
Refining IOPT Petri Nets class for embedded
system controller modeling
Luı́s Gomes

Universidade Nova de Lisboa
and UNINOVA-CTS

Portugal
E-mail: lugo@fct.unl.pt

João Paulo Barros
Instituto Politécnico de Beja

and UNINOVA-CTS
Portugal

E-mail: jpb@uninova.pt

Abstract—Since its inception, the Input-Output Place-
Transition (IOPT) class of Petri nets have changed in response
to the gained experience in the use of its associated tools freely
available as a cloud based toolset. Here, we informally present
the current state of the IOPT net class as supported by the IOPT-
Tools, publicly available at http://gres.uninova.pt/IOPT-Tools/.
The corresponding formal syntax and semantics are presented,
followed by an illustrative example. Finally, we give a brief
presentation of the respective XML-based interchange format
and conclude.

Index Terms—model-driven development, Petri nets, design
tools, microcontrollers.

I. INTRODUCTION

Non-autonomous Petri nets offer a convenient and expres-
sive language to model controllers and their connection with
the environment. In spite of having been proposed in several
variants along the last decades (e.g. [2]–[4], [7], [8], [15],
[16]) there are still very few tools that support them, especially
when we consider code generation for programmable hardware
or even code to be compiled and executed on common
microcontrollers [12].

The class of non-autonomous Petri nets named Input-Output
Place-Transition nets have changed significantly since its in-
ception [5]. All changes resulted from the identification of
modelling needs and conveniences made possible by the avail-
ability of the associated tools, integrated in a cloud-based tool
framework named IOPT-Tools [6], [11], publicly available at
http://gres.uninova.pt/IOPT-Tools/. As it is common, the use of
a language promotes and even forces their change and growth.
Here, we present a revised definition of the IOPT nets class and
illustrate it with an example model together with the respective
XML-based interchange format generated by the IOPT-Tools.
The following section summarizes the main changes in the
IOPT nets class, as supported by the IOPT-Tools. Section III,
describes and formally defines the current version of the IOPT
net class. Section IV presents an illustrative example together
with the XML-based format supported by IOPT-Tools and
based on the PNML specification [13]. Finally, we present
some conclusions and pointers for future developments.

II. IOPT NETS

This section presents the formal syntax and semantics of
the present version of the IOPT nets that updates an early one

presented elsewhere [5].
IOPT nets are an extension of Place-Transition nets [14]

with non-autonomous constructs. These allow the explicit
modeling of the interface between the net model and the
environment. The net models a controller and the interface
with the environment is specified by the explicit modelling of
input and output signals and events. This interface is based on
the interpreted and synchronized nets of René David, Hassane
Alla, and Manuel Silva [2], [3], [15]. Yet, non-autonomous
extensions have also been proposed in more specific settings,
namely on factory automation applications (e.g. [4], [8], [16]).

Compared to the IOPT nets in [5], the present version
as implemented in the IOPT-Tools toolset has the following
differences and additions:

1) Actions in transitions that assign values to output sig-
nals; these allow the change of output signal values when
transitions fire;

2) Possibility to manually assign of physical input and
output pins to input and output signals, respectively; this
allows a low-level specification at model-level, relevant
to automatic code generation;

3) Option to wrap limits in signal values (circular counter
over the range of values in the respective domain);
as output events increment/decrement associated output
signal values, the circular counter behaviour can be
extremely convenient;

4) Autonomous input and output events that are indepen-
dent of any signal, useful for simulations and/or for
inter-subsystem communication;

5) Output signals are also global variables and belong to
the system state;

6) Support for modelling and automatic code generation for
Globally Asynchronous Locally Synchronous (GALS)
systems [1], [10], which will is not covered in this paper
due to lack of space:

a) Specify a time domain for any transition or place
(the nodes associated with a specific time domain
are intended to be associated with one specific
implementation platform);

b) A new type of arcs, named channel arcs;
c) A new type of node having place semantics, repre-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Digital IPBeja

https://core.ac.uk/display/250350156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

senting Communication Channels and depicted as a
small cloud, interconnected through one incoming
channel arc, and one or more outgoing channel
arcs. Five types of Communication Channels are
available: two of them (”Synchronous Set”, and
”Asynchronous Set”) allow the interconnection be-
tween sub-models having different time domains,
while the other three (”Simple AC”, ”Acknowl-
edged AC”, and ”Not-enabled AC”) restrict the
outgoing channel arcs to be connected to transi-
tions having the same time domain.

The following section presents the formal definition of the
IOPT nets class.

III. IOPT NETS DEFINITION

This section formally defines the syntax and semantics of
IOPT nets as implemented in IOPT-Tools. It starts by the
environment characterization, including the interface and input
state. After, the net syntax is presented, followed by the net
semantics.

A. Environment

Compared to an autonomous Petri net, from the IOPT
modeller point of view, the environment imposes additional
constraints on the net behaviour. This is based on input signals
and events. Also, the net can actuate on the environment,
and this is made possible by the specification of output
signals and events. All these signals and events make the
model interface (similar to the system interface in [5]). The
model interface should be seen as a set of interface shared
phenomena as presented by Michael Jackson [9]. The signals
and events are shared between two domains: the net model
(the controller) and the controlled system, or, using Michael
Jackson’s terminology, between the machine world and the
problem world, respectively.

Definition 1 (Model interface): (based on
[5]) The interface between the controlled sys-
tem and the IOPT net is a tuple MI =
(ISB , ISR, IENA, IEA, inputSignal, OSB , OSR, OENA,
OEA, outputSignal) satisfying the following:

1) ISB is a finite set of Boolean input signals;
2) ISR is a finite set of range (non-negative integers) input

signals;
3) IENA is a finite set of non-autonomous input events;
4) IEA is a finite set of autonomous input events;
5) inputSignal is a function applying non-autonomous

input events to a signal and an upper or lower
edge: inputSignal : IENA → (ISB ∪ ISR) ×
{upper, lower};

6) OSB is a finite set of Boolean output signals;
7) OSR is a finite set of range (non-negative integers)

output signals;
8) OENA is a finite set of non-autonomous output events;
9) OEA is a finite set of autonomous output events;

10) outputSignal is a function applying non-autonomous
output events to a signal and an upper or lower

edge: outputSignal : OENA → (OSB ∪ OSR) ×
{upper, lower};

11) ISB ∩ ISR ∩ IENA ∩ IEA ∩OSB ∩OSR ∩OENA ∩
OEA = ∅.

Each non-autonomous event has an associated signal. We
write signal(e) to denote the signal associated to a non-
autonomous event e and similarly for the set of signals
associated to a set of events: signals(ES), where ES is a
set of non-autonomous events.

The model assumes a cycle accurate execution. Hence, in
the beginning of each cycle, the input signal and input events
are acquired at the same instant in time; we call the resulting
data, the system input state as it reflects the controlled system
state at a given moment (see Def. 2).

Definition 2 (System input state):
Given a model interface MI =
(ISB , ISR, IENA, IEA, inputSignal, OSB , OSR, OENA,
OEA, outputSignal), a system input state is defined by a
tuple SIS = (ISBB , ISBR, IEBNA, IEBA) satisfying the
following requirements:

1) ISBB is a finite set of Boolean input signal bindings:
ISBB ⊆ ISB × B;

2) ISBR is a finite set of range input signal bindings:
ISBR ⊆ ISR × N0;

3) IEBNA is a finite set of non-autonomous input event
bindings: IEBNA ⊆ IENA × B;

4) IEBA is a finite set of autonomous input event bindings:
IEBA ⊆ IEA × B.

B. Syntax

The following definition assumes the use of an inscription
language for algebraic expressions and variables. The set of
Boolean expressions is named BExp and the set of integer
expressions, that evaluate to non-negative integer, is named
IExp; BES ⊆ BExp and IES ⊆ IExp, the function
V ar(E) returns the set of variables in a given expression e,
and ML is the set of identifiers for each place marking.

Definition 3 (IOPT net): Given a model interface
MI = (ISB , ISR, IENA, IEA, inputSignal, OSB ,
OSR, OENA, OEA, outputSignal), a IOPT net is a
tuple N = (P,C, T,A, TA,CA,M,weight, weightTest,
priority, guard, ie, oe, ta, osc) satisfying the following
requirements:

1) P is a finite set of places;
2) C is a finite set of channels, a special type of places for

communication;
3) T is a finite set of transitions such that P ∩C ∩ T = ∅;
4) A is a set of arcs, such that A ⊆ ((P × T)∪ (T × P));
5) TA is a set of test arcs, such that TA ⊆ (P × T);
6) CA is a set of channel arcs, such that CA ⊆ ((C×T)∪

(T × C));
7) M is the marking function: M : P → N0;
8) weight is the arc weight function: weight : A→ N0;
9) weightTest is the test arc weight function:

weightTest : TA→ N0;

10) priority is a partial function applying transitions to
non-negative integers: priority : T ⇀ N0; we write
priority(t) ↑ when transition t has no defined priority;

11) guard is an guard partial function applying transitions
to Boolean expressions (where all variables are mark-
ings or signals): guard : t ⇀ BE, where ∀eb ∈
guard(t), V ar(eb) ⊆ (M ∪ ISB ∪ ISR);

12) ie is an input event function applying transitions to input
events: ie : T → P(IENA ∪ IEA);

13) oe is an output event function applying transitions to
output events: oe : T → P(OENA ∪OEA);

14) ta is a transition action partial function applying transi-
tions to actions: ta : T ⇀ (OSB×BES)∪(OSR×IES)
and ∀bae ∈ BES, V ar(bae) ⊆ (ML ∪ OSB ∪ OSR)
and ∀iae ∈ IES, V ar(iae) ⊆ (ML ∪OSB ∪OSR).

15) osc is an output signal condition function from places
into sets of rules: osc : P → P(RULES), where
RULES ⊆ ((OSB ∪ OSR) × BES × N0), and ∀e ∈
BES, V ar(e) ⊆ (ML ∪ ISR ∪ ISB ∪OSR ∪OSB).

Places have markings just like in Place-Transition nets. They
also have a set of actions. Each of these, allows the assignment
of values to output signals depending on the markings and
signal values.

Transitions can have associated guards, actions, priorities,
input, and output events. Guards are functions of markings
and signals. Guards and also input events need to be true
to allow transitions to fire. Non-autonomous output events
can increment/decrement associated output signals (depending
on the upper/lower attribute), optionally wrapping up at the
higher or lower values. Autonomous output events are acti-
vated whenever associated transition(s) fire(s). Priorities allow
conflict resolution among transitions in conflict.

The output signals assigned by place actions must be
disjoint from the output signals assigned by transition actions
and transition events: if POS × E1 × N = osc(P) and
TOS×E2 = ta(T) then signals(oe(T)∪TOS)∩POS = ∅.

IOPT nets also have a special type of places, named
(communication) channels. These support the specification of
GALS systems [10], as well as the decomposition of the model
into a set of sub-models, following the net split operation [1].
The connections between these and the transitions is made by
a special type of arc: channel arc.

C. Semantics

Compared to Place-Transition nets, IOPT nets have two
major semantic differences: (1) the dependency on external
conditions (signals and events) and (2) the deterministic nature
of each execution step.

The dependency on external conditions, i.e., the non-
autonomous nature of IOPT nets is reflected in the firing
rule for its transitions. Two pre-conditions are required: one
related to the autonomous part and the other due to the non-
autonomous component. Hence, for a transition to fire it has
to be enabled just like in Place-Transition nets, and it also has
to be ready, i. e. the external conditions must allow it to fire.

The non-deterministic nature of step selection in Place-
Transition nets, where any subset of enabled transitions can
fire, is undesirable for controller modelling. For that reason,
IOPT nets have a maximal step semantics: whenever a tran-
sition is enabled and ready, the transition is fired. As all
transitions fire at the same instant, we also say that the net
fires all the enabled and ready transitions. The only possible
exclusions are due to conflicts. Also, net firing is only possible
at specific instants in time named tics. These are imposed by
an external global clock. The period between tics is called
execution step.

In the following definitions M(p) denotes the marking of
place p in a net with marking M , •t denotes the input places
of a given transition t and •S the input places of a given
set of transitions S, connected by normal arcs. Similarly, the
operator � is used for input places connected by test arcs:
•t = {p|(p, t) ∈ A}, •S = {p|(p, t) ∈ A ∧ t ∈ S}, �t =
{p|(p, t) ∈ TA}, �S = {p|(p, t) ∈ TA ∧ t ∈ S}.

Definition 4 (Ready transition): Given a net N =
(P,C, T,A, TA,CA,M,weight, weightTest, priority,
guard, ie, oe, ta, osc) and a model interface MI =
(ISB , ISR, IENA, IEA, inputSignal, OSB , OSR, OENA,
OEA, outputSignal) between N and a system input state
SIS = (ISBB , ISBR, IEBNA, IEBA), a transition t,
is ready to fire with system input state SIS, denoted
ready(t, SIS), iff the following conditions are satisfied:

1) The transition t input signal guard evaluates to true
for the given input signal binding: guard(t)<ISBB ∪
ISBR>.

2) ∀e ∈ ie(t), (ie(t), true) ∈ (IEBNA ∪ IEBA).
Definition 5 (Enabled transition): Let N = (P,C, T,A, TA,

CA,M,weight, weightTest, priority, guard, ie, oe, ta, osc)
be a net and MI = (ISB , ISR, IENA, IEA, inputSignal,
OSB , OSR, OENA, OEA, outputSignal) a model
interface between N and a system input state
SIS = (ISBB , ISBR, IEBNA, IEBA). A transition t,
with no structural conflicts, is enabled to fire with the current
net marking M , denoted enabled(t,M), iff the following
conditions are satisfied:

1) ∀p ∈ •t,M(p) ≥ weight(p, t).
2) ∀p ∈ �t,M(p) ≥ weightTest(p, t).
Definition 6 (Conflict sets): A conflict set CS is a set of

transitions in structural conflict: CS ∈ (P(T)\∅) ∧ ∀t1 ∈
CS,∃t2 ∈ CS\{t1} : •t1 ∩ •t2 6= ∅. We denote by SCS the
set of all conflict sets in a net. All conflict sets are disjunct:
∀CS1, CS2 ∈ SCS : CS1 ∩ CS2 = ∅. Additionally, CS(t)
is the conflict set that contains t: CS(t) ∈ SCS =⇒ t ∈
(CS(t) ∩ T).

Definition 7 (IOPT net step): Let N =
(P,C, T,A, TA,CA,M,weight, weightTest, priority,
guard, ie, oe, ta, osc) be a net and MI =
(ISB , ISR, IENA, IEA, inputSignal,OSB , OSR, OENA,
OEA, outputSignal) a model interface between N and a
system input state SIS = (ISBB , ISBR, IEBNA, IEBA).
Let ET ⊆ T be the set of all ready and

enabled transitions as defined by Def. 4 and 5:
ET = {t|t ∈ T ∧ ready(t, SIS) ∧ enabled(t,M)}.
Then, Y is a IOPT net step of N iff the following condition
is satisfied:

Y ⊆ ET∧∀t1 ∈ (ET\Y),∃SY ⊆ Y, (•t1 ∩ •SY) 6= ∅∧
∃p ∈ (•t1 ∩ •SY),

(weight(p, t1) +
∑
t∈SY

weight(p, t) > M(p))

The condition states that when a ready and enabled transition
is not in the maximal step that is due to insufficient markings
in the input places for all the transitions in its conflict set
(CS(t)) to be enabled.

Next, we define a IOPT net step occurrence and the respec-
tive successor marking.

Definition 8 (Step occurrence and successor marking):
Let N = (P,C, T,A, TA,CA,M,weight, weightTest,
priority, guard, ie, oe, ta, osc) be a net and MI =
(ISB , ISR, IENA, IEA, inputSignal,OSB , OSR, OENA,
OEA, outputSignal) a model interface
between N and a system input state SIS =
(ISBB , ISBR, IEBNA, IEBA). The occurrence of a
step Y in net N returns the net N ′ = (P,C, T,A, TA,CA,
M ′, weight, weightTest, priority, guard, ie, oe, ta, osc),
equal to the net N except for the successor marking M ′

which is given by the following expression:

M ′ =

{(
p, m −

∑
t∈Y ∧(p,t)∈A

weight(p, t) +

∑
t∈Y ∧(t,p)∈A

weight(t, p)
)
∈ (P × N0)

∣∣∣
(p,m) ∈M

}
D. Net execution

A high level specification for the net step execution is
presented in the following procedure. In each step the input
signals values are read and the input events updated based on
the change of the value of the associated signal. The output
event buffer (OEB) and the temporary marking buffer are reset
and the enabled transitions are fired. The marking is updated
with the new one which is then used to execute the actions in
each place.

1: procedure EXECUTENETSTEPS
2: loop
3: ISB ← readBooleanInputSignals()
4: ISR ← readRangeInputSignals()
5: IENA ← computeInEvents(ISB , ISR)
6: IEA ← readAutonomousInputEvents()
7: resetOEB()
8: resetTemporaryMarkingBuffer()
9: fireMaximalStep()

10: netMarking ← temporaryMarkingBuffer
11: for place ∈ P do
12: executeActions(place)

Fig. 1. Parking lot layout.

13: end for
14: end loop
15: end procedure

IV. EXAMPLE MODEL

A simple validation example is used to illustrate some of the
modelling capabilities of IOPT nets (and benefiting from using
IOPT-Tools framework). A parking lot controller is considered
having one entrance and one exit, and a specific amount of
parking places, as in [5]. However, for the presented example,
only the entrance model is considered (similar strategy could
be used to model the exit part).

Fig. 1 presents the layout of the parking lot, where the
controller allows the entrance of cars activating GateIn, taking
into consideration availability of free places inside the parking
lot and the analysis of the time evolution of CarIn and TicketIn
input signals.

Whenever a car is present at the entrance, input signal
GateIn is activated, and the controller waits for the user to
pick TicketIn to activate the GateIn. Considering the model
presented at Fig. 2, this basic flow is modeled using the set of
nodes EntranceFree, ArrivingCar, WaitingTicket, EnteringReg-
ular, GateOpen, CarEntered (as far as there is some tokens
in FreePlaces).

Some deviations to the described basic behavior are fore-
seen:
• The driver can go reverse after entering in the entrance

area.
• The driver can block the entrance (due to some problem)

for a period longer than expected.
To adequately handle the referred situations, the usage of

events is foreseen resulting in a model much more compact
with improved expressiveness. This is the case of the events
CarInEv and CarOutEv, both associated with changes on the
input signal CarIn (activation and deactivation of the signal,
respectively). In particular, the event CarOutEv can be used
to return the model to EntranceFree global state for the two
referred situations plus the regular behavior. Also, the usage
of output events, such as photo and TotalCostumers, which
will be generated whenever the transitions fire, allows simple
modeling of the behaviors triggering external sub-systems.
Coming to output signals, they can be associated with places

Fig. 2. Screen capture of the example model as seen in the IOPT Tools toolset.

(as in GateOpen, where output GateIn is activated, or as
in WaitingTicket, where signal Counter, which is used as a
global variable, is updated), or with transitions (as in Leaving
generating the output event TotalCostumers).

Next, we briefly present the used interchange format.

V. INTERCHANGE FORMAT

In this section we briefly exemplify the XML-based in-
terchange format used by IOPT Tools. The used format is
an extension of the PNML (Petri Net Markup Language)
metamodel for Place-Transition nets.

Listing 1 shows part of the signals and events specification.
They are between an input and an output section. Each
one contains signals and events. The same listing shows the
beginning of the file and an example of the graphics
element. The remaining occurrences of those elements were
omitted for brevity. In this and all the following Listings, the
omitted parts are signaled with three dots.

Listing 1. Signals and events specification.
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” windows−1252”
s t a n d a l o n e =” no ” ?>
<Snoopy r e v i s i o n =” 0 ” v e r s i o n =” 1 . 1 ”>

<pnml>
<n e t i d =” 1 ” name=” i e c o n 1 8 ” t y p e =”IOPT”>

<i n p u t>
<s i g n a l i d =” Car In ” t y p e =” b o o l e a n ” v a l u e =” 0 ”

g p i o n r =” 0 ”>
<g r a p h i c s>

<p o s i t i o n page=” 1 ” x=” 50 ” y=” 60 ” />
</ g r a p h i c s>

</ s i g n a l>
<s i g n a l i d =” T i c k e t I n ” t y p e =” b o o l e a n ” v a l u e =” 0 ”

g p i o n r =” 0 ”>
. . .

</ s i g n a l>
<e v e n t i d =” CarInEv ” edge=” up ” l e v e l =” 0 ”

s i g n a l =” Car In ”>
. . .

</ e v e n t>
. . .

</ i n p u t>
<o u t p u t>

<s i g n a l i d =” Coun te r ” t y p e =” r a n g e ” v a l u e =” 0 ”
g p i o n r =” 0 ” min=” 0 ” max=” 9 ” wrap=” 0 ”>

. . .
</ s i g n a l>
<e v e n t i d =” pho to ” autonomous=” t r u e ”>

. . .
</ e v e n t>
<s i g n a l i d =” Ga te I n ” t y p e =” b o o l e a n ” v a l u e =” 0 ”

g p i o n r =” 0 ”>
. . .

</ s i g n a l>
. . .
<s i g n a l i d =” Cos tumers ” t y p e =” r a n g e ” v a l u e =” 0 ”

g p i o n r =” 0 ” min=” 0 ” max=” 255 ” wrap=” 0 ”>
. . .

</ s i g n a l>
<e v e n t i d =” T o t a l C o s t u m e r s ” edge=” up ” l e v e l =” 0 ”

s i g n a l =” Cos tumers ”>
. . .

</ e v e n t>
</ o u t p u t>

Listing 2 illustrates the PNML for two places. They show
examples of initial markings and actions, one of them acting
on an output signal named Counter.

Listing 2. Places.
. . .
<p l a c e i d =” 3 ”>

<name>
<t e x t>W a i t i n g T i c k e t</ t e x t>
. . .

</ name>
. . .
<i n i t i a l M a r k i n g>

<t e x t>0</ t e x t>
. . .

</ i n i t i a l M a r k i n g>
<bound>

<t e x t>3</ t e x t>
</ bound>
. . .
<s i g n a l O u t p u t A c t i o n s>

<s i g n a l O u t p u t A c t i o n i d R e f =” Coun te r ”>
<v a l u e>

<c o n c r e t e S y n t a x l a n g u a g e =” i o p t ”>
<t e x t>Coun te r + 1</ t e x t>
<e x p r e s s i o n>

<ope rand t y p e =” o u t p u t−s i g n a l ”
i d R e f =” Coun te r ” seq =” 1 ” />

<o p e r a t i o n o p e r a t o r =” a d d i t i o n ” seq =” 2 ”>
<ope rand t y p e =” l i t e r a l ” v a l u e =” 1 ”

seq =” 3 ” />
</ o p e r a t i o n>

</ e x p r e s s i o n>
</ c o n c r e t e S y n t a x>

</ v a l u e>
<c o n d i t i o n>

<c o n c r e t e S y n t a x l a n g u a g e =” i o p t ”>
<t e x t />

</ c o n c r e t e S y n t a x>
</ c o n d i t i o n>

</ s i g n a l O u t p u t A c t i o n>
</ s i g n a l O u t p u t A c t i o n s>

</ p l a c e>

<p l a c e i d =” 4 ”>
<name>

<t e x t>GateOpen</ t e x t>
. . .

<s i g n a l O u t p u t A c t i o n s>
<s i g n a l O u t p u t A c t i o n i d R e f =” Ga te I n ”>

<v a l u e>
<c o n c r e t e S y n t a x l a n g u a g e =” i o p t ”>

<t e x t>1</ t e x t>
<e x p r e s s i o n>

<ope rand t y p e =” l i t e r a l ” v a l u e =” 1 ”
seq =” 1 ” />

</ e x p r e s s i o n>
</ c o n c r e t e S y n t a x>

</ v a l u e>
<c o n d i t i o n>

<c o n c r e t e S y n t a x l a n g u a g e =” i o p t ”>
<t e x t />

</ c o n c r e t e S y n t a x>
</ c o n d i t i o n>

</ s i g n a l O u t p u t A c t i o n>
</ s i g n a l O u t p u t A c t i o n s>

</ p l a c e>
. . .

Listing 3 illustrates the PNML for two transitions. They
show examples of a guard, input event, and output event.

Listing 3. Examples of transitions specifications.
. . .
< t r a n s i t i o n i d =” 6 ”>

<name>
<t e x t>A r r i v i n g C a r</ t e x t>
. . .

</ name>
. . .
<p r i o r i t y>1</ p r i o r i t y>
<s i g n a l I n p u t G u a r d s />
<i n p u t E v e n t s>

<e v e n t i d R e f =” CarInEv ” />
</ i n p u t E v e n t s>
. . .
<o u t p u t E v e n t s />
. . .

</ t r a n s i t i o n>

< t r a n s i t i o n i d =” 5 ”>
<name>

<t e x t>E n t e r i n g R e g u l a r</ t e x t>
. . .

</ name>
. . .
<p r i o r i t y>1</ p r i o r i t y>
<s i g n a l I n p u t G u a r d s>

<s i g n a l i n p u t g u a r d>
<c o n c r e t e S y n t a x l a n g u a g e =” i o p t ”>

<t e x t>T i c k e t I n = 1</ t e x t>
<e x p r e s s i o n>

<ope rand t y p e =” i n p u t−s i g n a l ”
i d R e f =” T i c k e t I n ” seq =” 1 ” />

<o p e r a t i o n o p e r a t o r =” e q u a l ” seq =” 2 ”>
<ope rand t y p e =” l i t e r a l ” v a l u e =” 1 ”

seq =” 3 ” />
</ o p e r a t i o n>

</ e x p r e s s i o n>
</ c o n c r e t e S y n t a x>

</ s i g n a l i n p u t g u a r d>
</ s i g n a l I n p u t G u a r d s>
<i n p u t E v e n t s />
. . .
<o u t p u t E v e n t s>

<e v e n t i d R e f =” pho to ” />
</ o u t p u t E v e n t s>
. . .

</ t r a n s i t i o n>
. . .

VI. CONCLUSIONS

The free availability of IOPT-Tools at
http://gres.uninova.pt/IOPT-Tools/ has allowed the IOPT
nets class and its use as a code generation platform to
remain available, used, and useful. As a consequence and in
response to identified needs, the corresponding metamodel
has evolved leading to a significant number of differences
between the initial version of the IOPT nets class and the
currently available version in the IOPT-Tools. This paper
updates the net class definition. As future work, the priority
is to improve the usability of the user interface, to extend the
code generation to additional platforms, and to simplify the
adaptation to each platform specificity.

ACKNOWLEDGMENT

This work was partially financed by Portuguese Agency FCT
Fundação para a Ciência e Tecnologia, in the framework of
project UID/EEA/00066/2013.

REFERENCES

[1] A. Costa and L. Gomes, “Petri net partitioning using net splitting
operation,” in 2009 7th IEEE International Conference on Industrial
Informatics, June 2009.

[2] R. David and H. Alla, Petri Nets & Grafcet; Tools for Modelling Discrete
Event Systems. Prentice Hall International (UK) Ltd, 1992.

[3] ——, Discrete, Continuous, and Hybrid Petri Nets, 2nd ed. Springer
Publishing Company, Incorporated, 2010.

[4] G. Frey and M. Minas, “Editing, Visualizing, and Implementing Signal
Interpreted Petri Nets,” in Proceedings of the AWPN 2000, Koblenz, Oct.
2000, pp. 57–62.

[5] L. Gomes, J. P. Barros, A. Costa, and R. Nunes, “The Input-Output
Place-Transition Petri net class and associated tools,” in 2007 5th IEEE
International Conference on Industrial Informatics, vol. 1, June 2007,
pp. 509–514.

[6] L. Gomes, F. Moutinho, and F. Pereira, “IOPT-tools – a web based tool
framework for embedded systems controller development using Petri
nets,” in 2013 23rd International Conference on Field programmable
Logic and Applications, Sept 2013, pp. 1–1.

[7] L. Gomes and A. Steiger-Garção, “Programmable controller design
based on a synchronized colored Petri net model and integrating fuzzy
reasoning,” in 16th International Conference on Application and Theory
of Petri Nets (ICATPN’95), Torino, Italy, jun 1995.

[8] H.-M. Hanisch and A. Lüder, “A Signal Extension for Petri Nets and
its Use in Controller Design,” Fundamenta Informaticae, vol. 41, no. 4,
pp. 415–431, 2000.

[9] M. Jackson, Problem Frames: Analyzing and Structuring Software
Development Problems. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2001.

[10] F. Moutinho and L. Gomes, Distributed Embedded Controller Devel-
opment with Petri Nets: Application to Globally-Asynchronous Locally-
Synchronous Systems, 1st ed. Springer Publishing Company, Incorpo-
rated, 2015.

[11] F. Pereira, F. Moutinho, and L. Gomes, “IOPT-Tools – towards cloud
design automation of digital controllers with Petri nets,” in ICMC’2014
- International Conference on Mechatronics and Control, 2014.

[12] “Petri nets tool database,” http://www.informatik.uni-hamburg.de/TGI/
PetriNets/tools/db.html, 2004.

[13] PNML, “PNML.org,” Accessed on 2018/06/29, http://www.pnml.org,
2015.

[14] W. Reisig, Petri nets: an Introduction. Springer-Verlag New York, Inc.,
1985.

[15] M. Silva, Las Redes de Petri: en la Automática y la Informática.
Madrid: Editorial AC, 1985.

[16] K. Venkatesh, M. Zhou, and R. J. Caudill, “Comparing Ladder Logic
Diagrams and Petri Nets for Sequence Controller Design through
a Discrete Manufacturing System,” IEEE Transactions on Industrial
Electronics, vol. 41, no. 6, pp. 611–619, Dec. 1994.

