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Abstract:  
 

Petri nets have long been known as a readable and powerful graphical modelling 

language. In particular, Petri nets also allow the creation of high-level models of 

embedded controllers. These models can be translated to executable code. This possibility 

is already available in some tools including the IOPT Tools. Another possibility is to 

translate the Petri net model into a state machine, which can then be easily executed by 

an even larger number of platforms for cyber-physical systems. In that sense, this paper 

presents a tool that is able to generate a state machine from a non-autonomous class of 

Petri supported by the IOPT Tools framework (which is publicly available). These state 

machines would be too large to be manually generated, but can now be automatically 

created, simulated, and verified using an higher-level modelling language. The state 

machines can then be used for execution or even as input for additional verification tools. 

This paper presents the translation algorithm and an illustrative example. 
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SECTION I. 

Introduction and motivation 

Petri nets are well-known for allowing a readable graphical specification of concurrency and 

synchronization. Many classes of Petri nets have been created, allowing the use of Petri nets 

for many different purposes. One possible dual classification is based on the explicit semantic 

dependency on external entities, namely signals and events. These two types are named, 

respectively, autonomous nets, the ”classical” non-deterministic Petri nets, and non-

autonomous Petri nets. The latter can have a non-deterministic or a deterministic semantics, 

depending on the application area; for controller modeling, a deterministic semantics is 

usually used. 
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This paper presents an algorithm that takes a non-autonomous and deterministic Petri net 

model and generates a state machine, which is behaviorally equivalent to the Petri net model. 

This is amenable to verification by state exploration, but also and most notably to its 

execution on low resource platforms. One may argue that this procedure will revert Petri nets 

intrinsic capabilities to model concurrency and will generate a representation which may 

suffer from the state explosion problem. Even though, the procedure can be very useful, as it 

supports generation of intermediate code amenable to be directly executed by (potentially) 

all implementation platforms and allows users to benefit from an initial specification using 

Petri nets, complemented by an extended platform support for implementation (including 

low-cost platforms with few resources). Users can still model a concurrent system, yet its 

implementation becomes sequential. To the best of our knowledge this is the first algorithm 

allowing the creation of state machines from non-autonomous Petri net models already 

supported by a set of freely available tools. The Petri net models are executable and can be 

simulated and verified before the application of the new here defined algorithm. As the Petri 

net models also provide an higher level of abstraction, the algorithm also allows a new way 

to create state machines too big to be manually defined. 

The following section presents a more detailed motivation and background, including a brief 

and informal presentation of the used class of Petri nets. After, Section III presents the tool 

and Section IV the developed algorithm. Section V exemplifies the application of that same 

algorithm to a small example, amenable to graphical representation and inspection. Finally, 

we conclude with some conclusions and foreseen future work. 

SECTION II. 

Background 

The Input-Output Place-Transition nets class [3] was created as a readable and precise 

graphical language to model discrete event systems controllers. It was inspired by other non-

autonomous classes of Petri nets [1], [2], [6], [7], [13] and motivated the development of a 

web-based tool set named IOPT Tools [4] [9]. 

In the following section, we present the IOPT Petri nets class and the IOPT Tools framework. 

A. IOPT nets 

Here, we present an informal introduction to the IOPT Petri nets class and its semantics. A 

formal specification of its syntax and semantics can be found elsewhere [3]. 

IOPT nets is a class of non-autonomous Place/Transition Petri nets (e.g. [12]). In the case of 

IOPT nets, the non-autonomous characteristic means that the model semantics depends on 

external elements, namely signals and events: for a transition to fire it must be enabled and 

ready. It is enabled when there are enough tokens in its input places — the usual fire condition 

for Petri nets. It is ready when the conditions that depend on the external environment are 

true. These conditions assume two forms, both associated to transitions: (1) guards that 

depend on input signal values and (2) input events. The guards are logical expressions that 

must evaluate to true for the transition to be ready. These logical expressions use input signals 

as variables. The events are Boolean values that are true when the associated input signal 

changes between two execution steps. If the event should be generated when the associated 

signal increases or decreases its value, we specify an ”up edge” or a ”down edge” associated 

with the event, respectively. 



As usual with Petri nets, the net semantics is based on a step by step execution. For IOPT 

nets, each step has the following parts:  

1. Acquire input signal values; 

2. Store those values for the next step; 

3. If first step, set events to false and jump to point 4; else compare the newly acquired 

values with the ones from the previous step to compute the events values; 

4. Identify enabled and ready transitions; 

5. Fire all enabled and ready transitions (maximal step semantics), except in cases of 

effective conflicts, which are resolved by priorities associated to transitions; each 

fired transition can change signal output values, either by assigning new values or 

by incrementing/decrementing the current values; 

6. Execute actions associated to places; these can also change the output signal values. 

B. IOPT Tools 

The IOPT Tools framework is a web-based set of tools that only requires the use of a browser. 

Hence, no local software installation is needed. It includes the following main tools: a 

graphical editor, a graphical simulator (normally known as a token-player, having a graphical 

user interface similar to the graphical editor animated by transition occurrence, 

complemented by a timing diagram), a remote debugger, C and VHDL code generation, and 

a state space generator that can be queried using an ad hoc language [10]. 

Besides, each model is stored and can be retrieved in the PNML interchange format, an XML 

based language for Petri net models [11]. The newly developed and here presented tool for 

state machine generation uses the PNML file and the generated C code. 

The IOPT Tools is freely available at http://gres.uninova.pt/IOPT-Tools and a list of related 

publications can be found at http://gres.uninova.pt/iopt_publications.html. 

SECTION III. 

State machine generator architecture 

The state space generator, available on the IOPT Tools, considers enabled transitions but 

ignores associated conditions on signal values, as well as possible variations on the input 

signal values. Hence, it is useful to check some safety and liveness properties, yet it cannot 

be used neither for verification that take into account the signal values, nor for implementation 

purposes. 

Fig. 1 illustrates how the newly developed state machine generator is structured to allow the 

generation of state machines from the outputs provided by the IOPT Tools. 
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Fig. 1.  

Generation process. 
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The IOPT Tools is able to generate C code that can be compiled to be execute in low cost 

controllers (see top of Fig. 1). This code has two main parts: (1) the Net structure and 

execution code and (2) the code to read and write external signals (input/output in Fig. 1). 

Additionally, the IOPT Tools is able to generate a PNML file storing all the model data (see 

top right corner in Fig. 1). This file is used to store the model independently from the tool set, 

allowing its use by other tools. In fact, this possibility is also used between several tools in 

the IOPT Tools. 

An Aggregator program, written in the Python programming language, reads the PNML 

model file and generates C++ interface code. This code allows the communication between 

the Net structure and execution code and the state machine generator library. Hence, the 

Aggregator program invokes the C++ compiler to create an executable from the three parts: 
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(1) Net structure and execution code, (2) the state machine generator library, and the (3) 

interface code (see Fig. 1). 

The executable is then run and creates an internal representation of the state machine. From 

this internal representation, it is possible to generate several outputs. In Section V we present 

several graphs. These were generated from dot specifications using the Graphviz software [5] 

and the dot specifications were generated from the internal state machine representation. 

Other straightforward outputs are executable code for the state machine, as well as for 

verification tools allowing graph exploration and query. It must be stressed that the state 

machine generation uses the C code currently generated by IOPT Tools and executable on 

embedded controllers, namely the code that computes each marking and each output. 

The following section presents the algorithm implemented in thestate machine generator 

library to create an implementable state machine from the IOPT net model. 

SECTION IV. 

State machine generation algorithm 

When the translation to a state machine comes from an autonomous Place-Transition net the 

translation is very straightforward: each state corresponds to a net marking and each arc from 

one state to the other corresponds to the firing of a combination of enabled transitions. Yet, 

in an IOPT net, with its maximal step semantics and explicit dependencies on input signals, 

the arcs also are associated with combinations of signal values, and each state of the net model 

has additional information. Hence, compared to a typical state machine, and from a visual 

perspective, the generated state machine has two particularities:  

1. States include three parts in their representation (1) the place markings; (2) the output 

signal values, as these act as global variables that can be used in transition guards; 

and (3) input signal values, when those values are necessary to compute events 

associated with enabled transitions; 

2. The starting state is not a regular state; instead, the starting state, represented as 

smaller black circle, has one or more output arcs, each one targeting one initial state 

depending on the initial values of input signals; so, each arc carries a combination of 

signal’s input values. 

The algorithm for the generation of a state machine from an IOPT net model is here presented 

split in five parts: Algorithms 1, 2, 3, 4 and 5. 

Algorithm 1 checks which transitions are enabled and collects the signals used (in st). It 

creates the starting special state (startingPointState), as well as one arc and one initial node 

for each combination of signal values. All those nodes are pushed to the stack pending for 

latter processing in procedure handlePendingNodes (see Algorithm 2). 

Algorithm 1: State machine generation — starting point and initial nodes.  



 
 

Algorithm 2 processes the nodes in stack while this is not empty. For each node it loads the 

executor with the state data (marking, previousInputs, and outputSignals), updates which 

signals are stored (see Algorithm 3), checks if there are new signals (relative to the ones in 

the state), and proceeds to Algorithm 4 or 5. 

Algorithm 2: State machine generation  

 
 

Algorithm 3 checks if there are more signals in the state than the ones really needed. If that 

is the case, they are removed (removeUselessSignalsInState). The function returns the newly 

identified signals. 

Algorithm 3: State machine generation – updateSignals function  
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Algorithm 4 handles the case where more signals than the ones in the node being processes 

are needed (this is the case for node 3 in Fig. 2(left). In this case, we need to create replicas 

of this node, one for each combination of signal values — nodes 4 and 5 in Fig. 2(middle) 

are replicas of node 3. 

Algorithm 4: State machine generation – replaceNodeWith-Replicas function  

 
 

Algorithm 5 handles the case where no more signals than the ones in the node being processes 

are needed (this is the case, e.g., for node 5 in Fig. 2(middle)). In this case, we need to create 

arcs for each signal combination of signal values — node 5 gets two output arcs. 
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Fig. 2.  

Initial processing of state 1 (left); after splitting state 3 in states 4 and 5 (middle); after 

processing state 5 (right). 
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Algorithm 5: State machine generation – handleSameSignals function  
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SECTION V. 

Illustrative example 

To exemplify the application of the algorithm, we use three variations of a model already 

presented elsewhere [8] (see Fig. 3). We proceed in a step by step fashion as new nodes are 

popped out of the pending stack. To make this feasible and readable, we use the shorter model, 

as the respective state machine is still very small and hence amenable to visual inspection. 

The three models are presented in Fig. 3 and the three respective generated state machines 

are available at http://gres.uninova.pt/~jpb/isie2019. The shorter one at the top represents the 

entrance to a parking lot. The token in place ”Entrance Free” specifies the initial state before 

entering the park. When the input signal ”arrive” goes from 0 to 1, the event ”ArriveIn” gets 

the value 1, which makes transition ”arrive_ocuppied” ready to fire. As it is also enabled, it 

fires, as IOPT nets have a deterministic maximal step semantics. Then, for transition 

”got_ticket” to fire signal ”GotTicket” must go from 0 to 1, similarly to transition 

”arrive_occupied” for signal ”arrive”. While a token is in place ”GateInOpen” the output 

signal with the same name is set to 1. Finally, when event ”arrive” goes from 1 to 0, event 

”ArriveOut” is set. Notice that the activation of this event on the down edge is signaled by an 

inverted triangle. 

The second model in Fig. 3 adds the modelling of the places in the parking lot, and the third 

model adds an exit to the parking lot controller model. 

The following sequence of graphical representations for state machines were generated using 

the Graphviz software [5], more specifically the dot tool. To that end, the state machine 

generator created a Dot language specification from its internal state machine representation 

after each pop out of the stack. 

In the initial state, only transition ”arrive_occupied” is enabled and it only depends on the 

event ”ArriveIn”. Hence, the only relevant signal is ”arrive”, which can assume values 0 or 

1. For that reason, our state machine starts in one of two possible states: with ”arrive=0” and 

”arrive=1”, as illustrated in Fig. 4(left). 

When handling state 2 (popping it out of the stack), we have two possibilities, either 

”arrive=1” or ”arrive=0”. None of these fires the transition, hence the state machine does not 

get any more states, only arcs (see Fig. 4(right)). 

Regarding state 1, as the ”arrive” signal is with value 0, it remains in the same state if the 

signal maintains its value. Yet, if signal ”arrive” changes to 1, the ”ArriveIn” is activated. 

This allows transition ”arrive_occupied” to fire thus changing the net marking. The new 

marking, together with the ”arrive” signal value defines a new state in the state machine: state 

3 in Fig. 2(left). 

http://gres.uninova.pt/~jpb/isie2019


 
 
Fig. 3.  

Entry to the parking lot (top); entry and parking area (middle); entry, parking area, and exit 

(bottom) 
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Fig. 4.  

Initial states (left); after processing state 2 (right). 
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TABLE I State Data  

 
 

When state 3 is handled (popped out of the stack pending), the algorithm checks if the 

enabled transition depends on more signals then the ones in state 3 and also if all the signals 

in state 3 are needed to check readiness of transitions. In this case, the value of the ”arrive” 

signal is important to define state 3, as the change from 0 to 1 was the motivation for this 

state. Also, the value of signal ”GotTicket” is also important, as the event ”Identified” 

depends on it and is used by transition ”got_ticket”. Hence, an enabled transition needs to 

”know” about a possible last change in the signal ”GotTicket” due to its associated event 

being used by the transition. For this reason, state 3 is removed and split into states 4 and 5, 

including dependencies on the signal ”GotTicket” (see Fig. 2(middle)). 

From state 5, the machine can simply move to state 4 if ”GotTicket” signal value changes to 

0, or remain in state 5 if no change in the signal value occurs (see Fig. 2(right)). 

When in state 4, the machine can move to state 6 if the ”GotTicket” signal value changes to 

1 (see Fig. 5(left)). 

Similarly, to state 3 that was split in 4 and 5, state 6 is removed and split into two (states 7 

and 8) as illustrated in Fig 5(middle). 

Finally, nodes 8 and 7, are processed and the result is illustrated, respectively in Fig. 

5(middle) and 5(right). 

Table I shows the markings and the values of input and output signals associated to each 

state — we denote the input and output signals with prefixes ”ƒ” and ”!” respectively. 

The state machine generator was also run on the three models in Fig. 3 with different values 

for the initial marking in place ”FreePlaces”, which models the parking lot capacity. Table 

II shows the results. The state machine generates roughly 3 to 10 times more states. Yet, 

with wider ranges for possible signal values the difference would be much larger. 
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SECTION VI. 

Conclusions and future work 

The presented algorithm and tool provide support for the execution of Petri nets models in 

controllers with scarce resources relying on their behaviorally equivalent state machine, as 

long as they are able to execute a state machine. The tool already uses the output provided 

by the IOPT-Tools [4] [9]. As future work, we intend to fully integrate the tool in the IOPT-

Tools cloud-based environment and to add code generation directly from the state machine 

representation, as well as benefiting from IOPT-Tools automatic code generation 

capabilities. Another line of work will explore integration of the state machine 

representation with state space verification tools, allowing back annotation of the initial 

Petri net model. 

 
 
Fig. 5.  

Initial processing of state 4 (left); after splitting state 6 in states 7 and 8 (middle); after 

processing state 7 — no more states to process (right). 
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TABLE II Total states in state space from IOPT Tools and in state machine  
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