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Abstract. A travel agency has recently proposed the Traveling Sales-
man Challenge (TSC), a problem consisting of finding the best flights to
visit a set of cities with the least cost. Our approach to this challenge
consists on using a meta-optimized Ant Colony Optimization (ACO)
strategy which, at the end of each iteration, generates a new “ant” by
running Simulated Annealing or applying a mutation operator to the
best “ant” of the iteration. Results are compared to variations of this
algorithm, as well as to other meta-heuristic methods. They show that
the developed approach is a better alternative than regular ACO for
the time-dependent TSP class of problems, and that applying a K-Opt
optimization will usually improve the results.

Keywords: Traveling Salesman Problem · Air Travel · Ant Colony Op-
timization · Meta-Optimization.

1 Introduction

We have reached an age where air traveling is easy and accessible. With the
expansion of air travel comes a substantial increase in the number of available
flights. Travel agencies help people find the best and cheapest flights for a jour-
ney. Their search engines chew through massive quantities of data to determine
the suitable itinerary for a client. If the traveler only needs to go from a city to
another, finding the fittest solution is not that hard. But if the journey consists
of more than one destination, obtaining the optimal combination of flights be-
comes more difficult. Kiwi is a Czech online travel agency that has a feature on
their website which allows a user to search for a multi-city itinerary. They have
launched a Traveling Salesman Challenge (TSC) [14] in 2017 with the purpose of
perfecting this feature. That challenge was the motivation for this work, which
proposes a combined algorithm with meta-optimization of parameters.

The TSC consists of solving a seemingly simple problem: given a set of cities
to visit and a list of flights with the respective origin, destination, price and day,
find the combination of flights with the lowest price that visits each city once
and returns to the first city. Participants have 30 seconds to find a solution. For
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higher simplicity, Kiwi defined a couple of restrictions: (a) on each day you have
to board exactly 1 flight, and (b) flights are immediate, i.e., they take no time.

By such a description, we can immediately associate this problem with the
classic Traveling Salesman Problem (TSP). In TSP, we try to determine the path
with the least cost that visits a certain amount of cities only once and returns to
the origin city. In graph theory, that is the equivalent of finding the Hamiltonian
Cycle with the lowest cost. Nonetheless, the challenge’s conversion to a TSP is
not as simple as it seems, as the price of a plane ticket does not depend only on
the origin and destination, but also on the date of the flight. Also, flights may
not even exist in some days. The TSC is, in fact, a Time Dependent TSP.

This problem can be addressed more formally as follows. Let there be n cities
to visit. The number of days d to visit all cities is equal to n, because of the first
restriction. For each day, there is a different set of available flights and respective
prices between the cities. The cost of a trip from city i to j in day t is cti,j , where
1 ≤ t ≤ d. A valid path is one that starts at city A, visits all cities, returns to
city A, and only consists of existing flights. Let xti,j be a binary variable that
has a value of 1 if in day t the flight from i to j was taken, or 0 otherwise.
The objective function to minimize is defined as

∑n
i=1

∑n
j=1

∑n
t=1 c

t
ij · xtij . Just

as the regular TSP, the proposed challenge is NP-hard. Thus, solving it for a
large number of cities using exact algorithms is not feasible. Most approaches
use meta-heuristics to find a “good enough” solution in a timely fashion.

The central objective of this work is to implement a meta-heuristic to find
the best solution to Kiwi’s Traveling Salesman Challenge [14] in 30 seconds. The
rest of the paper is organized as follows. Section 2 reviews related work and
frames our work within existing literature. Section 3 describes our approach to
the TSC, including optimizations. Section 4 focuses on experimental evaluation.
Finally, Section 5 concludes the paper and points directions for future work.

2 Literature Review

In the 19th century, the problem of finding a Hamiltonian cycle on a graph was
mathematically formulated by Hamilton [2]. The Hamiltonian cycle is a well-
known reduction of the TSP. Some of the first techniques to be used to solve
the TSP include Branch and Bound [15], the Christofides algorithm [6] and the
2-Opt [17].

Gambardella and Dorigo, who wrote the original paper on the Ant Colony
Optimization (ACO) meta-heuristic, combined ACO and Q-Learning to calcu-
late the optimal solution for a TSP instance [10]. Results indicated that this
procedure was better than some other popular approaches, such as Simulated
Annealing. ACO has been compared favorably to other heuristic approaches [19,
20]. More recently, Mohsen [18] used ACO with a particular operator that com-
bines Genetic Algorithms (GA) and Simulated Annealing (SA) to solve the TSP.
The operator was used to control ant diversity, a technique that has shown im-
proved performance when compared to a standard ACO implementation.
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As meta-heuristics generally involve setting a few parameters that affect their
performance, it is necessary to tune them for a particular problem. However,
there is no rule for the tuning. Meta-optimization consists of using an optimiza-
tion method to tune another optimization method. It has been used to improve,
for example, the performance of genetic algorithms [9].

Inspired by other works, instead of creating a new meta-heuristic, we adopted
Mohsen’s mixed approach [18] to solve the TSC. We also perform meta-optimizations
using genetic algorithms [9] and local search by applying K-Opt moves [12]. With
this work, we intend to improve Mohsen’s meta-heuristic performance and de-
velop an even faster algorithm for the TSP and for Kiwi’s TSC.

3 Methodological approach

A TSP is commonly represented using graph theory. In an air travel context,
each node represents a city and each edge a flight. The final solution is a set of
ordered flights, expressing the trips to do. In the case of the TSC, however, given
the time-dependent nature of trip prices, we need to add a restriction stating
that, on a given day, only available flights can be used to travel between cities.
We do this by representing a city with different nodes for each day.

We can also formalize the TSP as a scheduling problem [3], by using the
α|β|γ notation [11]: 1|sij |Cmax. There is a single machine, the traveler. A job is
a city to visit: job j is characterized by its processing time pj and by a setup
time sij that represents the amount of time needed to setup job j after job i.
The setup time of a job depends on the job that precedes it. The processing
time is the cost of remaining in the city. Since it is not relevant to this particular
problem, every processing time is equal to a constant that we disregard. The
setup time is the cost of going from city i to city j. The objective function is to
reduce the overall make-span Cmax, that is, the total cost of executing every job
(which in our case corresponds to the sum of flight prices).

Although this formalization is correct for a regular TSP, it does not fit the
TSC because of time-dependencies: going from city i to city j on day x may have
a different price than doing so on day y. Thus, the setup time sij is dependent
on the slot t in which the machine executes the job. This t variable corresponds
to the day of flight in the original problem proposed by the Kiwi travel agency.
A more appropriate formulation is: 1|sijt|Cmax. Instead of a single cost matrix,
there are t matrices, one for each day.

3.1 Algorithms

Meta-heuristics can be applied to solving all kinds of optimization problems. We
have adopted Simulated Annealing and Ant Colony Optimization as our chosen
meta-heuristics. For comparison, we also implemented Greedy search (Basic Hill
Climbing) and Backtracking as a deterministic algorithm.
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Simulated Annealing Many algorithms are greedy and tend to get stuck in
local optima (such as the well-known hill-climbing algorithm). Simulated Anneal-
ing (SA) is a well-known probabilistic technique for finding the global optimum.
SA comprises a local-search optimization procedure and includes a temperature
parameter: the higher it is, the higher the chance of accepting a worse neighbor-
ing state for the next iteration of the algorithm. After each iteration, temperature
decreases. SA will start to look for solutions in a vast space, but with time it
will search in an increasingly small space until the temperature gets close to 0.

Ant Colony Optimization Ant Colony Optimization (ACO) is a rather com-
mon approach to solving the TSP [7, 16], based on the concept of collective
intelligence of an ant colony. Every ant tries to find the best path to the food,
and the better the path, the more pheromones will be laid on it. These make cer-
tain trails more ”attractive”, causing a convergence to better paths. While ACO
can be seen as a probabilistic approach, it explores the search space using a set of
individuals. It has some similarities with genetic algorithms, but while the latter
combines individuals through crossover and mutation operators, ACO explores
synergies between individuals through environment-based communication.

Backtracking Backtracking [1] is a general deterministic algorithm whose
strength is that it does not need to explore the entire search space. Whenever
Backtracking finds itself in a branch that does not lead to an improvement on
the current best solution, it moves on to the different branch.

3.2 Optimizations

Discovering new valuable meta-heuristics is very difficult. For this work, we focus
on optimizing a meta-heuristic’s behavior in order to improve its performance.

Parallelized Ant Colony Parallelization is often a good solution to speed ex-
ecution time, if the program has parts that can be parallelized, that is, executed
independently. In ACO, the ant’s path generation (line 8 of Algorithm 1) can be
parallelized, as each ant’s path is generated on its own, needing only the graph
and the pheromone trails. Pheromone updates occur on a single thread. The
computer we ran the simulation on had a dual-core CPU with hyper-threading;
as such, we defined a thread pool of 4, so as to match the maximum number
of threads available on the CPU. A larger thread pool would mean that one or
more CPU threads would need to handle the extra software thread, thus limiting
the total speed of the algorithm.

Ant Colony with Simulated Annealing Many so-called hybrid metaheuris-
tics [5] have been proposed in the past, and the optimization described here can
be seen as one such attempt. This approach [18] is a variation of the original
ACO, with a twist at the end of each iteration: if the population diversity is
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Algorithm 1: Ant Colony Optimization with Simulated Annealing

1 function antColonySA (g, n, ph w, vis w, ev f , q, ini ph lvl, temp dec,

iter per temp);
Input : graph g, number of ants n = 30, pheromone weight ph w = 0.5,

visibility weight vis w = 0.5, evaporation factor ev f = 0.8, q = 1000,
initial pheromone level ini ph lvl = 20, temperature decrease
temp dec = 0.05, initial temperature init temp = 1 and number of
iterations per temperature iter per temp = 1

Output: the path with the least cost obtained
2 startTimer();
3 best cost ← +∞;
4 best path ← null;
5 initializePheromones(ini ph lvl);
6 while not timerFinished() do
7 createAnts(b);
8 moveAnts(g, ph w, vis w);
9 new paths ← getAntsPaths();

10 updatePathPheromones(new paths, ev f , q);
11 diversity = (averageCost− bestCost) / (worstCost− bestCost);
12 if diversity > 0.7 then
13 simulatedAnnealing(getBestAnt(), temp dec, iter per temp, inittemp);
14 end
15 else
16 mutate(getBestAnt());
17 end
18 updatePathPheromones(getBestAnt().getPath(), ev f , q);
19 if getBestAnt().getCost() < best cost then
20 best cost ← getBestAnt().getCost();
21 best path ← getBestAnt().getPath();

22 end

23 end
24 return best path;

high, simulated annealing is applied to the best-performing ant and then its
pheromones are applied to the paths as usual; if the population diversity is low,
a mutation is performed on that ant (swapping the order of two random adja-
cent cities) and the pheromones are also applied. By intensifying the pheromone
trail of a globally good solution through the application of SA to the best ant,
attention is concentrated on that search area, reducing dispersion. The mutation
operation brings a reinforcement of random paths, increasing the level of explo-
ration by opening up the search space. Algorithm 1 shows our implementation.

Meta-optimizing using Genetic Algorithms The amount of adjustable pa-
rameters resulting from the combination of ACO and SA is too high to manually
test all possible configurations. Optimizing these values is, in itself, a new prob-
lem that we tackle using a genetic algorithm. Chromosomes have one gene for
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Algorithm 2: Meta-optimization using Genetic Algorithms

1 function metaOptimization (g, n);
Input : the graph g and the number of generations n
Output: the meta-optimized set of parameters

2 randomly initialize population p;
3 for i = 1 to n do
4 while processing time < maximum processing time do
5 for each individual i in population p do
6 fitness(i) = antColonySA(i.getParameters());
7 end

8 end
9 generate new population based on fitness values;

10 end
11 return best individual’s parameters;

each parameter. The fitness function indicates the performance of the ACO-SA
algorithm when using the values of the chromosome. We use the average result
of ten runs for the fitness function. The lower the average cost obtained, the
greater the value of fitness. The procedure we use for this genetic algorithm is
listed in Algorithm 2. Running meta-optimization is costly, but it only needs to
be performed once. Since Kiwi’s challenge is mostly about getting the best result
in a short period of time, by already having good parameters we are increasing
our chances of finding the optimal solution.

Solution optimization with K-Opt K-Opt [12] is a local search algorithm
involving swap moves over a previously-obtained path. K is the number of edges
to delete, creating K + 1 sub-tours. Apart from the first and last sub-tour, all
others are reordered and/or reversed to try to find a better global tour. The al-
gorithm attempts all possible combinations of removed edges (that still preserve
K+1 sub-tours) to find the best combination of reordering and/or reversing.
We used K ∈ {2, 3} since, even though the algorithm runs in polynomial time
T (nK), the running time for higher K in heavier datasets is too high. 3-Opt
usually gets within 3-4% of an optimal tour [12], so it ensures an already rather
good proximity to the optimal solution.

4 Experimental evaluation

In order to assess the merits of each optimization approach (described in Sec-
tion 3.2) in enhancing the performance of the heuristics, we compare the re-
sults obtained with and without such optimizations. The dataset used was the
one provided by Kiwi for the challenge [13], which is a comma-separated val-
ues (CSV) file. The first line contains the string corresponding to the origin
city. The following lines contain the available flights, according to the syntax
origin city, destination city, day, price.
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We tested the heuristics for several dataset sizes of up to 100 cities. Results
shown in Table 1 are all relative to one single documented run. However, in most
of the undocumented runs we executed, the scenario was the same. According
to Kiwi’s challenge, the output route of an execution is the best route found in
30 seconds. After this time, the execution of the algorithm terminates.

Table 1. Results of the algorithms in one run with 15, 60 or 100 cities.

15 cities 60 cities 100 cities
Algorithm Lowest cost Iterations Lowest cost Iterations Lowest cost Iterations

Backtrack 5268 - 29387 - 53202 -
Greedy 4801 15 12073 60 17893 100

SA 4344 5596770 15450 319760 20116 66810
ACO 4464 19218 10396 652 17002 150

ACO (p) 4500 23623 10340 1213 16614 237
ACO-SA 4385 22189 10213 696 16156 165

ACO-SA (p) 4385 20740 10551 630 16452 145
ACO-SA (m) 4385 15538 10007 665 16206 150

ACO-SA (p) (m) 4385 16660 10374 670 16037 162

We start by comparing the performance of a regular version of Ant Colony
Optimization with other heuristics, such as Simulated Annealing and Hill Climb-
ing (Greedy), but also exact algorithms like Backtrack. These algorithms gave us
a control group to compare the performance of our approach. Figure 1 demon-
strates how the ACO variations behave for different dataset sizes.

For datasets with a number of cities smaller than 15, the results achieved
by brute-force and heuristic algorithms were identical. Table 1 documents the
differences that arise as the search space grows larger. As expected, with the
increase in the number of cities, Backtrack and Hill Climbing struggled to find
satisfactory solutions in the 30s time window (in fact, the running time needed
for Backtracking to run with 15 cities is of 7m16s, compared to 155ms for 10 cities
and 1ms for 5 cities). Ant Colony Optimization proved better than Simulated
Annealing in all sizes. The parallelization of the Ant Colony Optimization proved
valuable in increasing the number of iterations the algorithm could perform
before running out of time, although it did not bring a much better result,
leading us to conclude that convergence was already achieved most of the times.

The Simulated Annealing tweak makes an iteration take longer to execute.
Because of the 30 seconds time limit, ACO-SA makes less iterations than the
regular ACO. However, ACO-SA consistently leads to a better solution than
ACO, as seen in Figure 1. The control of the ants diversity proved to have a
great effect in the speed of convergence. ACO-SA found better intermediate
solutions than ACO faster, so its performance is effectively better than ACO.

Parameter optimization through genetic algorithms was done by targeting a
dataset with 60 cities. For datasets with this approximate size, meta-optimization
did improve the results of the algorithm. In datasets of significantly different
sizes, however, it did not behave as well as we thought, being worse than the man-
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Fig. 1. Lowest cost obtained for different dataset sizes. (p) means that the algorithm
has been parallelized. (m) means that meta-optimization was applied. The values have
been raised to the power of 4 to better demonstrate how algorithms behave as the
search space gets larger.

ually defined parameters. We believe that by redefining the meta-optimization
strategy to take into account datasets of different sizes the results would have
been better.

Applying K-Opt on the final solution allows us to find even better solutions.
The actual value of using the K-Opt technique is better for a number of cities
between 10 and 80, as can be observed by crossing information in Figure 2. In
smaller datasets, the difference K-Opt makes is not so noticeable because there
is not much room for improvement. In larger datasets, and given the fact that
the time complexity of a K-Opt execution for n cities is nK , 3-Opt reveals itself
as inappropriate due to the time it takes to run. Thus, we can conclude that
the usage of the K-Opt technique should be targeted mainly to medium-sized
datasets, and only 2-Opt should be used in larger datasets so as to avoid a
significant increase in execution time.

K-Opt’s running time does not count to the 30 seconds total of the chal-
lenge. As their runtime is constant (for a constant dataset size), we assume that
anyone planning on using it could reduce the main algorithm’s running time by
a calculated margin that would allow for the optimization to be executed. As
such, when comparing our main algorithms in all datasets, we chose to keep the
30s total so as to not affect the comparison between every result.
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Fig. 2. Average cost improvement by applying K-Opt (left) and execution time of
2-Opt and 3-Opt on the final solution of ACO-SA (right).

5 Conclusions

Combining Ant Colony Optimization with Simulated Annealing proved to have
better performance than the regular ACO version to solve Kiwi’s multi-city air
travel challenge. Applying the K-Opt technique to an already good solution
is useful mostly for medium sized datasets, because of the trade-offs between
solution improvement and computation time.

Our experiments in applying meta-optimization to the ACO-SA did not im-
prove the results much, but we believe that by slightly altering our approach
we could achieve better results. Since the optimization was made using a fixed
dataset size, it was not so effective on the other sizes, which means that if we
had used datasets with different sizes, the result might have been better. We
also found that Backtracking could be useful in a real-life context (which uses
few cities), but clearly is not enough in the TSC.

In the future, an improvement that could be made would be to use racing
conditions in the meta-optimization [4]. Instead of spending resources evaluating
every single generated individual, we would drop the least promising candidates
during the evaluation process, focusing on the best individuals. Another improve-
ment could be the parallelization of 3-Opt so that it becomes faster to execute
and thus less cumbersome to use with larger datasets. The code used for the
project is hosted in a GitHub repository. [8].
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