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Abstract 

 

Regeneration is an impressive biological process that allows the replacement of lost body 

parts due to damage or injury, restoring both tissue architecture and function. It is well 

documented that while mammals have a limited capacity to regenerate lost tissues, other 

vertebrates, such as amphibians and teleost fish, exhibit a remarkable capacity to regenerate 

organs, like the heart and the retina, and large sections of the body, such as the limb and the 

fin.  

Zebrafish has become an important model system to study vertebrate regeneration and the 

adult caudal fin is one of the most used tissues to comprehend how tissues are restored. This 

structure is easily accessible to surgery, amenable to live imaging, its amputation does not 

compromise survival and regeneration is particularly fast, occurring over the course of two 

weeks. Fin regeneration is an epimorphic process since it relies on a specialized structure 

called blastema, which is composed of a proliferative heterogeneous population of 

dedifferentiated cells with restrictive lineage potential. After caudal fin amputation, a 

regenerative program is activated and occurs in three sequential phases: wound healing, 

blastema formation, and regenerative outgrowth. These events comprise a tight coordination 

between proliferation, patterning and differentiation to reconstitute the architecture and the 

size of the original tissue. The adult caudal fin is composed of multiple tissues, including blood 

vessels, nerves, mesenchyme and the structural support, the bony-rays (skeletal elements). 

Each bony-ray is surrounded and maintained by an outer and inner monolayer of bone 

secreting cells, the osteoblasts. Many studies have focused on bone regeneration since the 

zebrafish caudal fin provides a unique model to understand bone formation and osteoblast 

dynamics upon tissue damage and regeneration.  

After caudal fin amputation, formation of the new bone elements depends greatly on tissue 

plasticity (changes in cellular identity). This is achieved through the activation of two 

complementary processes that enable the assembly of an osteoblast progenitor pool during 

blastema formation: dedifferentiation of resident mature osteoblasts and commitment of 

joint-associated osteoblast progenitors. Complex regulatory mechanisms subsequently 

maintain and expand the osteoblast progenitor pool and promote their redifferentiation into 

mature osteoblasts to restore the skeletal tissue. Therefore, both osteoblast progenitor 

assembly and redifferentiation are critical aspects of caudal fin bony-ray regeneration. 

Interestingly, ablation of mature osteoblasts prior to caudal fin amputation does not affect 

normal bone regeneration, suggesting that de novo bone formation can rely solely on the 

commitment of joint-associated osteoblast precursors or on new osteoblast progenitors 

arising from alternative sources.  
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In this PhD thesis, I aimed to unravel key aspects of caudal fin bone regeneration, focusing on 

new regulators of osteoblast dedifferentiation and redifferentiation and alternative sources 

for de novo osteoblast formation in osteoblast-depleted fins.  

To investigate novel regulators of osteoblast dedifferentiation, we performed a genome-wide 

gene expression analysis of osteoblasts undergoing dedifferentiation. With this analysis, we 

concluded that this process occurs much earlier in the regenerative process than what was 

previously thought. Furthermore, we characterized the molecular basis of osteoblast 

dedifferentiation regarding epigenetic modulation, signal transduction, cell adhesion 

reorganization, epithelial to mesenchymal transition and acquisition of migratory behaviour 

and proliferation. Particularly, we observed that osteoblasts change their metabolic signature 

upon injury. This was predicted based on the upregulation of several glycolytic and lactate 

producing enzymes, which is followed by an increase in the expression of oxidative 

phosphorylation electron transport chain components. We hypothesize that osteoblast 

dedifferentiation relies on a bivalent metabolism that uses both glycolysis and oxidative 

phosphorylation, which may reflect an adaption to the energetic demands of regeneration. 

Since the link between metabolic adaptation and regeneration remains poorly understood, 

we decided to address it by inhibiting the glycolytic influx. We observed major defects in the 

regenerative process, including impaired assembly of the wound epidermis, a major signalling 

centre during regeneration, and fewer cells re-entering the cell cycle. In addition, we showed 

that several osteoblast markers were downregulated and that osteoblast populations became 

disorganized. This suggests that metabolic adaptation plays an important role in regeneration, 

in particular during osteoblast dedifferentiation.  

In addition to the transcriptional analysis, we followed a targeted approach. We examined the 

role of the Hippo signalling pathway as a potential regulator of osteoblast dedifferentiation, 

by inhibiting Yap (Hippo pathway effector). This prevented mature osteoblasts to migrate, re-

enter the cell cycle and to assemble the osteoblast progenitor pool. In parallel, we evaluated 

the role of this pathway in mediating osteoblast redifferentiation during regenerative 

outgrowth. We noticed that Yap inhibition leads to a decrease in the number of differentiating 

osteoblasts and to the misregulation of key signalling pathways, such as Bmp and Wnt 

signalling. We provide evidence that Yap not only promotes osteoblast differentiation through 

activation of Bmp signalling via bmp2a expression but also restricts the osteoblast progenitor 

pool by inhibiting Wnt signalling to the differentiation front by regulating dkk1a. Altogether, 

these results lead us to propose that the Hippo/Yap signalling pathway regulates osteoblast 

dedifferentiation as well as redifferentiation. This reveals a previously unknown duality if the 

Hippo/Yap pathway in controlling two different aspects of osteoblast biology during caudal fin 

regeneration. 

Lastly, we provide evidence into the cellular and molecular mechanisms that regulate de novo 

osteoblast formation in osteoblast-depleted caudal fins. We identified an additional 

osteoblast progenitor population that arises at the outer and inner bone surfaces adjacent to 
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the epidermal and mesenchymal compartments, respectively. These cells are not part of a 

uniform population but seem to form two distinct osteoblast progenitor populations with 

different origins or expression profiles. Lineage tracing experiments revealed that 

mesenchymal cells within the intraray compartment, but not epidermal cells, contribute to 

generate new osteoblasts in osteoblast-depleted caudal fins. This provides new evidence of 

an additional source of osteoblasts for regeneration. Moreover, we showed that both Retinoic 

Acid and Bmp signalling pathways are activated in this osteoblast progenitor population and 

are important to induce their commitment and recruitment during caudal fin regeneration. 

Thus, we elucidate potentially dormant regenerative mechanisms that emerge to ensure 

correct bone formation in caudal fins lacking mature osteoblasts. 

Taken together, this PhD thesis provides novel insights into new regulators of bone formation 

and alternative cells that can contribute to correct bone regeneration upon injury. We expect 

that defining the mechanisms regulating tissue plasticity, reprogramming and fate 

specification during bone reconstitution have major implications not only to understand the 

basic mechanisms that regulate tissue regeneration but also to the field of regenerative 

medicine and bone cancer biology. 
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Resumo 

 

A regeneração é um processo biológico notável que permite a restituição de tecidos após 

lesão ou amputação, que incluí a recuperação da função, forma e tamanho do tecido original. 

Enquanto que os mamíferos possuem uma capacidade limitada de regenerar tecidos, outros 

vertebrados, como anfíbios e alguns peixes teleósteos, são dotados de uma capacidade 

extraordinária de regenerar órgãos, como o coração e a retina, e grandes superfícies 

corporais, como membros e barbatanas. 

O peixe-zebra (Danio rerio) é utilizado como modelo para o estudo de processos regenerativos 

em vertebrados. A barbatana caudal do peixe-zebra surgiu como uma das estruturas mais 

utilizadas para estudar regeneração. Esta estrutura é de fácil acesso à cirurgia de amputação, 

passível ao uso de técnicas de microscopia, não comprometendo a sobrevivência do animal, 

sendo que o seu processo regenerativo é consideravelmente rápido. A regeneração da cauda 

é um processo epimórfico, uma vez que depende da formação de uma estrutura especializada 

designada blastema. Esta estrutura é composta por uma população heterogénea de células 

com capacidade proliferativa. Após amputação da cauda, o programa regenerativo é 

caracterizado por três fases sequenciais: fecho da ferida, formação do blastema e, por fim, 

crescimento e diferenciação. Durante o processo regenerativo, a coordenação entre 

proliferação e diferenciação é de grande importância para assegurar e alcançar a estrutura e 

tamanho iniciais. A barbatana caudal é constituída por vários tecidos, incluindo vasos 

sanguíneos, nervos, tecido mesenquimal e tecido ósseo, este último sendo constituído por 

raios ósseos que providenciam estabilidade à cauda. Cada um destes raios ósseos é revestido 

externa e internamente por uma monocamada de células produtoras de osso, os osteoblastos. 

Muitos estudos têm-se focado na regeneração destes elementos ósseos presentes na 

barbatana caudal, uma vez que este sistema possibilita a compreensão do processo 

regenerativo do osso e a dinâmica dos osteoblastos neste contexto. 

Após amputação da cauda, a formação do novo tecido ósseo depende consideravelmente da 

plasticidade celular (alterações na identidade celular). Isto é alcançado durante a formação do 

blastema, através da ativação de dois processos complementares que permitem a formação 

de um conjunto de progenitores de osteoblastos: desdiferenciação de osteoblastos maduros 

presentes no tecido não danificado e diferenciação de progenitores presentes na zona da 

articulação. Posteriormente, mecanismos regulatórios mantêm e expandem o grupo de 

progenitores e promovem a sua diferenciação em osteoblastos completamente diferenciados, 

capazes de produzir matriz óssea e de reconstituir o tecido ósseo. Desta forma, a formação 

dos progenitores de osteoblastos assim como a sua correta diferenciação são essenciais para 

promover a regeneração dos raios ósseos da barbatana caudal. Curiosamente, a ablação de 

osteoblastos maduros antes do início do processo regenerativo não afeta a regeneração dos 

elementos ósseos, o que sugere que, neste contexto, que a sua formação depende 
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unicamente de progenitores associados à articulação ou de fontes celulares alternativas ainda 

por descobrir. 

Durante esta tese de doutoramento, procurei elucidar aspetos chave da regeneração do osso 

da barbatana caudal do peixe-zebra, nomeadamente os processos regulatórios que controlam 

o programa de desdiferenciação dos osteoblastos maduros bem como a sua posterior 

diferenciação, e as fontes alternativas de progenitores de osteoblastos em caudas desprovidas 

de osteoblastos maduros. Com o intuito de investigar novos mecanismos regulatórios do 

processo de desdiferenciação, recorremos a uma análise global do transcriptoma dos 

osteoblastos nesta fase da regeneração. Esta análise revelou que o processo de 

desdiferenciação ocorre muito cedo durante o processo regenerativo. Para além disso, 

caracterizámos a base molecular do programa de desdiferenciação, no que diz respeito a 

mecanismos epigenéticos, metabolismo, vias de transdução de sinal, adesão celular, transição 

epitélio-mesênquima, migração e proliferação. Em particular, observámos que várias enzimas 

glicolíticas e produtoras de lactato exibem a sua expressão aumentada no início da 

desdiferenciação, seguidas de um aumento na expressão de componentes da cadeia 

transportadora de eletrões. Estes resultados demonstram que os osteoblastos alteram 

significativamente o seu metabolismo em resposta à amputação. Desta forma, propomos a 

hipótese de que a desdiferenciação dos osteoblastos depende da aquisição de um 

metabolismo bivalente no qual as vias glicolíticas e de fosforilação oxidativa são usadas para 

melhor adaptar os osteoblastos aos novos requisitos do processo regenerativo. Uma vez que 

a ligação entre adaptação metabólica e regeneração ainda está pouco explorada, decidimos 

investigar como é que o processo regenerativo é influenciado pela glicólise. Ao inibirmos o 

fluxo glicolítico, verificámos que o crescimento do tecido regenerativo é significativamente 

reduzido. Neste contexto, vários fenótipos foram observados: inibição da proliferação; 

desorganização da população de osteoblastos dentro do blastema; alterações na expressão 

de vários marcadores de osteoblastos; e deformação da epiderme especializada que se forma 

durante a regeneração, cuja função secretora de moléculas sinalizadoras é essencial para a 

desdiferenciação. Estes resultados sugerem que esta adaptação metabólica tem um papel 

importante durante a regeneração, em particular no processo de desdiferenciação.  

Para além da análise de transcriptoma, estudámos também uma via de sinalização em 

particular, a via Hippo, através da manipulação genética do seu efetor Yap. Descobrimos que 

a inibição de Yap durante a fase de desdiferenciação impede a migração e proliferação de 

osteoblastos maduros e a formação de novos progenitores. Para além disso, a inibição desta 

via durante a fase de rediferenciação leva a uma diminuição substancial dos osteoblastos em 

diferenciação e a uma alteração na expressão de componentes de vias de sinalização cruciais, 

bmp2 (via BMP) e dkk1 (via Wnt). Estes dados evidenciam que Yap promove a diferenciação 

dos osteoblastos através da ativação da via BMP e restringe o grupo de progenitores através 

da inibição da via Wnt. Estes resultados permitem-nos propor que a via de sinalização 

Hippo/Yap regula quer a desdiferenciação dos osteoblastos quer a sua subsequente 
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rediferenciação, o que revela a dualidade do mecanismo de ação desta via em fases diferentes 

do processo regenerativo da barbatana caudal. 

Por último, revelamos a existência de mecanismos celulares e moleculares que regulam a 

formação de novos progenitores de osteoblastos em caudas desprovidas de osteoblastos 

maduros. Identificámos assim uma fonte adicional de progenitores que emerge na interface 

da matriz óssea com os tecidos adjacentes, nomeadamente a epiderme e o mesênquima. 

Estes progenitores não parecem formar uma população homogénea, mas sim duas 

populações distintas com diferentes origens ou com diferentes padrões de expressão. 

Recorrendo a técnicas de seguimento de linhagem, conseguimos identificar o mesênquima, 

mas não a epiderme, como uma fonte de novos osteoblastos em caudas desprovidas de 

osteoblastos maduros. Estes resultados põem em evidência uma origem adicional de 

osteoblastos que contribui para o processo regenerativo. Para além disso, demonstramos que 

as vias de sinalização do Ácido retinóico e Bmp estão ativas nesta população de progenitores 

e têm um papel crucial na formação e recrutamento desta fonte adicional de osteoblastos 

durante o processo regenerativo. Assim, este trabalho permite revelar que, em barbatanas 

caudais desprovidas de osteoblastos maduros, mecanismos regenerativos que se encontram 

normalmente inativos, são estimulados e asseguram a formação correta dos elementos 

ósseos neste contexto. 

De uma forma geral, esta tese de doutoramento identifica novos mecanismos de regulação 

da formação do tecido ósseo e fontes celulares alternativas que contribuem e garantem a 

correta regeneração do osso após lesão. Antevemos que o conhecimento dos mecanismos 

que regulam a plasticidade celular, reprogramação e especificação de linhagem durante a 

regeneração do osso possam ter implicações fulcrais não só para o conhecimento dos 

processos básicos que promovem regeneração, mas também no campo da medicina 

regenerativa e neoplasias. 
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1 REGENERATION 

1.1 Defining regeneration 

Regeneration is undoubtedly one of the most impressive and inspiring biological processes 

and endures as one of the more mysterious fields of developmental biology. This process is 

defined as the capacity to fully restore lost or damaged body parts after damage or injury 

(Tsonis 2002; Bely and Nyberg 2010; Poss 2010) and was first reported in 1740 by Abraham 

Trembley, who discovered the regenerating properties of the Hydra head. Later, in 1766, Peter 

S. Pallas reported the singular regenerative properties of the planarians capable of restoring 

entire animals from a single body piece. In 1768, Lazzaro Spallanzani demonstrated that, after 

amputation or tissue damage, amphibian tadpoles and salamanders were capable of 

reproducing reliable copies of the existing tissues (Spallanzani 1769; Sánchez Alvarado 2000; 

Rink 2011). 

The terms regeneration and repair have been used indiscriminately to describe a wide range 

of phenomena and they often refer to the same thing. However, these terms should not be 

confused with wound healing or wound repair, often referred to non-regenerative healing as 

it results in the replacement of a once functional tissue by a collagenous and fibrotic scar. 

Conversely, regeneration culminates in the replacement of the missing cell, tissue, organ or 

structure, by a quite faithful copy, recreating both tissue architecture and function without 

scarring (Tsonis 2002; Gurtner et al. 2008; Atala et al. 2010; Jaźwińska and Sallin 2016). 

Regeneration can be triggered by a variety of insults, occur at different levels of biological 

organization (cellular, tissue, organ, structure and whole-body level) (Figure 1) and at different 

phases of an organism life cycle, encompassing a vast spectrum of mechanisms that restore 

normal tissue structure (Bely and Nyberg 2010; Slack 2017). The latter can be divided in 5 main 

phenomena: (1) Physiological or homeostatic regeneration, which defines the natural renewal 

of cells that maintains the tissue in equilibrium (e.g. renewal of blood cells and epidermal cells, 

epithelial cells in the gut and deer antlers); (2) Morphallaxis, which concerns the complete 

reorganization and remodelling of the organism body to restore the lost parts without 

recurring to cell division (e.g. invertebrates such as hydra and some annelids); (3) Hypertrophy, 

which includes: compensatory, if it leads to an increase in size of a paired organ after its pair 

is lost (e.g. kidney and lungs); or regenerative, if it involves the restoration of the mass of 

damaged internal organs (e.g. liver and pancreas); (4) Epimorphic regeneration, when 

regeneration is achieved through the formation of a blastema, a mass of less differentiated 

proliferative cells with intrinsic morphogenic potential to restore the damaged structure (e.g. 

limb and tail regeneration in urodeles and fin regeneration in teleost fish) (Agata et al. 2007; 

Carlson 2007; Stoick-Cooper et al. 2007; Kawakami 2009; Iismaa et al. 2018) and (5) Tissue or 

cellular regeneration, which refers to the repair of local and limited damage to an organ via 

reconstitution of only one cell type without the formation of a blastema (e.g. skeletal muscle). 
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It is important to clarify that there is no correlation between a particular regenerative 

mechanism and particular species, i. e. one or more regenerative mechanisms can occur in the 

same animal depending on the tissue, extent of the damage and on the animal life stage (Bely 

and Nyberg 2010; Slack 2017). Central questions in the regeneration field that remain for more 

than a century inconclusive, include: (1) What defines and regulates the capacity to 

regenerate? (2) What are the cellular sources that contribute to regeneration? (3) What are 

the factors that trigger and initiate regeneration in the injured area? (4) How is the balance 

between proliferation and differentiation/patterning achieved during regeneration? (Poss 

2010).  

In this chapter, I will summarize the general concepts of regenerative biology setting the basis 

for the central aims of this thesis.  

1.2 Diversity of the regenerative abilities across species and animal models 

The ability to regenerate is widely distributed throughout the Metazoa. Although the extent 

of the regenerative capacity varies considerably across the animal kingdom, nearly every 

phylum has one or several species capable of regenerating missing parts. To explain why some 

animals regenerate and others do not, several theories have been postulated and subject to 

extensive debate. Regeneration could result either from a homologous trait, with a single 

evolutionary origin that arose early in Metazoans, or from convergent evolution that evolved 

in a variety of independent contexts (Sánchez Alvarado 2000; Brockes et al. 2001; Brockes and 

Kumar 2008; Bely and Nyberg 2010; Garza-Garcia et al. 2010). Over the course of evolution, 

there is a striking hierarchy of regenerative capacity among organisms, with a few exceptions. 

At the top of the hierarchy stand the invertebrates, such as Cnidarians (Hydra genus), 

Platyhelminthes (flatworm planarians) and Echinoderms (starfish), as they are capable of 

renewing whole animals from small fragments of tissue. Vertebrates also possess remarkable 

examples of high regenerative ability that go far beyond physiological regeneration. These 

include the amphibian Urodeles (salamanders, e.g. newt and axolotl) and Anurans (frogs, e.g. 

Xenopus and toads), and the teleost fish (e.g. zebrafish). Both amphibians and teleost fish can 

regenerate a vast array of organs and tissues that include the spinal cord, jaws, retina and 

lenses, limbs, tails and fins. In contrast, at the lower end of the hierarchy, with a poor 

regenerative capacity, stand taxonomic groups such as Aves (birds) and Mammalia 

(mammals). It is well described that mammals, including humans, have a very limited capacity 

to regenerate lost tissues nevertheless, they are capable of performing homeostatic 

regeneration to replace cells that are lost during daily activities, like epithelial or blood cells 

(Bely and Nyberg 2010; Galliot and Ghila 2010; Poss 2010; Li et al. 2015; Yun 2015; Grillo et al. 

2016; Zhao et al. 2016) (Figure 1). However, severe damage to the heart, limbs and spinal cord, 

for instance, culminates in a non-regenerative response, and rather leads to fibrotic scarring 

and loss of normal tissue function. An exception to this is the mammalian liver, which can 

regenerate to some extent. In homeostasis, the liver has a low cell turnover rate, but upon 
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injury, it can recover through a combination of cellular hypertrophy and proliferation (Stanger 

2015). 

 

Figure 1: Animal models of regeneration and their regenerative capacity. At the top of the hierarchy with the 
highest regenerative capacity are Planarians and Hydra, capable of regenerating the whole body. These are 
followed by lower vertebrates, such as the newt and zebrafish that can regrow lost parts, like the limb, tail, fin, 
and organs like the heart. At the bottom, there are animals such as mammals that have lower regenerative 
capacity mainly at the cell/tissue level. The liver is an exception, being a highly regenerative organ. The red 
dashed line indicates amputation/resection. Adapted from (Bely and Nyberg 2010; Zhao et al. 2016). 

Moreover, some species show a decline in regenerative capacity with age. Examples of these 

are the progressive loss of limb regeneration from the larval phase to adult stage in Anuran 

amphibians and the ability of the mouse heart to fully regenerate in neonates but not later 

(Zhao et al. 2016; Iismaa et al. 2018). In addition, differences in the regenerative capacity 

between sexes have also been observed, with zebrafish female being able to regenerate the 

pectoral fins, while males do not possess this capacity (Nachtrab et al. 2011). It is not clear, 
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however, the basis for these regenerative differences between organisms. Some hypotheses 

have arisen in this context: (1) one possibility is that certain genes are present only in highly 

regenerative species and not in species with lower regenerative capacity; (2) or organisms 

with high regenerative ability certain phylogenetically conserved genes activated only during 

regeneration, maybe through specific regeneration regulatory elements (Poss 2010; Kang et 

al. 2016; Pfefferli and Jaźwińska 2017); (3) a third hypothesis, which is related to the previous, 

concerns the epigenetic control during regeneration, supporting a model in which an organism 

with high regenerative capacity may possess specific chromatin profiling with reversible 

histone modifications in contrast to animals with lower regenerative abilities (Maki et al. 2010; 

Katsuyama and Paro 2011; Goldman et al. 2017). 

This highlights the huge variability in the regenerative capacity and the necessity to uncover 

the origin of such abilities among animals. Since no animal comprises all the strategies that 

permit regeneration in all biological contexts, it is fundamental to combine and integrate 

information from several model systems of regeneration in biomedical research (Sánchez 

Alvarado 2008). The most common invertebrate models include hydra and planarians, which 

are useful to understand how a single cell can generate an entire animal composed of a 

multitude of tissues and organs. The most used vertebrates models encompass amphibians 

(Urodels and Anurans), zebrafish (Danio rerio) and mice (Figure 1) (Grillo et al. 2016). 

Amphibians and zebrafish are useful models to uncover the mechanism that regulate 

regeneration of specific organs (e.g. heart, retina, spinal cord, pancreas) and whole-body 

sections (e.g. limbs and fins) that include coordination between several tissues. Mice models 

are usually used to study homeostatic regeneration or regeneration of specific organs with 

exceptional regenerative potential (e.g. liver and bone). Studying these animal models allows 

to elucidate the cellular and molecular phenomena underlying the several means by which 

regeneration is attained in different biological contexts. 

1.3 Cellular mechanisms of regeneration 

When the equilibrium of a tissue is perturbed by injury, cellular mechanisms are invoked to 

promote efficient regeneration of the missing tissue. Thus, to understand any regenerative 

system, it is crucial to find the cellular origins of the renewed tissues. It has been thought that 

this equilibrium was mainly recovered by tissue resident stem cells that replicate and 

differentiate into the missing cells. This may be true under physiological conditions, but thanks 

to the increasing number of genetic tracing tools and live-imaging techniques, other cellular 

contributions have been observed, challenging the notion that differentiated cells in adult 

animals were irreversibly committed to a specific cell fate (Zhou and Melton 2008; Jopling et 

al. 2011; Jessen et al. 2015; Tata and Rajagopal 2016). In fact, mature cell plasticity and the 

ability to reprogram have become a major point of interest in regenerative biology. Cell 

plasticity is defined as the intrinsic capacity of cells that makes them amenable to be 

reprogramed (process of reverting mature, specialized cells into less differentiated cells) and 
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adopt the biological properties of other cell types that may belong to the same or different 

lineages (Galliot and Ghila 2010; Jopling et al. 2011; Tanaka and Reddien 2011; King and 

Newmark 2012; Sánchez Alvarado and Yamanaka 2014; Jessen 2015; Tata and Rajagopal 

2016). This characteristic should not be mistaken by “artificial” reprogramming that leads to 

the conversion of differentiated somatic cells to pluripotent cells (induced pluripotent stem 

cells, iPSCs) in vitro (Takahashi and Yamanaka 2006; Eguizabal et al. 2013).  

Overall, several mechanisms can contribute to the formation of new cells that will compose 

the regenerated tissue after damage (Figure 2): 

(1) tissue resident stem cells or progenitor cells, which are capable of self-renewing and 

provide a source of differentiated cells. For example: planarian regeneration is exclusively 

dependent on a population of pluripotent stem cells, called neoblasts, which can give rise to 

all adult cells (Tanaka and Reddien 2011; King and Newmark 2012; Elliott and Sánchez 

Alvarado 2013); axolotl limb, zebrafish and mammalian skeletal muscle regeneration relies on 

the proliferation of satellite cells (Poss 2010; Tanaka and Reddien 2011; Perathoner et al. 

2014; Sandoval-Guzmán et al. 2014; Li et al. 2015; Ratnayake and Currie 2017); and spinal cord 

regeneration in zebrafish is achieved through the activation of ependymal precursors (Ribeiro 

et al. 2017) (Figure 2); 

(2) dedifferentiation (or transient reprogramming) of fully differentiated cells, which allows 

cells to revert to a less differentiated progenitor-like state within its own lineage, with the 

acquisition of proliferative capacity, some examples include: Newt skeletal muscle 

regeneration, which depends on the fragmentation of multinucleated muscle fibres that re-

enter the cell cycle and proliferate (Eguizabal et al. 2013; Sandoval-Guzmán et al. 2014; Li et 

al. 2015; Wang and Simon 2016); and zebrafish heart regeneration, during which 

cardiomyocytes dedifferentiate and proliferate (Ramachandran et al. 2010; Goldman 2014; 

Lenkowski and Raymond 2014)) (Figure 2); 

(3) transdifferentiation of specific cell types, which consists on the conversion of an existing 

differentiated cell into another cell type, either through direct conversion without cell division 

or encompassing a transient dedifferentiation step (e.g. after newt lens removal, pigmented 

epithelial cells dedifferentiate and transdifferentiate into lens cells (Li et al. 2015; Tata and 

Rajagopal 2016; Zhao et al. 2016); transdifferentiation can also occur during regeneration of 

pancreatic β-cells in the zebrafish and the mouse, in which α-cell or acinar cells dedifferentiate 

and convert into β-cell (Ye et al. 2015; Iismaa et al. 2018)) (Figure 2). 

Although many of the cellular sources required for regeneration have already been 

determined, the specific cellular mechanisms that regulate the regeneration of many tissues 

and organs are still far from being fully understood. For the purpose of this thesis, the next 

section will focus on studies and current understanding of epimorphic regeneration. 
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Figure 2: Cellular mechanisms that contribute to regeneration. During development, a pluripotent cell (light red 
ball), such as an embryonic stem cell (ESC), follows different developmental paths (grey paths) and gradually 
commits to differentiate into mature cells from different lineages (yellow, purple, dark red and dark green balls). 
It is nowadays possible to revert the entire developmental process through induced pluripotent reprogramming 
and transform a lineage committed cell (e. g. dark red ball) to a pluripotent cell (light red ball). Animals with high 
regenerative capacity have developed cellular mechanisms to completely recover damaged organs or even 
appendages amputation. These cellular mechanisms include: activation of resident stem cells or progenitors 
(light green ball); dedifferentiation of mature cells (dark green ball) to lineage restricted progenitors (light green 
ball); and transdifferentiation, where a cell (yellow ball) switches identity and converts directly to another mature 
cell (purple ball). Adapted from (Beyret et al. 2018). 

2 GENERAL TRAITS OF EPIMORPHIC REGENERATION – INSIGHTS FROM ADULT 

APPENDAGE REGENERATION 

I propose to call those cases of regeneration in which a proliferation of material precedes the 

development of the new part “epimorphosis”. 

Thomas H. Morgan, 1901 

The concept of epimorphosis (from the Greek: epi, upon; morphosis, form) was originally 

noted and termed by Thomas H. Morgan to describe a regenerative process in which there is 

a complete reconstitution of damaged tissue or region via the formation of a specialized 

structure known as blastema (Morgan 1901, 1902; Sánchez Alvarado 2000). The blastema is 

considered to be the ultimate hallmark and the driving force of epimorphic regeneration and 

an important trait of amphibian and teleost fish regeneration. This structure is defined as a 

transient proliferative mass of less differentiated cells that originates from the uninjured 

tissue and accumulates near the stump region. It is covered by a specialized epithelium and 
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ultimately differentiates into the multitude of cell types that integrate the appendage 

(Brockes and Kumar 2005; Iismaa et al. 2018; Seifert and Muneoka 2018). One fascinating trait 

of the blastema is its self-organizing properties: once it is fully assembled, it can regenerate 

an entire limb autonomously even when grafted to different locations of the body (Yokoyama 

2008). The blastema, especially that of the amphibian limb, shares many similarities both in 

form and in organization with the early embryonic limb buds assembled during vertebrate 

embryogenesis (Sánchez Alvarado 2000). In fact, limb development and limb regeneration 

research have largely advanced in parallel without a consensual view on the differences and 

similarities between both processes. A remarkable and classic example of epimorphic 

regeneration is the regeneration of appendages in adult vertebrates, such as the limbs and 

tails of Urodele amphibians (newt and axolotl) and the fins of Teleost fish (zebrafish). Despite 

structurally distinct it is clear that, upon injury, these structures go through similar 

regeneration phases, regenerating complex structures composed by different tissues such as 

skeletal muscle, bone, connective tissue, vasculature, nerves and epidermis (Tornini and Poss 

2014). Epimorphic regeneration occurs in tight and sequential manner in three main phases: 

(1) Wound healing, occurs right after appendage amputation and involves migration of 

epidermal cells at the edge of the cut skin to cover the wound, forming the wound epidermis 

(WE). (2) Blastema formation, which comprises the activation, migration and aggregation of 

cells at the stump region, where they proliferate to reconstitute the missing appendage. (3) 

Redifferentiation and outgrowth, where the blastema continues to proliferate distally while 

proximal cells differentiate to form the new tissues. This later phase appears to mimic and be 

governed by the same lineage specification rules as vertebrate embryonic development. 

(Stoick-Cooper et al. 2007; Yokoyama 2008; Kawakami 2009; Galliot and Ghila 2010; Poss 

2010; Nacu and Tanaka 2011; Tanaka 2016; Zielins et al. 2016; Stocum 2017). However, how 

regeneration and development differ is still under debate. It has been suggested that the main 

differences between appendage epimorphic regeneration and development rely on the 

initiation of the regenerative program, namely in the initial triggers of the process during 

wound healing and in the mechanisms that control blastema formation (Poss 2010; Nacu and 

Tanaka 2011).  

Here, I will summarize relevant features of epimorphic regeneration, considering studies in 

the amphibian and teleost fish appendages, giving special emphasis to the mechanisms of cell 

plasticity and reprogramming. 

2.1 Initial triggers of the regenerative response  

Soon after amputation of a limb or fin many transcription-independent signals are released to 

the tissue, leading to the wound detection and establishment of early responses (Niethammer 

2016). These signals, which are not only specific to regenerating tissues, but also occur during 

wound healing (Owlarn et al. 2017), include: calcium release from internal storages (Yoo et al. 

2012; Cordeiro and Jacinto 2013); production of reactive oxygen species (ROS) at the wound 
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edge (Gauron et al. 2013; Love et al. 2013; Tauzin et al. 2014; Meda et al. 2017); cell breakage 

and necrosis, which leads to the release of damage-associated molecular patterns (DAMPs) 

(Enyedi et al. 2013; Niethammer 2016; Sandoval-Guzmán and Currie 2018); emergence of 

apoptotic cells that are capable of modulating the proliferation and survival of surrounding 

cells, a phenomenon known by “apoptosis-induced compensatory proliferation” (Géraudie 

and Ferretti 1997; Fan and Bergmann 2008; Boulevard 2010; Vriz et al. 2014; Perez-Garijo and 

Steller 2015); and collapse of the trans-epithelial electrostatic potential, which leads to 

differences in tissue osmolarity due to damage of the epidermal tissue barrier (Enyedi et al. 

2013; Gault et al. 2014). It was also demonstrated that vascular dynamics and hemostasis 

serve as a foundation for the healing process, with vasoconstriction and platelets activating 

the intrinsic clotting cascade and leading to the release of cytokines and growth factors that 

initiate the inflammatory response (Yokoyama 2008). Importantly, these factors can function 

as chemoattractants for resident and more peripheral cells, which become activated and 

contribute to the regenerative process (Niethammer 2016), in some cases by directly 

activating signalling pathways and mitogenic signals that promote cell reprogramming and 

proliferation (Gauron et al. 2013; Love et al. 2013; Tauzin et al. 2014; Perez-Garijo and Steller 

2015; Galliot et al. 2017; Sandoval-Guzmán and Currie 2018). 

2.2 Pro-regenerative environment modulation: role of the immune system and 

senescent cells 

Senescent cells and immune response are known to be crucial in promoting a regeneration 

permissive microenvironment by stimulating surrounding cells (Karin and Clevers 2016; 

Ritschka et al. 2017). However, they are described to function as double-edged swords, since 

the imbalance of these responses can easily lead to detrimental effects in tissue regeneration. 

Senescence acts as a response to prevent the proliferation of cells exposed to deleterious 

stress, thus acting as an anti-tumorigenic mechanism (Yun 2015). The emergence of these cells 

can be triggered upon stress stimuli and are, for instance, accumulated after amputation of 

the axolotl limb (Yun et al. 2015; Stocum 2017). Recent studies have demonstrated that 

senescent cells are not passive players during repair, as previously anticipated, and can 

actually have beneficial outcomes. During mouse wound healing, removal of accumulated 

senescent cells at the wound margin lead to inefficient wound healing, by eliciting a pro-

regenerative response (Demaria et al. 2014; Serrano 2014). This is mainly achieved by 

secretion of extracellular matrix proteases, growth factors, chemokines and cytokines 

(collectively known as senescence-associated secretory phenotype, or SASP). The SASP can 

activate the recruitment of immune cells and the proliferation of surrounding resident cells 

(including stem and progenitor cells), thereby influencing cell reprogramming and fate 

determination (Mosteiro et al. 2016). To avoid prolonged SASP activation, senescent cells 

must be cleared by macrophages and this was also shown to be obligatory for blastema 

formation and regeneration (Yun et al. 2015; Stocum 2017). 
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Immune cells have been shown to be essential for regeneration of the salamander limb and 

the zebrafish caudal fin (Godwin et al. 2013; Petrie et al. 2015). The first immune response 

leads to a pro-inflammatory phase, with recruitment of neutrophils and macrophages 

(Sandoval-Guzmán and Currie 2018). These cells are required to restore the barrier function, 

to remove pathogens, cell debris and apoptotic cells, and produce pro-inflammatory 

cytokines. After this acute pro-inflammatory phase, macrophages switch from a pro- to an 

anti-inflammatory phase, characterized by clearance of the pro-inflammatory neutrophils and 

secretion of paracrine factors and anti-inflammatory cytokines known to stimulate 

angiogenesis and proliferation of resident cells (Kizil et al. 2015; Mescher 2017; Mescher et al. 

2017). An unresolved pro-inflammatory phase may lead to chronic inflammation that is often 

associated with fibrotic scar formation (Galliot et al. 2017; Sandoval-Guzmán and Currie 2018). 

It is hypothesized that one of the differences between species with low, such as mammalians, 

and high regenerative capacities comes from the fact that the latter possess more efficient 

self-resolving inflammatory mechanisms that aid in tissue formation and remodelling (Karin 

and Clevers 2016; Lai et al. 2017). Interestingly, recent work demonstrated that in zebrafish 

regulatory T cells (Treg) are required for proper tissue regeneration in an organ-specific manner 

by promoting precursor cell proliferation (Hui et al. 2017; Jahn and Weidinger 2017).  

2.3 Establishment of the apical epidermal cap (AEC) and epidermis-mesenchyme 

interactions 

After appendage resection, epidermal cells migrate to cover the wound edge forming the WE. 

Initially, this epidermis serves solely as a barrier from the extracellular environment. Then, it 

progressively thickens atop of the blastema cells and becomes a specialized secretory 

epithelium, the apical epidermal cap (AEC), that is considered to be analogous to the apical 

epidermal ridge (AER) found in developing avian and mammalian limb buds. Both the AEC and 

AER are indispensable for regeneration and limb development, respectively, sharing many 

morphological traits and expressing similar genes. In contrast to the AER, the formation of the 

AEC is triggered via signalling events that happen following injury, and its maintenance is 

regulated by regeneration-promoting signals (Nacu and Tanaka 2011; Murawala et al. 2012; 

Seifert and Muneoka 2018). Indeed, studies in urodeles and zebrafish show that the AEC 

functions as a signalling centre, secreting extracellular factors and mitogens that promote 

blastema cell proliferation, outgrowth and patterning (Christensen and Tassava 2000; Lee et 

al. 2009; Campbell et al. 2011; Zielins et al. 2016). 

2.4 Nerve dependency and interplay between nerves and AEC 

Salamanders and zebrafish have been used to address the requirement of nerves for 

regeneration and together, they have demonstrated that denervation leads to inhibition of 

regeneration (Kumar and Brockes 2012; Simões et al. 2014; Pirotte et al. 2016; Meda et al. 

2017) with innervation being required for proliferation in the blastema (Maden 1978). Indeed, 
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although the formation of WE is independent of nerves, the maintenance and activity of the 

AEC as a signalling centre depends on its innervation by the regenerating axons, necessary for 

proper blastema formation and proliferation (Kumar and Brockes 2012; Zielins et al. 2016). In 

the newt, nerves specifically contribute to this process by inducing a mitogenic factor, newt 

anterior gradient protein (nAG), which is downregulated in aneurogenic/denervated limbs 

(Kumar et al. 2009; Zielins et al. 2016). In fact, overexpression of nAG can substitute nerves 

and is sufficient to promote the regeneration of a denervated appendage (Kumar et al. 2009; 

Tanaka 2016; Meda et al. 2017). 

2.5 Histolysis of extracellular matrix: promoting cell migration for blastema assembly  

The extracellular matrix (ECM) is a 3D network that provides both structural and functional 

information to cells in a tissue. The properties of the ECM provide mechanical and biochemical 

cues that regulate cell behaviours, such as migration, adhesion, polarity, survival, proliferation 

and differentiation. Consistent with this, ECM remodelling and degradation, or histolysis, plays 

important roles during appendage epimorphic regeneration both in zebrafish and in urodele 

amphibians (Santamaría and Becerra 1991; Yang et al. 1999b; Godwin et al. 2014; Govindan 

and Iovine 2015; LeBert et al. 2015; Iismaa et al. 2018). Histolysis occurs through the action of 

matrix metalloproteinases (MMPs) synthesized by different types of cells/tissues, including 

immune cells, WE and AEC (Bellayr et al. 2009; Stocum 2017). MMPs seem to have two main 

roles during regeneration: to promote the breakdown of ECM collagenous and laminin 

components, which improves epithelial cell migration; and to degrade the ECM that surrounds 

the wounded area thereby stimulating the activation and migration of resident cells from the 

site of injury to the stump to contribute to blastema formation (Bellayr et al. 2009; Stocum 

2017). In parallel, a more pro-regenerative ECM is assembled, enriched in tenascin and 

fibronectins, which is also thought to stimulate cell growth, proliferation and migration 

(Godwin et al. 2014). 

2.6 Cell plasticity and reprogramming of differentiated cells: a case of dedifferentiation 

and lineage-specific memory 

Throughout the years, many important questions have been raised, most notably on the 

origin, plasticity and potency of the cells that compose the blastema. It has been speculated 

that the blastema is composed by a homogeneous group of cells that gives rise to all cell types 

of the regenerated tissue. This would imply that the cells that originate the blastema have the 

capacity to become multipotent or even pluripotent (Echeverri and Tanaka 2002). However, 

recent findings show that the blastema is composed of a heterogeneous cell population with 

lineage-restricted potential (King and Newmark 2012; Zielins et al. 2016). This was shown 

using transgene-based lineage tracing in amphibian limb and zebrafish caudal fin regeneration 

to follow the progeny of cells from multiple tissues, such as skeletal muscle, bone, connective 

tissue, epidermis, dermis and vasculature. These studies showed that blastema cells are 
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generated from mature cells close to the amputation region that proliferate while remaining 

lineage restricted and redifferentiate to the same cell type that they derived from (Figure 3) 

(Kragl et al. 2009; Tanaka and Reddien 2011; Tu and Johnson 2011; King and Newmark 2012; 

Stocum 2017). Thus, the current established view is that the cellular plasticity found in 

appendage regeneration relies mainly in the dedifferentiation of mature cells (Echeverri et al. 

2001; Odelberg 2005; Straube and Tanaka 2006; Satoh et al. 2008; Knopf et al. 2011; Sandoval-

Guzmán et al. 2014; Wang and Simon 2016; Iismaa et al. 2018). Exceptions to this are the 

contribution of resident stem cells, such as satellite cells in the salamander limb, which 

contribute to new skeletal muscle, and melanocyte stem cells in zebrafish caudal fin 

regeneration that differentiate to distinct pigment cell populations (Morrison et al. 2006; Tu 

and Johnson 2010). Overall, this suggests that blastema cells do not show the pluripotency of 

embryonic stem cells (ESCs) and instead they rely on a partial dedifferentiation process that 

guarantees the plasticity required to proliferate and rebuild the missing tissue. 

 

Figure 3: Cellular memory and lineage restriction during axolotl limb regeneration. Tissue-grafting experiments 
by Kragl and colleagues (Kragl et al. 2009) revealed the contributions of different resident cells for blastema 
formation during limb regeneration. They demonstrated that the most relevant tissue lineages like muscle, 
cartilage, Schwann cells and epidermis remain restricted to their developmental origin and do not 
transdifferentiate to other lineages during regeneration. Blastemal cells arise from different tissue types but 
remain compartmentalized in the blastema, occurring little lineage switching when forming the new limb 
structures. Adapted from (Poss 2010). 

2.7 Activation of cell cycle re-entry and controlled growth 

Regulation of cell cycle re-entry and proliferation is one of the most important requirements 

for regeneration. Many of the mechanisms and signalling pathways that regulate proliferation 

during regeneration have been described, however, the key molecules that trigger cell cycle 

re-entry still remain unclear (Poleo et al. 2001; Santos-Ruiz et al. 2002; Stoick-Cooper et al. 
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2007). Several researchers have hypothesized that cancer-related pathways are involved in 

regeneration since the proliferation of a mass of dedifferentiated cells in adult tissue 

resembles tumorigenesis. Nevertheless, during regeneration other factors must also play a 

part given that, in contrast to cancer development, blastemal cells undergo coordinated and 

controlled growth (Seifert and Muneoka 2018). In fact, two sources of evidence support this 

hypothesis: cell cycle progression is tightly controlled in the blastema with most blastema cells 

entering S-phase but becoming arrested in the G2 phase of the cell cycle, only entering mitosis 

when there are enough cells to form a blastema (Stocum 2017); in addition, in contrast to 

what occurs in cancer, the activity of p53, a tumour suppressor typically inhibited in cancer 

cells, is required for the regeneration in the axolotl limb (Yun et al. 2013; Seifert and Muneoka 

2018).  

2.8 Deployment of major signalling pathways and positional identity during outgrowth 

After blastema assembly, lineage restricted progenitor cells and/or tissue resident stem cells 

subsequently undergo redifferentiation, maturation and patterning to replace the lost tissues. 

During outgrowth, expression pattern is similar to that of development, implying that in this 

phase regeneration recapitulates ontogeny, however, at a higher growth rate (Iovine 2007). 

Major signalling pathways were demonstrated to be essential for this process, regulating the 

coordination between cell proliferation and differentiation, such as: Fibroblast growth factors 

(Fgf), Bone Morphogenetic Proteins (Bmp), Hedgehog family proteins, Notch, Retinoic acid 

(RA) and Wingless-type MMTV integration site family (Wnt) (Stoick-Cooper et al. 2007; Poss 

2010; Antos et al. 2016). Moreover, the ability of cells to specify their position in three 

dimensions is critical for proper patterning in a regenerating tissue. One of the most important 

epimorphic regeneration properties is the existence of a positional memory, defined as 

positional information that instructs cells on how to pattern the new appendage during 

regeneration (Wolpert 1969; Poss 2010). During development, cells respond to graded 

concentrations of specific signalling cues or morphogens from which they withdraw 

“positional values” specific spatial patterns of gene expression (Turing 1952; Wolpert 2011). 

In contrast to embryonic limb bud development, positional memory in appendage 

regeneration appears to be controlled by a combination of cell autonomous and non-

autonomous graded factors. Importantly, during salamander limb regeneration, the site of 

injury can occur at any level along the proximo-distal (PD) axis of the limb with the blastema 

cells faithfully replacing the missing parts (Mariani 2010). Amputation at the level of the upper 

arm results in a blastema harbouring cells that convert to form lower arm and hand. In 

contrast, amputation at the hand level generates hand blastema cells that are not able to 

become upper arm cells, as revealed by grafting experiments (Pescitelli and Stocum 1980; 

Echeverri and Tanaka 2005; Nacu and Tanaka 2011; Tanaka 2016). This positional identity was 

also shown to be an important feature in zebrafish caudal fin regeneration, where cells show 

a distinct transcriptional profile depending on their PD identity (Rabinowitz et al. 2017). 
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2.9 Transcriptional regulation: role of epigenetics and microRNAs 

Regeneration is characterized by major changes at the level of gene expression. Therefore, to 

comprehend the regenerative process, it is of major importance to consider how regenerative 

programs are regulated transcriptionally by early injury signals (Chen and Poss 2017). 

Epigenetic regulation is likely to play a major role in cell plasticity, reprogramming and lineage 

specification events occurring during appendage regeneration. (Katsuyama and Paro 2011; 

Beyret et al. 2018). Epigenetic gene regulation involves the alteration of chromatin structure 

through histone modifications (Hawkins et al. 2011; Orkin and Hochedlinger 2011; Chen and 

Dent 2014; Guo and Morris 2017). It was demonstrated that the elimination of repressive 

histone methylation signatures (Stewart et al. 2009), nucleosome remodelling and 

deacetylase complex (NuRD) (Pfefferli et al. 2014) is required for transcriptional activation of 

genes during zebrafish caudal fin regeneration. Nevertheless, the maintenance of some 

histone modifications also seems to be required to promote heritable cellular memory to 

maintain limb cell properties during Xenopus limb bud regeneration (Hayashi et al. 2015). 

Another related question is whether the chromatin state at homeostasis determines the 

regeneration ability. This remains largely unclear, but it has been demonstrated that zebrafish 

contains “dormant” or bivalent chromatin with both active and suppressive histone 

modifications, considered to be in a more flexible state than mammalian chromatin (Stewart 

et al. 2009; Katsuyama and Paro 2011). Interestingly, recent reports identified enhancer 

elements that preferentially and/or specifically activate gene expression in damage and 

regeneration contexts. These are designated by tissue regeneration enhancer elements 

(TREEs) and have a widespread distribution in the vicinity of genes with induced expression 

during zebrafish heart regeneration (Chen and Poss 2017; Goldman et al. 2017).  

In addition to chromatin regulation, microRNAs (miRNAs) also provide a potential means to 

rapidly silence gene expression during regeneration by targeting complementary mRNA. 

Several microRNAs have been shown to have important roles during zebrafish caudal fin and 

axolotl limbs regeneration, namely miR-133 and miR-21 respectively (Thatcher et al. 2008; Yin 

et al. 2008; Holman et al. 2012; King and Yin 2016).  

Further characterization of the transcription factors, epigenetic changes and microRNA 

networks will be extremely important to understand the mechanism of dedifferentiation 

during regeneration. 

 

Overall, the blastema is a highly proliferative and transient structure, whose assembly is 

regulated by many factors secreted by nerves and by the AEC. Notably, this structure has two 

main intrinsic characteristics fundamental for regeneration: (1) cellular memory, whereby 

cells that form the blastema arise mainly from dedifferentiation of mature cells that are 

lineage restricted; and (2) positional memory, whereby cells know which missing structures 
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they have to give rise to. Ultimately, orderly differentiation and patterning originate the 

multitude of cell types that make up the missing tissues. 

3 ZEBRAFISH AS A MODEL SYSTEM TO STUDY REGENERATION 

Zebrafish (Danio rerio, Cyprinidae, Teleostei) is a tropical, freshwater teleost fish native to 

river basins in and surrounding East India. It was first established as a laboratory model system 

by Streisinger and colleagues during the 1970s with the purpose of generating genetic 

manipulation tools to study vertebrate biology (Streisinger et al. 1981; Gemberling et al. 

2013). 

3.1 General features of zebrafish as a model system 

Over the last 70 years, zebrafish has become a valuable tool to dissect the principles of early 

vertebrate development and organogenesis, behaviour, metabolism and human pathologies 

(Lieschke and Currie 2007; Goldsmith and Jobin 2012; Tavares and Lopes 2013; Santoro 2014; 

Fazio and Zon 2017). A vast array of technical and practical advantages make zebrafish one of 

the most powerful model systems, which include: low cost and easy maintenance; large 

number of offspring (over 100 embryos per clutch, useful for high-throughput chemical and 

genetic screens); transparent embryos with rapid external development (suitable for high 

resolution live imaging); short generation time (reaching adulthood in 3-4 months); a fully 

mapped genome with significant homology with the human genome (approximately 70%), 

including noncoding regions; amenability to molecular manipulation in early stage embryos 

(such as gene knockdowns via morpholino technology); genome editing technology, with the 

possibility of transgenesis (tol2- or Meganuclease-mediated) and mutagenesis (CRISPR/Cas9 

and TALEN) to understand gene function (Grunwald and Eisen 2002; Brittijn et al. 2009; 

Lieschke et al. 2009; Soroldoni et al. 2009; Goldsmith and Jobin 2012; Gemberling et al. 2013; 

Howe et al. 2013; Zhang et al. 2013; Varshney and Burgess 2014; Kawakami et al. 2016). 

Importantly, many human disease-related genes have orthologues in zebrafish and their study 

has already contributed to gain insight into their pathophysiology (Lieschke and Currie 2007; 

Brittijn et al. 2009). Thus, zebrafish offers several advantages that make it a more 

advantageous model system or, at least, an important complement to the more established 

vertebrate genetic model, the mouse. Furthermore, the zebrafish community has available a 

high-quality genome resource (https://www.sanger.ac.uk/science/data/zebrafish-genome-

project) with genetic maps that have greatly facilitated the identification and characterization 

of disease-causing mutations. In addition, a zebrafish histological atlas (http://bio-

atlas.psu.edu/zf/) has also been developed, covering all developmental stages of zebrafish 

lifespan from embryo to adult in order to visualize and better comprehend the anatomical 

structures that can be distinguished at any particular stage. Finally, the community also 

benefits from a centralized database (https://zfin.org/) with up to date information regarding 
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available techniques, mutant and transgenic strains, genetic maps, expressed sequence tags 

(ESTs) and publications (Goldsmith and Jobin 2012). 

Despite being widely used throughout the years for the study of vertebrate embryonic 

development, the first use of fish as a scientific model organism was in the regeneration field 

by Thomas Hunt Morgan, who studied regeneration of amputated fish fins (Morgan 1901, 

1902). Over the past decade, zebrafish have become a primary model system for the study of 

vertebrate regeneration (Gemberling et al. 2013; Goessling and North 2014; Shi et al. 2015), 

possessing a remarkable capacity to regenerate damaged organs and entire structures after 

amputation/resection and other mechanical or chemical injuries. Currently, studies have 

covered nearly all major organs and tissues in the adult system, like the heart (Kikuchi and 

Poss 2012; Kikuchi 2014), fins (Akimenko et al. 2003; Poss et al. 2003; Kawakami 2009), retina 

(Wan and Goldman 2016; Ail and Perron 2017), brain (Kizil et al. 2012), spinal cord (Ghosh and 

Hui 2016; Noorimotlagh et al. 2017), bone (e.g. jaw and scales) (Spoorendonk et al. 2010; 

Wang et al. 2012; Witten et al. 2017; Iwasaki et al. 2018), pancreas (Curado et al. 2007; Beer 

et al. 2016), liver (Wang et al. 2017), skeletal muscle (Ratnayake and Currie 2017), intestine 

(Schall et al. 2015), kidney (Sander and Davidson 2014; Cirio et al. 2015), hair cells (Lush and 

Piotrowski 2014) and barbels (LeClair and Topczewski 2010). These studies have allowed the 

elucidation of the cellular and molecular mechanisms underlying regeneration, holding 

promising contributions to the field of regenerative medicine.  

3.2 Zebrafish caudal fin regeneration 

Fish fins are known to be the analogous structures to the terrestrial vertebrate limb (Yano and 

Tamura 2013) thus exhibiting many similarities regarding regenerative features. The first 

known report about fin regeneration was described by Broussonet in 1786 based on 

experiments with the goldfish (Broussonet 1786). Since then, fish caudal fins, in particular 

from the zebrafish, have become an excellent and popular model for studying the principles 

underlying appendage epimorphic regeneration (Poss et al. 2000b; Kawakami 2009; Pfefferli 

and Jaźwińska 2015). 

3.2.1 Models to study tissue repair and regeneration using the caudal fin 

Several types of injury to the adult zebrafish caudal fin can trigger a regenerative/repair 

program and, depending on the type of question to be analysed, three main models can be 

employed: amputation (Figure 4A), cryoinjury (Figure 4B) or bone crush/fracture injury (Figure 

4C). The oldest and most popular method is the caudal fin amputation model, where 

amputations are made by surgically removing the fin with a sterile razor blade (Poss et al. 

2000a). These studies allowed to shed light into many cellular and molecular mechanism that 

control regeneration and gave useful insights about the most important questions in the field, 

such as: what triggers cells to acquire a regenerative program?; what is the source of the cells 
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that compose the blastema?; what are the signalling pathways that coordinately regulate 

growth and patterning during regeneration? (Kawakami 2009; Antos et al. 2016). The other 

two methods recently established were the cryoinjury and the crush injury. The cryoinjury 

method (Figure 4B) is performed by transection of the caudal fin using a frozen blade, which 

disrupts tissue integrity and leads to the loss of the dead fin tissue after two days post-

cryoinjury. This type of procedure is used to study the detrimental effects of prolonged tissue 

damage, inflammation and ischemia on the execution of the regenerative programme. These 

effects also occur in the amputation/resection model but to a lesser extent (Chassot et al. 

2016). Lastly, the bone crush injury model (Figure 4C) consists on the breakage of the bony-

rays by applying mechanical force without tissue removal. This leads to transverse fractures 

in single segments of the bony-rays and triggers a remodelling process with the formation of 

a “hard callus”. This process takes longer than bone regeneration after amputation and 

resembles mammalian bone fracture healing, thus being more suitable to study bone fracture 

repair processes (Sousa et al. 2012; Geurtzen et al. 2014). 

Besides the adult caudal fin, some studies have also used fin fold (caudal fin primordium) 

amputation to study tissue regeneration during zebrafish larval stages (Figure 4D). This system 

is permissive to single cell live imaging which, coupled with molecular biosensors (e.g. for ROS 

or Ca2+), allow the analyses of very early responses to amputation. Although the adult caudal 

fin has a more complex architecture than the fin fold, the overall early regenerative 

mechanisms seem to be conserved (Kawakami et al. 2004; Niethammer et al. 2009; Mateus 

et al. 2012; Yoo et al. 2012). 
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Figure 4: Models of injury to the zebrafish caudal fin. (A) In the adult caudal fin amputation model, half of the 
fin is removed surgically with a razor blade (black dashed line marks the amputation plane). (B) Adult caudal fin 
cryoinjury model is based on the destruction of the fin using a cold blade for 15 seconds along the plane of injury 
(blue line). (C) Adult caudal fin fracture model is based on the application of mechanical force on a single bony-
ray (dashed red lines); whole mount images of bright field and alizarin red/alcian blue (bone labelling) show 
epidermal thickening (red arrow) and callus formation (red arrow-head). (D) Zebrafish larva fin fold regeneration 
is achieved by amputation as early as 2 days post-fertilization. Dpi: days post-injury. Dpci: Days post-cryo-injury. 
Dpa: Days post amputation. BF: brightfield. Adapted from (Kawakami 2009; Geurtzen et al. 2014; Chassot et al. 
2016). 
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3.2.2 Zebrafish caudal fin structure: emphasis on skeletal elements 

The zebrafish caudal fin derives mostly from the ventral side of the larval fin primordium, the 

fin fold, and is a non-muscularised structure, displaying a symmetrical and bi-lobed 

morphology (Figure 5A and B) (Pfefferli and Jaźwińska 2015). It is composed and supported by 

a dermal skeleton (similar to intramembranous bone, with no cartilaginous scaffold) that 

encompasses features similar to bone and to cartilage and is composed of a bone matrix with 

a very particular composition not found in other skeletal structures (Marí-Beffa et al. 2007). 

The fin skeleton consists of 16-18 segmented bony-rays, also called lepidotrichia, that extend 

along the whole length of the fin and bifurcate, with the exception of the most lateral rays 

(Figure 5A, B and C). The bony-ray segments are intercalated by soft intersegment joints 

(Figure 5A’and B’) and each ray is separated by soft interray tissue (Figure 5A’ and B) (Borday 

et al. 2001; Akimenko et al. 2003; Pfefferli and Jaźwińska 2015). 

Since zebrafish continuously grow during adulthood, fins also extend in length by addition of 

new segments to the distal-most regions of the bony-rays (Akimenko et al. 2003), a process 

called homeostatic regeneration (Wills et al. 2008; Marí-Beffa and Murciano 2010). Both bony-

ray and interray regions are coated by a multilayered pigmented epidermis, composed by 

several keratinocyte layers and a basal layer containing stem/progenitor cells (Becerra et al. 

1983; Hong et al. 2011). Each bony-ray consists of a pair of concave juxtaposed hemirays, 

resembling a pair of parenthesis, that enclose an inner intraray compartment composed 

mainly of mesenchymal or connective tissue with fibroblast-like cells (Figure 5B’, D’’ and D’’’) 

but also arterial capillaries, nerve fibers, pigment cells and resident blood cells (macrophages, 

plasma cells and neutrophils) (Figure 5D’’’). In addition to these cell types, a monolayer of 

osteoblasts, also designated as scleroblasts, covers the bone matrix on the inner (facing the 

mesenchymal compartment) and outer (facing the epidermis) side of the hemirays (Figure 

5D’’’). The bony-ray matrix is mainly composed of collagens and glycosaminoglycans, which 

are synthesized and secreted by the osteoblasts (Santamaría et al. 1992; Marí-Beffa et al. 

1996; Marí-Beffa and Murciano 2010). These osteoblasts are flattened and elongated cells 

derived from paraxial mesoderm (Lee et al. 2013) that are attached to the lepidotrichia surface 

(Becerra et al. 1983; Marí-Beffa et al. 1996; Bruneel and Witten 2015). The predominant 

portion of the bony-ray is composed of calcified bone matrix, while the distal-most 3-4 

segments are thinner and remain non-mineralized. The distal tips of each bony-rays encase a 

bundle of fusiform spicules, named actinotrichia, which are composed of unmineralized fibrils 

of collagens associated with non-collagen components, providing a flexible support to the fin 

edge (Figure 5C) (Akimenko et al. 2003; Durán et al. 2011; Pfefferli and Jaźwińska 2015). In the 

interray space, mesenchymal components are also found, with the exception of arteries, 

which are substituted by venous capillaries (Marí-Beffa et al. 1996; Akimenko et al. 2003; 

Kawakami 2009; Tal et al. 2010; Tu and Johnson 2011). During regeneration, this multitude of 

tissues and cell types is fully restored and interactions between cells are re-established and 

coordinated to ensure proper growth and patterning to pre-injured levels. 
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Figure 5: Organization, structure and histology of the adult zebrafish caudal fin. (A-A’) Representative example 
of a zebrafish caudal fin with magnified panel (red dashed box) showing the bony-rays (orange double arrow-
heads), which are composed of segment (red lines) and intersegment/joint (black asterisks), intercalated by 
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interray regions (green double arrow-heads). Bony-rays bifurcate (blue asterisks) at the distal regions of the fin. 
(B-B’) Schematic representation of the caudal fin bilobed structure where the cleft refers to the caudal fin region 
between two lobes. Black box represents magnified panel showing in more detail the bony-bony ray structure. 
(C) Scheme representing a dermal skeleton of a bony-ray, which is composed of flexible actinotrichia spicules 
and lepidotrichia (the bony-ray per se), that splits at a bifurcation point into two sister rays. (D-D’’) Cartoon 
showing the bony-ray structure with longitudinal (D’) and transversal (D’’) planes of sectioning and the respective 
representative images of caudal fin hematoxylin and eosin staining. (D’’’) Illustration depicts the organization of 
the different cell types found in a transversal section of a bony-ray, including: epidermis, osteoblasts, fibroblast-
like cells, pigmented cells (melanocytes, iridophores and xanthophores), endothelium (artery and veins), intraray 
glia and lateral line cells. (E) epidermis; (M) mesenchymal compartment (or intraray compartment) and (B) bone 
matrix. Adapted from (Akimenko et al. 2003; Tu and Johnson 2011; Rolland-Lagan et al. 2012; Pfefferli and 
Jaźwińska 2015; Puri et al. 2017). 

3.2.3 General features of adult caudal fin regeneration 

Zebrafish caudal fin regeneration relies on the formation of a blastema and therefore it is a 

classic model of epimorphic regeneration, comprising all characteristic traits of this 

regenerative program. However, it also endues its own particular properties that make it quite 

advantageous in comparison with the traditional amphibian limb models. The caudal fin 

comprises a simpler anatomical organization, with fewer cell types involved in regeneration 

and quicker regeneration times, taking only about 2-3 weeks in contrast to 1 month in 

amphibians (Poss et al. 2003; Yokoyama 2008). Complete reconstitution of the missing fin is 

highly dependent on the temperature since at 33°C regeneration occurs nearly twice as 

quickly than at 25°C. In addition, the caudal fin is easily accessible to surgery and its analysis 

does not require to sacrifice the animal. The external location and its transparency makes it 

also suitable for live imaging (Poss et al. 2000a, 2003; Pfefferli and Jaźwińska 2015). This 

structure has an almost unlimited ability to regenerate, allowing repetitive amputations 

without compromising its regenerative capacity (Azevedo et al. 2011). The initial stages of 

regeneration do not seem to be affected by age, but mild differences were observed during 

the late outgrowth phase between young and old animals (Shao et al. 2011; Itou et al. 2012). 

Caudal fin regeneration leads to the formation of an almost flawless replica of the original 

structure with the exception of initiation of the bony-ray bifurcation. An amputation near the 

bifurcation plane induces a distalization of the regenerated bifurcation, suggesting that the 

positional memory for bony-ray bifurcations depends on the PD level of the amputation 

(Azevedo et al. 2012).  

Another important feature is that the caudal fin bony-rays regenerate independently of one 

another. Each bony-ray gives rise to an individual blastema, which functions as autonomous 

regenerative units and thus as experimental replicates in the same animal (Pfefferli and 

Jaźwińska 2015). Also, bony-ray regeneration is a unidirectional process, since ablation of only 

some ray segments, which creates a discontinuity in the ray, leads to regeneration of the 

damaged ray from the proximal region toward the distal edge. It is proposed that this 

unidirectionality is correlated with the nerve supply since this type of ablation deprives the 

distal part of the ray of its normal innervation (Akimenko et al. 2003). Moreover, bony-ray 

growth control is achieved along the PD axis (Lee 2005), as shown by experiments using the 
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staircase-like amputations: a more proximal amputation induces the formation of a larger 

blastema that regenerates faster than the one formed via a more distal amputation (Figure 

6A). This is mainly attained through a higher proliferation rate in more proximal regenerates 

than in distal regenerates (Akimenko et al. 1995, 2003; Lee 2005). In addition, the caudal fin 

bi-lobed architecture has allowed researchers to demonstrate that growth rates vary between 

medial (cleft region) and lateral regions (lobe regions). These findings were observed by 

amputating the lateral rays of both fin lobes at the same level but with different slopes, 

resembling the shape of two teeth of a saw (Figure 6B). When the adjacent stump tissue is 

more distal than the border (lobe region) stump growth is favoured, whereas the opposite 

delays regeneration. This feature was designated by Morgan as “regulative influence” 

(Morgan 1902; Akimenko et al. 2003) and later shown to depend on the interaction between 

ray and interray blastemas that allow for bifurcation formation. Most bony-rays form 

bifurcations since they are surrounded by interray tissue, with the exception of most lateral 

rays, which possess only one neighbour interray tissue.  

Strikingly, and in contrast to amphibians, where blastema cells possess the same positional 

memory even when transplanted to other locations, the caudal fin blastema memory appears 

to have the potential to be reset. For instance, when a fragment of a lateral ray (lobe) is 

transplanted into a medial region (cleft), it is able to acquire features of medial rays such as 

bifurcation formation, suggesting that bony-rays have morphogenetic plasticity dependent on 

the surrounding environment (Murciano et al. 2002; Akimenko et al. 2003; Tamura et al. 

2010).  

Finally, all these features render the caudal fin an excellent model for understanding 

epimorphic regeneration and can even be more advantageous over more traditional models, 

like amphibian limb regeneration. 

 

Figure 6: Different caudal fin amputations reveal general traits of the regenerative process. (A) Staircase-like 
amputations in a single zebrafish caudal fin at three different levels along the PD axis demonstrated that proximal 
amputations have higher growth rates in comparison to more distal amputations (+ show the degree of growth). 
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(B) Oblique amputations show that growth regulation also occurs along the medial-lateral axis. When the 
neighbour stump is more distal than the border (situation B’’) the growth rate is increased when compared with 
the opposite situation (when the stump is more proximal than the border) (B’), even when the more lateral rays 
are amputated at the same level (asterisks). Adapter from (Akimenko et al. 1995, 2003). 

3.2.4 Phases of caudal fin regeneration 

A huge amount of research has been done to understand the caudal fin regenerative process, 

including unbiased approaches like transcriptomic (Padhi et al. 2004; Schebesta et al. 2006; 

Thatcher et al. 2008; Nachtrab et al. 2013; Kang et al. 2016; Nauroy et al. 2018) and proteomic 

analyses (Nolte et al. 2014; Rabinowitz et al. 2017), drug screening assays (Mathew et al. 2007; 

Oppedal and Goldsmith 2010) and mutagenic screens (Johnson and Weston 1995; van Eeden 

et al. 1996). According to these data, the regeneration program can be divided into several 

successive but overlapping steps (Figure 7A): (1) Wound healing and wound epidermis 

formation (from 0 to 18 hours-post amputation (hpa)); (2) Blastema formation (from 12 to 48 

hpa); and (3) Regenerative outgrowth (from 48 hpa to 20 days-post amputation (dpa)) (Poss 

et al. 2000b). Each one of these phases will be described in further detail in the next sections 

of this chapter. 

3.2.4.1 Wound healing phase 

This phase occurs as soon as the damage is inflicted, resulting in almost no bleeding or 

inflammation. As early as 1-3 hpa, a thin layer of epidermal cells migrate to seal the wound, 

leading to wound closure (Figure 7A) (Poss et al. 2003). It is thought that this process requires 

primarily F-actin-mediated contraction at the wound margin and collective cell migration, as 

observed in simple epithelia of Drosophila and vertebrates (Wood et al. 2002; Kawakami 

2009). This collective cell migration process involves not only the epidermal cells near the 

wound site but also cells located several segments away from the amputation plane (Poleo et 

al. 2001; Santos-Ruiz et al. 2005). Recently, it was demonstrated through Cre/loxP cell tracing 

and clonal analysis that the bony-ray stump is covered by the mobilization of the epidermal 

cells from the interray compartment. During this process, the stump is covered within 1 hpa 

by basal and suprabasal cells that are closely followed by superficial epidermal cells, many of 

which undergo extrusion during the process (Chen et al. 2016a; Shibata et al. 2018). The new 

epidermal cell layer develops into a multi-layered wound epidermis with three distinct cell 

layers: an outer superficial layer composed of flat condensed cells; an intermediate layer with 

loose cells that contain mucous cells; and a basal layer that consists on a well-organized sheet 

of cuboidal cells with protrusions that produce the extracellular basement membrane 

(Santamaría and Becerra 1991; Santos-Ruiz et al. 2002). During this phase, the basal epidermal 

layer (BEL) produces Laminin β 1a, promoting the polarization of this cell layer (Chen et al. 

2015). Surprisingly, this process is independent of cell proliferation and does not require a 

blood supply, depending exclusively on cell migration and rearrangements (Poleo et al. 2001; 

Nechiporuk and Keating 2002). In the following 12 to 18 hpa, the epidermis accumulates 
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additional layers by the proliferation of basal and suprabasal epidermal cells. By 18 to 24 hpa, 

concomitant with blastema formation, the wound epidermis maturates into a specialized 

structure, which starts a transcription program distinct from the uninjured epidermis, 

designated AEC (Poss et al. 2003). This structure acts not only as a physical barrier but also as 

an organizer. In particular, the BEL functions as a signalling centre for the underlying intraray 

mesenchymal compartment by communicating growth and patterning signals throughout 

regeneration (Lee et al. 2009). A well-established marker of the BEL is the lymphoid enhancer 

binding factor 1 (lef1), which is required for epithelial-mesenchymal communication (Poss et 

al. 2000a). Various signalling pathways were demonstrated to be important for the 

maintenance and function of this regeneration epidermis. Fgf signalling regulates epidermal 

expression domains by controlling the expression of lef1 and sonic hedgehog (shh), in proximal 

lateral regions next to the amputation plane, and the non-canonical Wnt ligand wnt5b, in the 

distal region of the epidermis (Lee et al. 2009) (Figure 8B). Recent work has also demonstrated 

Bmp signalling as an important player during wound epidermis formation, namely as an 

organizer of the BEL by regulating wnt5b expression (Thorimbert et al. 2015). 

While wound healing is happening, immune cells, neutrophils and macrophages, sense tissue 

damage and are recruited to the injury area scavenging apoptotic bodies and small cell debris 

(Li et al. 2012; Petrie et al. 2015; Niethammer 2016). Tissue damage is detected by differences 

in interstitial osmotic pressure, calcium signalling, ROS production and apoptosis of damaged 

cells (Niethammer et al. 2009; Yoo et al. 2012; Gault et al. 2014; Niethammer 2016; Chen and 

Poss 2017). These studies have shown that ROS mediates immune cell chemotaxis, by 

activation of the redox sensor Lyn, a Src family kinase (Niethammer et al. 2009; Yoo et al. 2012; 

LeBert et al. 2018). In addition, during adult caudal fin regeneration, ROS production is not 

only observed at early stages (0-2hpa) but also sustained until later time-points (for at least 

24 hpa), suggesting additional roles during regeneration. In this context, ROS triggers two 

distinct responses: apoptosis and c-Jun N-terminal kinase (JNK) activation, with the last being 

necessary to activate other target signalling pathways and both being required to activate 

compensatory proliferation and thus regeneration (Gauron et al. 2013; Vriz et al. 2014). In the 

mesenchymal compartment other signalling pathways are activated during wound healing, 

such as: canonical Wnt (Stoick-Cooper et al. 2006) and Activin-βA (in the interray) (Jaźwińska 

et al. 2007), as early as 3 hpa, and Fgf20a, (Whitehead et al. 2005), Insulin growth factor (Igf) 

(Hirose et al. 2014) and RA (Blum and Begemann 2012) signalling at 6hpa. These pathways 

(and others) are crucial for the establishment of epithelial-mesenchymal interactions that are 

fundamental to ensure epidermal maintenance but also the establishment of a blastema.  
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Figure 7:  Adult zebrafish caudal fin regeneration. (A) Time-lapse imaging of the same fin during the regeneration 
process at 27 °C. Prior to amputation, the caudal fin presents a bilobed morphology. Upon amputation, the 
regenerative process is activated and can be divided in three sequential and overlapping phases: Wound healing 
(0-12 hpa), that culminates in the formation of a wound epidermis; Blastema formation (12-48 hpa); and 
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Regenerative Outgrowth (48hpa-20 dpa). (B) Schematic representation (longitudinal plane) of blastema 
compartmentalization and proliferation during regeneration. At 72 hpa, already in the outgrowth phase, three 
different compartments can be defined: distal blastema (db) with non-proliferative cells; proximal blastema (pb) 
composed of highly proliferative cells; and the patterning zone (pz) where cells proliferate moderately and start 
receiving differentiation signals from the epidermis that control their redifferentiation. Hpa: hours post-
amputation; Dpa: Days post-amputation. Dashed lines represent the amputation plane. Adapted from 
(Nechiporuk and Keating 2002; Pfefferli and Jaźwińska 2015). 

3.2.4.2 Blastema formation phase 

The blastema, as mentioned previously, is the hallmark and a prerequisite of epimorphic 

regeneration. In caudal fin regeneration, this structure accumulates atop of each bony-ray and 

provides an adequate number of cells to build the lost tissue (Figure 7A). The blastema 

formation phase can be subdivided in two main events (Figure 7A). From 12 to 24 hpa, 

overlapping with the maturation of the wound epidermis, the intraray cells (e.g. fibroblasts 

and osteoblasts) located around 1 segment below the amputation plane (within a distance of 

approximately 150 μm) become disorganized, polarize and migrate towards the wound 

epidermis to integrate the blastema (Figure 7A) (Poleo et al. 2001; Nechiporuk and Keating 

2002). Data from lineage-tracing experiments show that mature cells from different lineages 

will give rise to the blastema and will ultimately redifferentiate to their own lineage. 

Therefore, the blastema is composed of a heterogeneous population of cells that arise from 

dedifferentiation of mature cells (for most lineages composing the caudal fin) or by 

commitment of resident stem cells (e. g. pigment population) that remain lineage restricted 

and do not transdifferentiate into other cell types (Knopf et al. 2011; Sousa et al. 2011; Tu and 

Johnson 2011; Stewart and Stankunas 2012; Tornini et al. 2017). Another recent report has 

shown, through clonal analysis, the relative contribution of the blastema connective tissue 

(mesenchymal fibroblasts) to the regenerative process. They demonstrated that while some 

clones give rise to very few cells, others originate entire cell populations within the 

regenerated connective tissue. This provides evidence for another level of heterogenicity 

within blastema cells, meaning that not all cells contribute the same during blastema assembly 

and during outgrowth and this is determined during blastema formation. The emergence of a 

pre-pattern in which blastemal cells acquire preferences along the PD axis, argues against a 

former model in which cells within specific lineage compartment of the blastema have 

identical PD fates (Tornini et al. 2016). 

Subsequently, in the time-window between 24-48 hpa, dedifferentiated cells at the stump 

start to proliferate and reorganize (Figure 7A) (Poss et al. 2000b). Within 48 hpa, the blastema 

is fully assembled and can be subdivided into a distal and a proximal compartment with 

distinct features that are further enhanced during regenerative outgrowth (Figure 7B) 

(Nechiporuk and Keating 2002). During this phase, the wound epidermis provides 

architectural cues, functioning as a source of growth factors that stimulate blastema 

formation and proliferation, such as Shh, Bmp2, Wnt5b (Stoick-Cooper et al. 2006), Fgf20a 

and other Fgfs (Laforest et al. 1998; Whitehead et al. 2005; Stoick-Cooper et al. 2006; Lee et 
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al. 2009; Shibata et al. 2016). In this system, RA signalling in the intraray mesenchymal 

compartment induces the expression of both igf2b and wnt10a, which then induce Fgf20a 

mainly in the wound epidermis (Stoick-Cooper et al. 2006; Chablais and Jazwinska 2010; Blum 

and Begemann 2012; Gemberling et al. 2013; Shibata et al. 2016). It is important to emphasise 

that inhibition of any of these signalling pathways precludes both blastema formation and 

wound epithelium organization. Importantly, mutants for fgf20a, also designated devoid of 

blastema (dob), fail to undergo intraray disorganization, show defective wound epidermis 

formation and do not initiate proliferation. Accordingly, inhibition of the Fgf receptor FgfR1 

leads to a similar phenotype (Poss et al. 2000b) while blocking Fgf signalling did not impair cell 

dedifferentiation (Knopf et al. 2011), suggesting that its primary role is to control blastema 

cell proliferation. In fact, Fgf signalling inhibits the expression of miRNA-133, whose 

downregulation is required for proliferation to occur (Yin et al. 2008). This places Fgf20a as a 

major molecule regulating several and critical aspects for blastema formation and 

proliferation. 

Despite being subject of fewer research studies, regeneration of the interray region is also 

important for the adequate restoration of caudal fin architecture. In this context, Activin-βA 

and RA seem to take leading roles in maintaining and regulating, also at later time-points, the 

identity of the interray compartment (Jaźwińska et al. 2007; Blum and Begemann 2015a). 

Overall, this shows that a reciprocal communication between the wound epithelium and the 

mesenchyme is one of the prerequisites for blastema formation, where several signalling 

pathways, specially Fgf signalling, play key roles. Impairment in blastema formation 

consequently culminates in the abrogation of the subsequent regenerative outgrowth phase. 

3.2.4.3 Regenerative outgrowth phase 

Regenerative outgrowth is characterized by redifferentiation and patterning events, where 

previously dedifferentiated cells differentiate again to reconstitute the missing tissues (Figure 

7A). These events occur concomitantly with growth control mechanisms that ensure the 

establishment of proper fin dimension and signals when the structure has reached its pre-

injury size. Importantly, to achieve the correct tissue architecture and size, a tight coordination 

between differentiation and patterning with proliferation and growth mechanism has to be 

met. The switch between blastema formation to regenerative outgrowth is accomplished 

through morphological and molecular changes. During outgrowth, the cell cycle accelerates 

from a median G2 phase length of approximately 6 hours to 1 hour, when comparing to the 

blastema formation phase. At the onset of outgrowth (72 hpa), the blastema is a highly 

organized structure with two different domains (Figure 7B): the distal (DB) and the proximal 

blastema (PB). The DB is composed of slow-cycling cells and high expression of the blastema 

marker msxB (Akimenko et al. 1995; Nechiporuk and Keating 2002). The PB, which is 

segregated from the DB region, has a higher proliferation rate and is defined as being negative 

for msxB and positive for msxC and mps1 (Akimenko et al. 1995; Nechiporuk and Keating 2002; 
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Poss et al. 2002). In addition, a third region is also established immediately proximal to the PB, 

called the patterning zone (PZ or differentiation zone), where some cells redifferentiate and 

maturate to form the new structures of the fin. Importantly, these three compartments are 

characterized by having specific gene expression and proliferative profiles, maintaining their 

identity until regeneration is completed (Poss et al. 2003). These gene expression profiles are 

similar to those that occur during development and include pathways, such as: Fgf, Wnt/β-

catenin, BMP, Activin, RA, Shh, Igf, Notch, Hippo/Yap, mTOR, Sdf1 and Calcineurin signalling 

(Wehner and Weidinger 2015; Antos et al. 2016; Sehring et al. 2016). It is important to note 

that many of these pathways are not restricted to one function but play several roles during 

outgrowth and regulate directly or indirectly other pathways. I will briefly summarize some of 

the most relevant signalling pathways maintaining epidermal compartment, DB, PB and PZ 

during outgrowth (Figure 8A). 

To maintain the epidermis as a potent signalling centre that regulates the underlying blastema 

compartment, the same signalling pathways that lead to the establishment of the AEC during 

wound healing are maintained, such as: Shh, Bmp2 and Lef1 in the proximal-lateral epidermal 

region (just adjacent to the PB and PZ), which signal to the underlying blastema cells, and Fgf 

and Wnt5b in the more distal epidermal region (just adjacent to the DB) (Figure 8B) (Laforest 

et al. 1998; Lee et al. 2009; Wehner and Weidinger 2015). Furthermore, canonical Wnt 

signalling indirectly regulates lef1 and shh expression to maintain the identity of the epidermis 

(Figure 8B). The proliferation and survival of the epidermis are regulated by Sdf-1/Cxcr4 and 

Igf2b/Igf1R signalling, respectively. While the ligands sdf-1 and igf2b are produced by 

blastema cells, the receptors cxcr4 and igf1R, respectively, are expressed by the wound 

epidermis, leading to Sdf1 and IGF signalling activation in the epidermis (Figure 8B) (Dufourcq 

and Vriz 2006; Chablais and Jazwinska 2010). The DB compartment expresses Wnt/β-catenin, 

RA and Fgf signalling that maintain the non-proliferative and stem cell-like characteristics of 

this small group of cells (Figure 8C) (Lee 2005; Smith et al. 2006; Blum and Begemann 2012; 

Wehner et al. 2014). In the PB, many signalling pathways have been shown to be active and 

required to sustain blastema proliferation, including: Notch, mTORC1, Yap and BMP (bmp6) 

(Figure 8C) (Smith et al. 2006; Grotek et al. 2013; Munch et al. 2013; Hirose et al. 2014; Mateus 

et al. 2015). RA and Wnt/β-catenin signalling are also essential for blastema proliferation but 

via a non-cell autonomous manner (Blum and Begemann 2012)(Figure 8C) (Wehner et al. 

2014). Finally, the PZ region is under the control of Bmp2 and Shh coming from the epidermal 

compartment, which is essential for bone differentiation and will be discussed in further detail 

in the next section of this Chapter. 

Moreover, in order to form a fin with the proper size and structure, there must be a positional 

component that defines the differential rates of outgrowth between distal and proximal 

regions. This has been associated with the levels of Fgf signalling provided by the epidermis: 

higher levels of Fgf signalling in proximal regions lead to a higher mitotic index in adjacent 

blastema cells, whereas low Fgf levels in distal regions are associated with lower mitotic rates 
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in the adjacent blastema (Lee 2005). However, some questions remain: which factors 

coordinate the growth factor levels so that structures regenerate to determined sizes and 

proportions? In this context, Calcineurin, a protein phosphatase, has been proposed to inhibit 

regenerative outgrowth, by switching from high (allometric growth) to low outgrowth rates 

(isometric growth) once the correct caudal fin size is reached (Kujawski et al. 2014; Antos et 

al. 2016). Accordingly, another longfin (alf) and shortfin (sof) mutants (van Eeden et al. 1996; 

Iovine et al. 2005; Perathoner et al. 2014; Rabinowitz et al. 2017), which code for the 

Calcineurin targets Potassium channel Kcnk5b and Connexin43 (Cx43), respectively, display 

altered fin outgrowth proportions (Antos et al. 2016). Also, it was demonstrated that 

inhibition of proton pumping activity of the V-ATPase, which leads to decreased proton efflux, 

compromises regenerative outgrowth (Monteiro et al. 2014). All these evidences suggest that 

proportional growth is regulated by intercellular ion signalling and membrane potential.  

Taken together, these studies highlight the complexity of regenerative outgrowth during 

caudal fin regeneration. 
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Figure 8: Signalling pathways that govern caudal fin regenerative outgrowth. (A) Schematic representation of 
a longitudinal view of a 3 day-post-amputation caudal fin bony-ray blastema, where various tissue compartments 
can be distinguished. (B) Scheme representing a bony-ray blastema and depicting the most important signalling 
pathways that regulate epidermal patterning and maintenance. (C) Scheme representing a possible model for 
the regulation of blastemal cell proliferation. Coloured regions indicate domains that respond to the signalling 
factors depicted in the same colour. Signals whose source is unknown are on a white background. Dashed arrows 
indicate positive or negative interactions that are indirect or not shown to be direct. Adapted from (Wehner et 
al. 2014; Wehner and Weidinger 2015) 

4 ADULT CAUDAL FIN BONE REGENERATION 

The most abundant and important components of the adult zebrafish caudal fin are the 

dermal skeletal elements or bony-rays. These components give structure to the fin but also 

flexibility, providing the optimal architecture for its hydrodynamic function. Bone 

regeneration and bone producing cell (osteoblast) formation have been the subject of many 

research studies. These have uncovered many of the cellular and molecular mechanisms that 

allow proper bony-ray formation during caudal fin regeneration, although much remains to 

be elucidated. It is important to emphasise that key regulators of bone formation are highly 

conserved between mammals and zebrafish. Thus, the study of bone regeneration in zebrafish 

can provide new insights into the fundamental processes of osteoblast reprogramming and 

differentiation that could eventually be applied in the context of bone regenerative medicine. 

From now on I will focus on the current understanding of the mechanisms of bone 

regeneration triggered after caudal fin amputation, which is the main theme addressed in this 

thesis. 

4.1 Bone development and the osteoblast lineage 

In this section, I will highlight the key regulators that control the commitment and maturation 

of osteoblasts, which allow for proper bone development and repair in mammals, and how 

zebrafish could be used as a model system to study bone development and regeneration. 

4.1.1 Osteoblast lineage: insights from mammalian systems  

For many years, classical bone research has been done mostly using mice, chicken and cell 

culture systems. These model systems enabled the understanding of the basic mechanisms by 

which bones develop, how they are maintained and how they repair in case of 

damage/fracture. Bones can form through two main processes: endochondral ossification, 

characteristic of long bones, which requires a cartilaginous scaffold; and intramembranous 

ossification, characteristic of flat bones, which does not require a cartilage-based scaffold 

(Deng et al. 2008; Long 2012). In both types of ossification, bone is built through osteogenesis 

(deposition of bone matrix), modelling and remodelling events. Bone formation and 

maintenance are mediated by two cell types: osteoblasts, the bone-forming unit that 

produces the bone matrix; and osteoclasts, the bone-resorbing unit that degrades bone matrix 
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(Berendsen and Olsen 2015; Rutkovskiy et al. 2016). Given the aims of this thesis, I will focus 

on the description of the osteoblast lineage.  

Osteoblasts from different bone types arise from two distinctive embryonic germ layers: one 

originates from neural crest cells (derived from the neural ectoderm), a mesenchymal cell type 

unique to vertebrates, and builds mainly intramembranous bones; the other derives from the 

paraxial mesoderm (somites) or from the lateral plate mesoderm and requires a cartilage-

based model. Independently of their origin and type of ossification, the common ancestor of 

osteoblasts are Mesenchymal stem cells (MSCs), multipotent stem cells capable of giving rise 

to different cell lineages (myoblast, osteoblast, chondrocyte, or adipocytes), that originate 

preosteoblasts (Long 2012; Berendsen and Olsen 2015; Rutkovskiy et al. 2016). The osteoblast 

lineage is often divided into stages corresponding to their differentiation status: mesenchymal 

progenitors, preosteoblasts (also referred to as osteoprogenitors/osteoblast precursors), 

immature/intermediate osteoblasts, mature osteoblasts and osteocytes (Figure 9). Each stage 

of differentiation is characterized by the expression of certain molecular markers. The primary 

commitment towards the osteoblast lineage is governed by the so-called “master 

transcriptional regulator” Runt-related transcription factor 2, Runx2 (also called Cbfα1) (Figure 

9). RUNX2 triggers the commitment of SOX9 mesenchymal progenitors in osteoprogenitors 

(Akiyama et al. 2005; Ono and Kronenberg 2016), which possess proliferative ability (Figure 9) 

(Ducy et al. 1997; Rutkovskiy et al. 2016). Corroborating this, neonatal mutant mice for Runx2 

have a complete lack of ossification (Komori et al. 2017). Moreover, RUNX2 is also required 

throughout the differentiation stages, since it is crucial for the activation of other genes that 

are decisive for the maintenance of the osteoblast lineage and maturation. Subsequently, 

another transcription factor, Osterix (Osx, also named Sp7), is required to stimulate 

differentiation and the transition from osteoprogenitors to immature osteoblasts, also 

considered to be an intermediate state between osteoprogenitors and mature osteoblasts 

(Figure 9) (Nakashima et al. 2002). Similarly, Osx-deficient mice do not form bone due to a 

failure of osteoblast differentiation (Nakashima et al. 2002). OSX was shown to be required 

downstream of RUNX2, as Runx2-deficient mice fail to express Osx, whereas Osx-null mice 

retain Runx2 expression (Nakashima et al. 2002). At this stage, immature osteoblasts start 

expressing Alkaline phosphatase (Alp), Osteopontin and Collagen type 1, which will compose 

the bone extracellular matrix. Gradually these osteoblasts become mature and start 

expressing bone matrix proteins, such as Osteonectin (Osn, also named Sparc) and Osteocalcin 

(Osc, also referred as Bgla). In fact, the expression of key osteoblast intermediate and mature 

markers, such as Osx and Osc, is directly regulated by RUNX2 (Karsenty 2008; Long 2012; 

Rutkovskiy et al. 2016) further emphasising the role of Runx2 in maintaining the osteoblast 

lineage. OSN and OSC are both required for calcium ion homeostasis and deposition of 

mineral, crucial for proper bone matrix mineralization (Figure 9). At this phase, mature 

osteoblasts possess a cuboidal morphology and are in direct contact with the bone surface. In 

some cases, a subset of matures osteoblasts can be embedded and trapped in the bone 
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matrix, becoming an osteocyte, which translates mechanical cues to bone remodelling (Figure 

9). After bone remodelling, remaining osteoblast have two options, they can either undergo 

apoptosis or remain attached to the bone surface, becoming inert post-mitotic bone-lining 

cells (BLCs) (Long 2012; Rutkovskiy et al. 2016).  

The transcriptional control of osteoblast differentiation is much more complex and many 

signalling pathways have been currently implicated in this process (Wu et al. 2016). For 

example, the transcription factor TWIST-1, TGF-b and NOTCH signalling are known to inhibit 

RUNX2 activity and maintain the mesenchymal progenitor niche. On the other hand, signalling 

pathways such as BMP, WNT/ β-catenin, RA, Parathyroid hormone, MSX2, HH and FGF are 

known to have diverse roles and to be required in various steps of osteoblast differentiation 

and maturation (Phimphilai et al. 2006; Marie 2008; Ling et al. 2009; Witkowska-Zimny et al. 

2010; Long 2012; Beederman et al. 2013; Rutkovskiy et al. 2016). In this context, RA and BMP 

signalling pathways possess important pro-osteogenic activities. The current understanding 

on the effects of RA signalling during osteoblast lineage specification is controversial and 

highly variable. RA can exert various biological outputs by binding to nuclear receptors, 

retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which bind to the DNA and 

mediate target gene activation (Das et al. 2014). During osteoblast lineage determination, 

some studies show that RA is able to modulate Runx2 activation and promote osteoblast 

formation (Dingwall et al. 2011) and matrix deposition (Li et al. 2010), while others have shown 

that RA restricts osteoblast differentiation (Herschel Conaway et al. 2013). Thus, additional 

data is required to clarify the role of RA signalling during osteoblast formation. The BMP 

signalling pathway members belong to the TGF-b superfamily. In this pathway, BMP ligands 

signal through heteromeric receptor complex, composed of type I and type II receptors at the 

cell surface. Activated BMP receptors signal phosphorylate cytoplasmic downstream targets 

SMAD1/5/8 proteins, which then complex with SMAD4 and translocate into the nucleus, 

where they regulate gene transcription (Kamiya and Mishina 2011; Rahman et al. 2015). BMPs 

are important regulators of several differentiation stages of the osteoblast lineage and 

function. They were demonstrated to either commit mesenchymal stem cells towards the 

osteoblast fate, by regulating directly Runx2 expression (Phimphilai et al. 2006; Beederman et 

al. 2013; Rahman et al. 2015; Wu et al. 2016) and to direct osteoblast differentiation from 

osteoprogenitors to immature osteoblast (Long 2012). Additionally, many BMP ligands were 

shown to have a strong osteogenic capacity by increasing bone matrix deposition (Chen et al. 

2012). Importantly, based on these findings, clinical trials have been initiated using BMP2 and 

BMP7 to improve fracture repair and craniofacial deformities (Wu et al. 2016). Therefore, BMP 

signalling is considered to be fundamental to the osteoblast lineage, regulating several aspects 

of bone homeostasis and repair. 
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Figure 9: The different stages of osteoblast lineage differentiation. Mesenchymal progenitors, derived from 
mesenchymal stem cells (MSC), can give rise to osteoblasts and chondrocytes and are initially characterized by 
the transcription factor Sox9. When these cells start to express the transcription factor Runx2 they become 
committed to the osteoblast lineage. These preosteoblasts further maturate into immature osteoblast through 
the activity of another transcription factor Osterix. By the time they reach full maturation, they start expressing 
extracellular bone matrix proteins, such as Osteocalcin, important for mineralization of the bone matrix. The 
mature osteoblast, after secreting the bone matrix, can become trapped in it and become osteocytes. 

4.1.2 Bone pathologies and repair in mammals 

Bone replacement or remodelling occurs throughout adulthood, to ensure skeletal size, shape 

and integrity. However, upon fracture or injury, the events that trigger bone remodelling are 

quite different and require complex mechanisms. The fracture repair process can be 

considered as part of an intrinsic capacity for regeneration, since bone can heal, in most cases, 

without forming a fibrotic scar. Fracture repair is typically characterized by four overlapping 

stages: an initial inflammatory phase, followed by a cartilaginous soft callus assembly, hard 

callus formation with mineralized bone matrix deposition and culminating with initial bone 

union and remodelling (Schindeler et al. 2008; Marsell and Einhorn 2011). In this process, 

endogenous MSC, and not mature osteoblasts, present in the stromal tissue of the bone 

marrow are thought to be the primary source of osteoprogenitors responsible for new 

osteoblast formation (Bielby et al. 2007; Sacchetti et al. 2007; Colnot 2009; Raggatt and 

Partridge 2010; Park et al. 2012; Sims and Martin 2014; Ono and Kronenberg 2016; Liu et al. 

2018b). Importantly, this population of MSC grows scarce throughout adulthood and new lines 

of evidence suggest other potential sources. In fact, a study has demonstrated that a 

population of recruited osteoblast precursors from surrounding tissues have the capacity to 

enter into the bone marrow stroma of developing and fractured bones, along with invading 

blood vessels and promote the remodelling process. They seem to be intimately associated 

with the endothelium in a pericyte-like fashion (pericytes are cells that surround endothelial 

cells, giving support and structure) (Maes et al. 2010; Mohamed and Franceschi 2017). In the 

same line of thought, pericytes were shown to have osteogenic potential in vivo, giving rise to 

MSC (Doherty et al. 1998; Sims and Martin 2014). Conversely, reports showed that, depending 
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on the type of bone, osteoblasts can arise via transdifferentiation of hypertrophic 

chondrocytes not only during development but also during post-natal remodelling and repair 

(Zhou et al. 2014; Aghajanian and Mohan 2018). Finally, upon trauma, the periosteum, a thin 

membrane of fibrous connective tissue that surrounds bone, can also be a source of 

osteoblasts (Colnot 2009). All these data suggest that the source of new osteoprogenitors can 

be quite heterogeneous and more studies are required to understand this variability (Ono and 

Kronenberg 2016).  

In addition to questioning the origin of osteoblasts during bone remodelling, researchers have 

also debated questions related to bone pathological conditions. When bone repair fails and 

fracture healing is delayed, the structure can show adverse anatomical positions, or even 

progress into pseudo-arthrosis or non-unions (Marsell and Einhorn 2011). Under certain 

pathological conditions the imbalance between the rate of bone resorption and bone 

formation can also leads to metabolic, genetic and oncogenic bone disorders that lead to 

defective skeletal integrity, such as: osteoporosis (the most prevalent bone remodelling 

disorder), Paget’s disease, osteopetrosis, cleidocranial dysplasia and osteosarcoma (Feng and 

McDonald 2011; Luu et al. 2011; Marie 2015). Disorders that are characterized either by an 

increase or reduction of bone formation are directly correlated with osteoblast dysfunctions 

(Marie 2015). Consequently, the knowledge of the cellular sources that can be differentiated 

into new osteoblasts, as well as the molecular mechanism that triggers correct osteoblast 

formation and potentiate bone regeneration and maintenance, are of major importance. In 

this sense, model systems that encompass with mammals a functional conservation of 

pathways required to regulate skeletal homeostasis and development, while privileged with 

an enhance regeneration ability, are model systems of excellence to be used in this context. 

4.1.3 The zebrafish as a model system to study bone development and regeneration  

Zebrafish has become a powerful model system to understand the basic mechanisms of bone 

formation during development and regeneration. Inclusively, many human skeletal 

pathologies have their counterpart in zebrafish, which consequently, has been used for the 

study of several human skeletal diseases, such as osteoporosis and osteogenesis imperfecta 

(Spoorendonk et al. 2010; Laizé et al. 2014; Witten et al. 2017). Despite of this, there are many 

differences between the formation and composition of the zebrafish and the mammalian 

skeletons, that may result from adaptations to different habitats. Other important differences 

include: zebrafish hematopoiesis takes place in the head kidney and not inside the bone 

marrow; and zebrafish is continuously growing throughout adult life, thus the growth of 

skeletal tissue is considered to be different from mammalian skeletal remodelling (Bruneel 

and Witten 2015). However, key features are maintained between the two systems, such as: 

presence of the major skeletal tissues (including cartilage, bone and dentine); same bone 

formation processes (endochondral and intramembranous); conservation of the major cell 

types (chondroblast, osteoclast and osteoblast lineages) (Spoorendonk et al. 2010; Apschner 
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et al. 2011; Bruneel and Witten 2015; Witten et al. 2017). An important common trait that is 

worth emphasizing, which is a consequence of the characteristics mentioned above, is the 

preservation of key transcription factors that regulate osteoblast lineage determination as 

well as the signalling molecules that ensure their differentiation during development (Li et al. 

2009) (Figure 9). Upon caudal fin regeneration, osteoblasts undergo a succession of 

proliferative, differentiation and maturation events that ensure proper bone formation 

(Durán et al. 2011; Antos et al. 2016; König et al. 2018). Currently, there is a considerable 

amount of stable transgenic reporters that adequately reflect the differentiation status of 

bone-forming cells at the different stages of osteogenic commitment, allowing to monitor 

skeletal phenotypes in vivo during a regenerative context (Watson and Kwon 2015; Bensimon-

Brito et al. 2016; Cardeira et al. 2016). Therefore, the caudal fin can be used as a particularly 

suitable system to reveal new insights into fundamental processes of skeletal development 

and osteoblast lineage specification events (Marí-Beffa et al. 2007; Witten et al. 2017), since 

it gives the unique opportunity to study bone formation in a regenerative context. 

In the following section, I will describe the current understanding on the mechanism that 

trigger and control osteoblast reprogramming, plasticity and redifferentiation during zebrafish 

caudal fin regeneration.  

4.2 Mechanisms of osteoblast formation during zebrafish caudal fin regeneration 

One of the most well-established regenerative processes in the zebrafish adult caudal fin is 

the bone formation process, which is mediated by osteoblasts. Upon caudal fin amputation, 

osteoprogenitors must be recruited to the amputation site, proliferate and subsequently 

undergo differentiation into mature bone cells. All these processes have to be tightly 

regulated and coordinated to ensure correct regeneration of the caudal fin skeletal elements.  

4.2.1 Osteoblast sources during caudal fin regeneration: a role for reprogramming and 

plasticity  

Our lab and others have demonstrated in the past, through genetic lineage tracing, that upon 

caudal fin amputation mature osteoblasts undergo a reprogramming event and 

dedifferentiate, acquiring the cellular properties of less differentiated cells (Figure 10A) (Knopf 

et al. 2011; Sousa et al. 2011; Stewart and Stankunas 2012). In general terms, dedifferentiation 

is defined as the reverse of a developmental program by which a fully differentiated post-

mitotic cell, with its specialized genetic program and function, can re-enter the cell cycle and 

act as a progenitor cell. This phenomenon is characterized by differences at the level of gene 

transcription and protein regulation that consequently are followed by differences in 

morphology and function. The dedifferentiation program implies cease of the development-

related gene activity and activation of genes that keep the progenitor cell phenotype (Cai et 

al. 2007; Grafi 2009; Maden 2013; Eguizabal et al. 2013). In fact, dedifferentiation is not a 
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unique feature of bone regeneration being fairly conserved and prevalent among many adult 

zebrafish organs and structures with capacity to regenerate (Qin et al. 2009; Liu et al. 2018a), 

including: heart regeneration, which relies on the dedifferentiation and proliferation of 

remaining cardiomyocytes (Jopling et al. 2010; Kikuchi et al. 2010); photoreceptor 

regeneration, during which Müller glia cells dedifferentiate to re-establish the photoreceptor 

population (Ramachandran et al. 2010; Gorsuch et al. 2017); and after muscle resection, with 

myocytes dedifferentiating and proliferating to restore the lost muscle (Saera-Vila et al. 2016; 

Louie et al. 2017). During bony-ray regeneration, resident mature osteoblasts are activated by 

injury signals, start dedifferentiating, detach from the bone surface and migrate distally 

towards the stump to incorporate the blastema at around 24 hpa (Figure 10A). Regarding the 

transcriptional profile, the osteoblast dedifferentiation process is characterized by a 

downregulation of mature and intermediate osteoblast markers, such as osteocalcin and 

osterix, and upregulation of the progenitor marker runx2 (Knopf et al. 2011; Sousa et al. 2011). 

Strikingly, the dedifferentiation process is also accompanied by behaviour and morphology 

changes. Mature osteoblasts that reside in the segment closest to the amputation plane seem 

to undergo a Wnt/β-catenin dependent epithelial-to-mesenchymal transition (EMT) before 

migrating to integrate the blastema (Knopf et al. 2011; Sousa et al. 2011; Stewart et al. 2014). 

Once in the blastema, they increase proliferation to amplify and establish a pool of 

osteoprogenitors (Figure 10A). Furthermore, it has been demonstrated that after 

incorporation in the blastema, dedifferentiated osteoblasts are restricted to give rise only to 

new osteoblasts in the new regenerated tissue (Figure 10A). This indicates that despite their 

dedifferentiated status, osteoblasts remain lineage restricted and do not undergo 

transdifferentiation into other cell types during regeneration (Tu and Johnson 2011; Stewart 

and Stankunas 2012). A further evidence of this limited dedifferentiation capacity is the 

upregulation of Runx2, a feature typical of osteoprogenitors. Importantly, this was the first in 

vivo demonstration that, upon caudal fin amputation, the ability of the bony-ray elements to 

regenerate depends on the plasticity of mature osteoblasts. In addition, mature osteoblast 

dedifferentiation is not solely observed in the caudal fin, but seems to contribute to other 

bone repair models, such as during caudal fin bone crush/fracture and injury to the zebrafish 

skull cranial vault (Sousa et al. 2012; Geurtzen et al. 2014). Therefore, a fundamental question 

is what triggers and regulates osteoblast dedifferentiation during regeneration? It has been 

shown in plants that stress signals are enough to trigger cell dedifferentiation and cell fate 

decisions (Grafi and Barak 2015). To date, the signals that control osteoblast dedifferentiation 

during regeneration remain poorly enlightened and many questions remain unanswered: Can 

stress induced by amputation also trigger osteoblasts to reprogram and is it enough to 

promote their dedifferentiation? Since differentiated and progenitor cells have specific 

chromatin signatures might epigenetic regulation also be part and required for the osteoblast 

dedifferentiation program? Are there any transcription factors capable of converting cell fate 

and required to regulate dedifferentiation of osteoblasts?  
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The only pathway described to have a role in regulating osteoblast dedifferentiation is the 

Retinoic acid signalling pathway (Figure 10B). A research study demonstrated that during 

homeostasis, a population of intraray fibroblasts continuously secretes RA to adjacent mature 

osteoblasts to potentiate bone matrix deposition. After amputation, differentiated 

osteoblasts have to inactivate RA signalling, by upregulating the RA degrading enzyme 

cyp26b1, to cease matrix deposition and to undergo dedifferentiation (Figure 10B) (Blum and 

Begemann 2015b). Despite being a source of newly formed bone during regeneration, 

osteoblast dedifferentiation seems to be a rather unclear and poorly characterized process. 

Hence, further studies are necessary to comprehend and bring into light the fundamental 

mechanism that regulate osteoblast reprograming and plasticity during regeneration. 

Although the major source of regenerating osteoblasts seems to derive from mature 

osteoblasts, a study revealed that after their genetic ablation, bone regeneration occurs 

normally and indistinguishable from fins harbouring a resident osteoblast population. This 

implies that in this challenging condition, osteoblast dedifferentiation is dispensable for 

correct bone formation and that alternative osteoblast sources, yet to be identified, are 

recruited and contribute to de novo osteoblast formation (Singh et al. 2012). It is possible that 

upon osteoblast depletion, dormant cellular mechanisms, which generally do not contribute 

to fin regeneration, are activated to give rise to new osteoblasts, thus ensuring correct bone 

formation after amputation. This data further highlights the remarkable cellular plasticity 

during bone formation in regenerating caudal fins. In mammals, bone remodelling relies on 

new osteoprogenitors derived from MSC (Sims and Martin 2014; Ono and Kronenberg 2016; 

Liu et al. 2018b). However, zebrafish has no bona fide MSC and fibroblasts that compose the 

mesenchyme seem to be the possible source of new osteoprogenitors. Alternatively, a 

population of perivascular cells, which are known to give rise to MSC in humans (Doherty et 

al. 1998; Bergers 2005; Crisan et al. 2008), was detected along the blood vessels of the caudal 

fin (Lund et al. 2014). However, their osteogenic capacity and requirement for de novo 

osteoblast formation during regeneration remains to be clarified, particularly in osteoblast-

depleted fins. More recently, a reservoir of osteoprogenitors, derived from embryonic 

somites, was identified in the caudal fin. These precursor cells, present in the bony-ray 

intersegment joints, also called joint-associated osteoprogenitors, were shown to give rise to 

new osteoblasts under normal homeostatic maintenance (Ando et al. 2017) and function as a 

complementary source of osteoblasts for regeneration, together with dedifferentiating 

mature osteoblast (Ando et al. 2017). However, it remains to be investigated whether these 

progenitors could compensate for the lack of mature osteoblasts and explain the normal bone 

regeneration observed in osteoblast-depleted fins. Moreover, osteoblast ablation in mice also 

provided evidence for the activation of alternative osteogenic sources. In adult mice, inert 

post-mitotic bone-lining cells were identified as a major contributor of osteoblasts and 

preosteoblasts during bone remodelling (Matic et al. 2016). Importantly, several questions 

arise from these research data: What are the alternative sources capable of de novo osteoblast 
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formation when the mature population is absent, and dedifferentiation compromised? Are 

joint-associated osteoprogenitors enough to replenish the osteoblast progenitor pool and 

compensate for mature osteoblasts loss? What are the signalling pathways required and the 

molecular mechanism behind de novo osteoblast formation in osteoblast depleted fins? Thus, 

it is of major importance to decipher not only the cellular sources, identifying the cell types 

with osteogenic potential, but also the molecular mechanism behind de novo osteoblast 

formation during regeneration when dedifferentiation of the resident osteoblast population 

is compromised. 
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Figure 10: Osteoblasts dedifferentiation during caudal fin regeneration. (A) Scheme representing a longitudinal 
view of a bony-ray prior (before amp) and during regeneration depicting the mechanism underlying de novo 
osteoblast formation during caudal fin regeneration. Within the first 24 hours after amputation, distally located 
stump osteoblasts dedifferentiate and start to proliferate. Upon dedifferentiation, osteoblasts migrate distally 
and populate the lateral regions of the blastema, where they will redifferentiate and maturate. Thus, bone is de 
novo regenerated from differentiated, mature osteoblasts that undergone a reprogramming event. (B) RA 
signalling is the only pathway that has been directly implicated to regulate osteoblast dedifferentiation. To 
dedifferentiate, osteoblasts need to upregulate the expression of the RA degrading enzyme, Cyp26a1, so that 
they degrade RA coming from adjacent fibroblasts. Dashed lines represent the amputation plane. Amp: 
amputation; E: epidermis; B: bone; M: mesenchyme. Adapted from (Knopf et al. 2011; Blum and Begemann 
2015b). 
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4.2.2 Osteoblast redifferentiation and bone patterning 

Bone regeneration in zebrafish caudal fin requires tight coordination between progenitor cell 

proliferation and differentiation. After mature osteoblast dedifferentiation, these cells 

proliferate within the blastema but, at the onset of regenerative outgrowth, they must 

redifferentiate to produce the new skeletal tissue. During outgrowth, there is a re-activation 

of molecules that were once important for development. In fact, ontogeny and the outgrowth 

phase of regeneration share similar expression patterns, suggesting comparable molecular 

mechanisms governing both processes (Iovine 2007; Poss 2010). However, it is still unclear the 

molecular machinery that regulates osteoblast redifferentiation during regeneration. During 

the outgrowth phase, when blastema is fully maturated and compartmentalized, osteoblasts 

start to redifferentiate, exhibiting a proximo-distal hierarchical organization that 

comprehends overlapping compartments, reflecting their maturation status. This organization 

can be demonstrated by the temporal and spatial patterns of early (Runx2), 

immature/intermediate (Osx) and mature (Osc) osteoblast markers. In close contact with the 

blastema distal compartment, self-renewing Runx2+ osteoblasts subtype maintains the 

osteoprogenitor pool (Figure 11). As these progenitors populate the proximal blastema, they 

start to differentiate into immature/intermediate Runx2+Osx+ proliferating osteoblasts. This 

last osteoblast subtype will give rise to slow-cycling, ECM producing Osx+Osc+ population, 

localized in the patterning zone of the regenerate (Figure 11) (Brown et al. 2009; Sousa et al. 

2011; Stewart et al. 2014). Therefore, these three partially overlapping domains portray 

different stages of osteoblast maturation in which more distal cells represent the most 

progenitor-like osteoblasts and conversely the more proximal the most mature. Reports have 

shown that Wnt/β-catenin signalling is active in distally located Runx2+ osteoprogenitors, 

while Bmp signalling is active proximally, where osteoblasts differentiate and mature (Figure 

11) (Quint et al. 2002; Wehner et al. 2014). Based on these findings the proposed model for 

osteoblast maturation is the following: continuously secreted Wnt in the distal blastema 

region, activates canonical Wnt signalling in Runx2+ osteoprogenitors to support and maintain, 

directly or indirectly, their self-renewal; in contrast, autocrine Bmp signalling regulates and 

directs their differentiation into Osx+ osteoblasts. Additionally, Bmp signalling restricts Wnt/β-

catenin signalling to the progenitor zone by secreting Wnt antagonists, including dkk1b (Figure 

11) (Stewart et al. 2014; Wehner et al. 2014; Wehner and Weidinger 2015). Moreover, RA 

signalling was also found to be a key player in this model via a non-cell autonomous manner, 

by which osteoprogenitor differentiation is attained by differences in RA concentrations along 

the PD axis. Similar to Wnt/β-catenin signalling activity, RA production is high in the distal 

blastema cells, but rapidly decreases in more proximal cells. In contrast, cyp26b1 (RA 

degrading enzyme) expression is high in proximal blastema cells, extends far proximally but is 

absent in more distal cells. High RA levels in the distal blastema promote proliferation and 

prevent premature osteoblast differentiation along the skeletogenic lineage, while reduction 

of RA levels in more proximal blastema regions, through activation of Cyp26b1, result in 
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osteoblast differentiation. Strikingly, overexpression of RA is sufficient to downregulate dkk1b 

and bmp2b, which may imply that RA signalling might inhibit osteoprogenitor differentiation 

by inhibiting Bmp and promoting Wnt/β-catenin signalling (Figure 11) (Blum and Begemann 

2015b). Along the same line of thought, Notch signalling, which activation is restricted to the 

proliferative blastema region, was also shown to be necessary to maintain and support 

progenitor cells in a proliferative state and to prevent their differentiation into mature 

osteoblasts (Grotek et al. 2013; Munch et al. 2013). Shh was also shown to be important for 

osteoblast distribution and maturation. While shh expression is restricted to a subset of cells 

in the proximo-lateral domains of the basal layer of the epidermis, just immediately adjacent 

to the site of amputation, its receptor patched1/2 is expressed not only in the same location 

as shh but also in the adjacent differentiated osteoblasts (Laforest et al. 1998), where it 

activates bmp2b expression. Furthermore, over-expression of both Shh and BMP in blastema 

cells induce ectopic bone formation during regeneration (Quint et al. 2002). Effects of Shh 

ectopic expression were able to be rescued via inhibition of Bmp signalling, suggesting that 

indeed during osteogenic maturation Bmp is required and acts as a downstream target of Shh 

(Quint et al. 2002). Overall, this signalling network leads to the establishment of a temporally 

and spatially organized osteogenic lineage hierarchy that balances a simultaneous need for 

osteoblast proliferation and differentiation, until fin regeneration is complete (Figure 11).  

Besides correct osteoblast differentiation during regeneration, proper bone patterning is also 

necessary. Interestingly, besides its role in osteoblast maturation, shh was also found to be 

required for bony-ray bifurcation. Prior to the establishment of the bifurcation, shh domain of 

expression in the basal epidermis splits into two clusters on each side of the bony-ray, 

directing the osteoprogenitor position (Laforest et al. 1998; Zhang et al. 2012; Armstrong et 

al. 2017). This mechanism depends on the direct contact of shh expressing epidermal cells via 

cellular protrusions and patched 1/2 expressing osteoprogenitors. These two pools of 

osteoprogenitors continue to regenerate independently to form a bifurcated ray (Armstrong 

et al. 2017). Importantly, laser ablation of shh expressing cells in the wound epidermis 

culminates in delayed ray bifurcation (Zhang et al. 2012). In addition to the bifurcation, bony-

rays are segmented by joints, which convey flexibility to the caudal fin skeleton. This joint 

region is established by an oscillatory expression of the homeobox gene even-skipped related 

1 (evx1) (Borday et al. 2001; Rolland-Lagan et al. 2012; Ton and Iovine 2013) which is inhibited 

by the gap junction protein Connexin-43 during segment elongation (Piccirillo et al. 2013). 

Mutant zebrafish for evx1 completely lacks joints (Schulte et al. 2011). Another study has 

addressed the role of the inflammatory response cellular components during caudal fin 

regeneration. They show that macrophage accumulation at the damaged site was relatively 

slow when compared to neutrophils, and that ablation of the macrophage population lead to 

a reduction in the average number of segments and bifurcations in the regenerated bony-ray, 

and also exhibited a decreased bone mineralization profile. This further indicates additional 
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roles for macrophages during regeneration, with their depletion impairing bony-ray 

patterning and the quality of bone formation (Petrie et al. 2015). 

These studies emphasize the complexity of osteoblast maintenance, maturation and bone 

patterning during regenerative outgrowth. Overall, there must be a tight coordination 

between osteoblast proliferation and differentiation along the PD axis to ensure correct bone 

formation. Furthermore, bone patterning is essential to provide the correct tissue architecture 

and function so that the missing tissue is replaced by a replica that mimics the original caudal 

fin. 

 

Figure 11: Hierarchical organization of the osteoblast lineage during regenerative outgrowth and its regulation. 
Scheme depicting the longitudinal organization of osteoblast differentiation along the PD axis of the regenerating 
caudal fin. Wnt and RA signalling act in the distal blastema region to maintain the pool of Runx2+ osteoprogenitor 
cells. In the proximal blastema and patterning zone, Bmp signalling in osteoprogenitors promotes both Osx (Sp7)-
associated differentiation, maturation into Osc producing osteoblasts and constrains Wnt activity through dkk1b 
expression. Conversely, RA restricts activation of Bmp signalling and dkk1b expression towards the progenitor 
compartment. PZ: Patterning zone; PB: Proximal blastema; DB: Distal blastema. Adapted from (Stewart et al. 
2014). 

4.3 The Hippo/Yap signalling pathway: potential regulator of osteoblast lineage during 

caudal fin regeneration 

The Hippo signalling pathway emerged as an evolutionarily conserved signal transduction 

pathway that plays an important function in tissue growth and organ size control during 

development, tissue homeostasis and regeneration. This pathway acts predominantly via 

regulation of proliferation, cell survival and cell fate determination often in a context-

dependent fashion (Halder and Johnson 2011; Cherrett et al. 2012; Fu et al. 2017). The Hippo 

pathway was initially identified in Drosophila melanogaster through genetic screens for 



Chapter I - Introduction 

 

45 

suppressors of tissue overgrowth that when mutated lead to overgrowth phenotypes. For 

instance, mutations of the hippo (hpo) gene culminate in an overgrown head (resembled a 

hippopotamus) caused by an abnormal proliferation (Udan et al. 2003; Halder and Johnson 

2011). Remarkably, later studies identified that the general components and functions of the 

pathway are highly conserved throughout the eukaryotic kingdom (Yao et al. 2013; Varelas 

2014; Irvine and Harvey 2015). The Hippo signal transduction pathway comprises a kinase core 

cascade that like many other pathways conveys signals perceived at the plasma membrane to 

a transcriptional response within the nucleus. In vertebrates, the core module of this signalling 

cascade encompasses two protein kinases: Mst1/2 (Hippo in Drosophila) and Lats1/2 (Warts 

(Wts), in Drosophila). Upon pathway activation, Mst1/2 kinase phosphorylates and activates 

the Lats1/2 kinase that in its turn phosphorylates and repress the activity of the key 

transcriptional co-activators of the pathway: Yes-associated protein 1 (Yap) and 

transcriptional co-activator with a PDZ-binding motif (Taz) (homologs of Yorkie (Yki) in 

Drosophila). Yap/Taz phosphorylation promotes their cytoplasmic retention and exclusion 

from the nucleus through 14-3-3 binding. When the Hippo pathway is inactivated, and the 

core kinase cassette is not phosphorylated, Yap and Taz can translocate to the nucleus where 

they associate with multiple transcription factors inclusively of other signalling pathways (such 

as Tgfβ/ Bmp and Wnt signalling) and behave as co-activators of target gene transcription in 

a context and tissue specific manner. Yet, the bona fide DNA binding partner for Yap and Taz 

is the Tead/Tef family of transcription factors (homolog of Scalloped (Sd) in Drosophila), 

generally activating proliferation and growth and inhibiting apoptosis (Figure 12). (Huang et 

al. 2005; Wu et al. 2008; Cherrett et al. 2012; Irvine 2012; Attisano and Wrana 2013; Yu and 

Guan 2013; Hiemer and Varelas 2013; Piccolo et al. 2014; Varelas 2014; Hansen et al. 2015; 

Irvine and Harvey 2015). In terms of structure, both Yap and Taz possess WW domains that 

confer signalling specificity and recognize specific motifs in other proteins. They share a C-

terminal PDZ-binding motif, which promotes interaction with various proteins and includes a 

transcriptional activation domain that regulates the transcriptional roles of Yap/Taz. The N-

terminal domain encloses a Tead binding domain that mediates the interaction between 

Yap/Taz and Tead. Finally, but equally importantly, to promote Yap and Taz subcellular 

localization and prevent their translocation to the nucleus, Lats1/2 phosphorylates Yap at five 

serine/threonine residues and Taz in four of these sites. Mutation in these serine residues 

jeopardizes the ability of the Hippo pathway to inhibit Yap/Taz translocation to the nucleus 

(Cherrett et al. 2012; Piccolo et al. 2014; Varelas 2014; Santucci et al. 2015). These structural 

components emphasise the notion that the Hippo pathway can be regulated by a multitude 

of upstream inputs, such as: cell polarity and adhesion, cellular stress, signals received through 

G protein-coupled receptors and mechanical cues. Given that the Hippo pathway regulates 

cell proliferation and apoptosis, growth, survival and stem cell maintenance and/or 

differentiation depending on the cellular context, they became important regulators of 
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regeneration and tissue repair in a wide range of biological contexts (Piccolo et al. 2014; Moya 

and Halder 2016; Fu et al. 2017).  

In Drosophila intestine, Yki is activated upon damage to promote intestinal stem cell and 

enterocyte proliferation to replace the damaged cells (Staley and Irvine 2010). This was also 

found to be true for mouse models of intestinal repair, where Yap is required for intestine 

repair but not during physiological homeostasis (Cai et al. 2010). On the other hand, in adult 

mouse heart, Hippo pathway is active and blocks cardiomyocyte proliferation to restrict 

regeneration (Heallen et al. 2012). In the context of animals with greater regenerative 

capacity, the role of this pathway remains poorly investigated. Nonetheless, during Xenopus 

limb bud regeneration, overexpression of a dominant negative form of Yap reduced cell 

proliferation, induced apoptosis and impaired limb patterning genes (Hayashi et al. 2014). 

Importantly, our lab has demonstrated that Yap is required for proper caudal fin regeneration 

by controlling cell proliferation and regulating regenerative outgrowth key signalling 

pathways. This regulation is correlated with differences in cell density, morphology, 

cytoskeleton and cell-cell contacts along the blastema PD axis in a gradient-like manner: in 

more proximal regions of the regenerate, were cells are more spread, Yap is nuclear and 

therefore active, in contrast, in the more distal blastema, where cell density is higher, Yap is 

mainly inactive (Mateus et al. 2015).  

Several lines of evidence have drawn attention to the potential role of the Hippo pathway in 

regulating cell differentiation and establishing cell fate. Various studies have shown that 

ectopic expression of Yap during development maintains stem cell or progenitor states at the 

expense of terminal differentiation in several tissues, such as the intestine, epidermis, neural 

tube and brain (Hiemer and Varelas 2013; Piccolo et al. 2014; Zhao 2014; Moya and Halder 

2016; Fu et al. 2017). Yap was also found to be important for maintenance of mouse 

embryonic stem cells and reprogramming of mouse embryonic fibroblasts to an iPSC state 

(Hiemer and Varelas 2013; Piccolo et al. 2014). Since the capacity to dedifferentiate is the 

underlying mechanism behind new osteoblast formation, it would be interesting to evaluate 

the requirement of the Hippo/Yap pathway for osteoblast dedifferentiation during caudal fin 

regeneration. In fact, this pathway has been shown to regulate cell dedifferentiation in several 

systems. Combined inactivation of the Hippo pathway core components hpo or wts together 

with Retinoblastoma (tumour suppressor) lead to widespread dedifferentiation of 

photoreceptor cells in the Drosophila eye. Double mutants fail to maintains neuronal identity 

and became uncommitted eye specific cells (Nicolay et al. 2010). Other report shows that 

Hippo pathway activation is necessary to maintain the adult mouse hepatocytes in a 

differentiated state and that Yap induced expression triggers their dedifferentiation through 

Notch signalling (Yimlamai et al. 2014). More interestingly, in planarians, cell dedifferentiation 

does not normally occur since regeneration depends on neoblast cells. Strikingly, hippo 

inhibition in non-regenerating conditions triggers spontaneous dedifferentiation of mature 

cells leading to the formation of undifferentiated overgrowths. Therefore, in planarians, the 
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main role of Hippo in normal physiological conditions is to maintain the differentiated cell 

state (de Sousa et al. 2018). 

Only more recently the role of the Hippo pathway has been addressed in the context of 

osteogenesis and during osteoblast lineage specification and maturation. In this context, Yap 

and Taz roles are controversial since both have been shown to promote or inhibit osteoblast 

differentiation and bone formation. Yap and Taz were shown to regulate MSC towards 

osteoblast lineage fate, by interacting with Runx2 and potentiating the osteoblast 

transcriptional program in vivo and in vitro (Figure 12) (Hong et al. 2005; Hiemer and Varelas 

2013). In vitro studies suggest that this process seems to be dependent on the stiffness of the 

ECM in which MSC are cultured. Increased stiffness leads to Yap/Taz nuclear translocation and 

renders cells to commit towards osteoblast differentiation, whereas softer matrix leads to 

disabled Yap/Taz signalling and differentiation into adipocytes (Dupont et al. 2011a; Piccolo 

et al. 2014). This model was correlated with phenotypes of mice mutants for the secreted 

metalloprotease MT1-MMP that induces ECM remodelling. In the mutants, MSC are trapped 

into the ECM network, unable to spread and contained in a small adhesive area. In this 

situation, Yap/Taz are retained in the cytoplasm and targeted to degradation and 

development of osteopenia (characterized by bone loss and defective bone formation) (Tang 

et al. 2013; Piccolo et al. 2014). In the same line of thought, another report suggested that 

during mouse development, transcription factors Snail and Slug, known to direct EMT 

programs, regulate Yap/Taz to promote MSC differentiation into osteoblasts (Tang and Weiss 

2017). More recent reports tried to further clarify this question by using conditional depletion 

of Yap/Taz from osteoblast lineage, which lead to reduced osteoblast activity and bone 

formation, and reduced bone matrix maturation, leading to spontaneous fractures in the 

neonatal mouse (Kegelman et al. 2018). This was also found to be similar during adult mouse 

bone remodelling, in which conditional knockout for Yap in osteoblasts reduces their 

proliferation and differentiation and increases adipocyte formation (Pan et al. 2018). Finally, 

other reports state that Yap/Taz have opposing roles in the regulation of the osteoblast fate, 

depending on their differentiation status: Yap/Taz in osteoprogenitors maintains the 

progenitor state and oppose differentiation towards osteoblast commitment, while Yap/Taz 

in mature osteoblasts promotes bone formation (Seo et al. 2013; Xiong et al. 2018). All data 

described, points to a clear regulation of bone formation mediated by the Hippo pathway and 

its co-effectors Yap/Taz. However, many of these studies were done in vitro or lead to mouse 

neonate lethality, making impossible to evaluate the existence of distinct features Yap/Taz 

regulation during development or adulthood, and importantly do not allow to evaluate the 

role of this pathway in the context of bone repair and regeneration. It would be important to 

elucidate if the Hippo pathway could be implicated and required for osteoblast lineage 

commitment during regenerative outgrowth, to further clarify the controversial roles of this 

pathway in osteoblast fate determination. 
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Figure 12: The Hippo pathway regulators and regulations during cell fate determination. Scheme depicting the 
regulation of the Hippo pathway activity. The Hippo pathway effectors Yap and Taz can be regulated by a 
multitude of upstream inputs/cues and leads to multiple transcriptional outputs, which depend largely on 
context. This pathway is composed by a core kinase cascade (Mst1/2 and Lasts1/2) that is highly conserved 
throughout the eukaryotic kingdom. If signalling cues lead to activation of the pathway, the kinase core cascade 
is activated and culminates in Yap/Taz phosphorylation and sequestration in the cytoplasm and subsequent 
degradation. When the pathway is inactive, Yap/Taz are not phosphorylated and are able to be translocated to 
the nucleus and activate target gene expression, depending on the tissue and context. Other cues can regulate 
Yap/Taz activity independently of the Kinases, such as mechanical stimuli generated by the elasticity of the 
extracellular matrix. In the nucleus, Yap/Taz interact in most cases with Tead transcription factors and regulate 
pluripotency and stem cell proliferation. On the other hand, they can also mediate stem cell differentiation into 
other lineages by interacting with other transcription factors, such as Runx2, to mediate stem cell commitment 
towards the osteoblast lineage. Adapted from (Hiemer and Varelas 2013). 
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5 SPECIFIC AIMS 

This PhD thesis aims at understanding the central questions regarding the cellular and 

molecular mechanisms that regulate bone formation during regeneration using the zebrafish 

caudal fin as a model system. During the course of this work, I investigate three main topics: 

1) In Chapter III, I investigate new regulators of osteoblast reprogramming and 

dedifferentiation during zebrafish caudal fin regeneration using two approaches: 

a. By performing a genome-wide gene expression analysis of osteoblasts 

undergoing dedifferentiation; 

b. By addressing the role of the Hippo pathway in regulating osteoblast 

dedifferentiation during regeneration, by manipulating the pathway effector 

Yap; 

2) In Chapter IV, I determine the role of the Hippo pathway effector Yap in mediating 

osteoblast fate specification and maturation during caudal fin regeneration by 

performing loss-of-function studies; 

3) In Chapter V, I shed light into the mechanisms underlying de novo osteoblast formation 

in mature osteoblast-depleted caudal fins by determining: 

a. The cellular sources capable of generating new osteoblasts using lineage 

tracing tools and specific cell ablation methods; 

b. The molecular mechanisms required for new osteoblast formation through 

loss-of-function studies on major pro-osteogenic pathways.  

. 
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1 ETHICS STATEMENT 

All handling and experiments involving animals were approved by the Animal User and Ethical 

Committees at Centro de Estudos de Doenças Crónicas (CEDOC) and accredited by the 

Direcção Geral de Alimentação e Veterinária (DGAV) according to the directives from the EU 

(Directive 2010/63/UE) and National legislation (Directive 113/2013) for animal 

experimentation and welfare. 

2 ZEBRAFISH MAINTENANCE, HANDLING AND TRANSGENIC LINES  

2.1 Embryo raising  

For zebrafish line maintenance, mating pairs were set up. Eggs were collected, maintained in 

a Petri dish containing E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM MgSO4, 0.01% 

Methylene Blue) and kept in a 28 °C incubator, until reaching the desired developmental stage 

for screening. After reaching 6 days post-fertilization (dpf), larvae were transferred to the 

circulating system to grow until adulthood (Westerfield 2000). 

2.2 Adult zebrafish manipulation and amputation 

All adult wild-type (WT) AB strain and transgenic zebrafish lines were maintained in a 

circulating system with 14 hour/day and 10 hour/night cycle periods at 28 °C. All experiments 

were performed in 3-12 months old adult fish (Westerfield 2000) and all transgenic animals 

used as heterozygotes. 

Caudal fin amputations were performed in fish anaesthetized in 160 mg/mL MS-222 (Sigma-

Aldrich) using a sterile scalpel (Poss et al. 2000a). Regeneration was allowed to proceed until 

defined time-points in an incubator at 33 °C ± 1 °C, except for heat-shock experiments (see 

section 5), and the water was renewed daily. Amputations were made 1 or 2 segments below 

the first bone-segment bifurcation, removing approximately one half of the fin. Regenerated 

fins from anaesthetized animals were collected at predefined time-points post-amputation as 

previously described (Poss et al. 2000a). 

2.3 Zebrafish transgenic lines used in this study 

Several zebrafish transgenic lines were obligingly provided by other laboratories and proved 

to be extremely useful in the context of this study. These lines were: Tg(ola.Bglap:EGFP)hu4008 

and Tg(Hsa.RUNX2-Mmu.Fos:EGFP)zf259, kindly provided by Gilbert Weidinger (Knopf et al. 

2011); Tg(osterix:mCherry-NTRo)pd46, Tg(hsp70l:RFP-dnyap1) and Tg(hsp70l:RFP-cayap1) 

kindly provided by Kenneth Poss (Singh et al. 2012; Mateus et al. 2015); 

TgBAC(aldh1a2:aldh1a2-GFP)kn2 and Tg(hsp70l:cyp26a1)kn1, kindly provided by Gerrit 

Begemann (Blum and Begemann 2012; Pittlik and Begemann 2012); Tg(careg:Cre-ERT2Mercury), 
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kindly provided by Anna Jazwinska (Pfefferli and Jaźwińska 2017); Tg(krtt1c19e:Cre-ERT2)fr35, 

kindly provided by Matthias Hammerschmidt (Fischer et al. 2014); and Tg(-9.8actb2:LOXP-

DsRed-LOXP-EGFP), kindly provided by Didier Stainier (Kikuchi et al. 2010); and Tg(Tcf/Lef-

miniP:d2GFP)isi01 (Shimizu et al. 2012). The line Tg(ctgfa:EGFP) was already available in our lab, 

generated in the context of a previous project (Mateus et al. 2015). Table I describes each line 

and its purpose within the project.  

 

Table I: List of zebrafish transgenic lines used in the project. 

Zebrafish transgenic 

lines 
Abbreviation Line type Description 

Tg(ola.Bglap:EGFP)hu4008 osc:EGFP Reporter 

EGFP expression 

exclusively in mature 

osteoblasts 

Tg(osterix:mCherry-

NTRo)pd46 
osx:NTRo 

Reporter/ 

Ablation 

mCherry expression in 

immature and mature 

osteoblasts; used to 

induce specific osteoblast 

ablation and to monitor 

osx expression 

Tg(Has.RUNX2-

Mmu.Fos:EGFP)zf259 
runx2:EGFP Reporter 

EGFP expression in all 

osteoblast differentiation 

stages; highly expressed in 

osteoprogenitors 

TgBAC(aldh1a2:aldh1a2-

GFP)kn2 
aldh1a2:GFP Reporter 

EGFP labelling in cells 

expressing aldh1a2; used 

to visualize cells 

synthesizing RA 

Tg(ctgfa:EGFP) ctgfa:EGFP Reporter 

EGFP labelling in cells 

expressing ctgfa, here 

used as a mesenchymal 

marker 

Tg(Tcf/Lef-miniP:d2GFP)isi01 6xTCF:d2GFP Reporter 

D2GFP labelling in cells 

with activated β-catenin-

dependent transcription; 

shows the spatio-

temporal pattern of 
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Zebrafish transgenic 

lines 
Abbreviation Line type Description 

Wnt/β-catenin pathway 

activation 

Tg(hsp70l:cyp26a1)kn1 hsp70:cyp26a1 

Heat-shock 

inducible loss 

of function 

Induces cyp26a1 

expression upon heat-

shock; it degrades RA, 

leading to inhibition of the 

signalling pathway 

Tg(hsp70l:RFP-dnyap1) DN-yap 

Heat-shock 

inducible loss 

of function 

Activates the expression 

of a dominant negative 

form of yap1 upon heat-

shock; leads to inhibition 

of yap1 target gene 

transcription 

Tg(hsp70l:RFP-cayap1) CA-yap 

Heat-shock 

inducible 

gain of 

function 

Activates the expression 

of a constitutively active 

form of yap1 upon heat-

shock; leads to constant 

activation of yap1 target 

gene transcription 

Tg(careg:Cre-ERT2) careg:creERt2 
Lineage 

tracing 

Allows lineage tracing of 

mesenchymal cells in the 

caudal fin when combined 

with β-act2: RSG 

Tg(krtt1c19e:Cre-ERT2) krt19:creERt2 
Lineage 

tracing 

Allows lineage tracing of 

basal epidermal cells 

when combined with β-

act2: RSG 

Tg(-9.8actb2:LOXP-

DsRed-LOXP-EGFP) 
β-act2:RSG 

Lineage 

tracing, 

switch line 

Switch cassette to be 

combined with the Cre-

ERT2 lines for permanent 

cell labelling 
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3 MOLECULAR BIOLOGY AND CLONING TECHNIQUES 

During the course of this study, several plasmid DNA constructs were generated in order to 

develop zebrafish transgenic lines for specific cell ablation based on the NTR/MTZ system. The 

final constructs to be injected in zebrafish embryos will be described in detail below. 

3.1 Target fragment amplification by Polymerase Chain Reaction (PCR)  

For desired DNA fragment amplification, namely the GFP-NTRo coding sequence and the 

krtt1c19e promoter, standard PCR protocols were performed according to the manufacturer’s 

instructions using either Tap Polymerase (Fermentas) for PCR products smaller than 2 

kilobases (Kb) or Titanium Taq Polymerase (Clontech), for longer amplicons. In-Fusion primers 

sets were designed specifically to hybridise with the target sequence (for further primer 

details see Table II and section 3.4). Thermal cycling conditions were as follows: initial 

denaturation step at 95 °C for 3 minutes (min); followed by 35 cycles of a 3-step temperature 

cycle (denaturation: 95 °C for 30 seconds (sec); primer annealing: 65 °C for 30 sec; and 

polymerase extension: 72 °C, duration depending on the size of the fragment (generally 1 

minute elongation per Kb)); and a final extension step at 72 °C for 10 min. 

 

Table II: List containing the primer sequences used for In-Fusion cloning methodology. 

 

Amplified 

sequence 

Forward 

Primer 

(5’>3’) 

Reverse 

Primer 

(5’>3’) 

Annealing 

Temperature 

Product 

length  
Objective 

GFP-NTRo 

coding 

sequences 

GCGGATCCC

GCCACCATG

GTGAGCAAG

GGCGAG 

TCACTATAGT

TCTAGAGAAT

TCTCACACCT

CGGTC 

65 oC 1428 bp 

Insert the GFP-

NTRo coding 

sequence into 

the col10a1 

promoter 

backbone 

krtt1c19e 

promoter 

TATAGGGGC

GAATTGGGT

ACCAATTCGC

CCTTTACACC

ATGG 

CATGGTGGC

GGGATCCGT

GGATGGTGG

TTGGTGTCTT 

65 oC 3939 bp 

Substitute the 

col10a1 

promoter by the 

krtt1c19e 

promoter 

sequence into 

the col10a1: 

GFP-NTRo 

backbone 
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3.2 Restriction Enzyme digestion  

To insert amplified target sequences onto specific destination plasmids, the latter had to be 

linearized through restriction enzymes single or double digestion protocols. For that, 

digestions were performed for approximately 2 hours (h) at 37 °C using 5-10 Units (U) of 

commercially available restriction enzymes and corresponding buffers. Reactions were 

subsequently inactivated according to manufacturer’s protocol (for further details see Table 

III). Digestion protocols were also established to confirm proper insertion between plasmid 

and target sequence. 

 

Table III: List of restriction enzymes used for cloning. 

3.3 Analysis and isolation of desired DNA fragments by agarose gel electrophoresis 

To separate and purify digested plasmid DNA fragments and amplified PCR products, agarose 

gel electrophoresis was performed. Agarose (Agarose electrophoresis grade, Invitrogen) was 

dissolved in commercially available 1x Tris-Acetate-EDTA (TAE) buffer (Fisher Scientific) at a 

final concentration of 1%, which allows the resolution of DNA fragments between 500 base 

pairs (bp) and 10 Kb in size. Further, DNA was visualised by adding Gel Red (Biotium) to a final 

concentration of 0.4 µg/mL. For gel loading, DNA samples were mixed with Orange DNA 

loading dye (ThermoFisher Scientific) in a 6:1 proportion and electrophoresis carried out in 1x 

TAE buffer at 100-120 V, until proper separation of the DNA fragments. Subsequently, DNA 

was visualised under ultraviolet light at 365 nm and fragment size was estimated by 

comparison to a DNA ladder composed of linear DNA strands of known molecular weight 

(Gene ruler 1 Kb DNA ladder, Thermo Scientific). For subsequent cloning steps, plasmid DNA 

Restriction 

Enzymes 

Digested 

Plasmid 

Length (bp) of 

target sequence  
Objective 

XbaI and NcoI 

(Fermentas) 
col10a1:nlGFP 9020 

Substitution the nlGFP sequence 

from col10a1:nlGFP with the 

GFP-NTRo sequence 

BamHI and KpnI 

(Fermentas) 

col10a1:GFP-

NTRo 
4598 

Substitution of the col10a1 

promoter by the krtt1c19e 

promoter sequence in the 

col10a1:GFP-NTRo backbone 

EcoRI (Promega) 
col10a1:GFP-

NTRo 

6500; 3297bp; 

670 

Confirm correct insertion of the 

amplified insert 

EcoRI (Promega) 
krtt1c19e: 

GFP-NTRo 

4748; 2118; 896; 

676; 125 

Confirm correct insertion of the 

amplified insert 
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and PCR fragments of the desired size were excised using a sterile scalpel and purified using 

the Wizard® SV Gel and PCR Clean-Up System (Promega), according to manufacturer’s 

instructions. 

3.4 In-fusion methodology for cloning DNA inserts into desired vectors 

The In-Fusion HD cloning technology (Clontech Laboratories) allows a fast and directional 

cloning of one or more fragments of DNA into any destination plasmid (Figure 13). Ligation 

between the insert and the plasmid is only possible if both share 15 bp of homology at each 

end. This is achieved by engineering specific primers with 15-bp overlaps homologous to the 

destination plasmid ends. For this, cloning plasmids were linearized by restriction enzymes 

double digestions and target inserts amplified by PCR. Both linearized vectors and PCR 

products were purified, as mentioned in section 3.3, and In-Fusion ligation reaction was set 

up: 50 ng of linearized vector and 200 ng of the insert, regardless of their lengths, were 

incubated with the In-Fusion Enzyme premix, according to the manufacturer’s protocol. This 

allows the In-Fusion Enzyme to fuse specific DNA fragments efficiently and precisely by 

homology between the 15-bp overlaps. The reaction mix with the final construct was 

transformed into commercial competent E. coli. 

 

Figure 13: Schematic representation of the In-Fusion cloning strategy. Linearized destination vector and 
amplified sequence of interest, with primers containing a 15 bp extension homology to the destination vector 
ends, were assembled in the In-Fusion reaction mix. This allows recombination between the homologous 
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sequences of the linearized plasmid with the PCR product. Adapted from In-Fusion® HD Cloning Kit User Manual 
(Clontech Laboratories). 

3.5 Plasmid transformation of competent E. coli bacteria 

For plasmid DNA transformation E. cloni® 10G chemically competent cells (Lucigen) were 

used. Frozen aliquots of competent cells were thawed on ice, incubated with the plasmid DNA 

for 30 min on ice, followed by a 42 °C heat-shock for 45 sec and returned to ice. 300 µL of cold 

Luria Broth medium (LB) were added to the mix, which was then incubated at 37 °C with 

shaking (150 rotations per minute (rpm)) for 1 h. 200 μL of the transformed bacteria were 

plated in LB medium with agar (35 g/L; Sigma-Aldrich) and ampicillin (Amp) (100 μg/mL; 

Sigma-Aldrich) or kanamycin (Kan) (50 μg/mL), depending on the plasmid selection marker, 

and incubated overnight (ON) at 37 °C. On the following day, selected colonies were grown in 

liquid LB with Amp or Kan, ON at 37 °C at 250 rpm. 

3.6 Plasmid DNA purification and quantification 

For small scale purification of plasmid DNA, 4 mL of ON bacterial culture of transformed 

competent cells were processed using the Wizard® Plus SV Minipreps DNA Purification System 

(PROMEGA), according to the manufacturer’s protocol. 

For large scale purification of plasmid DNA, 100 mL of selective LB medium was inoculated 

with 5 µL of the plasmid bacterial culture, shaken ON at 250 rpm at 37 °C and processed using 

the HiSpeed Plasmid Midi Kit (Qiagen), according to the manufacturer’s instructions. DNA 

concentration was determined using a Nanodrop 2000 spectrophotometer (Thermo 

Scientific). 

3.7 Plasmid constructs generated  

3.7.1 Col10a1:GFP-NTRo construct 

To produce the col10a1:GFP-NTRo construct, the Meganuclease plasmid col10a1:nlGFP and 

pGNTNo, kindly provided by Christoph Winkler and Maik Grohmann, respectively, were used. 

The col10a1:nlGFP plasmid contains a 5.865-kb upstream regulatory region of the Oryzias 

latipes col10a1 locus, driving the expression of a nuclear-targeted Green Fluorescence Protein 

(GFP) (Renn et al. 2013). The pGNTRo contains the coding sequences of GFP and the codon 

optimized sequence of the Nitroreductase (NTRo) fusion construct (Grohmann et al. 2009). To 

generate the col10a1:GFP-NTRo construct, the cloning consisted on replacing the nlGFP from 

the col10a1:nlGFP plasmid backbone by the GFP-NTRo fusion sequence. In the final construct, 

the col10a1 promoter drives the expression of the GFP-NTRo fusion coding sequence and is 

flanked by I-SceI sites, allowing genomic recombination with Meganuclease (Figure 14). For 

this, the col10a1:nlGFP plasmid was digested with the NcoI and XbaI restriction enzymes 

(Fermentas), to excise the nlGFP sequence, and the GFP-NTRo sequence was amplified from 

https://www.sciencedirect.com/science/article/pii/S0012160613003217?via%3Dihub#!
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the pGNTRo by PCR using Taq Polymerase (Fermentas) and a specific In-Fusion primer pair (for 

RE and primer details see Table III and Table IV, respectively). Plasmid digestion and PCR 

product purification, ligation mix and transformation were performed as described above. 

After transformation, selected colonies were grown, plasmid DNA purified and digested with 

EcoRI (Promega) to confirm proper insertion of the fragment. The best clones were sequenced 

with appropriate primers (see Table IV), using the Stab Vida Sanger Sequencing services, and 

the construct with fewer errors was used for zebrafish embryo microinjection.  

3.7.2 Krtt1c19e:GFP-NTRo construct 

To produce the krtt1c19e:GFP-NTRo final construct, the Meganuclease vector col10a1:GFP-

NTRo, generated above, and the p5E- krtt1c19e, kindly provided by Matthias Hammerschmidt 

were used (Fischer et al. 2014). The p5E-krtt1c19e plasmid contains a 3939-Kb promoter 

region of the krtt1c19e gene (Lee et al. 2014). To generate the krtt1c19e:GFP-NTRo construct, 

cloning consisted in replacing the col10a1 regulatory region from the col10a1:GFP-NTRo 

plasmid backbone by the krtt1c19e promoter sequence. In this final construct, the krtt1c19e 

promoter drives the expression of GFP-NTRo fusion coding sequence and is flanked by I-SceI 

sites, allowing recombination with Meganuclease (Figure 15). For this, the col10a1:GFP-NTRo 

plasmid was digested with the KpnI and BamHI restriction enzymes (Fermentas) to substitute 

the col10a1 regulatory region by the krtt1c19e promoter sequence, which was amplified from 

the p5E-krtt1c19e by PCR using the Titanium Taq Polymerase and a specific set of In-Fusion 

primers (for RE and primer details see Table III and Table IV, respectively). Plasmid digestion 

and PCR product purification, ligation mix and transformation were performed as described 

above. After transformation, selected colonies were grown, plasmid DNA purified and 

digested with EcoRI (Promega) to confirm proper integration of the fragment. The best clones 

were sequenced with appropriate primers (see Table IV), using the Stab Vida Sanger 

Sequencing services, and the best construct with fewer errors was used for microinjection. 

 

Table IV: List containing the primers used for sequencing. 

Primer Name Primer Sequence (5’>3’) Objective 

NTRo Forward GATGCTGTGCCCATCGAA 

Sequence the correct insertion of the 

GFP-NTRo coding sequence at the 3’ 

end of the col10a1 promoter backbone  

GFP Reverse AAGTCGTGCTGCTTCATGTG 

Sequence the correct insertion of the 

GFP-NTRo coding sequence at the 5’ 

end of the col10a1 promoter backbone. 

Confirm the correct substitution of the 

col10a1 promoter by the krtt1c19e 
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Primer Name Primer Sequence (5’>3’) Objective 

promoter at the 3’ end of the 

col10a1:GFP-NTRo backbone 

I-SceI Forward TAGGGATAACAGGGTAAT 

Sequence the correct substitution of 

the col10a1 promoter by the krtt1c19e 

promoter at the 5’ end of the 

col10a1:GFP-NTRo backbone 

 

 

Figure 14: Generation of col10a1:GFP-NTRo construct. The col10a1:nlGFP plasmid is digested with XbaI and 
NcoI. The GFP-NTRo fusion sequence is amplified from the pGNTRo and inserted in the destination vector 
generating the col10a1: GFP-NTRo construct. Correct insertion was confirmed by digesting selected clones with 
EcoRI. Clones with the correct insertion were sent for sequencing. 
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Figure 15: Generation of krtt1c19e:GFP-NTRo construct. The col10a1:GFP-NTRo plasmid is digested with KpnI 
and BamHI to excise the col10a1 promoter sequence. The krtt1c19e promoter sequence is amplified from the 
p5E- krtt1c19e and inserted in the destination vector in order to generate the plasmid krtt1c19e:GFP-NTRo. 
Correct insertion was confirmed by digesting selected clones with EcoRI and the clones with correct insertion 
were sent for sequencing.  

4 GENERATION OF TRANSGENIC LINES  

4.1 Microinjection of DNA constructs into zebrafish embryos 

WT AB strain zebrafish embryos were placed on an agar plate containing E3 medium and 

injected at one-cell stage using a pressure injector (PV820 Pneumatic PicoPump) (hold 

pressure = 3 psi; eject pressure = 20 psi), DNA borosilicate glass capillaries (World precision 

instruments) and a Nikon SMZ745 stereoscope. Since all injected constructs, namely 

col10a1:nlGFP, col10a1:GFP-NTRo and krtt1c19e:GFP-NTRo, were flanked by I-SceI sites, they 

were co-injected with the I-SceI Meganuclease enzyme. For that, capillaries were filled with 

the injection mix (50 ng/μL DNA; 1x Taq Buffer with KCl (Fermentas); 5 mM MgCl2 (Fermentas); 

1 U/mL Meganuclease I-SceI (Roche); or, 50 ng/μL DNA; 1X Buffer CutSmart (NEB); 1 U/mL 

Meganuclease I-SceI (NEB) and calibration was performed in a calibration graticule 
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(PyserSGLimited), adjusting the pressure to inject 100 pg of plasmid DNA per embryo 

(Soroldoni et al. 2009) 

4.2 Embryo screening 

Injected embryos were screened and imaged under a fluorescence stereoscope at 24 hours-

post fertilization (hpf) for krtt1c19e:GFP-NTRo injected embryos, and at 72 hpf for 

col10a1:nlGFP and col10a1:GFP-NTRo injected embryos. GFP-positive embryos that mimicked 

the expression patterns of krtt1c19e (epidermis basal keratinocyte layers) and col10a1 (head 

developing bones, such as ceratobranchial, maxilla, cleithrum, and opercle) (Li et al. 2009) 

were selected and raised until sexual maturity (3-6 months). After reaching adulthood, they 

were outcrossed to WT AB fish to identify founders (germline carriers) for stable transgenic 

line generation. Table V describes each line generated in the context of this work and its 

purpose.  

 

Table V: List of zebrafish transgenic lines generated in the context of this study. 

Line Name Abbreviation Line Type Description 

Tg(col10a1:nlGFP) col10a1:nlGFP Reporter 

nlGFP expression in 

osteoblasts; also labels joint 

associated osteoprogenitors 

in the adult caudal fin 

Tg(col10a1:GFP-NTRo) 
col10a1:GFP-

NTR 
Ablation 

Ablation of specific cell types 

and tissues that express 

col10a1, namely joint 

associated osteoprogenitors 

in the adult caudal fin 

Tg(krtt1c19e:GFP-NTRo) 
krtt1c19:GFP-

NTR 
Ablation 

Ablation specific cell types 

and tissues that express 

krtt1c19e, namely the basal 

epidermal layer 

keratinocytes 

5 HEAT-SHOCK AND CHEMICAL TREATMENTS  

Heat-shock (HS) inducible transgenic strains, namely dominant-negative and constitutively 

active forms of Yap, hsp70l:RFP-dnyap1 and hsp70l:RFP-cayap1, respectively, used to 

manipulate the Hippo/Yap signalling pathway, and hsp70l:cyp26a1, used to inhibit the 

Retinoic acid (RA) signalling pathway, were analysed as heterozygotes with wild-type siblings 
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serving as controls. Importantly, these transgenics lines enable the temporal control of the 

pathway at specific time-points during regeneration. Transgenic animals and siblings were 

maintained at 28 °C and heat-shocked once a day at 38 °C for 1 h, by incubation in pre-heated 

water. For Yap manipulation during dedifferentiation (Chapter III), animals were subjected to 

one HS prior to amputation. To manipulate Yap function during regenerative outgrowth phase 

(Chapter IV) animals are left to regenerate normally during the blastema formation phase (0-

48 hpa), and heat-shocked daily during the 3 following days. After heat-shock, caudal fin 

regeneration assays were performed at 28 °C, fins from anaesthetized animals were collected 

at predefined time-points post-amputation (Blum and Begemann 2012; Mateus et al. 2015) 

and then processed for cryosectioning or pooled for RNA extraction. 

For experiments involving chemical treatments, the following drugs were used: the Pfkfb3 

inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one) (525330, Sigma-Aldrich), referred as 

3PO (Schoors et al. 2014), was used to inhibit glycolytic influx and the glucose metabolism 

(Schools et al, 2014); and the Bmpr inhibitor, (LDN193189, StemRD), referred as Bmpri, was 

used to inhibit the BMP signalling pathway (Stewart et al. 2014). For both 3PO and BMPRi, 

stock solutions were dissolved in Dimethyl sulfoxide (DMSO, Sigma-Aldrich) at 40 mM and 10 

mM, respectively. 3PO and Bmpri were added to the fish water to obtain the final 

concentration of 15 µM and 5 µM, respectively. For controls, the equivalent volume of drug 

vehicle (DMSO) was added to the water. For these experiments, caudal fin regeneration assays 

were performed at 33 °C and drugs were replaced daily. At the desired time-points, fish were 

anaesthetized, fins imaged under a Zeiss Lumar V-12 fluorescence stereoscope and collected 

at predefined time-points after fin amputation for subsequent cryosection processing. 

6 NTR/MTZ ABLATION ASSAYS 

The NTR/MTZ system is one of the most widely used methods in the zebrafish community to 

selectively deplete multiple cell types in zebrafish, allowing for temporal and spatial control 

of the ablation. (Curado et al. 2007, 2009; White and Mumm 2013). This system is based on 

the ability of the Nitroreductase (NTR) enzyme to convert an innocuous pro-drug, 

metronidazole (Mtz), that is added to the fish water, into a cytotoxic agent that causes the 

death of the NTR-expressing cells without affecting the neighbouring cells. The NTR is usually 

under the control of a tissue-specific promoter (expressed in the cell population of interest). 

Additionally, NTR is generally fused to a fluorescent protein (FP), allowing for cell visualization 

and providing an easy and accessible way to confirm the success of the ablation (Figure 16). 

Transgenic zebrafish expressing the NTR enzyme and a fluorescent reporter under the control 

of a tissue specific promoter were incubated with the pro-drug solution, Metronidazole (Mtz) 

(Sigma-Aldrich, M1547) dissolved in fish water with 0.2% of DMSO. Control animals were 

incubated in fish water with 0.2 % DMSO. Animals were maintained for 24 h in the dark at 28 

°C in these solutions, as previously described (Curado et al. 2009). To recover from treatment, 

both Mtz and vehicle-treated zebrafish were rinsed and returned to the circulating system’s 
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water for 48 hours at 28 °C. Afterwards, controls and Mtz-treated fish displaying a reduced 

fluorescence intensity (readout for ablation efficiency), were subjected to caudal fin 

amputation. Fish were then allowed to regenerate in an incubator at 33 °C, or at 28 °C when 

the in combination with heat-shock inducible transgenic lines. Regenerated fins were 

collected from anaesthetized fish at desired time-points post-amputation and then processed 

for cryosectioning. This ablation protocol relies on critical variables such as Mtz time of 

exposure and concentration. Since the efficiency of the ablation depends greatly on the tissue 

to be ablated, several concentrations of Mtz were tested for each ablation line independently 

and when in combination with other ablation lines (see Table VI for Mtz final concentration 

details). In this context, the osx:mCherry-NTRo is used to evaluate new sources of 

osteoprogenitor when the mature osteoblast population is not available. The col10a1:GFP-

NTRo fish are used to ablate joint-associated osteoprogenitors and the krtt1c19e:GFP-NTRo 

fish are used to ablate basal epidermal cells. The later transgenic lines were combined with 

the osx:mCherry-NTRo line to evaluate if ablation of joint-associated osteoprogenitor and 

basal epidermal cells are potential sources for de novo osteoblasts when the mature 

osteoblast population is compromised. The osx:mCherry-NTRo line was also combined with 

lineage tracing transgenic lines for the epidermis and for the mesenchyme to address whether 

in osteoblast ablation context they can provide a source of newly formed osteoblasts during 

regeneration. In addition, the osteoblast ablation line was combined with available reporter 

lines and with loss of function transgenics to manipulate a given signalling pathway and test 

its requirement for de novo osteoblast formation during regeneration (for further details see 

Table VI). 

 

Figure 16: Experimental set up for Mtz/NTR tissue-specific ablation. (A) A tissue-specific promoter (tsp) drives 
the expression of NTR coupled with a fluorescent protein (FP). (B) After adding Mtz, FP-NTR expressing cells (blue 
balls) undergo apoptosis and die (brown balls), while leaving the surrounding cells unharmed (beige balls). 
Adapted from (Curado et al. 2009). 
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7 LINEAGE TRACING ASSAYS 

One of the most classical questions in the regeneration field is the origin of the cells that 

compose the regenerated tissue. To address this, lineage tracing or fate mapping can be used. 

This technique involves the permanent labelling of a specific cell or tissue so that its 

descendants are easily traceable, thus providing information about the progeny, location and 

differentiation status of a single cell in its natural habitat during regeneration (Kretzschmar 

and Watt 2012). One of the most used systems to track cells is the site-specific recombination 

(SSR) system Cre/loxP (Hans et al. 2009). This system usually combines the two following 

transgenes: (1) a tamoxifen-inducible Cre recombinase fused to the tamoxifen receptor ERT2, 

which is under the control of a tissue specific promoter, so that it is produced only in the 

cells/tissue of interest; (2) and a recombination-competent fluorescent responder (or 

“switch”). Upon Cre induction by tamoxifen, it promotes the excision of loxP sites, present in 

the switch line, in the cells/tissue of interest that become permanently labelled with a 

fluorescent reporter (Figure 17A and B) (Chen and Poss 2017; Carney and Mosimann 2018).  

We took advantage of this system to address the contribution of specific cell types to bone 

repair in caudal fins virtually devoided of mature osteoblasts. We used transgenic lines 

containing a tissue specific promoter regulating the expression of a ligand-inducible CreER(T2) 

that allows temporal control of recombination upon administration of the tamoxifen active 

metabolite, 4-hydroxy-tamoxifen (4-OHT). These lines were combined with a red-to-green 

fluorescence reporter line (switch line) to detect Cre activity. In the absence of Cre activity the 

reporter line expresses DsRed under the control of the β-actin2 promoter, which as previously 

used to for lineage tracing in the caudal fin (Singh et al. 2012); when a recombination event 

occurs, EGFP is expressed instead, enabling the tracing of the progeny of the cells of interest 

(Hans et al. 2009; Mosimann et al. 2011). To understand the contribution of specific cell types 

in osteoblast depleted fins, we generated triple transgenic lines containing the promoter of 

interest driving CreER(T2), the switch line and the osteoblast ablation line (for further details 

see Table VI). For 4-OHT (Sigma-Aldrich, H7904) pharmacological treatments, 10 mM stock 

solutions were dissolved in 100% ethanol in the dark and stored at −80 °C for three months. 

Fish were incubated in the dark with 4-OHT or with the corresponding dilution of ethanol 

(Felker et al. 2016). When combining the lineage tracing procedures with osteoblast ablation, 

Mtz treatments were performed as described in the previous section.  
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Figure 17: Lineage tracing through Cre/loxP mediated recombination. (A) Schematic representation of a 
possible lineage tracing approach. Promoter X drives the expression of a tamoxifen-inducible Cre recombinase 
in a specific cell type. After tamoxifen mediated Cre induction, Cre promotes the switch from recombination-
competent responder (or “switch”). The latter is composed of two cassettes: one driven by a ubiquitous cis-
regulatory element, which cages a red fluorescent reporter downstream of a transcriptional stop sequence 
flanked by loxP recognition sites for Cre. Downstream of this first cassette there is another cassette that harbours 
a second green fluorescent reporter. Upon Cre induction by tamoxifen it promotes the excision of the loxP 
flanked cassette only in the cells/tissue of interest, switching the fluorophore colour from red to green 
(independently of the activity of the ubiquitous promoter), that become permanently labelled. Thus, enabling to 
trace all promoter X-activating cells and descendants (Chen and Poss 2017; Carney and Mosimann 2018). (B) 
Schematic representation of lineage tracing of a single blastemal cell and its contribution over time in 
regenerating fin tissue. Dashed line represents the amputation plane. Adapted from (Chen and Poss 2017; Carney 
and Mosimann 2018). 

7.1 Mesenchymal cell fate mapping  

For mesenchymal cell fate tracing, we used the careg:creERt2; β-act2:RSG; osx:mCherry-

NTR triple transgenics. To permanently label the mesenchymal cells that contribute to the 

regenerative process, fish were subjected to osteoblast ablation, caudal fin amputation and 

then incubated in 5 μM 4-OHT in circulating system water during the first 24 hpa. Sibling 

controls were incubated with the equivalent amount of ethanol (Pfefferli and Jaźwińska 

2017). Fins were allowed to regenerate until desired time-points post-amputation and were 

collected for subsequent cryosectioning. 

7.2 Epidermal cell fate mapping  

For epidermal cell fate tracing, we used the krt19:creERt2; β-act2:RSG; osx:mCherry-NTR 

triple transgenics. 4-OHT treatments were performed during zebrafish developmental 
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stages to allow for a complete labelling of the adult epidermis. For this, 24 to 96 hpf embryos 

were treated with 5 µM 4-OHT in embryo medium in the dark at 28 °C, and the solution was 

replaced daily. Sibling controls were treated with the corresponding amount of ethanol. 

Embryos were then returned to normal circulating system conditions and left to grow until 

adulthood (Fischer et al. 2014). Adult fish were subjected to the osteoblast ablation 

protocol, as described in section 6. Caudal fins of fish showing an efficient ablation were 

amputated, allowed to regenerate until predefined time-points post-amputation and were 

collected for subsequent tissue processing and cryosectioning. 

 

Table VI: Transgenic lines used for NTR/Mtz cell ablation and Cre/loxP lineage tracing assays. 

Double and triple 

transgenic lines 
Abbreviation 

Mtz 

concentration  
Objective 

Tg(osterix:mCherry-

NTRo)pd46; 

Tg(ola.Bglap:EGFP)hu4008 

osx:NTRo; 

osc:EGFP 
8.5 mM 

Osteoblast ablation and 

mature osteoblast labelling 

Tg(osterix:mCherry-

NTRo)pd46 ; 

Tg(Hsa.RUNX2-

Mmu.Fos:EGFP)zf259 

osx: NTRo; 

runx2:EGFP 
8.5 mM 

Osteoblast ablation and 

labelling of all osteoblast 

differentiation stages, 

including osteoprogenitors 

Tg(osterix:mCherry-

NTRo)pd46 ; 

Tg(ctgfa:EGFP) 

osx: NTRo; 

ctgfa:EGFP 
8.5 mM 

Osteoblast ablation and 

mesenchymal cell labelling 

Tg(osterix:mCherry-

NTRo)pd46 ; 

Tg(col10a1:nlGFP) 

osx: NTRo; 

col10a1:nlGFP 
8.5 mM 

Osteoblast ablation and 

mesenchymal cell and joint 

associated osteoprogenitor 

labelling 

Tg(osterix:mCherry-

NTRo)pd46 ; 

TgBAC(aldh1a2:aldh1a2-

GFP)kn2 

osx: NTRo; 

aldh1a2:GFP 
8.5 mM 

Osteoblast ablation and 

visualization of endogenous 

sources of RA synthesis 

Tg(krtt1c19e:GFP-NTRo) 
krt19:GFP-NTRo 7.5 mM 

Basal epidermal layer 

ablation 

Tg(osterix:mCherry-

NTRo)pd46 ; 

Tg(hsp70l:cyp26a1)kn1 

osx: NTRo; 

hsp70l:cyp26a1 
8.5 mM 

Osteoblast ablation and RA 

signalling manipulation 
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Double and triple 

transgenic lines 
Abbreviation 

Mtz 

concentration  
Objective 

Tg(careg:Cre-ERT2); Tg(-

9.8actb2: LOXP-DsRed-

LOXP-EGFP); 

Tg(osterix:mCherry-

NTRo)pd46 

careg:creERt2; 

β-act2:RSG; 

 osx: NTRo 

8.5 mM 

Labelling/tracing 

mesenchymal cell progeny 

in osteoblast depleted fins 

Tg(krtt1c19e:Cre-ERT2); 

Tg(-9.8actb2: LOXP-

DsRed-LOXP-EGFP); 

Tg(osterix:mCherry-

NTRo)pd46 

krt19:creERt2; 

β-act2:RSG; 

osx: NTRo 

8.5 mM 

Labelling/tracing epidermal 

progeny in osteoblast 

depleted fins 

8 FLOW CYTOMETRY  

For flow cytometry analysis, adult zebrafish caudal fins were amputated and dissociated into 

single cell suspensions. For that, fins were incubated for 20 min at 28 °C with vigorous shaking 

in a solution of Liberase DH Research Grade (0,05mg/ml, Roche) reconstituted in 1x Phosphate 

Buffered Saline (PBS). After complete tissue disaggregation, cell suspensions were passed 

through a 30 μm filter (CellTricks, Sysmex) and centrifuged at 300g for 5 min at 4 °C. Cell pellets 

were then resuspended in 1x PBS with 10% fetal bovine serum (Biowest) and cell cycle analysis 

or Fluorescence Activated Cell Sorting (FACS) was performed. 

8.1 Cell cycle analysis  

Cell cycle analysis was performed in caudal fins collected from DN-yap transgenic animals and 

the corresponding sibling controls subjected to heat-shock and caudal fin amputation. Caudal 

fins were dissociated into a single cell suspension as mentioned above. Cells were incubated 

with Vybrant DyeCycle Green (Invitrogen) diluted in 1x PBS at a final concentration of 10 µM 

for 20 min at 28 °C. Samples were acquired in a CyAn ADPTM flow cytometer (Beckman 

Coulter) equipped with a 25 mW solid state 488 nm laser using low flow rate acquisition. 

Vybrant DyeCycle is excited at 488 nm with fluorescence measured in the FITC channel 

(520/20 bandpass filter). Cell debris and cell aggregates were excluded from the sample 

analysis. Exclusion of cell debris was done by side scatter (SSC log) and forward scatter (FSC 

linear) and exclusion of aggregates and doublets by monitoring forward scatter width (FSC-W) 

and height (FSC-H). To separate cells according to fluorescence intensity, WT AB strain was 

used as an unstained/negative control. This allowed us to identify the negative population 

and determine the level of background fluorescence, and thus to properly gate the positive 

population. DNA content was measured using the fluorescence intensity that should be 
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proportional to DNA mass. Around 15 000 events were plotted and the distribution of cells in 

G0/G1, S, and G2/M phases was determined using the Watson pragmatic fitting algorithm of 

FlowJo software (Version 10, Williamson Way, Ashland, USA).  

8.2 Fluorescence activated cell sorting (FACS) 

To specifically isolate the mature osteoblast population that contributes to the regenerative 

process and perform a transcriptome analysis by microarray chip assay, we took advantage of 

the osc:EGFP transgenic like and isolated osc-positive cells through FACS. FACS was carried out 

on a MoFlo high-speed cell sorter (Beckman Coulter, Fort Collins, USA) using a 488 nm laser 

(200 mW air-cooled Sapphire, Coherent) at 140 mW for scatter and a 530/40 nm bandpass 

filter for GFP measurements. Primarily, cell debris and aggregates were removed from the 

analysis as described in the previous section. The fluorescence scatter (Comp-FL Log::GFP) was 

used to separate cells according to their GFP fluorescence intensity with a maximum of 

stringency to avoid cross-contamination of the desired cell population. Zebrafish WT AB strain 

was used as a negative control to set the GFP-positive population. The instrument was run at 

a constant pressure of 207 kPa (30 psi) with a 100 µm nozzle and frequency of drop formation 

of approximately 40 kHz. Three independent biological replicates were performed for each 

condition. As control samples, we isolated osteoblasts from the middle region of the uncut fin 

(corresponding to our osteoblast population in homeostasis from non-regenerating fins). In 

amputated samples, we isolated osteoblasts from the first bone segment below the 

amputation plan, at several time-points during dedifferentiation, 3 hpa, 6 hpa and at 9 hpa. 

For each, 300 GFP-positive cells were collected into lysis and RNA stabilization buffer 

(provided by OakLabs GmbH) and vigorously shaken for 1 min. To verify the quality of the 

samples, cell death and purity were measured. Cell death was measured by incubating the 

samples with propidium iodide (PI, Sigma-Aldrich) to a concentration of 1 μg/ml and using the 

488 nm laser for PI excitation. PI fluorescence was measured on the PI channel (613/20 BP). 

Only samples with cell death below 10-20% and purity above 90% were used for subsequent 

analysis. Samples were maintained at -80 °C until sent to OakLabs GmbH (Henningsdorf, 

Germany) for cDNA generation, microarray chip set up and data analysis. 

9 MICROARRAY CHIP ASSAY 

To compare the transcriptome profiles of mature osteoblasts in homeostasis to osteoblasts 

during dedifferentiation a genome-wide gene expression profiling was set up by using the 

8x60K ArrayXS Zebrafish platform by Agilent and performed by OakLabs GmbH (Henningsdorf, 

Germany). A microarray consists of a membrane containing multiple oligonucleotides (probes) 

that represent the different regions of the genome. Each gene can be represented by more 

than one probe, increasing the robustness of the analysis. The 8x60K ArrayXS Zebrafish 

represents approximately a total of around 60000 zebrafish transcripts, which includes 48000 

coding genes, 8075 non-coding genes and 19140 predicted genes annotated in the Zv9 release 
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75. Given that, from each sample analysed, RNA was retrieved from only 300 osteoblasts, an 

adaptation from a single cell protocol was established and performed by OakLabs GmbH. 

Primarily, RNA samples were processed by Oaklabs and underwent a quality control to 

determine the quality and quantity of the total RNA, using the 2100 Bioanalyzer (Agilent 

Technologies), the RNA 6000 Pico Kit and a photometrical measurement with the Nanodrop 

2000 spectrophotometer (Thermo Scientific). Sample quality was evaluated based on the 

Bioanalyzer’s RNA integrity number (RIN) and the two distinct peaks representing the 18S and 

28S rRNA, as well as the overall electropherogram. Only samples with RIN ≥ 8 were used. 

Subsequently, 2 µL of the lysis and RNA stabilization buffer, from three biological replicates of 

each condition (uncut, 3 hpa, 6hpa and 9hpa isolated osteoblasts), was used for cDNA 

synthesis and pre-amplification using the Ovation One Direct system (NuGEN). The generated 

cDNA was labelled with Cy3dCTP using the SureTag DNA Labelling Kit (Agilent) prior to 

microarray hybridisation. Microarray blocking, hybridisation and wash were performed using 

Agilent's Oligo aCGH/ChIP-on-Chip Hybridisation Kit following the manufacturer's protocol. 

Ultimately, fluorescence signals were detected by the SureScan Microarray Scanner (Agilent 

Technologies) at a resolution of 3 µm for SurePrint G3 Gene Expression Microarrays, and 5 µm 

for HD Microarray formats. This resulted in a raw data output of 1-colour hybridisation using 

the Agilent’s Feature Extraction software version 11. Raw data was then subjected to 

processing and analysis (see section 14 of materials and methods). The retrieved data was 

used to compare the expression profiles of osteoblasts in homeostasis with the other time-

points during regeneration, thus delivering 3 different comparison data sets: 3 hpa versus 

uncut, 6 hpa versus uncut and 9 hpa versus uncut  

10 TOTAL RNA ISOLATION AND QUANTITATIVE -PCR (q-PCR) 

For gene expression analysis, including microarray validation, regenerates from 4-5 caudal 

fins, including one bony-ray segment proximal to the amputation plane, were harvested per 

experiment and per time-point analysed. Samples were homogenized in Trizol reagent 

(Invitrogen) for cell disruption and RNA extraction. Chloroform was added, and the 

homogenate allowed to separate into a clear upper aqueous layer (containing RNA). RNA was 

precipitated from the aqueous layer by adding an equal amount of 100% ethanol and loaded 

into RNeasy Micro Spin columns (Qiagen). The rest of the protocol was followed according to 

the RNeasy Micro kit (Qiagen) manufacturer’s protocol for total RNA purification. RNA 

purity/quality parameters were measured using the Nanodrop 2000 spectrophotometer 

(Thermo Fisher Scientific). cDNA was synthesized from 1 μg total RNA with the Transcriptor 

High Fidelity cDNA Synthesis Kit (Roche), using a mixture of oligo dT and random primers. All 

q-PCR primers were subjected to a standard calibration curve using 10-fold dilutions of cDNA 

to verify the efficiency of each primer pair. Primers were designed to amplify regions at exon 

to exon boundaries and 150-200 amplicons (primer sequences are listed in Table VII). q-PCR 

was performed using a FastStart Essential DNA Green Master Mix and a Roche LightCycler 480. 
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Cycle conditions were: 15 min pre-incubation at 95°C and 3 step amplification cycles (50x), 

each cycle for 30 sec at 95°C, 15 sec at 65°C or 68°C (depending on primer melting temperature 

(TM)) and for 30 sec at 72°C, followed by melting curve analysis, to confirm specific product 

amplification. q-PCR analysis is described in section 14 of this chapter. 

 

Table VII: Primer sequences for q-PCR experiments. 

Gene 

Symbol 
Forward Primer (5’>3’) 

TM 

(°C) 
Reverse Primer (5’>3’) 

TM 

(°C) 

ef1α 

ENSDARG0000

0039502 

ACGCCCTCCTGGCTTTCAC 

68.8 

TGGGACGAAGGCAACACTG 

67.5 

ef1α 

ENSDARG0000

0039502 

CCTGGGAGTGAAACAGCTG 

63.6 

GCCTCCAGCATGTTGTCAC 

64.6 

osc1/bglap 

ENSDARG0000

0058414 

TGACGTGGCCTCTATCATCA 

64.4 

TTTATAGGCGGCGATGATTC 

63.6 

osc2/bglapl 

ENSDARG0000

0104467 

AACTCTGCCAGTGCTGAAGG 

64.6 

GGTCTCAGCCATGTGTTCAC 

63.3 

osn 

ENSDARG0000

0019353 

GGTCGTGGAGGATGTTATTGC 

65.4 

GGGGCAGGTCAAAGGGTC 

66.7 

osx/sp7 

ENSDARG00

000019516 

TCCAGACCTCCAGTGTTTCC 

64.2 

ATGGACATCCCACCAAGAAG 

63.8 

runx2a 

ENSDARG0000

0040261 

ACGGTAATGGCTGGAAATGA 

64.1 

GTCCGTCCACTGTGACCTTT 

64.1 

runx2b 

ENSDARG0000

0059233 

AGCTTCACCCTGACGATTACA 

63.5 

CCAGTTCACTGAGACGGTCA 

64.1 

col10a1a 

ENSDARG0000
0054753 

GCATTCTTCTTCTCCTGGTG 

61.4 

CCTGAACCCCAACCCCC 

67.7 

wls/wnt 1 TAAGCCAGGTGAGTGAGGGTCA 68 TCAGCGCTTGACTGCTCATCTC 69.2 
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Gene 

Symbol 
Forward Primer (5’>3’) 

TM 

(°C) 
Reverse Primer (5’>3’) 

TM 

(°C) 

ENSDARG0000
0009534 

wnt10a 

ENSDARG0000
0017155 

CTCTCACGACATCAGTTGGCAC 

67.1 

CATGCTGCTGCTGCTCTTCTG 

68.7 

wnt3a 

ENSDARG0000
0058822 

GATGCCCGCTCTGCTATGAATC 

68.9 

CCGATGTTTCTCAACCACCATTT

C 69.2 

dkk1a 

ENSDARG0000
0014103 

ACATCCCAGGAGAACCACAG 

64 

AAACTTGTCCCTCTGTCAGCA 

63.8 

dkk1b 
ENSDARG0000

0045219 

TCCTAAAAGAGGGCCAGGTC 
64.3 

TCCCTCGACTCAAGTCTGCT 
64.2 

bmp2a 

ENSDARG0000
0013409 

ATCAGGAGCTTCCACCATGA 

64.7 

TGAACGTTAATGCGGTGAAA 

63.9 

bmp2b 

ENSDARG0000
0041430 

CTGAAAACGATGACCCGAAC 

64.4 

AACTGCTGCGTTGTTTTTCC 

64 

bmp4 

ENSDARG0000
0019995 

AGCAGTGCCTTCAAAGGTTG 

64.3 

CATGGGGAAACAGTCCATGT 

64.7 

aldh1a2 

ENSDARG0000
0053493 

GAAACCTGCTGAGCAAACCCC 

69 

TGCTCTTTCCTGCTGCTTCTTG 

67.9 

cyp26a1 

ENSDARG0000
0033999 

AGCCGGAGAGATTCATGAGCAA 

69.2 

GGGTCCGTTTGAGAGAATCCAA 

68.2 

cyp26b1 

ENSDARG0000
0077121 

CTCCAATCCTGACCCCATCAA 

68.2 

GCAGGTCGATGGGAAGACTGA 

68.8 

Pfkpa 

ENSDARG0000
0028000 

CAGAAGACTCGGCCTGTTTG 64.9 

 

GCAACTTCAGCCACCACTG 

64.7 

Aldoaa 

ENSDARG0000
0011665 

CTCAATGCCATGAACCAGTG 

64.2 

GGCCTGGCTGTTGTTAAGAG 

63.7 

pgam1a TGAGAGGCATTGTGAAGCAC 64.1 CTTTGCGAACGGTTTCCTC 64.6 
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Gene 

Symbol 
Forward Primer (5’>3’) 

TM 

(°C) 
Reverse Primer (5’>3’) 

TM 

(°C) 

ENSDARG0000
0005423 

pgam1b 

ENSDARG0000
0014068 

GCAGATCAAGGAGGGAAAGAG 

64.1 

GGCTTCAGGTTCTTGTCCAG 

63.8 

eno1a 

ENSDARG0000
0022456 

TCACCGTTCTGGAGAGACG 

64.3 

GAAGCGAGCCTTGTCTCCT 

63.7 

ldha 

ENSDARG0000
0101251 

GTCAAGGGAATGCATGGTG 

64.1 

CTGAACACCCCACAAGGTC 

63.2 

gapdhs 

ENSDARG0000
0039914 

CCAATGAAGGGAATTCTGGG 

65.3 

CAGGTCAGCAACACGATGG 

65.6 

mtfr1 

ENSDARG0000
0045304 

TGAACCCACAGATGCAGC 

63.8 

CAAACAGCGGTGTTTCCAC 

64.2 

ndufv2 

ENSDARG0000
0013044 

CGATGGTCCAAATCAACG 

62.6 

CAGGTCAGCTCTCACACCA 

62.9 

sdhdb 

ENSDARG0000
0030139 

TCTTCTGAGCCTGGCACC 

64.4 

GACAGAACAAACAGGCCTGC 

64.8 

dlat 
ENSDARG0000

0015918 

GGCATGTATGGCATCAAGC 
64.1 

GATCGCAGCTCAGAGTCACA 
64.6 

mdh2 

ENSDARG0000
0043371 

GAGCCAGGTTCACATTCTCC 

63.7 

CCCAAGGCCAAGGTTCTTT 

65.1 

cox6c 

ENSDARG0000
0038577 

TGCGTTTGCTCTTTCCCTC 

65.4 

GGCCTGGCACTTTCAAAGAT 

65.3 
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11 EdU INCORPORATION 

To evaluate cell proliferation after osteoblast ablation, cells were labelled during S-phase by 

5-ethynyl-2´-deoxyuridine (EdU, Thermo Scientific C10337) incorporation assays. osx:NTRo 

transgenic animals were subjected to Mtz treatment and caudal fin amputation, as described 

above, and allowed to regenerate until the desired time-points. Animals were anesthetised 3 

h prior to caudal fin collection, placed ventral side up on a slit in a sponge and 20 µL of 10 mM 

EdU solution (2.5 mg/ml diluted in 1x PBS) were administered via intraperitoneal (IP) injection. 

IP injections were performed with an insulin syringe U-100 G 0,3 mL and a 30G needle (BD 

Micro-fine) inserted at a low angle with the tip pointing cranially close to the pelvic girdle 

(Blum and Begemann 2015b). Upon collection, caudal fins were processed for cryosectioning 

and subjected to EdU labelling protocols (as described in section 12.3). 

12 HISTOLOGY 

12.1 Skeletal colourations 

12.1.1 Calcein staining 

To specifically label calcified structures, in particular, the newly regenerated bony-rays during 

Yap and glycolysis manipulation experiments, we used the fluorescent chromophore calcein. 

For that, DN-yap and sibling controls, previously subjected to HS, and osx:mCherry-NTRo 

animals, exposed to 3PO and vehicle (DMSO, controls), were subjected to caudal fin 

amputation. Specimens were allowed to regenerate until predefined time-points post-

amputation, fins were collected and immersed into a 0.2% calcein solution (2 g of calcein 

powder (Sigma-Aldrich, C0875-56) in 1 L of 1x PBS, pH 7.4) for 15 min. Afterwards, fins were 

rinsed in 1x PBS several times and left for 10 min in PBS 1x to allow the excess, unbound 

calcein, to diffuse out of the tissues (Jun Du et al. 2001). Fins were imaged using a Zeiss Lumar 

V-12 fluorescence stereoscope and collected for subsequent tissue processing and 

cryosection. 

12.1.2 Alizarin red S staining 

To follow the migration of mature osteoblast along the bony-ray segments, we performed 

live-imaging analysis using the transgenic line osc:EGFP and an Alizarin red S (ARS, Sigma-

Aldrich) staining, which allows in vivo monitoring of bone mineralized structures. ARS in vivo 

staining protocol was performed prior to caudal fin amputation and consisted on incubating 

the animals in a 0.01 % ARS solution for 15 min in the dark. ARS solution was prepared using 

water from the circulating system and pH adjusted to 7.4 with a KOH solution, as previously 

described (Bensimon-Brito et al. 2016). Animals were rinsed at least 3 times for 5 min in 

system water and then transferred to new containers. osc:EGFP transgenics were subjected 
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to caudal fin amputation and imaged using a confocal microscope Zeiss LSM 710 at the desired 

time-points post-amputation.  

12.2 Tissue processing for cryosections  

Fins were collected and fixed overnight in 4% Paraformaldehyde dissolved in 1x PBS. After 

fixation, fins were stored in 100% methanol (except for the EdU incorporation assay) at -20 °C 

until required for subsequent analysis. They were then gradually rehydrated in a series of 

methanol/1x PBS (75%, 50% and 25%) and incubated ON in a 30% sucrose (Sigma-Aldrich) 

solution diluted in 1x PBS for cryoprotection. The following day fins were embedded in 7.5% 

gelatin (Sigma-Aldrich)/ 15% sucrose in 1x PBS and subsequently frozen in isopentane at -70°C. 

The frozen samples were stored at -80 °C until sectioning. Longitudinal caudal fins sections 

were sectioned in 12 μm-thick slices using a Microm cryostat (Cryostat Leica CM3050 S), 

collected on Superfrost slides and maintained at -20 °C until further use. 

12.3 Immunofluorescence on cryosections 

For immunofluorescence assays on frozen caudal fin cryostat sections, the following protocol 

was performed. Sections were thawed for 15 min at room temperature (RT), washed twice in 

1x PBS at 37°C for 10 min for gelatin removal, followed by a 0.1 M glycine (Sigma-Aldrich, in 

PBS 1x) incubation for 10 min. Sections were then permeabilized in acetone for 7 min at -20°C 

and incubated for 20 min in 0.2% PBST (1x PBS with 0.2% Triton X-100). Afterwards, they were 

incubated in a blocking solution of 10% non-fat dry milk in PBST for 2-4 h at RT. Samples were 

then incubated with primary antibodies, diluted in blocking solution, ON at 4°C (for further 

antibody details see Table VIII). On the following day, samples were washed with PBST at least 

6 x 10 minutes and then incubated with secondary antibodies, diluted in blocking solution, for 

2 h at RT and protected from light (for further antibody details see Table IX). Subsequently, 

slides were washed 3 times, 10 min each, in PBST and then counterstained with 4’,6- 

diamidino-2-phenylindole (DAPI; 0.001 mg/mL in 1x PBS, Sigma-Aldrich) for 5 min the dark for 

nuclei staining. Slides were washed 3 times with PBST, 10 min each, and mounted in 

fluorescent Mounting Medium (DAKO). Slides were then stored at 4°C protected from light 

until image acquisition. 

Exceptions to the above immunofluorescence protocol were the following. 

For anti-Runx2 and anti-PCNA staining, slides were subjected to an antigen retrieval step after 

gelatin removal, which consisted of a 15-min incubation at 95 °C with Sodium Citrate Buffer 

(10mM Tri-sodium citrate with 0.05% Tween20, pH 6).  

For anti-pSmad 1/5/8 staining, slides were incubated in a blocking solution of 10% non-fat dry 

milk in PBST, containing 650 mM NaCl, and subsequently washed with PBST, containing 650 

mM NaCl. 
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For anti-Yap staining, slides were washed in PBDX (1% BSA, 1% DMSO, 0,2% Triton-100, 50% 

PBS 1x in Milli-Q water) instead of 0.2% PBST and blocked in PBDX containing 1.5% Goat 

Serum. Incubation with anti-YAP was done ON at RT. 

For EdU detection assay the manufacturer’s protocol from Click-iT® Plus EdU Alexa Plus 488 

Imaging Kit (Life Technologies) was followed. Briefly, samples were permeabilized with 

acetone and washed with PBST and then incubated with the Click-iT® reaction cocktail (Click-

iT® reaction buffer; CuSO4; Alexa Fluor 488 azide; reaction buffer additive) for 30 min in the 

dark. Afterwards, they were washed with PBST and the protocol followed as described above. 

 

Table VIII: List of primary antibodies used for immunofluorescence assays. 

Antibody Host Dilution Retrieval Wash Block 
Localization 

Cell type 
Company 

Anti-

Runx2 

(27-K) 

Mouse 1:50 

Sodium 

Citrate 

Buffer, 

pH 6 

PBST 

10% non-

fat dry 

milk/PBST 

Nucleus; all 

osteoblast 

stages, 

specially 

osteoprogeni

tors 

Sta Cruz 

Biotechnol

ogy, 

101145 

Anti-

Osx/Sp7 

(A-13) 

Rabbit 1:100 - PBST 

10% non-

fat dry 

milk/PBST 

Nucleus; 

immature to 

mature 

osteoblast 

Sta Cruz 

Biotechnol

ogy, 22536-

R 

Anti-ZNS5 Mouse 1:200 - PBST 

10% non-

fat dry 

milk/PBST 

Membrane; 

osteoblast 

marker 

Zebrafish 

Internation

al Resource 

Centre, 

011604 

Anti-

TenascinC 
Rabbit 1:100 - PBST 

10% non-

fat dry 

milk/PBST 

Extracellular 

matrix; 

secreted by 

osteoprogeni

tors 

US 

Biological, 

137.T2550-

23 

Anti-

Laminin 
Rabbit 1:100 - PBST 

10% non-

fat dry 

milk/PBST 

Extracellular 

matrix 

protein; 

enriched at 

the basal 

lamina 

Thermo 

Scientific 
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Antibody Host Dilution Retrieval Wash Block 
Localization 

Cell type 
Company 

Anti-p63 Rabbit 1:100 - PBST 

10% non-

fat dry 

milk/ 

PBST 

Nucleus of 

epidermal 

cells 

Gene Tex, 

GTX124660 

anti-

phospho 

Smad 

1/5/8 

Rabbit 1:100 - 

650m

M 

NaCl 

in 

PBST 

10% non-

fat dry 

milk/650

mM NaCl 

/PBST 

Reporter for 

active BMP 

signalling  

Cell 

Signaling, 

9511 

Anti-Yap 

FL (63.07) 

Mouse

, 
1:100 - PBDX 

1,5% 

Goat 

Serum/ 

PBDX 

Nuclear or 

cytoplasmic; 

to monitor 

Hippo 

pathway 

activity 

Sta Cruz 

Biotechnol

ogy, 

101199 

 

Anti-PCNA Rabbit 1:100 

Sodium 

Citrate 

Buffer, 

pH 6 

PBST 

10% non-

fat dry 

milk/PBST 

Nucleus; 

proliferating 

cells (G1, S, 

G2, M) 

Sta Cruz 

Biotechnol

ogy, F2007 

Anti-GFP Rabbit 1:100 - PBST 

10% non-

fat dry 

milk/PBST 

GFP Invitrogen 

Anti-GFP Mouse 1:100 - PBST 

10% non-

fat dry 

milk/PBST 

GFP Invitrogen 

Anti-Ds-

Red/mCh

erry 

Rabbit 1:200 - PBST 

10% non-

fat dry 

milk/PBST 

mCherry Enzifarma 
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Table IX: List of secondary antibodies used for immunofluorescence assays. 

Fluorophore Host Specificity Dilution Company 

Alexa Fluor 488 Goat Mouse 1:500 
Invitrogen, 

A11001 

Alexa Fluor 488 Goat Rabbit 1:500 
Invitrogen, 

A11070 

Alexa Fluor 568 Goat Mouse 1:500 
Invitrogen, 

A11031 

Alexa Fluor 568 Goat Rabbit 1:500 
Invitrogen, 

A11036 

Cy5 Goat Mouse 1:250 
Invitrogen, 

A10524 

13 IMAGE ACQUISITION AND PROCESSING 

13.1 Embryo, adult zebrafish and adult caudal fin imaging  

Images of live anesthetised transgenic embryos, adult fish and adult caudal fins were acquired 

in a Zeiss Lumar V-12 fluorescence stereoscope equipped with a Zeiss digital colour camera 

using a 0.8X air objective and the Zen 2 PRO blue software. For ablation, heat-shock and 3PO 

experiments, both controls and manipulated animals were imaged using identical settings 

(magnification, contrast, gain and exposure time). Images were acquired using transmitted 

light and the GFP and/or TexasRed filters, according to the fluorescent reporter expressed or 

labelling. For image analysis and processing, composite maximum intensity images were 

assembled using the Fiji software (Schindelin et al. 2012). For whole adult specimen image 

acquisition, concatenation of several images along the proximal-distal axis was performed 

using the Fiji plugin 3D Pairwise Stitching (Schindelin et al. 2012). All Images were then 

processed using the Adobe Photoshop CS5 and Adobe Illustrator CC. 

13.2 Live-imaging 

For live-imaging analysis of osteoblast migratory dynamics in vivo during regeneration, we 

used osc:EGFP transgenic animals counterstained with ARS. To accommodate adult zebrafish 

for live-imaging, animals were anesthetised and maintained in glass-bottom Petri dishes. 

Imaging was performed in a confocal microscope Zeiss LSM 710 using the software ZEN 2010B 

SP1. osc:EGFP fish were imaged with a 10x air objective using the 488 nm and 568 nm, since 

ARS signals fluorescent light when excited with 530-560 nm wavelength excitation light 

wavelengths. Additionally, the transmitted light channel was used for the 488 nm excitation 
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light (Bensimon-Brito et al. 2016). Time-lapse images were acquired always in the same region 

of the fin, capturing the first 2 segments below the amputation plane and the blastema region. 

Images were taken every 5 h following amputation, during the first 25 hpa, and imaged using 

identical settings (magnification, contrast, gain and exposure time). For image processing, 

composite maximum intensity z-stack projections were made using the Fiji software 

(Schindelin et al. 2012). Time-lapses of the same bony-ray region, corresponding to the first 

and second segments below the amputation plane, were assembled and computationally 

registered with the Fiji StackReg and MultiStackReg plugins. All Images were then processed 

using the Adobe Photoshop CS5 and Adobe Illustrator CC. 

13.3 Fixed samples imaging 

All immuno-labelled cryosections were analysed in a confocal microscope Zeiss LSM 710 using 

the software ZEN 2010B SP1. Caudal fin sections images were acquired using a 40x water 

objective with 0.6x or 0.8x zoom, and 405, 488, 568, and 633 nm excitation wavelengths, 

coupled with transmitted light. Sequential images were acquired to capture the first segment 

below the amputation plane and the entire regenerated region. For all experiments and 

corresponding controls, images were acquired employing identical settings (magnification, 

contrast, gain and exposure time) and in identical/comparable regions. For image analysis and 

processing, composite maximum intensity z-stack projections were made using the Fiji 

software (Schindelin et al. 2012). When required, concatenation of several images along the 

proximal-distal axis of the same longitudinal section was performed using the Fiji plugin 3D 

Pairwise Stitching (Schindelin et al. 2012). All Images were then processed using the Adobe 

Photoshop CS5 and Adobe Illustrator CC. 

14 QUANTIFICATIONS AND STATISTICAL ANALYSIS 

14.1 Microarray chip analysis 

Microarray chip detection was performed by OakLabs GmbH (Henningsdorf, Germany) and 

microarrays data quality assurance, data analysis and statistics were done by OakLabs GmbH 

and by a collaborator at Centro de Estudos de Doenças Crónicas (CEDOC-FCM), Patrícia Brito. 

For microarray chip detection, scanned arrays were first detected by the SureScan Microarray 

Scanner (Agilent Technologies), as mentioned in the Microarray chip assay section 9, in a raw 

data output of 1-colour hybridisation to obtain absent/present calls and to assure that all 

quality parameters were in the recommended range. Data generated was used to perform a 

transcriptomic comparison between the osteoblast control population (homeostasis/uncut) 

and osteoblast populations retrieved at 3 hpa (beginning of dedifferentiation) and at 6 hpa 

and 9 hpa (time-points during dedifferentiation). 
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14.1.1 Data Normalization 

Background signals were subtracted and then normalized prior to the statistical analysis. For 

that, the arrays were quantile normalised using the ranked mean quantiles (Bolstad et al. 

2003). Briefly, the mean signal of each target was ranked relative to all other targets and the 

ranked signal value replaced with the mean quantile value of the same rank.  

14.1.2 Quality Assurance 

For data quality control and to identify potential outlier samples hierarchical clustering and a 

principal component analysis were performed.  

Hierarchical clustering can be evaluated by clustering samples using a correlation metric, 

resulting in a dendrogram. The clustering is based on normalised expression values. Samples 

that have the most similar expression profiles are clustered together. Therefore, hierarchical 

clustering is useful for identifying outlying samples. Technical replicates are expected to be 

the most similar followed by biological replicates from the same origin. Samples with similar 

expression patterns are located close to each other.  

Principal component analysis (PCA) was developed to explain the intrinsic variability of the 

data. The data is visualised in a two-dimensional coordinate system, where both axes 

represent the two highest variabilities (principal components) of the data. The labels on the 

axes show the relative weights (in percentage) for the first component (x-axis) and the second 

component (y-axis). Similar to the hierarchical clustering algorithm, we can observe in this plot 

whether or not the distance of samples within one group is bigger than the distance between 

samples of different groups. Usually, the first two principal components give a good 

impression of how the differentially expressed probe sets clusters according to their variance. 

14.1.3 Statistical Analysis 

Fold change was determined based on the normalised data set and expression ratios obtained. 

In this data set a logarithmic base 2 transformation was performed (i.e. log2 (expression 

ratio)), to make the mapping space symmetric and the up-regulation and down-regulation 

comparable, prior to the significance test. For example, if the expression ratio is 1, then log2 

(1:0) = 0 represents no change in expression; if the expression ratio is 4, then log2 (4:0) = 2:0 

and for expression ratio of log2 (0,25) = -2:0. The mean and standard deviations of the four 

sets of isolated osteoblast samples (control/uncut, 3 hpa, 6 hpa and 9 hpa) were then 

compared with each other (3 hpa versus uncut; 6hpa versus uncut and 9hpa versus uncut) 

using a Welch’s t-test (or unequal variances t-test) and generating 3 data sets with the 

differential expressed genes between both conditions. Furthermore, all log2 values that lie 

between -1 and 1 were ignored. Additionally, to conclude statistical significance of differential 

expression for each gene between the conditions analysed, only p-values less than 0,05 were 

considered/accepted. 
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14.1.4 Data Visualization 

To aid in the visualization of the data sets we used volcano plots.  

The volcano plot arranges genes along dimensions: fold change and statistical significance. 

The horizontal axis represents the log2 fold change for each gene between two groups of 

samples, namely between 3 hpa versus uncut, 6hpa versus uncut and 9hpa versus isolated 

osteoblasts, and the vertical axis represents the p-value (on a negative log 10 scale: the smaller 

the p-values the larger the -log10 p-value).  

14.1.5 Gene enrichment analysis 

A gene enrichment analysis was performed based on the significant differentially expressed 

genes. These genes were assigned to corresponding biological process categories according 

to the Gene Ontology (GO) framework (http://www.geneontology.org/). Afterwards, data 

were summarised using the PANTHER classification system (http://www.pantherdb.org/) that 

showed which biological pathways were more representative in our gene expression data sets 

using Danio rerio as the reference genome. 

14.1.6 Pathway map analysis 

The parameters used for the pathway analysis were set according to the method referred to 

as Generally Applicable Gene-set Enrichment (GAGE), a new Gene set analysis (GSA) method 

(Luo et al. 2009). GAGE is used to infer functional and mechanistic changes using all available 

gene expression data (cutoff-free) since small but coordinated gene expression in a pathway 

can have great biological relevance even when the changes are not statistically different. For 

this, gene IDs were translated from Ensembl to Entrez based on Assembly GRCz11 (Genome 

Reference Consortium Zebrafish Build 11). After the GSA analysis, these Entrez IDs were used 

and analysed through KEGG pathway database resource for pathways related to canonical 

signalling and metabolic pathways (https://www.genome.jp/kegg/pathway.html), that 

illustrates, the more representative pathways in our microarray analysis. Only pathways with 

p-values less than 0,05 and FDR (q-value) less than 0.1 were considered significantly different. 

14.2 q-PCR analysis 

All samples were analysed in 4-6 biological pools. For each biological pool, q-PCR was 

performed for each target gene in 3 technical replicates. Gene expression values were 

normalized using the elongation factor 1α (ef1α, NM_131263) housekeeping gene and relative 

expression was calculated using the 2(-ΔΔC(T)) method (Livak and Schmittgen 2001). To 

determine differentially expressed genes, results were plotted using GraphPad Prism software 

and two-tailed Student’s t-test with Welch's correction was used. Only p-values<0.05 were 

considered statistically significant. 
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14.3 Imaging analysis and quantification 

14.3.1 Adult caudal fin regenerate measurements 

To measure the area of regenerated tissue in the caudal fin, images of live, anaesthetized fish 

were used. The regenerated fin was delineated from the amputation plane to the distal end 

of the regenerate, using the Area tool on Fiji software (Schindelin et al. 2012), thus resulting 

in one measurement value per animal.  

The percentage of bony-ray formation in calcein stained animals and the percentage of 

specific osteoblast populations in anesthetised live animals positive for osx:mCherryNTRo and 

runx2:EGFP, were determined using Fiji (Schindelin et al. 2012). The percentage of bone 

formation and of the specific osteoblast populations is defined by the area occupied by calcein 

or osteoblast labelling in relation to the total fin regenerated area. Briefly, the area of 

fluorescence intensity for each image was determined by empirically establishing a threshold 

to separate the signal fluorescence intensity from the background. The average fluorescence 

area was then normalized to the total tissue regenerate area, performed as described above. 

Each measurement gave rise to one value per animal. The individual data were processed 

using Microsoft Excel™. 

Determination of bony-ray width (width at the basis of each regenerated bony-ray) calcein 

staining experiments were performed using Fiji (Schindelin et al. 2012). Fluorescence signal 

was thresholded using the Otsu algorithm. Subsequently, the width at the basis of each newly 

formed bony-ray region was measured using the line tool on Fiji (Schindelin et al. 2012). These 

widths were averaged which resulted in one value per animal. 

For all the analysis performed above, the detailed number of animals used is discriminated in 

the corresponding figures in the results section, while the means and standard deviations (SD) 

are displayed in the graphs. 

14.3.2 Quantification of osteoblast migration 

Live-imaging time-lapses were used to measure osteoblast motile behaviour in osc:EGFP 

transgenic animals counterstained with ARS. The osteoblast mature population from the first 

and second segments below the amputation plane were imaged overtime during the first 25 

hpa. The area of fluorescence intensity was determined by establishing a threshold 

background and the GFP centre of intensity was determined for each sequential time-lapse, 

by using the tool centre of mass on Fiji ImageJ (Schindelin et al. 2012) for both first and second 

segments below the amputation plane. To determine cell displacement in a specific time-

interval for each two sequential time lapses, the GFP centre of intensity of the earlier time-

lapse was subtracted from the following time-lapse and so on until the last time-lapse, as 

illustrated in the examples below: 
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GFP centre of intensity 5 hpa - GFP centre of intensity 0 hpa = Relative cell displacement from 

0-5 hpa time-interval 

GFP centre of intensity 10 hpa - GFP centre of intensity 5 hpa = Relative cell displacement from 

5-10 hpa time-interval 

For all the analysis performed above, 3 different bony-rays per animal, from a total of 3 

animals were analysed. Data were expressed as the relative cell displacement between 

specific time-intervals and means ± SD were plotted in graphs. 

14.3.3 Quantifications performed on cryosections  

Cell populations in longitudinal cryosections of individual regenerating bony-rays were 

quantified by analysing the first segment proximal to the amputation plane and the 

regenerated area. For that, cells were counted, including EdU positive cells, PCNA positive 

cells, osteoblast subtypes and osteoprogenitors, using the Cell-counter plugin on Fiji and 

normalizing to total fin area.  

To measure the relative contributions of each osteoblast subtype (Runx2+Osx- and 

Runx2+Osx+) in the regenerated tissue, a cell ratio profile was established by dividing the 

average number of one osteoblast subtype by the other in control and in experimental 

conditions, ratios = 1 mean that both populations are equally represented in the regenerated 

tissue. To measure the relative occupancy of each tissue type (epidermis, mesenchyme and 

osteoblasts) in the regenerated tissue, a tissue ratio profile was established by dividing the 

average area of each tissue by the others in control and in experimental conditions. These 

ratios were averaged to give one value per animal. 

For each quantification 3-6 animals per condition were used and cryosections corresponding 

at least to 3 bony-rays per animal were analysed. The exact number of animals used is 

discriminated in the corresponding figure in the results section. Data are expressed as the 

number of cells per 100 µm2 and means ± SD are displayed in the graphs. 

14.3.4 Statistical Analysis 

For all adult caudal fin regenerate measurements, quantifications of osteoblast migration and 

quantifications performed on cryosections, statistical significance between controls and 

manipulated animals or between different time-points post-amputation or time-intervals was 

determined by non-paired, non-parametric comparison, using the Mann-Whitney U test in the 

Prism Graphpad software, version 6. Only p-values less than 0,05 were considered statistically 

significant. 
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“It's a poor sort of memory that only works backwards,' says the White Queen to Alice.” 

Lewis Carroll, Alice's Adventures in Wonderland & Through the Looking-Glass 
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1 CHARACTERIZATION OF OSTEOBLAST DEDIFFERENTIATION TIME-WINDOW 

DURING CAUDAL FIN REGENERATION 

Two of the key steps during the caudal fin regenerative process are the dedifferentiation and 

recruitment of the cells that contribute to the formation of the blastema (Galliot and Ghila 

2010; Jopling et al. 2011; Tanaka and Reddien 2011). We and others have previously 

demonstrated that after zebrafish caudal fin amputation, skeletal tissue regeneration occurs 

through mature osteoblast dedifferentiation (Knopf et al. 2011; Sousa et al. 2011; Tu and 

Johnson 2011; Stewart and Stankunas 2012). Mature osteoblasts lose their differentiated 

character, by loss of expression of mature markers, undergo an EMT-like event and migrate 

distally to incorporate the blastema where they subsequently increase their proliferation rate 

(Knopf et al. 2011; Sousa et al. 2011; Stewart et al. 2014). However, the exact time-window of 

osteoblast dedifferentiation, as well as the factors that trigger and regulate the process during 

regeneration remain poorly enlightened. Cellular dedifferentiation is characterized by several 

events (Figure 18A): cell shape-changes, re-acquisition of proliferative capacity/ cell cycle re-

entry, downregulation of mature markers, and upregulation of progenitor-like markers 

(Jopling et al. 2011; Tanaka and Reddien 2011; King and Newmark 2012). Therefore, the first 

part of this project consisted in characterizing the initial hours of the dedifferentiation process 

to clarify the specific time-window of osteoblast dedifferentiation.  

In order to visualize the mature osteoblast population undergoing the first stages of 

dedifferentiation, we used the promoter reporter line for osteocalcin2 (osc/bglal), 

Tg1(Ola.Bglap:EGFP)hu4008 (referred as osc:EGFP), a mature osteoblast marker (Li et al. 2009; 

Knopf et al. 2011; Rutkovskiy et al. 2016). This line has a stable GFP signal and, although it is 

not ideal to observe immediate changes in gene expression, it allows us to follow osteoblasts 

during dedifferentiation even upon osteocalcin downregulation. Taking advantage of this line, 

a thorough characterization of the osteoblast migratory behaviour, acquisition of proliferative 

capacity and expression of specific markers, was performed (Figure 18).  

To detect when mature osteoblasts start to alter the transcription levels of mature and early 

osteoblast markers we monitored the expression of osc and runx2a, respectively (Li et al. 

2009; Rutkovskiy et al. 2016). By q-PCR analysis, we observed that mature osteoblasts start to 

downregulate osc, as early as 3 hours post-amputation (hpa), although no changes in the 

expression of the earliest osteoblast progenitor marker runx2a were observed (Figure 18F). 

Suggesting that mature osteoblasts start to undergo transcriptional changes very early during 

regeneration. Although at this stage we did not notice upregulation of runx2, indicative of a 

progenitor state (Figure 18F), we were able to observe expression of Tenascin C (TenC), an 

extracellular matrix (ECM) glycoprotein normally secreted by osteoblast precursors (Mackie 

and Tucker 1992; Alford and Hankenson 2006) and is considered to be a trait of pro-

regenerative ECM (Godwin et al. 2014). TenC was already shown to be upregulated in the 

mesenchymal compartment at later time-points during regeneration (Jaźwińska et al. 2007; 
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Knopf et al. 2011). We observed through immunofluorescence that TenC starts to be produced 

by mature osteoblasts close to the amputation plane at 6 hpa in contrast to the uncut situation 

(Figure 18E). At this time-point, only mature osteoblasts seem to be the source of TenC in the 

regenerating fin (Figure 18E). 
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Figure 18: Osteoblast dedifferentiation time-window during caudal fin regeneration. (A) Biological features of 

the dedifferentiation process. (B) Live imaging analysis of the osteoblast migratory behaviour in the 1st and 2nd 

segments below the amputation region, during 1 day after amputation using a promoter reporter line that labels 

mature osteoblasts (osc:EGFP). The bone is labelled with Alizarin red (magenta). Osteoblasts in the 1st segment 

are recruited towards the stump in contrast to osteoblasts in the 2nd segment. (C) Quantification of the relative 

osteoblast displacement over time in the 1st and 2nd segments below the amputation plane of the same animal; 

statistical analysis displayed on graph corresponds to Mann-Whitney test with Mean ± SD (n=9 bony-rays 

compiled from 3 different fish). (D) Quantification of osteoblast cell cycle re-entry through immunofluorescence 

against PCNA (proliferation marker) in osc:EGFP animals reveal that these cells start acquiring proliferative 

capacity at 9 hpa; statistical analysis displayed on graph corresponds to Mann-Whitney test with Mean ± SD (n= 

3 fish, 12 sections analysed). (E) Representative images of TenC (magenta) immunofluorescence in longitudinal 

fin cryosections of osc:EGFP (mature osteoblasts, green) animals; arrows indicate osteoblasts in uncut caudal fins, 

which do not produce TenC, and arrowheads indicate osteoblasts at 6 hpa expressing Tenascin C. (F) Quantitative 

RT-PCR showing the expression of osc and runx2a at 3 hpa relative to uncut condition; statistical analysis displayed 

on the graph corresponds to Unpaired t test with Welch’s correction (3 biological replicates corresponding to 

pools of 4-5 fins were used for each condition). Dashed lines represent the amputation plane and white boxes 

the magnified panels. Scale bars represent 100 µm in B, 50 µm in E and 20 µm in magnified panels in E. hpa (hours 

post-amputation); ns: non-significant; * p< 0.05; **p< 0.01. 

Afterwards, we analysed when these cells become motile. It is known that only the osteoblasts 

that reside in the first segment below the amputation plane migrate and contribute to the 

blastema, which can be seen at 24 hpa (Knopf et al. 2011; Pfefferli and Jaźwińska 2015). We 

used the osc:EGFP transgenic line and imaged the same bony-rays every 5 hours during the 

first 25 hpa to follow osteoblasts and measure their relative displacement during 

regeneration. This analysis revealed that osteoblasts become motile at the 5-10 hpa time-

interval and reach the amputation plane around 24 hpa, in contrast to the osteoblasts that 

reside in the second segment below the amputation plane, which stay immotile, therefore 

serving as a negative control for migration (Figure 18B and C). 

To address when these cells acquire proliferative capacity, we performed PCNA (marker for 

late G1 cell cycle phase) immunostainings and observed that osteoblasts enter progressively 

in the cell cycle. Around 20% of osteoblasts are PCNA-positive at around 9 hpa and at 24 hpa 

almost all osteoblasts in the first segment below amputation have entered the G1 phase 

(Figure 18D). 

Taken together, these data reveal that opposed to what has been previously described (Knopf 

et al. 2011; Sousa et al. 2011), mature osteoblasts that respond to the injury and contribute 

to blastema formation show dedifferentiation signs very early during regeneration, in a time-

window between 3-6 hpa, still during the wound healing phase. Knowing the precise time-

window of dedifferentiation gives us the opportunity to study the transcriptomic changes that 

occur specifically during dedifferentiation. 
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2 MATURE OSTEOBLAST ISOLATION, MICROARRAY SET UP AND DATA OVERVIEW 

Osteoblast dedifferentiation during regeneration remains a poorly characterized process. 

Thus, after identifying the time-window at which osteoblast dedifferentiation is triggered, we 

carried out an unbiased approach to screen and identify new factors involved in this process. 

For that, we have isolated osteoblasts and analysed the transcriptomic changes that occur 

during dedifferentiation. 

2.1 Mature osteoblast isolation from homeostasis and regenerating fins and microarray 

experimental design 

To obtain the gene expression profile of osteoblast undergoing dedifferentiation, our strategy 

consisted in a genome-wide transcriptomic analysis, using microarray technology, of isolated 

osc:EGFP-positive osteoblasts from uncut fins and at 3, 6 and 9 hpa, the time-points at which 

the first osteoblast dedifferentiation features were detected. We choose to analyse these 

time-points because they reflect a progression in the osteoblast dedifferentiation program 

that is related to the successive acquisition of dedifferentiation traits. We used osteoblasts 

from uncut/non-regenerating conditions as our control population as they are the closest to 

what we may consider to a homeostatic state (Figure 19). The 3 hpa time-point was defined 

as the early beginning of the dedifferentiation process because it is the earliest time-point 

that we were able to detect differences at the transcriptional level between osteoblast in 

homeostasis and during regeneration (Figure 18F) but the other dedifferentiation features are 

not visible yet (Figure 19B, a). The 6 hpa time-point reflects differences at the level of 

osteoblast morphology and behaviour (Figure 18B, C and E), so we considered this time-point 

represents the full launch of the dedifferentiation programme (Figure 19B, b). At 9 hpa 

additional phenotypic changes in osteoblast are observed, including cell cycle re-entry (Figure 

18D)(Figure 19B, c). We opted to analyse all three time-points during dedifferentiation to 

make sure that no important regulators were left aside. The purpose was to compare the 

expression profiles of osteoblasts in homeostasis with the other time-points during 

regeneration (Figure 20A), thus delivering 3 different comparison data sets: 3 hpa versus uncut 

(Figure 19B, a), 6 hpa versus uncut (Figure 19B, b) and 9 hpa versus uncut (Figure 19B, c). We 

established a protocol to specifically and accurately isolate these osteoblast populations by 

Fluorescence-activated cell sorting (FACS) (Figure 20A), which enabled the collection of 

osteoblast from osc:EGFP animals due to the stable and specific EGFP expression. In a first 

analysis, we determined that the isolated osteoblasts represent 1-3% of the total caudal fin 

sample (Figure 20A, examples of uncut and 6hpa conditions are shown). Optimization of the 

tissue digestion and cell dissociation protocol gave us a good purity percentage of osc:EGFP 

positive cells (around 90%) and a low number of dead cells (around 10%) (Figure 20B). After 

osteoblast isolation, the analysis of their gene expression profile was performed at OakLabs 

GmbH (Henningsdorf, Germany) using the Agilent zebrafish 8x60K ArrayXS. 
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Figure 19: Microarray experimental design and data analysis rationale. (A) Schematic representation of the 
experimental design used to obtain the transcriptional profile of dedifferentiating osteoblasts using osc:EGFP 
transgenic animals. Osteoblasts from caudal fin tissue corresponding approximately to one bony-ray segment in 
length (pink boxes), from uncut, 3, 6 and 9 hpa were collected, dissociated into a single cell suspension and 
isolated by FACS and sent to OakLabs for RNA extraction and microarray chip assay. (B) In order to identify 
potential triggers and regulators of osteoblast dedifferentiation during regeneration, the transcriptome profile 
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of osteoblast at the beginning of dedifferentiation (3 hpa) and during dedifferentiation (6 hpa, and 9 hpa) were 
independently compared to the uncut/homeostasis controls transcriptome. After comparing the different data 
sets, three different groups of differentially expressed genes were obtained: 3 hpa versus Uncut (a); 6 hpa versus 
Uncut (b); and 9 hpa versus Uncut (c). Pink boxes correspond to the regions used to isolate osteoblasts for each 
condition. hpa: hours post-amputation. 

 

Figure 20: Isolation of mature osteoblasts by Fluorescence Activated Cell Sorting (FACS). (A) Representative 
flow cytometry plots of caudal fin cells from wild-type (negative control) and osc:EGFP transgenic animals from 
uncut and an example of the 6 hpa time-point is displayed. In osc:EGFP transgenic animals it is possible to observe 
the presence of GFP+ osteoblasts. (B) Sample quality assessment through the evaluation of cell death, by 
propidium iodide (PI) staining, and purity (representative examples are displayed). In flow cytometry plots, GFP 
fluorescence intensity is given by the x axis (Comp-FL 1 Log ::GFP) and PE fluorescence intensity (used to identify 
PI-positive cells), is given by the y axis (Comp-FL2 Log::PE). Numbers in the lower right boxes indicate relative 
percentages of GFP+ cells and numbers in the upper left boxes indicate the relative percentage of PI+ cells. hpa: 
hours post-amputation. 
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2.2 Genome-wide expression profile of osteoblasts in homeostasis and in regenerating 

caudal fins 

The transcription profiles obtained went through a quality control analysis performed by 

OakLabs and by a collaborator, Patrícia Brito (CEDOC). The intent of this evaluation was to 

identify possible outlier samples that should be removed from the data set. In order to identify 

possible outliers among the biological replicates, a hierarchical clustering analysis (HCA) and 

a principal component analysis (PCA) were performed. In the latter, samples were grouped in 

a 2-dimensional space by a two-component model (principal component 1 (PC1) and principal 

component 2 (PC2)) to explain the intrinsic variability of the data. Through these two analyses, 

biological replicates from the same condition should cluster together (Figure 21A). Both HCA 

and PCA found a biological replicate from the control samples (Uncut B1) that did not cluster 

with any of the other ones (Figure 21A, red cluster and red arrow), including with the other 

control biological replicates. Thus, it was considered as an outlier sample and removed from 

the transcriptome profile comparisons. The other biological replicates, with exception of the 

control, which formed its own cluster (samples 2 and 3), the replicates from different time-

points often clustered together (see example of sample 6 (3 hpa B3) and sample 10 (9 hpa B1)) 

(Figure 21A). This means that the transcriptomic profile of the osteoblast samples collected 

from the different regenerating conditions was very similar. After removing the outlier 

sample, the PCA was repeated (Figure 21B, C and D) for each time-point during regeneration 

together with control samples. We observed that there was a big overlap between the 3 hpa 

and the uncut samples, which were not possible to segregate using both the first and second 

principal components (PC1 and PC2, respectively) (Figure 21B). Nevertheless, the PC1 was able 

to explain 30% of the data variability and discriminate the uncut from the 6 hpa samples, and 

both PC1 and PC2 were able to fully separate the uncut samples from the 9 hpa (Figure 21C) 

explaining approximately 55% of the data variability (Figure 21D). This indicates that from the 

three regenerating conditions analysed, the 3 hpa time-point isolated osteoblasts have a more 

similar gene expression profile to the osteoblasts from the uncut condition. 
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Figure 21: Microarray sample analysis using hierarchical clustering and principal component analysis of 
transcript profiles. (A) Hierarchical clustering analysis (HCA) and Principal component analysis (PCA) of the data, 
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including all time-points and all corresponding three biological replicates (B1, B2 and B3) were performed. 
Colour-coded spheres define the different samples and corresponding biological replicates from uncut (orange) 
and the different time-points analysed during regeneration: 3 hpa (blue), 6 hpa (green) and 9 hpa (purple). 
Samples that have the most similar expression profiles are clustered together or appear in close proximity. 
Sample number 1 (Red cluster and red arrow, Uncut B1) has the least similar expression profile when compared 
to the other samples and was considered to be an outlier and removed from the transcriptome profile 
comparisons. (B) PCA after removing the outlier sample from the uncut/control group. A two-component model 
was then used to explain the variability and correlation between the uncut samples (orange dots, orange ellipse) 
and each one of the time-points analysed after amputation: 3 hpa (blue dots, blue ellipse), 6 hpa (green dots, 
green ellipse) and 9 hpa (purple dots, purple ellipse). By removing the outlier sample, we were able to better 
segregate the homeostasis condition (uncut) from the time-points collected during dedifferentiation. hpa: hours 
post-amputation 

After comparing the transcriptome profile of osteoblasts in homeostasis with the osteoblast 

populations retrieved during regeneration three sets of differentially expressed genes were 

obtained: 3 hpa versus uncut (Figure 22A), 6 hpa versus uncut (Figure 22B) and 9 hpa versus 

uncut (Figure 22C). In particular, we found that between 3 hpa and uncut, between 6 hpa and 

uncut, and between 9 hpa and uncut there were around 1622 (846 downregulated and 776 

upregulated), 2170 (1040 downregulated and 1130 upregulated) and 1693 (868 

downregulated and 825 upregulated) genes differentially expressed, respectively (Figure 22A-

C). We then analysed the general behaviour of the data using a Chord Diagram, which allows 

to display the inter-relationships between the different data sets. This analysis revealed that 

the three transcriptome comparisons showed that there were genes specifically regulated at 

each time-point (Figure 22D, white square), genes common between time-points (Figure 22D, 

green squares) and common to all 3 time-points analysed (Figure 22D, blue square). This 

transcriptomic analysis showed significant changes in gene expression, suggesting that mature 

osteoblasts start changing their transcriptome very early during regeneration (Figure 22). 
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Figure 22: General overview of the differentially expressed transcripts between homeostatic and 
dedifferentiating osteoblasts. (A-C) Number of transcripts altered in the microarray analysis. Volcano plot 
showing differentially expressed genes at 3 hpa (A), 6hpa (B) and 9 hpa (C). In volcano plots, the horizontal axis 
represents the log2 fold-change between each two groups of samples represented and the vertical axis 
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represents the p-value (on a negative log10 scale: the smaller the p-values the larger the -log10 p-value). 
Upregulated genes are shown in red and downregulated genes are shown in green. Significant changes were 
considered for a log2 FC>1 or <-1 for a p-value> 0.05. (D) Overall data visualization in a Chord Diagram. This 
graphical method allows to display the inter-relationships between data. The data is arranged radially around a 
circle with the relationships between the 3 time-points analysed drawn as arcs connecting the data (the % 
occupied by each arc is displayed). Dark grey group represents the data from the differentially expressed genes 
between the 3 hpa versus uncut; middle grey group represents the data from the from differentially expressed 
genes between 6 hpa versus uncut; light grey group represents the data from the from differentially expressed 
genes between 9 hpa versus uncut; Blue data represents the common set of genes between all the groups; dark 
green represents the common set of genes between 3 hpa versus uncut and 6 hpa versus uncut; middle green 
represents the common set of genes between 3 hpa versus uncut and 9 hpa versus uncut; light green represents 
the common set of genes between 6hpa versus uncut and 9hpa versus uncut; and white represents the specific 
differentially expressed genes for each group. hpa: hours post-amputation. 

3 MICROARRAY DATA ANALYSIS: NEW REGULATORS OF OSTEOBLAST 

DEDIFFERENTIATION DURING ZEBRAFISH CAUDAL FIN REGENERATION 

To facilitate the interpretation of our gene expression data, we started by performing a gene 

enrichment analysis. This analysis is useful to evaluate whether our differentially expressed 

genes are associated with specific biological processes and to gene expression signatures, 

particularly relevant for osteoblast dedifferentiation. For that, genes were assigned to 

different biological categories according to the Gene Ontology (GO) framework and analysed 

using the PANTHER classification system. Here we show the most enriched biological 

processes at 3hpa versus uncut condition (Figure 23). Serving as an example, the Cellular 

component organization or biogenesis (GO:0071840) category represents around 10% of the 

zebrafish genome and is enriched to 15% in our 3 hpa data set and so on for the other 

categories (Figure 23). For the other time-points, the enriched gene categories were very 

similar to the 3 hpa time-point. 

We also performed a cutoff-free pathway analysis, since small but coordinated gene 

expression in a pathway can have great biological relevance even when the changes are not 

statistically different. For this, we used a new Gene Set Analysis (GSA) together with the KEGG 

pathway database. We focused this analysis on pathways related to canonical signalling and 

metabolic pathways which seem to be relevant given the previous gene enrichment results. 

This analysis showed specific signalling and metabolic pathways that were significantly 

represented in our transcriptome data sets, for data visualization see Supplementary Table 1.  

Considering the more representative GO categories in the gene enrichment analysis, we 

decided to focus in categories known to be important to regulate cell fate decisions in other 

contexts and associated with some of the dedifferentiation traits analysed previously during 

regeneration (Figure 18). These categories were: metabolic regulation (GO:0008152 and 

GO:0044238); cell cycle control (GO:0007049); cytoskeletal dynamics, migration regulation 

and ECM remodelling and cellular junction assembly (which are all part of the GO:0016043 

and GO:0071840 category); signal transduction pathways (within GO:0009987 category); and 

chromatin organization and remodelling (GO:0006325). 
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Figure 23: Gene enrichment analysis of 3 hpa versus uncut conditions. Graph shows the most enriched biological 
process categories found in at 3 hpa (of the differentially expressed genes). Red columns represent the % of each 
category in the zebrafish genome and blue columns the % of each category in our data set. 

Overall, the gene enrichment analysis revealed new genes and general processes that could 

be important to trigger and regulate osteoblast dedifferentiation. In the sections below, we 

will take a closer look at the most relevant gene categories and their potential implication in 

regeneration, in particular in osteoblast dedifferentiation. 
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3.1 Genes related to metabolic adaptation and cell cycle regulation 

The microarray analysis revealed that one feature of osteoblast dedifferentiation seems to be 

related to its metabolic requirements (Table X and Table XI). In particular, several important 

glycolytic enzymes, such as pfkpa, aldoaa, pgam1a, hk1 and pdhb were highly and consistently 

upregulated in osteoblasts as early as 3 and 6 hpa, when compared to uncut controls, and 

some were also upregulated until 9 hpa (Table X). This suggests that osteoblasts during 

dedifferentiation may change their metabolic profile to better adapt to new energetic 

demands of the regenerative process (see Supplementary Figure 1 for an overview of the 

differentially expressed genes within the glycolytic pathway). It is known that, in homeostatic 

conditions, differentiated, non-dividing somatic cells use oxidative phosphorylation (OxPhos) 

as their primary source of energy. In contrast, highly proliferative progenitor cells, which 

exhibit different metabolic requirements, rely mainly on glycolysis to increase cell biomass 

and divide (Heiden et al. 2009; Lunt and Vander Heiden 2011; Moussaieff et al. 2015; Prigione 

et al. 2015; Mathieu and Ruohola-Baker 2017). Therefore, we speculate that osteoblasts in a 

regeneration context may suffer a metabolic adaptation, also designated as metabolic 

reprogramming, in the form of a glycolytic switch triggered very early during this process. 

Many stem/progenitor cell populations use primarily glycolysis, resulting in lactate production 

instead of pyruvate oxidation in mitochondria (Lunt and Vander Heiden 2011). In agreement 

with this notion, we identified an increase in the expression of the enzyme lactate 

dehydrogenease A4, ldha, responsible for the interconversion of pyruvate and lactate (Table 

X). 
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Table X: Genes involved in cell metabolism, namely in the glycolytic pathway, differentially expressed 
at 3, 6 and 9 hpa in comparison to uncut controls. Upregulated genes are shown in red and 
downregulated genes in green. 

 

We also detected the upregulation of genes that control mitochondria dynamics and function, 

particularly mitochondrial fission, such as mtfr1 and fis1 at 3 and 6 hpa, respectively (Table XI). 

This may represent another form of metabolic adaptation since mitochondria fusion and 

fission cycles are known to have a great impact in cellular metabolism and cell identity (van 

der Bliek et al. 2013; Xu et al. 2013; Khacho et al. 2016). Since OxPhos occurs inside 

mitochondria, its efficiency is maximized by fusion and diminished by fission events (van der 

Bliek et al. 2013). Curiously, this peak in the expression of mitochondrial fission-related genes 

seems to happen during 3-6 hpa, whereas at 9 hpa they are downregulated (Table XI). 
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Table XI: Genes involved in mitochondrial function, namely in mitochondrial dynamics and in the 
oxidative phosphorylation pathway, differentially expressed at 3, 6 and 9 hpa in comparison to uncut 
controls. Upregulated genes are shown in red and downregulated genes in green. 
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We also observed differences in genes related to the electron transport chain in the three 

time-points analysed. At 3 hpa, several components of the electron transport chain, such as 

cox5b, ndufb3 and ndufb5 were downregulated, suggesting a decrease in OxPhos (Table XI). In 

contrast, several other genes related to OxPhos, such as cytochrome c subunits or assembly 

factors, NADH and succinate dehydrogenase components, were highly upregulated in 

osteoblasts at 6 hpa (three genes) and at 9 hpa (five genes; Table XI) (see Supplementary Figure 

2 for overview of the differentially expressed genes within the oxidative phosphorylation 

pathway). 

Overall, these data suggest a clear and tight regulation of osteoblast metabolism, where both 

glycolysis and OxPhos could be playing important roles at different time-windows during 

regeneration when compared to homeostatic osteoblasts: glycolysis seems to be activated 

throughout the time-points analysed whereas Oxphos appears to become more relevant later, 

between 6-9 hpa. 

One of the most important requirements during regeneration is the acquisition of proliferative 

capacity, which could be correlated with the metabolic changes described above (Lunt and 

Vander Heiden 2011). In fact, this transcriptomic analysis showed that various cell cycle 

components are differentially regulated during the analysed time-points (Table XII). 

Interestingly, we observed what might be considered two different responses triggered by 

amputation: an anti-proliferative response, in which osteoblasts seem to have activated 

mechanisms of cell cycle arrest and possibly repair, with high upregulation of tp53 and tp53 

regulating kinase in all time-points; and a pro-proliferative response, with upregulation of 

cyclinD1, which drives the G1/S transition and other cyclin-dependent kinases, starting at 6 

hpa. This suggests the presence of two different osteoblast populations: one that was possibly 

deleteriously affected as a consequence of the amputation and another that has initiated a 

proliferative response. The second population was already identified in our previous analysis, 

with localization of PCNA between 6 and 9 hpa (Figure 18D), further validating our microarray. 

In addition, we observed a general decrease in the genes related to mitotic regulation, anapc4, 

esco1 and cyclin B3 (Table XII). This suggests that the cell cycle is tightly regulated during 

regeneration: cells re-enter the cell cycle during dedifferentiation but may only divide later in 

the regenerative process. 

Taken together these data imply that both metabolism and cell cycle processes comprise a 

very dynamic set of genes that were differentially expressed during this early regenerative 

time-points, suggesting their potential requirement during osteoblast dedifferentiation during 

regeneration.  
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Table XII: Genes involved in cell cycle regulation, differentially expressed at 3, 6 and 9 hpa in 
comparison to uncut controls. Upregulated genes are shown in red and downregulated genes in green. 

 

3.2 Acquisition of migratory behaviour and ECM remodelling 

During regeneration, the cells that contribute to form the blastema must reach the amputated 

region in order to proliferate. To do so, cells have to sense the signals released from the wound 

edge, become activated and migrate towards the damaged area. During caudal fin 

regeneration, osteoblasts undergo a process that resembles epithelia-to-mesenchymal 

transition (EMT) as they populate the blastema (Stewart et al. 2014). In addition, as our 

previous analysis demonstrated, osteoblasts become motile as early as 5 hpa (Figure 18B and 

1C). It is known that EMT and directed cell migration are both complex events that 

comprehend the sequential regulation of several processes, namely cytoskeletal 

reorganization, modulation of cell-cell adhesion, ECM remodelling and focal adhesion 

regulation (Quaranta 2000; Devreotes and Horwitz 2015). Accordingly, we observed a high 

number of differentially expressed genes related to these categories in all three time-points 

analysed (Table XIII and Table XIV). 
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Actin regulation and myosin-mediated contraction are essential for cell migration (Lee and 

Dominguez 2010; Murrell et al. 2015). We observed an upregulation of the Arp2/3 complex, 

arpc4, and the Drosophila slingshot homolog, ssh2a, which are essential for actin 

polymerization and depolymerization, respectively (Table XIII). An upregulation of myosin 

motors was also observed, such as myo1ea (Table XIII). The microtubule network is also known 

to be an important regulator of cell migration (Kaverina and Straube 2011; Etienne-Manneville 

2013). In agreement with this, genes of known modulators of microtubule dynamics were 

differentially expressed, suggesting they might also be important during the initial 

regenerative process (Table XIII). Members of the Rho GTPase family, which have been shown 

to regulate actin and myosin dynamics (Raftopoulou and Hall 2004) were also upregulated in 

this context (see cytoskeleton regulation, Table XIII). 

We also observed the downregulation of typical epithelial genes such as Adherens Junctions 

(AJs) components (α-catenin, β-catenin, cadherin 1 and cadherin 2) at 6 and 9 hpa, and a Tight 

Junctions (TJ) component (tjp2a/zo2) at 3 hpa (Table XIV). In homeostasis, osteoblasts display 

an epithelial-like organization, with their membranes connected to each other by AJs (Stewart 

et al, 2014), so these junctional components should be downregulated during osteoblast EMT 

and migration, in agreement to what we observe. 

The assembly of focal adhesion complexes that link the actin cytoskeleton to the ECM has 

been shown to be involved in cell migration (Wozniak et al. 2004; Levy et al. 2010). Some of 

the most important components of these complexes are integrins (Huttenlocher and Horwitz 

2011). The microarray data demonstrated a clear peak of expression of several integrin 

subunits, specifically at 6 hpa (Table XIV). Adaptor proteins that link the integrins to the actin 

cytoskeleton, talin1 and talin2, were also upregulated at 6 and 9 hpa (Table XIV). 

In parallel, we also noticed that several components of the ECM were differentially regulated, 

including collagens, laminins and tenascins (Table XIV). Depending on the ECM composition, it 

may promote a more pro-regenerative microenvironment and potentiate cell migration 

behaviours (Alford et al. 2015; Govindan and Iovine 2015). The main function of osteoblasts is 

to produce collagen fibres, which are the most abundant component of the bone matrix, and 

interestingly several collagens were downregulated during the dedifferentiation time-

window. Another important ECM glycoprotein, Tenascin C, which is known to be produced by 

osteoblast progenitors (Knopf et al, 2011) and to aid cell motility, was upregulated in our gene 

expression data set at 6 and 9 hpa. In accordance, we have demonstrated, during the 

characterization of the dedifferentiation time-window, that this protein is produced by 

mature osteoblast at 6 hpa (Figure 18E). Additionally, during the dedifferentiation time-

window, several transcripts related to ECM remodelling (Table XIV) were differentially 

expressed in some time-points when compared to the uncut condition. One of these 

transcripts, adam8b (a disintegrin and metalloproteinase domain 8b), is greatly upregulated 

in all three time-points (Table XIV). This gene encodes for a protein that is associated with 
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increased invasive activity (Sriraman et al. 2008). Therefore, this gene may further support the 

pro-migratory behaviour of osteoblasts at this point. 

Overall these results show that cytoskeletal rearrangements, ECM remodelling, focal adhesion 

assembly and junction disassembly are important to promote osteoblast EMT and migration. 

Importantly, this transcriptome analysis aid to identify new regulators of osteoblasts EMT and 

migration that may be required as part of their dedifferentiation program. 

 

Table XIII: Genes involved in cytoskeletal dynamics, differentially expressed at 3, 6 and 9 hpa in 
comparison to uncut controls. Upregulated genes are shown in red and downregulated genes in green. 
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Table XIV: Genes involved in cell migration and motility, differentially expressed at 3, 6 and 9 hpa in 
comparison to uncut controls. Upregulated genes are shown in red and downregulated genes in green. 
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3.3 Regulation of gene transcription by signal transduction networks and chromatin 

activation state 

In the beginning of this project, we hypothesized that signal transduction and chromatin 

remodelling could be one of the most relevant gene categories to regulate osteoblast 

dedifferentiation in vivo during regeneration. They were the best candidates likely to play a 

role in cell fate plasticity and cell fate decisions, as they can modulate directly gene expression 

by regulating specific transcription factors or promoting their recruitment to gene regulatory 

regions that specify cell identity (Guo and Morris 2017). 

Our transcriptome analysis detected several signal transduction pathways that were 

differentially expressed throughout the time-points analysed (see Table XV and Table XVI), 

namely: Wnt, Igf, Jak/Stat, Tgf-β and Map/Erk signalling pathways. Most of them were already 

demonstrated to play a role in caudal fin regeneration, but at later stages in the regenerative 

process (Jaźwińska et al. 2007; Chablais and Jazwinska 2010; Gauron et al. 2013; Hirose et al. 

2014; Stewart et al. 2014; Wehner and Weidinger 2015), and some have already been shown 

to regulate cell dedifferentiation in other contexts (Cai et al, 2007). Nevertheless, the link 

between these pathways and osteoblast dedifferentiation during caudal fin regeneration is 

still unclear. 

We can hypothesize that Wnt signalling is activated during osteoblast dedifferentiation, as 

wnt10a and dvl2 are upregulated at 6hpa (Table XV). Corroborating our analysis, it has already 

been demonstrated that wnt10a is upregulated at this time-point, but only in whole caudal 

fins (Stoick-Cooper et al. 2006), and not specifically in osteoblasts. 

Our analysis also showed a clear regulation of the insulin signalling pathway, with some of the 

components being up and downregulated (Table XV). Although we found variability in the time-

points analysed, there is a general tendency for osteoblasts to increase the expression of 

insulin signalling ligands and to decrease the expression of the receptors. This may indicate 

that osteoblasts act as a source of insulin ligands but do not activate the signalling pathway 

during dedifferentiation. Another interesting observation was the upregulation of leptin b in 

all three time-points (Table XV). Leptin b is a hormone that activates the leptin signalling 

pathway, already shown to be upregulated during caudal fin regeneration at later time-points 

(Kang et al. 2016). Leptins are conserved secreted hormones that control energy homeostasis 

and glucose metabolism (Dalman et al. 2013; Park and Ahima 2014; Michel et al. 2016). Leptin 

signalling can act in parallel and/or interact with the insulin signalling pathway in other 

contexts and regulate energy consumption and glucose metabolism (Amitani et al. 2013; Thon 

et al. 2016), suggesting that both pathways may cooperate and play a role during the 

metabolic changes (Table X and Table XI) that might occur during regeneration, and in particular 

during osteoblast dedifferentiation. 

Interestingly, some components of the Jak/Stat signalling pathway, known to regulate 

proliferation, cell fate and cell migration (Rawlings 2004; Murray 2007), were also found to be 
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differentially regulated in our microarray (Table XVI). Some of the components of this 

pathway, such as jak1, jak2a and stat1a, had a clear tendency to be upregulated in all time-

points, suggesting its activation and a possible role in osteoblast dedifferentiation during 

caudal fin regeneration. 

 

Table XV: Genes from signal transduction pathways, differentially expressed at 3, 6 and 9 hpa in 
comparison to uncut controls. Upregulated genes are shown in red and downregulated genes in green. 

 

The transcriptome analysis also demonstrated three other signalling pathways that seem to 

be important during the early time-points of regeneration: Toll, Tgf-β and Map/Erk signalling 

pathways (Table XVI). However, in contrast to the above-mentioned pathways, we found no 

evident direction in their regulation, with some components being up and others 

downregulated. These pathways are known to be involved in immunity, response to stress, 

proliferation, apoptosis and cell fate decisions and all of these biological features are 

important during the regenerative context (Pearson G et al. 2001; Shaul and Seger 2007; 

Massagué 2012; Anthoney et al. 2018). 
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Table XVI: Genes from signal transduction pathways, differentially expressed at 3, 6 and 9 hpa in 
comparison to uncut controls (continuation). Upregulated genes are shown in red and downregulated 
genes in green. 

 

Last but not less important, another class of genes crucial to regulate cell-fate changes 

includes genes that promote chromatin remodelling (Orkin and Hochedlinger 2011; Guo and 

Morris 2017). Our gene expression profile demonstrated that there were several differentially 

expressed chromatin modifying enzymes mainly at 3 hpa and 6 hpa when compared to the 

homeostasis situation (see Table XVII). These enzymes regulate chromatin structure and 

activate or suppress gene expression by modifying nucleosome histones or by mobilizing the 

DNA-histone structure. Chromatin modifying enzymes can be divided into the following 

groups: histone acetyltransferases (HATs); histone methyltransferases (HTMs); histone 

deacetylase (HDACs); and histone demethylase (HDMs) (Kouzarides 2007; Onder et al. 2012; 

Zhang et al. 2016). In general, HATs such as kat5, mrgbp and crebbpb were upregulated with 

a peak of expression at 6 hpa, while HDMs like kdm2aa and kdm5bb were also upregulated 

but at 3 and 6 hpa (Table XVII). Both HDMs and HDMs upregulation may be associated with 

increased transcriptional activation. In contrast, the HDAC proteins hadac4 and hadac8 were 

upregulated and kmt2bb, an HTM, was downregulated at 3 and 6 hpa (Table XVII), which may 

potentiate gene silencing. Additionally, we observed downregulation of histones h1f0 and 
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h2afy2, components of the nucleosomes, at 3 and 6 hpa, respectively, that can also regulate 

the general state of chromatin compression leading to modification of chromatin landscape 

(Zhang et al. 2016). In accordance with our results, a few studies have demonstrated that 

histone modifying enzymes are important for fin regeneration (Stewart et al. 2009; Pfefferli 

et al. 2014). Overall, we observed a dynamic transcriptional response during the early hours 

of regeneration that peaked at a specific time-window between 3-6 hpa. We observed a 

response of chromatin modifying enzymes and nucleosome components (histones), both 

responsible for the packaging state of the DNA and, consequently, chromatin reorganization 

and availability to transcription factors, which may regulate gene expression and, thus, cell 

identity (Cavalli 2006; Onder et al. 2012; Harikumar and Meshorer 2015; Zhang et al. 2016). 

Therefore, it is possible that chromatin remodelling may play a substantial role during 

osteoblast dedifferentiation.  

Taken together, data from our genome-wide gene expression profiling of osteoblast during 

dedifferentiation reflects major phenotypic changes observed in osteoblast that allowed to 

further characterize the process. Importantly, it also revealed potential new regulators of the 

dedifferentiation program, which included metabolic changes, signal transduction pathways 

and chromatin remodelling events. 

 

Table XVII: Genes involved in the regulation of chromatin remodelling, differentially expressed at 3, 6 
and 9 hpa in comparison to uncut controls. Upregulated genes are shown in red and downregulated 
genes in green. 
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4 THE ROLE OF METABOLIC REPROGRAMMING DURING DEDIFFERENTIATION 

AFTER CAUDAL FIN AMPUTATION – FOCUS ON BONE REGENERATION 

Since our microarray data suggested an important role of cellular metabolism in osteoblasts 

at early stages of caudal fin regeneration, we decided to further examine a possible correlation 

between metabolism and cell dedifferentiation. Given the role of metabolism in regulating 

cell reprogramming, we hypothesize that osteoblasts undergo a glycolytic shift preceding 

dedifferentiation. This metabolic adaptation could be required to reprogram osteoblasts to a 

less differentiated state so that they can proliferate and potentiate bone regeneration. 

Despite the considerable amount of information on the role of metabolism in health and 

disease, the link between metabolic adaptation, regeneration and repair remains poorly 

understood. 

4.1 Metabolic reprogramming as a general regeneration feature 

Given the dramatic increase in the expression of glycolytic enzymes and complexes from the 

electron transport chain, we primarily set out to evaluate and validate through q-PCR analyses 

the expression of some of these components. We perform this analysis using the whole 

regenerating tissue (corresponding to the first bony-ray segment below the amputation) to 

evaluate if this changes in gene expression were specific to osteoblast during dedifferentiation 

or if they were also observed as a general behaviour during regeneration. (Figure 24). For this 

analysis, we compare the 6 hpa to the uncut condition, since it is the first time-point after 

amputation when both glycolysis and OxPhos enzymes are upregulated during osteoblast 

dedifferentiation. 

We observed that most glycolytic enzymes, including pfkpa, aldoaa, gapdhs and pgam1A, are 

upregulated (Figure 24) in the whole regenerating caudal fin. The lactate dehydrogenase a 

(ldha) expression was also significantly upregulated, inclusively at higher levels when 

compared to our microarray data (Figure 24). This enzyme is crucial for the glycolic switch, 

since can it convert the pyruvate generated through glycolysis into lactate, reducing the 

pyruvate oxidation in mitochondria, shifting the source of energy from OxPhos to glycolysis. 

Some components of the electron transport chain, such as dlat, sdhdb and cox6c (Figure 24), 

were also upregulated, however, this upregulation was not as dramatic as observed in the 

microarray data (Table X and Table XI) or as the increase in the expression of the glycolytic 

pathway genes. Increasing the number of biological replicates would be important to 

complete this analysis and give a more robust expression profile. Nevertheless, this indicates 

that similarly to osteoblasts undergoing dedifferentiation during regeneration, the whole 

regenerating tissue responds to amputation by increasing the glycolytic influx and possibly 

Oxphos. This suggests that the metabolic adaptation seen in osteoblasts may be part of a 

general program to induce caudal fin regeneration. 
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Figure 24: Evidence for metabolic adaptation in whole regenerating caudal fins. Quantitative q-PCR showing 
the expression of several glycolytic enzymes and components of OxPhos: pfkpa, aldoaa, gapdhs, pgam1A 
pgam1B and eno1a for glycolytic pathway; ldha for lactate production; dlat, sdhdb, mdh2, ndufv2 and cox6 for 
the electron transport chain; and mtfr1 that is required for mitochondria fission. Graph shows the relative gene 
expression for each transcript at 6 hpa in relation to uncut/homeostasis situation caudal fins; transcript levels 
are plotted on a log2 scale with uncut control samples averaged to log20 = 1; statistical analysis displayed on the 
graph corresponds to Unpaired t test with Welch’s correction (6 biological replicates are shown, and each 
replicate corresponds to a pool of 4-5 fins). Hpa: hours post-amputation; *: p < 0.05, **: p < 0.01. 

4.2 Inhibition of glycolysis impairs osteoblast formation 

Both the microarray and the q-PCR data indicate that the glycolytic enzymes are upregulated 

after caudal fin amputation, in the time-window of osteoblast dedifferentiation. Thus, we 

hypothesize that a glycolytic switch is required for osteoblast dedifferentiation and bone 

regeneration. To test our hypothesis, we used a specific inhibitor of the glycolytic influx, the 

small molecule 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), which partially inhibits 

the glycolytic activator Phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (Pfkfb3) 

(Schoors et al. 2014). 3PO was administered from 0 to 48 hpa, corresponding to the blastema 

formation phase, which is a direct consequence of the dedifferentiation process. During this 

period, we can easily monitor and evaluate if the impairment of glycolysis leads to major 

defects or phenotypes during bone regeneration (Figure 25A). We noticed that animals 

treated with the glycolytic inhibitor 3PO exhibited a general impairment of the regenerative 

process at 48 hpa, seen by the reduced regenerated area when compared to vehicle-treated 

controls (Figure 25B and 6D). The 3PO-treated animals also showed a decrease in expression 

of osteoblast markers, such as osx (immature/intermediate osteoblast marker), visualised 

with the transgenic line Tg(osterix:mCherry-NTRo)pd46 (referred to as osx:mCherry, Figure 25B) 

and E), and runx2 (early/osteoprogenitor marker), visualised with the transgenic line 

Tg(Has.RUNX2:EGFP)zf259 (referred to as runx2:EGFP; Figure 25C and F) ), when compared to 

control animals at 48 hpa. This was measured by the percentage of regenerated area occupied 
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by each of the markers mentioned above. We also observed that, when we stopped 

administering 3PO (at 48 hpa), caudal fins recovered and were similar to control fins at 120 

hpa, both in terms of regenerate size and bone formation (Figure 25B, 120 hpa). Nevertheless, 

bone patterning defects were often noticed (in approximately 50% of the fins) at this time-

point (Figure 25B, 120 hpa, arrow). 
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Figure 25: Inhibition of glycolysis impairs fin regeneration and emergence of bone markers. (A) Schematic 
representation of the strategy used to manipulate the glycolytic influx during the blastema formation phase of 
the regenerative process. The glycolytic inhibitor 3PO is administered daily until 48 hpa, after which caudal fins 
are imaged and either collected for tissue processing or left to regenerate until 120 hpa. (B) Representative 
images of osx:mCherry (immature/intermediate osteoblast marker, red) transgenic caudal fins treated with the 
vehicle DMSO (control) or with 15 µM 3PO and imaged at 48 hpa at 120 hpa. (C) Caudal fin representative images 
of runx2:EGFP (preosteoblast /early osteoblast marker, green) transgenic fins treated with the vehicle DMSO 
(control) or with 15 µM 3PO and imaged at 48 hpa. (D) Quantification of the total regenerate area at the end of 
the blastema formation phase, 48 hpa; statistical analysis displayed on the graph corresponds to Mann-Whitney 
test with Mean ± SD (n= 19 fish for controls; n= 12 fish for 3PO treated animals). (E) Quantification of the 
percentage of osx:mCherry fluorescence normalized to the total regenerate area at 48 hpa; statistical analysis 
displayed on the graph corresponds to Mann-Whitney test with Mean ± SD (n= 12 fish for the control condition; 
n= 12 fish for 3PO treated condition). (F) Quantification of the percentage of runx2:EGFP fluorescence normalized 
to the total regenerate area at 48 hpa; statistical analysis displayed on graph corresponds to Mann-Whitney test 
with Mean ± SD (n= 7 fish for controls; n= 6 fish for 3PO treated condition). hpa: hours post-amputation; arrow 
heads define the amputation plane; arrow indicates bone patterning defect; scale bars represent 1mm; * p< 
0.05, **p< 0.01, ***p< 0.001. 

Following this, we characterized in more detail the observed phenotype and how different 

osteoblast populations behave in this context (Figure 26A). It is known that normal 

regenerating fins present different osteoblast subtypes according to their maturation state. 

Within the blastema at 48 hpa, bone maturation occurs in a hierarchical organization of 

overlapping proximal-distal compartments: the more distal blastema includes a self-renewing 

Runx2+Osx- progenitor subtype (example in Figure 26B control region 1), while the proximal 

blastema region, next to the amputation plane, is populated by a proliferative Runx2+Osx+ 

osteoblast subtype that is already committed to differentiate (example in Figure 26B control 

region 2) (Brown et al. 2009; Stewart et al. 2014). As expected, in control osx:mCherry 

cryosections co-labelled with a Runx2 antibody, we observed this hierarchical organization, 

with both populations having approximately the same number of cells (Figure 26B, C and D). 

In contrast, 3PO treated animals showed an accentuated decrease in the numbers of 

proliferating Runx2+Osx+ immature osteoblasts, while the osteoprogenitor Runx2+Osx- 

subtype remains unchanged within the blastema (Figure 26B and C). Additionally, the 

remaining Runx2+Osx+ subtype appears to be more dispersed in the blastema instead of 

occupying a more proximal position near the stump (Figure 26B). As a consequence of the 

decrease in the number of the Runx2+Osx+ subtype, the ratio between the two populations, 

which was close to 1 in controls, is altered in the 3PO treated animals (Figure 26D). Overall, 

these data show that glycolysis is required during tissue regeneration, in particular for bone 

repair. 
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Figure 26: Inhibition of glycolysis impairs the formation of the Runx2+Osx+ osteoblast subtype. (A) Schematic 
representation of the strategy used to manipulate the glycolytic influx during the blastema formation phase of 
the regenerative process and address new osteoblast subpopulation formation. (B) Representative images of 48 
hpa osx:mCherry (immature/intermediate osteoblast marker, green) caudal fins cryosectioned longitudinally and 
immunostained for Runx2 (preosteoblast/osteoprogenitor marker, magenta) and counterstained with DAPI 
(nuclei, blue) in specimens treated with vehicle DMSO (control) or with 15 µM 3PO. (C) Quantification of 
Runx2+Osx- and Runx2+Osx+ osteoblasts subtypes on comparable 48 hpa caudal fin cryosections; bars on graph 
correspond to total number of each osteoblast subtype normalized to total fin area and statistical analysis 
corresponds to Mann-Whitney test with Mean ± SD displayed (n= 18 bony-rays compiled from 4 fish for the 
vehicle DMSO (control) condition; n= 19 bony-rays compiled from 5 fish for the 3PO treated condition). (D) 
Quantification of the ratio between the Runx2+Osx- osteoblast subtype in relation to the Runx2+Osx+ osteoblast 
subtypes at 48 hpa; bars on graph correspond to the average ratios between osteoblasts subtypes, giving one 
value per animal; statistical analysis corresponds to Mann-Whitney test with Mean ± SD displayed (n= 4 fish for 
the vehicle DMSO (control) condition; n= 5 fish for the 3PO treated condition). hpa: hours post-amputation; 
dashed lines define the amputation plane; scale bars represent 200 µm and 50 µm in magnified panels; * p< 0.05, 
**** p< 0.05, ns: non-significant. 

4.3 Glycolysis regulates cell proliferation and wound epidermis assembly 

Thereafter we decided to deepen our understanding on the reason why this phenotype was 

occurring. We can propose three hypotheses to explain the phenotypes induced by 3PO 

treatment: first, proliferation could be reduced leading to a decrease in the Runx2+Osx+ 

subtype, the signalling pathways that regulate osteoblast differentiation could be impaired or 

Runx2+Osx+ could be undergoing cell death. 

We started by analysing the ability of the cells to re-enter cell cycle upon amputation, which 

is often related to the dedifferentiation process (Cai et al. 2007; Maden 2013; Eguizabal et al. 

2013). Since we have previously observed a considerable number of PCNA+ cells at 24 hpa 

(Figure 18D), we decided to inhibit the glycolytic influx in the first 24 hpa in osc:EGFP 

transgenic animals, that specifically label mature osteoblasts (Figure 27A). We observed that, 

in contrast to the control animals, 3PO-treated animals have a clear decrease in PCNA (late G1 

marker) staining, suggesting that indeed the partial inhibition of glycolysis can lead to the 

impairment of cell proliferation. In fact, this decrease in proliferation markers was observed 

not only in osc-positive osteoblasts but also in epidermal and mesenchymal cells, the other 

major cell types that compose the caudal fin (Figure 27B and C). This is in accordance with our 

hypothesis that the glycolytic switch may be important as a general mechanism to promote 

regeneration. In the future, other proliferation markers will have to be used and other time-

points explored to further confirm and characterize this result. The other two hypotheses still 

need to be tested. Both cell death and correct expression of the pathways known to regulate 

the differentiating population could influence the number of Runx2+Osx+ osteoblast subtype 

in the glycolysis inhibition context. Nonetheless, this indicates that reduced cell proliferation 

could be one of the reasons for defective Runx2+Osx+ osteoblast subtype formation. 
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Figure 27: Inhibition of glycolytic influx impairs cell cycle re-entry during blastema formation. (A) Schematic 
representation of the glycolysis inhibition protocol using 3PO to address cell cycle re-entry during blastema 
formation. 3PO is administered at 0 hpa and caudal fins collected at 24 hpa and processed for cryosectioning. (B) 
Representative images of immunostaining for PCNA (late G1 proliferating cells, red) in osc:EGFP (osteoblasts, 
green) caudal fin longitudinal cryosections counterstained with DAPI (nuclei, blue) at 24 hpa, in controls and 3PO 
treated animals. (C) Quantification of PCNA+ cells in comparable fin cryosections at 24 hpa; bars correspond to 
total number of PCNA+ cells in the different major caudal fin compartments and cell types (epidermis, 
mesenchyme and osteoblasts) normalized to total tissue area, in vehicle (controls, n= 10 bony-rays compiled 
from 3 different fish) and 3PO treated animals (n= 15 bony-rays compiled from 4 different fish); statistical analysis 
displayed on graph corresponds to Mann-Whitney test with Mean ± SD. hpa: hours post-amputation; dashed 
lines define the amputation plane; scale bars represent 50 µm; * p< 0.05, **p< 0.01, ****p< 0.0001. 

Another interesting observation during glycolytic inhibition was that the regenerated 

epidermis or wound epidermis showed major defects in terms of organization (Figure 28A). 

The WE is a well-organized stratified epithelium with a hierarchical organization composed of: 

a superficial layer, several suprabasal keratinocyte layers and a pool of keratinocyte stem cells 

in the basal epidermal layer (BEL). The presence of this specialised regeneration epithelium is 

critical for its success (Le Guellec et al. 2004; Chen et al. 2016a). To address whether wound 

epidermis defects could be involved in the regeneration phenotypes observed in 3PO treated 

animals (Figure 25, Figure 26 and Figure 27), we analysed in more detail the organization of 

the wound epidermis at 48 hpa, after glycolysis inhibition during blastema formation. We 

noticed that, in contrast to osx:mCherry controls, the animals treated with 3PO had a thicker 

wound epidermis with more differentiated keratinocyte layers (Figure 28A, double 

arrowheads), observed through immunofluorescence against p63 (an epidermal marker). The 

percentage of each cell type that composes regenerating fins differs between controls and 

treated animals. Whereas controls contain roughly the same percentage of epidermal and 

mesenchymal cells (46% and 40%, respectively) and 14% of osteoblasts, 3PO-treated animals 

showed an increase in the percentage of the epidermal population to 61% and a decrease in 

both the mesenchymal and osteoblast populations to 29% and 10%, respectively (Figure 28A 

and C). Consequently, the ratios between the epidermal cells and other cell types were also 

disturbed during regeneration (Figure 28D and E). An important characteristic of the wound 

epidermis is the formation of the BEL. The BEL is characterized by a high secretory activity, 

serving as a potent signalling centre, directing growth and patterning signals, during 

regeneration (Poss et al. 2000a, 2003; Bouzaffour et al. 2009; Chen et al. 2015, 2016a; 

Thorimbert et al. 2015; Shibata et al. 2016). This basal layer expresses a specialised component 

of the ECM, laminin beta 1a (lamb1a), during regeneration (Chen et al. 2015). Laminin function 

is required, not only to establish polarity in basal epithelial cells and regulate the localization 

of receptors for signalling but also to promote alignment and hierarchical organization of 

regenerating osteoblasts (Armstrong et al. 2017). Given this, we analysed the dynamics and 

localization of Laminin in regenerating fin cryosections as a readout of effective wound 

epidermis formation. Interestingly, while Laminin was strongly localized to the extracellular 

basement membrane of the BEL in control fins along the regenerated epidermis, in 3PO-

treated animals Laminin staining was decreased, mislocalized and discontinuous along the 
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blastema (Figure 28B, arrows). This led us to conclude that 3PO administration compromised 

significantly the WE formation and organisation, which might explain, at least partially, the 

general impairment in caudal fin growth and specification of osteoblast subtypes during 

regeneration. 

Taken together these results point to an important role of metabolism during bone 

regeneration either autonomously, by impairing osteoblast cell cycle re-entry, thereby 

affecting their dedifferentiation process, and/or non-autonomously by inhibiting wound 

epidermis formation. Impairment of both processes can lead to the major defects observed in 

bone repair during caudal fin regeneration. 
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Figure 28: Inhibition of glycolysis leads to major wound epidermis defects during regeneration. (A) 
Representative images of immunostaining for p63 (epidermal marker, green) and ZNS5 (pan osteoblast marker, 
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red) in osx:Cherry (osteoblasts, orange) caudal fin longitudinal cryosections counterstained with DAPI (nuclei, 
blue) at 48 hpa. The wound epidermis is thicker in 3PO treated animals (double arrowheads). (B) Representative 
images of immunostaining for laminin (basal lamina/ BEL marker, green) and ZNS5 (pan osteoblast marker, red) 
in osx:mCherry (osteoblasts, orange) caudal fin longitudinal cryosections counterstained with DAPI (nuclei, blue) 
at 48 hpa. While in control fins laminin localizes continuously below the BEL, in 3PO treated animals laminin has 
several discontinuities, leading to a misshapen wound epidermis. (C) Quantification of the percentage of 
different cells types that compose the regenerating fin, in comparable caudal fin cryosections; bars correspond 
to percentage of different major cell types in the fin (epidermis, mesenchyme and osteoblasts) calculated 
through the area occupied by each cell type in relation to the total regenerated area in vehicle DMSO (controls,  
n= 16 bony-rays compiled from 4 different animals) and 3PO treated animals (n= 15 bony-rays compiled from 5 
different animals). (D) Quantification of the ratio between the area occupied by the mesenchymal compartment 
in relation to the area occupied by the epidermal cells in the regenerate; bars on graph correspond to the average 
area ratios, giving one value per animal (n= 4 fish for the vehicle DMSO (control) condition; n= 5 fish for the 3PO 
treated condition). (E) Quantification of the ratio between area occupied by ZNS5+ osteoblasts in relation to the 
area occupied by the epidermal cells in the regenerate; bars on graph correspond to the average area ratios, 
giving one value per animal (n= 4 fish for the vehicle DMSO (control) condition; n= 5 fish for the 3PO treated 
condition). Statistical analysis displayed on graphs corresponds to Mann-Whitney test with Mean ± SD hpa: hours 
post-amputation; We: wound epidermis; dashed lines define the amputation plane; double arrowheads 
correspond to the width of the wound epidermis; scale bars represent 200 µm; * p< 0.05, ***p< 0.001, # p< 
0.0001. 

5 DECIPHERING THE POTENTIAL ROLE OF THE HIPPO/YAP SIGNALLING PATHWAY 

DURING OSTEOBLAST DEDIFFERENTIATION 

After our transcriptomic wide approach, we performed a target gene approach. With this 

strategy, we sought to characterize the signalling pathways that regulate cell 

dedifferentiation. The Hippo/YAP signalling pathway represents a potential candidate for such 

a role, as it has been involved in regulating cell fate decisions and cell dedifferentiation in 

other contexts (Nicolay et al. 2010; Zhao 2014; de Sousa et al. 2018). Our lab has previously 

shown that this pathway regulates cell proliferation during the caudal fin regenerative 

outgrowth phase (Mateus et al, 2015). However, the contribution of the Hippo pathway for 

osteoblast dedifferentiation has been largely unaddressed. Therefore, we explored a possible 

involvement of the Hippo effector, Yap, during this process. 

5.1 The Hippo pathway effector Yap translocates to the nucleus of mature osteoblasts 

during dedifferentiation 

We started by investigating Yap activation or inactivation in specific osteoblast populations 

after amputation. Since this pathway is regulated at the protein level we looked at the 

intracellular dynamics of this transcriptional co-activator upon amputation. When Yap 

cytoplasmic, is considered to be in an inactive form that culminates in degradation. In contrast, 

Yap nuclear translocation is a read out of is activation and regulation of target gene 

transcription (Irvine 2012; Piccolo et al. 2014). Thus, we observed Yap subcellular location in 

mature osteoblasts and in osteoprogenitors by performing immunofluorescence studies using 

a Yap antibody on osc:EGFP and runx2:EGFP transgenic animals, respectively.  
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In uncut osc:EGFP animals, Yap expression looks fuzzy and weak in the whole fin, including in 

osteoblasts (Figure 29A-A’’’’). As early as 3 hpa, at the beginning of dedifferentiation, Yap is 

translocated from the cytoplasm to the nucleus (suggesting its activation) in some 

mesenchymal cells (Figure 29B-B’’’’, arrowheads) and it becomes stronger in some mature 

osteoblasts attached to the bone surface (Figure 29B-B’’’’, arrows). At 6 hpa, almost all 

mesenchymal cells (Figure 29C-C’’’’, arrowheads) and some mature osteoblasts have 

accumulated Yap in the nucleus (Figure 29C-C’’’’, arrows). This translocation of Yap to the 

nucleus in mesenchymal cells and in mature osteoblasts persisted until later time-points (24 

hpa) (Figure 29D-D’’’’). This suggests that Yap is active in several cell types in the caudal fin 

during the dedifferentiation time-window. Thus, indicating Yap as a possible candidate to 

regulate the dedifferentiation process. 
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Figure 29: The Hippo pathway effector Yap translocates to the nucleus of osteoblast and inner mesenchyme 
during the dedifferentiation time-window. Representative images of osc:EGFP (mature osteoblasts, green) 
longitudinal caudal fin cryosections immunostained for Yap (red) and counterstained with DAPI (nuclei, blue). (A-
A’’’’) In uncut fins, Yap has a fuzzy localization either in the cytoplasm and/or in the nucleus of osteoblast and in 
the mesenchymal compartment. (B-B’’’’) At 3 hpa, Yap translocates to the nucleus in the mesenchymal 
compartment and becomes more intensely accumulated in osteoblasts. (C-C’’’’) At 6 hpa, during the 
dedifferentiation time-window, Yap is localized in the nucleus, and therefore active, in mesenchymal cells and in 
some osc+ osteoblasts. (D-D’’’’) Yap remains nuclear in mesenchymal cells and in some osc+ osteoblasts from 6 
until 24 hpa. Arrow heads indicate examples of mesenchymal cells with nuclear Yap and arrows indicate 
examples of osc+ osteoblasts with nuclear Yap. hpa: hours post-amputation; dashed lines define the amputation 
plane; dashed boxes represent magnified panels; scale bars represent 50 µm in A, B C and D and 20 µm in 
magnified panels (A’-D’’’’). 

Next, we investigated the subcellular localization of YAP in osteoprogenitors (runx2:EGFP 

positive cells), that are thought to derive partially from mature osteoblasts. We observed that, 
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at 24 hpa, runx2 was highly upregulated in comparison to control uncut fins (Figure 30A-A’’, 

B-B’’). Several of this emerging Runx2+ cells had nuclear localized Yap (Figure 30Bi-Biv, arrows), 

suggesting that Yap is active and possibly regulating osteoprogenitor formation, which is an 

important feature of the dedifferentiation process. 

 

Figure 30: The Hippo pathway effector Yap is nuclear localized in osteoprogenitors during blastema formation. 
Representative images of runx2:EGFP (osteoprogenitors, green) longitudinal caudal fin cryosections 
immunostained for Yap (red) and counterstained with DAPI (nuclei, blue). (A-A’’) In a non-regenerative condition 
(uncut) no osteoprogenitors are observed in the runx2:EGFP transgenic animals and Yap has a fuzzy localization, 
being all over the cells that compose the inner mesenchymal compartment. (B-Biv) At 24 hpa, osteoprogenitors 
derived from the dedifferentiation of mature osteoblasts can be seen with the runx2:EGFP transgenic line. At this 
time-point, some runx2+ progenitors can be seen with Yap accumulation in the nucleus. Arrows indicate examples 
of runx2+ osteoblasts with nuclear Yap. hpa: hours post-amputation; dashed lines define the amputation plane; 
dashed boxes represent magnified panels; scale bars represent 50 µm in A-A’’ and in B-B’’ and 20 µm in magnified 
panels (Bi-Biv). 

5.2 Genetic manipulation of the Hippo effector Yap culminates in severe osteoblast 

dedifferentiation defects  

To evaluate the requirement of the transcription co-activator Yap during osteoblast 

dedifferentiation in vivo, we performed functional assays and analysed dedifferentiation 

features. For such purpose, we used a genetic tool, namely a heat-shock (HS) inducible 

transgenic line expressing a Dominant Negative (DN) of Yap, referred to has DN-Yap 
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(Tg(hsp70l:RFP-dnyap1)zf621) (Figure 31A) (Mateus et al. 2015). In this line, the serine residues, 

which are phosphorylated by Lats1/2 and retain Yap in the cytoplasm, as well as the 

transcription activation domain are mutated. This means that upon HS, DN-Yap is always able 

to translocate to the nucleus, competing with the endogenous Yap for Tead binding sites. 

However, due to a mutation in the activation domain, it does not activate target gene 

expression. We gave a single HS to these transgenic fish just prior to amputation, to ensure 

that dedifferentiation was affected, and assessed whether blocking the activity of Yap would 

have an effect in osteoblast cell cycle re-entry and motility, and in osteoprogenitor formation 

at 24 hpa. At this time-point, when the blastema is still being formed, the DN-Yap construct is 

still expressed (data not shown) and regeneration defects should be more obvious to detect 

(Figure 31A). In all assays, we compared DN-Yap animals subjected to HS, defined as DN-Yap+ 

HS+ to the corresponding heat-shocked sibling controls, DN-Yap- HS+. 

We started by analysing the acquisition of migratory performance by osteoblasts that reside 

in the first segment below amputation, from 0 to 24 hpa in DN-Yap- HS+ and in DN-Yap+ HS+ 

animals. For that, we combined our DN-Yap transgenic line with the mature osteoblast 

reporter line, osc:EGFP. Contrasting to heat-shocked sibling controls (osc:EGFP; DN-Yap- HS+), 

in which osteoblasts have reached the amputation plane around 24 hpa (Figure 31B), in 

animals expressing the DN-Yap construct (osc:EGFP; DN-Yap+ HS+), osteoblasts showed 

defective migration, with fewer cells reaching the amputation plane (Figure 31B and C). 

Another process, which is a consequence of osteoblast dedifferentiation is the emergence of 

osteoprogenitors (Runx2+) that are essential in the regenerative outgrowth phase. To 

investigate the requirement of Yap for proper osteoprogenitor formation, we used the DN-

Yap transgenics and performed immunostainings for Runx2 (osteoprogenitor marker) in 

caudal fin cryosections. When we inhibited Yap function we noticed a decrease in the number 

of Runx2+ cells which, in sibling controls, are normally accumulated near the amputation at 24 

hpa (Figure 31D and E). Alternatively, we tried to confirm the role of Yap in osteoprogenitor 

formation by over-activating the pathway. For this, we used a genetic tool expressing a 

Constitutively Active (CA) form of Yap, referred as CA-Yap (Tg(hsp70l:RFP:cayap1)zf622) 

(Mateus et al. 2015) through heat-shock (Figure 31A). We noticed that, in contrast to the DN-

YAP animals, animals expressing CA-Yap (CA-Yap+ HS+) had an increased number of Runx2+ 

cells when compared to sibling controls (CA-Yap- HS+) (Figure 31D and E). 
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Figure 31: Genetic manipulation of the Hippo pathway effector Yap leads to impairment of several 
dedifferentiation features in osteoblasts. (A) Schematic representation of the transgenic lines used to address 
Yap function during regeneration and the corresponding manipulation protocol used. We used heat-shock (HS) 
induced transgenic lines that express either a Dominant Negative (DN-Yap+) or a Constitutively Active (CA-Yap+) 
form of Yap upon temperature induction. HS are given prior to amputation and caudal fins are either imaged or 
collected for tissue processing. (B) Representative live imaging images of double transgenic specimens osc:EGFP; 
DN-Yap+ the and corresponding sibling controls, osc:EGFP; DN-Yap-, used to follow mature osteoblasts during 
regeneration and to manipulate Yap function at the same time. Animals were heat-shocked and imaged at 0 h 
and 24 h to quantify the ability of osteoblast to migrate upon expressing the DN-Yap construct. (C) Quantification 
of the relative osteoblast displacement from 0-24hpa in osc:EGFP; DN-Yap+ and corresponding controls, 
osc:EGFP; DN-Yap-, both heat-shocked at 0 hpa (HS+); statistical analysis displayed on graph corresponds to 
Mann-Whitney test with Mean ± SD (n= 18 bony-rays compiled from 4 different fish in osc:EGFP; DN-Yap- HS+, 
n=20 bony-rays compiled from 5 different fish in osc:EGFP; DN-Yap+ HS+). (D) Representative 
immunofluorescence images of longitudinal cryosections of DN-Yap+, CA-Yap+ and the corresponding sibling 
controls. These animals were subjected to HS just before amputation and caudal fins immunostained for Runx2 
(preosteoblast /osteoprogenitor marker, magenta) and counterstained for DAPI (nuclei, blue) at 24 hpa. (E) 
Quantification of osteoprogenitors, Runx2+ cells, formed after amputation upon Yap manipulation in comparable 
caudal fin cryosections normalized to total fin area; statistical analysis displayed on graph corresponds to Mann-
Whitney test with Mean ± SD (n= 13 bony-rays compiled from 4 different fish in DN-Yap- HS+ siblings and in DN-
Yap+ HS+ contexts, n=16 bony-rays compiled from 5 different fish in CA-Yap- HS+ siblings and n=23 bony-rays 
compiled from 6 different fish in CA-Yap+ HS+ context). hpa: hours post-amputation; dashed lines define the 
amputation plane; scale bars represent 100 µm in B and 50 µm in D; * p< 0.05, **p< 0.01, ****p< 0.0001. 

Lastly, we addressed the ability of osteoblasts to initiate proliferation. We performed PCNA 

(late G1 marker) immunofluorescence assays in transgenic DN-Yap+ animals and in the 

corresponding DN-Yap- controls, both subjected to heat-shock just before amputation. In DN-

Yap- HS+ sibling controls the great majority of the different cell types that compose the caudal 

fin (epidermis, mesenchyme and osteoblasts) were PCNA positive (Figure 32A and B), 

suggesting that they have entered the cell cycle. Conversely, the DN-Yap+ HS+ fish showed an 

accentuated decrease in the number of PCNA-positive cells in the osteoblast and 

mesenchymal populations, but not in the epidermal compartment (Figure 32A and B). This 

was further confirmed through a flow cytometry cell cycle profile, which analysed in detail the 

total percentage of cells in G1, S and G2/M phases at 24 hpa in DN-Yap+ HS+ fish and sibling 

controls. In accordance, the cell cycle profile showed that DN-Yap+ HS+ animals have fewer 

cells in S phase and more cells in G1 than DN-Yap- HS+ controls (Figure 32C). 

Taken together these data point to an important role of the Hippo/Yap signalling pathway in 

regulating osteoblast dedifferentiation. Here we show that the Hippo pathway effector Yap 

regulates some of the most important dedifferentiation features, such as osteoblast migration 

and cell cycle re-entry, thereby ensuring correct osteoprogenitor formation. 
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Figure 32: Genetic manipulation of the Hippo pathway effector Yap leads to impairment of cell cycle re-entry. 
(A) Representative immunofluorescence images of longitudinal cryosections of DN-Yap+ and corresponding 
sibling control fish. These animals were subjected to heat-shock just before amputation, caudal fins collected at 
24 hpa and immunostained for PCNA (late G1 proliferation marker, magenta), ZNS5 (a pan osteoblast marker, 
green) and counterstained for DAPI (nuclei, blue). (B) Quantification of PCNA+ cells in comparable fin cryosections 
at 24 hpa; bars correspond to total number of PCNA+ cells in the different major caudal fin compartments and 
cell types (epidermis, mesenchyme and osteoblasts) normalized to total tissue area in DN-Yap- HS+ (sibling 
controls, n= 13 bony-rays compiled from 4 different fish) and in DN-Yap+ HS+ animals (n= 12 bony-rays compiled 
from 4 different fish); statistical analysis displayed on graph corresponds to Mann-Whitney test with Mean ± SD. 
(C) Flow cytometry analysis of the cell cycle profile of a pool of DN-Yap- HS+ (sibling controls) and of DN-Yap+ HS+ 
caudal fins at 24 hpa (subjected to heat-shock before amputation); in the graph the percentage of the total 
number of cells in G1, S and G2/M phases of the cell cycle is shown for each condition. hpa: hours post-
amputation; dashed lines define the amputation plane; scale bars represent 50 µm; **p< 0.01, ***p< 0.001; ns: 
non-significant. 
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“Begin at the beginning,” the King said, very gravely, 

“and go on till you come to the end: then stop” 

Lewis Carroll, Alice's Adventures in Wonderland & Through the Looking-Glass 
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1 HIPPO/YAP SIGNALLING REGULATES BONE FORMATION DURING OUTGROWTH 

BY CONTROLLING OSTEOBLAST DIFFERENTIATION 

Bone is one of the most abundant tissues that compose the zebrafish caudal fin, thus it is 

essential that, after damage, the fin skeletal tissue is fully recovered. After caudal fin 

amputation, bone regenerates through a very complex process that requires several 

regulatory mechanisms. Primarily, dedifferentiation of mature osteoblasts provides an 

osteoprogenitor source (Runx2+ cells) that expands during blastema formation. This first 

process was already addressed in the previous chapter. Afterwards, during regenerative 

outgrowth, which starts after blastema formation (around 48 hpa), two distinct processes take 

place: maintenance and expansion of the progenitor pool (Runx2+ cells) until regeneration is 

completed; and sequential and controlled redifferentiation of the progenitors into 

Runx2+Osx+, which have proliferative capacity. The latter population will further differentiate 

into fully mature osteoblasts to replace the lost skeletal tissue (Brown et al. 2009; Stewart et 

al. 2014). These events are intrinsically correlated with the different blastema compartments: 

the distal blastema (DB) region is populated by the progenitor pool (Runx2+); the proximal 

blastema (PB) is composed of the already differentiating but proliferative Runx2+Osx+ 

osteoblast subtype; fully mature osteoblasts, capable of secreting extracellular bone matrix 

reside in the patterning zone (PZ) closer to the amputation region (Figure 7B and Figure 11A 

Chapter I) (Nechiporuk and Keating 2002; Brown et al. 2009; Stewart et al. 2014; Wehner and 

Weidinger 2015). Progenitor maintenance and expansion and controlled redifferentiation are 

regulated by antagonist activities and special segregation of specific signalling networks, as 

described in the introduction Chapter (Stewart et al. 2014; Wehner et al. 2014; Blum and 

Begemann 2015b). 

1.1 Yap signalling downregulation leads to major defects in bone formation during 

caudal fin regeneration 

Although our understanding of the regenerative outgrowth process has increased significantly 

in the last years, the precise mechanisms by which different signalling pathways interact to 

ensure correct bone formation are still unknown and potential regulators are missing from 

this context. Recently, the Hippo/Yap signalling pathway has been implicated in cell fate 

commitment of mesenchymal stem cells into the osteoblast lineage and directing proper 

osteoblast differentiation (Hong et al. 2005; Dupont et al. 2011a; Hiemer and Varelas 2013; 

Piccolo et al. 2014; Varelas 2014; Pan et al. 2018; Xiong et al. 2018). The role of this pathway 

in mediating osteoblast commitment relies mostly on cell culture and mammalian studies. 

However, this regulation was found to be highly context dependent and, in some cases, lead 

to incoherent or contradictory results. Therefore, other animal models with advantageous 

genetic tools would aid to clarify the role of this pathway in osteoblast lineage specification, 

particularly in a regenerative context. In the preceding Chapter III, we have demonstrated a 
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potential role for the Hippo/Yap signalling pathway in controlling osteoblast dedifferentiation 

during regeneration. In this Chapter, we evaluate whether the Hippo/Yap pathway is playing 

a part on the complex network that governs osteoblast differentiation during the regenerative 

outgrowth. 

To address this question, we took advantage of the transgenic line expressing a dominant 

negative form of Yap, DN-Yap, upon heat-shock (Mateus et al. 2015), used in the previous 

Chapter. We performed caudal fin amputations to DN-Yap+ and DN-Yap- siblings and allowed 

them to regenerate until 48 hpa, when the blastema is fully formed, making sure not to 

interfere with the dedifferentiation process and with progenitor cell assembly. From 48 hpa 

until 96 hpa we heat-shocked the fish daily and either imaged and collected the fins at 120 

hpa (5 days post-amputation (dpa)) for cryosectioning or for q-PCR experiments (Figure 33A). 

In contrast to DN-Yap- HS+ control animals, the DN-Yap+ HS+ animals had a significant 

impairment in the formation of new bone, as visualised by the decrease in calcein staining 

(Figure 33B and C), which labels calcified structures, when normalized to the total regenerated 

fin area. In addition, we observed that the DN-Yap+ HS+ fish formed thinner (Figure 33B and 

D) bony-rays, which presented some fractures (data not shown). This indicates that, indeed, 

Yap seems to play an important role in mediating bone formation specifically during the 

regenerative outgrowth phase. 

1.2 Diminished Yap activity correlates with impairment in the formation of the 

differentiating osteoblast subtype 

To understand the mechanism by which Yap controls bone repair during fin regeneration, we 

characterized the bone formation phenotype more thoroughly. Previous data from our lab has 

demonstrated that Yap intracellular localization in the mesenchymal compartment varies 

according to blastema compartmentalization and cell density: Yap is more cytoplasmic in distal 

regions, where cells are more compacted, and progressively becomes nuclear towards 

proximal regions, where cells are more spread. Importantly, Yap was shown to be required for 

mesenchymal proliferation and necessary for regeneration to proceed (Mateus et al. 2015).  

To understand Yap requirement during bone formation, we evaluated how the different 

osteoblast subtypes, namely the progenitor pool (Runx2+Osx-) and the differentiating 

osteoblasts (Runx2+Osx+) were behaving in this context by monitoring osteoblast subtype 

numbers and expression of specific bone markers. We started by analysing cryosections of 

120 hpa caudal fins subjected to the protocol mentioned above (Figure 33A), immunostained 

for Runx2 (osteoprogenitor marker) and for Osx (immature/intermediate osteoblast marker) 

and counterstained for calcein and DAPI. By evaluating the overall regenerated structure in 

both siblings and in DN-Yap expressing animals, we observed that while in controls (DN-Yap- 

HS+) the regenerated tissue was correctly compartmentalized along the PD-axis, comprising 

the PZ, PB and DB regions, in DN-Yap+ HS+ animals this did not occur (Figure 33A ). 
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Figure 33: Manipulation of Yap during the regenerative outgrowth phase leads to bone regeneration defects. 
(A) Schematic representation of the experimental setup and transgenic line used to manipulate Yap function. 
After blastema formation (48 hpa), DN-Yap- siblings and DN-Yap+ are subjected to daily heat-shocks during the 3 
subsequent days. (B) Representative images of whole caudal fins stained for calcein (labels more strongly the 
newly formed bone, green) at 120 hpa used to monitor and quantify the percentage of bone formation and 
thickness. When compared to sibling control DN-Yap- HS+ animals, DN-Yap+ HS+ have impairment in bone 
formation and the bony-rays that are formed are thinner. (C) Quantification of the percentage of calcein 
fluorescence in relation to the total regenerate area at 120 hpa; statistical analysis displayed on graph 
corresponds to Mann-Whitney test with Mean ± SD (n = 6 fish for the control condition DN-Yap- HS+; n = 3 fish 
for the DN-Yap+ HS+). (D) Quantification of the bony-ray width; bars on graph correspond to single measurements 
of each bony-ray of each fish; statistical analysis displayed on graph corresponds to Mann-Whitney test with 
Mean ± SD (n = 54 bony-rays from 4 animals for the control condition DN-Yap- HS+; n = 36 bony-rays compiled 
from 3 animals for the DN-Yap+ HS+). hpa: hours post-amputation; arrowheads define the amputation plane; 
scale bar: 1 mm; dashed rectangles correspond to magnified panels of calcein stained bony-ray segments for DN-
Yap- HS+ and DN-Yap+ HS+; *: p < 0.05, ****: p < 0.0001. 
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We noticed that, conversely to DN-Yap- HS+ sibling controls, DN-Yap+ HS+ animals had a 

significant decrease in the number of the differentiating Runx2+Osx+ osteoblast subtype that 

populates the patterning zone and proximal blastema region, whereas the Runx2+Osx- 

progenitor subtype that populates the distal blastema remains unaltered (Figure 34A and B). 

Consequently, the ratios between both populations were also affected (Figure 34C). A closer 

look at these markers and to their corresponding location within the blastema (Figure 34A’, 

A’’ and Ai), demonstrates that in sibling controls, as expected, proximal regions were 

populated by the Runx2+Osx+ subtype (co-localization of Runx2 and Osx Figure 34A’), whereas 

the distal blastema is mainly composed of the Runx2+Osx- subtype (poor co-localization of 

Runx2 and Osx Figure 34A’’). In contrast, in DN-Yap+ HS+ animals, proximal regions, close to 

the amputation plane, were characterized by the Runx+Osx- subtype (poor co-localization of 

Runx2 and Osx Figure 34Ai), resembling the pattern of Runx2+Osx- progenitor subtype in distal 

regions of the blastema of control animals (compare Ai with A’’, Figure 34). 

For a more detailed analysis, we performed gene expression quantification by q-PCR of DN-

Yap+ HS+ caudal fins at 120 hpa in comparison to sibling controls (Figure 35A). We examined 

several osteoblast markers that define their maturation state: early progenitor markers, such 

as runx2a and runx2b; intermediate markers (immature but committed osteoblasts), such as 

osterix (osx) and collagen 10a1 (col10a1); and late/mature markers (bone-forming 

osteoblasts), like osteocalcin (also known as bone gamma-carboxyglutamate protein, bglap), 

osteocalcin2 (also known as bone gamma-carboxyglutamate protein-like, bglapl), and 

osteonectin (osn or sparc) (Li et al. 2009; Knopf et al. 2011; Sousa et al. 2011; Blum and 

Begemann 2015b; Rutkovskiy et al. 2016). When compared to sibling controls, DN-Yap+ HS+ 

animals showed a significant downregulation of the intermediate marker col10a1 and of 

mature markers, such as bglap, bglapl and osn, while the expression of early markers was 

unchanged (Figure 35A). This is in accordance with our previous observation that the number 

of the differentiating osteoblast population (Runx2+Osx+) is decreased whereas the 

progenitors (Runx2+Osx-) remain unchanged (Figure 34A and B). From the transcripts 

analysed, the col10a1 transcript was the most downregulated. To further validate the q-PCR 

results, we used a reporter line for col10a1, col10a1:nlGFP (for further information about the 

generation of this line see Chapter V of the results section), generated in the context of this 

PhD thesis. We subjected col10a1:nlGFP; DN-Yap+ double transgenic animals and 

col10a1:nlGFP; DN-Yap-, sibling controls to the same Yap activity inhibition protocol (Figure 

33A). As expected, we observed a significant decrease in col10a1 fluorescence in 

col10a1:nlGFP; DN-Yap+ HS+ when compared to col10a1:nlGFP; DN-Yap- HS+ animals (Figure 

35B and C) after normalizing to the total regenerated area. 
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Figure 34: Inhibition of Yap activation leads to a defect in the formation of the differentiating osteoblast 
subtype during regenerative outgrowth. (A) Representative immunofluorescence images of 120 hpa caudal fins 
longitudinal cryosections from DN-Yap- HS+ and DN-Yap+ HS+ animals subjected to the protocol illustrated in 
Figure 33A. Cryosections were immunostained for Osx (immature/intermediate osteoblast marker, yellow) and 
Runx2 (osteoprogenitor/preosteoblast marker, red) and counterstained for calcein (newly formed bone matrix, 
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green) and DAPI (nucleus, blue). In contrast to the DN-Yap- HS+ sibling controls, DN-Yap+ HS+ form less bone. (B) 
Quantification of Runx2+Osx- and Runx2+Osx+ osteoblast subtypes on comparable 120 hpa caudal fin 
cryosections of DN-Yap- HS+ and DN-Yap+ HS+; bars on graph correspond to total number of cells from each 
osteoblast subtype normalized to total fin area; statistical analysis corresponds to Mann-Whitney test with Mean 
± SD (n = 9 bony-rays from 3 fish for the DN-Yap- HS+ (sibling controls) condition; n = 10 bony-rays from 3 fish for 
the DN-Yap+ HS+ condition). Activation of the DN form of Yap leads to a decrease in the number of the 
proliferative Runx2+Osx+- differentiating osteoblast subtype, but not in the Runx2+Osx-. (C) Quantification of 
the ratio between the Runx2+Osx- and the Runx2+Osx+ osteoblast subtypes at 120 hpa; statistical analysis 
corresponds to Mann-Whitney test with Mean ± SD (n = 9 bony-rays from 3 fish for the DN-Yap- HS+ (sibling 
controls) condition; n = 10 bony-rays from 3 fish for the DN-Yap+ HS+ condition). hpa: hours post-amputation; 
PZ: Patterning zone; PB: Proximal blastema; DB: Distal blastema; dashed lines define the amputation plane; scale 
bars represent 200 µm and 20 µm in magnified panels; ** p< 0.01, **** p< 0.0001, ns: non-significant. 

Taken together, these results suggest that the Hippo/Yap signalling pathway has a clear and 

important role in bone repair during regenerative outgrowth, which may not solely rely on a 

general effect on cell proliferation, as described by our lab (Mateus et al. 2015), but also by 

regulating osteoblast differentiation. Reduction of Yap-mediated signalling led to an 

impairment in the formation of the Runx2+Osx+ differentiating osteoblast subtype, which 

populates the patterning and proximal blastema regions, and to a decrease in several key 

intermediate and late osteoblast markers. This reinforces the hypothesis that Yap may be 

required to induce osteogenic differentiation during regeneration. 
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Figure 35: Inhibition of Yap signalling during regenerative outgrowth leads to the downregulation of mature 

and intermediate bone markers, but not of early markers. (A) Quantitative RT-PCR showing the expression of 

late/mature, intermediate/immature and early/progenitor osteoblast markers at 120 hpa in DN-Yap+HS+ in 

relation to the DN-Yap- HS+ regenerated caudal fins. Transcript levels are plotted on a log2 scale with DN-Yap- HS+ 

sibling control samples averaged to log20 = 1; statistical analysis displayed on the graph corresponds to Unpaired 

t test with Welch’s correction (4 biological replicates were used, each corresponding to a pool of 4-5 fins). This 

analysis demonstrates that both late and intermediate markers are downregulated in DN-Yap+ HS+ caudal fins 

compared to controls, while early markers remain unchanged. (B) Representative images of 120 hpa whole 

caudal fins from double transgenic specimens: col10a1:nlGFP; DN-Yap+ and col10a1:nlGFP; DN-Yap- sibling 

controls. This further confirms that the col10a1 transcript is diminished in col10a1:nlGFP; DN-Yap+ animals, in 

comparison to sibling controls. (C) Quantification of the percentage of col10a1:nlGFP fluorescence in 

col10a1:nlGFP; DN-Yap+ and col10a1:nlGFP; DN-Yap- sibling controls relative to the total regenerate area at 120 

hpa; statistical analysis displayed on graph corresponds to Mann-Whitney test with Mean ± SD (n= 4 fish for the 

control condition col10a1:nlGFP; DN-Yap- HS+; n= 4 fish for the col10a1:nlGFP; DN-Yap+ HS+). Hpa: hours post-

amputation; arrowheads define the amputation plane; scale bar represent 1 mm; dashed rectangles correspond 

to magnified panels of a col10a1:nlGFP bony-ray segment in DN-Yap- HS+ and DN-Yap+ HS+; *: p < 0.05, **: p < 

0.01, ns: non-significant. 

2 YAP IS REQUIRED TO REGULATE BONE REPAIR THROUGH A PARACRINE 

SIGNALLING, CONTROLLING MAJOR SIGNALLING CENTRES DURING FIN 

REGENERATION 

Due to the bone regeneration defects observed after compromising Yap activity, we decided 

to decipher the molecular mechanism through which Yap regulates the differentiating 

osteoblast population. We started by addressing the dynamics of Yap subcellular localization 

in the different osteoblast subtypes. When the Hippo pathway is activated, Yap is 

phosphorylated and considered to be in an inactive form that culminates in its sequestration 

in the cytoplasm and degradation. On the other hand, when the Hippo pathway is inactive, 

Yap is not phosphorylated can be translocated to the nucleus and activate target gene 

expression (Irvine 2012; Piccolo et al. 2014). Previous work published by our lab showed that 

Yap is nuclear (mostly active) in proximal regions of the regenerate and more cytoplasmic 

(mostly inactive) in distal regions (Mateus et al. 2015). However, the intracellular Yap 

dynamics has only been evaluated at the level of the mesenchymal compartment, and not 

specifically in the different osteoblast populations (Mateus et al. 2015). 

2.1 Yap activation correlates with activated Bmp signalling in the proximal mesenchymal 

region, adjacent to the differentiating osteoblasts 

To fill this gap, we used reporter lines to label different osteoblast populations, osx:mCherry 

(labels immature/intermediate osteoblasts) and runx2:GFP (labels the more distal 

osteoprogenitor pool), and monitored Yap intracellular localization by immunofluorescence 

in 72 hpa caudal fin cryosections (Figure 36 and Figure 37, respectively). We choose the 72 

hpa time-point because the blastema is already fully established and it is the first day of the 

regenerative outgrowth phase, when the main signalling networks that modulate this phase 

have been established (Poss et al. 2003; Wehner and Weidinger 2015). 
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Surprisingly, we found that Yap was excluded from the nucleus (and consequently inactive) of 

the differentiating osteoblast population, visualised through osx:mCherry, either in the 

patterning zone and in the proximal blastema region (Figure 36A’-Aiii and B’-Biii, arrows in Ai-

Aiii and Bi-iii point to examples of Osx+ osteoblasts with no nuclear accumulated Yap). 

 

Figure 36: Nuclear Yap (active) does not co-localize with redifferentiating osteoblasts in the patterning zone 
and in the proximal blastema during regenerative outgrowth. Representative images of 72 hpa longitudinal 
cryosections of osx:mCherry (immature/intermediate osteoblast marker, red) transgenic animals 
immunostained for Yap (green) and counterstained for DAPI (nucleus, blue). (A’-A’’’) Magnified panels of the 
region in A bounded by a dashed white box representing the patterning zone(PZ) of the regenerate. (Ai-Aiii) 
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Correspondent magnified panels of the regions in A’-A’’’ bounded by dashed white boxes. Arrows point to 
examples of osx:mCherry-positive osteoblasts in the PZ with Yap excluded from the nucleus. (B’-B’’’) Magnified 
panels of the region in B bounded by a dashed white box corresponding to the proximal blastema (PB) region of 
the regenerate. (Bi-Biii) Corresponding magnified panels of the regions in B´-B’’’ bounded by dashed white boxes. 
Overall, these results suggest that Yap is not active in the more proximal osteoblast populations Arrows point to 
examples of osx:mCherry-positive osteoblasts without nuclear Yap. hpa: hours post-amputation; arrowheads 
define the amputation plane; scale bars in A and B correspond to 200 µm, in A’-A’’ and B’-B’’’ correspond to 50 
µm and in Ai-Aiii and Bi-Biii represent 20 µm. 

Similarly, when we checked the most distal osteoprogenitor pool, labelled with runx2:EGFP, 

no co-localization between the distal Runx2+ progenitors and activated Yap (nuclear) was 

observed (Figure 37A’-Aiii, arrows in Ai-Aiii point to examples of Runx2+ osteoblasts with Yap 

excluded from the nucleus). This indicates that Yap is not active in both differentiating and 

progenitor osteoblast populations and therefore suggests that it does not induce directly the 

differentiation of the osteoblasts during outgrowth. 

 

Figure 37: Nuclear Yap (active) does not co-localize with progenitor osteoblast in the distal blastema during 
regenerative outgrowth. Representative images of 72 hpa longitudinal cryosections of runx2:EGFP 
(osteoprogenitor/preosteoblast marker, green) transgenic animals immunostained for Yap (red) and 
counterstained for DAPI (nucleus, blue). (A’-A’’’) Magnified panels of the region in A bounded by a dashed white 
box representing the distal blastema (DB). (Ai-Aiii) Correspondent magnified panels of the regions in A’-A’’’ 
bounded by dashed white boxes. Arrows show runx2:EGFP positive osteoblasts in the distal blastema region with 
Yap excluded from the nucleus. hpa: hours post-amputation; arrowheads define the amputation plane; scale 
bars in A correspond to 200 µm, in A’-A’’’ correspond to 50 µm and in Ai-Aiii represent 20 µm. 
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Thus, this raises the possibility that Yap may regulate the differentiating osteoblast population 

via a non-cell autonomous manner. To investigate this hypothesis, we examined whether 

active (nuclear) Yap co-localizes and influences other signalling pathways that are important 

to maintain and coordinate the balance between osteoprogenitor formation and the rate of 

differentiation during regenerative outgrowth. As described in the introduction Chapter, 

osteoprogenitor pool maintenance and osteoblast differentiation along the PD-axis occurs via 

the establishment of signalling centres with antagonist activities. Briefly, Wnt signalling is 

active in the more distal blastema and maintains the osteoprogenitor pool, whereas Bmp 

signalling is active in differentiating osteoblasts, therefore controlling differentiation (Stewart 

et al. 2014). As regeneration proceeds some Runx2+ osteoprogenitors become distant from 

the influence of Wnt activity and start to redifferentiate in the proximal blastema due to Bmp 

activity, becoming Runx2+Osx+ osteoblasts. In proximal regions Bmp is also responsible to 

block the propagation of Wnt signalling, restricting its activity to the distal compartment 

(Stewart et al. 2014; Wehner et al. 2014). 

We began by analysing whether Bmp signalling activation correlates with active (nuclear) Yap 

at the cellular level. Secreted Bmp ligands activate specific Bmp serine/threonine kinase 

receptors (Bmpr) that in turn phosphorylate Smad1, 5, and 8 (pSmad1/5/8) transcription 

factors, promoting their nuclear translocation and activation of downstream genes (Wang et 

al. 2014). We monitored the localization of both Yap and pSmad1/5/8 (pSmad1/5/8), by 

immunostaining in longitudinal cryosections of wild-type animals at 72 hpa (Figure 38A). In 

the proximal blastema region, we observed a clear co-localization between Yap and 

pSmad1/5/8 (both nuclear, active) in the mesenchymal compartment in close contact with 

differentiating osteoblasts, identified by their epithelial-like organization (Figure 38A, grey 

dashed box and corresponding magnified panels, arrows point to examples of mesenchymal 

fibroblasts with both nuclear Yap and pSmad1/5/8 in the proximal blastema region). 

Conversely, in the distal blastema mesenchyme, both markers show a more diffuse pattern 

and no nuclear accumulation, except for the nuclear pSmad1/5/8 present in the epidermal 

compartment (Figure 38A, blue dashed box and corresponding magnified panels of the distal 

blastema region, arrow points to an epidermal cell with nuclear pSmad1/5/8). 



Chapter IV – Results 

 

147 

 

Figure 38: Nuclear Yap co-localizes with active Bmp signalling in the mesenchyme of the proximal blastema 
region, but not with active Wnt signalling in the distal blastema. (A) Representative images of 72 hpa 
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longitudinal cryosections of wild-type animals immunostained for Yap (green) and pSmad1/5/8 (active Bmp 
signalling, red) and counterstained for DAPI (nucleus, blue). Regions bounded by dashed grey and blue boxes are 
magnifications of the proximal and distal blastema regions, respectively. In the proximal blastema, nuclear Yap 
and nuclear pSmad1/5/8 co-localize in the mesenchymal compartment, suggesting that both pathways are 
active. Arrowheads indicate examples of mesenchymal cells with both nuclear Yap and pSmad1/5/8. In the distal 
blastema, both Yap and pSmad1/5/8 appear to have a fuzzier expression in the mesenchymal compartment, with 
the exception of pSmad1/5/8 in the epidermis (arrowhead), suggesting that both signalling pathways are less 
active in that region. (B) Representative images of 72 hpa longitudinal cryosections of 6xTCF/Lef-mini:d2GFP 
(reports Wnt signalling activation, green) specimens immunostained for Yap (red) and counterstained for DAPI 
(nucleus, blue). Regions bounded by dashed grey and blue boxes are magnifications of the proximal and distal 
blastema regions, respectively. In the proximal blastema, we observed many mesenchymal cells with nuclear Yap 
and few cells with activated Wnt signalling, suggesting that both pathways have a poor co-localization index. 
Arrows point to examples of mesenchymal cells with active Wnt signalling but with Yap excluded from the 
nucleus; Arrowhead shows an example of a mesenchymal cell with both pathways activated. In the distal 
blastema, Wnt signalling was activated in many mesenchymal cells but Yap has a fuzzy expression, with no clear 
nuclear accumulation, suggesting that these pathways play contrasting roles. Hpa: hours post-amputation, m: 
mesenchyme, e: epidermis, ob: differentiating osteoblasts; dashed lines define the amputation plane; scale bars 
correspond to 200 µm and 50 µm in magnified images. 

Similarly, we examined the activity of canonical Wnt signalling pathway, which is mediated 

through β-catenin transcription activation (MacDonald et al. 2010), and its dynamics in 

relation to Yap subcellular localization along the blastema PD axis. For that, we used a 

transgenic line expressing a Wnt signalling reporter of β-catenin-dependent transcription, the 

6xTCF/Lef-miniP:2dGFP, referred to as 6xTCF:d2GFP (Shimizu et al. 2012; Wehner et al. 2014). 

72 hpa cryosections of 6xTCF:dGFP animals immunostained for Yap showed that, in the 

proximal blastema region, where the majority of the mesenchymal cells present nuclear Yap, 

Wnt signalling was mainly inactive. Wnt activation was only observed in very few scattered 

cells, either osteoblast (mainly) or mesenchymal cells (Figure 38B, grey dashed box and 

corresponding magnified panels of the proximal blastema region, arrows). Thus, 

demonstrating a poor correlation between cells with activated Wnt signalling and cells with 

nuclear Yap within the proximal blastema region (Figure 38B, grey dashed box and 

corresponding magnified panels, arrowhead). In contrast, in the most distal blastema 

compartment, Wnt signalling was active in a high number of cells, whereas Yap was mostly 

cytoplasmic, thus mainly inactive (Figure 38B, blue dashed box and corresponding magnified 

panels of the distal blastema region).  

Overall, these findings highlight an important role for the transcriptional co-activator Yap 

during bone repair, specifically during osteogenic differentiation. Although we did not observe 

any co-localization between activated Yap and osteoblast markers, Yap accumulates in the 

nucleus of mesenchymal cells in the proximal blastema region just adjacent to the osteoblast 

differentiation zone, suggesting that Yap regulation of osteoblast differentiation might be via 

a non-cell autonomous mechanism. Importantly, in this region, Yap nuclear accumulation 

correlates with activated Bmp signalling, which may imply that these pathways work together 

in mediating proper osteoblast differentiation but not in maintaining the osteoprogenitor 

pool. In accordance with this last idea, we observed a very poor correlation between active 
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Yap and Wnt signalling, suggesting that these pathways may have opposing activities during 

regenerative outgrowth and thus during bone repair. 

2.2 Hippo/Yap signalling pathway may regulate both Bmp and Wnt signalling centres via 

paracrine signalling during caudal fin regeneration  

After proposing that Yap regulation of osteoblast differentiation during regenerative 

outgrowth is via a non-cell autonomous mechanism, we set out to investigate in more depth 

how Yap may regulate this process. We performed a gene expression analysis by q-PCR of DN-

Yap+ HS+ caudal fins at 120 hpa in comparison to caudal fins from sibling controls, subjected 

to the Yap manipulation protocol (Figure 33A). In this context, we examined the expression of 

signalling pathways known to conduct osteoblast lineage specification during caudal fin 

regeneration (Laforest et al. 1998; Stewart et al. 2014; Wehner et al. 2014; Blum and 

Begemann 2015b), such as Wnt, Bmp, Shh and RA. The main aim of this experiment was to 

ascertain whether the expression of any of these pathways is Yap-dependent. We examined 

several key components that belong to the Wnt (dkk1a, wls, wnt10a and wnt3a), Bmp (bmp2a, 

bmp2b and bmp4), RA (aldh1a1 and cyp26a1) and Shh (shha) signalling pathways, known to 

control bone regeneration dynamics directly or via secondary signals. Indeed, we observed 

that in caudal fins subjected to downregulation of Yap transcriptional activity (DN-Yap+ HS+) 

there is a significant reduction in the expression levels of dkk1a and bmp2a transcripts in 

comparison to sibling controls (Figure 39). Both Dkk1a and Bmp2a are secreted proteins: 

Dkk1a is a negative regulator of Wnt-mediated signalling and Bmp2 is a ligand that activates 

Bmp signalling upon receptor binding (Rosen 2009; MacDonald et al. 2010; Wang et al. 2014). 

Therefore, these data suggest that Yap can regulate the expression dkk1a and bmp2a and 

consequently modulate the activity of both Wnt and Bmp signalling during regenerative 

outgrowth, respectively. In addition, we noticed a tendency for Wnt ligands, such as wnt10a 

and wnt3a, to be upregulated. aldh1a2 (which encodes for the enzyme that catalyses the 

synthesis of RA) and cyp26a1 (that encodes for the enzyme that degrades RA), also showed a 

tendency to be up and downregulated, respectively, whereas shha expression remains 

unaltered between both conditions. Although more numbers are required to strengthen these 

results, they suggest that both Wnt and RA signalling may be more activated in the DN-Yap+ 

HS+ context (Figure 39). 

Taken together these results point to a dual role of the Hippo/Yap signalling pathway on the 

redifferentiation of osteoblasts. On one hand, and similar to what has been shown for Bmp 

signalling (Stewart et al, 2014), Yap may inhibit Wnt signalling expansion to the proximal 

blastema region by regulating the expression of dkk1a in the proximal blastema, consequently 

restricting Wnt activation and Runx2+ osteoblasts to the distal blastema. On the other hand, 

Yap promotes the secretion of Bmp2a by the mesenchymal cells in the proximal blastema 

region. Secreted Bmp2 ligands then act on adjacent osteoblasts to activate Bmp signalling, 

and thus, regulating/inducing their differentiation via paracrine signalling.  
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Figure 39: Manipulation of Yap signalling may lead to destabilization of major signalling centres during 
regenerative outgrowth. Quantitative q-PCR showing the expression of several signalling pathways known to 
regulate osteoblast populations and growth during regeneration: Wnt signalling (dkk1a, wls, wnt10a1 and 
wnt3a), Bmp signalling (bmp2a, bmp2b and bmp4), retinoic acid (RA) signalling (aldh1a2 and cyp26a1) and Sonic 
hedgehog signalling (shha) in DN-Yap- HS+ and DN-Yap+ HS+ regenerated caudal fins, subjected to the protocol 
illustrated in Figure 33A, at 120 hpa. Graph shows the relative gene expression for each transcript in DN-Yap+ HS+ 
in relation to DN-Yap- HS+ sibling controls, transcript levels are plotted on a log2 scale with DN-Yap- HS+ sibling 
controls samples averaged to log20 = 1; statistical analysis displayed on the graph corresponds to Unpaired t test 
with Welch’s correction (4 biological replicates are shown and each replicate corresponds to a pool of 4-5 fins). 
This analysis demonstrated that in relation to DN-Yap- HS+ sibling controls, caudal fins expressing the DN form of 
Yap, DN-Yap+ HS+ show a downregulation of dkka1 (Wnt signalling inhibitor) and bmp2a (Bmp receptor ligand), 
which can disrupt signalling during regeneration and affect bone repair. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSTEOGENIC PLASTICITY CHALLENGED: 

UNRAVELING DE NOVO OSTEOBLAST 
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“Where should I go?" -Alice.  

"That depends on where you want to end up." - The Cheshire Cat. 

Lewis Carroll, Alice's Adventures in Wonderland & Through the Looking-Glass 
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1 BONE SURROUNDING TISSUES MAY PRESENT ALTERNATIVE SOURCES FOR DE 

NOVO OSTEOBLAST FORMATION DURING REGENERATION OF OSTEOBLAST 

DEPLETED FINS  

A key question in the regeneration field focuses on the origin of cells that contribute to the 

regenerative process. Significant progress has been made in clarifying the source of new cells 

during regeneration in multiple different regenerative contexts (Tanaka 2003; Kragl et al. 

2009; Knopf et al. 2011; Sousa et al. 2011; Tu and Johnson 2011; Sandoval-Guzmán et al. 2014; 

Tornini et al. 2016; Weidinger 2017). As mentioned in the introduction Chapter, there are 

several means or routes by which injured tissues can provide new cells to form the 

regenerated tissue: from resident stem cells and from mature cells dedifferentiation or 

transdifferentiation (Galliot and Ghila 2010; Poss 2010; Tanaka and Reddien 2011; Eguizabal 

et al. 2013). Bony-rays, one of the main components of the caudal fin, have been the subject 

of many research studies, focused in identifying which cells contribute to bone regeneration 

upon amputation and which cells have the intrinsic or developmental capacity to do so when 

stimulated or under challenging conditions. Formation of new bone during regeneration has 

been shown, by us and others, to be dependent on dedifferentiation of mature osteoblasts 

that remain close to the lesion site (Knopf et al. 2011; Sousa et al. 2011; Tu and Johnson 2011; 

Stewart and Stankunas 2012). In Chapter III we have also shown in more detail the 

transcriptional changes associated with this process and dissected some pathways that could 

be important to regulated dedifferentiation. Surprisingly, another lab has demonstrated, 

through genetically induced cell death, that after mature osteoblast ablation bone 

regeneration is not delayed or compromised (Singh et al. 2012). This suggests that 

dedifferentiation may be dispensable for proper bone regeneration and that in the absence 

of mature osteoblasts other alternative sources, yet to be identified, may be recruited to form 

new osteoblasts. In addition, it has been recently identified a reservoir of osteoprogenitors 

associated with the intersegment/joint regions of the caudal fin that contribute to bone 

formation, as a complement to mature osteoblast dedifferentiation (Ando et al. 2017). The 

authors hypothesized that these cells provide an alternative source for de novo osteoblast 

formation in osteoblast depleted fins, however, this is yet to be proven (Ando et al. 2017). 

Overall, this may indicate that, during regeneration, formation of new osteoblast may depend 

greatly on different forms of tissue plasticity. Therefore, the main aims of this Chapter are to 

identify potential cellular sources with the ability to generate new osteoblast, in the absence 

of mature osteoblast, and the molecular mechanism behind de novo osteoblast formation.  
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1.1 In response to mature osteoblast ablation, tissues adjacent to the bone matrix, 

epidermis and mesenchyme, initiate a proliferative response during regeneration 

In order to address the previous questions, we took advantage of the NTR/Mtz system used 

to genetically ablate specific cell types in a temporal controlled manner (Curado et al. 2007, 

2009). We used the osx:mCherry-NTRo transgenic line, referred to as osx:NTRo, in which the 

promoter of osx (immature/intermediate specific osteoblast marker) drives the expression of 

the NTR enzyme thus allowing specific ablation of differentiated and mature osteoblasts 

(Singh et al. 2012). To reproduce efficient mature osteoblast ablation, we performed a similar 

protocol to the one previously described (Singh et al. 2012). We combined the osteoblast 

ablation line with a mature osteoblast reporter line, osc:EGFP, and observed that the osx:NTRo 

successfully induced the efficient ablation of osc-expressing cells(Singh et al. 2012). Double 

transgenic animals, osx:NTRo; osc:EGFP, were incubated for one day either with the drug 

vehicle DMSO (control) or with Mtz solution and left to recover for two days. Caudal fins were 

imaged prior to the treatment and after the recovery period, to monitor proper osteoblast 

ablation (Figure 40A). In contrast to control animals, which show intense and demarcated osx 

or osc expression along the bony-rays surface prior to the treatment and after recovery, Mtz 

treated animals show a strong decrease in both markers (Figure 40B). In accordance with what 

had been demonstrated, this strategy effectively promotes mature osteoblast ablation and 

can be used to investigate the origin of cells capable of generating new osteoblasts in the 

absence of the mature osteoblast population. 
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Figure 40: Osteoblasts ablation assay. (A) Schematic representation of the experimental outline used to induce 
osteoblasts ablation. This procedure is based on the NTR/MTZ system and relies on a transgenic line that 
expresses the coding regions of the fluorescent reporter mCherry and the Nitroreductase (NTR) enzyme under 
the control of osterix (osx, specific osteoblast marker) regulatory regions, osx:mCherry-NTRo (osx:NTRo). In this 
protocol we combined the osteoblast ablation line with a reporter line that labels mature osteoblast, osc:EGFP, 
to confirm proper mature osteoblast ablation. The osc:EGFP; osx:NTRo double transgenics were either exposed 
to a pro-drug Metronidazole (Mtz) or to the vehicle (DMSO) for one day and left to recover for two days. (B) 
Representative images of caudal fins from control and Mtz treated animals before manipulation and after the 
recovery period. We can observe that while in control animals osx and osx expression remains unchanged during 
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the procedure, in Mtz treated animals there is a strong decrease in both markers, confirming correct mature 
osteoblast ablation. Green: osc:EGFP; Red: osx:NTRo. dbt: days before treatment; dpt: days post-treatment Scale 
bar represents 1mm. 

For subsequent experiments, animals with efficient osteoblast ablation were subjected to 

caudal fin amputation. We started by analysing which cells and/or tissues responded to 

osteoblast ablation by initiating a proliferative response. For that, we determined EdU 

incorporation (S-phase marker) upon osteoblast ablation. Following the recovery period, both 

control (DMSO) and Mtz treated animals were subjected to caudal fin amputation and allowed 

to regenerate until desired time-points (Figure 41A). Uncut (0 hpa), 15 hpa and 24 hpa caudal 

fins from both experimental conditions were collected, cryosectioned and immunostained for 

mCherry (to visualize osx expression and validate osteoblast ablation) and EdU (to label S-

phase proliferating cells). Already before amputation (uncut), we observed significantly more 

proliferating cells, EdU+, in the epidermis of Mtz treated caudal fins, contrasting to controls 

(Figure 41B’, C’ and D). At 15 hpa this discrepancy becomes more evident, with a significant 

increase in the number of EdU+ cells in the epidermis and mesenchyme (already detected at 

6 hpa, Figure 41D) of Mtz treated animals (Figure 41B’’, C’’ and D). We could also notice that 

at 15 hpa these EdU+ cells seem to appear more frequently at the interphase of the bone with 

the surrounding tissues, epidermis and mesenchyme. At 24 hpa control and Mtz-treated fish 

no longer show significant differences in the number of EdU-positive cells (Figure 41B’’, C’’’ 

and D). The initial differences regarding the number and location of proliferating cells, 

between controls and Mtz, treated animals, could be due to a response of the surrounding 

tissues to the osteoblast induced cell death. In fact, dying cells can release a vast range of 

molecules and particles that can influence and trigger a proliferative response by the 

neighbouring cells (Boland et al. 2013; Vriz et al. 2014; Perez-Garijo and Steller 2015). 

Nevertheless, it may also mean that the bone adjacent tissue could contribute to bone 

formation, by replacing the bone surrounding osteoblasts that were lost after ablation. 
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Figure 41: Mesenchymal and epidermal tissues adjacent to the bone matrix respond to osteoblast ablation by 
initiating a proliferative response during regeneration. (A) Schematic representation of the strategy used to 
induce osteoblasts genetic ablation. The osx:mCherry-NTRo (osx:NTRo) transgenic animals were either exposed 
to the vehicle (DMSO) (B) or to the pro-drug Metronidazole (Mtz) (C) for one day and left to recover for two days. 
Caudal fins were then amputated, and tissue imaged or collected for subsequent processing. (B and C) 
Assessment of cell proliferation in osteoblast depleted fins. Representative images of uncut (B’ and C’), 15 hpa 
(B’’ and C’’) and 24 hpa (B’’’ and C’’’) caudal fin longitudinal cryosections of osx:NTRo animals subjected to DMSO 
(controls) (B) or Mtz (C) incubations. Cryosections were immunostained for mCherry (to visualize osx expression 
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and confirm correct osteoblast ablation, red), EdU (S-phase marker, green) and counterstained for DAPI (nucleus, 
blue). We can observe that already before amputation (uncut) there are more cells proliferating in the epidermis 
of Mtz treated caudal fins, contrasting to controls (C’ and B’, respectively). At 15 hpa this discrepancy becomes 
more evident also in the mesenchymal compartment (B’’ and C’’). At 24 hpa many cells have entered the S-phase 
in both conditions (B’’’ and C’’’). Arrows indicate examples of proliferating cells adjacent to the epidermis and 
arrowheads point to examples of proliferating cells in the mesenchyme. (D and E) Proliferation dynamics in the 
caudal fin epidermis (D) and mesenchyme (E). Graphs show the quantification of EdU-positive cells in uncut, 6 
hpa, 15 hpa and 24 hpa time-points in controls and osteoblast depleted fins (Mtz treatment); bars on graph 
correspond to total number of EdU+ cells normalized to total fin area; statistical analysis corresponds to Mann-
Whitney test with Mean ± SD displayed (n= 9 bony-rays compiled from 3 fish for each time-point and for each 
condition (control and Mtz treatment)). This shows that, accordingly to the images represented in B and C, there 
is an increase of epidermal cell proliferation in the uncut and in the first time-points analyzed after amputation 
in the Mtz treated condition, when compared to controls. There is also a peak of proliferation at 6 hpa and 15 
hpa in the mesenchymal compartment, just adjacent to the bone matrix when compared to controls. dba: days 
before amputation, hpa: hours post-amputation, e: epidermis, m: mesenchyme; dashed lines define the 
amputation plane; scale bars represent 50 µm; ** p< 0.01, **** p< 0.0001, ns: non-significant. 

1.2 New osteoprogenitors arise at the outer and inner interphase between the bone 

matrix and the surrounding tissues in osteoblast depleted fins during regeneration 

We then examined from where new osteoprogenitors may arise in osteoblast depleted fins 

during regeneration. Runx2 is the first transcription factor required for determination of the 

osteoblast lineage, being first detected in preosteoblasts/osteoprogenitors and consequently 

directing their commitment (Komori 2006; Long 2012; Rutkovskiy et al. 2016). This factor is 

expressed throughout the osteoblast developmental stages, from early to mature, and co-

localizes with both osx and osc in the mature osteoblast population surrounding the bony-ray 

surface (see Supplementary Figure 3). Thus, to facilitate the interpretation of the results, we 

will define the differentiated and mature osteoblast population, ablated using the NTR/Mtz 

system, as Runx2+Osx+ and the osteoprogenitors as Runx2+Osx-. For that, we performed 

immunostainings for Runx2 in cryosections of control and Mtz treated osx:NTRo animals at 

uncut (0 hpa), 15 hpa and 24 hpa time-points. We can observe that, while in control uncut fins 

only mature osteoblast (Runx2+Osx+) surround the bone tissue (Figure 42A’ and C), in Mtz 

uncut fins these cells were efficiently ablated (Figure 42B’ and C). Interestingly, some 

osteoprogenitors Runx2+Osx- start to emerge at the interphase between the bone matrix and 

the epidermis in Mtz treated fins (Figure 42B’ arrows and D). At 15 hpa, Mtz conditions present 

a significant increase in the number of newly formed Runx2+Osx- osteoprogenitors, which 

appear mostly next to the epidermis and mesenchymal compartment at the interphase with 

the bone surface (Figure 42B’’ arrows and arrowheads, respectively, and D). In controls, 

although they were not subjected to osteoblast ablation, some Runx2+ single positive cells 

were also observed in the mesenchymal compartment (Figure 42A’’arrows and D). At 24 hpa 

in the control condition both mature Runx2+Osx+ and osteoprogenitor Runx2+Osx- cells seem 

to contribute to the blastema formation process (Figure 42A’’’ arrows and arrowheads, C and 

D), while in the Mtz condition only newly formed Runx2+Osx- contribute to the process (Figure 

42B’’’ arrows and arrowheads, D). These Runx2+Osx- osteoprogenitors that arise in the 

ablation context were sufficient to compensate for the lack of mature osteoblast, since in the 
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regenerating caudal fin the total osteoblast number (Runx2+Osx+ together with Runx2+Osx-) 

remained the same or even higher (depending on the time-point) in the ablation context 

(Figure 42C and D). We also confirmed the specificity of the Runx2 labelling with the 

commercially available antibody, through co-localization with a reporter line for runx2, 

runx2:EGFP, in the ablation context. Thus, confirming that these cells are indeed 

osteoprogenitors (see Supplementary Figure 4). Given the fact that Runx2+Osx- 

osteoprogenitors appear not only in osteoblast ablation conditions but also in a normal 

regenerative situation, this may suggest that alternative progenitor sources are also recruited 

during normal regeneration and not only upon osteoblast ablation. We have to consider the 

possibility that, during normal regenerating conditions, these Runx2+Osx- osteoprogenitors 

may derive from the dedifferentiation of the mature osteoblast or even from the pool of 

osteogenic precursors recently found in the joint region (Ando et al. 2017).  

Overall, this suggests that bone neighbouring cells could contribute as a source of de novo 

osteoblast formation when the mature osteoblast population is compromised. The epidermis 

and the mesenchyme in close contact with the bone matrix may be stimulated to proliferate 

and produce new osteoprogenitors that will replenish the outer (facing the epidermis) and the 

inner (facing the mesenchyme) bone surface with new osteoblast, thus contributing to the 

bone regenerative process. 
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Figure 42: Osteoblast ablation reveals that osteoprogenitors emerge de novo at the interphase between the 
bone matrix and the adjacent tissues during regeneration. (A and B) Assessment of osteoprogenitors 
appearance in controls (A) and in osteoblast depleted fins (B). Representative images of uncut (A’ and B’), 15 hpa 
(A’’ and B’’) and 24 hpa (A’’’ and B’’’) caudal fin longitudinal cryosections of osx:NTRo animals subjected to DMSO 
(controls) (A) or Mtz incubations (B). Cryosections were immunostained for mCherry (to visualize osx expression, 
green), Runx2 (preosteoblast/osteoprogenitor marker, magenta) and counterstained for DAPI (nucleus, blue). 
While in control uncut fins only mature osteoblasts (Runx2+Osx+) surround the bone tissue, in Mtz treated 
animals these cells are efficiently ablated and osteoprogenitor Runx2+Osx- cells start to emerge at the interphase 
between the bone matrix and the epidermis. At 15 hpa, in Mtz treated animals, there is a huge increase in the 
number of newly formed Runx2+ single osteoprogenitors that appear mostly in close contact with the outer 
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(facing the epidermis) and inner (facing the mesenchyme) bone surface. In controls, some Runx2+ single positive 
cells are also observed. At 24 hpa in the control situation both Runx2+Osx+ (mature osteoblasts) and Runx2+Osx- 
(osteoprogenitors) can be identified close to the stump, while in the Mtz condition only newly formed Runx2+Osx- 
seem to contribute to blastema formation. Arrows indicate examples of Runx2+ single osteoprogenitors facing 
the epidermis and arrowheads point to examples of Runx2+ single osteoprogenitors in the mesenchymal 
compartment. (C and D) Quantification of mature osteoblasts (Runx2+Osx+) (C) and osteoprogenitors (Runx2+Osx-

) (D) in uncut, 15 hpa, 24 hpa and 30 hpa in controls (DMSO) and in osteoblast depleted fins (Mtz treatment); 
bars on graph correspond to total number of osteoblasts quantified and normalized to total fin area; statistical 
analysis corresponds to Mann-Whitney test with Mean ± SD displayed (n= 14 bony-rays compiled from 4 fish for 
each time-point and for each condition). In agreement with the images represented in A, there is a clear decrease 
of mature osteoblast (Runx2+Osx+) when using the ablation protocol shown in Figure 40A. Additionally, there is 
a considerable increase in the number of newly formed osteoprogenitors in all time-points examined in the Mtz 
treatment condition when comparing to control animals. hpa: hours post-amputation, e: epidermis, m: 
mesenchyme; dashed lines define the amputation plane; scale bars represent 50 µm; *p<0.05, ** p< 0.01, 
***p<0.001, # p< 0.0001, ns: non-significant. 

2 IDENTIFYING THE CELLULAR SOURCES FOR DE NOVO OSTEOBLAST FORMATION 

DURING FIN REGENERATION: CONTRIBUTION OF THE EPIDERMIS AND 

MESENCHYME  

After identifying bone surrounding tissues, epidermis and mesenchyme, as potential sources 

for newly formed osteoblasts in fins lacking mature osteoblast during caudal fin regeneration, 

a more thorough analysis was required. We proposed to access the importance and 

contribution of both populations using a combination of co-localization analysis and, more 

importantly, lineage tracing technology based on the binary tamoxifen-inducible Cre/LoxP-

system. Lineage tracing enables to irreversibly label these specific cell populations in a given 

time-window, allowing to fate map their progeny over time during regeneration (Carney and 

Mosimann 2018), thus being a crucial tool for the purpose of this work. 

2.1 Caudal fin stratified epidermis does not seem to contribute for de novo osteoblast 

formation during regeneration 

Following the previous results, we aimed to determine whether Runx2+ cells that arise at the 

outer bone surface, facing the caudal fin epidermis, after osteoblast ablation during 

regeneration, are derived from the epidermal tissue. We were particularly interested in the 

basal epidermal cell layer which is known to encompass basal keratinocytes with stem cell-

like properties (Lee et al. 2014; Chen et al. 2016a), thus being more easily prone to change cell 

fate and commit to the osteoblast lineage. We started by performing co-localization studies 

with an epidermal marker, p63, a key regulator of epidermal stratification and keratinocyte 

proliferation and differentiation (Mills et al. 1999; Yang et al. 1999a). osx:NTRo animals were 

incubated with DMSO (controls) or Mtz, and 24 hpa caudal fin longitudinal cryosections were 

immunostained for Runx2 and p63. This experiment revealed that either in a normal 

regenerating condition (Figure 43A and Ai) or in osteoblast depleted fins (Figure 43B and Bi), 

there is no co-localization between Runx2+Osx+ osteoblasts or Runx2+Osx- osteoprogenitors 

with p63, suggesting that the epidermis does not contribute to de novo osteoblast formation. 
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Figure 43: Newly formed osteoprogenitors at the interphase with the epidermal compartment do not have 
epidermal properties. Representative images of 24 hpa caudal fin longitudinal cryosections of osx:NTRo from (A) 
control animals and (B) animals subjected to Mtz treatment. Sections were immunostained for mCherry (to 
visualize osx expression, orange), p63 (a bona fide epidermal marker, green), Runx2 (preosteoblast/ 
osteoprogenitor marker, magenta) and counterstained for DAPI (nucleus, blue). In control caudal fins, the mature 
osteoblast population, Runx2+Osx+, that surround the bone surface adjacent to the epidermis, present no co-
localization with p63 (magnified panels in Ai). In caudal fins with ablated mature osteoblast, the osteoprogenitors 
Runx2+Osx-, that emerge near the bone surface next to the epidermal compartment, are not positive for the 
epidermal marker p63 (magnified panels in Bi). This suggests that newly formed osteoprogenitors that emerge 
at the epidermal site and epidermal cells have different cellular identities. hpa: hours post-amputation; dashed 
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white lines define the amputation plane; dashed boxes delimitate magnified panels Ai and Bi; dashed red lines 
delimitate the epidermal compartment; scale bars represent 50 µm or 10 µm in magnified panels in Ai and Bi. 

To further address a possible contribution of the caudal fin stratified epidermis, specifically 

the basal keratinocytes, to osteoblast formation in osteoblast depleted fins, we carried out 

transgenic lineage tracing experiments based on Cre/LoxP-system (Hans et al. 2009; 

Mosimann et al. 2011; Carney and Mosimann 2018). For that, we used a transgenic line that 

expresses the tamoxifen-inducible Cre recombinase under the control of a basal keratinocyte 

specific gene promoter, krtt1c19e, referred as krt19 (Fischer et al. 2014; Lee et al. 2014). We 

combine the krt19:CreERT2 line with a red-to-green switch line, the β-actin2:loxP-dsRed-

STOP-loxP>EGFP, referred to as β-actin2:RSG. If the inducible Cre is not activated by 

tamoxifen, this line expresses dsRed under the control of the β-actin2 promoter, but the 

expression changes to EGFP upon a successful recombination event mediated by tamoxifen 

administration. We started by testing the lineage tracing protocol for the basal keratinocytes 

fate mapping as previously described (Fischer et al. 2014). For that, we treated krt19:CreERT2; 

β-actin2:RSG embryos with tamoxifen (4-OHT) or its vehicle control (EtOH) from 24 to 96 hpf 

(Supplementary Figure 5A). After the incubation period, it is possible to observe that at 96 hpf 

krt19: CreERT2; β-actin2: RSG larvae incubated with 4-OHT, some basal layer cells from the 

embryonic epidermis were EGFP-positive, while in control larvae no EGFP was observed 

(Supplementary Figure 5B). These larvae were grown in the circulating system until adulthood 

and, at three to four months post fertilization animals previously treated with 4-OHT showed 

EGFP+ epidermal cluster/clones throughout the body axis, including the caudal fin. The 

appearance of clones rather than whole epidermis labelling can be explained by inefficient 

tamoxifen-mediated recombination, meaning that not all basal keratinocytes have undergone 

the switch (Supplementary Figure 5C and Cii). These clones have derived from the embryonic 

basal epidermal cells that were labelled after 4-OHT treatment, like previously described (Lee 

et al, 2014). Importantly, after performing caudal fin amputation in a region positive for these 

clones, we observed EGFP expression all over the regenerated area (Supplementary Figure 

5D). With this, we have shown that the protocol is suitable to analyse the contribution of the 

epidermis to the regenerative process. 

We then combined the lineage tracing procedure with the osteoblast ablation protocol (Figure 

44A), to evaluate the contribution of the epidermis for new osteoblast formation during 

regeneration, in an osteoblast ablation context. For that, we combined krt19: CreERT2; β-

actin2: RSG double transgenic with the osteoblast ablation line, generating krt19: CreERT2; β-

actin2: RSG; osx:NTRo triple transgenics. These animals were treated at larval stages with 4-

OHT and left to grow until adult stage. At this point, they were subject to the ablation protocol 

(Figure 41A) and incubated with either DMSO (control) or with Mtz. After the recovery period, 

caudal fins were amputated and left to regenerate until 72 hpa, stage of the regenerative 

outgrowth when many osteoblasts have already been formed and differentiated to create the 

new fin bony-rays (Figure 44A). We then performed cryosections of 72 hpa caudal fins from 
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control animals subjected to the epidermal fate-mapping but not to osteoblast ablation 

(krt19:CreERT2; β-actin2:RSG; osx:NTRo +4-OHT +DMSO) and animals subjected to both fate-

mapping and osteoblast ablation protocols (krt19:CreERT2; β-actin2:RSG; osx:NTRo +4-OHT 

+Mtz). These cryosections were immunostained for Runx2 (labels osteoblasts at several stages 

at this time-point), mCherry (labels osx expression) and EGFP (switched cells/clones) (Figure 

44B). This histological analysis confirmed that the labelling protocol enables to follow the 

progeny of single basal keratinocytes that generates permanent labelling, at full extent, of all 

stratified epidermis inside the clone region. Most importantly, independently of osteoblast 

ablation, no co-localization between the EGFP+ cell/clones and Runx2 or osx is observed, nor 

with other cell types within the regenerated fin (Figure 44B and magnified panels in B’ and 

B’’). This is in accordance with what has been demonstrated in previous lineage tracing 

experiments showing lineage restriction in the regenerating caudal fin (Tu and Johnson 2011). 

Our experiments have shown that the adult epidermis does not transdifferentiate into other 

cell types of the caudal fin upon amputation, and importantly, it does not seem to contribute 

to new osteoblast formation even in osteoblast depleted caudal fins, which had not been 

addressed yet. 
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Figure 44: Assessing the contribution of the epidermis as a potential source of de novo osteoblast formation 

after mature osteoblast ablation during regeneration. (A) Schematic representation of the experimental setup 

used to perform genetic fate mapping of the caudal fin epidermal tissue. For that, triple transgenic animals that 

allow both epidermal specific lineage tracing, using the CreERT2/loxP system, and specific osteoblast ablation, 

using the NTR/Mtz system, were obtained: krt19:CreERT2; β-actin2:dsRed>EGFP; osx:NTRo, referred as 

krt19:CreERT2; β-actin2:RSG; osx:NTRo. Embryos with 24 hpf were incubated with 4-OHT for 3 consecutive days, 

to promote basal epidermal cells permanent labelling (from red to green). Afterwards, larvae were allowed to 

grow in the circulating system until reaching adulthood. Animals with the strongest fin clones were then 

subjected to the osteoblast ablation protocol, represented in Figure 41A, and caudal fins subsequently 

amputated. 72 hpa caudal fins were collected for imaging or for cryosectioning. (B) Representative images of 72 

hpa caudal fin longitudinal cryosections of krt19:CreERT2; β-actin2:RSG; osx:NTRo triple transgenic animals 

previously subjected to basal epidermal cell labelling during larval stages and incubated with vehicle DMSO (4-

OHT, +DMSO) or with Mtz (4-OHT, +Mtz treatment). Cryosections were immunostained for mCherry (labelling 

both osx expressing cells and the switch line (which is labelling all cells, β-actin2: RSG, yellow)), for GFP (labels 

the progeny of the basal epidermal cells that have undergone the genetic switch, green), Runx2 (preosteoblast/ 

osteoprogenitor marker, magenta) and counterstained for DAPI (nucleus, blue). Non-ablated +4-OHT (magnified 

panels in B’) and ablated +4-OHT (magnified panels in B’’) animals do not present co-labelling between EGFP 

positive cells and osx or Runx2. This indicates that epidermal cells do not seem to contribute to the osteoblast 

lineage, in both normal and osteoblast ablation regenerative conditions. dba: days before amputation, hpa: 

hours post-amputation, hpf: hours post-fertilization; e: epidermis, m: mesenchyme; dashed white lines define 

the amputation plane; dashed boxes delimitate magnified panels B’ and B’’; dashed red lines delimitate the 

epidermal compartment; scale bars represent 200 µm or 10 µm in magnified panels in B’ and B’’. 

2.2 Caudal fin mesenchymal tissue may contribute for de novo osteoblast formation 

during regeneration 

It is known that in mammalian systems osteoprogenitors arise from mesenchymal stem cells 

(MSC) (Bielby et al. 2007; Chen et al. 2016b). Since there are no bona fide MSC in the caudal 

fin, the most similar cell type is the intraray fibroblasts. Given this, we decided to determine 

whether Runx2+ osteoprogenitors, that emerge adjacent to the bone matrix in the inner 

mesenchymal compartment after osteoblast ablation, are derived from the intraray 

mesenchymal fibroblasts. We began by performing co-localization studies using a reporter line 

generated in our lab (Mateus et al. 2015) that allows to visualize the expression of connective 

tissue growth factor a (ctgfa), ctgfa:EGFP, a reporter for the mesenchymal cells that respond 

and contribute to the regenerative process (Pfefferli and Jaźwińska 2017). In fact, recent data 

demonstrated that the ctgfa:EGFP reporter does not match ctgfa endogenous expression, but 

contains a ctgfa regulatory upstream element that is regulated and activated in an unique 

manner in the peri-injury mesenchymal cells of the caudal fin, being designated as careg (ctgfa 

reporter in regeneration) (Pfefferli and Jaźwińska 2017). We combined the osteoblast ablation 

line with ctgfa:EGFP, generating ctgfa:EGFP; osx:NTRo double transgenics, and subjected 

them to the osteoblast ablation protocol shown in Figure 41A. These animals were incubated 

with DMSO (controls) or with Mtz, left to recover and caudal fins amputated and collected at 

24 hpa, time-point at which osteoprogenitors are already formed and accumulated near the 

amputation region. 24 hpa caudal fin longitudinal cryosections were immunostained with 
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Runx2 (osteoprogenitor marker), mCherry (visualize osx expression and confirm osteoblast 

presence) and EGFP (visualize ctgfa expression). In both controls (DMSO) and in Mtz treated 

caudal fins, it is possible to notice that the ctgfa is upregulated in the mesenchymal 

compartment just below the amputation plane (Figure 45A and B, respectively). Additionally, 

in the control situation, we observe a clear co-localization between the differentiated/mature 

osteoblast population, Runx2+Osx+, with ctgfa:EGFP in both the outer (Figure 45A, magnified 

panel of region e) and inner (Figure 45A, magnified panel of region m) osteoblast layer 

surrounding the bone surface, demonstrating that mature osteoblasts express ctgfa during 

regeneration. Since ctgfa is triggered in mesenchymal cells that respond and contribute to the 

regenerative process (Pfefferli and Jaźwińska 2017), this may indicate that osteoblasts retain 

mesenchymal properties, which is in accordance with their ontogeny (mesenchymal origin) 

(Lee et al. 2013). In contrast to the control condition, in Mtz treated animals, only the new 

osteoprogenitors, Runx2+Osx-, that arise near the inner bone surface in the mesenchyme are 

positive for ctgfa:EGFP (Figure 45B magnified panels of the m region), while the Runx2+Osx- 

osteoprogenitors that arise at the outer bone surface facing the epidermis are not (Figure 45B 

magnified panels of the e region). This may indicate that these early outer and inner 

osteoprogenitors have different origins or that they have different properties and/or 

functions during bone regeneration, possibly comprising two distinct osteoblast populations 

that emerge in osteoblast depleted fins during the regenerative process. 
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Figure 45: Newly formed osteoprogenitors seem to have different mesenchymal properties in osteoblast 
depleted caudal fins. Representative images of 24 hpa caudal fin longitudinal cryosections of osx:NTRo; 
ctgfa:EGFP double transgenics subjected to vehicle DMSO (controls) (A) and to Mtz treatment (B). Cryosections 
were immunostained for mCherry (to visualize osx expression and confirm osteoblast presence, yellow), GFP (to 
visualize ctgfa expression, which is labelling caudal fin mesenchymal cells, green), Runx2 (preosteoblast/ 
osteoprogenitor marker, magenta) and counterstained for DAPI (nucleus, blue). (A) We can observe that in 
control caudal fins, both mature osteoblasts populations that surround the bone, adjacent to the epidermis 
(magnified panels in e) or in the mesenchymal side (magnified panels in m), there is a co-localization between 
osx and Runx2 with ctgfa. (B) In caudal fins subjected to the osteoblast ablation protocol shown in Figure 40A, 
only the osteoprogenitors (Runx2+) that emerge near the bone surface in the inner mesenchymal compartment 
(magnified panels in m) are positive for the mesenchymal marker ctgfa. In contrast, the Runx2+ progenitors that 
appear next to the epidermal side are negative for this marker (magnified panels in e). Arrows point to 
Runx2+Ctgfa- osteoprogenitors that emerge at the bone interphase with the epidermis; Arrowheads point to 
double positive Runx2+Ctgfa+ osteoprogenitors that emerge at the bone interphase with the mesenchyme. hpa: 
hours post-amputation; dashed lines define the amputation plane; dashed boxes delimitate magnified panels e 
and m; scale bars represent 50 µm or 10 µm in magnified panels in the epidermis (e) and in the mesenchyme 
(m). 
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To confirm that the caudal fin intraray mesenchymal tissue contributes to osteoblast 

formation in osteoblast depleted fins, we carried out lineage tracing of these cells using the 

inducible Cre /LoxP-system (Hans et al. 2009; Mosimann et al. 2011; Carney and Mosimann 

2018). For that, we used a transgenic line with a tamoxifen-dependent Cre recombinase driven 

by the careg regulatory sequence, careg:CreERT2, together with the β-actin2:RSG line. We 

started by addressing whether the previously reported protocol for permanent fin 

mesenchyme labelling (Pfefferli and Jaźwińska 2017) was working in our experimental setup, 

given that we had to perform this experiment using a different switch line. Since the careg 

regulatory elements are only activated upon damage/injury, we amputated the 

careg:CreERT2; β-actin2:RSG transgenic fish in order to induce expression of Cre. Then, we 

gave a one-day pulse of 4-OHT or EtOH (control) from 0 to 24 hpa and monitored EGFP 

expression during regeneration (Supplementary Figure 6A). Live-imaging analysis of 48 hpa 

caudal fins from controls did not reveal any labelling (Supplementary Figure 6B and magnified 

panels from B’-B’’’). On the contrary, animals incubated with 4-OHT showed multiple 

scattered EGFP-positive cells (Supplementary Figure 6B and magnified panels from Bi-Biii). 

However, we were never able to obtain the highly efficient and strong labelling throughout 

the regenerated area shown in the previously reported study (Pfefferli and Jaźwińska 2017). 

The defective labelling could be explained by differences in the loxP reporter transgenic used 

to detect Cre-mediated recombination in ctgfa expressing cells. Due to technical 

incompatibilities, we were not able to use the ubiquitin:loxP-EGFP-STOP-loxP-mCherry 

(ubi:switch) employed in the mentioned study (Pfefferli and Jaźwińska 2017). Alternatively, 

we had to resort to the β-actin2: RSG that may account for the lower efficiency in reporting 

Cre recombination events. Despite the low labelling efficiency, we decided to continue with 

our experiments using this setup. 

After validating the experimental setup, we then combined the mesenchyme lineage tracing 

procedure with the osteoblast ablation protocol and evaluated the contribution of the 

mesenchymal fibroblasts for new osteoblast formation upon caudal fin amputation, in the 

osteoblast ablation context. For that, we combined the careg: CreERT2; β-actin2: RSG double 

transgenic with the osteoblast ablation line, generating careg:CreERT2; β-actin2:RSG; 

osx:NTRo triple transgenics. We began by inducing osteoblasts ablation, incubating the 

animals with DMSO (controls) or with Mtz for one day. After the recovery period, fish were 

subjected to caudal fin amputation and exposed to 4-OHT during the first day following 

amputation. Caudal fins were imaged at 72 hpa, when we already have an extensive newly 

formed osteoblast population, following immunofluorescence analysis in longitudinal 

cryosections of these fins (Figure 46A). We can observe that in both triple transgenics from 

control (DMSO) +4-OHT and Mtz treated +4-OHT 72 hpa caudal fins the presence of scattered 

EGFP-positive cells throughout the regenerated area (Figure 46B). These EGFP-positive cells 

derive from the pre-existing mesenchymal cells of the stump region, which were labelled in 

the first day post-amputation. Cryosections of these fins immunostained for EGFP (to visualize 
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the cells/clones that undergone the switch, green), mCherry (labels osx expression, orange) 

and Runx2 (labels osteoblasts at several stages at this time-point, magenta), show that in both 

control (DMSO) +4-OHT and Mtz +4-OHT treated animals there are mesenchymal cells (white 

arrowheads) and blood vessels (white arrow) positive for EGFP (Figure 46C and magnified 

panels in C’ and Ci). However, only in the osteoblast ablation context we were able to observe 

some epidermal cells presenting EGFP labelling (Figure 46C and magnified panels in Ci, blue 

arrowheads) and osteoblasts from the regenerate, Runx2+Osx+, co-labelling with EGFP (Figure 

46C and magnified panels in Ci, magenta arrowheads). Nonetheless, more experiments are 

required to further confirm these results, given the low efficiency of the labelling. So far, our 

results suggest that in normal regenerating conditions the mesenchymal cells give rise to the 

mesenchymal cells of the regenerate, like what was previously described (Tu and Johnson 

2011; Pfefferli and Jaźwińska 2017), and that in the osteoblast depleted fins the stump 

mesenchyme could also be responsible for de novo osteoblast formation and compensate for 

the lack of mature osteoblasts. 
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Figure 46: Assessing the contribution of the mesenchyme as a potential source of de novo osteoblast formation 
after mature osteoblast ablation during regeneration. (A) Schematic representation of the experimental setup 
used to perform genetic fate mapping of the caudal fin mesenchymal tissue. Triple transgenic animals that allow 
caudal fin mesenchymal specific lineage tracing, using the CreERT2/loxP system, and specific osteoblast ablation, 
using the NTR/Mtz system, were obtained: careg:CreERT2; β-actin2:dsRed>EGFP; osx:NTRo, referred as 
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careg:CreERT2; β-actin2:RSG; osx:NTRo. Animals were exposed to control (DMSO) or Mtz treatment for 
osteoblast ablation, as represented in Figure 41A. After recovery, animals were subjected to caudal fin 
amputation and incubated with 4-OHT from 0 to 24 hpa. Fins were collected at the desired time-point after 
amputation for imaging or later processing. (B) Representative images of triple transgenics subjected either to 
DMSO (control) or Mtz and both to 4-OHT. It is possible to observe that in both conditions some mesenchymal 
cells were permanently labelled during the first day after amputation and contributed to the regenerative 
process. (C) Representative images of 72 hpa caudal fin longitudinal cryosections shown in panel B 
immunostained for GFP (labels the progeny of the mesenchymal cells that have undergone the genetic switch 
post-amputation, green), mCherry (labels both osx expressing cells and the switch line (which is labelling all cells, 
β-actin2: RSG), yellow), Runx2 (preosteoblast/ osteoprogenitor marker, magenta) and counterstained for DAPI 
(nucleus, blue). In animals from both conditions, control (DMSO) +4-OHT (magnified panels in C’) or Mtz 
treatment +4-OHT (magnified panels in Ci) groups, it was possible to observe that most of the EGFP-positive cells 
were mesenchymal fibroblasts, given their location and more spread shape (arrowheads in magnified panels in 
C’ and Ci), including EGFP+ in blood vessels (arrow in magnified panel in C’). In the osteoblast ablation condition, 
it was also possible to observe few EGFP+ cells in the epidermal compartment (blue arrowheads in magnified 
panel in Ci) and EGFP+ co-localizing with Runx2+Osx+ differentiating osteoblasts (magenta arrowheads in 
magnified panel in Ci). This indicates that caudal fin mesenchymal cells can contribute to de novo osteoblast 
formation in osteoblasts depleted fins. Dba: days before amputation, Hpa: hours post-amputation, e: epidermis, 
m: mesenchyme; dashed white lines define the amputation plane; dashed boxes delimitate magnified panels C’ 
and Ci; scale bars represent 500 µm in B panels and 200 µm in C or 10 µm in magnified panels in C’ and Ci. 

2.3 Col10a1 may define a pool of osteogenic precursors located in the fin 

intersegment/joint regions of the caudal fin 

One of the main aims of this project was to identify alternative sources of osteoblasts that 

may emerge during regeneration of fins lacking osteoblasts. So far, we have identified 

osteoprogenitors that arise at the interphase between the bone surface and the surrounding 

tissues, through the presence of Runx2. In addition, we have also found that at least some of 

these cells derived from mesenchymal fibroblasts. The next step would be to perform targeted 

ablation of these progenitors and further defy the intrinsic plasticity of the system, evaluating 

the relative contribution and significance of this osteoprogenitor population. Therefore, we 

searched for other markers that could specifically label these osteoprogenitors prior to Runx2 

appearance. We found that in medaka the col10a1:nlGFP reporter line labels putative 

osteoblast precursors (Renn et al. 2013). We hypothesised that in zebrafish this could also be 

the case and generated a transgenic zebrafish reporter line using the same col10a1:nlGFP 

construct which we called Tg(Ola.col10a1:nlGFP), referred to as col10a1:nlGFP 

(Supplementary Figure 7A). This transgenic line mimics the expression pattern of col10a1 at 

larval stages (Li et al, 2009; Yong-II et al 2013), with several craniofacial skeletal structures 

positive for GFP at 72 hpf (Supplementary Figure 7B and magnified panels in Bii). In the 

col10a1: nlGFP adult caudal fin, expression can be observed in the intersegment/joint regions 

(Supplementary Figure 7C and arrowheads in magnified panels in Cii) and also delineating the 

bone segment (Supplementary Figure 7C and asterisks in magnified panels in Cii). Next, we 

evaluated in more detail the exact pattern of expression of this reporter line in non-

manipulated caudal fins and in fins subjected to the osteoblast ablation protocol. For that, we 

combined our col10a1:nlGFP line with the osteoblast ablation line, generating col10a1:nlGFP; 

osx:NTRo double transgenics. Double transgenics were either incubated with DMSO (control) 
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or with Mtz. After the recovery period we collected uncut (non-regenerating) fins and 

monitored the behaviour of the reporter line right after the ablation procedure, through the 

analysis of longitudinal cryosections by immunofluorescence against mCherry (to visualize osx 

expression and confirm correct osteoblast ablation), GFP (to visualize col10a1 expression) and 

Runx2 (to label osteoprogenitors) (Figure 47). In control uncut caudal fin cryosections, it is 

possible to observe that indeed col10a1 is expressed in a subset of cells that populate the 

intersegment/joint region (Figure 47A and regions delimitated with dashed orange lines in 

magnified panels of Ai). In addition, col10a1 is also expressed by the osteoblasts that surround 

the outer bone surface, facing the epidermis (Figure 47A and white arrowheads in magnified 

panels of Ai), but not by the inner osteoblasts layer facing the mesenchymal compartment 

(Figure 47A and red arrowheads in magnified panels of Ai). Although the col10a1:nlGFP 

transgenic was supposed to have nuclear GFP, fluorescence is also visible in the cytoplasm due 

to inefficient targeting to the nucleus, a problem that was also observed in the medaka 

transgenic line since the construct is the same (Renn et al. 2013). In the ablation context we 

can notice that, in the uncut condition, the group of cells that reside in the intersegment/joint 

region seems to have expanded in size, suggesting a response triggered by osteoblast ablation 

(Figure 47B and regions delimitated with dashed orange lines in magnified panels of Ai and 

Bi). Additionally, and in contrast to controls, col10a1 is also upregulated in the basal epidermal 

cells, which have a more cuboidal appearance (Figure 47B and arrows in magnified panels of 

Bi), and in some Runx2+ osteoprogenitors (more flattened cells) that emerge between the 

bone matrix and the basal epidermal layer (Figure 47B and magnified panel B’). Interestingly, 

more recently, a study demonstrated the presence of a pool of cells that reside in the 

intersegment/joint regions of the caudal fin, referred as being resident osteoprogenitor cells. 

These cells are identified by the expression of the matrix metalloproteinase 9 (mmp9) gene 

and by the absence of intermediate/immature osteoblast markers, such as osx. Joint-

associated osteoprogenitors have been demonstrated to be a complementary source of 

osteoblasts in regenerating fins after amputation since their ablation leads to a reduction in 

the number of newly formed osteoblasts in the regenerate (Ando et al. 2017). However, in 

this study, the contribution of these cells in an osteoblast ablation condition was not 

addressed. Given that our col10a1:nlGFP transgenic line is expressed in a restricted subset of 

cells at the intersegment/joint region that also does not express osx (Figure 47A and B), this 

indicates that our col10a1:nlGFP line is potentially labelling this pool of resident 

osteoprogenitors. Overall, this suggests that col10a1 is expressed in osteoprogenitors in the 

intersegment region and that the col10a1 reporter could be a good tool to study the dynamics 

of these cells during regeneration. This transgenic line also revealed a very interesting 

response by other tissues after osteoblast ablation, in a non-regenerating condition. In this 

context, basal keratinocytes and some Runx2+ osteoprogenitors that emerge in the outer 

bone surface upregulate col10a1.  
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Figure 47: col10a1:nlGFP labels possible osteoblast precursors localised in the intersegment/joint region of the 
caudal fin. (A and B) Representative images of uncut caudal fin longitudinal cryosections of col10a1:nlGFP; osx: 
NTRo double transgenic animals subjected to vehicle DMSO (control) (A) or to Mtz incubation (B). Cryosections 
were immunostained for GFP (to visualize putative osteoprogenitors or other osteoblast precursors, green), 
mCherry (to visualize osx expression and confirm correct osteoblast ablation, red), Runx2 (preosteoblast/ 
osteoprogenitor marker, magenta, only shown in B’) and counterstained for DAPI (nucleus, blue). (A) In the 
control condition, col10a1 is expressed in the osteoblast population (Osx+) at the bone surface facing the 
epidermis (white arrowheads in magnified panels of Ai), but not in the inner osteoblast layer facing the 
mesenchyme (red arrowheads in magnified panels of Ai) and in the niche of potential osteoblast precursors 
localized in the joint region (regions delimitated with dashed orange lines in magnified panels of Ai). (B) In Mtz 
treated animals, Osx+ osteoblasts were ablated and col10a1 expression is now observed in the basal epidermal 
cells (cuboid cells, examples are shown in magnified panels of Bi with arrows), in the putative osteoblast 
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precursor niche, that seems to expand upon ablation (regions delimitated with dashed orange lines in magnified 
panels of Bi) and also in a few osteoprogenitors, Runx2+, that have emerged after ablation (magnified panels of 
B’). This indicates that col10a1 could be used as a potential tool to study sources for de novo osteoblast formation 
when the mature population is compromised. hpa: hours post-amputation, e: epidermis, m: mesenchyme; 
dashed white lines define the amputation plane; dashed boxes delimitate magnified panels; scale bars represent 
50 µm and 40 µm in magnified panels in Ai and Bi and 5 µm in magnified panels in B’. 

3 UNRAVELLING THE MOLECULAR MECHANISM BEHIND DE NOVO OSTEOBLAST 

FORMATION DURING CAUDAL FIN REGENERATION: THE ROLE OF RA AND BMP 

SIGNALLING 

Another important point that we have investigated during the course of this work, was to 

understand the molecular mechanism that regulates osteoblast formation during 

regeneration when the mature population is absent. Until now, we have focused our work in 

unravelling the cellular mechanisms that are put together to ensure proper osteoblast 

formation when the mature population is compromised. Nevertheless, the molecular 

mechanisms that trigger and regulate the commitment of other cell sources towards the 

osteoblast lineage are of equal importance, specifically when the system cannot rely on the 

dedifferentiation of lineage committed osteoblast and these cells have to be formed de novo. 

In fact, the osteoblast ablation context is a good system to further understand the molecular 

cascade that governs osteoblastogenesis in vivo. Thus, we aimed to investigate which 

signalling pathways could be important to regulate de novo osteoblast formation during 

regeneration in the context of mature osteoblast ablation. Several signalling pathways have 

been implicated in regulating the commitment of MSC to the osteoblast lineage in mammalian 

systems. Bmp, Wnt, RA, Notch and Hedgehog signalling pathways are known important 

players in this process (Deng et al, 2008; Long, 2012; Beederman et al, 2013; Hu et al, 2018). 

In the next two sections, we report the potential role of RA and Bmp signalling in regulating 

de novo osteoblast formation during caudal fin regeneration.  

3.1 RA signalling is active in osteoprogenitors and seems to be required for their 

formation in osteoblast depleted fins during fin regeneration 

RA signalling has been shown to be a key player in directly regulating osteoblast formation 

and commitment in mammals and other teleost fish (Renn and Winkler 2012; Green et al. 

2017). Most importantly, this signalling pathway also mediates several aspects of blastema 

formation during zebrafish caudal fin regeneration (Blum and Begemann 2012) and osteoblast 

dedifferentiation and redifferentiation (Blum and Begemann 2015b). To address whether RA 

signalling could have a role in de novo osteoblast formation during regeneration of osteoblast 

depleted fins, we began by performing co-localization studies with the transgenic line 

TgBAC(aldh1a2:aldh1a2-GFP)kn2, referred as aldh1a2:GFP, that reports the expression of the 

RA synthesizing-enzyme aldh1a2 (Pittlik and Begemann 2012). The aldh1a2 gene encodes a 

retinaldehyde dehydrogenase that provides the major source of cellular RA. Therefore, we 
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combined the aldh1a2:GFP with the osteoblast ablation line and incubated the double 

transgenic animals with DMSO (controls) or with Mtz. Following the ablation protocol, animals 

were subjected to caudal fin amputation, left to regenerate for one day (24 hpa) and the tissue 

was subsequently collected for analyses by immunofluorescence in longitudinal cryosections. 

We choose to analyse this time-point because there is already a considerable amount of 

osteoprogenitors accumulated in the stump region that can be easily monitored. At 24 hpa in 

both control and Mtz treated animals, aldh1a2 is expressed throughout the intraray 

compartment in blood vessels, nerves and in fibroblast-like cells (Figure 48A and B). Given the 

wide range of cell types expressing aldh1a2, it is difficult to clearly observe if it is being 

expressed in mature osteoblasts or in osteoprogenitors that reside or emerge in the intraray 

compartment. Therefore, we focused this analysis on the outer osteoblast layer surrounding 

the bone matrix (dashed boxes in Figure 48A and B). In control fins, we noticed that the mature 

osteoblast (Runx2+Osx+) population, at the interphase with the bone matrix and the 

epidermis, has a poor co-localization with GFP-expressing cells and, when co-localization is 

observed, EGFP expression is very low (Figure 48A and arrows pointing to examples in 

magnified panels in Ai and A’). This result was somewhat expected since RA signalling has been 

shown to be downregulated in mature osteoblasts that are undergoing dedifferentiation 

(Blum and Begemann 2015b). In contrast, in Mtz treated animals, newly formed Runx2+Osx- 

progenitors that emerged at the outer bone surface show intense aldh1a2 expression (Figure 

48B, arrowheads point to examples in magnified panels in Bi and B’ of Runx2+ cells co-

localizing with GFP) and thus potentially increasing RA signalling. 
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Figure 48: Retinoic acid signalling is active in newly formed osteoprogenitors in osteoblast depleted caudal fins 
after amputation. (A and B) Representative images of 24 hpa caudal fin longitudinal cryosections of aldh1a2: 
GFP; osx:NTRo double transgenic animals subjected to vehicle DMSO (control) (A, Ai and A’) or Mtz treatment (B, 
Bi and B’). Cryosections were immunostained for mCherry (to visualize osx expression and confirm correct 
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osteoblast ablation, orange), GFP (to monitor activated RA signalling, green), Runx2 (preosteoblast/ 
osteoprogenitor marker, magenta) and counterstained for DAPI (nucleus, blue). In the control condition (A, Ai 
and A’), aldh1a2 is expressed mainly in the mesenchymal compartment, associated with the blood vessels, 
nerves and mesenchymal cells (A). At this time-point, aldh1a2 is also excluded from Runx2+Osx+ osteoblasts that 
are at the bone surface facing the epidermis (arrows in magnified panels of Ai and A’). In animals subjected to 
osteoblast ablation (B, Bi and B’), aldh1a2 is also expressed in the mesenchymal compartment in the blood 
vessels, nerves and fibroblast-like cells (B). In addition, aldh1a2 becomes clearly upregulated in the Runx2+ 
osteoprogenitors that are formed de novo upon amputation (arrowheads in magnified panels of Bi and B’). This 
reveals that RA signalling could be an important pathway necessary to generate new osteoprogenitors in 
osteoblast depleted caudal fins during regeneration. hpa: hours post-amputation, e: epidermis, m: mesenchyme; 
dashed white lines define the amputation plane; dashed boxes delimitate magnified panels; scale bars represent 
50 µm and 10 µm in magnified panels in A’, Ai, B’ and Bi. 

To evaluate whether RA signalling is required for proper osteoprogenitor formation in 

osteoblast ablated caudal fins during regeneration, we set out to reduce RA levels via 

overexpression of the RA-degrading enzyme cyp26a1, using the heat-shock inducible 

transgenic line Tg(hsp70l:cyp26a1)kn1, referred as hsp70I:cyp26a1 (Blum and Begemann 

2012). We crossed the hsp70I:cyp26a1 with the osx:NTRo ablation line and performed the 

ablation protocol. Fish were allowed to recover and subsequently subjected to RA 

manipulation protocol by giving a 1 h single heat-shock just prior to amputation (Figure 49A). 

The hsp70I:cyp26a1; osx:NTRo double transgenics were thus divided into four main groups 

according to the procedures that they were exposed to: without Mtz treatment and without 

HS (Mtz- HS-); without Mtz treatment and with HS (Mtz- HS+), to check the effect of impaired 

RA signalling in the mature osteoblast population; treated with Mtz and without HS (Mtz+ HS-

); and treated with Mtz and with HS (Mtz+ HS+), to address the role of RA signalling during de 

novo osteoprogenitor formation in fins lacking mature osteoblasts. These animals were 

allowed to regenerate for 24 hpa when osteoprogenitor formation can be monitored, and fins 

were collected and cryosectioned for immunofluorescence assays to label the different 

osteoblast populations, mature osteoblasts (Runx2+Osx+) and osteoprogenitors (Runx2+Osx-). 

When comparing Mtz-HS- with Mtz-HS+, to address the effect of RA signalling impairment in 

a non-ablation situation, we observed no differences either in the number of mature 

osteoblasts (Runx2+Osx+) (Figure 49B and C) or in the number of Runx2+Osx- progenitors that 

emerge in the non-ablation context (Figure 49B and D). Conversely, when we compare 

Mtz+HS- with Mtz+HS+ group, to address the effect of impairing RA signalling in osteoblast 

depleted situation, we observed that RA inhibition leads to a clear reduction in the number of 

osteoprogenitors Runx2+Osx-  formed (Figure 49B and D). 

The evidences described above, the upregulation of aldh1a2 in Runx2+ osteoprogenitors as 

well as the decrease in the number of this population when RA signalling is decreased, 

supports the hypothesis that indeed RA signalling may have a role in the formation and 

commitment of newly formed osteoblasts after mature osteoblast ablation in regenerating 

caudal fins. 
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Figure 49: Requirement of retinoic acid signalling for de novo osteoblast formation in osteoblast depleted fins 
during caudal fin regeneration. (A) Schematic representation of the experimental setup used to perform 
functional manipulation of RA signalling and address the function of this pathway for de novo osteoblast 
formation. We combined the osteoblast ablation line, osx:NTRo, with a heat-shock (HS) inducible transgenic line 
that expresses cyp26a1 (RA degrading enzyme) upon HS, osx:NTRo; hsp70l:cyp26a1. Double transgenic animals 
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were either incubated with Mtz or control DMSO (vehicle), following the ablation protocol shown in Figure 41A. 
After recovery fish were either subject or not to HS, HS+ and HS-, respectively, and divided in four main groups: 
controls without Mtz and without HS (Mtz- HS-); controls without Mtz and with HS (Mtz- HS+); treated with Mtz 
and without HS (Mtz+ HS-); and treated with Mtz and with HS (Mtz+ HS+). Fish were then immediately subjected 
to caudal fin amputation and fins collected at 24 hpa for tissue imaging and subsequent processing. (B) 
Representative images of 24 hpa caudal fin longitudinal cryosections of osx:NTRo; hsp70l:cyp26a1 double 
transgenic animals from the groups described above. Cryosections were immunostained for mCherry (to visualize 
osx expression and confirm correct osteoblast ablation, green), Runx2 (preosteoblast/ osteoprogenitor marker, 
magenta) and counterstained for DAPI (nucleus, blue). This shows that RA signalling manipulation does not affect 
the mature osteoblast population nor the Runx2+ osteoprogenitors that are formed in normal regenerating fins, 
but it might be required for proper de novo osteoblast formation after osteoblast ablation. (C) Graph showing 
the quantification of mature osteoblast (Runx2+Osx+) at 24 hpa for all experimental groups; bars on graph 
correspond to total number of Runx2+Osx+ cells normalized to total fin area and statistical analysis corresponds 
to Mann-Whitney test with Mean ± SD displayed (Mtz- HS- : n= 19 bony-rays compiled from 4 fish; Mtz- HS+ : n= 
15 bony-rays compiled from 4 fish; Mtz+ HS- : n= 15 bony-rays compiled from 4 fish; Mtz+ HS+ : n= 20 bony-rays 
compiled from 5 fish). (D) Graph showing the quantification of osteoprogenitors (Runx2+Osx-) at 24 hpa for all 
experimental groups; bars on graph correspond to total number of Runx2+Osx+ cells normalized to total fin area 
and statistical analysis corresponds to Mann-Whitney test with Mean ± SD displayed (Mtz- HS- : n= 19 bony-rays 
compiled from 4 fish; Mtz- HS+ : n= 15 bony-rays compiled from 4 fish; Mtz+ HS- : n= 15 bony-rays compiled from 
4 fish; Mtz+ HS+ : n= 20 bony-rays compiled from 5 fish). dba: days before amputation; hpa: hours post-
amputation, e: epidermis, m: mesenchyme; arrowheads define the amputation plane; scale bars represent 50 
µm; ** p< 0.01, ns: non-significant. 

3.2 Bmp signalling is activated in newly formed osteoprogenitors and seems to be 

required for their formation in normal and in osteoblast depleted fins during 

regeneration  

Bmp signalling is one of the most important regulators of osteoblast formation during 

development, bone remodelling and repair during fracture healing in mammalian systems 

(Valcourt and Moustakas 2005; Kamiya and Mishina 2011; Beederman et al. 2013; Wu et al. 

2016). Additionally, there are also many studies implicating Bmp signalling during the 

outgrowth and patterning phase of caudal fin regeneration (Quint et al. 2002; Smith et al. 

2006; Stewart et al. 2014; Thorimbert et al. 2015; Wehner and Weidinger 2015). However, its 

role and requirement for de novo osteoblast formation during caudal fin regeneration, after 

mature osteoblast ablation, has never been tested.  

Therefore, to address Bmp signalling activation, we began by performing co-localization 

studies with a previously tested antibody (Stewart et al. 2014) for active Smad1, 5, and 8 

(pSmad1/5/8) (Stewart et al. 2014), also used in the previous Chapter IV. For that, we analysed 

osx:NTRo fins at 24 hpa , time-point at which we can easily evaluate osteoprogenitor 

formation, exposed to either DMSO (control) or to Mtz, with antibodies against pSmad1/5/8 

(to monitor activated Bmp signalling), Runx2 (to label osteoprogenitors) and mCherry (to 

visualize osx expression and proper osteoblast ablation). We observed that in a control 

situation (Figure 50A and A’), nuclear pSmad1/5/8 is present in mature osteoblasts 

Runx2+Osx+ (Figure 50A and white arrowheads in magnified panels of A’), osteoprogenitors 

Runx2+Osx- (Figure 50A and arrows in magnified panels of A’) and in basal epidermal cells 

(Figure 50A and green arrowheads in magnified panels of A’). In the Mtz treated animals 

(Figure 50B and B’), nuclear pSmad1/5/8 is only observed in some of the newly formed 
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osteoprogenitors, Runx2+Osx- (Figure 50B and arrows in magnified panels in B’), and in the 

basal epidermal cells (Figure 50B and green arrowheads in magnified panels in B’). 

 

Figure 50: Bmp signalling is active in newly formed osteoprogenitors in normal regenerating condition and 
during regeneration in osteoblast depleted caudal fins. (A and B) Representative images of 24 hpa caudal fin 
longitudinal cryosections of osx:NTRo transgenic animals subjected to DMSO vehicle (control) (A and A’) or to 
Mtz incubation (B and B’). Cryosections were immunostained for mCherry (to visualize osx expression and 
confirm correct osteoblast ablation, orange), pSmad1/5/8 (to monitor activated Bmp signalling, green), Runx2 
(preosteoblast/ osteoprogenitor marker, magenta) and counterstained for DAPI (nucleus, blue). In the control 
condition (A and A’), active Bmp signalling, visualised through nuclear localized pSmad1/5/8, is mainly observed 
in the basal epidermal layer (green arrowheads in A’), in Runx2+Osx+ osteoblasts (white arrowheads in A’) and in 
Runx2+Osx- osteoprogenitors (white arrows in A’). In osteoblast ablation condition (B and B’), active Bmp 



Chapter V – Results 

 

183 

signalling is also seen in the basal epidermal cells (green arrowheads in B’) and in some Runx2+Osx- 
osteoprogenitors (white arrows in B’). This reveals that Bmp signalling could be an important pathway necessary 
to generate new osteoprogenitors during regeneration, particularly in the context of osteoblast depleted caudal 
fins. hpa: hours post-amputation, e: epidermis, m: mesenchyme; dashed white lines define the amputation 
plane; dashed boxes delimitate magnified panels A’ and B’; scale bars represent 50 µm and 20 µm in magnified 
panels in A’ and B’. 

Consequently, we carried out assays to address the significance of active Bmp signalling in 

osteoblast depleted caudal fins during regeneration. We blocked Bmp signalling in osx:NTRo 

transgenic animals, subjected to the osteoblast ablation protocol, using a Bmp receptor 

inhibitor (Bmpri). After the recovery period, osx:NTRo transgenic animals were subjected to 

caudal fin amputation and exposed to the Bmpr inhibitor (BMPRi+) or to the vehicle (DMSO, 

BMPRi-) during one-day (Figure 51A). Fish were divided into four major groups according to 

the experimental setup and to the treatments that they were exposed to: without Mtz and 

without BMPRi (Mtz- BMPRi-); without Mtz and with BMPRi (Mtz- BMPRi+) to address the role 

of BMP signalling without compromising the mature osteoblast population; with Mtz and 

without BMPRi (Mtz+ BMPRi-); and with Mtz and with BMPRi (Mtz+ BMPRi+), to address the 

role of BMP signalling during de novo osteoblast formation in osteoblast depleted fins. Fins 

were allowed to regenerate and collected at 24 hpa for histological analysis (Figure 51A). 

When we compared Mtz-BMPRi- with Mtz-BMPRi+, to address the effect of inhibiting Bmp 

signalling in a control situation during regeneration, we observed no differences in the number 

of mature osteoblasts (Runx2+Osx+) (Figure 51B and C) however, there is a significant decrease 

in the number of Runx2+Osx- progenitors that emerge in the non-ablation context in the Mtz-

BMPRi+ group (Figure 51B and D). Moreover, when we compare Mtz+BMPRi- with 

Mtz+BMPRi+, to address the effect of blocking Bmp signalling in an osteoblast depleted 

situation during regeneration, we observed a strong osteoblast ablation, meaning that BMP 

signalling impairment does not affect the efficiency of the ablation protocol (Figure 51B and 

C). Importantly, we observe an extreme reduction in the number of osteoprogenitors 

Runx2+Osx- in the Mtz+BMPRi+ condition (Figure 51B and D). 

Overall, we have demonstrated that not only Bmp signalling is active in Runx2+ 

osteoprogenitors, but also that there is a reduction in this cell population number when Bmp 

signalling is suppressed, in both normal and in osteoblast depleted regenerating caudal fins. 

This supports the hypothesis that Bmp signalling could be required for the formation and 

commitment of newly formed osteoblasts progenitors during regeneration. 
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Figure 51: Requirement of Bmp signalling for de novo osteoblast formation in osteoblast depleted fins during 
caudal fin regeneration. (A) Schematic representation of the experimental setup used to perform functional 
manipulation of Bmp signalling and address the function of this pathway for de novo osteoblast formation. For 
that, we subjected osx:NTRo animals to the osteoblast ablation protocol shown in Figure 40A. After recovery 
caudal fins were amputated and animals were incubated for 24 hours either with a DMSO (Control, BMPRi-) or 
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with a BMP signalling inhibitor (BMPRi+) and divided in four main groups: controls (DMSO) without Mtz and 
without BMPRi (Mtz- BMPRi-); controls (DMSO) without Mtz and with BMPRi (Mtz- BMPRi+); treated with Mtz 
and without BMPRi (Mtz+ BMPRi-); and treated with Mtz and with BMPRi (Mtz+ BMPRi+). Fins were collected at 
24 hpa for tissue imaging and subsequent processing. (B) Representative images of 24 hpa caudal fin longitudinal 
cryosections of osx:NTRo divided into the groups described above. Cryosections were immunostained for 
mCherry (to visualize osx expression and confirm correct osteoblast ablation, green), Runx2 (preosteoblast/ 
osteoprogenitor marker, magenta) and counterstained for DAPI (nucleus, blue). (C) Graph showing the 
quantification of mature osteoblast (Runx2+Osx+) at 24 hpa for all the four animal groups; bars on graph 
correspond to total number of Runx2+Osx+ cells normalized to total fin area and statistical analysis corresponds 
to Mann-Whitney test with Mean ± SD displayed (Mtz- BMPRi- : n= 27 bony-rays compiled from 8 fish; Mtz- 
BMPRi+ : n= 22 bony-rays compiled from 6 fish; Mtz+ BMPRi- : n= 16 bony-rays compiled from 5 fish; Mtz+ 
BMPRi+ : n= 21 bony-rays compiled from 6 fish). (D) Graph showing the quantification of osteoprogenitors 
(Runx2+Osx-) at 24 hpa for all the four animal groups; bars on graph correspond to total number of Runx2+Osx+ 
cells normalized to total fin area and statistical analysis corresponds to Mann-Whitney test with Mean ± SD (Mtz- 
BMPRi- : n= 27 bony-rays compiled from 8 fish; Mtz- BMPRi+ : n= 22 bony-rays compiled from 6 fish; Mtz+ BMPRi- 
: n= 16 bony-rays compiled from 5 fish; Mtz+ BMPRi+ : n= 21 bony-rays compiled from 6 fish). This shows that 
BMP signalling manipulation does not affect the mature osteoblast population, but it might be required for 
proper formation of Runx2+ osteoprogenitors in normal regenerating fins and in fins subjected to osteoblast 
ablation. hpa: hours post-amputation, e: epidermis, m: mesenchyme; arrowheads define the amputation plane; 
scale bars represent 50 µm; ***p<0.001, # p< 0.0001, ns: non-significant. 
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1 OVERVIEW 

Regenerative medicine is an emerging field that promises to have a relevant impact on human 

health and life quality by repairing and replacing injured tissues. The success of regenerative 

therapies depends on the identification of biological circuits that regulate wound closure, cell 

recruitment, survival, proliferation and cell fate determination. The study of natural 

regenerative properties of model organisms, such as zebrafish (Poss et al. 2003; Evans 2011; 

Goldsmith and Jobin 2012; Gemberling et al. 2013; Tavares and Lopes 2013; Shi et al. 2015; 

Antos et al. 2016), provides new insights into the mechanisms regulating the regenerative 

programs (Muneoka et al. 2008; Forbes and Rosenthal 2014; Godwin 2014). In this PhD thesis, 

we used the zebrafish caudal fin regeneration system to investigate the cellular and molecular 

strategies underlying bone formation. Upon injury, the formation of new bone relies on a tight 

and controlled regulation of the following sequence of events: generation of osteoprogenitors 

from resident osteoblasts and from intersegment progenitors (Knopf et al. 2011; Sousa et al. 

2011; Ando et al. 2017); osteoprogenitor pool maintenance and proliferation; and 

redifferentiation and maturation of the osteoprogenitors, leading to bone matrix deposition 

(Stewart et al. 2014; Pfefferli and Jaźwińska 2015; Antos et al. 2016). In this project, we 

unravelled new findings on bone regeneration by uncovering new signalling pathways 

required for mature osteoblast dedifferentiation and osteoprogenitor redifferentiation. In 

addition, we identified alternative cellular sources for mature osteoblasts formation. In this 

section, we discuss the main results of this thesis and propose future directions and 

experiments. 

2 OSTEOBLAST REPROGRAMMING AND DEDIFFERENTIATION DURING CAUDAL 

FIN REGENERATION  

We and others have previously demonstrated that, after zebrafish caudal fin amputation, 

bone regeneration occurs via mature osteoblast dedifferentiation (Knopf et al. 2011; Sousa et 

al. 2011; Tu and Johnson 2011; Stewart and Stankunas 2012; Ando et al. 2017). However, since 

the molecular mechanisms that regulate this process are far from being understood, we 
proposed to identify new regulators of osteoblast dedifferentiation. Primarily, we uncovered 

the specific time-window when osteoblasts dedifferentiate during caudal fin regeneration. 

Subsequently, we performed an unbiased gene expression analysis of specifically isolated 

osteoblasts during multiple states of dedifferentiation, therefore revealing new key regulators 

of the process. In addition, we followed a targeted approach, where we examined the role of 

the Hippo/Yap signalling pathway in osteoblast dedifferentiation.  
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2.1 Dedifferentiation traits in osteoblasts 

During dedifferentiation, osteoblasts lose their differentiated character. This process is 

characterized by downregulation of mature markers (such as osc) and upregulation of 

progenitor-like markers (such as runx2), cell shape-changes, and re-acquisition of proliferative 

capacity (Jopling et al. 2011; Tanaka and Reddien 2011; King and Newmark 2012; Maden 2013; 

Eguizabal et al. 2013; Kami and Gojo 2014). Therefore, the first part of this project consisted 

on characterizing the initial hours of the dedifferentiation process to clarify its time-window 

of occurrence. Previous studies addressed this process from 12 hpa to 24 hpa, showing that 

mature osteoblasts downregulate the mature marker osc at 12 hpa and undergo an EMT-like 

event, begin to migrate, start to express progenitor markers, and proliferate at around 18-24 

hpa (Knopf et al. 2011; Sousa et al. 2011; Stewart et al. 2014). Since we increased the temporal 

resolution of these events, we were able to observe that osteoblast dedifferentiation is 

triggered during the first stages of wound healing (0 – 18 hpa). Differences in expression of 

mature and progenitor markers start as early as 3 to 6 hpa and the acquisition of motility and 

cell cycle re-entry are observed at 6 to 9 hpa, suggesting that osteoblast dedifferentiation is 

initiated in a time-window between 3 to 6 hpa. Additionally, these results show that in the 

first few hours after amputation, important transcriptional and phenotypic alterations occur 

within mature osteoblasts. At this stage, the more relevant events that had been described so 

far were wound closure, apoptosis and ROS production induced by amputation (Poss et al. 

2003; Gauron et al. 2013; Niethammer 2016; Owlarn et al. 2017). Thus, we have shown for 

the first time that mature osteoblast dedifferentiation is an early response to injury and 

happens concomitantly with wound closure. We can thus speculate that early wound 

response signals are important to trigger osteoblast dedifferentiation. Importantly, this 

characterization served as a basis to design the subsequent experiments that aimed to identify 

novel regulators of this process. 

2.2 Genome-wide expression of dedifferentiating osteoblasts: unravelling new 

regulators of osteoblast dedifferentiation during fin regeneration 

After identifying the time-window at which osteoblast dedifferentiation is triggered, we 

carried out an unbiased approach to reveal novel regulators of this process. We performed a 

microarray approach that encompasses up-to-date content with high coverage of the 

zebrafish transcriptome. Previous works performing wide-genome transcriptional analysis 

addressed stages later than 12 hpa (Schebesta et al. 2006; Kang et al. 2016; Rabinowitz et al. 

2017), thus potentially missing initial regulators of the dedifferentiation process. Additionally, 

these gene expression studies have used the whole tissue, which can result in the dilution of 

important factors. In our approach we introduced two main novelties: transcriptional analysis 

of early time-points of the regenerative process (3 to 9 hpa); and characterization of a 

specifically isolated cell population, therefore uncoupling osteoblast response from 

surrounding tissues.  
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2.2.1 Transcription profiling of osteoblast dedifferentiation: general appreciations 

The analysis of the expression profile of osteoblasts was performed by comparing homeostasis 

with three time-points during regeneration, resulting in 3 different data sets: 3 hpa versus 

uncut, 6 hpa versus uncut, and 9 hpa versus uncut. These comparisons have shown that there 

is a considerable amount of differentially expressed genes in all time-points in comparisons to 

control samples. Data from HCA, PCA and from the three genome comparisons obtained, 

suggest that all the time-points analysed are similar between each other and that the 3 hpa 

time-point was the most similar to uncut samples. These time-points share many differentially 

expressed genes, with only 15% from 3 and 9 hpa and 30% from 6 hpa being exclusive of each 

time-point, and around 304 were differentially expressed in all time-points analysed (see 

Chord Diagram in Figure 22 from Chapter III). This analysis reinforces our observation that 

significant differences in gene expression happen very early upon amputation (as early as 3 

hpa). Gene enrichment and GSA analysis revealed relevant functional categories altered upon 

osteoblast dedifferentiation related to cell cycle control, cytoskeletal dynamics, migration 

regulation and ECM remodelling, cellular junction assembly, metabolic regulation, signal 

transduction pathways and chromatin organization and remodelling. Most of these categories 

are known to be important in several aspects of the regenerative process.  

2.2.2 Cell cycle control during osteoblast dedifferentiation 

One of the most important aspects following dedifferentiation is the acquisition of 

proliferative capacity (Poss et al. 2003; Stoick-Cooper et al. 2007; Poss 2010; Tanaka 2016). 

Interestingly, our transcriptomic analysis showed what might be two different cell cycle 

responses triggered by amputation: an anti-proliferative response, in which osteoblasts seem 

to activate cell cycle arrest and possibly DNA repair, as shown by the upregulation of tumour 

protein 53 (tp53); and a pro-proliferative response, with upregulation of cyclinD1, among 

others that drive the G1/S transition. This suggests the presence of two different osteoblast 

populations, of which we can only speculate about: one that is deleteriously affected by the 

injury, which arrests the cell cycle to evaluate the damage, and another that initiates 

proliferation. While it is unclear if the first has a role in regeneration, the latter is potentially 

contributing to the pool of osteoprogenitors to ensure correct bone formation during 

regeneration. Focusing on Tp53, its specific role in this context is not obvious. Contrasting with 

our results, where it is highly upregulated during the osteoblast dedifferentiation process, 

during salamander limb regeneration downregulation of Tp53 is necessary for cell cycle re-

entry of differentiated cells during blastema formation, with its activation being required at 

later stages for redifferentiation (Yun et al. 2013; Charni et al. 2017). Tp53 is a major tumour 

suppressor protein (Aubrey et al. 2016) known to mediate cell cycle arrest of cells that have 

undergone DNA damage. Interestingly, although tumorigenesis and regeneration share 

common signalling pathways, the outcome of these processes is quite different. While 

regeneration comprises a well-coordinated and restrained sequence of events, cancer cell 
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transformation is achieved via unrestrained activation or inactivation of pathways that 

culminate in uncontrolled proliferation (Charni et al. 2017). Therefore, we hypothesize that 

during osteoblast dedifferentiation some are exposed to severe environmental changes, such 

as differences in osmotic pressure and ROS release, in particular, those next to the amputation 

plane. These cells may require activation of Tp53 to promote cell cycle arrest and DNA repair 

or to trigger apoptosis if they are damaged beyond possible recovery, avoiding continuous 

proliferation of damaged osteoblasts and potential tumour initiation. We suggest that Tp53 

activity might not only be necessary at late stages of regeneration but also at early stages, 

functioning as a surveillance mechanism to dispose the tissue of deleterious cells before 

regeneration is fully launched. This implies a tight regulation of the cell cycle re-entry and 

proliferation during regeneration and might be one important feature that distinguishes it 

from tumorigenesis. Nonetheless, a role for Tp53 during osteoblast reprogramming can also 

be proposed. In mice, Tp53 has been shown to be a negative regulator of osteoblast 

differentiation: p53-null mice display accelerated differentiation and augmented osterix 

expression (Wang et al. 2006). Thus, another hypothesis is that in zebrafish, tp53 is required 

to inhibit osteoblasts differentiation markers and promote the progenitor-like phenotype. 

Further testing will be required to address these hypotheses. 

2.2.3 Migratory behaviour during osteoblast dedifferentiation 

Regarding genes associated with cell migration we detected regulation of actin, myosin and 

microtubule dynamics, downregulation of Adherens and Tight junction components, 

upregulation of focal adhesion components, and upregulation of ECM remodelling regulators, 

all important traits of migrating cells (Wozniak et al. 2004; Baum et al. 2008; Huttenlocher and 

Horwitz 2011). In homeostasis, osteoblasts are organized in an epithelial-like sheet, 

connecting with each other via junction components (Stewart et al. 2014). As shown in 

Chapter III, upon amputation, osteoblasts start migrating very early, around 5-10 hpa (Figure 

18) and undergo an EMT-like event (Stewart et al. 2014). Thus, in this context, downregulation 

of Adherens and Tight junction should be essential to disassemble their epithelial organization 

and promote EMT and migration. Focal adhesion assembly is also required in osteoblasts that 

undergone EMT, in order to reach the amputation plane and contribute to blastema 

formation. Therefore, our results suggest that dedifferentiating osteoblasts will undergo great 

cytoskeletal adaptations with disassembly of their cell-cell adhesions and promotion of pro-

migratory focal-adhesions. Furthermore, we noticed the upregulation of pro-migratory ECM 

components (Godwin et al. 2014), such as TenC. 

2.2.4 Chromatin remodelling and signal transduction 

Chromatin remodelling modulators and signal transduction pathways are considered the best 

candidates to play a direct role in cell fate plasticity and cell fate decisions, as they can directly 

regulate specific transcription factors that specify or maintain cell identity (Onder et al. 2012; 
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Moris et al. 2016; Guo and Morris 2017). In fact, our microarray analysis revealed that some 

chromatin modifying enzymes are differentially expressed during dedifferentiation. These 

enzymes activate or suppress gene expression by modifying nucleosome histones or by 

mobilizing the DNA-histone structure (Kouzarides 2007; Onder et al. 2012; Zhang et al. 2016). 

In general terms, HATs and HDMs enzymes are associated with chromatin opening and 

activation of gene expression, whereas HTMs and HDACs enzymes are associated with closed 

chromatin and lower gene transcription. With our analysis, we found that enzymes promoting 

both gene transcription and gene silencing are upregulated during the early stages of 

regeneration. This is not surprising, given that a hallmark of the regenerative process is the 

re-activation of silenced development-related genes (Stewart et al. 2009; Katsuyama and Paro 

2011; Percharde et al. 2017). Therefore, chromatin remodelling may be required during 

osteoblast dedifferentiation to allow these cells to adopt new features, such as: expression of 

progenitor traits, including genes required for proliferation; and shutdown of functions 

related to their function in homeostasis, such as mature markers and genes associated with 

bone matrix secretion (Knopf et al. 2011; Sousa et al. 2011; Blum and Begemann 2015b). In 

fact, chromatin decondensation has already been demonstrated to happen during cell 

dedifferentiation in plants (Zhao et al. 2001; Williams et al. 2003) and in newt lens 

regeneration (Maki et al. 2010). Moreover, initiation of caudal fin regeneration was shown to 

be dependent on the conversion of bivalent chromatin (with both repressing and activating 

histone modification) into an active state, by a histone demethylase (Stewart et al. 2009). 

Thus, histone modifications at discrete genomic positions may be important to regulate 

osteoblast dedifferentiation. 

Signal transduction cascades leading to activation of transcription factors, are the most direct 

causes of transcription alterations and encompass the most well-studied mechanism 

underlying the cell fate decisions, inclusively when talking about pluripotency reprogramming 

events (e. g.: iPCs) (Takahashi and Yamanaka 2006; Sánchez Alvarado and Yamanaka 2014). 

Our transcriptome analysis detected several signal transduction pathways that are 

differentially expressed such as Wnt, Insulin, leptin, and Jak/Stat signalling pathways. 

Some Wnt signalling components are upregulated in our data set, suggesting that this 

pathway is activated during osteoblast dedifferentiation. One of these components is the Wnt 

ligand wnt10a, which specifically activates β-catenin-dependent Wnt signalling. Corroborating 

our data, wnt10a has already been demonstrated to be upregulated at 6 hpa in whole caudal 

fins (Stoick-Cooper et al. 2006), but not specifically in osteoblasts. In addition, besides being 

important for later aspects of the regenerative outgrowth (from 72 hpa onwards) (Stewart et 

al. 2014; Wehner et al. 2014), Wnt signalling was shown to be required in the first 24 hpa to 

initiate osteoblast EMT-like process, necessary for their recruitment and integration into the 

blastema (Stewart et al. 2014). Therefore, we propose that Wnt signalling is promoted by 

osteoblasts (a source of Wnt ligands) during regeneration while regulating their 

dedifferentiation state. Nevertheless, future experiments are required to understand whether 
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Wnt signalling is necessary and sufficient to trigger osteoblast dedifferentiation during caudal 

fin regeneration. 

Our analysis also showed that the insulin signalling pathway is regulated in osteoblasts, with 

the expression of ligands being generally increased and the expression of receptors being 

decreased. This may indicate that osteoblasts act as a source of insulin ligands but do not 

activate the signalling pathway in a cell autonomous manner. Besides being an important 

regulator of glucose metabolism in the body (Lizcano and Alessi 2002), insulin signalling also 

has specific roles in osteoblasts (Ferron et al. 2010; Pramojanee et al. 2014). In mammalian 

systems, insulin signalling promotes glucose uptake, homeostasis and metabolic regulation 

during osteoblast growth and differentiation. In addition, it has been shown to induce the 

expression of differentiation markers, such as Osteocalcin (Ferron et al. 2010; Pramojanee et 

al. 2014). This fits with our data, which shows that insulin receptors are downregulated in 

osteoblasts, leading us to hypothesise that, during osteoblast dedifferentiation, insulin 

signalling needs to be downregulated in order to shut down the expression of mature markers 

such as Osteocalcin. Therefore, although metabolic regulation is important in osteoblast 

dedifferentiation, the role of insulin signalling in this context seems to be independent of its 

role in metabolism. Nevertheless, functional experiments will be necessary to address the 

requirement of this pathway in osteoblasts dedifferentiation. 

Another interesting finding in our data sets was the upregulation of leptin b in all the three 

time-points. Leptin b is a conserved secreted hormone that activates the leptin signalling 

pathway which, similarly to insulin signalling, is known to control energy homeostasis and 

glucose metabolism (Dalman et al. 2013; Park and Ahima 2014; Michel et al. 2016). Leptin b 

has already been shown to be upregulated (130 folds) at later time-points, during the 

outgrowth phase in the amputation region (Kang et al. 2016). Here, we show for the first time 

that leptin b is upregulated much earlier than what has been described (from 3 hpa onwards), 

leading us to identify osteoblasts as the source of Leptin b during dedifferentiation. 

Unfortunately, we were not able to identify other differentially expressed components of the 

leptin pathway, in order to elucidate whether it is also active in osteoblasts. Leptin signalling 

can act in parallel and/or interact with the insulin pathway in other contexts to regulate energy 

consumption and glucose metabolism (Amitani et al. 2013; Thon et al. 2016) and, like insulin 

signalling, Leptin can regulate mammalian bone homeostasis through Osteocalcin (Ferron and 

Lacombe 2014; Upadhyay et al. 2015). Taking this into account, further studies are required 

to clarify if insulin and leptin signalling pathways have overlapping roles during osteoblast 

dedifferentiation through the regulation of osteocalcin, as well as the relevance of the 

insulin/leptin-glucose axis for this process and its implications for osteoblast metabolic 

adaptation.  

Another pathway potentially regulated in our data set was the Jak/Stat signalling pathway, 

known to regulate proliferation, cell fate and cell migration (Rawlings 2004; Murray 2007). 

Upon ligand binding to the receptors, Janus kinases (Jak) are activated, which then 
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phosphorylate signal transducers and activators of transcription (Stat) members to trigger 

target gene expression (Rawlings 2004). Some of the components of this pathway, such as 

jak1, jak2a and stat1a, are upregulated in all time-points, suggesting that this pathway is 

activated and plays a role in osteoblast dedifferentiation during caudal fin regeneration. In 

fact, during regeneration of the zebrafish retina, Jak/Stat signalling is activated in injury 

responsive Müller glia and induces their dedifferentiation into progenitors that will 

compensate for photoreceptor loss (Zhao et al. 2014). Interestingly, in this context, leptins 

have also been shown to be important activators of Jak/Stat signalling (Zhao et al. 2014). 

Nonetheless, further experiments are required to investigate whether Jak/Stat signalling is 

indeed a regulator of osteoblast dedifferentiation and whether its activation is mediated by 

leptin signalling. 

The above-mentioned signal transduction pathways Wnt, Insulin and Jak/Stat, have already 

been shown to be required for the regeneration of several zebrafish organs, including the 

caudal fin, by controlling cell proliferation, cell-shape changes and rearrangements, cell fate 

determination (Stoick-Cooper et al. 2006; Chablais and Jazwinska 2010; Fang et al. 2013; 

Stewart et al. 2014). Accordingly, we found, for the first time, that these signalling pathways 

are also regulated in osteoblasts during dedifferentiation.  

2.2.5 Metabolic reprogramming during osteoblast dedifferentiation  

One of the most differentially regulated gene categories in our microarray is related to the 

cellular metabolism. Several enzymes from the glycolytic pathway, genes related to 

mitochondrial dynamics and components of the electron transport chain were upregulated 

during all three time-points after amputation. This suggests that, during osteoblast 

dedifferentiation, metabolic adaptation, namely the balance between glycolysis and OxPhos, 

plays an important role. 

Cellular metabolism encompasses highly coordinated mechanisms through which energy is 

used to produce and breakdown cell molecular constituents, in order to maintain its integrity. 

It can be generally categorized as catabolic (oxidative), completed in the mitochondria where 

metabolites are transformed to produce energy (oxidative phosphorylation), or as anabolic 

(non-oxidative), completed in the cytoplasm where macromolecules (e.g. lipids and 

nucleotides) are generated from precursor molecules (glycolysis). (Prigione et al. 2015; Ryall 

et al. 2015; Chandel et al. 2016). The metabolic state of a cell results of a wide array of inputs: 

energetic and biomass demands, availability of resources (e.g. oxygen and glucose), 

environmental cues and cell differentiation status. Beyond providing energetic supply, 

metabolic networks can also trigger genetic programs and control cell behaviour and cell fate 

specification. It is known that cellular identity and functional state reflects specific metabolic 

pathways used (Tatapudy et al. 2017; Wei et al. 2018). A switch in the type of metabolism is 

thus seen as a key mode of regulating cell fate transitions and is often collectively designated 

as “metabolic reprogramming” or “metabolic adaptation”. In homeostatic conditions, 
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differentiated, non-dividing somatic cells use OxPhos as their primary source of energy, 

allowing them to catabolize substrates in a more energy efficient manner to perform their 

specialized housekeeping functions. In contrast, a common metabolic trait of ESCs (and iPSCs), 

quiescent stem cells (e.g. hematopoietic stem cells or mesenchymal stem cells) and progenitor 

cells is their preference in performing glycolysis (with lactate production) and in decreasing 

mitochondrial OxPhos (Folmes et al. 2012; Ryall et al. 2015; Chandel et al. 2016; Wei et al. 

2018). Interestingly, this switch in the metabolic signature observed in of some stem cells and 

progenitor cells, in which they prefer glycolysis with lactate generation over OxPhos, even in 

the presence of oxygen, is reminiscent of the “Warburg effect”, also termed aerobic glycolysis, 

which occurs in cancer cells. (Warburg 1925; Prigione et al. 2015; Shyh-Chang and Daley 2015; 

Liberti and Locasale 2016; Potter et al. 2016). Prioritizing glycolysis enables the generation of 

essential intermediaries or building blocks required for the synthesis of macromolecules, such 

as amino acids, lipids, and nucleotides, which are required for biomass assembly, cell growth 

and division. In addition, although glycolysis is inefficient in terms of total ATP production 

when compared to OxPhos (2 ATP versus 36 ATP, respectively), the rate of ATP generation of 

glycolysis is faster (Lunt and Vander Heiden 2011). Also, another important aspect of using 

glycolysis over OxPhos is the reduction of ROS production by mitochondrial respiration 

(Chandel et al. 2016). This is particularly an advantage for quiescent stem cells, as they are 

often more sensitive to oxidative damage that can lead to genomic instability. However, 

recent data also suggest that actively growing and highly proliferative cells (either progenitors 

cells or cell that have to undergo stage dependent proliferative events, such as enterocytes or 

lymphocytes) have bivalent metabolism and use both glycolysis (with lactate production) and 

OxPhos (Prigione et al. 2015; Tatapudy et al. 2017). 

Another important feature during metabolic reprogramming is mitochondrial dynamics. 

OxPhos is maximised by mitochondrial fusion, which stabilises the respiratory network and 

minimized by mitochondrial fission, needed to generate new mitochondria. Thus, 

mitochondrial dynamics can also have a great impact in regulating cell identity (van der Bliek 

et al. 2013; Xu et al. 2013; Khacho et al. 2016). 

Given the fundamental roles of metabolism in mediating cell fate decisions upon demand, it 

is therefore plausible that during major cellular reconstruction events, such as the ones 

observed during regeneration, would involve significant changes in cell metabolism. Despite 

the considerable amount of information on the role of metabolism in health and disease, the 

link between metabolic reprogramming, regeneration and repair remains poorly understood 

and controversial. A recent study showed that, during planarian regeneration, there is an 

increase in glycolysis and that most of the glucose catabolized is fated for aerobic glycolysis 

(Osuma et al. 2018). In mice models of ear and digit injuries, Lin28a induces the expression of 

different metabolic enzymes that lead to an increase in both glycolysis and oxidative 

phosphorylation, promoting the enhancement of tissue repair. In addition, tissue repair was 
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abrogated by OxPhos inhibition, suggesting that in this context OxPhos is required for tissue 

repair (Shyh-Chang et al. 2013). 

In our data sets, we observed that several important glycolytic enzymes, such as pfkpa, 

aldoaa, pgam1a, hk1 and pdhb were consistently upregulated in osteoblasts from 3 to 9 hpa 

and that the expression of the enzyme ldha, responsible for the interconversion of pyruvate 

and lactate, is upregulated. These results suggest that, during osteoblast dedifferentiation, 

glycolytic influx and lactate production is increased (Figure 52) and that at least part of the 

pyruvate is being converted into lactate and shunt away from OxPhos. We have also detected 

the upregulation of genes that control mitochondria dynamics and function, particularly 

mitochondrial fission, such as fis1. Moreover, at 3 hpa we noticed a downregulation of genes 

related to the electron transport chain, such as cox5b, ndufb3 and ndufb5, suggesting a 

decrease in OxPhos. However, from 6-9 hpa we observed an upregulation of several 

components of the electron transport chain, such as cytochrome c subunits or assembly 

factors, NADH and succinate dehydrogenase components, following the initial upregulation of 

glycolytic enzymes, suggesting that OxPhos is also increased. 

Taking all into account, our results show that during osteoblast dedifferentiation, osteoblasts 

may change their metabolic profile to better adapt to the new energetic demands of the 

regenerative process. Therefore, we speculate that dedifferentiating osteoblasts suffer a 

metabolic reprogramming event in the form of a glycolytic switch triggered very early during 

this process (starting at 3 hpa). In particular, our results suggest that glycolytic enzymes might 

be required to trigger dedifferentiation, but that the dedifferentiation process might rely on 

a bivalent metabolic profile that requires both glycolysis and OxPhos, as described for other 

types of progenitor cells. It would be interesting to evaluate whether changes in metabolism 

are required prior to osteoblast dedifferentiation during regeneration, as shown during 

reprogramming of iPSC (Prigione et al. 2015; Tatapudy et al. 2017). We have also shown that 

changes in the expression of glycolytic enzymes and electron transport chain components are 

not exclusive to osteoblasts but also occurred at the level of the whole caudal fin tissue (Figure 

24). However, in the whole fins, the upregulation of glycolytic enzymes was more evident than 

upregulation of OxPhos-related genes. 
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Figure 52: Model of zebrafish caudal fin dedifferentiation regulation during regeneration. Schematic 
representation of the bilateral organization of the caudal fin bony-ray through longitudinal sections. The caudal 
fin is composed of two concave bones or hemirays surrounded by a multilayered epidermis. The space between 
the hemirays is filled with connective tissue (mesenchyme) that contains densely interconnected fibroblasts, 
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enclosing also other cell types and tissues such as blood vessels. (A) During homeostasis, the caudal fin skeletal 
elements are produced and maintained by osteoblasts that deposit a collagenous bone matrix, on which the 
robustness of the caudal fin depends. In this homeostatic condition, osteoblasts and other cell types rely mainly 
on oxidative phosphorylation (OxPhos) to produce the required energy for performing their normal functions. 
(B) After caudal fin amputation, the regenerative process is triggered, and new cellular demands arise. The 
osteoblasts that are below the amputation plane dedifferentiate and, although lineage committed, divide and 
produce new cells that reconstitute the missing structure. Our findings suggest that osteoblast dedifferentiation 
is triggered very early during regeneration, at 3-6 hpa, coinciding with the upregulation of the major glycolic 
enzymes. This increase is also observed at the whole-tissue level near the amputation region. We hypothesize 
that, during osteogenic dedifferentiation and during regeneration, metabolic reprogramming/glycolytic switch 
occurs to enable cells to produce the biomass required to divide later in the regenerative process. Concomitantly, 
the Hippo pathway effector Yap translocates to the nucleus in osteoblasts and fibroblasts within the 
mesenchymal compartment, suggesting a role for Yap in dedifferentiation during fin regeneration. (C) Both 
pathways are important in later stages of blastema formation since their inhibition leads to several defects 
including in cell cycle re-entry, a major requirement during tissue regeneration. 

In the course of this work, we have also demonstrated that inhibition of glycolysis during early 

stages of regeneration leads to impairment of proliferation, not only in osteoblasts but also in 

other cell types (Figure 53). In addition, it also leads to a decrease in the expression of 

osteoblast markers and in the number of proliferative Runx2+Osx+ immature osteoblasts, 

while the progenitor pool Runx2+Osx- subtype remains unchanged within the blastema. This 

suggests that glycolysis may not be required to maintain the self-renewing pool of immature 

osteoprogenitors but to maintain the proliferative Runx2+Osx+ osteoblast population (Figure 

53). Moreover, we found that the formation of the wound epidermis is defective upon 

glycolysis inhibition. Since this tissue provides signals that induce differentiation from 

Runx2+Osx- to Runx2+Osx+ immature osteoblasts (Wehner and Weidinger 2015), these defects 

could also explain the decrease and disorganised Runx2+Osx+ osteoblast subtype. These data 

provide evidence that glycolysis is required during caudal fin regeneration, in particular for 

bone repair (Figure 53). However, more experiments are required to understand what exactly 

the role of glycolysis. The metabolic changes in dedifferentiating osteoblasts occur 

concomitantly with significant transcriptional changes, alterations in morphology, EMT and 

acquisition of motility, and cell cycle re-entry and proliferation. Future experiments should 

thus address how glycolysis influences the expression of osteoblast maturation markers, 

acquisition of EMT and cell migration. In addition, monitorization of cellular metabolites, such 

as glucose, glutamate, lactate and ATP/ADP ratios, should help us clarify and dissociate the 

roles of glycolysis and OxPhos during osteoblast dedifferentiation in regenerating caudal fins. 

Taken together, our data provides the first evidence that metabolism is regulated during 

osteoblast dedifferentiation and suggest that both glycolysis and OxPhos play important roles 

in this process.  
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Figure 53: Model for the role of glycolysis during bone repair after caudal fin amputation. (A) During normal 
bone regeneration, at the end of the blastema formation phase (48 hpa), osteoprogenitors have already formed 
and started to redifferentiate to form fully differentiated osteoblasts that will produce the newly caudal fin 
skeletal tissue. Within the blastema, bone maturation occurs in overlapping proximal-distal compartments, such 
that it increases in a distal-proximal manner: while near the amputation plane, in the proximal blastema region, 
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proliferative Runx2+Osx+ differentiating osteoblasts predominate; the distal blastema contains more self-
renewing Runx2+Osx- progenitor/precursors. During this phase, the cell cycle accelerates, and the formation of 
cellular biomass increases. (B) Besides a general impairment of the regenerative process, inhibition of glycolysis 
during blastema formation leads to an accentuated decrease in the proliferative Runx2+Osx+ differentiating 
osteoblast population, whereas the self-renewing Runx2+Osx- progenitor population remains unchanged. In 
addition, the few emerging Runx2+Osx+ osteoblasts appear more scattered along the proximal-distal axis of the 
blastema than in the control condition. Importantly, inhibition of the glycolytic influx also leads to cell cycle re-
entry impairment and to the disorganization of the wound epidermis, which functions as a signalling centre for 
the underlying cells. 

2.3  Hippo/Yap pathway in osteoblast dedifferentiation during caudal fin regeneration 

After our transcriptomic- wide approach, we performed a targeted gene approach, where we 

explore the contribution of the Hippo/YAP signalling pathway for osteoblast dedifferentiation, 

as it has been involved in cell dedifferentiation in other contexts (Nicolay et al. 2010; Yu and 

Guan 2013; Zhao 2014; de Sousa et al. 2018). 

We showed that during osteoblast dedifferentiation (6 hpa), Yap translocates to the nucleus 

in resident mature osteoblasts and in mesenchymal cells (Figure 52), suggesting that Yap is 

activated in these cells around this time-point. The nuclear localization persists until latter 

time-points (24 hpa) inclusively in the osteoprogenitor pool. We found that Yap loss of 

function leads to a decrease in the number of proliferating osteoblasts (and also mesenchymal 

cells) and to impaired osteoblast migration towards the amputation region (Figure 54). In 

addition, Yap loss of function lead to a significant reduction in the number of osteoprogenitors 

formed during regeneration (Figure 54). On the other hand, a gain of function tool, with 

expression of a constitutively active form of Yap, induced an increase in the number of 

osteoprogenitors. Overall, these data suggest that the Hippo pathway effector Yap regulates 

osteoblast proliferation, and migration during dedifferentiation upon amputation. As 

mentioned for glycolysis, future experiments should evaluate osteoblast maturation markers 

and other dedifferentiation features that are still missing, in order to conclude if indeed Yap 

is required for osteoblast dedifferentiation.  

We also checked whether known Yap target genes were differentially expressed in our 

genome-wide expression microarray. Unfortunately, many Yap targets are also common to 

other signalling pathways that, depending on the cellular context, are known to act 

synergistically and to interact with Yap (Attisano and Wrana 2013; Kim and Jho 2014; Park et 

al. 2015). Therefore, no clear evidence for regulation of specific Yap targets during osteoblast 

dedifferentiation was observed in our array. Given that Yap is required for osteoblast 

proliferation and motility, it would be interesting to evaluate whether Yap regulates genes 

related to those categories identified in our transcriptome profile analysis.  
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Figure 54: Model for the role of Yap during osteoblast dedifferentiation after caudal fin amputation. (A) In the 
first 24 hpa, in a normal regenerating condition, mature osteoblasts undergo dedifferentiation, detach from the 
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bony-ray surface and migrate distally to incorporate the blastema. There, these osteoprogenitors proliferate to 
generate more progenitors that are crucial for bone repair. During the dedifferentiation time-window, the Hippo 
pathway co-activator Yap translocates from the cytoplasm to the nucleus in mesenchymal fibroblasts and in 
mature osteoblasts in close contact with the bone surface. This suggests that Yap may promote mature 
osteoblast reprogramming and consequently osteoprogenitor formation. (B) After manipulating Yap function, 
using a loss of function transgenic line, mature osteoblasts remain in close proximity with the bone surface and 
their migration towards the blastema is impaired. Moreover, their proliferative capacity is decreased, leading to 
an impaired generation of new osteoprogenitors. These features are considered important hallmarks of the 
dedifferentiation process. Thus, the Hippo/Yap signalling pathway may be an important regulator of osteoblast 
dedifferentiation during zebrafish caudal fin regeneration. 

Importantly, the defects observed regarding osteoblast recruitment to the amputation region 

in the context of Yap loss of function can be due to impairment in osteoblast migration itself 

or in EMT. Wnt signalling is known to be required to mediate EMT in osteoblasts and allow 

their recruitment to the stump ((Stewart et al. 2014)). Interestingly, we show that both 

pathways seem to be activated in dedifferentiating osteoblasts from early time-points during 

regeneration (6 hpa). In the future, it would be important to understand whether Yap also 

mediates osteoblast EMT and whether it acts together with Wnt signalling to promote this 

process. This hypothesis is plausible since cell culture and mammalian mouse models showed 

that these pathways interact, mediating a wide range of responses (Tsai et al. 2012; Kim and 

Jho 2014; Park et al. 2015). For example, during mouse intestine crypt growth and 

regeneration, Yap can be sequestered and incorporated in the Axin/β-catenin destruction 

complex and, when Wnt signalling is activated, YAP is physically dislodged from the 

destruction complex, allowing nuclear accumulation and activation of Wnt/YAP/TAZ-

dependent biological responses (Tsai et al. 2012; Azzolin et al. 2014). 

So far, only the RA signalling pathway has been shown to be required for osteoblast 

dedifferentiation. Retinoic acid levels need to be decreased in osteoblasts by the RA degrading 

enzyme Cyp26b1 to allow their dedifferentiation (Blum and Begemann 2015b). Thus, it would 

be interesting to address a connection and regulation between Yap and the RA signalling.  

Surprisingly, a recent and unexpected link between Yap and metabolic adaptation was 

observed in a breast cancer cell line and in the Drosophila wing imaginal disc. In this context, 

Pfk1 (Phosphofructokinase), the enzyme regulating the first step of glycolysis, binds to TEAD 

transcription factors and regulates their interaction with Yap/Taz, promoting Yap/Taz 

transcriptional activity. Supporting this, when cells actively incorporate glucose that is shunt 

into glycolysis, Yap/Taz are fully active, while when glucose metabolism is impaired, Yap/Taz 

transcriptional activity decreases (Enzo et al. 2015; Santinon et al. 2015; Koo and Guan 2018). 

This implies that metabolism does not only regulate cell fate by adapting to metabolic 

demands or by regulating epigenetic modification, but also by directly influencing signal 

transduction pathways. It would be interesting to investigate whether in our system the same 

kind of correlation between Yap and metabolism is involved during osteoblast 

dedifferentiation.  
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3 YAP REGULATES THE SIGNALLING CENTRES THAT GOVERN OSTEOBLAST 

REDIFFERENTIATION DURING CAUDAL FIN REGENERATION 

The Hippo signalling pathway emerged as an evolutionarily conserved signal transduction 

pathway that plays an important function in tissue growth and organ size control during 

development, tissue homeostasis and regeneration (Zhang et al. 2008; Xin et al. 2013; Hayashi 

et al. 2014; Zhao 2014; Moya and Halder 2016). This pathway acts predominantly via 

regulation of proliferation, cell survival and cell fate determination (Udan et al. 2003; Huang 

et al. 2005; Azzolin et al. 2014; Fu et al. 2017). To this date, there is a great amount of data 

implicating the Hippo pathway transcriptional co-activators Yap and Taz as either regulators 

of stem cell properties (Lian et al. 2010; Shaw et al. 2010; Hiemer and Varelas 2013; Santucci 

et al. 2015), but also in actively mediating cell differentiation (Lin et al. 2012; Yimlamai et al. 

2014; de Sousa et al. 2018). 

More recently, the Hippo pathway transcriptional co-activator Yap and Taz have been shown 

to be important regulators of the osteoblast lineage determination in vitro (Hong et al. 2005; 

Dupont et al. 2011b; Seo et al. 2013) and of bone development (Kegelman et al. 2017; Tang 

and Weiss 2017; Xiong et al. 2018), remodelling (Tang et al. 2013; Pan et al. 2018) and repair 

(Deng et al. 2016) in mice models. Nevertheless, these studies have failed to provide a clear 

consensus on the role of the Hippo pathway effectors Yap and Taz in regulating the osteoblast 

cell fate. Both co-activators have been implicated in promoting or inhibiting osteoblast 

differentiation and bone formation, depending on the cellular context. Some studies show 

that they inhibit terminal differentiation and thus are required to maintain the osteoblast 

precursor niche (Zaidi et al. 2004; Seo et al. 2013; Xiong et al. 2018), while others demonstrate 

their requirement for osteoblast commitment, differentiation and bone matrix formation 

(Tang et al. 2013; Tang and Weiss 2017; Kegelman et al. 2018; Pan et al. 2018). More thorough 

analysis indicates that they may play different roles depending on the stage of osteoblast 

differentiation: deletion of Yap and Taz from osteoprogenitor cells increased osteoblast 

differentiation and deletion from mature osteoblasts lead to reduced osteoblast number and 

bone formation in mice (Xiong et al. 2018). 

We should emphasize that the previously mentioned studies were mainly performed in cell 

culture, during embryonic development and in fracture repair mammalian models, which 

possess some limitations. Therefore, in order to enlighten these divergences, in this Chapter 

IV we investigated the role of the Hippo pathway effector Yap during osteoblast lineage 

specification using as model system the zebrafish caudal fin regenerative process. We took 

advantage of a previously established transgenic line that expresses a dominant-negative form 

of yap1 (DN-Yap) upon heat-shock (Mateus et al. 2015). Although there are currently 

homozygous viable mutant lines for yap1 (Astone et al. 2018), this strategy enables to address 

the role of Yap in the adult animal, in a context of de novo bone formation, at a specific 

regeneration phase. Thus, we decided to not to interfere with the early regenerative events, 
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such as with osteoblast dedifferentiation and blastema formation (Knopf et al. 2011; Sousa et 

al. 2011; Stewart and Stankunas 2012), and manipulated Yap function exclusively during the 

outgrowth phase. This gives us the unique opportunity to study, in a Yap loss of function 

context, its requirement for either progenitor cell maintenance or for osteoblast 

differentiation in a regenerative context. At the onset of the regenerative outgrowth phase, 

the bone formation process is tightly controlled, and different osteoblast subsets are arranged 

in a proximal-distal organization that reflects their maturation state (Brown et al. 2009; Marí-

Beffa and Murciano 2010; Stewart et al. 2014). The distal blastema region is populated by a 

self-renewing osteoprogenitor pool (Runx2+Osx- osteoblast subset). As this pool is maintained, 

some osteoprogenitors start to differentiate in immature osteoblasts (Runx2+Osx+ osteoblast 

subset) that will continue the differentiation program until full maturation.  

Here we show that continuous manipulation of Yap during three consecutive days after 

blastema formation lead to reduced bone formation and thinning of the of the bony-ray width 

even when normalized to the total regenerated area. Previous work from our lab shown that 

Yap manipulation during blastema formation and outgrowth leads to decrease in cell division 

and to a general impairment of the regenerative process (Mateus et al. 2015). Although we 

cannot exclude that the phenotypes described in Chapter IV may be explained also by defects 

in cell proliferation mediated by Yap, several lines of evidence described here point to a clear 

role of Yap in controlling osteoblast differentiation. We suggest that, in addition to controlling 

proliferation, Yap may be fundamental for correct bone formation. We demonstrate that Yap 

manipulation during outgrowth lead to major changes in specific osteoblast subtypes within 

the regenerating fin: a clear reduction in the number of the differentiating osteoblast subset 

(Runx2+Osx+) is observed, while the osteoprogenitor pool (Runx2+Osx-) remains unchanged 

and which ultimately becomes more proximal. In accordance, through gene expression 

analysis, we discriminated additional osteoblast markers and observed that immature and 

mature markers were also downregulated in contrast to the progenitor markers. These 

findings point to a clear function of Yap in controlling osteoblast differentiation during 

outgrowth and further indicate that this phenotype is independent, at least to a certain extent, 

of a general impairment of regeneration mediated by decreased proliferation. Nonetheless, 

given the conserved roles of the Hippo/Yap signalling pathway in regulating cell proliferation, 

apoptosis and survival (Udan et al. 2003; Huang et al. 2005; Azzolin et al. 2014; Wehner et al. 

2017), future work should include a through characterization of these parameters and their 

contribution to the phenotypes described in Chapter IV.  

Since Yap transcriptional activation can be monitored through its translocation to the nucleus 

(Cherrett et al. 2012; Piccolo et al. 2014; Varelas 2014) our characterization of Yap subcellular 

localization during outgrowth revealed that it is not accumulated in the nucleus of 

differentiating Runx2+Osx+ osteoblasts nor in the distal Runx2+ Osx- osteoprogenitors. This 

indicates that Yap is not promoting Yap-dependent target gene expression in these osteoblast 

subsets and argues in favour of a non-cell autonomous role of Yap in promoting osteoblast 
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differentiation. In the most recent model of bone regeneration in the caudal fin, a complex 

signalling network is required to control distal progenitor pool maintenance and correct 

differentiation (Wehner and Weidinger 2015; Antos et al. 2016). In this model Bmp and Wnt 

signalling pathways have leading and opposing roles. Distal Wnt signalling sustains the self-

renewing capacities of the Runx2+ Osx- osteoprogenitor pool. As the pool expands, some 

progenitors became out of the influence of Wnt signalling and initiate a Bmp-dependent 

differentiation. Bmp signalling is required in a cell-autonomous manner to induce 

osteoprogenitor differentiation into Runx2+Osx+ osteoblasts in the proximal blastema 

compartment (Stewart et al. 2014). Our analysis demonstrates that active (nuclear) Yap is 

observed in the mesenchymal cells from the proximal blastema region and patterning zone 

and does not colocalize with the active Wnt signalling distal domain, suggesting antagonist 

activities. Moreover, we observed that some of these mesenchymal cells with active Yap have 

also activated Bmp signalling, monitored by pSmad 1/5/8 immunofluorescence, and are 

localized in close proximity to pSmad 1/5/8-positive differentiating osteoblasts. Gene 

expression analysis of key components of signalling pathways implicated in the maintenance 

of the osteoprogenitor pool, such as Wnt signalling (Stewart et al. 2014), and osteoblast 

differentiation, such as Bmp (Quint et al. 2002; Smith et al. 2006; Stewart et al. 2014), Ra (Blum 

and Begemann 2015b) and Shh (Laforest et al. 1998) was also monitored and revealed that in 

the Yap loss of function context only dkk1a, Wnt signalling inhibitor (MacDonald et al. 2010), 

and bmp2a, a bmp ligand (Rosen 2009; Wang et al. 2014), were differentially expressed. 

Downregulation of dkk1a after Yap manipulation may indicate that Yap activity in proximal 

mesenchymal cells counteracts the expansion of Wnt signalling to the proximal mesenchymal 

compartment via Dkk1a (Figure 55). Most importantly, given the proximity of mesenchymal 

cells with nuclear Yap to differentiating osteoblasts and the decrease of bmp2a expression in 

the Yap loss of function context, we hypothesized that a Yap-dependent bmp2a expression in 

mesenchymal cells may promote activation of Bmp signalling in neighbouring 

osteoprogenitors and trigger their differentiation (Figure 55). 

Interestingly, previous studies shown that a population of basal epidermal cells that resides 

close to the amputation site, where the new bone will deposit, express both shh and bmp2b 

(Laforest et al. 1998; Lee et al. 2009). In these studies, inhibition both Shh and Bmp signalling 

lead to abnormal bone formation (Quint et al. 2002; Smith et al. 2006) whereas 

overexpression of shh and bmp2 lead to ectopic bone formation (Quint et al. 2002). The later 

phenotype was rescued using an Bmp inhibitor, indicating that Shh might act upstream of Bmp 

signalling in mediating osteoblast differentiation and maturation during caudal fin 

regeneration (Quint et al. 2002). Yet, in this study, we were not able to notice differences of 

expression in shh or bmp2b transcripts in the Yap loss of function context, indicating that Yap 

is mediating osteoblast differentiation through an alternative mechanism. Therefore, in this 

context, we propose that together with the epidermis, the mesenchyme could also be an 

important signalling centre to promote osteoblast differentiation and maturation via Yap. To 
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further evaluate this hypothesis, we are planning to monitor Bmp pathway activation in the 

Yap loss of function situation and evaluate whether there is any impairment of Bmp signalling 

activity in the differentiating osteoblast population. 

Herein, by investigating the role of the Hippo/Yap pathway in regulating osteoblast fate 

determination during fin regeneration, we were able not only to support previous studies 

showing that Yap is necessary for osteoblast differentiation and maturation (Tang et al. 2013; 

Tang and Weiss 2017; Kegelman et al. 2018; Pan et al. 2018), but also to place Yap in the 

signalling network that regulates bone regeneration. Importantly, we shown that Yap activity 

in mesenchymal cells in proximal blastema regions is able to influence via a paracrine 

signalling Bmp and Wnt pathway activity and promote osteoblast differentiation. Taken 

together, we hope the findings described here aid to provide a deeper understanding of the 

mechanism regulating bone regeneration and to clarify the role of the Hippo/Yap signalling 

pathway during osteoblast lineage specification. 

. 
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Figure 55: Model for the role of Hippo/Yap signalling pathway during osteoblast redifferentiation after caudal 
fin amputation. Schematic representation of the bilateral organization of the caudal fin bony-rays through a 
longitudinal section, during the regenerative outgrowth phase (72 hpa), which starts after blastema formation 
(48 hpa onwards). A fine-tuned balance between progenitor expansion (Runx2+Osx- cells) and terminal 
differentiation (Runx2+Osx+) must be maintained to sustain bone regeneration after caudal fin amputation. In 
this context, both Wnt and Bmp signalling play key and opposing roles: Wnt/β-catenin maintains a pool of distal 
Runx2+ osteoprogenitors, while Bmp restricts Wnt activity to promote osteoblast differentiation in the proximal 
blastema region. In addition, Wnt signalling regulates important secondary signals that are required for proper 
bone regeneration. Based on our findings, another key player, the Hippo/Yap signalling pathway, may be added 
to this signalling network. Yap is accumulated inside the nucleus together with pSmad1/5/8 in the mesenchymal 
compartment, just adjacent to proliferative Runx2+Osx+ differentiating osteoblasts. In this region, Yap regulates 
the expression of bmp2a (Bmp ligand), which through a paracrine signalling activates Bmp signalling in this 
osteoblast population. In addition, in the proximal region, Yap restrains, together with Bmp signalling, Wnt 
activity to the distal blastema region by inducing dkk1a (Wnt inhibitor). 

4 OSTEOGENIC PLASTICITY CHALLENGED: UNRAVELLING OSTEOBLAST SOURCES 

DURING CAUDAL FIN REGENERATION 

Until recently, zebrafish caudal fin bone regeneration was believed to be totally dependent 

on the dedifferentiation of mature osteoblasts that reside near the amputated region (Knopf 

et al. 2011; Sousa et al. 2011). However, a study has demonstrated that genetically induced 

ablation of mature osteoblast does not impair the bony-ray regenerative capacity. These 

findings suggested that restoration of the lost osteoblast population is accomplished via de 

novo osteoblast formation from an unknown source (Singh et al. 2012). Interestingly, more 

recent data have demonstrated that, in addition to the mature osteoblast population, there 

is a niche of osteoprogenitor cells associated with the intersegment/joint regions of the caudal 

fin. These osteoprogenitors contribute to bone formation and, together with mature 

osteoblast dedifferentiation, supply to the osteoprogenitor pool during regeneration (Ando et 

al. 2017). Since joint-associated osteoprogenitors are not targeted in the mature osteoblast 

ablation context, the authors hypothesize that they provide an alternative source for de novo 

osteoblast formation in osteoblast-depleted fins. However, this is yet to be demonstrated 

(Ando et al. 2017). In fact, the osteoblast ablation system could be used as a model to 

investigate the contribution of joint-associated osteoblast progenitors in this context, and 

whether alternative cellular sources, that do not normally contribute to regeneration, emerge 

to compensate for osteoblast dedifferentiation. This kind of response has also been shown to 

happen after osteoblast ablation in adult mice, where bone-lining cells, which are quiescent 

in normal conditions, are activated and function as major contributors of bone formation 

during homeostasis and fracture healing (Matic et al. 2016). Another study in mice has 

demonstrated that, after airway epithelial stem cell ablation, differentiated and fully 

committed epithelial secretory cells dedifferentiate and revert to a stable stem cell population 

indistinguishable from the ablated one. This new stem cell population operates as well as their 

endogenous counterparts in repairing the epithelia after injury (Tata et al. 2013). With this in 

mind, when osteoblasts are ablated, the molecular mechanisms that regulate de novo 

formation might be different from those leading to progenitor assembly derived from 
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dedifferentiation of mature cells. Therefore, the main aims of Chapter V were to identify other 

cellular sources of new osteoblasts and the molecular mechanisms behind de novo osteoblast 

formation. 

4.1 Cell sources for de novo osteoblast formation in osteoblast-depleted fins 

To address alternative cell sources of new osteoblasts during regeneration, we performed a 

detailed characterization of cell proliferation, osteoprogenitor recruitment and lineage tracing 

experiments in the context of osteoblast-depleted fins. We observed that during 

regeneration, the epidermis surrounding the bony-ray and the mesenchymal intraray 

compartment are the first tissues to respond to osteoblast ablation, by initiating a proliferative 

response. Proliferating cells are preferentially located at the interface between these tissues 

and the bone matrix. Upon amputation, Runx2+ osteoprogenitors emerge at the outer and 

inner bone surfaces in close contact with the surrounding epidermis and mesenchyme, 

respectively. These Runx2+ osteoprogenitors seem to be sufficient to compensate for the lack 

of mature osteoblasts since the total number of osteoblasts (Runx2+Osx+ together with 

Runx2+Osx-, in a non-ablation context, and Runx2+Osx-, in an ablation context) in the 

regenerating fin remains the same or is even higher in the ablation context. This suggests that 

bone surrounding tissues function as a source of newly formed osteoblasts during fin 

regeneration after osteoblast ablation (Figure 56). Interestingly, these Runx2+ 

osteoprogenitors seem to comprise two independent populations that may derive from 

different sources with distinct properties, reflecting different requirements given their 

location. While osteoprogenitors that arise at the inner bone surface express the 

mesenchymal marker ctgfa, Runx2+ osteoprogenitors that arise at the outer bone surface are 

negative for this marker. This is important, since in a non-ablation context both outer and 

inner osteoblasts express ctgfa upon amputation, reflecting their mesenchymal origin (Lee et 

al. 2013).  

4.1.1 Possible origin for outer bony-ray Runx2+ osteoprogenitors 

To assess the contribution of the epidermis as a source of osteoprogenitors that arise at the 

outer bone matrix, we set up a series of lineage tracing experiments. Our results 

demonstrated that either basal or differentiated epidermal cells do not contribute to other 

tissues but epidermis after amputation. This is in accordance with lineage restriction notion 

observed during regeneration (Tu and Johnson 2011; Stewart and Stankunas 2012) and 

highlights that, even in osteoblast ablation context, epidermal cells do not transdifferentiate 

to give rise to new osteoblasts. Additionally, there are two other possible sources contributing 

to the Runx2+ osteoprogenitors that arise adjacently to the epidermis: the recently discovered 

joint-associated osteoprogenitors (Ando et al. 2017) or cells from the interray mesenchyme. 

In fact, we observed that the mesenchymal marker ctgfa is expressed in the interray 

mesenchymal tissue at lower levels when compared to the intraray mesenchyme after 
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amputation (Mateus et al. 2015; Pfefferli and Jaźwińska 2017). This would be in line with the 

lower, or lack of, ctgfa expression in the Runx2+ osteoprogenitors present at the outer bone 

surface observed in our study. Nevertheless, these two sources were not tested and future 

studies should investigate their contribution in osteoblast depleted caudal fins.  

4.1.2 Possible origin for inner bony-ray Runx2+ osteoprogenitors 

Regarding the inner bone osteoblasts, we hypothesized that they were derived from intraray 

mesenchyme. To test that, we used the careg:CreERT2 transgenic line that has been described 

to label all mesenchymal cells that contribute to regeneration, in their majority fibroblast-like 

cells (Pfefferli and Jaźwińska 2017). However, we were not successful with our labelling 

protocol when compared to what was previously demonstrated (Pfefferli and Jaźwińska 

2017). Inefficient lineage tracing analysis could have three main reasons: inefficient tamoxifen 

treatment, a drug that is quite unstable and difficult to reach maximum activity; reduced levels 

of Cre transcription in the cells of interest, due to poor activity of the promoter or regulatory 

element driving Cre expression; and low activity of the promoter used in the switch line that 

reports Cre activation (Hans et al. 2009; Felker et al. 2016; Carney and Mosimann 2018). We 

believe that in our experiments the last factor is the most relevant, as our tamoxifen protocol 

was performed as described to allow for efficient Cre activation (Felker et al. 2016) and the 

previous report showing strong labelling using the careg:CreERT2 (Pfefferli and Jaźwińska 

2017). Therefore, defective labelling could be explained by differences in the loxP reporter 

transgenic used to detect Cre-mediated recombination in careg expressing cells. Nevertheless, 

our experiments revealed that intraray mesenchymal cells contribute to mature osteoblasts 

in osteoblast-depleted fins but not in a non-ablation context (Figure 56). This contribution of 

intraray fibroblast-like mesenchymal cells for de novo osteoblast, after ablation, has already 

been proposed (Singh et al. 2012), as fibroblasts and osteoblasts are closely related by origin 

and share multiple features (Alberts et al. 2002). In fact, these two types of cells have been 

shown to be interconvertible in cell culture experiments (Yamamoto et al. 2015). However, 

we were the first to show evidence that osteoprogenitors derive from intraray mesenchymal 

cells. In the future, more experiments will be performed to increase the sample number and 

improve quantitative analysis. Nevertheless, we cannot exclude the possibility that this 

population of outer Runx2+ osteoprogenitors can also be derived from joint-associated 

osteoprogenitors. 

4.1.3 Development of new tools to address the contribution of joint-associated 

osteoprogenitors 

While looking for new progenitor markers, we generated a col10a1 transgenic reporter line. 

Previous works have shown that col10a1 labels putative osteoblast precursors in medaka 

(Renn et al. 2013). In fact, we show that col10a1 expression was observed in some Runx2+ 

osteoprogenitors that emerge between the bone matrix and the basal epidermal layer during 
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regeneration of osteoblast depleted caudal fins. In addition, we showed that the col10a1 

reporter line labels the osteoprogenitors population that resides in the joint region. Moreover, 

upon ablation, prior to amputation, joint-associated col10a1-positive osteoprogenitors 

expand in number, indicating that these cells are responsive to osteoblast ablation. In parallel, 

we generated a col10a1 ablation line (col10a1:EGFP-NTRo) (Supplementary Figure 8) that will 

be very useful to address important questions: 1) whether joint-associated osteoprogenitors 

are essential for osteoblast formation, in osteoblast depleted fins during regeneration, and 

are they able to compensate the lack of mature osteoblasts; and (2) if joint-associated 

osteoprogenitors originate the Runx2+ osteoprogenitors that we have identified in the outer 

and inner bone surfaces, in the osteoblast ablation context during caudal fin regeneration. In 

the future, we plan to perform double ablations of mature osteoblast and joint-associated 

col10a1-positive osteoprogenitors, thus evaluating whether in this condition bone 

regeneration still occurs. These experiments should clarify the contribution of joint-associated 

osteoprogenitors for de novo osteoblast formation during regeneration in caudal fins lacking 

mature osteoblast. 

4.2 Molecular mechanisms regulating de novo osteoblast formation: RA and Bmp 

signalling  

In parallel to finding new cellular sources for osteoblasts, I proposed to identify the molecular 

mechanisms that regulate osteoblast emergence during regeneration when the mature 

population is absent. Here we report unique roles for RA and Bmp signalling pathways in 

regulating de novo osteoblast formation during caudal fin regeneration (Figure 56). Not only 

we demonstrate that both pathways are activated in Runx2+ osteoprogenitors, but also that 

their separate inhibition leads to a severe decrease in the number of Runx2+ osteoprogenitors 

in caudal fins lacking mature osteoblasts during regeneration. Despite the fact that in both 

mammals and zebrafish fin regeneration RA (Renn and Winkler 2012; Blum and Begemann 

2015b; Green et al. 2017) and Bmp signalling (Laforest et al. 1998; Kamiya and Mishina 2011; 

Beederman et al. 2013; Stewart et al. 2014; Wu et al. 2016) are potent regulators of osteoblast 

formation, this work shows that they are indispensable for the recruitment of additional 

sources for new osteoprogenitor generation. In the future, we would like to investigate if RA 

and Bmp pathways act synergistically to promote de novo Runx2+ osteoprogenitors formation 

during regeneration. 

It is noteworthy to mention that during the course of this work we noticed, in the osteoblast 

ablation context, several molecular similarities between the basal epidermal layer and the 

osteoprogenitors that arise in at outer bone matrix surface. Both cell types express col10a1 

(Figure 47B, Bi and B’ from Chapter V) and activate Bmp signalling (Figure 50B and B’ from 

Chapter V). In fact, basal epidermal cells are known to function as a signalling centre during 

regeneration of the zebrafish caudal fin skeleton and scales, and to interact with osteoblasts 

to promote bone regeneration and patterning (Wehner et al. 2014; Thorimbert et al. 2015; 
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Antos et al. 2016; Armstrong et al. 2017; Iwasaki et al. 2018). Importantly, a study has 

demonstrated that during regeneration the basal epidermal layer can be a source of bmp2 

(Laforest et al. 1998). Altogether, this leads us to hypothesize that in the early phases of 

regeneration, prior to blastema formation, and especially in osteoblast-depleted fins, the 

basal epidermis also functions as a signalling centre for the adjacent cells, such as the newly 

formed osteoprogenitors, aiding in their formation and commitment. To specifically test the 

requirement of the basal epidermis for de novo osteoblast formation, we have generated a 

basal epidermis ablation line, using the krt19 specific basal epidermis promoter and the 

NTR/Mtz system (Supplementary Figure 9). We have performed functional assays confirming 

proper basal epidermal layer ablation (Supplementary Figure 9) and in the future, this line will 

be used to address the requirement of the basal epidermis for de novo osteoblast formation. 

In addition, it could also be a valuable tool to understand the cellular and molecular 

mechanisms behind basal epidermal formation after ablation. 
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Figure 56: Model for the cellular and molecular mechanisms that regulate osteoblast plasticity, independently 
of osteoblast dedifferentiation, during caudal fin regeneration. (A) During regeneration, osteoblasts that 
contribute to blastema formation arise from dedifferentiation of mature resident osteoblasts, just below the 
amputation plane, and from osteogenic precursors localized in the intersegment/joint regions of the caudal fin. 
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Our data also suggest that other osteoprogenitors may emerge near the bone surface and in a process dependent 
on Bmp signalling. (B) When the mature osteoblast population is compromised, such as in osteoblast-depleted 
caudal fins, de novo osteoblasts may arise from the precursors localized in the intersegment region. In addition, 
we propose that other osteoprogenitor sources contribute to de novo osteoblast formation. These 
osteoprogenitors arise in the region close to the bone matrix surface at the interface with the surrounding 
tissues, namely mesenchyme and epidermis. Lineage tracing experiments suggest that mesenchymal cells, but 
not epidermal cells, can give rise to newly formed osteoblasts. We also propose that both RA and Bmp signalling 
are important regulators of de novo osteoblast formation during zebrafish caudal fin regeneration. 

5 IMPLICATIONS OF ZEBRAFISH BONE REGENERATION STUDIES TO THE FIELD OF 

REGENERATIVE MEDICINE 

Regenerative medicine aims at replacing lost/damaged tissues or cells in the human body 

through a new source of healthy transplanted cells or by stimulating endogenous repair. Bone 

is considered to be an exception to the limited capacity found in mammals, as it is capable of 

replacing itself and to regenerate after fracture, without excessive scar formation (Dimitriou 

et al. 2011; Loeffler et al. 2018). However, many skeletal dysplasias can affect bone formation 

and the efficacy of repair mechanisms, causing functional disabilities. Osteodegenerative 

disorders, like osteoporosis or osteoarthritis, affect significantly the elderly population. Also, 

congenital disorders, such as skeletal malformations and massive bone loss, represent 

frequent clinical situations. Thus, bone regenerative therapies are in high demand (Illich et al. 

2011). 

Tissue-replacement therapies are the most widely used to promote bone repair, including 

implantation of biomaterials (to substitute bone) and autologous bone graft implants. 

Autologous bone grafting is considered to be the “gold standard” for bone reconstructive 

procedures. In fact, demand for bone grafts is very significant, with approximately 2.2 million 

bone grafts being performed annually worldwide in orthopedics and dentistry (Illich et al. 

2011; Chaparro 2016). Nevertheless, it also possesses limitations, such as restriction to the 

patient’s bone tissue, risk of morbidity in the donor site, high cost and long surgical procedure 

(Chaparro 2016). Cell-based therapies have also been extensively investigated. Various cell 

types, such as osteoblasts, MSCs and iPSCs, have been proposed and used as alternatives for 

bone reconstruction (Patel et al. 2013; Sheyn et al. 2016; Csobonyeiova et al. 2017). However, 

a consistent obstacle when using cell-based therapies is that they often present inefficient 

osteogenic capacity, probably because they lack the correct signalling cues or environmental 

stimulation when implanted back into the host. 

Consequently, evidences point to the necessity of performing combined approaches using a 

wide range of available treatments to increase the efficiency of bone regeneration. Given that 

the current therapies are still far from ideal, there is an urgent necessity to further understand 

the processes that drive the biology of bone regeneration. Unfortunately, many processes 

remain largely unknown.  

Mammalian bone regeneration and fracture healing involve numerous and highly complex 

interactions, between a multitude of cell types and molecules that have not been sufficiently 
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characterized. It is of major importance to improve our understanding of how fracture healing 

and bone regeneration processes occur, by identifying not only the potential cell types but 

also the molecular mechanisms that contribute to these processes. 

Multiple animal models with enhanced regenerative ability have been extensively used in 

biomedical research. Zebrafish is a non-mammalian model system of excellence for the study 

of the mechanisms behind tissue regeneration. Although other systems allow the study of 

bone regeneration, the zebrafish caudal fin provides unique advantages to elucidate the 

molecular and cellular strategies underlying the intrinsic bone regenerative capacity 

(Spoorendonk et al. 2010; Bruneel and Witten 2015; Cardeira et al. 2016). In this PhD thesis, 

we used zebrafish to shed light into some key aspects of caudal fin bone regeneration that 

were not understood. In the next two sections, we propose possible implication of our findings 

for the field of regenerative medicine.  

5.1 The potential of osteoblast dedifferentiation and osteogenic plasticity for bone 

regenerative medicine and skeletal dysplasias 

In Chapter III, we have discovered new regulators of the osteoblast dedifferentiation process, 

namely metabolic reprogramming and the Hippo/ Yap signalling pathway. It would be 

interesting if, in mammalian systems, we could stimulate regenerative mechanisms by 

activating other endogenous sources for osteoblasts precursors through limited and 

controlled dedifferentiation. Instead of relying solely on MSCs to provide new osteoblasts, we 

could propel other cells within the skeletal tissue to undergo dedifferentiation into a 

committed progenitor-like stage. For this, the more obvious candidates are the bone lining 

cells (Matic et al. 2016). These are quiescent under normal conditions and cover non-

remodelling bone surfaces, however, they have the intrinsic capacity to respond by 

proliferating and originating osteoblasts under special conditions (Matic et al. 2016).  

Understanding the mechanisms that potentiate osteoblast dedifferentiation could also have 

implications for tumour biology, as both processes seem to rely on similar mechanisms. In 

fact, tumour cell plasticity is an event observed in various malignancies. This increased 

plasticity, which has been linked to metabolic reprogramming (Warburg 1925; Liberti and 

Locasale 2016; Potter et al. 2016), allows them to dedifferentiate, undergo EMT and acquire 

proliferative capacity (Friedmann-Morvinski and Verma 2014; Varga et al. 2014). These same 

characteristics have been described here as a hallmark of osteoblast dedifferentiation during 

caudal fin regeneration. This would be particularly meaningful for neoplasias that arise within 

bone cells, such as osteosarcoma. Importantly, dedifferentiation of mature osteoblasts has 

been observed in pediatric osteosarcomas (Pereira et al. 2009; Basu-Roy et al. 2013). Our 

genome-wide gene expression analysis, performed during osteoblast dedifferentiation in 

zebrafish, could also bring forward crucial information on the mechanisms that promote 

dedifferentiation of tumour cells. However, one important difference between tumour 

formation and bone regeneration seems to be the distinct regulation of the tumour 
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suppressor p53. In osteosarcoma cell lines, and in most cancer cells, p53 is mutated or has 

deficient activity (Pereira et al. 2009; Charni et al. 2017), while in our microarray p53 

transcripts are upregulated, suggesting its activation. These differences in p53 activity might 

explain why during regeneration cell proliferation is tightly controlled but not in cancers cells. 

5.2 Deepening into the mechanisms that control osteoblast commitment and 

differentiation  

Osteoblast dysfunctions may affect the ability of the human body to perform correct bone 

remodelling and fracture healing, culminating in bone disorders. Both the quality and quantity 

of bone produced by osteoblasts are of major importance, as both can be related with 

incorrect osteoblast commitment or differentiation. Despite the identification of several 

essential transcriptional programs for bone development, the current understanding is not 

sufficient to entirely explain the heterogeneity found in human bone disorders (Feng and 

McDonald 2011; Marie 2015).  

In this thesis, we sought to better understand the mechanisms involved in osteoblast 

differentiation, from progenitor cells to fully committed osteoblasts, during regeneration. We 

provide evidence for several signalling pathways that are required at specific stages of 

osteoblast lineage specification in a regenerative context. In Chapter IV, we demonstrate that 

the Hippo pathway transcriptional effector Yap regulates osteoprogenitor commitment and 

differentiation and that its loss of function leads to reduced bone matrix deposition and, 

consequently, to the thinning and fragility of caudal fin bony-rays. Similarly, combinatorial 

Yap/Taz deletion from mice osteoblasts causes an osteogenesis imperfecta-like phenotype, 

with defective bone matrix type I collagen formation and spontaneous fractures (Kegelman et 

al. 2018). This emphasises the role of the Hippo/Yap signalling pathway as a potent regulator 

of osteoblast maturation. Thus, it would be interesting to address whether Yap is also related 

to other disorders with ineffective bone matrix maturation and be used as an endogenous 

factor that could be manipulated to normalize bone formation in pathological conditions. In 

Chapter V, we revealed new functions for RA and Bmp signalling during de novo osteoblast 

formation, with both pathways being important to assemble an osteoprogenitor population 

in osteoblast depleted caudal fins. Pathologies like osteoporosis, which is characterized by an 

increase in bone resorbing activity (by osteoclasts) and the inability of osteoblasts to 

compensate for this loss of bone, lead to bone perforation, loss and increased risk of fracture 

(Feng and McDonald 2011; Marie 2015). Over time, osteoblasts also decrease in number, 

which intensifies the pathology of the disease. In this case, therapies that promote bone 

formation and osteoprogenitor formation and activation are of major importance. In this 

context, both RA and Bmp signalling pathways could be important targets to take into 

consideration and tackle this problem. 

Although the work described here is very specific to the context of caudal fin regeneration, 

we hope that our data may contribute to further understand the mechanism that regulate 
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new osteoblast formation during zebrafish caudal fin regeneration and aids in the 

development of new and unconventional bone repair strategies for humans. 

6 CONCLUDING REMARKS 

During caudal fin regeneration, bone formation is achieved through a sequence of events that 

culminates in the complete renewal of the missing skeletal elements. Osteoblasts are the cells 

responsible for bone maintenance and regeneration of the new caudal fin skeletal system. 

Bone regeneration is achieved through a series of events: during blastema formation, by 

dedifferentiation of mature cells and commitment of joint associated progenitor cells that 

generate a pool of osteoprogenitors; and later on, during outgrowth, by the maintenance of 

a progenitor pool and redifferentiation in order to restore the lost tissue original shape, 

architecture and function. Although the overall mechanism through which zebrafish caudal fin 

bone regeneration is achieved is understood, multiple questions remain to be addressed. This 

system provides the unique opportunity to investigate the mechanisms that regulate 

osteoblast reprograming, plasticity and lineage specification during regeneration. During this 

PhD thesis, we enlighten different mechanism that regulate bone formation at different 

phases of the regenerative process: we uncover potential regulators of dedifferentiation; we 

determine important signalling pathways that regulate osteoblast redifferentiation; and we 

also unveil cellular and molecular mechanism behind de novo osteoblast formation in 

osteoblast depleted caudal fin during regeneration. Overall, we expect that the data 

generated in this PhD thesis aids to envision new therapeutic approaches that exploit the 

features of regenerative osteoblast biology 

6.1 Regulators of osteoblast dedifferentiation 

In Chapter III we aimed to bring new insights into the field of tissue regeneration by addressing 

one of the major questions regarding the regenerative capacity found in the animal kingdom: 

how can cells change their identity and reprogram themselves to ensure proper formation of 

a new tissue or organ, upon injury? During zebrafish caudal fin regeneration bone cells 

reprogramming occurs as a partial dedifferentiation process, with cells acquiring a progenitor-

like phenotype (Knopf et al. 2011; Sousa et al. 2011; Tu and Johnson 2011; Stewart and 

Stankunas 2012). Our results show that, in order to do so, osteoblasts display significant 

changes at the level of gene transcription. In fact, we propose that osteoblast 

dedifferentiation can be regulated by activation of two processes: via metabolic adaptation, 

in which mature osteoblasts activate a bivalent metabolism to ensure the regeneration 

demands, and another through Yap-dependent activation in a cell autonomous manner 

(Figure 52). Inhibition of both mechanisms has a severe impact on regeneration, in particular 

on bone formation (Figure 53 and Figure 54). Importantly, to our knowledge, this is the first 

report suggesting the requirement of metabolic reprogramming for dedifferentiation in a 
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regenerative context and the implication the hippo pathways effector Yap for osteoblast 

dedifferentiation during caudal fin regeneration. 

6.2 Osteoblast redifferentiation during outgrowth  

In Chapter IV we intended to investigate if the Hippo/Yap signalling pathway is an important 

regulator of bone repair during the regenerative outgrowth phase. Despite several studies 

implicating Yap as a potent inducer of bone differentiation (Dupont et al. 2011a; Hiemer and 

Varelas 2013; Piccolo et al. 2014; Varelas 2014; Pan et al. 2018; Xiong et al. 2018), no link 

between Yap and bone regeneration in zebrafish has been proposed. Using a Yap loss of 

function transgenic line, we observed a robust and clear inhibition of bone regeneration 

during the outgrowth phase. Overall, these findings highlight a novel and important role for 

the transcriptional co-activator Yap during caudal fin bone regeneration, by specifically 

directing osteogenic differentiation via paracrine signalling from the adjacent mesenchyme 

(Figure 55). We hope that these findings help to clarify the roles of the Hippo/Yap signalling 

pathway during osteoblast lineage specification. Interestingly, we also brought into light an 

important duality of the Hippo/Yap pathway, considering the results from Chapters II and IV, 

where we show that Yap plays a broader and more significant role during caudal fin bone 

regeneration than previously thought. Depending on the regeneration phase, not only it 

regulates osteoblast dedifferentiation and osteoprogenitor assembly during blastema 

formation, but it is also a key regulator of osteoblast differentiation during outgrowth. 

6.3 Mechanisms of de novo osteoblast formation 

In Chapter V, we propose to bring light into the mechanisms that regulate cell plasticity during 

zebrafish caudal fin regeneration, in particular for bone repair. Mature osteoblast ablation, 

prior to amputation, deprives the system of osteoblast capable of dedifferentiating and 

contributing for new osteoblast formation during regeneration. Consequently, other cell 

sources may be activated to compensate for the lack of mature osteoblast. Here, we provide 

evidence for a heterogeneous population of osteoprogenitors that emerges at the outer and 

inner bone surface. In this context, the intraray mesenchymal tissue was discovered as a 

source of new osteoblast during regeneration. Thus, skeletal tissue regeneration in zebrafish 

seems to be accomplished by diverse cellular origins that together promote correct bone 

formation. These include: resident osteoblasts; joint associated osteoprogenitors; and 

mesenchymal fibroblasts that may arise only in special contexts when primary sources, such 

as mature osteoblast, are compromised. We also revealed that Bmp and RA signalling are 

required and may cooperate to ensure de novo osteoblast formation during regeneration in 

osteoblast depleted fins. In conclusion, our work elucidates the cellular and molecular 

mechanisms that regulate tissue plasticity in the context of fin ray regeneration, in particular, 

when the system is challenged, such as in osteoblast-depleted fins. It is possible that in this 

special context, dormant regenerative mechanisms emerge to ensure correct bone formation. 
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Supplementary Table 1: GAGE analysis of all gene expression analysis (cut off free) corresponding to 
the 6 hpa versus uncut data set. Table shows the most significant pathways related to metabolism and 
canonical signalling pathways represented in our 6 hpa data set according to KEGG (dre represents the 
KEGG pathway identifier code). Only pathways with p-values less than 0,05 and FDR less than 0.1 were 
considered significantly different.  

Pathways p-value q-value (FDR) 

dre03040 Spliceosome 7.09E-11 1.03E-08 

dre03013 RNA transport 4.19E-10 3.03E-08 

dre03008 
Ribosome 
biogenesis 

5.16E-08 2.49E-06 

dre01230 
Biosynthesis of 

amino acids 
3.57E-06 0.000121575 

dre03015 
mRNA 

surveillance 
4.60E-06 0.000121575 

dre01200 
Carbon 

metabolism 
5.03E-06 0.000121575 

dre00240 
Pyrimidine 
metabolism 

1.70E-05 0.000342979 

dre03050 Proteasome 1.89E-05 0.000342979 

dre04141 
Protein 

processing in ER 
2.72E-05 0.000438333 

dre04210 Apoptosis 0.000219483 0.003076139 

dre00270 

Cysteine and 
methionine 
metabolism 

0.000233362 0.003076139 

dre04140 Autophagy 0.000282262 0.00327104 

dre00010 
Glycolysis / 

Gluconeogenesis 
0.000310485 0.00327104 

dre03020 RNA polymerase 0.000330375 0.00327104 
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dre04120 

Ubiquitin 
mediated 

proteolysis 
0.000338383 0.00327104 

dre00970 
Aminoacyl-tRNA 

biosynthesis 
0.000500443 0.004535262 

dre04012 
ErbB signalling 

pathway 
0.000572645 0.004733329 

dre00190 
Oxidative 

phosphorylation 
0.000587586 0.004733329 

dre03018 
RNA 

degradation 
0.000682803 0.005210865 

dre00230 
Purine 

metabolism 
0.000918095 0.006656189 

dre00250 

Alanine, 
aspartate and 

glutamate 
metabolism 

0.000990202 0.006837112 

dre04137 Mitophagy 0.002417843 0.015242923 

dre03060 Protein export 0.003500105 0.021146469 

dre04115 
p53 signalling 

pathway 
0.003662985 0.021245315 

dre00280 

Valine, leucine 
and isoleucine 

degradation 
0.005466869 0.029845087 

dre03022 

Basal 
transcription 

factors 
0.006218781 0.031249499 

dre01212 
Fatty acid 

metabolism 
0.0062499 0.031249499 

dre00071 
Fatty acid 

degradation 
0.007713348 0.037281184 
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dre04150 
mTOR signalling 

pathway 
0.008758609 0.040967689 

dre04218 
Cellular 

senescence 
0.010333718 0.046824661 

dre04623 
Cytosolic DNA-

sensing pathway 
0.012218968 0.053689407 

dre00310 
Lysine 

degradation 
0.014135981 0.060091192 

dre00480 
Glutathione 
metabolism 

0.01450477 0.060091192 

dre00051 

Fructose and 
mannose 

metabolism 
0.015511323 0.062476163 

dre04910 
Insulin signalling 

pathway 
0.016787728 0.065789746 

dre04621 

NOD-like 
receptor 
signalling 
pathway 

0.018083942 0.069004514 

dre00520 

Amino sugar 
and nucleotide 

sugar 
metabolism 

0.019524559 0.072387671 

dre04110 Cell cycle 0.019969013 0.072387671 

dre00640 
Propanoate 
metabolism 

0.021729808 0.076849321 

dre04144 Endocytosis 0.022752713 0.077773945 

dre04068 
FoxO signalling 

pathway 
0.023063997 0.077773945 

dre04142 Lysosome 0.028794476 0.093848057 
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dre01210 2- 
Oxocarboxylic 

acid metabolism 
0.029125259 0.093848057 

dre04310 
Wnt signalling 

pathway 
0.031141071 0.096859013 

dre03420 
Nucleotide 

excision repair 
0.03139568 0.096859013 
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Supplementary Figure 1: Differentially expressed genes within the glycolytic pathway at 6 hpa. Schematic 
representation of the glycolysis pathway and the corresponding differentially expressed genes using the KeGG 
pathway database resource. Upregulated genes are shown in red and the downregulated genes in green.
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Supplementary Figure 2: Differentially expressed genes within the Oxidative phosphorylation pathway at 6 hpa. Schematic representation of the electron 
transport chain components and the corresponding differentially expressed genes using the KeGG pathway database resource. Upregulated genes are shown in 
red and the downregulated genes in green. 
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Summary statement 

Yap regulates, in a cell non-autonomous manner, Bmp signalling activation in osteoprogenitors, 

therefore promoting osteoblast differentiation and proper bone formation during caudal fin 

regeneration.  
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Abstract 

 

Osteoblast differentiation is a key process for 

bone homeostasis and repair. Multiple signalling 

pathways have been associated with osteoblast 

differentiation, yet much remains unknown on 

how this process is regulated in vivo. Previous 

studies have proposed that the Hippo pathway 

transcriptional co-activators YAP and TAZ 

maintain progenitor stemness and inhibit 

terminal differentiation of osteoblasts, whereas 

others suggest they potentiate osteoblast 

differentiation and bone formation. Here, we 

use zebrafish caudal fin regeneration as a model 

to address how Hippo pathway regulates de 

novo bone formation and osteoblast 

differentiation. We show that Yap is essential for 

this process by acting in a cell non-autonomous 

manner. Yap inhibition leads to an accumulation 

of the osteoprogenitor pool and to reduced 

osteoblast differentiation. This effect is 

correlated with a severe impairment of Bmp 

signalling in osteoblasts, possibly by suppressing 

the expression of the ligand bmp2a in the 

surrounding mesenchymal cells. Overall, our 

findings provide a new mechanism of bone 

formation through the Hippo-Yap pathway, 

placing Yap in the signalling cascade that governs 

osteoprogenitor maintenance and subsequent 

differentiation. 

 

Introduction 

 

Bone formation and repair are intrinsically 

associated with the balanced activity of the 

bone-forming cells, the osteoblasts (Eriksen, 

2010; Long, 2012). A dysfunctional behaviour of 

osteoblasts leads to improper bone matrix 

deposition and mineralization, affecting the size, 

shape and integrity of the skeletal structures 

(Marie, 2015; Quiros-Gonzalez and Yadav, 2014; 

Valenti et al., 2017). Bone defects occur under 

pathological conditions, such as osteoporosis 

(Corrado et al., 2017; Feng and McDonald, 2006), 

or due to defective healing upon infection or 

trauma (Dimitriou et al., 2011; Schindeler et al., 

2008). Current strategies to augment bone 

formation, such as autologous bone grafts, 

implementation of osteoconductive scaffolds 

(Collignon et al., 2017; Shrivats et al., 2014) or 

even the use of growth factors like BMP-2 (El 

Bialy et al., 2017; Garrison et al., 2010), show 

promising results. However, a better 

understanding of the osteoblast lineage 

specification, bone matrix deposition and bone 

regeneration would considerably improve these 

therapeutic strategies. 

Osteoblasts derive from osteoprogenitors that 

differentiate by progressively expressing 

maturation markers (Håkelien et al., 2014; 

Rutkovskiy et al., 2016). More immature cells 

start expressing runt-related transcription factor 

2 (runx2) (Ducy et al., 1997; Franceschi et al., 

2003), followed by osterix (osx) (Nakashima et 

al., 2002) and lastly, the mature-osteoblast 

marker, osteocalcin (or bone gamma-

carboxyglutamate (gla) protein, bglap) (Wei and 

Karsenty, 2016). The Hippo pathway has been 

recently suggested to mediate bone formation 

and repair by specifying the osteoblast lineage 

(Kegelman et al., 2018). The Hippo signal 

transduction pathway comprises a kinase core 

cascade which suppresses the transcriptional 

activity of its effectors, Yes-associates Protein 

1(YAP) and Transcriptional co-activator with 

PDZ-binding motif (TAZ), through 

phosphorylation, leading to their sequestration 

in the cytoplasm and degradation. When Hippo 
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pathway is inactive, YAP and TAZ can be 

translocated to the nucleus and regulate target 

gene expression (Irvine, 2012; Piccolo et al., 

2014). This pathway has been widely shown to 

play an important function in tissue growth, 

organ size and regeneration (Fu et al., 2017; 

Halder and Johnson, 2011; Moya and Halder, 

2018; Zhao, 2014), by regulating cell 

proliferation, survival and fate determination 

(Hiemer and Varelas, 2013; Huang et al., 2005; 

Yimlamai et al., 2014). Recent works have 

showed that YAP and TAZ are required for proper 

osteoblast activity and bone formation in vitro 

(Halder et al., 2012; Hong et al., 2005), during 

mouse development and adult bone remodelling 

(Lucero et al., 2018; Pan et al., 2018; Tang and 

Weiss, 2017; Tang et al., 2013). However, their 

roles are often controversial and context-

dependent, since their activity in 

osteoprogenitors maintains the progenitor state 

while in mature osteoblasts they promote 

osteoblast commitment and bone formation 

(Seo et al., 2013; Xiong et al., 2018).  

While mammals show limited ability to 

regenerate (Godwin et al., 2014; Zhao et al., 

2016), zebrafish can regrow multiple organs and 

tissues upon injury (Antos et al., 2016; Goessling 

and North, 2014). Bone is a major tissue in the 

zebrafish caudal fin, which virtually has an 

unlimited ability to regenerate upon amputation 

(Azevedo et al., 2011; Cardeira et al., 2016; 

Pfefferli and Jaźwińska, 2015). This process relies 

on the dedifferentiation of mature osteoblasts 

(Knopf et al., 2011; Sousa et al., 2011) and on the 

recruitment of resident progenitor cells (Ando et 

al., 2017), establishing a self-renewing 

progenitor pool that differentiates into mature 

osteoblasts to produce the new mineralized 

bone (Stewart et al., 2014; Wehner and 

Weidinger, 2015). It has been previously shown 

that the Hippo pathway, through its effector Yap, 

regulates the early stages of caudal fin 

regeneration by controlling key signalling 

pathways and cell proliferation (Mateus et al., 

2015). Here we reveal a novel role for Yap in 

caudal fin regeneration by promoting osteoblast 

differentiation without compromising 

osteoprogenitor pool maintenance. Our results 

show that Yap activity in mesenchymal cells 

induces, via a paracrine signalling, the activation 

of Bmp signalling in osteoblasts, thereby leading 

to the initiation of osteoblast differentiation 

program. 

 

Results and Discussion  

 

Yap loss of function leads to major bone defects 

during caudal fin regenerative outgrowth 

After amputation, the fin experiences a fast 

wound healing response (Chen et al., 2016), 

followed by the dedifferentiation of mature cells 

(Stewart and Stankunas, 2012; Tu and Johnson, 

2011). These cells re-enter the cell cycle and 

form a less differentiated and proliferative pool 

of cells, called blastema, which is the driving 

force of the regenerative process (Kawakami, 

2009; Poss et al., 2003). Once the blastema is 

fully formed and outgrowth is initiated, 

differentiation of new osteoblasts takes place, 

culminating in bone matrix deposition and 

patterning of new bony-rays (Marí-Beffa and 

Murciano, 2010). To determine whether Yap 

controls bone formation during caudal fin 

regeneration, we used an heat-shock transgenic 

line expressing a dominant-negative form of Yap, 

hsp70:RFP-DNyap (referred to as DN-Yap), that 

allows the inhibition of Yap function, as 

previously validated (Mateus et al., 2015). 
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Although homozygous viable mutants for yap1 

are already available (Astone et al., 2018), the 

use of a heat-shock inducible strategy enables us 

to address the role of Yap in a time-specific 

manner. This time-controlled approach is 

particularly relevant since it has been previously 

shown that Yap regulates cell proliferation 

during blastema formation (Mateus et al., 2015), 

which could ultimately affect the number of new 

osteoblasts at later stages. Therefore, to 

determine the effect of Yap inhibition in the 

bone formation process, we heat-shocked daily 

DN-Yap (DN-Yap+) and sibling controls (DN-Yap-

) from 48 to 96 hours post-amputation (hpa) and 

analysed the fins at 120 hpa (Fig. 1A). Analysis of 

the newly formed caudal fin bony-rays (Fig. 1B-

E’) showed that the DN-Yap+ animals had a 

significant reduction in mineralized area (Fig. 1F) 

and ray width (Fig. 1G). We confirmed that these 

defects are not due to a general delay in 

regeneration, as the measured bone 

regeneration was normalized to the total 

regenerated fin area in each animal. These 

results clearly demonstrate that Yap is required 

for bone formation during regeneration. 

 

Yap regulates bone formation by inhibiting 

osteoprogenitor differentiation  

Given the bone defects observed upon Yap 

inhibition, we hypothesized that Hippo pathway 

might be regulating osteoblast differentiation 

and their distribution during outgrowth. It has 

been previously described that, at the onset of 

outgrowth, osteoblasts start to differentiate, 

exhibiting a proximo-distal hierarchical 

organization that can be monitored using 

different osteoblast markers (Brown et al., 2009; 

Stewart et al., 2014) (Fig. S1A). The distal 

blastema (DB) is populated by osteoprogenitors 

positive for runx2 (defined as Runx2+; (Stewart 

et al., 2014)), a transcriptional regulator of 

mesenchymal cell commitment towards the 

osteoblast lineage (Ducy et al., 1997). The 

proximal blastema (PB) contains osteoblasts at 

the early stages of differentiation expressing 

both runx2 and osx (defined as Runx2+Osx+) 

(Brown et al., 2009; Stewart et al., 2014). The 

patterning zone (PZ), closer to the amputation 

plane, is populated by fully mature bone matrix-

secreting osteoblasts expressing lower levels of 

runx2 and high levels of osx and bglap (Brown et 

al., 2009; Knopf et al., 2011). Taking advantage 

of two reporter lines for osx (Singh et al., 2012) 

and runx2 (Knopf et al., 2011) we characterized 

Yap subcellular localization at early stages of 

osteoblast differentiation (Fig. S1B-F’’’). Yap 

subcellular localization reflects its activity status, 

since cytoplasmic Yap is often a read-out of 

inactivation, whereas its translocation to the 

nucleus promotes Yap-dependent 

transcriptional activity (Piccolo et al., 2014). 

Since Yap was mainly cytoplasmic in distal 

osteoprogenitors (DB, Fig. S1F, F’-F’’’), in 

differentiating (PB, Fig. S1D, D’-D’’’) and mature 

osteoblasts (PZ, Fig. S1C, C’-C’’’), we concluded 

that Yap is inactive in all osteoblast populations 

during outgrowth. However, we observed 

nuclear accumulation of Yap in multiple cells in 

proximity to the differentiating osteoblasts, 

mainly within the PZ and PB regions (Fig. S1C’-

D’’’). Surprisingly, when analysing the effect of 

Yap inhibition in the different osteoblast 

populations we could see a clear Yap-mediated 

regulation of osteoblast differentiation (Fig. 2A-

H’’’). By quantifying the relative number of 

osteoblast subsets, we noticed a significant 

increase in the number of osteoprogenitors 

(Runx2+), from 20% in DN-Yap- to 55% in the DN-

Yap+ (Fig. 2I), and a reduction in the number of 
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differentiating osteoblasts (Runx2+Osx+), from 

80% in DN-Yap- to 45% in DN-Yap+ (Fig. 2J). 

Additionally, the osteoprogenitor domain, 

usually confined to the DB compartment (Fig. 2A, 

D), had expanded and Runx2+ cells were also 

found in more proximal locations (Fig. 2E, F, G). 

This suggests that Yap inhibition does not disrupt 

the maintenance of the osteoprogenitor pool 

but instead prevents their differentiation into 

Runx2+Osx+ osteoblasts. Furthermore, gene 

expression analyses (Fig. 2K) showed that 

intermediate (immature) markers, such as osx 

and collagen 10a1 (col10a1), and mature 

markers (bone-forming osteoblasts), like bglap, 

bglapl, and osteonectin (osn), were significantly 

downregulated in DN-Yap+ regenerating caudal 

fins when compared to controls, while early 

progenitor markers, such as runx2a and runx2b, 

were unaltered.  

Overall, these data suggest that Yap not only 

controls cell proliferation during blastema 

formation (Mateus et al., 2015), but it also 

regulates osteoblast differentiation. We propose 

that this regulation is via a paracrine signalling, 

pointing to an additional role for Yap during 

caudal fin regeneration.  

 

Yap regulates osteoblast differentiation in a cell 

non-autonomous manner by compromising 

Bmp signalling  

Osteoblast differentiation during caudal fin 

regeneration has been associated with the 

signalling activity of the newly formed basal 

epidermal layer (BEL) (Laforest et al., 1998; Quint 

et al., 2002; Smith et al., 2006). In this context, 

the BEL secretes Sonic hedgehog (Shh) to the PB 

compartment, leading to bmp2b expression, 

Bmp signalling activation, culminating in 

osteoblast differentiation (Laforest et al., 1998; 

Quint et al., 2002). Previous work has 

demonstrated that osteoblast differentiation 

and distal osteoprogenitor pool maintenance are 

regulated through antagonizing activities of Bmp 

and Wnt signalling pathways respectively. 

Therefore, in order to understand how Yap 

regulates osteoprogenitor differentiation, we 

analysed multiple components of key signalling 

pathways associated with osteoblast 

differentiation, such as Bmp (Smith et al., 2006; 

Stewart et al., 2014), Wnt (Stewart et al., 2014; 

Wehner et al., 2014), Shh (Laforest et al., 1998; 

Quint et al., 2002) and Retinoic acid (Ra) (Blum 

and Begemann, 2015) pathways in the Yap 

inhibition context. Upon Yap inhibition we did 

not detect differences of expression in shh or 

bmp2b transcripts, suggesting that Yap is not 

regulating osteoblast differentiation through the 

BEL. Furthermore, Yap is cytoplasmic (inactive) 

in the BEL cells (Fig. S2), indicating that Yap is 

mediating osteoblast differentiation through an 

alternative mechanism. 

Interestingly, we observed a significant 

reduction of dkk1a (negative regulator of Wnt 

signalling; (MacDonald et al., 2010)) and bmp2a 

(ligand for Bmp signalling; (Rosen, 2009; Wang et 

al., 2014)) transcripts upon Yap inhibition (Fig. 

3A), suggesting that Yap affects Wnt and Bmp 

signalling pathways during fin outgrowth. Since 

Yap was demonstrated to interact with both 

signalling pathways in other systems (Attisano 

and Wrana, 2013; Kim and Jho, 2014), we 

decided to investigate Yap subcellular 

localization in relation to activated Bmp and Wnt 

signalling at early stages of osteoblast 

differentiation (72 hpa). Regarding Bmp 

signalling, we measured the percentage of 

mesenchymal and osteoblast cells that contain 

active (nuclear) Yap and active/phosphorylated 

Smad 1/5/8 (pSmad), the Bmp signalling effector 
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(Wu et al., 2016) (Fig. 3B-F). We observed that 

Yap is nuclear in 50% of the mesenchymal cells 

within the PB whereas only 15% present pSmad 

(Fig. 3C,C’-C’’’,E). In the DB region, only a 

minority of cells (around 12%) presents nuclear 

Yap and/or pSmad (Fig. 3D,D’-D’’’,E). This Yap 

distribution along the proximal-distal axis had 

already been shown to correlate with 

differences of cell density within the blastema 

(Mateus et al., 2015). We also observed that, in 

accordance to what has been previously shown 

(Stewart et al., 2014), Bmp signalling is mainly 

active in differentiating osteoblasts that 

populate the PB compartment with almost 60% 

of osteoblasts showing nuclear pSmad (Fig. 

3C,C’-C’’’,F), while this percentage decreases in 

the DB region (Fig. 3D,D’-D’’’,F). This shows that 

although Yap and pSmad are mostly active in 

different cells, mesenchyme and osteoblasts, 

respectively, they share a proximo-distal 

gradient of activation: more cytoplasmic 

(inactive) in distal-most regions and 

progressively more nuclear (active) towards 

proximal and patterning regions. Thus, we 

speculate that Yap may induce bmp2a 

expression in mesenchymal cells which then 

activates Bmp signalling in the adjacent 

osteoblasts, consequently promoting osteoblast 

differentiation. To test this hypothesis, we 

evaluated whether Yap inhibition perturbs Bmp 

signalling activation in differentiating 

osteoblasts. For that, we applied a single heat-

shock at early stages of osteoblast 

differentiation (Fig. 4A) and evaluated the caudal 

fins at 72 hpa for Bmp signalling activation and 

ZNS5, which labels osteoblasts in all stages of 

differentiation (Ando et al., 2017; Brown et al., 

2009) (Fig. 4B-G’). We observed that Yap 

inhibition led to a clear reduction in the number 

of pSmad-positive cells in the osteoblast 

populations (Fig. 4H), indicating that, indeed, 

Yap is required for Bmp signalling activation in 

osteoblasts.  

Moreover, it has been reported that Bmp 

signalling activation promotes Dkk1b secretion, 

which restricts Wnt signalling to the DB 

compartment (Fig. S3A) (Stewart et al., 2014). 

Taking advantage of a transgenic line reporter 

for active Wnt signalling, we observed that while 

Wnt signalling is mainly active in the DB 

compartment, nuclear Yap is mostly excluded 

from this region, suggesting they have 

antagonist activities (Fig. S3B-E). Supporting this 

notion, we observed a tendency for the Wnt 

signalling activation domain to expand upon Yap 

inhibition (Fig. S4), which correlates with the 

lower expression of Wnt negative regulator 

dkk1a (Fig. 3A) and to the increase of the 

osteoprogenitor pool (Runx2+, Fig. 2I). 

Altogether this might imply that Yap and Bmp 

signalling act synergistically during fin 

regeneration to restrict Wnt signalling activity to 

distal-most regions. This is in agreement with 

previous studies where Yap has been shown to 

inhibit Wnt function in other regenerative 

contexts (Heallen et al., 2012). 

Overall, our data shows that, in addition to 

controlling proliferation (Mateus et al., 2015), 

the Hippo-Yap pathway regulates osteoblast 

differentiation during zebrafish caudal fin 

regeneration, a link that has not been proposed 

so far. Our results indicate that Yap acts on bone 

regeneration mainly in a cell non-autonomous 

manner. On one hand, together with Bmp 

signalling, Yap may inhibit Wnt signalling 

expansion to the proximal blastema by 

regulating the expression of dkk1a in this region, 

consequently restricting osteoprogenitors to the 

distal blastema. On the other hand, and more 
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importantly, Yap seems to promote the 

secretion of Bmp2a by mesenchymal cells in the 

proximal blastema which then acts on adjacent 

osteoblasts to activate Bmp signalling and hence 

osteoblast differentiation. Taken together, these 

findings place Hippo-Yap pathway in the 

signalling events that direct osteoblast 

differentiation, mainly through regulation of 

Bmp signalling. We hope that the findings 

described here aid to provide a deeper 

understanding of the mechanisms regulating 

bone regeneration and to clarify the role of the 

Hippo-Yap signalling pathway during osteoblast 

lineage specification. 
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All the people involved in animal handling and 
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Zebrafish lines 

Wild-type AB, Tg(osterix:mCherryNTRo)pd46  

(Singh et al., 2012), Tg(Has.RUNX2-

Mmu.Fos:EGFP)zf259 (Knopf et al., 2011), 

Tg(6xTcf/Lef-miniP:d2GFP)isi01 (Shimizu et al., 

2012) and Tg(hsp70l:RFP-dnyap1) (Mateus et al., 

2015) zebrafish lines were maintained in a 

circulating system with 14 hour/day and 10 

hour/night cycle periods at 28 °C. All 

experiments were performed in 4-18 months old 
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adult fish (Westerfield, 2000) and all transgenic 

animals were used as heterozygotes. 

 

Caudal fin amputation and heat-shock 

experiments 

Caudal fin amputations were performed in fish 

anaesthetized in buffered 160 mg/mL MS-222 

(Sigma, E10521) using a sterile scalpel. 

Regeneration was allowed to proceed until 

defined time-points in an incubator at 33°C ± 1 

°C, except for heat-shock experiments, and the 

water was renewed daily. Amputations were 

made 1 or 2 segments below the most proximal 

ray bifurcation, removing approximately one half 

of the fin. Regenerated fins from anaesthetized 

animals were collected at predefined time-

points post-amputation, as previously described 

(Poss et al., 2000). For heat-shock experiments, 

Tg(hsp70l:RFP-dnyap1) and siblings were 

maintained and heat-shocked as previously 

described (Mateus et al., 2015). For Yap 

inhibition assays, animals were left to 

regenerate normally during the blastema 

formation phase (0-48 hpa), and heat-shocked 

afterwards. For short period manipulations, 

animals are heat-shocked once at 48 hpa and fins 

collected 24 hours after. For long period 

manipulations, animals are heat-shocked first at 

48 hpa and in the next two consecutive days and 

fins collected at 120 hpa. Fins were then 

processed for cryosectioning or pooled for RNA 

extraction. 

 

Total RNA isolation and quantitative PCR (qPCR) 

For gene expression analysis, caudal fin 

regenerates were harvested, including one 

bony-ray segment proximal to the amputation 

plane. Pools from 4-5 caudal fins, were used per 

biological replicate and four biological replicates 

were used per time-point. Samples were 

homogenized in Trizol reagent (Invitrogen, 

15596026) for cell disruption and RNA 

extraction. Chloroform was added, and the 

homogenate allowed to separate into a clear 

upper aqueous layer. RNA was precipitated and 

purified from the aqueous phase by adding an 

equal amount of 100% ethanol and loading the 

mixture into RNeasy Micro Spin columns 

(Qiagen, 74004). Remaining procedure was done 

following the RNeasy Micro kit (Qiagen, 74004) 

manufacturer’s protocol. cDNA was synthesized 

from 1 μg total RNA for each sample using the 

Transcriptor High Fidelity cDNA Synthesis Kit 

(Roche, 05081963001), with a mixture of oligo 

dT and random primers. All qPCR primers are 

listed in Table S1. qPCR was performed using a 

FastStart Essential DNA Green Master Mix 

(Roche, 4385617) and a Roche LightCycler 480. 

Cycle conditions were: 15 min pre-incubation at 

95°C and 3 step amplification cycles (50x), each 

cycle for 30 sec at 95°C, 15 sec at 65°C or 68°C 

(depending on primer melting temperature) and 

for 30 sec at 72°C. 

 

Calcein staining, immunofluorescence and 

image acquisition 

Calcein (Sigma-Aldrich, C0875-56) staining, used 

to label the regenerated bony-rays, was 

performed as previously described (Jun Du et al., 

2001). Fins were imaged using a Zeiss Lumar V-

12 fluorescence stereoscope equipped with a 

Zeiss digital camera using a 0.8X air objective and 

the Zen 2 PRO blue software. 

Caudal fin fixation, preservation and embedding 

was done as previously described (Mateus et al., 

2015). Longitudinal caudal fins sections were 

sectioned in 12 μm-thick slices using a Microm 
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cryostat (Cryostat Leica CM3050 S) and 

maintained at -20 °C until further use. For 

immunofluorescence on cryosections, sections 

were thawed for 15 min at room temperature, 

washed twice in 1x PBS at 37°C for 10 min, 

followed by a 0.1 M glycine (Sigma-Aldrich, in 1x 

PBS) incubation for 10 min. Sections were then 

permeabilized in acetone for 7 min at -20°C and 

incubated for 20 min in 0.2% PBST (1x PBS with 

0.2% Triton X-100). Afterwards, they were 

incubated in a blocking solution of 10% non-fat 

dry milk in PBST for 2-4 h at room temperature. 

Samples incubated with primary antibodies, 

diluted in blocking solution, overnight at 4°C (for 

further antibody details see Table S2). On the 

following day, samples were washed with PBST 

(6x 10 min) and incubated with secondary 

antibodies, diluted in blocking solution, for 2 h at 

room temperature (for further antibody details 

see Table S2). Subsequently, slides were washed 

(3x 10 min) in PBST and then counterstained with 

4’,6- diamidino-2-phenylindole (DAPI; 0.001 

mg/mL in 1x PBS, Sigma, D8417) for 5 min the 

dark for nuclei staining. Slides were washed (3x 

10 min) in PBST and mounted in fluorescent 

Mounting Medium (DAKO, S3023). Slides were 

stored at 4°C protected from light until image 

acquisition.  

For anti-Runx2 an antigen retrieval step was 

performed, which consisted of a 15-min 

incubation at 95°C with sodium citrate buffer 

(10mM Tri-sodium citrate with 0.05% Tween20, 

pH 6). For anti-pSmad 1/5/8 staining, slides were 

incubated in a blocking solution of 10% non-fat 

dry milk in PBST, containing 650 mM NaCl, and 

subsequently washed with PBST, containing 650 

mM NaCl as previously described (Stewart et al., 

2014). For anti-Yap staining, slides were washed 

in PBDX (1% BSA, 1% DMSO, 0,2% Triton-100, 

50% PBS 1x in Milli-Q water) and blocked in PBDX 

containing 1,5% Goat Serum has previously 

described (Mateus et al., 2015). Incubation with 

anti-YAP was done overnight at room 

temperature.  

Images were acquired in a confocal microscope 

Zeiss LSM 710 using the software ZEN 2010B SP1 

and processed and analysed using the Fiji-ImageJ 

software (Schindelin et al., 2012). Caudal fin 

sections Z-stacks were acquired using a 40x 

water objective with 0.6x or 1x zoom and a step 

size of 1 µm. For image processing, composite 

maximum intensity z-stack projections were 

made, except when noted. Concatenation of 

several images along the proximal-distal axis of 

the same longitudinal section was performed 

using the Fiji plugin 3D Pairwise Stitching. 

 

Quantifications and statistical analysis 

For qPCR analysis all samples were analysed in 4-

6 biological pools. For each biological pool, qPCR 

was performed for each target gene in 3 

technical replicates. Gene expression values 

were normalized using the elongation factor 1α 

(ef1α, NM_131263) housekeeping gene and 

relative expression was calculated using the 2(-

ΔΔC(T) method (Livak and Schmittgen, 2001). To 

determine differentially expressed genes, results 

were plotted using GraphPad Prism software 

and two-tailed Student’s t-test with Welch's 

correction was used. Only p-values<0.05 were 

considered statistically significant. 

The percentage of bony-ray formation was 

defined by the area stained by calcein labelling in 

relation to the total fin regenerated area. Briefly, 

the area of fluorescence intensity for each image 

was determined by empirically establishing a 

threshold to separate the signal fluorescence 

intensity from the background. The average 
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fluorescence area was then normalized to the 

total tissue regenerate area. Measurements of 

the total regenerated area were done using 

images of whole caudal fins and the regenerated 

fin area was delineated from the amputation 

plane to the distal end of the regenerate using 

the Area tool on Fiji, resulting in one 

measurement per animal. Six animals were used 

per condition. 

Determination of bony-ray width, in calcein 

staining experiments, was performed 

automatically by thresholding the fluorescence 

signal, which was determined using the Otsu 

algorithm in Fiji. Subsequently, the width at the 

basis of each formed bony-ray was measured 

using the line tool on Fiji. Individual bony-ray 

widths from three different animals are plotted 

on graph (56 bony-rays from Sibling controls and 

36 bony-rays from DN-Yap+ transgenics)  

Yap subcellular localization and pSmad 1/5/8- 

positive cells in proximal and distal blastema 

regions of caudal fin cryosections were 

quantified using a custom-made FIJI macro. The 

macro automatically finds the nuclei in individual 

z-stack slices, searches for the signal surrounding 

the nuclei and compares the nuclear 

fluorescence intensity with the surrounding 

cytoplasmic fluorescence intensity. The nuclei 

images were pre-processed using a median filter 

with a kernel size of 2 pixels for noise removal. 

Local thresholding was performed using the 

Phansalkar method with a kernel size of 15 

pixels. The resultant binary image was 

morphologically closed to fill holes. Finally, 

nuclei masks were created using the Analyse 

particles plugin. The signal surrounding the 

nuclei was found by enlarging each nuclear mask 

by 3 pixels and removing the correspondent 

nuclear region. Average signal intensity for both 

regions was obtained and a ratio was calculated 

(nuclear/cytoplasmic). A positive (nuclear) Yap 

signal was considered when this ratio was above 

1.2. For quantification of the number of cells 

presenting nuclear pSmad 1/5/8 the same nuclei 

mask was used. Positive (nuclear) pSmad 1/5/8 

signal was identified automatically using 

thresholding. Since the signal to noise ratio is 

high, the threshold value was selected manually 

using an average value between the background 

and the positive nuclei signals. 

Percentage of osteoblasts subsets (Runx2+Osx- 

or Runx2+Osx+) and pSmad 1/5/8-positive cells 

in longitudinal cryosections was quantified by 

analysing the number of cells in the regenerated 

area in relation to the total number of osteoblast 

(Runx2+Osx- and Runx2+Osx+ or ZNS5-positive 

cells). Quantifications were done using the Cell-

counter plugin on Fiji in individual cryosections 

representing at least 3 different blastemas per 

animal and 3-4 animals per condition. For 

osteoblast subset quantification, 15 cryosections 

from sibling controls and 15 from DN-Yap+ 

transgenics were used. For pSmad 1/5/8-positive 

cells quantification within the total osteoblast 

population (ZNS5+ population) we used 19 

cryosections in DN-Yap+ and 20 cryosections in 

sibling controls.  

Percentage of GFP area in Tg(6xTcf/Lef-

miniP:d2GFP)isi01 was quantified by measuring 

the area occupied by GFP expressing cells in 

relation to the total regenerated area in fin 

cryosections representing at least three 

blastemas per animal and three animals were 

used per condition. Areas were delineated using 

the Area tool on Fiji. 

Statistical significance between controls and 

manipulated animals was determined by non-

paired, non-parametric comparison, using the 
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Mann-Whitney U test in the Prism Graphpad 

software. Means and standard deviations (SD) 

are displayed in the graphs. Only p-values less 

than 0,05 were considered statistically 

significant.  
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Figure 1- Inhibition of Yap activity during the regenerative outgrowth leads to bone formation defects. (A) 

Experimental setup used for prolonged Yap inhibition. (B-E’) Representative images of caudal fins stained for calcein 

(green) in (B, B’, C, C’) DN-Yap- and (D, D’, E, E’) DN-Yap+ animals. Dashed rectangles correspond to magnified panels. 

(F) Percentage of bone formation (n=6 fish in DN-Yap and DN-Yap+). (G) Quantification of the bony-ray width (n=54 

bony-rays in DN-Yap-; n=36 bony-rays in DN-Yap+). Dashed red line outlines regenerated area. Arrowheads define 

the amputation plane. Scale bars: (B, C, D, E) 1 mm and (B’, C’, D’, E’) 0,5 mm. Statistical analysis with Mann-Whitney 

test; **P<0.01, ****P<0.0001. 
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Figure 2- Inhibition of Yap activity leads to defects in osteoblast differentiation during regenerative outgrowth. 

(A, E) Representative z-stack image of longitudinal cryosections from (A-D’’’) DN-Yap- and (E-H’’’) DN-Yap+ caudal 

fins immunostained for Runx2 (red) and Osx (green). Dashed lines define the amputation plane. Regions bounded 

by dashed white boxes are magnifications of the (B, F) PZ, (C, G) PB and (D, H) DB regions. (I) Quantification of Runx2+ 

osteoprogenitors and (J) Runx2+ Osx+ osteoblasts in DN-Yap- and DN-Yap+ cryosections. Statistical analysis with 

Mann-Whitney test (n=15 cryosections in both DN-Yap- and DN-Yap+). (K) Relative gene expression of progenitor, 
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immature and late osteoblast markers. Statistical analysis with unpaired t test and Welch’s correction (n=4 biological 

replicates). Scale bars: (A, E) 200 μm and (B’-D’’’, F’-H’’’) 20 μm. *P<0.05, **P<0.01, ****P<0.0001. 
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Figure 3– Yap and pSmad1/5/8 subcellular localization within the different blastema compartments during 

regenerative outgrowth. (A) Relative gene expression of components of multiple signalling pathways. Statistical 

analysis with unpaired t test and Welch’s correction (n=4 biological replicates). (B) Representative z-stack image of 

a longitudinal fin cryosection immunostained for Yap (green) and pSmad1/5/8 (red). Dashed white line defines the 

amputation plane. Dashed boxes are magnifications of the (C’-C’’’) PB and (D’-D’’’) DB regions. White arrowheads 

indicate mesenchymal cells with nuclear Yap and red arrowheads point to osteoblasts with nuclear pSmad1/5/8. 

Dashed orange and grey lines define the epidermis and the osteoblast compartments, respectively. (E) Percentage 

of Yap- and pSmad1/5/8-positive mesenchymal cells and (F) pSmad1/5/8–positive osteoblasts. Statistical analysis 

with Mann-Whitney test (n=3 blastemas from 4 animals); *P <0.05. m: mesenchyme, ob: osteoblasts, e: epidermis. 

Scale bars: (B) 200 µm and (C’-D’’’) 50 µm. 
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Figure 4– Manipulation of Yap activity inhibits Bmp signalling during regenerative outgrowth. (A) Experimental setup 

used for short Yap inhibition. (B-G) Representative z-stack images of longitudinal cryosections of (B-D’) DN-Yap- and 

(E-G’) DN-Yap+ caudal fins immunostained for ZNS5 (red) and pSmad1/5/8 (green). Dashed boxes are magnifications 

of the PZ regions. White and orange dashed lines define the amputation plane and the interface between osteoblast 

and BEL cells, respectively. Arrowheads point to osteoblasts (ZNS5+) with nuclear pSmad1/5/8. (H) Quantification of 
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pSmad1/5/8-positive osteoblasts (n=20 cryosections from DN-Yap-; n=18 cryosections from DN-Yap+). Statistical 

analysis with Mann-Whitney test. (I) Model based in our findings and others of a 72 hpa fin section highlighting the 

main players regulating osteoblast differentiation during caudal fin bone regeneration. Scale bars: (B-G) 200 μm and 

(B’-G’) 20 μm. ****P<0.0001. 
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Figure S1 – Yap subcellular localization in different osteoblast subsets during the regenerative outgrowth. (A) 

Representation of the 72 hpa blastema osteoblast compartmentalization along the caudal fin proximo-distal axis, 

based on gradients of expression of osx and runx2. (B) Representative images of longitudinal cryosections of Yap 

immunodetection (green) in osx:mCherry (red) transgenic animal. (C’-D’’’) Magnifications of the (C’-C’’’) PZ and the 
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(D’-D’’’) PB regions. Arrows indicate osx+ osteoblasts where Yap is excluded from the nucleus and arrowheads 

indicate mesenchymal cells with nuclear Yap. (E) Representative image of longitudinal cryosection of Yap 

immunodetection (red) in runx2:EGFP (green) transgenic animals. (F’-F’’’) Magnification of the DB region. Arrows 

show runx2+ osteoblasts with Yap excluded from the nucleus. e: epidermis, m: mesenchyme. Dashed line defines 

the amputation plane. Scale bars: (B, E) 200 μm and (C’-F’’’) 20 μm 

 

 

Figure S2 – Yap is excluded from the nucleus in the wound epidermis basal layer cells. (A) Representative z-stack 

image of longitudinal cryosection of wild-type animal immunostained for Yap (green). Dashed white line defines the 

amputation plane and dashed boxes are magnifications of the (B’, B’’) PZ, (C’, C’’) PB and (D’, D’’) DB regions. Dashed 

orange line delimitates the BEL. Arrowheads indicate BEL cells with Yap excluded from the nucleus. bel: basal 

epidermal layer. Scale bars: (A) 200 μm and (B’-D’’) 20 μm. 
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Figure S3 - Yap and Wnt signalling pathway activity compartmentalization within the blastema during 

regenerative outgrowth. (A) Representation of the 72 hpa blastema compartmentalization along the caudal fin 

proximo-distal axis, depicting the pathways responsible for osteoblast differentiation (Bmp) and progenitor 
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maintenance (Wnt). (B) Representative z-stack image of longitudinal cryosection of 6xTCF/Lef-mini:d2GFP animal 

immunostained for GFP (green) and Yap (red). White dashed lines define the amputation plane and dashed boxes 

are magnifications of the (C’-C’’’) PB and (D’-D’’’) DB regions. Arrows indicate cells with activated Wnt signalling and 

arrowheads show cells with nuclear Yap in the PB. Dashed orange and grey lines delimitate the epidermis and the 

osteoblast compartment respectively. (E) Percentage of mesenchymal cells with nuclear Yap and active Wnt 

signalling in both PB and DB regions. Statistical analysis with Mann-Whitney test (n = 3 average of blastemas from 4 

animals). m: mesenchyme, e: epidermis, ob: osteoblasts. Scale bars: (B) 200 μm and (C’-D’’’) 50 μm. *: p<0.05. ns: 

not significant. 

 

  

Figure S4 – Distal Wnt signalling activation domain upon Yap inhibition. (A-D) Caudal fins from 6xTCF:d2GFP; DN-

Yap- sibling controls (A,B) and 6xTCF:d2GFP; DN-Yap+ double transgenics (C,D) heat-shocked from 48 to 96 hpa. 

Dashed red line delimitates the regenerated area. (E, F) Representative z-stack image of a longitudinal cryosection 

from (E) 6xTCF:d2GFP;DN-Yap- and (F) 6xTCF:d2GFP;DN-Yap+ animals, immunostained for GFP (green). (G) 

Percentage of 6xTCF:d2GFP-positive cells in the distal blastema region in relation to the total regenerated area. 

Statistical with Mann-Whitney test (n=6 cryosections from 3 animals from control 6xTCF:d2GFP;DN-Yap- and 

6xTCF:d2GFP;DN-Yap+ animals). Arrowheads (A-D) and dashed lines (E-F) define the amputation plane. Scale bars: 

(A-D) 1 mm and (E, F) 200. ns: not significant. 
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Supplementary Figure 3: Osteogenic markers in a homeostatic uncut situation. Panels show representative images 
of uncut caudal fin longitudinal cryosections of osx:NTRo; osc:EGFP double transgenic animals. Cryosections were 
immunostained for Runx2 (preosteoblast/osteoprogenitor marker, magenta), mCherry (to visualize osx expression, 
immature/intermediate osteoblast marker, orange) and for GFP (to visualize osc expression, mature/late osteoblast 
maker, green). Runx2 co-localizes with osc and osx expression in the segment region (green dashed arrows) and co-
localizes with osx near the intersegment/joint region (grey arrows). The middle of the intersegment/joint region 
(asterisks) is not labelled for either osx or osc. This region might correspond to the pool where recently discovered 
osteoblast progenitor cells reside (Ando et al. 2017). Grey dashed arrows delineate the segment region; white arrows 
delineate the intersegment/joint region; asterisks point to the middle of the intersegment/joint region. Scale bar 
represents 50 μm. 
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Supplementary Figure 4: Runx2 antibody co-localizes with runx2 reporter line. To confirm that the commercially 
available Runx2 antibody used in this study is labelling osteoprogenitors we used the runx2 reporter line. We used 
double transgenic animals that also allowed to induce osteoblast ablation and also to monitor runx2 expression, 
osx:NTRo; runx2:EGFP. Cryosections of 15 hpa caudal fins were immunostained for GFP (to monitor runx2 expression, 
green), mCherry (to visualize osx expression and confirm correct osteoblast ablation, orange), Runx2 (pre-osteoblast/ 
osteoprogenitor marker, magenta) and counterstained for DAPI (nucleus, blue). We can observe that there is a clear 
co-localization between the runx2 reporter line and the commercial antibody in osteoblast depleted fins (see 
magnified panel), confirming that we are labelling osteoprogenitors. hpa: hours post-amputation, e: epidermis, m: 
mesenchyme; dashed white lines define the amputation plane; dashed boxes delimitate magnified panels; scale bars 
represent 50 µm and 10 µm in magnified panels. 
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Supplementary Figure 5: Lineage tracing experimental setup to monitor the contribution of the epidermis for de 
novo osteoblast formation during caudal fin regeneration. (A) Schematic representation of the experimental setup 
used to perform genetic fate mapping of the caudal fin epidermal tissue. For that, double transgenic animals, 
krt19:CreERT2;β-actin2:dsRed>EGFP (krt19:CreERT2; β-actin2:RSG) were used. Embryos with 24 hpf were incubated 
with 4-OHT or with the vehicle control (EtOH) for three consecutive days, to promote basal epidermal cells labelling. 
Afterwards, larvae were allowed to grow until adulthood. Basal epidermal cells that were permanently labelled 
formed EGFP+ clones in adult animals. Animals with strongest fin clones were then subjected to caudal fin 
amputation. Fins were collected at the desired time-point after amputation for imaging or latter processing to 
confirm correct epidermal labelling. (B) Representative images of 96 hpf krt19:CreERT2; β-actin2:RSG double 
transgenic larvae subjected to EtOH (control) or 4-OHT incubation. EtOH treated larvae did not show EGFP-positive 
cells, while larvae treated with 4-OHT present EGFP-positive cells throughout the body, indicative of a successful Cre-
mediated recombination and allowing for proper cell-fate tracing of basal epidermal cells at later stages. (C) 
Representative images of krt19:CreERT2; β-actin2:RSG double transgenic adult zebrafish subjected to 4-OHT 
treatment during larval stages. We can observe regions/clones of EGFP+ cells all over the zebrafish body, including in 
the caudal fin (see magnified panels in Ci-Ciii). (D) Representative images of krt19:CreERT2; β-actin2:RSG double 
transgenic adult zebrafish caudal fins shown in magnified panels Ci-Ciii and subjected to caudal fin amputation in the 
middle of the EGFP clone. At 72 hpa it is possible to observe EGFP+ in the regenerated region, which demonstrates 
that through this protocol it is possible to follow the progeny and the contribution of epidermal cells during the 
regenerative process. hpa: hours post-amputation, hpf: hours post-fertilization; arrows define the amputation plane; 
dashed boxes delimitate magnified panels Ci-Ciii; scale bars represent 50 µm in B, 5 mm in C or 2 mm in magnified 
panels in Ci-Ciii. 



Appendix C – Chapter V Supplementary data 

 

 

287 

 



Appendix C – Chapter V Supplementary data 

 

288 

Supplementary Figure 6: Lineage tracing experimental setup to monitor the contribution of the mesenchyme for 
de novo osteoblast formation during the caudal fin regenerative process. (A) Schematic representation of the 
experimental setup used to perform genetic fate mapping of the caudal fin mesenchymal tissue. For that, transgenic 
animals based on the CreERT2/loxP system were obtained: careg:CreERT2; β-actin2:dsRed>EGFP, referred as 
careg:CreERT2; β-actin2:RSG. Double transgenic animals were subjected to caudal fin amputation and immediately 
incubated with 4-OHT or the vehicle (EtOH) for one day, to promote mesenchymal cell permanent labelling (from red 
to green). Fins were allowed to regenerate and collected at the desired time-point after amputation for imaging or 
later processing to confirm correct mesenchyme labelling. (B) Representative images of 48 hpa caudal fins from 
careg:CreERT2; β-actin2:RSG fish subjected to EtOH (control) or 4-OHT incubation. In contrast to EtOH treated 
animals (B and magnified panels in B’-B’’’), EGFP positive cells are detected in the regenerated area of 4-OHT treated 
animals (B and magnified panels in Bi-Biii). hpa: hours post-amputation; arrowheads define the amputation plane; 
dashed boxes delimitate magnified panels B’-B’’’ and Bi-Biii; scale bars represent 2 mm. 
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Supplementary Figure 7: Generation and expression pattern characterization of the col10a1 reporter transgenic 
line. (A) Schematic representation of the construct injected in wild-type AB line to generate a promoter reporter line 
for col10a1 to monitor the expression of this gene through GFP visualization. (B) Representative images of 72 hpf 
larvae from the F1 generation of the Tg(Ola.col10a1:nlGFP)reporter line, referred as col10a1:nlGFP. GFP is expressed 
in several craniofacial skeletal structures (B, Bi and Bii). (C) Caudal fin representative images of adult animals from 
the F1 generation of the col10a1:nlGFP reporter line. GFP is observed in the scales and in the segment (region 1 in 
Ci, asterisks) and intersegment (region 2 in Cii, arrowheads) regions of the fin. hpf: hours post-fertilization; dashed 
boxes delimitate magnified panels Bi and Bii in B and Ci and Cii in C; cb: ceratobranchial, ch: ceratohyal, cl: cleithrum 
and op: opercle; scale bars represent 50 µm in B and 2 mm in C and in magnified panels of C (Ci and Cii). 
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Supplementary Figure 8: Generation and expression pattern characterization of the col10a1 ablation transgenic 
line. (A) Schematic representation of the construct injected in wild-type AB one-cell stage embryos to generate a 
col10a1 ablation line based on the NTR/Mtz system. (B) Representative images of 72 hpf larvae from the F1 
generation of the Tg(Ola.col10a1:EGFP-NTRo) ablation line, referred as col10a1:EGFP-NTRo. GFP is expressed in 
several craniofacial skeletal structures (B, Bi and Bii). (C) Caudal fin representative images of adult animals from the 
F1 generation of the col10a1:EGFP-NTRo ablation line. GFP is observed in the scales and in the segment (region 1 in 
Ci, asterisks in Cii) and intersegment (region 2 in Ci, arrowheads in Cii) regions of the fin. Hpf: hours post-fertilization; 
dashed boxes delimitate magnified panels Bi and Bii in B and Ci and Cii in C; cb: ceratobranchial, ch: ceratohyal, cl: 
cleithrum and op: opercle; scale bars represent 50 µm in B and 2 mm in C and in magnified panels of C (Ci and Cii). 
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Supplementary Figure 9: Generation and characterization of the krt19 ablation transgenic line. (A) Schematic 
representation of the construct injected in wild-type AB 1-cell stage embryos to generate a krt19 ablation line based 
on the NTR/Mtz system. This line will be used to specifically induce ablation of the basal epidermal layer. (B) 
Representative images of 72 hpf larvae from the F1 generation of the krt19:EGFP-NTRo ablation line. GFP seems to 
be expressed throughout the larval body (B, Bi and Bii). (C) Caudal fin representative images of adult animals from 
the F1 generation of the krt19:EGFP-NTRo ablation line subjected to vehicle DMSO (control) or to Mtz incubation for 
basal epidermal cell ablation. In control animals, GFP is observed all over the caudal fin, while in animals incubated 
with Mtz, GFP has strongly decreased. (D) Representative images of uncut caudal fin longitudinal cryosections of 
krt19:EGFP-NTRo animals shown in C. Cryosections were immunostained for GFP (to visualize krt19 expression and 
confirm correct basal epidermis ablation, green), p63 (labels epidermal cells) and counterstained for DAPI (nucleus, 
blue). As observed in C, the ablation protocol was successful, since almost no GFP expression is observed in the Mtz 
treatment condition, in contrast to control (DMSO) caudal fins. hpf: hours post-fertilization; dashed boxes delimitate 
magnified panels Bi and Bii in B; e: epidermis, m: mesenchyme; scale bars represent 50 µm in B and D and 2 mm in 
C. 

 



 

 



 

 

 


