
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 159 (2019) 2502–2511

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.
10.1016/j.procs.2019.09.425

10.1016/j.procs.2019.09.425 1877-0509

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

23rd International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Defining Requirements for a Gamified Programming Exercises
Format

Jakub Swachaa,∗, Ricardo Queirósb,c, José Carlos Paivab, José Paulo Lealb,d

aInstitute of Information Technology in Management, University of Szczecin, Szczecin, Poland
bCRACS - INESC TEC, Porto, Portugal

cESMAD, Polytechnic of Porto, Porto, Portugal
dDCC - FCUP, University of Porto, Porto, Portugal

Abstract

Computer programming is a complex domain both to teach and learn. This incited endeavors to find methods that could mitigate
at least some of the existing barriers. In the last years, automatic assessment has been playing an important role in reducing the
burden of teachers in the assessment of students’ attempts to solve programming exercises and fostering the autonomy of students
by allowing them to practice in any place and at any time with timely feedback.

Even more recent development is the use of gamification in computer programming education in order to raise the enjoyment and
engagement of students. Despite its rising spread, until now, there is not a programming exercise specification format addressing
the needs of gamification, such as the definition of challenges, the underlying storyline, including the links to other exercises, or
the rewards for solving challenges in form of points, badges or virtual items. Such a data format would allow the exchange of
ready-to-use programming exercises along with the gamification-related data among different educational institutions and courses,
providing instructors a possibility to make use of gamification in their courses without having to invest their own time in defining
gamification rules themselves.

In this paper, we analyze a set of concepts related to programming gamification developed in our previous work to identify the
requirements for the specification of a gamified exercise format.

c© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Keywords: gamification; computer programming; e-learning; interoperability; format requirements

1. Introduction

The combined use of automated assessment, which provides fast feedback to the students experimenting with their
code, and gamification, which provides additional motivation for the students to intensify their learning effort, can

∗ Corresponding author. Tel.: +48-91-444-1908; fax: +48-91-444-2127.
E-mail address: jakubs@uoo.univ.szczecin.pl

1877-0509 c© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

23rd International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Defining Requirements for a Gamified Programming Exercises
Format

Jakub Swachaa,∗, Ricardo Queirósb,c, José Carlos Paivab, José Paulo Lealb,d

aInstitute of Information Technology in Management, University of Szczecin, Szczecin, Poland
bCRACS - INESC TEC, Porto, Portugal

cESMAD, Polytechnic of Porto, Porto, Portugal
dDCC - FCUP, University of Porto, Porto, Portugal

Abstract

Computer programming is a complex domain both to teach and learn. This incited endeavors to find methods that could mitigate
at least some of the existing barriers. In the last years, automatic assessment has been playing an important role in reducing the
burden of teachers in the assessment of students’ attempts to solve programming exercises and fostering the autonomy of students
by allowing them to practice in any place and at any time with timely feedback.

Even more recent development is the use of gamification in computer programming education in order to raise the enjoyment and
engagement of students. Despite its rising spread, until now, there is not a programming exercise specification format addressing
the needs of gamification, such as the definition of challenges, the underlying storyline, including the links to other exercises, or
the rewards for solving challenges in form of points, badges or virtual items. Such a data format would allow the exchange of
ready-to-use programming exercises along with the gamification-related data among different educational institutions and courses,
providing instructors a possibility to make use of gamification in their courses without having to invest their own time in defining
gamification rules themselves.

In this paper, we analyze a set of concepts related to programming gamification developed in our previous work to identify the
requirements for the specification of a gamified exercise format.

c© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Keywords: gamification; computer programming; e-learning; interoperability; format requirements

1. Introduction

The combined use of automated assessment, which provides fast feedback to the students experimenting with their
code, and gamification, which provides additional motivation for the students to intensify their learning effort, can

∗ Corresponding author. Tel.: +48-91-444-1908; fax: +48-91-444-2127.
E-mail address: jakubs@uoo.univ.szczecin.pl

1877-0509 c© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

help students to overcome the barrier of difficulty in acquiring computer programming skills. Learning programming
relies on practice. While there is a number of open software and programming exercise collections supporting auto-
mated assessment, so far there are no available public collections of gamified programming exercises, neither an open
interactive programming learning environment that would support such exercises, nor a standard for the representation
of such exercises, so that they could be developed and shared among different educational institutions.

1.1. Framework for Gamified Programming Education Project

In order to address the gap consisting of the lack of open collections of reusable gamified programming exercises,
four elements are needed: (1) a frame of reference for programming course gamification (including featured gami-
fication concepts and the intended area of their application); (2) a specification of a format for exchanging gamified
programming exercises based on the above frame of reference; (3) tools for authoring exercises in the above format;
(4) a programming learning environment allowing to set up and manage gamified programming courses making use
of such exercises. These four elements constitute a framework for the application of gamification to programming ed-
ucation developed within the Framework for Gamified Programming Education (FGPE) project under the Erasmus+
programme. For the first element, the project consortium developed a catalogue of gamification techniques tailored
for programming education [2].

In this paper, we extend this work by identifying the requirements for the specification of a format for gamified
programming exercises that are indispensable for it to cover all the information needed to make these gamification
techniques feasible. Identifying such requirements is necessary to define the scope and form of data to be handled
by the format under development. We are aware, though, that gamification-related data, being undoubtedly the key
component for this format, are not the only component that has to be specified. For this reason, while keeping the focus
on the gamification-related aspects of the format, we also present its three-tier architecture, consisting of gamification,
exercise, and organizational tiers, and provide basic information on the remaining two tiers.

The remainder of this paper is organized as follows. Section 2 discusses the relevant work on formats for pro-
gramming exercises. Section 3 introduces the three-tier architecture on which the data exchange format for gamified
programming exercises is based and explains the role of each of the tiers. Section 4 is the core of the paper; in it, based
on the gamification techniques defined in our previous work [2], we identify the requirements that the envisaged for-
mat has to meet to address each of them respectively. Finally, Section 5 summarizes the main contributions of this
work and presents the perspective for future research.

2. Programming Exercises Formats

The increasing popularity of programming contests worldwide resulted in the creation of several contest manage-
ment systems supported by repositories of programming exercises. At the same time, computer science courses use
programming exercises to encourage the practice of programming. As a consequence, each tool uses a self-established
format for storing exercises, without adhering to a common format which hinders the sharing of these problems.
Hence, the interoperability between these systems is a topic of great interest in the scientific community, resulting
in the development of several proposals for a common programming exercise format. The next subsections detail six
formats: FreeProblemSet, Peach Exchange Format, Kattis Problem Format, Mooshak Exchange Format, SIPE, and
PExIL. Then, their features are synthesized based on a specific exercises format expressiveness model [9].

2.1. FreeProblemSet

FreeProblemSet (FPS) [3] is a standard for ACM-ICPC contest problem storage serialized in XML format. It aims
to provide free problem sets for Online Judges managers by transporting data from one judge to another. The format
uses XML to describe a programming problem and Document Type Definition (DTD) to formalize it. It includes
information on the problem, test data, special judger (optional), and answer (optional). Currently, the FPS format is
supported by several popular online judge systems including HUSTOJ, ACM-Server4, and Woj-land (Online Judge
from Wuhan University).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2019.09.425&domain=pdf


 Jakub Swacha  et al. / Procedia Computer Science 159 (2019) 2502–2511 2503
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

23rd International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Defining Requirements for a Gamified Programming Exercises
Format

Jakub Swachaa,∗, Ricardo Queirósb,c, José Carlos Paivab, José Paulo Lealb,d

aInstitute of Information Technology in Management, University of Szczecin, Szczecin, Poland
bCRACS - INESC TEC, Porto, Portugal

cESMAD, Polytechnic of Porto, Porto, Portugal
dDCC - FCUP, University of Porto, Porto, Portugal

Abstract

Computer programming is a complex domain both to teach and learn. This incited endeavors to find methods that could mitigate
at least some of the existing barriers. In the last years, automatic assessment has been playing an important role in reducing the
burden of teachers in the assessment of students’ attempts to solve programming exercises and fostering the autonomy of students
by allowing them to practice in any place and at any time with timely feedback.

Even more recent development is the use of gamification in computer programming education in order to raise the enjoyment and
engagement of students. Despite its rising spread, until now, there is not a programming exercise specification format addressing
the needs of gamification, such as the definition of challenges, the underlying storyline, including the links to other exercises, or
the rewards for solving challenges in form of points, badges or virtual items. Such a data format would allow the exchange of
ready-to-use programming exercises along with the gamification-related data among different educational institutions and courses,
providing instructors a possibility to make use of gamification in their courses without having to invest their own time in defining
gamification rules themselves.

In this paper, we analyze a set of concepts related to programming gamification developed in our previous work to identify the
requirements for the specification of a gamified exercise format.

c© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Keywords: gamification; computer programming; e-learning; interoperability; format requirements

1. Introduction

The combined use of automated assessment, which provides fast feedback to the students experimenting with their
code, and gamification, which provides additional motivation for the students to intensify their learning effort, can

∗ Corresponding author. Tel.: +48-91-444-1908; fax: +48-91-444-2127.
E-mail address: jakubs@uoo.univ.szczecin.pl

1877-0509 c© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

23rd International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Defining Requirements for a Gamified Programming Exercises
Format

Jakub Swachaa,∗, Ricardo Queirósb,c, José Carlos Paivab, José Paulo Lealb,d

aInstitute of Information Technology in Management, University of Szczecin, Szczecin, Poland
bCRACS - INESC TEC, Porto, Portugal

cESMAD, Polytechnic of Porto, Porto, Portugal
dDCC - FCUP, University of Porto, Porto, Portugal

Abstract

Computer programming is a complex domain both to teach and learn. This incited endeavors to find methods that could mitigate
at least some of the existing barriers. In the last years, automatic assessment has been playing an important role in reducing the
burden of teachers in the assessment of students’ attempts to solve programming exercises and fostering the autonomy of students
by allowing them to practice in any place and at any time with timely feedback.

Even more recent development is the use of gamification in computer programming education in order to raise the enjoyment and
engagement of students. Despite its rising spread, until now, there is not a programming exercise specification format addressing
the needs of gamification, such as the definition of challenges, the underlying storyline, including the links to other exercises, or
the rewards for solving challenges in form of points, badges or virtual items. Such a data format would allow the exchange of
ready-to-use programming exercises along with the gamification-related data among different educational institutions and courses,
providing instructors a possibility to make use of gamification in their courses without having to invest their own time in defining
gamification rules themselves.

In this paper, we analyze a set of concepts related to programming gamification developed in our previous work to identify the
requirements for the specification of a gamified exercise format.

c© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Keywords: gamification; computer programming; e-learning; interoperability; format requirements

1. Introduction

The combined use of automated assessment, which provides fast feedback to the students experimenting with their
code, and gamification, which provides additional motivation for the students to intensify their learning effort, can

∗ Corresponding author. Tel.: +48-91-444-1908; fax: +48-91-444-2127.
E-mail address: jakubs@uoo.univ.szczecin.pl

1877-0509 c© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

help students to overcome the barrier of difficulty in acquiring computer programming skills. Learning programming
relies on practice. While there is a number of open software and programming exercise collections supporting auto-
mated assessment, so far there are no available public collections of gamified programming exercises, neither an open
interactive programming learning environment that would support such exercises, nor a standard for the representation
of such exercises, so that they could be developed and shared among different educational institutions.

1.1. Framework for Gamified Programming Education Project

In order to address the gap consisting of the lack of open collections of reusable gamified programming exercises,
four elements are needed: (1) a frame of reference for programming course gamification (including featured gami-
fication concepts and the intended area of their application); (2) a specification of a format for exchanging gamified
programming exercises based on the above frame of reference; (3) tools for authoring exercises in the above format;
(4) a programming learning environment allowing to set up and manage gamified programming courses making use
of such exercises. These four elements constitute a framework for the application of gamification to programming ed-
ucation developed within the Framework for Gamified Programming Education (FGPE) project under the Erasmus+
programme. For the first element, the project consortium developed a catalogue of gamification techniques tailored
for programming education [2].

In this paper, we extend this work by identifying the requirements for the specification of a format for gamified
programming exercises that are indispensable for it to cover all the information needed to make these gamification
techniques feasible. Identifying such requirements is necessary to define the scope and form of data to be handled
by the format under development. We are aware, though, that gamification-related data, being undoubtedly the key
component for this format, are not the only component that has to be specified. For this reason, while keeping the focus
on the gamification-related aspects of the format, we also present its three-tier architecture, consisting of gamification,
exercise, and organizational tiers, and provide basic information on the remaining two tiers.

The remainder of this paper is organized as follows. Section 2 discusses the relevant work on formats for pro-
gramming exercises. Section 3 introduces the three-tier architecture on which the data exchange format for gamified
programming exercises is based and explains the role of each of the tiers. Section 4 is the core of the paper; in it, based
on the gamification techniques defined in our previous work [2], we identify the requirements that the envisaged for-
mat has to meet to address each of them respectively. Finally, Section 5 summarizes the main contributions of this
work and presents the perspective for future research.

2. Programming Exercises Formats

The increasing popularity of programming contests worldwide resulted in the creation of several contest manage-
ment systems supported by repositories of programming exercises. At the same time, computer science courses use
programming exercises to encourage the practice of programming. As a consequence, each tool uses a self-established
format for storing exercises, without adhering to a common format which hinders the sharing of these problems.
Hence, the interoperability between these systems is a topic of great interest in the scientific community, resulting
in the development of several proposals for a common programming exercise format. The next subsections detail six
formats: FreeProblemSet, Peach Exchange Format, Kattis Problem Format, Mooshak Exchange Format, SIPE, and
PExIL. Then, their features are synthesized based on a specific exercises format expressiveness model [9].

2.1. FreeProblemSet

FreeProblemSet (FPS) [3] is a standard for ACM-ICPC contest problem storage serialized in XML format. It aims
to provide free problem sets for Online Judges managers by transporting data from one judge to another. The format
uses XML to describe a programming problem and Document Type Definition (DTD) to formalize it. It includes
information on the problem, test data, special judger (optional), and answer (optional). Currently, the FPS format is
supported by several popular online judge systems including HUSTOJ, ACM-Server4, and Woj-land (Online Judge
from Wuhan University).



2504 Jakub Swacha  et al. / Procedia Computer Science 159 (2019) 2502–2511
J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

2.2. Peach Exchange Format

Peach [10] is a system for the presentation, collection, storage, management, and evaluation (automated and/or
manual) of assignments. The Peach Exchange Format (PEF) [12] is a specific format for programming task packages
used in Peach. Peach task packages are stored in a directory tree with a predefined structure. Currently, Peach is being
used by the Eindhoven University of Technology.

2.3. Kattis Problem Format

Kattis [4] is a free problem-set with hundreds of problems formalized with the Kattis Problem Format (KPF).
The problem format is a directory with a top-level file problem.yaml and a number of subdirectories (and sub-
subdirectories). The contents include test data, validators which evaluate the correctness of a program’s input-output,
problem statement and correct (and incorrect) submissions. In order to reference all these files, a mandatory file called
problem.yaml is included with metadata about the problem, such as authorship, license, judging flags, etc.

2.4. Mooshak Exchange Format

Mooshak [6] is a web-based competitive learning system originally developed for managing programming con-
tests over the Internet [7]. Despite the context where it is used, Mooshak has its own internal format to describe
problems called Mooshak Exchange Format (MEF). MEF includes an XML manifest file referring several types of
resources, such as problem statements (e.g., PDF or HTML), image files, input/output test files, correctors (static and
dynamic), and solution programs. The manifest also allows the inclusion of feedback messages and points associated
with each test. Currently, Mooshak is being used in several Universities worldwide to support learning activities. In
the competitive context, it was used as the official evaluation system for several international programming contests.

2.5. SIPE

SIPE (Specification of Interactive Programming Exercises) [11] is a lightweight markdown-based format for small
interactive programming exercises. While it provides extensive functionality for code and output checks, it lacks many
features heavier formats have such as the definition of special correctors and run-time requirements.

2.6. PExIL

PExIL (Programming Exercises Interoperability Language) is an XML dialect that aims to consolidate all the data
required in the programming exercise life-cycle [8]. This definition is formalized through the creation of an XML
Schema organized in three groups of elements:

• Textual – elements with general information about the exercise to be presented to the learner. (e.g., title, date,
challenge);
• Specification – elements with a set of restrictions that can be used for generating specialized resources (e.g.,

test cases, feedback);
• Programs – elements with references to programs as external resources (e.g., solution program, correctors) and

metadata about those resources (e.g., compilation, execution line, hints).

2.7. Comparison of formats

The evaluation of the expressiveness of programming assignments formats is already tackled in several works [1, 5,
12]. This subsection synthesizes the formats described previously according to the model proposed by Verhoeff. This
model describes conceptually the notion of a task package as a unit for collecting, storing, archiving, and exchanging
all information concerning with a programming task. The choice of the Verhoeff model over the alternatives is due to
its more comprehensive coverage of the required features. This model organizes the programming exercise data into
five facets:

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

1. Textual information - programming task human readable texts;
2. Data files - source files and test data;
3. Configuration and recommendation parameters - resource limits;
4. Tools - generic and task-specific tools;
5. Metadata - data to foster the exercises discovery among systems.

Table 1 compares all the investigated formats based on these five facets.

Table 1. Expressiveness of programming assignments formats.
Facet Feature FPS PEF KPF MEF SIPE PExIL

Textual

Multilingual X X X X
HTML format X X X X X X
LATEXformat X
Image X X X X X X
Attach files X
Description X X X X X X

Data files

Solution X X X X X
Skeleton X X
Multi-language X X X X
Tests X X X X X X
Test groups X X
Sample tests X
Grading X X X X
Feedback X X X

Configuration & recommendation

Compiler X
Executer X
Memory limit X X X X
Size limit X X
Time limit X X X
Code lines X X

Tools

Compiler X X
Test gen. X
Feedback gen. X X X
Checker X X X
Corrector X X
Library X X X

Metadata

Exercise X X X X X X
Author X X X
Event X X X
Keywords X X X
Platform X
Management X

This study confirms the disparity of programming exercise formats, highlighting both their differences and simi-
larities. This heterogeneity hinders the interoperability among the typical systems featuring the automatic evaluation
of exercises. From all these options, PExIL, when compared with the other formats, is the format that covers more
features of all the facets. Still, even PExIL has no support for gamification.

3. Format for Gamified Programming Exercises

3.1. Architecture

Although gamification-related data are central to the gamified programming education framework, they are not the
only data that the envisaged format for gamified programming exercises has to cover. There is also data related to the
organization and logical and conceptual sequencing of resources at the level of a course and/or even an educational
institution, as well as data defining programming exercises in their full life-cycle (creation, selection, presentation,
solving, and evaluation) – notwithstanding the gamification.

The architecture of the proposed format, depicted in Fig. 1, defines three separate data tiers: organizational, ex-
ercise, and gamification. The aim of such a distinction is the complete separation of the design of the gamification
aspect from the definition of programming exercises as well as from their placement in a course provided by an edu-
cational institution. This way the exercises can be used without the gamification if needed, any layer can be modified
separately from the others, and existing tools and formats can be used to handle the first two tiers (organizational and
exercise) without the need of any adaptation.



 Jakub Swacha  et al. / Procedia Computer Science 159 (2019) 2502–2511 2505
J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

2.2. Peach Exchange Format

Peach [10] is a system for the presentation, collection, storage, management, and evaluation (automated and/or
manual) of assignments. The Peach Exchange Format (PEF) [12] is a specific format for programming task packages
used in Peach. Peach task packages are stored in a directory tree with a predefined structure. Currently, Peach is being
used by the Eindhoven University of Technology.

2.3. Kattis Problem Format

Kattis [4] is a free problem-set with hundreds of problems formalized with the Kattis Problem Format (KPF).
The problem format is a directory with a top-level file problem.yaml and a number of subdirectories (and sub-
subdirectories). The contents include test data, validators which evaluate the correctness of a program’s input-output,
problem statement and correct (and incorrect) submissions. In order to reference all these files, a mandatory file called
problem.yaml is included with metadata about the problem, such as authorship, license, judging flags, etc.

2.4. Mooshak Exchange Format

Mooshak [6] is a web-based competitive learning system originally developed for managing programming con-
tests over the Internet [7]. Despite the context where it is used, Mooshak has its own internal format to describe
problems called Mooshak Exchange Format (MEF). MEF includes an XML manifest file referring several types of
resources, such as problem statements (e.g., PDF or HTML), image files, input/output test files, correctors (static and
dynamic), and solution programs. The manifest also allows the inclusion of feedback messages and points associated
with each test. Currently, Mooshak is being used in several Universities worldwide to support learning activities. In
the competitive context, it was used as the official evaluation system for several international programming contests.

2.5. SIPE

SIPE (Specification of Interactive Programming Exercises) [11] is a lightweight markdown-based format for small
interactive programming exercises. While it provides extensive functionality for code and output checks, it lacks many
features heavier formats have such as the definition of special correctors and run-time requirements.

2.6. PExIL

PExIL (Programming Exercises Interoperability Language) is an XML dialect that aims to consolidate all the data
required in the programming exercise life-cycle [8]. This definition is formalized through the creation of an XML
Schema organized in three groups of elements:

• Textual – elements with general information about the exercise to be presented to the learner. (e.g., title, date,
challenge);
• Specification – elements with a set of restrictions that can be used for generating specialized resources (e.g.,

test cases, feedback);
• Programs – elements with references to programs as external resources (e.g., solution program, correctors) and

metadata about those resources (e.g., compilation, execution line, hints).

2.7. Comparison of formats

The evaluation of the expressiveness of programming assignments formats is already tackled in several works [1, 5,
12]. This subsection synthesizes the formats described previously according to the model proposed by Verhoeff. This
model describes conceptually the notion of a task package as a unit for collecting, storing, archiving, and exchanging
all information concerning with a programming task. The choice of the Verhoeff model over the alternatives is due to
its more comprehensive coverage of the required features. This model organizes the programming exercise data into
five facets:

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

1. Textual information - programming task human readable texts;
2. Data files - source files and test data;
3. Configuration and recommendation parameters - resource limits;
4. Tools - generic and task-specific tools;
5. Metadata - data to foster the exercises discovery among systems.

Table 1 compares all the investigated formats based on these five facets.

Table 1. Expressiveness of programming assignments formats.
Facet Feature FPS PEF KPF MEF SIPE PExIL

Textual

Multilingual X X X X
HTML format X X X X X X
LATEXformat X
Image X X X X X X
Attach files X
Description X X X X X X

Data files

Solution X X X X X
Skeleton X X
Multi-language X X X X
Tests X X X X X X
Test groups X X
Sample tests X
Grading X X X X
Feedback X X X

Configuration & recommendation

Compiler X
Executer X
Memory limit X X X X
Size limit X X
Time limit X X X
Code lines X X

Tools

Compiler X X
Test gen. X
Feedback gen. X X X
Checker X X X
Corrector X X
Library X X X

Metadata

Exercise X X X X X X
Author X X X
Event X X X
Keywords X X X
Platform X
Management X

This study confirms the disparity of programming exercise formats, highlighting both their differences and simi-
larities. This heterogeneity hinders the interoperability among the typical systems featuring the automatic evaluation
of exercises. From all these options, PExIL, when compared with the other formats, is the format that covers more
features of all the facets. Still, even PExIL has no support for gamification.

3. Format for Gamified Programming Exercises

3.1. Architecture

Although gamification-related data are central to the gamified programming education framework, they are not the
only data that the envisaged format for gamified programming exercises has to cover. There is also data related to the
organization and logical and conceptual sequencing of resources at the level of a course and/or even an educational
institution, as well as data defining programming exercises in their full life-cycle (creation, selection, presentation,
solving, and evaluation) – notwithstanding the gamification.

The architecture of the proposed format, depicted in Fig. 1, defines three separate data tiers: organizational, ex-
ercise, and gamification. The aim of such a distinction is the complete separation of the design of the gamification
aspect from the definition of programming exercises as well as from their placement in a course provided by an edu-
cational institution. This way the exercises can be used without the gamification if needed, any layer can be modified
separately from the others, and existing tools and formats can be used to handle the first two tiers (organizational and
exercise) without the need of any adaptation.



2506 Jakub Swacha  et al. / Procedia Computer Science 159 (2019) 2502–2511
J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

Organizational tier
University/Course resources logical 
and conceptual sequencing and 
organization. 

1

Exercise tier
Common format for the computer 
programming exercises life-cycle 
(creation, selection, presentation, 

solving, and evaluation).

2

Gamification tier
Layer with typical game elements (e.g., 
challenges, rewards) to maximize 
enjoyment and engagement for the 
computer programming domain.

3

Fig. 1. Framework three-tier architecture

3.2. Tiers

The Organizational tier covers all the aspects of the organization of exercises in the course, and its integration in
the learning environment (e.g., a learning management system) used by an educational institution. Instructors use it
to order the content of their courses, regardless of what the content actually is.

The Exercise tier defines the specification for programming exercises, regardless of whether they are gamified or
not. It should address the needs of all the phases of its intrinsic life-cycle (Fig. 2), which comprises several phases
as follows. In the creation phase, the content author should have the means to automatically create some of the re-
sources (assets) related to the programming exercise, such as the exercise description and test cases, and the possibility
to package and distribute them in a standard format across all the compatible systems (e.g., learning management sys-
tems, learning objects repositories). In the selection phase, the teacher must be able to find a programming exercise
based on its metadata in a repository of learning objects and store a reference to it in a learning management system. In
the presentation phase, the student must be able to choose the exercise description in its native language and a proper
format (e.g., HTML or PDF). In the solving phase, the learner should have the possibility to use test cases to test
his/her attempt to solve the exercise as well as the possibility to automatically generate new ones. In the evaluation
phase, the evaluation engine should receive specialized metadata to properly evaluate the learner’s attempt and return
relevant feedback to help them to correct the code and resubmit it.

Evaluation phase

The evaluation engine should 
receive metadata to properly 

evaluate the learner’s attempt and 
return enlightening feedback.

Solving phase

The learner should use test cases 
to test his attempt to solve the 
exercise and the possibility to 

generate new ones.

Presentation phase

The student must be able to 
choose the exercise description in 

its native language and in a 
proper format (e.g., HTML, PDF).

Selection phase

The teacher must be able to 
search for a programming 

exercise based on its metadata 
from a repository.

Creation phase

The content author should have 
the means to automatically create 

some of the resources (e.g., 
exercise description, test cases).

Fig. 2. Programming exercises life-cycle

The Gamification tier covers all the elements specific to gamification that should be included to foster the moti-
vation and enjoyment of students during the realization of the course (e.g., challenges and rewards). This is the main
novelty element, as while existing formats can be effectively used for the two other tiers, no existing programming
exercise format provides the capability to store an adequate scope of gamification-related data.

The gamification tier has to convey data about gamification concepts implemented in programming exercises. In our
previous work [2], we defined a set of gamification concepts relevant to programming education, composed of three

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

parts: basic gamification concepts (related to course organization, goals set for students, rewards for achieving these
goals, and conditions that should be considered in such cases), exercise-level concepts (defining types and subtypes
of programming exercises and specific rewards applicable for solving a single exercise), and course-level concepts
(defining challenges traversing over multiple exercises and specific rewards for solving them).

In the next section, we iterate over these concepts, and for each concept, we identify the requirements that the
envisaged format has to meet to address it adequately.

4. Requirements for Specification of Gamified Programming Exercises

This section presents the results of the identification of the necessary gamification-related requirements for the
envisaged format based on the gamification concepts and techniques previously chosen as appropriate for program-
ming education [2]. Subsection 4.1 covers requirements stemming from general gamification concepts. Subsection 4.2
comprehends requirements stemming from gamification concepts on the exercise level. Subsection 4.3 comprises re-
quirements stemming from gamification concepts on the course level.

4.1. Basic Gamification Concepts

Basic gamification concepts comprise common concepts applied both to exercise and course levels, and abstract
concepts on which more specific concepts are based (at the exercise or course level). For instance, this group includes
concepts related to the organization of the course, concepts related to types of rewards (not specific rewards), among
others.

Table 2 lists requirements posed by the organization of the course. These include metadata pertaining to gamified
exercise, less often gamified courses, such as its affiliation, content type, and difficulty. Table 3 presents requirements
pertaining to the various types of goals that could be defined for the students taking part in a gamified programming
course, according to [2].

Table 2. Format requirements of gamification concepts related to course organization.
Concept Description Format Requirements
Course Module A subset of course content related to a specific topic. Fur-

ther modules may be locked by default.
Exercise definition has a field specifying the mod-
ule(s) it belongs to.

Exercise Type A kind of programming exercise to be solved. Exercise definition has a field specifying the type.
Exercise Mode Non-default exercise modes define special guidelines re-

garding how an exercise should be presented or provide
modified requirements to make the student interested in
solving an exercise again.

Exercise definition has a field specifying its mode
and associated parameters.

Locked Content Player is aware of locked content but cannot access it be-
fore certain requirements are met.

Exercise definition has a field specifying whether
it is initially locked.

Secret A hidden content whose existence is unknown to the player
beforehand, only after making certain defined steps. Its dis-
closure may be random or fixed, depending on certain con-
ditions.

Exercise definition has a field specifying whether
it is initially hidden.

Difficulty Level A subset of course content on a similar difficulty level.
Higher levels may be locked by default.

Both course and exercise definitions have fields
specifying their difficulty levels.

Table 3. Format requirements of gamification concepts related to goals definition.
Concept Description Format Requirements
Challenge A single programming exercise to be solved. The basic unit of course content organization is an exercise.
Requirements Additional conditions that make it more difficult to

pass a challenge.
A field in exercise definition specifying requirements to
solve it.

Quest A set of related programming exercises to be
solved.

Course definition includes quest specification (including a
set of requirements and rewards).

Streak A sequence of time units in which certain goals
were consistently achieved by the player.

Course definition includes streak specification (including a
set of requirements and rewards).

Record The highest value of a certain metric achieved by
this or any player before.

Not content-specific, hence no requirements on the format.



 Jakub Swacha  et al. / Procedia Computer Science 159 (2019) 2502–2511 2507
J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

Organizational tier
University/Course resources logical 
and conceptual sequencing and 
organization. 

1

Exercise tier
Common format for the computer 
programming exercises life-cycle 
(creation, selection, presentation, 

solving, and evaluation).

2

Gamification tier
Layer with typical game elements (e.g., 
challenges, rewards) to maximize 
enjoyment and engagement for the 
computer programming domain.

3

Fig. 1. Framework three-tier architecture

3.2. Tiers

The Organizational tier covers all the aspects of the organization of exercises in the course, and its integration in
the learning environment (e.g., a learning management system) used by an educational institution. Instructors use it
to order the content of their courses, regardless of what the content actually is.

The Exercise tier defines the specification for programming exercises, regardless of whether they are gamified or
not. It should address the needs of all the phases of its intrinsic life-cycle (Fig. 2), which comprises several phases
as follows. In the creation phase, the content author should have the means to automatically create some of the re-
sources (assets) related to the programming exercise, such as the exercise description and test cases, and the possibility
to package and distribute them in a standard format across all the compatible systems (e.g., learning management sys-
tems, learning objects repositories). In the selection phase, the teacher must be able to find a programming exercise
based on its metadata in a repository of learning objects and store a reference to it in a learning management system. In
the presentation phase, the student must be able to choose the exercise description in its native language and a proper
format (e.g., HTML or PDF). In the solving phase, the learner should have the possibility to use test cases to test
his/her attempt to solve the exercise as well as the possibility to automatically generate new ones. In the evaluation
phase, the evaluation engine should receive specialized metadata to properly evaluate the learner’s attempt and return
relevant feedback to help them to correct the code and resubmit it.

Evaluation phase

The evaluation engine should 
receive metadata to properly 

evaluate the learner’s attempt and 
return enlightening feedback.

Solving phase

The learner should use test cases 
to test his attempt to solve the 
exercise and the possibility to 

generate new ones.

Presentation phase

The student must be able to 
choose the exercise description in 

its native language and in a 
proper format (e.g., HTML, PDF).

Selection phase

The teacher must be able to 
search for a programming 

exercise based on its metadata 
from a repository.

Creation phase

The content author should have 
the means to automatically create 

some of the resources (e.g., 
exercise description, test cases).

Fig. 2. Programming exercises life-cycle

The Gamification tier covers all the elements specific to gamification that should be included to foster the moti-
vation and enjoyment of students during the realization of the course (e.g., challenges and rewards). This is the main
novelty element, as while existing formats can be effectively used for the two other tiers, no existing programming
exercise format provides the capability to store an adequate scope of gamification-related data.

The gamification tier has to convey data about gamification concepts implemented in programming exercises. In our
previous work [2], we defined a set of gamification concepts relevant to programming education, composed of three

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

parts: basic gamification concepts (related to course organization, goals set for students, rewards for achieving these
goals, and conditions that should be considered in such cases), exercise-level concepts (defining types and subtypes
of programming exercises and specific rewards applicable for solving a single exercise), and course-level concepts
(defining challenges traversing over multiple exercises and specific rewards for solving them).

In the next section, we iterate over these concepts, and for each concept, we identify the requirements that the
envisaged format has to meet to address it adequately.

4. Requirements for Specification of Gamified Programming Exercises

This section presents the results of the identification of the necessary gamification-related requirements for the
envisaged format based on the gamification concepts and techniques previously chosen as appropriate for program-
ming education [2]. Subsection 4.1 covers requirements stemming from general gamification concepts. Subsection 4.2
comprehends requirements stemming from gamification concepts on the exercise level. Subsection 4.3 comprises re-
quirements stemming from gamification concepts on the course level.

4.1. Basic Gamification Concepts

Basic gamification concepts comprise common concepts applied both to exercise and course levels, and abstract
concepts on which more specific concepts are based (at the exercise or course level). For instance, this group includes
concepts related to the organization of the course, concepts related to types of rewards (not specific rewards), among
others.

Table 2 lists requirements posed by the organization of the course. These include metadata pertaining to gamified
exercise, less often gamified courses, such as its affiliation, content type, and difficulty. Table 3 presents requirements
pertaining to the various types of goals that could be defined for the students taking part in a gamified programming
course, according to [2].

Table 2. Format requirements of gamification concepts related to course organization.
Concept Description Format Requirements
Course Module A subset of course content related to a specific topic. Fur-

ther modules may be locked by default.
Exercise definition has a field specifying the mod-
ule(s) it belongs to.

Exercise Type A kind of programming exercise to be solved. Exercise definition has a field specifying the type.
Exercise Mode Non-default exercise modes define special guidelines re-

garding how an exercise should be presented or provide
modified requirements to make the student interested in
solving an exercise again.

Exercise definition has a field specifying its mode
and associated parameters.

Locked Content Player is aware of locked content but cannot access it be-
fore certain requirements are met.

Exercise definition has a field specifying whether
it is initially locked.

Secret A hidden content whose existence is unknown to the player
beforehand, only after making certain defined steps. Its dis-
closure may be random or fixed, depending on certain con-
ditions.

Exercise definition has a field specifying whether
it is initially hidden.

Difficulty Level A subset of course content on a similar difficulty level.
Higher levels may be locked by default.

Both course and exercise definitions have fields
specifying their difficulty levels.

Table 3. Format requirements of gamification concepts related to goals definition.
Concept Description Format Requirements
Challenge A single programming exercise to be solved. The basic unit of course content organization is an exercise.
Requirements Additional conditions that make it more difficult to

pass a challenge.
A field in exercise definition specifying requirements to
solve it.

Quest A set of related programming exercises to be
solved.

Course definition includes quest specification (including a
set of requirements and rewards).

Streak A sequence of time units in which certain goals
were consistently achieved by the player.

Course definition includes streak specification (including a
set of requirements and rewards).

Record The highest value of a certain metric achieved by
this or any player before.

Not content-specific, hence no requirements on the format.



2508 Jakub Swacha  et al. / Procedia Computer Science 159 (2019) 2502–2511
J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

There are several types of rewards envisaged for students who achieved goals. Each of these has different traits and
forms of use. For instance, Badge is a visual indicator of a specific accomplishment which, since awarding, can be
presented in the student’s profile for others to see, whereas Content unlock is an event after which the student gains
access to previously inaccessible content. Table 4 presents the requirements for the format pertaining to the respective
types of rewards. Rewards are granted when a course participant meets certain conditions towards an exercise or a
course. These conditions are defined according to metrics collected during students’ interaction with the learning
environment (the catalogue of available metrics relevant to, respectively, exercises and courses is given in Tables 4.5
and 5.3 of [2]). Table 5 presents the requirements for the format pertaining to the respective condition types.

Table 4. Format requirements of gamification concepts related to definition of rewards.
Concept Description Format Requirements
Point Increases player’s score, showing their progress. There

may be different types of points.
Reward item specifies the kind of points. Reward
value specifies the number of points.

Level Depends on the player score, and possibly on other fac-
tors. Higher levels may be required to access certain
course areas or difficulty levels.

Course definition includes rules for level pro-
gression and possible locks for difficulty levels
based on player level.

Held Record The fact that the highest value of a certain metric till now
has been achieved by this player. Visible to other players.

This concept is not content-specific and places
no requirements on the format.

Current Rank The current rank of this player in their group leaderboard.
Visible to other players (possibly with limitations, e.g.,
only the top of the leaderboard and the neighbours).

This concept is not content-specific and places
no requirements on the format.

Badge Graphics certifying player’s achievement. A single type
of badge may have levels.

Reward item specifies the kind of badge. Reward
value specifies the level of badge (if applicable).

Virtual Item Received for certain achievements. In contrast to badge, it
can possibly be lost, traded, combined, or used for certain
purposes; it also does not have to be visible to others.

Reward item specifies the kind of virtual item.
Reward value specifies the number of items.

Coupon Received for certain achievements. In contrast to Virtual
Item, it is intended only for practical purposes, not a kind
of collectible: it is only for a single-use for certain pur-
pose (e.g., getting a hint or unlocking a course area). It
may (and usually should) have a defined validity period.

Reward item specifies the kind of coupon. Re-
ward value specifies the number of coupons.

Content Discovery Reveal secret content which was hidden beforehand. Reward item specifies what should be revealed.
Content Unlock Unlock access to some content. Note: unlocking can be

direct, i.e., granted as a reward for completing e.g., a
course area, or indirect, by granting coupons or items
that can be used to unlock content (possibly chosen by
player), or as a result of achieving a certain level.

Reward item specifies what should be unlocked.

Hint Text (possibly also reveals a snippet of a correct solu-
tion) displayed to a player failing to solve a challenge: on
his/her own choice (possibly paid with specific coupons)
or automatically after a specific kind of a failure.

Exercise definition has a field specifying hint
messages and conditions for displaying them.

Congratulations Text (possibly accompanied with visual and/or sound ef-
fects) congratulating player on achievements.

Both exercise and course definitions have a field
for specifying a message to be given on com-
pletion of each, respectively. Reward definition
has a field specifying congratulations message
for receiving it (if applicable).

Table 5. Format requirements of the types of conditions upon which rewards are granted.
Concept Description Format Requirements
Attempt Something player tries to achieve (e.g., opens an

exercise).
Exercise definition has a field specifying possible
rewards for attempts (number of attempts is a pos-
sible condition).

Achievement Something player achieves (e.g., solves an exer-
cise or completes a quest).

Exercise definition has a field specifying possi-
ble rewards for achievements (solution metrics are
possible conditions).

Failure Something player fails to achieve. Exercise definition has a field specifying possible
rewards for failures (number of failures is a possi-
ble condition).

Progress threshold Player passes a specified threshold of a given
progress metric.

Course definition has a field specifying possible
progress rewards (relevant metric and its threshold
level are necessary parameters).

Progress in competition Player passes another player in a given progress
metric.

Course definition has a list of metrics for which a
leaderboard should be maintained.

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

4.2. Exercise-level Gamification Concepts

Exercise-level gamification concepts are those that may only be applied in the context of a single exercise. A
primary such concept is the type of a programming exercise. Not every programming exercise requires a student to
code a complete solution neither to code at all. For instance, some exercises may challenge the student to fill-in gaps
in provided source code or just spot bugs in a block of code. Table 6 lists the requirements set by distinct kinds of
exercises to be covered by the format.

Table 6. Format requirements of different types of gamified programming exercises.
Concept Description Format Requirements
Blank sheet This kind of exercise provides a blank sheet for the student

to write his/her solution source code from the scratch.
Exercise definition has a field specifying the goal
to be attained.

Code extension This kind of exercise provides partially finished solution
source code (the provided parts are not subject to change
by the student) which the student has to complete.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code.

Code improve-
ment

This kind of exercise provides correct initial source code
which does not yet achieve all the goals specified in the
exercise specification, so the student has to modify it to
solve the exercise.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code.

Buggy code This kind of exercise provides code with bugs (and failed
tests) to foster the student to find the right code.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code.

Fill-in the gap This kind of exercise provides code with missing parts and
asks students to fill them with the right code.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code with the snippets to be pre-
sented as gaps being marked up.

Mixed code This kind of exercise breaks a solution into several blocks
of code, mixes them, and asks students to sort them (e.g.,
quicksort algorithm).

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code with the blocks marked up.

Show me This kind of exercise defines a small set of primitives that
can be used to solve the challenge (e.g., move(’red’,
’left’) meaning move red block to left stack) and pro-
vides a visual animation of the code execution.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has an interac-
tive animation attached/linked and a list of instruc-
tions available to the student to solve the exercise.

Spot the bug This kind of exercise provides code with bugs and asks
students to merely indicate the location of the bugs.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code with the buggy snippets be-
ing marked up.

Exercises may also be gamified by providing alternative requirements for solving them (this also allows to reuse
exercises in the same course). For instance, we can limit the time to solve the exercise, ask the student to reduce code
size or execution time below a specific threshold, among many others. Table 7 presents the requirements needed for
specification of different exercise modes.

Table 7. Format requirements of gamified programming exercise modes.
Concept Description Format Requirements
Shapeshifter This kind of exercise is composed by a set of very similar

exercises which switch between them when the metamor-
phosis timer end. This motivates students to solve the exer-
cise fast but can also help if they are struggling with minor
issues less related with what we want them to learn.

Exercise definition has a list of alternative goal
specifications and field for the time of change pa-
rameter.

Shortening
challenge

This kind of exercise provides a bonus reward for short-
ening the submitted solution to below specified number of
lines offered if the submitted solution is correct but exceeds
some threshold number of lines.

Exercise definition has a field for the threshold
number of lines.

Speedup chal-
lenge

This kind of exercise provides a bonus reward for speed-
ing up the submitted solution to below specified execution
time, offered if the submitted solution is correct but ex-
ceeds some threshold execution time.

Exercise definition has a field for the threshold ex-
ecution time (in relative units to some reference
code execution time, so that it could be scaled de-
pending on the machine).

Hack the prob-
lem

This kind of exercise rewards students who solve the exer-
cise in a tricky way without prior information about that.

Exercise definition has a field for the trick detec-
tion code.

Time bomb This kind of exercise is only available for a certain amount
of time once revealed.

Exercise definition has a field for specifying the
amount of time it is available.



 Jakub Swacha  et al. / Procedia Computer Science 159 (2019) 2502–2511 2509
J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

There are several types of rewards envisaged for students who achieved goals. Each of these has different traits and
forms of use. For instance, Badge is a visual indicator of a specific accomplishment which, since awarding, can be
presented in the student’s profile for others to see, whereas Content unlock is an event after which the student gains
access to previously inaccessible content. Table 4 presents the requirements for the format pertaining to the respective
types of rewards. Rewards are granted when a course participant meets certain conditions towards an exercise or a
course. These conditions are defined according to metrics collected during students’ interaction with the learning
environment (the catalogue of available metrics relevant to, respectively, exercises and courses is given in Tables 4.5
and 5.3 of [2]). Table 5 presents the requirements for the format pertaining to the respective condition types.

Table 4. Format requirements of gamification concepts related to definition of rewards.
Concept Description Format Requirements
Point Increases player’s score, showing their progress. There

may be different types of points.
Reward item specifies the kind of points. Reward
value specifies the number of points.

Level Depends on the player score, and possibly on other fac-
tors. Higher levels may be required to access certain
course areas or difficulty levels.

Course definition includes rules for level pro-
gression and possible locks for difficulty levels
based on player level.

Held Record The fact that the highest value of a certain metric till now
has been achieved by this player. Visible to other players.

This concept is not content-specific and places
no requirements on the format.

Current Rank The current rank of this player in their group leaderboard.
Visible to other players (possibly with limitations, e.g.,
only the top of the leaderboard and the neighbours).

This concept is not content-specific and places
no requirements on the format.

Badge Graphics certifying player’s achievement. A single type
of badge may have levels.

Reward item specifies the kind of badge. Reward
value specifies the level of badge (if applicable).

Virtual Item Received for certain achievements. In contrast to badge, it
can possibly be lost, traded, combined, or used for certain
purposes; it also does not have to be visible to others.

Reward item specifies the kind of virtual item.
Reward value specifies the number of items.

Coupon Received for certain achievements. In contrast to Virtual
Item, it is intended only for practical purposes, not a kind
of collectible: it is only for a single-use for certain pur-
pose (e.g., getting a hint or unlocking a course area). It
may (and usually should) have a defined validity period.

Reward item specifies the kind of coupon. Re-
ward value specifies the number of coupons.

Content Discovery Reveal secret content which was hidden beforehand. Reward item specifies what should be revealed.
Content Unlock Unlock access to some content. Note: unlocking can be

direct, i.e., granted as a reward for completing e.g., a
course area, or indirect, by granting coupons or items
that can be used to unlock content (possibly chosen by
player), or as a result of achieving a certain level.

Reward item specifies what should be unlocked.

Hint Text (possibly also reveals a snippet of a correct solu-
tion) displayed to a player failing to solve a challenge: on
his/her own choice (possibly paid with specific coupons)
or automatically after a specific kind of a failure.

Exercise definition has a field specifying hint
messages and conditions for displaying them.

Congratulations Text (possibly accompanied with visual and/or sound ef-
fects) congratulating player on achievements.

Both exercise and course definitions have a field
for specifying a message to be given on com-
pletion of each, respectively. Reward definition
has a field specifying congratulations message
for receiving it (if applicable).

Table 5. Format requirements of the types of conditions upon which rewards are granted.
Concept Description Format Requirements
Attempt Something player tries to achieve (e.g., opens an

exercise).
Exercise definition has a field specifying possible
rewards for attempts (number of attempts is a pos-
sible condition).

Achievement Something player achieves (e.g., solves an exer-
cise or completes a quest).

Exercise definition has a field specifying possi-
ble rewards for achievements (solution metrics are
possible conditions).

Failure Something player fails to achieve. Exercise definition has a field specifying possible
rewards for failures (number of failures is a possi-
ble condition).

Progress threshold Player passes a specified threshold of a given
progress metric.

Course definition has a field specifying possible
progress rewards (relevant metric and its threshold
level are necessary parameters).

Progress in competition Player passes another player in a given progress
metric.

Course definition has a list of metrics for which a
leaderboard should be maintained.

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

4.2. Exercise-level Gamification Concepts

Exercise-level gamification concepts are those that may only be applied in the context of a single exercise. A
primary such concept is the type of a programming exercise. Not every programming exercise requires a student to
code a complete solution neither to code at all. For instance, some exercises may challenge the student to fill-in gaps
in provided source code or just spot bugs in a block of code. Table 6 lists the requirements set by distinct kinds of
exercises to be covered by the format.

Table 6. Format requirements of different types of gamified programming exercises.
Concept Description Format Requirements
Blank sheet This kind of exercise provides a blank sheet for the student

to write his/her solution source code from the scratch.
Exercise definition has a field specifying the goal
to be attained.

Code extension This kind of exercise provides partially finished solution
source code (the provided parts are not subject to change
by the student) which the student has to complete.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code.

Code improve-
ment

This kind of exercise provides correct initial source code
which does not yet achieve all the goals specified in the
exercise specification, so the student has to modify it to
solve the exercise.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code.

Buggy code This kind of exercise provides code with bugs (and failed
tests) to foster the student to find the right code.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code.

Fill-in the gap This kind of exercise provides code with missing parts and
asks students to fill them with the right code.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code with the snippets to be pre-
sented as gaps being marked up.

Mixed code This kind of exercise breaks a solution into several blocks
of code, mixes them, and asks students to sort them (e.g.,
quicksort algorithm).

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code with the blocks marked up.

Show me This kind of exercise defines a small set of primitives that
can be used to solve the challenge (e.g., move(’red’,
’left’) meaning move red block to left stack) and pro-
vides a visual animation of the code execution.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has an interac-
tive animation attached/linked and a list of instruc-
tions available to the student to solve the exercise.

Spot the bug This kind of exercise provides code with bugs and asks
students to merely indicate the location of the bugs.

Exercise definition has a field specifying the goal
to be attained. Exercise definition has a field spec-
ifying the initial code with the buggy snippets be-
ing marked up.

Exercises may also be gamified by providing alternative requirements for solving them (this also allows to reuse
exercises in the same course). For instance, we can limit the time to solve the exercise, ask the student to reduce code
size or execution time below a specific threshold, among many others. Table 7 presents the requirements needed for
specification of different exercise modes.

Table 7. Format requirements of gamified programming exercise modes.
Concept Description Format Requirements
Shapeshifter This kind of exercise is composed by a set of very similar

exercises which switch between them when the metamor-
phosis timer end. This motivates students to solve the exer-
cise fast but can also help if they are struggling with minor
issues less related with what we want them to learn.

Exercise definition has a list of alternative goal
specifications and field for the time of change pa-
rameter.

Shortening
challenge

This kind of exercise provides a bonus reward for short-
ening the submitted solution to below specified number of
lines offered if the submitted solution is correct but exceeds
some threshold number of lines.

Exercise definition has a field for the threshold
number of lines.

Speedup chal-
lenge

This kind of exercise provides a bonus reward for speed-
ing up the submitted solution to below specified execution
time, offered if the submitted solution is correct but ex-
ceeds some threshold execution time.

Exercise definition has a field for the threshold ex-
ecution time (in relative units to some reference
code execution time, so that it could be scaled de-
pending on the machine).

Hack the prob-
lem

This kind of exercise rewards students who solve the exer-
cise in a tricky way without prior information about that.

Exercise definition has a field for the trick detec-
tion code.

Time bomb This kind of exercise is only available for a certain amount
of time once revealed.

Exercise definition has a field for specifying the
amount of time it is available.



2510 Jakub Swacha  et al. / Procedia Computer Science 159 (2019) 2502–2511
J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

Students who demonstrate “good” behaviors while solving an exercise may be awarded a badge, to foster similar
behaviors in the future. Table 8 details the format requirements pertaining to badges granted for specific exercises.

Table 8. Format requirements for defining badges granted on exercise-level.
Concept Description Format Requirements
Hardworker A badge awarded when a student fails more than n times

to solve an exercise, but ends up solving it.
Reward requirement can refer to the number of at-
tempts submitted before one is accepted.

Scientist A badge awarded when the student makes several tests to
check his solution, before submitting.

Reward requirement can refer to the number of
tests run before submitting the solution.

Keyword A badge awarded when the student uses a specific keyword
(e.g., array.map).

Reward requirement can refer to the existence of
certain statements in the solution source code.

Straight A badge awarded when the submitted solution has less or
equal number of loops, for instance, than the specified cor-
rect solution.

Reward requirement can refer to the number of
appearance of certain statements in the solution
source code.

4.3. Course-level Gamification Concepts

Gamification concepts on the course level may only be applied to series of exercises (not single ones) and/or whole
courses. As such they may be used to reward consistency (as a student has to pass through a number of exercises to
achieve a defined goal), but also link the exercises logically (with a story explaining the context) and provide means for
direct competition (in the form of duels or tournaments). Table 9 covers the relevant requirements, whereas Table 10
catalogs requirements imposed by different types of badges granted for achievements surpassing single exercises.

Table 9. Format requirements of types of challenges spanning beyond a single programming exercise.
Concept Description Format Requirements
Duel Students can challenge another online student for a 3 exer-

cises’ match. The exercises must be related to the concepts
being studied. It may also involve exhaustible resources to
limit the number of challenges.

Exercise definition has a field specifying whether the
exercise is suitable for duels.

Quest A set of conditions on a player’s progress that grants a re-
ward once met. The player is aware of his/her active quest
and its requirements (and possibly can choose the next
quest after completing one).

Course definition has a list of quests within the
course with relevant fields specifying the require-
ments and rewards.

Streak A sequence of time units in which certain goals were con-
sistently achieved by the player.

Course definition has a field specifying whether a
streak is observed within the course and additional
fields specifying the time unit (e.g., day or week), re-
quirements (to be met on every time unit), and a list
of rewards (to be granted on specified time units).

Story Set of exercises wrapped in a storyline which develops as
students complete an exercise. May be connected to one or
more quests.

Course includes relevant story content (text possi-
bly with audio-visual materials) to be presented in-
between the challenges.

Tournament Instructors may schedule tournaments composed of a set
of exercises where every student can enroll, and winners
are picked according to a predefined criterion.

Course definition may include a list of predefined
sets of exercises selected for tournaments.

Mystery
Track

Exercises that reveal additional exercises about the same
(or related) concepts to offer more opportunity to practice.

Exercise reward type can be a content unlock. Re-
ward item specifies what should be unlocked.

Table 10. Format requirements of badges available on course-level.
Concept Description Format Requirements
Solver A badge awarded by solving N exercises in a row without

a wrong submission, for N in {3, 5, 10, 15, }.
Reward requirement can refer to the number of ex-
ercises solved without wrong submissions in a row.

Man of Duty A badge awarded by following a streak for N time units,
for N in {3, 5, 10, 15, }.

Reward requirement can refer to the number of time
units the player’s streak lasts.

Runner A badge awarded to students who were the first (second,
third) to complete a full course or one of its modules.

Reward requirement can specify that it goes only to
the first (second, third) player who met it.

Explorer A badge awarded to students who revealed a specified
number of secret content elements in a course.

Reward requirement can refer to the number of hid-
den content elements uncovered in a course.

Pathfinder A badge awarded to students who were the first to com-
plete a specified number of exercises in a course.

Reward requirement can refer to the number of ex-
ercises that the player solved the first.

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

5. Conclusion

Gamification is a promising remedy for the difficulty of learning and teaching computer programming. Its prac-
tical implementation relies on an open access to gamified programming exercises and tools to edit and use them. A
necessary prerequisite for this to happen is the availability of an appropriate format for the effective specification and
exchange of gamified programming exercises.

Having previously gathered and adopted some of the gamification concepts for the purposes of programming
education [2], in this paper, we make one step further towards a framework for gamified programming education by
identifying the requirements for the format that could be used to specify gamified programming exercises. Our key
contributions are the design of a three-tier architecture of the format, addressing the three kinds of information that
need to be specified for gamified programming exercises, and the identification of detailed requirements for the format
with regard to the respective gamification concepts proposed for programming education.

The work described here will continue in the future according to the plan of the Framework for Gamified Program-
ming Education project. After developing the format meeting the requirements presented here, the consecutive next
steps are to develop exercise editing tools handling data in this format, programming exercises conforming to it, and
learning environments presenting such exercises to students.

Acknowledgment

This paper is based on the work done within the Framework for Gamified Programming Education project sup-
ported by the European Union’s Erasmus Plus programme (agreement no. 2018-1-PL01-KA203-050803).

References

[1] Edwards, S.H., Börstler, J., Cassel, L.N., Hall, M.S., Hollingsworth, J., 2008. Developing a common format for sharing programming assign-
ments. SIGCSE Bull. 40, 167–182. URL: http://doi.acm.org/10.1145/1473195.1473240, doi:10.1145/1473195.1473240.

[2] FGPE Project Consortium, 2019. IO1: Gamification Scheme for Programming Exercises. Version 1.0. http://fgpe.usz.edu.pl/
wp-content/uploads/FGPE_IO1_Gamification_Scheme_for_Programming_Exercises.pdf. accessed on April 2019.

[3] Haobin, Z., 2012. freeproblemset. URL: https://github.com/zhblue/freeproblemset. accessed on April 2019.
[4] Kattis, 2019. Kattis. URL: https://open.kattis.com/. accessed on April 2019.
[5] Klenin, A., 2011. Common problem description format: Requirements. URL: https://ciiwiki.ecs.baylor.edu/images/1/1a/CPDF_

Requirements.pdf. accessed on April 2019.
[6] Leal, J.P., 2018. Mooshak. URL: https://mooshak.dcc.fc.up.pt/. accessed on April 2019.
[7] Leal, J.P., Silva, F., 2003. Mooshak: a web-based multi-site programming contest system. Software: Practice and Experience 33, 567–581.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.522, doi:10.1002/spe.522.
[8] Queirós, R., Leal, J.P., 2011. PExIL: Programming exercises interoperability language, in: Conferência Nacional XATA: XML, aplicações e

tecnologias associadas, 9. a, ESEIG. pp. 37–48.
[9] Queiros, R., Leal, J.P., 2013. BabeLO - an extensible converter of programming exercises formats. IEEE Trans. Learn. Technol. 6, 38–45.

URL: http://dx.doi.org/10.1109/TLT.2012.21, doi:10.1109/TLT.2012.21.
[10] Scheffers, E., Verhoeff, T., Geuns, S., Kruisselbrink, M., Wagener, P., Leenders, R., Macesanu, I., Steneker, M., 2017. peach3. URL: https:

//peach3.nl. accessed on April 2019.
[11] Swacha, J., 2018. SIPE: A Domain-Specific Language for Specifying Interactive Programming Exercises, in: Towards a Synergistic Combi-

nation of Research and Practice in Software Engineering, Springer, Cham, Switzerland. pp. 15–29.
[12] Verhoeff, T., 2008. Programming task packages: Peach exchange format. International Journal Olympiads In Informatics 2, 192–207.



 Jakub Swacha  et al. / Procedia Computer Science 159 (2019) 2502–2511 2511
J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

Students who demonstrate “good” behaviors while solving an exercise may be awarded a badge, to foster similar
behaviors in the future. Table 8 details the format requirements pertaining to badges granted for specific exercises.

Table 8. Format requirements for defining badges granted on exercise-level.
Concept Description Format Requirements
Hardworker A badge awarded when a student fails more than n times

to solve an exercise, but ends up solving it.
Reward requirement can refer to the number of at-
tempts submitted before one is accepted.

Scientist A badge awarded when the student makes several tests to
check his solution, before submitting.

Reward requirement can refer to the number of
tests run before submitting the solution.

Keyword A badge awarded when the student uses a specific keyword
(e.g., array.map).

Reward requirement can refer to the existence of
certain statements in the solution source code.

Straight A badge awarded when the submitted solution has less or
equal number of loops, for instance, than the specified cor-
rect solution.

Reward requirement can refer to the number of
appearance of certain statements in the solution
source code.

4.3. Course-level Gamification Concepts

Gamification concepts on the course level may only be applied to series of exercises (not single ones) and/or whole
courses. As such they may be used to reward consistency (as a student has to pass through a number of exercises to
achieve a defined goal), but also link the exercises logically (with a story explaining the context) and provide means for
direct competition (in the form of duels or tournaments). Table 9 covers the relevant requirements, whereas Table 10
catalogs requirements imposed by different types of badges granted for achievements surpassing single exercises.

Table 9. Format requirements of types of challenges spanning beyond a single programming exercise.
Concept Description Format Requirements
Duel Students can challenge another online student for a 3 exer-

cises’ match. The exercises must be related to the concepts
being studied. It may also involve exhaustible resources to
limit the number of challenges.

Exercise definition has a field specifying whether the
exercise is suitable for duels.

Quest A set of conditions on a player’s progress that grants a re-
ward once met. The player is aware of his/her active quest
and its requirements (and possibly can choose the next
quest after completing one).

Course definition has a list of quests within the
course with relevant fields specifying the require-
ments and rewards.

Streak A sequence of time units in which certain goals were con-
sistently achieved by the player.

Course definition has a field specifying whether a
streak is observed within the course and additional
fields specifying the time unit (e.g., day or week), re-
quirements (to be met on every time unit), and a list
of rewards (to be granted on specified time units).

Story Set of exercises wrapped in a storyline which develops as
students complete an exercise. May be connected to one or
more quests.

Course includes relevant story content (text possi-
bly with audio-visual materials) to be presented in-
between the challenges.

Tournament Instructors may schedule tournaments composed of a set
of exercises where every student can enroll, and winners
are picked according to a predefined criterion.

Course definition may include a list of predefined
sets of exercises selected for tournaments.

Mystery
Track

Exercises that reveal additional exercises about the same
(or related) concepts to offer more opportunity to practice.

Exercise reward type can be a content unlock. Re-
ward item specifies what should be unlocked.

Table 10. Format requirements of badges available on course-level.
Concept Description Format Requirements
Solver A badge awarded by solving N exercises in a row without

a wrong submission, for N in {3, 5, 10, 15, }.
Reward requirement can refer to the number of ex-
ercises solved without wrong submissions in a row.

Man of Duty A badge awarded by following a streak for N time units,
for N in {3, 5, 10, 15, }.

Reward requirement can refer to the number of time
units the player’s streak lasts.

Runner A badge awarded to students who were the first (second,
third) to complete a full course or one of its modules.

Reward requirement can specify that it goes only to
the first (second, third) player who met it.

Explorer A badge awarded to students who revealed a specified
number of secret content elements in a course.

Reward requirement can refer to the number of hid-
den content elements uncovered in a course.

Pathfinder A badge awarded to students who were the first to com-
plete a specified number of exercises in a course.

Reward requirement can refer to the number of ex-
ercises that the player solved the first.

J. Swacha et al. / Procedia Computer Science 00 (2019) 000–000

5. Conclusion

Gamification is a promising remedy for the difficulty of learning and teaching computer programming. Its prac-
tical implementation relies on an open access to gamified programming exercises and tools to edit and use them. A
necessary prerequisite for this to happen is the availability of an appropriate format for the effective specification and
exchange of gamified programming exercises.

Having previously gathered and adopted some of the gamification concepts for the purposes of programming
education [2], in this paper, we make one step further towards a framework for gamified programming education by
identifying the requirements for the format that could be used to specify gamified programming exercises. Our key
contributions are the design of a three-tier architecture of the format, addressing the three kinds of information that
need to be specified for gamified programming exercises, and the identification of detailed requirements for the format
with regard to the respective gamification concepts proposed for programming education.

The work described here will continue in the future according to the plan of the Framework for Gamified Program-
ming Education project. After developing the format meeting the requirements presented here, the consecutive next
steps are to develop exercise editing tools handling data in this format, programming exercises conforming to it, and
learning environments presenting such exercises to students.

Acknowledgment

This paper is based on the work done within the Framework for Gamified Programming Education project sup-
ported by the European Union’s Erasmus Plus programme (agreement no. 2018-1-PL01-KA203-050803).

References

[1] Edwards, S.H., Börstler, J., Cassel, L.N., Hall, M.S., Hollingsworth, J., 2008. Developing a common format for sharing programming assign-
ments. SIGCSE Bull. 40, 167–182. URL: http://doi.acm.org/10.1145/1473195.1473240, doi:10.1145/1473195.1473240.

[2] FGPE Project Consortium, 2019. IO1: Gamification Scheme for Programming Exercises. Version 1.0. http://fgpe.usz.edu.pl/
wp-content/uploads/FGPE_IO1_Gamification_Scheme_for_Programming_Exercises.pdf. accessed on April 2019.

[3] Haobin, Z., 2012. freeproblemset. URL: https://github.com/zhblue/freeproblemset. accessed on April 2019.
[4] Kattis, 2019. Kattis. URL: https://open.kattis.com/. accessed on April 2019.
[5] Klenin, A., 2011. Common problem description format: Requirements. URL: https://ciiwiki.ecs.baylor.edu/images/1/1a/CPDF_

Requirements.pdf. accessed on April 2019.
[6] Leal, J.P., 2018. Mooshak. URL: https://mooshak.dcc.fc.up.pt/. accessed on April 2019.
[7] Leal, J.P., Silva, F., 2003. Mooshak: a web-based multi-site programming contest system. Software: Practice and Experience 33, 567–581.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.522, doi:10.1002/spe.522.
[8] Queirós, R., Leal, J.P., 2011. PExIL: Programming exercises interoperability language, in: Conferência Nacional XATA: XML, aplicações e

tecnologias associadas, 9. a, ESEIG. pp. 37–48.
[9] Queiros, R., Leal, J.P., 2013. BabeLO - an extensible converter of programming exercises formats. IEEE Trans. Learn. Technol. 6, 38–45.

URL: http://dx.doi.org/10.1109/TLT.2012.21, doi:10.1109/TLT.2012.21.
[10] Scheffers, E., Verhoeff, T., Geuns, S., Kruisselbrink, M., Wagener, P., Leenders, R., Macesanu, I., Steneker, M., 2017. peach3. URL: https:

//peach3.nl. accessed on April 2019.
[11] Swacha, J., 2018. SIPE: A Domain-Specific Language for Specifying Interactive Programming Exercises, in: Towards a Synergistic Combi-

nation of Research and Practice in Software Engineering, Springer, Cham, Switzerland. pp. 15–29.
[12] Verhoeff, T., 2008. Programming task packages: Peach exchange format. International Journal Olympiads In Informatics 2, 192–207.


