
Advanced Three-Phase Grid
Synchronization Using Synchronous
Reference Frame Phase-Locked Loops

JOSÉ EDUARDO SANTOS MARAVALHAS SILVA
outubro de 2019

Instituto Superior de Engenharia do Porto

Advanced Three-Phase Grid

Synchronization Using

Synchronous Reference Frame

Phase-Locked Loops

José Eduardo Silva

Master’s Degree in Electrical Engineering

Supervisor: Prof. Rui Miguel Monteiro de Brito, PhD

30 September, 2019

© José Eduardo Silva, 2019

“So long and thanks for all the fish.”

Douglas Adams

THIS PAGE

INTENTIONALLY

LEFT BLANK

Abstract

Modern power electronics devices require grid synchronization to accurately time the

switching of their semiconductor devices. This project steps through the development of

such an algorithm for three-phase grids.

The classical synchronous reference frame phase-locked loop is studied in depth, includ-

ing a detailed analysis of the transforms that give rise to its name. A few improvements

are added in order to mitigate some of the well-known pitfalls of this method.

Using the theory of symmetrical sequence components, new equations that describe the

behaviour of said components in relation to unbalanced three-phase voltages are derived.

These equations are then used to better understand the behaviour of the classical algorithm

under unbalanced conditions. From this, an advanced grid synchronization algorithm

based on multiple phase-locked loops is developed. This algorithm is then discretized and

implemented in a typical microcontroller.

Finally, a custom genetic algorithm is used to fine-tune the parameters of the algorithm

to a specific simulated scenario meant to represent harsh grid conditions.

1

THIS PAGE

INTENTIONALLY

LEFT BLANK

Acknowledgements

This work is dedicated to my wife, Inês, and my son, Tiago.

I would like to thank my supervisor, Prof. Rui Brito, for his selfless support and for

encouraging me to pursue an often overlooked topic.

I wish to express my sincere thanks to my colleagues and friends at the Laboratório

de Sistemas Autónomos who were always there to lift the spirits in times of failure and

frustration and pushed me to finish this work.

I would also like to extend my gratitude to the remaining members of my family for

their support during such a critical time.

Last but not least, I would like to thank my friends, Francisco and Matilde, for those

fun movie nights which definitely helped to reduce my thesis-induced stress levels.

José Eduardo Silva

3

THIS PAGE

INTENTIONALLY

LEFT BLANK

Contents

1 Introduction 15

1.1 Contextualization and Motivation . 15

1.2 Considerations About Project Scope . 16

1.3 Objectives . 16

1.4 Thesis Structure . 17

2 State-of-the-Art 19

2.1 Introduction . 19

2.2 Grid-connected Converters and the Importance of Grid Synchronization . . 19

2.2.1 Thyristor Bridge . 19

2.2.2 Voltage Source Converter . 20

2.3 Grid Synchronization Techniques . 22

2.3.1 Zero-Crossing Detection . 22

2.3.2 Fourier Transform . 24

2.3.3 Kalman Filter . 24

2.3.4 Neural Networks . 25

2.3.5 Phase Locked Loop . 26

3 αβ and DQ0 Transforms 29

3.1 Introduction . 29

3.2 αβ Transform . 29

3.3 DQ0 Transform . 36

4 Synchronous Reference Frame PLL 39

4.1 Introduction . 39

4.2 Components of the SRF-PLL . 39

4.2.1 Controllable Oscillator . 40

4.2.2 Loop Filter . 40

4.2.3 DQ0 Transform as a Phase Detector 41

4.2.4 Performance of the SRF-PLL . 44

4.3 Simple Improvements to the SRF-PLL . 45

5

4.3.1 Static Center Frequency . 45

4.3.2 Amplitude Normalization Scheme . 46

4.3.3 Low-Pass Filtering . 48

4.3.4 Frequency Feed-Forward . 49

5 Extraction of Symmetrical Sequence Components 53

5.1 Introduction . 53

5.2 Symmetrical Sequence Components . 53

5.2.1 Amplitudes and Phase Shifts of Symmetrical Components 55

5.2.2 Special Case for Voltage Unbalance and Phase Balance 57

5.3 Effects of Symmetrical Sequence Components and DC Offsets on SRF-PLL

Performance . 58

5.4 Component Extraction from Filtered Signals 60

5.5 Obtaining Filtered Signals For Component Extraction 62

5.6 I-SRF-PLL with Extraction of Symmetrical Sequence Components 66

6 Discretization and Implementation 71

6.1 Introduction . 71

6.2 Cascaded QSG-SOGI . 71

6.2.1 Discretization . 71

6.2.2 Implementation . 72

6.2.3 Hardware Benchmark . 74

6.3 Frequency Feed-Forward . 75

6.3.1 Discretization . 75

6.3.2 Implementation . 76

6.3.3 Hardware Benchmark . 78

6.4 I-SRF-PLL . 79

6.4.1 Discretization . 79

6.4.2 Implementation . 81

6.4.3 Hardware Benchmark . 83

6.5 Results . 84

7 Optimization 87

7.1 Introduction . 87

7.2 Simulation Setup . 87

7.3 Optimization via Genetic Algorithm . 93

7.3.1 Overview of Genetic Algorithms . 93

7.3.2 Custom Genetic Algorithm . 93

7.3.3 Fitness Function . 96

7.3.4 Optimization Results . 99

6

8 Conclusion and Future Work 105

8.1 Conclusion . 105

8.2 Future Work . 106

A Proof that Sum of Balanced Three-Phase Voltages Is Zero 107

B Proof of Space Vector’s Constant Magnitude 109

C Proof of Trigonometric Relationship 111

D Simplification of αβ Symmetrical Components 113

D.1 α Symmetrical Components . 113

D.2 β Symmetrical Components . 114

D.3 Summary of Simplification Results . 115

E Simplification of DQ0-QA Symmetrical Components 117

E.1 D Symmetrical Components . 117

E.2 Q Symmetrical Components . 118

E.3 Summary of Simplification Results . 119

F Discretization of a Generic Second-Order Transfer Function 121

G Discretization of a First-Order Low-Pass Filter 123

H Discretization of the PI Controller 125

I Signal Conditioning Board 127

7

THIS PAGE

INTENTIONALLY

LEFT BLANK

List of Figures

2.1 Three-phase thyristor bridge . 20

2.2 Three-phase VSC, two-level variant . 21

2.3 Example output waveform of a single phase in different VSCs 21

2.4 Example of a circuit capable of distinguishing between positive-to-negative

and negative-to-positive zero-crossings . 23

2.5 Overview of the Kalman filter algorithm . 25

2.6 Example of a two-layer neural network . 26

2.7 Standard architecture of a PLL . 27

3.1 3D coordinate system . 30

3.2 Perspective (left) and parallel (right) projections 31

3.3 3D coordinate system with isometric image plane represented 31

3.4 Isometric projection . 31

3.5 Space vector resulting from the vectorial sum 32

3.6 Parallelism between image plane and zero plane 33

3.7 αβ reference frame . 33

3.8 DQ0 reference frame at a θr of 10° . 36

3.9 DQ0-DA (left) and DQ0-QA (right) . 38

4.1 Controllable oscillator with integrated reset 40

4.2 Idealized model of a PLL . 41

4.3 DQ0-QA transform as a phase detector . 42

4.4 SRF-PLL . 43

4.5 SRF-PLL under ideal conditions . 44

4.6 SRF-PLL with unbalanced grid and DC offset 45

4.7 SRF-PLL with static center frequency . 46

4.8 SRF-PLL with an ANS and static center frequency 47

4.9 Comparison of performance with and without ANS for different amplitudes 47

4.10 Chosen variant of the ANS with low-pass filtering 49

4.11 Space vector path in the presence of harmonics 50

4.12 I-SRF-PLL . 51

9

4.13 Comparison of a 10 Hz frequency step response without FFF and with FFF 51

5.1 Structure of the QSG-SOGI . 63

5.2 Cascaded QSG-SOGI . 63

5.3 Bode plots for the QSG-SOGI . 64

5.4 Bode plots for the cascaded QSG-SOGI . 65

5.5 Positive and negative sequence calculation block 66

5.6 Full sequence extraction . 67

5.7 Space vector’s path with alpha and beta components of different amplitudes 68

5.8 Performance of the positive sequence I-SRF-PLL without QSG-SOGI input

frequency LPF in the same conditions as Figure 4.6 69

5.9 Performance of the positive sequence I-SRF-PLL with QSG-SOGI input

frequency LPF in the same conditions as Figure 4.6 69

6.1 Comparison between two arctangent approximations 77

6.2 Discrete version of the I-SRF-PLL with FFF mechanism 80

6.3 Quarter-wave sine function LUT . 81

6.4 Experimental setup . 84

6.5 Positive sequence I-SRF-PLL angle estimation 85

6.6 Recreated phase A sine wave . 85

7.1 Generation of symmetrical sequence components in simulated environment . 88

7.2 Adding DC offset, noise and harmonics to the simulated three-phase voltages 88

7.3 Simulation with two FFF mechanisms placed before and after the cascaded

QSG-SOGI filters . 89

7.4 FFF placement selection and cascaded QSG-SOGI frequency input selection 89

7.5 Simulated scenario . 92

7.6 Error signals of two hypothetical solutions for fitness comparison 97

7.7 Weights for the simulated scenario . 98

7.8 Results of tuning parameters picked by trial and error 100

7.9 Results of tuning parameters optimized by the GA 101

7.10 Comparison between positive sequence errors during frequency variations

and during steady-state conditions . 102

7.11 Comparison between negative sequence start-up errors 102

I.1 Board Schematic . 128

I.2 Comparison between phase A and its corresponding board output 129

I.3 Comparison between phase B and its corresponding board output 129

I.4 Comparison between phase C and its corresponding board output 129

10

List of Tables

6.1 Cascaded QSG-SOGI measured worst-case execution times 74

6.2 FFF measured worst-case execution times 79

6.3 Sine LUT maximum error comparison . 82

6.4 I-SRF-PLL measured worst-case execution times 83

7.1 Simulation control variables . 90

7.2 Tuning parameters . 91

7.3 Values of the simulation control variables used 92

7.4 Constraints for each GA variable . 94

7.5 Tuning parameters picked by trial and error and optimized by the GA . . . 99

11

THIS PAGE

INTENTIONALLY

LEFT BLANK

List of Abbreviations

AC Alternating Current

ADC Analog-to-Digital Converter

ANS Amplitude Normalization Scheme

DAC Digital-to-Analog Converter

DC Direct Current

DFT Discrete Fourier Transform

DQ0 Direct-Quadrature Zero

DQ0-DA Direct-Quadrature Zero D Aligned

DQ0-QA Direct-Quadrature Zero Q Aligned

DSC Delayed Signal Cancellation

EKF Extended Kalman Filter

FFF Frequency Feed-Forward

FPU Floating-Point Unit

GA Genetic Algorithm

I-SRF-PLL Improved Synchronous Reference Frame Phase-Locked Loop

ISEP Instituto Superior de Engenharia do Porto

LCC Line-Commutated Converter

LED Light-Emitting Diode

LPF Low-Pass Filter

LTI Linear Time Invariant

LUT Look-Up Table

PI Proportional-Integral

PLL Phase-Locked Loop

PNSC Positive and Negative Sequence Calculation

PWM Pulse-Width Modulation

QSG Quadrature Signal Generator

RAM Random-Access Memory

RMS Root-Mean-Square

13

SOGI Second-Order Generalized Integrator

SRF-PLL Synchronous Reference Frame Phase-Locked Loop

UKF Unscented Kalman Filter

VSC Voltage Source Converter

14

Chapter 1

Introduction

1.1 Contextualization and Motivation

With the ever-increasing global energy consumption, the need for efficient power elec-

tronics solutions has never been greater, with switching converters taking center stage.

While there are many types of switching converters, some for direct current (DC), some

for alternating current (AC), and others even converting between DC and AC, they all

share a key similarity: none of these converters make use of resistive or linear-mode semi-

conductor devices. This allows for high efficiency, usually at the cost of complex control

systems. In contrast, some non-switching converters do not require control systems, rely-

ing only on the physical properties of their semiconductor devices to function[1, 2].

The control of switching grid-connected converters is heavily reliant on proper grid

synchronization techniques that provide crucial information about the current state of

the electrical grid. This information is then used to generate switching signals for the

semiconductor devices based on the particular goal of that grid-connected converter[2].

In order to further develop the skills obtained during the Master’s Degree in Electrical

and Computer Engineering at the Instituto Superior de Engenharia do Porto (ISEP), an

advanced grid synchronization technique based on the widespread Synchronous Reference

Frame Phase-Locked Loop (SRF-PLL) is developed and implemented in a microcontroller-

based system.

The goal of this project is to use the popular three-phase SRF-PLL grid synchroniza-

tion technique as a starting point and combine various improvements to mitigate or even

eliminate its downsides.

Hopefully, the self-contained nature of this project also serves a double purpose of

introducing future fellow students to the topic at hand, as information tends to be scattered

across multiple books - which usually lean towards more generalist overviews and do not

present improvements on the classical SRF-PLL - and research papers - which tend to be

too focused on a single aspect of the technique.

15

1.2 Considerations About Project Scope

Considering that synchronization algorithms are a vast research topic, it is important

to take into account what the actual scope of the project is.

While this project is heavily reliant on simulations, it does not intend to be a detailed

guide in how to properly perform tests for safety-critical applications. Simulated conditions

are ”relaxed” throughout the project, as their sole purpose of existence is to visually

demonstrate to the reader the concepts being explained and shouldn’t be interpreted as

presentations of absolute proof for any given statement. The reader should always refer to

the provided references for such proof. As such, simulated conditions are not necessarily

consistent across multiple simulations, as different conditions can be used to exacerbate

differences in the behaviours being explained.

Unless otherwise specified, this project makes no assumptions about the type of hard-

ware or power electronics converters in which the developed synchronization algorithm

could be deployed. This project aims to present an algorithm that is generic enough to

be applied to any use-case, even if such use-cases are rare. In doing so, the reader should

be able to easily adapt the methodologies presented in this document to their specific

requirements.

Finally, this project does not aim to rigorously compare the developed algorithm with

other algorithms. It is the author’s hope that by heavily focusing on studying and devel-

oping a single algorithm, the quality of the information presented to the reader becomes

much higher than it would otherwise be.

1.3 Objectives

The main goal of the project, as stated before, is to develop and implement an advanced

grid synchronization algorithm based on the SRF-PLL. To do this, the following objectives

should be achieved:

• Study other grid-synchronization techniques and how they compare to the SRF-PLL

• Study the transforms that give the SRF-PLL its characteristics

• Improve on the classical SRF-PLL

• Demonstrate how grid imperfections impact the accuracy of the SRF-PLL

• Develop an advanced synchronization algorithm using the improved SRF-PLL

• Implement the algorithm in a microcontroller and perform hardware benchmarks

• Optimize tuning parameters

16

1.4 Thesis Structure

Chapter 2 describes the current state-of-the-art. This chapter provides a short overview

of grid-connected converters and the need for grid synchronizations algorithms. Then,

explanations for different synchronization techniques are presented.

In Chapter 3 two different transforms that simplify three-phase voltages (or currents)

are presented and explored in depth.

In Chapter 4 the classical SRF-PLL is deconstructed into its basic components and

explained step-by-step. In this chapter the reader is shown how the transforms explained

in Chapter 3 play a crucial role in the SRF-PLL.

In Chapter 5 the decomposition of three-phase voltages into their symmetrical sequence

components is studied in depth, providing equations that relate the parameters of the

components to the parameters of the three-phase voltages. Then, this chapter presents a

short analysis of the impact of the symmetrical sequence components on the SRF-PLL,

and provides a method for extracting all of the symmetrical sequence components, as

well as how to extend the SRF-PLL grid synchronization technique to fully estimate all

variables of said components.

Chapter 6 describes the discretization and implementation of every single part of the

grid synchronization technique. Hardware benchmarks are performed in order to better

understand the feasibility of implementing the technique in a modern microcontroller.

In Chapter 7 a custom genetic algorithm is developed to optimize the tuning parameters

to a specific simulated scenario.

Finally, Chapter 8 contains the conclusions and possible ideas for future work.

17

THIS PAGE

INTENTIONALLY

LEFT BLANK

Chapter 2

State-of-the-Art

2.1 Introduction

In all controllable converters that connect to the electrical grid it is necessary for the

control system to know the exact moment when to switch the semiconductor devices. This

chapter provides a few examples of such converters and why proper grid synchronization

algorithms are an important part of their control systems.

This chapter guides the reader through some of the existing techniques and presents

multiple brief analyses of the inner workings of each method, highlighting their most

important advantages and disadvantages.

2.2 Grid-connected Converters and the Importance of Grid

Synchronization

2.2.1 Thyristor Bridge

A thyristor bridge is an improvement on the classical diode bridge rectifier. Substitut-

ing the diodes by thyristors creates a converter with one degree of freedom: when to turn

on the thyristors. Additionally, a large value of inductance in the DC side guarantees that

the DC side current is nearly constant, which results in improved performance as total

harmonic distortion is significantly reduced[1].

The voltage on the DC side can be controlled via the firing angle, which also controls

the power factor. However, the reactive power is not fully controllable, as the converter

always ”consumes” reactive power[2]. Converters such as this one are known as line-

commutated converters (LCCs)[2] in view of the fact that the semiconductor devices are

partially dependent on the grid’s voltage waveforms to switch on and off. Specifically

for thyristors, even if a turn-on signal is provided, the voltage across the device must be

positive in order for it to actually turn on. Then, the turn-off occurs by itself when the

current is reduced below the holding current[1, 2].

19

Figure 2.1: Three-phase thyristor bridge

The firing angle can be understood as the ”delay” the thyristor takes to switch on in

comparison with a normal diode. As such, the control of this converter directly depends

on a good synchronization with the grid, as any error in the estimated grid angle will

affect the firing angle, which in turn influences the performance of the converter.

As this converter has a quite simple control scheme, the grid synchronization technique

can also be simplistic as there is no point in gathering a lot of highly detailed information

on the current state of the grid if the converter has no way to act on this information.

2.2.2 Voltage Source Converter

A three-phase Voltage Source Converter (VSC) is a type of switching converter capable

of bi-directional AC/DC power transmission[2]. The two-level VSC variant is shown in

Figure 2.2.

By switching the transistors in each ”arm” of the converter according to a reference

sine wave, an output waveform is generated. This output waveform will contain more

high-amplitude harmonics the less levels the converter has[2]. This is shown in Figure 2.3,

where square-wave and pulse-width modulation (PWM) switching techniques are shown

for two-level VSCs, and three-level PWM and multilevel switching are shown for three-level

VSCs and multilevel VSCs, respectively.

As opposed to the thyristor bridge, the semiconductor devices in VSCs can be switched

on and off at will[1]. This implies that VSCs are much more flexible and thus can be used

in less conventional ways. For instance, a VSC can be tasked with injecting currents

into the grid that cancel out harmonics generated by other devices instead of a more

traditional AC to DC - or vice versa - power conversion[2]. Additionally, VSCs also see

significant usage in the control of electric machinery[3], in which case the algorithms for

grid synchronization are sometimes used to estimate parameters of said electric machinery.

20

Figure 2.2: Three-phase VSC, two-level variant

In view of these additional capabilities, the grid synchronization algorithms tend to

be more advanced, sometimes even including estimation of certain harmonics that are of

particular interest[4]. Based on this information, the control system can then selectively

generate output voltages to cancel said harmonics. The control of these converters is also

much more complex, usually requiring non-trivial amounts of processing[2].

Figure 2.3: Example output waveform of a single phase in different VSCs

21

2.3 Grid Synchronization Techniques

2.3.1 Zero-Crossing Detection

One of the simplest synchronization techniques available to power converter design-

ers is the zero-crossing detection method. As the name implies, this open-loop technique

is based upon detecting the moments when the sinusoidal wave crosses the zero point,

thus allowing a frequency measurement each half-period[5, 6]. Assuming that the system

designer implements circuitry which allows the control system to differentiate between

positive-to-negative and negative-to-positive zero-crossings, then the grid angle can also

be determined each half-period. Additionally, the angle between half-periods can be es-

timated by dead-reckoning based upon the measured signal frequency and the time that

has passed since the last zero-crossing detection.

While extremely simple and easy to implement, the zero-crossing method suffers from

a plethora of problems[5, 6]. Noise and harmonic distortion can cause multiple outputs to

occur for the same zero-crossing, and delays in the components used for the zero-crossing

detection directly translate into phase detection errors. In order to mitigate some of these

problems, designers have come up with different improvements[5]:

• Low-Pass Filtering

– Applying a low-pass filter to the input signal works well for signals with small

frequency deviations which have easily separable harmonics. If the frequency

is known a-priori, the filter’s phase shift can be mathematically compensated

as long as its characteristics are predictable, which is the case for digital filters.

However, the same cannot be said for analog filters constructed from physical

components such as resistors and capacitors whose values can vary wildly with

temperature, age (i.e. material degradation) and other similarly unpredictable

factors.

• Digital signal conditioning and post-processing

– In order to deal with multiple outputs for the same zero-crossing and erratic

outputs due to voltage ”notches” caused by commutation of power converters,

a microcontroller can be programmed to ignore zero-crossing detections which

do not meet the expected timing requirements from previous measurements.

This is known as rule-based filtering. In conjunction with other digital process-

ing techniques, this approach can increase the robustness of the zero-crossing

detection method with minimal computational resources. However, expecting

the next zero-crossing detection to be close to the next half-period implies that

the system is assuming that the frequency is highly stable, which limits the

usability of the technique.

22

• Improved zero-crossing detection hardware

– A variety of different hardware designs can be used to improve the detection.

For instance, instead of a simple comparator which informs a microcontroller-

based system when the sine wave is positive or negative, two comparators can be

used: one which outputs a detection signal before the actual zero-crossing, and

another which outputs a detection signal after. Then, the microcontroller can

compare the outputs of both comparators and linearly interpolate between them

to estimate when the zero crossing actually occurred. This type of hardware is

shown to improve accuracy, but it is still not completely immune to phase error.

An example of such hardware is shown in Figure 2.4, where the voltage drops of

the optocouplers’ light-emitting diodes (LEDs) and the external diodes cause

the outputs to switch state before and after the zero crossing. In this example

circuit, a major source of error would be manufacturing differences between the

multiple diodes, resistors and optocouplers used.

While there are many possible improvements, some of them not mentioned in the pre-

vious list, truly eliminating phase errors is not just hard to achieve, it is near impossible[5].

Even if the delays caused by hardware imperfections (such as diode forward voltage in de-

tector circuits[5]) and microcontroller response times can somehow be compensated for,

this technique still relies on only two data points per wave period, thus not being able to

capture any frequency fluctuations which happen in between the data points[6].

Figure 2.4: Example of a circuit capable of distinguishing between positive-to-negative

and negative-to-positive zero-crossings

23

2.3.2 Fourier Transform

Fourier transform based techniques make use of the discrete Fourier transform (DFT) -

which is normally applied to the calculation of a signal’s spectrum - to estimate the phase

angle. This technique offers significant advantages, such as being able to perform accurate

angle estimation even when presented with highly distorted, noisy and unbalanced three-

phase voltages without sacrificing response time[6, 7].

One particularly important advantage to DFT-based techniques is that it is an open-

loop method, thus no parameter tuning is required. This makes it more predictable than

other techniques whose tuning parameters are affected by the conditions of the grid [6].

Unfortunately, the downsides of this approach are quite significant as well. One such

downside is that most methods use variable sampling rate techniques to cope with fre-

quency variations[8]. This immensely complicates control systems, as they directly depend

on the grid-synchronization algorithm[7]. To solve this, some methods use a fixed sampling

rate and instead rely on a dynamically adjusted observation window to cope with distinct

frequencies, but since the size of the window must be an integer number of samples, a

high sampling rate must be used to achieve good frequency resolution[7]. Additionally,

the problems that spectral leakage cause are usually not addressed.

Fourier transform based techniques are also extremely resource intensive, and even vari-

ations that attempt to reduce the computational complexity still require up to hundreds

of additions and multiplications[6, 7]. Paired with the requirement for high-sampling fre-

quencies, not only to achieve a good resolution of the observation window (for fixed sample-

rate methods) but also because the control systems of power converters also require it[7],

DFT-based techniques can be somewhat unsuitable for most modern microcontrollers,

even high-performance ones. Some attempts to reduce the computational burden include

interleaving specific steps of the algorithm between samples and linearly extrapolating

what the outputs should be whenever said steps are skipped[7].

2.3.3 Kalman Filter

A Kalman filter is an algorithm capable of providing optimal estimation of system’s

state variables and their uncertainties[9, 10]. The first step of the Kalman filter is the

predict step, where the state variables and their uncertainties are predicted using a model

of the system. Then, the update step compares the results of the measurements with the

predicted state, and the state is updated accordingly. An overview of the algorithm is

shown in Figure 2.5.

The Kalman filter and its many variations have become a staple in a variety of ap-

plications, such as robotic control systems, navigation, target tracking, multisensor data

fusion and computer vision[10].

24

Figure 2.5: Overview of the Kalman filter algorithm (image published under public domain

on Wikimedia Commons)

Grid-synchronization using Kalman filters has been performed successfully[11, 12].

Since grid-synchronization is a non-linear problem, variations of the Kalman filter that

are more suited towards non-linear problems such as the extended Kalman filter (EKF)

and the unscented Kalman filter (UKF) are typically employed [13, 14].

While exceptionally versatile, the Kalman filter has not seen much use in grid syn-

chronization applications. This may be due to the computational complexity required,

or simply just due to the lack of research for this specific application[6]. Nonetheless,

given its widespread use in other areas, the appearance of more Kalman filter based grid-

synchronization techniques is to be expected.

2.3.4 Neural Networks

Neural networks are sets of brain-inspired algorithms that loosely model how real neu-

rons work[15]. These algorithms have been used in a huge variety of applications, such as

image and video processing, image classification, object detection, speech recognition, ma-

chine translation, medical imaging, visual navigation, control systems, weather forecasting

and much more [15]. Their massive flexibility stems from the huge interconnectedness of

the network and the fact that each neuron employs some non-linear function to the sum of

its inputs. This allows the neural network to effectively approximate extremely complex,

hyper-dimensional non-linear functions.

Figure 2.6 presents a trivial example of a neural network that is two-layers deep1.

The left-most dots represent input neurons, while the middle-most and right-most circles

represent neurons. The neurons are connected by synapses, represented by the arrows,

1Some networks can be hundreds of layers deep

25

Figure 2.6: Example of a two-layer neural network (image published under public domain

on Wikimedia Commons)

which are individually weighted. Each neuron sums the weighted inputs, applies a non-

linear function - such as the sigmoid function - to it and passes its output on to the next

layer assuming it exists, or its output is simply the output of the network if said neuron

belongs to the output layer. It should be noted that not all neurons need to use the same

non-linear function.

A neural network learns by adjusting the weights of the synapses. Many learning

algorithms exist, but they all fundamentally focus on getting the neural network to behave

properly for a set of training data, usually by attempting to maximize some ”score” based

on the performance of the network[15]. Broadly speaking, the bigger and more varied the

data set is, the better.

The use of neural networks in power electronics is nothing new[16], and even out-

dated research by today’s standards shows that neural networks can fiercely compete with

alternative algorithms[6].

The main disadvantage of neural networks is the immense processing power required.

Neural networks - much like human brains - are massively parallel, while typical processing

units execute instructions in a sequential fashion and thus are not well suited for the

task[15].

2.3.5 Phase Locked Loop

Among the different possible techniques for angle estimation, the phase-locked loop

(PLL) is one of the most popular methods for synchronizing power electronics converters

and has been used in a vast range of applications since its first appearance in the 1930s

for usage in the reception of radio signals[6, 17, 18].

The PLL is a nonlinear negative-feedback system whose output has the same frequency

and is in phase with the input. It consists of three main components: a phase detector, a

loop filter and a controllable oscillator.

26

Figure 2.7: Standard architecture of a PLL

• Phase Detector

– Compares the phase of the PLL’s output and input signals, and produces an

error signal which is proportional to the phase difference.

• Loop filter

– Filters the output of the phase detector, as the phase detector might introduce

unwanted components into the error signal. The filter output is fed to the

controllable oscillator.

• Controllable oscillator

– Produces a waveform of a given type (e.g. sine, triangle, sawtooth etc.) whose

frequency depends on the oscillator’s input. This waveform is considered to

be the output of the PLL, and is then fed back into the phase detector, thus

completing the loop.

In order to understand how a PLL works, consider a PLL operating in steady state,

where the outputs of the phase detector and loop filter are constant, and the output of

the controllable oscillator is some periodic waveform with a given frequency. If a small

disturbance occurs such that the output’s phase (in comparison with the input) is now

lower, the output of the phase detector increases. This leads to an increase in the control-

lable oscillator’s input, which in turn increases the frequency of the PLL’s output signal,

thus allowing it to ”catch up” with the input signal. Conversely, if the output’s phase

increases, the phase detector reduces its output, thus ”slowing down” the oscillator and

allowing the input signal to ”catch up” with the output signal[6].

While far from being perfect, the PLL technique allows for accurate grid angle tracking

in comparison to the zero-crossing technique, while suffering from almost none of its flaws.

In comparison with the more advanced techniques, its implementation is simple, straight-

forward and also has a relatively low computational burden allowing for implementation in

low-cost microcontrollers, but the more advanced methods tend to be more robust and/or

have faster system dynamics[6]. Hence, the PLL method strikes a good balance between

the advantages and disadvantages of the available methods, and this may be the reason

why it has seen widespread use.

27

THIS PAGE

INTENTIONALLY

LEFT BLANK

Chapter 3

αβ and DQ0 Transforms

3.1 Introduction

The αβ and the direct-quadrature-zero (DQ0) transforms, alternatively known as

the Clarke and Park transforms, are useful analysis tools that can be used to simplify

three-phase voltages (and/or currents) into two-phase and DC signals, respectively. These

transforms are usually employed in three-phase grid synchronization and converter control

algorithms, thus a proper understanding of them is absolutely crucial.

Most literature tends to focus heavily on mathematical deduction to explain these

transforms. This chapter takes a different approach by leveraging the reader’s geometrical

intuition in order to provide a clearer explanation of the inner workings of these transforms,

and only relying on pure mathematical proofs where they are either trivial or where the

alternatives would be more difficult to understand.

3.2 αβ Transform

In an ideal and perfectly balanced three-phase system, the voltages va(t), vb(t) and

vc(t) are given by:

va(t) = V · sin(θ(t)); vb(t) = V · sin
(
θ(t)− 2π

3

)
; vc(t) = V · sin

(
θ(t) +

2π

3

)
(3.1)

Where V is the amplitude of the sine waves and θ(t) is the angle of the grid.

While most three-phase systems are usually close to a balanced system, this is only

so because electrical equipment and/or regulations require it. Technically, the voltages

need not be strictly interdependent. Therefore, one possible way to represent the voltages

involves the usage of a three-dimensional, orthogonal coordinate system. This way, each

voltage va(t), vb(t) and vc(t) is plotted on its corresponding axis, which will be named A,

B and C. In Figure 3.1 such a coordinate system is shown, with a cube of side length 2

centered at the origin to better portray depth.

29

Figure 3.1 makes use of what is known as a perspective projection, which functions the

same way as a camera or a human eye[19]. This type of projection introduces distortion

into the objects being viewed. Any objects that are closer to the ”camera” are enlarged,

while objects away from it are shrunk. This provides the illusion of depth, even though

the image itself is just a two-dimensional entity[19].

A projection can be understood as if light rays, known here as projection lines, were to

hit the object being viewed and then intersect a plane known as the image plane. As the

name implies, this plane is where the image of the object is formed from the intersection

with the projection lines. In a perspective projection, the projections lines all meet at a

single point behind the image plane.

An alternative to the perspective projection is a parallel projection, which is actually

a group of many different types of projections. In any parallel projection, the projection

lines never meet, leading to parallel lines in the original object always remaining parallel

in the resulting image and thus no distortion due to distance occurs[19].

Figure 3.2 depicts identical circles being projected onto different image planes, using

the perspective and one type of parallel projections. Only a few projection lines are

shown for clarity. Note how the circle suffers no distortion due to distance in the parallel

projection.

The isometric projection is a type of parallel projection in which the image plane is

placed in such a way that all three axes are equally distorted, resulting in them being

equally spaced apart and having equal units[19]. Figure 3.3 shows the three-dimensional

coordinate system from Figure 3.1 being projected on one possible isometric image plane.

The result of the projection is shown in Figure 3.4.

Please note that it does not matter how far away from the origin the image plane is

placed since no distortion due to distance occurs. In fact, the image plane from Figure

3.1 could even be placed at the origin as long as the plane is in the correct orientation.

Figure 3.1: 3D coordinate system

30

Figure 3.2: Perspective (left) and parallel (right) projections

Figure 3.3: 3D coordinate system with isometric image plane represented

Figure 3.4: Isometric projection

31

If each voltage at a given time is considered to be a vector aligned with its respective

axis, then the vectorial sum of #»va,
#»vb and #»vc results in what is known as a space vector

#»

S = (va(t), vb(t), vc(t))[20], as shown in Figure 3.5.

In an ideal three-phase system, where the voltages are given exactly by equations 3.1,

the following condition is true, as demonstrated in Appendix A:

va(t) + vb(t) + vc(t) = 0 (3.2)

The general equation of a plane in any given XYZ coordinate system is given by:

A · x+B · y + C · z +D = 0 (3.3)

Where #»n = (A,B,C) is the normal vector of the plane and D is the shortest distance

from the plane to the origin[21].

Notice how similar equations 3.2 and 3.3 are. In fact, they are equal for A = B = C = 1

and D = 0. This means that in a balanced three-phase system, the space vector
#»

S will

always be contained inside a plane, known as the zero plane, which is perpendicular to

the vector #»n = (1, 1, 1) and also goes through the origin.

Interestingly, the isometric projection image plane is also perpendicular to vector #»n =

(1, 1, 1), which makes it parallel to the zero plane, shown in Figure 3.6. This is due to

the image plane being placed at an azimuth of 45 ° and at an elevation of arcsin(1/
√

3) ≈
35.26 °[19], which when transformed from spherical coordinates to Cartesian coordinates

equals exactly (1, 1, 1) for unit distance from the origin. Due to this parallelism between the

image and zero planes, the magnitude of the space vector
#»

S is preserved in the isometric

projection during balanced grid conditions.

Figure 3.5: Space vector resulting from the vectorial sum: perspective (left) and isometric

(right) projections

32

Figure 3.6: Parallelism between image plane and zero plane

The next step is to add a new reference frame on top of the image plane, called the αβ

reference frame, such that the α axis is coincident with the A axis, as shown in Figure 3.7.

The goal of this is to find two vectors # »vα and # »vβ, thus converting the three-phase system

into a two-phase system.

Notice how the α axis is longer than the A axis. This is because an isometric projection

introduces a shrink factor of
√

2/3 on each axis[19]. This however poses no problem to

our analysis, since we can simply scale the magnitudes of vectors #»va,
#»vb and #»vc accordingly.

Figure 3.7: αβ reference frame

33

It follows from basic geometry that # »vα and # »vβ are simply the sum of the projection of

vectors #»va,
#»vb and #»vc onto the the α and β axes, respectively. Knowing that the magnitudes

of each voltage appear scaled by
√

2/3 on the isometric projection, one can easily extract
»vα and # »vβ using basic trigonometry:vα(t) =

√
2
3 · (cos (0 °) · va(t) + cos (120 °) · vb(t) + cos (240 °) · vc(t))

vβ(t) =
√

2
3 · (sin (0 °) · va(t) + sin (120 °) · vb(t) + sin (240 °) · vc(t))

(3.4)

Simplifying the above equations into a single matrix equation yields:

[
vα(t)

vβ(t)

]
=

√
2

3
·

[
1 −1

2 −1
2

0
√
3
2 −

√
3
2

]
·


va(t)

vb(t)

vc(t)

 (3.5)

Equation 3.5 is known as the power-invariant version of the αβ transform, which allows

for the correct calculation of active and reactive power using vα(t) and vβ(t).

In unbalanced systems, the space vector
#»

S is not contained within the zero plane

since equation 3.2 is no longer valid, which leads to a distortion in its amplitude when

projected to the image plane. This leads some authors to include a third component in

the αβ transform, known as v0(t)[22]. Since this component represents how unbalanced

the system is, it follows that v0(t) must be the sum of va(t), vb(t) and vc(t), but this sum

must be scaled correctly in order to preserve power. The full transform is given by[22]:
vα(t)

vβ(t)

v0(t)

 =

√
2

3
·


1 −1

2 −1
2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

 ·

va(t)

vb(t)

vc(t)

 (3.6)

Let iα(t) and iβ(t) be the αβ transformations of the three-phase currents in a given

system. The equations for power are given by[22]:
p0(t) = v0(t) · i0(t)

p(t) = vα(t) · iα(t) + vβ(t) · iβ(t)

q(t) = vα(t) · iβ(t)− vβ(t) · iα(t)

(3.7)

Where p(t) is instantaneous real power, q(t) is instantaneous imaginary power, and

p0(t) is instantaneous zero-sequence power.

While p(t) matches exactly the definition of active power, the same cannot be said

for q(t) which has a completely different physical meaning from reactive power. However,

under balanced conditions, q(t) happens to take the exact same value as the reactive

power[22]. The value of p0(t) is usually ignored due to being small (ideally zero) or

considered to be a part of p(t) since it also represents active power.

34

Sometimes it is beneficial to scale the αβ transform such that the amplitude V of va(t),

vb(t) and vc(t) matches the amplitudes of vα(t) and vβ(t). Looking at Figure 3.7, it is

easy to see that in order for the amplitude of vα(t) to match V , the space vector
#»

S must

be scaled such that its magnitude (i.e. its norm) is V . This way, when
#»

S is aligned with

the α axis, vα(t) will have amplitude V . Since
#»

S has a constant magnitude1 of
√

3/2 · V ,

the voltages va(t), vb(t) and vc(t) must be scaled by
√

2/3 to force the space vector
#»

S to

have a magnitude of V .

Applying this scaling factor to equation 3.6 results in:


v′α(t)

v′β(t)

v′0(t)

 =

√
2

3
·
√

2

3
·


1 −1

2 −1
2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

 ·

va(t)

vb(t)

vc(t)

 (3.8)

Where v′α(t), v′β(t) and v′0(t) are the power-variant, amplitude-invariant versions of

vα(t), vβ(t) and v0(t).

Simplifying equation 3.8 yields:


v′α(t)

v′β(t)

v′0(t)

 =
2

3
·


1 −1

2 −1
2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

 ·

va(t)

vb(t)

vc(t)

 (3.9)

Notice in equation 3.8 how scaling voltages va(t), vb(t) and vc(t) by
√

2/3 is actually

equivalent to scaling vα(t), vβ(t) and v0(t) by
√

3/2. This means that power can still be

easily calculated using the power-variant version of the transform by taking this scaling

into account: 
p0(t) =

√
3
2 · v

′
0(t) ·

√
3
2 · i

′
0(t)

p(t) =
√

3
2 · v

′
α(t) ·

√
3
2 · i

′
α(t) +

√
3
2 · v

′
β(t) ·

√
3
2 · i

′
β(t)

q(t) =
√

3
2 · v

′
α(t) ·

√
3
2 · i

′
β(t)−

√
3
2 · v

′
β(t) ·

√
3
2 · i

′
α(t)

(3.10)

Simplifying the above equations:


p0(t) = 3

2 · v
′
0(t) · i′0(t)

p(t) = 3
2 ·
(
v′α(t) · i′α(t) + v′β(t) · i′β(t)

)
q(t) = 3

2 ·
(
v′α(t) · i′β(t)− v′β(t) · i′α(t)

) (3.11)

1Proof provided in Appendix B

35

3.3 DQ0 Transform

The DQ0 transform is very similar to the αβ transform, but instead it simply rotates

the whole αβ coordinate system by a given angle θr(t)[20]. In Figure 3.8, the resulting vd

and vq components of the DQ0 transform are shown for a θr of 10 °, with the A, B and C

axis omitted for clarity.

Since the DQ0 transform is just a simple rotation of the αβ transform, equations 3.4

can be easily adapted to fit the DQ0 transform. Consider the following example: since

the D axis is just a rotation of the α axis then a rotation by 10 ° means that the B axis

will now be closer by 10 ° to the D axis when compared to the α axis. So, instead of using

cos (120 °) to compute the contribution of vb(t) to vα(t), one should use cos (120 °− 10 °)
to get the contribution of vb(t) to vd(t). Generalizing the logic for any angle θr, for all A

B and C axis and for both vd(t) and vq(t) components yields:

vd(t) =

√
2

3
· (cos (−θr(t)) · va(t) + cos (120 °− θr(t)) · vb(t)

+ cos (240 °− θr(t)) · vc(t))

vq(t) =

√
2

3
· (sin (−θr(t)) · va(t) + sin (120 °− θr(t)) · vb(t)

+ sin (240 °− θr(t)) · vc(t))

(3.12)

Figure 3.8: DQ0 reference frame at a θr of 10°

36

The zero component of the DQ0 transform follows the same logic as the αβ transform.

Hence, the power-invariant version of the DQ0 transform can also be written in matrix

form:
vd(t)

vq(t)

v0(t)

 =

√
2

3
·


cos (θr(t)) cos (θr(t)− 120°) cos (θr(t) + 120°)

− sin (θr(t)) − sin (θr(t)− 120°) − sin (θr(t) + 120°)
1√
2

1√
2

1√
2

·

va(t)

vb(t)

vc(t)

 (3.13)

The above equation 3.13 differs slightly from equations 3.12 due to the application of

cosine and sine symmetries. In literature, the above equation may take other different,

albeit equivalent forms due to the same reason.

For some specific applications it can be useful to perform the αβ transform first, and

then perform a counter-clockwise rotation to the reference system[23] to obtain vd(t) and

vq(t): [
vd(t)

vq(t)

]
=

[
cos (θr(t)) sin (θr(t))

− sin (θr(t)) cos (θr(t))

]
·

[
vα(t)

vβ(t)

]
(3.14)

Figure 3.8 represents precisely what equation 3.14 does, where the D axis is a simple

rotation of the α axis.

The arguments made for the preservation of amplitudes also hold for the DQ0 trans-

form, meaning that the power-variant, amplitude preserving versions can also be obtained

by applying a scaling factor of
√

2/3 to equations 3.13 and 3.14.

If the angle θr(t) has the same angular frequency as the grid angle θ(t), the D and Q

axes will ”follow” the space vector as it rotates, which results in constant vd(t) and vq(t)

values. If θr(t) not only has the same angular frequency but is also exactly equal to θ(t)

(i.e. there is no phase difference), then the D axis will always be 90 ° ahead of
#»

S , and
#»

S

will be coincident with the negative semi-axis Q. This results in vq(t) taking the negative

value of the magnitude of
#»

S , and in vd(t) becoming zero.

Another variant of the DQ0 transform involves starting the D axis 90 ° behind the

α axis (i.e. the Q axis becomes aligned with the α for θr(t) = 0). This has the clear

advantage that if θr(t) = θ(t), then vd(t) takes the positive value of the magnitude of
#»

S ,

while vq(t) becomes zero. To obtain this variant of the DQ0 transform, simply subtract

90 ° to θr(t) in equation 3.13. Doing this and simplifying results in:
vd(t)

vq(t)

v0(t)

 =

√
2

3
·


sin (θr(t)) sin (θr(t)− 120 °) sin (θr(t) + 120 °)

cos (θr(t)) cos (θr(t)− 120 °) cos (θr(t) + 120 °)
1√
2

1√
2

1√
2

 ·

va(t)

vb(t)

vc(t)

 (3.15)

This variant of the DQ0 transform can also be obtained directly from the αβ transform

by applying the same 90 ° subtraction to equation 3.14 and further simplifying:[
vd(t)

vq(t)

]
=

[
sin (θr(t)) − cos (θr(t))

cos (θr(t)) sin (θr(t))

]
·

[
vα(t)

vβ(t)

]
(3.16)

37

To reduce ambiguity when referring to the DQ0 transform, from this point on the

transforms that convert directly from three-phase voltages to the DQ0 reference frame

will be referenced as ”ABC to DQ0” transforms, whereas the others will be referenced as

”αβ to DQ0” transforms. Additionally, transforms that align the D axis with the α axis

at θr(t) = 0 will be known as the DQ0-DA transforms, whereas transforms that align the

Q axis will be known as DQ0-QA.

Using this new nomenclature, one can see that there are 8 possible versions of the DQ0

transform:

• ABC to DQ0-DA - Power invariant (eq. 3.13)

• ABC to DQ0-DA - Amplitude invariant (eq. 3.13 with
√

2/3 scaling factor)

• ABC to DQ0-QA - Power invariant (eq. 3.15)

• ABC to DQ0-QA - Amplitude invariant (eq. 3.15 with
√

2/3 scaling factor)

• αβ to DQ0-DA - Power invariant (eq. 3.14 applied to eq. 3.6)

• αβ to DQ0-DA - Amplitude invariant (eq. 3.14 applied to eq. 3.9)

• αβ to DQ0-QA - Power invariant (eq. 3.16 applied to eq. 3.6)

• αβ to DQ0-QA - Amplitude invariant (eq. 3.16 applied to eq. 3.9)

Figure 3.9: DQ0-DA (left) and DQ0-QA (right)

38

Chapter 4

Synchronous Reference Frame

PLL

4.1 Introduction

The synchronous reference frame phase-locked loop (SRF-PLL) is a well established

three-phase grid synchronization technique[4, 6, 18]. This chapter presents its fundamental

building blocks and improves on the classical SRF-PLL. To limit the scope of this project,

the simulations presented are purely demonstrative and should not be taken as strict proof

of the concepts being demonstrated.

4.2 Components of the SRF-PLL

Let va(t), vb(t) and vc(t) be ideal three-phase voltages as defined in equations 3.1. Let

θ(t) be the angle of the grid and ωg(t) its angular frequency1, such that:

θ(t) =

∫
ωg(t) · dt (4.1)

The goal of the SRF-PLL is to reconstruct the signal θ(t) from the three-phase voltages

va(t), vb(t) and vc(t). The reconstructed signal θ̂(t) is the output of the PLL.

The error between the real grid angle θ(t) and the reconstructed angle θ̂(t) is given by:

φ(t) = θ(t)− θ̂(t) (4.2)

In an ideal PLL, the phase detector block would directly output φ(t). Since ideal phase

detectors do not exist, the DQ0 transform can be used to produce a signal proportional to

φ(t). Before trying to understand how, it is easier to first assume an ideal phase detector

and work backwards from the output of the PLL, the controllable oscillator, which will be

the block generating the signal θ̂(t).

1Ideally ωg(t) would not change over time, however it may vary slightly in practice

39

4.2.1 Controllable Oscillator

The controllable oscillator can be implemented as an integrator block which, when fed

some frequency ωi(t) equal to the grid’s angular frequency ωg(t), generates a signal equal

to θ(t) with some unknown phase difference. Due to the cyclic nature of the sinusoidal

function, the integrator can be reset every 2π radians to avoid unbounded variables, as

θ̂(t) will tend towards infinity. This results in a controllable oscillator which outputs a

sawtooth wave at the specified input frequency.

4.2.2 Loop Filter

The loop filter must generate some input frequency ωi(t) to feed the controllable os-

cillator based on the phase detector’s output φ(t). Notice the importance of the sign of

φ(t) to the loop filter: if φ(t) is positive, this means that θ̂(t) < θ(t). As was previously

mentioned, to correct this error ωi(t) must increase to allow θ̂(t) to increase faster than

θ(t), such that θ̂(t) catches up with θ(t). If φ(t) is negative the reverse must happen. The

properties of the loop filter now become clearer:

• Increase ωi(t) if φ(t) is positive

• Decrease ωi(t) if φ(t) is negative

• Hold the current value of ωi(t) if φ(t) is zero

Technically, a simple integrator would suffice, but system dynamics may not be satisfac-

tory. A more appropriate choice for a loop filter is a proportional-integral (PI) controller,

which also incorporates the required integral action. With a non-ideal phase compara-

tor, it might also be beneficial to add low-pass filtering before the PI controller to reduce

unwanted frequency components that the phase comparator might produce[4, 18].

On a side note, under steady-state conditions (i.e. φ(t) is zero) the frequency ωi(t)

will match ωg(t), meaning that the PLL also extracts the grid’s frequency. This can be

useful for advanced control strategies which rely on online parameter tuning to improve

PLL performance[18].

Figure 4.1: Controllable oscillator with integrated reset

40

Figure 4.2: Idealized model of a PLL

Figure 4.2 represents an idealized model of the PLL, where the phase detector block

outputs precisely φ(t). This model, with a few modifications to include noise and distur-

bance sources, could indeed be used to tune PI parameters[4]. Unfortunately, modeling

the non-linear behaviour of a real phase detector as a disturbance source can be quite

difficult. However, this simplistic model is quite useful to see exactly how a PLL can be

understood as being a classical negative-feedback loop, where the loop filter (i.e. the PI

controller) serves as a control system to the oscillator.

4.2.3 DQ0 Transform as a Phase Detector

The phase detector can be easily implemented using the ABC to DQ0-QA transform

described in Chapter 3. Visually, it is easy to understand how the DQ0-QA transform can

be used to detect phase: since the D axis starts aligned with
#»

S at θ(t) = θ̂(t) = 0, then

any slight phase difference between the real and estimated angles will cause a non-zero

vq(t) signal, as demonstrated in Figure 4.3. From this, it is fairly obvious that vq(t) is

proportional to φ(t) as long as the D axis is relatively close to
#»

S . Additionally, vd(t) will

also take the amplitude of the space vector when the D axis is aligned with it.

For this particular application the amplitude-invariant version is more convenient than

the power-invariant version since using it allows for estimation of the grid’s amplitude,

which will prove useful later. As per Chapter 3, this transform is simply equation 3.15

with an additional scaling factor of
√

2/3:

[
vd(t)

vq(t)

]
=

√
2

3
·
√

2

3
·

[
sin (θr(t)) sin (θr(t)− 120 °) sin (θr(t) + 120 °)

cos (θr(t)) cos (θr(t)− 120 °) cos (θr(t) + 120 °)

]
·


va(t)

vb(t)

vc(t)

 (4.3)

The zero component is omitted from the above equation since it is of no use to the

SRF-PLL.

41

Figure 4.3: DQ0-QA transform as a phase detector

Now consider what happens when θ̂(t) is used as the rotation angle θr(t). From equa-

tion 4.2 it follows that:

θ̂(t) = θ(t)− φ(t) (4.4)

Applying the substitution 4.4 and the substitution 3.1 to equation 4.3 and only ex-

tracting the equation for vq(t) yields:

vq(t) =
2

3
(cos (θ(t)− φ(t)) · V · sin (θ(t))

+ cos (θ(t)− φ(t)− 120 °) · V · sin (θ(t)− 120 °)

+ cos (θ(t)− φ(t) + 120 °) · V · sin (θ(t) + 120 °))

(4.5)

Considering the following relation2: cos (a− b) · sin (a) = 1
2 · (sin (2 · a− b) + sin (b)),

then:

vq(t) =
2

3
· 1

2
· V · (sin (2 · θ(t)− φ(t)) + sin (φ(t))

+ sin (2 · (θ(t)− 120 °)− φ(t)) + sin (φ(t))

+ sin (2 · (θ(t) + 120 °)− φ(t)) + sin (φ(t)))

(4.6)

Further simplification leads to:

vq(t) = V · sin (φ(t)) +
V

3
· (sin (2 · θ(t)− φ(t)) + sin (2 · (θ(t)− 120 °)− φ(t))

+ sin (2 · (θ(t) + 120 °)− φ(t)))

(4.7)

2Proof provided in Appendix C

42

Note how in equation 4.7, vq(t) takes the value of V · sin (φ(t)) plus some additional

double-frequency components.

Since the double-frequency components in equation 4.7 all have the same amplitude

and are 120 ° apart from each other, then they will perfectly cancel out and result in the

following equation:

vq(t) = V · sin (φ(t)) (4.8)

Solving for φ(t):

φ(t) = arcsin

(
vq(t)

V

)
(4.9)

However, if φ(t) is sufficiently small, then it may be approximated as:

φ(t) ≈ vq(t)

V
(4.10)

Hence, vq(t) can be used as the phase detector’s output as shown in Figure 4.4.

The more astute reader may have noticed that equation 4.9 can also be derived by

directly analyzing Figure 4.3 and realizing that
#»

S , the D axis and #»v q form a right triangle

if #»v q is shifted along the D axis to point at the tip of
#»

S . But doing so skips over equation

4.7, which provides insight into the fundamental condition for equation 4.9 to be valid:

the grid must be balanced. Otherwise, the double-frequency components do not perfectly

cancel each other, leading to oscillations in vq(t).

Another interesting fact is that vq(t) is also zero when φ(t) = +−180 °. This means that

under ideal grid conditions and ideal starting conditions, the SRF-PLL would not be able

to correct the phase difference. However, even the tiniest deviation from +−180 ° would

cause the SRF-PLL to correct itself, since this point is effectively an unstable equilibrium

point. For example, if φ(t) was 179 ° this would result in positive vq(t), thus the PI would

increase the frequency. The DQ0 axis would then rotate anti-clockwise faster than the

space vector such that φ(t) would tend to zero over time.

Figure 4.4: SRF-PLL

43

4.2.4 Performance of the SRF-PLL

The performance of the SRF-PLL is dependent on PI parameters, which is a trade-off

between response time and disturbance rejection[4]. Figure 4.5 shows a Matlab/Simulink

simulation of the performance of the SRF-PLL under ideal conditions with aggressive PI

tuning parameters (i.e. high bandwidth) obtained by trial and error. As expected, the

SRF-PLL starts by increasing the oscillator frequency beyond the actual grid frequency

(50 Hz) to allow θ̂(t) to ”catch-up” with θ(t). The performance of the SRF-PLL is good

under ideal conditions, however it degrades rapidly in the presence of noise, grid unbalance,

harmonics and DC offset[6].

Figure 4.6 presents the results for an unbalanced grid and non-zero DC offsets. Even

without noise and harmonics, there are high amplitude steady-state oscillations. Lowering

the bandwidth mitigates this problem at the expense of slower system dynamics. From

Figure 4.6 one can deduce that the signal vq(t) has multiple harmonics present, as the

steady-state oscillations are clearly not pure sine waves. In the previous analysis of the

DQ0 transform as a phase detector, equation 4.7 points to the non-perfect cancellation of

the double-frequency components under an unbalanced grid, but never to the existence of

components with other frequencies. Since an analysis of the effects of DC offset has not

been carried up to this point, the simulation results point to the existence of harmonics

generated by the DC offsets at a frequency other than double the grid’s frequency. If this

was not the case, the steady-state oscillations should have been close to pure sine waves.

Figure 4.5: SRF-PLL under ideal conditions: amplitude = 50 V, proportional gain = 50,

integral gain = 500

44

Figure 4.6: SRF-PLL with unbalanced grid and DC offset: amplitudes = [55 50 45] V and

DC offsets = [5 2 -4] V for phases A, B and C, respectively. Maximum steady-state error

is approximately 5.7 °

4.3 Simple Improvements to the SRF-PLL

Many variations of the SRF-PLL have been studied in order to improve its performance

under non-ideal conditions[4, 6, 18]. A lot of improvements are relatively simple to add.

However, while each improvement requires relatively low computational effort, the com-

bination of many different improvements can easily become a significant burden. Hence,

improving the SRF-PLL is also a trade-off between performance and computational effort.

In this section, only the simplest improvements are studied.

4.3.1 Static Center Frequency

One of the easiest improvements to add to the SRF-PLL is to simply sum the expected

grid frequency to the PI output. This reduces the control effort of the PI controller since it

only needs to compensate for small deviations instead of actually estimating the frequency,

thus mitigating the long start up required.

In the best case scenario, the real grid frequency matches the expected frequency and

the PLL starts exactly when the grid angle is zero, thus requiring zero control effort from

the PI controller.

45

Figure 4.7: SRF-PLL with static center frequency

In a scenario where the PLL is enabled before the converter is connected to the grid,

there are two possible cases. If the measured three-phase voltages are exactly zero, then

vq(t) will also be zero, hence the PI controller does not change the input frequency to

the oscillator. However, if the measured voltages are not zero (e.g. due to noise or

sensor offset), then vq(t) will not be zero, and the PI controller will change the frequency.

Assuming that the input frequency ωi(t) is bounded, then the worst-case scenario would

be the frequency drifting to the maximum or minimum value allowed while the converter is

not connected, effectively nullifying the advantages of adding the initial center frequency.

4.3.2 Amplitude Normalization Scheme

As can be seen in equations 4.9 and 4.10, the amplitude V appears as a gain in the

forward path of the SRF-PLL, which means that it changes the dynamic characteristics

of the SRF-PLL. An amplitude normalization scheme (ANS) can be used to eliminate

this gain, and in doing so the performance of the PLL becomes independent of amplitude.

Studies have shown that this also improves the filtering capabilities of the SRF-PLL[18].

The signal vd(t) takes the amplitude V when the PLL is locked, hence it can be used

for an ANS. However, this has the clear disadvantage that for big transients, the gain V

cannot be fully eliminated since the D axis will not be coincident with
#»

S , thus vd(t) < V .

This indirectly increases the gains of the PI controller, therefore degrading noise immunity

for the duration of the transient. This may increase the settling time or, in the worst-case

scenario, lead to instability.

A better way to extract V is to compute the norm of
#»

S , either in the DQ0 reference

frame or in the αβ reference frame. This method is invariant to the current locking

condition of the PLL, but it introduces costly square and square-root operations3.

3Refer to equation B.1 in Appendix B

46

Figure 4.8: SRF-PLL with an ANS and static center frequency

In Figure 4.8 an amplitude normalization scheme using the output of the DQ0 trans-

form is presented. Notice how the norm calculation includes saturation. Technically, only

an inferior limit is necessary to avoid a division by zero.

In Figure 4.9, the performance of SRF-PLLs with and without an ANS are shown. The

PI gains of the PLL with an ANS were multiplied by 50 to match the gains of the PLL

without an ANS at V = 50 V, causing both to have the same response in this condition.

A grid angle step of 45 ° is introduced at t = 0.02 s for the tests with V = 50 V and at

t = 0.021 s for the other tests for better clarity. As can be seen, the ANS results in a PLL

indifferent to amplitude. This is highly advantageous since differences between simulated

and real conditions are likely, thus facilitating the selection of robust tuning parameters.

Figure 4.9: Comparison of performance with and without ANS for different amplitudes

47

4.3.3 Low-Pass Filtering

Introducing low-pass filters (LPFs) in different sections of the PLL can be useful to

improve disturbance rejection. However, not unlike the PI controller gains, increasing the

filtering capabilities of the PLL impacts negatively on its transient response[18, 24].

Placing LPFs directly on the three-phase voltages is not a good option since it would

introduce phase shift to the signals, resulting in error in the estimated angle. Hence, in

the simplest SRF-PLL architecture, it is common to filter vq(t)[18]. However, if an ANS

is used, there are a few different options:

1. Filter only the ANS output

2. Filter both vd(t) and vq(t), and use the filtered signals as the input to the ANS.

3. Compute the norm using vd(t) and vq(t) and filter the output of the norm, and then:

(a) filter nothing else

(b) filter the result of the division.

(c) filter vq(t) before the division.

Option 1 has the lowest computational burden, but is also the less flexible option.

Option 2 is similar to option 1, but using separate filters for vd(t) and vq(t) allows for

different cutoff frequencies. This may prove somewhat problematic for the norm calcula-

tion, since different cutoff frequencies imply different phase shifts.

Option 3(a) is a good choice for grid-connected systems, since the amplitude of the

grid does not change significantly. In these conditions, by aggressively filtering the norm

computation almost all noise and harmonics can be eliminated from the amplitude estima-

tion, and since the amplitude of the grid is expected to be fairly constant, then any phase

delay incurred by the filter is effectively insignificant. Thus, the disturbance rejection of

the SRF-PLL with an ANS can be improved without negatively impacting performance

since vq(t) is unfiltered, thus containing no phase delay.

Options 3(b) and 3(c) are very similar and may indeed be equivalent under certain

conditions. For instance, in linear time-invariant (LTI) systems, the output y of a system

whose input is x scales according to all scaling factors applied to x[25]. In other words, if

a scaling factor of k is applied to x resulting in a input of k · x, then the output becomes

k · y. It follows from this that if the norm calculation is aggressively filtered to remove

all noise and harmonics to the point where it is practically constant and equal to V , then

filtering either vq(t) or vq(t)/V is equivalent.

Option 3(c), shown in Figure 4.10, may be slightly faster if the hardware is capable of

processing the norm and the filtering of vq(t) in parallel, and given that it is slightly more

intuitive to tune since one filter does not affect the other, it is the preferred method in

this project.

48

Figure 4.10: Chosen variant of the ANS with low-pass filtering

4.3.4 Frequency Feed-Forward

Instead of adding a static center frequency to the output of the PI controller as shown

in Chapter 4.3.1, it is possible to dynamically estimate the current grid frequency[26].

This is done by computing the angle of the space vector
#»

S in the αβ reference frame4:

θff (t) = atan2 (vβ(t), vα(t)) (4.11)

ωff (t) =
dθ(t)ff
dt

(4.12)

Under ideal conditions, θff (t) is equal to θ(t) and ωff (t) is equal to ωg(t). Hence,

ωff (t) can be used as the center frequency for the SRF-PLL, thus resulting in a frequency

feed-forward (FFF) mechanism as shown in Figure 4.12.

The most obvious advantage of this technique is that if the ωff (t) is always accurate

and equal to ωg(t), then the PLL becomes indifferent to frequency changes[26]. The

second implication is that the SRF-PLL becomes more sensitive to phase jumps since the

derivative will increase very significantly whenever a jump occurs.

The problem with this technique is that if harmonics are present on the grid, then

the space vector
#»

S will no longer trace a perfectly circular trajectory in the αβ plane[20],

causing θff (t) to not be equal to θ(t). This is shown in Figure 4.11 where a high amplitude

and high frequency harmonic is present. This can be mitigated by a LPF.

A LPF additionally helps in reducing derivative spiking resulting from noise in the vα(t)

and vβ(t) signals, but introduces some phase delay leading to a non-perfect cancellation

of the effects of frequency changes. Therefore, the selection of the cutoff frequency of the

filter is a trade-off between noise immunity and cancellation of the error introduced by

frequency variations.

For simplicity, ωff (t) is now redefined as the output of the entire FFF mechanism.

4Equation 4.11 can be used directly to estimate the grid angle instead of relying on the SRF-PLL, but

without any feedback loop it would need to rely heavily on low-pass filtering, thus yielding poor results

due to phase shift

49

A comparison between a PLL with and without a FFF mechanism is shown in Figure

4.13, where a frequency step of 10 Hz is introduced at t = 0.04 s. Depending on the cutoff

frequency chosen, the maximum error and the settling time both decrease, as is the case

with the 50 Hz cutoff scenario. If the cutoff frequency is low, then the settling time may

actually increase, as seen in the 10 Hz cutoff scenario. Even so, in both cases with the

FFF present the maximum error is still reduced.

In the 10 Hz cutoff frequency scenario, it is clear from observing the controllable

oscillator’s input frequency and the FFF output after t = 0.07 s that the PI controller

and the FFF mechanism are opposing each other, leading to a long settling time. This

can possibly be improved by adjusting the PI gains, since they were kept constant in the

scenarios shown in Figure 4.13 to provide a good comparison.

It should be noted that applying directly the output of the atan2 to the derivative will

result in huge derivative spiking due to angle wrap-around. This problem has been solved

for the simulations in Figure 4.13.

Since the SRF-PLL shown in Figure 4.12 contains all the improvements previously

described, this improved version will be designated I-SRF-PLL from this point onward to

avoid confusion with the classical SRF-PLL.

Figure 4.11: Space vector path in the presence of harmonics

50

Figure 4.12: I-SRF-PLL

Figure 4.13: Comparison of a 10 Hz frequency step response without FFF (left) and with

FFF whose output is filtered at cutoff frequencies (fc) of 50 Hz (middle) and 10 Hz (right)

51

THIS PAGE

INTENTIONALLY

LEFT BLANK

Chapter 5

Extraction of Symmetrical

Sequence Components

5.1 Introduction

One particular problem with the SRF-PLL (and with the I-SRF-PLL to a lesser extent)

is that an unbalanced grid causes high-amplitude oscillations to appear in the outputs

under steady-state conditions as per what was shown in Chapter 4, where the difference

in performance under balanced and unbalanced conditions was demonstrated.

In order to understand how to further improve synchronization with the grid, it is easier

to first study how unbalanced three-phase voltages can be mathematically transformed

into positive, negative and zero sequence components, collectively known as symmetrical

sequence components[27], and later on study how each one of these components affect the

performance of the SRF-PLL.

5.2 Symmetrical Sequence Components

A positive sequence component is simply the set of voltages [v+a (t) v+b (t) v+c (t)]T which

share the same amplitude V + and frequency, according to the following definition:
v+a (t)

v+b (t)

v+c (t)

 = V + ·


sin (θ(t) + φ+)

sin
(
θ(t)− 2π

3 + φ+
)

sin
(
θ(t) + 2π

3 + φ+
)
 (5.1)

The negative sequence component [v−a (t) v−b (t) v−c (t)]T is defined as:
v−a (t)

v−b (t)

v−c (t)

 = V − ·


sin (θ(t) + φ−)

sin
(
θ(t) + 2π

3 + φ−
)

sin
(
θ(t)− 2π

3 + φ−
)
 (5.2)

53

Similarly, a zero sequence component [v0a(t) v
0
b (t) v

0
c (t)] is defined as:

v0a(t)

v0b (t)

v0c (t)

 = V 0 ·


sin (θ(t) + φ0)

sin (θ(t) + φ0)

sin (θ(t) + φ0)

 (5.3)

Then, the three-phase voltages of a system can be expressed as a sum of all components:
va(t)

vb(t)

vc(t)

 =


v+a (t) + v−a (t) + v0a(t)

v+b (t) + v−b (t) + v0b (t)

v+c (t) + v−c (t) + v0c (t)

 (5.4)

In an unbalanced system, every single voltage may have different amplitudes and phase

shifts. Assume said voltages can be represented as a sum of a positive, negative and zero

sequence components. For the following deductions, it is easier to represent all sinusoidal

voltages as the imaginary parts of the complex exponentials [Ua(t) Ub(t) Uc(t)] as per

Euler’s formula[28],:
va(t)

vb(t)

vc(t)

 =


Va · sin (θ(t) + φa)

Vb · sin (θ(t) + φb)

Vc · sin (θ(t) + φc)

 = Im



Va · eφajeθ(t)j

Vb · eφbj · eθ(t)j

Vc · eφcj · eθ(t)j


 = Im



Ua(t)

Ub(t)

Uc(t)


 (5.5)

Let α = e
2π
3
j , which when multiplied by a complex exponential is equivalent to adding

a phase shift of 120°. Therefore, α2 adds 240°, which is equivalent to subtracting 120°.
Using the complex exponential representation of equation 5.4:

Im



Ua(t)

Ub(t)

Uc(t)


 = Im



U+
a (t) + U−a (t) + U0

a (t)

U+
b (t) + U−b (t) + U0

b (t)

U+
c (t) + U−c (t) + U0

c (t)




= Im




U+
a (t)

α2 · U+
a (t)

α · U+
a (t)

+


U−a (t)

α · U−a (t)

α2 · U−a (t)

+


U0
a (t)

U0
a (t)

U0
a (t)




(5.6)

Simplifying the above equation:

Im



Ua(t)

Ub(t)

Uc(t)


 = Im




1 1 1

1 α2 α

1 α α2

 ·

U0
a (t)

U+
a (t)

U−a (t)


 (5.7)

Taking the above equation and solving it for [U0
a (t) U+

a (t) U−a (t)] yields:

Im



U0
a (t)

U+
a (t)

U−a (t)


 = Im

1

3
·


1 1 1

1 α α2

1 α2 α

 ·

Ua(t)

Ub(t)

Uc(t)


 (5.8)

54

5.2.1 Amplitudes and Phase Shifts of Symmetrical Components

Equation 5.8 can be usually found in literature[27]. However, little to no literature1

has taken this equation and extract the amplitudes and phases of the positive, negative

and zero sequence components, and demonstrate how V +, V −, V 0, φ+, φ− and φ0 relate

to the unbalanced grid voltages Va, Vb and Vc and the corresponding phase shifts φa, φb

and φc.

From equation 5.8, the equations for U0
a (t), U+

a and U−a can be extracted and further

simplified. Please note that the imaginary operator is omitted to improve readability:


U0
a (t) = 1

3 · (Ua(t) + Ub(t) + Uc(t))

U+
a (t) = 1

3 ·
(
Ua(t) + α · Ub(t) + α2 · Uc(t)

)
U−a (t) = 1

3 ·
(
Ua(t) + α2 · Ub(t) + α · Uc(t)

) (5.9)

Expanding each voltage phasor and applying the α coefficients:


U0
a (t) = 1

3 ·
(
Va · eφaj · eθ(t)j + Vb · eφbj · eθ(t)j + Vc · eφcj · eθ(t)j

)
U+
a (t) = 1

3 ·
(
Va · eφaj · eθ(t)j + Vb · e(φb+

2π
3)j · eθ(t)j + Vc · e(φc−

2π
3)j · eθ(t)j

)
U−a (t) = 1

3 ·
(
Va · eφaj · eθ(t)j + Vb · e(φb−

2π
3)j · eθ(t)j + Vc · e(φc+

2π
3)j · eθ(t)j

) (5.10)

Notice how the term eθ(t)j is common to all bracketed terms in all equations, therefore

it can be brought out:


U0
a (t) = 1

3 ·
(
Va · eφaj + Vb · eφbj + Vc · eφcj

)
· eθ(t)j

U+
a (t) = 1

3 ·
(
Va · eφaj + Vb · e(φb+

2π
3)j + Vc · e(φc−

2π
3)j
)
· eθ(t)j

U−a (t) = 1
3 ·
(
Va · eφaj + Vb · e(φb−

2π
3)j + Vc · e(φc+

2π
3)j
)
· eθ(t)j

(5.11)

Let N0, N+ and N− be complex numbers inside the bracketed expressions in the above

equations, such that:


N0 = Va · eφaj + Vb · eφbj + Vc · eφcj

N+ = Va · eφaj + Vb · e(φb+
2π
3)j + Vc · e(φc−

2π
3)j

N− = Va · eφaj + Vb · e(φb−
2π
3)j + Vc · e(φc+

2π
3)j

(5.12)

1To the best of this project’s author’s knowledge, there is no literature that formally presents such

equations, but there exists an online resource that visually demonstrates these relationships[29], thus it is

possible that such literature already exists

55

Using Euler’s formula[30], the complex exponentials in the complex numbers N0, N+

and N− can be separated into their real and imaginary parts. For compactness and

improved readability, the notation c(x) and s(x) is temporarily used to represent cos(x)

and sin(x):



N0 = Va · c(φa) + Va · s(φa) · j + Vb · c(φb) + Vb · s(φb) · j

+ Vc · c(φc) + Vc · s(φc) · j

N+ = Va · c(φa) + Va · s(φa) · j + Vb · c(φb +
2π

3
) + Vb · s(φb +

2π

3
) · j

+ Vc · c(φc −
2π

3
) + Vc · s(φc −

2π

3
) · j

N− = Va · c(φa) + Va · s(φa) · j + Vb · c(φb −
2π

3
) + Vb · s(φb −

2π

3
) · j

+ Vc · c(φc +
2π

3
) + Vc · s(φc +

2π

3
) · j

(5.13)

These complex numbers can now be written as:


N0 = a0 + b0 · j =

√
(a0)2 + (b0)2 · eatan(b0/a0)j

N+ = a+ + b+ · j =
√

(a+)2 + (b+)2 · eatan(b+/a+)j

N− = a− + b− · j =
√

(a−)2 + (b−)2 · eatan(b−/a−)j

(5.14)

Where: 

a0 = Va · c(φa) + Vb · c(φb) + Vc · c(φc)

b0 = Va · s(φa) + Vb · s(φb) + Vc · s(φc)

a+ = Va · c(φa) + Vb · c
(
φb + 2π

3

)
+ Vc · c

(
φc − 2π

3

)
b+ = Va · s(φa) + Vb · s

(
φb + 2π

3

)
+ Vc · s

(
φc − 2π

3

)
a− = Va · c(φa) + Vb · c

(
φb − 2π

3

)
+ Vc · c

(
φc + 2π

3

)
b− = Va · s(φa) + Vb · s

(
φb − 2π

3

)
+ Vc · s

(
φc + 2π

3

)
(5.15)

Substituting the complex numbers N0, N+ and N− from equation 5.14 in equation

5.11 leads to:


U0
a (t) =

√
(a0)2+(b0)2

3 · e(θ(t)+atan(b0/a0))j

U+
a (t) =

√
(a+)2+(b+)2

3 · e(θ(t)+atan(b+/a+))j

U−a (t) =

√
(a−)2+(b−)2

3 · e(θ(t)+atan(b−/a−))j

(5.16)

56

Taking the imaginary parts of the previous equations:


v0a(t) = 1

3 ·
√

(a0)2 + (b0)2 · sin
(
θ(t) + atan

(
b0

a0

))
v+a (t) = 1

3 ·
√

(a+)2 + (b+)2 · sin
(
θ(t) + atan

(
b+

a+

))
v−a (t) = 1

3 ·
√

(a−)2 + (b−)2 · sin
(
θ(t) + atan

(
b−

a−

)) (5.17)

By comparing the above equations with the original definitions of the zero, positive

and negative sequence components, it becomes clear that:V 0 =

√
(a0)2+(b0)2

3

φ0 = atan
(
b0

a0

)
V + =

√
(a+)2+(b+)2

3

φ+ = atan
(
b+

a+

)
V − =

√
(a−)2+(b−)2

3

φ− = atan
(
b−

a−

) (5.18)

These equations can be useful either as models for usage in estimation algorithms such

as the Kalman filter, or in simulated environments to confirm that the grid-synchronization

algorithm is correctly estimating all parameters.

5.2.2 Special Case for Voltage Unbalance and Phase Balance

In the special case of an unbalanced grid where φa = 0, φb = −120° and φc = 120°,
then by substitution on equations 5.15 and 5.18 the symmetrical components take the

following values:

V 0 = 1
3 ·
√
V 2
a + V 2

b + V 2
c − (Va · Vb + Va · Vc + Vb · Vc)

φ0 = −atan
(√

3·(Vb−Vc)
2·Va−Vb−Vc

)
V + = 1

3 · Va + Vb + Vc

φ+ = 0

V − = 1
3 ·
√
V 2
a + V 2

b + V 2
c − (Va · Vb + Va · Vc + Vb · Vc)

φ− = atan
(√

3·(Vb−Vc)
2·Va−Vb−Vc

)
(5.19)

Note how the zero and negative sequence components’ amplitudes (V 0 and V −) are

equal and how their phase shifts (φ0 and φ−) only differ in sign. Additionally, the phase

shift of the positive sequence component is zero, which implies that the voltages of the

positive sequence component are always in phase with their corresponding grid voltages.

These novel equations could be useful to implement a power electronics converter that,

by extracting information on the positive and negative sequence components, can actively

cancel both the negative and zero sequence components.

Finally, note how in a balanced grid where Va = Vb = Vc, only the positive sequence

component remains, as V − and V 0 become zero. As expected, the negative and zero

sequence components can only exist under unbalanced conditions.

57

5.3 Effects of Symmetrical Sequence Components and DC

Offsets on SRF-PLL Performance

In order to comprehend exactly how grid unbalance impacts the performance of the

classical SRF-PLL and the I-SRF-PLL, one can use the knowledge on the decomposition

of three-phase voltages into their symmetrical sequence components to compute the result

of the transforms and observe what type of oscillations emerge.

In this chapter, DC offsets were not considered to be a part of the three-phase voltages

since they did not add any useful insight up to this point. While DC offsets technically

should not occur in three-phase systems, signal acquisition hardware may introduce some

unexpected bias. As such, studying the effects of DC offsets is crucial to understanding

how any practical SRF-PLL might perform.

Consider the amplitude-invariant αβ transform (equation 3.9). Using the symmetrical

components plus some additional DC offsets as the input to this transform yields:


vα(t)

vβ(t)

v0(t)

 =
2

3
·


1 −1

2 −1
2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

 ·

v+a (t) + v−a (t) + v0a(t) + vDCa

v+b (t) + v−b (t) + v0b (t) + vDCb

v+c (t) + v−c (t) + v0c (t) + vDCc

 (5.20)

Extracting the equations for vα(t) and vβ(t):

vα(t) = v+α (t) + v−α (t) + v0α(t) + vDCα

vβ(t) = v+β (t) + v−β (t) + v0β(t) + vDCβ

(5.21)

Where:



v+α (t) = 2
3 ·
(
v+a (t)− v+b (t)

2 − v+c (t)
2

)
v−α (t) = 2

3 ·
(
v−a (t)− v−b (t)

2 − v−c (t)
2

)
v0α(t) = 2

3 ·
(
v0a(t)−

v0b (t)
2 − v0c (t)

2

)
= 2

3 ·
(
v0a(t)−

v0a(t)
2 − v0a(t)

2

)
= 0

vDCα = 2
3 ·
(
vDCa − vDCb

2 −
vDCc
2

)
v+β (t) = 2

3 ·
(√

3
2 · v

+
b (t)−

√
3
2 · v

+
c (t)

)
v−β (t) = 2

3 ·
(√

3
2 · v

−
b (t)−

√
3
2 · v

−
c (t)

)
v0β(t) = 2

3 ·
(√

3
2 · v

0
b (t)−

√
3
2 · v

0
c (t)

)
= 2

3 ·
(√

3
2 · v

0
b (t)−

√
3
2 · v

0
b (t)

)
= 0

vDCβ = 2
3 ·
(√

3
2 · v

DC
b −

√
3
2 · v

DC
c

)

(5.22)

58

It is clear from the previous equations that the αβ transform happens to cancel the

zero sequence components by itself, leaving only the positive and negative sequence com-

ponents.

Further simplifications can be made to the previous equations, but since these are

somewhat extensive and do not provide useful insight, they were deferred to Appendix D.

The results are shown in equations 5.23.



v+α (t) = V + · sin (θ(t) + φ+)

v−α (t) = V − · sin (θ(t) + φ−)

v0α(t) = 0

vDCα = 2
3 · v

DC
a − vDCb

3 −
vDCc
3



v+β (t) = V + · sin
(
θ(t) + φ+ − π

2

)
v−β (t) = −V − · sin

(
θ(t) + φ− − π

2

)
v0β(t) = 0

vDCβ =
√
3
3 ·
(
vDCb − vDCc

)
(5.23)

Assume a situation where some SRF-PLL is estimating an angle θ̂(t) which is equal

to the grid angle θ(t) plus some additional phase shift φR. By applying the DQ0-QA

transform (eq. 3.16) to the output of the αβ transform:

vd(t) = sin (θ(t) + φR) · (v+α (t) + v−α (t) + vDCα)− cos (θ(t) + φR) · (v+β (t) + v−β (t) + vDCβ)

vq(t) = cos (θ(t) + φR) · (v+α (t) + v−α (t) + vDCα) + sin (θ(t) + φR) · (v+β (t) + v−β (t) + vDCβ)

(5.24)

When simplified, the above equations result in2:



vd(t) = V + · cos (φ+ − φR)− V − · cos (2 · θ(t) + φR + φ−) + vDCα · sin (θ(t) + φR)

− vDCβ · cos (θ(t) + φR)

vq(t) = V + · sin (φ+ − φR) + V − · sin (2 · θ(t) + φR + φ−) + vDCα · cos (θ(t) + φR)

+ vDCβ · sin (θ(t) + φR)

(5.25)

It is extremely clear from the previous expressions that the existence of a negative

sequence component causes double-frequency oscillations to appear, while DC offsets cause

oscillations at the grid’s frequency to appear. This fully explains the high amplitude

steady-state oscillations previously seen in Figure 4.6, which appeared to be composed of

harmonics of varying frequencies.

Analyzing carefully the previous equation for vq(t), one can also see that the positive

sequence component results in an offset of V + · sin (φ+ − φR). As previously studied in

Chapter 4.2.3, under steady-state conditions, vq(t) will contain no DC offset due to the

PLL’s integral action in the PI controller.

2Proof provided in Appendix E

59

In other words, φR becomes equal to φ+ to satisfy the condition V + ·sin (φ+ − φR) = 0,

provided the oscillations from the negative sequence component and DC offsets are filtered

out. This has the following implications:

• Under phase balance, where φ+ = 0, the PLL will estimate the grid angle θ(t) since

φR = φ+ = 0, provided sufficient filtering exists to remove unwanted oscillations.

• Under phase unbalance, where φ+ 6= 0, the PLL will output the angle of the positive

sequence component θ(t) + φ+ since φR = φ+, provided sufficient filtering exists to

remove unwanted oscillations.

5.4 Component Extraction from Filtered Signals

In the previous analysis of symmetrical components, the αβ transform gave rise to some

components and DC offsets which directly depend on the positive sequence component,

negative sequence component and DC offsets of the three-phase voltages. Directly applying

the DQ0-QA transform results in undesirable steady-state oscillations. However, it is

possible to exploit the relationships between v+α (t), v−α (t), v+β (t) and v−β (t) to isolate these

components.

Assume that some kind of filter removes the DC offsets vDCα and vDCβ from vα(t) and

vβ(t). These filtered versions are now designated vαf (t) and vβf (t). Then, assume that

some other filter generates a phase shifted version designated dvαf (t) and dvβf (t). The

phase shift is selected to be exactly −90°, such that:



vαf (t) =v+α (t) + v−α (t) = V + · sin (θ(t) + φ+) + V − · sin (θ(t) + φ−)

dvαf (t) =dv+α (t) + dv−α (t) = V + · sin (θ(t) + φ+ − π
2) + V − · sin (θ(t) + φ− − π

2)

vβf (t) =v+β (t) + v−β (t) = V + · sin
(
θ(t) + φ+ − π

2

)
− V − · sin

(
θ(t) + φ− − π

2

)
dvβf (t) =dv+β (t) + dv−β (t) = V + · sin

(
θ(t) + φ+ − π

2 −
π
2

)
− V − · sin

(
θ(t) + φ− − π

2 −
π
2

)
(5.26)

In order to obtain the positive and negative symmetrical sequence components, con-

sider the outcomes of summing or subtracting vαf (t) and dvβf (t), as well as the outcomes

of summing or subtracting vβf (t) and dvαf (t), as shown in equations 5.27.

60



vαf (t) +− dvβf (t) = V + · sin (θ(t) + φ+) + V − · sin (θ(t) + φ−)

+−
(
V + · sin

(
θ(t) + φ+ − π

)
− V − · sin

(
θ(t) + φ− − π

))
vβf (t) +− dvαf (t) = V + · sin

(
θ(t) + φ+ − π

2

)
− V − · sin

(
θ(t) + φ− − π

2

)
+−
(
V + · sin

(
θ(t) + φ+ − π

2

)
+ V − · sin

(
θ(t) + φ− − π

2

))
(5.27)

By applying sine angle symmetry to the vαf (t) +− dvβf (t) equation:



vαf (t) +− dvβf (t) = V + · sin (θ(t) + φ+) + V − · sin (θ(t) + φ−)

+−
(
−V + · sin

(
θ(t) + φ+

)
+ V − · sin (θ(t) + φ−)

)
vβf (t) +− dvαf (t) = V + · sin

(
θ(t) + φ+ − π

2

)
− V − · sin

(
θ(t) + φ− − π

2

)
+−
(
V + · sin

(
θ(t) + φ+ − π

2

)
+ V − · sin

(
θ(t) + φ− − π

2

))
(5.28)

Which when separated yields:



vαf (t) + dvβf (t) = 2 · V − · sin (θ(t) + φ−) = 2 · v−α (t)

vαf (t)− dvβf (t) = 2 · V + · sin (θ(t) + φ+) = 2 · v+α (t)

vβf (t) + dvαf (t) = 2 · V + sin
(
θ(t) + φ+ − π

2

)
= 2 · v+β (t)

vβf (t)− dvαf (t) = −2 · V − · sin
(
θ(t) + φ− − π

2

)
= 2 · v−β (t)

(5.29)

Solving for the positive and negative sequence components:



v+α (t) = 1
2 · (vαf (t)− dvβf (t))

v−α (t) = 1
2 · (vαf (t) + dvβf (t))

v+β (t) = 1
2 · (vβf (t) + dvαf (t))

v−β (t) = 1
2 · (vβf (t)− dvαf (t))

(5.30)

From these equations it is clear that isolating the positive and negative sequence com-

ponents using the vαf (t), dvαf (t), vβf (t) and dvβf (t) is possible. However, the question of

how to obtain these filtered signals remains.

61

5.5 Obtaining Filtered Signals For Component Extraction

Perhaps the most simple technique for extracting the symmetrical sequence compo-

nents is via delayed signal cancellation (DSC)[6, 18, 31], a purely discrete method where

the −90° phase shifted signals are obtained by directly delaying the sampled signals vα[n]

and vβ[n] (where n denotes the current sample of the given signal). The amount of delay

varies based the frequency estimated by the SRF-PLL. While the implementation of DSC

is trivial, it does not provide any filtering, hence DC offsets, harmonics and noise will still

be present.

A significantly better alternative to the DSC technique is the usage of a quadrature

signal generator (QSG) based on the second-order generalized integrator (SOGI) to gen-

erate the filtered and phase shifted versions vα(t) and vβ(t) [32]. A QSG-SOGI is shown

in Figure 5.1. As can be seen, the QSG-SOGI has a single tuning parameter, k, and two

inputs, the input signal and the frequency. The transfer functions are given by:

D(s) =
X ′(s)

X(s)
=

k · ω · s
s2 + k · ω · s+ ω2

Q(s) =
dX ′(s)

X(s)
=

k · ω2

s2 + k · ω · s+ ω2

(5.31)

The bode plots for various values of k are shown in Figure 5.3. The smaller the value of

k, the better the filtering capabilities of the QSG-SOGI are, but decreasing this value too

much makes the QSG-SOGI more sensitive to signal deviations from the input frequency.

Despite this, the output dx′(t) always presents a −90° phase shift from x′(t) and the

amplitudes are preserved at the resonant frequency, which is precisely what is required

for isolating the positive and negative sequence components. Unfortunately, while D(s)

behaves as a band-pass filter, Q(s) behaves as a low-pass filter, thus not removing the DC

offsets.

While there are different ways to completely solve the problem of DC offset [33], a

simple and highly effective way to deal with it is to cascade two QSG-SOGI blocks, where

the transfer function D(s) is used to pre-filter the input signal before a QSG-SOGI. This

architecture is shown in 5.2, and the transfer functions are given by:

Df (s) =
X ′(s)

X(s)
· X
′′(s)

X ′(s)
= D(s) ·D(s) =

k · ω · s
s2 + k · ω · s+ ω2

· k · ω · s
s2 + k · ω · s+ ω2

Qf (s) =
X ′(s)

X(s)
· dX

′′(s)

X ′(s)
= D(s) ·Q(s) =

k · ω · s
s2 + k · ω · s+ ω2

· k · ω2

s2 + k · ω · s+ ω2

(5.32)

62

Figure 5.1: Structure of the QSG-SOGI

The bode plots for the cascaded QSG-SOGI for various values of k are shown in

Figure 5.4. It is clear from comparing Figures 5.3 and 5.4 that for the same values of k,

the cascaded QSG-SOGI presents much better filtering capabilities.

Additionally, DC offset can be estimated by calculating x(t) − x′′(t)[33], but noise

and harmonics in the original x(t) will affect the DC offset estimation, which could be

filtered by an additional LPF with a very low cutoff frequency. Alternatively, computing

dx′(t) − dx′′(t) and compensating for the gain at DC could result in a less noisy offset

estimation, as dx′(t) has its harmonics and high-frequency noise filtered. This is more

computationally expensive since dx′(t) would have to be computed for this specific feature.

The reason to choose the cascaded QSG-SOGI over the alternative method of adding

another integrator to the QSG-SOGI for DC offset estimation is that this alternative

method transforms the QSG-SOGI into a third-order system, which is not only harder

to discretize later on, it also performs slightly worse since the cascaded QSG-SOGI has

better filtering capabilities[33].

Figure 5.2: Cascaded QSG-SOGI

63

Figure 5.3: Bode plots for the QSG-SOGI

64

Figure 5.4: Bode plots for the cascaded QSG-SOGI

65

5.6 I-SRF-PLL with Extraction of Symmetrical Sequence

Components

Using the cascaded QSG-SOGI, it is possible to obtain the filtered and phase shifted

versions of vα(t) and vβ(t). A positive and negative sequence calculation (PNSC) block

can then be implemented based on equations 5.30, as shown in Figure 5.5.

If the grid is close to ideal, the extraction of the positive sequence component provides a

good estimation of the grid’s angle and amplitude. The frequency estimated by the I-SRF-

PLL is fed-back to the cascaded QSG-SOGI blocks for dynamic frequency adjustment.

If estimation of the negative sequence component is required (e.g. for employing cor-

rective control techniques) then a second I-SRF-PLL whose inputs are v−α (t) and v−β (t) can

be used. Since v−β (t) has an amplitude of −V −, the negative component of the space vec-

tor rotates clockwise instead of anti-clockwise, thus leading to the I-SRF-PLL incorrectly

estimating the angle of the negative sequence component as being −(θ(t) + φ−). Solving

this requires either inverting the sign of v−β (t) or modifying the PNSC block. To save

computational resources, this I-SRF-PLL does not need to implement a FFF mechanism,

since the output of the FFF mechanism of the positive sequence I-SRF-PLL can be used.

As a side note, under phase balance two I-SRF-PLLs are enough to obtain all param-

eters, including the zero sequence’s amplitude and angle. As previously seen in Chapter

5.2.2, φ+ is zero, hence the positive I-SRF-PLL will estimate the grid angle θ(t). This can

be subtracted to the negative I-SRF-PLL’s angle to obtain φ−. From here, φ0 is simply

−φ− and V 0 is V −.

Figure 5.5: Positive and negative sequence calculation block

66

Obtaining the zero sequence component is not as straightforward as the other compo-

nents. While the full amplitude-invariant αβ transform features a zero sequence compo-

nent, the transform is only amplitude-invariant with respect to vα(t) and vβ(t). To solve

this problem, consider the average of the three-phase voltages:

1

3
· (va(t) + vb(t) + vc(t) + vDC)

=
1

3
· (v+a (t) + v−a (t) + v0a(t) + v+b (t) + v−b (t) + v0b (t) + v+c (t) + v−c (t) + v0c (t) + vDC)

=
1

3
·
(
v0a(t) + v0b (t) + v0c (t)

)
+

1

3
· vDC

=
1

3
· 3 · v0a(t) +

1

3
· vDC = V 0 · sin (θ(t) + φ0) +

1

3
· vDC

(5.33)

In the above equations, vDC is used as an all-encompassing term for the sum of the

DC offsets.

Note how the average is equal to the zero sequence component plus some additional

DC offset. To simulate the existence of α and β components the cascaded QSG-SOGI can

once again be used, resulting in a technique which resembles typical single-phase synchro-

nization mechanisms[34]. However, the I-SRF-PLL for the zero sequence component is

aided by the FFF mechanism of the positive sequence I-SRF-PLL, as well as its frequency

estimation for the cascaded QSG-SOGI block. The signals generated by the cascaded

QSG-SOGI are designated v0f (t) and dv0f (t).

Figure 5.6: Full sequence extraction

67

The reason to include a low-pass filter on the frequency feed-back to the QSG-SOGIs

is to avoid oscillatory behaviour. As can be seen in Figure 5.4, the magnitude of both

transfer functions is only equal at the resonant frequency, therefore any deviations from

it will cause the filtered signals to have different amplitudes. This distorts the circular

path of the space vector, resulting in an ellipse, which in turn distorts the estimation of

the angle via the atan2 function. This not only directly impacts the FFF mechanism, it

also impacts the ANS since an ellipse path is equivalent to having a circular path with a

varying space vector magnitude. Specifically, oscillations at the grid’s frequency occur.

If these oscillations are not eliminated via filtering, they cause the QSG-SOGI to

constantly ”miss” the resonant frequency while the I-SRF-PLL is constantly receiving

a distorted input. Figure 5.8 shows the results of the positive sequence component I-

SRF-PLL in the same conditions as Figure 4.6 without the low-pass filter. Due to the

oscillations previously mentioned, the I-SRF-PLL is not able to lock in to the angle of the

positive sequence component. In Figure 5.9, the LPF is added with a cutoff frequency of

10 Hz, which makes the I-SRF-PLL stable again. For the cascaded QSG-SOGIs, a value

of k = 3 was chosen.

Since a lower bound to the input frequency is required - otherwise the QSG-SOGIs

would always output zero and the I-SRF-PLLs would be locked in their initial state - a

range between 40 Hz and 70 Hz was chosen to speed up the locking process.

Please note that the angle errors shown in Figures 5.8 and 5.9 are between the estimated

angles and the real angle of the positive sequence component, which was computed using

equations 5.15 and 5.18.

Figure 5.7: Space vector’s path with alpha and beta components of different amplitudes

68

Figure 5.8: Performance of the positive sequence I-SRF-PLL without QSG-SOGI input

frequency LPF in the same conditions as Figure 4.6

Figure 5.9: Performance of the positive sequence I-SRF-PLL with QSG-SOGI input fre-

quency LPF in the same conditions as Figure 4.6

69

THIS PAGE

INTENTIONALLY

LEFT BLANK

Chapter 6

Discretization and Implementation

6.1 Introduction

This chapter focuses on the discretization and implementation of the different compo-

nents of the I-SRF-PLL, as well as the other filtering blocks discussed in previous chapters.

The amount of time taken to compute each part of the algorithm is measured. While

these measurements are specific to the microcontroller used, the relative times still serve

as a useful guideline.

6.2 Cascaded QSG-SOGI

6.2.1 Discretization

In order to implement the cascaded QSG-SOGI in a digital device, a discretization

method known as the bilinear transform - also known as Tustin’s method - is considered

to be the most adequate technique[35]. This is due to the non-linear distortion of the

frequency axis, which strongly distorts the frequency and phase response near the Nyquist

frequency, but is negligible for low frequencies[36, 37].

A generic second-order transfer function is given by:

H(s) =
Y (s)

X(s)
=

b2 · s2 + b1 · s+ b0
a2 · s2 + a1 · s+ a0

(6.1)

The discrete version of H(s) approximated by bilinear transform with a sampling period

of Ts is given by1:

H(z) =
Y (z)

X(z)
=
Cb0 + Cb1 · z−1 + Cb2 · z−2

Ca0 + Ca1 · z−1 + Ca2 · z−2
(6.2)

1Proof provided in Appendix F

71

Where: 

Cb0 =
b2·

(
2
Ts

)2
+b1· 2

Ts
+b0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0

Cb1 =
−2·b2·

(
2
Ts

)2
+2·b0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0

Cb2 =
b2·

(
2
Ts

)2
−b1· 2

Ts
+b0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0



Ca0 = 1

Ca1 =
−2·a2·

(
2
Ts

)2
+2·a0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0

Ca2 =
a2·

(
2
Ts

)2
−a1· 2

Ts
+a0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0

(6.3)

For the transfer function D(s), the equivalent discrete time coefficients are:


DCb0 =

k·ω· 2
Ts(

2
Ts

)2
+k·ω· 2

Ts
+ω2

DCb1 = 0

DCb2 = −
k·ω· 2

Ts(
2
Ts

)2
+k·ω· 2

Ts
+ω2



DCa0 = 1

DCa1 =
−2·

(
2
Ts

)2
+2·ω2(

2
Ts

)2
+k·ω· 2

Ts
+ω2

DCa2 =

(
2
Ts

)2
−k·ω· 2

Ts
+ω2(

2
Ts

)2
+k·ω· 2

Ts
+ω2

(6.4)

For the transfer function Q(s), the equivalent discrete time coefficients are:

QCb0 = k·ω2(
2
Ts

)2
+k·ω· 2

Ts
+ω2

QCb1 = 2·k·ω2(
2
Ts

)2
+k·ω· 2

Ts
+ω2

QCb2 = k·ω2(
2
Ts

)2
+k·ω· 2

Ts
+ω2



QCa0 = 1

QCa1 =
−2·

(
2
Ts

)2
+2·ω2(

2
Ts

)2
+k·ω· 2

Ts
+ω2

QCa2 =

(
2
Ts

)2
−k·ω· 2

Ts
+ω2(

2
Ts

)2
+k·ω· 2

Ts
+ω2

(6.5)

6.2.2 Implementation

The key to an efficient implementation is a fast computation of the coefficients by

reducing the number of redundant calculations. In equations 6.4 and 6.5, notice that:

QCa1 = DCa1

QCa2 = DCa2

DCb2 = −DCb0
QCb2 = QCb0

QCb1 = 2 ·QCb0

(6.6)

Making use of these relationships should significantly reduce computational effort.

Additionally, since ω is the only variable then multiple constants can be pre-calculated,

including the denominator common to all non-trivial coefficients. Taking these points

into consideration, the most efficient method for computing the coefficients is given in

Algorithm 1. It requires 4 sums, 10 multiplications and 1 division. Fortunately, the

coefficients are the same for all cascaded SOGI-QSGs, hence they only need to be computed

once per time-step.

72

The reason for computing the inverse of the denominator is that subsequent divisions

become multiplications, which are much more efficiently implemented in modern hardware.

As an example, in the ARM Cortex-M4 processor both floating point and integer addition

and multiplication instructions can be executed in a single cycle, whereas division can

take anywhere between 2 and 12 cycles for integers, and is guaranteed to take 14 cycles

for floating point variables[38].

Algorithm 1 Cascaded QSG-SOGI Coefficient Calculation

Require:

const 1 = k · 2
Ts

const 2 = −const 1

const 3 =
(

2
Ts

)2
const 4 = −const 3

Input: ω

1: omega squared = ω * ω

2: var 1 = const 3 + omega squared

3: denom inv = 1 / (const1 * ω + var 1)

4: D b0 = const 1 * ω * denom inv

5: D a1 = 2 * (const 4 + omega squared) * denom inv

6: D a2 = (var 1 + const 2 * ω) * denom inv

7: Q b0 = k * omega squared * denom inv

Once the coefficients are calculated, the outputs of the cascaded QSG-SOGI can be

calculated using Algorithm 2, requiring 10 sums/subtractions and 10 multiplications.

Algorithm 2 Cascaded QSG-SOGI algorithm

Input: x[n]

1: xf = DCb0 * (x[n] - prev2 x) - DCa1 * prev1 xf - DCa2 * prev2 xf

2: dxf = DCb0 * (xf - prev2 xf) - DCa1 * prev1 dxf - DCa2 * prev2 dxf

3: qxf = QCb0 * (xf + 2 * prev1 xf + prev2 xf) - DCa1 * prev1 qxf - DCa2 * prev2 qxf

4: prev2 x = prev1 x

5: prev1 x = x[n]

6: prev2 xf = prev1 xf

7: prev1 xf = xf

8: prev2 dxf = prev1 dxf

9: prev1 dxf = dxf

10: prev2 qxf = prev1 qxf

11: prev1 qxf = qxf

73

6.2.3 Hardware Benchmark

To benchmark the performance of the cascaded QSG-SOGI algorithm and subsequent

algorithms in this chapter, a XMC4700-F144 microcontroller evaluation board is used[39].

The microcontroller is based on the Cortex-M4 processor. The algorithms are translated

into plain C which is compiled with GCC using the -O3 flag, and execution time is

measured via a debug pin that is set high while the microcontroller is processing algorithms

1 and 2. Table 6.1 shows the execution times for both algorithms and also for the total

time required for two QSG-SOGIs sharing the same coefficients.

Table 6.1: Cascaded QSG-SOGI measured worst-case execution times

Coefficients QSG-SOGI Coefficients + two QSG-SOGIs

125 ns 350 ns 750 ns

The measurements were performed separately, as the additional processor instructions

to set and reset the multiple debug pins to measure all execution times simultaneously

had a noticeable impact. While the total execution time should be equivalent to one

calculation of Algorithm 1 and two calculations of Algorithm 2, the reason why this is

not the case is twofold. The first reason is bandwidth, as the logic analyzer used has a

maximum bandwidth of 25Mhz and the microcontroller pins have non-negligible rise and

fall times as compared to the execution times of the algorithms. The second reason is the

additional instructions that the microcontroller has to execute to change the state of the

debug pin, which not only take time to execute but also affect instruction pipelining[38].

Therefore, the measured execution times should always be taken as rough estimates.

One logical approach to achieve better measurements of the execution time is to take

the measurements of multiple runs of the algorithms and then dividing the execution time

by the number of runs. Unfortunately, this produces unexpected side-effects. While in-

struction pipelining reduces the cycles required for each random-access memory (RAM)

access, the values still have to be loaded into the floating point unit (FPU) register banks to

perform calculations[38]. Since these algorithms have a relatively high number of variables

and most calculations are additions, subtractions and multiplications which are executed

in a single cycle, the overhead of moving data between RAM and FPU registers cannot

be ignored. When an algorithm is executed multiple times without any other operations

in-between, the compiler can optimize variable access by reutilizing registers across its

multiple iterations. Thus, measuring consequent runs of the algorithms results in a signif-

icant decrease in execution time which cannot be justified simply by the logic analyzer’s

bandwidth or the debug pin’s rise and fall speeds. To counter this, the algorithms are ex-

ecuted periodically, with the microcontroller running FreeRTOS with a few tasks, such as

blinking an LED and displaying some text on a display, thus preventing such register-based

optimizations between different runs of the algorithms.

74

6.3 Frequency Feed-Forward

6.3.1 Discretization

As discussed in Chapter 4.3.4, the FFF mechanism consists of computing the arctan-

gent to obtain an estimation of the angle, and then computing the derivative and low-pass

filter the result.

One possible way to define a derivative is[37]:

dy

dt
= lim

h→0

y(x)− y(x− h)

h
(6.7)

The discretization can be realized by the backward difference approximation (some-

times known as the backward Euler approximation), which simply takes the previous

equation and removes the limit[37]:

dy

dt
≈ y(x)− y(x− h)

h
(6.8)

Since h represents the time difference between y(n−h) and y(n), then in the context of

digital systems it represents the sampling period Ts. Similarly, y(x) represents the current

sample, while y(x − h) is the previous sample. Thus, the equation for calculating the

feed-forward frequency (before the LPF) is:

ωff pre filter[n] =
θff [n]− θff [n− 1]

Ts
(6.9)

As 1
Ts

can be calculated in advance, the derivative only requires 1 subtraction and 1

multiplication.

A Butterworth first-order LPF with a cut-off frequency of ωc is given by the following

transfer function[25]:

HLPF (s) =
1

1 + s
ωc

=
ωc

s+ ωc
(6.10)

The discretization of this LPF via the backward difference method results in the fol-

lowing difference equation2:

y[n] = a · x[n] + (1− a) · y[n− 1] (6.11)

Where:

a =
ωc · Ts

1 + ωc · Ts
(6.12)

Since the coefficients a and a − 1 can be pre-calculated, the LPF requires 2 multipli-

cations and 1 sum.

2Proof provided in Appendix G

75

6.3.2 Implementation

While the implementation of the FFF mechanism seems quite straightforward, the

calculation of the atan2 function is quite computationally intensive. To solve this, an

approximation is used.

In literature, there are a variety of well-documented arctangent approximations. The

following approximation appears to be quite popular[36, 40]:

atan
(y
x

)
=

y
x

1 + 0.28125 ·
(y
x

)2 (6.13)

Where y and x are the coordinates of a given point. This technique achieves a maximum

error of 0.26 ° and requires 1 division, 1 sum and 2 multiplications, assuming the result of

the division y
x is already known. It should be noted that the output of this approximation

is in degrees and not radians.

Note that while the division y
x is unavoidable in any approximation, equation 6.13

requires another division. Since division is an order of magnitude slower than other oper-

ations[38], an approximation without divisions is preferred.

Another approximation which does not require the divisions is given by[40]:

atan
(y
x

)
=
π

4
· y
x

+ 0.273 · y
x
·
(

1−
∣∣∣y
x

∣∣∣) (6.14)

This approximation features a maximum error of 0.22 °, and requires 3 multiplications,

2 sums and 1 absolute value calculation. In the ARM Cortex-M4, a floating-point absolute

value can be calculated in a single cycle[38], which makes this approximation much more

efficient than the one given in 6.13.

A third, less well-known option is a simple 3rd order polynomial which is given by[41]:

atan
(y
x

)
= 0.9724 · y

x
− 0.1919 ·

(y
x

)3
(6.15)

This can be rewritten as:

atan
(y
x

)
=

(
0.9724− 0.1919 ·

(y
x

)2)
· y
x

(6.16)

This approximation has a maximum error of 0.29 °. The rewritten version requires 1

sum and 3 multiplications, which is slightly more efficient than the approximation given

by equation 6.14.

While many other approximations exist[40], for the purposes of the FFF mechanism

an error of 0.29 ° is acceptable since the LPF should filter out the fluctuations in frequency

resulting from the approximation’s error. Since the approximation given by equation 6.16

is very light on computational resources, this is the one chosen for the implementation of

the FFF. Then, implementing the atan2 function consists of checking the sign of x and y

and exploiting simple trigonometric relationships[41].

76

Figure 6.1: Comparison between two arctangent approximations: Approximations 1 and

2 correspond to equations 6.14 and 6.16, respectively

Another implementation problem specific to the FFF mechanism arises in the form of

derivative spiking. Derivative spiking in the FFF mechanism can occur in two different

ways: noise and angle wrap-around. Derivative spiking can create significant problems

when dealing with floating-point arithmetic, as a loss of precision occurs the bigger the

represented numbers are.

Since the derivative is by definition very sensitive to high-frequency signals, noise can

be particularly problematic. While in Chapter 4 the FFF mechanism is presented as having

the LPF after the derivative, a more desirable implementation would have the LPF before

the derivative to avoid derivative spiking. Since both the LPF and the derivative are linear

and time invariant, the output is unaffected by swapping the order of the two blocks.

The reason why angle wrap-around can cause derivative spiking is somewhat self-

explanatory. As the output of atan2 increases between iterations, it eventually reaches π,

at which point the atan2 function considers the angle to be negative, effectively wrapping

around to −π. To the derivative, this appears as a extreme variation in angle, as if it

decreased by 2π in a single time-step, when in reality the angle just varied slightly. As the

actual angle did not decrease between iterations, placing the LPF after the atan2 also does

not solve this problem. The LPF will also perceive the fictitious decrease in angle, which,

while avoiding derivative spiking, will produce an erroneous FFF output as the frequency

appears to decrease for a brief period of time. To solve this problem, the FFF algorithm

needs to additionally compute the smallest angular distance between the current angle

and the angle of the last iteration.

Algorithm 3 demonstrates how to compute the FFF mechanism while avoiding derivat-

ing spiking. It should be noted that the variable angular dist is reused as the output of

the LPF to reduce the number of variables required. In order to avoid the costly division

in the derivative, the sample frequency Fs is used instead of the sampling rate Ts.

77

Algorithm 3 FFF Algorithm

Require:

a = ωc·Ts
1+ωc·Ts

b = 1− a
Fs = 1

Ts

Input: v+α , v
+
β

1: theta = atan2(v+β , v
+
α)

2: angular dist = theta− prev theta
3: if angular dist ≤ −π then

4: angular dist = angular dist+ 2 · π
5: else if angular dist ≥ π then

6: angular dist = angular dist− 2 · π
7: end if

8: angular dist = a · angular dist+ b · prev angular dist
9: frequency = angular dist · Fs

10: prev theta = theta

11: prev angular dist = angular dist

In the worst-case execution path the FFF algorithm requires 1 atan2 calculation, 2

comparisons, 3 multiplications, 3 sums/subtractions. This path is the one where the first

comparison in line 3 fails and the second one in line 5 succeeds, thus performing the

calculation in line 6.

Ignoring the comparisons and adding the operations required for the atan computation

using the approximation from equation 6.16, the algorithm totals 1 division, 6 multiplica-

tions and 4 sums/subtractions. This also ignores the branching and additional calculations

required for computing the atan2 from the atan approximation.

6.3.3 Hardware Benchmark

In the implementation process where the algorithms are translated into plain C, the

trigonometric approximations were implemented in a different source file. While this

should not pose any performance difference, more than two microseconds were required just

for the calculation of the atan2 function. While the atan2 function with the approximation

is still somewhat intensive due to the division and branching required, this execution time

suggested that the compiler was missing some crucial optimization steps.

After further investigation, it was clear from the output of the disassembler that some

registers were being used in a non-optimal way. While the GCC compiler was optimizing

individual compilation units, it was not performing optimizations once the final machine

code was linked together, which results in missed optimization opportunities such as in-

lining functions and skipping unnecessary register context switches.

78

To solve this, link-time optimization was enabled by adding the -flto optimization

flag[42], but this unfortunately resulted in a compilation error in FreeRTOS’s internal

function vTaskSwitchContext(). Since FreeRTOS’s source code only performs calls to

this function via inline assembly, GCC removes vTaskSwitchContext() because it does

not realize that this function is used[43]. A simple workaround is to place a call to this

function after the FreeRTOS’s scheduler’s function call, which due to it being an infinite

loop, the call to vTaskSwitchContext() never occurs. Other options include altering

FreeRTOS’s source code and using GCC’s attribute ((used)) instruction.

Table 6.2: FFF measured worst-case execution times
FFF with standard atan2 FFF with approximate atan2

30.44 µs 1 µs

6.4 I-SRF-PLL

6.4.1 Discretization

Amplitude Normalization Scheme

As the ANS is based around simple arithmetic computations and low-pass filtering

(as previously shown in Figure 4.10), the LPF discretization process used for the FFF

mechanism can simply be re-used.

PI Controller

The PI controller, in its most usual form, is given by[44]:

u(t) = Kp · e(t) +Ki ·
∫ t

0
e(τ) · dτ (6.17)

Where u(t) is the controller’s output, e(t) is the input error and Kp and Ki are the

gains for the proportional and integral parts of the controller, respectively.

Using the backward difference approximation, the difference equation becomes3:

u[n] = u[n− 1] +Kp · (e[n]− e[n− 1]) +Ki · Ts · e[n] (6.18)

The PI requires 3 sums and 2 multiplications, given that Ki ·Ts is calculated in advance.

Controllable Oscillator

The controllable oscillator follows the same logic as the integral component of the PI

controller, hence the difference equation is:

θ̂[n] = θ̂[n− 1] + Ts · ωi[n] (6.19)
3Proof provided in Appendix H

79

Circular Dependency Problem

When discretizing any system it is important to note where circular dependencies might

exist. Directly substituting all continuous-time components of the I-SRF-PLL by their

previously described discrete-time counterparts results in a circular dependency as the

PLL’s output θ̂[n] depends on the PI controller’s output, which is determined by the output

of the ANS, which in turn uses the output of the DQ0-QA transform. Unfortunately, the

output of the DQ0-QA transform is dependent on θr[n], which is equal to θ̂[n]. Therefore,

computing θ̂[n] requires θ̂[n] to be computed, which is a logical impossibility.

The easiest way to solve this circular dependency is to add a unit delay in the feedback

path, with θr[n] becoming θ̂[n − 1]. This approach introduces a slight phase delay and

results in non-zero steady-state error. The reason for this is that in order for vq[n] to

be zero, the D axis must be coincident with the space vector, and the only way for this

to happen is to have the DQ0-QA’s rotational angle θr[n] be equal to the space vector’s

angle, i.e. the grid angle assuming a perfectly balanced grid.

Another solution is to place the delay in the forward path, i.e. somewhere between the

output of the DQ0-QA transform and the controllable oscillator. The delay is therefore

placed before the controllable oscillator, making θr[n] equal to θ̂[n] at the cost of the

I-SRF-PLL not being able to react to a disturbance in a single time-step.

This solution is also equivalent to substituting the backward difference approximation

by the forward difference approximation[37]:

θ̂[n] = θ̂[n− 1] + Ts · ωi[n− 1] (6.20)

Figure 6.2: Discrete version of the I-SRF-PLL with FFF mechanism

80

6.4.2 Implementation

DQ0 Transform

Not unlike the FFF mechanism, the implementation of the I-SRF-PLL is performance-

bound by the sine and cosine functions in the DQ0 transform. Due to the symmetries of

the sine function, it is easy to create a look-up table (LUT) for only a quarter-wave cycle,

and adapt the LUT values depending on which quadrant the angle is located, as shown in

Figure 6.3. Then, implementing the cosine function is trivial since it is simply a shift of

the sine function.

A useful approximation to interpolate between LUT positions is derived from the

following relation[45]:

sin (a+ b) = sin(a) · cos(b) + sin(b) · cos(a) (6.21)

If the LUT input is composed of θ+ h, where θ is some exact entry of the LUT and h

is a small difference which is not enough to reach the next LUT entry, then interpolation

can be performed based on the assumption that h is small enough such that cos(h) ≈ 1

and sin(h) ≈ h. This leads to the following approximation:

sin (θ + h) ≈ sin(θ) + h · cos(θ) (6.22)

Figure 6.3: Quarter-wave sine function LUT

81

Table 6.3: Sine LUT maximum error comparison

Approx. 6.22

Size
32 64 128 256 512 1024

With 1.07 ° 0.52 ° 0.26 ° 0.13 ° 0.07 ° 0.04 °

Without 2.91 ° 1.43 ° 0.71 ° 0.36 ° 0.18 ° 0.09 °

Table 6.3 presents the maximum error of the LUT-based approach. The least significant

digit is rounded up in every case, so the true maximum error is guaranteed to be below

the value on the table. It should be noted that due to the LUT being only a quarter of the

wave, the resolution is effectively quadrupled when compared to a full-wave LUT, albeit

at a slight computational cost. Additionally, the approximation from equation 6.22 has a

similar effect to more than doubling the table size, again at a slight computational cost.

After programming the sine LUT in C, the DQ0-QA transform can be effortlessly

calculated via equation 3.16.

Amplitude Normalization Scheme

As previously discussed in Chapter 4.3.2, the cost of computing the norm of the space

vector is quite significant due to the square-root operation. Fortunately, this can be miti-

gated by using the Alpha-max plus Beta-min algorithm[36]. This approximation computes

the norm of any given vector Z = (a, b) and is given by:

‖Z‖ ≈ α ·Max(a, b) + β ·Min(a, b) (6.23)

While there are many possible values for α and β, the optimum floating-point values

that give the lowest maximum error are[46]:α =
2·cos(π

8
)

1+cos (π
8
) ≈ 0.96043387010341996524

β =
2·sin(π

8
)

1+cos (π
8
) ≈ 0.39782473475931601382

(6.24)

This approximation requires 1 comparison, 2 multiplications and 1 sum, which for

the specific case of the ARM Cortex-M4 is faster than the 14 cycle long square-root

instruction[38]. The approximation’s maximum error is about 3.96 %.

PI Controller

While the implementation of the PI controller is easy, adding limits to the output

can be useful to avoid instability. Limiting the output can be done in such a way that

the internal variables of the PI controller are also bounded - which is effectively a form

of anti-windup. Another easy to add feature is limiting the amount of integral gain per

cycle, which might prove useful later but for now is left unused. Algorithm 4 demonstrates

how to implement the PI controller with these features.

82

Algorithm 4 PI Algorithm

Require:

const 1 = ki · Ts
Input: error input

1: proportional gain = kp ∗ (error input− prev error input)
2: integral gain = const 1 · error input
3: if integral gain > integral limit then

4: integral gain = integral limit

5: else if integral gain < −integral limit then

6: integral gain = −integral limit
7: end if

8: output = prev output+ proportional gain+ integral gain

9: if output > max output then

10: output = max output

11: else if output < min output then

12: output = min output

13: end if

14: prev output = output

15: prev error input = error input

Controllable Oscillator

In order to make sure that the outputs from the FFF mechanism and PI controller do

not generate a negative frequency input for the controllable oscillator during transients,

input limiting logic is added. The rest of the implementation is simply a direct application

of equation 6.20.

6.4.3 Hardware Benchmark

For the I-SRF-PLL benchmarks, the performance with and without the amplitude and

trigonometry approximations is compared in Table 6.4. It is clear that the standard sine

and cosine functions take a very significant amount of time, even when compared to the

expensive square-root operation required for the ANS.

Table 6.4: I-SRF-PLL measured worst-case execution times
No approximations/LUT Amplitude approx. only LUT only Both

44.75 µs 31.75 µs 12 µs 3.75 µs

83

6.5 Results

In order to test the discretization and implementation steps in a real-world application,

a custom signal conditioning board featuring full isolation was developed to convert real

three-phase voltages from a transformer into voltage levels appropriate for the XMC’s

analog-to-digital converter (ADC). A full schematic is available in Appendix I.

A timer was set up to trigger ADC conversions at a rate of 10 kHz (100 µs). After each

conversion, the CPU executes the grid synchronization algorithm, taking approximately

10 µs. Using two digital-to-analog converters (DACs), phase A (as converted by the ADC)

and the angle of the positive sequence component can be measured by an oscilloscope, as

shown in Figure 6.5. The sine wave from phase A was also recreated from the estimated

angle and amplitude of the positive sequence component, as shown in Figure 6.6. As

expected from the previous simulation results in Figure 5.9, two grid sine wave cycles are

required to achieve steady state. In this experimental setup, the grid was close to ideal,

thus the negative and zero sequence components had near-zero amplitudes. However, this

made it possible to verify that the estimation of the positive sequence component was

correct, thus demonstrating that all components of the advanced grid synchronization

algorithm are working properly and according to simulations.

Since the CPU is idling (or executing non-critical tasks) for approximately 90% of

the time, this leaves enough time to execute the control of a power electronics converter.

Hence, these results prove the feasibility of this technique for real-world applications which

do not require frequencies significantly above 10 kHz.

(a) XMC board connected to a custom signal conditioning board

and a display

(b) Three-phase transformer used

Figure 6.4: Experimental setup

84

Figure 6.5: Positive sequence I-SRF-PLL angle estimation

Figure 6.6: Recreated phase A sine wave

Despite the timestamps in the above figures, these measurements were not performed at 2 a.m.

85

THIS PAGE

INTENTIONALLY

LEFT BLANK

Chapter 7

Optimization

7.1 Introduction

In previous chapters, the optimality of tuning parameters such as PI controller gains

was never a concern as their values were picked by trial and error until they were ”good

enough” to carry the point of the explanations given. This chapter attempts to find tuning

parameters that are better suited for real world applications.

7.2 Simulation Setup

In order to execute any optimization algorithm, it is necessary to setup a simulation

environment from which a ”score” that rates how well a given set of tuning parameters

behaves can be obtained. In this context, a set of tuning parameters is known as a solution,

and the ”score” of each solution is known as its fitness.

The simulation accepts as input the individual amplitudes and phase shifts of each

phase, and using the novel equations 5.15 and 5.18 it generates the true amplitudes and

angles of the positive, negative and zero sequence components. These are of crucial impor-

tance to compute the fitness of each solution, as they can be compared with the estimations

from the I-SRF-PLLs.

Optimizing parameters for a perfect starting condition can lead to a situation where

an I-SRF-PLL can only start when given an ideal start. To ensure that the starting

conditions are far from ideal, the initial phase of the grid angle can be configured. The grid

frequency is also configurable and can vary during simulation, ensuring the optimization

algorithm does not overfit the tuning parameters for a single grid frequency and also finds

values that can properly compensate for frequency variations. The simulation features a

configurable phase jump to test the responsiveness of the FFF mechanism. The generation

of symmetrical sequence components is implemented via a custom function block as seen

in Figure 7.1, with additional blocks to implement the phase jump.

87

Figure 7.1: Generation of symmetrical sequence components in simulated environment

DC offset, noise and positive sequence harmonics can also be added to the input of the

grid synchronization algorithm as demonstrated in Figure 7.2.

While in previous chapters placing the FFF after the cascaded QSG-SOGIs was the

only option presented, it is actually unclear whether the FFF should be placed before the

filtering or after the cascaded QSG-SOGIs. Placing it after the filters has the advantage

that harmonics and noise will not affect the performance of the FFF as much, but has the

disadvantage that if the QSG-SOGIs’ input frequency does not match the grid frequency

then the filtered alpha and beta signals will have different amplitudes, as shown in Figure

5.4. Placing the FFF before the filters ensures that the frequency estimation is not affected

by a mismatch between the estimated frequency and the true grid frequency, but leaves it

more susceptible to noise and harmonics. To allow the optimization algorithm to choose

which one is best, two FFF mechanisms are included in the simulation (Figure 7.3), and

a variable controls which one is used (Figure 7.4).

Figure 7.2: Adding DC offset, noise and harmonics to the simulated three-phase voltages

88

Figure 7.3: Simulation with two FFF mechanisms placed before and after the cascaded

QSG-SOGI filters

Additionally, it is unclear which frequency estimation, either from FFF mechanism or

from the positive sequence I-SRF-PLL, is better for the cascaded QSG-SOGIs. As such,

another variable selects the frequency estimation source for the cascaded QSG-SOGIs,

shown in Figure 7.4. To avoid circular dependencies, a unit delay at the output of the

LPF for the input frequency of the cascaded QSG-SOGIs is required if either the positive

sequence I-SRF-PLL or the FFF placed after the filter are used.

Figure 7.4: FFF placement selection and cascaded QSG-SOGI frequency input selection

89

In total, there are 18 simulation control variables and 19 tuning parameters. Table 7.1

summarizes the control variables, while Table 7.2 summarizes the tuning parameters to

be optimized.

Note that the noise power in Table 7.1 is referring to the power spectral density of

band-limited white-noise, with a correlation time of 10 µs.

Also note that Table 7.2 does not include tuning parameters for the zero sequence

I-SRF-PLL as this PLL is not simulated. The reason to not simulate this I-SRF-PLL is

that the effects of the zero sequence component can be nullified by delta-wye transformers.

Since a delta connection provides no neutral point and since the zero sequence component

is the exact same voltage across all phases, this component produces no potential difference

in this type of transformer and hence can be ignored in most application scenarios. For

this reason, this chapter purposefully does not include estimation of the zero sequence

component, but the simulation could be easily adapted to do so.

Using different tuning parameters for the I-SRF-PLLs allows the optimization algo-

rithm to find better tuning parameters for the negative sequence component by trading

response time with noise immunity, as this component tends to be relatively small when

compared to the positive sequence component and thus has a smaller signal-to-noise ratio.

Table 7.1: Simulation control variables
Variable Name Allowed Range Explanation

T s 100 µs Sampling period of grid synchronization algorithm

V A ≥ 0 V Amplitude of phase A

V B ≥ 0 V Amplitude of phase B

V C ≥ 0 V Amplitude of phase C

Phi A +−∞ ° Phase shift of phase A

Phi B +−∞ ° Phase shift of phase B

Phi C +−∞ ° Phase shift of phase C

Offset A +−∞ V DC offset of phase A

Offset B +−∞ V DC offset of phase B

Offset C +−∞ V DC offset of phase C

Noise A ≥ 0 W/Hz Height of power spectral density of phase A’s noise

Noise B ≥ 0 W/Hz Height of power spectral density of phase B’s noise

Noise C ≥ 0 W/Hz Height of power spectral density of phase C’s noise

Start Phase +−∞ ° Initial phase of the grid angle

Phase Jump +−∞ ° Magnitude of phase jump

Phase Jump T [0; Sim. Time] s When the phase jump occurs

Signal Freq [40; 70] Hz Grid frequency for each time-step

V Harmonics ≥ 0 V Array containing the amplitudes of all harmonics

90

Table 7.2: Tuning parameters

Variable Name Allowed Range Explanation

SOGI k ≥ 0 Tuning parameter of the QSG-SOGIs

SOGI Freq fc ≥ 0 Hz Cutoff of QSG-SOGIs frequency input LPF

SOGI Use PLL Freq 0 or 1 Frequency input: FFF (0) or PLL (1)

Post Filter FFF 0 or 1 FFF before QSG-SOGIs (0) or after (1)

FFF fc ≥ 0 Hz Cutoff of the FFF LPF

POS ANS Ampl fc ≥ 0 Hz Pos. Seq. PLL ANS Amplitude LPF cutoff

POS ANS Vq fc ≥ 0 Hz Pos. Seq. PLL ANS vq(t) LPF cutoff

POS PI kp ≥ 0 Pos. Seq. PLL PI proportional gain

POS PI ki ≥ 0 Pos. Seq. PLL PI integral gain

POS PI max out ≥ 0 rad/s Pos. Seq. PLL PI maximum output

POS PI min out ≤ 0 rad/s Pos. Seq. PLL PI minimum output

POS PI integral limit ≥ 0 Pos. Seq. PLL PI integral gain limit

NEG ANS Ampl fc ≥ 0 Hz Neg. Seq. PLL ANS Amplitude LPF cutoff

NEG ANS Vq fc ≥ 0 Hz Neg. Seq. PLL ANS vq(t) LPF cutoff

NEG PI kp ≥ 0 Neg. Seq. PLL PI proportional gain

NEG PI ki ≥ 0 Neg. Seq. PLL PI integral gain

NEG PI max out ≥ 0 rad/s Neg. Seq. PLL PI maximum output

NEG PI min out ≤ 0 rad/s Neg. Seq. PLL PI minimum output

NEG PI integral limit ≥ 0 Neg. Seq. PLL PI integral gain limit

The specific values of the control variables used in this project can be found in Table

7.3. These were chosen such that they simulate a harsh but all-encompassing scenario.

The amplitudes and phase shifts of the three-phase voltages are chosen such that the neg-

ative sequence component is of small amplitude when compared to the positive sequence

component. Additionally, while the noise power used seems to be excessive, voltage sen-

sors can be susceptible to switching noise from the power electronics, hence including an

appropriate amount of noise can help the optimization algorithm in finding tuning param-

eters with good noise immunity. Double and triple frequency positive sequence harmonics

are introduced to further increase the need for proper filter tuning.

As can be seen in Figure 7.5, the frequency starts at 50 Hz and increases to 60 Hz in a

span of 50 ms. This frequency is maintained for 50 ms and then decreases to 50 Hz, again

in a span of 50 ms. Furthermore, a phase jump of 30 ° is introduced after 0.1 s of simulated

time. Together, these frequency and phase variations test the frequency adaptability of

the grid synchronization technique.

91

Table 7.3: Values of the simulation control variables used
Variable Name Value

T s 100 µs

V A 55 V

V B 50 V

V C 45 V

Phi A 0 °

Phi B −125 °

Phi C 120 °

Offset A 5 V

Offset B −2 V

Offset C 1 V

Noise A 0.1 mW/Hz

Noise B 0.1 mW/Hz

Noise C 0.1 mW/Hz

Start Phase 100 °

Phase Jump 30 °

Phase Jump T 0.1 s

Signal Freq See Figure 7.5

V Harmonics [1.0 0.5] V

Figure 7.5: Simulated scenario

92

7.3 Optimization via Genetic Algorithm

7.3.1 Overview of Genetic Algorithms

Genetic algorithms (GAs) are optimization algorithms based on biologic evolution,

effectively modeling the principles of genetics and natural selection[47].

A GA starts with an initial population, where each individual in the population is a

solution - a set of variables to be optimized. In each iteration of a GA, the fitness (or its

inverse, the cost) of each individual is calculated. The population goes through a natural

selection process, where a part of the population ”dies” to make room for new offspring.

The survivors are selected for cross-breeding based on their fitness until the population is

replenished back to its original size, which means that not all survivors might get a chance

to reproduce. Finally, random mutations are introduced to allow the emergence of new

traits that were not present in the original population. Usually, different populations are

denoted by their generation number.

The stop conditions for GAs can vary wildly. These can be the number of stall gen-

erations (i.e. consecutive generations that show no improvement), a fixed number of

generations or even a certain fitness threshold.

GAs are well suited for multi-variable problems with complex fitness functions that

can not be solved by traditional algorithms. They do not require derivative information,

work on both discrete and continuous variables, simultaneously search multiple regions of

the fitness function and therefore are less prone to get stuck on local maxima[47].

GAs can treat variables either as encoded binary strings or as continuous variables

where numbers are represented using floating-point and hence are known to the full ma-

chine precision. GAs that use continuous variables tend to be slightly faster because they

do not need to decode the binary strings in order to compute the fitness of the individuals.

7.3.2 Custom Genetic Algorithm

For this project, a custom GA using continuous variables was developed. As with any

GA, it starts by configuring the allowed range for the variables to be optimized. However,

these are not necessarily the same ranges as the ones from Table 7.2. For instance, consider

the example of the tuning parameter SOGI k. While it is true that any positive value is

valid, most values of interest are particularly close to zero as demonstrated in Chapter

5. Similarly, the various LPFs present in the grid synchronization algorithm are useless if

their cutoff frequencies are several orders of magnitude above the grid frequency.

In order to reduce the search space, the ranges of the tuning parameters are con-

strained. These constraints are shown in Table 7.4. Additionally, the minimum output

for each PI controller is always set to the negative of its maximum output value, thus

reducing the number of variables to optimize.

93

It should be noted that for boolean variables such as SOGI Use PLL Freq the GA is

allowed to generate any value between 0 and 1, which are then rounded for simulation.

Algorithm 5 presents a high-level overview of the custom GA. This custom GA imple-

ments additional features known as elitism, tournament selection and heuristic crossover.

In a elitist GA, the equally best solutions from each generation are propagated to the

next generation completely unchanged. In the case of the custom GA developed for this

project only one of the best solutions is propagated, as shown in line 16 of Algorithm 5.

Algorithm 6 demonstrates the process of tournament selection. By picking 3 random

individuals from the population and selecting the best one as a parent, this process mimics

the mating competitions that occur in nature [47].

Algorithm 7 shows how the heuristic crossover is performed. A value of β decides how

much the offspring inherits from each parent. While β typically varies between 0 and 1,

in this GA it is allowed to vary between -0.2 and 1.2 to allow the crossbreeding process to

introduce new genetic information. This circumvents the problem with continuous GAs

where simpler crossover algorithms are used, which rely solely on mutations to introduce

new genetic material[47].

Table 7.4: Constraints for each GA variable
Variable Name Constraints

SOGI k [0; 5]

SOGI Freq fc [0; 500] Hz

SOGI Use PLL Freq [0; 1]

Post Filter FFF [0; 1]

FFF fc [0; 500] Hz

POS ANS Ampl fc [0; 500] Hz

POS ANS Vq fc [0; 500] Hz

POS PI kp [0; 106]

POS PI ki [0; 106]

POS PI max out [0; 106] rad/s

POS PI min out -POS PI max out

POS PI integral limit [0; 106]

NEG ANS Ampl fc [0; 500] Hz

NEG ANS Vq fc [0; 500] Hz

NEG PI kp [0; 103]

NEG PI ki [0; 103]

NEG PI max out [0; 106] rad/s

NEG PI min out -NEG PI max out

NEG PI integral limit [0; 106]

94

Algorithm 5 Custom GA Algorithm

Input: N pop, N keep, mutation probability

1: Generate random population with N pop individuals

2: while optimization complete 6= true do

3: for each individual in population do

4: Compute fitness of individual

5: end for

6: Sort population by fitness in descending order

7: Keep first N keep individuals in population

8: while size(population) < N pop do

9: parent a = tournamentSelection(population, fitness)

10: parent b = tournamentSelection(population, fitness)

11: population(size(population+ 1)) = crossBreed(parenta ,parentb);

12: end while

13: if Stop conditions are met then

14: optimization complete = true

15: else

16: for i = 2; i < N pop; i = i+ 1 do

17: population(i) = mutate(population(i), mutation probability)

18: end for

19: end if

20: end while

Algorithm 6 Tournament Selection

Input: population, fitness

1: for i = 1; i ≤ 3; i = i+ 1 do

2: candidate(i) = population(random(1, size(population)))

3: end for

4: return candidate with highest fitness

Algorithm 7 Crossbreeding via Heuristic Crossover

Input: parent a, parent b

1: offspring = emptyIndividual()

2: for i = 1; i ≤ size(offspring); i = i+ 1 do

3: β = random(-0.1, 1.1)

4: offspring(i) = β · parent a+ (1− β) · parent b
5: Limit offspring(i) variable according to its constraints from Table 7.4

6: end for

7: return offspring

95

Finally, the mutation process of the custom GA is a standard variable randomization

which occurs based on a fixed probability.

Algorithm 8 Mutation

Input: individual

1: for each variable in individual do

2: if random(0,1) ≤ mutation probability then

3: variable = random(lower bound, upper bound)

4: end if

5: end for

6: return individual

7.3.3 Fitness Function

The selection of a proper fitness function is vital to the success of any optimization

algorithm. While it is obvious that the error of the positive and negative sequence com-

ponent must play a central role in computing the fitness of an individual, how to do so

may not be as self-evident.

Consider the following hypothetical fitness function which only considers a single error

signal, which is a N sized array containing the simulated errors at each time-step for a

given solution.

fitness =
1

N∑
i=1
|errori|

(7.1)

The reasoning behind this fitness function is quite simple: since the objective is to

minimize the error, simply sum up all the errors in each time-step, and the solution with

the lowest cumulative error is considered to be the best. The problem with this simplistic

approach is that this fitness function fails to place the proper emphasis on the steady-state

behaviour and disproportionately favours solutions with shorter transient times.

In Figure 7.6, two hypothetical error signals from two solutions are generated. Solution

A generates a error signal which starts at 1 and smoothly decays to zero in an exponential

fashion. Solution B also starts at 1, but decays slightly faster than solution A, albeit with

Gaussian noise added to it. This hypothetical simulation has a time-step of 1 ms.

Using the fitness function 7.1, the fitness of solution A is 0.0100 and the fitness of

solution B is 0.0103. From this, it is clear that even a tiny decrease in transient time is

considered ”better” over adding a significant amount of noise.

96

Figure 7.6: Error signals of two hypothetical solutions for fitness comparison

Intuitively, the results of solution A are much better than the results of solution B.

However, this intuition is often difficult to express in mathematical terms. For instance,

one might think that perhaps the root-mean-square (RMS) provides more accurate results:

fitness =
1√

1
N ·

N∑
i=1

error2i

(7.2)

However, using equation 7.2 for the exact same hypothetical scenario, the fitness of

solution A is 4.45 while solution B is 4.83. The RMS-based fitness function still favours a

marginally faster response time at the expense of excessive noise.

While the examples from 7.6 are relatively extreme and hand-crafted to exacerbate

the problem, it is not difficult to conceive that with such a big number of variables and

a huge search space, many ”noisy” solutions that provide quick response times at the

expense of noise immunity exist. Hence, it is important to select a proper fitness function

that correctly balances the importance of the error during transients and the error during

steady state.

A relatively easy solution to the fitness problem is revert back to the cumulative error

fitness function from equation 7.1, but now weighting each individual error value:

fitness =
1

N∑
i=1
|wi · errori|

(7.3)

97

Choosing values for these weights can be done in a variety of different ways. For this

project, the weights start at zero and increase by a fixed amount each time-step, but

are reset at the instant a transient is introduced in the simulation. This places more

emphasis on the error during steady state while reducing the importance of the error

during transients.

In the hypothetical scenario of Figure 7.6 the only transient is at the start, hence the

weights would simply increase over time without ever resetting. Using this technique with

a 0.1 increment in weight per time-step, the fitness of solutions A and B become 0.001

and 0.0007, respectively.

For the actual simulation of the grid synchronization algorithm, since the fitness func-

tion must evaluate the performance of both positive and negative sequence errors, then

they can be combined in a single equation:

fitness =
1√(

N∑
i=1
|wi · error posi|

)2

+

(
N∑
i=1
|wi · error negi|

)2
(7.4)

The above equation simply takes two cost functions - the errors of the positive and

negative sequence components - and combines them using the standard non-preferential

method[48]. This avoids adding the increased layer of complexity of multi-objective opti-

mization by effectively collapsing two objectives into one - a single fitness to be optimized.

In the simulated scenario, disturbances are introduced at the moments t = 0.1 s,

t = 0.15 s, t = 0.2 s, t = 0.25 s and t = 0.3 s as shown in Figure 7.5. Hence, Figure 7.7

shows how the weights are reset in these moments.

Figure 7.7: Weights for the simulated scenario

98

7.3.4 Optimization Results

Using the fitness function from equation 7.4, the custom genetic algorithm previously

described was run for 100 generations, with a population size of 200 where only 100

individuals survive per iteration and a mutation probability of 50%.

In order to have a basis of comparison, the fitness of the parameters previously used

in simulations in other chapters was calculated. These parameters are shown in Table 7.5,

and the simulated results are shown in Figure 7.8. Similarly, the parameters optimized by

the GA are also shown in Table 7.5 and the results in Figure 7.9.

As can be seen in Table 7.5, the GA luckily agrees on the original architecture proposed

on previous chapters, using the frequency of the positive sequence I-SRF-PLL as the input

to the cascaded QSG-SOGIs and also placing the FFF after them.

Interestingly, it seems that the integral limit functionality has little to no impact on

the performance, as the GA optimized these values to be so high that they do not interfere

with the normal operation of the PI controllers. Hence, it is possible that this feature is

not very well suited for a grid synchronization algorithm.

Table 7.5: Tuning parameters picked by trial and error and optimized by the GA

Variable Name Trial and error GA optimized

SOGI k 3 1.947

SOGI Freq fc 10 Hz 23.927 Hz

SOGI Use PLL Freq 1 1

Post Filter FFF 1 1

FFF fc 50 Hz 371.987 Hz

POS ANS Ampl fc 100 Hz 256.343 Hz

POS ANS Vq fc 100 Hz 104.728 Hz

POS PI kp 500 62712.771

POS PI ki 5000 26821.432

POS PI max out 2π100 rad/s 68661.008 rad/s

POS PI min out −2π100 -68661.008 rad/s

POS PI integral limit +∞ 60333.621

NEG ANS Ampl fc 100 Hz 284.626 Hz

NEG ANS Vq fc 100 Hz 471.541 Hz

NEG PI kp 100 203.583

NEG PI ki 400 350.807

NEG PI max out 2π100 rad/s 46777.475 rad/s

NEG PI min out −2π100 rad/s -46777.475 rad/s

NEG PI integral limit +∞ 59492.315

99

Figure 7.8: Results of tuning parameters picked by trial and error

100

Figure 7.9: Results of tuning parameters optimized by the GA

101

Figure 7.10: Comparison between positive sequence errors during frequency variations and

during steady-state conditions

Figure 7.11: Comparison between negative sequence start-up errors of the parameters

picked by hand (left) and the GA-optimized parameters (right)

102

The error of the positive sequence component’s angle that the GA optimized for is

very similar to the error obtained by the values picked by trial and error. However, it

has achieved this by having high PI controller gains and a smaller SOGI k value. This

implies that the GA-optimized solution has higher noise immunity. In Figure 7.10, the

comparison of the errors during the frequency variations and steady state is shown in

detail to demonstrate how close the results are.

The estimation of the negative sequence component’s angle by the GA-optimized pa-

rameters is slightly more sensitive to the phase jump, resulting in higher overshoot and

undershoot during the moments t = 0.1 s and t = 0.15 s. It also tends to oscillate slightly

more during the frequency variations, but the overall error is closer to zero.

It should also be noted that the GA-optimized solution is much quicker at locking-on,

approximately 25 ms. By comparison, the hand-picked solution takes 3 times longer and

does not even settle to zero error before the frequency variations at t = 0.1 s. This is quite

apparent in Figure 7.11.

As can be seen in Figures 7.8 and 7.9, the GA does not ”care” about high-amplitude

variations in the estimated frequency as long as the overall error is lower. This is to be ex-

pected, as the fitness function does not evaluate the correctness of the estimated frequency.

However, the frequency estimation of the positive sequence component is somewhat close

to the true grid frequency, at least after the effects of the phase jump disappear.

The fitness of the parameters picked by trial and error is 0.000022 while the fitness

of the GA-optimized parameters is 0.000068, approximately a threefold increase. In con-

clusion, the optimization via the custom genetic algorithm provided acceptable results.

Nonetheless, it should be noted that while this demonstrates that this optimization tech-

nique is viable for this particular grid synchronization algorithm, it does not necessarily

mean that these parameters are the best for every single case. A system designer must

carefully simulate an environment that is representative of the real-world application in

which the algorithm will be used.

103

THIS PAGE

INTENTIONALLY

LEFT BLANK

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This project aimed to develop an advanced grid synchronization algorithm. While some

improvements were relatively easy to implement, others required a more careful analysis

of the theory behind symmetrical sequence components. In doing so, novel equations

that relate the parameters of unbalanced three-phase voltages to the parameters of their

symmetrical sequence components were derived.

These equations proved useful not only for analysis but also for tuning parameters

via a genetic algorithm. With these equations, a system designer can simulate a truly

unbalanced system - where neither the amplitudes and phases are balanced - and extract

the positive, negative and zero sequence components’ angles. From these angles, one can

now compare the errors between the estimated and true angles, and compute a fitness

based on said errors.

The proposed advanced grid synchronization algorithm was also implemented in a

modern microcontroller, proving that the implementation in a real-world product is fea-

sible. Some approximations were used in order to speed up some of the most expensive

calculations.

Overall, all goals of the project were accomplished. In doing so, this document now

(hopefully) serves the purpose of presenting future students some of the methodologies

usually employed in developing a grid synchronization algorithm. Even if said algorithms

are different in nature - like algorithms based on the DFT or Kalman filters - the analysis

of the αβ and DQ0 transforms, symmetrical sequence components and the techniques used

for parameters optimization still hold value.

105

8.2 Future Work

The following list provides some ideas and guidance for future derivative works:

• Use the novel equations relating unbalanced three-phase voltages to their symmet-

rical sequence components to implement other synchronization algorithms.

– E.g. by integrating said equations into a Kalman filter.

– E.g. by using single-phase techniques to estimate the amplitude and frequency

of each phase, and then estimating the amplitudes and angles of each component

via said equations

• Optimize for different scenarios

– E.g. optimize the algorithm for use in motor control applications

– E.g. optimize the algorithm to cope with grid failures

• Quantify the impact of the approximations used in the implementation

• Benchmark performance on FPGAs

– Many parts of the algorithm can be adapted to perform in parallel, hence

it is likely that even a low-end FPGA could provide significant performance

improvements over a microcontroller

• Perform more strict performance tests according to international standards

• Compare with other synchronization algorithms

106

Appendix A

Proof that Sum of Balanced

Three-Phase Voltages Is Zero

The sum of a set of balanced three-phase voltages is given by:

V · sin (θ) + V · sin
(
θ − 2π

3

)
+ V · sin

(
θ +

2π

3

)
(A.1)

Applying the trigonometric rule[45]: sin (a+− b) = sin (a) cos (b) +− sin (b) cos (a):

V · sin (θ) + V · sin (θ) · cos

(
2π

3

)
− V · cos (θ) · sin

(
2π

3

)
+ V · sin (θ) · cos

(
2π

3

)
+V · cos (θ) · sin

(
2π

3

) (A.2)

By eliminating opposites and simplifying known trigonometric values:

V · sin (θ)− V · sin (θ) · 1

2
− V · sin (θ) · 1

2

=V · sin (θ)− V · sin (θ) = 0
(A.3)

107

THIS PAGE

INTENTIONALLY

LEFT BLANK

Appendix B

Proof of Space Vector’s Constant

Magnitude

The norm of any given vector
#»

X = (x1, x2, ..., xn) is given by[49]:

‖X‖ =

√√√√ n∑
i=1

x2i (B.1)

The space vector
#»

S , under balanced grid conditions, is given by:

#»

S =

(
V · sin(θ), V · sin

(
θ − 2π

3

)
, V · sin

(
θ +

2π

3

))
(B.2)

The norm of the space vector
#»

S is given by:

‖S‖ =

√
V 2 · sin (θ)2 + V 2 · sin

(
θ − 2π

3

)2

+ V 2 · sin
(
θ +

2π

3

)2

(B.3)

=

√√√√V 2 ·

(
sin (θ)2 + sin

(
θ − 2π

3

)2

+ sin

(
θ +

2π

3

)2
)

(B.4)

=
√
V 2 ·

√
sin (θ)2 + sin

(
θ − 2π

3

)2

+ sin

(
θ +

2π

3

)2

(B.5)

Applying the trigonometric rule[45]: sin (a+− b) = sin (a) · cos (b) +− sin (b) · cos (a) to

equation B.5:

‖S‖ = V ·

√
sin (θ)2 +

(
sin (θ) · cos

(
2π

3

)
− cos (θ) · sin

(
2π

3

))2

+

(
sin (θ) · cos

(
2π

3

)
+ cos (θ) · sin

(
2π

3

))2
(B.6)

109

Computing the known trigonometric values:

‖S‖ = V ·

√√√√sin (θ)2 +

(
− sin (θ) · 1

2
− cos (θ) ·

√
3

2

)2

+

(
− sin (θ) · 1

2
+ cos (θ) ·

√
3

2

)2
(B.7)

Further simplification leads to:

‖S‖=V ·

√
sin (θ)2 +

(
− sin (θ)− cos (θ) ·

√
3
)2

4
+

(
− sin (θ) + cos (θ) ·

√
3
)2

4
(B.8)

=V ·

√
4 · sin (θ)2 +

(
− sin (θ)− cos (θ) ·

√
3
)2

+
(
− sin (θ) + cos (θ) ·

√
3
)2

4
(B.9)

Expansion of the squared bracketed expressions results in:

‖S‖ = V ·

√
4 · sin (θ)2 + sin (θ)2 + 2 · sin (θ) ·

√
3 · cos (θ) + 3 · cos (θ)2

4

+ sin (θ)2 − 2 · sin (θ) ·
√

3 · cos (θ) + 3 · cos (θ)2

4

(B.10)

Eliminating opposites and combining like terms yields:

‖S‖ = V ·

√
6 · sin (θ)2 + 6 · cos (θ)2

4
(B.11)

Using the trigonometric rule[50]: sin (a)2 + cos (a)2 = 1, it follows that:

‖S‖ = V ·
√

6

4

= V ·
√

3

2

(B.12)

110

Appendix C

Proof of Trigonometric

Relationship

Consider the following trigonometric rule[51]:

sin (α) + sin (β) = 2 · sin
(

1

2
· (α+ β)

)
· cos

(
1

2
· (α− β)

)
(C.1)

Let a and b be defined as:

a =
1

2
· (α+ β) (C.2)

a− b =
1

2
· (α− β) (C.3)

Solving for α and β:

α = 2 · a− b (C.4)

β = b (C.5)

Substituting the above in equation C.1:

sin (2 · a− b) + sin (b) = 2 · sin (a) · cos (a− b) (C.6)

Rearranging yields:

cos (a− b) · sin (a) =
1

2
· (sin (2 · a− b) + sin (b)) (C.7)

111

THIS PAGE

INTENTIONALLY

LEFT BLANK

Appendix D

Simplification of αβ Symmetrical

Components

This appendix focuses on the simplification of the following equations (from equations

5.22 in Chapter 5): 

v+α (t) = 2
3 ·
(
v+a (t)− v+b (t)

2 − v+c (t)
2

)
v−α (t) = 2

3 ·
(
v−a (t)− v−b (t)

2 − v−c (t)
2

)
v+β (t) = 2

3 ·
(√

3
2 · v

+
b (t)−

√
3
2 · v

+
c (t)

)
v−β (t) = 2

3 ·
(√

3
2 · v

−
b (t)−

√
3
2 · v

−
c (t)

)
(D.1)

D.1 α Symmetrical Components

Notice how similar v+α and v−α are. For compactness, the following equation represents

both:

v+−α (t) =
2

3
· V +− ·

(
sin (θ(t) + φ+−)−

sin (θ(t) + φ+− −+ 2π
3)

2
−

sin (θ(t) + φ+− +−
2π
3)

2

)
(D.2)

To make this deduction easier, only the above bracketed expression is simplified. Ap-

plying the trigonometric rule[45] sin (a+− b) = sin (a) cos (b) +− sin (b) cos (a) yields:

sin (θ(t) + φ+−)−
sin (θ(t) + φ+−) · cos

(
2π
3

)−+ sin
(
2π
3

)
· cos (θ(t) + φ+−)

2

−
sin (θ(t) + φ+−) · cos

(
2π
3

)
+− sin

(
2π
3

)
· cos (θ(t) + φ+−)

2

(D.3)

Using the substitution u = θ(t) + φ+−:

sin (u)−
sin (u) · cos

(
2π
3

)−+ sin
(
2π
3

)
· cos (u)

2
−

sin (u) · cos
(
2π
3

)
+− sin

(
2π
3

)
· cos (u)

2
(D.4)

113

Combining both fractions:

sin (u) +
− sin (u) · cos

(
2π
3

)
+− sin

(
2π
3

)
· cos (u)− sin (u) · cos

(
2π
3

)−+ sin
(
2π
3

)
· cos (u)

2
(D.5)

Eliminating opposites and combining like terms:

sin (u) +
−2 · sin (u) · cos

(
2π
3

)
2

(D.6)

Computing known cosine value:

sin (u) +
sin (u)

2
(D.7)

Simplifying and undoing the u = θ(t) + φ+− substitution:

3

2
· sin (θ(t) + φ+−) (D.8)

Plugging back the above result into equation D.2:

v+−α (t) =
2

3
· V +− · 3

2
· sin (θ(t) + φ+−) = V +− · sin (θ(t) + φ+−) (D.9)

D.2 β Symmetrical Components

As in the previous deduction, notice how similar v+β and v−β are. Again, for compact-

ness, the following equation represents both:

v+−β (t) =
2

3
· V +− ·

(√
3

2
· sin

(
θ(t) + φ+− −+

2π

3

)
−
√

3

2
· sin

(
θ(t) + φ+− +−

2π

3

))
(D.10)

Bringing out the common term inside the bracketed expression:

v+−β (t) =

√
3

3
· V +− ·

(
sin

(
θ(t) + φ+− −+

2π

3

)
− sin

(
θ(t) + φ+− +−

2π

3

))
(D.11)

Taking only the above bracketed expression and applying both the trigonometric rule

sin (a+− b) = sin (a) cos (b) +− sin (b) cos (a) and the substitution u = θ(t) + φ+− yields:

sin (u) cos

(
2π

3

)
−+ sin

(
2π

3

)
cos (u)−

(
sin (u) cos

(
2π

3

)
+− sin

(
2π

3

)
cos (u)

)
(D.12)

Simplifying the signs:

sin (u) cos

(
2π

3

)
−+ sin

(
2π

3

)
cos (u)− sin (u) cos

(
2π

3

)
−+ sin

(
2π

3

)
cos (u) (D.13)

Eliminating opposites and combining like terms:

−+2 · sin
(

2π

3

)
cos (u) (D.14)

114

Computing the know sine value and undoing the substitution u = θ(t) + φ+−:

−+
√

3 · cos (θ(t) + φ+−) (D.15)

Plugging back this result into equation D.11:

v+−β (t) =

√
3

3
· V +− · (−+

√
3 · cos (θ(t) + φ+−)) = −+V +− · cos (θ(t) + φ+−) (D.16)

Transforming the cosine into a sine:

v+−β (t) = +−V
+− · sin

(
θ(t) + φ+− − π

2

)
(D.17)

D.3 Summary of Simplification Results

The equations at the beginning of this appendix were shown to be equal to:

v+α (t) = V + · sin (θ(t) + φ+)

v−α (t) = V − · sin (θ(t) + φ−)

v+β (t) = V + · sin
(
θ(t) + φ+ − π

2

)
v−β (t) = −V − · sin

(
θ(t) + φ− − π

2

)
(D.18)

115

THIS PAGE

INTENTIONALLY

LEFT BLANK

Appendix E

Simplification of DQ0-QA

Symmetrical Components

This appendix focuses on the simplification of the following equations (from equations

5.24 in Chapter 5):vd(t) = sin (θ(t) + φR) · (v+α (t) + v−α (t) + vDCα)− cos (θ(t) + φR) · (v+β (t) + v−β (t) + vDCβ)

vq(t) = cos (θ(t) + φR) · (v+α (t) + v−α (t) + vDCα) + sin (θ(t) + φR) · (v+β (t) + v−β (t) + vDCβ)

(E.1)

Before progressing further into this appendix, please note that this appendix makes

extensive use of the following trigonometric product formulas[52]:

sin (α) · sin (β) = cos (α−β)−cos (α+β)
2

cos (α) · cos (β) = cos (α+β)+cos (α−β)
2

sin (α) · cos (β) = sin (α−β)+sin (α+β)
2

cos (α) · sin (β) = sin (α+β)−sin (α−β)
2

(E.2)

E.1 D Symmetrical Components

To make the deduction easier, it is best to break the vd(t) equation into smaller parts

which correspond to the positive and negative sequence components and to the DC offsets:

vd(t) = v+d (t) + v−d (t) + vDCd (t) (E.3)

Where: 
v+d (t) = sin (θ(t) + φR) · v+α (t)− cos (θ(t) + φR) · v+β (t)

v−d (t) = sin (θ(t) + φR) · v−α (t)− cos (θ(t) + φR) · v−β (t)

vDCd (t) = sin (θ(t) + φR) · vDCα − cos (θ(t) + φR) · vDCβ

(E.4)

117

Notice how vDCd (t) is already fully simplified since vDCα and vDCβ are constants.

Taking a combined equation for v+d (t) and v−d (t) and substituting v+α (t), v+β (t), v−α (t)

and v−β (t) (as per equations 5.23):

v+−d (t) = sin (θ(t) + φR) · V +− · sin (θ(t) + φ+−)−+ cos (θ(t) + φR) · V +− · sin
(
θ(t) + φ+− − π

2

)
= V +− ·

(
sin (θ(t) + φR) · sin (θ(t) + φ+−) +− cos (θ(t) + φR) · cos (θ(t) + φ+−)

)
(E.5)

Expanding using the product formulas from E.2:

v+−d (t) = V +− · cos (θ(t) + φR − (θ(t) + φ+−))− cos (θ(t) + φR + θ(t) + φ+−)

2

+− V
+− · cos (θ(t) + φR + θ(t) + φ+−) + cos (θ(t) + φR − (θ(t) + φ+−))

2

(E.6)

Which when simplified results in:

v+−d (t) = V +− · cos (φR − φ+−)− cos (2 · θ(t) + φR + φ+−)

2

+− V
+− · cos (2 · θ(t) + φR + φ+) + cos (φR − φ+))

2

(E.7)

Separating and simplifying the equations:v
+
d (t) = V +

2 ·
(
2 · cos (φR − φ+)

)
= V + · cos (φR − φ+) = V + · cos (φ+ − φR)

v−d (t) = V +

2 ·
(
−2 · cos (2 · θ(t) + φR + φ−)

)
= −V − · cos (2 · θ(t) + φR + φ−)

(E.8)

These simplifications can then be plugged back into equation E.3:

vd(t) = V + · cos (φ+ − φR)− V − · cos (2 · θ(t) + φR + φ−) + vDCα · sin (θ(t) + φR)

− vDCβ · cos (θ(t) + φR)
(E.9)

E.2 Q Symmetrical Components

Following the same logic as in the previous deductions, breaking vq(t) into smaller

parts results in:

vq(t) = v+q (t) + v−q (t) + vDCq (t) (E.10)

Where: 
v+q (t) = cos (θ(t) + φR) · v+α (t) + sin (θ(t) + φR) · v+β (t)

v−q (t) = cos (θ(t) + φR) · v−α (t) + sin (θ(t) + φR) · v−β (t)

vDCq (t) = cos (θ(t) + φR) · vDCα + sin (θ(t) + φR) · vDCβ

(E.11)

118

Taking a combined equation for v+q (t) and v−q (t) and substituting v+α (t), v+β (t), v−α (t)

and v−β (t) (as per equations 5.23):

v+−q (t) = cos (θ(t) + φR) · V +− · sin (θ(t) + φ+−) +− sin (θ(t) + φR) · V +− · sin
(
θ(t) + φ+− − π

2

)
= V +− ·

(
cos (θ(t) + φR) · sin (θ(t) + φ+−)−+ sin (θ(t) + φR) · cos (θ(t) + φ+−)

)
(E.12)

Expanding using the product formulas from E.2:

v+−q (t) = V +− · sin (θ(t) + φR + θ(t) + φ+−)− sin (θ(t) + φR − (θ(t) + φ+−))

2

−+ V +− · sin (θ(t) + φR − (θ(t) + φ+−)) + sin (θ(t) + φR + θ(t) + φ+−)

2

(E.13)

Which when simplified results in:

v+−q (t) = V +− · sin (2 · θ(t) + φR + φ+−)− sin (φR − φ+−)

2

−+ V +− · sin (φR − φ+−) + sin (2 · θ(t) + φR + φ+−)

2

(E.14)

Separating and simplifying the equations:v+q (t) = V +

2 ·
(
−2 · sin (φR − φ+)

)
= −V + · sin (φR − φ+) = V + · sin (φ+ − φR)

v−q (t) = V −

2 ·
(
2 · sin (2 · θ(t) + φR + φ−)

)
= V − · sin (2 · θ(t) + φR + φ−)

(E.15)

These simplifications can then be plugged back into equation E.10:

vq(t) = V + · sin (φ+ − φR) + V − · sin (2 · θ(t) + φR + φ−) + vDCα · cos (θ(t) + φR)

+ vDCβ · sin (θ(t) + φR)
(E.16)

E.3 Summary of Simplification Results

The equations at the beginning of this appendix were shown to be equal to:

vd(t) = V + · cos (φ+ − φR)− V − · cos (2 · θ(t) + φR + φ−) + vDCα · sin (θ(t) + φR)

− vDCβ · cos (θ(t) + φR)

vq(t) = V + · sin (φ+ − φR) + V − · sin (2 · θ(t) + φR + φ−) + vDCα · cos (θ(t) + φR)

+ vDCβ · sin (θ(t) + φR)

(E.17)

119

THIS PAGE

INTENTIONALLY

LEFT BLANK

Appendix F

Discretization of a Generic

Second-Order Transfer Function

A generic second-order transfer function is given by:

H(s) =
Y (s)

X(s)
=

b2 · s2 + b1 · s+ b0
a2 · s2 + a1 · s+ a0

(F.1)

The bilinear transform is a method used to approximate a continuous transfer function

in the discrete domain, which is given by[36]:

s ≈ 2

Ts
· 1− z−1

1 + z−1
(F.2)

Where Ts is the sampling time of the discrete system. When this approximation is

used on equation F.1, it yields:

H(z) =
b2 ·

(
2
Ts
· 1−z−1

1+z−1

)2
+ b1 ·

(
2
Ts
· 1−z−1

1+z−1

)
+ b0

a2 ·
(

2
Ts
· 1−z−1

1+z−1

)2
+ a1 ·

(
2
Ts
· 1−z−1

1+z−1

)
+ a0

=

b2·
(

2
Ts

)2
·(1−z−1)

2

(1+z−1)2
+

b1·
(

2
Ts

)
·(1−z−1)

1+z−1 + b0

a2·
(

2
Ts

)2
·(1−z−1)2

(1+z−1)2
+

a1·
(

2
Ts

)
·(1−z−1)

1+z−1 + a0

=

b2·
(

2
Ts

)2
·(1−z−1)

2
+b1· 2

Ts
·(1−z−1)·(1+z−1)+b0·(1+z−1)

2

(1+z−1)2

a2·
(

2
Ts

)2
·(1−z−1)2+a1· 2

Ts
·(1−z−1)·(1+z−1)+a0·(1+z−1)2

(1+z−1)2

=
b2 ·

(
2
Ts

)2
·
(
1− z−1

)2
+ b1 · 2

Ts
·
(
1− z−1

)
·
(
1 + z−1

)
+ b0 ·

(
1 + z−1

)2
a2 ·

(
2
Ts

)2
· (1− z−1)2 + a1 · 2

Ts
· (1− z−1) · (1 + z−1) + a0 · (1 + z−1)2

=
b2 ·

(
2
Ts

)2
·
(
1− z−1

)2
+ b1 · 2

Ts
·
(
1− z−1

)
·
(
1 + z−1

)
+ b0 ·

(
1 + z−1

)2
a2 ·

(
2
Ts

)2
· (1− z−1)2 + a1 · 2

Ts
· (1− z−1) · (1 + z−1) + a0 · (1 + z−1)2

(F.3)

121

Since the top and bottom expressions are very similar, it is easier to work with just

the top expressions:

b2 ·
(

2

Ts

)2

·
(
1− z−1

)2
+ b1 ·

2

Ts
·
(
1− z−1

)
·
(
1 + z−1

)
+ b0 ·

(
1 + z−1

)2
= b2 ·

(
2

Ts

)2

·
(
z−2 − 2 · z−1 + 1

)
+ b1 ·

2

Ts
·
(
1− z−2

)
+ b0 ·

(
z−2 + 2 · z−1 + 1

)
=

(
b2 ·

(
2

Ts

)2

− b1 ·
2

Ts
+ b0

)
· z−2 +

(
−2 · b2 ·

(
2

Ts

)2

+ 2 · b0

)
· z−1

+b2 ·
(

2

Ts

)2

+ b1 ·
2

Ts
+ b0

(F.4)

By substitution:

H(z) =

(
b2 ·

(
2
Ts

)2
− b1 · 2

Ts
+ b0

)
· z−2 +

(
−2 · b2 ·

(
2
Ts

)2
+ 2 · b0

)
· z−1(

a2 ·
(

2
Ts

)2
− a1 · 2

Ts
+ b0

)
· z−2 +

(
−2 · a2 ·

(
2
Ts

)2
+ 2 · a0

)
· z−1

+b2 ·
(

2
Ts

)2
+ b1 · 2

Ts
+ b0

+a2 ·
(

2
Ts

)2
+ a1 · 2

Ts
+ a0

(F.5)

Normalizing the constant term in the denominator, the following transfer function is

obtained:

H(z) =
Y (z)

X(z)
=
Cb0 + Cb1 · z−1 + Cb2 · z−2

Ca0 + Ca1 · z−1 + Ca2 · z−2
(F.6)

Where: 

Cb0 =
b2·

(
2
Ts

)2
+b1· 2

Ts
+b0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0

Cb1 =
−2·b2·

(
2
Ts

)2
+2·b0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0

Cb2 =
b2·

(
2
Ts

)2
−b1· 2

Ts
+b0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0



Ca0 = 1

Ca1 =
−2·a2·

(
2
Ts

)2
+2·a0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0

Ca2 =
a2·

(
2
Ts

)2
−a1· 2

Ts
+a0

a2·
(

2
Ts

)2
+a1· 2

Ts
+a0

(F.7)

Thus, the difference equation is:

y[n] = Cb0 · x[n] + Cb1 · x[n− 1] + Cb2 · x[n− 2]− Ca1 · y[n− 1]− Ca2 · y[n− 2] (F.8)

122

Appendix G

Discretization of a First-Order

Low-Pass Filter

A Butterworth first-order LPF transfer function is given by:

HLPF (s) =
Y (s)

X(s)
=

ωc
s+ ωc

(G.1)

Where ωc is the cutoff frequency of the filter.

The backward different approximation in the frequency domain is given by[37]:

s =
1− z−1

Ts
(G.2)

By substituting this approximation in the LPF’s transfer function:

HLPF (z) =
Y (z)

X(z)
=

ωc
1−z−1

Ts
+ ωc

=
ωc

1−z−1+ωc·Ts
Ts

=
ωc · Ts

1 + ωc · Ts − z−1

=
ωc·Ts

1+ωc·Ts
1− 1

1+ωc·Ts · z
−1

(G.3)

Let a = ωc·Ts
1+ωc·Ts , then:

HLPF (z) =
Y (z)

X(z)
=

a

1− (1− a) · z−1
(G.4)

Thus, the difference equation is:

y[n] = a · x[n] + (1− a) · y[n− 1] (G.5)

123

THIS PAGE

INTENTIONALLY

LEFT BLANK

Appendix H

Discretization of the PI Controller

The PI controller is given by[44]:

u(t) = Kp · e(t) +Ki ·
∫ t

0
e(τ) · dτ (H.1)

Applying the derivative to the above equation results in:

du

dt
= Kp ·

de

dt
+Ki · e(t) (H.2)

Applying the backward difference approximation:

u[n]− u[n− 1]

Ts
= Kp ·

e[n]− e[n− 1]

Ts
+Ki · e[n] (H.3)

Which when solved in order to u[n] yields:

u[n] = u[n− 1] +Kp · (e[n]− e[n− 1]) +Ki · Ts · e[n] (H.4)

125

THIS PAGE

INTENTIONALLY

LEFT BLANK

Appendix I

Signal Conditioning Board

The signal conditioning board was designed to have the minimum amount of parts to

reduce production costs. The board is based around the ACPL-C87B optical isolation

amplifier[53].

Due to the amplifier’s 2 V DC input restriction, the three-phase voltages must first be

shifted. This offset is obtained by using a simple LM7805 voltage regulator and a trimmer

potentiometer whose output is buffered by an operational amplifier (U5A). In a similar

way, the output from the voltage dividers from phases A, B and C are also buffered by

U9A, U10A and U11A, respectively.

Each phase’s buffered voltage is added to the offset voltage, but due to the specific

circuit topology used, the output voltage is actually divided by 2. These voltages are

simply fed to the isolation amplifiers, and then the differential isolated output voltages

are transformed into voltages referenced to the GND net by U1, U2 and U3. Since this

board is simply for prototyping, different precision resistors were used because these were

leftovers from previous projects, but ideally they should all be the same value.

The voltage dividers for the three-phase voltages feature multiple series resistors to

ensure that the voltage ratings are not exceeded. The gain of the voltage dividers is

approximately 13.216 mV/V, but due to the division by 2 from the operational amplifiers,

the signal that reaches the microcontroller has a gain of approximately 6.608 mV/V. In

other words, the microcontroller must multiply the voltages read by the ADC by the

reciprocal of this number, which is exactly 151.3 V/V. Obviously, the recurring decimal 3

must be rounded to floating-point precision.

In Figures I.2, I.3 and I.4 the output of the board is compared with the real sine wave of

each phase. As can be seen, no phase shift is introduced, the output voltages are centered

around 1 V and have an amplitude of 480 mV. When compared to the 80 V amplitude of

the grid, this closely matches the expected gain of 6.608 mV/V.

127

Figure I.1: Board Schematic

128

Figure I.2: Comparison between phase A and its corresponding board output

Figure I.3: Comparison between phase B and its corresponding board output

Figure I.4: Comparison between phase C and its corresponding board output

129

THIS PAGE

INTENTIONALLY

LEFT BLANK

References

[1] Robert W. Erickson and Dragan Maksimović. Fundamentals of Power Electronics.

2nd ed. Springer, 2004, p. 883. isbn: 0792372700.

[2] Dragan Jovcic and Khaled Ahmed. High Voltage Direct Current Transmission: Con-

verters, Systems and DC Grids. 1st ed. Wiley, 2015, p. 456. isbn: 978-1118846667.

[3] Sang-Hoon Kim. Electric Motor Control: DC, AC, and BLDC Motors. Elsevier,

2017, p. 438. isbn: 9780128121382.

[4] Saeed Golestan, Mohammad Monfared, and Francisco D. Freijedo. “Design-Oriented

Study of Advanced Synchronous Reference Frame Phase-Locked Loops”. In: IEEE

Transactions on Power Electronics (2013).

[5] R.W. Wall. “Simple Methods for Detecting Zero Crossing”. In: IECON (2003).

[6] N. Jaalam et al. “A comprehensive review of synchronization methods for grid-

connected converters of renewable energy source”. In: Renewable and Sustainable

Energy Reviews (2014).

[7] Farzam Baradani, Mohammad R. Dadash Zadeh, and M. Amin Zamani. “A Phase-

Angle Estimation Method for Synchronization of Grid-Connected Power-Electronic

Converters”. In: IEEE Transactions on Power Delivery (2014).

[8] B.P. McGrath, D.G. Holmes, and J.J.H. Galloway. “Power Converter Line Synchro-

nization Using a Discrete Fourier Transform (DFT) Based on a Variable Sample

Rate”. In: IEEE Transactions on Power Electronics (2005).

[9] R.E. Kálmán. “A New Approach to Linear Filtering and Prediction Problems”. In:

Transactions of the ASME–Journal of Basic Engineering (1960).

[10] D. Simon. “Kalman filtering with state constraints: a survey of linear and nonlinear

algorithms”. In: IET Control Theory & Applications (2010).

[11] Sudarshan Swain and Bidyadhar Subudhi. “A new grid synchronization scheme for a

three phase PV system employing Kalman filtering”. In: IEEE Region 10 Symposium

(2017).

131

[12] Ming Sun and Zafer Sahinoglu. “Extended Kalman filter based grid synchronization

in the presence of voltage unbalance for smart grid”. In: Innovative Smart Grid

Technologies (2011).

[13] Chenchen Wu, Mario E. Magaña, and Eduardo Cotilla-Sánchez. “Dynamic Fre-

quency and Amplitude Estimation for Three-Phase Unbalanced Power Systems Us-

ing the Unscented Kalman Filter”. In: IEEE Transactions on Instrumentation and

Measurement (2018).

[14] Anh Tuan Phan, Gilles Hermann, and Patrice Wira. “A new state-space for un-

balanced three-phase systems: Application to fundamental frequency tracking with

Kalman filtering”. In: Mediterranean Electrotechnical Conference (2016).

[15] Vivienne Sze et al. “Efficient Processing of Deep Neural Networks: A Tutorial and

Survey”. In: Proceedings of the IEEE (2017).

[16] L.L. Lai et al. “Real-time frequency and harmonic evaluation using artificial neural

networks”. In: IEEE Transactions on Power Delivery (1999).

[17] Henri de Bellescize. “La réception synchrone”. In: L’Onde Électrique (1932).

[18] Saeed Golestan, Josep M. Guerrero, and Juan C. Vasquez. “Three-Phase PLLs: A

Review of Recent Advances”. In: IEEE Transactions on Power Electronics (2016).

[19] David Salomon. Transformations and Projections in Computer Graphics. 1st ed.

Springer, 2006, p. 290. isbn: 978-1846283925.

[20] Surajit Chattopadhyay, Madhuchhanda Mitra, and Samarjit Sengupta. Electric Power

Quality. 1st ed. Springer, 2011, p. 182. isbn: 978-9400706347.

[21] Plane. url: http://mathworld.wolfram.com/Plane.html (visited on Mar. 13,

2019).

[22] Hirofumi Akagi et al. “Generalized Theory of Instantaneous Reactive Power and Its

Application”. In: Electrical Engineering in Japan (1983).

[23] Rotation Matrix. url: http://mathworld.wolfram.com/RotationMatrix.html

(visited on Mar. 27, 2019).

[24] Saeed Golestan, Josep M. Guerrero, and Abdullah M. Abusorrah. “MAF-PLL With

Phase-Lead Compensator”. In: IEEE Transactions on Industrial Electronics (2014).

[25] William McC. Siebert. Circuits, Signals, and Systems. 11th ed. MIT Press, 1998,

p. 651. isbn: 978-0262192293.

[26] B. Indu Rani et al. “A three phase PLL with a dynamic feed forward frequency es-

timator for synchronization of grid connected converters under wide frequency vari-

ations”. In: International Journal of Electrical Power and Energy Systems (2012).

132

[27] C.L. Fortescue. “Method of Symmetrical Co-Ordinates Applied to the Solution of

Polyphase Networks”. In: Transactions of the American Institute of Electrical En-

gineers (1918).

[28] K.F. Riley, M.P. Hobson, and S.J. Bence. Mathematical Methods for Physics and En-

gineering. 3rd ed. Cambridge University Press, 2006, p. 1359. isbn: 978-0521679718.

[29] Visualisation of symmetrical components. url: http://stevenblair.github.io/

seq (visited on Oct. 8, 2019).

[30] Euler Formula. url: http://mathworld.wolfram.com/EulerFormula.html (vis-

ited on Mar. 30, 2019).

[31] Tuomas Messo et al. “Improved delayed signal cancellation-based SRF-PLL for un-

balanced grid”. In: IEEE Energy Conversion Congress and Exposition (2017).

[32] Pedro Rodŕıguez et al. “Multiresonant Frequency-Locked Loop for Grid Synchroniza-

tion of Power Converters Under Distorted Grid Conditions”. In: IEEE Transactions

on Industrial Electronics (2010).

[33] Menxi Xie et al. “DC Offset Rejection Improvement in Single-Phase SOGI-PLL Al-

gorithms: Methods Review and Experimental Evaluation”. In: IEEE Access (2017).

[34] K. Sonam et al. “Implementation of single-phase modified SRF-PLL using model

based development approach”. In: North American Power Symposium (2017).

[35] Pedro Rodriguez et al. “Multiple Second Order Generalized Integrators for Harmonic

Synchronization of Power Converters”. In: IEEE Energy Conversion Congress and

Exposition (2009).

[36] Richard G. Lyons. Understanding Digital Signal Processing. 3rd ed. Prentice Hall,

2010, p. 982. isbn: 978-0137027415.

[37] John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing: Principles,

Algorithms and Applications. 3rd ed. Prentice Hall, 1995, p. 1016. isbn: 9780133737622.

[38] ARM Cortex-M4 Processor - Technical Reference Manual. Revision r0p1. ARM,

2015.

[39] XMC4700 Relax Kit. url: https : / / www . infineon . com / cms / en / product /

evaluation-boards/kit_xmc47_relax_v1/ (visited on June 17, 2019).

[40] Richard G. Lyons. Streamlining Digital Signal Processing: A Tricks of the Trade

Guidebook. 2nd ed. Wiley, 2012, p. 496. isbn: 9781118278383.

[41] How to Find a Fast Floating-Point atan2 Approximation. url: https : / / www .

dsprelated.com/showarticle/1052.php (visited on June 21, 2019).

[42] Using the GNU Compiler Collection (GCC): Options That Control Optimization.

url: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html (visited

on June 23, 2019).

133

[43] FreeRTOS Support Archive. url: https://www.freertos.org/FreeRTOS_Support_

Forum_Archive/May_2014/freertos_FreeRTOS_fails_to_link_when_compiled_

with_lto_86691e41j.html (visited on June 23, 2019).

[44] Karl J. Åström and Tore Hägglund. PID Controllers - Theory, Design and Tuning.

2nd ed. ISA, 1995, p. 343. isbn: 9781556175169.

[45] Trigonometric Addition Formulas. URL: http://mathworld.wolfram.com/

TrigonometricAdditionFormulas.html. (Visited on Mar. 18, 2019).

[46] DSP Trick: Magnitude Estimator. url: http : / / dspguru . com / dsp / tricks /

magnitude-estimator/ (visited on Aug. 31, 2019).

[47] Randy L. Haupt and Sue Ellen Haupt. Practical Genetic Algorithms. 2nd ed. Wiley-

Interscience, 2004, p. 272. isbn: 9780471455653.

[48] C. L. Hwang and A. S. M. Masud. Multiple Objective Decision Making — Methods

and Applications: A State-of-the-Art Survey. 1st ed. Springer, 1979, p. 351. isbn:

9783540091110.

[49] Norm. url: http://mathworld.wolfram.com/Norm.html (visited on Mar. 17,

2019).

[50] Trigonometry. URL: http://mathworld.wolfram.com/Trigonometry.html. (Vis-

ited on Mar. 18, 2019).

[51] Prosthaphaeresis Formulas. URL: http://mathworld.wolfram.com/

ProsthaphaeresisFormulas.html. (Visited on Mar. 20, 2019).

[52] Werner Formulas. url: http://mathworld.wolfram.com/WernerFormulas.html

(visited on Apr. 26, 2019).

[53] ACPL-C87B: Precision Optically Isolated Voltage Sensor. url: https : / / www .

broadcom . com / products / optocouplers / industrial - plastic / isolation -

amplifiers-modulators/isolation-amplifiers/acpl-c87b (visited on June 29,

2019).

134

