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RESUMO 

Introdução: O cancro da mama permanece a principal causa de morte por cancro nas 

mulheres em todo o mundo, principalmente devido ao desenvolvimento de recorrência e/ou 

doença metastática. De fato, ao momento do diagnóstico, cerca de 5% das pacientes 

apresentam metastização à distância e aproximadamente 15% das pacientes desenvolvem 

metastização à distância durante os primeiros 3 anos. Consequentemente, houve um 

impulso em desenvolver novos biomarcadores minimamente invasivos para doença 

avançada. Os microRNAs possuem potencial como biomarcadores para o cancro, 

principalmente devido à sua estabilidade em amostras de tecidos e fluidos corporais. Nos 

últimos anos, inúmeras evidências indicam que microRNAs específicos desempenham um 

papel funcional em diversas etapas do processo metastático e comportam-se como 

mediadores de sinalização, permitindo a colonização de um órgão específico. 

Objetivo: O principal objetivo desta Dissertação de Mestrado foi avaliar o desempenho do 

miR-30b-5p como biomarcador de predição da progressão do cancro de mama e avaliar a 

sua viabilidade como biomarcador de doença avançada em biópsias líquidas. 

Materiais e Métodos: Inicialmente, os níveis de expressão de miR-30b-5p foram validados 

numa grande série de amostras de tecidos de tumores primários e respetivas lesões 

metastáticas. Posteriormente, os níveis de expressão de miR-30b-5p foram avaliados em 

amostras de plasma de uma coorte de pacientes com cancro de mama localizado ou 

avançado. Seguidamente, o seu potencial como biomarcador de prognóstico foi avaliado 

através da construção da curva de ROC. Por fim, os níveis de expressão do miR-30b-5p 

foram avaliados em linhas celulares de cancro da mama, nomeadamente BT-474, MDA-

MB-231 e Bo-1833 e nos seus respetivos meios condicionados. 

Resultados e Discussão: O miR-30b-5p foi diferencialmente expresso em tumores 

primários comparativamente com correspondentes lesões metastáticas, tendo-se 

observados níveis mais elevados de miR-30b-5p nas metástases ósseas. O mesmo se 

verificou nos correspondentes tumores primários, sugerindo um papel importante deste 

microRNA na disseminação tumoral e na modulação do tropismo para um órgão específico. 

Adicionalmente, verificou-se que pacientes com doença avançada apresentaram elevados 

níveis de expressão de miR-30b-5p plasmático comparativamente a doentes com cancro 

de mama localizado. De facto, a expressão de miR-30b-5p discriminou pacientes com 

estadios avançados de pacientes com doença localizada com sensibilidade de 88,9%, 

especificidade de 66,7% e acuidade de 75,6%. Relativamente aos estudos in vitro, a linha 

celular proveniente de um tumor primário apresentou níveis significativamente mais 

elevados de expressão intracelular de miR-30b-5p comparativamente às linhas celulares 
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de cancro de mama metastático. Adicionalmente apenas o meio condicionado da primeira 

linha celular apresentou expressão de miR-30b-5p. Além do mais, os seus fenótipos 

epiteliais e mesenquimais parecem associar-se com a expressão do miR-30b-5p, 

sugerindo um papel funcional tanto na transição epitélio-mesenquima como na transição 

mesenquima-epitélio. 

Conclusões e Perspetivas Futuras: Os resultados sugerem que a expressão do miR-

30b-5p pode identificar doentes com cancro da mama que apresentam maior risco de 

progressão de doença, podendo ser uma abordagem clinicamente útil para a monitorização 

dos doentes, possibilitando um tratamento atempado e mais eficaz. No entanto, a validação 

em coortes multicêntricas é necessária para confirmar estes nossos achados. Como 

principal perspetiva futura, pretendemos avaliar a expressão do miR-30b-5p em amostras 

de seguimento, a fim de avaliar o seu potencial como biomarcador de monitorização para 

a deteção precoce de metástases do cancro da mama. 
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ABSTRACT 

Introduction: Breast cancer (BrCa) remains the leading cause of cancer-related death in 

women worldwide, mainly due to development of recurrent and/or metastatic disease. 

Indeed, at time of diagnosis around 5% of patients present distant metastases and 

approximately 15% of patients develop distant metastases within the first 3 years. 

Consequently, there is an urge to bring out novel minimally invasive biomarkers for 

advanced disease. MicroRNAs hold promise as cancer biomarkers due to their stability in 

tissues and bodily fluids. In the last years, increasing evidence strongly indicates that 

specific microRNAs play a functional role in several steps of the metastatic cascade, 

behaving as signaling mediators to enable the colonization of a specific organ. 

Aims: The main objective of this Master Dissertation was to evaluate the biomarker 

performance of miR-30b-5p expression for predicting BrCa progression and to assess its 

feasibility as a biomarker of advanced disease in liquid biopsies. 

Material and Methods: Firstly, miR-30b-5p expression level was validated using 

quantitative reverse transcription polymerase chain reaction in a large set of formalin-fixed 

paraffin-embedded primary and metastatic tumors tissue samples. Then, miR-30b-5p 

expression level was assessed in a plasma BrCa patients’ cohort composed by patients 

with localized or advanced BrCa. A ROC curve was constructed to evaluate miR-30b-5p 

prognostic performance. Finally, miR-30b-5p expression levels were evaluated in BrCa cell 

lines, namely BT-474, MDA-MB-231 and Bo-1833, and in the respective conditioned 

mediums.  

Results and Discussion: MiR-30b-5p was differentially expressed in primary tumors and 

paired metastatic lesions, with bone metastases displaying significantly higher miR-30b-5p 

expression levels, paralleling the corresponding primary tumors, suggesting an important 

role in tumor dissemination and a potential role in modulation of metastatic organ tropism. 

Interestingly, patients with advanced disease disclosed increased plasma miR-30b-5p 

expression compared to patients with localized BrCa. In fact, miR-30b-5p expression 

discriminated advanced from localized BrCa patients with 88.9% sensitivity, 66.7% 

specificity and 75.6 accuracy. Regarding in vitro studies, primary BrCa cell line displayed 

significantly higher intracellularly miR-30b-5p expression when compared to metastatic 

BrCa cell lines. Remarkably, only conditioned medium from the primary BrCa cell line 

showed miR-30b-5p expression. Moreover, their epithelial and mesenchymal phenotypes 

might be correlated with miR-30b-5p expression, suggesting a functional role on the plastic 

process of epithelial-to-mesenchymal transition and mesenchymal-to-epithelial transition. 
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Conclusions and Future Perspectives: Our findings suggest that miR-30b-5p might 

identify breast cancer patients at higher risk of disease progression and may constitute a 

useful clinical tool for patient monitoring, entailing earlier and more effective treatment. 

Nonetheless, additional validation in larger multicentric cohorts are needed to confirm our 

findings. As a future perspective, we intend to assess miR-30b-5p levels in additional follow-

up samples to evaluate its potential as monitoring biomarker for early detection of BrCa 

metastases.  
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Breast Cancer 

Epidemiology  

Breast cancer (BrCa) is the second most common cancer worldwide, corresponding to 

11.9% of all cancer incidence. It is the most frequently diagnosed cancer in women, 

accounting for 1.67 million estimated new cases, approximately 25% of all new cancer 

diagnoses in 2012 (1). The estimated age-standardized BrCa incidence rates distribution 

varied nearly four-fold across the world in 2012, with the highest incidence rates observed 

in more developed regions, whereas the lowest rates were observed in less developed 

regions (Figure 1) (2). 

 
Figure 1 - Estimated Age-Standardized Breast Cancer Incidence Worldwide in 2012. From (3). 

The variations in BrCa incidence rates are mostly due to the introduction of mammography 

screening programs, which allows early detection, and the population ageing in the 

developed regions. Moreover, advances in cancer detection and treatments have improved 

cancer survival rates and life expectancy, increasing the prevalence of BrCa in most 

Western countries (1, 4). Worldwide in 2012, BrCa was the fifth cause of cancer-related 

death, accounting with 522 thousand deaths. Indeed, it was the most frequent cause of 

cancer-related death in females in less developed regions and the second cause in more 

developed regions (Figure 2) (1, 2).  

In Europe, BrCa was the leading cancer and the main cause of cancer-related death in 

women in 2012. In Portugal, BrCa was the foremost cancer with 67.6 per 100,000 new 

cases in 2012 and the main cause of cancer death in female with approximately 13.1 per 

100,000 deaths (Figure 3) (5). 
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Figure 2 - Estimated Age-Standardized Breast Cancer Mortality Worldwide in 2012. From (3). 

Despite the improvement in cancer early detection and treatment, BrCa remains the leading 

cause of death from cancer in women, mainly due to development of recurrent and/or 

metastatic disease (4). In fact, at the time of diagnosis approximately 5% of patients present 

distant metastases and up to 15% of patients develop distant metastases within the first 3 

years (6). Undeniably, metastatic BrCa is in most cases incurable (7). 

 
Figure 3 - Estimated Age-Standardized Incidence and Mortality 
Rates (per 100,000) in Portugal in 2012. From (3). 
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Risk Factors 

Several factors were associated with BrCa risk, including demographic factors, family 

history, hormone exposure and lifestyle factors, among others (Table 1). However, most of 

these factors are associated with a minor to moderate increase in risk, being estimated that 

about 50% of female who develop BrCa have no recognizable risk factors elsewhere gender 

and increased age (8, 9). Undeniably, BrCa incidence sharply increases with age, being 

usually diagnosed in women among 45 and 74 years (10). BrCa incidence is higher in 

African-American women younger than 40 years and in Caucasian women older than 40 

years which reveals an increased risk of BrCa development associated with ethnicity and 

race (11). 

Table 1 - Magnitude of risk of the main Breast Cancer risk factors. Adapted from (8, 9). 
Relative Risk < 2 Relative Risk 2 – 4 Relative Risk > 4 

 Early age at menarche; 

 Late age at menopause; 

 HRT; 

 Alcohol consumption; 

 Cigarrete smoking; 

 Postmenopausal obesity; 

 BrCa history in first-degree 

relatives; 

 Late age at first delivery; 

 

 

 Atypical hyperplasia; 

 BRCA1 and BRCA2 

mutations; 

 Exposure to ionizing 

radiation; 

 

Abbreviations: BrCa – Breast Cancer; BRCA1 – BRCA1, DNA repair associated; BRCA2 – BRCA2, DNA 
repair associated; HRT – hormone replacement therapy 

Furthermore, women with atypical epithelial hyperplasia have an increased risk of 

developing subsequent invasive BrCa, mostly in premenopausal women (12, 13). 

Moreover, women with history of BrCa in family members, particularly first degree relative 

or a relative diagnosed before 40 years, have an increased BrCa risk (8, 9, 14). Although 

familial BrCa accounts only to 5-10% of all BrCa cases, mutations in BRCA1, DNA repair 

associated (BRCA1) and BRCA2, DNA repair associated (BRCA2) are strongly related with 

higher lifetime risk of BrCa that differs from 26 to 85%, mainly in younger premenopausal 

women (14, 15). Tumor protein p53 (TP53) and phosphatase and tensin homolog (PTEN) 

are also shown to be involved in familial BrCa, although with a minor role (8).  

Additionally, women’s reproductive history is also associated with BrCa risk. Women with 

early age at menarche, late age at first delivery and last full-term pregnancy or late age at 

menopause have an increased BrCa risk, while parity, premenopausal oophorectomy and 

breastfeeding contribute as a protective effect on the risk of developing BrCa (9, 16). Some 

of these risk factors might be explained by their association with estrogen levels exposition 

since elevated levels of endogenous estrogen are related with normal and malignant breast 

cells proliferation (9). Likewise, obesity and hormone replacement therapy (HRT) in 



 

INTRODUCTION | 5 

postmenopausal women contribute to a minor rise of BrCa risk, while in premenopausal 

women, a high body mass index seems to be a protector effect (9, 17). 

Also, a connection between environmental factors such as exposure to ionizing radiation 

and BrCa is well-recognized. Indeed, an increased risk of developing BrCa has been 

described in women who performed radiation treatments at younger ages (8). Although 

some associations are controversial, several studies tried to establish a relation between 

lifestyle factors and BrCa risk. A healthy diet with high consumption of vegetables and 

physical activity seems to contribute as a protective effect, whereas alcohol consumption 

and cigarrete smoking are associated with an increased BrCa risk (9, 18, 19). 

 

Screening and Diagnosis 

BrCa detecting at a pre-clinical stage, before it acquires the potential to spread, is the major 

goal of implemented population-based mammography screening programs. In females 

between 50 and 69 years, mammography screening every two years has revealed the most 

effective mortality reduction benefit. In women with familial BrCa, an annual screening with 

magnetic resonance imaging (MRI) along with or alternating with mammography every six 

months is recommended and should start ten years younger than the youngest case known 

in the family (20).  

BrCa diagnosis is based on physical examination, comprising bimanual palpation of the 

breasts and locoregional lymph nodes in concomitance with imaging and pathological 

confirmation (20, 21). Nowadays, mammography is the standard imaging technique for the 

detection of BrCa. However, its sensitivity is influenced by the breast’s density, being 

necessary to performed MRI in specific situations (20, 22). Apart from imaging techniques, 

the confirmation of malignant involvement can only be appropriately determined by tissue 

sampling. The gold standard technique for palpable and impalpable breast abnormalities’ 

diagnosis remains the biopsy. Fine-needle biopsy and needle-core biopsy are performed 

on palpable lesions. Although both techniques have a good sensitivity, for patients who will 

receive preoperative systemic therapy, needle-core biopsy is required to guarantee a 

histopathological diagnosis and assess immunostaining markers. Pathological diagnosis for 

non-palpable lesions is based on an image-guided core needle biopsy (8, 20).  
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Histological Subtypes 

BrCa is extremely heterogeneous both morphologically and clinically. Currently, World 

Health Organization (WHO) Classification of Tumors of the Breast distinguishes more than 

twenty different histological subtypes. The majority of BrCa arises from epithelial cells and 

might be divided into two main categories: in situ and invasive carcinomas (22). 

In situ carcinomas are characterized as pre-invasive lesions in which malignant cells still 

restricted to the ductal or lobular tree of the breast without invading the basement 

membrane of the surrounding stroma (23). These pre-invasive lesions might be further 

subdivided into lobular carcinoma in situ (LCIS) and ductal carcinoma in situ (DCIS) which 

are distinguished by cytological and architectural features and not by the microanatomical 

site of origin (23, 24). With the implementation and improvement of the screening programs, 

DCIS accounts approximately to 20-25% of newly diagnosed BrCa (22, 23). 

Nevertheless, invasive carcinomas comprise 70 to 80% of malignant mammary carcinomas. 

This group can be subdivided into invasive carcinoma of no special type (NST), also 

recognized as invasive ductal carcinoma (IDC), and special subtypes carcinomas 

(SSC)(22). The IDC category represents 75% of the invasive carcinomas and comprises all 

the tumors which lack histologic features for being categorized as one of the SSC (24). In 

SSC group are included more than ten histological types, being the invasive lobular 

carcinoma (ILC) the most frequent type, representing 5 to 15% of all invasive BrCa (22, 23) 

However, tumors exhibiting combined morphology, such as SSC and NST patterns are 

classified as mixed (22).  

 

Staging, Prognostic and Predictive Biomarkers 

The Biomarkers Definition Working Group defined a biomarker as “a characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes, or pharmacologic responses to a therapeutic intervention” (25).  

A prognostic factor is a measurement related to patients’ outcome that might be applied to 

estimate the chance of recovery or recurrence, whereas a predictive factor is a 

measurement that predicts the responsiveness to a determined treatment. Some 

biomarkers might have prognostic and predictive value (8). 

Histological grade is a measure of how close a malignancy remains of its original tissue. 

The method of grading is based on three parameters: the grade of architectural 

differentiation, nuclear pleomorphism and mitotic index. Nowadays, the Nottingham 
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Combined Histologic Grade (Appendix I) is considered a significant prognostic factor, 

providing useful information for clinical management (22).  

Currently, BrCa staging is based on the TNM staging system reported by the American Joint 

Committee on Cancer - Union for International Cancer Control (AJCC-UICC) (22) 

(Appendix II). This staging system specifically combines extension of the primary tumor 

(T), involvement of the regional lymph nodes (N) and development of distant metastases 

(M). In BrCa patients both clinical and pathological staging can be applied. The clinically 

staging (c) is defined considering information prior to surgery or any primary treatment, 

including physical examination, imaging techniques and pathologic report based on fine-

needle biopsy. On the other hand, the pathological staging (p) comprises clinical stage 

information as well as all the information from surgery and pathologic examination of the 

primary tumor, lymph nodes and metastatic lesions, if applicable (26). Based in TNM 

classification, five stages are established (Appendix III), allowing to evaluate the spread of 

the disease and patients’ prognosis (26). 

Despite the prognostic value provide by the grade system and TNM staging, patients with 

same stage displayed different outcomes. Thus, it was essential to introduced others 

biomarkers of patients’ outcome and, specially, predictive therapy response (8). Currently, 

assessment of progesterone receptor (PR) and estrogen receptor (ER) status by 

immunohistochemistry (IHC) and human epidermal growth factor 2 receptor (HER2) status 

by IHC or in situ hybridization when necessary is part of the currently clinical practice (20).  

ER is a nuclear transcription factor activated by the hormone estrogen to stimulate the 

development and differentiation of normal breast cells. ER-positive tumors, by IHC 

correspond up to 75% of invasive BrCa. In fact, ER-positivity is related with less aggressive 

and well-differentiated tumors, so a better outcome in comparison to ER-negative tumors 

(27, 28). Furthermore, ER-positive patients generally have a better response to anti-

estrogen or aromatase inhibitors (28). PR is also a nuclear transcription factor activated by 

the hormone progesterone to stimulate cell proliferation. ER regulates the expression of 

PR, so PR expression suggests an active ER signaling pathway (27). Approximately 75% 

of BrCa are PR-positive by IHC, being PR expression associated to a better endocrine 

therapy response (ET) (28). Besides, tumors ER-positive and PR-negative are less 

responsive to hormone therapy in comparison to tumors positive for both receptors (22). 

Although both PR and ER status display weak prognostic value, they play a major role in 

determining the responsiveness to hormone therapy (28). 

Erb-b2 receptor tyrosine kinase 2 (ERBB2) gene, predominantly known as HER2 gene, is 

an oncogene localized in chromosome 17 that encodes a transmembrane protein for a 
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growth factor receptor present in breast epithelial cell surface (27, 29). About 15% to 20% 

of all BrCa demonstrate HER2 gene amplification or protein overexpression. Moreover, 

more than 55% of these tumors do not express ER or PR (28). HER2 expression is related 

with poor prognostic and at same time to a positive response to HER2-targeted therapy for 

instance trastuzumab (22, 28). Moreover, HER2-positivity is predictive of favorable 

response to anthracycline and taxane-based regimens (30) . 

The IHC evaluation of proliferation-related markers such as Ki67 index has been applied in 

clinical practice as it supplies additional valuable information as prognostic factor (31). 

Moreover, age is also a noteworthy prognostic factor since BrCa patients younger than 35 

years have worst prognosis than older patients (8).  

Nevertheless, due to the limitations of the current biomarkers, gene expression profiles 

which recognizes genes that might be used as a molecular signature in predicting prognosis 

and identifying patients who are most likely to benefit from specific therapies have been 

developed. Oncotype DX, MammaPrint and PAM50 are some of these molecular prognostic 

profiles, but the high costs of molecular signatures limited their use in clinical practice (32, 

33).  

 

Molecular Subtypes 

BrCa is a heterogeneous disease. Patients with tumors with identical histological type and 

stage might present diverse outcomes and treatment responses (34). Gene expression 

profiling and hierarchical clustering have enabled to categorized BrCa into four intrinsic 

molecular subtypes (luminal A, luminal B, HER2-enriched and basal-like) that are 

associated with diverse clinical outcomes and responsiveness (35, 36).  

Luminal BrCa is mainly distinguished by the expression of high levels of ER and luminal 

epithelial cytokeratins. The luminal subtype represents approximately 70 to 80% of BrCa 

and can be subdivided into Luminal A and Luminal B (34, 37, 38). Luminal BrCa exhibiting 

higher expression of ER-regulated genes, no amplification of HER2 and low expression of 

proliferation-related genes are classified as luminal A. Contrarily, luminal B tumors are 

known to have a lower expression of ER-related genes, a higher expression of 

proliferation‑related genes and a variable amplification of HER2, being consequently 

associated with worse prognosis in comparison to luminal A tumors (39, 40). 

The non-luminal or ER-negative BrCa includes two intrinsic subtypes: the HER2-enriched 

subtype and the basal-like subtype. The HER2-enriched subtype exhibits high expression 

of several genes in the HER2 amplicon at 17q22.24, including HER2. Although these 
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cancers display an aggressive clinical outcome because of their poor differentiation and 

high proliferation, they present a good response to HER2-targeted therapy (37). Low 

expression of luminal epithelial genes and high expression of basal epithelial genes 

characterize the basal-like subtype. Even if there is around 80% overlap between triple-

negative (negative for ER, PR and HER2) and basal-like subtype, triple-negative subtype 

also includes special histological types like adenoid cystic and medullary carcinoma with 

low risks of distant relapse (41).  

Therefore, the molecular subtypes of BrCa have a valuable role in evaluating prognosis and 

determining the responsiveness to therapy, providing a personalized treatment (38). 

Nowadays, the assessment of the intrinsic molecular subtypes is based on a cost-effective 

IHC assays (Table 2), but can also be defined by gene expression profiling using 

multiparameter molecular tests such as PAM-50 (37, 42).  

Table 2 - Characterization of Breast Cancer molecular subtypes according to European Society 
for Medical Oncology (ESMO). Adapted from (20). 

Intrinsic Subtype Clinicopathological Surrogate Markers 

Luminal A1 

“Luminal A-like” 
  ER-positive 
  HER2- negative 
  Ki67 low2 
  PR high2  

Luminal B1 

“Luminal B-like” (HER2-negative) 
  ER-positive 
  HER2- negative 
  And either Ki67 high2 or PR low2 
 
“Luminal B-like” (HER2-positive) 
  ER-positive 
  HER2- positive 
  Any Ki67 and any PR 

HER2-Enriched 
“HER2-positive (non-luminal)” 
  HER2- positive 
  ER and PR absent 

Basal-like 
“Triple-negative”3 
  HER2- negative 
  ER and PR absent 

1 If molecular signature is available, Luminal A BrCa are associated with a low-risk signature, 
whereas Luminal B BrCa with a high-risk signature.  
2 Scores should be interpreted in the light of local laboratory values. 
3 There is around 80% overlap between ‘triple-negative’ and intrinsic ‘basal-like’ subtype, 
however ‘triple-negative’ also comprises special histological types such as medullary and 
adenoid cystic carcinoma with low risks of distant relapse.  
Abbreviations: ER – estrogen receptor; HER2- human epidermal growth factor 2 receptor; PR- 
progesterone receptor 
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Advanced Breast Cancer 

Advanced BrCa includes both locally advanced and metastatic BrCa (43). Locally advanced 

BrCa comprises the most advanced BrCa without metastases at distant organs which end 

up being related to higher risk of locoregional and systemic relapse. Although definition of 

locally advanced BrCa is still controversial, recent guidelines describes it as a AJCC stage 

III BrCa (44).  

Metastatic BrCa arises following the aggressive proliferation of cancer from its primary 

location to distant organs (45). The metastatic process involves multiple sequential steps. 

Initially, malignant cells undergo an epithelial-to-mesenchymal transition (EMT), acquiring 

mesenchymal characteristics such as higher motility and invasiveness. These features 

allow malignant cells to disseminate from primary tumor, invade through adjacent tissues 

and basement membranes and enter into circulation by the lymphatics and/or blood 

vascular system. Subsequently, the survival malignant cells arrest and extravasate into the 

foreign microenvironment where they pass through a mesenchymal-to-epithelial transition 

(MET) to revert to an epithelial phenotype, crucial for the colonization and establishment of 

a secondary tumor (Figure 4) (45, 46). 

 

Figure 4 - Multiple sequential steps of the metastatic process. Metastasis is a multistep process that starts 
with the dissemination of malignant cells from primary tumor. The epithelial-to-mesenchymal transition (EMT) 
allows the acquisition of features essential for migration through surrounding tissues and basement membranes. 
After escaping from the primary tumor, malignant cells might intravasate into circulation until they arrest and 
extravasate in a secondary organ. At this final phase, tumor cells undergo a mesenchymal-to-epithelial transition 
(MET) and proliferate, finally establishing a secondary tumor. Estevão-Pereira H. unpublished.  

The metastases can show an organ-specific pattern of spread. Indeed, the most common 

site of BrCa metastases is the bone, with lungs, liver and brain as the second, third and 

fourth most common metastatic sites, respectively (6, 47). Besides, the molecular subtype 

of the primary tumor is also associated to the metastatic spread and to distant metastases 

sites (48). Luminal subtypes are related to a slower metastatic proliferation, low relapse 
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rates and better outcomes in comparison to basal-like subtype. Patients with luminal tumors 

display a higher predisposition to develop bone metastasis, whereas basal-like cancers 

metastasize preferentially to lung and brain. HER2-positive BrCa show the highest rate of 

recurrence and have higher potential to develop brain metastasis (6, 48-51). 

 

Treatment 

Due to the added value of providing a personalized practical approach, BrCa treatment 

should be determined by a multidisciplinary clinical team (20). Tumor site, extension and 

biology, the proliferation of disease and its metastatic potential, prognostic biomarkers 

status as well as patient’s age, general health status, menopausal status and preferences 

are some of the main factors that should be consider (52). According to these, BrCa 

treatment might embrace one or more strategies such as surgery, chemotherapy (ChT), 

radiotherapy (RT), ET and target therapies (20).  

Concerning local treatment, approximately 60 to 80% of early-stage BrCa patients are 

amenable for conservative surgery proceed by RT. Nonetheless, in some cases due to 

tumor size and multicentricity, incapability to accomplish negative surgical margins after 

several resections, contraindications to RT or patient’s preference, mastectomy is still 

performed (20, 53). Owing to its association with reduced morbidity, sentinel lymph node 

biopsy (SLNB) is the standard approach for axillary staging in early, clinically node-negative 

BrCa. Though, in patients with sentinel node metastasis, axillary lymph node clearance is 

obligatory (20, 54).  

BrCa recurrence might be prevented by systemic adjuvant treatment. According to the 

predictive response to therapy, the overall benefit and the risk of relapse, the treatment 

chosen might be RT, ChT, ET and/or target therapies (20, 55).  

As previously mentioned, postoperative RT is strongly recommended after a conservative 

surgery and in patients that carried out a mastectomy and had positive lymph nodes (55). 

On the other hand, the decision of treatment with ChT is complex and usually based on the 

molecular subtypes (56). The advantage of adjuvant ChT is higher in ER-negative tumors. 

However, ChT is also recommended in HER2-positive, “triple-negative” tumors and luminal 

B BrCa with HER2 amplification or high recurrence risk (20, 56). In cases of doubt, gene 

expression profiles like PAM50 might be used to determine the risk of relapse and predict 

the benefit of ChT (20).  

BrCa with positive hormone receptors benefit of ET. The prescription of the agent is 

principally defined by patients’ menopausal status. In premenopausal women tamoxifen for 
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5 to 10 years is the standard treatment, while in postmenopausal, aromatase inhibitors like 

letrozole are recommended (20, 56). 

The most known target therapy for BrCa is the HER2-directed therapy. Trastuzumab is a 

monoclonal antibody against HER2 and several studies demonstrated that when combined 

with ChT in patients with HER2 amplification halves the risk of relapse in comparison with 

ChT alone (20).  

For the treatment of advanced BrCa, RT, ChT, ET and/or target therapies might be applied 

in the neoadjuvant setting before breast surgery and axillary node clearance (when 

conceivable) (43). Indeed, a multimodality treatment seems to improve significantly the 

patients’ outcomes (44). Moreover, neoadjuvant treatment might also be performed in 

patients with multifocal BrCa and/or with large operable tumors that would otherwise require 

mastectomy because of the tumor size (20).  

The management of metastatic BrCa patients also involves treatment of the related 

symptoms to improve the patients’ quality of life (43). Indeed, metastatic BrCa remains in 

most cases an incurable disease (7). 

 

Epigenetics 

In 1942, epigenetic was defined by Conrad Waddington as “the causal interaction between 

genes and their products, which bring the phenotype into being” (57). Nevertheless, due to 

the increased amount of knowledge in this area, the concept has evolved over the years, 

being currently defined as heritable alterations in gene function and regulation that are not 

owed to any change in the nucleotide sequence (57-59).  

Epigenetic processes are crucial to guarantee the normal development and homeostasis of 

the organism. In fact, epigenetic deregulation has been verified on early steps of the 

tumorigenesis process (60). Four major mechanisms are involved in epigenetic regulation: 

non-coding RNAs (ncRNAs), DNA methylation, post-translational modifications of histones 

and histone variants (58, 60) (Figure 5). Notwithstanding their crucial role as epigenetic 

mechanisms, the last three mechanisms above mentioned will not be the focus of this 

dissertation, so the concepts will not be discussed. 
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Figure 5 – Schematic representation of the epigenetic mechanisms. The major mechanisms involved in 
epigenetic regulation are non-coding RNAs, DNA methylation, post-translational modifications of histones and 
histone variants. (Kindly provided by Lameirinhas A.unpublished) 

 

Non-coding RNAs 

In the last years, recent evidence has given emphasis to the crucial role of the transcribed 

genes that do not encode proteins, particularly ncRNAs (61, 62). According to their size, 

ncRNAs can be divided into long non-coding RNAs (lncRNAs) (more than 200 base pair) 

and small non-coding RNAs (less than 200 nucleotides (nt)). Moreover, ncRNAs can also 

be classified depending on their function, specifically molecules that are generally 

constitutively expressed such as transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs) 

and ribosomal RNAs (rRNAs), and molecules which play a regulatory role like small 

interfering RNAs (siRNAs) and microRNAs (miRNAs) (63). Indeed, ncRNAs play an 

important role at several levels of gene expression, being its deregulation involved in the 

development of many different disorders (61). 

 

MicroRNAs 

The miRNAs are endogenous, highly conserved small ncRNAs of approximately 22 nt in 

length, originally discovered in Caenorhabditis elegans (64, 65). MiRNAs represent an 

emerging class of molecules that play important roles at posttranscriptional regulation of 

gene expression in several cellular processes. Moreover, the association between their 

deregulation and cancer development has being studied during the last years (61). In fact, 

it is thought that around 50% of the human transcriptome is conditioned to miRNA regulation 

(66). 
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Biogenesis and Mechanisms of Action 

The majority of miRNAs genes are found in intergenic regions, but they can also be located 

in exonic or intronic regions, both in sense or antisense orientation, being the furthest 

denominated “mirtrons” (67). Moreover, miRNAs might be found in gene clusters or as 

single genes (68). 

The biogenesis of miRNAs is a multistep process that starts in the nucleus and finishes in 

the cytoplasm (Figure 6). In the canonical miRNA biogenesis pathway, miRNAs are mainly 

transcribed by RNA polymerase II that synthetizes a large primary precursor with a hairpin 

structure (pri-miRNA). The endonuclease Drosha and its cofactor Di-George syndrome 

critical region gene 8 (DGCR8) protein, the microprocessor complex, recognize and cleave 

pri-miRNA to a RNA hairpin intermediate (pre-miRNA) with two nt 3’ overhang (65, 67). 

Alternatively, the mirtrons bypass the Drosha processing and follow a splicing pathway to 

originate debranched introns that mimic the pre-miRNA structure (69). 

Both RNA hairpin intermediate from canonical and non-canonical pathway are recognized 

by exportin 5 (XPO5) and are actively transported into the cytoplasm, where they are 

processed by the endonuclease Dicer and transactivation response RNA-binding protein 

(TRBP), forming a double-stranded miRNA duplex (67). This molecule is loaded into the 

Argonaute protein (AGO) and the mature miRNA guide is incorporated into RNA-induced 

silencing complex (RISC) (67, 69).  

RISC directs the regulation of mRNA by identifying miRNAs targets through base-paring 

interactions between the “seed sequence” and the targeted mRNA which contains a partially 

or fully complementary sequence generally located in 3’ untranslated regions (UTR). 

MiRNAs repress gene expression at the posttranscriptional level according to the 

complementary sequence of the target mRNA: mRNA is cleavage when the 

complementarity is nearly perfect and mRNA translation is inhibited when the 

complementarity is partial (66). However, recent reports have shown that 5’UTR and open 

reading frames (ORF) also contain target sequences for miRNAs (70). The complementarity 

between the “seed sequences” and these regions is associated to an upregulation of target 

mRNA translation (71). 
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Figure 6 - Canonical pathway of microRNA biogenesis and mechanisms of action. miRNAs are canonically 
transcribed by RNA polymerase II that synthetize a primary precursor with a hairpin structure, the pri-miRNA. 
These molecules are processed by Drosha and Di-George syndrome critical region gene 8 (DGCR8) protein 
into pre-miRNAs. RNA hairpin intermediates from canonical and non-canonical pathway (not represented in the 
figure) are sequestered into the cytoplasm by exportin 5 (XPO5) where they are cleaved by endonuclease Dicer 
and transactivation response RNA-binding protein (TRBP), forming a double-stranded miRNA duplex. The 
double-stranded miRNA duplex is loaded into the Argonaute protein (AGO) and the mature miRNA guide is 
incorporated into RNA-induced silencing complex (RISC). RISC recognizes the target mRNA by identifying 
base-paring interactions. MiRNAs might regulate gene expression by mRNA cleavage, translational repression 
and translational activation. Estevão-Pereira H. unpublished. 

 

MicroRNAs and Breast Cancer 

The fundamental role of miRNAs in the development of several disorders, particularly the 

miRNA deregulation in human malignancies is well-recognized. Interestingly, several 

miRNAs are located in fragile regions of the genome that are susceptible to genetic 

abnormalities such as translocation, deletion or amplification (72). Moreover, miRNAs might 

also be deregulated by epigenetic mechanisms such as abnormal DNA methylation of their 

promoter regions (73, 74). In different steps of the tumorigenic process, miRNAs can act as 

tumor suppressor or oncogenes (oncomiRs). Tumor suppressor miRNAs act by negatively 

regulating the expression of oncogenes, being usually downregulated in cancer, while 

oncomiRs act by targeting tumor suppressor genes, being often upregulated in cancer. 

Besides, according to tumor type and cellular context, miRNAs might present a dual function 

(75).  
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The increased amount of evidence has brought forward the role of miRNAs at different steps 

of the BrCa development (76). Currently, since each malignancy type seems to have a 

distinct miRNA profile that allows to differentiate it from normal tissue and other tumors type, 

miRNAs might be used as diagnostic tools for BrCa (64). Iorio and colleagues recognized 

a 13-miRNA signature that could discriminate BrCa from normal breast tissues with 100% 

accuracy (77). Among these miRNAs, the most constantly dysregulated in BrCa were miR-

10b, miR-145, miR-125b (downregulated), miR-155 and miR-21 (upregulated), suggesting 

their potential role as tumor suppressor genes or oncogenes, respectively. Additionally, 

expression profiles able to distinguish BrCa patients from healthy individuals in bodily fluids 

have also been investigated. Heneghan and coworkers identified higher levels of miR-195 

and let-7a in BrCa patients’ blood (78), whereas Zhang et al. recognized a 3-miRNA 

signature (miR-29c, miR-424 and miR-199a) as a diagnostic signature for non-invasive 

early detection of BrCa (79). Though, perhaps due to the clinicopathological variables and 

heterogeneity in BrCa, disparities between the miRNA signatures continue to be verified, 

leading to the investigation of miRNA profiles that might reflect different histopathological 

characteristics for instance ER, PR and HER2 status (80-83).  

Furthermore, a correlation between several miRNAs and clinicopathological features 

related to different outcomes has been proposed, prompting the identification of miRNAs 

with prognostic value (64, 76, 84). In recent years, several lines of evidence imply multiple 

functions of miRNAs in BrCa metastases. Indeed, miRNAs might function either as 

promotors or suppressors of metastases by targeting multiple signaling pathways and 

important proteins that are major players in different steps of the metastatic process (85, 

86). Besides, miRNAs seem to be involved in the phenotypic alterations correlated with 

metastases’ development, acting as regulators of the EMT/MET processes (86). Currently, 

miR-9 (87), miR-10b (88), miR-21 (89), miR-29a (90), miR-155 (91) are known as 

metastases promoters, whereas miR-126, miR-335 (92), miR-30 family (93, 94), miR-200 

family and miR-205 (95) are predominantly describe as metastases suppressors. As 

previously mentioned, it is important to emphasize that due to their versatile role, some of 

these miRNAs, for instance miR-200 family might act both as metastases promoter and 

metastases suppressor (96, 97).  

Lastly, the role of miRNAs as predictive biomarkers has also been described. Mailot et al. 

found higher levels of miR-21, miR-23b and miR-181b, which were shown differentially 

expressed in tamoxifen-resistant cell lines, upon ET (98). Moreover, higher expression 

levels of miR-210 was associated with increased risk of relapse in patients treated with 

tamoxifen (99) and resistance to trastuzumab (100), while miR-100 was related with 

sensitivity to ChT using paclitaxel (101).  
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Therefore, miRNAs have been emerging as promising diagnostic, prognostic and predictive 

biomarkers for BrCa.  
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Preliminary Data 

The project presented in this Master Dissertation arises from a previous unpublished work 

developed at the Cancer Epigenetics and Biology Group (GBEC), whose main goal was to 

evaluate the diagnostic and prognostic potential of some miRNAs in tissues samples from 

BrCa patients.  

MiR-30b-5p expression level was assessed in 176 fresh-frozen BrCa samples and 26 

normal breast tissue samples with no evidence of preneoplastic or neoplastic alterations 

(Table 3). Age distribution significantly differed between patients and controls (p=0.003).  

No statistically difference was depicted between BrCa tissues and normal breast tissues 

invalidating miR-30b-5p potential as diagnostic biomarkers (Figure 7A). When the 

association between miR-30b-5p expression and clinicopathological features was 

evaluated, significantly higher miR-30b-5p expression was observed in N3 patients when 

compared to N0 and N1 patients (p=0.018 and p=0.0025, respectively, Figure 7B), 

suggesting an invasive and metastasis promoter function. 

MiR-30b-5p expression level was further analyzed in a formalin-fixed paraffin-embedded 

(FFPE) primary and metastatic tumors available from BrCa patients’ cohort of 16 BrCa 

patients comprising 38 tumor samples (16 primary BrCa and 22 paired metastases, Table 
3 and Table 4). Significantly higher miR-30b-5p expression was observed in metastatic 

lesions compared to the corresponding primary breast tumors (p=0.0066, Figure 8A). 

Specifically, in 10 of 16 patients, miR-30b-5p expression level was significantly increased 

in metastatic lesions versus primary tumors with a fold variation higher than 1 (Figure 8B). 

 

Figure 7 – (A) Scatter-plot of miR-30b-5p relative expression in normal breast tissues and Breast Cancer 
tissues. A ns denotes p-value>0.05 by non-parametric Mann-Whitney U test. (B) Scatter-plot of miR-30b-5p 
relative expression according to N stage. * p-value <0.05 and ** p-value <0.01 by non-parametric Kruskal-Wallis 
test. Y-axis denotes 2-ΔCT values multiplied by 1000.  
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Table 3 - Clinicopathological data of Breast Cancer and normal breast samples 
included in the study. 

 Fresh-Frozen Series FFPE Series 
Clinicopathological Features BrCa NBr BrCa 

Patients (n) 176 26 16 
Age median (range) 61 (41-75) 54 (40-70) 58 (35-78) 

Molecular subtype1 (%) 
Luminal A 
Luminal B 

HER2-enriched 
Basal-like 

 
56 (31.8) 
80 (45.4) 
12 (6.8) 

28 (15.9) 

n.a. 

 
4 (25.0) 

12 (75.0) 
- 
- 

Histological type (%) 
Invasive carcinoma of NST  
Invasive lobular carcinoma 

Other special subtype carcinoma 
Mixed type carcinoma 

 
155 (88.1) 

11 (6.3) 
2 (1.1) 
8 (4.5) 

n.a. 

 
13 (81.3) 
3 (18.8) 

- 
- 

Grade (%) 
G1 
G2 
G3 
Gx 

 
21 (11.9) 
76 (43.2) 
67 (38.1) 
12 (6.8) 

n.a. 

 
2 (12.5) 
4 (25.0) 
8 (50.0) 
2 (12.5) 

ER receptor status (%) 
Positive 
Negative 

 
136 (77.3) 
40 (22.7) 

n.a. 
 

16 (100.0) 
- 

PR receptor status (%) 
Positive 
Negative 

 
110 (62.5) 
66 (37.5) 

n.a. 
 

10 (62.5) 
6 (37.5) 

HER2 receptor status (%) 
Positive 
Negative 

 
28 (15.9) 

148 (84.1) 
n.a. 

 
3 (18.8) 

13 (81.3) 
T Stage (%) 

T1 
T2 
T3 
T4 
Tx 

 
47 (29.9) 
97 (55.1) 

6 (3.4) 
7 (4.0) 

19 (10.8) 

n.a. 

 
4 (25.0) 
9 (56.3) 
1 (6.3) 
2 (12.5) 

- 
N Stage (%) 

N0 
N1 
N2 
N3 
Nx 

 
65 (36.9) 
63 (35.8) 
15 (8.5) 
6 (3.4) 

27 (15.3) 

n.a. 

 
5 (31.3) 
7 (43.8) 
2 (12.5) 
2 (12.5) 

- 
Stage (%) 

I 
II 
III 

Not determined 

 
26 (14.8) 

100 (56.8) 
30 (17.0) 
20 (11.4) 

n.a. 

 
3 (18.8) 
8 (50.0) 
5 (31.5) 

- 
1Assessed by immunohistochemistry. Abbreviations: BrCa – breast cancer; ER – 
estrogen receptor; FFPE – formalin-fixed paraffin-embedded; G – grade, HER2 – 
human epidermal growth factor receptor 2; n.a. – not applicable; NBr – normal breast; 
NST – no special type; PR – progesterone receptor 
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Table 4 – Detail information about primary tumors and the matched metastases per each patient included 
in FFPE Breast Cancer patients’ cohort. 
Patient 
number 

Age at 
diagnosis 

Molecular subtype 
of primary tumor1 

Metastasis 
localization 

Time interval after 
primary tumor (years) 

1 39 Luminal B Lung 20.43 
2 60 Luminal A Axillary lymph node 16.07 
3 36 Luminal B Bone marrow 3.45 
4 35 Luminal B Liver 11.05 
5 74 Luminal B Pleural 11.75 
6 64 Luminal B Liver 3.54 
7 78 Luminal B Breast Skin 2.73 
8 61 Luminal B Bone 2.76 
9 43 Luminal A Axillary lymph node 11.68 

10 55 Luminal B Breast Skin 6.55 
11 51 Luminal A Lung 6.43 
12 63 Luminal B Pleural 2.90 

13 56 Luminal B 
Breast skin 3.48 

Axillary lymph node 4.59 

14 66 Luminal A 
Mediastinum 8.53 
Esophagus 8.93 

15 51 Luminal B 

Contralateral breast 6.44 
Axillary lymph node 6.52 

Pleural 11.02 
Contralateral breast 

skin 11.39 

16 60 Luminal B 
Bone marrow 1.51 

Skin 3.38 
1Assessed by immunohistochemistry. 

 

 

 

Figure 8 - (A) MiR-30b-5p relative expression levels in primary tumors and the corresponding paired metastasis. 
** p-value <0.01 by non-parametric Wilcoxon paired sample test. Y-axis denotes 2-ΔCT values multiplied by 1000. 
(B) Comparison of miR-30b-5p expression in primary breast tumors versus corresponding metastasis. X-axis 
represents each patient. Y-axis denotes -ΔΔCt values, corresponding positive values to higher expression in 
the distant metastasis compared to the corresponding primary tumor. 
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Aims 

BrCa is the second most common cancer worldwide and, by far, the most frequently 

diagnosed cancer in women. Notwithstanding, BrCa remains the leading cause of cancer-

related death in women, mainly due to development of recurrent and/or metastatic disease. 

Consequently, there is an urge to bring out novel minimally invasive biomarkers for 

advanced BrCa. 

The hypothesis to be tested in this Master Dissertation is that miR-30b-5p might be involved 

in the metastatic cascade and might be biologically and clinically relevant for advanced 

BrCa patients. Thus, the major goal is to test miR-30b-5p expression levels as biomarker 

for prediction of progression and prognosis of BrCa and to assess the feasibility of using 

miR-30b-5p as a biomarker of advanced disease in liquid biopsies. This might provide a 

tool required to plan the treatment to maximize efficacy and improve personalized advanced 

BrCa treatments at the time of diagnosis. 

Hence, the specific tasks were: 

- Validate miR-30b-5p expression level in a large series of FFPE metastatic breast 

tissues and the paired primary tumors to analyze its potential value as prognostic biomarker; 

- Assess miR-30b-5p value as a non-invasive biomarker to discriminate advanced 

BrCa from localized disease; 

- Evaluate if miR-30b-5p might be involved in modulation of metastatic organ tropism. 
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Patients and Samples Collection 

FFPE primary and metastatic tumors from BrCa patients available at Portuguese Oncology 

Institute of Porto (IPO-Porto) were included in this study (validation cohort #1). Relevant 

clinical data was retrieved from patients’ charts. All cases were revised by an experienced 

pathologist and graded according to Bloom and Richardson’s Modified system and staged 

according to the AJCC system (22, 26). Paraffin-embedded histological sections (4 µm of 

thickness) were cut from each tissue block and stained with hematoxylin and eosin (H&E) 

staining, followed by a pathologist examination to select the most representative tumor 

lesion. Tumor areas identified were then macrodissecte in 6 consecutive 8 µm sections for 

tumor cells enrichment (>80%). 

Additionally, peripheral blood samples from 20 patients with localized BrCa and 25 patients 

with advanced BrCa were collected at IPO-Porto after informed patients’ consent (validation 

cohort #2). Briefly, peripheral blood was collected into EDTA-containing tubes and 

centrifuged at 2000 rpm for 10 minutes at 4ºC. Plasma was immediately separated, 

aliquoted into 1.5 mL tubes and properly stored at -80ºC until further use. 

This study was approved by institutional ethical committee (CES 120/015). Patients’ blood 

samples collection was approved by the institutional review board of IPO-Porto (CES-

IPOFG-EPE 019/08) and was performed in accordance with the Declaration of Helsinki.  

 

Cell Line Characterization  

Three BrCa cell lines were used in the present study: BT-474 (isolated from a solid, invasive 

ductal mammary carcinoma from a 60 years old female), and metastatic cell lines MDA-

MB-231 (isolated from pleural effusion from a 51 years old woman with a metastatic 

adenocarcinoma of the breast) and Bo-1833 (a MDA-MB-231 subpopulation that 

preferentially metastasize to the bone) (102). All the cell lines were grown in Dulbecco's 

Modified Eagle Medium (DMEM) high glucose supplemented with 10% fetal bovine serum 

(FBS) and 10 μg/mL Penicillin-Streptomycin (Pen/Strep). The characterization of breast cell 

lines and the culture medium are summarized Table 5.  

Biological triplicates of each cell pellets and cells’ conditioned mediums were kindly 

provided by Professor Meriem Lamghari from the Neuro-Skeletal Circuits Group of INEB 

(Portugal). All samples were stored at -80ºC until further RNA extraction. 
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Table 5 – Characterization of Breast Cancer cell lines selected.  

Cell Lines Derived From Molecular 
Subtype 

Immunoprofile 
(103) 

Culture 
medium 

ATCC 
Reference 

BT-474 
Solid, invasive 

ductal carcinoma 

of the breast 

Luminal B ER
+
, PR

+/-
, HER2

+
 

DMEM High 

Glucose 

HTB20™ 

MDA-MB-231 
Metastatic site: 

pleural effusion 
Claudin-low ER

-
, PR

-
, HER2

-
 HTB26™ 

Bo-1833 – – – – 

Abbreviations: ATCC- American Type Culture Collection; DMEM- Dulbecco's Modified Eagle's medium; ER- 
estrogen receptor; HER2- human epidermal growth factor receptor 2; PR- progesterone receptor 

 

RNA Extraction  

RNA was extracted from paraffin-embedded histological sections (12 µm of thickness) from 

FFPE tissue blocks, using a commercially extraction kit (FFPE RNA/DNA Purification Plus 

Kit, Norgen Biotek, Thorold, Canada) following manufacturer’s instructions. Briefly, FFPE 

samples were deparaffinized and digested with proteinase K [20mg/mL (NZYTECH, 

Portugal)] and digestion buffer provided by the extraction kit for 15 minutes at 55ºC. Then, 

samples were centrifuged, the RNA-containing supernatant was transferred to a new 

RNase-free tube and the DNA-containing pellet was stored at -20ºC. The provided buffer 

and absolute ethanol were added to the RNA-containing solution which was loaded into an 

RNA Purification Micro Column to proceed the RNA binding. Finally, the RNA bonded to the 

column was washed with the provided wash solution and eluted in 15 or 30 μL of elution 

solution according to the initial sample amount. 

Circulating RNA extraction from plasma samples was performed using miRNeasy 

Serum/Plasma Kit (Qiagen, Hilden, Germany). Briefly, to 200 µL of plasma were added 1 

mL of QIAzol Lysis Reagent (Qiagen) to denature proteins and 200 µL of chloroform (Merck, 

Darmstadt, Germany). Then, the samples were centrifuged to perform phase separation. 

Absolute ethanol was added to 600 µL of RNA-containing upper aqueous phase which was 

loaded into a RNeasy MinEluate Spin Column to proceed the RNA binding. The RNA 

bonded to the column was washed with the provided buffers and 80% ethanol. Finally, 

RNeasy MinEluate Spin Column were centrifuged at full speed with opened lids to dry the 

membrane and RNA was eluted in 14 μL of provided RNase-free water.  

Total RNA from cells was extracted by suspended cell pellet samples in 500 µL of TRIzol® 

reagent (Invitrogen, USA) and 100 µL of chloroform (Merck, Darmstadt, Germany). After an 

incubation time, samples were centrifuged to perform phase separation and 250 µL of 

isopropanol were added to RNA-containing upper aqueous phase. The mixture was shaken 
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vigorously and incubated for RNA precipitation. Then, the samples were centrifuged, 

supernatants discharged, and pellets washed twice with 75% ethanol. Finally, air dried RNA 

pellets were eluted in 15 μL sterile distilled water (B. Braun, Melsungen, Germany). 

Extraction of miRNA from cells’ conditioned mediums was also performed using GRS 

microRNA kit (GRiSP, Porto, Portugal) with a protocol optimized by Francisca Dias from 

Molecular Oncology and Viral Pathology Group of CI-IPO-Porto (Portugal).  

All RNA concentrations and purity ratios were posteriorly measured using a NanoDrop ND-

1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and RNA 

samples were stored at -80ºC until use. 

 

MicroRNA cDNA Synthesis 

The cDNA synthesis from FFEP and cells RNA was performed using miRCURY LNA™ 

Universal RT microRNA PCR (Exiqon, Vedbaek, Denmark) in accordance with the 

manufacturer’s instructions. Briefly, RNA samples concentration was adjusted to a 5 ng/μL 

concentration, using sterile distilled water (B.Braun, Melsungen, Germany). Reverse 

transcription reaction working-solution was prepared by adding 5 μL of nuclease-free water, 

2 μL of 5x Reaction Buffer and 1 μL of enzyme mix for each reaction. On ice, per each 

RNase-free PCR tube, it was added 8 μL of reverse transcription reaction working-solution 

and 2 μL of previously concentration-adjusted RNA. Then, RNase-free PCR tubes were 

gently vortexed and incubated on Veriti® Thermal Cycler (Applied Biosystems, Foster City, 

CA, USA) for 60 minutes at 42ºC, followed by 5 minutes at 95ºC to inactivate the reverse 

transcriptase. Finally, cDNA samples were diluted 20x in sterile distilled water and stored 

at -20ºC. 

Circulating RNA and cells’ conditioned medium RNA were reverse transcribed to cDNA 

using Taqman® Advanced miRNA cDNA Synthesis Kit (Applied Biosystems, Foster City, 

CA, USA) in accordance with the manufacturer’s instructions. The protocol consists in four 

major steps that improved sensitivity for low-abundant miRNA targets as follows: first it is 

performed a polyadenylation of the miRNA at the 3’ end, followed by the adaptor ligation at 

the 5’ end, that acts as the forward primer binding site for miRNA amplification reaction; 

then, it is performed reverse transcription reaction using universal reverse transcription 

primers which bind to the 3’ poly(A) tail and finally, miRNA amplification reaction using 

universal forward and reverse primers to increase the number of cDNA molecules. Briefly, 

RNA samples concentration was adjusted to a 30 ng/μL concentration, using sterile distilled 

water (B.Braun, Melsungen, Germany). Poly(A) reaction working-solution was prepared 
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and on ice, to each RNase-free PCR tube, it was added 3 μL of poly(A) reaction working-

solution and 2 μL of previously concentration-adjusted RNA. PCR tubes were incubated on 

Veriti® Thermal Cycler (Applied Biosystems, Foster City, CA, USA) for 45 minutes at 37ºC 

to performed polyadenylation, followed by 10 minutes at 65ºC to stop reaction. Then, to 

each PCR tube containing the poly(A) tailing reaction product, it was added 10 μL of adaptor 

ligation reaction working-solution and PCR tubes were incubated for 60 minutes at 16ºC. 

Afterward, to each PCR tube containing the adaptor ligation reaction product, it was added 

15 μL of reverse transcription reaction working-solution and PCR tubes were incubated for 

15 minutes at 42ºC, followed by 5 min at 85ºC. Finally, per each 5 μL of reverse transcription 

reaction product was added 45 μL of miRNA amplification reaction working-solution and 

PCR tubes were incubated for 5 minutes at 95ºC, followed by 3 s at 95ºC and 30 s at 60ºC 

replicated for 14 cycles and 10 minutes at 99ºC. MiR-Amp reaction products were diluted 

10x in sterile distilled water and stored at -20ºC. 

 

MicroRNA Expression Assay 

For the detection of cDNA derived from tissue samples and cells, per each well was added: 

5 μL of Xpert Fast SYBR (2X) (GRiSP, Porto, Portugal), 1 μL of miRNA specific primer mix 

(microRNA LNA™ PCR primer set, Exiqon) and 4 μL of previously diluted cDNA. The 

forward and reverse primes are miRNA specific and optimized with LNA™, allowing a higher 

sensitivity and specificity as well as low background enabling accurate quantification of very 

low miRNAs levels.  

For detection of cDNA derived from circulating miRNAs and cells’ conditioned medium, per 

each well, it was added: 5 μL of Xpert Fast Probe (2X) (GRiSP, Porto, Portugal), 0.5 μL of 

TaqMan® Advanced miRNA Assay (20X) and 4.5 μL of diluted cDNA. 

Quantitative real-time PCR (RT-qPCR) reactions were performed in 384-well plates. Each 

amplification reaction was performed in triplicate on a LightCycler 480 instrument (Roche 

Diagnostics, Manheim, Germany) and each plate contained 2 negative template controls.  

For the intercalating green dye chemistry, RT-qPCR protocol consisted in a denaturation 

step at 95ºC for 2 minutes, followed by 40 amplification cycles at 95ºC for 5 seconds and 

60ºC for 20 seconds. Melting curve analysis was performed according to instrument’s 

manufacturer recommendations. For the probe-detection technology, RT-qPCR protocol 

consisted in a denaturation step at 95ºC for 3 minutes, followed by 45 amplification cycles 

at 95ºC for 10 seconds and 60ºC for 25 seconds.  
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SNORD38B was used as a reference gene for normalization. In Table 6 are present the 

target sequences of reference gene and miRNA analyzed. 

Table 6 - Specific target sequence of reference gene and target microRNA. 
Gene Target sequence 

SNORD38B (hsa) UCUCAGUGAUGAAAACUUUGUCCAGUUCUGCUACUGACAGUAAGUGAAGAUA
AAGUGUGUCUGAGGAGA 

hsa-miR-30b-5p UGUAAACAUCCUACACUCAGCU 

The relative miRNA expression in each tissue RNA sample and cells samples was 

calculated by the 2-ΔCT method, using the formula:  

Relative miRNA expression = 2-ΔCt, in which ΔCt = Ct target microRNA – Ct reference  

For plasma samples, the relative miRNA expression was calculated by the formula:  

Relative miRNA expression = (Mean quantity target microRNA /Mean quantity reference) x 1000 

Herein, a five serial 10x dilutions of a positive control was run in each plate to generate a 

standard curve.  

The relative miRNA expression in cells’ conditioned medium samples was calculated by 

Livak method (2-ΔΔCT) (104).  

 

Statistical Analysis 

Non-parametric Mann-Whitney U test and Kruskal-Wallis test, followed by Mann-Whitney U 

tests when appropriate, were used to ascertain the statistical significance of differences in 

continuous variables among two or more independent datasets, respectively. Bonferroni 

correction was applied to pairwise comparisons. Differences between paired samples were 

analyzed using non-parametric Wilcoxon paired sample test. Fold changes for miRNA were 

calculated using the 2-ΔΔCT method (104). Spearman nonparametric correlation test was 

performed to assess the association between continuous variables.  

Receiver Operating Characteristic (ROC) curve was constructed and biomarker 

performance parameters (sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV) and accuracy) were calculated. Cut-off was established based on 

the highest value obtained in ROC curve analysis based on Youden’s J index (105, 106). 

In cell lines, statistical significance for continuous variables comparisons between more 

than two independent samples was assessed by One-Way Analysis of Variance (one-Way 

ANOVA) test, followed by Bonferroni correction. 



 

MATERIAL AND METHODS | 30 

Statistical analysis of obtained data was performed using SPSS software (SPSS Version 

20.0, Chicago, IL) and two-tailed p-values were considered statistically significant when 

p<0.05. Graphics were built using GraphPad 6 Prism (GraphPad Software, USA).  

 

 



 

 
 
 
 
 
 

RESULTS 
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Validation cohort #1 (FFPE) 

Characterization of validation cohort #1 

The validation cohort #1 was composed of a larger set of 175 tumor samples (82 primary 

BrCa and 93 paired metastases) from 82 BrCa patients (Table 7 and Appendix IV).  

Table 7 - Clinicopathological data of Breast Cancer patients of 
the validation cohort #1. 

Clinicopathological Features Validation Cohort #1 
Patients (n) 82 

Age median (range) 49 (28-76) 
Molecular subtype1 (%) 

Luminal A 
Luminal B 

HER2-enriched 
Basal-like 

 
19 (23.2) 
58 (70.7) 
1 (1.2) 
4 (4.9) 

Histological type (%) 
Invasive carcinoma of NST 
Invasive lobular carcinoma 

Other special subtype carcinoma 
Mixed type carcinoma 

 
73 (89.0) 

- 
- 

9 (11.0) 
Grade (%) 

G1 
G2 
G3 
Gx 

 
4 (4.9) 

43 (52.4) 
35 (42.7) 

- 
ER receptor status (%) 

Positive 
Negative 

 
77 (93.9) 
5 (6.1) 

PR receptor status (%) 
Positive 
Negative 

 
65 (79.3) 
17 (20.7) 

HER2 receptor status (%) 
Positive 
Negative 

 
15 (18.3) 
67 (81.7) 

T Stage (%) 
T1 
T2 
T3 
T4 
Tx 

 
20 (24.4) 
52 (63.4) 
5 (6.1) 
3 (3.7) 
2 (2.4) 

N Stage (%) 
N0 
N1 
N2 
N3 
Nx 

 
18 (22.0) 
33 (40.2) 
16 (19.5) 
13 (15.9) 
2 (2.4) 

Stage (%) 
I 
II 
III 
IV 

Not determined 

 
10 (12.2) 
34 (41.5) 
24 (29.3) 
12 (14.6) 
2 (2.4) 

1Assessed by immunohistochemistry. Abbreviations: ER – 
estrogen receptor; G – grade; HER2 – human epidermal growth 
factor receptor 2; NST – no special type; PR – progesterone 
receptor 
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Among the 93 available paired metastases, 63 were from bone, 17 from lung, 4 from brain 

and 9 were locoregional or from contralateral breast. It should be noted that 10 patients had 

multiple metastases with different locations (Appendix IV). Overall, the time elapsed 

between diagnosis of the primary tumor and of the metastasis varied from 0.15 to 18.98 

years (median 6.63 years). 

 

Evaluation of miR-30b-5p expression levels in validation cohort #1  

Once miR-30b-5p was differentially expressed between primary tumors and matched 

metastases in a small set of tumor tissue samples from BrCa patients, its expression level 

was evaluated in the validation cohort #1 (Table 7 and Appendix IV) to analyze its potential 

value as prognostic biomarker. 

MiR-30b-5p expression levels were significantly higher in metastases than in primary 

tumors (p<0.0001,Figure 9), confirming findings in the small set of tumor tissue samples.  

 
Figure 9 - MiR-30b-5p relative expression levels in primary 
tumors and the corresponding matched metastases. **** p-
value <0.0001 by non-parametric Wilcoxon paired sample 
test. Y-axis denotes 2-ΔCT values multiplied by 1000. 

Interestingly, primary tumors that metastasized to bone disclosed significantly higher miR-

30b-5p expression levels compared to all other primary tumors (p=0.002, Figure 10A). 

Moreover, bone metastases displayed significantly higher miR-30b-5p expression levels 

than all samples from other metastatic sites (p<0.0001, Figure 10B). 
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Figure 10 - Scatter-plots of miR-30b-5p relative expression in primary tumors (A) and metastases (B). ** p-
value <0.01 and **** p-value <0.0001 by non-parametric Mann-Whitney U test. Y-axis denotes 2-ΔCT values 
multiplied by 1000. 

 

MiR-30b-5p expression levels: association with clinicopathological features 

Except for HER2 status, no statistically significant associations were found between miR-

30b-5p expression levels and any of the clinicopathological parameters (age, histological 

type, grade, TNM staging, molecular subtype assessed by IHC, ER and PR status). Indeed, 

HER2-negative tumors depicted significantly higher miR-30b-5p expression levels 

compared to HER2-positive BrCa (p=0.041, Figure 11). 

 
Figure 11 - Scatter-plot of miR-30b-5p relative expression 
according to the HER2 receptor status. * p-value <0.05 by 
non-parametric Mann-Whitney U test. Y-axis denotes 2-ΔCT 

values multiplied by 1000. 
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Validation cohort #2 (Plasma) 

Characterization of validation cohort #2 

The validation cohort #2 was composed of 20 patients with localized BrCa (stage I) and 25 

patients with advanced BrCa, comprising both locally advanced (n=12) and metastatic BrCa 

(n=13) (Table 8). No significant differences were found for patients’ age between localized 

and advanced BrCa (p=0.417). 

Table 8 - Clinicopathological data of Breast Cancer patients of the validation cohort #2. 
Clinicopathological Features Localized BrCa Advanced BrCa 

Patients (n) 20 25 
Age median (range) 61 (39-71) 53 (35-82) 

Molecular subtype1 (%) 
Luminal A 
Luminal B 

HER2-enriched 
Basal-like 

 
7 (35.0) 

13 (65.0) 
- 
- 

 
2 (8.0) 

16 (64.0) 
5 (20.0) 
2 (8.0) 

Histological type (%) 
Invasive carcinoma of NST 
Invasive lobular carcinoma 

Other special subtype carcinoma 
Mixed type carcinoma 

 
17 (85.0) 
2 (10.0) 
1 (5.0) 

- 

 
18 (72.0) 
4 (16.0) 
2 (8.0) 
1 (4.0) 

Grade (%) 
G1 
G2 
G3 
Gx 

 
4 (20.0) 
9 (45.0) 
7 (35.0) 

- 

 
- 

18 (72.0) 
6 (24.0) 
1 (4.0) 

ER receptor status (%) 
Positive 
Negative 

 
20 (100.0) 

- 

 
18 (72.0) 
7 (28.0) 

PR receptor status (%) 
Positive 
Negative 

 
20 (100.0) 

- 

 
14 (56.0) 
11 (44.0) 

HER2 receptor status (%) 
Positive 
Negative 

 
4 (20.0) 

16 (80.0) 

 
11 (44.0) 
14 (56.0) 

T Stage (%) 
T1 
T2 
T3 
T4 
Tx 

 
20 (100.0) 

- 
- 
- 
- 

 
3 (12.0) 

10 (40.0) 
5 (20.0) 
5 (20.0) 
2 (8.0) 

N Stage (%) 
N0 
N1 
N2 
N3 
Nx 

 
20 (100.0) 

- 
- 
- 
- 

 
- 

3 (12.0) 
- 

20 (80.0) 
2 (8.0) 

Stage (%) 
IA 

IIIC 
IV 

 
20 (100.0) 

n.a. 
n.a. 

 
n.a. 

12 (48.0) 
13 (52.0) 

1Assessed by immunohistochemistry. Abbreviations: BrCa – breast cancer; ER – estrogen 
receptor; G – grade; HER2 – human epidermal growth factor receptor 2; n.a – not 
applicable; NST – no special type; PR – progesterone receptor 
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Assessment of miR-30b-5p expression levels as prognostic biomarker in 
liquid biopsies 

A plasma BrCa patient cohort was used for validation in liquid biopsies (Table 8). 

Remarkably, patients with advanced BrCa displayed higher plasma miR-30b-5p expression 

levels (p<0.0001) than patients with localized disease (Figure 12A). Moreover, when 

advanced BrCa group was stratified in locally advanced and metastatic BrCa, miR-30b-5p 

expression levels were significantly higher in both groups (p=0.0002 and p=0.021, 

respectively) compared to localized BrCa (Figure 12B). 

 

Figure 12 - (A) Scatter-plots of plasmatic miR-30b-5p relative expression in localized and advanced Breast 
Cancer. **** p-value <0.0001 by non-parametric Mann-Whitney U test. (B) Scatter-plots of plasmatic miR-30b-
5p relative expression according to stage. * p-value <0.05 and *** p-value <0.001 by non-parametric Kruskal-
Wallis test. Y-axis denotes 2-ΔCT values multiplied by 1000. 

ROC analysis revealed that plasma miR-30b-5p expression levels could discriminate 

advanced from localized BrCa patients with an area under the curve (AUC) of 0.831 (95% 

CI = 0.721-0.950). Using a cut-off value of 4611, plasma miR-30b-5p expression identified 

advanced disease with 88.9% sensitivity, 66.7% specificity and 75.6 accuracy (Figure 13 

and Table 9). 

 
Figure 13 - ROC curve analysis to evaluate the 
potential of miR-30b-5p as a biomarker for 
discriminate patients with advanced Breast Cancer 
from patients with localized Breast Cancer. 
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Table 9 - Performance of miR-30b-5p as biomarker for discriminate advanced Breast 
Cancer from localized Breast Cancer. 

Sensitivity% Specificity % PPV % NPV % Accuracy % 
88.9 66.7 64.0 90.0 75.6 

Abbreviations: PPV – positive predictive value; NPV – negative predictive value 

 

Association between miR-30b-5p expression levels and clinicopathological 
features 

MiR-30b-5p expression levels were significantly higher in plasma samples from patients 

with T2 tumors and with positive axillary lymph node (p=0.012, Figure 14A and p<0.0001, 

Figure 14B respectively).  

 

Figure 14 - Scatter-plots of miR-30b-5p relative expression according to T stage (A) and N stage (B). * p-value 
<0.05 and **** p-value <0.0001 by non-parametric Mann-Whitney U test. Y-axis denotes 2-ΔCT values multiplied 
by 1000. 

Patients with distant metastases at diagnosis displayed higher miR-30b-5p expression 

levels, although without statistically significance (p=0.073, Figure 15). 

 
Figure 15 - Scatter-plot of miR-30b-5p relative expression 
according to the presence or absence of distant metastases 
at diagnosis. A ns denotes p-value >0.05 by non-parametric 
Mann-Whitney U test. Y-axis denotes 2-ΔCT values 
multiplied by 1000. 
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No significant differences were observed for miR-30b-5p expression levels and any of 

clinicopathological parameters (age, histological type, grade, molecular subtype assessed 

by IHC, HER2, ER and PR status). 

 

Assessment of miR-30b-5p expression levels in cell lines and cells’ 
conditioned mediums 

Considering the previous results in patients’ samples, miR-30b-5p expression levels were 

evaluated in in vitro BrCa models.  

In order to investigate the possible involvement of miR-30b-5p on modulation of metastatic 

organ tropism, three breast cell lines were selected: BT-474 cells, isolated from a primary 

carcinoma of the breast, MDA-MB-231 cells, a metastatic cell line and Bo-1833 cells, a 

subclone with tropism to bone (Figure 16). 

 

Figure 16 - Morphological phenotype of Breast Cancer cell lines. Photographs taken in microscope Olympus 
CKX41 (100x magnification). Scale bar denotes 200 µm. Photographs kindly provided by Catarina Lourenço 
from the Neuro-Skeletal Circuits Group of INEB (Portugal). 

Firstly, intracellularly miR-30b-5p expression levels were assessed in each cell line. BT-474 

cells displayed significantly higher miR-30b-5p expression levels when compared to MDA-

MB-213 and Bo-1833 (p=0.0028 and p=0.0012, respectively, Figure 17). Regarding 

metastatic cell lines, no significant differences were depicted between miR-30b-5p 

expression levels.  

To evaluate the hypothesis that BrCa cells might release miR-30b-5p, its extracellular 

expression was analyzed. Once it was already reported that the medium composition might 

influence the results of this analysis (107), miR-30b-5p levels were also evaluated in 

unconditioned culture medium, to ensure that the data observed result from cell secretion 

rather than medium components. 
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Figure 17 - Intracellularly miR-30b-5p expression 
levels in BT-474, MDA-MB-231 and Bo-1833 cells. 
** p-value <0.01 by one-Way ANOVA test. Y-axis 
denotes 2-ΔCT values multiplied by 1000. 

Interestingly, BT-474 cells conditioned medium showed miR-30b-5p expression, while no 

expression was detected in conditioned medium of MDA-MB-231 and Bo-1833 cells (Figure 
18). 

 
Figure 18 - Comparison of miR-30b-5p expression in 
cells’ conditioned mediums versus cells’ culture 
medium. X-axis represents each cells’ conditioned 
medium. Y-axis denotes -ΔΔCt values, corresponding 
positive values to higher expression in the cells’ 
conditioned medium compared to the cells’ culture 
medium. 
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Discussion 

BrCa remains the most common malignancy in women and a major cause of morbidity and 

mortality (1). Although biological features are routinely used for BrCa diagnosis and 

prognosis assessment, patients with similar clinicopathological features often show different 

clinical outcome (20). Therefore, identification of biomarkers providing more accurate 

prognostic information for BrCa patients, complementing currently used parameters, will 

have a major impact. Hence, assessment of specific miRNAs expression deregulation, 

which has been associated with several mechanisms underlying BrCa aggressiveness, 

might be a potential source for biomarkers (64, 76). Most studies addressing miRNAs 

expression and miRNA-target validation have been performed in cancer cell lines and 

display several limitations, including absence of epithelial-stromal and tumor-host 

interactions, that could modulate prognosis in vivo (64, 108). Thus, tissue analysis might 

allow for broader insight into biologically and clinically relevant miRNAs which may serve 

as prognostic biomarkers. In a previous study, miR-30b-5p expression levels were reported 

to be significantly higher in BrCa tissues from patients with advanced disease (N stage: N3). 

Moreover, in FFPE primary and metastatic tumors available from 16 BrCa patients, miR-

30b-5p expression was significantly higher in metastatic lesions compared to matched 

primary BrCa tissues, suggesting a role in promoting metastasis development and therefore 

a value as prognostic/progression biomarker (unpublished observations).  

Hence, we aimed to validate these results in a larger set of tumor tissue samples from BrCa 

patients (validation cohort #1) in order to evaluate the biomarker potential of miR-30b-5p 

for predicting advanced disease. It should be recalled that stability of miRNAs in FFPE 

tissues holds an enormous potential (109), especially in BrCa patients in which late relapses 

frequently occur, as demonstrated in validation cohort #1. However, due to the limited 

availability of metastatic tissue samples, only a few studies compared miRNA expression 

levels between primary and correspondent distant metastases (97, 110, 111). Although 

downregulation of miR-30 family (miR-30f) members and its role as tumor suppressor 

during BrCa local invasion and metastization have been previously described (93, 94), to 

the best of our knowledge, miR-30b-5p upregulation in BrCa metastases has not been 

reported thus far. The role of miR-30b-5p remains controversial. On the one hand, 

expression of miR-30b-5p and miR-30c-5p has been associated with increased cell viability 

and resistance to apoptosis (112) and miR-30b-5p was found to be upregulated in bladder 

cancer (113), medulloblastoma (114), advanced oral squamous cell carcinoma (115) and 

associated with metastasis in melanoma (116). On the other hand, miR-30b-5p was 

associated with decreased migration and invasiveness in colorectal cancer (117, 118), and 

miR-30a was reported to be downregulated in primary nasopharyngeal carcinoma tissues 
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but overexpressed in the corresponding metastases (119), although miR-30f members were 

shown to inhibit early steps of the metastatic process (120). Our data clearly support an 

oncogenic role for miR-30b-5p in BrCa. 

Progression of solid malignancies is the result of a multistep cascade in which tumor cells 

undergo widespread modifications to successfully migrate and colonize other organs. EMT 

is key for the initial escape of tumor cells by enabling increased cell migration and invasion. 

Once circulating, tumor cells extravasate from the blood vessels and recover their epithelial 

properties by undergoing MET (121). In support of the MET hypothesis, several studies 

have shown that metastatic lesions and the corresponding primary breast tumor have a 

similar epithelial nature (122, 123). Thus, the dynamic ability to first undergo EMT and 

subsequently MET is an important feature of metastatic cells. MiR-30b-5p modulation might 

be important in this plastic process. In fact, a recent study showed that decreased miR-30f 

members in BrCa patients without evidence of distant metastases was associated with poor 

relapse-free survival, which might be associated with the ability of decreased miR-30f levels 

to speed EMT initiation (124). Downregulation of miR-30f members might lead to EMT 

initiation enabling cells to metastasize, while subsequent upregulation might be associated 

with MET, facilitating re-adaptation of the epithelial phenotype and colonization, crucial to 

develop macroscopic metastases. Indeed, a similar context-depending role in metastasis 

has been described for miR-200 family members (96, 97). Therefore, additional studies are 

needed to ascertain miR-30b-5p functional role in BrCa.  

Knowledge of determining patterns of metastatic organ tropism might provide useful 

information for clinical evaluation of disease stage and to monitor progression. Hence, 

comparative analyses of miR-30b-5p expression according to metastatic site were 

performed. Interestingly, bone metastases disclosed significantly higher miR-30b-5p 

expression levels compared to other metastases and, remarkably, primary BrCa cases that 

metastasized to bone also displayed increased levels compared to those that did not. These 

results strongly suggest that not only miR-30b-5p play a role in metastization, but it also 

predisposes tumor cells to homing at specific organ sites, especially promoting bone 

colonization by tumor cells. Nevertheless, it should be recalled that miRNAs expression is 

highly context- and tissue-dependent, and thus, ideally, miRNA expression in normal 

tissues more prone to receive metastatic cells should also be assessed. Moreover, the 

mechanisms underlying tumor cell tropism to bone and the extent to which metastatic cells 

miRNA’s profile differ according to their location might add valuable insights into disease 

development and clinical management.  

Circulating miRNAs are stable in body fluids and their assessment might provide valuable 

diagnostic, prognostic and therapeutic prediction information, allowing for non-invasive 
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testing and potential individual treatment optimization (64). Recently, miR-30b-5p 

expression levels were shown to distinguish BrCa patients from healthy controls in liquid 

biopsies (125), although these levels have been associated with aged (126). Remarkably, 

we found that miR-30b-5p could discriminate patients with advanced BrCa from those with 

localized BrCa with high sensitivity, but modest specificity and overall accuracy, and no 

association with age was disclosed. Our results suggest that miR-30b-5p might identify, at 

diagnosis, patients which are more likely to endure disease progression.  

Several other miRNAs have been implicated in BrCa invasion and metastasis (64). MiR-

10b was found highly expressed in tissue samples from patients with metastatic BrCa (88) 

and, more recently, found to be significantly more expressed in tissues from patients with 

stage III and IV BrCa compared to early stage disease (127). Moreover, circulating miR-

10b combined with miR-373 might identify BrCa lymph node metastasis with 72% sensitivity 

and 94.3% specificity (128) and miR-21 overexpression was significantly correlated with 

lymph node metastasis, advanced clinical stage and poor prognosis (129). Notwithstanding 

the tissue series size (n=113), no stage IV patients were included in this study. Similarly, 

circulating miR-21 discriminated stage IV BrCa patients with visceral metastasis from those 

with stage I, II and III disease with 86% specificity and 70% sensitivity (130). Nonetheless, 

as far as we know, these metastasis-related miRNAs were only evaluated in primary BrCa 

tissue and were not assessed in a larger tissue series of primary tumors and the 

corresponding metastatic lesions. Furthermore, in our study, plasma miR-30b-5p 

expression levels identified advanced disease with higher sensitivity, although with limited 

specificity.  

Importantly, a careful analysis is mandatory since the origin of tumor-associated miRNAs in 

circulation is not fully elucidated. Thus, it should be considered that they might be released 

by the primary tumor, circulating cells or metastatic lesions. Besides, due to the low 

abundance of miRNAs in circulation, their quantification might be a challenge.  

Finally, considering the previous results in patients’ tissue samples, particularly the higher 

miR-30b-5p expression levels observed in bone metastases and primary tumors that 

metastasized to the bone, the contribution of miR-30b-5p on modulation of metastatic bone 

tropism was evaluated using in vitro models of BrCa. BT-474 cells, derived from a primary 

mammary carcinoma, MDA-MB-231 cells, a metastatic cell line derived from a pleural 

effusion and Bo-1833 cells, a MDA-MB-231 subpopulation that metastasized preferentially 

to bone were selected.  

Even though metastatic samples displayed increased miR-30b-5p expression levels when 

compared to the corresponding primary tumors, regarding in vitro study, primary BrCa cell 



 

DISCUSSION | 44 

line showed significantly higher miR-30b-5p expression levels when compared to metastatic 

cell lines. Importantly, a cautious comparison is required once the origin of miRNA was 

different. It must be considered that primary tumor and metastatic lesions samples were 

representative of the tumor bulk, where malignant cells had already colonized, whereas 

MDA-MB-231 cell line derived from a pleural effusion. Concerning the morphologies of BrCa 

lines, BT-474 cells have formed closely associated colonies, while MDA-MB-231 and Bo-

1833 cells were characterized by elongated cell bodies usually associated with motility and 

invasive features. Previously, Kenny et al. classified BrCa cell lines into four morphological 

categories: Mass, Round, Stellate and Grape-like (131). BT-474 cell line was included in 

Mass category characterized by tightly cohesive colonies with strong cell-cell adhesion, 

whereas MDA-MB-231 was allocated to Stellate category characterized by limited cell-cell 

interactions and lack of E-cadherin expression, which are characteristic of EMT and 

mesenchymal phenotype (103, 131). Thus, these different phenotypes were in agreement 

with the previous hypothesis that decreased miR-30b-5p expression levels might lead to 

EMT initiation enabling cells with motility and invasive features. This might explain lower 

miR-30b-5p expression in MDA-MB-231 cells, and subsequent upregulation associated 

with MET, enabling re-adaptation of the epithelial phenotype, which was observed in BT-

474 cells. 

Contrary to what was expected, no significant differences were found between MDA-MB-

231 and Bo-1833 cells. Bo-1833 cells are a subpopulation of MDA-MB-231 cell line, a triple 

negative BrCa cell line. It is well-recognized that BrCa patients prone to develop bone 

metastasis are mainly those which display luminal features (48, 50). Thus, Bo-1833 cell line 

is a limited experimental model to study bone metastatic process. A recent study verified 

increased miR-30f members expression levels in luminal BrCa cell lines compared to MDA-

MB-231. Furthermore, miR-30f members were also found to inhibit BrCa bone metastases 

in an experimental model (124). Nevertheless, these results were only derived from triple 

negative BrCa cell lines, which represent a (very) limited subset of BrCa patients who do 

not commonly develop bone metastases, a limitation in our work. Therefore, this 

experimental model can hardly be considered representative of the clinically apparent 

heterogeneity. 

Additionally, as previously mentioned, in vitro studies are characterized by several 

limitations, including absence of epithelial-stromal, tumor-host interactions and signaling 

from extracellular matrix (64, 108). Although malignant cells need to acquire features that 

allow them to proliferate to distant organs, the particular organ microenvironment and its 

state before metastases development can moderate the metastatic process, namely by 

modifying gene expression signatures of tumor cells (46, 132, 133). Indeed, in bone, 
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malignant cells colonization is strongly modulated by the physical microenvironment (132). 

The majority of BrCa bone metastases lead to osteolytic lesions owing to exceeding bone 

loss and deficient bone replacement as a result of aberrant induction of osteoclasts activity 

and inhibition of osteoblasts differentiation (134). BrCa cells cooperate with resident cells 

by releasing molecules that enhance osteoclasts activity, perturbing the dynamic among 

osteoclasts and osteoblasts, which might lead to excessive bone degradation (45, 134). 

Subsequently, growth factors secreted by bone matrix exacerbate malignant cells 

proliferation and growth factors production, the so called “vicious” cycle of osteolytic bone 

metastasis (133-135).  

Nevertheless, cells’ conditioned medium analysis revealed that contrarily to MDA-MB-231 

and Bo-1833 cells, BT-474 cells might release miR-30b-5p. This result might be due to the 

variability of confluence among cell culture flasks. Moreover, several studies have reported 

that tumor cells might communicate with the microenvironment by releasing small vesicles 

(30 to 100 nm in diameter), including exosomes (45, 136). These extracellular vesicles 

comprise several functional biomolecules such as miRNAs already implicated in tumor 

invasion and metastization by favoring a pro-metastatic environment, a key factor to organ-

specific metastases (136, 137). Indeed, release of miR-21 and miR-10b in extracellular 

vesicles to tumor microenvironment correlated with enhancement of cell viability, growth, 

and ability to form colonies (138). In our study, the lack of miR-30b-5p in conditioned 

medium of MDA-MB-231 and Bo-1833 cells might be due to the fact that we did not isolate 

exosomes from the cells’ conditioned mediums, but instead extraction of miRNA not 

associated to exosomes was performed. 
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Conclusions and Future Perspectives 

In this Master Dissertation, we found that miR-30b-5p was overexpressed in metastatic 

BrCa, suggesting an important role in tumor dissemination. Thus, additional studies are 

required to better understand miR-30b-5p role on the plastic process of EMT/MET, which 

are decisive to invasion and development of macroscopic metastases.  

Interestingly, bone metastases and their paired primary tumors displayed higher miR-30b-

5p expression levels, implicating its involvement in modulation of metastatic organ tropism. 

As a future perspective, we intend to assess miR-30b-5p expression in normal metastasis-

host tissues to ascertain whether differential expression of miRNAs in the primary tumors 

versus metastatic tissues might be a consequence of their modulation in the metastatic 

microenvironment.  

Importantly, advanced BrCa patients displayed significantly higher plasmatic miR-30b-5p 

expression levels than patients with localized BrCa, highlighting its potential as non-invasive 

biomarker to identify BrCa patients at higher risk of disease progression in liquid biopsies. 

Furthermore, studies in larger multicentric cohorts are needed to further validate the value 

of miR-30b-5p in BrCa management and prognostic. Moreover, it would be interesting to 

evaluate miR-30b-5p expression in additional follow-up analyses to assess whether miR-

30b-5p expression levels monitoring in plasma might provide a useful tool for early 

recurrence/metastases detection. 

Regarding in vitro studies, primary BrCa cell line displayed increased intracellular miR-30b-

5p levels when compared to metastatic cell lines, whereas no significant difference was 

verified among MDA-MB-231 and Bo-1833 cells. Since it is already acknowledged that 

luminal BrCa patients preferentially develop bone metastasis, we intent to evaluate miR-

30b-5p levels in luminal metastatic cell lines. Once more, it must be considered that in vitro 

models lack clinical heterogeneity found in primary tumors.  

Moreover, we plan to evaluate intracellular miR-30b-5p expression levels of human 

osteoblasts and osteoclasts, since several reports have suggested that these cells might 

share features with tumoral cells, and the other way around was described bone-related 

genes that allow cancer cells to preferentially metastasized to bone (134).  

Additionally, to understand the effect of miR-30b-5p released by BrCa cell lines in 

osteoclasts and osteoblasts dynamic, we intend to establish co-cultures of human 

osteoblasts/osteoclasts and expose them to BrCa cells’ conditioned medium.  

Overall, our results support a prognostic value of miR-30b-5p expression levels in BrCa. If 

proven, this marker would provide a useful clinical tool for patient monitoring, entailing 
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earlier and more effective treatment. This highlight the requirement to standardize 

experimental conditions, before its clinical application in daily BrCa patients’ management.  
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Appendix I - Nottingham Combined Histologic Grade. Breast Cancer grade scoring 
adapted from (27) 

Parameters Score 
1 2 3 

Architectural 
differentiation 

(glandular/tubular 
differentiation) 

>75% of tumor area 10–75 % of tumor area <10 % of tumor area 

Nuclear 
pleomorphism 

Nuclei small and 
uniform with little 

increase in size when 
compared to normal 

breast epithelium 

Cells larger in 
comparison with normal 

with open vesicular 
nuclei, visible nucleoli, 

and moderate variability 
in size and shape 

Vesicular nuclei, frequently 
with prominent nucleoli, 

exhibiting obvious variation 
in shape and size, 

sporadically with very large 
and bizarre forms 

Mitotic Index ≤4 HPF 5–9 HPF ≥10 HPF 
Total Score 3-5 6-7 8-9 

Grade 1 – Well differentiated 2 – Moderately 
differentiated 3 – Poorly differentiated 

Abbreviations: HPF – High-power field  
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Appendix II - TNM staging system reported by the American Joint Committee on Cancer- 
Union for International Cancer Control (AJCC–UICC). Adapted from (26) 

Primary tumor (T)1 
TX Primary tumor cannot be evaluated 
T0 No evidence of primary tumor 
Tis Carcinoma in situ 
  DCIS Ductal carcinoma in situ 
  LCIS Lobular carcinoma in situ 

  Paget’s 

Paget’s disease of the nipple not associated with invasive carcinoma and/or DCIS or LCIS in 
the underlying breast parenchyma. Carcinomas in the breast parenchyma associated with 
Paget’s disease are categorized based on the size and characteristics of the parenchymal 

disease, although the presence of Paget’s disease should still be noted. 
T1  Tumor ≤20 mm in greatest dimension 
  T1mi Tumor ≤1 mm in greatest dimension 
  T1a Tumor >1 mm but ≤5 mm in greatest dimension 
  T1b Tumor >5 mm but ≤10 mm in greatest dimension 
  T1c Tumor >10 mm but ≤20 mm in greatest dimension 
T2 Tumor >20 mm but ≤50 mm in greatest dimension 
T3 Tumor >50 mm in greatest dimension 

T4 Tumor of any size with direct extension to the chest wall and/or to the skin (ulceration or skin 
nodules) 

  T4a Extension to the chest wall, not including only pectoralis muscle adherence/invasion 

  T4b Ulceration and/or ipsilateral satellite nodules and/or edema (including peau d’orange) of the 
skin, which do not meet the criteria for inflammatory carcinoma 

  T4c Both T4a and T4b 
  T4d Inflammatory carcinoma 

 
Regional lymph nodes – Clinical (cN) 

cNX Regional lymph nodes cannot be assessed 
cN0 No regional lymph node metastases 
cN1 Metastases to movable ipsilateral level I, II axillary lymph node(s) 

cN2 
Metastases in ipsilateral level I, II axillary lymph nodes that are clinically fixed or matted; or in 

clinically detected2 ipsilateral internal mammary nodes in the absence of clinically evident 
axillary lymph node metastases 

  cN2a Metastases in ipsilateral level I, II axillary lymph nodes fixed to one another (matted) or to 
other structures 

  cN2b Metastases only in clinically detected2 ipsilateral internal mammary nodes and in the absence 
of clinically evident level I, II axillary lymph node metastases 

cN3 

Metastases in ipsilateral infraclavicular lymph node(s) with or without level I, II axillary lymph 
node involvement; or in clinically detected2 ipsilateral internal mammary lymph node(s) with 

clinically evident level I, II axillary lymph node metastases; or metastases in ipsilateral 
supraclavicular lymph node(s) with or without axillary or internal mammary lymph node 

involvement 
  cN3a Metastases in ipsilateral infraclavicular lymph node(s) 
  cN3b Metastases in ipsilateral internal mammary lymph node(s) and axillary lymph node(s) 
  cN3c Metastases in ipsilateral supraclavicular lymph node(s) 

 
Regional lymph nodes – Pathological (pN) 

pNX Regional lymph nodes cannot be assessed  
pN0 No regional lymph node metastases identified histologically  
  pN0(i−) No regional lymph node metastases histologically, negative IHC 

  pN0(i+) Malignant cells in regional lymph node(s) not >0.2 mm detected by hematoxylin and eosin 
staining or IHC including isolated tumor cell clusters 

  pN0(mol−) No regional lymph node metastases histologically, negative molecular findings (RT-PCR) 
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  pN0(mol+) Positive molecular findings (RT-PCR), but no regional lymph node metastases detected by 
histology or IHC 

pN1 Micrometastases or metastases in 1-3 axillary lymph nodes; and/or in internal mammary 
nodes with metastases detected by SLNB but not clinically detected2 

  pN1mi Micrometastases (>0.2 mm and/or >200 cells, but none >2.0 mm) 
  pN1a Metastases in 1-3 axillary lymph nodes, at least one metastasis >2.0 mm 

  pN1b Metastases in internal mammary nodes with micrometastases or macrometastases detected 
by SLNB but not clinically detected2 

  pN1c Metastases in 1-3 axillary lymph nodes and in internal mammary lymph nodes with 
micrometastases or macrometastases detected by SLNB but not clinically detected2 

pN2 Metastases in 4-9 axillary lymph nodes; or in clinically detected2 internal mammary lymph 
nodes in the absence of axillary lymph node metastases 

  pN2a Metastases in 4-9 axillary lymph nodes (at least one tumor deposit >2.0 mm) 

  pN2b Metastases in clinically detected2 internal mammary lymph nodes in the absence of axillary 
lymph node metastases 

pN3 

Metastases in ≥10 axillary lymph nodes; or in infraclavicular lymph nodes; or in clinically 
detected2 ipsilateral internal mammary lymph nodes in the presence of ≥1 positive level I, II 

axillary lymph nodes; or in ≥3 axillary lymph nodes and in internal mammary lymph nodes with 
micrometastases or macrometastases detected by SLNB but not clinically detected2; or in 

ipsilateral supraclavicular lymph nodes 

  pN3a Metastases in ≥10 axillary lymph nodes (at least one tumor deposit >2.0 mm); or metastases 
to the infraclavicular nodes 

  pN3b 

Metastases in clinically detected2 ipsilateral internal mammary lymph nodes in the presence of 
one or more positive axillary lymph nodes; or in ≥3 axillary lymph nodes and in internal 

mammary lymph nodes with micrometastases or macrometastases detected by SLNB but not 
clinically detected2  

  pN3c Metastases in ipsilateral supraclavicular lymph nodes 
 

Distant metastases (M)3 
M0 No clinical or radiographic evidence of distant metastases 

  cM0(i+) 
No clinical or radiographic evidence of distant metastases, but deposits of molecularly or 

microscopically detected tumor cells in circulating blood, bone marrow or other non-regional 
nodal tissue that are not >0.2 mm in a patient without symptoms or signs of metastases 

M1 Distant detectable metastases as determined by classic clinical and radiographic means 
and/or histologically proven >0.2 mm 

1 Definition for classifying the primary tumor (T) is the same regardless of it is based on clinical or for pathologic 
parameters. 
2 Clinically detected refers to detection by clinical examination or imaging techniques and having characteristics 
highly suspicious for malignancy or a presumed pathological macrometastases based on fine-needle biopsy. 
3 Definition for classifying the distant metastases (M) is the same regardless of it is based on clinical or for 
pathologic parameters. 
Abbreviations: DCIS - ductal carcinoma in situ; IHC – immunohistochemistry; LCIS - lobular carcinoma in situ; 
RT-PCR - real-time polymerase chain reaction; SLNB - sentinel lymph node biopsy. 
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Appendix III – Anatomic Stage/Prognostic Groups. From (26) 

Anatomic Stage 
Prognostic Groups 

T N M 
0 Tis 0 

0 
 

IA 1 0 

IB 
0 1mi 
1 1mi 

IIA 
0 1 
1 1 
2 0 

IIB 
2 1 
3 0 

IIIA 

0 2 
1 2 
2 2 
3 1 
3 2 

IIIB 
4 0 
4 1 
4 2 

IIIC Any T 3 
IV Any T Any N 1 
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Appendix IV – Detail information about primary tumor and the matched metastases 
per each patient included in FFPE Breast Cancer patients’ validation cohort #1. 

Patient 
number 

Age at 
diagnosis 

Molecular subtype 
of primary tumor1 

Metastasis 
localization 

Time Interval after 
primary tumor (years) 

1 30 Luminal B-like Brain 10.07 
2 37 Basal-like Brain 1.2 
3 36 Luminal B-like Brain 9.82 

4 37 Luminal B-like 
Brain 10.45 
Lung 10.4 

5 28 Luminal B-like Bone 7.7 

6 39 Luminal B-like 
Bone 9.95 
Lung 11.26 

7 32 Luminal A-like Bone 3.64 
8 49 Luminal A-like Bone 13.08 
9 51 Luminal A-like Bone 5.66 

10 65 Luminal B-like Bone 8.8 
11 64 Luminal B-like Bone 11.78 
12 57 Luminal B-like Bone 2.47 
13 44 Luminal A-like Bone 4.94 
14 58 Basal-like Bone 2.46 
15 31 Luminal B-like Bone 0.15 
16 57 Luminal B-like Bone - 
17 44 Luminal B-like Bone 9.52 
18 76 Luminal B-like Bone 1.93 
19 41 Luminal B-like Bone 3.41 
20 71 Luminal B-like Bone 6.12 
21 56 Luminal B-like Bone 6.66 
22 46 Luminal A-like Bone 11.49 
23 42 Luminal B-like Bone 1.94 
24 56 Luminal B-like Bone - 
25 46 Luminal A-like Bone 7.67 
26 36 Luminal B-like Bone 2.42 
27 62 Luminal A-like Bone 6.47 
28 46 Luminal B-like Bone 8.31 
29 38 Luminal B-like Bone 3.84 
30 33 Luminal B-like Bone 4.47 

31 49 Luminal B-like 
Bone 6.61 

Locoregional 7.05 
Contralateral Breast 7.21 

32 71 Luminal B-like Bone - 
33 43 Luminal A-like Bone 5.98 

34 49 Luminal A-like 
Bone 12.61 

Contralateral Breast 8.17 
35 58 Luminal B-like Bone 4.99 
36 40 Luminal A-like Bone 4.21 
37 73 Luminal B-like Bone - 

38 58 Luminal A-like 
Bone 14.39 

Locoregional - 
39 43 Luminal A-like Bone 3.42 
40 64 Luminal B-like Bone 3.69 
41 42 Luminal A-like Bone 4.83 
42 47 Luminal B-like Bone 7.76 
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43 71 Luminal A-like Bone 3.44 
44 51 Luminal B-like Bone 3.61 
45 58 Luminal B-like Bone 5.5 
46 40 Luminal B-like Bone 2.04 
47 73 Luminal A-like Bone 4.71 

48 61 Luminal B-like 
Bone 10.5 

Contralateral Breast 3.78 
49 47 Luminal B-like Bone 17 
50 59 Luminal B-like Bone - 

51 43 Luminal A-like 
Bone 4.3 

Locoregional 3.96 
52 45 Luminal B-like Bone - 
53 33 Luminal B-like Bone 6.28 
54 37 Luminal A-like Bone 7.07 
55 53 Luminal B-like Bone - 
56 46 Luminal B-like Bone - 
57 69 Luminal B-like Bone 3.92 
58 63 Luminal B-like Bone 11.72 
59 65 Luminal B-like Bone - 
60 45 Luminal B-like Bone 3.18 
61 61 Luminal A-like Bone 6.9 
62 46 Luminal B-like Bone 7.93 
63 53 Luminal B-like Bone 8.93 
64 61 Luminal B-like Bone 1.92 
65 32 Luminal B-like Bone 3.01 
66 45 Luminal B-like Bone 4.81 
67 56 Basal-like Bone 8.38 
68 43 Luminal B-like Lung 4.73 

69 54 HER2-enriched 
Lung 17.72 

Contralateral Breast 13.19 

70 70 Luminal B-like 
Lung 8.29 

Contralateral Breast 9.7 
71 75 Luminal B -like Lung - 
72 56 Luminal B-like Lung 18.98 
73 35 Luminal B-like Lung 4.83 
74 67 Luminal B-like Lung - 

75 51 Luminal B-like 
Lung 7.95 

Locoregional 7.93 
76 41 Luminal B-like Lung 9.43 
77 48 Luminal B-like Lung 10.65 
78 58 Luminal B-like Lung 6.15 
79 74 Luminal B-like Lung 9.01 
80 64 Basal-like Lung 1.03 
81 40 Luminal A-like Lung 12.13 
82 54 Luminal B-like Lung - 

1Assessed by immunohistochemistry.  
- Patients diagnosed with stage IV Breast Cancer 

 

 

 


