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Abstract

While several proposals for the specification and implementation of various

consistency models exist, little is known about what is the consistency currently

offered by online services with millions of users. Such knowledge is important,

not only because it allows for setting the right expectations and justifying the

behavior observed by users, but also because it can be used for improving the

process of developing applications that use APIs offered by such services and

for creating tools that facilitate this process. To fill this gap, in the first part

of this thesis, we present a measurement study of the consistency of the APIs

exported by four widely used Internet services, the Facebook Feed, Facebook

Groups, Blogger, and Google+. To conduct this study, our work develops a

simple, yet generic methodology comprising a small number of tests, which

probe these services from a user perspective, and try to uncover consistency

anomalies, and reports on the analysis of the data obtained from running these

tests for a period of several weeks. Our measurement study shows that some of

these services do exhibit consistency anomalies, including some behaviors that

may appear counter-intuitive for users, such as the lack of session guarantees

for write monotonicity. The results show that developers have to deal with

consistency anomalies, to provide consistency guarantees they need.

To address the challenge of enforcing consistency guarantees on top of ex-

isting systems, in the second part of this thesis, we show that it is possible to

deploy a middleware between the application and the service, which enables a

fine-grained control over the session guarantees that comprise the consistency
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semantics provided by these APIs, without having to gain access to the imple-

mentation of the underlying services. Our solution intercepts all interactions

of the client with the online service and uses four different algorithms to en-

force each of the session guarantees and also their combination. We evaluated

our middleware using the Facebook public API and the Redis data store, and

our results show that we are able to provide fine-grained control of the consis-

tency semantics, while incurring in a small local storage and modest latency

overhead.

Keywords: Consistency, Distributed Computing, Middleware
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Resumo

Existem várias propostas para implementação e especificação de modelos

de consistência. No entanto, pouco se sabe sobre a consistência oferecida pelos

serviços online disponibilizados a milhões de utilizadores. Este conhecimento é

importante, não só porque nos permite ter as expectativas corretas sobre o fun-

cionamento do serviço e o comportamento observado pelos utilizadores, mas

também porque pode ser usado para melhorar o desenvolvimento de aplicações

que usam as APIs fornecidas pelos serviços e ajudar na criação de ferramentas

que facilitem este processo. De modo a preencher esta lacuna, na primeira parte

desta tese, é apresentado um estudo sobre a consistência fornecida por quatro

serviços bastante utilizados na Internet: o Facebook Feed, Facebook Groups,

Blogger e Google+. Para conduzir este estudo, foi desenvolvido um método sim-

ples e genérico que usa um número pequeno de testes para avaliar violações de

garantias de consistências destes serviços segundo a perspetiva do utilizador.

O objetivo dos testes é detetar anomalias com base na análise de dados obtidos

pela execução de testes durante várias semanas. O estudo mostrou que alguns

serviços exibem várias anomalias, nomeadamente comportamentos que podem

parecer contraintuitivos aos utilizadores, como a falta de garantias de sessão

para escritas monotónicas. Os resultados mostram que os programadores têm

de lidar com os vários tipos de anomalias de modo a fornecer as garantias de

consistência que necessitam.

Para enfrentar o desafio de garantir consistência aos serviços já existentes,

na segunda parte desta tese, mostramos que é possível usar uma camada in-

termédia entre a aplicação e o serviço, que permite controlo sobre as garantias
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de sessão, sem ser necessário ter acesso à implementação do serviço. A solução

adotada intercepta todas as interações do cliente com o serviço online e usa

quatro algoritmos para garantir cada uma das garantias de sessão, bem como a

sua combinação. Na avaliação que foi feita usou-se a API publica do Facebook

e uma instalação distribuída do serviço de dados Redis. Os resultados mos-

tram que a solução proposta permite garantir controlo sobre as garantias de

consistência, com um custo pequeno de armazenamento e um custo modesto

em termos de latência.

Palavras-chave: Consistência, Computação Distribuída, Middleware
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1
Introduction

Many computer systems and applications make use of stateful services that run

in the cloud, with various types of interfaces mediating the access to these cloud

services. For instance, an application may decide to store its persistent state in

a Cassandra [27, 46] cluster running on Azure instances, or directly leverage a

cloud storage service such as Amazon S3 [9]. At a higher level of abstraction,

services such as Twitter [66] or Facebook [36] have not only attracted billions

of users to their main websites, but have also enabled a myriad of popular

applications that are layered on top of those services by leveraging the public

Application Programming Interface (API) they provide [33, 40, 65], for third

party application developers.

An important challenge that arises from layering applications on top of

cloud APIs (that can either be storage or application-specific APIs) is that the

consistency semantics of these cloud services are typically not clearly specified,

with studies showing that in practice these services can expose a number of

consistency anomalies to applications [50].

This poses several challenges to the programmers who use APIs from such

services: it becomes difficult to understand the impact of these consistency

semantics on the applications that are layered on top of them; and it forces

programmers to modify their code in order to mask or deal with the lack of
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CHAPTER 1. INTRODUCTION

desired semantics, which increases development time, complexity, and puts a

burden on the programmer of ensuring that the resulting semantics are correct.

In this work, we address this problem through a comprehensive approach

that starts by gaining an in-depth understanding of the semantics of online

services running in the cloud, and subsequently proposes a set of tools for im-

proving those semantics in a way that facilitates application development. In

particular, in the first part of this thesis, we start by systematically understand-

ing what are the consistency guarantees that are effectively offered through the

APIs of some of these Internet services. This is important for two main reasons.

First, this allows us to better explain and understand the situations where the

behavior of the service may be counter-intuitive. Second, this is important to

help developers who design applications that interact and make use of these

services, to know what they can expect when using these APIs. This allows

those programmers to anticipate the effects of using the service on their appli-

cations, and to determine if they need to introduce additional logic to mask

any undesirable behavior.

For understanding the consistency levels of online service APIs, this work

presents the results of a measurement study of the consistency of three popular

platforms: Facebook, Google+, and Blogger. Our methodology for conducting

this study started by identifying a set of anomalies that are not allowed by

several consistency definitions. We then designed two black box tests [44] that

probe a given system (through its API) in search of manifestations of these

anomalies. We implemented these tests and conducted an extensive consis-

tency measurement experiment in the platforms mentioned above, including

two variants of the Facebook API: Facebook Feed and Facebook Group services.

Our study lasted for about a month for each service with a total of 8183

individual tests being executed. Our main findings can be summarized as fol-

lows. We found a large prevalence of consistency anomalies in all services with

the exception of Blogger. Furthermore, Google+ and Facebook Feed exhibited

all anomalies we consider, whereas Facebook Groups exhibited only a subset

of them.

Some of these results can be seen as a somewhat natural and even expected

2



consequence of choosing performance over stronger consistency models such

as linearizability. In particular, when the designers of replication protocols

choose to provide a fast response to the clients of the service after contacting

only one or a small subset of replicas, the implication of this choice is that the

consistency model offered by the service has to provide some form of weak

consistency, namely one where content divergence is possible, since two writes

that were processed by two different replicas may have executed without being

aware of each other. We note that our results show an exception to this design

principle in the Blogger system, which appears to be offering a form of strong

consistency. This can be seen as a sensible design choice considering the write

rate and the size of the user base of Blogger.

Overall, one of the most surprising results of our study was to find several

types of anomalies that are not inevitable, even when choosing performance

over consistency. This is the case of session guarantees, which previous work

has shown how to implement, even under weak consistency [64].

Given that some of these services are not providing several session guaran-

tees, according to the results of our study, the relevant question that ensues is

what provisions must applications make in order to handle this fact, especially

if their application logic could benefit from providing these guarantees. This

will imply that developers must enforce session guarantees at the application

level, which can be challenging due to the fact developers interact with the

service as if it was a black box. Note that some applications may not need to

enforce all session guarantees, this choice can be made based on the character-

istics of the application. For example, in a social application that targets events,

where a single person posts messages about an event, e.g., sports game or a

conference, and several people are reading the messages from the feed, it may

be enough to return the posts in the order they were issued and that repetitive

reads return an increasing number of posts. In this case, it will be necessary to

enforce only two session guarantees.

To address this, in the second part of this work, we show that it is possible

to build a middleware layer mediating the access to cloud services offering

fine-grained control over the consistency semantics exposed to applications,

3



CHAPTER 1. INTRODUCTION

by enriching the properties originally offered by these services. The idea is

to design a library that intercepts every call to the service or storage system

running in the cloud, inserting relevant metadata, calling the original API,

and transforming the results that are obtained in a transparent way for the

application. Through a combination of analyzing this metadata and caching

results that have been previously observed, this shim layer can then enforce

fine-grained consistency guarantees.

In prior work, Bailis et al. [16] have proposed a similar approach, but with

two main limitations compared to this work. First, their shim layer only pro-

vides a coarse-grained upgrade from eventual to causal consistency. In contrast,

we allow programmers to turn on and off individual session guarantees, where

different guarantees have been shown to be useful to different application sce-

narios [64]. Second, their work assumes the underlying 〈key,value〉 store is a

NoSQL system with a read/write interface. Such an assumption simplifies the

development of the shim layer, since (1) it gives the layer full access to the data

stored in the system, and (2) it provides an interface with simple semantics.

Our shim layer allows for a fine-grained control over the session guarantees

that applications should perceive when accessing online services. A challenge

that arises is that these services typically enforce rate limits for operations

issued by client applications. For guaranteeing that this limit is the same when

using our shim layer, a single service operation should be executed for each

application operation. Furthermore, our layer is not limited to using online

storage services with a read/write interface, since it is designed to operate with

services that offer a messaging interface such as online social networks. The

combination of these three requirements raises interesting challenges from the

perspective of the algorithms that our shim layer implements, e.g., to handle

the fact that online social networks only return a subset of recent messages,

which raises the question of whether a message does not appear because of

a lack of a session guarantee or because of being truncated out of the list of

recent messages.

We implemented our shim layer and integrated it with the Facebook API

and the Redis storage system. Our evaluation shows that our layer allows for

4



1.1. CONTRIBUTIONS

fine-grained consistency upgrades at a modest latency overhead.

1.1 Contributions

The main contributions of this thesis are as follows:

• A generic methodology to probe services and find consistency anomalies;

• A measurement study characterizing the consistency of online services;

• A set of algorithms to provide session guarantees;

• A transparent middleware to provide fine-grained consistency upgrades

for online services.

1.2 Publications

The main contributions of this thesis were published in:

Characterizing the Consistency of Online Services (Practical Experience Re-

port). Filipe Freitas, João Leitão, Nuno Preguiça, and Rodrigo Rodrigues. Pro-

ceedings of the 46th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN2016)

Fine-Grained Consistency Upgrades for Online Services. Filipe Freitas, João

Leitão, Nuno Preguiça, and Rodrigo Rodrigues. Proceedings of the 36th IEEE

International Symposium on Reliable Distributed Systems (SRDS2017)

1.3 Document Organization

The remainder of the document is organized as follows. We describe the context

of this work and survey related work in Chapter 2. We explain and show the

results obtained in our measurement study in Chapter 3. We describe and

show the evaluation of our middleware to provide fine-grained consistency in

Chapter 4. Finally, conclusions and future work are presented in Chapter 5.
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2
Background and Related Work

In this chapter, we describe the context of our work and survey the related work

that is closest to our consistency measurement study and to our middleware.

2.1 Online Services

Online services are distributed systems used across the world through the

Internet. These services are composed of several layers [62], each one with a

single responsibility, a service architecture is typically divided into three layers

(see Figure 2.1):

Data layer: This layer is responsible to store and retrieve data, and either

contains databases such as SQLServer [61] and MySQL [54] or uses cloud data

services like Amazon S3 [9].

Processing layer: This layer is responsible to implement the service logic

and is composed of application servers that may interact with several internal

or external services.

Interface layer: This layer is responsible to provide an interface for clients

to operate with the service and is composed of servers, typically HTTP [12],

that provide access to Web APIs.

7



CHAPTER 2. BACKGROUND AND RELATED WORK

HTTP
Servers

Internal
Services

External
Services

External
Data 

Services

Interface Layer

Processing Layer

Data Layer

Service

Database Servers

Aplication
Servers

Figure 2.1: Service layers

In order to provide online services to clients across the globe, geo-replication

is used both for dependability and good performance (in particular low latency

access) [28, 32]. The dependability motivation stems from the ability to toler-

ate catastrophic failures by having data replicated at multiple sites, whereas

the performance gains come from being able to direct users to nearby copies of

the data they want to access.

Geo-replication implies replication at the three layers. Applying replication

at the interface and processing layers is usually simple because these servers

work in a stateless manner. In contrast, replicating at the data layer is complex

because it is necessary to replicate the data that comprises the service state,

which must be synchronized across replicas.

The price to pay for geo-replication is that the designers of these infras-

tructures have to deal with an inherent trade-off between performance and

consistency, [63]. In particular, if they choose to provide a strongly consistent

access to the service, coordination among replicas at different sites becomes

a necessity, increasing the latency for request execution. In contrast, if they

choose to provide weak consistency, then operations can execute by contacting

8



2.2. CONSISTENCY

a single replica, but the semantics of the service will differ from those of a

centralized server (or a strongly consistent system).

2.2 Consistency

Consistency properties provide a way for programmers to know what to expect

from services. For instance, a programmer should know if, after making a write,

the effects of that write will be reflected in the next operations, or if the effects

of a sequence of writes are observed by the same order they where issued. More

generally, consistency guarantees are a promise made by the service regarding

the observed values by clients given the history of the system (and sometimes

the client). Knowing these properties and having services that provide strong

consistency helps programmers to reason about what they need to do when

writing applications.

Several consistency models exist to describe the consistency of systems,

below we present some of these models informally, and we defer a precise

definition of the ones we focus on to subsequent chapters.

Linearizability [42] - Ensures that the execution of several operations is

equal to some total order that is equivalent with the real-time ordering of the

operations, i.e, ensures that the effects of an operation are always reflected

before replying.

Causal [47] [3] - Ensures that the execution of several operations respects

the happens-before [47] relation between them, whereas non-causally related

operations can appear in any order.

Session Guarantees [64] - These various guarantees were defined infor-

mally by Terry et al. in their original paper [64] that presented the concept

of session guarantees. A session is characterized by a sequence of operations

executed during an interval of time. There are four session guarantees:

1. Read Your Writes - Ensures that a read operation observes the effects of

all writes previously executed in the session.

9
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2. Monotonic Reads - Ensures that the effects of all writes observed in a

read operation are also reflected in all subsequent reads performed in the

same session.

3. Monotonic Writes - Ensures that all writes issued in same session are

ordered in the order in which they were issued.

4. Writes Follow Reads - Ensures that writes are ordered after all writes

whose effects have been previously observed in the session making the

write.

A system that provides the four guarantees effectively provides the causal con-

sistency model [26]. Since these guarantees are important to this work we

explain them in more detail in Section 3.2.1.

Eventual [67] - Ensures that eventually, when there are no new writes,

replicas will have the same state.

Linearizability is a strong consistency model for which low latency is im-

possible to achieve in geo-replicated scenarios [1, 49]. For example, if a write

finishes in one location the effects of that write must be immediately reflected

in other locations. This implies that the write must wait until the operation

finishes across all locations or at a quorum of replicas.

It is also impossible to implement a distributed data system that provides

strong consistency, availability, and partition tolerance simultaneously. Again,

if we look to Linearizability, where the effects of a write have to be reflected in

all locations or at a majority of replicas immediately, the presence of a network

partition makes this impossible to achieve [31], as stated by CAP theorem [24,

39]. It has also been shown that the strongest consistency model that can be

enforced with network partitions is the causal model [13, 51]. Despite this,

there are scenarios where strong consistency is necessary, and several systems

implement strong consistency and try to minimize its cost [17, 29, 52].

The alternative is to use weaker consistency models like the causal model,

the session guarantees, or eventual consistency. Eventual consistency is easy

to implement, since the system only needs to guarantee convergence in the

10
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absence of writes. Causality and some session properties are more complex to

implement, because its necessary to track operation dependencies (e.g., using

vector clocks [56]) and enforce the happens-before relation. However it is

much easier for developers to develop applications on top of a service that

ensures these guarantees, than with eventual consistency, thus several systems

implement causal consistency [16, 18, 23, 45, 49, 57, 72].

2.3 Replication and Consistency Anomalies

Services need to scale out in order to provide good performance to clients, as

described in Section 2.1. They need to be fault-tolerant, be always available,

and provide low latency between the client and the service. To this end, they

use replication, i.e., they replicate the data in several servers. In this section

we present two replications methods widely used in several systems [25, 53,

54, 58, 60] and show how some consistency anomalies can arise. The intention

in this section is not to provide an exhaustive list of consistency anomalies

that can arise and why, but just to give an introduction on how the consistency

anomalies that we focus in this work can emerge.

2.3.1 Single-Master Replication

The first replication method that we present is Single-Master replication [60].

In this method, there are several servers and one is selected as master. The

remaining servers are considered slaves replicas (see Figure 2.2). The master

executes write and read requests from the clients and propagates the write

operations to the slaves. If there is a problem with the master, one of the slaves

takes its place. This eliminates having a single point of failure in the system. In

order to balance the load between replicas and to improve the latency between

the clients and the service, several systems allow slave replicas to execute read

requests [11, 58].

Several consistency anomalies can arise when a service uses this replication

method. To show this let us assume a simple scenario where:

1. Servers do not fail.

11
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Master

Slave

Slave

Slave

Figure 2.2: Single-Master Replication

2. Write requests terminate when the write operation finished in the master

and before being propagated to slaves (asynchronous replication [2]).

3. Writes are guaranteed to be received by the slaves in the order they were

issued.

4. Slaves handle client’s read requests without synchronizing with other

replicas.

The example in Figure 2.3, shows a possible state of a social feed in the

different servers after three posts from the same client. The master has the

three messages and is propagating them, Slave 1 already has the first two

messages and the other slaves only have the first. In this example the following

violations of consistency models and properties can occur:

Linearizability - If a client issues a read operation to a slave, it will miss at

least one of the messages, and thus the total order that is equivalent with the

real-time ordering of the operations is not guaranteed: in this case, the read

operation should return a state that reflects the three messages.

12
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Master

Slave1

Slave2

Slave3

M1

M1

M1

M2

M1

M2

1.Post (M1)

2.Post (M2)

Synchronous

Asynchronous

M3

3.Post (M3)

Figure 2.3: Single-Master Replication, example with one client

Session Guarantees - Consider that all write operations are made by client

c in the same session.

1. Read Your Writes - If client c issues a read operation to a slave, it may

miss at least one of the messages that were posted by c previously.

2. Monotonic Reads - If client c issues a read operation to the master and

then to one of the slaves, the second read operations may miss at least

one message that was previously observed. This means that successive

reads in the same session may not reflect a nondecreasing set of writes.

3. Monotonic Writes - This property is guaranteed because we assumed,

in this example, that writes are guaranteed to be received by the slave

replicas in the order they where issued in the master, which is the order

they were issued by client c in the session.

4. Writes Follow Reads - This property is guaranteed, however we need

another example to explain why, Figure 2.4, illustrates a possible state of
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Master

Slave1

Slave2

Slave3

M1

M1

M1

M2

M1

M2

1. C1 - Post (M1)

2. C1 - Post (M2)

Synchronous

Asynchronous

M3

4. C2 - Post (M3)

3.  C2 - Read

Figure 2.4: Single-Master Replication, example with two client

a social feed in the different servers after two posts from client c1 (opera-

tions 1 and 2) and a read that precedes a post from client c2 (operations 3

and 4), respectively, that returned from Slave 1 the two messages posted

by c1 (each client executes in the context of its own session). After the

execution of all operations, the master received the three messages and

is propagating them. Replica Slave 1 has the messages posted by client

c1 while the remaining slaves replicas only received M1. The Writes Fol-

low Reads property is guaranteed because the writes are assumed to be

received by the slaves in the order they where issued in the master, which

guarantees that if a server returns a message m, the reply must return all

other messages issued before m as perceived by the master replica.

Causal - Since the Read Your Writes and Monotonic Reads properties are

not guaranteed, causal consistency cannot be guaranteed, a system that pro-

vides this consistency model must enforce the four session properties.
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Master

Master

Master

Figure 2.5: Multi-Master Replication

2.3.2 Multi-Master Replication

The second replication method that we present is Multi-Master replication [60].

In this method, each server is a master and can execute writes and reads (see

Figure 2.5). This approach avoids having a single point of failure and can

balance the load produced by write operations issued by clients among the

servers (particularly the cost of replying to clients). However, it can be difficult

to implement in systems that need to serialize the writes because there are

several masters. In Single-Master replication this can be less complicated since

there is only one master and it can be responsible to serialize the writes, and

then propagate them in that order.

Several consistency anomalies can arise when a service uses this replication

method. To show this, let us assume a simple scenario where:

1. Servers do not fail

2. Write requests terminate when the write operation finished in the replica

that received the request from the client, and before being propagated to
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Master2
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M1
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M2

M1

M1

1.Post (M1)

3.Post (M3)

Synchronous

Asynchronous

2.Post (M2)

M3

M3

Figure 2.6: Multi-Master Replication, example with one client

other servers (asynchronous replication).

3. Writes originally received from clients by one replica, are guaranteed to

be received by all the other servers in the same order.

The example in Figure 2.6 shows a possible state of a social feed in the

different servers after three posts from the same client in this case. Each post

was made to a different server. After the execution of all operations: Master 1

has messages M3 and M1 and already propagated M1 to all servers; Master 2

has messages M2 and M1 and is propagating M2; Master 3 has all messages

and is propagating M3. Note that messages M1 and M2 appear in a different

order in Master 1 and Master 2. In this example the following violations of

consistency models and consistency properties might happen:

Linearizability - If a client issues a read operation to a server, it will miss at

least one of the messages, the total order that is equivalent with the real-time

ordering of the operations is not guaranteed: in this case, the read operation

should return the three messages.
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Session Guarantees - Consider that all write operations are made by client

c in the same session.

1. Read Your Writes - If client c issues a read operation to Master 1 or Master

2, it may miss one of the messages that were posted by c previously.

2. Monotonic Reads - If client c issues a read operation to Master 3 and

then to one of the other masters, the second read operation may miss one

message that was previously returned. This means that successive reads

in the same session do not always reflect a nondecreasing set of writes.

3. Monotonic Writes - This property is not guaranteed because in Master 1

message M2 is missing and in Master 3, M2 and M1 are in a order that

is not consistent with the order in which the client wrote those messages

(M1 before M2). This occurs because the posts were made in different

servers and some messages were delayed. Note that we assumed that

writes are guaranteed to be received by all the servers in the order they

where issued in the origin master, but this is not enough, because the

order between messages posted across different masters may diverge due

to propagation delays.

4. Writes Follow Reads - This property is not guaranteed, however we need

another example to explain why. Figure 2.7 shows a possible state of a

social feed in the different servers after two posts from client c1 (opera-

tions 1 and 2) and a read that precedes a post from client c2 (operations 3

and 4 correspond to the read and the post, respectively). In this example,

the read executes at Master 2 and returns the two messages posted by c1.

We assume, in this case, that each client is in a different session. After

the execution of all operations: Master 1 contains messages M3 and M1;

Master 2 has the messages posted by client c1 and is propagating M2;

Master 3 has the three messages and is propagating M3. In this case, the

Writes Follow Reads property is not guaranteed because M2 is missing

in Master 1, but M3 was issued after an observation of M2, which by this

property restricts all servers to only expose M3, if they also expose M2.
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Master2

M2

M1

Master1

Master3

M1
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1. C1 - Post (M1)

4. C2 - Post (M3)Synchronous

Asynchronous
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M3

3. C2 - ReadM3

Figure 2.7: Multi-Master Replication, example with two clients

Causal - Since all session guarantees are not guaranteed, causal is not guar-

anteed, a system that provides this consistency model must enforce the four

session properties.

2.4 Consistency Studies

In this section, we present the most relevant related work about consistency

measurement studies and their main limitations.

Lu et al. [50] studied the consistency of TAO, Facebook’s graph store. The

study was performed by logging information inside the infrastructure of Face-

book, to build a graph (offline) and detect consistency anomalies. They tar-

get linearizability, per-object sequential consistency and the read-after-write

anomalies. The methodology used in their work limits the number of services

to evaluate, because it needs to log information inside the service. Another

limitation is that it may not permit to study consistency as perceived by end

users, because some consistency anomalies may be introduced after logging
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(e.g., a cache introduced at the interface layer).

Previous authors have conducted studies on the consistency of data storage

services. In particular, Wada et al. [68] have focused on testing the properties

of Read Your Writes, Monotonic Reads, and Monotonic Writes on several cloud

storage services, namely Amazon SimpleDB [7], Amazon S3 [9], Google App

Engine Datastore [41], Microsoft Azure Table [14], and Blob Storage. Their

study has focused on how the semantics differ depending on the relative lo-

cation of readers and writers (same or different threads, processes, virtual

machines, or geographical regions). To detect consistency anomalies, they per-

form read and write operations to a data element, in the data storage, and

then check for anomalies (e.g., if the client makes a write and in the next read

operation the effect of that write is not observed, they detect a read-your-write

anomaly). Another relevant study in this context was conducted by Bermbach

et al. [19], focusing on the consistency guarantees of Amazon S3 under a heavy

load of concurrent writes. These previous studies focus on understanding the

consistency properties offered by the storage layer, instead of the consistency

provided by the services above this layer. These studies are also using a simple

read/write interface to access a data element, but usually services API have

support to other operations and to other data structures.

At an even lower layer, Xu et al. [69] conducted a measurement study of

response times of virtual machines launched at Amazon EC2. This represents

a layer that is even further apart from the one we intent to study. Furthermore,

that study focuses only on performance and not on consistency.

Other works have proposed analytic models to determine the consistency

properties implemented by distributed key-value stores, based on measure-

ments taken from inside the system. Anderson et al. [10] infer the consistency

properties offered by key-value stores through the construction of graphs that

capture the operations and their return values, to detect violations of the con-

sistency levels defined by Lamport [48]. Zellag et al. [73] follow a similar

approach, building a graph capturing the operations over a system. This graph

is enriched with dependencies among object versions for detecting particular

consistency anomalies. These studies are focused on key-value stores, and not
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in Internet services, which have different interfaces and access restrictions.

Prior work defined a continuous degree of consistency. Bailis et al. [15]

model the consistency of weak quorums as a probabilistic bound on staleness,

they explain why partial quorums are usually adopted by services and evaluate

the staleness of data and the latency. Yu and Vahdat [71] argue that some

services can work using weak consistency, but can benefit if the inconsistent

interval is bounded. In their proposal they limit the divergence to the final

replica state. These proposals share the same core idea with one of the tests

introduced further ahead in Chapter 3, that aims at quantifying divergence.

However, in contrast to this thesis, the authors of [71] do not verify nor quantify

divergence in several Internet services.

2.5 Middleware solutions for enforcing

consistency

In this section, we present and discuss the most relevant related work about

systems that introduce a layer that can mediate access to a service, in order to

upgrade the respective consistency guarantees.

Bailis et al. [16] proposed a system called “bolt-on causal consistency” to

provide safety. Their proposal enforces causal consistency by introducing a

layer between the client and an eventually consistent data store. This layer

has a local storage that contains a consistent causal cut of the data, with all

elements requested by the client and their dependencies, and provides two op-

erations: the get operation, to obtain a value given a key and the put operation

that receives the value to write and its dependencies. The put operation makes

the write in the data store with the associated metadata and updates the local

store. The metadata contains a list with the write dependencies and a vector

clock (one entry per client). The get operation obtains the value directly from

the local storage, tells a background procedure to check if a more recent value

for the key is available in the data store, and then returns to the client. The

background procedure is responsible for obtaining new values and to guaran-

teeing that the local store contains a consistent causal cut of the data. This
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means that this procedure has to ensure that all write dependencies are stored

locally. This approach provides low latency in the read operations, but it may

miss the last value for a key. To address this, it is also proposed an alternative

read operation, that returns more recent data but may take longer to execute,

where the most recent value for a key is obtained from the data store and the

necessary dependencies are stored locally, before returning to the client.

There are two main limitations in this previous work: it does not provide a

fine-grained choice of which session guarantees (i.e., Monotonic Reads, Mono-

tonic Writes, Writes Follow Reads, and Read Your Writes) the application de-

veloper has to ensure so that only the performance penalty that is required for

those particular guarantees is incurred. Second, they assume the underlying

system offers a general read/write storage interface, which gives significant

more flexibility in terms of the system design, in contrast to our work, which

is restricted to the APIs provided by Internet services.

Another work that proposes a middleware to guarantee consistency on top

of eventually consistent data stores was conducted by Bermbach et al. [20].

This middleware enforces session guarantees and provides a causal behavior

to the clients. To enforce the consistency guarantees the middleware relies on

vector clocks to track the last value of a key (one entry per application server).

The middleware provides operations to write and read the values of a key and

caches the values. This work is also limited to a generic storage interface and

it does not provide a fine-grained choice to all session guarantees.

In addition to the two previous works, there is also a proposal from Brantner

et al. [22] called “Building a Database on S3”, that proposes the design of a

middleware to be used on top of a data service (Amazon S3) storing mostly

small objects. The middleware provides atomic transactions and can enforce

all sessions guarantees. To achieve this, the middleware has a local storage and

uses the Simple Queueing System (SQS) [8], the system uses several queues.

When a write is committed, the write is sent to the respective queue and a

procedure called checkpoint applies the writes to S3. In this system each

record is in a page that is stored in S3. To guarantee Monotonic Reads, a

commit timestamp is associated to the page. The idea is to use this timestamp
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to guarantee that the local storage maintains the most recent versions of the

records to return. To guarantee Monotonic Writes the system associates a

counter and a client identifier to the pages. The counter increases every time

the client commits and the order is enforced in the checkpoint procedure. Read

Your Writes is guaranteed if Monotonic Reads is enforced. Writes Follow Reads

is also guaranteed because writes are sent to a queue and processed by the

checkpoint procedure before being sent to S3. The main limitation of this

solution is the overhead of using an external service to enforce the session

guarantees, namely, the Simple Queueing System (SQS).

Terry et al. [64] originally proposed the sessions guarantees, that have been

referenced above, in the work, “Session guarantees for weakly consistent repli-

cated data“. In this work they propose a system that provides the four session

guarantees on top of a multi-master replicated data store that provides even-

tual consistency. The system has a session manager that runs at each client and

provides a simple read/write interface. It is assumed that the data store servers

are responsible to assign a unique identifier for each new write (WID) and that

they must be able to retrieve the set of all WIDs done in each server. For each

session, there is a read-set that contains the WIDs of the relevant writes seen

in the session and a write-set that contains the WIDs of the writes done in

the session. To guarantee Read Your Writes, when a client issues a write, the

associated WID is stored in the write-set, when the client issues a read, the

session manager needs to find a server that contains the write-set and then

read from that server. To guarantee Monotonic Reads, the WIDs of all writes

seen in the session are stored in the read-set and, when a client issues a read,

the session manager has to find a server that covers the read-set and then reads

from that server. To guarantee Monotonic Writes and Writes Follows Reads,

it is assumed that the writes observed in a server always precede new writes

and that this order is respected while performing replication. Assuming these

constraints, to guarantee Monotonic Writes, when a write is issued, the session

manager has to find a server that contains the write-set and then execute the

write in that server. To guarantee Writes Follow Reads, the WIDs of all relevant

writes seen in the session must be stored in the read-set, and, when a write
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is issued, the session manager has to find a server that contains the read-set

and then execute the write in that server. In order to implement the session

guarantees more efficiently, the authors propose to replace the sets of WIDs

with vector clocks (one entry per server). This avoids having sets of WIDs that

grow indefinitely. This solution provides fine-grained consistency; however, it

assumes a set of constraints that are hard to achieve when we are working with

online services, where the internal logic of the service cannot be changed (i.e.,

the service is seen as a black box) [44].

To summarize the main limitations of previous work, (1) some solutions do

not provide a fine-grained choice of the session guarantees to developers; (2)

they assume that the underlying system is a data store with a generic read/write

interface, whereas Web APIs have more complex interfaces (e.g. they associate

a list of objects to each key and only return part of that list); (3) the use of

external services as part of the system (i.g., the Simple Queueing System); (4)

they assume several constraints at the server side, such as knowledge of the

internal structure of the data store and direct access to all servers, (5) and they

assume the absence of requests rate limits when writing and reading from the

data store, in contrast, public Web APIs block applications that exceed the

limits imposed by the service.
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3
Measurement Study

The goal of the measurement study presented in this chapter is to characterize

experimentally the consistency offered by online service through their public

APIs. To this end, we designed two tests that probe the service (through the

API) in search of consistency anomalies. A particular challenge in this context

is that there are multiple consistency definitions, often using different nota-

tions. To address this, we define a number of anomalies that are both precise

and intuitive to understand by programmers and users of online services. Note

that we are not trying to exhaustively define all anomalies that can occur, nor

to prove that these are equivalent to any of the various existing consistency

definitions. It is also important to point out that if an anomaly is not observed

in our tests, this does not imply that the implementation disallows for its oc-

currence, since it could have been by chance that it did not surface during the

period of experimental testing.

3.1 Operations

In the following description, we consider that users (or clients) of the service

issue a set of requests, which can be divided into two categories: (1) write re-

quests, which create an event that is inserted into the service state (e.g., posting
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a new message), and (2) read requests, which return a sequence of events that

have been inserted into the state (e.g., reading the current sequence of posts).

For simplicity, we assume that read operations return the entire sequence of

writes. In practice, this could be generalized to define that a read returns a

value that is a function of the sequence of writes according to some service

specification, that may not contain the whole sequence, in Chapter 4 we are

going to discuss this in more detail.

3.2 Defining consistency anomalies

Based on write and read operation categories, we now define the set of anoma-

lies we consider in this study. We split these into three categories:

3.2.1 Session guarantees

The first set of anomalies corresponds to violations of session guarantees [64].

In these definitions we are considering that each client executes in the context

of its own session.

Read Your Writes: This session guarantee requires that a read observes all

writes previously executed by the same client. More precisely, say W is the set

of write operations made by a client c at a given instant, and S a sequence (of

effects) of write operations returned in a subsequent read operation of c, a Read

Your Writes anomaly happens when:

∃x ∈W : x < S

Monotonic Writes: This requires that writes issued by the same client are

observed in the order in which they were issued. More precisely, if W is a

sequence of write operations made by client c up to a given instant, and S is

a sequence of write operations returned in a read operation by any client, a

Monotonic Writes anomaly happens when the following property holds, where

W (x) ≺W (y) denotes x precedes y in sequence W :

∃x,y ∈W : W (x) ≺W (y)∧ y ∈ S ∧ (x < S ∨ S(y) ≺ S(x))
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Monotonic Reads: This session guarantee requires that all writes reflected

in a read are also reflected in all subsequent reads performed by the same client.

In comparison to Monotonic Writes, this has the subtle difference of requiring

that the missing write is first observed (i.e., returned by a previous read) by

the client before disappearing. More precisely, a Monotonic Reads anomaly

happens when a client c issues two read operations that return sequences S1

and S2 (in that order) and the following property holds:

∃x ∈ S1 : x < S2

Writes Follow Reads: This session guarantee requires that the effects of a

write observed in a read by a given client always precede the effects of writes

that the same client subsequently performs. This precludes the situation where

a client reacts to a write issued by itself or some other client (e.g., after reading

a question that was posed) by issuing another write (e.g., posts a reply), and

subsequently some client observes the second write without observing the first

one. More precisely, if S1 is a sequence returned by a read invoked by client

c, w a write performed by c after observing S1, and S2 is a sequence returned

by a read issued by any client in the system; a Writes Follows Reads anomaly

happens when:

∃x ∈ S1 ∧∃w ∈ S2 : x < S2

Note that although this last anomaly has been used to exemplify causality

violations in previous papers [5, 49], any of the previous anomalies represent

a different form of a causality violation [64].

3.2.2 Divergence

The next two anomalies refer to divergence between the state that is returned

by read operations issued by two independent clients [70].

Content Divergence: A content divergence anomaly captures the case where

two clients issue read operations and there are at least two writes such that

one client sees one but not the other, and for the other client the opposite is

true. More precisely, a content divergence anomaly happens when two reads
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issued by clients, c1 and c2, return respectively, sequences S1 and S2, and the

following property holds:

∃x ∈ S1 ∧∃y ∈ S2 : y < S1 ∧ x < S2

Any system relying on weak consistency protocols is prone to this anomaly,

as this is a consequence of the core property of being able to perform and

complete a write operation by contacting a single replica in the system (i.e.,

without synchronization among replicas).

Order Divergence: The order divergence anomaly refers to writes issued

by different clients being seen in distinct orders by different clients. More

precisely, an order divergence anomaly happens when two reads issued by two

clients, c1 and c2, return, respectively, sequences S1 and S2, containing a pair

of events occurring in a different order at the two sequences:

∃x,y ∈ S1,S2 : S1(x) ≺ S1(y)∧ S2(y) ≺ S2(x)

where the notation S(x) ≺ S(y) denotes that operation x in state S was ordered

before operation y.

3.2.3 Quantitative metrics

The anomalies defined so far are boolean predicates over a trace of the system,

i.e., they either occur in an execution or they do not. In addition to the presence

or absence of these anomalies, we can determine quantitative aspects of the

observed behavior.

Content Divergence Window and Order Divergence Window: When con-

sidering the two divergence anomalies, it is also relevant to understand how

long it takes for the system to converge back to a single coherent state (assum-

ing it eventually does as prescribed by eventual consistency). As such, we can

define the Content Divergence Window and Order Divergence Window as follows.

When a set of clients issue a set of write operations, the divergence window

is the amount of time during which the condition that defines the anomaly

(either content or order divergence) remains valid, as perceived by the various

clients.
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Figure 3.1: Measurement study method overview

3.3 Measurement methodology

In this section, we describe a methodology for testing online services that tries

to expose the previously defined anomalies. In a nutshell, our methodology,

consists of deploying agents in different points in the globe, as depicted in

Figure 3.1. The agents perform several black box tests to the online service,

by issuing multiple read and write operations. After the execution of a test,

information about the operations is logged locally and then we perform an

off-line analysis to detect consistency anomalies.

The notion of a read or a write operation is specific to each service, but

should adhere to the specification in Section 3.1. For the services we consid-

ered in the realization of this work, since they are either social networking or

messaging services, we chose operations that posted a message and listed the

current sequence of posts.
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3.3.1 Time synchronization

An important aspect of our tests is that they require the clocks of the machines

where agents are deployed to be loosely synchronized, for two different reasons.

First, we use clock readings to compute divergence windows between different

agents. As such, a clock synchronization error could introduce an additional

error in the computed values for the divergence windows. Second, some of

the tests require the various agents to issue operations as simultaneously as

possible (namely to maximize the chances of triggering conditions/executions

that maximize the chances of allowing the observation of divergence). As such,

a synchronization error would decrease the chances of triggering divergence,

and therefore make our measurements of this anomaly more conservative. The

synchronization error may reduce the chance of divergence, and thus we expect

our result to represent a lower bound on the divergence experienced by these

systems.

To synchronize clocks, one could rely on a service such as the Network

Time Protocol (NTP) [55]. However, the use of NTP implies releasing the

control over the clock synchronization process, which could introduce errors

in our measurements when the clock is adjusted. Thus, we disabled NTP and

implemented a simple protocol that estimates the time difference between a

local clock and a reference clock (which resembles Cristian’s algorithm for clock

synchronization [30]). In particular, a coordinator process conducts a series

of queries to the different agents to request a reading of their current local

time, and also measures the RTT to fulfill that query. The clock deltas are then

calculated by assuming the time spent to send the request and receive the reply

are the same, and taking the average over all the estimates of this delta. The

uncertainty of this computation is half of the RTT values.

3.3.2 Tests

Our goal in designing these tests is twofold: first, we want the tests to be

complete, in the sense that they allow (and even promote) the possibility of

exposing all listed anomalies; and second, we want to make these simple and

limit the number of different tests required. Guided by these principles, we
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designed the following two tests.

3.3.2.1 Test 1

The sequence of events for the first test is depicted in Figure 3.2. In this test,

each agent performs two consecutive writes and continuously issues reads in

the background, with a frequency that is determined by the maximum fre-

quency that is allowed by the rate limit of the online service. The writes by

the different agents are staggered: agents have sequential identifiers and the

first write by agent i is issued when it observes the last write of agent i −1. For

all operations, we log the time when they occurred (invocation and response

times) and their output.

The output of running this test already allows us to detect most of the

consistency anomalies from the previous section as follows:

• A violation of Read Your Writes occurs, for instance, when Agent 1 writes

M1 (or M2), and in a subsequent read operation M1 (or M2) is miss-

ing. (The same applies to each message written by each of the remaining

Agent 2

StartTest

Write(m3)

StopRead
EndTest

Agent 3

StartTest

StartRead

StopRead
EndTest

StartRead

Agent 1

StartTest

Write(m1)

StopRead
EndTest

StartRead

Write(m2)

Write(m4)

Observed(m2)

Write(m5)

Write(m6)

Observed(m4)

Time

Figure 3.2: Timeline for Test 1 with three agents.
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Agent 2

StartTest

Write(m2)

StopRead

EndTest

Agent 3

StartTest

StartReadWrite(m3)

StopRead

EndTest

StartRead

Agent 1

StartTest

Write(m1)

StopRead

EndTest

StartRead

Time

Figure 3.3: Timeline for Test 2 with three agents.

agents.)

• A violation of Monotonic Writes occurs, for instance, when Agent 1 writes

M1 and M2, and afterwards that agent either observes only the effects of

M2 in the output of a read operation, or observes the effect of both writes

in a different order. (The same applies to each pair of messages written

by each of the remaining agents.)

• A violation of Monotonic Reads occurs when any agent observes the effect

of a message M and in a subsequent read by the same agent the effects of

M are no longer observed.

• A violation of Writes Follows Reads occurs when some agent either ob-

serves M3 without observing M2 or observes M5 without observing M4.

We only consider these particular pairs of messages because, in the de-

sign of our test, M3 and M5 are the only write operations that require the

observation of M2 and M4, respectively, as a trigger.

3.3.2.2 Test 2

The timeline for the second test is depicted in Figure 3.3. This test attempts to

uncover divergence among the view that different agents have of the system, by

having all agents issue a single write (roughly) simultaneously, and all agents
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Agent 1

Agent 2

(M1)

(M1,M2)(M2)

(M1,M2)

Content Divergence

Figure 3.4: Content divergence where computed window is zero

continuously reading the current state in the background. This simultaneity

could increase the chances of different writes arriving at different replicas in a

different order, and therefore leading the state of such replicas to diverge.

The output of running this test gauges the remaining questions from the

previous section. In particular:

• A violation of Content Divergence occurs, for instance, when an Agent

observes a sequence of writes containing only M1 and another Agent sees

only M2.

• A violation of Order Divergence occurs, for instance, when an Agent sees

the sequence (M2,M1) and another Agent sees the sequence (M1,M2).

The content and order divergence windows are also computed using the re-

sults of this test by ordering all events according to their absolute time (factor-

ing in the correction for clock deltas as explained previously), and determining

the interval of time during which the anomaly conditions hold, as determined

by the most recent read. Note that the timeline considering operations from

all agents may lead to the following situation, depicted in Figure 3.4: agent

1 reads (M1) at time t1; agent 1 reads (M1,M2) at t2; agent 2 reads (M2) at t3;

agent 2 reads (M1,M2) at t4, with t1 < t2 < t3 < t4. In this case, although there

33



CHAPTER 3. MEASUREMENT STUDY

Agent location Round-trip time(RTT)
Oregon 136ms
Japan 218ms

Ireland 172ms

Table 3.1: Average RTT between the coordinator and the various agents

has been a content divergence anomaly, the first agent sees the converged state

even before the second agent sees the divergence. The conditions we defined

apply to the two traces, but there is no instant during the execution where the

condition is true about the most recent state seen by the set of agents, leading

to a the computed window of zero.

3.4 Results

In this section, we present the results of our measurement study of four online

service APIs: Google+, Blogger and two services from Facebook.

For Blogger, we used the API to post blog messages and to obtain the most

recent posts [21]. In this service, each agent was a different user, and all agents

wrote to a single blog.

For Facebook, we used the Facebook Graph API to interact with both the

user news feed [35] and group [34] feed services. In the first case, each user

writes and reads from his own feed, which combines writes to the user feed

with writes from the feeds of all friends. In the second case, all users are

associated with a single group and issue all their write and read operations

over that group. In all tests, each agent was a different user, and we used test

users, which are accounts that are invisible to real user accounts. We conducted

a small number of tests with regular accounts and results were consistent with

those obtained using these special test users.

For Google+, we could only find API support for posting “moments”, a

moment describes an activity from a user (e.g., a text describing a user activity).

We used the API to post a new moment and to read the most recent moments.

In this case, all agents shared the same account, since there is no notion of a

follower for moments. Unfortunately, there does not seem to exist an extensive
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Agent 1
Oregon (US)

Agent 2
Ireland

Agent 3
Tokyo(Japan)

Figure 3.5: Agents geographical distribution

use of the concept of moments, particularly since these are not easy to use

through the Web interface. As such, we cannot know whether the results we

present apply to what most users observe when they access Google+ services.

Note that the behavior of a service accessed through the API might differ from

the behavior observed when using the Web Interface.

Subsequently to the experiments, Google+ disabled its support for mo-

ments, and Facebook removed the ability to read user news feed from their

Graph API.

For each of these services, we ran three agents, which were deployed on

three geographically distant locations using different “availability zones” of

Amazon EC2, despited in Figure 3.5. In particular, we used the Oregon (US),

Tokyo (Japan), and Ireland availability zones, which correspond to different

data centers spread across the globe. Furthermore, we deployed an experiment

coordinator in another availability zone, in this case North Virginia (US). In

Table 3.1 we show the average values we measured for the round trip times

between the coordinator and the various agents. These were employed to derive
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Google+ Blogger FB Feed FB Group

Period between reads 300ms 300ms 300ms 300ms

Number of reads per agent
48 11 14 11

per test (average)

Time between successive tests 34min 20min 5min 5min

Number of tests executed 1036 1028 1020 1027

Table 3.2: Configuration parameters for Test 1

Google+ Blogger FB Feed FB Group

Period between reads
300ms 300ms 300ms 300ms
(14X) (13X) (20X) (20X)

then 1s then 1s then 1s then 1s

Reads per agent per test 17− 75 20 40 50

Time between successive tests 17min 10min 5min 5min

Number of executed Tests 922 1012 1012 1126

Table 3.3: Configuration parameters for Test 2

the clock deltas, as discussed in the previous section.

For each of the services, we deployed the various agents for a total period

of roughly 30 days per service (for running both tests). For each service, we

alternated between running each of the two test types roughly every four days:

instances of test 1 ran repeatedly for four days then test 2 for another four days

then back to test 1, and so on. Each instance of a test ran until completion:

for test 1, the test is complete when all agents see the last message written

by Agent3 (M6), and for test 2, the test completes when all agents perform a

configurable number of reads. Due to rate limits, after a test instance finishes,

we had to wait for a fixed period of time before starting a new one. Before the

start of each iteration of a test, the clock deltas were computed again.

Tables 3.2 and 3.3 summarize the parameters we used for configuring each

of the tests for each service. These parameters were chosen in a way that

minimizes the time to collect the data while taking into consideration rate
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Figure 3.6: Percentage of tests with observations of different anomalies

limits for each service. For the second test, the period between reads is adaptive:

initially it is short, and then it becomes one second. This allows for a higher

resolution in the period when the writes are more likely to become visible,

while respecting the rate limits. In total, we ran 1,958 tests comprising 323,943

reads and 8,982 writes on Google+, 2,040 tests comprising 96,979 reads and

9,204 writes on Blogger, 2,032 tests comprising 195,029 reads and 9,156 writes

on Facebook Feed and 2,153 tests comprising 169,299 reads and 9,540 writes

on Facebook Group.

3.4.1 Overall results

We start by analyzing the overall prevalence of anomalies in both tests. Fig-

ure 3.6 shows, for each anomaly and each service, the percentage of tests where

each type of anomaly was observed. All types of anomalies were seen in both

Google+ and Facebook Feed, whereas in Facebook Group no violations of Read

Your Writes and Order Divergence were observed. For the remaining anoma-

lies, the most common in this service was for Monotonic Writes. In Blogger we

did not detect any anomalies of any type. Next, we analyze the occurrence of

each anomaly in detail. We omit the results from the pairs of <service, anomaly

type> where no anomalies were seen.
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Figure 3.7: Distribution of Read Your Writes anomalies per test.

3.4.2 Session guarantees

We analyze the prevalence of anomalies for each session guarantee. For the

Read Your Writes guarantee, Figure 3.6 shows a high value (99%) for Face-

book Feed and a visible presence of this type of anomaly (22%) in Google+.

Figure 3.7a presents the number of observations of the anomaly per test for

Google+. This shows that, in the particular case of Google+, more than half

of the tests where this anomaly was detected had several individual violations

of the property. The results also show that this anomaly is more prevalent on

clients in Oregon and Japan. The results for Facebook Feed, which are reported

in Figure 3.7b, show the opposite trend: most occurrences of this anomaly

are in tests where it is only detected once or twice per agent. In contrast with

Google+, Facebook Feed showed a similar prevalence across client locations. To

determine whether these anomalies are correlated across locations, Figure 3.7c

depicts the percentage of tests where these anomalies occurred in each agent
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Figure 3.8: Distribution of Monotonic Writes anomalies per test.

exclusively versus across different combinations of the agents. The results

show that this does not tend to be a global phenomenon: in Google+, the large

majority of occurrences are only perceived by a single agent. However, for

Facebook Feed, all three locations perceived the anomaly in a large fraction of

tests, because this anomaly arises much more frequently.

Next, we analyze the prevalence of violations of the Monotonic Writes ses-

sion guarantee, with Figure 3.6 showing a significant prevalence of this type of

anomaly both in Facebook Feed and in Facebook Group, with a 89% and 93%

prevalence, respectively. Google+ shows a fairly low prevalence with only 6%.

The results in Figure 3.8, for Google+, show that this anomaly, when detected

in a test, is often observed several times in that test. Additionally, Oregon and

Japan have an increased incidence of this anomaly occurring multiple times in

a single test, whereas in Ireland, when this anomaly is detected, it often occurs

a single time in each test. This phenomenon however might be a consequence

of the way that our tests are designed, as in test 1 Ireland is the last client to
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issue its sequence of two write operations, terminating the test as soon as these

become visible. Thus, it has a smaller opportunity window for detecting this

anomaly. This observation is supported by the fact that the same trend is ob-

served in the results for the Facebook services, and by additional experiments

that we have performed, where we rotated the location of each agent.

Figure 3.8d presents the correlation of the location of agents across the

tests that observed the anomaly. The figure shows that this tends to be a local

occurrence in Google+, where the anomaly is visible in only one of the locations,

whereas in Facebook Feed and Group this anomaly tends to be global with a

larger prevalence in Japan.

The large occurrence of these anomalies in the Facebook services motivated

us to inspect more carefully these phenomena across these services. We noticed

that in Facebook Feed, messages are often reordered across different read op-

erations executed by each agent. However, for the particular case of Facebook

Group, the reordering of messages occurred mostly in messages issued by the

same agent, and that all agents observed this reordering of operations consis-

tently. Upon further inspection, we noticed that each event in Facebook Group

is tagged with a timestamp that has a precision of one second, and that when-

ever two write operations were issued by an agent within that interval (causing

them to be tagged with the same timestamp) the effects of those operations

would always be observed in reverse order. This suggests that, in this service,

this anomaly is produced by a deterministic ordering scheme for breaking ties

in the creation timestamp.

The experiment for Monotonic Reads, as shown in Figure 3.6, indicates that

46% of the tests are exhibiting this type of occurrence on Facebook Feed and

25% in Google+. This anomaly was detected in Facebook Group in a single test.

Figure 3.9a shows a long tail in the number of observations per test in Google+.

Although the anomaly is much more prevalent in Facebook Feed, the results

show that it is mostly detected a single time per agent per test. Figure 3.9c

indicates a mostly local phenomenon in both services.

Violations of the last session guarantee, Writes Follow Reads, are more

frequent in Facebook Feed. As depicted in Figure 3.6, this anomaly only occurs
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Figure 3.9: Distribution of Monotonic Reads anomalies per test.

in Facebook Group twice. Figure 3.10 shows that, although this is a somewhat

frequent anomaly, it does not occur recurrently, with only a few observations

occurring per agent in each test for Facebook Feed. In contrast, for Google+

we verify the opposite. Figure 3.10c depicts the set of agents that observe the

lack of causality in each test. This indicates a mostly local phenomenon in both

services, particularly located in Oregon for Facebook Feed.

3.4.3 Divergence

We now check the presence of divergence events in the collected data. We start

by looking at content divergence. Figure 3.11 shows the percentage of tests

with divergence between the state observed by pairs of agents.

These results show that content divergence occurs very frequently in Google+

and in Facebook Feed, which indicates the likely use of weakly consistent repli-

cation that privileges performance over strong consistency. In particular, the
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Figure 3.10: Distribution of Writes Follow Reads anomalies per test.

percentage of tests that show content divergence in Google+ is up to 85%, be-

ing less pronounced between Oregon and Japan than between the remaining

pairs of agents. This might suggest that the Oregon and the Japan agents are

connecting to the same data center, whereas the other pairs of agents are not.

In the case of Facebook Feed, this occurrence is more uniform across all pairs

of agents, and the prevalence is also high (above 50% across all pairs of agents).

In the case of Facebook Group the prevalence is extremely low with a total of

15 occurrences of this anomaly, 9 of which happened across a sequence of tests,

where the Tokyo agent was unable to observe the operations of other agents.

This suggests the agent in Tokyo connects to a different data center than the

other agents, hence these anomalies might be caused by a transient fault or

network partition.

In terms of the presence of order divergence anomalies, Figure 3.6 shows

that this phenomenon occurs in Google+ and in Facebook Feed, with a preva-

lence that is less pronounced than content divergence in Google+. Similarly to
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Figure 3.11: Percentage of tests with content divergence anomalies.
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Figure 3.12: Percentage of tests with order divergence anomalies.
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Figure 3.13: Cumulative distribution of content divergence windows.

the previously reported results, in Figure 3.12, we observed that this anomaly

is much less frequent between Oregon and Japan (below 1%) than between the

remaining pairs of agents (around 14%). In Facebook Feed, the prevalence is

near 100% across all locations.

While the results for Facebook Feed may seem surprising, they are ex-

plained by the semantics of the service. This is because the reply to a read

contains a subset of the writes, which are not the most recent ones, but a selec-

tion of writes based on a criteria that depends on the expected interest of these

writes for the user issuing the read operation.

3.4.4 Quantitative metrics

Next, we analyze several quantitative measurements.

Figure 3.13 shows the CDF of the content divergence window. This distri-

bution is shown for each pair of agents and each service (only considering the

largest divergence window for each pair of agents in each test). The results

44



3.4. RESULTS

 0

 5

 10

 15

 20

 25

 30

 35

 40

OR / JP OR / IE JP / IE

P
e
rc

e
n
ta

g
e
 o

f 
T

e
s
ts

Location of Agents

(a) Google+

 0

 5

 10

 15

 20

 25

 30

 35

 40

OR / JP OR / IE JP / IE

P
e
rc

e
n
ta

g
e
 o

f 
T

e
s
ts

Location of Agents

(b) Facebook Feed

 0

 5

 10

 15

 20

 25

 30

 35

 40

OR / JP OR / IE JP / IE

P
e

rc
e
n

ta
g

e
 o

f 
T

e
s
ts

Location of Agents

(c) Facebook Group

Figure 3.14: Tests where an anomaly of content divergence was observed, but
where the window is zero.

show a smooth distribution of this window, with Google+ taking substantially

longer than the remaining services for all agents to regain a consistent view

of the system state (on the order of seconds in Google+ versus hundreds of

milliseconds in Facebook Feed and most of the content divergence instances

observed in Facebook Group). Figure 3.13(a) shows that the Oregon and Japan

agents have a convergence time that is much faster than the remaining pairs

of agents, and that the other two pairs exhibit similar convergence times. This

suggests that writes issued from Oregon and Japan may be processed by the

same replica (i.e., data center).

The results depicted in Figure 3.13(b) show that content divergence occurs

in Facebook Feed across all agents and all pairs of agents, and takes approxi-

mately the same time to converge to a consistent view of the service state (on

the order of a few seconds). Again, the semantics of reads in this service may

explain these results.

Finally, Figure 3.13(c) depicts the results for Facebook Group, showing that
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Figure 3.15: Cumulative distribution of order divergence windows.
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Figure 3.16: Tests where an anomaly of order divergence was observed in
Google+, but where the window is zero.

content divergence between the agent in Japan and the two remaining agents

takes longer to be resolved. This indicates that the agent in Japan may be

contacting a different replica than the remaining agents.

We remind the reader that these CDFs excluded all values where the win-

dow was zero, as explained in Section 3.3. In Figure 3.14, we show the per-

centage of content divergence windows that were computed to have a value

of zero according to our methodology. Even though there is a relatively high

percentage of more than 30% in Google+ and Facebook Group, we note that

this may not be statistically relevant, since there were very few instances of

content divergence in this cases. In Facebook Feed the results show a relatively

high percentage between all agents that can be associated with the semantics

of the service.

The last set of measurements refer to the order divergence window. This

46



3.5. COMPARISON TO RELATED WORK

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

OR / JP OR / IE JP / IE

P
e

rc
e

n
ta

g
e

 o
f 

T
e

s
ts

Location of Agents

Figure 3.17: Tests where an anomaly of order divergence was observed in
Facebook Feed, but where convergence was not reached during the test.

anomaly was only observed in Google+ and Facebook Feed. For Google+, Fig-

ure 3.15a shows that a coherent order is more quickly re-established between

the Oregon and Japan agents than for the remaining pairs, which can take over

ten seconds to achieve this. The reason behind the steps in the curve is that,

after the first 12–14 reads, which are more frequent, our agents perform reads

with a period of one second, to deal with the imposed limits of the services.

As such, the detection of the end of a window is done at the resolution of one

second, and in a synchronized way, as shown in the CDF. When looking at the

percentage of windows with zero values, reported in Figure 3.16, we note that

one of the cases has a high value of 25%, but corresponds to one out of four

occurrences. For the Facebook Feed service we observe that a coherent order is

established among the several pairs of agents faster.

These results exclude runs where convergence was not reached during the

test. In Figure 3.17, we show the fraction of tests where this occurred, between

Oregon and Tokyo was 81%, for Oregon and Ireland 94%, for Tokyo and Ireland

89%, again, this might be explained by the semantics of the service.

3.5 Comparison to Related Work

Here, we revisit related work in light of our contributions. In particular, we

now focus on a detailed contrast to the more closely related proposals found in

the literature.
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The most closely related study is the work of Lu et al. [50], which studied

the consistency of TAO, Facebook’s graph store. The study was performed by

logging information inside the infrastructure of Facebook. In contrast, our

approach uses the Web APIs of the services, allowing to study the consistency

of services, as perceived by end users, without access to their infrastructure.

The other main distinction is that our methodology allowed us to study several

Internet services, instead of a single one.

The works of Wada et al. [68] and Bermbach et al. [19] have focused on test-

ing the consistency properties on cloud storages, like Amazon S3. In contrast

to both studies, our measurement study focuses on understanding the consis-

tency properties offered by service APIs (i.e., above the storage layer), and for

the particular case of clients scattered across different geographic locations.

At an even lower layer, Xu et al. [69] conducted a measurement study of

response times of virtual machines launched at Amazon EC2. This represents

a layer that is even further apart from the one we are analyzing. Furthermore,

that study focuses only on performance and not on consistency.

The studies of Anderson et al. [10] and Zellag et al. [73], proposed analytic

models to determine the consistency properties implemented by distributed

key-value stores, based on measurements taken from inside the system. In

contrast, we conduct a measurement study of consistency properties offered by

Internet services, focusing on a more general mode than key-value stores.

Finally, the work of Bailis et al. [15], where they modeled the consistency

of weak quorums as a probabilistic bound on staleness, and the work of Yu

and Vahdat [71] where they limit the divergence to the final replica state, are

different from our work, because part of our analysis builds on the idea of

quantifying divergence but, in contrast, our goal is to understand its existence

in several APIs.

3.6 Summary

We presented a measurement study of the consistency offered by the APIs of

four online services. To this end, we started by identifying a set of anomalies
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that are not permitted by various consistency levels, and devised two tests that

have the ability to expose these anomalies. Our measurement study, based on

these tests, ran on Google+, Blogger, Facebook Feed, and Facebook Groups for

an aggregate period of one month in each service. Our study showed the rela-

tively frequent occurrence of most of the anomalies across all services except

in Blogger.
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4
Fine-Grained Consistency for

Online Services

As we saw in the previous Chapter, developers who design applications for

online services such as Facebook or Google+ have little information about their

consistency, which exacerbates the complexity of reasoning about the semantics

of the application they are developing. In particular, we evaluated a set of ser-

vices and found a relevant number of consistency anomalies, which motivates

the need to automatically enrich the consistency guarantees provided by these

services. In this chapter, we are going to present the design of a middleware

that provides fine-grained consistency guarantees on top of these services.

4.1 Target systems

Our goal is to provide particular consistency guarantees to third-party appli-

cations that leverage popular online web services that expose public APIs. In

particular, the application developer may choose to have individual session

guarantees (Read Your Writes, Monotonic Reads, Monotonic Writes, and Writes

Follow Reads) as well as combinations of these properties (in particular, all four

session guarantees when combined corresponds to causality [26]). To achieve

this, we provide a middleware that can be easily attached to the third-party
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Service (Web API acess)

Middleware

Client

Application

Middleware

Client

Application

Middleware

Client

Application

Figure 4.1: Arquitecture overview

client application, allowing us to enrich the semantics exposed through the

system public API. Figure 4.1 depicts an overview of our architecture. There

are multiple popular systems that provide such public APIs, with various dif-

ferences in terms of the interface they expose. As such, we needed to focus

on a group of APIs with a similar service interface that we can easily adapt

to. We chose to focus on a particular class of services, namely social networks,

such as Facebook, Twitter, or Instagram. Our choice is based on the relevance

and popularity of these services and also on the large number of third-party

applications that are developed for them. In particular, we target services that

expose a data model based on key-value stores, where data objects can be ac-

cessed through a key, and that associate a list of objects to each key. We observe

that this data model is prevalent in online social network services, particularly

since they share concepts such as user feeds and comment lists. In particu-

lar, we target services where the API provides two fundamental operations to

manipulate the list of objects associated with a given key: an insert operation

to append a new object to the first position of the list, and a get operation,

depicted in Figure 4.2, that exposes the first N elements of the list (i.e., the

most recent N elements added to that list). Note that most of existing services
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Figure 4.2: Service get operation, returns N elements of the list

specify a maximum of N elements, which means that our middleware must

assume that the service can return less than N elements for read operations.

Since we access these services through their public APIs, we need to view

the service implementation as a black box, meaning that no assumptions are

made regarding their internal operation. Furthermore, we design our proto-

cols without making any assumption regarding the consistency guarantees

provided through the public service API. The importance of not assuming any

guarantees from existing services is justified by our own previous measure-

ment study, which showed a high prevalence of violations of multiple session

guarantees in public APIs provided by services of this class.

Our algorithms require storing metadata alongside the data, which can

be difficult to do when accessing services as black boxes, namely when the

service has no support for including user managed metadata (this is the case

of Facebook, which we explore in the context of our prototype experimental

evaluation). In this case, we need to encode this metadata as part of the data

itself. As a consequence, when the service is accessed by native clients (i.e., web

applications or third party applications that do not resort to our Middleware)

the user might observe this metadata. However, we believe that this is not a
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crucial issue, since many third party applications only access data objects (i.e,

lists) that are used exclusively by that application.

In order to arbitrate an ordering among operations issued by the local client

and other remote clients, our Middleware needs an approximate estimate of

the current time. To achieve this, two options are available. If the service

has a specific call in its public API that exposes the time in the server, such

call can directly be used by our system. Otherwise, if the service exposes a

Representational State Transfer (REST) API (which is typical in many services)

a simple REST call can be performed to the service, and the server time can

be extracted from a standard HTTP response header (called Date). Note that,

even though it is desirable that this estimate is synchronized across clients,

we do not require either clock or clock rate synchronization for correctness. In

particular, the only negative effect of clocks being out of synch is a reordering of

concurrent events from different sessions that is incoherent with their real time

occurrence; this can imply, in the case of a service that outputs a sliding window

of recent events, that more recent messages may be considered eligible for being

truncated (i.e., considered older than the lower end of the window). However,

we guarantee that such ordering never violates the correctness conditions we

are enforcing.

Finally, we observe that, in practice, the public API exposed by these ser-

vices often imposes rate limits for operations issued by client applications.

These rate limits are exposed under the form of a maximum number of opera-

tions that can be executed within a given time window. In particular, we have

experimentally observed that violating these rate limits can lead the service to

either block further access by the application, or introduce noticeable delays in

processing requests issued by the application. The existence of operation rate

limits imposes a requirement on our protocols: for each application operation,

a single service operation can be issued. This is important to guarantee that an

application using our middleware faces the same rate limits as an application

using the service directly.
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4.2 System overview

In this section we discuss the general architecture of our solution, which is

materialized in a library implementing a middleware layer. We then provide

an overview of the operation of our protocols, explaining how they enforce the

consistency guarantees of session properties in a transparent way for the client

applications.

4.2.1 Architecture

Our system consists of a thin layer that runs on the client side and intercepts

every call made by the third-party client application on the service, mediating

access to the service. In particular, our layer is responsible for contacting the

service on behalf of the client application, process the responses returned by

the service and generate responses to the client applications with the session

guarantees being enforced. Figure 4.3 provides a simple representation of this

architecture.

Our solution can be configured by the third-party application developer
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to enforce any combination of the individual session guarantees, defined in

Section 3.2.1, namely: i) Read Your Writes, ii) Monotonic Reads, iii) Monotonic

Writes, and iv) Writes Follow Reads. In order to enforce these guarantees,

our system is required to maintain information regarding previous operations

executed by the client application, namely previous writes that were issued or

previous values that were observed by the client. In addition, our layer can

also insert metadata that is stored alongside the data in the original system,

but stripped by the library before the final response is conveyed to the client.

4.2.2 Overview

As mentioned above, our system intercepts each request performed by the

client application, executes the request in the service, and then processes the

answer generated by the service to provide a (potentially different) answer to

the client application. This answer is computed based on a combination of the

internal state that records the previous operations that were executed by that

particular client, and the actual response that was returned by the service.

Tracking application activity. In order to keep track of user activity, our

system maintains in memory a set of data structures for each part of the service

state that is accessed by the application. These data structures are updated ac-

cording to the activity of the application (i.e., the operations that were invoked)

and the state that is returned by the service. These data structures are: i) the

insertSet, which stores the elements inserted by the client and ii) the localView,

which stores the elements returned to the client.

Enforcing session guarantees. Enforcing session guarantees entails achiev-

ing two complementary aspects. First, and depending on the session guaran-

tees being enforced, some additional metadata must be added when inserting

operations. As mentioned, this metadata can be either added to a specialized

metadata field (if the API exposed by the service allows this) or directly en-

coded within the body of the element being added to the list. Such metadata

has to be extracted by our library when retrieving the elements of a list, thus

ensuring transparency towards client applications. Second, our system might

be required to either remove or add elements to the list that is returned by the
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service when the application issues an operation to obtain the current service

state, in order to ensure that the intended session guarantees are not violated.

In the next section, we discuss the concrete algorithms executed by our system

upon receiving an insert or get operation for a particular list, in order to ensure

that the values observed by the client application adhere to the semantics of

each of the session guarantees that are intended to be provided.

4.3 Algorithms

We now discuss in more detail the algorithms that are employed by our Mid-

dleware layer to enforce session guarantees, and the rationale for their design.

Throughout the presentation, we briefly remind what each of the four session

guarantees entails and we extend the definitions previously presented in Sec-

tion 3.2.1 (maintaining the same semantic) to guarantee safety in Web APIs

that have the restrictions mention previously. Then we explain why our algo-

rithms ensure that the anomalies associated with each of the session guarantees

are prevented by it.

We explain our algorithms assuming that the service offers an interface

with the following two functions, which are in practice easily mapped to

functions that are supported by the various services that we analyzed: the

insertion of an element in a given list Lst, denoted by the execution of func-

tion insert(Lst,ElementID,V alue), where Lst identifies the list being accessed,

ElementID denotes the identifier of the element being added (which can be an

identifier generated by the centralized service or a unique identifier generated

by our Middleware), and V alue stands for the value of the element being added

to the list; and the access to the contents of a list, denoted by the execution of

function get(Lst), where Lst identifies the list being read by the client.

When the client accesses a list Lst for the first time, a special initialization

procedure is triggered internally by our Middleware (Algorithm. 1), which

initializes the local state regarding the accesses to Lst. The initialization is

straightforward: it creates the object lstState that maintains all relevant infor-

mation to manage the accesses to Lst (line 2). This state is composed by the
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Algorithm 1: Initialization of local state

1: upon init(Lst) do
2: lstState← init()
3: lstState.insertSet← {}
4: lstState.localView← {}
5: lstState.lastTimestamp← 0
6: lstState.lastSessionTimestamp← 0
7: lstState.insertCounter← 0
8: lstState.lastInsertTimestamp← 0
9: listStates[Lst]← lstState

sets insertSet and localView that were discussed previously in 4.2.2, and that

are initially empty (lines 3− 4). Furthermore, four other variables are initial-

ized, lastTimestamp and lastSessionTimestamp, which are used to maintain

information regarding elements that were removed from the insertSet and the

localView, insertCounter, which tracks the number of inserts performed by

the local client in the context of the current session, and lastInsertTimestamp

that has the timestamp of the last inserted element in the session. All these

variables have an initial value of zero (lines 5− 8). Finally, the lstState variable

is stored in a local map, associated to the list Lst (line 9). Next, we explain

how this local state is leveraged by our algorithms to enforce the various ses-

sion guarantees. In order to easily combine the algorithms, we divided the

get operation in three execution blocks: the read block, that is responsible for

obtaining the local state of the list and the data from the service; the transfor-

mation block, that is responsible for applying the necessary transformations

over the list returned by the service, and the store block, that is responsible for

updating the local state.

4.3.1 Read Your Writes

As mentioned in Chapter 3, the Read Your Writes (RYW) session guarantee

requires that, in a session, any read observes all writes previously executed

by the same client. More precisely, for every set of insert operations W made

by a client c over a list L in a given session, and set S of elements from list L

returned by a subsequent get operation of c over L, we say that RYW is violated

if ∃x ∈W : x < S.
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Algorithm 2: Read Your Writes

1: function insert(Lst, ElementId, V alue) do
2: lstState← listStates[Lst]
3: Element e← (ElementId, V alue)
4: e.timestamp← obtainServiceTimeStamp(lstState.lastInsertTimestamp)
5: e.clientSession← getClientSessionID()
6: lstState.lastInsertTimestamp← e.timestamp
7: service.insert(Lst, ElementId, e)
8: lstState.insertSet← addElementToInsertSet(e, lstState.insertSet)
9: listStates[Lst]← lstState

10: function get(Lst) do
Read
11: lstState← listStates[Lst]
12: sl← service.get(Lst)
Transform
13: sl← orderByTimestamp(sl)
14: sl← addMissingSessionElementsToSL(sl, lstState.insertSet, lstState.lastSessionTimestamp)
15: sl← purgeOldSessionElementsFromSL(sl, lstState.lastSessionTimestamp)
16: sl← subList(sl, 0, N )
Store
17: lstState.lastSessionTimestamp← getLastSessionTimestamp(sl)
18: lstState.insertSet← purgeOldElements(lstState.insertSet, lstState.lastSessionTimestamp)
19: listStates[Lst]← lstState
20: return removeMetadata(sl)

This definition, however, does not consider the case where only the N el-

ements of a list are returned by a get operation. In this case, some writes of

a given client may not be present in the result if more than N other insert

operations have been performed (by client c or any other client). Consider-

ing that the list must hold the session elements in the order they were issued,

a RYW anomaly happens when a get operation returns an older write per-

formed by the client but misses a more recent one. More formally, given two

writes x, y over list L executed in the same client session, where x was exe-

cuted before y, an anomaly of RYW happens in a get that returns S when

∃x,y ∈W : x ≺ y ∧ y < S ∧ x ∈ S.

Algorithm 2 presents our algorithm for providing RYW. To avoid the

anomaly described above, the idea is to store, locally at the client, all elements

that are inserted by the local client in the list and add them to the result of get

operations. In the insert operation, the inserted element is stored locally by the

client (line 8). Additionally, our algorithm stores some metadata in the object

before performing the insert operation over the service (lines 3− 4). This infor-

mation represents, respectively, the identifier of the element and a timestamp
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for the insert operation (from the perspective of the service, and retrieved as

described in Section 4.1). The element identifier is used to uniquely identify

the writes. The timestamp and the element identifier allow for totally ordering

all entries in the insertSet, with the order being approximately that of the real-

time order of execution. The operation in line 4 also checks if the timestamps

retrieved from the service in the same session are monotonically increasing,

and, if not, enforces that property by overwriting the returned timestamp with

an increment of the most recent one, that is stored in the lastInsertedTimes-

tamp; this is important to avoid reordering events from the same session in case

the timestamp provided by the server does not increase monotonically for some

reason. Note that it is not necessary to always obtain the time from the service

before each insert operation, we can retrieve the time only on the first time the

service is accessed and calculate the clock delta by taking into consideration

the passing of time from the perspective of the clock in the client machine, and

then use this value and the client clock to calculate a new timestamp.

All of our operations are split into three blocks: read, transformation, and

store. In particular, for executing a get operation (line 10) our algorithm starts

by executing the get operation over the service (line 12), in the read block of the

algorithm. Then, the returned list (sl) is ordered (line 13) and all elements of

the local insertSet that are missing in the list are added to the list, keeping the

list ordered (line 14), this is done in the transformation block of the algorithm.

Before returning the most recent N elements (with no metadata) (line 20),

our algorithm removes old session elements from the sl list and updates the

lastSessionTimestamp variable with the timestamp of the oldest element of

the client session returned to the client (lines 17), this last operation is done in

the store block of the algorithm.

To avoid the insertSet to grow indefinitely, we use the timestamp of each el-

ement to remove from the insertSet any element older than lastSessionTimes-

tamp (line 18). We also need to include the session identifier in the metadata

of each element to avoid old elements of the session to reappear (line 15).
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Algorithm 3: Monotonic reads

1: function insert(Lst, ElementID, V alue) do
2: Element e← (ElementID, V alue)
3: e.timestamp← obtainServiceTimeStamp()
4: service.insert(Lst, ElementID, e)

5: function get(Lst) do
Read
6: lstState← listStates[Lst]
7: sl← service.get(Lst)
Transform
8: sl← orderByTimestamp(sl)
9: sl← addLocalViewElementsToSL(sl, lstState.localView)
10: sl← purgeOldElementsFromSL(sl, lstState.lastTimestamp)
11: sl← subList(sl, 0, N )
Store
12: lstState.lastTimestamp← getLastTimestamp(sl)
13: lstState.localView← addNewElements(sl, lstState.localView)
14: lstState.localView← purgeOldElements(lstState.localView, lstState.lastTimestamp)
15: listStates[Lst]← lstState
16: return removeMetadata(sl)

4.3.2 Monotonic Reads

This session guarantee requires that all writes reflected in a read are also re-

flected in all subsequent reads performed by the same client. To define this

in our scenario where a truncated list of N recent elements is returned, we

say that Monotonic Reads (MR) is violated when a client c issues two read

operations that return sequences S1 and S2 (in that order) and the following

property holds: ∃x,y ∈ S1 : S1(x) ≺ S1(y)∧ y < S2 ∧ x ∈ S2, where S1(x) ≺ S1(y)

means that element x appears in S1 before y.

To avoid this anomaly, our algorithm (presented in Algorithm 3) resorts to

the localView variable to maintain information regarding the elements (and

their respective order) observed by the client in previous get operations. There-

fore, when the client issues a get operation, our Middleware issues the get

command over the centralized service and then updates the contents of sl with

the elements that are in the localView that are missing. The algorithm termi-

nates by returning to the client the first N elements in sl. These elements are

exposed to the client without any of the metadata added by our algorithms.

Similar to the previous discussed algorithm, the size of the localView can

grow indefinitely. To avoid this, the insert operation associates to each element

a timestamp obtained from the service and removes from the localView all
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Algorithm 4: Monotonic Writes

1: function insert(Lst, ElementID, V alue) do
2: lstState← listStates[Lst]
3: Element e← (ElementID, V alue)
4: e.clientSession← getClientSessionID()
5: e.sessionCounter← lstState.insertCounter++
6: service.insert(Lst, ElementID, e)
7: listStates[Lst]← lstState

8: function get(Lst) do
Read
9: lstState← listStates[Lst]
10: sl← service.get(Lst)
Transform
11: sl← sortSessionSequences(sl)
12: sl← removeElementsWithMissingDependencies(sl)
13: return removeMetadata(sl)

elements with a timestamp smaller than the timestamp of the last element

returned to the client (lastTimestamp). When the client issues a get operation,

we start by executing the get operation over the service (line 7), in the read

block of the algorithm. Then, the returned list (sl) is ordered (line 8) and all

elements in the localView that are missing in the list are added to the list,

keeping it ordered (line 9). This is done in the transformation block of the

algorithm. Before retuning to the client, we remove old elements, elements

that are below lastTimestamp (line 10), resize sl and update the list local state.

This update is done in the store block of the algorithm.

4.3.3 Monotonic Writes

This session guarantee requires that writes issued by a given client are observed

in the order in which they were issued by all clients. More precisely, if W is

a sequence of write operations issued by client c up to a given instant, and S

is a sequence of write operations returned in a read operation by any client, a

Monotonic Writes (MW) anomaly happens when the following property holds,

where W (x) ≺ W (y) denotes x precedes y in sequence W : ∃x,y ∈ W : W (x) ≺
W (y)∧ y ∈ S ∧ (x < S ∨ S(y) ≺ S(x)).

However, this definition needs to be adapted for the case where only N

elements of a list are returned by a get operation. In this case, some session

sequences may be incomplete, because older elements of the sequence may be
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left out of the truncated list of N returned elements. Thus, we consider that

older elements are eligible to be dropped from the output, provided that we

ensure that there are no gaps in the session subsequences and that the write

order is respected, before returning to the client. Formally, we can redefine

MW anomalies as follows, given a sequence of writes W in the same session,

and a sequence S returned by a read: (∃x,y,z ∈W : W (x) ≺W (y) ≺W (z)∧ x ∈
S ∧ y < S ∧ z ∈ S)∨ (∃x,y ∈W : W (x) ≺W (y)∧ S(y) ≺ S(x)).

Algorithm 4 presents the steps employed by our Middleware to enforce

the MW session guarantee. We avoid the anomaly described above by adding

metadata to each insert operation (lines 1 − 7) in the form of a unique client

session identifier (clientSession – line 4) and a counter (local to each client and

session) that grows monotonically (sessionCounter – line 5). This information

allows us to establish a total order of inserts for each client session.

This metadata is then leveraged during the execution of a get operation

(lines 8−13) in the following way. After reading the current list from the service

(line 10), in the read block of the algorithm, we simply order the elements in

the read list (sl) to ensure that all elements respect the partial orders for each

client session (line 11). Finally, an additional step is required to ensure that

no element is missing in any of these partial orders. To ensure this, whenever

a gap is found within the elements of a given client session, we remove all

elements whose sessionCounter is above the one of any of the missing elements,

these operations are all done in the transformation block of the algorithm.

The get operation returns the contents that are left in the list sl without

the metadata added by our algorithms (line 13). Note that in this case we

might return to the client a list of elements with a size below N . We could try

to mitigate this behavior by resorting to the contents of the localView as we

did in the algorithm that we designed to enforce MR. However, we decided

to provide the minimal behavior to enforce each of the session guarantees in

isolation.
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Algorithm 5: Writes Follow Read

1: function insert(Lst, ElementID, V alue) do
2: lstState← listStates[Lst]
3: Element e← (ElementID, V alue)
4: e.cutTimestamp← obtainCutTimestamp(lstState.localView)
5: e.dependencies← projectElementIdentifiersAndTimestamps(lstState.localView)
6: e.timestamp← obtainServiceTimeStamp(lstState.lastInsertTimestamp, lstState.localView)
7: lstState.lastInsertTimestamp← e.timestamp
8: service.insert(Lst, ElementID, e)

9: function get(Lst) do
Read
10: lstState← listStates[Lst]
11: sl← service.get(Lst)
Transform
12: sl← orderByTimestamp(sl)
13: sl← removeElementsWithMissingDependencies(sl)
14: cutTimestamp← highestCutTimestamp(sl)
15: sl← removeElementsBelowCutTimestamp(sl, cutTimestamp)
Store
16: lstState.localView← addNewElements(ls, lstState.localView)
17: lstState.localView← purgeOldElements(lstState.localView)
18: listStates[Lst]← lstState
19: return removeMetadata(sl)

4.3.4 Writes Follow Reads

This session guarantee requires that the effects of a write observed in a read

by a given client always precede the writes that the same client subsequently

performs. (Note that although this anomaly has been used to exemplify causal-

ity violations [5, 49], any of the previous anomalies represent a different form

of a causality violation [64].) To formalize this definition, and considering that

the service only returns at most N elements in a list, if S1 is a sequence re-

turned by a read invoked by client c, w a write performed by c after observing

S1, and S2 is a sequence returned by a read issued by any client in the sys-

tem; a violation of the Writes Follow Read (WFR) anomaly happens when:

∃w ∈ S2 ∧∃x,y ∈ S1 : S1(x) ≺ S1(y)∧ y < S2 ∧ x ∈ S2.

Our algorithm to enforce this session guarantee is depicted in Algorithm. 5.

The key idea to avoid this anomaly is to associate with each insert the direct

list of dependencies of that insert, i.e., all elements previously observed by the

client performing the insert (line 5). Evidently, this solution is not practical,

since this list could easily grow to include all previous inserts performed during

the lifetime of the system. To overcome this limitation, we associate with each
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insert a timestamp based on the clock of the service, that increases monoton-

ically in the session, but with the restriction of being strictly greater than the

timestamp of any of its direct dependencies (line 6). Furthermore, we also as-

sociate with each insert operation a cut timestamp, that defines the timestamp

of its last explicit dependency, i.e., the dependencies registered in the depen-

dency list (line 4). The cut timestamp implicitly defines every element with a

lower timestamp to be a dependency of that insert operation. By combining

these different techniques, we ensure that the explicit dependency list associ-

ated with an insert has at most a value around N elements (which is the size

of the localView maintained by our Middleware). Note that the dependency

list associated to each element, does not need to contain all the information of

an element, it can be a list of pairs <ElementID, ElementT imestamp>, which

is the necessary information to identify an insert operation, which is enough

to enforce this session guarantee.

Since only N elements of a list are returned by a get operation, the older

dependencies may be left out of the sequence that is returned. When this

happens, it is safe to consider that these dependencies were dropped from the

window that is returned, provided that we ensure that, for each element that

is returned, all dependencies that are more recent than the oldest element are

also returned.

In the get operation we leverage this metadata to do the following: we start

by reading the contents of the list from the service (line 11), in the read block of

the algorithm, and then over this list we remove any insert whose dependencies

are missing. Thus, we only remove inserts whose missing dependencies have a

timestamp above the insert cut timestamp. We then compute a cut timestamp

for the obtained list sl (line 14) that is the highest cut timestamp among all

elements in sl. We use this timestamp to remove from sl any element whose

creation timestamp falls below the computed cut timestamp. These operations

are all done in the transformation block of the algorithm. Finally, before return-

ing to the client the elements that remain in sl without the additional metadata

(line 19) we update and garbage collect old entries from the localView (lines

16− 18), this is done in the store block of the algorithm.
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Algorithm 6: Combinations insert operation

1: function insert(Lst, ElementID, V alue) do
2: lstState← listStates[Lst]
3: Element e← (ElementID, V alue)
4: if MW and WFR then
5: e.lastInsertTimestamp← lstState.lastInsertTimestamp
6: if RYW or MR or WFR then
7: e.timestamp← obtainServiceTimeStamp(lstState.lastInsertTimestamp, lstState.localView)
8: lstState.lastInsertedTimestamp← e.timestamp
9: if RYW or MW then
10: e.clientSession← getClientSessionID()
11: if MW then
12: e.sessionCounter← lstState.insertCounter++
13: if WFR then
14: e.cutTimestamp← obtainCutTimestamp(lstState.localView)
15: e.dependencies← projectElementIdentifiersAndTimestamps(lstState.localView)
16: service.insert(Lst, ElementID, e)
17: if RYW then
18: lstState.insertSet← addElementToInsertSet(e, lstState.insertSet)
19: listStates[Lst]← lstState

Similarly to the previous algorithm, we might return a number of elements

that is lower than N . In this case, to ensure that we always return N elements,

we need to obtain the missing dependencies using a get operation that returns

a single element (if supported by the service). In our implementation, we

avoided this solution because it is prone to triggering a violation of the API

rate limits.

4.3.5 Combining Multiple Session Guarantees

Considering the algorithms to enforce each of the session guarantees discussed

above, we can now summarize how to combine them in Algorithm 6 and in

Algorithm 7. The insert operation adds the metadata used by each of the indi-

vidual algorithms according to the guarantees configured by the application

developer. Correspondingly, upon the execution of a get operation, our Middle-

ware must perform the transformations over the list obtained from the service

(sl) prescribed by each of the individual algorithms.

More precisely, the insert operation starts by storing the necessary meta-

data in the element object before performing the insert operation over the

centralized service (lines 2 − 15). Note that, to obtain a correct timestamp,
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Algorithm 7: Combinations get operation

1: function get(Lst) do
Read
2: lstState← listStates[Lst]
3: sl← service.get(Lst)
Transform
4: if RYW or MR or WFR then
5: sl← orderByTimestamp(sl)
4: if RYW then
6: sl← addMissingSessionElementsToSL(sl, lstState.insertSet, lstState.lastSessionTimestamp)
7: sl← purgeOldSessionElementsFromSL(sl, lstState.lastSessionTimestamp)
8: if MR or WFR and RYW then
9: sl← addLocalViewElementsToSL(sl, lstState.localView)
10: sl← purgeOldElementsFromSL(sl, lstState.lastTimestamp)
11: if MW then
12: if MR then
13: sl← removeOldElementsFromSessionSequence(sl,lstState.localView)
14: sl← sortSessionSequences(sl)
15: sl← removeElementsWithMissingDependenciesMW(sl)
16: if WFR then
17: sl← removeElementsWithMissingDependenciesWFR(sl)
18: cutTimestamp← highestCutTimestamp(sl)
19: sl← removeElementsBelowCutTimestamp(sl, cutTimestamp)
20: if MW then
21: sl← removeElementsBelowMisssingSessionElement(sl)
22: sl← subList(sl, 0, N )
Store
23: if RYW then
24: lstState.lastSessionTimestamp← getLastSessionTimestamp(sl)
25: lstState.insertSet← purgeOldElements(lstState.insertSet, lstState.lastSessionTimestamp)
26: if MR or WFR then
27: lstState.lastTimestamp← getLastTimestamp(sl)
28: lstState.localView← addNewElements(sl, lstState.localView)
29: lstState.localView← purgeOldElements(lstState.localView, lstState.lastTimestamp)
30: listStates[Lst]← lstState
31: return removeMetadata(sl)

the operation in line 7 of the algorithm always generates a timestamp that in-

creases monotonically with the number of insert operations and when WFR is

selected is also greater than the timestamp of any of its direct dependencies, as

described in Section 4.3.4.

The get operation starts by executing the read block, which is the same

in all algorithms (lines 2 − 3), then applies the transformation blocks of each

algorithm, and before returning to the client executes the store blocks of each

algorithm. To simplify the algorithm the store block of Writes Follow Read was

changed and now uses the lastTimestamp to remove the old elements from

the localView. In other words, the store block used in this case is similar to the

store block of the Monotonic Reads algorithm presented earlier. There were
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Figure 4.4: Combinations anomaly

other changes in the algorithm that we explain in the following section.

4.3.6 Corner Cases

In this section we describe three corner cases that may arise when the algo-

rithms are working in combination.

To guarantee that the algorithm ensures safety, it is necessary to ensure

that the transformation blocks of the algorithms that remove elements from

sl do not remove elements that might affect the guarantees provided by the

transformation blocks of the other algorithms that were executed before. There

are two situations where this can occur:

The first situation happens when Monotonic Reads and Monotonic Writes

guarantees are selected in combination, In particular, this situation occurs

when the localView contains elements previously returned to the client, and

in the next get operation the service returns elements from a session that were

assumed to be truncated previously. This situation is exemplified in Figure 4.4.
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In this example, we have a timeline with six elements inserted in a list by ses-

sion 1, session 2, and session 3. The first get operation returns four elements,

one from session 1, the last two inserted in session 2, and another from ses-

sion 3. Note that the service originally returned all elements and truncated

elements E3 and E2, and returned the last two elements inserted in session 2,

E4 and E1, which is valid considering the Monotonic Writes property. The next

get operation, initiated by session 2, obtains from the service the same three

elements at the top, but the last is E2, which was the first element inserted in

session 2. In this case, the list returned by the service has an anomaly of the

Monotonic Writes property because element E3 is missing. This may happen

if the get operation is executed in a different replica of the service, that did

not receive the other inserted elements yet. Our algorithm, in this situation is

going to merge the localView, which contains the elements previously return

to the client, with the list returned by the service, and the Monotonic Writes

transformation block is going to remove E5 and E6 to eliminate a gap in the

sequence of elements added by session 2. This situation causes an anomaly

because the get operation is going to return elements that preceded E5 and E6

previously, but misses E5 and E6. To eliminate this anomaly, it is necessary to

guarantee that the new elements inserted in sl do not create a gap below the

oldest element from a session subsequence that had been previously returned

to the client. To avoid this situation, before executing the Monotonic Writes

transformation block, we use the localView to identify the previous session’s

subsequences returned to the client, we then remove from sl the new elements

of each previous subsequence that are older than the last element of each subse-

quence previously returned to the client, this is done in line 13 of Algorithm 7.

In the example the get operation is going to return the same elements that were

previously returned to the client, which is safe. This happens because E2 was

the only new element returned in the last request from the service, and was

removed from sl, which means that the elements that are going to be returned

are the elements that were already stored in the localView.

The second situation happens when Read Your Writes and Writes Follow
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Reads are selected together. To simplify the explanation, lets assume the fol-

lowing scenario: a client in a session issues a get operation that returns the

elements E1, E2, and E3 from other sessions that are dependencies of each

other, E1≺E2≺E3. Then the client inserts E4, a new element in the list (in this

case, E3, E2, and E1 are dependencies of E4). The client then issues another get

operation and the service retrieves only E3 and E1, and the Read your Writes

transformation block is going to insert E4 in sl, because E4 is missing. In this

case, Writes Follow Reads transformation block removes E4 from sl because

the E2 dependency is missing, this situation causes an anomaly, because the

get operation should return E4 and all of its dependencies. To guarantee this,

we need to ensure that the dependencies of E4 are in sl, to this end, the ele-

ments in localView i.e., the elements previously returned to the client, must

be included in sl. To achieve this, the Monotonic Reads transformation block

is executed before Writes Follow Reads transformation block, which will guar-

antee that all missing elements are added to sl, avoiding the exclusion of E4 by

the transformation block of the algorithm that enforces Writes Follow Reads.

Doing this guarantees that E4 and the respective dependencies are returned to

the client.

Finally, the last corner case happens when Monotonic Writes and Writes

Follow Reads are enforced together. To simplify the explanation let’s assume

the following scenario: a client in a session issues a get operation and then

inserts two elements in sequence. In this case, the dependencies of the two

elements are the elements retrieved in the get operation. If a client in another

session receives a list that contains several elements, including the dependen-

cies and only the last element of the sequence, an anomaly occurs, because the

first element of the sequence is missing and its successor and the dependencies

of the two are present. To avoid this situation we associate to each element

the timestamp of the previous element inserted in the session, and at end of

the Writes Follow Reads transformation block we remove all elements with a

timestamp below the missing element. In this case we return a suffix of the list

generated by the execution of both transformation blocks of the algorithm.

This behavior emerges as a consequence of being able to switch on and off
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individual session guarantees, we could have interpreted this is as an example

of the subtle semantic distinctions of the various session guarantees however,

we decided to interpret this behavior as something that should be avoided, and

adapted our algorithms to preclude this situation.

According to our analysis of the algorithms these are the only possibilities

for this type of situations where one algorithm will break the conditions that

are necessary for the correctness of another algorithm. In Section 4.6 we present

the correctness arguments detailing why this is the case.

4.3.7 Progress

Our goal is to provide safety to applications that are using Internet services;

however we also need to guarantee progress, i.e., we need to ensure that the

algorithms alone or in combination, in a session, will return new elements.

When we combine the algorithm of Monotonic Reads with Monotonic Writes

or Writes Follow Reads, it becomes more challenging to ensure progress when

a client issues a sequence of get operations over the same list (i.e., data objects).

The problem arises when a get operation receives from the service a list with a

sequence of elements that are more recent than the previous elements returned

to the client. This situation can produce a gap between the two lists and Mono-

tonic Writes or Writes Follow Reads algorithms may remove all new elements

to ensure safety, causing subsequent get operations to return the same elements

in every request. This situation is illustrated in Figure 4.5. In this example we

have a timeline with seven elements inserted in a list by session 1 and session

2. The first get operation returns the first two elements inserted in the list, one

from session 1 and another from session 2; Then the next get operation, initi-

ated by the same client, obtains from the service the last two elements inserted,

E6 and E7, in the context of session 2. In this situation, the Monotonic Writes

algorithm detects that E4 from session 2 is missing and returns E1 and E2.

In order to avoid this problem, we execute the transformation block of the

get operation and test if the produced list contains the same elements that were

previously returned to the client. If the list contains the same elements and

there is a time gap between this list and the list returned by the service, we run
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again the transformation block for the service list, but before, we remove all

elements from the localView, and we use the timestamp of the oldest element

in service list as lastTimestamp. After executing the get operation we compare

the number of elements of the two produced lists and return the list with more

elements or the list with the most recent elements if they have the same number

of elements. To guarantee progress, we also need to avoid situations where the

previous list returned to the client is always bigger than the list with the most

recent elements. To do this, we define the maximum number of times that the

old list can be returned. This value serves as a configuration parameter for

our middleware layer. Leveraging this solution guarantees that in the example

described previously we are going to return E7 and E6. Note that this is the

same behavior provided by a service that ensures the properties mentioned

above in combination, the first get operation returns E2 and E1 and the second

get operation is going to return E7 and E6 because the service contains the

seven elements and the get operation only returns the two elements at the top.
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Figure 4.6: Middleware with adapters

4.4 Middleware Design

Another goal we have is to allow our solution to be generic and easy to adapt,

to allow accessing any Internet service with a public API, and give the devel-

opers the same library interface to work with. To this end, we introduced two

adapter layers that must be provided (see Figure 4.6) to execute our middle-

ware in this context. These layers capture the API calls performed by the client

application and translate them to a standard API exposed by our Middleware

(ClientAdapter), and translate the calls to the centralized service performed by

our Middleware into API calls to the library used to interact with the service

(ServiceAdapter), respectively. The adapters themselves are quite straightfor-

ward to write, and we believe most developers will be able to easily write new

adapters to use our Middleware in combination with different libraries for

accessing other online services.
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4.5 Evaluation

In this section we present the experimental evaluation of our Middleware,

which compares the client-perceived performance obtained when using our

Middleware to provide each of the session guarantees in isolation and their

combination (i.e, enforcing all four session guarantees). In our experiments

we used a prototype of our Middleware and the evaluation was made using

two different geo-replicated online services. First, to illustrate the benefit of

our Middleware when designing third-party applications that interact with

online social networks we have used Facebook’s public API. Then, to illustrate

the operation of our Middleware when interacting with a service that imposes

fewer restrictions on the number and timing of client operations, we experi-

mented with a geo-replicated deployment of the Redis data store managed by

ourselves.

Our evaluation focuses on assessing the overhead that results from the use

of our middleware, in terms of client perceived latency (for insert and get oper-

ations), the communication overhead due to the inclusion of additional meta-

data, and the storage overhead, namely due to the need for our Middleware

to locally maintain some information about previous operations performed by

the client. Our prototype of the Middleware layer was implemented in the

Java language. To interact with the two services that we explore in this work,

we resorted to the restFB library for Facebook [59], and the Jedis library for

interacting with Redis [43], for each library we implemented the respective

adapters explained previously in Section 4.4.

4.5.1 Facebook Results

We have conducted our experiments with Facebook by using YCSB [4] to emu-

late clients using Facebook to post messages to a group feed and reading the

contents of that group feed. To emulate such clients spread across the World,

we run three independent YCSB instances in three different locations using

Amazon EC2 [6] instances in Oregon, Ireland, and Tokyo. Each YCSB instance

uses 10 threads, emulating a total of 10 independent clients, for a total of 30
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Figure 4.7: Latency of Get Operation in Facebook

clients across the World. Each emulated client has an independent instance of

our Middleware. To accommodate the rate limits of Facebook’s public API, we

impose a maximum of 15 requests per second per YCSB instance.

Each experiment reported in this section was executed 7 times, and dif-

ferent consistency guarantees were rotated along experiments, such that each

different consistency guarantee had experiments running on different time pe-

riods of the day. This was done to remove experimental noise due to contention

on the Facebook servers, (e.g., to compensate for the activity of real users of the

system). The workload executed by clients was a mix of 50% insert and 50% get

operations. The Middleware was configured to have N = 25, meaning that each

get retrieves at most 25 elements from the feed. Experiments reported in this

section report the aggregated observations of 53,119 insert and get operations.

4.5.1.1 Latency

We start by observing the latency of operations in Facebook when accessing the

service directly through the library (labeled in the plots as None) and when

using our Middleware to enforce each of the session guarantees in isolation

and all of the session guarantees (labeled in the plots as All).

Figure 4.7 reports the latency observed for get operations, for all clients and

per location of the client. Figure 4.7a shows that our Middleware introduces

a small increase in the latency of get operations with a maximum increase of

approximately one hundred milliseconds. Not surprisingly the overhead is at
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(a) Average (b) Average

Figure 4.8: Latency of Insert Operation in Facebook

its maximum when all session guarantees are being enforced by our Middle-

ware which is explained by a combination of the additional metadata carried

in each element, and the processing cost of the Middleware to perform the

enforcement of each individual session guarantee.

When observing the distribution of latency for requests according to the

region where the client is located (Figure 4.7b), we note the same relative

distribution in the results, with overall lower latency values for the clients in

Oregon. This is explained by the latency of those clients towards the Facebook

servers, which is notoriously smaller as confirmed by measuring the latency

when using the client library directly. Another noteworthy aspect of Figure 4.7b

is that the observed latency has a visible variation, both across and even within

different client locations. This suggests that the latency overhead in these

cases may suffer from a noticeable variability due to external factors which are

related with the architecture and deployment of such a large-scale real world

application.

Figure 4.8 reports average latency results for the insert operation for all

clients and per client location. The results reported in Figure 4.8a show that

globally the latency penalty incurred by the use of our Middleware is again

modest, with a maximum increase of at most 50 milliseconds. The individ-

ual session guarantee with the largest increase in latency is Monotonic Reads.
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Figure 4.9: Communication overhead in Facebook

Considering the latency values observed in different locations reported in Fig-

ure 4.8b, we can observe the same pattern previously observed, where the la-

tency experienced by clients in Oregon is lower compared with the remaining

locations. This is expected, since this can be explained by the latency experi-

enced by the client to contact the Facebook service in that concrete location

when compared with the remaining locations used in our experimental work.

4.5.1.2 Communication Overhead

We now study the communication overhead imposed by our Middleware by

observing the average size of messages exchanged between clients and the ser-

vice. Figure 4.9 reports these results for each of the session guarantees and for

their combination, compared with the use of the library without our Middle-

ware, for both get and insert operations. The results in Figure 4.9a show that

the overhead introduced by our Middleware is noticeable for get operations

when Writes Follow Reads and the combination of all session guarantees are

enforced. This happens because most of the payload in these messages are the

multiple elements of the list that are returned, and in these cases each element

contains the explicit dependencies. Note that each element also contains the

metadata that Facebook associates to each post.

The same pattern occurs for the insert operations, as reported in Figure 4.9b.

In this case, each message contains only a single element to be added, the in-

crease in message size is quite noticeable when the Middleware is enforcing
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Figure 4.10: Local storage overhead for Facebook

Writes Follow Reads and the combination of all session guarantees. This hap-

pens due to the cost of sending the explicit dependencies of each inserted

element, which can account to 25 unique element identifiers and their times-

tamps. The remaining session guarantees, in contrast, have a modest overhead

of only a few tens of bytes.

4.5.1.3 Local Storage Size

Finally, Figure 4.10 reports the storage cost in terms of elements stored lo-

cally by our Middleware for enforcing each of the session guarantees and their

combination. For completeness, we also provide the results for the None

configuration, which, as expected, is zero. This is used as a sanity check for

our results. Monotonic Writes do not require any form of local storage, and

therefore have no local storage overhead. In contrast, the remaining session

guarantees do exhibit some low storage overhead due to their need to maintain

elements stored in the insertSet and localView data structures. As expected,

when providing all of the session guarantees the local storage has more entries,

leading to additional overhead. This happens because the number of entries is

the sum of the elements in the insertSet and in the localView.

4.5.2 Redis Results

We also conducted experiments using the Redis data storage system. To this

end, we deployed Redis with its replication enabled across machines scattered
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Figure 4.11: Latency of Get Operation in Redis

in three Amazon EC2 regions: Oregon, Tokyo, and Ireland. Redis uses a master-

slave replication model, and we have deployed the master in Ireland and two

slaves in each region, for a total of 7 replicas. We used m1.large instances to run

the master and YCSB and m1.medium instances to run the slaves. YCSB was

executed in the same three regions of Amazon EC2 used in the previously re-

ported experiments, with each YCSB instance running 10 threads that execute

operation in a closed loop. Each thread has its own instance of the Middleware.

All operations access the same list object stored in Redis, with the read opera-

tion being executed in one of the slave replicas of the region, selected randomly.

For each algorithm, we run our experiments 6 times for 60 seconds with an

interval of four minutes between runs. Similar to the experiments conducted

with Facebook, YCSB was configured to execute a workload composed of 50%

insert and 50% of read operations. Again, we set N to be equal to 25. The

experiments reported in this section aggregate the results from executing a

total of 21,285,291 insert and get operations.

4.5.2.1 Latency

Figure 4.11a presents the average latency of get operations. The results show

that our middleware introduces a very small overhead, on the order of mi-

croseconds, for Read Your Writes, Monotonic Reads, and Monotonic Writes. In

Writes Follow Read and when all session guarantees are enforced, there is an

increase of approximately one to two milliseconds because the algorithms have
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(a) Global (b) Per Location

Figure 4.12: Latency of Insert Operation in Redis

to check the dependencies and process all the metadata information associated

with the various objects returned and stored locally. The results of Figure 4.11b,

which details the values observed in each region, show the same pattern across

all regions, however the latency for reading data using a client in Ireland is

higher than in other locations. This can be explained by the fact that writes

in Ireland are much faster that in other locations, due to the proximity to the

master replica, which causes the total number of read operations that are exe-

cuted to be higher in Ireland than in other locations, thus leading to a higher

load, which results in a higher latency for executing operations particularly,

get operations.

In contrast to the experiments for the Facebook service, the observed laten-

cies are much more predictable in this deployment. This confirms the expec-

tation that a real-world service leads to qualitatively different results from a

controlled experiment.

Figure 4.12a reports average latency of the insert operation across all loca-

tions. In this case the latency is almost the same across all cases, but if we look

at Figure 4.12b we see that, in Ireland, latency values are much smaller. This

is again justified by the location of the master replica in Ireland and the fact

that all clients are issuing their write operations to the (same) master replica.

Figure 4.13 reports the latencies in Ireland, which again show a similar pattern

to the one observed for Get operations.
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Figure 4.13: Latency of Insert Operation in Redis in Ireland

(a) Get Operation (b) Insert Operation

Figure 4.14: Communication overhead in Redis

4.5.2.2 Communication Overhead

In terms of communication overhead imposed by our Middleware, the results

in Figure 4.14a and Figure 4.14b show that in the get and insert operations the

overhead is more noticeable when enforcing Writes Follow Reads and when

employing the combination of all algorithms. This happens due to the over-

head associated with managing and communicating the information stored in

dependency lists, as discuss previously for the results reported for Facebook.

4.5.2.3 Local Storage Size

To conclude our experimental evaluation of Redis, Figure 4.15 shows that in

Monotonic Reads and Writes Follow Reads the number of elements in the

localView is around 30, which is higher than N = 25. This happens because of

the high write throughput, which causes several elements to be assigned the
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Figure 4.15: Local storage overhead for Redis

same timestamp. In this case, our truncation algorithm allows for the limit

to be exceeded in the case of ties. The combinations of all algorithms is also

affected by this situation, leading to a higher value around 55. Note that we

are showing the average of the highest value registered for each independent

client session at any time during its execution.

4.6 Arguments of Correctness

In this section we present the arguments of correctness of our algorithms, in

terms of their ability to guarantee session properties individually and in com-

bination.

4.6.1 Read Your Writes

In this section, we are going to argue that the algorithm guarantees Read Your

Writes. Recall the definition of an anomaly of Read Your Writes:

The get operation returns an older element inserted by the client before a more

recent one, more precisely, there exist two elements x, y inserted over list L in the

same client session, in this order(x then y), and a get returns S, the top of the list,

and y < S ∧ x ∈ S.

To guarantee that this anomaly does not occur, it suffices to return a set (the

truncated list of elements that are returned to the application) such that, when

we project the elements from that list that belong to the current client session,

we obtain a suffix of the sequence of elements inserted in that session. This
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suffices to prevent the anomaly since a property of a suffix is that, when an

element is present, all its successors are also present. To ensure this, we assign

each element a timestamp that increases monotonically with the order of the

operations within the session, and we return all the session elements larger

or equal to the timestamp of the oldest session element previously returned

to the client, we call this timestamp lastSessionTimestamp, the way that this

timestamp is set does not affect correctness, but it may affect the length of the

window that is returned. In practice, we decided to set it with the timestamp

of the oldest session element previously returned to the client, because we

assumed that older elements were dropped from the window. Note that the

elements returned to the client are from several session, and that sometimes

it will be impossible to return all session elements with a timestamp above

lastSessionTimestamp, because they were truncated, this situation does not

affect correctness because we are still returning a suffix of the sequence of

elements inserted in the session.

In more detail, in line 12 of Algorithm 2, when the client issues a get op-

eration, the service returns a sublist of elements, that sublist may contain x, a

session element above lasSessiontTimestamp and miss y an element inserted

after x. To avoid this situation, the get operation has to insert the missing

elements in the sublist. To this end, the insert operation stores the suffix of

the sequence of elements inserted in the session in the insertSet, and then

the algorithm uses the insertSet and the lasSessiontTimestamp to detect the

missing session elements. Finally, when the algorithm detects that an element

is missing, the element is copied from the insertSet to the sublist.

In order to prevent returning session elements that do not belong to the suf-

fix, in line 15 of the algorithm, we remove from the sublist all session elements

with a timestamp below lastSessionTimestamp. To detect these elements in

the sublist, in line 5 of the algorithm, we associate to each element a session

identifier in the insert operation, we need this session identifier because the

service can return session elements that do not belong to the suffix and we only

have information about the last session elements inserted in the session, that

are in the insertSet.
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The remainder of the algorithm steps do not break this property, and there-

fore we can conclude that a violation of the session guarantee does not appear

in the newly produced trace.
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4.6.2 Monotonic Reads

In this section, we are going to argue that the algorithm guarantees Monotonic

Reads. Recall the definition of an anomaly of Monotonic Reads:

When a client c issues two get operations that return sequences S1 and S2 (in that

order) and the following property holds: ∃x,y ∈ S1 : S1(x) ≺ S1(y)∧ y < S2 ∧ x ∈ S2,

where S1(x) ≺ S1(y) means that element x appears in S1 before y.

To guarantee that this anomaly does not occur, it suffices to return a set (the

truncated list of elements that are returned to the application) such that, we

obtain a suffix of the sequence of elements previously returned to the client.

Similar to the case of RYW, this suffices to prevent the anomaly since a property

of a suffix is that, when an element is present, all its successors are also present.

To ensure this, we assign each element a timestamp, and we return all elements

larger or equal to the timestamp of the oldest element previously returned

to the client, we call this timestamp lastTimestamp and it is set just before

returning to the client. Again similar to RYW, the way that this timestamp

is set does not affect correctness, but it may affect the length of the window

that is returned. In practice, we decided to set it with the timestamp of the

oldest element previously returned to the client, because we assumed that older

elements were dropped from the window.

In more detail, in line 7 of Algorithm 3 when the client issues a get oper-

ation, the service returns a sublist of elements, that sublist may contain x, an

element previously returned to the client, that is above lastTimestamp and

miss y, an element returned in a get operation after x. To avoid this situation,

the get operation has to insert the missing elements in the sublist. To this end,

in line 13 of the algorithm, we store the suffix of the sequence previously re-

turned to the client, in the localView. Then, in line 9 of the algorithm, when

the algorithm detects that an element is missing, it copies that element from

the localView to the sublist. In order to prevent returning old elements that

do not belong to the suffix, in line 10 of the algorithm, we remove from the

sublist all elements with a timestamp below lastTimestamp.

The remainder of the algorithm steps do not break this property (enforced

by the actions we just described) and therefore, we can conclude that a violation
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of the session guarantee cannot appear in the newly produced return value.

4.6.3 Monotonic Writes

In this section, we are going to argue that the algorithm guarantees Monotonic

Writes. Recall the definition of an anomaly of Monotonic Writes:

The get operation returns a subsequence of elements from a session in a different

order they were issued or with gaps, more precisely, given a sequence of writes W

in the same session, and a sequence S returned by a read: (∃x,y,z ∈ W : W (x) ≺
W (y) ≺W (z)∧ x ∈ S ∧ y < S ∧ z ∈ S)∨ (∃x,y ∈W : W (x) ≺W (y)∧ S(y) ≺ S(x)).

To guarantee that this anomaly does not occur, it suffices to return a set (the

truncated list of elements that are returned to the application) such that, when

we project each session subsequence they are ordered by insertion order and

without gaps. To ensure this, we assign each element a unique client session

identifier and a counter that increases monotonically in the session, and we

return a list with the session elements ordered and without gaps.

In more detail, in line 10 of Algorithm 4, when the client issues a get op-

eration, the service returns a sublist of elements, that sublist may contain x

and z, from the session subsequence x ≺ y ≺ z, in this case y is missing from

the subsequence returned by the service. To avoid returning a subsequence

with a gap, the get operation needs to order the subsequences and remove the

existing gaps. To this end, in line 11 of the algorithm, the get operation orders

all elements by session counter and, in line 12 of the algorithm, when it detects

a gap, removes the elements with a session sequence number above the gap

from that subsequence, in this case this entails removing z.

The remainder of the algorithm steps do not break this property that was

enforced by the actions we just described (i.e., it will not add the removed

elements to the list in the reply to the client) and therefore we can conclude

that a violation of the session guarantee does not appear in the newly produced

trace.
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4.6.4 Writes Follow Reads

In this section, we are going to argue that the algorithm guarantees Writes

Follow Reads. Recall the definition of an anomaly of Writes Follow Reads:

If S1 is a sequence returned by a get operation invoked by client c, w a write

performed by c after observing S1, and S2 is a sequence returned by a read issued

by any client in the system; a violation of the Writes Follow Reads (WFR) anomaly

happens when: ∃w ∈ S2 ∧∃x,y ∈ S1 : S1(x) ≺ S1(y)∧ y < S2 ∧ x ∈ S2.

To guarantee that this anomaly does not occur, it suffices to return a set

(the truncated list of elements that are returned to the application) such that, it

contains for each element, the list of dependencies, i.e, all elements previously

observed in the session where the element was inserted. Note that the list is

truncated since it is impossible to keep the entire dependency history, and

therefore we only keep the dependencies whose timestamp is larger or equal

to the timestamp of the oldest element that is going to be returned.

To achieve this property, while avoiding returning a set that misses an el-

ement in a chain of dependencies (e.g., because that element was removed in

the context of the algorithm execution), we assign a timestamp to each element

that is implemented with the same rules as logical clocks [47], this timestamp

increases monotonically with the order of the insert operations within the ses-

sion and is larger than the timestamp of the most recent element returned to

the client. Logical clocks guarantee the partial ordering between elements de-

fined by the happens-before relations [47], this is necessary to guarantee that

the elements that were truncated from the list, are not part of the dependencies

that should be returned to the client.

We also need to know the elements that form those dependencies. For

this purpose, we associate with each element a list with its dependencies. To

create this list, we store the elements returned previously, in the localView. To

avoid having a large list of dependencies, we truncate the dependency list to N

elements and we associate to each inserted element the timestamp of the oldest

dependency (the element with the lowest timestamp in the localView), we call

this timestamp cutTimestamp, and it implicitly defines that every element

with a lower timestamp is a dependency (which while being conservative is
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correct).

In more detail, when the service returns a sublist of elements and that

sublist contains w and x, but misses y, where w is an element inserted in a

session, and y was previously observed in that session and x ≺ y, then the get

operation has to detect that y is missing and remove w from the sublist. To

guarantees this, in line 13 of Algorithm 5, we go through the sublist. Starting

at the element with the lower timestamp and verify if the dependencies of

each element are contained in the list and, if not, the algorithm removes that

element.

Note that the previous steps of the algorithm may fail to detect that x and

y are dependencies of w, if they were truncated from the dependencies list

of w. To guarantee that this situation does not create an anomaly, in lines 14

of the algorithm, we choose the element with the highest cutTimestamp in

the sublist and remove all elements with a timestamp below cutTimestamp.

This guarantee, that the sublist returned, always contains for each element, the

dependencies with a timestamp larger or equal to the timestamp of the oldest

element that is going to be returned, yielding a correct response to the client.

The remainder of the algorithm steps do not break the property enforced

by the actions we just described, and therefore we can conclude that a violation

of the session guarantee does not appear in the newly produced trace.

4.6.5 Combining Multiple Session Guarantees

In this section, we are going to argue that the algorithms present previously

can guarantee the four session properties in combination, when the algorithm

executes the transformation blocks of each session property in sequence. The

sequence starts with the transformation block from Read Your Writes, followed

by the same block of the Monotonic Reads algorithm, then Monotonic Writes

and finally, with the Writes Follow Reads transformation block. We are going

to show that the execution of each transformation in sequence does not create

a consistency anomaly, of the type, of the previously transformations blocks

executed.
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4.6.5.1 Read your Writes and Monotonic Reads

In this section, we are going to argue that the algorithm guarantees Read Your

Writes after applying Monotonic Reads transformation block. Recall the defi-

nition of an anomaly of Read Your Writes:

The get operation returns an older element inserted by the client before a more

recent one, more precisely, there exist two elements x, y inserted over list L in the

same client session, in this order(x then y), and a get returns S, the top of the list,

and y < S ∧ x ∈ S.

To guarantee that this anomaly does not occur, the strategy used by Read

Your Writes is to return a set (the truncated list of elements that are returned

to the application) such that, when you project the elements from that list

that belong to the current client session, you obtain a suffix of the sequence

of elements inserted in that session. To preserve this, the Monotonic Reads

transformation block has to return a suffix of the session elements. To this end,

the transformation cannot remove session elements that break the suffix. This

is guaranteed because the operation in line 10 of Algorithm 7, only removes

elements below lastTimestamp, i.e, the timestamp of the oldest element previ-

ously returned to the client, which guaranties a suffix. It is also guaranteed that

the operation, in line 9 of the algorithm, does not introduce session elements

below lastSessionTimestamp, i.e., the elements that no longer belong to the

suffix. The operation ensures this, because it only inserts elements with a times-

tamp above lastTimestamp and the session elements that have a timestamp

above lastTimestamp belong to the suffix.

4.6.5.2 Read your Writes, Monotonic Reads, and Monotonic Writes

In this section, we are going to argue that the algorithm guarantees both Read

Your Writes and Monotonic Reads after applying the Monotonic Writes trans-

formation block. Recall the definition of an anomaly of Read Your Writes:
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The get operation returns an older element inserted by the client before a more

recent one, more precisely, there exist two elements x, y inserted over list L in the

same client session, in this order(x then y), and a get returns S, the top of the list,

and y < S ∧ x ∈ S.

To guarantee that this anomaly does not occur, the strategy used by Read

Your Writes is to return a set (the truncated list of elements that are returned to

the application) such that, when we project the elements from that list that be-

long to the current client session, we obtain a suffix of the sequence of elements

inserted in that session. To preserve this, the Monotonic Writes transformation

block cannot remove session elements that break the suffix. This is guaran-

teed because the Read Your Writes transformation block is executed before the

Monotonic Writes transformation block, so the session suffix is complete, it has

no gaps, and the Monotonic Writes algorithm will not remove session elements.

The correct order is also maintained because the timestamps and the session

counters increase monotonically in the session.

Finally, we argue that after applying Monotonic Writes transformation

block we guarantee Monotonic Reads. Recall the definition of an anomaly

of Monotonic Reads

When a client c issues two get operations that return sequences S1 and S2 (in that

order) and the following property holds: ∃x,y ∈ S1 : S1(x) ≺ S1(y)∧ y < S2 ∧ x ∈ S2,

where S1(x) ≺ S1(y) means that element x appears in S1 before y.

To guarantee that this anomaly does not occur, the strategy used by Mono-

tonic Reads is to return a set (the truncated list of elements that are returned

to the application) such that, when we project the elements from that list that

were returned previously to the client, we obtain a suffix of the sequence of ele-

ments previously returned to the client. To preserve this, the Monotonic Writes

transformation block cannot remove elements previous returned to the client

larger or equal to lastTimestamp. To this end, its necessary to guarantee that

the new elements inserted in sl do not create a gap below the timestamp of the

oldest element from a session subsequence previously returned to the client,

if this happens, the Monotonic Writes transformation block removes from sl

the previously returned session subsequence. To avoid this situation, before
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executing Monotonic Writes transformation block, in line 13 of Algorithm 7,

we use the localView to know the previous subsequences returned to the client,

and then we remove from sl the new elements of each previous subsequence

older than the last element of each subsequence previously returned to the

client.

4.6.5.3 Read your Writes, Monotonic Reads, Monotonic Writes, and

Writes Follow Reads

In this section, we are going to argue that the algorithm guarantees Read Your

Writes, Monotonic Reads, and Monotonic Writes after applying Writes Follow

Reads transformation block. Recall the definition of an anomaly of Read Your

Writes:

The get operation returns an older element inserted by the client before a more

recent one, more precisely, there exist two elements x, y inserted over list L in the

same client session, in this order(x then y), and a get returns S, the top of the list,

and y < S ∧ x ∈ S.

To guarantee that this anomaly does not occur, the strategy used by Read

Your Writes is to return a set (the truncated list of elements that are returned to

the application) such that, when we project the elements from that list that be-

long to the current client session, we obtain a suffix of the sequence of elements

inserted in that session. To preserve this, the Writes Follow Reads transforma-

tion block has to return a suffix of the session elements. It is necessary that the

Writes Follow Read transformation block does not remove session elements

that break the suffix. To guarantee this, we need to ensure that the dependen-

cies of each session element until the last element of the truncated list returned

to the client, are in sl. To this end, the elements stored in localView are in-

cluded in sl, because the localView contains the elements previously returned

to the client, which are the dependencies of the elements inserted in the ses-

sion. For that, we reuse the Monotonic Reads transformation block code, which

adds the elements in the localView to sl, and removes the old dependencies,

i.e., the elements that do not belong to the truncated list returned to the client.

This is done before executing the Writes Follow Reads transformation block
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which guarantees that a suffix of the session elements and their dependencies

are included in sl and returned.

Next, we argue that after applying Writes Follow Reads transformation

block we guarantee Monotonic Reads. Recall the definition of an anomaly of

Monotonic Reads:

When a client c issues two get operations that return sequences S1 and S2 (in that

order) and the following property holds: ∃x,y ∈ S1 : S1(x) ≺ S1(y)∧ y < S2 ∧ x ∈ S2,

where S1(x) ≺ S1(y) means that element x appears in S1 before y.

To guarantee that this anomaly does not occur, the strategy used by Mono-

tonic Reads is to return a set (the truncated list of elements that are returned

to the application) such that, when we project the elements from that list that

were returned previously to the client, we obtain a suffix of the sequence of

elements previously returned to the client. To preserve this, the Writes Follow

Reads transformation block has to preserve the suffix of the sequence of ele-

ments previously returned to the client. To this end, the Writes Follow Reads

transformation block cannot remove elements that break the suffix. This is au-

tomatically guaranteed, because the previous elements returned to the client

are in the localView with all dependencies until lastTimestamp, and were

included in sl by the Monotonic Reads transformation block.

Finally, we argue that after applying the Writes Follow Reads transforma-

tion block we guarantee Monotonic Write. Recall the definition of an anomaly

of Monotonic Writes:

The get operation returns a subsequence of elements from a session in a different

order they were issued or with gaps, more precisely, given a sequence of writes W

in the same session, and a sequence S returned by a read: (∃x,y,z ∈ W : W (x) ≺
W (y) ≺W (z)∧ x ∈ S ∧ y < S ∧ z ∈ S)∨ (∃x,y ∈W : W (x) ≺W (y)∧ S(y) ≺ S(x)).

To guarantee that this anomaly does not occur, the strategy used by Mono-

tonic Writes is to return a set (the truncated list of elements that are returned to

the application) such that, when we project each session subsequence they are

ordered by insertion order and without gaps. To preserve this, the Writes Fol-

low Reads transformation block cannot remove elements from a session subse-

quence that causes a gap in that subsequence. This again is already guaranteed,
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because the dependencies of a session element include the dependencies of the

previous session element in the session sub-sequence. Therefore, when we ap-

ply the Writes Follow Reads transformation block, we know the dependencies,

directly through the dependencies list associated to each element or through

the cutTimestamp, that defines that all elements below this timestamp are also

dependencies. Since the Writes Follow Reads transformation block guarantees

that the sublist returned to the client contains for each element, the dependen-

cies with a timestamp larger or equal to the timestamp of the oldest element

that is going to be returned, it is guaranteed that a gap in a session subsequence

is not created. The order of each subsequence is also maintained, because the

timestamps and the session counters increase monotonically in the session. Fi-

nally, the operation that was introduced in line 21 of Algorithm 7 to avoid the

third corner case described in section 4.3.6, that removes all elements with a

timestamp below a missing session element, is also safe, because the strategy

employed to truncate the list to be returned to the client, maintains a suffix of

a sublist that contains for each element, the dependencies with a timestamp

larger or equal to the timestamp of the oldest element present in that sublist.

4.7 Comparison with Related Work

Here, we revisit the related work comparison in light of the contributions re-

ported in this Chapter. In particular, we focus on a detailed contrast to the

more closely related proposals found in the literature. The closest related work

are the recent proposals that also target the use of a middleware layer that can

mediate access to a storage system in order to upgrade the respective consis-

tency guarantees.

In particular, Bailis et al. [16] proposed a system called bolt-on to offer

causal consistency. There are two main distinctions between bolt-on and our

proposal: first, we provide a fine-grained choice of which session guarantees

the programmer intends the system to provide, and only pay a performance

penalty associated with the cost of enforcing those guarantees. Second, they

assume the underlying system offers a general read/write storage interface,
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which gives significant more flexibility in terms of the system design than

our proposal, which is restricted to the APIs provided by social networking

services.

Bermbach et al. [20] also proposed a middleware to enforce consistency

guarantees on top of data stores, namely, Amazon S3 [9], DynamoDB [32], or

SimpleDB [7], in contrast to our focus on high level service APIs. They also do

not provide to programmers a fine-grained choice to all session properties.

The last closest related work is the proposal from Brantner et al. [22], that

proposes a middleware that provides atomic transactions and all session guar-

antees on top of Amazon S3. To this end, they use an external service to enforce

the session guarantees, namely, the Simple Queuing System. This contrasts

with our work because we do not use external services to guarantee the session

properties, instead focusing on a shim layer that operates at the client side.

Finally, another important comparison to previous proposals is that they

assume that the services do not impose rate limits to operations. If a limit is

exceeded the application is blocked, this may happen when a client issues a

get operation and the service misses an element. In this situation, an algorithm

may need to do an extra request to obtain the element and the application can

be blocked.

4.8 Summary

We have shown that it is possible to enforce different consistency properties,

in particular session guarantees for applications that access online services

through their public APIs. We do so without knowing the service architecture,

and without assuming that the service itself provides any of these guarantees.

Our solution relies on a thin Middleware layer that executes on the client side,

and intercepts all interactions of the client with the online service. We have

presented different algorithms to enforce each of the well known session guar-

antees. Furthermore, our algorithms follow a simple structure that allows to

combine them easily. We have developed a prototype in Java that we used

to evaluate our approach using two services: Facebook, and a geo-replicated
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deployment of Redis. Our experiments show that we can enforce session guar-

antees with a modest overhead both in terms of user-perceived latency and

communication with the services.
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5
Conclusions

In this thesis we have presented a measurement study of the consistency offered

by the APIs of four online services. To this end, we started by identifying a set

of anomalies that are not allowed by various consistency levels, and devised two

tests that have the ability to expose these anomalies. Our measurement study,

based on these tests, were conducted on Google+, Blogger, Facebook Feed, and

Facebook Groups for an aggregate period of one month in each service. During

the execution of our tests we detected several situations that increased the dif-

ficulty to test the services. Namely, the different requests rate limits imposed

by the services, that made it impossible for our agents to do more requests for

a long period of time. The analysis of the collected data from the tests showed

the relatively frequent occurrence of most of the anomalies across all services

except Blogger, which might suggest that the architecture used by this service

enforces strong consistency. We also measured the divergence window between

two agents and we found that in some services these are significantly shorter

than in others, and in some situations the tests ended with the two agents ob-

serving divergent states of the system. Some of these results may be acceptable

from the perspective of the users, but there are applications where this may be

important, e.g., applications that are producing statistic information or need to

do some synchronous action in different locations. This highlighted the need
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for application developers to consider whether the intended semantics for their

applications is compatible with these behaviors, and if not, to possibly write

programs in a way that masks these anomalies. This study was published in

DSN2016 [37].

With the results obtained from the measurement study we concluded that

we can expect to find many consistency anomalies in the behavior of many

online services, so our next step was to create a solution to enforce fine-grained

consistency to applications that are using the services. To this end, we created

a middleware that demonstrated the feasibility of enforcing different consis-

tency properties, in particular session guarantees, for third party applications

that access online services through their public APIs on the client side. We

do so without explicit support from the service architecture, and without as-

suming that the service itself provides any of these guarantees. Again, we had

to take into account the restrictions imposed by the service, namely, having a

get operation that truncates the number of elements in a feed, the request rate

limits, that restricts the number of extra requests that may be done from our

middleware to obtain an element that is missing, and having no place reserved

to store the metadata associated to an element (e.g., an entry in a data object).

We believe this is something that makes sense to be included in the future by

the services, to provide application developers the flexibility to associate extra

information to the application data. Since most of the services already return

metadata associated to a post, this appears to be an easy and useful feature to

be supported by these services.

The middleware layer that we developed executes on the client side, and in-

tercepts all interactions of the client with the online service, and avoids making

extra requests when something is missing. We have presented four algorithms

that enforce each of the well known session guarantees. Furthermore, our algo-

rithms follow a structure that allows to combine them. We also have developed

a prototype in Java that we used to evaluate our approach using two services:

Facebook, and a geo-replicated deployment of Redis. Our experiments showed

that we can enforce session guarantees with a modest overhead both in terms of

user-perceived latency and communication with the centralized service. Note
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that our middleware is not limited to be used by these services, it can be used

by services that provide a read/write interface compatible with the middleware

interface. This work was published in SRDS2017 [38].

5.1 Future work

While the results presented in this thesis provide the tools and results for a

better understanding of the consistency anomalies that are prevalent in today’s

online services, while also proposing a client-side (generic) approach to enrich

the consistency guarantees of such services, we believe that there are some

interesting venues for future research:

The measurement study was made with four services: Facebook Feed, Face-

book Group, Google+, and Blogger. Extending the study to more services like

Instagram or Linkedin can enrich the results that were provided and give a

broader view of the consistency guarantees effectively offered by these services.

Another important extension to our study, is to detect anomalies in internal

components of service when the access to these components are available. In

this case, instead of considering only black box tests we can apply our method-

ology to perform white-box testing to large-scale storage systems.

Our middleware layer enforces the four session guarantees, it might be rel-

evant to ensure to application developers other consistency properties, prop-

erties that can be enforced on top of these service without a significant cost to

applications, e.g., the guarantee that two clients do not diverge or the guarantee

that the divergence window is bounded and does not affect availability.

We chose to support the main operations provided by these services, how-

ever some services provide other operations. Extending the middleware to

support more operations, e.g., feed pagination, can be useful for application de-

velopers and a great challenge if we take into account the restrictions imposed

by services in terms of number of API calls issued in limited time windows.
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