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Background: An increasingly aging society and consequently rising number of patients with poststroke-related 
neurological dysfunctions are forcing the rehabilitation fi eld to adapt to ever-growing demands. Although clinical 
reasoning within rehabilitation is dependent on patient movement performance analysis, current strategies for monitoring 
rehabilitation progress are based on subjective time-consuming assessment scales, not often applied. Therefore, a need 
exists for effi cient nonsubjective monitoring methods. Wearable monitoring devices are rapidly becoming a recognized 
option in rehabilitation for quantitative measures. Developments in sensors, embedded technology, and smart textile 
are driving rehabilitation to adopt an objective, seamless, effi cient, and cost-effective delivery system. This study aims to 
assist physiotherapists’ clinical reasoning process through the incorporation of accelerometers as part of an electronic data 
acquisition system. Methods: A simple, low-cost, wearable device for poststroke rehabilitation progress monitoring was 
developed based on commercially available inertial sensors. Accelerometry data acquisition was performed for 4 fi rst-time 
poststroke patients during a reach-press-return task. Results: Preliminary studies revealed acceleration profi les of stroke 
patients through which it is possible to quantitatively assess the functional movement, identify compensatory strategies, 
and help defi ne proper movement. Conclusion: An inertial data acquisition system was designed and developed as a 
low-cost option for monitoring rehabilitation. The device seeks to ease the data-gathering process by physiotherapists to 
complement current practices with accelerometry profi les and aid the development of quantifi able methodologies and 
protocols. Key words: accelerometry data, quantitative strategies, rehabilitation monitoring, stroke, wearable technology

An in-depth understanding of the  human 
body in everyday scenarios, advanced skills 
in physical assessment, and  experience 

in hands-on management allow physiotherapists 
to manage a broad range of conditions, with 
the fundamental goal of promoting wellness, 
 mobility, and independent function.1 Despite 
these well-stated skills, most current  evaluation 
procedures still lack validity, reproducibility, and 
sensitivity because they rely mostly on  clinical 
assessment scales, which are influenced by 
 subjectivity. The  development and  implementation 
of  objective measures within rehabilitation 
 evaluation  procedures may help enhance clinical 
 reasoning and potentiate rehabilitation effi ciency. 

Until  recently, most research  involving the capture 
and analysis of biometric and/or  physiological 
signals had been limited to a  laboratory or an 
 otherwise controlled environment, because the 
use of  complex and costly equipment required 
 specialized spaces and personnel. The emerging 
trend of wearable  monitoring systems provides 
an opportunity to complement qualitative scales 
with quantitative data that are objective, digitally 
stored,  automatically processed, and shared among 
the  rehabilitation team in-house or remotely.

The wearable system used in the present study 
follows a modular approach in which selected 



sensor modules can be interconnected and used 
in combination to extract meaningful information 
according to the target application requirements.

Current Rehabilitation Protocols 
and Procedures

Modern technological developments for 
rehabilitation should consider low-cost adaptable 
solutions that can be integrated in everyday 
scenarios as opposed to rigid strategies meant 
for limited usability. Considering that there 
were an estimated 10.3 million fi rst-ever stroke 
survivors worldwide in 20052 and stroke is 
projected to remain a leading cause of disability-
adjusted life years3 through 2030, stroke care 
represents a major burden on global health care 
expenditures, constituting about 3% of health 
care costs.4 Despite the elevated related cost, 
there is a general agreement on the importance of 
addressing the sequelae of stroke. Although there 
are well-established benefi cial effects of timely 
and continuous managed rehabilitation,1 there is 
a need to improve the objective documentation 
of physical recovery, patient-tailored training 
programs, and the effectiveness of the rendered 
physiotherapy.

A crucial aspect guiding a physiotherapist’s 
clinical reasoning, and thus design of rehabilitation 
intervention, is the assessment of motor 
performance. According to some authors,5 
implementing therapeutic programs requires 
accurate clinical and fi eld measurements based on 
motor pattern identifi cation not readily available 
from traditional tools. Standardized clinical motor 
assessments rely on physiotherapists’ observational 
skills, which, although valuable, remain insuffi cient 
for reliable measurement of certain quantitative 
features (eg, intersegment coordination, quality 
and smoothness of movement). Moreover, 
observation-based assessment is subject to 
observer error and personal bias and is limited 
to the human visual perception sensitivity. The 
Rivermead Motor Assessment (RMA), Fugl-Meyer 
Motor Assessment (FMA), Postural Assessment 
Scale for Stroke Patient, and Reach Performance 
Scale (RPS) are examples of viable and reliable 
assessment tools commonly used in physiotherapy. 
In contrast, evaluation instrumentation typically 

found in laboratories, including electromyography, 
force platforms, and image/video analysis systems, 
introduces a degree of objectivity in data collection, 
processing, and interpretation, augmenting the 
rehabilitation specialist’s ability to characterize the 
patient’s motor control and functional defi cits.6-8 
However, such resources are not available in most 
rehabilitation clinics or in the patients’ home 
environment, thus depriving most patients of 
effective physical intervention.

Quantitative data records provide a means for 
effi cient and expedient analysis of the effectiveness 
of a therapy on a patient’s progress, which acts 
as a safeguard from negative activities that can 
go unnoted and unrecorded. Such an approach 
strengthens and streamlines internal technological 
platforms, expanding their coverage and added 
value and promoting the formulation of standards 
and protocols for monitoring patient progress, 
thus augmenting current guidelines.

Inertial Monitoring System

At the request of physiotherapists from the 
Escola Superior de Tecnologia de Saude do Porto 
in Porto, Portugal, who were pursuing alternative 
therapies for home-based rehabilitation for stroke 
survivors, a simple modular inertial monitoring 
device was designed and implemented based on 
commercially available components and sensors, 
such as the ADXL345 accelerometer, ITG3200 
gyroscope, and the HMC5843 magnetometer. The 
system as shown in Figure 1 is based on a modular 
approach centered on the Arduino FIO, XBEE 
wireless module and ADXL345 accelerometer 
and is in an almost out-of-the-box ready-to-use 
condition. Swift calibration (when compared with 
marker-based video/image analysis equipment) 
through sensor positioning verifi cation offers a 
reduced set-up period. Although sensor error 
varies depending on the particular component 
(eg, the ADXL345 has a sensitivity deviation 
from ideal and temperature of ±1% and ±0.01%, 
respectively), built-in features of modern sensors 
(such as temperature sensors and self-testing 
mechanism) contribute to the reliability of the 
measurement. The device used for the study was 
validated against the Qualisys system present at 
the Centro de Estudos do Movimento e Actividade 



Humana facilities in collaboration with the Escola 
Superior de Tecnologias da Saude of Porto.

A custom processing (an open-source 
programming language) application provided 
a graphical user interface (GUI) for recording 
patients’ information and session data; however, a 
number of alternative programming environments 
can be used for constructing such a GUI, such 
as LabVIEW, Python, and Visual Studios. When 
compared with other physiological and biological 
signal-monitoring devices available in the market, 
the solution presented can be considered low 
cost as it can be constructed for under $300. 
Devices such as Biopac, Plux, Biodex, and video-
based solutions from Qualisys and Viacon are 
some examples of systems being used today in 
rehabilitation and medical research. The use 
of inertial sensors for motion analysis has been 
gaining momentum in recent years,9,10 and some 
commercially available solutions now exist, such 
as those from Xsense and Delsys. These systems 
retail from thousands to hundreds of thousands of 
euros and tend to require equally expensive add-
ons and training.

The ultimate goal is the implementation of a 
home-based rehabilitation monitoring platform as 
illustrated in Figure 2. The platform would not 
impose a radical shift from clinical management 
but would seek a redefi nition of the physician-

patient dynamics, thus promoting the generation 
of databases that can be shared and analyzed for 
an increased understanding of people’s responses 
to their surroundings under a number of scenarios.

Experimental Protocol

Four stroke survivors participated in a proof-
of-concept study. The patients were informed 
of the experimental procedures and provided 
written consent in accordance with policies of the 
institution’s ethics committee. Participants had to 
meet the following inclusion criteria:

• Confirmatory neuroimaging results of a
single, unilateral stroke in the medial cerebral 
artery (MCA) territory, sustained at least 
3 months prior

• Absence of hemispatial neglect
• Absence of major visual, perceptual, or

cognitive deficits, confirmed by a Mini-
Mental State Examination score of 24

• Active range of motion in the compromised
arm of at least 15 in the shoulder (fl exion/
extension, abduction/adduction, and internal/
external rotation) and elbow (flexion/
extension)11

Explicit exclusion criteria included cerebellar 
or brain stem lesions and pain/subluxation of the 
shoulder. Arm motor impairment was evaluated prior 
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Figure 1. Data acquisition system: (left) modular approach schematic, (right) 
modules image (main control unit and accelerometers).



to measurements, as seen in Table 1, with the arm 
subsection of the FMA12 and the RPS13 (close target).

Each subject was assessed in sitting position. 
A table was placed in front of the subject at a 
height corresponding to the alignment of the iliac 
crests. The proximal table limit was coincident 
with the distal border of the subject’s knees, so 
as not to interfere with the arm trajectory. The 
subjects started the task with approximately 0° of 
fl exion/extension/internal rotation at the shoulder, 
approximately 100° of fl exion at the elbow, with 
the forearm in pronation and the palm of the hand 
resting on the thigh. The subjects were instructed 
to reach and press a target placed ipsilaterally 
to the upper limb in the study, in groups of 3 
repetitions (to avoid variations caused by fatigue) 
separated by 1-minute rest periods. The target’s 
placement reference was the anatomical reaching 
distance of the hand, with the measured distance 
from the acromion to the metacarpophalangeal 
joint of the thumb.14 The subjects were instructed, 
after verbal command, to perform reaching.

Precise bone landmarks were required to ensure 
sensor placement repeatability. A complementary 
study15 that focused on determining appropriate 
sensor positions for the detection of compensatory 
movements (illustrated in Figure 3) suggested 
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Figure 2. Data acquisition platform illustration.

Table 1. Demographic data and clinical scores of 
stroke patients

Subjects

A B C D

Age in years/gender 64/M 47/F 53/F 49/M
Location of lesion LMCA RMCA LMCA LMCA
Months post stroke 19 20 34 66
RPS score  7/18 12/18  8/18  5/18
FMA (shoulder, elbow, 
forearm)

 8/36 20/36 17/36  4/36

FMA (wrist)  1/10  2/10  2/10  0/10
FMA (hand)  6/14 12/14 10/14  2/14
FMA (coordination)  1/6  3/6  4/6  0/6

Note: FMA = Fugl-Meyer Assessment; LMCA = left medial 
cerebral artery; RMCA = right medial cerebral artery; RPS = Reach 
Performance Scale (close target).



that the position referred to as P1 is advantageous 
for compensatory elevation movement detection 
at the shoulder; P2 is suitable for detecting the 
abduction; and P3 presents a reasonable sensitivity 
for detection of forward dislocation and rotation 
of the trunk. Following these results, the positions 
chosen for the present study are as follows:

• P1, placed under the acromion, following the
line that connects the lateral epicondyle and 
the acromion

• P2, immediately below the lateral epicondyle,
after elbow articulation

• P3, on the trunk at the T12 vertebrae

Accelerometry analysis

As mentioned earlier, human movement 
accelerometry analysis has gained momentum, 
including in its applicability for stroke 
rehabilitation,16,17 aided by the commercialization 
of microelectromechanical system (MEMS) 
accelerometers. In general, MEMS accelerometers 
measure the deviation from free fall; that is, 
their output represents the vector sum of the 
gravitational and kinematic accelerations of self-
movement. Rehabilitation scenarios generally 
present small sporadic dynamic acceleration, 
related to the wearer’s movements, when compared 
with gravitational acceleration components. 
A quasi-static model can be adopted when the 
dynamic acceleration contribution is negligible; 
the application of such assumption has revealed 
reasonable results when compared with video-
based systems.18,19

The accelerometry data for the present study 
were acquired at a 100 Hz sampling frequency, 
packed (data from all 3-axis accelerometers), 
time-stamped, and transmitted wirelessly 
to a remote station. A 50-point symmetrical 
moving average filter was then applied for 
dynamic acceleration and artifact removal, and 
movement start/end markers were automatically 
determined by the selection of min/max points 
generated by the application of a symmetric 
2-point numerical differentiation on all axes, 
such that

S�(t) ≥ � *�max (S�(t)) − mean (S�(t))� + mean (S�(t)).

Experimentation revealed that a span of 300 ms 
and � = 0.3 offered consistent results in determining 
the start/end of the movement. Additional plus/
minus pseudo-envelope functions were generated 
by using a moving window standard deviation 
approach (with a window of 0.3 s), which served 
as visual indicators of signal deviation strength. 
Finally, the data were time-normalized for intra- 
and interpatient comparability.

The generated accelerometry profi le provides a 
visual representation of the completed functional 
task, which can be associated with angular 
displacement through spherical conversion 
following Equations 1 and 2. Such equations relate 
to the angle of tilt of the transverse plane and the 
inclination of the longitudinal axis from the gravity 
vector, respectively (considering a reference 
frame coinciding with the anterior-posterior axis, 
the mediolateral axis, and the longitudinal axis 
of the cardinal planes as the x-, y-, and z-axis, 

Figure 3. Reach phases and sensor locations.
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Clear differences are observed in Figures 4A
and B between the movement path of the 
reference subject and the poststroke subject, 
namely the path smoothness and the consistency 
of the performed task. In fact, the jerkiness and 
the variability among the repetitions observed in 
the poststroke individual data, in both reach and 
return phases and also among different trials, may 
refl ect motor control defi cits and biomechanical 
constraints resulting from central nervous system 
injury. Brain areas supplied by MCA, both 
cortical and subcortical, may present lesion and/
or dysfunction after a stroke, interfering with the 
adequate sequence of events known to occur in 
typical reaching.

For a more exhaustive analysis, data were 
collected from neurologically intact subjects 
for the reach-press-return functional task and 
confirmed visually by a physiotherapist for 
“proper” movement performance. A set of 
extracted reference signals from the accelerometers 
positioned at positions P1, P2, and P3 are presented 
in Figure 5. Similarly, accelerometry data were 
recorded from poststroke patients referred to 
as A (Figure 6), B (Figure 7), C (Figure 8), 
and D (Figure 9) for all mentioned positions. 
In Figures 5-9, the solid lines represent the 
processed signal, the black dashed lines represent 
the plus/minus envelope signals, and the gray 

respectively). The inherent relation of the data 
with angular displacement serves as a basis for 
event/data correlation.
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It should be mentioned that a number of 
strategies are being applied to inertial sensors for 
human movement analysis; however, the present 
study focused on the aforementioned accelerometry 
profi les as a source for the extraction of movement 
performance quantifi ers, because they were easy to 
obtain and were able to be associated with physical 
events by direct inspection.

An example of an accelerometry profi le of the 
processed data, seen in Figures 4A and B in a 
real-number three-dimensional representation, 
illustrates the difference between 3 independent 
reach-press-return repetitions performed by a 
reference subject with no neural or musculoskeletal 
pathologies (namely at cervical spine and upper-
limb levels) and a poststroke subject, respectively.

Figure 4. Accelerometry (Acc) profi le of 3 repetitions for reach-press-return for (a) 
reference subject and (b) stroke survivor.
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Figure 5. Accelerometry data for subject without pathology in positions P1, P2, and P3.

Figure 6. Accelerometry data for subject A in positions P1, P2, and P3.

Figure 7. Accelerometry data for subject B in positions P1, P2, and P3.
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data reveal small variations during the entire 
movement, caused by small shifts in the center of 
mass. In contrast, stroke patients show a perceived 
dislocation of the trunk: an upper movement to 
assist with the forearm elevation and a forward 
dislocation and rotation to compensate for lack of 
full elbow extension.

In general, the differences observed in the 
accelerometry profiles can be related to the 
presence of compensatory movements. For 
instance, stroke survivor subjects’ y-axis profi les 
at position P1 (which are clearly dissimilar from 
the corresponding reference profi le because of 
the presence of a double bell shape for subjects 
A, B, and C and an asymmetrical bell shape for 

dashed lines represent the maximum, minimum, 
and mean values of the processed signal. Each 
position has its corresponding acceleration graphs 
(measured in gs) presenting information for all 3 
axes. In general, the subjects present a proximal to 
distal sequence of muscular requirement, varying 
degrees of defi cit of elbow extension, and trunk 
recruitment for task completion.

Table 2 summarizes the observations extracted 
from the data collected, direct observation, and 
corresponding video records. For instance, trunk 
compensation, either through forward dislocation 
or rotation, can be well detected by data collected 
from accelerometers at position P3. At this 
location, the reference subject’s accelerometry 

Figure 8. Accelerometry data for subject C in positions P1, P2, and P3.

Figure 9. Accelerometry data for subject D in positions P1, P2, and P3.
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subject D) can be attributed to a shoulder and 
possible trunk compensatory elevation. Care must 
be taken when extracting quantifi ers, because 
they could ignore specifi c maladaptive behaviors. 
For instance, subject B presented a strong tremor 
when approaching the press target, which can 
be observed by a noticeable pseudo-envelope 
deviation near the 40% mark for the x- and z-axes 
of position P2. Such tremor is indicative of a lack 
of proper muscular organization to complete the 

task and can be monitored by measuring the 
magnitude of the deviation.

Table 3 summarizes some quantifi ers extracted 
from the generated accelerometry profiles, 
including variations on the different axes (relatable 
to maximum angular displacement), mean 
comparability factor, repeatability factor, and 
average execution time. The mean comparability 
factor was obtained, for position P1 and P2, 
through a standard normalized zero-lag cross-

Table 3. Extracted quantifi ers from accelerometry profi les

Subjects

Postition A B C D Ref

P1 Avg. Δx-axis (g)  0.39  0.17  0.21 0.14 0.21
Avg. Δy-axis (g)  0.42  0.25  0.20 0.26 0.22
Avg. Δz-axis (g)  0.42  0.24  0.20 0.25 0.28
Mean comparability factor  0.14  0.27  0.26 0.72 0.98a

Repeatability factor 13.89  3.63  6.54 3.83 2.47

P2 Avg. Δx-axis (g)  0.23  0.45  0.32 0.17 0.23
Avg. Δy-axis (g)  0.50  0.62  0.35 0.31 0.57
Avg. Δz-axis (g)  0.53  0.37  0.45 0.45 0.33
Mean comparability factor  0.47  0.60  0.34 0.69 0.98a

Repeatability factor  5.85 10.65 11.36 6.34 6.34

P3 Avg. Δx-axis (g)  0.09  0.08  0.11 0.09 0.04
Avg. Δy-axis (g)  0.03  0.02  0.17 0.02 0.01
Avg. Δz-axis (g)  0.23  0.22  0.23 0.09 0.01
Mean comparability factor b  0.99  0.99  0.96 0.99 ~1a

Repeatability factor  4.76  5.57  2.59 1.83 1.27

Average time (seconds) 12.60  5.62  7.02 3.15 3.56

a The calculation was performed using 3 trials from the reference individual (Ref), 
different from the reference signal.

b Due to the reduced variations of the signals, the offset removal was not applied in 
this scenario.

Table 2. Summary of accelerometry profi les observations

x-axis y-axis z-axis
Movement 
compensations

P1 Shoulder angular 
displacement on the 
anterior/posterior direction

Shoulder angular 
displacement on the 
superior/inferior direction

Shoulder angular 
displacement on the 
medial/lateral direction

Shoulder 
abduction and 
elevationa

P2 Forearm angular 
displacement information 
on the superior/inferior 
direction

Forearm angular 
displacement information 
on the anterior/posterior 
direction

Forearm angular 
displacement 
information lateral 
movement

Lack of elbow 
extension 
and shoulder 
abduction

P3 Trunk rotation Trunk angular 
displacement on the 
superior/inferior direction

Trunk angular 
displacement on the 
anterior/posterior direction

Forward 
dislocation and 
trunk rotation

aNeeds confi rmation with additional information from P3.



correlation between a reference vector and vectors 
generated by the grouping of centered (offset 
removed) accelerometry data of all axes. Because 
of the reduced variations of the signals for position 
P3, the offset removal was not performed prior to 
the cross-correlation calculation. The repeatability 
factor, presented in Table 3, represents a 
measure of consistency of the subject’s movement 
components while performing the functional 
task. This measure was calculated based on a 
repeatability index applied in gait analysis,20 
analogous to the American National Standards 
Institute procedure for obtaining a repeatability 
index for industrial robots.21 Equation 3 was 
used for the factor calculation where n = 100 
(representing the length of the data that was time 
normalized) and i = 3 (representing the number of 
repetitions), for the present cases.

Repeatability

= ( )−1 2

n k

x y z{ ,x , }}∑
(Eq. 3)

where FkFFi  is the k component of the ith repetition
and k ∈ {x,y,z}.

Overall analysis of the acceleration variations 
shows that for certain scenarios, poststroke 
subjects recruit additional degrees of freedom for 
task completion when compared with the reference 
signals. For instance, the y-axis delta values at P1 
and z-axis delta values at P2 are consistent with 
observed excessive elevation and abduction of the 
shoulder performed by the patients. The mean 
comparability and repeatability factors for P1 are 
consistent with the FMA and RPS overall scores; 
however, positions P2 and P3 are more sensitive to 
the specifi c recruited strategies of each individual 
and permit some insight on the performance of the 
elbow and trunk regions, respectively.

As with most indicators, the presented quantifi ers 
should be analyzed in context, because the data 
obtained from a subject could be misconstrued as 
being associated with a process of motor refi nement 
when, in reality, it may represent a maladaptive 
behavior. A particular case occurred for subject 
D. Although his FMA and RPS scores showed 
that subject D was the most impaired patient, he 
presented high comparability and consistency 

compared with the rest of the group. A possible 
explanation is the extension of his poststroke 
period (the patient experienced his stroke almost 
6 years before study) and his severe biomechanical 
impairments at the arm’s joints and at soft 
tissues levels, which compromised his ability to 
successfully accomplish the task. The anticipation 
of task failure had accustomed the patient to avoid 
recruiting additional degrees of freedom (observed 
on the delta information for positions P1 and P2), 
thus forcing him to incorporate a maladaptive 
behavior to his reaching approach (which with 
time has become consistent).

It is still early to establish a simple and 
straightforward comparison between accelerometry 
profi les, because a large number of subjects, 
both pathological and nonpathological, would 
need to be assessed before proper validation is 
achieved. Nevertheless, the present data reveal 
the potential to quantitatively characterize the 
functional movement and establish parameters that 
complement observations from physiotherapists 
to determine compensatory behavior and proper 
behavioral progression.

Conclusion

An inertial data acquisition system was designed 
and developed as a low-cost, fast implementable 
option for monitoring rehabilitation progress. 
Although the device was originally meant for 
poststroke upper limb rehabilitation monitoring, 
its fl exibility and adaptability allow its usage in 
a number of monitoring purposes. The device 
seeks to ease the data-gathering process by 
physiotherapists to facilitate the development of 
quantifi able methodologies and protocols. The 
presented accelerometry profi les and quantifi ers 
can be obtained from patients while remaining 
under the platform’s coverage even outside the 
clinical environment and while performing daily 
activities, providing the physiotherapist with 
useful information for the clinical reasoning 
process. It will be through data gathering and 
study of daily-life activities of a wide variety of 
individuals, unencumbered by the artifi ciality of 
laboratories, that fast-paced progress can be made 
for establishing effective and effi cient rehabilitation 
methodologies.
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