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Abstract 
Road traffic crashes is an impactful problem in nowadays society, causing significant life and 
property losses. Due to the urbanization process across the world and the population’s growth, 
the number of crashes is also increasing. Predicting a crash severity and cost is an important 
step to better understand which causative variables have more influence and therefore, 
implement prevention measures that can reduce the number of crashes. Road traffic crashes 
predictions is a complex problem due to the high number of independent causative variables 
that contribute to the event. 

The used dataset contains crashes occurred in the State of Iowa in the recent years. Feature 
selection and data cleaning techniques are applied to improve the data quality and enhance the 
learning process. 

Previous research on the road safety field applied approaches that led to unsatisfactory results. 
Recent studies based on more complex approaches like neural networks had better results. This 
document’s work is based on deep learning, studying how the usage of deep neural networks 
can enhance previous results on road traffic crashes predictions taking causative variables as 
input. Various models are built using different optimization and activation functions. The 
evaluation is based on the comparison of these models. 

 

Keywords: Road traffic crashes, Crashes prediction model, Machine learning, Artificial Neural 
Networks, Iowa.  
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Resumo 
Os acidentes rodoviários representam um dos maiores problemas da comunidade atual, tendo 
um grande impacto social e económico. Além da enorme quantidade de feridos e mortos 
resultantes deste tipo de eventos (sendo mesmo considerada uma das maiores causas de morte 
a nível global, a maior em jovens adultos), a prevenção e consequentes custos de um acidente 
rodoviário representam também uma parte respeitável dos orçamentos de estado. Existe, um 
conjunto de variáveis envolvidas neste tipo de eventos que os tornam possíveis de prever e 
evitar, como por exemplo a existência de álcool, luminosidade no local e estado da estrada. 
Entender o impacto destas variáveis permite criar relações lógicas entre os seus valores e a 
gravidade e custos inerentes a um acidente, tornando possível a implementação de medidas de 
prevenção mais eficientes. Contudo e devido ao elevado número de variáveis a considerar, este 
é um problema complexo. 

Apesar de ser um problema global, este documento foca-se num contexto mais específico, o do 
estado de Iowa nos Estados Unidos da América. O conjunto de dados utilizados foi recolhido 
pelo departamento de transportes do estado de Iowa e contém variáveis ambiente, gravidade 
e custo dos acidentes rodoviários ocorridos nos últimos anos. O número de registos é elevado, 
o que permite a existência de diversificados cenários. No entanto, estes dados contêm algumas 
falhas (valores não recolhidos) e, em alguns cenários, não se encontram balanceados. Diversas 
técnicas de pré-processamento de dados como limpeza e transformação destes são aplicadas 
de forma a ultrapassar este problema. A partir da análise dos dados é possível ainda identificar 
quais os campos que não representam interesse no contexto deste problema, procedendo-se 
com a sua remoção e consequente redução do tamanho do conjunto de dados. 

A área de prevenção e previsão de acidentes rodoviários utilizando técnicas de data mining já 
foi explorada anteriormente. A aplicação de modelos mais clássicos (como modelos 
probabilísticos e baseados em procura) não obteve resultados totalmente satisfatórios. Nos 
estudos mais recentes, onde técnicas com maior poder computacional foram aplicadas 
(métodos baseados em otimização), os resultados foram melhores. Desta forma e tendo em 
consideração as conclusões dos estudos referidos na literatura, este documento pretende 
abordar como a utilização de deep learning, uma técnica de redes neuronais profundas e de 
elevado poder computacional, pode melhorar os resultados previamente obtidos. Para tal, são 
implementados diversos modelos para prever a gravidade e custo de um acidente com recurso 
a redes neuronais. A configuração dos modelos varia, sendo utlizados diferentes funções de 
custo e de ativação, de forma a explorar quais são as melhores abordagens a estes problemas.  

De forma a otimizar o processo de desenvolvimento é também utilizada uma framework de 
deep learning, o Tensorflow. Esta framework, além de primar pela flexibilidade e capacidade de 
implementação de arquiteturas variadas, permite uma elevada abstração do processo de treino 
das redes neuronais, calculando dinamicamente qual a profundidade e largura da rede mais 
indicada. A sua utilização teve também por base a comunidade open-source, que garante a 
manutenção e otimização desta framework no futuro. Os resultados da utilização de 
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frameworks no processo de treino de redes neuronais no contexto de acidentes rodoviários não 
são ainda conclusivos, sendo este um fator a ter em conta no desenvolvimento do projeto. 

Os modelos desenvolvidos são depois comparados, utilizando métricas como Exatidão e AUC 
(Area Under the Curve), e com recurso a validação do tipo Holdout de forma a perceber se os 
resultados obtidos são válidos. São utilizados dois conjuntos de dados, um de treino e um outro 
de teste, para a avaliação da solução. 

 

Palavras-chave: Acidentes rodoviários, Modelos de previsão de acidentes rodoviários, Machine 
learning, Redes neuronais, Iowa.  
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1 Introduction 

In this chapter it is possible to find a brief description of the project’s problem, context, 
objectives and value. Is also referred the technological approaches to the project’s 
development.   

1.1 Context 
This project’s focus is the road crashes’ causative variables analysis, having in consideration its 
influence on human life (injuries and fatalities) and related costs. 

Road crashes have a meaningful impact on nowadays society. According to the World Health 
Organization (WHO) more than 1.2 million people die on the world’s roads per year (World 
Health Organization, 2015a), being one of the major cause of death globally, and the main cause 
of death at age 15 to 29 years (World Health Organization, 2015b). Each of these crashes results 
not only in human injuries (or even fatalities) but also in financial costs. The United Nations and 
Road Safety estimated that ͞global losses due to road traffic injuries total $518 billion and cost 
Governments between 1 and 3 per cent of their gross national product (“The United Nations 
and Road Safety,” 2011). 

With the population growth, vehicles’ production is growing, increasing the risk of more traffic 
crashes and compromising road safety. Prevention measures can be implemented to reduce 
the number of accidents. Governments are aware of it and multiple global causes are currently 
taking place (e.g. the Decade of Action for Road Safety 2011-2020).  

Even though traffic crashes can be considered accidents (a random event), the crashes are 
predictable and preventable (World Health Organization, 2015a). To prevent these crashes 
from happening a deeper understanding of its leading causes is required. 
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1.2 Problem 
Factors like weather, road degradation and human behavior (presence of alcohol or drugs) have 
impact on the severity of a crash. While an accident is a random event, road crashes could be 
predictable and also preventable (World Health Organization, 2015a) and its severity is affected 
by the surrounding environment. The causative variables of a crash influences its severity and 
cost (Kononov & Janson, 2002). 

Iowa’s Department of Transportation (IDT) has been tracking the crashes occurring in the state, 
including the causative variables to understand how to reduce the number of fatalities. Besides 
the human injuries and deaths that collisions can cause, IDT also tracks the estimated cost and 
the date of a crash.  

This research hypothesizes that the causative variables of a crash influence its consequences. 
This document’s analysis and development are based on a dataset provided by Iowa’s 
Department of Transportation. 

1.3 Objectives 
The impact of environmental factors (weather, road condition and driver’s sobriety) on crash 
severity and cost modeling problem has been already studied and deeply analyzed in the past. 
Most of these studies take in consideration causative variables (Chong, Abraham, & Paprzycki, 
2005) (Kumar & Toshniwal, 2015) or local conditions (Yuan, Zhou, Yang, Tamerius, & Mantilla, 
2017). 

Taking into consideration past studies on this topic, the primary objective of this work is to 
understand the impact of the crash factors in its severity and cost, using Iowa’s crash data and 
data mining techniques and to use deep learning frameworks to predict severity and cost 
impacts and compare with other approaches. The development is focused in producing various 
models, and comparing the models using evaluation metrics like AUC to understand which 
model better performs on this context. 

This objective can be achieved by analyzing Iowa’s crash variables (prioritizing the variables that 
past investigations already identified as being the most impactful), resulting in the application 
of multiple data mining approaches later described in this document. 

1.4 Value analysis 
Road traffic crashes (RTC) are responsible for a high amount of injuries and fatalities. Also, 
governmental entities have costs associated with road safety. Drivers nowadays are worried 
about their safety (Shinar, 2017). The population growth is also contributing to the vehicles 
number growth, increasing the risk of road traffic crashes (WHO, 2014).  
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For these reasons, it is essential to identify the factors that influence crashes' severity and cost. 
This knowledge allows the implementation of prevention measures, which reduce the road 
traffic crashes number, severity and cost, thus increasing road safety and decreasing the 
associated costs. 

1.5 Approach 
This work focuses on the development of a model to predict road traffic crash severity and cost. 
The dataset obtained from Iowa’s Department of Transportation and supervised learning 
techniques like artificial neural networks were used for predicting the possible cause of the RTC.  

Deep learning is used to overcome the problem’s complexity, as the number of input features 
is high, and to understand how this approach improves the RTC prevention result comparing 
with other researches. TensorFlow is used as the deep learning framework due to its flexibility, 
performance and open-source community.  

Data processing is an important step in data mining. The used dataset contains missing data 
and potentially unbalanced data. For the missing data various strategies can be applied like 
removing the input or replacing the missing values by the most probable value. Some input 
columns are removed from the dataset using feature selection as these inputs are irrelevant to 
the problem’s context. 

It is expected that the classification model proposed, using classification and regression 
approaches, is able to perform road traffic crash severity predictions and road traffic crash cost 
prediction. 
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2 State of the art 

This chapter is meant to explain the problem approached in this document, its context and the 
value analysis. The used dataset is also contextualized in this problem’s environment. 

2.1 Problem 
Traffic crashes are one of the most impactful issues humanity has to deal with as of the time of 
this writing, creating significant amounts of deaths, injuries, and costs over the last decades. 

Considering World Health Organization reports, more than 1.2 million people die per year on 
the world’s roads, making road traffic injuries a leading cause of death (World Health 
Organization, 2015a). The principal cause of death among aged teenagers and young adults (15 
to 29 years) is traffic crashes (World Health Organization, 2015b). Road safety is a global issue 
that affects millions of people, transcending the transport sector, being a health, social, and 
economic problem (Leon, Cal, & Sigua, 2005) affecting multiple sectors and the economy as 
well. Besides human injuries and fatalities, it is important to consider the property and 
administration costs. It is estimated that global losses due to road traffic injuries total $518 
billion. It represents between 1 and 3 per cent of governments gross national product (“The 
United Nations and Road Safety,” 2011). 

Considering this problem’s impact, a global initiative named Decade of Action for Road Safety 
(“WHO | Decade of Action for Road Safety 2011-2020,” 2017) was created and is underway by 
the time of this writing. Governments are making significant efforts to reduce the number of 
traffic crashes. These efforts are focused on prevention, therefore trying to reduce the number 
of traffic crashes.  

In the traffic safety’s domain, there is a need to distinguish between a crash and an accident. 
While an accident is a random event, crashes are influences by the environment (Shinar, 2017). 
There are various factors involved in a traffic crash that can be studied and identified. These 
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factors, also mentioned in this document as causative variables, are directly related to the 
crashes frequency and severity (Kononov & Janson, 2002).  

According to WHO, although road traffic injuries have been a leading cause of mortality in 
recent years, these crashes are predictable and also preventable (World Health Organization, 
2015a). Predicting traffic crash causes and understanding the patterns associated with it is a 
crucial step to improve the society’s safety.  

2.1.1 Iowa’s context 

Although traffic crashes are a global problem, it is not plausible to focus on such a large scale.  

For this reason, the scope of this document is restricted to the United States of America (USA) 
and more precisely to Iowa state context. Iowa is one of the USA’s most concerned states about 
road safety as some programs and prevention measures have been implemented in the recent 
years. 

One of the primary road safety programs is the “Zero Fatalities Program” (“Iowa Zero Fatalities 
| Homepage,” n.d.). The Zero Fatalities program is a united effort from the Iowa Departments 
of Transportation, Public Safety and Public Health to bring attention to the factors that causes 
crashes, which can cause road fatalities (“Zero Fatalities,” n.d.). 

The program’s leading focus is prevention. Since the implementation the number of fatalities 
has been reducing progressively over time, hitting an all-time lowest in 2013 with 317 fatalities. 

2.1.2 Dataset 

Iowa open data is a governmental initiative which consists in a portal to provides data about 
the state information divided by multiple topics as economy, education, transportation, and 
others. The provided data can be retrieved as spreadsheets, JSON files or by an API. Therefore, 
it can be used on local initiatives, open source projects, and others. 

This document’s dataset source is provided by the Iowa’s open data portal. The dataset is 
named “Iowa crash data” and contains detailed information about crash conditions, including 
injuries, fatalities and causative variables from 2008 until 2016 occurrences. Iowa’s Department 
of Transportation also keeps track of the crash property cost and date1. The dataset structure 
is described in Table 12. 

 

 

 
1 Dataset official source: http://data.iowadot.gov/datasets/crash-data-1 
2 The dataset structure description is not accessible by Portugal based addresses. Dataset structure 
provided by open-source community in the following snippet: https://pastebin.com/ui7dex3A 
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Table 1 - Dataset structure 

Key Description Value type 

CRASH_KEY Crash id in Iowa’s database Id 

CASENUMBER Case number Id 

LECASENUM Law enforcement case number Id 

CRASH_DATE Date of crash Complete date 

CRASH_MONTH Month of crash Discrete data 

CRASH_DAY Day of week Discrete data 

TIMESTR Time of crash Hour and minutes 

DISTRICT DOT District Discrete data 

COUNTY_NUMBER County Discrete data 

CITYNAME City Discrete data 

SYSTEMSTR Route with system Reference 

LITERAL Derived literal description Description 

FRSTHARM Frist harmful event Discrete data 

LOCFSTHRM Location of first harmful event Discrete data 

CRCOMNNR Manner of crash / collision Discrete data 

MAJCSE Major cause Discrete data 

DRUGALC Drug or alcohol related Discrete data 

ECNTCRC Contributing circumstances Discrete data 

LIGHT Light conditions Discrete data 

CSRFCND Surface conditions Discrete data 

WEATHER Weather conditions Discrete data 

RCNTCRC Contributing circumstances - Roadway Discrete data 

RDTYP Type of roadway junction / feature Discrete data 

PAVED Paved or not Discrete data 

WZRELATED Work zone related Discrete data 

CSEV Crash severity Discrete data 

FATALITIES Number of fatalities Number 

INJURIES Number of injuries Number 

MAJINJURY Number of major injuries Number 



 

 
 
26 

Key Description Value type 

MININJURY Number of minor injuries Number 

POSSINJURY Number of possible injuries Number 

UNKINJURY Number of unknown injuries Number 

PROPDMG Amount of property damage ($) Number 

VEHICLES Number of vehicles involved Number 

TOUCCUPANTS Total number of occupants Number 

REPORT Report type Discrete data 

XCOORD X Coordinate (UTM NAD 83 Zone 15) Coordinate 

YCOORD Y Coordinate (UTM NAD 83 Zone 15) Coordinate 

OBJECTID Object ID Id 

SHAPE Shape Geometry field 

 

Most of the fields related with the causative variables are discrete data. This means that instead 
of having a description, it is attributed a class that represents a state in the dataset (e.g. for the 
LIGHT field, the value “1” represents “daylight” and value “2” represents “dusk”). The CSEV is 
one of the most important attributes, representing the crash severity. In Table 2 it is possible 
to find the CSEV values and corresponding descriptions. 

The discrete fields also contain an empty / not reported state, which is also represented by a 
class (e.g. value “77” represents a “Not Reported” state for the LIGHT field). This dataset 
contains around 65530 RTC occurrences considering a timeframe of around 10 years until 2017.  

Table 2 - CSEV values description 

CSEV value Description 

1 Fatal 

2 Major injury 

3 Minor injury 

4 Possible / Unknown 

5 Property damage only 
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2.2 Value analysis 
In this section it is possible to find the value analysis of the project, which follows Peter Koen 
new concept development model (NCD) (Koen et al., 2001). A detailed study of this project’s 
development opportunities, ideas, value and concepts can be found in the sections below. 

2.2.1 New concept development model 

“The New Concept Development Model (NCD) provides a common language and definition of 
the key components of the Front End of Innovation” (Koen et al., 2001). The NCD is represented 
by the following five elements: opportunity identification, opportunity analysis, idea creation, 
idea selection and concept definition. The description for each of these elements on this 
project’s context is described in the chapters below. 

2.2.1.1 Opportunity identification 
As referred earlier in the Problem section (see 2.1), traffic crashes are responsible for a 
significant rate of society's mortality rate and imply public costs. The world population is 
growing, and as cars become a more commonplace, the number of accidents tend to increase 
(Shinar, 2017). With more profound knowledge about the factors involved in traffic crashes, it 
is possible to invest in prevention, increasing people's safety. Multiple governments, mainly in 
developed countries, are implementing various prevention measures to reduce the number of 
RTC. 

This opportunity identification resulted from a personal study to better understand the 
implications of specific factors on road safety.  

2.2.1.2 Opportunity analysis 
According to the European Automobile Manufacturers Association, the number of vehicles 
produced across the world is growing as seen in Figure 1. The number of cards growth on the 
roads, and considering that traffic safety is one of  the great interest to most drivers today 
(Shinar, 2017), requires more effective prevention measures to be implemented soon. 

Having in consideration the efforts that governments are placing worldwide to guarantee road 
safety, understanding the primary causes of traffic crash is one of the essential needs to prevent 
more crashes from happening. 
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Figure 1 - World motor vehicle production (“World Production | ACEA - European Automobile 
Manufacturers’ Association,” 2016) 

2.2.1.3 Idea creation 
RTC events were already the target of many studies (as more precisely referenced in the 3.2.1 
section). On these studies were applied different methods and data mining techniques to 
prevent more crashes from happening. These studies discussed this problem based on the 
crashes’ causative variables and local conditions, showing reasonable to good results. 

The Iowa’s dataset contains the crashes’ locations, causative variables, dates and costs. It’s 
possible to apply various technological solutions (data mining techniques, new frameworks) to 
study each of these fields. 

2.2.1.4 Idea selection 
The selected idea is to analyze the crashes’ causative variables and cost, using data mining 
techniques, supported in a deep learning framework (which are explained in more detail in the 
2.3.2.3.3 section) and neural network usage.  

Previous studies using Iowa’s crash dataset already given particular attention to the urban data 
(Yuan et al., 2017). The use of artificial neural networks, which are indicated for complex 
problems (as explained in the 2.3.2.1.5 section) can reveal the relations that exist between 
roadway conditions, environmental characteristics and a crash severity and correspondent cost. 

This research is mostly focused on the causative variables of Iowa’s dataset to understand how 
these variables influence the crash severity and costs. Using Tensorflow as the chosen deep 
learning framework (explained in detail in 2.3.2.3.3.1 and compared with other frameworks in 
the 3.2.2 section) and therefore using deep neural networks, it is possible to explore how a 
deep learning framework’s usage impacts the results. 
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2.2.1.5 Concept definition 
Develop an algorithm capable of predicting a road traffic crash severity (possibility of injuries 
and fatalities) and cost using machine learning and different data mining approaches.  

If the predictions are accurate, it is possible to have a more comprehensive understanding of 
how causative variables influence RTC. This knowledge allows the implementation of more 
precise prevention measures to increase road safety. 

2.2.2 Value 

Value can be defined as “different theoretical contexts as need, desire, interest, standard / 
criteria, beliefs, attitudes, and preferences” (Nicola, Ferreira, & Ferreira, 2012).  

In the context of RTC, the principal value of this research is the road safety improvement, 
reducing costs and improving people’s health (preventing injuries or deaths). From the 
consumer’s concerns, traffic safety is of great interest to most drivers today (Shinar, 2017).  

2.2.2.1 Value for customer 
Drivers recognize the RTC dangers and impact on their safety. Following an american survey in 
the US in 2005, safety is the most important feature that americans value in their car (Shinar, 
2017). Crashes harm public health, one of the most important fields people value. These events 
cause massive costs to often overburdened health care systems, consuming a high amount of 
resources (e.g. hospital rooms and beds) and resulting in significant losses of productivity and 
prosperity due to its costs. Also, these events causes deep social and economic repercussions 
(WHO, 2014). 

Governmental entities are also interested in RTC prevention. As referenced on the sections 
above, according to the United Nations and Road Safety, global losses due to road traffic injuries 
are about $518 billion representing between 1 and 3 per cent of governments’ gross national 
product (“The United Nations and Road Safety,” 2011). Governments are also responsible to 
improve people’s safety and as an example, in the European Union (EU) various milestones 
were set to reduce the number of RTC over time (as seen in Figure 2). 

European Transport Safety Council (ETSC) estimated that “if the EU countries had moved 
towards the 2020 road safety target through constant progress, the greater reductions in 
deaths in the years 2011-2013 would have raised the benefit to society by 4.6 billion Euro to 
about 23 billion Euro over those years” (Presidency & Union, 2015). 

Due to the magnitude of these numbers, the reduction of RTC from prevention measures are 
interesting from a public and governmental perspective.  
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Figure 2 - EU road deaths reduction and target for injuries and deaths reduction (Presidency & 
Union, 2015) 

2.2.2.2 Perceived value 
In this section, it’s referenced which sacrifices and benefits this research brings to the customer. 
“Perceived value is the consumer's overall assessment of the utility of a product based on 
perceptions of what is received and what is given” (Walker, Lutz, Park, & Schmalensee, 1988). 

Road safety comes with a cost resulting from the prevention measures implementation, 
structural changes, campaigns and others that can arise. 

As an example, alcohol is an of the most impactful causative variables on RTC severity. One of 
the most known prevention measures that resulted in a fatalities reduction was the compulsory 
breath tests (CBT). CBT intention is to reduce the amount of alcohol ingested by drivers, 
therefore reducing the risk of serious crashes. The implementation of this measure implies at 
least: 

• Social costs; 
• Infrastructural costs (more police agents on the road, protocol creation, …); 
• Acquisition of equipment to analyze alcohol in blood; 
• Campaign creation for drivers’ sensitization. 

 

Ireland was one of the countries which introduced random CBT to increase road safety. The 
legislation changed with the introduction of random breath testing. Were introduced tougher 
penalties for drunk driving and the disqualification periods for drunk driving range increased 
from 1 to 6 years. Since 2004 the number of full-time police officers in the Traffic Corps has 
increased from 500 to 1,200. The new legislation also brought more campaigns to public 
television and radios (Jost, Popolizio, Allsop, & Eksler, 2008). After CBT were implemented in 
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2007 (included in Ireland’s “Road Safety Strategic Plan”), fatalities resulting from RTC reduced 
up to 7% (Jost et al., 2008).  

Random breath tests (RBT) implementation has high costs as previously mentioned but the 
benefits are considerable, overlapping the initial costs. Other studies found that RBT operations 
are effective in reducing overall numbers of crashes. In New Zealand, the implementation of 
this prevention measure resulted in benefit  cost  ratios  in  the  order  of  26:1  (Wundersitz & 
Woolley, 2008). 

Considering the costs of the program’s implementation, it was still effective. The governmental 
entities probably saved more than it spent on the program’s implementation and furthermore 
increased road safety for its citizens. In Table 3 it is possible to find the RTC prevention’s 
longitudinal perspective of value. 

Table 3 - Longitudinal perspective of value 

 Benefits Sacrifices 
Before purchase — Research cost; 

Data acquisition cost. 
Transaction — Development cost. 
After purchase Public sensitization; 

Support. 
Social costs; 
Infrastructural costs; 
Campaign creation costs; 
Maintenance costs. 

After implementation RTC prevention and 
reduction; 
Increase of road safety; 
Public health; 
RTC severity drop; 
Saving money (from RTC 
consequences costs). 

Infrastructural costs; 
Maintenance costs. 

 

2.2.3 Value proposition 

The value proposition of this research is to create an algorithm that given a combination of 
causative variables, can determine an RTC severity and cost with high accuracy and precision. 

This way it is possible to provide more tools for governmental entities and the society to 
understand the significant crash factors, allowing the implementation of more accurate 
prevention measures. In consequence, it is expected to improve road safety, public health, legal 
and administrative costs with RTC. 

The usage of a different development methodology comparing with previous studies is also a 
compelling characteristic of this research. 
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2.2.4 Canvas model 

 

Figure 3 - Canvas model 

As observed on the canvas model (Figure 3), using crash data and computing power for machine 
learning technology it’s expected to significantly increase public safety and decrease current 
governmental costs with RTC. 

The revenue is expected to come from external investments (from entities which are interested 
in improved local road prevention measures) and the software selling. Attending to the used 
technologies, it is possible to, in the future, upgrade the software and sell it as a set of services 
(with custom configuration depending on the input data). 

The key partners are all related to data collection and road constructions to understand how 
the causative variables vary comparing with the data obtained. 

2.2.5 Value evaluation 

As referenced in the Canvas model chapter (see 2.2.4), one of the leading key propositions of 
this work is to allow more effective prevention measures implementation. The implementation 
of these measures enables road safety to increase, leading to the public health and security 
increase and cost reduction. 

The analytic hierarchy process (AHP) is used for the value evaluation. This method structures 
the problem as a hierarchy and, following the Saaty’s pairwise comparison scale, defines 
weights for the criteria (Mu & Pereyra-Rojas, 2017).  
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Figure 4 - Evaluation hierarchy 

As observed in Figure 4, the first layer matches the primary objective, implementing a 
prevention measure. The involved criteria are: 

• Causative variable impact – Understand which causative variables affects public health 
and costs the most; 

• Implementation cost – A prevention measure has associated charges as stated in the 
Perceived value chapter; 

• Implementation accessibility – If the means required for the prevention measure’s 
implementation are accessible. 

 

Based on this criterion it is possible to evaluate the best prevention measure to implement. 
Table 4 includes the attribution of weights for the criteria. Table 5 describes the normalized 
matrix with the final weights for each the criteria. 

Table 4 - AHP evaluation table 

 Causative Variable Cost Accessibility 
Causative Variable 1 7 4 
Cost 1/7 1 1/4 
Accessibility 1/4 4 1 
SUM 1.39 12 5,25 

 

The causative variable impact is the most valuable feature since it directly influences public 
health and associated costs. The implementation cost is the less relevant feature as the 
investment in the prevention measures can be recovered on long-term cost reduction from RTC. 
The accessibility has a medium weight due to its direct impact on costs and structural changes 
required for the prevention measures implementation (e.g. the introduction of compulsory 
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breath tests requires additional costs for equipment acquisition as already referred in Perceived 
value section). 

Table 5 - Normalized AHP matrix 

 Causative Variable  Cost Accessibility Weights 
Causative Variable  0,7179 0,5833 0,7619 0,6877 
Cost 0,1026 0,0833 0,0476 0,0778 
Accessibility 0,1795 0,3333 0,1905 0,2344 

 

2.3 Machine learning 
Machine learning is a technique that allows computer programs to improve with experience 
automatically. This process happens due to the automated detection of meaningful patterns in 
data which allows computer programs to understand and balance past knowledge to classify 
new cases. 

Learning is the process of converting experience into expertise or knowledge. The input to a 
learning algorithm is training data, which represents experience, and the output is some 
expertise. The expertise can then be used to solve other problems with unseen input (Ben-David 
& Shalev-Shwartz, 2014). 

Machine learning problems are usually divided into two major fields (Gama, Ponce de Leon 
Carvalho, Carolina Lorena, Oliveira, & Faceli, 2017): 

• Descriptive tasks – Unsupervised learning; 
• Predictive tasks – Supervised learning. 

 

Unsupervised learning is briefly mentioned on the 2.3.1 section while supervised learning is 
described in detail in 2.3.2 section as this document’s work is related with prediction tasks 
instead of descriptive tasks.   

2.3.1 Unsupervised learning 

Descriptive tasks on machine learning are associated with the identification of structures 
related with dataset properties, allowing the algorithm’s decision making enhancement and 
learning discovery (Gama et al., 2017).  

In contrast to the supervised learning, where the desired output for a given input is known 
beforehand and the algorithm’s performance changes to accomplish the expected result, 
unsupervised learning algorithm adapts its behavior based on the surroundings observations 
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without being told to, which can be analogically compared to a “learning without a teacher” 
concept (Barlow, 1989).  

The most known problem of unsupervised learning is clustering, where the output labels are 
not predicted and instead data is grouped in a meaningful way (Ben-David & Shalev-Shwartz, 
2014). As there are no explicit output targets, unsupervised learning is mainly useful to find 
patterns in the input data, therefore used to better understand the dataset (Gama et al., 2017). 

2.3.2 Supervised learning 

In prediction tasks of machine learning, it is expected to have a dataset where the input and 
output values are known. In the supervised learning paradigm of machine learning (Gama et al., 
2017), an external supervisor that knows the output label for the set of input values is simulated. 
Based on the previous knowledge learned from the training set is expected for the supervisor 
to evaluate and predict the outputs for unseen input data. The idea is the machine to “learn” 
from experience (the labelled values of the dataset), therefore being able to identify unlabeled 
examples with high accuracy (Erik G., 2014). 

The training set consists (Erik G., 2014) of 𝑛 pairs (𝑥(, 𝑦() where 𝑥 represents the set of input 
values (a vector) which correspond to a single output label, the 𝑦 value. The training set is 
processed by the learning algorithm which then creates a model to predict the output labels of 
the unseen cases (test set). 

The test set is (Erik G., 2014) structurally similar to the training set. To evaluate the learning 
algorithm, its outputs labels 𝑦(  are hidden and compared with the predictions 𝑦,-  made on the 
test data. 

Supervised learning tasks distinguish themselves depending of the data output label type 
(Gama et al., 2017): 

• Discrete data (e.g. existence, or not, of fatalities in the road crash) – Classification; 
• Continuous data (e.g. the road crash’s cost is 6300$) – Regression. 

 

Both these techniques are explained in detail in the 2.3.2.1 and 2.3.2.2 chapters.  

One of the most widely used and accepted methods based on learning data representations is 
Deep Learning, which takes advantage of deep structures to solve the proposed problems. This 
method can use supervised, semi-supervised and unsupervised techniques (Goodfellow, Bengio, 
& Courville, 2015), although in the context of this work it is approached mainly as supervised 
learning as specified in 2.3.2.3 section. 

2.3.2.1 Classification 
Classification is a supervised learning technique that assigns categories to cases. The algorithm 
learns from a dataset {𝑥/, … , 𝑥1}  where the input values have classes {𝑐/, … , 𝑐1}  already 
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assigned and produces a function 𝑓, that predicts to which categories the unseen data belongs 
to. This technique is applied in situations where 𝑦( = 𝑓(𝑥()𝜖{𝑐/, … , 𝑐7}. In other words, 𝑓(𝑥() 
is related to discrete, non-ordered values (Gama et al., 2017). 

The sections below expose some of the most relevant classification algorithms. 

2.3.2.1.1 Support Vector Machine (SVM) 
Support Vector Machine (SVM) is one of the most influential approaches to supervised learning 
(Boser, Guyon, & N. Vapnik, 1996) as outputs a class identity instead of calculating probabilities 
(like other techniques like logistic regression).  

Linear SVM uses a score function that is linear and parametric in order to clarify the concept of 
margin maximization in a simplified context. Afterwards, SVM can also be referenced as non-
linear and non-parametric due to the kernel introduction (Auria & Moro, 2008). 

SVM looks for the hyperplane that best separates solvent from insolvent values (where the 
distance of the hyperplane from the closest points is the largest) according to a criterion. The 
criterion used by SVM is based on margin maximization (Auria & Moro, 2008).  

During the training process, all the points have associated coefficients, which represent the 
strength of these points in the final decision function. The points that are closer to the 
hyperplane have coefficients greater than 0, while the rest of the points have coefficients equal 
to zero (Dominik Wisniewski & Wawezyniak, 2014). 

The SVM usage provides a good generalization (which makes SVM robust even when training 
samples has some bias) and, instead of Artificial Neural Networks (ANN), delivers a unique 
solution (as the optimality problem is convex). A disadvantage of this technique is the lack of 
transparency of results (Auria & Moro, 2008). 

2.3.2.1.2 K Nearest Neighbors (kNN) 
K-nearest neighbor (kNN) is another non-probabilistic supervised learning algorithm that can 
be used either for classification or regression problem. Although it doesn’t have a fixed number 
of parameters (being a non-parametric learning algorithm), kNN usually works better when 
applied to smaller features’ vectors (Goodfellow et al., 2015).  

This algorithm uses the nearest values of the input 𝑥 in the dataset 𝑋 to produce the 𝑦 output, 
the class assigned to the unseen example. One of the biggest disadvantages of this algorithm is 
that it cannot learn that one feature is more discriminative than another (Goodfellow et al., 
2015). kNN is simple to implement and applicable in complex problems (Gama et al., 2017) 
which can be considered as a major advantage. 

2.3.2.1.3 Decision Trees 
In decision trees algorithms, each node of the tree is associated with a region in the input space 
(Goodfellow et al., 2015). The tree is then divided in smaller regions, dividing a complex problem 
in simpler problems until it is ready to define the output. Decision trees can be used in 
classification and regression problems. 
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Each node of the decision tree is a function and has a conditional test (Goodfellow et al., 2015). 
In classification problems, decision trees algorithm uses the decision rules to assign a class as 
output.  

This technique is usually robust, flexible and efficient (taking a top-down approach) but is not 
appropriated to deal with missing data (as missing values will leave empty nodes in the tree 
hierarchy) and is not very stable (Gama et al., 2017).  

CHAID is a decision tree variation, where more than two states can be represented (which 
represents non-binary trees). This variation is well suited for larger datasets (“IBM Knowledge 
Center - CHAID classification tree,” n.d.). 

2.3.2.1.4 Naive Bayes 
Naive Bayes is a probabilistic method that output a class based in prior knowledge (calculating 
the probability to each of the possible outputs). The class with a higher probability for the 
unseen data is the output (Gama et al., 2017). It is based in a conditional independency principle 
between variables to achieve the equilibrium (considering that the variables are discrete values). 
This technique is known to perform well in specific contexts like mail spam (Smola & 
Vishwanathan, 2010). 

2.3.2.1.5 Artificial Neural Network 
Artificial neural networks (ANN), commonly mentioned to as “neural networks” (NN), is a 
learning system inspired by human brain computation. It holds several neurons (the processing 
unit), a structure that helps to perform highly complex, nonlinear and parallel operations to 
developed knowledge. 

The neurons have the capability of storing experiential knowledge. In an ANN it is possible to 
find various layers of neurons, connected between themselves. The relations between neurons 
are associated with weights (also named as “synaptic weights), which change during the 
learning process. Is possible to understand that (Haykin, 1999): 

• In ANN, knowledge is acquired through a learning process. The learning process uses 
the various layers of neurons to enhance the knowledge during the learning iterations; 

• Synaptic weights (or interneuron connection strengths) are used to store the acquired 
knowledge (Haykin, 1999). 

 

The total entrance value 𝑢 of a neuron can be calculated by (Gama et al., 2017): 

𝑢 =:𝑥;

<

;=/

𝑤;  (1) 

  
Considering a neuron with 𝑑 entrances, which weights are defined by 𝑤. The 𝑥 value represents 
the vector with the input values. 



 

 
 
38 

The neuron output is obtained taking into consideration the connections’ weights, a bias (a 
constant input weight), the input values and an activation function. Therefore, it is possible to 
understand the single input neuron model (Hagan, Demuth, & Beale, 1995): 

𝑎 = 𝑓(𝑤𝑝 + 𝑏) (2) 
 

In the neuron model, 𝑎  represents the output and 𝑝 the input of the neuron. The synapse 
weight is represented by 𝑤 and the bias represented by 𝑏. To calculate the neuron output, an 
activation function, 𝑓, is used. This function represents the single input neuron (Hagan et al., 
1995) as only one input is considered.  

In an ANN, as various layers of neurons exist, one neuron has more than one input and output. 
Each of the neuron’s inputs are weighted by the corresponding elements. The multiple input 
neuron (Hagan et al., 1995) is represented by: 

𝑎 = 𝑓(𝑊𝑝 + 𝑏) (3) 
 

In which 𝑊 represents the matrix of weighted inputs of a neuron. Each neuron calculates its 
output, which is received as input to the next layer of the ANN. The first layer of the ANN is 
named input layer and receives the initial data (da Silva, Hernane Spatti, Andrade Flauzino, 
Liboni, & dos Reis Alves, 2017).  

 

Figure 5 - Three-Layer Network by (Hagan et al., 1995) 

The neural network net is also built using hidden layers, which output is not the network output 
but an input for the next layer (Gama et al., 2017). The network output, represented by 𝑎E in 
Figure 5, is calculated based on the ANN inputs and hidden layers outputs (Hagan et al., 1995) 
and is presented by the output layer. 

During the learning process, the ANN also optimizes its predictions using loss functions. These 
functions measures the difference between the real output and the ANN’s prediction (Smola & 
Vishwanathan, 2010). 
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The number of neurons composing the network’s layers varies depending on the complexity of 
the problem being mapped by the network and on the quantity and quality of the available data. 
Usually, the number of neurons of the first hidden layer is immediately different from the 
number of neurons of the input layer (da Silva et al., 2017). 

The ANN’s architecture have multiple advantages (Haykin, 1999): 

• Input-Output Mapping – Related with Supervised learning, the modification of the ANN 
weights occurs during the learning process, applying a set of labeled data (also named 
as training samples). For each input set, the neural network will adapt the relations’ 
weight to minimize the difference between the desired response (the output label in 
the training samples) and the ANN response. The training is repeated during multiple 
iterations over the training samples until the ANN reaches a stable state where it is not 
detected significant changes in the neurons’ relations weights; 

• Adaptability – Neural networks adapt synaptic weights to surrounding environment, 
the data. Even if the neural network is already trained, it can be easily retrained to 
adjust the weights to unseen data. This allows the neural network to support a high 
level of feature complexity without disrupting the system performance and accuracy; 

• Contextual Information – “Knowledge is represented by the very structure and 
activation state of a neural network. Every neuron in the network is potentially affected 
by the global activity of all other neurons in the networks. Consequently, contextual 
information is dealt with naturally by a neural network” (Haykin, 1999). 

 

ANN benefit from considerable amounts of initial data (too much data can be a problem as later 
approached in this document) as it can learn from different, illustrative samples of the dataset. 
These advantages allow ANN to solve large-scale, complex problems as it can be applied in 
classification and regression problems. 

2.3.2.2 Regression 
Regression is a supervised learning technique used to predict continuous values. Considering a 
dataset where 𝑓(𝑥()𝜖ℜ , 𝑓(𝑥()  only assumes real and ordered values inside an infinite set 
(Gama et al., 2017). 

In this chapter it is explained in detail some regression techniques, with emphasis on the linear 
regression technique. 

2.3.2.2.1 Logistic Regression 
Logistic regression is an algorithm that helps to select the class of a given input and uses the 
logistic sigmoid function. The logistic regression function can be represented by (Storkey, n.d.): 

𝜎(𝑏	 +	𝑥G	𝑤)	 (5) 
 

Where 𝑏 is a constant scalar and 𝑤 is a constant vector. The classified value depends on the 
argument value. The greater the value, the higher is the probability of the classified value to 



 

 
 
40 

belong the class 1. On the other hand, the lower is the argument value, the more probable is 
the classified value to belong to the class 0 (Storkey, n.d.). 

2.3.2.2.2 Linear Regression 
Linear regression defines the output as a linear function of the input (Goodfellow et al., 2015). 
The input parameters control the behavior of the system, as the weights of each feature affects 
the way the system outputs the prediction. 

The feature’s weight has proportional effect on the predict. If a feature’s weight is negative, 
then increasing the value of that feature, decreases the prediction’s value. When a feature’s 
weight is zero, it has no effect on the predict (Goodfellow et al., 2015). The objective is to 
minimize the error and have the best prediction possible. Linear regression is a simple but 
limited learning algorithm that can work efficiently in continuous values prediction.  

2.3.2.2.3 Other methods 
SVM were initially developed to classification problems but were adapt to be used in regression 
cases by the introduction of an alternative loss function (Brereton & Lloyd, 2010).  

The kNN algorithm can also be used to regression problems but it usually reveals problems to 
fit the data and give accurate predictions.  

Decision Trees’ output is usually an estimative (Gama et al., 2017) when applied to regression. 
The trees’ leaf predicts a real number and not a class, looking to minimize the prediction square 
error through the training process. Each leaf prediction is based on the weighted mean of that 
node. 

ANN, due to its architecture flexibility, can also be applied to regression. Is also possible to train 
ANN to support other algorithms like linear regression. 

2.3.2.3 Deep learning  
Deep learning is a machine learning technique to train deep ANN and its popularity grown up 
in the last years (Goodfellow et al., 2015) and is based on deep neural networks, which have 
two or more hidden layers as seen in Figure 6 (Gama et al., 2017). 

Deep neural networks are more efficacious as the highest number of layers allows a better 
pattern recognition. The learning process consists on the first layers extracting high complexity 
characteristics from the input. The following layers then focus on more specific attributes from 
the first layers’ output. This process allows the first layers to create a more abstract 
representation of the input, avoiding irrelevant data and enhancing the prediction model 
(Gama et al., 2017). 
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Figure 6 - Representation of simple deep neural network (DZone, n.d.) 

This approach is known for reliable results solving problems related with image processing due 
to deep ANN’s power and versatility, but is also indicated for complex problems with a high 
number of features as input (Goodfellow et al., 2015). 

The usage of the previously mentioned activation functions (see 2.3.2.3.2 section, Activation 
functions) is highly recommended in deep learning, as it allows the learning process to be more 
precise and faster. 

Deep learning approaches usually divide the dataset in a small number of sets, allowing the 
definition of a validation environment against which the trained algorithm is proved and where 
the output is already defined, following the supervised learning guidelines. 

2.3.2.3.1 Optimization functions 
Also known as training function, optimization functions are used to enhance the weights update 
and biases of neurons in the ANN in order to reduce the prediction’s error. It is named as 
optimization as it helps to minimize the loss by the network’s training process. The usage of the 
correct optimizer also enhances the learning process, helping to achieve more accurate models 
(Goodfellow et al., 2015). 

2.3.2.3.1.1 GradientDescent 
GradientDescent remains as the most common optimization algorithm for deep learning 
models today (Goodfellow et al., 2015). Is used for minimizing a convex function and analyze its 
convergence properties (Singer, 2016) as represented in Figure 7. 
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Figure 7 - GradientDescent action (Goodfellow et al., 2015) 

GradientDescent searches for a stationary point, that represents the minimum loss possible to 
be applied in the learning process. The objective is to maximize or minimize a function, the 
objective function (Goodfellow et al., 2015). 

2.3.2.3.1.2 Adam 
Adaptive Moment Estimation (Adam) updates the learning rate for each parameter. It involves 
processes from others optimization algorithm like storing  an exponentially decaying average 
of past squared gradients (usually associated with other less used optimizers like Adadelta and 
RMSprop) and keeping an exponentially decaying average of past gradients (usually associated 
with Momentum) (Ruder, 2016). This function usually has good results when compared with to 
other adaptively learning-method algorithms (Ruder, 2016). 

2.3.2.3.1.3 Adagrad 
Adagrad is a function that adapts the learning rate to the parameters, performing larger 
updates for infrequent parameters. Performs better when dealing with sparse data. (Ruder, 
2016). 

One of the main benefits of this optimization function is that it eliminates the need to manually 
tune the learning rate. Adagrad will update the learning rate for every parameter 𝜃(  at every 
time step 𝑡. Being 𝑔K,(  the gradient of the objective function with respect to the parameter 𝜃(  
at time step 𝑡 (Ruder, 2016) and where 𝐽 represents the error: 

𝑔K,( = ∇M𝐽(𝜃K,() (4) 
 

Adagrad’s main weakness is its accumulation of the squared gradient in the denominator, 
causing the learning rate to shrink and become too small (Ruder, 2016), eventually causing the 
algorithm to stop learning during the training process. 
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2.3.2.3.2 Activation functions 
The activation function associated with a neuron determines its output for a given input. 
Neurons in ANN behave like switches, either activating or not upon the learning process. The 
learning process is faster using activation functions (Gama et al., 2017). 

These functions play a major role in the ANN training. In this section are described the 
considered activation function for this project’s development. 

2.3.2.3.2.1 Softplus 
The softplus function is a commonly found function in ANN problems due to its range being 
[0,∞] (Goodfellow et al., 2015). Its function its represented by log	(1 + exp(𝑥)) as seen in 
Figure 8. 

 

Figure 8 - Softplus activation function (Goodfellow et al., 2015) 

2.3.2.3.2.2 Rectified Linear Unit (ReLU) 
ReLU is the default activation function for most feedforward neural networks (Goodfellow et 
al., 2015). The ReLU range is [0,∞], being defined by the 𝑓(𝑥) = max(0, 𝑥) formula as seen in 
Figure 9. 

The output of a linear transformation when this function is applied results in a nonlinear 
transformation. The function still remains very close to linear, as is a piecewise linear function 
with two linear pieces. Rectified linear units are nearly linear and preserve many of the 
properties that make linear models easy to optimize (using gradient based methods) 
(Goodfellow et al., 2015).  

Due to the function’s characteristics where weights are not adjusted during descent, neurons 
can stop responding. This problem is called dying ReLU problem (“Neural activation functions,” 
n.d.). 
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Figure 9 - ReLU activation function (Goodfellow et al., 2015) 

2.3.2.3.2.3 Sigmoid 
The logistic sigmoid activation function is a non-linear function, as represented in Figure 10. It 
saturates to a high value when the input is very high, saturates to a low value when the input is 
very low, and is strongly sensitive to near 0 input values (Goodfellow et al., 2015). The usage of 
an appropriate cost function can reduce the impact of the high saturation caused by the sigmoid 
function. 

This function can be mathematically represented by 𝜎(𝑥) = 1/(1 + exp(−𝑥)), transforming a 
real value into a value between 0 and 1 (Goodfellow et al., 2015). 

 

Figure 10 - Sigmoid activation function (Goodfellow et al., 2015) 

2.3.2.3.2.4 Tanh 
The tanh function is mathematically represented by the tanh(𝑥) = 2𝜎(2𝑥) − 1 , where s 
represents the sigmoid function (mentioned earlier in section 2.3.2.3.2.3). Figure 11 holds this 
function’s representation. 

While the sigmoid function consisted in transforming a real value in a value between 0 and 1, 
tanh function transforms a real value in a value between -1 and 1. For this reason, training a 
ANN with tanh is usually easier and, in most scenarios, performs better than the logistic sigmoid 
(Goodfellow et al., 2015). 
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Figure 11 - Tanh activation function (“Neural activation functions,” n.d.) 

2.3.2.3.3 Deep learning frameworks 
Deep learning implementation have changed several application domains, being important to 
areas like computer vision, speech recognition and solving complex problems (Bahrampour, 
Ramakrishnan, Schott, & Shah, 2015). Due to the importance of this method, the number deep 
learning frameworks growth.  

The frameworks usually create a wrapper around the ANN implementation, abstracting the low-
level implementation. Using a deep learning framework allows to (Li, Johnson, & Yeung, 2017): 

• Easily build big computational graphs; 
• Easily compute gradients in computational graphs; 
• Run it all efficiently on GPU. 

 
This section describes each of the most used deep learning frameworks. 

2.3.2.3.3.1 Tensorflow 
Tensorflow is an open-source project, developed and maintained by Google. Its development is 
C++ based alongside with Python APIs (when developing in Tensorflow, most of the interaction 
is with Python). 

Tensorflow is known for being extremely flexible (Bahrampour et al., 2015) as it has automatic 
differentiation and parameter sharing capabilities. This property allows the implementation of 
multiple architectures. It is one of the most popular open-source projects in Github3. 

2.3.2.3.3.2 Theano 
Theano4 is a symbolic manipulation library used for machine learning algorithms development. 
It uses a high-level description language similar to a functional language which reduces the 
implementation time. The programming language used is Python. 

This deep learning framework benefits from a large community. Theano is a general 
mathematical expression library and may have a relatively steep learning curve for writing 

 
3 Github repository: https://github.com/tensorflow/tensorflow 
4 Github repository: https://github.com/Theano/Theano 
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efficient code and debugging (due to the low-level implementation of it). Other libraries like 
Keras and Lasagne have been developed on top of Theano, which are specifically tailored for 
deep learning algorithm, allowing fast experimentation of the well-known methods. 
(Bahrampour et al., 2015). 

2.3.2.3.3.3 Caffe 
Caffe 5  is a deep learning framework developed by Berkeley AI Research and community 
contributors in C++. It is built with expression, speed and modularity in mind. It separates the 
network architecture from its implementation, allowing multiple architectures implementation 
and flexibility (Bahrampour et al., 2015). 

Caffe is used not only in large industrial and multimedia applications but also in speech and 
computer vision fields and in research projects (Pittaras, Markatopoulou, Mezaris, & Patras, 
2017). 

2.3.2.3.3.4 Torch 
Torch6 is built using Lua and contains mature machine learning and optimization packages 
(Bahrampour et al., 2015). To optimize the ANN training, Torch contains multi-GPU support and 
parallelizing packages. 

It is used in machine learning, computer vision, signal processing, parallel processing and 
multimedia projects. Torch allows different ANN topologies implementation with great 
flexibility and optimization. 

2.3.3 Data preprocessing 

There are many factors which can influence a machine learning algorithm accuracy. One of 
which is the data quality (Kotsiantis & Kanellopoulos, 2006). Data should be reliable, complete 
and consistent (Han, Kamber, & Pei, 2012). Inaccurate, incomplete (missing fields) or 
inconsistent data can reduce the learning process performance. 

Data preprocessing is a crucial step which takes a significant time in a machine learning solution 
development. During preprocessing process, data should be treated to guarantee that the 
training set is made up by relevant information.  

The following steps are standard in the preprocessing process (Han et al., 2012): 

• Data Splitting – Obtaining a reduced representation of the dataset to feed the algorithm. 
Described in the 2.3.3.1 section; 

• Data Cleaning – Data analysis, missing data and feature selection. Explained in detail in 
the 2.3.3.2 chapter. 
 

 
5 Github repository: https://github.com/BVLC/caffe 
6 https://github.com/torch/torch7 
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A machine learning algorithm’s performance can have a significant variation depending on the 
data preprocessing process (Kotsiantis & Kanellopoulos, 2006) and it is a crucial step for an 
accurate result. 

2.3.3.1 Data Splitting 
Datasets can have a high number of examples, turning the learning process less efficient (as it 
takes more time to train the algorithm without significant advantages). Applying data reduction 
techniques allows the input data to have less volume but still maintain its integrity, producing 
the same analytical results (Han et al., 2012). Some of this strategies are (Han et al., 2012): 

• Dimensionality reduction – Remove irrelevant attributes from the dataset. The 
objective is to find the minimum set of attributes such the final output is similar or 
better than the original result with all the attributes; 

• Numerosity reduction – Reduce the number of examples provided to the learning 
algorithm by clustering and sampling approaches. 
 

Data splitting allows the process to speed up, while maintaining the integrity and reliability of 
the final output. 

2.3.3.2 Data Cleaning 
Data cleaning is the process which enhances the input data quality turning incomplete, noisy 
and inconsistent data into reliable data for the learning process of an algorithm. 

Data cleaning’s first step is the discrepancy detection (Kotsiantis & Kanellopoulos, 2006). 
Several factors can affect the data quality like data decay, human error in data entry or data 
representation inconsistency. Also, irrelevant data can compromise the data quality. For this 
reason, one of the crucial steps of data cleaning is the feature selection step. During this stage, 
features should be identified as (Han et al., 2012): 

• Relevant – Influence the output and have high importance for the learning process; 
• Irrelevant – Doesn’t influence the output; 
• Redundant – When one feature can take the role of another. 

 
This analysis depends directly on the problem’s context. New features can also be created using 
the original features using a process called feature construction (Han et al., 2012). This 
approach is applied primarily to supervised learning problems. 
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In classification contexts, it may be relevant to guarantee that both output classes are balanced 
using data balance techniques (e.g. the number of examples of a class is not considered 
significant compared with the other class). Several methods might be applied to overcome data 
balance issues (Gama et al., 2017): 

• Resize the dataset (ignoring some examples of the class which has bigger size); 
• Use different costs to classify each of the classes; 
• Create a class model. 

 
Unbalanced data can influence the learning algorithm to output with greater tendency the class 
with most examples in the dataset (Gama et al., 2017). In classification approaches, the 
accuracy of the minority class is harmed by unbalanced data. For this reason, it is important not 
to assume that data is evenly distributed (Ali, Shamsuddin, & Ralescu, 2015), even though the 
most robust models should consider the initial data distribution.  

The input data can also contain missing values (either missing fields or fields with a default value 
or state). Missing data influence negatively the learning process. Some approaches to complete 
the data (Gama et al., 2017) (Han et al., 2012): 

• Delete the tuples where missing values are present – Usually not very effective as the 
deleted data can be useful for the learning process; 

• Fill the missing values manually – When the dataset is large, this is a time-consuming 
task; 

• Automatically fill the missing values with a constant – Replace missing values by a 
default value. Can negatively influence the learning process; 

• Automatically fill the missing values with the most probable value – Using the mean or 
median (depending on the field data type) to recognize which value is more probable. 

 
Not always missing data implies a dataset error (Han et al., 2012). In some contexts, missing 
values can be intentional and should be considered by the learning algorithm (e.g. a user, while 
completing the form, refused to insert private data). 

2.3.4 Evaluation metrics 

In this section it is described the evaluation metrics for machine learning problems, mainly 
related with classification and regression scenarios.  

Evaluation metrics are used to understand if the machine learning algorithm is precise and 
accurate in its predictions. Usually, the metrics are applied in test sets (unseen data) and not in 
the training set (Baranauskas & Monard, 2003). 

2.3.4.1 Classification 
The error rate in classification algorithms corresponds to the wrong class prediction rate (Gama 
et al., 2017). In a test set of 𝑛 objects, the error rate of 𝑓 is calculated comparing the known 
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class 𝑦(  for the 𝑥(  object with the predict 𝑓(𝑥() class, which can be mathematically represented 
by (Gama et al., 2017): 

𝑒𝑟𝑟(𝑓) =
1
𝑛
:𝐼 d𝑦( ≠ 𝑓(𝑥()f
1

(=/

 (5) 

 

The error rate values vary between 0 and 1, where values closer to 0 means a better prediction 
algorithm. 

In classification problems involving two classes, it is possible to measure the algorithm’s 
performance using the following metrics (Gama et al., 2017): 

• True Positive (TP) – Matches the number of examples of positive class which were 
correctly predicted; 

• True Negative (TN) – The number of negative class elements correctly predicted;  
• False Positive (FP) – Corresponds to the number of false positives (i.e. the number of 

elements predicted with positive class but having negative class); 
• False Negative (FN) – Matches the number of false negatives (i.e. the number of 

elements predicted with negative class but having positive class). 
 
The measures described in the following chapters use these metrics to evaluate the algorithm’s 
performance. 

2.3.4.1.1 Precision 
Precision refers to the proportion of true positives in the total predictions. Calculated using the 
following expression (Gama et al., 2017): 

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

 

 
(6.1) 

 

2.3.4.1.2 Recall 
Recall corresponds to the prediction success rate of the positive class. Represented by (Gama 
et al., 2017): 

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

 

 
(6.2) 

 

2.3.4.1.3 Specificity 
The specificity evaluation measure corresponds to the prediction’s success rate of the negative 
class and is represented by the following mathematical expression: 
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𝑇𝑁
𝑇𝑁 + 𝐹𝑃

 

 
(6.3) 

 

2.3.4.1.4 Accuracy 
Also named as success rate, the algorithm’s predictions accuracy is calculated by diving the 
success predictions by the total amount of predictions, which are represent by 𝑛  in the 
following equation: 

𝑇𝑁 + 𝑇𝑃
𝑛

 

 
(6.4) 

 

2.3.4.1.5 Area Under the Curve (AUC) 
It is possible to evaluate a classification algorithm performance (two-class classification problem) 
using a receiving operating characteristics (ROC) analysis. The ROC is a bi-dimensional graph 
where are represented the false positive rate (in the 𝑥	axis) and false negative rate (in the 𝑦	axis) 
(Gama et al., 2017). 

 

Figure 12 - ROC curve for two different algorithms and the random classifier line7 

The random classifier is defined by a line connecting the (0,0) and (1,1) points. The (0,1) point 
is referenced as the perfect classification (e.g. performance is perfect) while the (1,0) 
represents the worse performance. The ROC points are defined by the values of the false 
positive rate and false negative rate, creating lines as seen in Figure 12. The AUC is then 
determined by the area under the ROC curve (Fawcett, 2005). 

 

 
7 Image source: https://stackoverflow.com/questions/10304109/library-in-python-for-neural-networks-
to-plot-roc-auc-det  
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2.3.4.1.6 F-measure 
F-measure, also known as F-score or F1-score, shows the trade-off between the recall and 
precision regarding the positive class (Goodfellow et al., 2015). Can be represented by: 

𝐹k𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1 +	𝛽o) 	× 	𝑅𝑒𝑐𝑎𝑙𝑙	 × 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽o × 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 
(6.5) 

  
Recall and precision are evenly weight if the F-measure 𝛽 has a value of 1 (Goodfellow et al., 
2015). It is usually applied in scenarios in which both recall and precision are used. 

2.3.4.2 Regression 
In regression problems, the error is calculated based on the distance between the known value 
from the dataset and the algorithm’s prediction value (Baranauskas & Monard, 2003). 

2.3.4.2.1 Metrics 
The two most known regression evaluation metrics are the Median Absolute Error (MedAE) and 
Mean Squared Error (MSE) (Gama et al., 2017). In both metrics, lower values correspond to 
better predictions. 

These metrics can be mathematically represented by (Gama et al., 2017)(Dosualdo, Daniel 
Gomes; Rezende, 2003): 

	𝑀𝑆𝐸(𝑓) =
1
𝑛
:d𝑦( − 𝑓(𝑥()f

o
1

(=/

 (7.1) 

  

𝑀𝑒𝑑𝐴𝐸y𝑓z = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑦( − 𝑓(𝑥()| 
 

(7.2) 
 
 

  
 

Where 𝑓 represents the error hypothesis, 𝑦(  the dataset known value and 𝑓(𝑥() the algorithm’s 
predicted value. MedAE is the median absolute error between real values and predicted values 
for a meta-attribute8. MSE consists in the squared mean difference between real values and 
predicted values for a meta-attribute9. 

MSE has some variations like the normalized mean square error (NMSE), which generally shows 
the most striking differences among models. In some scenarios the root mean square error 
(RMSE) is also used and is mathematically represented as: 

 
8 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html 
9 Free translation from (Dosualdo, Daniel Gomes; Rezende, 2003). Original text: “A medida MSE (Mean 
Squared Error) consiste na média da diferença ao quadrado entre os valores reais e preditos para um 
atributo-meta” 
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𝑅𝑀𝑆𝐸(�̀�) = |
1
𝑛
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o
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 (7.3) 

  
2.3.4.2.2 Correlation Coefficient 
The correlation coefficient is always scaled between -1 and 1 and is a summary measure that 
describes the statistical relationship between two interval variables. When the correlation 
coefficient, 𝑟, is closer to 0, it means that the relationship between variables is weak. On the 
other hand, if it’s far from 0 (either in the positive or negative direction), the relationship is 
stronger (Gingrich, 1992). 

Assuming that there are two variables, 𝑋	and	𝑌 (each having 𝑛 values), and considering that the 
mean of 𝑋  is 𝑋~  and the mean of 𝑌  is 𝑌~ , the correlation coefficient 𝑟  is calculated using the 
following equation (Gingrich, 1992): 

𝑟 = 	
∑(𝑋( −	𝑋~)∑(𝑌( −	𝑌~)

�∑(𝑋( −	𝑋~)o 	∑(𝑌( −	𝑌~)o
 (7.4) 

 

2.3.4.3 Evaluation capacity 
One of the principal challenges of a machine learning algorithm is to perform well when facing 
unseen data. The factors determining the machine algorithm success are (Goodfellow et al., 
2015): 

• Make the training error small; 
• Make the gap between training and test error small.  

 
Cross-validation is a machine learning statistical method of evaluating and comparing learning 
algorithms (Refaeilzadeh, Tang, & Liu, 2006). In cross-validation, the data set is divided into k 
folds and at each iteration, a different fold is reserved for testing while all the others are used 
for training the classifier (Japkowicz & Shah, 2011). On the other hand, the holdout method 
defines that the initial dataset should be divided into two parts (Raschka, 2018), one for training 
(usually around 66% to 70% of the initial dataset) and the last one for testing (usually around 
30% to 33% of the initial dataset, depending on the size of the training set). 

Depending on the used metric, and the results from the training set and test set, the evaluation 
capacity can vary as observed in Figure 13. Some studies also use a third set, usually called 
validation set. While the training set and the test set results can influence the algorithm 
development and possible enhancements, the validation set works like a last validation before 
deploying the algorithm to the production environment. 
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Figure 13 - Evaluation capacity scenarios (Goodfellow et al., 2015) 

Overfitting occurs when the difference between the training set error and the test set is too 
large (Goodfellow et al., 2015). Underfitting represents the scenario in which the algorithm isn’t 
able to obtain a sufficiently low error value on the training set (Goodfellow et al., 2015). 
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3 Analysis 

This chapter describes this document’s proposed objectives, approaches and guidelines. It is 
also presented the literature review, comparing the existing solutions to justify the decisions 
taken. The available evaluation metrics are also analyzed. 

3.1 Proposed hypothesis 
This document’s proposal is focused on the usage of a deep learning framework to enhance 
previous studies results in the RTC prevention and prediction field. The main objective of this 
work is to predict an RTC severity and cost using a deep learning framework and data mining 
techniques. 

Comparing the models’ performance, it is expected to understand which classifier performs 
better. It is intended to disprove a null hypothesis, where all the classifiers perform equally. 

Deep learning frameworks are dynamic and allow the algorithm’s training using various 
techniques. Approaches like feature selection and missing data treatment are also considered 
for data preprocessing. Several evaluation metrics are acknowledged to evaluate the solution 
(see section 2.3.4), using holdout method.  

From the literature review mentioned below, it is possible to interpret which approaches and 
algorithms are the best for this context. In the Design section is possible to find the final 
decisions of this chapter study. 

3.2 Literature review 
Some researches in the RTC prevention field are significant for this document’s work analysis 
due to the approaches taken and results. This chapter is meant to highlight the most important 
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studies, the used methodologies and results, and how those are considered for this document’s 
solution. 

3.2.1 Related research 

The RTC prevention field was already explored using machine learning approaches. Table 6 
shows the studies mentioned in the literature in a summarized manner. 

Table 6 - RTC prevention existing solutions 

Reference Dataset Evaluation 
measures  

Approaches 

(Beshah & Hill, 
2010) 

18288 crashes with no 
missing data, Ethiopia. 

AUC; 
Accuracy. 

Decision tree; 
Naive bayes; 
K-nearest neighbor. 

(Chong et al., 
2005) 

417610 sample 
crashes from USA. 

Accuracy.  Decision tree; 
Hybrid Decision tree–ANN; 
ANN; 
SVM. 

(Kumar & 
Toshniwal, 2015) 

11574 road accidents 
for 6 years in 
Dehradun District of 
Uttarakhand State. 

Support; 
Accuracy. 

 

Clustering; 
Association rule mining 
algorithm (clustering 
variation). 
 

(Vasavi, 2018) Major national 
highways that pass-
through Krishna 
district for the year 
2013 crashes. 

Precision; 
Recall; 
F-measure. 

Clustering; 
K-medoids. 

(Nurkkala, 
Kalermo, & 
Jarvilehto, 2014) 

RTC data collected 
from the police 
department in Dubai, 
United Arab Emirates. 

Precision; 
Recall; 
F1-measure. 

SVM. 

(Shanthi & 
Ramani, 2011) 

37259 cases in USA. Accuracy. Random Tree; 
Decision List; 
Naive Bayes; 
Other less relevant 
techniques. 
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Reference Dataset Evaluation 
measures  

Approaches 

(Rakha, Arafeh, 
Abdel-Salam, 
Guo, & Flintsch, 
2010) 

Data from 186 access 
road sections in the 
state of Virginia. 

None referenced. Linear regression; 

(Zhong-Xiang, 
Shi-Sheng, Wei-
Hua, & Nan-Nan, 
2014) 

Road traffic accidents 
in China from 2002 to 
2011. 

Relative error; 
Comprehensive 
error; 

Multiple linear regression; 
 

(Moradkhani, 
Ebrahimkhani, & 
Sadeghi Begham, 
2014) 

4382 records of 
accident in Hampshire, 
England. 

None referenced; Association rules. 

(Santos, 2015) RTC data from São 
Paulo, Brazil.  

Mean; 
MSE; 
MAD. 

Decision Tree; 
Classification & Regression 
Tree; 
CHAID; 
Multiple linear regression; 

(Yuan et al., 
2017) 

Iowa’s RTC dataset 
with 65530 RTC. 

Accuracy; 
Precision; 
Recall; 
F-Score; 
AUC. 

SVM; 
Deep Neural Network 
(DNN); 
Decision Tree; 
Random Forest. 

(Çodur & Tortum, 
2015) 

7,780 RTC from 
Erzurum, Turkey. 

MSE; 
Root mean 
square error 
(RMSE); 
Coefficient of 
determination. 

ANN. 

(Moghaddam, 
Afandizadeh, & 
Ziyadi, 2011) 

52447 crash cases 
from Iran. 

MSE; 
Normalized Mean 
Square Error; 
Correlation 
coefficient. 

ANN. 
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As observed in Table 6, the applied approaches to RTC prevention are varied. Depending on the 
approach, the evaluation measures also changes. The most used evaluation measures in 
classification algorithms are AUC, precision, recall and accuracy while in regression algorithms 
MSE is the most used metric. 

The most impactful research found for this document’s work is the (Yuan et al., 2017) study. It 
is based in the same dataset (explained in detail in the Dataset section) and uses deep learning. 
Although this study’s objectives are slightly difference (map matching), it takes in consideration 
the same causative variables and achieved the best result using Deep Neural Networks (DNN) 
comparing with other approaches. 

Also important to mention the (Chong et al., 2005) study which consider similar RTC severity 
classes (non-injury, minor injury, major injury, fatality) and used a hybrid approach  with ANN 
and Decision Trees. Considering the achieved accuracy, results were reasonable. (Moghaddam 
et al., 2011) also uses ANN to predict an RTC severity. 

This document’s development and evaluation are influenced by these studies’ analysis and 
approaches as the objectives are sometimes similar. 

3.2.2 Deep learning frameworks comparison 

As previously mentioned in the Deep learning frameworks chapter, the use of frameworks 
enhances machine learning algorithms development by abstracting most of the heavier 
processes (like weights calculation). To compare which framework is the best for this 
document’s work, consider the following metrics without any particular order: 

• Flexibility – to allow different algorithms implementation with ease; 
• Multi-GPU and Multi-threaded CPU – to enhance the training process; 
• Programming language; 
• Number of lines of code – to reduce the development effort; 
• Community size. 

 

(Kovalev, Kalinovsky, & Kovalev, 2016) and (Bahrampour et al., 2015) studies contribute to the 
deep learning frameworks comparison and, its results are used for the decision mentioned in 
the Design chapter. 

3.2.3 Data analysis & preparation 

For data analysis, (Chong et al., 2005) explored each dataset’s field distribution. This approach 
identifies clear outliers (if a class only has a 0.5% distribution, its influence on the prediction 
algorithm is almost irrelevant), which can be removed to reduce the dataset size and irrelevant 
data (using techniques mentioned in Data Cleaning). 
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Other researches like (Kumar & Toshniwal, 2015) and (Vasavi, 2018) explored the clustering and 
association rules approaches. As the Iowa’s dataset contains many variables, which relation is 
not anteriorly evaluated, these approaches seem not to fit the current objectives. 

This document’s dataset has around 65530 input values containing empty fields  (a considerable 
amount comparing with other studies in the 3.2.1 section) and random factors might cause 
some crashes.  As this document’s work is focused in the causative variables and not in mapping 
the RTC, (Shanthi & Ramani, 2011) approach to remove unnecessary feature columns like 
coordinates (using feature selection approaches like previously mention in 2.3.3.2) seems 
appropriate. This approach allows the dimensionality reduction of the dataset (as explained in 
Data Cleaning and Data Splitting section). Other features might be considered as irrelevant 
depending on the problem context. 

For missing data treatment, (Yuan et al., 2017) research (which uses the same dataset of this 
document’s work) considered the removal of the missing data registries and the missing data 
interpolation. Removing inputs from the dataset due to its large size is an alternative to consider 
if the total amount of missing data entries is not significant. In (Yuan et al., 2017) study, the 
missing data is calculated based on the nearest stations. Filling the missing values manually is 
not appropriated to this context due to the dataset size.  

To divide data into classes, (Moghaddam et al., 2011) segregated the crash severity into two 
major classes during the data preprocessing stage. One represents the existence injuries or 
fatalities (i.e. human damage), the other represents human damage absence. Due to the 
multiple classes of this document’s dataset (as presented in Table 2, this approach seems 
appropriate and contributes for the data balance (as the same class holds the inputs with 
injuries and fatalities). 

(Yuan et al., 2017) rounded the crash time to the nearest hour before the crash (e.g. 12:36 
becomes 12:00), to reduce the number of time classes as input. This approach is valuable when 
applied to time and dates as features to reduce the number of classes, enhancing the 
algorithm’s performance. 

3.2.4 Algorithms analysis 

Clustering techniques don’t match this document’s work as it is associated with unsupervised 
learning rather than supervised learning.  

 (Shanthi & Ramani, 2011) used Naive Bayes and Random Decision Trees (a combination of 
individual decision trees) to classify vehicle collision patterns in road accidents. Although Naive 
Bayes is indicated for problems with a large dataset due to its solid performance, it is usually 
less accurate when compared with other classifiers (Jadhav & Channe, 2013) as happened in 
(Shanthi & Ramani, 2011) studies. On the other hand, Decision Trees has good results dealing 
with noisy data but can create over-complex trees, which can result in overfitting problems, and 
does not provide incremental learning (Brijain, Patel, Kushik, & Rana, 2014). 
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(Chong et al., 2005) used Support Vector Machine (SVM), Artificial Neural Network and a 
hybrid solution which combined Decision Trees with ANN to predict traffic accidents. In this 
work’s conclusions, it is possible to observe that SVM fail to model the complexity of the 
different injury classes besides SVM being indicated for problems with many features as input 
(Tomar, Nagpal, & Abdul, 2016). The NN approach and the hybrid approach resulted in the best 
results of (Chong et al., 2005) research. 

Although not very used in RTC classification solutions, (Beshah & Hill, 2010) used K Nearest 
Neighbors (kNN) alongside Naive Bayes and Decision Trees. The kNN approach produced the 
best results and is indicated for a dataset with a large number of inputs and behaves robustly 
with noisy data. 

(Moghaddam et al., 2011) and (Çodur & Tortum, 2015) used ANN in their studies, obtaining 
good results. Also, (Moghaddam et al., 2011) and other studies used various Optimization 
functions and Activation functions to compare its results. The variations are significant, 
indicating that changing these functions can influence the performance of an algorithm. 

(Yuan et al., 2017) used Decision Trees, SVM, DNN and Decision Random Forest to predict RTC. 
The best results were achieved using DNN, using a complete evaluation composed by AUC, 
Recall, Precision, F1 and Accuracy. DNN seems to be appropriate for this context, with Decision 
Random Forest also showing good results. 

3.2.5 Evaluation metrics analysis 

There are many relevant evaluation metrics (as previously mentioned in Evaluation metrics). In 
the  3.2.1 section is possible to observe that the most used evaluation metrics for classification 
purposes are Accuracy, Precision, AUC and Recall.  

Accuracy reveals several weaknesses, which can manipulate the final algorithm’s conclusions if 
not combined with other measures like precision or recall. With accuracy, the classifier is 
measured based on the total number of correct predictions. Due to its simplicity, this metric 
can lead to inadequate solutions when dealing with unbalanced, which can be the this 
document’s work scenario, and produces less discriminable values (Hossin & Sulaiman, 2015). 
For these reasons, precision and recall are usually more significant. 

AUC’s high evaluation value and recent popularity also make this metric an option. AUC reveals 
problems when dealing with multiclass dilemmas due to its limitation (high computational cost) 
but performs well and, it is a very valuable metric when applied to two classes problems (Hossin 
& Sulaiman, 2015). 

(Yuan et al., 2017), study that uses the same dataset as this document’s proposed dataset, also 
uses AUC and Accuracy to evaluate the model, using holdout method. 
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For regression problems, MSE seems the most popular metric. MSE is highly dependent on the 
weight initialization process (Hossin & Sulaiman, 2015), but the usage of a deep learning 
framework (which calculates the weights dynamically) can counter this potential weakness. 
MedAE can also be used if the error dispersal is high and is more robust against outliers (the 
mean is sensitive to outliers). 

The same metrics are used to compare different solutions. The highest the metric value, the 
best (e.g. if an algorithm has 90% precision and 95% recall, it is more efficient than an algorithm 
with 70% precision and 75% recall). Most of the previous studies, like (Chong et al., 2005) and 
(Moghaddam et al., 2011) used cross-validation between a test set and the training set to 
understand the algorithm’s performance.  
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4 Design 

In this chapter is possible to find design alternatives for this document’s work implementation. 
The main decisions and guidelines for the project’s development are also mentioned, alongside 
the proposed methodologies for the evaluation. The analysis of the Literature review influenced 
the decisions taken in the sections below. 

4.1 Development environment 
This chapter is meant to compare and present the reasons that lead to the technological 
decisions of this document’s work. In the Deep learning frameworks comparison chapter is 
possible to find the comparison terms that lead to most of these decisions. 

One of the most influent factors to determine the development environment is the used 
programming language. Tensorflow, Theano and Caffe development uses Python (even though 
Tensorflow and Caffe core is built with C++) while Torch uses Lua.  

Table 7 - Programming languages comparison from (TIOBE, 2018) 

 Current position Variation Market share 
Python #4 +1.12% 5.2% 
Lua #31 -  0.52% 

 

Table 7 presents the programming languages ranking of Python and Lua. As observed, Python 
is more popular than Lua, being the forth more used programming language in the market as 
of February 2018. Python is also recognized for having a small learning curve and for being 
widely accepted by the deep learning community (as most frameworks are built or have 
interfaces to work with Python). 
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The (Kovalev et al., 2016) and (Bahrampour et al., 2015) studies were used to better understand 
the frameworks performance and technical constraints of Tensorflow, Theano, Caffe and Torch. 

From a features perspective, (Bahrampour et al., 2015) study is relevant to understand the 
frameworks’ flexibility, extensibility and robustness. In the study’s conclusions is mentioned 
that (Bahrampour et al., 2015): 

• Theano and Torch are the most extensible frameworks due to the supported libraries; 
• Theano and Torch are the most performant frameworks (either CPU-based or GPU-

based training and deployment); 
• Tensorflow is a very flexible framework (e.g. allows the explicit configuration of a ANN 

deepness and complexitiy), however, it’s performance with a single GPU isn’t as 
competitive compared to other frameworks. 

 

The (Kovalev et al., 2016) tests consisted in comparing how neural networks behave on each of 
these frameworks by: 

• Vary the neuron number of a fixed number of layers, width test (Figure 14); 
• Vary the layers number with a fixed neuron number, deepness test (Figure 15). 

 

The neural networks were tested with the Rectified Linear Unit (ReLU) and Tanh activation 
functions to obtain the classification accuracy, training time, prediction time and code 
complexity (lines of code). 

 

Figure 14 - Neural network width test (Kovalev et al., 2016) 
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Figure 15 - Neural network deepness test (Kovalev et al., 2016) 

 

The results shown that, considering the metrics previously mentioned, the frameworks 
behavioral ranking is as follows: Theano (with Keras – a NN library), Tensorflow, Caffe and Torch. 

Although (Bahrampour et al., 2015) studies reveal that Torch is highly performant, when tested 
against deeper neural networks like in (Kovalev et al., 2016) study Torch performance drops in 
opposition to Tensorflow where the performance remains reliable (Kovalev et al., 2016). 

In terms of community size (see Table 8 results as of February 2018), Tensorflow has a clear 
advantage in every field comparing with the other frameworks. Also, the releases number of 
Tensorflow in the last year incremented, which suggests that the framework performance, 
feature’s number and support is increasing. 

Table 8 - Deep learning frameworks community size in Github by 15 September 2019 

 Stars Forks Contributors 
Tensorflow 134058 77291 2184 
Theano 8910 2504 332 
Torch 8392 2342 130 
Caffe 29034 17546 264 

 

Due to (Bahrampour et al., 2015) and (Kovalev et al., 2016) studies outcomes and taking into 
account the community sizes, documentation and recent growth, Tensorflow was chosen as 
deep learning framework to this document’s work.  

As Tensorflow programming is Python based, a development environment is used to guarantee 
the project’s integrity over the iterations, control the libraries versions and to respect 
engineering good practices.  
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Anaconda10 (Python’s most popular data science platform) is one of the requirements and 
Jupyter Notebook editor is used for the project’s development. The environment holds the 
following libraries: 

• Python v3.5.4; 
• Tensorflow v1.14.0; 
• Jupyter v1.0; 
• Pandas v0.20.3; 
• Numpy, v1.13; 
• Matplot v2.0.2; 
• Scikit-learn v.0.19; 
• Other less relevant util libraries. 

4.2 Proposed methodologies 
This chapter is meant to compare machine learning techniques and show alternatives to 
achieve this project’s objectives taking into consideration the data and algorithm analysis 
presented in the Literature review chapter and the proposed development environment 
presented in the Development environment chapter. 

4.2.1 Dataset cleaning 

Numpy and Pandas libraries are used to analyze the dataset. The objective of this analysis is to 
find clear outliers, noisy data, which can harm the algorithm’s predictions. An outlier is 
considered a sample which value falls a long way outside of the other observations. It usually 
represents a small distribution in the dataset.  

Currently the missing data values on the dataset are filled with a constant (see the Data Cleaning 
section for more detailed information). This approach considers the missing field as a class, as 
the default value will be interpreted as a real value by the algorithm. Other valid strategies are: 

• Remove the missing data inputs – Reduces the dataset size and removes the possibility 
of unclear predictions, but the removed inputs can be precious as it may have RTC 
examples that are not replicated in the dataset; 

• Replace missing fields by the most probable value – Following (Yuan et al., 2017) 
approach. No inputs are removed contributing to the dataset diversity, but the newly 
calculated values can be false, introducing false data in the dataset. 

 
Remaining with the missing data is not the best approach. Both removing the missing data 
inputs and replacing the missing fields by the most likely value approaches seems to have 
advantages and disadvantages. Considering the risk related with the introduction of false data 

 
10 https://www.anaconda.com/ 
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in the dataset and the required time and complexity to determine the impact of this operation, 
the removal of missing data was the chosen approach. 

For simplification and performance purposes, (Yuan et al., 2017) rounded the crash time to the 
nearest hour before the crash (e.g. 12:36 to 12:00). This approach considers the time as a 
feature without overloading the algorithm with too many different classes, degrading the 
algorithm’s prediction performance. This approach is followed as the daytime can be relevant 
for this problem’s context as an input feature. 

The removal of low impact data records, which may be considered as noisy data, (e.g. a feature 
value which number of occurrences is very reduced) is also considered as being a possible 
approach during the data cleaning process. 

The unnecessary features are removed from the dataset using feature selection and the 
(Shanthi & Ramani, 2011) study approach. In the Implementation chapter is possible to find 
which features were removed.  

Multi-class (more than two classes) classification problems are also harder to interpret and 
evaluate. Using feature construction (see 2.3.3.2), the dataset is modified to hold a two classes 
field, which is used when classifying an RTC severity reducing the development constraints. 
Although this decision removes some complexity from the problem (as the number of labels is 
reduced), the main purpose of this work is not affected as the labels defined on the tables below 
provide adequate information to a proper analysis of the results. The idea is when interpreting 
the RTC severity, to understand if there is human damage, either injuries or fatalities. To create 
this additional field, two alternative approaches are considered as represented in the tables 
below, which are based on Table 2 values.  

Table 9 - Alternative 1 for RTC severity classification 

Class Description 

0 Fatal, Major injury, Minor injury 

1 Property cost only 

 

Table 10 – Alternative 2 for RTC severity classification 

Class Description 

0 Fatal, Major injury 

1 Minor injury, Property cost only 

 

Both approaches have some disadvantages. Alternative 1 (Table 9) classifies any human damage 
under the same category, being harder to understand what are the RTC causative variables that 
have more impact on major injuries and fatalities. On the other hand, is expected that 
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alternative 2 (Table 10) causes unbalanced data issues as the number of scenarios where only 
minor injuries or property cost are registered is probably substantially higher than the situations 
where major injuries or fatalities occur. With this said, both approaches are tested in the 
Implementation chapter. 

4.2.2 Model implementation 

As previously mentioned in the 3.2.4 Algorithms analysis chapter, K Nearest Neighbors (kNN) 
and neural networks / deep neural networks are the algorithms that seem more appropriate 
for this problem. Tensorflow’s flexibility allows both implementations. It is expected that neural 
networks behavior in Tensorflow is more performant as shown in the studies exposed in this 
document. This framework is also the one which supplies more documentation, therefore used 
for this document’s implementation. 

The (Beshah & Hill, 2010) study revealed more performant results using kNN but didn’t consider 
the NN usage. The (Moghaddam et al., 2011), (Çodur & Tortum, 2015)  and (Yuan et al., 2017) 
studies used NN, having good results, but didn’t mention kNN. There are no direct comparison 
terms between both approaches in previous studies about RTC.  

Although kNN is efficient with large datasets, it usually works better when applied to smaller 
features’ vectors (as previously mentioned in the 2.3.2.1.2 chapter). Deep neural networks are 
indicated for complex problems where the number of features and inputs being substantial high. 
Tensorflow can also automatically control the number of layers and neurons per layer when 
using NN if required. For this reason, deep neural networks approach was chosen for 
implementation. Figure 16 shows the proposed model. Decision random forest is also 
considered as a design alternative based on (Yuan et al., 2017) reasonable results with the same 
dataset and as initially explained in 3.2.4. 

 

 

Figure 16 - Neural Network model – inspired by (Yuan et al., 2017) and (Çodur & Tortum, 
2015) models 



 

 
 

69 

An analysis of the data balance and feature’s value distribution is made after performing the 
data acquisition. As a consequence of this process, it’s possible to identify and apply the best 
Data Cleaning and Missing Data processes. If the dataset’ quality is sufficient, meaning that 
there’s no missing data and the data has minimum balance, it’s possible to proceed.  

The dataset is then divided into training and test sets, allowing the model training and 
corresponding evaluation of the solution. Following the industry’s best practices, the training 
set represents 67% while the test set represents 33% of the initial of the dataset. Other 
approaches suggest a validation set, which works like a final verification before deploying to 
production and doesn’t influence the algorithm. This approach doesn’t seem appropriate for 
considering this document’s context and corresponding complexity. Also, this approach is not 
recommended in the literature review. Therefore, only the training set and test set are 
considered. 

During the learning process, ANN updates the bias and weights to reduce the error with 
optimization functions. Some alternatives are shown in the Optimization functions chapter. 
GradientDescent is the most used function, and Adam is referenced in some of the RTC studies 
like in (Yuan et al., 2017). Is expected that Adagrad reveals some problems during the learning 
process due to its weaknesses related to the learning rate adaptation. For this reason, both 
GradientDescent and Adam are considered for the algorithm’s implementation, but not 
Adagrad. 

Activation functions can have unexpected behavior depending on the data representation. As 
the effort to change activation functions is reduced when developing in Tensorflow, Softplus, 
Rectified Linear Unit (ReLU), Sigmoid, Tanh are considered for development. Having in mind 
other studies in the RTC field, is expected that ReLU and Tanh behave better than Sigmoid and 
Softplus in classification. The results’ comparison is presented in the Evaluation chapter. 

The model can be iteratively refined depending on the evaluation process. Holdout is used 
instead of cross-validation considering other relevant studies in the RTC field like (Yuan et al., 
2017) and the recurrent usage of this method in solutions using DNN. If the final evaluation is 
not satisfactory and depending on the methods already applied during the implementation 
stage, the model’s preprocessing or the data cleaning process can be refined. Also, some 
variations can be applied to the development parameters (e.g. learning rate, activation 
functions) in order to achieved better results. Figure 17 represents this process.  
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Figure 17 - Proposed implementation state diagram 



 

 
 

71 

  

5 Implementation 

This chapter’s content provides visibility on how the implementation was handled considering 
the approach defined earlier in this document, mainly in the Design chapter. It also provides 
technical details about decisions taken during the execution phase, which were previously 
mapped in chapter 4. 

5.1 Development environment construction 
A stable development environment that provides robustness and immutability is important to 
achieve reliable results. As mentioned earlier in the section 4.1 above4.1, a Python based virtual 
environment was considered to achieve this document’s goals. The following requirements 
were considered to build the environment: 

• Ensure the environment immutability and stability over time; 
• Easy configuration and environment setup; 
• Capability to quickly add an external library or to upgrade / downgrade an existing one. 

 
Conda11, a package dependency and environment management tool, was used to establish the 
development environment. Conda is mostly controlled by command line and provides a set 
features that accommodate the needs stated above. A Python v3.5 environment was created 
using Conda following the steps mentioned in the Code 1 bash example.  

A tfdl_env.yml file was added to the project’s folder containing a set of dependencies and 
libraries to be installed using pip command. Each dependency and third-party library have an 
associated version, therefore allowing the control, immutability and easy configuration of the 

 
11 Conda documentation: https://docs.conda.io/en 
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whole setup following Conda’s good practices (see Code 1 example). Some of the most 
important libraries’ versions are described in the section 4.1. 

conda create -n tfdeeplearning python=3.5 
conda install jupyter 
conda install numpy 
conda install pandas 
conda install scikit-learn 
conda install matplotlib 
pip install –-upgrade tensorflow 
source activate tfdeeplearning 
jupyter notebook 

Code 1 - Instructions to setup and access Jupyter Notebook development environment 

A Git repository12 was also created to hold this project’s implementation versioning for the 
sake of engineering best practices. This approach also allows this project to become open-
source in the near future. 

5.2 Data handling  
In this chapter it is possible to find the required steps to acquire and analyze the content of the 
dataset file. It also contains a description of the data cleaning operations and how the feature 
selection and construction was handed. 

5.2.1 Data acquisition  

The data used in this project was acquired in the Iowa open data portal13, a governmental 
initiative that provides open-source datasets as mentioned earlier in the 2.1.2 section. 

The dataset was downloaded in a spreadsheet format and added to the project’s folder. This 
approach allows the usage of relative paths instead of absolute paths, which are more error 
prone. Pandas, Python’s most used data analysis library, was used to get the spreadsheet 
content into a local variable. Figure 18 demonstrates this process. 

 
12 Repository source: https://github.com/bmfteixeira/thesis-crash-data-ml 
13 Iowa datasets portal: http://data.iowadot.gov/datasets 
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Figure 18 – Data acquisition code snippet in Jupyter Notebook 

5.2.2 Data analysis 

Data distribution and related characteristics could influence the technical approach of the 
cleaning process. The sections below demonstrate the analysis process for the severity and cost 
areas. 

5.2.2.1 Severity analysis 
The following two plots were considered as highly important to a correct analysis: 

• RTC severity outcome distribution – Allows the visualization of the amount of RTC that 
cause injuries or deaths. This is represented in Figure 19; 

• Major cause of RTC distribution – Permits the identification of a small set of values that 
are significantly predominant in the dataset entries. Represented in Figure 20. 

 

From the analysis of plots mentioned above it is possible to observe that most of the RTC do 
not create any injuries nor deaths and that there are some crash major causes which have a low 
impact in the dataset. Unbalanced data is also noticeable when comparing RTC with human 
damage and RTC without human damage, even though for the purpose of this document’s work, 
the original data distribution is preferred.  
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Figure 19 - Human injuries and deaths data distribution 

 

 

Figure 20 - Crash major cause distribution 

5.2.2.2 Cost analysis 
A couple plots were built to allow a precise RTC cost analysis: 

• RTC cost distribution – High-level visualization of the cost per dataset instance in order 
to identify patterns and understand data balance. Represented in Figure 21; 

• Boxplot – Clear identification of cost outliers that could negatively influence models’ 
performance. Shown in Figure 22. 
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As it is possible to observe in the plots shown below, and as expected having in mind the analysis 
already made in 5.2.2.1 section, the data is unbalanced. There’s a significantly higher proportion 
of RTC with lower cost. Higher cost RTC may vary from values close to 15000 up until near to 
500000, which is a big interval considering the most predominant cost values.  

This being said and as stated on Figure 22, the amount of outliers in the dataset is significant 
and should require a data cleaning process to reduce the risks of data balance negative impact 
in the models. During this process it was also identified that the initial property cost mean of all 
dataset records is around 5885 US dollars. As an example of outliers, there are crashes in the 
dataset which property cost goes up to 4851387 or 400000 US dollars (highest values 
represented in Figure 21 and Figure 22), which compared to the mean value is extremely high. 

 

Figure 21 - RTC cost distribution per dataset instance 

 

Figure 22 - Boxplot to identify cost outliers 
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5.2.3 Data cleaning 

During the data cleaning process, and considering the decisions explained on the 4.2.1 Dataset 
cleaning section, the main goals were: 

• Identify and remove irrelevant or redundant features in the dataset; 
• Follow the approach of (Yuan et al., 2017) to round the crash time for simplification 

purposes; 
• Identify and remove missing data from the dataset. 

 

5.2.3.1 Feature selection  
The study of (Shanthi & Ramani, 2011) was used to identify which features are the most relevant, 
irrelevant and redundant following the procedure explained in the 2.3.3.2 section.  
Some features were considered as irrelevant, not because their impact in RTC is low, but 
because the context of this document’s work does not consider their usage. As an example of 
this statement, localization related features are not used as coordinates are ordinary values, 
therefore meaningless without a mapping process as represented in the (Yuan et al., 2017) 
study. Irrelevant and redundant features, which identification is demonstrated in Table 11, 
were removed from the dataset as seen in Figure 23. 

Table 11 - Features identification as irrelevant, redundant and relevant 

Key Description Importance Classification 

CRASH_KEY Crash id in Iowa’s database Irrelevant 

CASENUMBER Case number Irrelevant 

LECASENUM Law enforcement case number Irrelevant 

CRASH_DATE Date of crash Relevant 

CRASH_MONTH Month of crash Relevant 

CRASH_DAY Day of week Relevant 

TIMESTR Time of crash Relevant 

DISTRICT DOT District Irrelevant 

COUNTY_NUMBER County Irrelevant 

CITYNAME City Irrelevant 

SYSTEMSTR Route with system Irrelevant 

LITERAL Derived literal description Irrelevant 

FRSTHARM Frist harmful event Relevant 

LOCFSTHRM Location of first harmful event Relevant 
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Key Description Importance Classification 

CRCOMNNR Manner of crash / collision Relevant 

MAJCSE Major cause Relevant 

DRUGALC Drug or alcohol related Relevant 

ECNTCRC Contributing circumstances Relevant 

LIGHT Light conditions Relevant 

CSRFCND Surface conditions Relevant 

WEATHER Weather conditions Relevant 

RCNTCRC Contributing circumstances - Roadway Relevant 

RDTYP Type of roadway junction / feature Relevant 

PAVED Paved or not Relevant 

WZRELATED Work zone related Irrelevant 

CSEV Crash severity Relevant 

FATALITIES Number of fatalities Relevant 

INJURIES Number of injuries Relevant 

MAJINJURY Number of major injuries Relevant 

MININJURY Number of minor injuries Relevant 

POSSINJURY Number of possible injuries Relevant 

UNKINJURY Number of unknown injuries Irrelevant 

PROPDMG Amount of property damage ($) Relevant 

VEHICLES Number of vehicles involved Relevant 

TOUCCUPANTS Total number of occupants Relevant 

REPORT Report type Irrelevant 

XCOORD X Coordinate (UTM NAD 83 Zone 15) Irrelevant 

YCOORD Y Coordinate (UTM NAD 83 Zone 15) Irrelevant 

OBJECTID Object ID Irrelevant 

SHAPE Shape Irrelevant 
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Figure 23 - Code to delete redundant and irrelevant features from dataset 

5.2.3.2 Round crash date time 
Following the approach of (Yuan et al., 2017), the RTC crash time should be rounded in order to 
consider a controlled set of values which correspond to full hours of the day (i.e. 24 different 
values). This approach was implemented following what is displayed in Figure 24. The strftime 
operation was preferred due to performance reasons as stated in Figure 25 (27.1 seconds 
instead of 1691.7 seconds). 

 

Figure 24 - Optimized RTC crash time transformation 
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Figure 25 - Not optimized RTC crash time transformation 

The TIMESTR, CRASH_DATE, CRASH_MONTH and CRASH_DAY features became redundant and 
were removed during this process as these features were replaced by a new feature named 
CRASH_DATEHOUR.  

5.2.3.3 Removal of missing data 
There are various variations of missing data depending on the dataset being used. Following 
the dataset structure explanation and characteristics presented in the 2.1.2 Dataset section of 
this document, the following was considered as missing data: 

• Dataset features’ values which keys correspond to “Not Reported” or “Unknown”; 
• Dataset features’ values which keys do not correspond to any of the dataset possible 

key values14; 
• Empty cells. 

 
It was possible to conclude that all dataset’s cells had associated values during the analysis, 
meaning there’s no empty registries to remove. The identification of unreported, unknown and 
not supported key values is presented in Table 12 considering the remaining relevant features 
after the actions mentioned in the 5.2.3.1 and 5.2.3.2 sections and having in mind that this 
procedure is only valid on discrete fields as specified in the 2.1.2 section. 

 
14 JSON file with dataset keys’ description and allowed values: https://pastebin.com/ui7dex3A 
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Table 12 - Relevant discrete fields' missing data identification 

Key Not supported key values Missing data values 

FRSTHARM 11, 2, 5, 3, 12, 1, 94, 9, 5, 0, 6, 13, 8, 10, 7. 77, 99. 

LOCFSTHRM 98, 7, 99, 0, 8. 77, 99. 

CRCOMNNR Nothing to report. 77, 99. 

MAJCSE Nothing to report. 9, 71, 72. 

DRUGALC Nothing to report. Nothing to report. 

ECNTCRC Nothing to report. 77, 99. 

LIGHT Nothing to report. 77, 99. 

CSRFCND Nothing to report. 77, 99. 

WEATHER Nothing to report. 77, 99. 

RCNTCRC Nothing to report. 77, 99. 

RDTYP Nothing to report. 77, 99. 

PAVED 9. 77, 99. 

WZRELATED Nothing to report. 77, 99. 

CSEV Nothing to report. Nothing to report. 

 

 

Figure 26 - Code snippet corresponding to the removal of missing data 
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Figure 27 - Code snippet corresponding to the removal of not supported data entries 

5.2.3.4 Removal of low impact data  
Data records which number of occurrences is extremely low when compared with the total 
amount of records in a dataset can be considered as noisy data depending on the problem’s 
context following (Chong et al., 2005) study, previously explained in 3.2.3 section. Therefore, 
and considering the initial analysis made in 5.2.2 section, a new data handling variation was 
created with the low impact feature keys being removed from the dataset. With the analysis 
represented in Figure 28 it was possible to calculate which keys could be removed using the 
approach stated in Figure 27. 

 

Figure 28 - Feature keys' occurrences counter 

5.2.3.5 Removal of outliers 
As mentioned in 5.2.2.2 and for the regression models, a new variation where outliers would 
be removed was considered in order to prevent models’ performance of being harmed. A 
deeper analysis allowed the classification of instances with cost above 12000 as outliers. Error! 
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Reference source not found. represents a new boxplot that was generated after the outliers’ 
removal process. 

 

Figure 29 - Boxplot after outliers removal 

An amount of 40352 records were removed from the dataset, per consequence reducing the 
initial dataset size to a total of 371011 instances to be used in regression models. The mean RTC 
cost moved from the initial 5885 US dollars mentioned in 5.2.2.2 to 4267 US dollars. 

5.2.4 Feature columns key to value transformation 

The dataset initial composition, in which each feature is represented by a set of keys 
corresponding to description fields as explained in 2.1.2 section, didn’t matched Tensorflow 
preferred feature columns definitions for a neural network construction.  

Following the official documentation15, Tensorflow feature definition mechanism transforms 
feature columns values into lower-dimensional vector containing integers using a mapping 
function. These values are therefore used as inputs in the neural network. The preferred input 
values’ typology is string so Tensorflow can map them into integers.  

With this in mind, a key to description value transformation was applied as the initial dataset 
feature column values were integers. This process was based in a mapping function, which 
created a relation between each key and the corresponding description16 as seen in Figure 30. 
Each feature column key values were therefore transformed into the corresponding description 
strings using Python’s array replace function as stated in Figure 31. 

 
15 Tensorflow feature columns documentation: https://www.tensorflow.org/guide/feature_columns 
16 JSON with key to description correspondence: https://pastebin.com/ui7dex3A 
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Figure 30 - Feature key to value correspondence example 

 

Figure 31 - Feature key to description string transformation example 
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5.2.5 RTC severity classification data definition 

RTC severity classification is the expected outcome of this document’s work and two 
alternatives were considered as described in Table 9 and Table 10. The data transformation 
mentioned in Figure 32 was used to accomplish the proposal’s goals using a new column in the 
dataset, named HUMANDMG, to store the outcome. 

 

Figure 32 - Data handling to define RTC severity classification 

5.2.6 Training and test sample datasets 

One of the necessary steps to train and evaluate a model is to split the initial dataset into 
training and test sample datasets, which are correspondently used to train the model and to 
evaluate it. According to what is explained in the 4.2.2 section, 33% of the original dataset was 
defined as a test set. Following the decision stated in the 5.2.5 section above, HUMANDMG is 
used as label, therefore representing the expected outcome. This process can be seen in the 
Figure 33.  

 

Figure 33 - Dataset split into training and test samples following holdout method 

5.3 Model definition 
This chapter is meant to explain the technical approach to build the model according to the 
proposed methodology defined in the 4.2.2 section. The parameter definition of the model as 
well as various design alternatives are also approached. 
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5.3.1 Feature columns definition 

Following Tensorflow’s approach to feature columns configuration, there are two types of 
feature columns to be considered: 

• Categorical – Each entry represents a category. Discrete data;  
• Numeric – Each entry represents a continuous value. Numeric data. 

 
Regarding categorical feature columns, two sub-types are considered: 

• With vocabulary list – Input values should obey to an already defined set of values. Any 
introduced value outside the range of this set will trigger an error, providing full control 
of the allowed values; 

• With hash bucket – Maximum amount of input values is defined beforehand. Consumes 
less memory and provides more flexibility as it is not necessary to specify all required 
values. 

 

The dataset features’ identification into categorical or numeric was done with the support of 
the data placed in Table 1.  

Reliability and control were prioritized over flexibility and performance as this document’s work 
is related with health. Therefore, the decision was to proceed with vocabulary lists instead of 
hash buckets. The outputs definition created in the 5.2.4 section was used to specify the set of 
possible values to be introduced in the vocabulary list. The creation of the model’s feature 
columns can be seen in Figure 34 and Figure 35. 

 

Figure 34 - Model's categorical feature columns definition 

 

Figure 35 - Model's numeric feature columns definition 
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5.3.2 Models’ hyperparameter definition 

Various variations of the model were elaborated having in mind the decisions exposed in the 
4.2.2 section based in other studies in the RTC field. A set of parameters, which content can 
vary, was defined to accommodate various design alternatives. 

5.3.2.1 RTC severity using classification setup 
Tensorflow permits the usage of a DNNClassifier for classification problems using deep neural 
networks. The input function creation in Tensorflow allows the customization of batch size (i.e. 
number of samples to be propagated in the DNN) and number of epochs (i.e. maximum 
iterations for the algorithm to run on top of the entire dataset during training). During 
Tensorflow’s training optimizer definition it’s possible to customize the learning rate and 
optimizer. The activation function parameter is also manually introduced during the model 
instantiation. Even though Tensorflow automatically defines a default neural network structure, 
and in order to test different architectural approaches, different DNN structures were used. 
Variations are based on complexity and deepness. 

Random Forest implementation is still recent in Tensorflow’s framework, therefore requiring 
an upgrade for the 1.13 version during this algorithm’s implementation. Even though some 
features for this algorithm’s implementation are lacking, it is possible to customize the 
maximum number of nodes and number of trees. The number of Random Forest variations is 
smaller than DNN variations as it is expected for DNN to perform better according to what is 
mentioned in 4.2.2.  

The DNN parameters variations are presented in Table 13, which values are separated by 
commas, and structural alternatives are described in Table 14. Table 15 provides information 
about the used random forest’s parameter variations. 

Table 13 – RTC severity neural network parameters variations 

Parameter Set of values 

Batch size 10, 32, 128, 256 

Number of epochs 1000, 5000, 10000 

Learning rate 0.01, 0.02, 0.03, 0.04, 0.05, 0.3 

Optimizer GradientDescent, Adam 

Activation function Softplus, Rectified Linear Unit (ReLU), Sigmoid, Tanh 
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Table 14 - RTC severity neural network structure alternatives 

Alternative Value 

A1 [256, 128, 64] 

A2 [1024, 512, 256, 128, 64] 

A3 [4096, 2048, 1024, 512, 256, 128, 64] 

A4 [8192, 4096, 2048, 1024, 512, 256, 128, 64] 

A5 [16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64] 

A6 [16, 16, 16, 16, 16, 16] 

A7 [64, 64, 64, 64, 64, 64, 64, 64, 64] 

A8 [256, 256, 256, 256, 256, 256, 256, 256, 256] 

 

Table 15 - Random forest parameter variations 

Parameter Set of values 

Max number of nodes 1000, 3000, 5000, 10000 

Number of trees 10 

 

A new instance of a model is then created using Tensorflow estimator package. Random forest 
requires tensor_forest package to create new instances. These processes are represented in 
Figure 36 and Figure 37. 

 

Figure 36 - Tensorflow creation of a DNNClassifier model instance 
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Figure 37 - Tensorflow creation of a Random Forest model instance 

5.3.2.2 RTC cost using regression setup 
To implement regression models in Tensorflow it’s necessary to use a DNNRegressor classifier. 
Utilizing this classifier and taking into account some of the properties already explained in 
5.3.2.1, it’s possible to customize the optimizer, learning rate, batch size and number of epochs, 
which variations are represented in Table 16. Tensorflow also allows the manual setup of the 
neural network structure as represented in Table 17.  

Table 16 - RTC cost neural network parameters variations 

Parameter Set of values 

Batch size 10, 32 

Number of epochs 5000, 10000 

Learning rate 0.01, 0.03 

Optimizer GradientDescent, Adam 

 

Table 17 - RTC cost neural network structure variations 

Alternative Value 

B1 [15, 15, 15] 

B2 [60, 30, 15] 

B3 [120, 60, 30, 15] 

B4 [240, 120, 60, 30, 15] 

B5 [15, 15, 15, 15, 15] 

 

With the above in mind, various variations were built in order to combine different design 
alternatives in the regression models. The DNN model instance creation can be seen in Figure 
38, which process is similar to the one used for deep neural networks mentioned in the 5.3.2.1 
section, therefore allowing a consistent implementation across both contexts. 
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Figure 38 - Tensorflow creation of a DNNRegressor model instance 

5.4 Train and evaluate 
This section is meant to expose the training and evaluation process for the classification and 
regression models which variations are mentioned in 5.3.2.1 and 5.3.2.2. 

5.4.1 Classification 

Tensorflow’s estimator package provides tools for the neural network models’ training and 
subsequent evaluation. As seen in Figure 39, for Random Forest instances it is necessary to 
manually define the training operation and accuracy calculation.  

 

Figure 39 - Definition of training and accuracy operation in Random Forest instance 

The DNN training function provides some real-time data information during the process by 
default. The number of steps during training was set to 5000 following community standards. 
In some scenarios it was also tested 10000 steps as alternative. Training process example is 
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shown in Figure 41. The training process in the Random Forest is executed on top of a 
Tensorflow’s session and as seen in Figure 40, it uses the previously defined accuracy and 
training functions. The number of steps in Random Forest varies between 100, 500, 1000, 2000, 
and 10000. 

 

Figure 40 - Random Forest model’s training process 

 

 

Figure 41 – DNN model’s training process 
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The model’s evaluation process runs on top of the test data samples defined in Figure 33. 
Tensorflow’s estimator evaluate function retrieves an object with evaluation metrics (e.g. 
Accuracy and AUC), which are used in the next chapter to discuss the model’s predictive ability. 
Random Forest evaluation metric is limited to Accuracy due to technical constraints on the 
calculation of AUC as this metric is not provided by default on Tensorflow’s implementation of 
this algorithm. Some variations of DNN models using GradientDescent combined with ReLU 
resulted in a NaN error, which is a known issue in the community17 due to unbounded outputs, 
which make the neural network especially prone to exploding gradient issues.  

5.4.2 Regression 

Using a DNNRegressor classifier there’s no need to manually configure the training and 
evaluation process as Tensorflow provides methods for both purposes. The training process is 
similar to the one represented above in Figure 41. During the training process it was detected 
some issues with GradientDescent optimizer, which were already felt in the classification 
training process as mentioned in 5.4.1. The number of steps during training was set to 5000 by 
default. 

Predictions were created for the evaluation process as seen in Figure 42. These predictions were 
then compared with the real data from the test dataset defined in Figure 33, therefore allowing 
the calculation of MSE and MedAE as shown in Figure 43. During the evaluation process analysis, 
some feature variations were made for testing purses. Therefore, a variation without the LIGHT, 
CSRFCND and WEATHER features was considered for testing purposes. 

 

Figure 42 - Creation of predictions 

 
17 https://stackoverflow.com/questions/37232782/nan-loss-when-training-regression-network 
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Figure 43 - Calculation of MSE and MedAE 
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6 Evaluation 

In this chapter is possible to find the used metrics, evaluation methodologies and the final 
results. It is also explained how the solution was evaluated considering all the variations that 
were considered. 

6.1 Evaluation metrics, methodologies and hypothesis 
Typically, the metrics to be considered for the solution’s classification evaluation are Accuracy, 
Precision, Recall, F-measure and AUC. Tensorflow’s default evaluation function metrics do not 
include Precision, Recall and F-measure (as shown in 5.4.1 section). Even though Tensorflow 
allows the construction of custom metrics and subsequent addition to the evaluation process, 
this was a time-consuming process and due to time and technical constraints it was not possible 
to consider these metrics. Accuracy is the most referenced metric in the 3.2 chapter among 
studies in the RTC field. Some of these studies also mention AUC. Therefore, AUC and Accuracy 
are the used metrics. 

For regression, the most typical metric is MSE as mentioned earlier on 3.2.5 section. As also 
mentioned in that section, MedAE is also used mainly in scenario where the error dispersal is 
high. Following the plots analysis on 5.2.2.2, which indicate a high probably of significant error 
dispersal, MedAE was also included in the set of used regression metrics. 

As previously explained in the section 4.2 and demonstrated on chapter 5 of this document, 
various models’ variations were built. Classification models vary on: 

• Algorithm alternatives using DNN and Random Forest – Proposed in 4.2.2, 
implementation described in 5.3.2.1 and 5.4.1; 

• Various data cleaning approaches – Initially explained in 2.3.3.2 and 4.2.1, 
implementation described in 5.2.3 section;  
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• Different RTC severity classification classes definition – As seen in Table 9 and Table 
10 , concept concretization shown in 5.2.5; 

• DNN parameter variations – Explained in 4.2.2, set of possible values shown in 5.3.2.1 
and Table 13; 

• DNN structure alternatives – Approached in 3.2.2 and 4.2.2 sections, configuration 
described in detail in 5.3.2.1 and more precisely in Table 14. 

  

For regression, the following variations are considered: 

• Various data cleaning approaches – Approached in 2.3.3.2 and 4.2.1, implementation 
described in 5.2.3 and more specially in 5.2.3.5 section;  

• DNN parameter variations – Explained in 4.2.2, variations described in detail on 5.3.2.2 
section and Table 16; 

• DNN structure alternatives – Approached in 3.2.2 and 4.2.2 sections, regression models 
variations shown in 5.3.2.2 and more precisely in Table 17; 

• Features variations – Initially approached in 3.2.2 section, considered after analysis 
explained in 5.4.2. 

 

Considering the variations mentioned above, a comparison between the models’ results is 
performed to understand which model fits this problem’s context the best, both for 
classification and regression. 

Holdout (referenced in the 2.3.4.3 section and implementation mentioned in 5.2.6) is used to 
evaluate and understand if the algorithm is under an overfitting or underfitting situation, where 
the algorithm’s performance isn’t reliable. 

As the intention is to compare classifiers, the null hypothesis is that all the classifiers perform 
equally. The rejection of that null hypothesis means that there exists at least one pair of 
classifiers with significantly different performances. It is possible to use Friedman, a non-
parametric test. In case of rejection of this null hypothesis, post-hoc test to identify the 
significantly different pairs of classifiers. It is possible to use the Nemenyi test (post-hoc test). 

6.2 RTC severity classification results 
Specific analysis and implementation of RTC severity are mentioned in the 5.2.2.1, 5.2.5, 5.3.2.1 
and 5.4.1 sections of this document. Accuracy and AUC are used for the classification evaluation.  

The below tables display the models’ results. Due to the amount of information to be displayed, 
the DNN and Random Forest results were split into different tables due to having different 
parameter definition. The best results from more than 250 variations were selected to be 
shown in the tables, in which the best records from each RTC severity alternative (see Table 9 
and Table 10) are marked as bold.  
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The DNN classifier results table structure is the following: 

• Optimizer; 
• Activation function, column named as AF; 
• Learning rate, column named as LR; 
• Neural network structure, following the Table 14 alternative acronyms, column named 

as NNS; 
• Number of epochs, column named as NE; 
• Batch size, column named as BS; 
• Accuracy; 
• AUC. 

 

For Random Forest results table the following structure was used: 

• Max number of nodes; 
• Number of trees; 
• Steps; 
• Accuracy. 
 

On Table 18 it’s possible to find the best results using DNN models for alternative 1 of RTC. The 
best results were achieved by combining Adam and ReLU with a simple DNN structure, which 
allowed a result containing an accuracy of 0.862 and AUC of 0.73. The table also shows that 
other combinations using GradientDescent and Tanh also perform close to the results achieved 
using Adam and ReLU. The model that performed with the highest AUC was also combination 
of Adam and ReLU but with a higher batch size, resulting in an inferior accuracy. 

Table 18 - DNN results for alternative 1 of RTC 

Optimizer AF  LR NNS NE BS Accuracy AUC 

Adam ReLU 0.01 A1 5000 128 0.862 0.73 
GradientDescent Tanh 0.02 A3 5000 10 0.862 0.72 

GradientDescent Tanh 0.01 A3 5000 10 0.862 0.718 

Adam Tanh 0.01 A1 5000 10 0.862 0.53 

Adam ReLU 0.01 A1 1000 128 0.861 0.73 

GradientDescent Tanh 0.03 A1 5000 10 0.861 0.71 

GradientDescent Tanh 0.02 A3 10000 10 0.860 0.7 
GradientDescent Tanh 0.01 A2 5000 10 0.859 0.723 

GradientDescent Tanh 0.01 A2 1000 10 0.859 0.718 

GradientDescent Tanh 0.03 A8 5000 10 0.859 0.5 

Adam ReLU 0.01 A1 5000 256 0.858 0.737 

Adam ReLU 0.01 A3 5000 128 0.858 0.727 
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Optimizer AF  LR NNS NE BS Accuracy AUC 
Adam ReLU 0.01 A2 5000 128 0.858 0.727 

Adam ReLU 0.01 A1 1000 32 0.858 0.717 
Adam ReLU 0.01 A1 5000 32 0.858 0.713 

 

Table 19 displays the best results for DNN models for alternative 2 of RTC. Similarly to what is 
explained above on Table 18 results’ analysis, the best results for this alternative were also 
achieved using a combination of Adam and ReLU and a simple DNN structure. The result was 
an accuracy of 0.963 and AUC of 0.777. The best accuracy values are consistent throughout the 
multiple models’ variations in which AUC varies more. 

Table 19 - DNN results for alternative 2 of RTC 

Optimizer AF  LR NNS NE BS Accuracy AUC 

Adam ReLU 0.01 A1 5000 256 0.963 

 

0.777 
GradientDescent ReLU 0.01 A1 1000 128 0.963 

 

0.771 

GradientDescent ReLU 0.01 A1 5000 128 0.963 

 

0.771 

Adam ReLU 0.01 A1 5000 128 0.963 

 

0.769 

Adam ReLU 0.01 A3 1000 128 0.963 

 

0.765 
GradientDescent ReLU 0.03 A1 1000 32 0.963 

 

0.762 

GradientDescent ReLU 0.01 A1 5000 32 0.963 

 

0.761 

GradientDescent Tanh 0.03 A1 5000 10 0.963 

 

0.756 

GradientDescent ReLU 0.01 A1 1000 32 0.963 

 

0.755 

Adam ReLU 0.01 A1 5000 32 0.963 

 

0.754 

GradientDescent Tanh 0.03 A1 10000 10 0.963 

1 

0.752 

GradientDescent Tanh 0.02 A3 5000 10 0.963 

 

0.751 

GradientDescent Tanh 0.01 A2 1000 10 0.963 

 

0.749 

GradientDescent Tanh 0.03 A6 5000 10 0.963 

 

0.744 

GradientDescent Tanh 0.02 A4 5000 10 0.963 

 

0.742 

 

On Table 20 is possible to find the best results for alternative 1 of RTC with low impact data 
removed using DNN models. As it possible to state when looking at the results, the 
experimented models perform worse than the ones mentioned in Table 18. Best result achieved 
with GradientDescent and Tanh under a simple DNN structure. 
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Table 20 - DNN results for alternative 1 of RTC with low impact data removed 

Optimizer AF  LR NNS NE BS Accuracy AUC 

GradientDescent Tanh 0.03 A1 1000 10 0.855 0.719 
GradientDescent Tanh 0.03 A3 1000 10 0.855 0.713 
Adam ReLU 0.03 A3 5000 128 0.855 0.687 

GradientDescent Tanh 0.03 A2 1000 10 0.855 0.649 

Adam ReLU 0.01 A3 5000 32 0.855 0.5 

 

Similarly to Table 20, Table 21 displays the best results for DNN models with low impact data 
removed but for alternative 2 of RTC. When compared to Table 19 results, the models described 
below also perform worse even though the performance difference isn’t as noticeable as RTC 
alternative 1 results. GradientDescent and Tanh combination with a simple DNN structure 
provided reasonable AUC results. 

Table 21 – DNN results for alternative 2 of RTC with low impact data removed 

Optimizer AF  LR NNS NE BS Accuracy AUC 

GradientDescent Softplus 0.03 A3 5000 10 0.963 0.5 
GradientDescent Tanh 0.03 A1 5000 10 0.962 0.756 

GradientDescent Tanh 0.03 A1 1000 10 0.962 0.752 
GradientDescent Softplus 0.03 A1 5000 10 0.962 0.732 

GradientDescent Tanh 0.03 A3 1000 10 0.962 0.731 

 

Table 22 demonstrates the results of Random Forest models for alternative 1 of RTC. The best 
results were found using a max number of nodes of 5000 and 1000 in which the accuracy 
achieved 0.86. Still, these models’ accuracy is still not as good as the DNN variations shown in 
Table 18. 

Table 22 - Random Forest results for alternative 1 of RTC 

Max number of nodes Number of trees Steps Accuracy 
5000 10 500 0.86 
1000 10 1000 0.86 
10000 10 2000 0.859 
5000 10 2000 0.859 
3000 10 2000 0.859 
10000 10 1000 0.859 
10000 10 500 0.859 
10000 10 100 0.859 
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Max number of nodes Number of trees Steps Accuracy 
5000 10 100 0.859 
3000 10 500 0.859 

 

In Table 23 it’s possible to find Random Forest results for alternative 2 of RTC. Comparably to 
what was observable in Table 19 (DNN results for alternative 2 of RTC), the accuracy values are 
also very consistent independently of the models’ parameters. 

Table 23 - Random Forest results for alternative 2 of RTC 

Max number of nodes Number of trees Steps Accuracy 
5000 10 2000 0.963 
3000 10 2000 0.963 
10000 10 2000 0.963 
10000 10 1000 0.963 
5000 10 1000 0.963 
1000 10 2000 0.963 
1000 10 1000 0.963 
10000 10 500 0.963 
3000 10 1000 0.963 
5000 10 500 0.963 

 

6.2.1 Results analysis 

Having in mind that the initial dataset contained a total of 573548 samples, the following was 
considered for evaluation purposes: 

• Alternative 1 (results in Table 18 and Table 22) – 411633 remained after data cleaning 
process, from which 59069 correspond to the positive class. Therefore, 0.856 is the 
minimum accuracy value for a positive evaluation; 

• Alternative 1 with low impact data removed (results in Table 20) – 408686 remained 
after data cleaning process, from which 58870 correspond the positive class. Therefore, 
0.855 is the minimum accuracy value for a positive evaluation; 

• Alternative 2 (results in Table 19 and Table 23) – 411633 remained after data cleaning 
process, from which 15241 correspond to the positive class. Therefore, 0.962 is the 
minimum accuracy value for a positive evaluation; 

• Alternative 2 with low impact data removed (results in Table 21) – 408686 remained 
after data cleaning process, from which 15198 correspond the positive class. Therefore, 
0.962 is the minimum accuracy value for a positive evaluation. 
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As it is possible to state from the tables shown in section 6.2, it was possible to achieve marginal 
positive evaluations (i.e. where the model’s accuracy is bigger than the minimum values 
defined above but not significantly) to both RTC severity alternatives. 

The best results for RTC severity alternative 1 are held by a combination of Adam optimizer with 
ReLU which resulted in an accuracy of 0.862 and AUC of 0.73. For the alternative 2, the best 
results were also achieved with Adam optimizer and ReLU combining in an accuracy of 0.963 
and AUC of 0.777. During this process, other variations with a smaller set of features were 
experimented but all results were significantly worst, therefore not considered for this 
document’s evaluation purpose. 

6.2.1.1 Other considerations 
Adam and GradientDescent perform in a similar way as there’s not a significant discrepancy 
between both optimizers’ results. This outcome was expected considering what was explained 
in 4.2.2 section and can be stated by the top results representation on Figure 44 and Figure 45.  

Figure 44 demonstrates the accuracy fluctuation per model variation. The top model variations 
are represented in the X axis, where the 0 corresponds to the best result, 1 to the second best 
and continuously like this until the fifth best result. As it is possible to observe, accuracy 
fluctuation across variations is not high as the results are similar between the various 
approaches even though DNN with Adam and GradientDescent containing all data perform 
slightly better. 

 

Figure 44 - Accuracy fluctuation comparison on top classification models for RTC alternative 1 

The same logic from Figure 44 is applied to Figure 45 but focused in the AUC results. Similarly 
to what is possible to observe on Figure 44, DNN using Adam and GradientDescent will all data 
perform similarly, with the AUC fluctuation between both models’ variations being consistent 
and following a observable tendency. Variations with removed low impact data have a higher 
discrepancy in the AUC results. 
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Figure 45 - AUC fluctuation on top classification models for RTC alternative 1 

The tables presented in section 6.2 show that the best results are usually achieved by using 
either ReLU or Tanh under low learning rates. Significantly deeper or complex DNN structure 
alternatives, as A7 and A5 from Table 14, don’t perform as well as other simpler structures, as 
A1 and A3. The best results’ batch size and number of epochs vary more. 

Considering the technical restrictions found to calculate AUC for Random Forest models, it is 
not possible to conclude if RTC severity alternative 2 algorithm variation using Random Forest 
(Table 23) performs better than DNN (Table 19) as the accuracy value it’s the same and it is not 
possible to compare the AUC values. Even though these technical restrictions are also 
noticeable comparing RTC severity alternative 1 models, as the best accuracy outcome for DNN 
(Table 18) is higher than the best accuracy outcome for Random Forest (Table 22), it is possible 
to consider that DNN may perform better under this context. 

The results achieved with low impact data being removed (Table 20 and Table 21) are worse 
when compared with the variations that use more data (Table 18, Table 19, Table 22, and Table 
23). This can be related with the fact that the values removed from dataset, even though are 
the ones with the fewer occurrences, are important values to calibrate the model. Variations 
with fewer features performed significantly worse and therefore are not considered for this 
document’s evaluation process. 

6.3 RTC cost regression results 
Besides the relevant information presented in prior chapters of this document, the explicit cost 
analysis and implementation approach are described on sections 5.2.2.2, 5.2.3.5, 5.3.2.2 and 
5.4.2. MSE and MedAD are used for the classification evaluation. Having in mind the errors 
found while using GradientDescent in the regression models, which are mentioned in 5.4.2, the 
models’ outcomes presented below only use Adam optimizer.  
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Best results are marked as bold. The tables consider the following structure: 

• Learning rate, column named as LR; 
• Neural network structure, following the Table 17 alternative acronyms, column named 

as NNS; 
• Number of epochs, column named as NE; 
• Batch size, column named as BS; 
• MSE; 
• MedAD. 

 

Table 24 provides information about the results for regression model which data had no outliers 
and contains all features following the procedure explained in detail on 5.2.3.5. The instance 
with the lowest MedAE record, therefore the best result, was 1548.24 in which MSE recorded 
2593.48. The instance with the lowest MSE achieved 2510.13.  

Lower learning rates combined with a batch size of 32 and number of epochs around 10000 
seem to perform better as several models with these characteristics appear on the top results 
seen in Table 24. DNN structure is the less consistent parameter as all five possible variations 
are represented in the results below. 

Table 24 - Regression results for variation without outliners and with all features 

LR  NNS NE  BS MSE MedAE 

0.03 B3 10000 32 2593.48 1548.24 
0.01 B2 10000 32 2534.39 1612.56 

0.01 B1 5000 32 2545.93 1617.02 
0.03 B4 10000 32 2546.75 1618.12 

0.03 B3 10000 32 2540.78 1634.80 

0.01 B1 10000 32 2535.07 1661.50 

0.01 B5 10000 32 2520.56 1726.53 

0.01 B3 10000 10 2516.69 1726.78 

0.01 B5 10000 10 2525.93 1729.79 

0.01 B4 5000 32 2519.59 1748.34 

 

On Table 25 it is possible to find the results for regression models without outliners but not 
containing the some features, which were removed during the process explained in 5.4.2 
section (LIGHT, CSRFCND and WEATHER). This table contains records which correspond to the 
top results present in Table 24 to allow a direct comparison between both approaches.  
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Table 25 - Regression results for variation without outliners and with reduced features 

LR  NNS NE  BS MSE MedAE 

0.03 B3 10000 32 2524.17 1755.99 
0.01 B2 10000 32 2520.45 1856.55 
0.01 B1 5000 32 2519.48 1722.67 

0.03 B4 10000 32 2604.52 2053.46 

0.03 B3 10000 32 2520.90 1706.68 

 

The regression results for models which data contains outliers (i.e. where the process described 
in 5.2.3.5 section was not applied) are presented in Table 26. As expected, the models’ 
performance is affected by the presence of discrepant values, negatively influencing MSE and 
MedAE records.  

Similarly to what happened in Table 24, lower learning rates combined with a batch size of 32 
and number of epochs around 10000 seems to be the most performant combination with the 
DNN structure varying between the possible set of values. 

Table 26 - Regression results containing outliers 

LR  NNS NE  BS MSE MedAE 

0.01 B4 10000 32 10156.83 2049.90 
0.01 B3 10000 32 10167.38 2187.01 

0.01 B4 5000 32 10153.84 2200.30 

0.03 B3 5000 32 10108.65 2244.35 

0.01 B5 10000 32 10175.36 2271.72 

0.03 B3 10000 32 10115.61 2364.01 

0.01 B2 10000 32 10174.91 2425.38 
0.03 B5 10000 32 10126.58 2453.58 

0.01 B5 10000 10 10141.31 2488.15 

0.01 B1 10000 32 10135.11 2525.39 

 

6.3.1 Results analysis 

Considering the 573548 records in the initial dataset, which mean cost was around 5469 US 
dollars, the following notes were considered: 

• Alternative without outliers (results in Table 24) – Data was treated using all 
procedures mentioned in 5.2.3. 371011 samples after cleaning process with mean cost 
of 4267 US dollars; 
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• Alternative without outliers and with less features (results in  Table 25) – Same data 
cleaning process as point above. Same number of samples and mean cost. Does not 
contain the LIGHT, CSRFCND and WEATHER features; 

• Alternative with outliers (results in Table 26) – A total of 411363 samples with a mean 
cost of around 5885 US dollars. Data cleaning processes mentioned in 5.2.3 were 
applied with the exception of the outliers removal represented in the 5.2.3.5 section. 

 

The best results were achieved in the alternative without outliers and with all features where 
MedAE was 1548.24 and MSE recorded 2593.48 under a neural network with medium 
complexity and deepness when compared with the other alternatives. In this instance, batch 
size was set to 32, number of epochs to 10000 and learning rate set to 0.03. The lowest MSE 
result was 2510.13 under a simpler neural network structure (B1 alternative). 

Considering a mean cost of 4267 US dollars in the alternative without outliers, an MSE of 
2593.48 is still considered a significant value, therefore not allowing an extremely precise 
prediction as the error dispersal is reasonable as seen in Figure 46. Considering the lowest 
MedAE value of 1548.24, it possible to conclude that data is also very unbalanced. Still, these 
values are significantly better than other approaches with a smaller set of features and with a 
larger set of values which were considered outliers after an analysis made in the 5.2.2.2 and 
5.2.3.5 sections.  

 

Figure 46 - Regression model predictions comparison with actual values 

6.3.1.1 Other considerations 
The alternatives without outliers and containing all features were the ones performing better 
in this context. As expected and explained in 5.2.2.2 section, the existence of outliers harmed 
the models’ performance. Having additional features benefiting the algorithms outcome was 
something already stated during the classification models evaluation as mentioned in 6.2.1.1 
section, in which the impact was significant. 
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Figure 47 demonstrates the MedAD fluctuation across the most performant regression models 
for both variations without outliners. Similarly to Figure 44 and Figure 45, the top instances are 
displayed in the X axis. It’s possible to observe that there’s a reasonable difference between 
models with the same characteristics. The presence of the LIGHT, CSRFCND and WEATHER 
features reveled to be important for the model’s outcome, allowing lower MedAD values. 

 

Figure 47 - MedAD fluctuation between most performant regression models’ instances 

In Figure 48 it’s possible to observe the MedAD fluctuation across models which characteristics 
are similar but where different DNN structure were applied. The X axis represents the DNN 
structure variations’ values as 1 corresponds to B1, 2 corresponds to B2, and so on. The models 
represented in this figure had the learning rate set to 0.01, number epochs to 10000 and batch 
size to 32. Even though a better MedAD tendency analysis across DNN structures requires a 
deeper analysis with other parameters configuration, it seems like models which data contained 
a smaller set of features react better to complex DNN structures as B1 and B5 are the less 
performant variations. For models which data contains all features the fluctuation seems less 
implactful.  

 

Figure 48 - MedAD fluctuation on regression models with fixed parameters and different DNN 
structures 
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The results containing outliers are considered bad results as the MSE outcomes, which best 
result was 10108.65, significantly surpassed the mean cost of 5885 US dollars even though 
MedAE achieved a top result of 2244.35. 

Due to technical constraints explained in the 5.4.2 section, it’s not possible to determine what 
optimizer from Adam and GradientDescent performs better as GradientDescent variations 
triggered an error related with NaN loss during the training process. 

6.4 Comparison with other studies  
Even though (Yuan et al., 2017) study uses the same dataset, the study’s goal and general 
approach is different from this document’s work. (Yuan et al., 2017) study aims to predict if in 
a given road, crashes will occur considering each hourly slot. Demographic features from the 
dataset are also used, something that was not considered in this document. With this in mind, 
it is not possible to do a direct comparison between both studies’ results as the problem is not 
the same. Still, it is possible to observe that on both studies the best results were achieved using 
DNN, which is an expected outcome considering the problem’s complexity and recent studies 
outcomes.  

Other studies in the RTC field using regression like (Sailaja & Raju, 2015) and (Minesh Desai, n.d.) 
use these models to predict the number of occurrences and not their property cost. Therefore, 
a direct results comparison is not possible. 

Comparisons with other studies in the literature were not considered as the dataset structure, 
data and studies’ goals were significantly different.  
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7 Conclusion 

This document investigated and analyzed the road traffic crashes problem, a major problem in 
today’s society, aiming to build models capable of predicting crashes’ outcomes using past 
occurrences data. For this purpose, Iowa state crash data from 2008 to 2016 was used. Besides 
the high complexity of the dataset, which contained several features that could impact the 
models’ outcome as road traffic crashes relate to human, vehicle and road environment factors, 
this problem is also complex due to imbalanced classes and data that had no previous treatment. 

Most of the prior work on this field used classic data mining techniques and approaches 
combined with limited amount of data. Recent studies already approached the road traffic 
crashes analysis and prediction topic using DNN combined with mapping strategies. Imbalanced 
data was a constant factor on these studies.  

In this document, the problem was formulated as a binary classification problem using two 
different approaches, separating major injuries, minor injuries and fatalities from non-injuries 
and separating major injuries and fatalities from minor injuries and non-injuries. To analyze and 
predict a crash monetary property damage cost, regression was used. The methodology 
consisted in using a deep learning framework, Tensorflow, which usage is uncommon in past 
studies, to build DNN and Random Forest models to achieve the proposed classification goals 
while using environmental factors from the dataset. DNN were used for the regression problem. 

Having in mind this document’s context, classification results were positive, even though 
marginally, and show that DNN usually perform better in the RTC field problems, something 
also detected by past studies in this area. Regression results were not as good but already 
provide leeway to perform predictions. Some technical constraints harm a direct comparison 
with some of the Random Forest classification models’ outcomes or with GradientDescent 
regression models. The results could have been improved if some other features were made 
available in the dataset. Crash speed could highly influence the models’ outcomes as mentioned 
in (Moghaddam et al., 2011) study. Cost evaluation also lack a better specification of 
surroundings value (e.g. vehicles value, what kind of property items were harmed by the crash). 
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7.1.1 Future work 

Considering the work done, followed approaches and the restrictions found, the following next 
steps are recommended: 

• Apply Random Forest custom calculation of AUC, therefore allowing a better 
comparison with the obtained DNN results; 

• Use the most recent datasets versions provided by Iowa18, containing additional data 
and features, and apply them in the developed models comparing the results with the 
ones obtained during this document’s work; 

• Combine the developed models and data treatment approaches with mapping 
strategies; 

• Explore resampling techniques due to huge unbalanced of data. As undersampling was 
tried in this document’s work, in future studies the application of oversampling 
techniques like SMOTE (Synthetic Minority Over-sampling Technique) as mentioned in 
(Chawla, Bowyer, & Hall, 2002) may be considered a possibility; 

• Deploy the developed models using Docker containers and Kubernets, following 
Tensorflow’s official documentation19, therefore allowing the model predictions to be 
served as a service and used by external software (e.g. using an API integration). 

  

 
18 Datasets new version source: https://public-iowadot.opendata.arcgis.com/datasets 
19 https://www.tensorflow.org/tfx/serving/serving_kubernetes 
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