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Abstract 
A competent immune system requires a functionally diverse repertoire of T cells that 

is able to respond to a variety of foreign antigens while being tolerant to self-constituents. 

These principles are in part imposed in the thymus through the action of highly specialized 

subtypes of thymic epithelial cells (TECs). In particular, medullary TECs (mTECs) have a 

critical role in tolerance induction, due to their unique ability to present tissue-restricted 

antigens (TRAs). The establishment of the medullary epithelial compartment is fostered by 

thymocyte-derived signals, through the engagement of signalling via the tumour necrosis 

factor receptor superfamily (TNFRSF) members RANK, CD40 and LTbR, expressed on 

mTECs and their precursors. The described mTEC developmental program includes 

immature CD80lowMHCIIlow precursors (mTEClow) that give rise to mature CD80high MHCIIhigh 

cells (mTEChigh), including cells that express Aire, an important regulator of TRA expression. 

Additionally, terminally differentiated CD80lowMHCIIlow post-Aire cells also reside within the 

mTEClow. Further heterogeneity can also be defined by the existence of cells expressing 

Cld3/4, SSEA and podoplanin, which were shown to define mTEC-committed progenitors, 

or cells expressing CCL21, a key inducer of thymocyte migration into the medulla. As such, 

the mTEC niche encompasses highly diverse subsets, whose lineage and functional 

relationships remain difficult to characterize, mainly due to a lack of suitable markers to 

define existent subsets and further dissect new developmental stages.  

In this thesis, we incorporate the study of CD24 and SCA1 expression in the 

standard flow cytometry analysis of TECs. With this strategy, we reveal three distinct 

subpopulations of mTECs that emerge from the perinatal period into early adulthood: 

mTECI (CD24+SCA1-), mTECII (CD24+SCA1+) and mTECIII (CD24-SCA1-). We find that 

mTECI include a mixture of both mTEClow and mTEChigh, while the mTECII and mTECIII 

subsets are enriched for mTEClow and mTEChigh, respectively. The production of CCL21 is 

specifically detected in a fraction of mTECII, while Aire expression is largely confined to the 

mTECIII subset. Using an in vitro lineage-tracing system, we show that mTECI and mTECII 

of mTEClow type have the potential to generate all subsets, including Aire+ mTEChigh. Lastly, 

we show that while TNFRSF-induced mTEC maturation does not directly induce mTECI-III, 

signals provided by thymocytes at early stages of their development are sufficient to 

establish the mTECI-III differentiation profile. Collectively, these results reveal a novel 

dimension of mTEC diversity defined by the differential expression of CD24 and SCA1. 

These newly-defined subpopulations provide a platform to further characterize their specific 

intrathymic functions. Ultimately, these findings extend our comprehension of the mTEC 

developmental program and introduce new markers that will allow a better insight of the 

mechanisms underlying mTEC development and tolerance induction. 
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Resumo 
O sistema imunitário necessita de um vasto repertório de células T capazes de 

responder a inúmeros antigénios e que sejam simultaneamente tolerantes aos antigénios 

do próprio organismo. Estes princípios são impostos no timo pela ação das células 

epiteliais tímicas (TECs). Em particular, as TECs residentes na medula (mTECs) tem um 

papel crítico para o estabelecimento do estado de tolerância, devido à sua capacidade 

única de expressar antigénios restritos de tecidos (TRAs). O desenvolvimento das mTECs 

é dependente de sinais provenientes dos timócitos, que ativam os membros da 

superfamília de recetores de fator de necrose tumoral (TNFRSF) RANK, CD40 e LTbR, 

expressos pelas mTECs e as suas células progenitoras. O programa de desenvolvimento 

das mTECs atualmente descrito inclui células imaturas CD80lowMHCIIlow (mTEClow), 

precursoras das células maturas CD80highMHCIIhigh (mTEChigh), que por sua vez incluem 

células que expressam Aire, um importante regulador da expressão de TRAs. Por último, 

mTECs num estado pós-Aire são CD80lowMHCIIlow e estão também inseridas na população 

mTEClow. É ainda possível reconhecer uma maior heterogeneidade de mTECs através dos 

marcadores Cld3/4, SSEA e podoplanina, que identificam células progenitoras específicas 

da linhagem mTEC, ou CCL21, uma citocina que induz migração de timócitos para a 

medula. Deste modo, as mTECs possuem uma elevada diversidade, sendo que a relação 

entre as suas subpopulações e as respetivas funções permanecem pouco caracterizadas 

devido à escassez de marcadores para definir subpopulações existentes e elucidar novas 

fases de diferenciação.  

No presente trabalho, foram introduzidos os marcadores CD24 e SCA1 na análise 

clássica de TECs por citometria de fluxo. Deste modo, mostramos que as mTECs se 

subdividem em três populações no período embrionário e pós-natal: mTECI (CD24+SCA1-

), mTECII (CD24+SCA1+) e mTECIII (CD24-SCA1-). Revelamos que as mTECI incluem 

mTEClow e mTEChigh. Enquanto as mTECII e mTECIII abrangem maioritariamente mTEClow 

e mTEChigh, respetivamente. As mTECII possuem células produtoras de CCL21, enquanto 

as mTECIII incluem a maioria das células Aire+. A análise in vitro da descendência das 

subpopulações mTECI ou mTECII caracterizadas como mTEClow revelou que ambas são 

capazes de gerar as outras subpopulações, incluindo células mTEChigh Aire+. Por fim, 

apesar da maturação induzida in vitro através dos recetores TNFRSF não ter gerado 

diretamente as populações mTECI-III, os sinais provenientes de timócitos em fase inicial de 

desenvolvimento foram suficientes para induzir o perfil de diferenciação mTECI-III. Em 

conclusão, estes resultados revelam uma nova diversidade de mTECs definida pelo padrão 

de expressão de CD24 e SCA1. As novas populações descritas neste trabalho constituem 

uma importante ferramenta para a continuação da caracterização das suas funções no 
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timo. Por último, estas observações permitem expandir o atual modelo de diferenciação 

das mTECs e fornecem novos marcadores para o estudo dos mecanismos que controlam 

o seu desenvolvimento e a indução de tolerância. 

 

Key words 
Thymus medulla, Thymic epithelial cells, TEC progenitors, TEC differentiation, T cell 

development, Tolerance induction 
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An outline of the immune system 

 A competent immune system must confer an individual the ability to survive under 

the threat of constant and ever-evolving pathogens, including viral, bacterial, fungal and 

protozoa, as well as dysfunctional host cells. To do so, it must act rapidly and efficiently to 

recognize threats and activate different effector functions while still maintaining the flexibility 

to adapt to the changes in the internal and external environment. Importantly, recognition 

must include discrimination between “self” and “non-self” in order to maintain an 

immunological self-tolerant state. All the while, it must be efficient in its use of genes and 

cells, and not impose an excessive energetic burden to the host. Such requirements are 

met through features of both innate and adaptive immunity. 

Innate immune defences constitute the first line of response to pathogens and are 

primarily mediated by germline-encoded receptors, termed pattern recognition receptors 

(PRRs), that have evolved to recognize highly conserved pathogen-associated molecular 

patterns (PAMPs). PRR engagement will rapidly induce a cell response characterized by 

the expression of different genes involved in cell activation, inflammation and production of 

microbicidal species [1].   

In addition to the innate immune system, jawed vertebrates, beginning with 

cartilaginous fish, have developed an adaptive immune system mediated primarily by 

lymphocytes [2]. The lymphocyte receptor repertoire is highly diverse, being able to 

recognize antigens of any potential pathogen or toxin. This capability is the virtue of somatic 

recombination through the random rearrangement of variable (V), diversity (D) and joining 

(J) gene segments, which upon assembling produce antigen receptors expressed by T (for 

thymus-derived) and B (for bursa de Fabricius-derived) lymphocytes [3]. The random nature 

of this recombination process results in a vast clonally diverse repertoire of T cell receptors 

(TCRs) and B cell receptors (BCRs). However, this process inevitably generates receptor 

specificities against antigens of the host. Elimination or regulation of self-reactive 

lymphocytes and maintenance of immunological self-tolerance is safeguarded by central 

and peripheral tolerance mechanisms [4, 5].  

Upon maturation in the bone marrow (BM) and thymus, T and B cells, respectively, 

migrate to secondary lymphoid tissues, which specialize in spatially organizing interactions 

between immune cells, such as antigen-presenting cells (APCs) and lymphocytes. With 

subsequent triggering by antigen recognition, these cells may undergo clonal expansion 

and differentiation into effector T lymphocytes or antibody-producing plasma cells or 

otherwise become memory cells that can act in case of reexposure to their specific antigens 

[3]. 
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The thymus - Structural and functional elements 

This thesis is centred on the thymus, a bilobed organ located in the central 

compartment of the thoracic cavity above the heart. It is the primary lymphoid site for the 

generation and selection of T cells bearing a TCR repertoire capable of responding to 

countless foreign antigens while being tolerant against self-antigens. The ability to 

accommodate such an essential and complex process is attributed to the unique thymic 

microenvironments, specialized in providing the necessary signals and cell-cell interactions 

to support thymocyte migration, survival, commitment, proliferation, and selection.  

The thymus is an encapsulated and lobulated organ. The capsule consists of 

mesenchymal cells and connective tissue and penetrates into the thymus to form 

trabeculae. Below this layer is found the sub-capsular epithelium which overlies the outer 

cortex [6]. A peripheral cortex and central medulla are formed by three-dimensional 

networks of epithelial cells surrounded by developing T cells, or thymocytes, which make 

up for over 95% of the cellularity of the postnatal thymus (Figure 1A) [7].  

The thymic stroma is mainly comprised of thymic epithelial cells (TECs), divided into 

two phenotypically and functionally distinct subtypes named according to their spatial 

location: cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells 

(mTECs). Other stromal elements include endothelial cells, mesenchymal cells, and BM 

derived cells, such as dendritic cells (DCs) , macrophages, and B cells (Figure 1B) [6]. The 

principles underlying TEC development are the study subject of this thesis and will be 

reviewed in the following chapters. 
 

Figure 1 - Organization and cellular 
composition of the thymus. (A) 
Immunostaining showing cellular 
organization in the postnatal thymus. (c – 
cortex, m - medulla). pan-keratin (red) 
highlights cTECs and mTECs; CD31 (blue) 
labels endothelial cells; collagen IV (green) 
labels perivascular matrix; the dotted lines 
show the cortico-medullary boundary and 
the capsular boundary of the cortex. (B) 
Scheme image depicting the general 
cellular components of the adult thymus 
(CMJ – cortico-medullary junction). Images 
adapted from [8]. 
 

 

 

 
In the cortex, cTECs have an important role during the early stages of T cell 

development by promoting lineage commitment and expansion of early T cell progenitors 

and by providing the environment required for positive selection of thymocytes bearing self-

A B 
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major histocompatibility complex (MHC)-restricted TCRs. In the medulla, mTECs and DCs 

mediate negative selection of autoreactive T cells and the generation of regulatory T cells 

[9]. The function of cTECs and mTECs in thymopoiesis will be described in more detail later 

on. 

Ultimately, TECs are of vital importance in the establishment and maintenance of a 

functional T cell repertoire and population. This is evidenced by a clear link between TEC 

dysfunction and the emergence of multiple disorders, ranging from immunodeficiency to 

autoimmunity. 
 

Thymus organogenesis 

The establishment of the fully organized and competent thymic microenvironments 

is the result of a complex and tightly orchestrated process of thymus development. Thymus 

organogenesis occurs in the pharyngeal region of the embryo, initiating between embryonic 

day (E) 9 and 10. It is generated from the endoderm of the third pharyngeal pouch, in a 

shared primordium with the parathyroid gland [10]. Expression of the transcription factors 

Forkhead box N1 (Foxn1) and Glial cells missing homolog 2 (Gcm2) delineates the two 

non-overlapping organ-specific domains, orchestrating the differentiation of the thymus and 

parathyroid, respectively [11]. At E12.5, the two discrete organs begin to resolve and 

migrate to their final anatomical locations: the parathyroid locates adjacent to the thyroid 

gland, and the thymus migrates further into the chest cavity, where the two lobes meet 

above the heart [8]. Interestingly, an ectopic cervical thymus can also be identified in both 

mice and humans. The ectopic thymus emerges later, at E15.5, as a small patch of Foxn1-

expressing cells [12] and possesses the same general organization as the thoracic thymus, 

as well as the ability to support T cell differentiation [13].  

Foxn1 is the earliest thymus-specific marker and is an indispensable regulator of 

thymus organogenesis [14]. Foxn1-/- mice display the classical nude phenotype of 

congenital athymia and hairlessness. In nude mice, formation of the primordial organ is 

arrested between E11.5 and E12.0 and the primordium is not colonized by lymphocyte 

precursors, causing a severe primary T cell immunodeficiency [15]. Several other 

transcription factors and signalling pathways have been implicated in early thymus 

development [8, 15]. Still, thymic fate specification results from a complex molecular 

network that remains, for the most part, unknown. 

The fetal thymus is seeded by hematopoietic stem cell (HSC)-derived lymphocyte 

precursors prior to vascularization, between E11 and E12. Lymphocytes provide key initial 

instructive signals for TEC development and proliferation [16]. Furthermore, the third 

pharyngeal pouch cells are surrounded by neural crest (NC)-derived mesenchymal cells 
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that will later form the capsule [17]. Proliferation and differentiation of the thymic epithelium 

is also highly dependent on signals supplied by the surrounding NC mesenchymal cells, 

such as fibroblast growth factor (FGF)-7 and -10 and insulin-like growth factor (IGF)-1 and 

-2 [18, 19]. In fact, NC cells provide several essential signals for thymus organogenesis. 

They are important regulators of the patterning of the third-pouch endoderm into the two 

organ-specific domains and subsequent migration and positioning of the thymus [20, 21]. 

Mesenchymal cells have also been shown to be the major source of retinoic acid (RA), an 

important regulator of TEC homeostasis, both in the embryonic and adult thymus [22]. 

Lastly, NC-derived cells stabilize blood-vessel structures by differentiating into perivascular 

cells [17]. 

In conclusion, thymic organogenesis is a dynamic process that involves cells from 

all three embryonic germ layers: endoderm-derived epithelium, ectoderm-derived NC cells 

and mesoderm-derived HSCs. Each undergoing tightly co-dependent and synchronised 

developmental programs.  

 

TEC progenitors 

During thymus organogenesis, the first immature TECs appear at E12.5 and 

develop from thymic epithelial progenitors (TEPs), which have the ability to differentiate into 

both cortical and medullary lineages. Bipotent TEPs are essential building blocks for thymus 

development and maintenance and have been detected in both the embryonic and 

postnatal thymus [23, 24]. The identification of TEPs is an area under intense investigation, 

however, a full consensus has not yet been reached. Some studies have suggested 

Placenta-expressed transcript-1 (Plet-1) as a TEP marker, which can be recognized by the 

monoclonal antibodies MTS20 and MTS24 [25]. Plet1+ TECs can be detected at E12 and 

progressively become rarer during thymus development. These cells were shown to 

possess the capacity to generate functional cortical and medullary thymic 

microenvironments [26, 27]. In contrast, a following report argued that both MTS24+ and 

MTS24– cells have bipotent progenitor ability, challenging the view of Plet-1 as a TEP-

specific marker [28]. Hence, the defining phenotype of bipotent TEPs remains unclear, as 

well as their location, abundance, and physiological contribution to the maintenance of the 

thymic compartments throughout life. 

Follow-up reports showed that embryonic TEPs expressing several cTEC-

associated markers, including β5t, CD205 and IL7, are able to generate both cTECs and 

mTECs [29-31]. Such findings argue against a model of TEC development in which bipotent 

TEPs synchronously diverge into cTEC and mTEC progenitors. Instead, they have led to 

the delineation of a serial progression model of TEC development, in which progenitors 
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pass through a transitional phase where they express cTEC traits prior to commitment to 

the cTEC or mTEC lineage [32]. Yet, the molecular principles controlling this cell-fate 

decision are still to be discovered (Figure 2). 

Other studies have focused on the identification of mTEC lineage-committed 

progenitors (mTEPs) [33]. These cells emerge as early as E13 and can be defined by the 

expression of tight junction components claudin-3 and claudin-4 (Cld3/4) [34].  In addition, 

stage-specific embryonic antigen A (SSEA) is expressed in a small fraction of total Cld3/4+ 

cells and marks a more defined mTEP population whose self-renewing and progenitor 

potential, although decreased, can still be detected in adulthood [35]. Moreover, receptor 

activator of NF-κB (RANK)+ unipotent mTEC progenitors arise from the Cld3/4+SSEA- 

fraction between E14 and E15 [36]. Lastly, a fraction of adult mTECs can also descend from 

a lineage-committed podoplanin (PDPN)+ progenitor located at the cortico-medullary 

junction (CMJ) [37]. It remains however unclear whether these mTEP subsets are distinct 

stages of the same linear differentiation or if they represent divergent mTEC lineages 

(Figure 2). 

 

 
Figure 2 - TEC progenitors and their contribution to the development and maintenance of cTECs and mTECs. Bipotent 
TEPs express cTEC traits prior to commitment to the cTEC or mTEC lineage and have been suggested to have a reduced 
contribution to the maintenance of the postnatal thymus. Cld3/4+SSEA+ and Cld3/4+RANK+ cells constitute two mTEC-
restricted progenitors that rise in the embryonic thymus, while PDPN+ mTEPs can also contribute to the maintenance of the 
mTEC compartment in the adult thymus. The lineage relationship between the represented mTEPs is not yet defined. 

 

The cellular and molecular mechanisms controlling the maintenance and 

regeneration of the adult mTEC compartment are still under investigation [38]. Possibly, 

throughout life, the medullary epithelium could be maintained solely by embryonic derived-

mTEPs, eventually leading to an exhaustion of this limited cell pool. Alternatively, new 

supply of mTEPs from bipotent progenitors could still occur in the adult thymus. In this 

mTEP

Bipotent TEP CD205+

β5t+

IL7YFP+

PDPN+ Medulla

Cortex

Embryonic development Postnatal maintenance

Cld3/4+ SSEA+

mTEC

cTEC

Ly51+

β5t+

CD205+

CCRL1hi

UEA+

MHCIIlo/hi

CD80lo/hi

Aire-/+

Fezf2-/+

Cld3/4+

SSEA-/+

RANK/+

Cld3/4+ RANK+



 

 

FCUP - ICBAS 
Defining novel stages in medullary thymic epithelial cell differentiation: Implications for tolerance induction 8 

regard, bipotent β5t+ TEPs can generate both Cld3/4+SSEA1+ and PDPN+ mTEPs, 

however, this contribution to the mTEP pool fades during postnatal life, suggesting that the 

maintenance of the adult medullary epithelium is likely assured by mTEPs rather than 

bipotent progenitors [39, 40] (Figure 2). 

 

Phenotypic markers of TECs 

 The development of novel antibodies and reporter mice has significantly aided the 

ongoing efforts to unveil all the developmental and functional complexity of TECs. Some 

markers are shared between cTECs and mTECs, for example, both are defined by the 

expression of epithelial cell adhesion molecule (EpCAM)/CD326 and MHCII, within the 

nonhematopoietic (CD45−) fraction of the thymus [41]. Several phenotypic traits are 

routinely used to discriminate cTECs and mTECs and to identify subpopulations within 

each. Across studies, there is some variability in the method employed to discriminate TEC 

subsets, which is also dependent on the analytical tools used, such as flow cytometry and 

immunohistochemical analyses. cTECs are commonly defined by the expression of 

cytokeratin (K) 8 and 18, Ly51 (CD249), CD205 and ER-TR4, as well as more recently 

identified functional molecules, such as CCRL1, β5t, DLL4 and high levels of IL-7 [42]. On 

the other hand, mTECs are distinguished by the expression of K5 and 14, MTS10, ER-TR5 

and the binding to lectin Ulex europaeus agglutinin (UEA) 1. Further discrimination of mTEC 

heterogeneity can be achieved based on the combined levels of expression of MHCII, 

CD40, CD80, Aire and CCL21 [32, 41]. This thesis will further explore the diversity within 

the mTEC compartment, as such, a more in-depth discussion of the described mTEC 

markers and subpopulations will be provided in the chapter “mTEC diversity”. 

 

T cell development and its interdependence on thymic stroma 

Early stages of differentiation 

All blood cell types, including T cells, originate from HSCs. These cells are 

characterized by continuous progenitor ability and self-renewal, and are phenotypically 

negative for all lineage markers [43]. HSCs undergo a series of intermediate stages where 

they undergo progressive lineage restriction, and ultimately differentiate into cells of the 

lymphoid and myeloid lineage. Lymphoid cells include T, B, natural killer (NK) and innate 

lymphoid cells (ILCs), while the myeloid lineage gives rise to erythrocytes, megakaryocytes, 

granulocytes and macrophages [44]. Plasmacytoid DCs (pDCs) and conventional DCs 

(cDCs) differentiate from lymphoid- and myeloid-committed progenitors, respectively [44]. 



 FCUP - ICBAS 
Defining novel stages in medullary thymic epithelial cell differentiation: Implications for tolerance induction 

 

 

9 

During fetal development, hematopoiesis occurs primarily in the liver, whereas in 

postnatal life, it resides within the bone marrow [43]. In order for HSCs to differentiate into 

competent self-tolerant T cells, they require the specialized thymic microenvironments. 

Therefore, these cells must egress from the adult bone marrow, traffic through the blood, 

and enter the thymus. Thymus homing of bone marrow-derived progenitors is guided by the 

expression of the chemokine receptors CCR7, CCR9 and CXCR4, while the corresponding 

chemokine ligands CCL19/CCL21, CCL25 and CXCL12, are provided by multiple stromal 

cell types, including mTECs, cTECs and non-TEC stroma [45, 46]. Other molecules 

involved in this trafficking are P-selectin glycoprotein ligand 1 (PSGL-1), α4β1 integrin, and 

αLβ2 integrin, present on bone marrow-derived progenitors, while the respective receptors, 

P-selectin, VCAM-1 and ICAM-1, are expressed on the endothelial cells of the thymus 

vasculature [47, 48]. Early migration to the unvascularized fetal thymus also relies on 

chemotaxis mediated by the three chemokine receptors CCR7, CCR9 and CXCR4 [45]. 

Upon entry through the blood vessels localized around the cortico-medullary 

junction [49], T cell precursors are commonly termed early thymic progenitors (ETP). ETPs 

lack the expression of CD4 and CD8, hence being referred to as double negative (DN) 

thymocytes. Within the DN stage, the developmental program can be subdivided into 4 

stages, characterized by the coordinated expression of cell surface proteins CD44 and 

CD25: DN1 (CD44+CD25-), DN2 (CD44+CD25+), DN3 (CD44-CD25+) and DN4 (CD44-

CD25-). DN1 cells are uncommitted, as they retain the potential to differentiate into T cells 

but also DCs, NKs, and possess some vestigial B cell and myeloid lineage potential [50, 

51]. Engagement of the Notch signalling pathway is crucial at this stage to inhibit multiple 

cell fate potentials and gradually induce the genetic program for T cell fate determination. 

cTECs provide the essential and non-redundant ligand for Notch signalling, DLL4 [52]. The 

DN2 stage is characterized by a migratory movement to the subcapsular cortex. [49]. In this 

region, cTECs further support T lineage specification, differentiation and expansion by 

providing the necessary growth factors and cytokines, such as stem cell factor (SCF or kit 

ligand) and IL-7 [53, 54]. During this stage, alongside active proliferation, cells undergo 

recombination-activating gene (RAG) 1 and RAG2-mediated V(D)J rearrangements of the 

Tcrb, Tcrg and Tcrd loci, which are required for the assembly of the TCR [52]. Transition 

into the DN3 stage marks the complete and irreversible commitment to the T cell lineage 

[50]. Although during the DN3 stage, thymocytes can produce TCRγ and TCRδ chains and 

differentiate along the γδ T cell lineage, most cells undergo αβ TCR development pathways 

[53]. A successful Tcrb rearrangement will give rise to a functional TCRβ chain, which 

associates with an invariant pre-TCR α-chain and CD3 signalling molecules to form the pre-

TCR complex [55]. The autonomous pre-TCR signalling, in non-redundant cooperation with 

Notch signalling, mediates a key developmental checkpoint, the β-selection event, which 
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rescues DN3 cells from apoptosis, promotes proliferation and ceases the recombination of 

the Tcrb locus [56]. Following β-selection, cells downregulate CD25, becoming DN4 or pre-

double-positive cells, while initiating Tcra gene rearrangements. DN cells differentiate into 

CD4+CD8+ double positive (DP) thymocytes, which are the first cells to express a functional 

αβ TCR [57].  

 

Positive selection 

In the cortex, cTECs are self-antigen-presenting cells responsible for inducing 

positive selection. This process decides the fate of thymocytes (survival/differentiation 

versus apoptosis) according to the specificity and binding strength of the αβ TCR relatively 

to the self-peptide-MHC complex presented by cTECs. DP thymocytes carrying TCRs that 

interact with intermediate avidity are induced to survive and allowed to further differentiate 

[58]. Most commonly, cells express TCRs unable to interact with self-MHC molecules and 

undergo death by neglect [59]. On the other hand, high affinity interactions with the self-

peptide-MHC complexes can lead to negative selection carried out by cTECs [59]. 

Ultimately, this checkpoint ensures a repertoire of cells carrying appropriate self-MHC 

restricted TCRs. 

During positive selection, thymocytes pass through a brief intermediate CD4+CD8low 

stage before differentiating into either CD4+CD8- or CD4-CD8+ single positive (SP) 

thymocytes [57]. The divergence into the CD4 helper or CD8 cytotoxic lineage depends on 

whether the TCR is restricted to MHC class II or MHC class I, respectively [60]. The 

production of the positively selecting peptides presented on the MHC molecules is also a 

determinant of positive selection, and is highly dependent on a set of proteolytic enzymes 

that are specifically expressed in cTECs. For instance, cTEC-restricted cathepsin L and 

thymus-specific serine protease (TSSP) mediate the production of peptides that are loaded 

onto MHC class II molecules in late endosomes and are crucial for CD4+ T cell selection 

[61, 62]. Macroautophagy, a bulk protein degradation process, is also a source of unique 

peptides, important for the generation of certain MHC class II-restricted specificities [63]. 

On the other hand, MHC class I molecules present cytoplasm-derived peptides, which are 

produced by proteolytic complexes termed proteasomes. Proteasomes are formed by a set 

of three b catalytic subunits. While the b1, b2 and b5 subunits generate the constitutively 

expressed proteasome, interferon (IFN)-g-stimulated cells and antigen presenting cells 

(such as dendritic cells and mTECs) express the b1i, b2i and b5i subunits, which form the 

immunoproteasome [54]. In contrast, cTECs exclusively express the proteasomal subunit 
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b5t, which is incorporated with b1i and b2i to form the thymoproteasome, resulting in the 

ability to process a unique repertoire of peptides important for CD8+ T cell selection [64].  

In conclusion, cTECs play a critical role in multiple stages of T cell development, 

including homing of T cell progenitors, lineage commitment and T cell expansion and 

development. Furthermore, they possess exclusive proteolytic machinery that allows them 

to present a unique self-peptide array for positive selection of αβ T cells. 

 

Negative selection and regulatory T cell development 

The random generation of the αβ TCR repertoire can produce receptors capable of 

recognizing self-antigens. The generation and escape of these potentially destructive 

autoreactive T cells is prevented through specialized functions of the medullary 

compartment. Positively selected thymocytes upregulate CCR7 on the cell surface, while 

CCR7 ligands CCL19 and CCL21 are expressed by mTECs. Consequently, CCR7-

mediated chemotaxis attracts thymocytes to the medulla, where they will undergo further 

selection and development [65]. Once in the medulla, SP thymocytes interact with antigen-

presenting cells, including mTECs, DCs and thymic B cells, that are able to screen them for 

self-reactive specificities [59, 66]. Cells bearing TCRs that bind to self-antigen-MHC 

complexes above a certain threshold are deleted through negative selection. Alternatively, 

CD4+ SP cells bearing high binding capacity to self-antigens can be redirected to the FoxP3+ 

regulatory T cell (Treg) lineage [67]. Tregs are essential for immune homeostasis and 

prevention of spontaneous autoimmunity [68]. Thus, clonal deletion of self-reactive T cells 

and Treg development are two complementary modes to impose self-tolerance.  

Pivotal to both these processes, is the unique ability of mTECs to ectopically express 

and present tissue-restricted antigens (TRAs), a phenomenon termed promiscuous gene 

expression (pGE) [69]. TRA loci, whose expression is otherwise limited to specific tissues, 

become accessible in mTECs to allow their expression and subsequent exposure to 

developing T cells. Remarkably, mature mTECs express approximately 85% of the coding 

genome, in contrast to other tissues that typically express 60-65% [70]. The ectopic 

transcription of TRAs in mTECs is controlled in part by the Autoimmune regulator (Aire) 

protein [71], together with the more recently described FEZ family zinc finger 2 (Fezf2) [72]. 

Aire regulates the expression of nearly 4,000 genes by recruiting multi-protein complexes 

to induce transcription [73]. Still, a significant fraction of TRA transcripts is expressed in 

mTECs independently of Aire, which implicates the contribution of other factors to pGE [70, 

74]. Interestingly, single-cell RNA sequencing revealed that, at a given time point, each TRA 

is expressed by 1-3% of mTECs, thus each individual mTEC expresses only a fraction of 
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the TRA repertoire and they ultimately add up at the population level to present a complete 

and stable TRA set [75]. This is thought to be a mechanism to avoid undesired physiological 

stress within the cell and also to increase the density of each TRA presented on the cell 

surface [76]. Although pGE reflects a stochastic mosaic pattern of TRA expression, it is 

subject to regulation. TRAs expressed at a single-cell level appear to cluster into co-

expression groups, and a model has been suggested in which single mTECs can 

sequentially shift through distinct co-expression groups throughout their lifespan [77]. 

Central tolerance is highly dictated by the pool of TRAs presented in the medulla at a given 

time. Several mutations of the Aire gene have been shown to compromise TRA expression 

and negative selection of autoreactive T cells and are linked to the clinical manifestation of 

severe autoimmune symptoms [74, 78].  

Tolerance induction is achieved through the collaboration of mTECs and DCs [79]. 

Thymic DCs localize predominantly in the medulla and are subdivided into three major 

subsets: two subtypes of cDCs, either of intrathymic or extrathymic origin, and pDCs [80]. 

Intrathymically-derived (or resident) cDCs are able to cross-present TRAs originally 

expressed by mTECs and play non-redundant roles in shaping the T cell repertoire through 

clonal deletion and Treg induction [81, 82]. Extrathymically-derived (or migratory) cDCs and 

pDCs broaden the range of self-antigens displayed in the thymus due to their ability to 

present peripherally-acquired self-antigens not covered by mTECs, and that otherwise 

would not be presented to developing thymocytes [83, 84]. 

During their residency in the medulla, thymocytes go through the selection process 

while also undergoing their final maturation steps. These last stages of thymocyte 

development before thymus exit are characterized by several cell surface protein changes. 

Initially, the recent positively selected or semimature (SM) SP thymocytes are 

phenotypically characterized as CD69+CD24+CD62L-Qa2- [85] and are susceptible to 

negative selection [86]. As they upregulate MHC class I and downregulate CD69, they 

become competent to proliferate in response to TCR stimulation and express molecules 

associated with egress [85]. The transcription factor Kruppel-like factor 2 (KLF2) promotes 

CD62L and sphingosine-1-phosphate receptor 1 (S1P1) expression [87]. As they mature, 

SP thymocytes become CD69-CD24-CD62L+Qa2+ and thus acquire the functional 

competences to enter the peripheral T cell pool. S1P1 regulates the exit from the thymus 

into the circulation, where the chemotactic gradient of the corresponding S1P ligand is 

higher [88]. Alternatively, in the fetal thymus, thymocytes egress via a S1P-independent 

mechanism. Two known contributors to fetal thymus emigration are CCR7 and CXCR4, and 

the corresponding ligands CCL19 and CXCL12 [89, 90]. 

In sum, the thymic medulla is a key site in αβ T cell development, in which mTECs 

and DCs act in concert to provide different layers of tolerance induction, including deletion 
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of autoreactive T cell clones and Treg development. All the while, it provides the specific 

microenvironment to nurture the final maturation of the functionally competent and self-

tolerant naive T cells. 

 

Thymic involution 

At the time of birth, mice possess a virtually empty peripheral T cell pool [91]. During 

early postnatal life, the thymus increases in size and operates at an extremely high rate of 

thymopoiesis, critical to establish a functional and diverse T cell compartment. Following 

this highly productive period, at around 6 weeks in mice and 1 year in humans, thymic size 

and output begin to reduce [92, 93]. This process, termed thymic involution, is evolutionarily 

conserved among all thymus-bearing species and is characterized by severe architectural 

alterations, with loss of true thymic tissue, and an increase in fat, connective tissue, and 

perivascular space [92]. As a result, fewer T cells are produced and exported as aging 

progresses. Consequently, the peripheral naive T cell compartment has a reduced 

frequency of recent thymic emigrants (RTEs), and a concomitant increase occurs in the 

memory T cell pool [94].  

Thymic involution is a contributing factor to the age-related decline in immune 

system competence, which is associated with several detrimental effects, such as reduced 

effectiveness and response to vaccination, increased infection susceptibility, autoimmunity, 

and increased incidence of cancer [95]. Naturally, identifying the genetic or physiological 

programs and the cell types responsible for involution is of great interest. Several studies 

have indicated the ageing thymic stroma as the primary driving force of thymic atrophy, 

rather than changes in the T cell progenitors supplying the thymus [96]. With age, intrinsic 

and extrinsic factors contribute to the downregulation of several genes that are key in TEC 

function and homeostasis. Particularly, it has been shown that the downregulation of Foxn1, 

a key regulator of TEC development, is associated with the onset of thymic involution [97]. 

In fact, whereas attenuation of Foxn1 in the postnatal thymus leads to premature involution, 

up-regulation of Foxn1 in the fully involuted thymus improves architecture, gene expression 

and thymopoietic ability of TECs, which in turn regenerates thymic activity [98, 99].  
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Cellular and molecular aspects of mTEC development  

mTEC diversity 

The studies described earlier highlight the role of mTECs in safeguarding self-

tolerance. As such, substantial efforts have been directed into the identification and 

characterization of mTEC diversity. A significant degree of phenotypic and functional 

heterogeneity has been described, and currently, different mTEC subpopulations are 

routinely identified by the expression of several molecular markers. The first level of 

diversity can be defined according to the expression of cell surface MHCII and CD80 

molecules, which subdivides mTECs into MHClowCD80low (mTEClow) and MHChighCD80high 

(mTEChigh)  [100]. The mTEClow subset includes cells at distinct developmental stages. They 

were first shown to contain cells with the ability to give rise to mature mTEChigh, however, it 

was later revealed that a fraction of mTEClow expresses markers associated with terminal 

differentiation such as involucrin (Ivl) and keratin 10 (K10) and constitute a population of 

previously Aire-expressing cells, also termed post-Aire cells [101, 102]. Additionally, a 

fraction of mTEClow was shown to be responsible for the production of the chemokine 

CCL21, essential in the recruitment of thymocytes from the cortex to the medulla [103]. 

Thus, mTEClow are a heterogenous population, containing immature precursors of 

mTEChigh, but also terminally differentiated mTECs and a CCL21-producing subset with a 

specific role in T cell development (Figure 3).  
 

Figure 3 - mTEC differentiation stages possess cells with varying levels of MHC class II and CD80 expression and 
include subpopulations with other specific molecular markers. Several markers are associated with mTEC precursors 
(as discussed in “TEC progenitors”), including Cld3/4, SSEA, RANK and PDPN. mTECs characterized as MHCIIlowCD80low 
(mTEClow) include precursors of mature MHCIIhighCD80high (mTEChigh), CCL21-producing cells, cells expressing Fezf2, and 
also terminally differentiated post-Aire cells expressing Ivl and K10. The mTEChigh subset is also heterogeneous, with 
subpopulations defined by expression of Aire, Fezf2 and OPG. 
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Regarding the mTEChigh subset, these cells are characterized by a high turnover 

rate (2 to 3 weeks), while mTEClow include only a small fraction of cycling cells [104]. At 

around E16, a fraction of mTEChigh begins expressing Aire, a crucial regulator of TRA gene 

expression for self-tolerance induction in thymocytes [100, 104]. Within Aire+ mTEChigh, 

further subdivision is possible based on the differential expression of osteoprotegerin 

(OPG), a regulator of mTEC cellularity and proliferation [105]. mTEChigh are also 

characterized by expression of the transcription factor Fezf2, which directly regulates TRA 

expression in an Aire-independent manner. Although at a lower frequency, Fezf2 is also 

detected in mTEClow [72] (Figure 3).  
Due to the rapid turnover of Aire+ mTECs, it has been speculated that Aire 

expression might result in increased apoptosis [100]. This mechanism would allow the 

mTEC-derived TRAs to be passed onto DCs and improve the efficiency of cross-

presentation. This notion was supported by the finding that in the absence of Aire, mTEChigh 

increase in proportion [100].  Additionally, it has been argued that Aire might not impact 

mTEC lifespan, but instead be required for the completion of the mTEC differentiation 

program and final transition into the mTEClow post-Aire stage [106]. Thus, two different 

models are currently contemplated for the role of Aire in mTEC maturation. On one hand, 

Aire expression could interrupt mTEC maturation and only in its absence the cells would 

reach terminal differentiation. Alternatively, Aire could be a promoter of mTEC maturation, 

and thus, Aire deficiency would inhibit cells from completing their differentiation program 

[107]. 

 

Thymic crosstalk 

During early thymic ontogenesis, the cortical and medullary areas are not yet 

organized in the typical three-dimensional arrangement observed in the adult thymus. 

Growth and organization of both compartments begins with colonization of the thymus by 

hematopoietic progenitors and is induced by instructive signals from the developing 

thymocytes. As such, a symbiotic relationship exists between thymocytes and TECs. These 

thymocyte-TEC interactions, commonly termed “thymic crosstalk”, are important to regulate 

TEC development, maintenance and function [16]. In the cortex, for instance, thymocyte-

derived signals control the expression of Notch ligand DLL4 and IL-7 by cTECs, which are 

key factors during early T cell development [108, 109].  

Crosstalk between thymocytes and mTECs is far more characterized and is an 

essential requirement for the development and maintenance of the thymic medulla. 

Thymocytes express ligands for several members of the tumour necrosis factor receptor 
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superfamily (TNFRSF), including receptor activator of NF-κB (RANK), CD40 and 

lymphotoxin β receptor (LTβR). These receptors are expressed in mTECs (and their 

precursors) and their engagement induces activation of the canonical and noncanonical 

nuclear factor kappa B (NF-κB) signalling pathways, which activate the transcriptional 

programs required for mTEC lineage specification and differentiation (Figure 4) [110]. As 

such, interference with elements of the NF-κB signal transduction pathways compromises 

mTEC development and induces autoimmunity [111]. For example, deficiency in NF-κB 

inducing kinase (NIK) or tumour necrosis factor receptor-associated factor 6 (TRAF6) 

results in a disorganized thymic medulla and absence of mature mTECs [112, 113]. 

Moreover, disruption at a more downstream point in the pathway further aggravates the 

phenotype, with deficiency in the RelB (V-Rel reticuloendotheliosis viral oncogene homolog 

B) subunit of the NF-κB complex resulting in a highly hypomorphic medulla (Figure 4) [114]. 

 
Figure 4 - RANK, CD40 and LTβR signalling lead to NF-κB activation pathways. Interaction of TNFRSF members with 
their respective ligands induces activation of NF-κB pathways. TNF receptor-associated factor (TRAF) family proteins bind to 
the cytoplasmic domains of TNF receptors and activate a downstream kinase cascade, which includes the NF-κB-inducing 
kinase (NIK) and IκB kinase (IKK) complexes. These kinases trigger the degradation of inhibitor of κb (IκB) proteins or the 
processing of p100, which sequester NF-κB in the cytosol, thereby leading to NF-κB nuclear translocation and transcriptional 
activation. In the canonical pathway, the NF-κB complex consists predominantly of RelA and p50, while the NF-κB subunits 
in the noncanonical pathway are typically RelB and p52 [115]. 
 

The TNFRSF ligands are differentially expressed by hemopoietic cells and their 

cellular source varies between developmental periods. In the embryonic thymus, prior to αβ 

T cell positive selection, innate CD4+3− lymphoid tissue inducer (LTi) cells induce the 

development of the first Aire+ mTECs through the expression of RANK ligand (RANKL) 

[116]. Invariant Vγ5+ thymocytes accumulate in the embryonic medulla and are also able to 

trigger mTEC maturation through RANKL expression [117]. These findings support an initial 

role for innate LTi cells and γδ T cell progenitors in inducing Aire+ mTECs to ensure 
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tolerance induction in the emergent αβ T cells. In adult mice, medulla formation is mainly 

maintained by positively selected CD4+ and CD8+ thymocytes and iNKT cells through 

RANKL/RANK signals [118, 119]. Furthermore, intrathymic CD40L is provided by CD4+ SP 

T cells and CD40L-mediated antigen-specific interactions with self-reactive 

CD4+ thymocytes are important to control mature mTEC cellularity [120]. 

While in adult RANKL-deficient thymus, Aire+ mTECs are present at a drastically 

reduced frequency, CD40 deficiency results in a more modest reduction. Still, mice with 

combined deficiency in RANKL and CD40 show a more profound reduction in Aire+ mTECs 

compared to mice lacking only RANK-mediated signalling [121]. Thus, CD40-mediated 

signalling appears to partially compensate for the absence of RANKL. Concluding, whereas 

RANK alone can induce Aire+ mTEChigh during embryogenesis, in adult mice, the 

establishment of the medullary microenvironment results from the cooperation between 

CD40 and RANK signals. 

LTβR signalling is required for the organization of the medulla and export of mature 

T cells from the thymus [122]. Although it is not required for a normal Aire+ mTEC frequency 

[123], it has been shown to control functional properties in mTEClow. Particularly, it regulates 

the expression of medullary chemokines CCL19 and CCL21 by mTEClow, which are 

required for thymocyte migration to the medulla and consequent negative selection [124]. 

Additionally, it is important for the expression of Aire-independent TRAs in mTEClow [125]. 

LTβR was also shown to be important in later mTEC development, particularly in regulating 

the transition into the terminally differentiated post-Aire stage [102]. 

It is possible that TNFRSF-mediated signalling may act stepwise during mTEC 

development. Embryonic Cld3/4+SSEA1+ mTEC progenitors are LTβR+RANK- and were 

shown to emerge in the absence of RelB. On the other hand, production of temporally 

downstream Cld3/4+SSEA-RANK+ mTEC progenitors is RelB-dependent, implicating the 

noncanonical NF-κB pathway [36]. Coincidently, LTβR signalling can elicit RANK 

expression and condition mTECs to receive the early RANK signal for differentiation [126]. 

Still, more insight is required to assume a direct lineage relationship between these two 

subsets. Lastly, an initial RANK signalling is in turn necessary to upregulate CD40 

expression on developing mTECs [127]. 
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Aims 

mTECs represent a dynamic niche with precursor-product relationships between 

subsets with distinct functional abilities, regulated by several cooperative but non-redundant 

thymocyte-derived signals. Valuable past studies have established the foundations of a 

mTEC developmental program that is believed to be far more intricate. In this thesis, we 

aimed to further dissect mTEC diversity and provide new insights into the lineage and 

functional relationships between their subpopulations. 

Taking advantage of multicolour flow cytometry analysis, we began by investigating 

the expression pattern of CD24 and stem cell antigen-1 (SCA1) in murine mTECs, in 

conjunction with well-established mTEC markers such as MHCII, CD80 and Aire, 

throughout thymic ontogeny. We next sought to investigate the lineage potential and 

molecular requirements of the novel subpopulations defined by the expression of CD24 and 

SCA1 using thymic organotypic cultures. Furthermore, we studied the requirement for Aire 

expression in the emergence of the mTEC subpopulations by analysing Aire-/- and Aire 

reporter mouse models. Lastly, using a CCL21 reporter mouse, we mapped CCL21 

expression in the newly-defined mTEC diversity. 

Characterizing the cellular and molecular determinants of mTEC development, as 

well as their functional contributions within this compartment, can ultimately elucidate and 

highlight the key steps involved in thymic medulla development and tolerance induction. 
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Mice 

C57BL/6 and BALB/c mice were kept and bred at the animal facility of Instituto de 

Investigação e Inovação em Saúde (i3S) under specific pathogen-free conditions. For fetal 

studies, the day of vaginal plug detection was designated as embryonic day (E) 0.5. ActinRFP 

mice were purchased from The Jackson Laboratory and bred at the animal facility of i3S 

under specific pathogen-free conditions. Aire-/- and Aire/DTR KI [128] mouse models were 

analysed in collaboration with Mitsuru Matsumoto’s laboratory and CCL21 reporter mice 

[129] were analysed in collaboration with Graham Anderson’s laboratory. All studies were 

conducted in accordance with institutional guidelines. 

 

Isolation and flow cytometry analysis of TECs  

Thymi were dissected at the indicated time points and digested for 30 minutes at 

37°C in trypsin (Sigma). A syringe was used to mechanically disrupt the thymic fragments 

every 5 minutes. Single-cell suspensions were enriched through the depletion of 

thymocytes using a MACS-based CD45+ cell depletion kit (Miltenyi Biotec) according to the 

manufacturer’s instructions. Cell concentration was determined in a haemocytometer. 

Cell surface staining was carried out for 30 minutes at 4°C with the following antibodies: 

PerCP-Cy5-conjugated anti-CD45.2 (clone 104), PE-conjugated anti-Ly51 (clone 6C3), 

APC-eFlour 780-conjugated anti-I-A/I-E (clone M5/114-15-2), Alexa eFluor 647-conjugated 

anti-EpCAM (clone G8.8), PE-conjugated anti-CD80 (clone 16-10A1) (all from 

eBioscience); BV421-conjugated anti-EpCAM (clone G8.8), BV650-conjugated anti-CD80 

(clone 16-10A1), BV510-conjugated anti-CD24 (clone M1/69), BV786-conjugated anti-

SCA1 (clone D7), APC-Fire-conjugated anti-CD24 (clone M1/69), Alexa 488-conjugated 

anti-SCA1 (clone D7) (all from Biolegend). Biotinylated UEA (vectorshield) was revealed 

with BV711-conjugated (Biolegend) or PE-Cy7-conjugated streptavidin (eBioscience). For 

intracellular staining, and upon cell surface labelling, cells were washed, fixed and 

permeabilized using the Foxp3 / Transcription Factor Staining Buffer Set (eBioscience) 

according to the manufacturer’s instructions. Intracellular staining was then carried out with 

eFlour 660-conjugated anti-AIRE and FITC-conjugated anti-Ki67 (both from eBioscience) 

for 30 minutes at 4°C. Analysis was performed using the LSRFortessa flow cytometer using 

the BD FACSDIVA software (BD Bioscience). The collected sample files were analysed 

using FlowJo v10.2 software (FlowJo, lcc).  
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Fetal thymus organ culture (FTOC) 

E14 thymic lobes were dissected and used to establish fetal thymus organ cultures 

(FTOCs). Three to four lobes were used per condition to normalize intrathymic variations. 

Lobes were cultured in 6-well plates on a 0.8 µm Isopore membrane filter (Milipore) resting 

on a foam sponge placed in 1 mL DMEM medium supplemented with 10% FCS, 1% L-

glutamine 200mM (GIBCO), and with or without 360mg/L of 2-deoxyguanosine (dGuo) 

(Sigma). After 4 days, the dGuo-treated FTOCs were cultured in either medium alone or 

with 5μg/ml of recombinant CD40L (CD40L) (R&D Systems), 2μg/ml of agonist anti-RANK 

(αRANK) (R&D Systems) or 10μg/ml of agonist anti-LTβR (αLTβR) mAB AC.H6 (provided 

by Jeff Browning, Biogenidec, US). After 2 or 4 days in culture, the lobes were digested and 

analysed by flow cytometry. 

 

Reaggregate thymus organ culture (RTOC) 

Thymic single-cell suspensions from embryonic (E14 to E17) ActinRFP mice or 

newborn (P1 to P3) C57BL/6 mice were stained as previously described and acquired in a 

FACSAria II (BD Biosciences) for the sorting of the following mTEC (CD45-EpCAM1+UEA+) 

populations: CD24+SCA1-CD80-, CD24+SCA1+CD80- and CD24-SCA1-CD80+. Isolated 

mTEC populations were mixed with single-cell suspensions from E14 C57BL/6 or BALB/c 

thymic lobes and reaggregates were performed as previously described [130] under the 

organ culture conditions described above. Chimeric reaggregate thymus organ cultures 

(RTOCs) were established by mixing 25.000 ActinRFP mTECs with 5x107 E14 C57BL/6 

thymic cells or 20.000-30.000 of the different sorted populations with 5x107 E14 BALB/c 

thymic cells. After 7 days in culture, ActinRFP RTOCs were assessed for fluorescence in a 

IN Cell Analyzer 2000 (GE Healthcare). All RTOCs were subsequently dissociated and 

analysed by flow cytometry. 
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The differential expression of CD24 and SCA1 defines new mTEC 

subsets  

An in depth characterization of mTEC differentiation has been prevented due to the 

limited number of traits to define distinct developmental and functional states [131]. Our 

initial approach was to search for additional mTEC markers to further resolve the maturation 

program of mTECs. Using multicolour flow cytometry, we integrated the analysis of the 

expression of CD24 and SCA1 in the prototypical study of cTECs and mTECs. These two 

markers have been associated with stem/progenitor cell potential in other tissues [132, 133]. 

For this purpose, thymi were isolated from C57BL/6 mice ranging from embryonic day 14 

(E14) to 6 weeks-old (6W). TECs were defined as CD45- EpCAM+ (supplemental Fig. 1) 

and subdivided into UEA+Ly51- mTECs, UEA-Ly51+ cTECs and UEA-Ly51- TECs [41]. At 

E14, all TECs were uniformly CD24+SCA1-. In both cTECs and UEA-Ly51- TECs, the 

expression of CD24 was reduced throughout embryonic life and these cells were mostly 

CD24-SCA1- at the neonatal period. However, at a later point of development, CD24-SCA1+ 

cells, as well as rare CD24+SCA1- and CD24+SCA1+ cells, appeared in cTECs and UEA-

Ly51- TECs (Fig. 5).  

 
 
Figure 5 - Differential expression CD24 and SCA1 defines novel subsets of mTECs. Thymi from C57BL/6 mice were 
isolated at the indicated time points and total TECs (defined hereafter as CD45-EpCAM+) were analysed for expression of 
Ly51 and UEA binding by flow cytometry (FC). UEA+Ly51- mTECs, UEA-Ly51- TECs and UEA-Ly51+ cTECs were analysed 
for CD24 and SCA1 expression. Numbers in plots indicate the frequency of cells found within each gate. E – Embryonic day; 
P – Postnatal day; W – Weeks. Plots presented are representative of at least three analysis per time point. 
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Interestingly, only a fraction of mTECs became CD24- during embryonic 

development, and a distinct CD24+SCA1+ subset appeared in the perinatal period (E19) 

(Fig. 5). Consequently, three mTEC subpopulations could be defined as CD24+SCA1-, 

CD24+SCA1+ and CD24-SCA1-, hereafter referred to as mTECI, mTECII and mTECIII. The 

diversity within the mTEC compartment defined by the expression pattern of CD24 and 

SCA1 was maintained in young adult mice (6W) (Fig. 5). Overall, these results reveal that 

the differential expression of CD24 and SCA1 allows the identification of novel mTEC 

subpopulations, whose developmental and functional characterization became the main 

focus of this work. 

 

mTECII and mTECIII subsets are respectively enriched for mTEClow and 

mTEChigh  

Within mTECs, two major subpopulations can be defined according to the co-

expression of MHCII and CD80. On one hand, MHCIIlowCD80low mTECs, also known as 

mTEClow, include a mixture of immature precursors and terminally differentiated mTECs 

[102]. On the other hand, MHCIIhighCD80high mTECs, known as mTEChigh, include mostly 

mature cells, including Aire+ cells [100].  Thus, we sought to investigate how mTECI, mTECII 

and mTECIII were phenotypically related with mTEClow and mTEChigh. Throughout time, 

mTECI included both mTEClow and mTEChigh (Fig. 6, red). Notably, the mTECII 

encompassed mostly mTEClow, while the mTECIII were consistently enriched for mTEChigh 

(Fig. 6, green and blue).  

mTEChigh present a further degree of heterogeneity, as a large fraction of these cells 

expresses the Aire protein and represents one of the later stages of mTEC maturation [100]. 

We next analysed how Aire+ cells were related with mTECI, mTECII and mTECIII 

populations. Throughout development, while Aire- mTEChigh distributed equally throughout 

the three subsets, Aire+ mTEChigh were located predominantly in mTECIII (Fig. 7). As such, 

the lack of SCA1 and CD24 expression is correlated with a mature Aire+ mTEC stage.  
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Figure 6 - Correlation between the mTECI-III subsets and mTEClow and mTEChigh. Thymi from C57BL/6 mice were isolated 
at the indicated time points and UEA+ mTECs were analysed for CD80, MHCII, CD24 and SCA1 expression by FC. The 
subsets defined by the coloured gates, mTECI (red), mTECII (green) and mTECIII (blue), were analysed for the expression of 
CD80 and MHCII. Plots are representative of at least three analysis per time point. Pie charts represent the average proportion 
of mTEClow (light grey) and mTEChigh (dark grey) within each of the colour-coded mTEC subsets. E – Embryonic day; P – 
Postnatal day; W – Weeks. 
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Figure 7 - Aire expression is largely confined to the mTECIII subset. Thymi from C57BL/6 mice were isolated at the 
indicated time points and UEA+CD80+ mTEChigh were analysed for expression of Aire by FC. Aire- mTEChigh and Aire+ mTEChigh 
were analysed for CD24 and SCA1 expression. Plots are representative of at least three analysis per time point. E – Embryonic 
day; P – Postnatal day; W – Weeks. 

 
In addition, mTEC heterogeneity has also been described based on the distinct 

proliferation/turnover rates of mTEClow and mTEChigh [104]. To further characterize the new 

mTEC subsets, we also investigated their proliferative status by analysing the expression 

of the proliferative marker Ki67 [134]. These results revealed that the pool of cycling mTECs 

in the postnatal thymus comprised mostly mTECIII (Supplemental Fig. 2). This observation 

is in agreement with the fact that mTEC maturation correlates with an increased turnover 

rate [104].  

Collectively, these results indicate that mTECIII are a mostly mature subset, enriched 

for cycling mTEChigh and Aire-expressing cells. On the other hand, mTECII define a distinct 

mTEClow subset and mTECI encompass both mTEClow and mTEChigh. 
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Lineage relationship between mTECI, mTECII and mTECIII 

We next investigated the precursor-product relationship between the newly-defined 

mTEC subsets. Given that the mTEC compartment was comprised of mTECI CD80low in the 

E14 thymus (Fig. 6, E14 column), we first sought to determine whether this subset was able 

to generate the diversity observed in postnatal life. To do so, we isolated mTECI CD80low 

from Actin reporter E14 to E17 thymi and mixed them with unlabelled fetal thymus cells to 

establish in vitro reaggregate thymus organ cultures (RTOCs) (Fig. 8A-B) [130]. In Actin 

reporter mice, the gene encoding red fluorescent protein (RFP) is inserted under the control 

of the Actin promoter, inducing ubiquitous and continuous expression of RFP [135]. Thus, 

we used RFP labelling to track the progeny of the initial population of interest. After 7 days 

in culture, the specificity of the detection of RFP+ cells was confirmed by analysis of the 

control RTOC composed only of carrier fetal thymus cells (Fig. 8C, left). Analysis of the 

chimeric RTOC revealed that the existing RFP+ cells contained mTECI, mTECII and mTECIII, 

as well as CD80low and CD80high cells (Fig. 8C, right). These findings demonstrate that 

embryonic mTECI CD80low contain precursors capable of differentiating into cells of the 

remaining subsets.  

To further expand our analysis, we proceeded to assess the lineage potential of the 

three mTEC subsets (mTECI CD80low, mTECII CD80low and mTECIII CD80high) in the 

postnatal thymus. The three different cell types were isolated by cell sorting from newborn 

C57BL/6 mice and used to establish individual RTOCs with fetal thymus cells of BALB/c 

mice (Fig. 9A-B). In this system, the different MHCI haplotypes allowed us to distinguish the 

distinct spiked mTEC subsets of interest (H-2Kb+) from the carrier cells (H-2Kd+). In addition, 

this complementary experimental setup allowed the evaluation of the expression of 

intracellular markers (e.g. Aire). After 7 days in culture, we confirmed the specificity of 

detection of H-2Kb+-derived cells by analysis of the control RTOC formed only by BALB/c 

cells (Fig. 9C, left). Regarding mTECI CD80low, we found that these cells generated all the 

subsets, including CD80high and Aire+ cells (Fig. 9C, red). These results are similar to the 

ones obtained in the experiments conducted with ActinRFP-derived cells, although we find 

some variation in the frequency of the generated mTEC subsets.  
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Figure 8 – mTECICD80low give rise to the remaining mTEC subsets. (A) Chimeric RTOCs were established with 
disaggregated fetal thymus cells placed in co-culture with mTECI CD80low isolated from ActinRFP E14-E17 embryos. (B) 
Analysis by FC of UEA+ mTECs in the cell suspension used to perform the chimeric RTOC at day 0 (input). (C) After 7 days 
in culture, control and chimeric RTOCs were dissociated and UEA+ mTECs were analysed by FC (output). Data presented 
correspond to a representative analysis out of 3 experiments 

 

 

The mTECII CD80low were also capable of differentiating into mTECI and mTECIII, 

including CD80high and Aire+ cells. Nevertheless, a large fraction of mTECII CD80low 

maintained their original phenotype (Fig. 9C, green). Lastly, we found that mTECIII CD80high 

remained mostly unaltered, although mTECI and mTECII were also detected. As expected, 

the progeny resulting from these cells had the highest frequency of CD80high and Aire+ cells 

(Fig. 9C, blue), in accordance with the more advanced maturation state of the initial 

population. Overall, these results show that mTECI CD80low and mTECII CD80low include 

precursors capable of differentiating into CD80high Aire+ cells and generating the other mTEC 

subsets. 
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Figure 9 – In vitro lineage potential of mTECI-III subsets. Chimeric RTOCs were established with disaggregated fetal thymus 
cells from BALB/c mice and placed in co-culture with mTECI CD80low, mTECII CD80low or mTECIII CD80high isolated from 
newborn C57BL/6 mice. (B) Analysis by FC of the cell suspension used to perform the chimeric RTOCs at day 0 (input). (C) 
After 7 days in culture, control and chimeric RTOCs were dissociated and UEA+ mTECs were analysed by FC (output). 
C57BL/6 and BALB/c cells were separated based on H-2Kb+ and H-2Kd+ expression, respectively. Data presented correspond 
to a representative analysis out of 2 experiments for the mTECI CD80low and mTECII CD80low and of 1 experiment for the 
mTECIII CD80high. 
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Differentiation of mTECI-III is uncoupled from in vitro TNFRSF-induced 

maturation and independent of post-b-selected thymocytes 

The development and differentiation of the mTEC compartment is primarily driven 

by signals transduced by several members of the TNFRSF, including LTβR, CD40 and 

RANK, whose respective ligands are presented mainly by developing thymocytes (and 

other hematopoietic populations) [110]. Considering that these signals promote mTEC 

maturation, we next explored if the emergence of mTECI, mTECII and mTECIII would also 

be under the control of TNFRSF signalling. To identify the molecular requirements for the 

generation of the described mTEC diversity, we mimicked mTEC development using fetal 

thymus organ culture (FTOC) [136]. In this in vitro system, E14 thymi were depleted of 

thymocytes with a 2-deoxyguanosine (dGUO) treatment and cultured with LTbR, RANK or 

CD40 agonists for 2 or 4 days. As expected, in the non-depleted FTOCs, thymocyte-TEC 

crosstalk induced significant mTEC development and maturation, defined by UEA+ mTECs 

and mTEChigh (Fig. 10A-B). In contrast, the maturation of mTECs was completely abrogated 

in the dGUO-treated control FTOCs (Fig. 10A-B). LTbR activation did not induce mTEChigh 

and its effect was limited to the mTEClow population, where it induced MHCII upregulation 

(Fig. 10A-B). In contrast, CD40 and RANK stimulation induced UEA+ mTECs and mTEChigh, 

with an increased effect in the 4-day cultures (Fig. 10A-B). These results are in line with the 

dominant contribution of RANK and CD40 signalling for mTEC development [121]. 

However, under these conditions, mTEChigh remained largely as mTECI, while mTECII and 

mTECIII failed to develop (Fig. 10A-B). Therefore, the generation of CD80+ mTEChigh 

occurred uncoupled from the described mTEC diversity. This observation is in agreement 

with the ex vivo data (Fig. 6, E15 and E17 columns), in which the first mTEChigh population 

was detected before the complete establishment the mTECI-III subsets. While the RANK and 

CD40-activated conditions failed to induce the diversity observed in the ex vivo analysis, 

the mTECI-III profile was partially replicated in the FTOC condition (Fig. 10A-B). Our data 

indicate that differentiation induced in vitro through TNFRSF signalling does not directly 

establish the mTECI-III subsets, and imply a requirement for other crosstalk-derived signals. 

To further address which thymocyte subpopulations provide the differentiating signals that 

induce the development of the novel mTEC subsets, we analysed Rag2-/- mice.  In these 

mice, thymocyte development is blocked at the β-selection event, therefore thymocytes only 

reach the DN3 stage [137]. The impaired thymic crosstalk caused a severe reduction of the 

mTEC compartment (Fig. 10C). Nevertheless, mTEC differentiation was similar to that 

observed in WT mice (Fig. 10C; Fig. 6, 2W column), including the establishment of mTECI, 
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mTECII and mTECIII. These results indicate that the signals provided by DN1 to DN3 

thymocytes are sufficient to induce the reported mTEC diversity. 
 

 
 
Figure 10 - Establishment of mTECI-III is uncoupled from in vitro TNFRSF-induced maturation and independent of 
crosstalk with post-β-selected thymocytes. dGUO treated thymi were cultured in medium (Control) or in the presence of 
anti-LTβR (αLTβR) or anti-RANK (αRANK) agonist antibodies, or recombinant CD40L (CD40L), for either 2 (A) or 4 days (B). 
Total cells were analysed by FC for UEA binding and expression of EpCAM. UEA+ mTECs were analysed for CD80, MHCII, 
CD24 and SCA1 expression. Data representative of 3 (2-day FTOCs) and 2 (4-day FTOCs) independent experiments. (C) 
TECs from 2 weeks-old Rag2-/- thymi were analysed for expression of Ly51 and UEA binding by flow cytometry. UEA+ mTECs 
were analysed for expression of CD80, MHCII, CD24 and SCA1.  Data representative of two independent experiments.   
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The frequency of mTECI-III is regulated by Aire-dependent differentiation 

Beyond the primary role of Aire in the transcriptional control of TRAs in mTECs, 

different studies have highlighted a possible role for Aire in mTEC differentiation [107, 128]. 

Particularly, Aire-/- mice show an increased proportion and number of mTEChigh [106]. We 

then proceeded to explore if alterations in mTEC maturation that result from Aire deficiency 

were accompanied by changes in mTECI, mTECII and mTECIII. In collaboration with the 

laboratory of Mitsuru Matsumoto, we analysed the novel mTEC subsets in adult Aire-/- mice. 

Absence of Aire induced an expected increase in mTEChigh (Fig. 11A). Interestingly, this 

resulted in a reduced frequency of mTECII and a concomitant accumulation of mature 

mTECIII (Fig. 11A). These results demonstrate that the absence of Aire alters the kinetic of 

mTECI-III differentiation.  

To further characterize mTECI-III  in the context of Aire-dependent differentiation, we 

also analysed Aire reporter mice (also provided by Mitsuru Matsumoto’s laboratory), in 

which the coding sequence of diphtheria toxin receptor (DTR) fused with green fluorescent 

protein (GFP) is inserted into the Aire gene locus in a manner that homozygous insertion 

disrupts functional Aire protein expression [128]. In heterozygous Aire/DTR-knockin (KI) 

(Aire+/DTR) mice, GFP-labelled cells mark Aire+ mTECs. These mice displayed a mTECI-III 

profile similar to that observed in WT mice (Fig. 11B). In addition, Aire+ mTECs were largely 

characterized as mTECIII (Fig. 11B), confirming the analysis previously shown (Fig. 7). On 

the other hand, in homozygous (AireDTR/DTR) mice, GFP+ cells define mTECs that are 

transcriptionally committed for Aire expression but lack the Aire protein [128]. In these Aire-

deficient mice, we found an expected increase of mTECIII and a concomitant reduction in 

the mTECII population (Fig. 11B), similarly to the Aire-/- data (Fig. 11A). Interestingly, GFP+ 

were mTECIII (Fig. 11B), indicating that the emergence of the mTECIII subset precedes the 

acquisition of Aire expression.  

Overall, the data acquired from both mouse models highlight a role for Aire in mTEC 

differentiation. Additionally, we found that Aire fine-tunes the rate of establishment of the 

mTECI-III populations.  
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Figure 11 – Aire deficiency affects mTECI-III differentiation. (A) UEA+ mTECs from 5 weeks-old Aire-/- and wild-type (WT) 
thymi were analysed by FC for CD80, CD24 and SCA1 expression. Plots are representative of 3 independent experiments. 
Pie charts represent the average proportion of the colour-coded mTEC subsets. (B) UEA+ mTECs from 5 weeks-old WT 
(Aire+/+), heterozygous (Aire+/DTR) and homozygous (AireDTR/DTR) Aire/DTR-KI mice were analysed by FC for CD24, SCA1 and 
GFP expression. Plots are representative of one experiment.  

 

CCL21-expressing cells are confined to the mTECII subset 

Having established that mTECIII are mostly mature mTEChigh, we next sought to 

determine if mTECI and mTECII could represent functionally distinct subsets. Both subsets 

were mapped to the mTEClow subpopulation. In addition to immature precursors and 

terminally differentiated post-Aire cells, mTEClow include functionally distinct mTECs that 

express CCL21, a critical cytokine that regulates the migration of positively selected 

thymocytes from the cortex to the medulla [102, 103]. Considering the described mTEClow 

diversity, we sought to examine if the differential expression of SCA1 within CD24+ cells 

(i.e. mTECI or mTECII) could resolve discrete CCL21-expressing mTEClow. In collaboration 

with the lab of Graham Anderson, we analysed CCL21 expression in TECs using thymi 

isolated from a CCL21GFP reporter mouse [129]. These mice carry one allele in which the 

gene encoding GFP was inserted at the translation initiation site of the Ccl21a gene [129]. 

We confirmed that CCL21-producing cells were found within UEA+ mTECs (Fig. 12A) and 
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were mostly detected in the mTEClow population (Fig. 12B). Strikingly, we found that 

CCL21high cells were specifically enriched within mTECII (Fig. 12C). These results suggest 

mTECII as a surrogate population for CCL21-producing mTEClow in WT mice, providing 

additional phenotypic characterization of this specialized mTEC subpopulation.  
 

 
Figure 12 – CCL21 production is mapped to the mTECII. (A) Total TEC from 7 weeks-old WT and CCL2 reporter thymi 
were analysed by flow cytometry for UEA binding and CCL21 expression. (B) UEA+ mTECs were analysed for MHCII and 
CD80 expression. Histograms depict the frequency of CCL21+ cells within the mTEClow and mTEChigh gates. (C) UEA+ mTECs 
were analysed for CD24 and SCA1 expression. Histograms depict the frequency of CCL21+ cells within the colour-coded 
subsets. Plots presented are representative of 3 independent analysis. 
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The thymus is a lymphoid organ that is essential for the development of a functional 

adaptive immune system. As such, it has the ability to attract T lymphoid progenitors, induce 

their differentiation and selection, and ultimately, export functionally competent and self-

tolerant T cells. In the medulla, mTECs in association with DCs and other rare leukocyte 

populations (e.g. B cells), screen potentially autoreactive thymocytes for their ability to 

recognise self-peptide-MHC complexes, inducing their negative selection or clonal 

deviation into the regulatory T cell lineage [9]. The role of mTECs in the establishment of 

central T cell tolerance relies greatly on their ability to drive the promiscuous gene 

expression and presentation of TRAs, a function that is in part controlled by the 

transcriptional regulators Aire and Fezf2 [69, 72]. Several advances have provided an 

improved understanding of the phenotypic and functional diversity within mTECs. These 

studies, however, revealed that this population also bears a large degree of heterogeneity. 

This knowledge led to the initial characterization of mTEC subsets on the basis of differential 

expression of CD80 and MHCII. These markers allowed the distinction of mTEClow 

(CD80lowMHCIIlow) and mTEChigh (CD80high MHCIIhigh), the latter containing mature Aire-

expressing cells [100]. Further diversity within these subsets has since been identified. 

Particularly, mTEClow have been shown to encompass not only precursors of mature Aire+ 

mTEChigh, but also CCL21-producing mTECs, and terminally differentiated post-Aire cells 

[102, 103]. Nevertheless, the cellular and molecular relation between the different subsets, 

and how these mechanisms integrate in the mTEC developmental program, remain poorly 

defined. 

In this thesis, we describe the lineage relationship, molecular requirements, and 

functional traits of novel mTEC subsets, providing new insights into the program of mTEC 

differentiation. Our findings reveal that differential expression of CD24 and SCA1 defines 

three new mTEC subpopulations, which we have named as mTECI (CD24+SCA1-), mTECII 

(CD24+SCA1+) and mTECIII (CD24-SCA1-). These two markers (CD24 and SCA1) have 

been previously used to probe TEC diversity in conjunction with other markers [138, 139]. 

However, to the best of our knowledge, this is the first study wherein both markers are used 

in conjunction to identify the aforementioned populations and integrate them into defined 

stages of the mTEC developmental program. In this regard, mTECI display a mix of mTEClow 

and mTEChigh. Strikingly, mTECII are a predominantly mTEClow subset that encompasses 

the CCL21-expressing cells. The CCL21-producing mTECs are a key population for the 

recruitment of thymocytes to the medullary compartment [103]. However, due to the lack of 

specific cell surface markers, this subset has exclusively been studied exploiting reporter 

mice. Thus, our results provide an additional mean to facilitate the phenotypic and molecular 

characterization of this specialized mTEC subpopulation. Lastly, mTECIII are mostly 

comprised of mTEChigh and map the majority of cycling and Aire+ cells. Our initial findings 
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do not directly show a possible linear transition between the three mTEC populations. Using 

RTOCs as a lineage-tracing experimental model, we demonstrated that in the postnatal 

thymus, both mTECI and mTECII can generate mTECIII, including Aire+ mTEChigh.  The two 

RTOC experimental settings (with ActinRFP- or H-2Kb+-derived cells) used to characterize 

the progeny of CD80lowmTECI yielded distinct frequencies of mTECII and mTECIII. These 

differences could be a result of intrathymic variations in thymocyte-TEC interactions and/or 

variations in the established in vitro culture conditions. Additionally, ActinRFP and H-2Kb+ 

mTECI were respectively purified from embryonic and postnatal thymus. As such, the 

differences observed in their progeny might reflect changes in the lineage potential of 

CD80lowmTECI that occur throughout development. Moreover, the CD80high cells isolated 

from mTECIII, while remaining largely mTEChigh, also developed a minor mTEClow 

population. It could be speculated that the generated mTEClow include cells in the post-Aire 

stage. In order to define the presence of post-Aire cells in mTECI-III, we will use in the future, 

in collaboration with the laboratory of Mitsuru Matsumoto, a fate-mapping mouse model to 

visualize this population [106]. In these mice, tamoxifen-inducible Cre recombinase is under 

control of the Aire promoter, while GFP is inserted in a ubiquitously expressed gene (e.g. 

Rosa26) downstream of a floxed termination sequence. With this system, tamoxifen-

induced Cre activity permanently labels Aire+ cells with GFP allowing the analysis of the 

post-Aire cells [106].  

Thymocyte-derived signals transmitted through TNFRSF members RANK, CD40 

and LTβR, are central for the establishment of the medullary compartment and for the 

accomplishment of the mTEC differentiation program [110]. Surprisingly, we found that 

while RANK or CD40 signalling induced mTEChigh in FTOCs, the emergence of mTECII or 

mTECIII was not directly induced by TFNRSF signalling. One possibility is that the 

differentiation of mTECII and mTECIII requires additional combinatory signals provided by 

developing thymocytes. Concordantly, in the FTOC condition with thymic lobes not depleted 

of thymocytes, mTECI-III subsets achieved a profile that partially replicated the one 

established in vivo. Subsequent analysis of Rag2-/- mice provided evidence of the cellular 

requirements for mTECI-III differentiation. As described, these mice exhibit severe defects in 

medulla formation [16]. However, the existing mTECs possess mTEChigh and mTECI-III 

subsets in comparable frequencies to the ones observed in WT mice. Thus, these results 

show that DN1 to DN3 thymocytes provide the necessary ligands to induce the 

establishment of mTECI-III.  

Aire has been previously implicated in mTEC differentiation. Aire deficiency causes 

changes in medullary TEC organization, leading to a significant increase in the frequency 

of mTEChigh [106, 140]. However, the precise mechanism through which Aire controls mTEC 

maturation remains elusive [107]. Our analysis of Aire-/- mice confirmed the influence of Aire 
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in mTEC development. Interestingly, and in accordance with the above discussed results, 

we found that the increased frequency of mTEChigh was accompanied by a reduction of 

mTECII and an accumulation of mTECIII. This altered kinetic of mTECI-III differentiation could 

be explained based on the two current models for the role of Aire during mTEC 

differentiation. On one hand, considering Aire a regulator of mTEC differentiation, Aire 

deficiency could increase the transition into the mTECIII state. Alternatively, in the case that 

Aire interrupts the mTEC developmental program, the mTECIII in Aire-deficient mice would 

be spared from Aire’s proapoptotic activity [141], resulting in their accumulation. In this 

sense, the usage of the Aire/DTR-KI mouse model provided further information regarding 

the relationship between the newly-established mTEC subsets and Aire expression. 

AireDTR/DTR mice represent an alternative Aire-deficient model, which allows the identification 

of cells that actively transcribe the Aire gene but lack the Aire protein [128]. Although we 

had shown that Aire expression was largely confined to mTECIII, these mice revealed that 

Aire transcription was almost exclusively restricted to this population. These data suggest 

that the differentiation of mTECIII precedes the commitment into the Aire+ lineage. 

Additionally, we could also hypothesise that, in this mouse model, cells that fail to express 

the Aire protein are accumulated in mTECIII. If this were the case, it would imply a 

requirement for Aire in the completion of the mTEC developmental program, as it has been 

previously suggested [106]. In this regard, future studies could benefit from the 

establishment of the new mTECI-III subsets to assess possible contributions to these two 

models. 

We report that at E14 all TEC subpopulations express CD24, and that in the 

perinatal period, CD24 expression becomes only detected in a fraction of UEA+ mTECs. 

CD24 is a marker that has been associated with progenitor states in other tissues [132]. 

More recently, embryonic mTEC-committed precursors were characterized as 

UEA+MHCIIlowCD24high and were shown to generate an intermediate mTEC progenitor 

characterized as UEA+RANK+MHCIIinter upon RANK and LtβR stimulation [138]. Our results 

further segregated CD24+mTEClow into mTECI and mTECII, thus it would be interesting to 

assess if these mTEC progenitors can be mapped to one of the new subsets. Later in 

development, from E19 until 2W, we detect SCA1 expression only in UEA+ mTECs. 

However, in young adult mice, UEA- TECs contain a SCA1+ population, as well as some 

CD24+ cells. Expression of SCA1 has also been previously linked to a bipotent progenitor 

function in TECs [139]. Interestingly, it was shown that a TEC subset in the adult thymus 

characterized as UEA-MHCIIlowα6-integrinhighSCA1high is enriched for colony-forming 

progenitors and contains cells that can give rise to both cTEC and mTEC lineages in 

reaggregate thymic grafts. In addition, some enrichment for clonogenic capacity was 

verified in the CD24+ fraction of adult UEA-MHCIIlow TECs  [139]. This study also detected 
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mTEC precursors in adult UEA+MHCIIlow TECs, which were not further phenotypically 

dissected. Additionally, some clonogenic activity has been evidenced within postnatal 

mTECs [142]. In this regard, future studies can be carried out to assess if differential 

expression of CD24 and SCA1 (mTECI-III) allow to enrich for colony-forming precursors in 

distinct mTEC subsets. 

mTEC-restricted progenitors are theoretically positioned downstream of bipotent 

TEPs and can be regarded as the starting point of the mTEC lineage(s). During ontogeny, 

the first Cld3/4+ UEA+ cells possess self-renewal properties and are capable of specific and 

long-term generation of Aire+ mTECs [34]. From E16.5 into adulthood, UEA+Cld3/4- cells 

emerge and become the most abundant population, while the UEA+Cld3/4+ population is 

largely characterized as MHCIIhighCD80high and Aire+ [34]. The mTEC progenitor ability of 

embryonic Cld3/4+ TECs is further enriched in a minor SSEA+ fraction. Although total 

Cld3/4+ cells are predominantly mTEChigh, the Cld3/4+SSEA+ subset shows an enriched 

frequency of MHCIIlow cells in the postnatal thymus [35]. Our future studies are planned to 

determine how Cld3/4+ and SSEA+ cells relate to mTECI-III. Ultimately, we aim to assess if 

in light of the new mTEC diversity, the phenotype of mTEC progenitors can be further 

elucidated. Furthermore, adult mTECs have been shown to develop from lineage-

committed precursors localized at the cortico-medullary junction and characterized by 

expression of podoplanin [37]. However, a specific segregation of podoplanin+ mTEPs in 

the mTECI-III populations was not observed, regardless of mTEClow or mTEChigh subdivision 

(data not shown). Although some mTEC progenitors have been shown to arise temporally 

downstream from others, no concrete evidence has revealed direct precursor-product 

relationships between them [36]. Therefore, it remains unknown whether the phenotypically 

distinct mTEPs so far described represent consecutive stages of mTEC differentiation. The 

possibility remains that these mTEPs could give rise to distinct mTEC lineages, perhaps 

with non-overlapping functions. The new mTEC diversity here described also provides an 

important insight for the study of mTEPs and their lineage potential. 

In addition to the previously discussed mTEC precursor subsets, other functionally 

distinct subpopulations have also been described. Of notice, Fezf2 is a recently reported 

transcription factor that controls TRA expression in both mTEChigh and mTEClow subsets 

[72]. In addition, a fraction of mTEChigh is known to express OPG, a decoy receptor for 

RANKL that regulates the mTEChigh pool [115]. In order to better understand the possible 

relationship between the aforementioned mTEC subpopulations and the new mTECI-III 

subsets, we are currently determining the genome-wide transcription profile of mTECI-III 

subsets through RNA-sequencing. With this analysis, we aim to elucidate the genetic and 

functional features associated with each phenotype and reveal their singular and 

overlapping traits. This genome-wide molecular characterisation might lead to a better 
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understanding of the lineage relationship between the different mTEC subsets as well as 

expose any specific role in mTEC development or function. 

In conclusion, mTECs form a remarkably diverse niche that provides a crucial 

instructive microenvironment for central tolerance induction in T cells. As such, the 

developmental and functional characterization of mTECs has remained a challenging field. 

Our results reveal an unreported degree of mTEC heterogeneity defined by the dynamic 

pattern of CD24 and SCA1 expression. Hence, our findings extend the previously 

established three-stage mTEC differentiation program and elucidate specific functional 

roles for the novel mTEC subpopulations. Ultimately, these findings provide new tools for 

mTEC characterization, contributing to the ongoing efforts to define the intricate 

mechanisms that underlie tolerance induction by the thymic medulla. 
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Supplemental Figure 1 - Flow cytometry gating strategy for analysis of TECs. Representative flow cytometry profile 
derived from postnatal day 5 wild type C57BL/6 mice. 
 
 

 
Supplemental Figure 2 - Proliferating mTECs in the postnatal thymus are enriched for mTECIII. Thymi from C57BL/6 
mice were isolated at the indicated time points and UEA+ mTECs were analysed for expression of Ki67 by FC. Ki67+ mTECs 
were analysed for CD24 and SCA1 expression. Plots are representative of at least three analysis per time point. Graphs 
depict the means and standard deviations of the frequency of Ki67+ cells within mTECs and cTECs (left) and the frequency 
of the CD24/SCA1 subsets within Ki67+ mTECs (right). E – Embryonic day; P – Postnatal day; W – Weeks. 
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