
Otimização do processo de monitorização
de elétrodos seletivos de ião

DANIEL JOÃO CERQUEIRA DA COSTA
Setembro de 2019

Ion-selective electrode research automation
BioMark Research Process Optimization

Daniel João Cerqueira da Costa

1101325@isep.ipp.pt

Research Thesis
October 8, 2019

With orientation of:
PhD Goreti Sales

Physics Department and BioMark Laboratory

In partial fulfillment of the requirements for the degree of Master of Science in
Computing and Medical Instrumentation Engineering

Instituto Superior de Engenharia do Porto
Porto, Portugal

Every morning we are born again. What we do today is what matters most. Buddha

3

Acknowledgments

In 2013, I started this project, but, due to personal/familiar affairs, I had to interrupt. I

restarted in 2018 due to the support of my supervisor Goreti Sales. For this reason, for

believing in me and this project, and for the availability, I would like to special thanks

her.

For the lack of family time this year, and trying to be an inspiration to believe in

finishing the chapters of our lives, I would like to thank my beautiful wife and two

daughters for their patience, support and love.

For the true motivation of this project, I would like to thank my mother and sister,

who together with me have formed a supportive and loving force in a losing battle against

my late father’s cancer.

Finally, I would like to thank the Biomark team for their availability, tireless search

for cables and contacts with suppliers, for the time invested with me in discovering the

functionality of the equipments, in particular Ricardo Castro, Felismina Moreira, Liliana

Truta and Ana Moreira.

5

Abstract

During the Ion-selective electrode research process, there are a lot of manual calibrations

needed in order to achieve better and more effective results. The main goal of most of the

researchers in these areas is about the material behaviours and reactions, but there is no

way to test them without building the electrode and testing against various possibilities

and mediums.

Due to this, the research process usually cannot be a continuous process, since there

are some interruptions for the manual process to validate all the previous developments.

The human based calibration process is fundamental for many conclusions, but, most

of the calibrations logic can be implemented in a machine that automates the process,

collects the data, and generates the necessary output.

The main goal of this MSc thesis is to optimize the calibration process building a

calibration box that is fully configurable, and can be replicated, replacing the researcher

manual steps during the membrane testing. Herein, it is possible to find the selected

hardware and software architecture used, and also the business logic implemented to

achieve the automation of these process. The architecture and implementation were de-

signed to be able to work with a digital potentiometer (Crison GLP 21 pH Potentiometer)

and a digital precise fluid pump (Legato 100).

The solution contains four main components:

• External Devices (Digital pH Meter, Digital Peristaltic Pump);

• Server side web services and web application;

• Cloud Based Deployment (Serverless, Storage, Database);

• Hardware automation box;

The implementation of this thesis uses the following technologies:

7

• Code: Java, Spring Boot, Spring Data;

• Data: JSON, Excel XML OpenFormat, PostgresSQL;

• Hardware: RaspberryPi, Relay Boards, LCD Display, Button, LED;

• I/O: Ethernet, USB to RS232, RCA, BNC;

• Cloud: Heroku Serverless; Heroku PostgresSQL; Amazon S3 Storage;

All the membranes used were made by BioMark researchers.

Keywords: Automation, Java, Research, Spring, Data, Raspberry Pi, GPIO,

Cloud, Serverless, PostgreSQL, S3, BioMark

8

Resumo

Durante o processo de pesquisa de eletrodos seletivos de ı́ons, há muitas calibrações

manuais necessárias para obter resultados melhores e mais eficazes. O objetivo principal

da maioria dos investigadores nestas áreas é relativa aos comportamentos e reações dos

materiais, mas não existe uma maneira de testá-los sem construir o eletrodo e testar

contra várias possibilidades e meios.

Por este motivo, o processo de pesquisa geralmente não pode ser um processo con-

t́ınuo, uma vez que existem algumas interrupções no mesmo para manualmente validar

todos os desenvolvimentos anteriores. O processo de calibração baseado em trabalho

manual é fundamental para uma grande parte das conclusões, mas a maior parte da

lógica de calibração pode ser implementada e executada por uma máquina que autom-

atiza o processo, recolhe os dados e gera a sáıda necessária para posterior analise do

investigador.

O objetivo principal desta tese de mestrado é otimizar o processo de calibração

construindo uma caixa de calibração totalmente configurável e que pode ser replicada,

substituindo as etapas manuais do investigador durante o teste das membranas. Neste

relatório, é posśıvel encontrar a arquitetura de hardware e software selecionada e uti-

lizada bem como a lógica implementada para alcançar a automação desses processos. A

arquitetura e a implementação foram projetadas para poder trabalhar com um poten-

ciômetro digital (Potenciômetro de pH Crison GLP 21) e uma bomba de fluido (Legato

100).

A solução contém quatro componentes principais:

• Dispositivos Externos (Medidor de pH Digital, Bomba Peristáltica Digital);

• Server side web services e aplicação Web;

• Cloud Based Deployment (Serverless, Storage, Database);

9

• Caixa de automação (Hardware);

A implementação desta tese utiliza as seguintes tecnologias:

• Código: Java, Spring Boot, Spring Data;

• Dados: JSON, Excel XML OpenFormat, PostgresSQL;

• Hardware: RaspberryPi, Relay Boards, LCD Display, Button, LED;

• I/O: Ethernet, USB to RS232, RCA, BNC ;

• Cloud: Heroku Serverless; Heroku PostgresSQL; Amazon S3 Storage;

Todas as membranas utilizadas foram desenvolvidas por investigadores da BioMark.

Keywords: Automation, Java, Research, Spring, Data, Raspberry Pi, GPIO,

Cloud, Serverless, PostgreSQL, S3, BioMark

10

Contents

Abstract 9

Resumo 11

Table of contents 12

List of Figures 14

Tables List 15

1 Introduction 19
1.1 Cancer . 19
1.2 Tumor Biomarkers . 20
1.3 Ion-selective electrodes . 21
1.4 Objectives and Motivation . 23
1.5 The Problem, Contributions and Strategy 24
1.6 Technical Requirements . 26
1.7 Future Impact . 26
1.8 Work plan and expected results . 26
1.9 Report Organization . 27

Abbreviations 19

2 Calibration Process 29
2.1 Manual Process . 29
2.2 Automated Process . 29

3 Architecture 31
3.1 Software Architecture . 32

3.1.1 Server-Side Application Architecture 32
3.1.2 Calibration Box Software Architecture 34

3.2 Hardware Architecture . 37

11

4 Server Application 39
4.1 Server . 39

4.1.1 Development process and frameworks 40
4.1.2 Web Front-End . 42
4.1.3 Database Model and Development 43
4.1.4 Security . 49
4.1.5 Monitoring and Performance . 51
4.1.6 REST API Services . 52
4.1.7 Storage in a Server Less Cloud Deployment 58

4.2 User Interface . 59
4.2.1 Fact-tables CRUD . 60
4.2.2 Calibration Box Management . 61
4.2.3 Start Automatic Calibration . 63

5 Calibration Box - Hardware/Software 71
5.1 Hardware Costs . 72
5.2 Inside Box . 73

5.2.1 Structure and brackets . 73
5.2.2 Input/Output connections . 74
5.2.3 Power distribution . 75
5.2.4 Modules assembly . 76
5.2.5 Calibration Box operating system 77
5.2.6 Testing Calibration Box hardware and software 81
5.2.7 Calibration Box software . 82

5.3 Outside Box . 87
5.3.1 Operating the Calibration Box . 88

6 Conclusion 93
6.1 Achieved objectives . 93
6.2 Future work . 93
6.3 Final considerations . 94

Bibliography 95

A Hardware Modules 99
A.1 Relay Board Diagram . 100
A.2 LCD Module Characteristics . 101
A.3 LCD Module Characteristics . 102

B Calibration Analysis 103
B.1 Processed Analysis . 104

12

List of Figures

1.1 Construction of conventional and tubular shape SDZ selective electrodes. 21
1.2 A potentiometric cell (A) combining 4 ISEs and 1 reference electrode,

connected to the (B) the multi commutation point and the potentiometer. 23

2.1 Calibration Box interfacing with Crison GPL21 and Legato 100 30

3.1 A group of Calibration Boxes (1), connected with the web services de-
ployed on the cloud (2), operated in the lab by the researcher (3) via the
Internet. 31

3.2 Web Application providing web management and web services persisting
files on Amazon S3 and PostgreSQL . 32

3.3 Calibration Box (CB) Software Architecture. 34
3.4 Calibration Box (CB) Flow Diagram. 36
3.5 Calibration Box (CB) Hardware Diagram. 38

4.1 Server Frontend template and Tiles integration. 42
4.2 PostgreSQL local Docker based deployment. 43
4.3 Project database change log files. 44
4.4 Database diagram. 47
4.5 Spring Security configuration . 49
4.6 BioMark login page . 50
4.7 Monitoring link at the webpage header 51
4.8 JavaMelody monitoring collected data 51
4.9 REST Backend Endpoints . 52
4.10 CB REST Status Response . 53
4.11 CB REST Job Response . 54
4.12 Add Mesure REST. 55
4.13 Change CB status via REST. 55
4.14 File Cycle from and to S3 Storage. 58
4.15 User Interface Layout. 59
4.16 Example of a fact table list visualization. 60
4.17 Add or Update form. 61

13

4.18 Manage Calibration Box Menu Item. 62
4.19 List of Calibration Box’s. 62
4.20 Managing Calibration Box. 63
4.21 Calibration Menu. 63
4.22 Edit/Add Reagent. 64
4.23 Manage Membrane Target. 65
4.24 Manage Membrane. 65
4.25 List of Calibrations . 66
4.26 Calibration General Settings . 66
4.27 Calibration Targets and Membranes . 67
4.28 Preparing Stock Solution . 67
4.29 Configure Calibration Stability Settings 68
4.30 Calibration Inserted - Add Lines Button 68
4.31 Calibration - Add Volume Lines . 69
4.32 Calibration - Excel File with measured calibration values. 70

5.1 Hardware - Module assembly brackets. 73
5.2 Hardware - Input Output Connections. 74
5.3 Hardware - 5V power distribution and GND 75
5.4 Hardware - Modules connected. 76
5.5 Relays connection . 76
5.6 Operating System SD Card. 77
5.7 raspi-config: Interfacing Options. 77
5.8 raspi-config: Enable I2C. 78
5.9 raspi-config: Enable I2C - Enable Option. 78
5.10 raspi-config: Enable I2C - Confirmation. 78
5.11 ”gpio readall” command output. Display GPIO pin numbers. 79
5.12 Full startup script. 80
5.13 Hardware - Testing relays interaction. 81
5.14 Testing all Hardware together. 81
5.15 Calibration Box software project structure. 83
5.16 Calibration Box (CB) interfaces. 87
5.17 Calibration Box in free status. 88
5.18 Calibration Box working. Reading from port 3. 88
5.19 Calibration Box adding reagent automatically. 89
5.20 Calibration Box wating the addition of reagent manually. 89
5.21 Calibration Box (CB) terminating calibration process. 90
5.22 Calibration Box calibration terminated. 90
5.23 Calibration Box output calibration with three membranes. 91

14

List of Tables

4.1 Server Side Dependencies and Licenses 40

5.1 Hardware prototype costs. 72
5.2 Calibration Box Dependencies and Licenses 82

15

17

Abbreviations

URL Uniform Resource Locator
CPU Central Processing Unit
CRUD Create, Read, Update, Delete
JVM Java Virtual Machine
CI Continuous Integration
CD Continuous Delivery
ISEP Instituto Superior de Engenharia do Porto
API Application Programming Interface
MIT Massachusetts Institute of Technology
HTML Hypertext Markup Language
XML Extended Markup Language
CSS Cascading Style Sheets
JS JavaScript
GPIO General Purpose Input/Output
mV Milivolt
JSON JavaScript Object Notation
REST Representational State Transfer
MVC Model View Controller
UI User Interface
UX User Expririence
POJO Plain Old Java Object
DTO Data Transfer Object
CB Calibration Box
MVP Minimum Viable Product
QMP Quality Management Process
ISE Ion-Selective Electrodes
HBV Hepatitis B Virus
HPV Human Papillomavirus
WHO World Health Organization
USB Universal Serial Bus
LCD Liquid Cristal Display
LED Light Emitting Diode
BNC Bayonet Neill–Concelman

18

Chapter 1
Introduction

1.1 Cancer

Cancer has killed 9.8 million people worldwide, in 2018, according to the World Health

Organization (WHO). However, and also according to WHO, a range of 30% to 50% of

these deaths could be prevented by healthy life style or by immunization against cancer

causing infections (HBV, HPV), and the early detection can be the key for the remaining

cases. The latest World Cancer Report (published in 2014 by WHO) reports that the

leading causes of cancer death are due to lung, liver, stomach, colorectal and breast

cancer. [1, 2]

There are over 100 types of cancer, and each part of the body can be affected. It

all starts with the genetic mutation of a cell, a phenomenon called carcinogenesis that

consists of altering a cell to make it abnormal, and its uncontrolled proliferation that

eventually invades nearby tissues. This invasion process is enhanced by the ability of

these cells to release growth factors and digestive enzymes that promote their continued

division. This process is composed of the stages (three stages) of initiation, promotion

and progression of the tumor. The process of initiation (stage 0 to 1) is rapid and irre-

versible, and begins with the genetic mutation of a normal cell, which after proliferates

to create a population of tumor cells. Next comes a long process of tumor promotion

(stage 2 and 3), either as a result of the proliferation of the tumor cells or of their in-

volvement. In the last stage (stage 4), the progression happens with the growth of the

tumor, which may have a metastatic and invasive nature. [3, 4]

19

1.2 Tumor Biomarkers

Early cancer diagnosis is the key tool to improve survival rates. According to the Cancer

treatment and survivorship statistics, 2014, the wide coverage and dissemination of mam-

mography, as an early screening tool resulted in a 10 and 15 year survival rate of 83.1%

and 77.8%, respectively. [5] But even with advances in preventive methods, it is usually

difficult to detect cancer, since morphological changes in tissues are not always evident,

especially in the first stage of the disease. The most common and accurate methods

for early detection of the disease are currently based on invasive biopsy procedures or

exploratory surgeries that entail greater risks and costs for patients.

For these reasons, the discovery of tumor markers has emerged as an important

discovery for early detection of cancer, which in turn assists in monitoring the patient’s

response during treatments and also allows early analysis in healthy individuals of their

cancer risk. [1, 2] These markers are present in tumour tissues or serum, and include

DNA, mRNA, enzymes, metabolites, transcription factors, and cell surface receptors.

Cancer biomarkers are produced by the body in response to or during cancer growth

and can easily be included in a screening process as they can be detected in biological

samples (urine, saliva, blood, tissues).[2]

In order to avoid false positives, criteria were set for considering a tumor marker, such

as how specific and sensitive the marker is to a particular tumor. It is equally important

to effectively correlate marker levels with the respective tumor stage [6, 7]. Numerous

tumor identifiers are currently identified, such as CEA, CA15-3, CA125, CA19-9, PSA,

among others. With these markers it is already possible to clinically monitor a wide

range of cancer types, such as colorectal, breast, ovarian, uterus, lung, pancreas, liver,

prostate, among others [2, 8].

Thus, being able to detect and monitor in an early stage such tumour markers would

represent a low-cost, low-intervention form of diagnosis that could further be exploited to

provide rapid, low-cost screening solutions, allowing early diagnosis to yield higher rates

of cancer survival [1, 9]. This leads to the need of developing new sensors and devices that

allow the detection of such biomarkers, especially in point-of-care. Different approaches

may be employed to this end, including ion-selective electrodes.

20

1.3 Ion-selective electrodes

Among the possible means of detecting biomarkers are Ion-Selective Electrodes (ISEs)

which are already widely used in various fields of analysis [10, 11, 12]. Precision and

speed, as well as its cost-effectiveness and sensitivity to different concentrations are found

in the numerous reasons why researchers are exploring this methodology of analysis. [13]

Moreover, ISEs may allow direct sample readings, avoiding tedious and expensive pre-

treating stages before analysis itself. Short response times, in the order of seconds,

also make ISEs appropriate devices for analytical control, most especially when porta-

bility and low-cost are demanding features, as required for cancer biomarker screening

programs.

In general, the construction and manipulation of ISE devices is an expeditious and

low-cost approach if solid contact configurations are used. An example of these may

be seen in figure 1.1, describing conventional and tubular-shape electrodes [14]. In

these, a Perspex body is used to support a graphite-based electrical contact that shall

support a suitable selective membrane. This selective membrane is the core element of

the device and contains a specific composition that allows targeting in a selective manner

any compound that displays an ionic charge. This is the case of many cancer biomarkers

in liquid biopsies, which are mostly charged biochemical compounds circulating in the

blood.

Figure 1.1: Construction of conventional and tubular shape SDZ selective electrodes.

21

Construction of conventional and tubular shape SDZ selective electrodes (figure 1.1)

made of Perspex R© tubes with a shielded electrical cable using a copper plate as electrical

contact to a graphite-based conductive support. A: electrode body with mounted tubes;

B: electrical connection to the copper plate placed in the electrode body; C: fixation of

electrical cable and connection to a BNC antenna connector; D: graphite-epoxy conduc-

tive support with a drilled cavity (≈ 1,0 mm depth) and membrane applied over it; E

and F: inner cavity filled with graphite-epoxy conductive matrix that fixes the electrical

cable inside; G: polished and isolated external surfaces; H: internal hole drilled (≈ 1,0

mm Φ); I: application of selective membrane; J: membrane attached to the walls of the

inner hole; K: tubular electrode placed in a flow support (closed circuit for membrane

conditioning). As shown in [14].

22

1.4 Objectives and Motivation

The signal produced by solid-contact ISEs is a potential difference (typically expressed

in mV), measured between it and a reference electrode that are both dipped in the same

solution and connected to the same potentiometer. This potential difference changes in

a programmed way when a target compound is present in a given concentration, which is

established by a calibration procedure. A calibration is typically made in several stages.

First, the ISE needs to stabilize in a background medium solution. Next, a known

amount of target analyte solution is added into this background medium, the resulting

solution is homogenised, and the potential recorded in the potentiometer is noted after

stabilization. This addition procedure is repeated for known amounts of target analyte

in order to generate increasing concentrations (amounts) of such analyte in the solution

where the electrodes stand (Figure 1.2, A). The several potential differences recorded for

each concentration are plotted after, using the log concentration of the target analyte at

each moment in x axis and the potential difference in y axis. This plot allows extracting

all analytical parameters related to the performance of an ISE.

Figure 1.2: A potentiometric cell (A) combining 4 ISEs and 1 reference electrode, connected
to the (B) the multi commutation point and the potentiometer.

The composition of the selective membrane casted on the conductive graphite support

is the main critical aspect behind the good operation of ISEs. There is no specific formu-

lation to generate a given ISE for a specific target marker, and therefore its composition

is defined after intense optimization processes, established by trial/error approaches. To

this end, different compounds are tested, in different percentages and for replicate units

(a minimum of three electrodes for three assays is required). The unique tool that is cur-

23

rently available to help the optimization of the membrane composition is a home-made

multi-channel reading box manually controlled. The reading box used by BioMark sen-

sor research group allows reading 6 electrodes in the same solution condition (Figure 1.2,

B). To this end, the response of each ISE is read manually and individually. In brief, one

electrode is read by the operator in a specific channel, after this reading the operator

switches manually the commutation point to another channel, to collect the potential

signal from another electrode. Ensuring that the potential signals generated by each

electrode at the time of reading is correct is therefore a hard task and requires a highly

experienced operator. Other approach nearing an automated reading of ISEs include

the collection of the potential signal by a computer, but these are made only for a single

electrode along the same calibration procedure (only 1 electrode may be calibrated each

time). Thus, the main purpose of this work is to develop a multi-commutation point

unit that may collect the signals of multiple ISEs is an automated manner, while also

allowing following automatically the complete experimental calibration procedure, with

minimal or none operator intervention.

1.5 The Problem, Contributions and Strategy

In order to achieve the interaction with the existing equipment’s using the available

interfaces, the first approach was to search about any possible integration software pro-

vided by the equipment’s vendors. The equipment’s interfaces are common standard

interfaces, since Crison pH meter has the RS232 interface, and the Legato 100 pump

has the USB interface with a proprietary driver. Regarding the Crison device, there

are common configurations on the documentation related with the serial port commu-

nication. The selected process to achieve this project success was inspired and adapted

based in the ISO 9000,9001 seven Quality Management Process (QMPs)[15] principles.

With the device interfacing strategy defined, the process logic definition is the next

step. There are several points that need to be addressed: understanding the experimental

procedure (QMP 4)[15, p.8] and all its logic, what is behind the calibration process in

order to define what is needed to create a membrane, what is its target and goals,

or in what solution will the electrodes be tested. The strategy used was to follow

all the BioMark process regarding electrodes development, by following all the manual

procedures made by the BioMark researchers.

After the previous definition, it is time to start with the development process. In

order to simplify the continuous testing process, and the BioMark envolvement (QMP

24

3)[15, p.6-7], the approach consisted in scheduling meetings with delivery’s and discussing

any necessary adjustment and the further development.

25

1.6 Technical Requirements

With the limited timeframe, here we have the Minimum Viable Product (MVP) require-

ments:

• Hardware should be able to read from Crison pH Meter;

• Hardware should be able to operate a precision automatic pump;

• Hardware should be able to be operated manually (without automatic pump);

• The collected data should be available in an excel format (compatible with the

current manual analysis process);

• All the calibration processes should be organized and persisted in a database;

• The calibration stability parameters should be configurable;

• The displayed values should be in a scientific notation;

• All the platform should be operated using the English language;

1.7 Future Impact

Improving the research calibration process, the researchers are able to focus what is

important, that is build the membranes based on the materials evolution and calibration

results. This platform also avoids human error, specially with the stability pattern

enforcement. This solution is also able to return the calibration results faster and without

human effort.

1.8 Work plan and expected results

A plan has been prepared to keep the work organized and with a common thread, whose

timing, taking into account the defined objectives, involved the following steps:

• Introduction and evolvement with the proposed project;

• State of the art study;

• Research on the software and hardware technologies to use;

26

• Definition of the architecture to be adopted for the system developed;

• Design and develop the server side application;

• Review and adjustments of the server side application with the BioMark team;

• Design and develop the hardware side application;

• Assembly and configure the hardware prototype;

• Beginning of the preparation of this dissertation document;

• System testing and validation;

• Conclusion of the final dissertation document.

The expected result is an Hardware and Software solution that automates all the

calibration process.

1.9 Report Organization

In the state of the art phase of this project, there was concluded that there is no solutions

on the market able to combine the usage and also the different environments and brands

involved in this project. Due to this, this project does not have the state of the art usual

chapter. Then, this thesis is divided in six chapters.

In this first chapter the thesis is framed, there is an introduction with the problem

and concepts, and the objectives are listed and all the work planning is detailed.

The second chapter describes the manual and automatic calibration process as a

complement for the introduction made in the first chapter;

The third chapter is the biggest chapter of this document, and describes in detail

all the research made to define the architecture for this project execution, including the

hardware, software and the communication between both parts of the solution.

At the fourth chapter, the server side solution development is described including

all the relevant technical details.

The fifth chapter describes in detail the Calibration Box development, including

the assembly process, the operating system configuration and the software development.

Since this project consist in a solution, in this chapter, particularly in the 5.3 sub section,

it is possible to observe the conclusions and demonstration of results.

The last sixth chapter contains the conclusions, final considerations and future

work proposals.

27

Chapter 2
Calibration Process

2.1 Manual Process

The manual process starts with the research preparation by calculating the concentration

and components in a excel folder.

After that, the researcher starts the calibration, this part consists in the observation

of Crison pH meter values regarding each membrane (by manually commuting between

them). The researcher waits for the stability point, taking notes in a manual table on

a paper or on the computer. The researcher also adjusts the concentration manually

during the process as initially planed.

Each membrane can takes up to 2 minutes to stabilise, and should be tested with

up to 15 different concentrations. In a worst scenario with 8 different membranes to be

calibrated this process can take up to 4 hours to be completed, removing human errors

and intervals.

2.2 Automated Process

The intent of this process automation is not to accelerate this process results, since this

is physically not possible. Like in the manual process, but removing the human effort

and criteria, the automation box integrates with the devices in order to measure the

membrane values and also to add some additional fluid to the concentration.

In the figure 2.1, 1 we can observe a 8 channel calibration box interfacing with Crison

GLP21 pH meter using a serial port (RS232) (2.1, 6) to read the measured values.

This calibration box also commutes automatically between the 8 possible membrane

29

Figure 2.1: Calibration Box interfacing with Crison GPL21 and Legato 100

connections (2.1, 8) interconnecting it with the Crison device via a coaxial connection

with a BNC terminator (2.1, 7).

The Calibration Box is able to operate with an automatic pump (Legato 100)(2.1,

3) controlled via USB (2.1, 4). In this scenario the user just have to wait until the end

of the process, since the CB do all the work for the researcher, measuring, waiting for

the stability point by configured criteria, and adding the necessary concentration (2.1,

5). The user is able to configure if the CB has or not an automatic pump installed.

If not, the CB automatically commutes between configured membranes until reach the

last measure, after that, the CB instructs the user to add the amount of extra fluid

to the cumulative concentration, by displaying it on the display, and waiting for user

confirmation by clicking the blinking (LED) button.

30

Chapter 3
Architecture

From the beginning the main architecture defined was the client-server, since each Cali-

bration Box (CB) is a Client, and then the server consolidates all the configurations and

manage the CB status. With this architecture the business logic stays on the server side

making it easy to multiply the CB units in order to automate more than one research

process at the same time.

Figure 3.1: A group of Calibration Boxes (1), connected with the web services deployed on
the cloud (2), operated in the lab by the researcher (3) via the Internet.

There are two main sub-architectures defined. The server side software and the client

CB hardware, both described in detail in the next two sections (3.1, 3.2).

31

3.1 Software Architecture

On the software architecture, this section is divided in the following parts:

• Server-Side Application Architecture 3.1.1;

• Calibration Box Software Architecture 3.1.2

3.1.1 Server-Side Application Architecture

The server-side web application has two requisites. First, implement the necessary busi-

ness logic available via web interface to the researcher in order to manage all necessary

parts of the calibration process. Second is to consolidate all the necessary data in order

to configure the box for calibration.

Figure 3.2: Web Application providing web management and web services persisting files on
Amazon S3 and PostgreSQL

In order to achieve this purpose the chosen architecture (Figure 3.2) was based on a

relational database supported by PostgreSQL. The database definition was made using

Liquibase (Figure 3.2, 8). Liquibase was also used to bulk insert Biomark fact table data.

The data is managed by Spring Data (Figure 3.2, 7), using the data model (Figure 3.2,

32

6). This data model respects the Liquibase database definition in the same way that

Data Transfer Object(DTO) respects the client server defined protocol in order to allow

the serialization/de-serialization during the REST(JSON) communication.

The user (Figure 3.2, 1) web interface is a server side generated set of pages using

Spring MVC (Figure 3.2, 2) and Tiles2 for UI/UX Templating.

Regarding security, it was defined that the application should be able to allow two

different roles (ADMIN, USER). To allow role/user management it was used another

Spring Boot Framework called Spring Security (Figure 3.2, 4). This framework also uses

the Model Plain Old Java Object’s (POJOs) with the definition of the User and Role

model (Java Classes).

By other side, the REST communication between the server side application and the

CBs (Figure 3.2, 1) is ensured by another set of controllers (Figure 3.2, 3) using the

DTOs and token based security. This REST controller’s also implements the interface

with Amazon S3 Cloud Storage (Figure 3.2, 5).

33

3.1.2 Calibration Box Software Architecture

The Calibration Box software implements the necessary logic to automate all the calibra-

tion process. To do this, the implementation should be able to control external connected

devices, like the Crison pH Meter, and the Legato 100 pump, and also alternate between

each membrane, collecting it’s data and uploading for further analysis.

Figure 3.3: Calibration Box (CB) Software Architecture.

In the figure 3.3 representing CB software architecture, the main logic resides on

the ”Core” (figure 3.3, 1) module that interacts with the remaining modules in order

to automate all the membrane calibration process. This main module requests the box

status using its REST module (figure 3.3, 2) in a configurable interval. If the box status

changes to ”Assigned” the box requests its job. This Job comes in a JSON response that

is serialized to its specific object using the shared DTO(figure 3.3, 4) between the CB and

the server side software(figure 3.3, 3). After receiving the job, the CB changes its status

using the REST module to ”Working” and starts the interaction with the I/O module,

first using the Input sub-module (figure 3.3, 5) in order to fetch from the configuration file

the necessary operation configurations (figure 3.3, 6). To start measuring the membrane

mV results, the CB interacts with the RaspberryPi GPIO interface (figure 3.3, 10) using

the ”Hardware Controller” module (figure 3.3, 8) to commute to the membrane using the

relay board (figure 3.3, 14) disconnecting all the ports unless the necessary to measure

using the serial interface (figure 3.3, 7). The input measure receives from the server side

configuration the stability criteria and the number of retries in order to proceed to the

next port in case of measuring an unstable membrane. After read a set of membranes, it

34

is time to interact with the user to add an extra quantity of fluid to the existing solution

(in the manual mode), or interact with the automatic pump (in the automatic mode)

using the ”Solution Control” module (figure 3.3, 9). When in the manual mode, the

user will interact with the CB using LCD display (figure 3.3, 12) to receive instructions,

and with the button to confirm the action taken (figure 3.3, 13). This button also has

also a secondary function, that is to blink using its internal LED in order to advice the

user that something needs a manual action. During the job execution, the CB keeps

in memory all the collected data. Once finished, the CB generates locally an excel file

with the collected data organized in the same format already used in the manual process

(figure 3.3, 11). This excel file is then uploaded using the REST module via multi-part

upload to the server. The job is then completed changing the box status to ”FREE”

again to allow the next job execution.

This workflow could be better understood with the following flowchart (figure 3.4).

35

Figure 3.4: Calibration Box (CB) Flow Diagram.
36

3.2 Hardware Architecture

The hardware architecture was based on the RaspberryPi platform using the GPIO to

interact to the necessary hardware modules.

The following components was used in this hardware architecture and assembly:

• Raspberry Pi (Computer);

• SD Card;

• I2C 4x20 LCD Display;

• Touch button with LED;

• Two 4 Port relay boards;

• USB-Serial Interface;

• 8 RCA male ports (wall mounted);

• 1 BNC female port (cable mounted);

• Coaxial and direct cooper cables;

• Telecommunication (DSLAM) plastic box;

• Glue, Screws and other fixation solutions;

The schematic in figure 3.5 on page 38, represents a 8 port calibration box. The

number of ports depend on the number of relays present/connected. In this case we

have two relay boards with 4 relays each. All the relays are connected using the GPIO

digital pins. The 4x20 display, is connected using the I2C Interface. The button uses two

different digital pins. One to probe the button click action, and the other to blink the

button LED light. More details about the connected hardware modules at the appendix

A.

37

F
ig
u
re

3
.5
:

C
al

ib
ra

ti
on

B
ox

(C
B

)
H

ar
d

w
ar

e
D

ia
gr

am
.

38

Chapter 4
Server Application

4.1 Server

The server side application allow the researcher and the provisioning team to insert the

necessary materials and configurations in order to configure the calibration process and

submit them to a Calibration Box. There is also an REST API developed to provide

the necessary integration with the CB’s.

In this section the server side development process is described as long the technolo-

gies used and some sample examples of code necessary to explain important algorithms

or approaches.

39

4.1.1 Development process and frameworks

This project was developed using OpenJDK 8 [16].

Since the server-side application is a Java based application, the most mature and

stable solution to manage the project structure and dependencies is Maven [17]. The

Maven main role in this project was to manage the dependencies and also the modules

organization

The following dependencies was used to develop the server side web application:

Dependency Version License
commons-math3 3.5 Apache License, Version 2.0 [18]
spring-boot-starter-data-jpa 2.1.7.RELEASE Apache License, Version 2.0 [18]
spring-boot-starter-web 2.1.7.RELEASE Apache License, Version 2.0 [18]
spring-boot-starter-security 2.1.7.RELEASE Apache License, Version 2.0 [18]
spring-boot-starter-hateoas 2.1.7.RELEASE Apache License, Version 2.0 [18]
spring-boot-starter-test 2.1.7.RELEASE Apache License, Version 2.0 [18]
springfox-swagger2 2.9.2 Apache License, Version 2.0 [18]
springfox-core 2.9.2 Apache License, Version 2.0 [18]
springfox-swagger-ui 2.9.2 Apache License, Version 2.0 [18]
tomcat-embed-core 9.0.14 Apache License, Version 2.0 [18]
tomcat-embed-jasper 9.0.14 Apache License, Version 2.0 [18]
tomcat-jasper 9.0.14 Apache License, Version 2.0 [18]
tomcat-jasper-el 9.0.14 Apache License, Version 2.0 [18]
tomcat-jsp-api 9.0.14 Apache License, Version 2.0 [18]
tiles-jsp 3.0.5 Apache License, Version 2.0 [18]
liquibase-core 3.6.2 Apache License, Version 2.0 [18]
aws-java-sdk 1.11.133 Apache License, Version 2.0 [18]
spring-boot-starter 2.1.7.RELEASE Apache License, Version 2.0 [18]
modelmapper 2.3.2 Apache License, Version 2.0 [18]
hibernate-validator 6.0.13.Final Apache License, Version 2.0 [18]
javamelody-spring-boot-starter 1.75.0 Apache License, Version 2.0 [18]
logback-classic 1.1.3 Eclipse Public License - v 1.0 [19]
jstl 1.2 CDDL Version 1.1 [20]
postgresql 42.2.1 BSD-2-Clause[21]
jcl-over-slf4j 1.7.12 MIT License [22]
lombok 1.18.4 The MIT License [22]

Table 4.1: Server Side Dependencies and Licenses

Regarding tools, this project was developed using Docker (to provide the local simu-

lation environment), pgAdmin (to manage the database development), JetBrains IntelliJ

IDEA Integrated Development Environment (IDE)(licensed by the free education license

40

due to the Instituto Superior de Engenharia do Porto (ISEP) partnership).

For many times it was necessary to change the entire stack data model, webpages

and other, ending on a new deployment to the cloud provider in order to allow the

necessary remote testing. Due to this, it was implemented a CI/CD solution. Since this

project development version control was from the beginning made using Git at the public

free Gitlab.com service, it was the best approach to prepare a pipeline to automatically

deliver the new update via the public cloud service every time an update was merged

onto the main development line using the GitLab CI/CD functionality.

The GitLab CI configuration:

1 stages:

2 - DEPLOY

3

4 Deploy to Heroku:

5 stage: DEPLOY

6 tags:

7 - all

8 script:

9 - heroku config:set MAVEN_CUSTOM_GOALS ="clean package

spring -boot:repackage" -a biomark

10 - heroku git:remote -a biomark

11 - heroku plugins:install heroku -repo

12 - heroku repo:purge_cache -a biomark

13 - git commit --allow -empty -m "Purge cache"

14 - git push heroku HEAD:master --force

The heroku serverless deployment automatically detects the Java application and

sets it’s profile, but the spring dependencies has their own way to compile, using it’s

own plugin, and a goal to ensure the final JAR will contain the necessary conditions to

run. The ’MAVEN CUSTOM GOALS’ configuration var is used by the Heroku cloud to

run the defined command instead the autodetect for generic Java Applications. Heroku

also have it’s own Git repository and the pipeline automatically pushes the code to the

remote git. Since some times Heroku keeps serving outdated application Jar file for a

while, there is a ’purge cache’ to ensure that the new deployment is used and the old

deployment should be automatically removed (this requires some seconds of transitory

downtime).

41

4.1.2 Web Front-End

The main page was developed using Spring MVC [23]. One of the main aspects that

is important regarding a web page, is the usability and look. Due to this, and to be

able to apply a web template, the chosen technology for templating was Apache Tiles

[24]. For the Hypertext Markup Language (HTML), Cascading Style Sheets (CSS) and

JavaScript (JS) administration layout page there was used a free template downloaded

from Creative-Tim called ”paper-dashboard” [25] and licensed with the MIT License

[22]. With Apache Tiles, all the layout settings stays centralized in the project folder ->

resources -> webapp -> WEB-INF -> jsp -> layout (figure: 4.1).

Figure 4.1: Server Frontend template and Tiles integration.

42

4.1.3 Database Model and Development

This was the one of the most time consuming parts of this project. The main reason

for this is that it is impossible to design any data model without a clear view of all the

project. Due to this, the data model design was the trigger for a lot of meetings and

adjustments in the process in order to better understand the relationship between all

the tables.

The Biomark process is a well defined operational process, and the chosen technology

to store all the data was a relational database. PostgreSQL [26] is open-source software

released with it’s own license [27], Cloud friendly, stable, mature and with a good per-

formance even in a small environment. Another reason to choose PostgreSQL is their

support for JSON fields, not used in the scope of this thesis, but something useful for

the data analysis development (Future work).

For the initial development, there was locally executed a Docker Container [28] with

the official image from PostgreSQL (figure: 4.2), this deploy also allow the execution of

the server side deployment in order to test locally all the server side environment.

Figure 4.2: PostgreSQL local Docker based deployment.

To run this container we need to execute the following command (having docker and

docker-compose installed).

1 docker -compose up biomark -data

To create the base database structure and insert the initial data in the fact tables,

the chosen technology was Liquibase. Liquibase is a data automation solution that

43

takes care about the database changesets using their own tables to manage the database

structure and changes.

Fist, there are two manual steps that should be done:

• Create the ”biomark” database;

• Create the ”biomark” schema inside the ”biomark” database;

The next step is to run the server application, that, during the boot applies all the

liquibase change sets present o the folder resources -> db -> changelog (figure: 4.3.

Figure 4.3: Project database change log files.

The database change log files, were organized in the following structure:

• ”db.changelog-master.yaml” - This is the main file that calls the remaining above

files;

• ”db.changelog-create.yaml” - This file has all the table creation and relations state-

ments;

• ”db.changelog-insert.yaml” - This file has all the data insertion to the fact tables

logic;

• ”db.changelog-security.yaml” - This file creates all the necessary initial security

roles and users;

After the database/schema creation and during the server side application startup,

the tables, relationships, indexes are also created, the fact tables and security settings

are filled. The ”biomark” schema contains all the application logic tables. The schema

”public” contain all the liquibase tables to keep the changeset trackable and up to date.

44

It was time to generate a database diagram. To do this, the application used was the

”schema crawler” running inside a docker container. To execute this docker container

the following command was executed:

1 docker run \

2 -v $(pwd):/share \

3 -it \

4 --network host \

5 --name schemacrawler \

6 --entrypoint =/bin/bash \

7 schemacrawler/schemacrawler

And after the schema crawler container starts:

1 schemacrawler --info -level=standard --server=postgresql

--host=localhost --port =5432 --database=biomark

--schemas=biomark --user=postgres --password=admin

--infolevel=detailed --command=schema --outputformat=png

--outputfile =/share/dbDiagram.png

The output of this command is the diagram present on figure 4.4.

45

Figure 4.4: Database diagram.

47

4.1.4 Security

Regarding security, the main requirements are not complex due to an open mindset
present on the BioMark laboratory. Beside this, there is a need to protect some software
administrative functionalities, like create users and manage runtime settings that should
be done by an administrator and not by every user. To achieve this goal, and since the
whole solution was based on the Spring Framework, the security solution was based on
Spring Security [29].

Spring security integrates with the remaining Spring frameworks like MVC, allowing
the appropriate role based security. To configure, the Spring Security requires some
detailed specification about what is necessary for the login, what to do if the login
fails, and what resources need a specific role or authentication. The server security
configuration can be visualized on the explained figure 4.5.

Figure 4.5: Spring Security configuration

The figure 4.5 represents the server side security configuration, where the line 1 and
4 contains the endpoints who do not need any kind of authentication to be accessed.
The /login contains the login page where the user is able to authenticate on the applica-
tion. The /r/** represents the REST services that are token based authenticated. The
remaining endpoints on the line 4 are related with the online API documentation and
monitoring endpoints. The line 2 and 3 represents the role specific pages, those pages
requires their specific role on the user. Any other request requires user authentication
but do not depend on the role specific permission.The line number 5 declares the login
page and the login failure URL in order to notice the user for the wrong credentials
inserted on the fields declared with the number 6. The line with number 7 is the logout
page that expires the session based login. The line 8 represents the page that will be
displayed to the user who tries to access any page without authentication.

To provide the database based authentication, there are two database queries asso-
ciated with the authentication.

49

The user query, used for the user authentication and validation:

1 select email , password , active from biomark.user where email=?

And, the Roles per User query:

1 select u.email , r.role from biomark.user u inner join

biomark.user_role ur on(u.user_id=ur.user_id) inner join

biomark.role r on(ur.role_id=r.role_id) where u.email =?

Both of these queries are configurable on the ”application.properties” file.
The login page (figure: 4.6) is based on the Bootstrap [30] web framework backed by

its own Spring MVC controller.

Figure 4.6: BioMark login page

50

4.1.5 Monitoring and Performance

With the Cloud deployment in mind, the server requirements and the workload used
to achieve the main processes are a concern since there could be extended costs with
the platform if there is a memory leak or any other hardware resources consumption
concern. To provide enough monitoring indicators that Java already collects about the
Java Virtual Machine (JVM) running applications and making them available to the
users with the ”ADMIN” role, the JavaMelody [31] was the chosen framework.

JavaMelody provides a simple integration with the application, with low footprint
since it only displays the indicators already collected by the Java Virtual Machine.

In the user interface header there is a link to the JavaMelody monitoring page (figure:
4.7).

Figure 4.7: Monitoring link at the webpage header

The admin users are allowed to monitor the server performance with a clear graphical
interface with all the necessary indicators, like, CPU, Memory, Garbage Collection,
Database Connections and errors (figure: 4.8).

Figure 4.8: JavaMelody monitoring collected data

This monitoring solution allowed the correct sizing of the server less instance using
the smallest instance with 512Mb memory.

51

4.1.6 REST API Services

To provide the necessary backend for the Calibration Box (CB) there was developed a
REST API with all the necessary support solutions.

This REST API was developed integrated with all the remaining server side solu-
tion using Spring Boot. There was also implemented the API documentation and test
interface using Swagger [32].

To organize the REST endpoints 4.9 the root ”/r/”was created with all the REST API
endpoints and divided in two sub-roots, one for the Calibration Box called ”/calibox/”
and another for the storage results file uploads ”/storage/”.

Figure 4.9: REST Backend Endpoints

In all of those endpoints present on the figure 4.9 the parameters ”{itemNo}” repre-
sents the CB unique id, and the ”{tokenId}” represents its authentication token.

The figure 4.9 line 1 represents the storage endpoint used to upload using multipart
file upload the resultant file of a calibration. This endpoints requires the two above
parameters and a multipart upload

52

The line 2 of the same image represents the endpoint most called from a working
Calibration Box. This endpoint is called every 5 seconds (configurable in the CB) to get
the CB status (see figure: 4.10).

Figure 4.10: CB REST Status Response

53

After the CB status was changed (due to an assigned job) the CB requests from the
endpoint (figure 4.9 line 3) the job to be done. This endpoint returns the minimum
necessary data (see figure 4.11).

Figure 4.11: CB REST Job Response

The membrane Id’s is an array with String, Integer pair containing the membrane
name and its unique Id. The Vad’s is an array with all the additional values of volume
to be added automatically or by the user during the calibration process. The ”minStabl-
eValues”, ”noOfReadsFromSerial”, ”stabilityRange” are parameters configurable by the
user to define the stability criteria.

54

During the calibration process, the CB is able to send each measured data to the
server endpoint (figure 4.9 line 4) . By default this endpoint is not used, since to reduce
cloud usage and costs, the CB only sends all the collected data at the end via file upload.

This endpoint accepts the following data (figure 4.12, A), after submit the data the
REST the server endpoint responds with the following (figure 4.12, B).

(a) Request (b) Response

Figure 4.12: Add Mesure REST.

Every time CB waits for user interaction, finishes their job, or other status change,
the CB updates (figure: 4.13) it’s status using a REST endpoint (figure 4.9 line 6).

(a) Request (b) Response

Figure 4.13: Change CB status via REST.

By the end, CB finishes his job submitting the data, and resets its status back to the
”free” state by calling the DELETE endpoint (figure: 4.9 line 5).

55

To serialize and de-serialize the data on client (CB) and the server (REST), both
shared the same Data Transfer Object’s with the following data model/POJO’s:

1 BoxJob{

2 calibDesc string

3 calibId integer($int64)

4 membraneIds {

5 < * >: integer($int64)

6 }

7 minStableValues integer($int32)

8 noOfReadsFromSerial integer($int32)

9 stabilityRange number($double)

10 vads {

11 < * >: number($double)

12 }

13 }

1 CaliBoxStatus{

2 caliboxStatus string

3 caliboxStatusDescription string

4 caliboxStatusId integer($int64)

5 }

1 CaliBox{

2 automaticPump boolean

3 caliboxName string

4 caliboxNo integer($int64)

5 caliboxSerial string

6 calibrationId integer($int64)

7 changeDate string($date -time)

8 lastContact string($date -time)

9 noOfChannels integer($int32)

10 serialReader boolean

11 status CaliBoxStatus{...}

12 token string

13 }

56

1 BoxMeasure{

2 measurePort integer($int32)

3 measureValue number($double)

4 vadId integer($int64)

5 }

57

4.1.7 Storage in a Server Less Cloud Deployment

Currently the calibration results are prepared in a excel file automatically during the
end of the calibration at the Calibration Box side for the following reasons:

• The on premisses costs are less then the cloud processing costs;

• The cloud storage costs are low for this kind of files and sizes;

• The file sizes are small;

• The researches are familiar with this format to process and analyse their data;

• An advanced data processing solution requires the double of this project time to
implement;

But, in a server less cloud deployment architecture, all the data persistence should
be done using dedicated services. For the database persistence the solution was the
PostgreSQL instance. For the file store, the solution was the Amazon S3 storage bucket.

Figure 4.14: File Cycle from and to S3 Storage.

In the figure 4.14 is there is a representation of the file cycle. First it is produced
by the Calibration process in the CB. The CB job execution thread uploads the file via
web app REST interface. The server side application uploads the file to the Amazon S3
Storage getting it’s file path and id, and saving it to the PostgreSQL database. Finally,
when the researcher access web interface to retrieve the results, the download link is
available downloading directly from the Amazon S3 public file address.

58

4.2 User Interface

The first and main goal of the user interface in this project is to allow user configure the
calibration process in order to automate it.

To do this the user first login in the user interface with their account 4.6.
After login the web page is divided in three main parts (figure 4.15):

• Top or header with administrative access to the monitoring and settings (A);

• Left side menu with operational options (B1) and fact Create, Read, Update,
Delete (CRUD) (B2);

• Content part of the page where lives all the application forms and listings (C);

Figure 4.15: User Interface Layout.

59

4.2.1 Fact-tables CRUD

To support the application relational data, there are many fact tables. A fact table in
data warehousing consists of facts or data that commonly used but fairly changed. This
kind of data usually have some additive values that supports the context in where it is
used.

This web application currently have nine fact tables:

• Characteristic Group’s;

• Acid dissociation constants;

• Isoelectric point’s;

• Weight Units;

• Reagent Types;

• Brands;

• Calibration Mediums;

• Calibration Medium Types;

• Storage Types;

Each of this items has it’s own Create, Read, Update, Delete (CRUD) interface. This
user interfaces does not change in the work loggic, changing only on it’s contents. Here
is an example of the ”Acid dissociation constants” List (figure 4.16).

Figure 4.16: Example of a fact table list visualization.

60

In this page, the user is allowed to see the inserted data, delete line by line, add or
update entries.

The ”Add New” and ”Update” buttons, uses the same form page, but, in the update
scenarios it keeps the same entry Id, and shows the form filled with the edited entry
(example of a filled item entry - figure 4.17)

Figure 4.17: Add or Update form.

4.2.2 Calibration Box Management

This webapp was developed in order to manage multiple calibrations and CB at same
time. To add or manage CB’s there is a special menu option. This is similar with the
traditional CRUD (see 4.2.1) but it is relevant to describe in this section how to manage
an existing CB.

A CB, is non persistent memory device, made to automate a process and deliver
their results. Sometimes, if there was a power or communication interruption, the CB
status could stay in an invalid mode becoming impossible to assign new jobs.

There are another scenarios where a researcher needs to use the automatic pump
for another research, and due to this the volume addition now should be configured
as manual. All of this configurations should be done on the management page of the
calibration box.

To find this page, the user should first login to the web application, and then click
in the menu option called ”Manage Calib. Box” (figure 4.18).

61

Figure 4.18: Manage Calibration Box Menu Item.

In this list, similar with the fact tables list, the user is allowed to manage or add new
CB.

Figure 4.19: List of Calibration Box’s.

To add a new CB, the user must provide its ”Box Name”, ”Box Serial Number”,
”The Box Authentication Token” (figure 4.20, 1), ”Number of channels” (figure 4.20, 2)
available, if this CB has an automatic pump connected (figure 4.20, 5), and if there
is a serial reader (pH Meter)(figure 4.20, 4), or, if not, the box will simulate values
generating random values (useful for CB development and testing without Crison pH
meter equipment). Using the status combo-box the user is allowed to reset the CB status
(figure 4.20, 3), or define another that disables the CB.

62

Figure 4.20: Managing Calibration Box.

4.2.3 Start Automatic Calibration

After prepare the CB and fill all the necessary fact tables, it is time to start an automatic
calibration. All we need is available in the above menu (figure4.21).

Figure 4.21: Calibration Menu.

First the user should manage the reagents used during the calibration clicking in the
menu option ”Manage Reagents” (figure 4.21, 2).

The add or edit reagent page includes all the reagent relevant characteristics for the
management and for the laboratory organization (figure 4.22).

63

Figure 4.22: Edit/Add Reagent.

The fields ”Reagent Types”, ”Brand”, ”Storage”, ”Characteristic Groups”, ”pKa”, ”pI”
are from the fact tables. ”Reagent Types”, ”Characteristic Groups”, ”pKa”,”pI” allow
multi-selection items.

After adding the reagents evolved in the calibration, it is time to add the ”Membrane
Target” (figure 4.21, 3 and figure 4.23) this is the target molecule. This target consists
on its reagent, a reference name and a description.

64

Figure 4.23: Manage Membrane Target.

Then, it is the moment to add the membranes characteristics adding a ”Membrane”
(figure 4.18, 4).

Figure 4.24: Manage Membrane.

To add or edit a membrane, the researcher need to first set the membrane name
(figure 4.24, 1), this name, is set in the software and also in the membrane to physically
identify. After this set the membrane target (figure 4.23), by selecting in a drop down
box (figure 4.24, 2). Than the researcher adds a description note (figure 4.24, 3) and
set the reagents (figure 4.22) compounds that are present in this membrane by setting
the ”Support Polymer” (figure 4.24, 4), the ”Plasticizing Solvent” (figure 4.24, 5), the
”Ionophore” (figure 4.24, 6), and its percentage (figure 4.24, 7), and in case of there is
a solid contact (figure 4.24, 8), the researcher describes this contact in the field ”Solid
Contact Description” (figure 4.24, 9).

65

The researcher repeats this process for each membrane, reagent, target, in order to
have the necessary items to configure and start a calibration.

Using the ”Calibration” (figure 4.21, 1) menu option, the researcher will be able to
see a list with all the configured Calibrations (figure 4.25), and also add new ones (figure
4.25, 1) or look for finished calibrations results (figure 4.25, 2).

Figure 4.25: List of Calibrations

The add/view/edit calibration pages are the most complex pages on this project,
it evolve a lot of relational fields, user experience in order to allow user only use the
keyboard (TAB, ENTER) in order to enter values and configure the Calibration.

Dividing this page in sections the first section is the ”General Calibration Settings”
(figure 4.26) where the researcher configures the calibration date, it’s name, the ”Cali-
bration Medium” and it’s ”Initial Volume” and the Medium pH.

Figure 4.26: Calibration General Settings

The researcher now needs to enter the pre-configured membranes (figure 4.24), target
(figure 4.23), and the destination test Calibration Box (figure 4.18).

66

Figure 4.27: Calibration Targets and Membranes

During the calibration process preparation, the researcher needs to calculate the
”Stock Solution” to be added during the calibration process. This part is done in two
step’s, first the researcher plans the solution ”To be prepared” where the main goal is
to find the ”Necessary Amount of Reagent” to achieve the ”Theoretical Concentration”
wanted, but, during the solution preparation, the researcher faces some impossible vol-
ume or weights for the preparation, and, due to this, the researcher needs to adjust
it’s preparation to the best possible alternative in order to achieve the possible ”Prac-
tical Concentration” by configure the real values in the ”Prepared” fields on the web
application.

Figure 4.28: Preparing Stock Solution

Calculations (rounded 5 decimal places):
Necessary Amount of Reagent = mW × Theoretical Concentration × Sol. Volume

Practical Concentration =
MeasuredAmountofReagent

mW × SolutionV olume

67

After the ”General Calibration Settings” the researcher configures the ”Calibration
Stability Settings”. During the manual calibration, the researcher keeps looking for the
Crison pH meter values, waiting for the stability point where the variation of the value
is less than an acceptable value. The researcher also knows that the membrane should
have a stable result in a particular amount of time.

To configure this settings, the researcher should adjust the pre-configured settings:

Figure 4.29: Configure Calibration Stability Settings

In this settings there are three filed to be configured:

• Range - The accepted variability. This means that if there are at least the min.
stable values with this variability (grater or lower then) the measurement is ac-
cepted;

• Number of reads from pH Meter - This is the number of measurements read
from the pH Meter Serial port. If each read takes 1 second to me collected, this
means that each measurement takes a maximum of 10 seconds (configurable) to
occur, if there is no stable measurement during this 10 reads, the automation
process proceeds to the next membrane;

• Min. Number of stable values - this is the number of values that should have
a greater or lower variability then the configured in the range field. If there is a
stable value, the calibration process continues to the next membrane and do not
wait to complete the configured number of reads.

After submit a calibration configuration, the researcher have to add the addition of
medium volume in the ”Add Lines” button and page (figure 4.30).

Figure 4.30: Calibration Inserted - Add Lines Button

To add new volume addition lines (figure 4.31), the research simply enters the value
of the additional volume, and presses the ”ENTER” key. Another option is to click
the ”Add new Line” button. All the calculations are automatically done each time the
researcher presses a key.

68

Figure 4.31: Calibration - Add Volume Lines

This lines are the ones that the Calibration Box will use to automate the pump
volume addition every time the calibration of all membranes are done.

In the end of all the software configuration and physical preparation, the researcher
presses the ”Submit” button (figure 4.30) to start the automated calibration process.

If there is an automatic pump, the researcher just have to wait until the fully auto-
mated process finishes to download the excel file with the measured values (figure 4.32).
If this calibration is made without an automatic pump, the researcher should pay atten-
tion each time the button led flashes to manually add the specified value present on the
CB LCD.

69

Figure 4.32: Calibration - Excel File with measured calibration values.

With this excel file, the researcher is able to do it’s calculations and take their
conclusions to prepare the next calibration with new adjustments.

70

Chapter 5
Calibration Box - Hardware/Software

After the appropriate architecture definition (figure 3.5), the development of the first
Calibration Box prototype was a hand-made effort divided into the following steps:

• 5.1 - Hardware Costs;

• 5.2.1 - Structure and brackets;

• 5.2.2 - Input/Output connections;

• 5.2.3 - Power distribution;

• 5.2.4 - Modules assembly;

• 5.2.5 - Calibration Box operating system;

• 5.2.7 - Calibration Box software;

• 5.2.6 - Testing Calibration Box;

• 5.3.1 - Operating the Calibration Box;

71

5.1 Hardware Costs

All the hardware used to develop this CB prototype is open source hardware. Besides the
development of the hardware is open, there are existing modules, cables and connectors
that can be bought to assembly the first prototype.

Hardware prototype costs:

Item Description Unit Price Qty. Total Price

Computer Raspberry Pi Model 4 1 Gb 39,90 e 1 39,90 e
USB-Serial Ewent USB to Serial Adaptor 14,90 e 1 14,90 e
LCD Display LCD 20x4 I2C 14,70 e 1 14,70 e
Power Supply 5.1V 2.5A MicroUSB 12,90 e 1 12,90 e
8 Port Relays 8 Port Optocopler Relay 6,94 e 1 6,94 e
Button w/ LED 16 mm Illuminated Button 5,97 e 1 5,97 e
SD Card Micro SD Card 5,90 e 1 5,90 e
RCA Connectors RCA Connectors 0,70 e 8 5,60 e
Patch Cables Patch Cables 5,00 e 1 5,00 e
Box Telecom Box 1,00 e 1 1,00 e
BNC Connector BNC Connector 1,00 e 1 1,00 e
Coax Cable Coax Cable 1,00 e 1 1,00 e

Total 114,81 e

Table 5.1: Hardware prototype costs.

72

5.2 Inside Box

5.2.1 Structure and brackets

The prototype model was made based on a telecommunications plastic box. Since this
box is not specifically made for this prototype assembly, there were some necessary
changes to be implemented to add the necessary modules brackets.

(a) Before mount (b) After mount

Figure 5.1: Hardware - Module assembly brackets.

Figure 5.1 - it is possible to see on the right, two modules and the CPU assembly
brackets (a) . Each module location has their specific identification label (a). On the
left it is possible to see the modules and the CPU mounted with screws.

73

5.2.2 Input/Output connections

To provide the necessary input and output connections for the CB, there wall mounted
connectors wore assembled in hand-made holes.

(a) Inside View (b) Outside View

Figure 5.2: Hardware - Input Output Connections.

Figure 5.2 - is it possible to see the RCA (b) connections with cooper cables and
therm-retractable cable tube (a). It is also possible to see the Raspberry Pi ports cut’s
on the plastic box (a).

74

5.2.3 Power distribution

The Raspberry Pi power source (USB Power Supply) is the only power source to the CB.
The connected modules need 5V power-source. To distribute this power-source, there
was attached to the box the necessary in serial pins.

(a) Pins distribution (b) Labeled power distributors

Figure 5.3: Hardware - 5V power distribution and GND

Figure 5.3 - the power distribution made via soldered pins (a) glued to the box with
descriptive labels (b).

75

5.2.4 Modules assembly

After mounting the modules and the input output ports, with the power distribution in
place, the module interconnection with the main CPU was achieved using patch cables
connected with the GPIO interface and power distribution.

(a) Modules Connected (b) I2C LCD Connection

Figure 5.4: Hardware - Modules connected.

Figure 5.5: Relays connection

76

5.2.5 Calibration Box operating system

Since the CB has a computer that runs a Java Application, the chosen operating system
was the Debian GNU/Linux Operating System, particularly, Raspbian (a Debian [33]
adaptation for the Raspberry Pi [34]).

The operating system installation process can be found in the project reference URL
[35].

After prepare the Raspbian SD Card 5.6, the card should be installed on the Rasp-
berry Pi and the initial configuration process should start.

Figure 5.6: Operating System SD Card.

To start, the following configuration is needed to support the I2C LCD display:

Run:

1 sudo raspi -config

In the menu, follow open ”Interfacing Options”:

Figure 5.7: raspi-config: Interfacing Options.

77

Figure 5.8: raspi-config: Enable I2C.

Figure 5.9: raspi-config: Enable I2C - Enable Option.

Figure 5.10: raspi-config: Enable I2C - Confirmation.

In the same configuration menu the user is also able to configure the network settings,
and enable remote management via SSH. Since this CB connects with the cloud based
application, and the default network configuration uses DHCP, if the connected network
allows direct access to the Internet, this CB should be able to work normally.

The following packages should be installed in order to allow Java interaction with
the GPIO using Pi4J Library [36].

78

1 sudo apt -get install python -smbus

2 sudo apt -get install i2c-tools

3 sudo usermod -a -G gpio pi

After reboot, all the conditions to run the CB software should be ready, but, to
configure the GPIO pins in the Java application, the following command allow us to see
the available pins and numbers 5.11.

1 gpio readall

Figure 5.11: ”gpio readall” command output. Display GPIO pin numbers.

The last step is to add the Java application to the startup by copying the applica-
tion jar to: ”/usr/bin/calibox.jar”, adding the following startup script at ”/usr/bin/cal-
ibox.sh”.

1 #!/bin/bash

2 java -jar /usr/bin/calibox.jar

And then set this script to be executed after operating system starts editing the file
”/etc/rc.local” and adding the following line before the ”exit 0” line.

1 /usr/bin/calibox.sh

79

Figure 5.12: Full startup script.

80

5.2.6 Testing Calibration Box hardware and software

After the Calibration Box (CB) prototype assembly and the operating system installed,
the strategy used to test the software/hardware interaction was developing small pro-
grams to control and test each component module. This methodology allowed the appro-
priate testing of each component before adding the business logic, and this experimental
stage also contribute to the appropriate software development solution design.

(a) Relay Testing (b) Finding Relay Defaults

Figure 5.13: Hardware - Testing relays interaction.

Figure 5.14: Testing all Hardware together.

In the figure 5.13 (b) it is possible to see the relay default behaviour by testing with
a multimeter the interruption between the relay connections with or without enabling
the relay action. The figure 5.13 (a), it is possible to see all the relays enabled, testing
the Raspberry Pi GPIO pins defined in the architecture. In the figure 5.14, it is possible
to see last hardware test with all the components and modules working together.

81

5.2.7 Calibration Box software

Like the server-side application 4.1.1, the client-side was implemented using OpenJDK
8 [16] also using Apache Maven [17].

The following dependencies was used to develop the CB application:

Dependency Version License
resteasy-client 3.8.0.Final Apache License, Version 2.0 [18]
resteasy-jackson2-provider 3.8.0.Final Apache License, Version 2.0 [18]
resteasy-jackson-provider 3.8.0.Final Apache License, Version 2.0 [18]
resteasy-multipart-provider 3.8.0.Final Apache License, Version 2.0 [18]
commons-io 2.0.1 Apache License, Version 2.0 [18]
lombok 1.18.4 Apache License, Version 2.0 [18]
jcl-over-slf4j 1.7.12 MIT License [22]
logback-classic 1.1.3 Eclipse Public License - v 1.0 [19]
com.typesafe.config 1.3.3 Apache License, Version 2.0 [18]
poi-ooxml 3.17 Apache License, Version 2.0 [18]
pi4j-core 1.2 GNU General LGPL version 3.0 [37]
pi4j-device 1.2 GNU General LGPL version 3.0 [37]

Table 5.2: Calibration Box Dependencies and Licenses

The Java development using a computer different than the Raspberry Pi using the
Pi4J library disallow the developer to test the business logic without deploying to the
Raspberry Pi. To allow the appropriate development and testing, two maven modules
were created, the ”simulator” and the ”box” modules.

The ”simulator” and the ”box” modules shares the same code and logic but, the
”simulator” does not include all the hardware interfacing and due to this it is possible to
test without using the Raspberry Pi.

82

Figure 5.15: Calibration Box software project structure.

The code structure was made as defined during the architecture 3.1.2. But, there are
some relevant code extracts that should be should be shared with this report.

The interaction with a researcher is made mainly using the button led and the LCD
screen. This screen has the physical limit of 4 lines and 20 characters per line. To handle
this limitation, and keep the displayed text clean the following code was written:

1 public class LCDActions {

2 private int no_char_per_line = 20;

3 private int no_of_lines = 4;

4

5 public void printToLCD(String text , int line){

6 if(text != null && line >=0 && line <=(no_of_lines -1)) {

7 clearLine(line);

8 if(text.length () > no_char_per_line){

9 text = text.substring(0, (no_char_per_line -1));

10 log.warn("LCD Line with more than available

chars was trimmed! Line: " + line + ",

Trimmed text: ’" + text + "’.");

11 }

83

12 RPi_HW.LCD.write(line , text);

13 log.info("Print to LCD at Line " + line + " ’" +

text + "’");

14 }else{

15 log.warn("Tried to write to LCD to invalid location

or empty text. Text: ’" + text + "’, line number:

" + line);

16 }

17 }

18 public void clearLine(int line){

19 if(line >=0 && line <=(no_of_lines -1)) {

20 RPi_HW.LCD.clear(line);

21 log.info("Line " + line + " cleared!");

22 }else{

23 log.warn("Invalid line number to clear!");

24 }

25 }

26 }

To use this class writing a line to the LCD:

1 lcdActions.printToLCD("Box Status: " +

caliBox.getStatus ().getCaliboxStatus (), 3);

The user is able to set their own perspective of membrane stability, adjusting the
settings in the web interface 4.29. This configuration is collected with the Job definition
and the following code implements it:

1 public static Double measureStabilizer(List <Double > measures ,

Double acceptedVariability , int minStableValues){

2 List <Double > stableMeasures = new ArrayList <>();

3 if(measures.size() > 0 && measures.size() >=

minStableValues){

4 int i = 0;

5 for (Double measure: measures) {

6 if (! measure.isNaN()) {

7 if (

8 stableMeasures.size() < 1

9 || ((measure + acceptedVariability) <=

stableMeasures.get(i - 1) && (measure +

84

acceptedVariability) >= stableMeasures.get(i

- 1))

10 || ((measure - acceptedVariability) <=

stableMeasures.get(i - 1) && (measure -

acceptedVariability) <= stableMeasures.get(i

- 1))

11) {

12 stableMeasures.add(measure);

13 i++;

14 } else {

15 stableMeasures.clear();

16 stableMeasures.add(measure);

17 i = 1;

18 }

19 if (stableMeasures.size() >= minStableValues)

20 return stableMeasures.get(stableMeasures.size()

- 1);

21 }

22 }

23 }

24 return Double.NaN;

25 }

In the above extract of code, the researcher configuration is applied by iterating with
all the serial input reads and comparing the sequence of reads. If there is the ”stability
point” this function returns the last stable value.

The final code extract is the CB port switcher, controlling all the relays, opening the
connection between Crison pH meter and the selected membrane.

1 public class Actions {

2 public static boolean relayControl(GpioPinDigitalOutput pin ,

boolean on){

3 if(on)

4 pin.high();

5 else

6 pin.low();

7 return on;

8 }

9 public static boolean

85

relaySwitcher(List <GpioPinDigitalOutput > pins , int toPin){

10 int i = 0;

11 if(relaysSwitchOff(pins)) {

12 relayControl(pins.get(toPin), true);

13 log.info("Switched to relay " + (toPin + 1) + "!");

14 log.debug("Relay " + (i + 1) + " turned on!");

15 return true;

16 }else{

17 return false;

18 }

19 }

20 public static boolean

relaysSwitchOff(List <GpioPinDigitalOutput > pins){

21 int i = 0;

22 for (GpioPinDigitalOutput pin: pins) {

23 log.debug("Relay " + (i + 1) + " turned off!");

24 relayControl(pin , false);

25 i++;

26 }

27 log.info("All Relays Switched Off!");

28 return true;

29 }

30 }

In the above code extract, all the relays are closed before opening the appropriate
membrane connection relay preventing the surcharge of Crison pH meter with two open
circuits.

86

5.3 Outside Box

Outside the Calibration Box, in the developed prototype, named ”BOX 1”, there are
available the following interfaces:

1. One network interface(figure 5.16, a-1);

2. Two USB ports (figure 5.16, a-2):

(a) One used for the USB-Serial adaptor to connect with Crison pH serial inter-
face;

(b) Another used to connect with the Legato 100 pump;

3. A USB (PWR) power source cable (figure 5.16, a-3a, a-3b);

4. One BNC (MTR) port to connect with the Crison pH Meter Input (figure 5.16,
a-4a, a-4b);

5. Eight RCA ports to connect with the membranes (numbered figure 5.16, b);

6. One LCD (4x20) backlighted display (figure 5.16, b);

7. One click-button with blue LED (figure 5.16, b);

(a) Box System Interfaces (b) Box Membrane Interfaces

Figure 5.16: Calibration Box (CB) interfaces.

po bh

87

5.3.1 Operating the Calibration Box

Currently there are two modes:

1. With automatic pump;

2. Without automatic pump;

The difference between those two modes is that the first mode does not require the
user interaction after prepare the calibration and submit.

When the CB is in ”free status” that means that the CB is ready to start a new
calibration (figure 5.17).

Figure 5.17: Calibration Box in free status.

After submit the calibration by pressing its button in the web interface (figure 4.30),
the calibration starts. During the the execution the CB changes its status to ”working”
and starts reading values from the configured interfaces (figure 5.18).

Figure 5.18: Calibration Box working. Reading from port 3.

88

In this stage of the calibration the CB measures from any configured membrane
collecting all the possible reads from Crison pH meter, and looking for stable values.
After read from all the membranes, if there is a Legato 100 automatic pump, the CB
proceeds with the calibration by adding the amount of reagent configured (figure 5.19).

Figure 5.19: Calibration Box adding reagent automatically.

If there is not an automatic pump configured, the CB asks user to manually add the
reagent and confirm the addition by pressing the CB button. The button LED blinks
until the user presses it to continue with the next step of the calibration (figure 5.20).

Figure 5.20: Calibration Box wating the addition of reagent manually.

This process, automatic or not, repeats the membrane testing against the continuous
addition of concentration until the process is finished. Then the CB terminates cali-
bration by processing results (figure 5.21, a) and uploading them as an excel file to the
server (figure 5.21, b).

89

(a) Preparing data output. (b) Uploading data.

Figure 5.21: Calibration Box (CB) terminating calibration process.

After upload the CB shows ”finished” before goes back to the ”free” status to receive
the next calibration job (figure 5.22).

Figure 5.22: Calibration Box calibration terminated.

The automatic calibration output is an excel file uploaded to the server side appli-
cation and available to download at the portal.

This excel file has the following format (figure 5.23).

90

Figure 5.23: Calibration Box output calibration with three membranes.

This calibration is then processed by the researcher using excel or numbers (appendix
B).

91

Chapter 6
Conclusion

In this chapter it is resumed all the work done during this project and described on the
previous chapters. It will also be compared the proposal objectives and the achieved
results. Finally it will be presented some future improvements or developments that can
turn this project even better.

6.1 Achieved objectives

This project has as a main objective the research process automation regarding the
membrane calibrations. Since the evolved equipments are not always available, this
project had to be enough flexible, allowing the researcher to calibrate in a automatic or
semi-automatic manner.

About automating the manual process, this goal was achieved by creating an au-
tomation interface called Calibration Box that interacts with the necessary equipments
and with the researcher automating the full or part of the process and producing the
same output that the researcher produces manually. To automate this process, there
was a huge amount of detailed configurations and data entries to support the researcher
on their calculations. This data was persisted and processed using PostgreSQL, Java
(OpenJDK) and Spring Boot Frameworks.

The database relationships, and the need to clearly understood the calibration process
to automate it, causes the detailed architecture definition prior the development of this
solution, that was a great complement for this report.

The specific goals for this project was achieved and this prototype can be used to
develop new units to automate the membrane calibration research process.

6.2 Future work

Still in the context of this work and in order to continue its evolution, it would be
important to continue with the development process in two different ways.

93

Hardware Evolution - Develop a specific and more compact hardware module in a
custom developed PCB that allow the reduction of hardware modules and assembly
costs, making the Calibration Box more robust and compact.

Data Evolution - Part of the development process consists on the analysis of the
collected values (data) and with this pattern analysis, the researcher advances with
their research to produce a better and more reliable membrane to be used in a low
cost way to easily detect cancer in early stages. This data is able to be processed and
submitted to machine learning algorithms to suggest to the researcher new possibilities
not only based on their calibrations, but based on all the researchers results.

6.3 Final considerations

In short, after evaluating all the aspects mentioned throughout the various chapters of
this thesis, it is possible to distinguish this work for the ability to combine not only a
software based solution, but also the ability to create a hardware based automation, dis-
tributing and isolating the data processing in the calibration process and contributing
to a central interface allowing the researchers a faster way to calibrate their develop-
ments. In this project we can highlight the use of open-source hardware (Raspberry Pi)
and software, reducing the prototype development costs, and the cloud based deploy-
ment using automated continuous integration and deployment. Throughout the various
chapters were also presented all the steps from, architecture to the development of an
hardware prototype and its software solution, and also the server-side solution enabling
not only this automation but also the laboratory process organization.. This reports can
act also as a user manual explaining how to use and automate a calibration.

94

Bibliography

[1] Y. Wang, Z. Zhang, V. Jain, J. Yi, S. Mueller, J. Sokolov, Z. Liu, K. Levon,
B. Rigas, and M. H. Rafailovich, “Potentiometric sensors based on surface molecular
imprinting: Detection of cancer biomarkers and viruses,” Sensors and Actuators B:
Chemical, vol. 146, no. 1, pp. 381 – 387, 2010.

[2] Y. Yin, Y. Cao, Y. Xu, and G. Li, “Colorimetric immunoassay for detection of tumor
markers,” International Journal of Molecular Sciences, vol. 11, pp. 5077–5094, Dec
2010.

[3] S. Ramos, “Cancer chemoprevention and chemotherapy: Dietary polyphenols and
signalling pathways,” Molecular Nutrition & Food Research, vol. 52, no. 5, pp. 507–
526, 2008.

[4] G. M. Cooper, The cell : a molecular approach / Geoffrey M. Cooper, Robert E.
Hausman. Sunderland, Mass. :: Sinauer Associates

”
2007.

[5] C. E. DeSantis, C. C. Lin, A. B. Mariotto, R. L. Siegel, K. D. Stein, J. L. Kramer,
R. Alteri, A. S. Robbins, and A. Jemal, “Cancer treatment and survivorship statis-
tics, 2014,” CA: A Cancer Journal for Clinicians, vol. 64, no. 4, pp. 252–271, 2014.

[6] S. Sharma, “Tumor markers in clinical practice: General principles and guidelines,”
Indian Journal of Medical and Paediatric Oncology, vol. 30, no. 1, p. 1, 2009.

[7] N. L. Henry and D. F. Hayes, “Cancer biomarkers,” Molecular Oncology, vol. 6,
no. 2, pp. 140–146, 2012.

[8] M. A. Virji, D. W. Mercer, and R. B. Herberman, “Tumor markers in cancer diagno-
sis and prognosis,” CA: A Cancer Journal for Clinicians, vol. 38, no. 2, pp. 104–126,
1988.

[9] R. Mayeux, “Biomarkers: Potential uses and limitations,” NeuroRX, vol. 1, pp. 182–
188, Apr 2004.

95

[10] K. Vytras, “The use of ion-selective electrodes in the determination of drug sub-
stances,” Journal of Pharmaceutical and Biomedical Analysis, vol. 7, no. 7, pp. 789
– 812, 1989.

[11] R. Yan, S. Qiu, L. Tong, and Y. Qian, “Review of progresses on clinical applica-
tions of ion selective electrodes for electrolytic ion tests: from conventional ises to
graphene-based ises,” Chemical Speciation & Bioavailability, vol. 28, pp. 72–77, Apr
2016.

[12] A. R. Fakhari, M. Alaghemand, and M. Shamsipur, “Iron(iii)-selective membrane
potentiometric sensor based on 5,10,15,20-tetrakis-(pentafluorophenyl)-21h,23h-
porphyrin,” Analytical Letters, vol. 34, pp. 1097–1106, Apr 2001.

[13] E. Pretsch, “The new wave of ion-selective electrodes,” TrAC Trends in Analytical
Chemistry, vol. 26, no. 1, pp. 46 – 51, 2007.

[14] A. H. KAMEL, S. A. A. ALMEIDA, M. G. F. SALES, and F. T. C. MOREIRA,
“Sulfadiazine-potentiometric sensors for flow and batch determinations of sulfadi-
azine in drugs and biological fluids,” Analytical Sciences, vol. 25, no. 3, pp. 365–371,
2009.

[15] I. O. for Standardization, Quality Management Principles. ISO, Geneva, Switzer-
land, 2015. ISBN: 978-92-67-10650-2.

[16] OpenJDK, “Openjdk 8.” https://openjdk.java.net/projects/jdk8/.

[17] A. Maven, “Apache maven.” https://maven.apache.org/.

[18] A. Foundation, “Apache license, version 2.0.” https://www.apache.org/

licenses/LICENSE-2.0.

[19] E. Foundation, “Eclipse public license - v 1.0.” https://www.eclipse.org/legal/
epl-v10.html.

[20] Oracle, “Common development and distribution license (cddl) version 1.1.” https:
//javaee.github.io/jstl-api/LICENSE.

[21] BSD, “The 2-clause bsd license.” https://opensource.org/licenses/

BSD-2-Clause.

[22] M. License, “Mit license.” https://github.com/timcreative/freebies/blob/

master/LICENSE.md.

[23] P. Software, “Spring mvc.” https://docs.spring.io/spring/docs/current/

spring-framework-reference/web.html.

[24] Apache, “Apache tiles.” http://tiles.apache.org/index.html.

96

[25] C. Tim, “Creative tim paper dashboard bootstrap template.” https://www.

creative-tim.com/product/paper-dashboard.

[26] PostgreSQL, “About postgresql.” https://www.postgresql.org/about/.

[27] P. License, “Postgresql license.” https://www.postgresql.org/about/licence/.

[28] Docker, “What is docker, what is a container?.” https://www.docker.com/

resources/what-container.

[29] P. Software, “About spring security.” https://spring.io/projects/

spring-securityhttps://spring.io/projects/spring-security.

[30] B. team and contributors, “Bootstrap framework.” https://getbootstrap.com/.

[31] J. team and contributors, “Javamelody framework.” https://github.com/

javamelody/javamelody.

[32] S. Software, “Swagger openapi specification.” https://swagger.io/resources/

open-api/.

[33] D. Foundation, “Debian operating system webpage.” https://www.debian.org/.

[34] R. P. Foundation, “About raspberry pi.” https://www.raspberrypi.org/about/.

[35] R. P. Foundation, “Raspbian operating system webpage.” https://www.

raspberrypi.org/downloads/raspbian/.

[36] Pi4J, “Pi4j library.” https://pi4j.com/1.2/index.html.

[37] G. Foundation,“Gnu general lesser public license (lgpl) version 3.0.”https://pi4j.
com/1.2/license.html.

[38] Tinsharp, “Lcd with i2c hardware module.” https://www.makerguides.com/

wp-content/uploads/2019/02/20x4-Character-LCD-Datasheet.pdf.

[39] Sunfounder, “Relay module diagram.” http://wiki.sunfounder.cc/images/1/

1c/4_channel_relay_Schematic.pdf.

97

Appendix A
Hardware Modules

To build this project prototype, there were some external hardware modules included
which his design is open-source, and could be integrated in a future work in a combined
PCB [38], [39].

99

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

Ti
tle

N
um

be
r

Re
vi

si
on

Si
ze B D
at

e:
5-

M
ay

-2
01

1
Sh

ee
t

 o
f

Fi
le

:
E:

\P
CB

\ji
di

an
qi

.D
db

D
ra

w
n

By
:

K
1

D
1

R2

1 2

4 3

U
1

R1

V
CC

IN
1

1 2 3

J1

Q
1

K
3

D
3

R6

1 2

4 3

U
3

R5V
CC

IN
3

1 2 3

J3

Q
3

K
5

D
5

R1
0

1 2

4 3

U
5

R9V
CC

IN
5

1 2 3

J7

Q
5

K
8

D
8

R1
5

1 2

4 3

U
7

R1
4

V
CC

IN
7

1 2 3

J6

Q
7

IN
1

IN
2

IN
3

IN
4

V
CC

G
N

D

IN
1

IN
2

IN
3

IN
4

JD
-V

CC

JD
-V

CC JD
-V

CC

JD
-V

CC

1
2

J?

123456

J?

A.1 Relay Board Diagram

100

TC2004A-01

Ver.V00 2009-07-07 www.tinsharp.com - 3 -

FUNCTIONS & FEATURES

 Construction : COB(Chip-on-Board)
 Display Format : 20x4 Characters
 Display Type : STN, Transflective, Positive, Y-G
 Controller : SPLC780D1 or equivalent controller
 Interface : 8-bit parallel interface
 Backlight : yellow-green/ bottom light
 Viewing Direction : 6 O’clock
 Driving Scheme : 1/16 Duty Cycle, 1/5 Bias
 Power Supply Voltage : 5.0 V
 VLCD Adjustable For Best Contrast : 4.7 V (VOP.)
 Operation temperature : -10℃ to +60℃
 Storage temperature : -20℃ to +70℃

BLOCK DIAGRAM

BACKLIGHT

RS

R/W

DB0~DB7

VSS

E

VDD
V0

LCD PANEL

CONTROL IC

LED+
LED-

DRIVING IC

BACK LIGHT

A.2 LCD Module Characteristics

101

TC2004A-01

Ver.V00 2009-07-07 www.tinsharp.com - 4 -

MODULE OUTLINE DRAWING

8
.

B
AC

KL
IG

H
T:

 Y
E

LL
O

W
 G

R
E

E
N

/B
O

TT
O

M
 B

A
C

K
LI

G
H

T/
5.

0V

S
TN

/T
R

A
N

S
FL

E
C

TI
V

E
/P

O
S

IT
IV

E/
Y-

G

9
7.
0
±

0
.2

70
.4
0
(A
.A
.)

7
6
.0
(V
.A
.
)

9
3
.0

PC
B
 9
8.
0
±

0
.3

P.
2.
5
4X
(1
6-
1)
=
38
.1

49
.0

1

4
.

V
IE

W
IN

G
 D

IR
EC

TI
O

N
:

6
O

`C
LO

C
K

M
EC

H
A

N
IC

A
L

TO
L.

±
0.

2
U

N
LE

SS
 S

P
EC

IF
IE

D

1

7.

D

R
IV

E
 M

O
D

E:
6
.

S
TO

R
A

G
E

 T
E

M
P:

5
.

O
P

E
R

A
TI

N
G

 T
E

M
P:

1
.

D
IS

P
LA

Y
TY

P
E:

3
.

LO
G

IC
 V

O
LT

A
G

E
:

5.
0V

2
.

LC
D

 D
R

IV
IN

G
 V

O
LT

A
G

E
:

 4
.7

V

39.5±0.2
55.0

DCBA

9
.

O
TH

E
R

:

1
0.
1

-2
 0

°
C

~7
 0

°
C

-1
 0

°
C

~6
 0

°
C

1/
16

 D
U

TY
,1

/5
 B

IA
S

S
PE

C
IF

IC
A

TI
O

N
S

26.0(V.A.)

20.80(A.A.)

P
IN

1

N
AM
E

VS
S

1 2
3

V
DD

V0

3
.5
5

0.6
0.55 2.

95

S
CA
L
E
6:
1

D
OT
S
DE
TA
I
L

修
改
定
位

孔

更
改

L
CD

电
压

C
/D

F
I
R
S
T

I
S
S
U
E

C
H

AN
G

E
 C

O
N

TE
N

T

T
YP
E

PCB 60.0±0.3
30.0

2
3

7

D
B
0

R/
W

1
6X

?
1.
0

4
5

2R
S

1
6

3.1

6 E N
O

TE
:

D
B
2

8 DB
1 3

9
1
0

DB
3

4
V

ER
S

IO
N

V
0
05

P
R

O
JE

C
TI

O
N

D
ES

C
R

IP
TI

O
N
：

PCB 1.6

A

S
H

E
E

T:
 1

 O
F

1

U
N

IT
:

A
P

P
:

D
A

TE
:

S
C

AL
E
：

FI
T

4X
?
3.
0

1
1

1
2

D
B
4

DB
5

4

B

1
3

1
4

D
B
6

m
mD
B7

T
I
N
S
H
A
R
P

5.35

TC
20

04
A

-0
1

M
O

D
EL

1
6

LE
D
-

1
5

V
0
2

V
0
1

D
A

TE
:

C
H

K
:

LE
D+

5

0.6
0.55

2
0
0
7
-
0
1
-
0
9

D
A

TE

6

S
E

R
IA

L
N

U
M

BE
R

M
LX

00
53

9.
9

1
4.
0

A

D
A

TE
:

D
W

N
:

4.75

2
0
0
7
-
0
4
-
0
4

2
0
0
7
-
0
1
-
2
6

B 6

BA C D

 T

IN
S

H
A

R
P

IN
D

U
S

TR
IA

L
C

O
.,L

TD
.

A.3 LCD Module Characteristics

102

Appendix B
Calibration Analysis

After collecting the membrane calibration data, the researcher starts its analysis using
excel.

103

C
al

ib
ra

çã
o:

 P
IP

ES
S

ta
tic

Q
ua

nt
id

a
de

 te
ór

ic
a

PI
PE

S
30

2,
37

g/
m

ol
S

ta
tic

Q
ua

nt
id

ad
e

pe
sa

da

PI
PE

S
30

2,
37

g/
m

ol
S

ta
tic

C
on

c.
5E

-0
3

m
ol

/L
S

ta
tic

C
on

c.
1E

-0
3

m
ol

/L
P

ro
ce

ss
ed

Le
ge

nd
a

Q
ua

nt
id

ad
e

te
ór

ic
a

So
l.

0,
75

59
3

g
P

ro
ce

ss
ed

So
l.

0,
75

65
6

g
S

ta
tic

I
M

IP
 2

C
4N

3H
7O

S
ta

tic
St

oc
k

0,
50

0
L

S
ta

tic
St

oc
k

0,
50

0
L

S
ta

tic
II

N
IP

 2

C
re

at
in

in
a

11
3,

12
g/

m
ol

S
ta

tic

C
on

c.
1,

0E
-0

2
m

ol
/L

S
ta

tic

So
l.

0,
56

55
89

5
g

P
ro

ce
ss

ed

St
oc

k
0,

50
0

L
S

ta
tic

m
V

se
m

 s
ol

. C
ar

ni
tin

a
39

,1
31

,8
-1

,5
-2

66
,8

55
,5

12
5,

3
12

6,
7

-2
66

-3
7,

2
-2

35
,4

15
5,

4
22

4,
5

Va
d(

m
L)

Vt
 a

d(
m

L)
C

on
c,

 M
lo

g
C

1
2

3
4

5
6

7
8

9
10

11
3

(s
up

le
nt

e)
Q

ua
nt

id
ad

e
pe

sa
da

20
20

4,
00

E
-0

6
-5

,3
98

0
40

,1
32

,2
-2

,5
-2

64
,0

55
,5

12
5,

1
12

6,
9

-2
62

,6
-3

6,
8

-2
29

,5
15

5,
4

22
4,

8
C

re
at

in
in

a
11

3,
12

g/
m

ol
S

ta
tic

20
40

8,
00

E
-0

6
-5

,0
97

1
39

,8
32

,2
-2

,3
-2

60
,0

55
,7

12
5,

1
12

6,
4

-2
59

,1
-3

4,
5

-2
24

,0
15

5,
0

22
4,

0
C

on
c.

1,
0E

-0
2

m
ol

/L
P

ro
ce

ss
ed

40
80

1,
60

E
-0

5
-4

,7
96

4
39

,7
32

,7
-2

,1
-2

53
,7

55
,7

12
5,

4
12

5,
9

-2
54

,4
-3

6,
5

-2
17

,5
15

4,
5

22
4,

1

70
15

0
2,

99
E

-0
5

-4
,5

24
0

39
,6

32
,5

-2
,1

-2
43

,7
56

,1
12

5,
8

12
5,

8
-2

42
,8

-3
6,

2
-2

07
,4

15
4,

1
22

3,
5

So
l.

0,
05

65
8

g
S

ta
tic

10
0

25
0

4,
98

E
-0

5
-4

,3
03

0
39

,4
32

,5
-2

,0
-2

33
,2

56
,0

12
5,

3
12

5,
3

-2
32

,8
-3

5,
3

-1
98

,2
15

3,
7

22
3,

2

St
oc

k
0,

05
0

L
S

ta
tic

20
0

45
0

8,
92

E
-0

5
-4

,0
49

5
38

,0
31

,2
-2

,7
-2

20
,6

54
,5

12
5,

0
12

5,
0

-2
19

,8
-3

5,
8

-1
86

,0
15

3,
6

22
2,

7

35
0

80
0

1,
58

E
-0

4
-3

,8
02

6
36

,6
29

,7
-3

,4
-2

07
,1

52
,8

12
5,

0
12

5,
0

-2
06

,2
-3

6,
0

-1
73

,6
15

3,
5

22
,4

pH
=2

,8
5

S
ta

tic
60

0
14

00
2,

72
E

-0
4

-3
,5

64
7

36
,0

29
,1

-2
,5

-1
92

,1
53

,2
12

4,
8

12
4,

8
-1

93
,4

-3
7,

5
-1

61
,2

15
3,

6
22

2,
8

Vi
ni

ci
al

H
EP

ES
S

ta
tic

10
00

24
00

4,
58

E
-0

4
-3

,3
39

0
33

,3
25

,8
-2

,7
-1

80
,3

49
,9

12
4,

3
12

4,
3

-1
81

,4
-4

0,
7

-1
49

,3
15

3,
0

22
1,

9
50

m
L

S
ta

tic
25

00
49

00
8,

93
E

-0
4

-3
,0

49
2

26
,6

13
,5

-5
,6

-1
67

,1
40

,0
12

4,
6

12
4,

6
-1

66
,0

-4
9,

8
-1

33
,6

15
3,

2
22

2,
2

50
00

99
00

1,
65

E
-0

3
-2

,7
81

6
14

,7
-1

9,
0

-7
,1

-1
54

,5
13

,4
12

3,
5

12
3,

5
-1

53
,6

-7
8,

3
-1

21
,0

15
2,

5
22

0,
9

S
ta

tic
P

ro
ce

ss
ed

P
ro

ce
ss

ed
P

ro
ce

ss
ed

lo
g

C
1

1
lo

g
C

5
5

lo
g

C
9

9
-5

,3
98

0
40

,1
40

,1
-5

,3
98

0
55

,5
55

,5
-5

,3
98

0
-3

6,
8

-3
6,

8
-5

,0
97

1
39

,8
39

,8
-5

,0
97

1
55

,7
55

,7
-5

,0
97

1
-3

4,
5

-3
4,

5
-4

,7
96

4
39

,7
39

,7
-4

,7
96

4
55

,7
55

,7
-4

,7
96

4
-3

6,
5

-3
6,

5
-4

,5
24

0
39

,6
39

,6
-4

,5
24

0
56

,1
56

,1
-4

,5
24

0
-3

6,
2

-3
6,

2
-4

,3
03

0
39

,4
39

,4
-4

,3
03

0
56

,0
56

,0
-4

,3
03

0
-3

5,
3

-3
5,

3
-4

,0
49

5
38

,0
38

,0
-4

,0
49

5
54

,5
54

,5
-4

,0
49

5
-3

5,
8

-3
5,

8
-3

,8
02

6
36

,6
36

,6
-3

,8
02

6
52

,8
52

,8
-3

,8
02

6
-3

6,
0

-3
6,

0
-3

,5
64

7
36

,0
36

,0
-3

,5
64

7
53

,2
53

,2
-3

,5
64

7
-3

7,
5

-3
7,

5
-3

,3
39

0
33

,3
33

,3
-3

,3
39

0
49

,9
49

,9
-3

,3
39

0
-4

0,
7

-4
0,

7
-3

,0
49

2
26

,6
26

,6
-3

,0
49

2
40

,0
40

,0
-3

,0
49

2
-4

9,
8

-4
9,

8
-2

,7
81

6
14

,7
14

,7
-2

,7
81

6
13

,4
13

,4
-2

,7
81

6
-7

8,
3

-7
8,

3
lo

g
C

2
2

lo
g

C
6

6
lo

g
C

10
10

-5
,3

98
0

32
,2

32
,2

-5
,3

98
0

12
5,

1
12

5,
1

-5
,3

98
0

-2
29

,5
-2

29
,5

-5
,0

97
1

32
,2

32
,2

-5
,0

97
1

12
5,

1
12

5,
1

-5
,0

97
1

-2
24

,0
-2

24
,0

-4
,7

96
4

32
,7

32
,7

-4
,7

96
4

12
5,

4
12

5,
4

-4
,7

96
4

-2
17

,5
-2

17
,5

-4
,5

24
0

32
,5

32
,5

-4
,5

24
0

12
5,

8
12

5,
8

-4
,5

24
0

-2
07

,4
-2

07
,4

-4
,3

03
0

32
,5

32
,5

-4
,3

03
0

12
5,

3
12

5,
3

-4
,3

03
0

-1
98

,2
-1

98
,2

-4
,0

49
5

31
,2

31
,2

-4
,0

49
5

12
5,

0
12

5,
0

-4
,0

49
5

-1
86

,0
-1

86
,0

-3
,8

02
6

29
,7

29
,7

-3
,8

02
6

12
5,

0
12

5,
0

-3
,8

02
6

-1
73

,6
-1

73
,6

-3
,5

64
7

29
,1

29
,1

-3
,5

64
7

12
4,

8
12

4,
8

-3
,5

64
7

-1
61

,2
-1

61
,2

-3
,3

39
0

25
,8

25
,8

-3
,3

39
0

12
4,

3
12

4,
3

-3
,3

39
0

-1
49

,3
-1

49
,3

-3
,0

49
2

13
,5

13
,5

-3
,0

49
2

12
4,

6
12

4,
6

-3
,0

49
2

-1
33

,6
-1

33
,6

-2
,7

81
6

-1
9,

0
-1

9,
0

-2
,7

81
6

12
3,

5
12

3,
5

-2
,7

81
6

-1
21

,0
-1

21
,0

lo
g

C
3

3
lo

g
C

7
7

lo
g

C
11

11
-5

,3
98

0
-2

,5
-2

,5
-5

,3
98

0
12

6,
9

12
6,

9
-5

,3
98

0
15

5,
4

15
5,

4
-5

,0
97

1
-2

,3
-2

,3
-5

,0
97

1
12

6,
4

12
6,

4
-5

,0
97

1
15

5,
0

15
5,

0
-4

,7
96

4
-2

,1
-2

,1
-4

,7
96

4
12

5,
9

12
5,

9
-4

,7
96

4
15

4,
5

15
4,

5
-4

,5
24

0
-2

,1
-2

,1
-4

,5
24

0
12

5,
8

12
5,

8
-4

,5
24

0
15

4,
1

15
4,

1
-4

,3
03

0
-2

,0
-2

,0
-4

,3
03

0
12

5,
3

12
5,

3
-4

,3
03

0
15

3,
7

15
3,

7
-4

,0
49

5
-2

,7
-2

,7
-4

,0
49

5
12

5,
0

12
5,

0
-4

,0
49

5
15

3,
6

15
3,

6
-3

,8
02

6
-3

,4
-3

,4
-3

,8
02

6
12

5,
0

12
5,

0
-3

,8
02

6
15

3,
5

15
3,

5
-3

,5
64

7
-2

,5
-2

,5
-3

,5
64

7
12

4,
8

12
4,

8
-3

,5
64

7
15

3,
6

15
3,

6
-3

,3
39

0
-2

,7
-2

,7
-3

,3
39

0
12

4,
3

12
4,

3
-3

,3
39

0
15

3,
0

15
3,

0
-3

,0
49

2
-5

,6
-5

,6
-3

,0
49

2
12

4,
6

12
4,

6
-3

,0
49

2
15

3,
2

15
3,

2
-2

,7
81

6
-7

,1
-7

,1
-2

,7
81

6
12

3,
5

12
3,

5
-2

,7
81

6
15

2,
5

15
2,

5
lo

g
C

4
4

lo
g

C
8

8
lo

g
C

3
(s

up
le

nt
e)

3
(s

up
le

nt
e)

-5
,3

98
0

-2
64

,0
-2

64
,0

-5
,3

98
0

-2
62

,6
-2

62
,6

-5
,3

98
0

22
4,

8
22

4,
8

-5
,0

97
1

-2
60

,0
-2

60
,0

-5
,0

97
1

-2
59

,1
-2

59
,1

-5
,0

97
1

22
4,

0
22

4,
0

-4
,7

96
4

-2
53

,7
-2

53
,7

-4
,7

96
4

-2
54

,4
-2

54
,4

-4
,7

96
4

22
4,

1
22

4,
1

-4
,5

24
0

-2
43

,7
-2

43
,7

-4
,5

24
0

-2
42

,8
-2

42
,8

-4
,5

24
0

22
3,

5
22

3,
5

-4
,3

03
0

-2
33

,2
-2

33
,2

-4
,3

03
0

-2
32

,8
-2

32
,8

-4
,3

03
0

22
3,

2
22

3,
2

-4
,0

49
5

-2
20

,6
-2

20
,6

-4
,0

49
5

-2
19

,8
-2

19
,8

-4
,0

49
5

22
2,

7
22

2,
7

-3
,8

02
6

-2
07

,1
-2

07
,1

-3
,8

02
6

-2
06

,2
-2

06
,2

-3
,8

02
6

22
,4

22
,4

-3
,5

64
7

-1
92

,1
-1

92
,1

-3
,5

64
7

-1
93

,4
-1

93
,4

-3
,5

64
7

22
2,

8
22

2,
8

-3
,3

39
0

-1
80

,3
-1

80
,3

-3
,3

39
0

-1
81

,4
-1

81
,4

-3
,3

39
0

22
1,

9
22

1,
9

-3
,0

49
2

-1
67

,1
-1

67
,1

-3
,0

49
2

-1
66

,0
-1

66
,0

-3
,0

49
2

22
2,

2
22

2,
2

-2
,7

81
6

-1
54

,5
-1

54
,5

-2
,7

81
6

-1
53

,6
-1

53
,6

-2
,7

81
6

22
0,

9
22

0,
9

ES
I

Sl
op

e
R

2
LO

D
LL

LR
(m

V
/d

ec
ad

e)
(n

 =
 5

)
(M

)
(M

)
I II II
I

IV I II II
I

IV I II II
I

IV

35

35
,7

5

36
,5

37
,2

538

-7
-5

,7
5

-4
,5

-3
,2

5
-2

-1
9

-1
4,

25-9
,5

-4
,7

50

-7
-5

,7
5

-4
,5

-3
,2

5
-2

-2

-1
,5-1

-0
,50

-7
-5

,7
5

-4
,5

-3
,2

5
-2

-2
94

-2
54

-2
14

-1
74

-1
34

-7
-5

,7
5

-4
,5

-3
,2

5
-2

015304560

-7
,0

00
0

-5
,7

50
0

-4
,5

00
0

-3
,2

50
0

-2
,0

00
0

0

31
,2

5

62
,5

93
,7

5

12
5

-7
-5

,7
5

-4
,5

-3
,2

5
-2

0

31
,2

5

62
,5

93
,7

5

12
5

-7
-5

,7
5

-4
,5

-3
,2

5
-2

-1
66

-1
24

,5-8
3

-4
1,

50

-7
-5

,7
5

-4
,5

-3
,2

5
-2

-3
6

-2
7

-1
8-90 -7

,0
00

0
-5

,7
50

0
-4

,5
00

0
-3

,2
50

0
-2

,0
00

0

-2
40

-1
80

-1
20-6

00

-7
-5

,7
5

-4
,5

-3
,2

5
-2

15
2

15
2,

75

15
3,

5

15
4,

2515
5

-7
-5

,7
5

-4
,5

-3
,2

5
-2

05611
2

16
8

22
4

-6
-5

-4
-3

-2

�1

B.1 Processed Analysis

104

