undergoing a paradigm shift

through the new generation of operators coming entitled as "Operator 4.0". These new

smart and skilled workers will have super-strength provided by exoskeletons, smarter

decision capabilities supported by artificial intelligence, and able to age healthily at work

supported by a set of wearable body monitoring devices [11].

Over the last years, those wearable devices have captured high levels of interest in

industrial environments. By using inertial motion capture system, data can be collected,

and several parameters can be assessed, e.g. postural angles, making these fundamental

for ergonomics studies [12].

1.2 Motivation

Manufacturing industries are a valuable portion of European Economy by securing 50

million direct jobs. Particularly, in Portugal, the sector employs about 23% of active

workers [11]. For maintaining their position and growth, industry uphold digital trans-

formation processes. In some industry sectors, e.g., textile and automotive, production

processes are typically based on human effort and/or cooperation between the employee

and machines. Although being well-defined and intended to guarantee that people abide

by best practices, the operation methods carried out by workers can be repetitive. Nev-

ertheless, musculoskeletal lesions’ risk is increased due to repetitive tasks, which may

lead not only to absenteeism but also early retirement and loss of productivity [13, 14].

In Great Britain, it is estimated that about 3.9 million working days were lost due to

work-related musculoskeletal injuries during 2016-2017 [5].

Companies are realising that investing in ergonomics will bring advantages to both

employees and employers – ergonomics reduce costs, improves productivity and quality

and creates a better safety culture. Additionally, older workers tend to be the company’s

most experienced workers, but also, the most exposed to injuries [15].

On large industrial environments, there are dedicated occupational health and er-

gonomics teams who work towards a continuous ergonomic risk evaluation of operators.

However, there are still some unsolved challenges which prevent a more effective er-

gonomic assessment at work.

During the design of a work process (or method), which often comprises a set of mo-

tions, manufacturing industries rely on a series of predefined ergonomic risk scores for

each motion. The global risk score, for a given task, is calculated taking into account all

local scores, an approach which is widely adopted across diverse manufacturing contexts,

but it has inherent flaws. Firstly, the predefined scores are based on an average worker,

meaning that they do not take into account the variability among operators such as an-

thropometric variations that may exist at the manufacturing plant population, operator’s

3
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age and work experience. A shorter operator might have a higher ergonomic risk perform-

ing a given task than a taller operator and this fact might become unnoticeable as the

design standards only take into consideration an "average worker". Secondly, ergonomic

teams might still rely on observational methods, which involve dedicated personnel to

observe or video record operators at work for posterior analysis. Although, due to the

high workload involved in this process, it becomes unfeasible to employ observational

methods across the complete manufacturing population. Finally, the outcome of the er-

gonomic risk assessment often results in a number which quantifies the associated risk

yet, when occupational doctors receive their patients and ask for the tracking history

of the assigned workstations and associated ergonomic risk, they only have access to a

score to describe the risk, lacking a more comprehensive analysis of the risk factors which

contributed to the resulting score.

Hereupon, this research focuses on tackling the aforementioned open challenges in

ergonomic risk assessment on manufacturing industries. This research encompasses a

solution to establish quantitative direct measurements of posture and movement using

inertial sensors for the upper limb and torso. Those measurements will be able to con-

tinuously monitor operators individually producing also more comprehensive reports

with explanations, concerning the most contributing factors for the calculated risk scores.

It is expected that in long-term this solution will help in the prevention of upper limb

WMSDs arising from repetitive tasks.

1.3 Literature Review

This section will introduce a literature review describing emerging methods to conduct

the ergonomic risk assessment. In this context, relevant academic works and commercial

solutions are presented. At last, it will be highlighted how this project goes beyond the

state-of-the-art.

1.3.1 Ergonomic Risk Assessment

It is possible to prevent musculoskeletal injuries by designing a task, workplace and/or

equipment in such way that a worker does not put much physical stress on his/her

body [16]. To prevent and control work related injuries, illnesses, and fatalities it is

required to former identify the risk factors. For that matter, work-related data must be

adequately collected and subsequently used in a risk assessment framework.

In literature, there are essentially three different data collection approaches that have

been practised for identifying ergonomic risk assessment: self-assessment, observation-

based measurement and direct measurement [3, 7, 17–19].
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1.3. LITERATURE REVIEW

In the first method, data are collected, on both physical and psychosocial factors

through interviews and questionnaires, on written records. This method has relative

advantages of having low initial cost, being straightforward to use and applicable to wide

range of workplace situations. However, researchers have revealed that workers’ self-

assessments on exposure level are often imprecise and unreliable [17].

The second technique, observation-based measurement, consists of visual analysis

of recording observations with the help of predefined ergonomic risk sheets. Simpler

observational methods can assess various exposure factors. While some permit only pos-

tural analysis of several body segments, others assess critical physical exposure factors.

Some of these methods enable overall indices (or scores) for the combination of exposure

factors to be determined. They aim to establish acceptable exposure limits for workers or

at least settle priorities for intervention across a range of tasks, having the advantage of

being inexpensive and practical for a wide range of activities and workplaces. However,

they are subjected to intra- and inter-observer variability and are more suitable to assess

static or repetitive jobs [3, 17, 20]. The Rapid Upper Limb Assessment (RULA) index

is one of the most cited ergonomic risk assessment tools. It is based on the observation

of postures during a certain task and outputs biomechanical and postural load values

on the whole body with particular attention to the neck, trunk and upper limbs [7, 18, 21].

At last, direct measurement relies on sensors that are attached directly to the subject

for the measurement of variables at work. Despite the fact that this technique can provide

large quantities of highly accurate data on a range of exposure variables, the wearables

require the employment of trained and skilled technical staff to ensure their effective

operation [17, 22].

By comparison of techniques, previous works have revealed that the direct measure-

ment approach provides the most valid analysis of risk factors [23]. Improvements in

sensor technology seem to offer the potential for regular industrial use in contrast with

other tracking devices, such as range cameras or magnetic sensors which are more effec-

tive in virtual environments [7, 24]. Consequently, low-cost wearable sensors, such as

Inertial Measurement Unit (IMU)s, have gained relevance for data collection.

Capturing and monitoring human motion through inertial sensors has gained atten-

tion in diverse fields, e.g. film-making, video game developing and ergonomics. This

fact is mainly explained by the technological advances which allowed mass production

at reduced costs and, consequently, the sensors proliferation in various contexts [25].

By using several IMUs simultaneously connected, biomechanical models can be devel-

oped to capture a wide range of movements [7]. To reconstruct the upper limb segments,

joints and movements an upper limb model is required. Some authors [26, 27], assume
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that the human arm motion could be approximated to an articulated motion of rigid body

parts, characterising the human arm as two rigid segments, the upper arm and the lower

arm. Each of the segments can only rotate about its preceding joints, the shoulder joint

or the elbow joint. Moreover, it states that human arm motions can be represented by

kinematic chains.

Table 1.1 represents a general overview of the main ergonomics studies based on

direct observation methods applied to the industrial field.

Throughout the last years, the necessity to perform pose-related industrial studies

has been identified. Table 1.1 shows that researches mainly focus on the upper body and

combine multiple devices, namely electromyography, goniometers and IMUs. Studies

lack to describe the employed biomechanical model and if any calibration procedure was

adopted and in general, the cost/effective for sensors number is high. Furthermore, few

studies have included a system validation trial, providing no error estimate on tracking

angular motion. At last, the previous studies have focused on using direct measurement

to automatically retrieve local or global scores of different ergonomic risk assessment

methods, and did not include more consolidated methods to explain the most contribut-

ing factors for each score.
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Table 1.1: Comparison of ergonomics studies applied to the industry relying on direct measurements. N/A - Not Applicable; NM - Not
Mentioned

Study Body Region Sensors Model (DoF) Calibration Validation Output

Cabeças. (2007) [28] Forearm EMG1(1000 Hz) N/A Maximum Isomet-
ric tests

NM Modified SI2

Bleser et al. (2011) [29] Upper Limbs 5 x IMUs (100 Hz);
Camera marker

5 Static n-pose, back-
bent

OMC3 Wrist position

Ray and Teizer. (2012) [24] Full body Range Camera N/A NM NM Pose classification;
Pose estimation;
ergonomic analysis.

Vignais et al. (2013) [7] Upper Limbs 21 x IMU (100
Hz); 2 x Gonio4

(100 Hz)

20 N-pose, back-bent Study-group Vs
control-group

Execution time;
RULA5

Battini et al. (2014) [19] Full body 17 x IMU (500 Hz) NM NM NM RULA5; OWAS6;
OCRA7; LI8

Peppoloni et al. (2016) [3] Upper Limbs 3 x IMU; EMG
(100 Hz)

7 N-pose, T-pose 10 manual Vs 10
auto

RULA5; SI2

Yan et al. (2017) [30] Head; Trunk 2 x IMU (10 Hz) NM N-pose Lab Vs field exper-
iment

Ergonomic analysis
with thresholds

Viganis et al. (2017) [18] Upper Limbs;
Head; Pelvis

7 x IMU (64 Hz); 2
x Gonio4(32 Hz); 2
x Video system

20 N-pose (begin) N-
pose (end)

NM RULA5

Bauters et al. (2018) [31] Full body Video system N/A NM NM Performance indica-
tors

Caputo et al. (2019) [12] Upper limbs;
Trunk; Pelvis

4 x IMU NM NM NM OWAS6; OCRA7; EAWS9

1 Electromyography. 2 The Strain Index. 3 Optical Motion Capture. 4 Goniometer. 5 Rapid Upper Limb Assessment.
6 Ovako Working Posture. Analysis System. 7 Occupational Repetitive Actions. 8 Lifting Index. 9 Ergonomic Assessment Work-Sheet.
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1.3.2 Current Available Commercial Solutions

In recent years, the combination of Information Technologies and Operational Technolo-

gies has been reforming Industry, bringing not only higher production levels, but also

moderating employees’ work while generating more income [32]. Furthermore, to pro-

mote physical comfort, productivity and efficiency ergonomics studies are being per-

formed, which explains the increasing number of solution providers, offering the ability

to automatic monitoring human motion and environmental conditions.

ViveLab Ergo, IBM Maximo Worker Insights and Soter Analytics are three examples

of established platform solutions:

• The ViveLab Ergo service performs an ergonomic analysis through a digital human-

model based software and has a major advantage of being a cloud-based system.

The service was released in 2015 and relies on Xsens Motion Capture system to

collect movement data. However, in terms of setup time, invasiveness and hardware

complexity it has a high cost [33].

• IBM Maximo Worker Insights solution combines wearable data from environmen-

tal sensors with advanced analytics, allowing real-time feedback. Nonetheless, it

fails to provide detailed and generalised metrics from movement data [34].

• The Soter Spine, developed by Soter Analytics, uses a combination of wearable

sensors for measuring the activities of industrial workforces and analytics for pre-

dicting and preventing work-related musculoskeletal disorders [35].

1.4 Summary

The dissemination of Industry 4.0 promotes a trend towards IoT solutions and, as re-

viewed, academic works and commercial solutions which use direct measurements to

apply ergonomic principles are emerging. Nevertheless, the solutions often require sub-

jects to wear an extensive amount of devices or depend on complex systems. Additionally,

current methods lack explanatory reasoning.

Specifically, Vivelab Ergo solution offers ergonomic analysis through the development

of low-level metrics yet, depends on complex hardware. The Soter Spine solution only

develops high-level metrics, failing in characterising angular details.

This research aims not only to present a cost-effective ergonomic technique but also

intends to provide an ergonomic risk explanation approach based on the comprehensive

analysis of the angular risk factors.
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1.5 Objectives

When planning a direct system for an ergonomic assessment, there are typically three

design considerations: explainability, invasiveness and scalability.

Explainability relates to the degree of information that a setup’s evaluation can report.

Invasiveness is related to the operator’s discomfort level, when using the solution, and

also to the impact on the operator’s performance due to the setup. Scalability establishes

how many subjects can, simultaneously, use the setup, depending on invasiveness and

cost.

This project was intended to design a system which allowed to extract information

at an intermediate level, i.e., calculating low-level metrics of ergonomic risk and not

demanding a large number of sensors. Thus, it is expected that the system has an average

level of scalability, explainability and invasiveness.

When the results of a traditional ergonomic assessment, in the form of an index score,

are delivered to occupational medicine, they may not be explanatory and may compro-

mise the acceptance, implementation and effectiveness of the system.

Herewith, this research seeks to answer the following main research question: How

to continuously measure and explain the ergonomic risk of industrial workers using

inertial sensors?

The main research question is approached through four additional research questions:

Which workstation has a higher ergonomic risk score across the plant? Which opera-

tors’ movements contribute to workstation’s ergonomic risk? Do subjects antropomethric

characteristics influence their risk? How does ergonomic risk vary in a work cycle? Ac-

cordingly, it is intended to extract knowledge from Human motion, during the execution

of repetitive tasks, using wearable sensors technology. This will allow later delivery of

recommendations through the conception of a complete report.

The main goals of this dissertation are the following: (1) develop an upper limb and

torso tracking technique using wearable sensors; (2) perform a laboratory assessment,

based on Human motion, to validate the developed method; (3) conduct a feasibility test

focused on the ergonomic risk assessment on real manufacturing environments; (4) gen-

erate reports explaining the outcome of an ergonomic assessment.

An idealised system is organised under the architecture represented on Figure 1.3.
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Pre-processing  and 
orientation estimation

Knowledge visualisation 
and reporting

Acquisition Processing Visualisation

Wearable body suite

Figure 1.3: Motion tracking overview.

In the acquisition module, the worker wears motion sensors on the upper limb and

torso which will be integrated in a smartphone or other equipment to collect the data.

Then, in the processing stage noise reduction, sensors synchronisation and cycle seg-

mentation are addressed. The visualisation module summarises processing outputs by

creating human interpretable data, information and knowledge visualisations which are

akin to system user’s mental models, to enable quick and effective response from decision-

makers over the collected and processed data. Thus, the system must provide fast and

accurate tree-dimensional angular motion tracking as a supporting tool to create optimal

working environments and work methods across different industrial contexts.

Using employees to gather requirements and evaluate new technologies, as a new

data-driven industry 4.0 system, may introduce tensions for bringing consequences to

employees. In this context, a project which commits to good practice guidelines must

consider research ethics, ensuring that employees do not experience any negative effects

from participating in the research.

The developed method should never be considered as a tool to prejudice any worker.

It is expected to act as: (1) a technique to assure that the worker is not overly exposed

when performing a selected task; (2) a way to cover a larger number of employees and

give feedback in lesser time, as the instrumentation phase is fairly simple.

1.6 Structure

This dissertation is composed by four elements and it is divided into five chapters, three

appendices and an annex, as schematised in Figure 1.4.
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1.6. STRUCTURE

BASIS METHODS OUTCOMES

1. Introduction

2.Theoretical Background

3. Upper-Body Motion 
Capture Framework

4. Results

5. Conclusions

APPENDIX
ANNEX

Figure 1.4: Dissertation structure.

The present chapter introduced the context and motivation which lead to the develop-

ment of this project. Additionally, a review of the literature and the main objectives were

also presented. Chapter 2 provides the theoretical background concepts and principles.

These two chapters form the basis for the development of the dissertation.

The methods used in this research are introduced in Chapter 3 which thoroughly

presents and explains the developed upper limb and torso motion tracker.

Chapter 4 summarises a description, results and discussion of two main studies con-

ducted during this dissertation: laboratory and field assessments.

Finally, Chapter 5 highlights the more relevant conclusions and points to future work

directions.
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2
Theoretical Background

In this Chapter, a review of the fundamental topics on ergonomics, motion capture

techniques and orientation representation are presented. Firstly, concepts regarding

ergonomics and risk assessment methods are described. Then, considerations on mod-

elling the upper limb and torso are provided. Relevant motion capture methods are then

introduced and representation in coordinate frames is followed after. Lastly, quaternion

algebra and sensor fusion methods are approached.

2.1 Ergonomics

Ergonomics is the scientific discipline concerned with the understanding of inter-
actions among humans and other elements of a system, and the profession that
applies theory, principles, data and methods to design in order to optimise human
well-being and overall system performance [36].

The concept of ergonomics, which derives from the Greek ergon (work) and nomos
(laws), was originally proposed and defined in 1857 by the Polish scientist B. W. Jastrze-

bowski as the scientific discipline that covers all aspects of human activity [37]. Con-

temporary ergonomics studies human behaviour, abilities, limitations and other char-

acteristics in order to design tools, machines, systems tasks, jobs and environments for

productive, safe, comfortable, and effective human use [38–40]. In this context, the er-

gonomics professionals study how a product/workplace/system should be designed to

serve the people who need to use it, complementing people’s strengths and minimising

their limitations [2, 36]. The establishment of a balance between the requirements of the

work and the capacity of the working person is a major concern in ergonomic studies.
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CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Musculoskeletal Disorders

Musculoskeletal Disorders (MSDs) are inflammatory and degenerative diseases, of the lo-

comotor system, i.e. of muscles, tendons, the skeleton, cartilage, ligaments and nerves [2].

According to the World Health Organization, the most common MSDs are osteoarthri-

tis, back and neck pain, fractures associated with bone fragility, injuries and systemic

inflammatory conditions such as rheumatoid arthritis [41].

Such disorders are supposed to be caused or intensified by work. Thus, the injuries

that are consequence of the action of professional risk factors are denominated as Work-

related Musculoskeletal Disorders (WMSDs). Most often, WMSDs are located in the

upper limb and spine. However, there may be other locations, e.g. knees or ankles,

depending on the activity developed by the worker [13].

To address WMSDs hazards, safety and health principles are employed in an er-

gonomic process, which should be viewed as an ongoing function rather than as an

individual project [42].

2.1.2 Ergonomic Risk Assessment Tools

The influence of postures adopted at the workplace has been a major concern. The goal

of assessment methods is to recognise ergonomic risk factors, quantify them, and later

enhance the workplace by assuring that tasks are within workers’ capabilities and limita-

tions.

An approach for accomplishing so is by making ergonomics a continuous process of

risk identification through the implementation of ergonomic assessment tools, such as the

following worksheets: Ovako Working Posture. Analysis System (OWAS), Rapid Upper

Limb Assessment (RULA), Rapid Entire Body Assessment (REBA), Ergonomic Assessment

Work-Sheet (EAWS), The Strain Index (SI), etc. Besides those assessment methods, there

is also a European standard, the EN 1005-4:2005, that is applied for evaluating working

postures and movements in relation to machinery [43]. In Table 2.1 the evaluated body

regions according to different techniques are represented.

Table 2.1: Relevant body regions considered by each ergonomic assessment tool.

Method Wrist Elbow Shoulder Cervical Lumbar

RULA[44]
OWAS[45]
REBA[46]
EAWS[47]
SI[48]
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2.1.2.1 Rapid Upper Limb Assessment

The RULA method is based on a five-step approach: in steps 1-3 the range of postures are

analysed and then their scores are calculated; in step 4, other physical factors, e.g. muscle

use and force, are brought into the assessment; finally, in step 5, all body part scores are

included forming a Global Risk Index. Lastly, the action level can be classified as "green",

"yellow"or "red", representing an increased risk of WMSDs respectively [49].

The traditional RULA assessment is the representation of a moment in the work cycle.

Thus, before any evaluation, the specialist must observe the whole work cycle, to select

the postures which will be assessed. The analysis will be performed, depending on the

task, on either the longest held posture or what appears to be the worst significant posture.

Since tasks may not be executed symmetrically with both arms, separate RULA scores

sheets, for right and left sides of the body, may be applied [49].

The complete worksheet of RULA method can be found in Annex I. The diagram

in Figure 2.1 represents the step 5 in RULA method, where all the assessed scores from

different body regions, named local scores, are joined together to generate a final score.

This grand score will reveal if there’s any need for intervention and modifications on the

work or workplace.

Figure 2.1: Diagram to obtain the final RULA score. Reproduced from [49].
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2.1.3 Risk Factors

Most WMSDs develop over time and generally, there is no single cause for these lesions.

They often result from a combination of several risk factors. According to the Occupa-

tional Safety and Health Administration, eight risk factors may lead to a strong proba-

bility of triggering WMSDs: force, repetition, awkward postures, static postures, quick

motion, compression or contact stress, vibration, and extreme temperatures [13, 16]. The

authors from [17] present a comparison between observational methods which is laid out

in Table 2.2.

Table 2.2: Comparison between coverage across different ergonomic risk assessment tool.
Adapted from [17].

Method Posture Load/Force Movement
frequency

Duration Vibration Recovery

RULA[44]
OWAS[45]
REBA[46]
EAWS[47]

SI[48]

The risk factors can be divided into two categories: work-related risk factors and

individual-related risk factors, which will be described in the following sections. Machin-

ery risk factors are also addressed.

2.1.3.1 Work-related Risk Factors

A work cycle is defined as a sequence of activities and movements repeated with little or

no variation each time the job is performed. Whenever a worker has to perform a task

outside of his/her body’s capabilities, he/she is putting the musculoskeletal system at

risk [50].

Typically, there can be considered three primary work-related ergonomic risk factors:

task repetition, forceful exertions and awkward postures. Workers that are exposed to

these workplace risk factors often are at a higher level of WMSDs risk.

• Task repetition - Work processes that are repetitive in nature, often imply that the

worker is controlled hourly or daily in production targets. Combining high task

repetition with other risk factors can trigger WMSDs. A given task is considered

repetitive if the work cycle time is 30 seconds or less or when the fundamental work

cycle is more than 50% of the total work in its extension [13, 50].

• Forceful exertions - Some tasks may require high force loads on the worker’s

body. High force requirements which lead to an increasing fatigue state can lead to

WMSDs [13, 50].
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• Awkward postures - Human joints are more effective when they operate close to

the mid-range motion of the joint. When joints work outside of this mid-range,

repetitively or sustained for some periods, the risk for WMSDs is increased. Awk-

ward postures not only affect joints but also overload muscle and tendons that are

around the affected joint [13, 50].

2.1.3.2 Individual risk factors

There is an interaction between individual and work-related risk factors. The princi-

pal factors that will lead to individual risk are age, anthropometric characteristics and

physical activity.

Nevertheless, other individual considerations may also influence the WMSDs risk.

Workers who use poor work practices, create unnecessary stress on their bodies. Fur-

thermore, workers with overall poor health habits, e.g., workers who smoke or drink

excessively or are obese, put themselves at risk not only for WMSDs but also for chronic

diseases. Poor rest and recovery lead to fatigue and, when fatigue outruns the worker’s

recovery system disorders are easily developed. At last, poor nutrition and hydration

can also be play an import role in the development of WMSDs. Therefore, having a poor

health profile places workers at a higher risk of developing musculoskeletal imbalance [49,

50].

2.1.3.3 Machinery Risk Factors

The machinery design must have into account specific ergonomic aspects. Designers must

collect information on existing tasks and evaluate the work-load that those impose on the

operator. Then, the target population, to work with the machine, and the task should be

defined. A good ergonomic design should meet the needs of 90% of the operators from

the 5th to the 95th percentile [49, 51].

The list bellow indicates the potential WMSDs hazards of the machine’s operation.

• Static postures and body movements;

• Manual handling of loads (above 3 kg);

• Force exertion;

• Repetitive movements;

• Hand-arm vibration;

• Whole-body vibration;

• Energetic load;

• Local mechanical stress.
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Additionally, an approach to evaluate the health risks for static postures and move-

ments is based on the U-shaped model represented in Figure 2.2. According to this

model, the risk increases when a static posture is held or when there is a highly frequent

movement [49, 51].

Figure 2.2: U-shaped model - health risks associated with postures and movements. Re-
produced from [49].

2.2 Modelling Human Movement

A description of body position in directional and functional terms is fundamental for

motion studies. Therefore, the movements of the body, or body segments, in the three

anatomical planes should be accurately described [52]. This research centres on ergonom-

ically supporting operators through motion tracking. Thus, it is necessary to summarise

the concepts of human movement modelling/description.

2.2.1 Human Joints and Movements

Anatomical descriptions are based fundamentally on three major imaginary planes (see

Figure 2.3): the frontal plane being the body observed from the front, i.e., face to face;

the sagittal plane being the body observed from the side; and the transverse plane being

the body observed from directly above the head. These planes intersect the human body

in a standard anatomical position [53].
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Frontal Plane Sagittal Plane Transverse Plane

Figure 2.3: Human anatomical planes: frontal, sagittal and transverse plane (left to right).
Adapted from [54].

The torso, or trunk, is an anatomical term which includes the thoracic and abdominal

segments of the trunk and the perineum. Specifically, the thorax region, which has a

cage-like shape, has an important role in protecting the viscera, breathing and movement.

It’s continuous with the neck superiorly and bounded by the diaphragm inferiorly [55].

The upper limbs are anchored to the thoracic cage through the bones of the shoulder

region, which form the pectoral girdle, at the glenohumeral joint. The upper limb skeletal

system is divided into four regions: the shoulder, arm, forearm and hand and its main

function is to enable the mechanical manipulation of objects [55].

In the developed tracking method the referred regions are taken into account. Fur-

thermore, it is important to perceive the relevant movements and the involved joints.

2.2.1.1 Joints

A joint is defined as the interaction point between two or more bones. Frequently, the

joints are named according to bones that are joined together [22, 56]. Since in this study

an upper limb and torso tracking method is developed, a list of the most relevant joints,

to evaluate human upper limb movement and posture, is presented.

• Shoulder complex - the shoulder complex is composed by the clavicle, scapula

and humerus, which are united through the glenuhumeral and acromioclavicu-

lar joints. The complex is connected to the axial skeleton through the sternoclav-

icular joint (a plane synovial joint). Moreover, the scapulothoracic and the sub-

acromial joints are often incorporated in anatomical descriptions of the shoulder

complex [57].

• Elbow complex - the elbow complex is a compound synovial joint containing four

articulations within a common fibrous capsule. The humeroulnar joint, between

the humerus and ulna, and the humeroradial joint, between the humerus and
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radius, are hinge type joints. The superior radioulnar and the inferior radioulnar

articulations, between the radio and ulna, are a pivot type joints [58].

• Wrist complex - the wrist complex joint unites the hand to the forearm. The wrist’s

movements are carried out by two compound joints: the radiocarpal condyloid

joint, formed by scaphoid, lumate, and triquetrum distally and by the radius and

radioulnar disc proximally; and the midcarpal joints, formed by the two rows of

carpal [59].

2.2.1.2 Movements

Different combinations in body joints allow for different basic movements. The Range of

Motion (ROM), which describes the amount of mobility that can be demonstrated in a

certain joint, is important when studying movements. However, there is some disparity

in literature when addressing ROM, which may be explained by different conditions in

determining the values.

Regarding the torso and the upper limb, different movements can be considered, along

side with their range of motions.

Torso

Torso’s movements includes flexion/extension, bending forward/ backward the torso,

in the sagittal plane. In the frontal plane, lateral flexion/medial flexion, the direction

is set further away/closer from the midline of the body. In the transverse plane, axial

rotation is the result of rotating the trunk along the vertical long axis of the body [53].

Torso’s forward bending may reach 80° while backward bending is set to 25°. Additionally,

the torso can endure 35° for lateral and medial flexion, and also 45° for axial rotation [60].

Shoulder joint

Arm’s movements are represented in Figure 2.4. In the sagittal plane, the gleno-

humeral joint’s movements comprises flexion/ extension, raising/lowering the arm. Ab-

duction/adduction are movements of the frontal plane, consisting of raising/lowering

the arm to the side. In the transverse plane, lateral rotation/medial rotation is consid-

ered, meaning that the arm is rotated along its long axis outward/inward [53].

Literature indicates that the arm is able to withstand flexion up to 180° and that

extension may reach 60°. Additionally, it is also able to reach 180° abduction and 20°

adduction and also, 90° and 20° for medial and lateral rotation respectively [56, 61].
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90°
20°

Rotation:  Medial Lateral0°

0°

180°
Abduction

Adduction

180°

60°

0°

Flexion

Extension

Figure 2.4: Simplified arm’s movements. Shoulder abduction, adduction, flexion, exten-
sion, medial and lateral rotation (left to right). Adapted from [61].

Elbow complex

Forearm’s movements are illustrated in Figure 2.5. Movements of the elbow include

flexion/extension of the forearm, decreasing/increasing the internal angle, in the sagit-

tal plane. Forearm’s movements can also be considered as a joint action, since the rotation

of the two forearm bones, the radius and ulna, can be observed. Thus, comes supina-

tion/pronation, which is represented by the rotation of the forearm to the palm up/down

position [53].

Due to bony interference of the olecranon process of the ulna, in the olecranon fossa

of the humerus, the elbow extension is limited. The normal full extension is established

as zero degrees nonetheless, individual variations can be a few degrees positive or neg-

ative (hyperextension).The forearm is also able to withstand flexions up to 140°. The

average normal ranges of forearm pronation and supination are approximately 90° and

80° respectively [56, 61].

Extension

Flexion
140°

0°

(a) Flexion and Extension.

0°

80° 90°
Supination Pronation

(b) Pronation and Supination.

Figure 2.5: Simplified forearm’s movements. Elbow flexion, extension, pronation and
supination (left to right). Adapted from [61].

Wrist complex

In the sagittal plane, flexion/extension movements can be described as bending the

palm upward to the forearm/ bending the palm back from the forearm. Additionally, in

the frontal plane, there can be radial deviation/ulnar deviation, meaning that hand is
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moving closer to the radius bone/ulna bone [53].

Figure 2.6 represents hand’s movements. The average range of wrist flexion/extension

and radio/ulnar deviation are expressed in [56] as 66° of flexion, 55° of extension and,

20-25° of radial deviation and 30-35° ulnar deviation.

Flexion
0°

66°

Extension

0°

55°

Ulnar deviation

0°
35°

Radial deviation

0°

25°

Figure 2.6: Wrist complex movements and respective range of motion. Wrist flexion,
extension, radial deviation and ulnar deviation (left to right). Adapted from [62].

2.3 Motion Capture

Motion Capture (Mocap) is the process in which the movements of objects are recorded.

Mocap technology was originally developed for gait analysis, yet, nowadays, it is most

frequently used in gaming, movie and animation industry, but also by sports therapists,

neuroscientists, and for validation and control of robotics and computer vision [63, 64].

The motion capture techniques can be divided into different categories. The following

categories were considered in the development of this project:

• Inertial motion capture uses a set of inertial sensors which are worn by the subject.

The recorded data is often transmitted wirelessly to a computer.

• Marker-based motion capture uses retroreflective markers, worn by the subject,

which are tracked by infrared cameras.

• Markerless motion capture which has been involving due to increased research

in computer vision, where algorithms are designed to identify human forms. This

method has the advantage of having a non-intrusive nature. Regardless, data error

ranges tend to be larger than marker-based solutions.

2.3.1 Inertial Motion Capture

The position and orientation of a given object are estimated by attaching sensors to the

object in study. Furthermore, if the object happens to be a rigid body, and has sensors

tightly attached to it, the sensor’s data allows the extraction of direct information about

position and orientation of the object [65].

An Inertial Measurement Unit (IMU) is a small and portable device that combines

information obtained from multiple electromechanical sensors to estimate the spatial

orientation of an object. Inertial sensors are constituted by accelerometers and gyroscopes
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and, some of them, also include magnetometers. IMUs have advantages over individual

electromechanical sensors once the strengths of each individual electromechanical sensor

component may help balance the limitations of another [66]. They are usually applied

to determine orientation through sensor fusion methods, which will be introduced in

Section 2.5.

2.3.1.1 Accelerometer

Triaxial accelerometers are sensors capable of measuring simultaneously changes in ac-

celeration in three orthogonal directions, however, the are also influenced by the gravita-

tional acceleration of the Earth, i.e., g = 9.8 m/s2. The accelerometer sensor is a inertial-

frame sensor, which means that when the device is in free fall, the acceleration is 0 m/s2,

in the falling direction, and when the device is laying flat on a table the acceleration, in

upwards direction, will be equal to Earth’s gravity. Thus, the measured signal has two

components: a static and a dynamic one. The former is caused by the Earth’s gravitational

acceleration and the latter is due to device’s movement. The measured acceleration is

frequently represented in meters per second squared (m/s2), but some devices measure

in g-force units (g) [67].

Through filtering methods it is possible to isolate accelerometer’s components, e.g.

the linear acceleration of a device. Therefore, a high-pass filter can help to isolate the

linear acceleration and a low-pass filter can help to isolate the gravity [67].

The most relevant source of error of this sensor is the bias, which consists of an offset

of accelerometer’s output signal from the true value. However, it is possible to estimate

the bias through the measurement of the long term average of the sensor’s output, when

it is not undergoing any acceleration [67, 68].

2.3.1.2 Gyroscope

A gyroscope is a sensor that measures the angular velocity of a device, represented in

radians per second (rad/s). This sensor is usually three dimensional and can also be used

to compute the device’s relative orientation to a previous instant.

The gyroscope oscillate at a relative high frequency, being easily affected by other

vibrations, e.g., the speaker on the same device, making it a sensor with higher power

consumption [67].

Gyroscopes suffer from bias and numerical errors. The bias consists of an average

output from the sensor when it is not undergoing any rotation and it shows itself after

integration as an angular drift, increasing linearly over time. Another common problem

is the calibration error, that is related with scale factors, alignments, and linearities of the

gyroscopes. These types of errors are perceived only when the device is turning. They

lead to the accumulation of additional drift in the integrated signal, the magnitude of

which is proportional to the rate and duration of the motions [67, 68].
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2.3.1.3 Magnetometer

Magnetometers sensors are able to measure the magnetic field, meaning that, if there’s

no strong magnetic interference, the Earth’s magnetic field will be sensed.

The triaxial magnetometer sensor provides a 3D vector pointing to the strongest mag-

netic field, representing it in microtesla (µT) units. Consequently, it enables to obtain the

absolute orientation of the device relative to the North Pole.

Magnetometers are often influenced by buildings’ ferromagnetic construction mate-

rials and electrical equipment. This magnetic interference is the main cause of measure-

ment errors [67, 68].

To estimate the device’s orientation is, at least, necessary the gravity vector, which

means that the accelerometer sensor is required. If a gyroscope is provided, more precise

readings are obtained.

2.3.2 Marker-based motion capture

The optical-passive marker method is the most commonly for motion capture, since it

is flexible and has high accuracy. The Vicon motion capture system fits in this Mocap

category.

Vicon, established in the early 1980s, is a developer of motion capture products and

services which can be used for life science, entertainment and engineering industries [64].

With Vicon motion capture system, experiments ranging from balance studies to limb

movement and gait studies can be performed. The system allows a passive motion cap-

ture through the use of reflective markers on the subject and, depending on the field

of the study, there are available multiple options to configure and build the system by

varying the number and model of the cameras, the room size the software and other. An

example setup of Vicon motion capture system can be seen in Figure 2.7 [64, 69].

The authors from [70] state that Vicon’s error from low to high speed experiments is

lower than 2 mm.

The Vicon system is used in this study to perform a laboratory assessment compar-

ing its results with the developed inertial motion capturing technique, described in the

Chapter 4.

2.3.3 Markerless motion capture

The markerless technology does not demand the subjects to wear any special equipment

for motion capture. The OpenPose system belongs to this category.

OpenPose is an open-source system for multi-person 2D pose detection, which in-

cludes body, foot, hand, and facial keypoints, making in total 135 keypoints, on single
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Figure 2.7: Representation of Vicon setup - 10 Vicon cameras, capture volume, synchro-
nisation box and computer. Reproduced from [64].

images. In Figure 2.8a can be found an example of a skeleton representation obtained

with 18 keypoints [71].

The system uses an entire image as the input for a Convolutional Neural Network

(CNN) to predict both confidence maps and Part Affinity Fields (PAFs). The former is

associated with body part detection and the latter with part association. After, comes the

parsing step which performs a bipartite matchings to associate body part candidates. In

the last stage, it is all assembled into full body poses. Figure 2.8b shows an example of

an output of OpenPose system [71].

In this study, the OpenPose python library is tested, in Chapter 4, and compared with

a regular Mocap method, i.e., Vicon, and also with the developed inertial based algorithm.

2.4 Attitude Representation

Establishing the orientation of an object, with respect to a reference frame, is the ultimate

goal of an attitude determination [22, 73].

Therefore, two coordinate frames are considered:

• Earth Reference Frame - The reference frame considered in the study is the East-

North-Up (ENU) coordinate system, which is attached to the earth and represented

by the orthogonal vector basis E, N , U . At a given point, P, in Earth’s surface: E

is tangent to the circle of constant latitude, also known as parallel circle, passing

through P; N is tangent to the meridian circle passing through P; U points in the

direction of P. Therefore, E points East, N points North and U points upwards, as
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(a) OpenPose skeleton representation ob-
tained with 18 keypoints. Reproduced
from [72].

(b) OpenPose output example. Retrieved from
[71].

Figure 2.8: OpenPose skeleton representation.

shown in Figure 2.9a. Earth Reference Frame is always static independently of the

orientation of the body.

• Sensor Frame - The sensor frame is tightly attached to the object, Figure 2.9b, whose

attitude we would like to describe. The Sensor Frame is fixed to the sensor, however

it changes relative to the Earth reference frame due to the sensor movement.

(a) Earth Reference Frame - East, North, Up coordi-
nates.

(b) Sensor Frame.

Figure 2.9: Coordinate systems [74].

2.4.1 Quaternion Algebra

Introduced by William Rowan Hamilton, quaternion algebra is frequently used in ori-

entation estimation algorithms. The quaternion, a four-dimensional complex number,

can represent the orientation of a rigid body or coordinate frame in three-dimensional
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space [75, 76]. Comparing with Euler angle sequence rotation, which is another common

method, quaternions present a major advantage, for they do not experience gimbal lock,

i.e. the loss of a DoF that occurs when two axes of the three gimbals are turned into a

parallel arrangement [75].

2.4.1.1 Basic Definition and Representation

A full quaternion q is expressed, in equation (2.1), as the sum of a scalar q0 and a vector

q= (q1,q2,q3).

q = q0 +q = q0 + q1i + q2j + q3k (2.1)

The fundamental formula of quaternion algebra describes how the components be-

have and interact with each other:

i2 = j2 = k2 = ijk = −1 (2.2)

Furthermore,

k = ij = −ji (2.3)

i = jk = −kj (2.4)

j = ki = −ik (2.5)

Equations (2.2) to (2.5) are relevant to understand quaternion multiplication. These

relations are often called as Hamilton’s Rules.

2.4.1.2 Quaternion Properties

The multiplication of two quaternions q and p, here given by ⊗, do not commutate, i.e., q

⊗ p , p ⊗ q. The quaternion product, equation (2.6), can be determined using Hamilton’s

Rules, presented in section 2.4.1.1.

p⊗ q = p0q0 − (p1q1 + p2q2 + p3q3) + p0(q1i + q2j + q3k) + q0(p1i

+p2j + p3k) + i(p2q3 − p3q2) + j(p3q1 − p1q3) +k(p1q2 − p2q1) (2.6)

As result of simplification and combining terms, results equation (2.7).

p⊗ q = p0q0 − (pq) = p0q0 − (pq) + p0q+ q0p+ (p×q) (2.7)

The quaternion conjugate, denoted here by q∗, is represented in equation (2.8).

q∗ = q0 −q = q0 − iq1 − jq2 −kq3 (2.8)

The norm of a quaternion, denoted as ‖q‖, is defined in equation (2.9). Quaternion

norm is multiplicative.
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‖q‖ =
√
q2

0 + q2
1 + q2

2 + q2
3 =

√
q⊗ q∗ =

√
q∗ ⊗ q (2.9)

The inverse quaternion is given by equation (2.10).

q−1 =
q∗

‖q‖2
(2.10)

In the special case where the norm of a quaternion is unitary, the inverse is also the

conjugate, as expressed in equation (2.11).

‖q‖ = 1⇒ q−1 = q∗ (2.11)

2.4.1.3 Quaternions and Rotations

An arbitrary orientation of frame B relative to frame A can be discovered by rotating the

angle θ around an axis Ar̂, defined in frame A [75, 77, 78], as shown in Figure 2.10.

Figure 2.10: Frame B orientation is obtained through a rotation of angle θ around the
axis Ar̂. Reproduced from [78].

Conventionally, to describe an orientation, a quaternion is first normalised thus, hav-

ing a unit length, i.e, ‖q‖ = 1. A quaternion which has a unity norm is called a unit

quaternion, q̂ [75, 77].

The unit quaternion A
B q̂, which describes the orientation of frame B relative to frame

A is expressed in equation (2.12).

A
B q̂ =

[
q0,q1,q2,q3

]
=

[
cos

θ
2
,−rx sin

θ
2
,−ry sin

θ
2
,−rz sin

θ
2

]
(2.12)

The quaternion conjugate can be used to switch the relative frames in a given orien-

tation, i.e., to describe the orientation of frame A relative to frame B. Thus, BAq̂ is the

conjugate of AB q̂. Equation (2.13) represents the quaternion conjugate.
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A
B q̂
∗ = B

Aq̂ =
[
q0,−q1,−q2,−q3

]
(2.13)

With the quaternion product compound orientations can be defined. This is, the com-

pounded orientation A
C q̂ can be described through the multiplication of the orientations

B
Aq̂ and A

B q̂, represented in equation (2.14).

A
C q̂ = B

Aq̂⊗
A
B q̂ (2.14)

A pure quaternion is a quaternion whose scalar part is zero. We can get a pure

quaternion in frame B,Bv, from equation (2.15).

Bv =A
B q̂⊗

Av ⊗ AB q̂
∗ (2.15)

In turn, Bv also represents the rotation of a three dimensional vector. Av and Bv are

the same vector described in frame A and frame B respectively.

The orientation described by A
B q̂ can be represented as the rotation matrix A

BR defined

by equation (2.16) [77].

A
BR =


1− 2q2

3 − 2q2
4 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) 1− 2q2
2 − 2q2

4 2(q3q4 + q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) 1− 2q2
2 − 2q2

3

 (2.16)

For a pure rotation, the rotation matrix can be converted to a quaternion using the

equation (2.17),

q0 =

√
1 +m00 +m11 +m22

2

q1 =
m21 −m12

4q0

q2 =
m02 −m20

4q0

q3 =
m10 −m01

4q0
(2.17)

where mij represent matrix entries.

2.4.1.4 Quaternion Intuition

For an easier quaternion interpertation it can be relevant to group them into classes [65]:

• Pure quaternions correspond to quaternions with null scalar component. These

correspond to R3, the space of three-dimensional vectors.

• Quaternions with null vector component correspond to the scalar space, R.
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• Rotation quaternions are unitary quaternions, i.e, ‖q‖ =1, which belong to the SO3

group of orthogonal matrices with determinant 1. These quaternions are useful to

describe rotations in space.

• General quaternions have non null scalar and vector components and norm un-

equal to 1. They describe a combination of a rotation and scaling of vectors. Fur-

thermore, if the quaternion norm is > 1, objects are stretched; consequently, if the

quaternion norm is < 1, objects are compressed.

q1 = [0.0,  0.577,  0.577,  0.577] q2 = [-0.134,  -0.103,  0.795, -0.583]

Figure 2.11: Representation of quaternions classes. Example of a pure and a rotation
quaternions (left to right). Figures were generated through a quaternion simulator avail-
able in [79].

2.5 Sensor Fusion for Orientation Estimation

A single sensor system usually suffers from the following problems:

• Sensor deprivation - Loss of perception on the desired object caused by the sensor’s

element failure;

• Limited spatial coverage - Individual sensor, usually, covers only a limited region.

• Limited temporal coverage - Occasionally a particular set-up time is required to

perform and to transmit a measurement, thus limiting the maximum frequency of

measurements.

• Imprecision - Measurements are restricted to the precision of the employed sensing

element.

• Uncertainty - It appears when the sensor cannot measure all significant attributes

or when the observation is ambiguous. An individual sensor is unable to reduce

uncertainty in its perception because of its limited view of the object.
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To overcome the listed problems, one can make use of a sensor fusion technique, which

consists in combining sensory data such that outcome information is somewhat better

than what it would be when individual sources were used [80]. Thus, the combination

of measurements from the different sensors, allows to best estimate the IMU attitude

through a sensor fusion algorithm, as shown in Figure 2.12.

Accelerometers

Gyroscopes

Magnetometers

Sensor Fusion Attitude 
Estimation

Figure 2.12: Sensor fusion is applied to get the best attitude estimation. Adapted from
[22].

There are several approaches for fusing IMU sensors and among them, algorithms

like the Kalman filter, complementary filter, and particle filter are frequently employed.

2.5.1 Complementary Filter

In this study, a complementary filter based sensory fusion method was applied. In gen-

eral, this type of filter performs an analysis in the signal’s frequency domain for obtaining

a better estimation of a particular quantity.

For attitude estimation, based in IMU readings, a complementary filter implements

a high-pass filter on gyroscope’s estimated orientation, whose data has been affected by

low-frequency noise. Additionally, a low-pass filter on accelerometer’s and magnetome-

ter’s data, which are affected by high-frequency noise, is applied. With the two filtered

estimations, it is expected to obtain an all-pass and noise-free attitude estimation. The

cut-off frequency value, which is the same for both filters, is found as a trade-off between

the preserved bandwidth of each single signal [68, 81].

The combination of this low pass and high pass filter are expressed in equation (2.18).

θ = αθg + (1−α)θam (2.18)

where θ represents the filtered orientation, θg the gyroscope orientation and θam the

orientation provided by accelerometer and magnetometer. The α parameter is the filter

coefficient, which can be calculated through equation (2.19) if the sample time period, Ts,

and time constant, τ , are known.

α =
τ

τ + Ts
(2.19)
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Arm movements can be decoded from low-frequency time-domain signals [82, 83].

Thus, for the time constant, τ , the value of 4 Hz was defined.

The Madgwick filter is a common implementation of a complementary filter. The

algorithm uses a quaternion for representing a body’s attitude and, its performance is

controlled by an adjustable parameter which compensates gyroscope drift. Additionally,

the filter combines an analytically derived gradient descent algorithm which enables:

performance at low sampling rates; a magnetic distortion compensation algorithm; and,

gyroscope bias drift compensation [78].

Another complementary filter approach is the Mahony filter which also employs

quaternion representation for orientation estimation. The Mahony considers the disparity

between the orientation from the gyroscope and the estimation from the magnetometer

and accelerometer and weighs them according to its gains. Thus, two parameters control

the algorithm’s performance: the filter proportional gain and weighting process directly

on the quaternions [84].
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3
Motion Tracker Framework

This Chapter presents the proposed upper limb and torso motion tracking system. The

methodology along with the relevant processes for the implementation will be described.

Four anatomical segments are studied and, consequently, four Inertial Measurement Unit

(IMU) devices are considered. To fuse the collected sensor’s information a Quaternion-

based Complementary Filter (QCF) approach is introduced. At last, the angular motion

reconstruction is addressed.

3.1 System Overview

Through framework development, some system requirements had to be fulfilled. The

following list presents them. Herewith, the system:

1. Must focus on the upper limbs and torso motion;

2. Must be robust to complex scenarios;

3. Should have minimum number of hyperparameters.

The developed upper limb and torso motion tracker system is a sequential algorithm

designed to obtain the time-dependent angular information of several anatomical seg-

ments. Since the upper limbs and spine are regions with a higher prevalence and inci-

dence to work-related musculoskeletal disorders, the upper body is at the main focus

of this research. Therefore, four anatomical segments, shown in Figure 3.1, are defined:

arm segment, as the segment between shoulder and elbow joint; forearm segment, as the

segment between elbow and wrist joint; hand segment, as the segment between wrist and

distal region of the third metacarpal; torso segment, as the segment between the jugular

notch and the xiphoid process of the sternum.
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Upper Arm

Forearm

Hand

Thorax

Figure 3.1: The anatomical segments of the proposed framework: thorax, upper arm,
forearm and hand. Adapted from [85].

The motion tracker implementation pipeline is depicted in Figure 3.2. Data acqui-

sition is the first stage of the process, which is related to sensor signal acquisition. The

system was thought to have the minimum invasiveness to the operator, yet maintaining a

fair cost/effectiveness result. Thus, four devices are employed. Each of them is attached

to one of the four considered segments, providing information on acceleration, angular

velocity and magnetic field.

Signal processing methodology comprises pre-processing and orientation estimation.

The first is explained in Section 3.3 and it is divided into two main processes: temporal

synchronisation and noise reduction. Orientation estimation, detailed in Section 3.4,

describes the applied sensor fusion method, the Quaternion-based Complementary Filter

(QCF), and the necessary considerations to obtain the angular information of one segment

relative to another or relative to an anatomical plane, the relative and absolute orientation

respectively.

Absolute Orientation

Acceleration

Magnetic Field

Angular velocity

Pre-processing Orientation Estimation

Relative Orientation

Frontal

Sagittal

Raw Sensor

Forearm - Hand

Arm - Forearm

θ

Noise reduction
Temporal 

synchronization

Sensor 
Fusion

Figure 3.2: Motion tracker system pipeline.
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3.2 Kinematic Model

The considered model admits flexion/extension, abduction/adduction (2 DoF), for shoul-

der joint, flexion/extension and pronation/supination (2 DoF) for the forearm, wrist’s

flexion/extension and ulnar/radial deviation (2 DoF). For the torso, the model allows

flexion/extension and lateral flexion/extension (2 DoF). Consequently, the whole model

admits 8 DoF and considers human movements of the upper limb and torso.

3.3 Signal Pre-Processing

The acquired inertial data, which comprises the information of accelerometers, gyroscope

and magnetometers, must be pre-processed. Signal pre-processing consists of signal

synchronisation, filtering and normalisation.

3.3.1 Temporal Synchronisation

There are two major considerations when addressing the pre-processing of multiple sen-

sor’s and device’s data: (1) ensuring equal sampling frequency; (2) ensuring temporal

alignment.

Unsuccessful temporal synchronisation of different sensors can lead to shifted or

stretched signals which would blur events [86]. Consequently, it would compromise the

results of sensor fusion and distort the subsequent signal analysis. Often, this problem

arises not only from fabrication discrepancy, wear-out results and temperature variations

but also from devices’ clocks, which can drift and affect the sample timing and, variations

in communication latencies [86, 87]. Therefore, for allowing a high quality of multiple

sensor fusion, synchronisation must be ensured.

To address this issue, a synchronisation pipeline was implemented and divided into

two stages: (1) synchronisation at the sensor level and (2) synchronisation at the device

level. The pipeline is summarised in Figure 3.3.

An IMU device is composed of three built-in sensors, which may have different sample

rates, thereupon may sample datapoints with different timestamps, i.e., tS1
Raw, tS2

Raw,tS3
Raw.

Adjusting the sampling frequency, at the sensor level, all sensors, within a device, will

share the same time vector, e.g. tD1 for the IMU device 1.

Although sampling at the same rate, the signal information of different devices can

present some delay relative to one another, i.e. clock drift. Thus, at the device level, the

regular time vector, that resulted from a sensor synchronisation, will be used, along with

synchronisation events, to determine the signal delay.

Synchronisation events are moments in time that were acquired at the same temporal

instant but may be shifted between devices due to temporal misalignment.

The main goal is to calculate a common synchronised time, tGlobal , which is shared

among all the synchronised devices.
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Figure 3.3: Temporal synchronisation stages. Acc - accelerometer, Gyro - gyroscope, Mag
- magnetometer. Events refer to synchronisation events.

Consider three standalone devices, D1, D2 and D3 represented in Figure 3.4. Signals

of different devices are presented and, marked on top of each is the considered synchro-

nised event. The delay between signals is then calculated through the difference between

events of different devices.
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(a) Before device synchronisation. The syn-
chronisation events (depicted by red verti-
cal lines) are misaligned.
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(b) After device synchronisation. The syn-
chronisation events (depicted by red verti-
cal lines) are aligned.

Figure 3.4: Synchronisation at the device level. The synchronisation events are repre-
sented by red vertical lines.

Equation (3.1) refers to the delay between device 1 and device 2 and the time delay

between device 1 and 3, respectively,

δ12 = eD2 − eD1

δ13 = eD3 − eD1
(3.1)

36



3.4. ORIENTATION ESTIMATION

with δ12,δ13 ∈ R and eD1, eD2, eD3 ∈ R+
0 .

After settling the delays, time corrections proceeds in equation (3.2),

∼
t1 = t1

∼
t2 = t1 − δ12
∼
t3 = t1 − δ13

(3.2)

where
∼
t1,
∼
t2 and

∼
t3 represent the synchronise time for the corresponding device. Lastly,

in equation (3.3), a single synchronised time, tGlobal , is defined (referred in Figure 3.3).

∼
t1 =

∼
t2 =

∼
t3 = tGlobal (3.3)

3.3.2 Noise Reduction

Raw data from accelerometers and magnetometers surpassed a low-pass filter. The filter

has the configuration of a first-order low-pass Butterworth prepared for a cutoff frequency

of 1 Hz [88, 89]. With this filter, high-frequency variations in data are rejected, e.g, linear

acceleration is discarded and the remaining acceleration, the gravitational, is kept which

is the one that affects orientation.

In industry, the operator’s movements frequency range is generally low, which also

supports the decision for the cutoff frequency value.

3.3.3 Data Normalisation

Most frequently, sensor measurements are reported as non-normalised vectors. Thus, a

normalisation was applied to the filtered IMU data. Let us consider v =
[
vx,vy ,vz

]
, that

is normalised to vn =
[
vxn,vyn,vzn

]
. Equation (3.4) presents vector normalisation and

equations (3.5) to (3.7) present the normalised components.

‖v‖ =
√
v2
x + v2

y + v2
z (3.4)

vxn =
vx
‖v‖

(3.5)

vyn =
vy
‖v‖

(3.6)

vzn =
vz
‖v‖

(3.7)

3.4 Orientation Estimation

For acquire valuable information of limb’s attitude, the signals gathered from accelerome-

ters, gyroscopes and magnetometers should be combined through a sensor fusion method.
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This process aims to tackle the challenges associated with single sensor information.

The angular motion of a human segment can be represented through a recursively

estimated quaternion and its properties. The block diagram, represented in Figure 3.5,

addresses the QCF approach.

The implemented filter is derived from [81, 90]. Firstly, data from accelerometer

and magnetometer sensors are combined in an algebraic algorithm. With this algorithm,

a representation of Earth Reference Frame will be achieved, resulting in a reference

quaternion. Thus, sensors’ information, depicted in Sensor Frame, can be set to Earth

Reference Frame.

Afterwards, an update quaternion, achieved from gyroscope’s data, will be fused with

the reference quaternion in QCF. Subsequently, a final estimated quaternion is obtained.

𝒈

𝒘

𝒎

QCF

𝑞%

𝑞&

Reference quaternion

Estimated quaternion

Acceleration

Magnetic field

Angular velocity

Algebraic 
Method

Figure 3.5: Block diagram of QCF approach.

Making use of rotational vectors, retrieved from the estimated quaternions, angular

considerations relative to different segments can be established.

3.4.1 Algebraic Method

The algebraic method [91] is an approach to represent attitude through a 3×3 rotation

matrix. It combines the information of two different vectors to define an orthogonal coor-

dinate system with the basis vectors.

Firstly, the normalised accelerometers, g, and magnetometers, m, vectors are charac-

terised in equations 3.8 and 3.9, respectively.

g =
[
gx,gy , gz

]
(3.8)

m =
[
mx,my ,mz

]
(3.9)

According to East-North-Up (ENU) configuration, the cross product between m and

g gives East (E) and, the cross product between g and East gives North (N ):
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E = m× g =
[
mygz −mzgy ,mzgx −mxgz,mxgy −mygx

]
=

[
Ex,Ey ,Ez

]
(3.10)

N = g ×E =
[
gyEz − gzEy , gzEx − gxEz, gxEy − gyEx

]
=

[
Nx,Ny ,Nz

]
(3.11)

Since g and m vectors are not perpendicular with each other, the cross product re-

sult is non-unitary. Consequently, E should be normalised, as in Section 3.3.3, before

determining N .

The obtained orientation is given by the rotation matrix represented in equation 3.12.

R =

Ex Nx gx
Ey Ny gy
Ez Nz gz

 (3.12)

Then, the obtained rotation matrix can be converted into a reference quaternion by

equation (2.17). This quaternion express the orientation of a segment relative to Earth Ref-

erence Frame. However, it does not represent the final orientation, once it only relies on

accelerometers and magnetometers readings. Nonetheless, this quaternion is presented

as measurements to QCF in order to obtain the final estimate quaternion.

3.4.2 Quaternion Based Complementary Filter

The quaternion-based attitude method updates the estimated quaternion through gyro-

scope’s measurement and rectifies it based on a reference quaternion from the accelerom-

eter and magnetometer measurements. The filter architecture is schematised in Figure

3.6.

Angular velocity
𝒒𝑬𝒕$𝟏 ⊗ 𝒒'(

𝒒𝑬𝒕

Initialize

Acc
Mag

Gyro

𝒒𝑹𝒕

SLERP

𝒒𝑼𝒕
Estimated quaternion

Algebraic Method

𝒘𝒕 𝒒'(

Figure 3.6: Quaternion based complementary filter architecture.

The gyroscope’s data can be represented through a quaternion, qw, as suggested in

equation (2.12) from Section 2.4.1.3. The previous instant attitude which is updated with

the gyroscope’s quaternion, results in an update quaternion, qUt , which represents the

device rotation.

For initialising the filter, the update quaternion is set equal to the reference quaternion.

This way, both of them represent the same device orientation. Nevertheless, for every
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sensor reading interval, a rectification and calculation of the estimated quaternion take

place.

Applying an interpolation between these two quaternions, the reference and the up-

date, have advantages for both measures can be emphasised. A Spherical Linear Inter-

polation (SLERP) allows to weight between the two quaternions. The filter weight-value

is determined through equation (2.19), introduced in Section 2.5.1. Once the gyroscope

is very accurate in short intervals it is more weighted. Nevertheless, to stabilise the un-

wanted sensor drift, a minor amount of the interpolation is directed towards accelerome-

ter and magnetometer, which are sensors more trustworthy in the long term. Therefore,

after each time interval, an interpolation is performed to correct the orientation.

The estimated orientation exhibits the QCF characteristics which combines high-

frequency measures from gyroscope and low-frequency from accelerometers and magne-

tometers to deliver reliable motion information.

3.5 Angular Trajectory Reconstruction

After determining the orientation of human segments through the QCF, it is possible to

make assumptions on angular motion.

Figure 3.7 represents the angular reconstruction of abduction and adduction move-

ments, while using a single IMU on the upper arm.

Assuming that consecutive IMU devices, placed on the upper limb segments, are

aligned, i.e., have one local axis that has the same direction as another. Using the esti-

mated quaternion, qE , the aligned direction, e.g,
[
0,0,1,0

]
, can be represented in sensor

frame through a pure quaternion, v as in equation 3.13.

v = qE ⊗
[
0,0,1,0

]
⊗q∗E (3.13)

Excluding the scalar part of v results in a R3 vector, hereafter expressed as direction

vector. Making use of the dot product between two vectors, the angle between segments

can be determined, as represented in equation (3.14),

θ = arccos
( v ·u
‖v‖ · ‖u‖

)
(3.14)

where v and u are two vectors representing two different segments, and θ is the angle

formed between v and u.

Angular information between two consecutive segments are defined as relative ori-

entation. On the other hand, the angle between a segment and an anatomical plane is

defined as absolute orientation.
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Figure 3.7: Example of angular reconstruction of abduction and adduction movement.
Movement description: five seconds in a neutral pose; abduction reaching shoulder line;
pose sustained for five seconds; full abduction; pose sustained for five seconds; adduction
until shoulder line; pose sustained for five seconds; full adduction until neutral pose;
pose sustained for five seconds.

Figure 3.8 represents two different angular considerations. In Figure 3.8a, an abducted

arm is observed along with a representation of an inertial device attached to the upper

arm. Taking the sagittal plane into consideration, the abduction angle can be calculated.

For that matter, the complementary angle between a normal vector of the sagittal plane,

the vector P R, with the direction vector of the sensor, vector P Q, provides the abduction

angular information. In Figure 3.8b, an abducted arm is also represented. Two devices

are illustrated, one on the upper arm and another on the lower arm. Now, the focus is

on the flexion angle between arm and forearm segments. Thus, using only the direction

vectors of each device the relative orientation is determined.

It is relevant to explain that the anatomical planes were defined using the local axes

of an inertial device placed on a subject’s torso. Additionally, the IMU device placed

on torso segment is relevant to determine torso flexion and lateral flexion. The angle of

these last movements are accomplished by comparing torso’s current state with torso’s

rest position.

3.5.1 Pronation and Supination

Pronation and supination, Figure 3.9, consist of a set of movements which happen when

the wrist rotates, allowing to flip the palm either face up or face down. Considering the

right hand, supination is defined as the clockwise motion while the counterclockwise

motion is named as pronation.
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Figure 3.8: Vector considerations for angular reconstruction. Left - absolute orientation.
Right - relative orientation.

Figure 3.9: Supination and pronation movements (left to right). Adapted from [92].

Ergonomically, it is relevant to understand how often these movements occur. When

subjects force their hands to pronate or supinate, a static load (i.e. muscle use for main-

taining a static position or posture) and strain are placed on joints, muscles, ligaments and

membranes in the arm, leading to fatigue, pain and injury. Therefore, excessive supina-

tion and pronation can be a risk factor [93]. The adopted method to identify pronation

and supination is described in the following paragraphs.

The accelerometer sensor was selected to report these specific motion changes. The

method is based on the acceleration information of a device placed either on the hand or

on the forearm and the behaviour of accelerometer’s z-axis, in Sensor Frame coordinates.

Firstly, a normalisation of the accelerometer sensor is performed. Then, a convolution-

based filter is applied to the z-axis accelerometer signal, using a window length of 50.
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Afterwards, a median filter is applied using a kernel size of 201 followed after by a signal

derivative. The window length and kernel size are empiric values. Local maximums of the

z-axis derivative acceleration correspond to pronation while local minimums correspond

to supination. Figure 3.10 represents the applied method.
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Figure 3.10: Method to identify pronation and supination movements. The acceleration is
represented by acc. Top to bottom: normalised acceleration, z-axis, with movements iden-
tification; normalised acceleration, z-axis, after applying the convolution-based and the
median filters; signal derivative where minimums represent supination and maximums
represent pronation.
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Results

In this Chapter, the proposed method is compared against other state-of-the-art inertial

methods, a computer vision approach based on OpenPose and a ground truth provided by

an optical-passive tracking system. The tracking system was assessed under two distinct

scenarios: (1) laboratory validation and (2) field assessment. While the laboratory study

provides an estimated response of the algorithm from a controlled context, the field

assessment allows to evaluate the potential of an ergonomic risk assessment tool and

evaluate the impact of explaining risk factors.

4.1 Inertial Signal Acquisition

Inertial motion data was recorded using a set of inertial sensor devices designed by Fraun-

hofer AICOS. The sensing framework is called the Internet of Things in Packages (IoTiP),

represented in Figure 4.1, and consists of a miniaturised hardware architecture of embed-

ded electronics for wireless devices.

An IoTiP is a standalone wireless device composed by a customised set of built-in sen-

sors to measure several physical realities. IoTiPs have a modular architecture, allowing a

seamless and quick integration among different sensing requirements.

In the context of this work, the base module was used, composed of a 9-DoF IMU

(triaxial accelerometer, gyroscope and magnetometer). The IoTiP has a wireless charging

unit (QI compliant) and also complies with the Bluetooth Smart protocol. The base IoTiP

module specifically measures variations in acceleration, angular velocity and magnetic

field.
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Figure 4.1: The IoTiP device is composed of a triaxial accelerometer, gyroscope and a
magnetometer.

The IoTiP communicates to an Android application called Recorder, developed by

Fraunhofer AICOS, which provides control functionality, battery monitoring and firmware

updates to the devices. The Recorder application allows to record sensor data from multi-

ple devices (including smartphone and IoTiPs) and also to store annotations in real-time

during the acquisition protocol. Figure 4.2 presents the temporal events for starting an

acquisition through the Recorder application.

Figure 4.2: Screenshots of Recorder application. From left to right: Recorder’s home
interface; sensors and devices selection; subject and sensors position; selection of desired
workstation; acquisition interface with annotations panel.

The correct placement and positioning of the sensing devices is essential for the es-

timation process of angular movement. Since this research focused on monitoring four

human segments, a total of four IMUs were attached to each segment. It is important to

refer that the smartphone is considered as an IMU device, once it can also sense accelera-

tion, angular velocity and the magnetic field.

The IMU devices were placed at the following regions: IMU 1, IMU 2 and IMU 3 were

positioned at the posterior side of the hand, forearm and arm, respectively. Particularly,
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IMU 2 was placed in the wrist area and IMU 3 was located in the elbow region. These

three IMU devices were attached firmly with elastic bands. IMU 4 was positioned in the

thorax area. To assure a common axis alignment, the local axes direction of each device

must be known before attaching the device to the subject. It was considered that the

Y-axis of all devices points up. Figure 4.3 illustrates the inertial devices placement.

Y

Z

X

Z
X

Y

IMU 4

IMU 3

IMU 2

IMU 1

Figure 4.3: Placement of the IMU devices: three units on the upper limb and one unit on
the torso. The devices were commonly aligned with Y-axis pointing up.

4.2 Laboratory Validation

A protocol was designed (Appendix C) to serve as a validation study of the proposed

upper limb and torso tracking method. To measure the tracking error, the Vicon motion

capture system was used as ground truth. Vicon is a state-of-the-art Motion Capture

(Mocap) with a reported error lower than 2 mm [70].

Since the proposed framework is intended to be used through long-term acquisitions

during the operator’s work shifts, it is expected that albeit a Quaternion-based Comple-

mentary Filter (QCF) based upon on a sensor fusion approach is implemented, sensor

drift will still be residually accumulated over time. To tackle this issue, one strategy might

consist of using another layer of information to introduce redundancy in the system and

correct sensor drift periodically. A possible layer of information is using video, which has

the advantage of not suffering drift related issues. Despite the video processing is more

computationally expensive than inertial processing, it can be used during short iterations
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to reset the drift from sensors. Therefore, a video collection on the validation protocol is

introduced to test and characterise the OpenPose library, as a potential redundant system

to compute angular information between anatomical joints.

The study was conducted at Fraunhofer AICOS Human Motion Lab, located in Porto,

and was composed of 14 subjects which were asked to follow a prescribed acquisition

protocol to measure the angular error across all considered joints in a wide range of

different movements. Table 4.1 summarises the subjects’ characteristics.

Table 4.1: Subjects’ characteristic. m: male; f: female; yr: average years; r: ratio.

Subjects’ characteristics
Number 14
Gender (m:f) 9:5
Age (yr ±σ ) 26 ± 3
Dominant hand(r) Right hand (14:14)

The validation protocol is composed of two main parts: one describes a static move-

ment evaluation and the other details a dynamic evaluation. The concepts static and

dynamic denote if the subject is standing or walking while doing the designated move-

ments, respectively.

Within each part, there are multiple Sets focused on different segments’ movements.

Table 4.2 summarises the studied segments in each Set.

Table 4.2: Validation protocol. Considered sets, for static and dynamic evaluations, with
respective anatomical segments.

Static Evaluation Dynamic Evaluation
Set 1 - Arm and forearm
Set 2 - Forearm and hand Set 5 - Arm and torso
Set 3 - Torso Set 6 - Arm and torso
Set 4 - Arm and torso

4.2.1 Equipment and Placement

Subjects wore a motion capture setup composed of four IMUs sampling at 100 Hz and

optical markers tracked by Vicon cameras at 100 Hz. The Vicon setup was composed of

ten cameras, measuring an acquisition area of 8x4 m, and two standard cameras filming

the whole exercise, which were also used as input for OpenPose algorithm.

The IMUs were located as described in Section 4.1. Markers’ positions followed Vi-

con’s Upper Limb Model Guide descriptions. Figure 4.4 exhibits markers’ placement. The

precision of marker placement is crucial for achieving accurate results.
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Figure 4.4: Vicon Upper Limb Model marker placement. Front and rear view. The
adopted model did not consider the RBAK marker. Retrieved from [94].

In Vicon’s upper limb model, left and right side markers are placed symmetrically.

For the purpose of this study it was defined to monitor one limb. Thus, according to

participants dominant hand, the IMUs were placed on the corresponding limb. Since all

participants were right-handed, the right upper limb model was considered, as shown

in Figure 4.5. Fourteen markers were used although thirteen were tracked in trials - one

marker was specifically used for calibration procedures. Ten markers were placed on the

upper limb, two on the back and the other two on the thorax. Figure 4.6 displays a subject

with all sensors and markers attached.

Figure 4.5: Screeshot from Vicon Nexus right upper limb model. Frame example. Markers
are represented as spheres and anatomical segments are depicted connecting the markers.

It is worth to mention that all Vicon cameras had to be calibrated before acquisitions.

The calibration method required the use of a calibration object composed of five fixed

markers. The calibration object was also used to establish a coordinate frame. An in-

correct calibration process would contribute to noisy tracking or loss of information on
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marker position. Additionally, whenever the experience room encountered light varia-

tions, which affect cameras perceiving of markers, a calibration was required.

Figure 4.6: Side-view subject with inertial devices and optical markers attached.

4.2.2 Dataset Overview

Raw data is composed of 2 recording hours. Tables 4.3 and 4.4 summarise the consid-

ered actions for static and dynamic evaluation, respectively. Several movements can be

recognised and analysed, by the segmentation of inertial data and videos, which was

accomplished trough manual annotations. The anatomical position is present in all sets

since the subject was required to perform this position in the beginning and at the end of

each test.

Table 4.3: Studied actions for static evaluation.

Action
Segment Torso Arm Forearm Hand

Flexion/Extension
Lateral Flexion
Abduction/Adduction
Radial/Ulnar deviation
Anatomical Position

Table 4.4: Studied actions for dynamic evaluation.

Action
Segment Torso Arm Forearm Hand

Flexion
Flexion/Extension
Anatomical Position
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Once different equipment was employed to acquire data, i.e., video cameras and

sensing devices, temporal synchronisation issues arise. Nonetheless, if video cameras

are considered as another IMU device, the synchronisation issue is solved through the

method presented in Section 3.3.1. A visual examination confirmed that all recordings

were synchronised by the temporal alignment procedure.

4.2.3 Motion tracking performance

For applying the QCF the α parameter must be established. Using equation (2.19), α

was set to 0.975. To evaluate the reliability of the angular motion reconstruction, the re-

sults with the proposed method, namely QCF, were compared with three other available

sensor fusion methods. Madgwick and Mahony algorithms were used based on the imple-

mentation provided by scikit-kinematics Python package [65]. Another quaternion based

complementary filter approach was implemented - the AGCF - using only accelerometer

and gyroscope data.

In a first evaluation, a comparison between different inertial sensor fusion algorithms

(i.e. QCF, Madgwick, Mahony, and AGCF) with Vicon was performed. The second

evaluation compared the results from QCF with OpenPose algorithm and Vicon.

It is relevant to explain that the procedure adopted to adjust the light conditions of the

tests is complex. On one hand, the best conditions for using Vicon require low ambient

light, while on the other hand, the conditions for using OpenPose require regular ambient

light so that the subject’s skeletal image contours can be identified by the model.

It was decided to minimise Vicon’s error, since it was considered the ground truth of

this study and, low ambient light conditions were applied. However, this fact degraded

the performance of OpenPose algorithm.

Due to inadequate light conditions on Sets 2, 3 and 4, the OpenPose valid data was

composed only of Sets 1, 5 and 6. Therefore, a comparison between the IMU and Vicon

can be presented for the exercises in all sets. Though, the comparison between the IMU

and OpenPose is performed only with data from Sets 1, 5 and 6.

4.2.3.1 Sensor fusion methods comparison

Different sensor fusion methods were applied to the dataset and afterwards, angular re-

construction was addressed. The results from the different methods were then compared.

Figure 4.7 displays an example of exercises from Set 1.

In this particular example, the Madgwick and Mahony approaches have a higher

signal-to-noise ratio, behaving almost identically. The AGCF has the most unstable re-

construction, and in its turn, the QCF curve is closer to Vicon’s.
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Figure 4.7: Angular reconstruction of Set 1 arm’s exercises. Comparison of different
sensor fusion methods.

To perform a quantitative performance assessment of the proposed method three

evaluation metrics were used: the Cumulative Distribution Function (CDF), Mean Ab-

solute Error (MAE) and the Root-Mean-Square Error (RMSE). Firstly, the CDFs were

calculated to assess each segment performance under different sensor fusion methods, as

represented in Figures 4.8 and 4.9, for static and dynamic evaluation, respectively. The

CDFs took into account the error for all sets across different anatomical segments and

considered the actions described in Tables 4.3 and 4.4.

The CDF represents the probability that a variable is less than or equal to a value.

The probability is represented in the vertical axis and the horizontal axis is the allowable

domain for the given probability function.

By examining the static evaluation graphs, it is possible to conclude that for torso

Madgwick, Mahony and QCF have similar behaviour. The AGCF method has the worst

performance for that segment: during 80% of the total acquisition time, it has an error

lower than 50◦, while others present an error lower than 15◦. The AGCF presents, glob-

ally, higher errors when comparing it with other methods yet, for the hand segment, the

AGCF exhibits a better outcome. Nevertheless, QCF presents overall better results.

It can be observed that the results from the dynamic assessment are slightly better than

the static evaluation. The algorithm performance was expected to be lower in the dynamic

trials. However, that is not observed. A fair comparison between static and dynamic

evaluations can not be established since the number of samples for static evaluation is

higher than in dynamic evaluation and, consequently, the dataset is unbalanced.

Apart from the AGCF, the methods similarly perform the reconstruction thus, the

CDF graphs have the same shape. It should be noticed that: the arm’s segment presents

the lowest error - during 80% of the total acquisition time, the techniques have an error

lower than 10◦; the hand is the segment with the highest error consideration - during

52



4.2. LABORATORY VALIDATION
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Figure 4.8: Cumulative distribution function for the absolute error for each considered
algorithm across different segments - static evaluation.

80% of the total acquisition time, the methods have an error less than 20◦.

The overall performance of QCF reports better outcomes than the other methods.

Nevertheless, the default parameters of Madgwick and Mahony were used across different

sets and which can explain the performance variation of these techniques.

Unlike the other admitted methods, the AGCF employs only two sensors, the ac-

celerometer and the gyroscope, which may affect the required time to ensure the filter

stabilises in the predicted value, reducing its efficacy, i.e. the filter converge to the pre-

dicted value.

Once the QCF achieved better results, detailed error tables for this filter are presented.

Tables for the remaining methods are presented in Appendix D. Table 4.5 summarises

the MAE of QCF for static evaluation. MAE is given by equation (4.1),

MAE =
∑N
i=0 |yi − ŷi |
N

(4.1)

where yi denotes the ground truth value at time i observed N times provided by Vicon
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Figure 4.9: Cumulative distribution function for the absolute error for each considered
algorithm across different segments - dynamic evaluation.

and ŷi denotes the predicted value at time i estimated N times by the upper limb and

torso tracking method.

Table 4.5: Mean absolute error regarding QCF method for each anatomical segment
including all static sets.

QCF MAE (µ± σ )◦
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 7± 4 11± 12 14± 12 10± 6
Flexion 15± 4 13± 9 27± 20 37± 12
Extension 5± 5 14± 14 6± 15 37± 11
Lateral Flexion 4± 5 - - -
Abduction - 15± 17 - -
Adduction - 11± 9 - -
Radial Deviation - - - 12± 6
Ulnar Deviation - - - 15± 11

The results suggest that QCF presents lower performance for the hand segment, par-

ticularly in flexion and extension. Additionally, during flexion exercise, forearm and

arm’s error is high. Nevertheless, the performance of the arm and the torso are, in gen-

eral, satisfying.
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Algorithms can be analysed using their RMSE as a measure of how well they describe

a given set of observations. Equation (4.2) gives the RMSE.

RMSE =

√∑N
i=0(ŷi − yi)2

N
(4.2)

While MAE measures an average of the absolute differences between prediction and

the actual observations, where all errors influence MAE proportionally, RMSE performs

the square root of the average of squared differences between predictions and actual

observations. Although both can represent an average model prediction error, RMSE

gives a relatively high weight to large errors.

In this study, RMSE is used as an evaluation criterion of the different methods. Table

4.6 presents the RMSE results of QCF for segments performance, in static evaluation.

Table 4.6: Root mean square error regarding QCF method for each anatomical segment
including all static sets.

QCF RMSE (◦)
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 8 16 18 12
Flexion 21 16 34 39
Extension 8 19 23 38
Lateral Flexion 6 - - -
Abduction - 23 - -
Adduction - 14 - -
Radial Deviation - - - 14
Ulnar Deviation - - - 18

Similarly to Table 4.5, the RMSE table shows evidence that the hand segment has the

lowest performance for flexion and extension movements. In order to further understand

why the hand segment had higher overall RMSE than others, data was carefully explored

using time series and the recorded video.

This particular inspection made clear that there were evident problems with markers’

recognition on the hand segment. Figure 4.10 illustrates an example where a subject

performs wrist flexion an extension. The angular variation, through visual inspection, is

greater than 90◦ however, Vicon reconstruction only detects a smaller difference, which

is less than 10◦. Only one marker characterised the hand portion. Thus, that marker is

essential to perform a validation of hand movements and, when a tracking failure occurs,

it may comprise the accuracy of the Vicon system. Consequently, the error of inertial data

is higher.

The dynamic evaluation protocol aimed to simulate actions involving the simulta-

neous movement of the torso and the upper arms segments. This situation occurs in
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Figure 4.10: Sequence of hand movements and respective angular reconstruction using
Vicon software. A - rest position; B - Wrist extension; C - Wrist flexion.

manufacturing scenarios, as quite often operators are required to walk, stand and bend to

interact with tools and machinery. Tables 4.7 and 4.8 are related to dynamic assessment.

For the dynamic evaluation, flexion and flexion/extension were distinguish. Arm’s

flexion and extension were performed continuously, without any pause. Hence, these two

movements were combined in the analysis.

Table 4.7: Mean absolute error regarding QCF method for each anatomical segment
including all dynamic sets.

QCF MAE (µ± σ )◦
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 6 ± 5 8 ± 6 15 ± 13 8 ± 6
Flexion 23 ± 29 - - -
Flexion/Extension - 25 ± 23 - -

Table 4.8: Root mean square error regarding QCF method for each anatomical segment
including all dynamic sets.

QCF RMSE (◦)
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 7 10 20 10
Flexion 36 - - -
Flexion/Extension - 34 - -

The algorithm performance was expected to reduce during dynamic trials. However,
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that is not observed. An explanation can be the reduced amount of data when comparing

with the static tests - only two sets had dynamic considerations.

The detection of pronation and supination involves the identification of the action

itself and not an angle error quantification. Hence, the sensitivity was used to report the

performance of an identification method for these movements. Sensitivity is defined as

the proportion of true positives which are correctly identified.

The applied method, to identify pronation and supination, described in Section 3.5.1

from Chapter 3, only relies on accelerometer data and thus, requires no sensor fusion

technique. Table 4.9 exhibits the sensitivity results, where it can be observed that prona-

tion and supination were successfully identified. Therefore, in a controlled scenario, the

accelerometer’s Z-axis is found to be an efficient identification method.

Nevertheless, in the industrial context, movement’s variability is larger and might

change the sensor behaviour. Consequently, in real scenarios, the identification perfor-

mance might be lower than the laboratory results.

Table 4.9: Pronation and supination identification.

Sensitivity (%)
Method/Movement Pronation Supination

Accelerometer Z-axis 100 100

4.2.3.2 Inertial method and OpenPose comparison

A comparison between the IMUs and OpenPose was completed particularly with data

from Sets 1, 5 and 6. Hand segment had to be neglected due to inadequate low light

conditions. Figure 4.11 represents an example of an angular reconstruction from Set 1,

exhibiting an example of QCF and OpenPose performance.
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Figure 4.11: Angular reconstruction of Set 1 arm’s exercises. QCF, Vicon and OpenPose
results.

In this example, both methods, the QCF and OpenPose, mimic the behaviour of Vi-

con’s yet, the video-based algorithm presents a higher error.

Figures 4.12 and 4.13 represent the CDF graphs of QCF and OpenPose for the consid-

ered Sets.

ArmTorso

Forearm
QCF

QCFQCF

Figure 4.12: Cumulative distribution function for the absolute error of OpenPose and
QCF across different segments - Set 1.
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Figure 4.13: Cumulative distribution function for the absolute error of OpenPose and
QCF across different segments - dynamic evaluation.

From Set 1 CDF analysis, it is possible to conclude that arm and forearm’s movements

present a lower error when assessed with OpenPose algorithm, this is, 80% of the total

acquisition time it presents an error inferior to 10◦ and 30◦, respectively. However, the

torso’s reconstruction shows better results with QCF.

Contrarily to Set 1, in dynamic trials OpenPose presents better results for torso move-

ments and QCF has a higher performance for arm and forearm exercises.

The results from the static assessment, Set 1, are detailed in Tables 4.10 and 4.12

for QCF and in Tables 4.11 and 4.13 for OpenPose measurements. Additionally, results

from dynamic approach are revealed in Tables 4.14 and 4.15 uniquely for OpenPose -

information regarding QCF is presented in Tables 4.5 and 4.6 from Section 4.2.3.1.
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Table 4.10: Mean absolute error regarding QCF method for each anatomical segment
include static Set 1.

QCF MAE (µ± σ )◦
Movement/Segment Torso Arm Forearm

AnatomicalPos 6 ± 5 10 ± 13 16 ± 17
Flexion 23 ± 29 15 ± 12 33 ± 24
Extension - - 21 ± 17
Abduction - 15 ± 17 -
Adduction - 11 ± 9 -

Table 4.11: Mean absolute error regarding OpenPose method for each anatomical segment
include static Set 1.

OpenPose MAE (µ± σ )◦
Movement/Segment Torso Arm Arm, Forearm

AnatomicalPos 4± 8 9± 7 23± 12
Flexion 30± 26 16± 3 9± 10
Extension - - 19± 8
Abduction - 9± 5 -
Adduction - 9± 10 -

Table 4.12: Root mean square error regarding QCF method for each anatomical segment
include static Set 1.

QCF RMSE (◦)
Movement/Segment Torso Arm Arm, Forearm

AnatomicalPos 8 16 24
Flexion 36 19 41
Extension - - 27
Abduction - 23 -
Adduction - 14 -

Table 4.13: Root mean square error regarding OpenPose method for each anatomical
segment include static Set 1.

OpenPose RMSE (◦)
Movement/Segment Torso Arm Arm, Forearm

AnatomicalPos 9 12 26
Flexion 40 16 13
Extension - - 21
Abduction - 11 -
Adduction - 14 -

The static error tables allow to infer that: the anatomical position error is very simi-

lar in both methods, for the considered segments; arm and forearms’s flexion exercises

are better estimated with OpenPose; Torso’s error is substantially high in both techniques.
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Table 4.14: Mean absolute error regarding OpenPose method for each anatomical segment
including all dynamic sets.

OpenPose MAE (µ± σ )◦
Movement/Segment Torso Arm Arm, Forearm

AnatomicalPos 1 ± 7 11 ± 7 24 ± 12
Flexion 30 ± 26 - -
Flexion/Extension - 34 ± 29 -

Table 4.15: Root mean square error regarding OpenPose method for each anatomical
segment including all dynamic sets.

OpenPose RMSE (◦)
Movement/Segment Torso Arm Arm, Forearm

AnatomicalPos 7 13 27
Flexion 40 - -
Flexion/Extension - 45 -

The dynamic approach reveals that the QCF method presents an overall better recon-

struction than OpenPose. The static and dynamic assessments allow to infer that torso

flexion error is unusually high in both methods. Furthermore, errors from dynamic trials

are higher, particularly in flexion/extension of the right arm.

4.2.4 Summary

The laboratory assessment provided a validation tool for IMU devices and also allowed

to establish a comparison with an alternative motion capture technique - the OpenPose.

Vicon software is a very accurate motion capture technique, with a positioning error

lower than 2 mm. Thus, its results are widely used as ground truth. However, Vicon

technology is complex. Specifically, calibration procedures and adjusting cameras aper-

ture to existing light are intricate processes, which can compromise the system’s capacity

to identify markers. This fact might compromise the quality of the ground truth and

ultimately the reported errors.

It has been shown that the QCF results are better when compared with other sensor

fusion techniques. However, the alternative methods have parameters that ramained with

constant value.

The hand segment needs additional validation. This segment’s angular estimation

trough the IMUs may be closer to the reality than the used reference once, the recon-

struction of the hand’s motion using Vicon’s software arose issues. This fact might have

compromised the results.
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Regarding the computational complexity, the OpenPose method was significantly

more expensive than inertial sensors. Even using the GPU for faster calculation, it took

approximately one hour to analyse individual sets (which have approximated lengths less

than two minutes).

4.3 Industrial Assessment

The second study was performed in a automotive manufacturing environment. It aimed

to assess the ergonomic risk of workstations, in which repetitive movements are employed.

The ergonomic evaluation was performed using the developed upper limb and torso mo-

tion tracker and explanations on the risk results were also reported.

For participating in the study, subjects signed and obtained an informed consent,

available at Appendix A. Beforehand, participants had detailed written information on

the study objectives and recording data. Additionally, they could solicit any verbal clari-

fication to the researcher. At any moment, subjects could ask to cease the collaboration

without consequences, having total freedom to decide their participation in the research.

When researches require the collection of personal and sensitive data, confidentiality

must be addressed. Data confidentiality is of the utmost importance and was ensured

during the development of this study. Each participant information was anonymously

collected, by associating with each subject a unique number. Personal data such as age

and gender, and written questionnaires were also referred by the corresponding identifi-

cation number. The acquired data was only used for this project research purposes.

In this pilot project, 12 manufacturing workers were asked to perform their working

tasks while using the sensing devices attached to their upper bodies. Under this study,

subjects were also filmed. The video system allowed visual support for the inertial data.

Table 4.16 summarises participants’ characteristics.

Table 4.16: Industrial assessment subjects’ characteristics. m: male; f: female; yr: average
years; h: average height in cm; r: ratio.

Subjects’ characteristics
Number 12
Gender (m:f) 9:3
Age (yr ±σ ) 36 ± 9
Height (h ±σ ) 172 ± 7
Dominant hand(r) Right hand (11:12)

An assembly line is composed of several timed processes which are regularly updated.

It is also a space where subjects with distinct skills and responsibilities work.
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In the considered automotive factory there are distinct assembly lines. Three work-

stations from Bodyshop assembly line were analysed. In Bodyshop, cars’ doors are as-

sembled. Particularly at: Liftgate workstation the back doors are mounted; Fender

workstation involves front doors tasks; Doors workstation demands tasks on front doors

and cars’ hood.

Workstations activities usually require two operators at the same time performing

manual processes in each side of a car.

4.3.1 Equipment and Placement

Operators wore four IMUs located as described in Section 4.1. The developed protocol

for the field trial, instructed that the subjects had to perform two calibration positions -

the N and T pose - in the beginning, and at the end of the test, which permits to verify if

signals were not disturbed through the work cycles, i.e. while performing the same poses

the signal should be similar. Additionally, inertial devices can be zeroed with the N-pose.

Figure 4.14 illustrates calibration poses and a completely equipped subject.

(a) Calibration poses representation.
Adapted from [95]. Source: Volkswagen Autoeuropa.

Figure 4.14: Left - calibration positions: N-pose and T-pose. Right- A worker performing
T-pose. The subject is equipped with four IMUs: three on the right upper limb and one
on the thorax.

4.3.2 Dataset Overview

It must be noticed that each operator is essential in a workstation. The production line

could not be compromised by the necessity to equip participants, thus requiring an extra

effort from another team member.

Some challenges may occur when recording data for long periods. The smartphone,

which integrates all device’s information, heats up and application failure may happen.

Additionally, Bluetooth connection can also fail, during long runs, causing the loss of a
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device’s data. Some of these issues occurred in the field tests.

The curated dataset is composed of 4.23 recording hours. While the Liftgate worksta-

tion is analysed through the labour chores of four operators, making a total of 41 cycles,

the Fender workstation considers three subjects’ tasks, taking into account 34 cycles. The

Doors workstation only contemplates two workers and a total of 24 cycles.

To manage data analysis, the inertial information was resampled to 50 Hz. Afterwards,

the QCF approach was employed, setting the α parameter to 0.95 for reconstructing the

angular motion. The cycle duration of each subject’s activity was manually annotated.

4.3.3 Ergonomic Evaluation and Explanation

The ergonomic evaluation and explanation of the acquired data are organised as repre-

sented in Figure 4.15. Research questions that each stage addresses are also depicted.

Explanation

Research 
Questions

IndividualTeam
General 

Workstation
General

Workstation

Risk

Which workstation 
has a higher risk? 

Which movements
contribute to 

workstation’s risk?

Does subjects’ 
characteristics 
influence their 

risk?

How does the 
ergonomic risk 
vary in a work 

cycle?

Figure 4.15: Ergonomic risk evaluation and explanation.

The general workstation risk presents the application of an ergonomic assessment

through an index score. Consequently, studied workstations are evaluated. Moreover, the

general workstation explanation provides an average of the executed movements. In team

explanation, a comparison between workers of the same workstation is given. Finally,

approaching the individual level, a subject’s report is presented.

4.3.3.1 General Workstation Risk

Before adopting strategies to improve working conditions, situations that can contribute

to operators’ risk must be identified. Ergonomic indexes grant information on the main

risk factors, allowing to prioritise interventions. The RULA worksheet can be used to

screen and identify harmful postures. In this research, an adapted version of RULA’s

was developed. Figure 4.16 exhibits a comparison between the RULA method and an

adapted version developed on the context of this work named as Adjusted Rapid Upper

Limb Assessment (AdRULA).
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Figure 4.16: Comparison of RULA and AdRULA methods. Studied body regions, posture
selection and posture capture.

The selection of postures for the RULA method analysis is generally based on: (1) the

posture sustained for the longest period, or (2) the most difficult posture and work task

(based on initial observation), or (3) the posture where the highest force loads occur. Most

frequently RULA captures postures through observational methods, i.e., through field

observations, photographs or video systems.

The AdRULA focus on the subject’s upper limbs and torso, selects postures every

0.02s and apprehends poses via direct measurements, e.g., wearable technology.

Although having different considerations, the local and final scores are determined

similarly in both methods. Therefore, the workstations risk score is defined as:

• 1-2 negligible risk; no action required.

• 3-4 low risk; change may be needed.

• 5-6 medium risk; further investigation, change the posture soon.

• 6+ very high risk, implement change now.

The average score of workstations was determined using AdRULA index and it is

represented in Figure 4.17. The charts demonstrate that, in general, when operators

perform tasks in the considered workstations they stand for a longer period in a level 3-4

risk zone which represents a low risk. Despite being a small percentage, the Liftgate and

Fender workstations present a level 5 risk. Accordingly, those workstations represent a

higher risk to operators in terms of postures.
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Figure 4.17: Liftgate, Fender and Doors workstation analysis. Mean score distribution for
each workstation.

4.3.3.2 General Workstation Explanation

From an ergonomic perspective, it is relevant to identify which movements contribute

to a higher risk of injuries. Figure 4.18 represents the full distribution of a workstation’s

movements, in the form of a probability density of these data.

It can be interpreted that the torso’s movements have similar angular distribution for

the considered workstations. Moreover, for Liftgate and Fender, the hand movements

have a higher probability of performing flexion exercises around 50° while in the Doors

workstation the highest probability stands in the 25° range. Flexions and extensions

between arm and forearm segments present the most differences. While in the Liftgate,

the arm presents a highest density probability around 50°-100°, Fender and Doors present

two prominent probability peaks - 50° and 25° for Fender and, 90° and 25° for Doors.

Overall, by demanding more labour in arms and hands, the Liftgate is classified with

higher scores. Doors workstation, with a larger probability of poses around the segment’s

neutral zone, is evaluated with lower levels.
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Figure 4.18: Representation of operator’s average flexion and extension movements from
Liftgate, Fender and Doors workstations with AdRULA score thresholds.

4.3.3.3 Team Explanation

While working in the same workstation, operators might not share the same characteris-

tics, e.g., height, weight, limbs length, and others. Additionally, the way a given subject

performs a task may also be related to the career experience. Therefore, workers com-

plete the same tasks, required by the workstation, presenting differences in movements

amplitude.

The Liftgate workstation is reported with a considerable percentage of level 4 score

and also reaches level 5. Thus, the subsequent analysis will be related to it. Figure 4.19

represents the probability density of four different subjects performing the exercises that

Liftgate workstation expects. Subjects’ characteristics are also depicted.

It can be observed that the flexion/extension highest probability for arm and forearm

segments ranges from 50° to 100°, being the subject 1 with the highest probability of

movements at 100° level. The probability density for the torso’s movements is very simi-

lar to the whole participants, except for subject 1 - which has a considerable percentage
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Figure 4.19: Comparison of average flexion and extension movements distribution from
four different subjects while performing Liftgate’s tasks, with AdRULA score thresholds.
Right side - subjects’ characteristics.

of time in flexion ranging from 20°-60°, resulting in a score of 3. Hands flexion/extension

movements present the highest diversity. Operators 1, 2 and 4 have a higher probabil-

ity of angular movements below 50°, while subject 3 has a more uniformly distributed

probability.

It must be noted that the hand’s flexion range of motion does not exceed 66°. The

charts representation suggest differently. Thus, one must not neglect that the employed

devices have errors.
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In Figures 4.19 and 4.18, the following movements are not illustrated: shoulder ab-

duction/adduction, forearm’s pronation/supination, torso lateral flexion and hand’s radi-

al/ulnar deviation. The AdRULA classification does not considerer the angular variation

of the mentioned actions but rather relies on their binary state, i.e. if a movement occurs

or not. For instance, if the studied arm is abducted the local classification for the segment

receives an extra point. Similar adjustments are applied in other segments.

Throughout the analysis, it can be reasoned that among operators from the same

workstation, which have different characteristics, angular movements distribution is not

identical. Consequently, the individual’s ergonomic risk will be different from an average

worker.

4.3.3.4 Individual Explanation

In a workstation, not only an operator’s performance change over time, e.g. due to fatigue,

but also within a work cycle, risk variations can be identified. A cycle temporal analysis

and individuals reports may help to recognise the subjects-related risk.

Frequently, the risk exposure reference is the effect of averaging subjects’ performance

in a given workstation. However, the average reality might hide an individual’s potential

hazards. Figure 4.20 shows an example of an operator’s evaluation, during a work cycle,

and the workstation average result. The punctuation is similar, yet it must be noted that

the considered subject spends a higher percentage of the work cycle time in a level 5. This

type of occurrences should be carefully analysed to prevent short and long term injuries.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

%
Ti

m
e

AdRULA Score

Workstation Subject

Figure 4.20: A participants cycle score comparison with the average score of the worksta-
tion.
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In Figure 4.21, the subject’s cycle classification is provided. This specific Liftgate’s

cycle has the duration of 96 s.
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Figure 4.21: Time dependent AdRULA scoring. Representation of one work cycle per-
formed by subject 1 from Liftgate workstation. Green: score 1-2; Yellow: score 3-4;
Orange: score 4-5; Red: score 6+.

As observed in Figure 4.20 and in Figure 4.21, the subject sustains, in general, a 3-4

score level. However, in some periods the score 5 is reached, namely from seconds 42 to

45 and 91 to 94.

Figure 4.22 provides a temporal analysis specifically from seconds 42 to 45. Segments’

angular motion can be translated into AdRULA score, generating four local scores. Al-

though segments’ local scores are not particularly high considering flexion and extension,

it was verified that, during this interval, the arm was abducted, the hand had deviation

and that the torso presented side bending. Accordingly, these segments received an extra

point, and the local AdRULA punctuation was: arm with a 4 index; forearm with a 2 in-

dex; hand with a 4 index; and torso with a 4 index. The combination of the local indexes

traduced a global score of level 5, which can explained by a higher angular demand on

the segments.

The score punctuation might not be simple to interpret and consequently, hinder

work-physicians and team leaders to perceive operators’ need. The individual analysis

helps to understand if operators perform tasks within the workstation risk range or if

their characteristics intensify/mitigate the risk. Thus, having personal reports, with de-

tailed movements information at cycle-level, can be an advantage for improving injuries-

preventive recommendations and for adjusting work conditions. The global movement

performance, in a work cycle, is illustrated in Figure 4.23.

In this particular work-cycle the subject most frequently had: the torso in the flexion

interval of 0°-20°; the upper arm in the -20°-20° flexion/extension range; the lower arm

in the flexion interval of 60°-100°; finally, the hand segment in 15°< extension zone.
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Figure 4.22: Temporal analysis of seconds 42 to 45 from a subject performing Liftgate’s
tasks. Arm, forearm, hand and trunk flexion/extension movements along with the corre-
spondent AdRULA score.

4.3.4 Workers relation with sensors

After acquiring data through the IMU system, subjects answered a questionnaire report-

ing their impressions on the usability of the devices in an industrial field. The average

response of the participants is represented in Figure 4.24.

Subjects commonly answered that while they participated in the study, performing

their workstation tasks, the devices did not influence their movements, cause fatigue or

pain or made their work-activities more difficult. Furthermore, the IMUs did not require

any readjustment being suitable for working in that type of scenario. Nevertheless, some

mentioned that the hand device is the least comfortable, once the working gloves tighten

it throughout the acquisition.
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Figure 4.24: Radar chart with the average opinion of 12 subjects’ on using IMU devices
in an industrial context. Agreement scale: 1 (totally disagree) - 5 (fully agree).

4.3.5 Summary

The field section provided an intrinsic view of an ergonomic assessment in a real manu-

facturing context. Three workstations were studied and, participants wore the multiple

IMU system while they performed the required tasks.

The results showed that the system allows a posture-focused evaluation. Moreover,

to apprehend the outcome, it is necessary an explanation which is provided through

the angular motion information. Subjects own characteristics influence how an exercise

is completed. Therefore, explanations at workstation, team and individual level are

essential, providing detailed information on the risk assessment.

The industrial assessment not only allowed a feasibility test focused on the ergonomic

risk assessment but also provided an interaction of workers with wearable technology.

72



4.3. INDUSTRIAL ASSESSMENT

Upper arm 

 

 

 

 

 

 

Lower arm 

 

 

 

Wrist 

 

 

 

Trunk 

 

-20°- 20° 

 

< -20° 

 

20° - 45° 

 

45° - 90° 

 

90°< 

 

1% 37% 18% 0% 44% 

31% 

 

69% 

 0° - 60° 

 

60° - 100° 100° < 

21% 

 

42% 37% 

0° -15 °- 0° 0° - 15° < -15° 15°< 

0% 

 

0% 

 

0% 

 

27% 

 

73% 

 

0°  0° - 20° 20° - 60° 60° < 

1% 65% 

6565 

34% 0% 

76% 24% 

Figure 4.23: Detailed information on a subject’s movement over a work cycle. Percentage
of time spent in each pose. Adapted from [33].
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5
Conclusion and Future Work

This chapter summarises the developed work and the obtained results throughout this

dissertation. Guidelines for future research are also proposed.

5.1 Main Conclusions

Work-related Musculoskeletal Disorders (WMSDs) represent a significant portion of oc-

cupational injuries, affecting operators from all sectors. The frequency of these injuries

increases due to repetitive tasks, leading to absenteeism, early retirement and loss of

productivity. An ergonomic assessment should be emphasised to identify risk factors,

allowing to prioritise work-related interventions.

Throughout this dissertation, three major contributions were presented. Firstly, an

upper limb and torso human motion tracking algorithm, which relies on inertial sensor

information, was used to estimate the absolute and relative orientation of anatomical

joints. Secondly, it was developed an adjusted ergonomic risk score based on direct mea-

surements. Finally, an ergonomic risk explanation approach, based on the comprehensive

analysis of the angular risk factors, was provided.

The experimental nature of this project supported the development of two different

assessments - validation and field assessment. While the validation tests provided, in a

controlled environment, the error characterisation of the motion tracker, the field assess-

ment allowed a feasibility study of the proposed framework on a manufacturing context.

Both evaluation studies provided two distinct datasets composed by inertial sensor data.

Several conclusions were established using the validation dataset. The Quaternion-

based Complementary Filter (QCF) approach has the competitive advantage to other sen-

sor fusion methods and requires no parameters tuning. The averaged Root-Mean-Square
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Error (RMSE) for static trials is 11°, 22°, 25° and 24° for the torso, hand, forehand and

hand segments, respectively. Concerning the dynamic set, it was obtained an averaged

RMSE of 22°, 18°, 20° and 10°, respectively for the aforementioned segments.

The OpenPose approach was used as an alternative Motion Capture (Mocap) method,

with similar performance to QCF, yet it has some challenges. Despite being computa-

tional complex, this markerless technology may present occlusions, i.e. when the algo-

rithm fails to track a limb, and, additionally, it does not provide a true 3D tracking, while

its utilisation is limited to defined camera angles.

With the field dataset, the analysis was towards an ergonomic risk assessment. The de-

signed tracking system has an average level of scalability, explainability and invasiveness.

It relies on four inertial sensors which allowed to obtain information at an intermediate

level, calculating low-level metrics of ergonomic risk efficiently.

Employing the estimated orientation of anatomical joints, provided by the system,

it is possible to conduct a postural ergonomic risk assessment. The workstations that

presented a higher level of risk, behold tasks that, effectively, require extreme positions,

e.g. overhead work.

Nowadays, the global risk score is often agnostic to operators’ age, anthropometric

characteristics and work experience variability and the predefined workstation’s scores

are based on an average worker. While completing the risk analysis, it is possible to point

out evident motion variability among operators who perform the same workstation’s

tasks. Hence, an individual ergonomic approach is better suited for preventing injuries,

once it can unmask risk poses. The evaluation should be individual-related and not the

collective.

At last, providing explainability to risk assessments is an added value to occupational

physicians once it allows characterising motions and provides a more comprehensive

analysis of the risk factors which contributed to the resulting score.

The current solution was performed in a manufacturing scenario, although the frame-

work can be also applied in a different type of contexts. In offices, where a chair and desk

make the workday of a large number of employees, an ergonomic analysis could be fun-

damental for awareness and prevention of disorders. Additionally, this framework could

also be applied to monitor physiotherapy and rehabilitation-related motion activities.

With the present work, we provide a strong basis to support the potential of using

inertial sensors as an effective method for detailed ergonomic assessment in industrial

environments.
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5.2 Future Work

This dissertation leaves some unsolved problems and opens new research questions to

which devote additional research effort will be applied in the future. The description of

some of the ideas to explore are detailed in the following paragraphs.

An alternative protocol to evaluate the hand segment must be designed. During

the experimental validation, the optical Mocap method used as a reference did not re-

construct the motion of the hand segment as expected. Therefore, investigating another

technique or tool, e.g. goniometers, which could be used to monitor hand’s movements,

would be valuable.

Reducing long term system bias. A possible way for achieving it is by reducing the

system’s angle error using multimodal sensor fusion approaches, e.g. using video record-

ings as an aid to reset the sensor’s long-term drift.

Measuring and calculating additional parameters is an approach to complement

the postural analysis. The adopted inertial devices, IoTiPs, are modular, which suggests

that other type of information can be easily integrated. Examples of parameters that

could be explored in manufacturing environments are noise and tools’ vibration.

Adopting other ergonomic assessment tools, e.g. Ergonomic Assessment Work-Sheet

(EAWS), can be approached as a way of extending the postural analysis. The applied er-

gonomic method was derived from RULA, an ergonomic worksheet that is focused mainly

on the upper limbs and torso’s posture of operators, representing the results in a discrete

score. With the contribution of a specialist, a continuous score worksheet can also be

designed.

Placing the devices correctly on operators is a requirement for reducing the error

impact on further stages of an ergonomic analysis. However, it is a constraint for par-

ticipants to leave the assembly line during work-shifts once it can compromise the line

production. Hence, the research required that other operators, which were not directly

involved in the research, employed an extra effort for maintaining the colleague’s tasks

while the equipping procedure was running. Thus, shortening sensor placing while assur-

ing its correct position could be addressed through special clothes with sensors embedded

or by designing a tool to recognise accurate placing.
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A
Informed Consent to Participants,

Portuguese Version

The following page includes a copy of the consent form adopted to inform participants

of the research. In it, procedures’ information, regarding data collection, is reported.
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APPENDIX A. INFORMED CONSENT TO PARTICIPANTS, PORTUGUESE

VERSION

 

www.fraunhofer.pt 
Rua Alfredo Allen 455/461  

4200-135 Porto, PORTUGAL 

 
 
 

CONSENTIMENTO PARA PARTICIPAÇÃO EM INVESTIGAÇÃO 
 

ESTE DOCUMENTO É FEITO EM DUPLICADO: UM PARA O PARTICIPANTE E OUTRO PARA O INVESTIGADOR. 1 / 1 

 

A Associação Fraunhofer Portugal Research faz trabalho de investigação destinado a encontrar soluções 

que promovam o bem-estar da população.  

No âmbito de Dissertação de Mestrado em Eng.ª Biomédica da Faculdade de Ciências e Tecnologias em 

colaboração com a Associação Fraunhofer Portugal Research, estamos a desenvolver um projeto piloto em 

linha de montagem para avaliação direta da exposição ao risco ergonómico dos movimentos de operários.  

Neste estudo, iremos proceder à recolha de dados sociodemográficos e dados de sensores inerciais que 

serão utilizadas durante o período de recolha de dados. Serão adicionalmente gravados vídeo, som e 

imagem com vista à construção de um registo que permitirá ajudar o trabalho de processamento dos 

dados resultantes da aquisição. Se concordar, ser-lhe-á solicitada a colocação de sensores durante o seu 

dia de trabalho. 

Gostaríamos de contar com a S/ participação. A participação não envolve qualquer prejuízo ou dano 

material e não haverá lugar a qualquer pagamento. Os dados recolhidos são confidenciais.  

A S/ participação é voluntária, podendo em qualquer altura cessá-la sem qualquer tipo de consequência. 

Agradecemos muito o S/ contributo, fundamental para a nossa investigação! 

 

O participante: 

Declaro ter lido e compreendido este documento, bem como as informações verbais fornecidas e aceito 
participar nesta investigação. Permito a utilização dos dados que forneço de forma voluntária, para os fins 
descritos. Declaro ainda que autorizo a publicação das imagens nos diversos meios de comunicação social 
e em publicações científicas e conferências ou outro tipo de evento científico ou de divulgação do projeto. 

Nome do participante: __________________________________________________________________ 

Assinatura do participante: ______________________________________________________________ 

Data ___ / ___ / ______ 

 

Investigador responsável: Sara Santos 

Nome:  

Assinatura: ____________________________________________________________Data ___ / ___ / ______ 

Telefone: 220 430 345 

E-mail: sara.santos@fraunhofer.pt 
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B
Participant’s questionnaire, Portuguese

Version

The following page provides a copy of the questionnaire presented to participants after

performing the trial. It aimed to inquire about the subject’s impressions on the usability

of the devices in an industrial field.
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APPENDIX B. PARTICIPANT’S QUESTIONNAIRE, PORTUGUESE VERSION

Aquisição nº___ 

 

Leia as seguintes afirmações e marque com um X um número segundo o seu grau de 
concordância. 

 

1. O sistema de sensores é confortável. 

Discordo 
totalmente 1 2 3 4 5 Concordo 

totalmente 

2. Os meus movimentos são influenciados pelo sistema de sensores. 

Discordo 
totalmente 1 2 3 4 5 Concordo 

totalmente 

3. O sistema de sensores provoca dor. 

Discordo 
totalmente 1 2 3 4 5 Concordo 

totalmente 

4. Senti fatiga após realizar as atividades laborais devido ao sistema de sensores. 

Discordo 
totalmente 1 2 3 4 5 Concordo 

totalmente 

5. Senti dificuldades a executar as atividades laborais devido ao sistema de sensores. 

Discordo 
totalmente 1 2 3 4 5 Concordo 

totalmente 

6. Em algum momento, senti necessidade de ajustar/reposicionar os sensores. 

Discordo 
totalmente 1 2 3 4 5 Concordo 

totalmente 

7. Penso que este sistema pode ser usado no local de trabalho. 

Discordo 
totalmente 1 2 3 4 5 Concordo 

totalmente 

8. Comentários. 
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C
Validation Protocol, Portuguese Version

The following document provides a copy of the developed validation protocol in the scope

of this dissertation. It guided the laboratory tests in which a comparison between the

proposed inertial system and a reference, provided by the Vicon system, was performed.
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1 
 

PROTOCOLO VALIDAÇÃO 
 

 
 
Objetivo: Realizar a validação de algoritmo de rastreamento angular para o membro superior e tronco em 
ambiente controlado. 
 
Equipamento necessário: 
 

● 3 x IMUs tri-axial; 
● 1 x Smartphone com a aplicação Recorder v1.9.0 instalada; 
● VICON Setup (marcadores, câmaras,…) 
● 1 x Câmera de vídeo 

 
Posição e fixação dos sensores: 
 
As unidades inerciais, telemóvel e marcadores devem ser colocados no colaborador nas seguintes posições: 

 
O IMU 1 é colocado na parte posterior da mão. O IMU 2 é colocado no antebraço, na parte posterior do mesmo, 
na zona do pulso, e apertado com uma mão elástica. O IMU 3 é posicionado na área do cotovelo, na parte posterior 
do braço e apertado com uma cotoveleira elástica. 
 
Devem ser colocados marcadores seguindo o modelo disponível para o membro superior pela Vicon. 
 
O Smartphone deve ser colocado no peito do utilizador, com o seu eixo local Y orientado para cima. 
 
Considerando o utilizador em posição anatómica: os eixos locais dos IMUs deverão estar alinhados uns com os 
outros, sabendo que o eixo local Y de cada IMU deve estar orientado para cima. 
 
 
 
Orientação dos IMUs/ Smartphone: 
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PROCEDIMENTO 
 
Antes da aquisição 
  
    1. Efectuar a calibração dos IMUs 
    2. Colocação dos IMUS conforme descrito em Posição e fixação dos sensores 
    3. Explicar ao voluntário os movimentos a efectuar 
    4. Preparar a gravação de vídeo 
    5. Iniciar a aquisição dos sistemas 
 

I- Avaliação Estática 
 
Parte 1 – Avaliação angular entre os segmentos do braço e antebraço 
 
    1. Posição anatómica (durante 30s) 
    2. Realizar a abdução do ombro (θ = 90º durante 5s) 
    3. Realizar flexão/extensão do cotovelo com o braço em abdução (x3 com pausa de 5s entre cada um dos 
movimentos) 
    4. Posição anatómica (durante 5s) 
    5. Realizar a flexão e extensão do cotovelo (x3 com pausa de 5s entre cada um dos movimentos) 
    6. Posição anatómica (durante 10s) 
 
Parte 2 – Avaliação angular entre os segmentos do antebraço e mão 
 
    1. Sentar o voluntário numa cadeira com o braço apoiado (durante 30s) 
    2. Realizar o desvio ulnar e o desvio radial (x3) 
    3. Apoiar novamente o braço (5s) 
    4. Realizar a flexão e extensão do punho (3x) 
    5. Apoiar novamente o braço (5s) 
    6. Realizar movimentos de pronação/supinação ( x3 com pausa de 5s entre cada um dos movimentos) 
    7. Ficar em posição anatómica (10s) 
 
Parte 3 – Avaliação da inclinação do tronco 
 
    1. Posição anatómica (durante 30s) 
    2. Realizar a flexão/extensão do tronco (de 5s entre cada um dos movimentos) 
    3. Posição anatómica (durante 5s) 
    4. Realizar a flexão lateral do tronco (esquerda e direita durante 5s) 
    5. Posição anatómica (durante 5s) 
    6. Realizar a rotação do tronco (esquerda e direita durante 5s) 
    7. Posição anatómica (durante 10s) 
 
 
Parte 4 – Avaliação dos movimentos angulares do braço face ao plano frontal. 
 
    1. Posição anatómica (durante 30s) 
    2. Realizar a flexão do ombro (θ = 90º durante 5s) 
    3. Realizar a flexão completa do ombro (90º< θ durante 5s) 
    4. Realizar a extensão do ombro (θ = 90º durante 5s) 
    5. Realizar a extensão completa do ombro (θ = 0º durante 5s) 
    6. Posição anatómica (durante 5s) 
    7. Inclinar o tronco aproximadamente 45º 
    8. Efetuar os pontos 1-5 
    9. Posição anatómica (durante 5s) 
   10. Rotação do voluntário no sentido dos ponteiros do relógio. 
   11. Efectuar os pontos 1-5 
   12. Posição anatómica (durante 10s) 
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II- Avaliação Dinâmica 
 
Parte 1 – Movimentos em situação de marcha. 
  
    1. Posição anatómica (durante 30s) 
    2. Caminhar entre as marcas (2) assinaladas no chão, realizando flexões/extensão sucessivas do cotovelo. 
Terminar o exercício na marca inicial do chão. 
 
Parte 2 – Movimentos em situação de marcha com alteração do plano frontal 
 
    1. Posição anatómica (durante 30s) 
    2. Caminhar entre as marcas assinaladas no chão (3) realizando: 
 1-2: Marcha normal sem inclinação do tronco; Movimento de flexão/extensão do  ombro (<= 90º) 

2-3 : Marcha normal com inclinação do tronco; Movimento de flexão/extensão do ombro (<= 90º) 
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Sensor fusion algorithms Results

D.1 Madgwick

Table D.1: Mean absolute error regarding Madgwick method for each anatomical segment
including all static sets.

Madgwick MAE (µ± σ )◦
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 7 ± 5 17 ± 14 26 ± 20 19 ± 22
Flexion 15 ± 14 13 ± 10 38 ± 33 36 ± 12
Extension 6 ± 5 13 ± 14 26 ± 30 38 ± 11
Lateral Flexion 4 ± 5 - - -
Abduction - 27 ± 21 - -
Adduction - 12 ± 10 - -
Radial Deviation - - - 12 ± 6
Ulnar Deviation - - - 15 ± 11

Table D.2: Root mean square error regarding Madgwick method for each anatomical
segment including all static sets.

Madgwick RMSE (◦)
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 8 22 33 29
Flexion 21 16 50 38
Extension 8 19 40 39
Lateral Flexion 6 - - -
Abduction - 35 - -
Adduction - 16 - -
Radial Deviation - - - 13
Ulnar Deviation - - - 18
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APPENDIX D. SENSOR FUSION ALGORITHMS RESULTS

Table D.3: Mean absolute error regarding Madgwick method for each anatomical segment
including all dynamic sets.

Madgwick MAE (µ± σ )◦
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 6 ± 5 8 ± 6 15 ± 13 10 ± 11
Flexion 24 ± 29 15 ± 11 - -
Flexion/Extension - 25 ± 24 - -

Table D.4: Root mean square error regarding Madgwick method for each anatomical
segment including all dynamic sets.

Madgwick RMSE (◦)
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 7 10 20 15
Flexion 37 19 - -
Flexion/Extension - 34 - -

D.2 Mahony

Table D.5: Mean absolute error regarding Mahony method for each anatomical segment
including all static sets.

Mahony MAE (µ± σ )◦
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 7 ± 4 14 ± 14 18 ± 16 19 ± 21
Flexion 15 ± 14 13 ± 11 36 ± 30 36 ± 12
Extension 6 ± 5 14 ± 14 25 ± 32 38 ± 11
Lateral Flexion 4 ± 5 - - -
Abduction - 20 ± 17 - -
Adduction - 16 ± 12 - -
Radial Deviation - - - 12 ± 6
Ulnar Deviation - - - 15 ± 11

Table D.6: Root mean square error regarding Mahony method for each anatomical seg-
ment including all static sets.

Mahony RMSE (◦)
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 8 20 25 28
Flexion 21 18 47 38
Extension 8 20 40 39
Lateral Flexion 6 - - -
Abduction - 26 - -
Adduction - 21 - -
Radial Deviation - - - 13
Ulnar Deviation - - - 18
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D.3. AGCF

Table D.7: Mean absolute error regarding Mahony method for each anatomical segment
including all dynamic sets.

Mahony MAE (µ± σ )◦
Action/Segment Torso Arm Forearm Wrist

AnatomicalPos 12 ± 15 10 ± 12 17 ± 19 10 ± 12
Flexion 15 ± 12 15 ± 11 - -
Flexion/Extension - 21 ± 19 - -

Table D.8: Root mean square error regarding Mahony method for each anatomical seg-
ment including all dynamic sets.

Mahony RMSE (◦)
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 19 16 25 16
Flexion 19 19 - -
Flexion/Extension - 28 - -

D.3 AGCF

Table D.9: Mean absolute error regarding AGCF method for each anatomical segment
including all static sets.

AGCF MAE (µ± σ )◦
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 44 ± 8 23 ± 24 32 ± 26 13 ± 13
Flexion 18 ± 14 29 ± 15 78 ± 40 31 ± 15
Extension 45 ± 6 17 ± 15 36 ± 34 38 ± 25
Lateral Flexion 25 ± 11 - - -
Abduction - 21 ± 16 - -
Adduction - 25 ± 17 - -
Radial Deviation - - - 21 ± 28
Ulnar Deviation - - - 20 ± 30

Table D.10: Root mean square error regarding AGCF method for each anatomical segment
including all static sets.

AGCF RMSE (◦)
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 45 34 42 18
Flexion 23 33 88 34
Extension 46 23 49 45
Lateral Flexion 27 - - -
Abduction - 26 - -
Adduction - 31 - -
Radial Deviation - - - 35
Ulnar Deviation - - - 36
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Table D.11: Mean absolute error regarding AGCF method for each anatomical segment
including all dynamic sets.

AGCF MAE (µ± σ )◦
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 47 ± 5 19 ± 22 34 ± 30 13 ± 14
Flexion 16 ± 16 17 ± 9 - -
Flexion/Extension - 32 ± 23 - -

Table D.12: Root mean square error regarding AGCF method for each anatomical segment
including all dynamic sets.

AGCF RMSE (◦)
Action/Segment Torso Arm Forearm Hand

AnatomicalPos 48 29 45 19
Flexion 23 19 - -
Flexion/Extension - 39 - -
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Rapid Upper Limb Assessment

This annex presents the Rapid Upper Limb Assessment worksheet. The RULA ergonomic

assessment tool analyses biomechanical and postural demands of job tasks on the neck,

trunk and upper limbs.

Designed for easy use, the tool requires no expert in ergonomics. Scores for each body

region are entered in proper sections: section A, for the arm and wrist, and section B, for

neck and trunk. Afterwards, tables are used to compile the risk factors variables, assem-

bling a single global score which represents the risk level of work-related musculoskeletal

disorders.
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