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ABSTRACT 

The thesis explores the dynamic features and functions of chromatin crosstalk in the 3D 

nucleus space, with a focus on the regulation of chromatin transitions. In Paper I we 

employed the circular chromosome conformation capture assay (4C) and Chromatin in situ 

Proximity (ChrISP) technique to uncover an inter-chromosomal chromatin fiber interactome 

comprising both transcriptionally active circadian genes and repressed lamina-associated 

domains (LADs). Moreover, we documented that this interactome was under the control of 

the circadian clock. Synchronization of circadian transcriptional oscillations by external time 

cues thus involved the rhythmic mobility of clock-controlled genes between the 

transcriptionally permissive nuclear interior and the repressive environment of the lamina. 

The transient interactions between LADs and circadian genes were regulated by rhythmic 

complex-formation between the 3D genome organizers PARP1 and CTCF, which not only 

served as molecular ties of the chromatin fiber network, but also regulated chromatin 

mobility to and from the lamina and, as a consequence, circadian gene expression. 

In Paper II, we described a novel principle regulating MYC expression in colon cancer cells. 

Using an innovated method, Nodewalk, and ChrISP, we thus found that the oncogenic 

colorectal super-enhancer (OSE) regulated MYC expression at the post-transcriptional level 

by facilitating "gene-gating". OSE/MYC complexes were dynamically tethered to the nuclear 

pores specifically in cancer cells by interactions between ELYS/AHCTF1 that connects 

chromatin to the NUP107 nuclear pore subcomplex and the ß-catenin-TCF4 complex. 

Tethering to the nuclear pores facilitated the nuclear export of MYC transcripts into the 

cytoplasm where the stability of MYC mRNAs is several-fold higher than in the nucleus, 

resulting in a several-fold increase of cellular MYC mRNA levels in human colon cancer 

cells.  WNT signalling thus regulates pathological MYC mRNA export post-transcriptionally 

through ß-catenin-TCF4-ELYS complex formation. 

In summary, this thesis describes new principles of gene regulation in the 3D nuclear 

architecture, including circadian transcriptional regulation and OSE-facilitated gene gating. 

They open up new avenues for our understanding of the function and dynamics of the 3D 

nuclear architecture and genome organization, and provide new directions for cancer 

treatment. 
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1 INTRODUCTION 

1.1 EPIGENETIC REGULATION 

The sequence of an organism’s genome does not directly determine how the genome is used 

to build the organism. A second, more complex regulatory code is encrypted in the chromatin 

structure and 3D nuclear organization of chromosomes. This epigenetic information, or the 

epigenome, not only provides an essential cue to allow a cell to interpret the genome but can 

also be transmitted through cell division to preserve cellular identity. Epigenetic mechanisms 

thus converge on chromatin features to manifest specific changes in gene expression in 

response to developmental and environmental cues [1]. To effectuate this principle, the 

chromatin structure provides an essential platform for the collaboration between transcription 

factors and specific chromatin modifications [1]. Chromatin modifications are generated by 

the synergism between DNA and histone modifications, three-dimensional (3D) genome 

organizers, as well as non-coding RNAs [2, 3] in response to environmental cues. Once 

established, such features are generally stable to ensure the generation of robust phenotypes 

during development [4, 5]. However, the loss of this robustness to generate metastable and 

hence more plastic epigenetic states is considered a key factor underlying the development of 

complex diseases, such as cancer [5]. The molecular mechanisms underlying epigenetic 

plasticity and its deregulation in diseases remain poorly understood, although they are likely 

reflected by a change in the stability of physical interactions between distant regulatory 

elements, such as promoters and enhancers, crosstalk between different epigenetic marks, 

formation of transcriptional memory as well as compartmentalization of active and inactive 

chromatin domains [3, 6-10].  

1.2 CHROMATIN CROSSTALK IN 3D 

Although dynamically responding to extra-cellular cues, each chromatin is not randomly 

organized in the nucleus and is under development control [6, 11, 12]. The genome is 

packaged in the confines of the nuclear space in a highly dynamic while regulated manner 

and forms higher-order chromatin conformations. The 3D organization of the genome in the 

nucleus space influences and is influenced by genomic functions, including transcription, 

replication and DNA repair [6, 11]. The nuclear architecture and 3D genome organization, 

moreover, influence chromatin crosstalk and modulate the stability of chromatin states[6, 11]. 

Various methods have been evolutionally developed to assess genome-wide chromatin fiber 

interactions and close spatial proximities in the 3D architecture of the nucleus.  
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1.2.1 The innovation of techniques to explore the 3D genome  

During the last two decades, mainly two types of approaches have been innovated to explore 

3D chromatin structures: chromosome conformation capture (3C)-based technologies more 

recently combining with high-throughput sequencing analyses and fluorescence imaging 

techniques, such as fluorescence in situ hybridization (FISH) [13, 14]. Those techniques, 

which have their pros and cons discussed below, have been widely used for the spatial 

visualization of chromatin features and how these features relate to genome functions and 

cellular phenotypes [15-17].  

The 3C technique, which was initially invented by Job Dekker [13], was subsequently 

replaced by improved derivatives,  such as  4C, 5C and Hi-C techniques [15]. The common 

denominator between all these “C” techniques is that chromatin structures are cross-linked in 

the living cell with formaldehyde. Following purification of chromatin DNA, digestion using 

restriction endonucleases and ligation, the proximity between distal chromatin regions could 

be determined by either PCR or high throughput DNA sequencing analyses [13] 

(schematically shown in Fig. 1a). Based on this principle, the circular 3C (4C) technique was 

established, combining high throughput sequencing, to simultaneously capture multiple 

ongoing intra-chromosomal and inter-chromosomal interactions genome wide with high 

resolution from a known locus [18].  Later, 3C- carbon copy (5C) was established by 

introducing ligation-mediated PCR amplification to cover all possible ligation combinations 

from a 3C library within a defined distance, typically around one million base pairs, followed 

by deep sequencing [19-21]. Hi-C was subsequently invented to capture theoretically all to all 

interaction genome wide based on capturing the biotin-labeled ligation sequences bridging 

two different interacting DNA regions [22, 23]. ChIP-loop [24] and ChIA-PET [25] 

techniques represented other versions of 3C-based techniques, which are built on the 3C 

technique integrated with Chromatin Immunoprecipitation (ChIP). These methods are thus 

capable to detect chromatin fiber interactions when binding a particular protein, such as 

transcription factors. The “C” techniques listed above are based on cell populations, usually 

more than 10 million cells. To adapt Hi-C to single-cell analysis, Takashi and colleague 

modified the protocol by involving in-nucleus ligation, which enables the isolation of single 

nuclei carrying Hi-C ligated DNA [15, 26]. This single cell Hi-C approach suffers, however, 

from a limited sequencing coverage like several of the other “C” techniques. Recently, single-

cell combinatorial indexed ATAC-seq (sciATAC-seq) [27] and single-cell combinatorial 

indexed Hi-C (sciHi-C) [28] were invented based on the improved Hi-C protocol. A major 

drawback of all of these techniques is an extensive use of exponential PCR amplifications, 
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which introduce serious biases. To overcome this drawback, a new variant of the 3C 

technique termed Nodewalk was developed (Paper II) [29]. 

Nodewalk is identical to the classical “C” techniques up to the ligation of digested DNA. To 

further fragment the ligated DNA and equip it with suitable primer sequences, transposases 

are used to tagment the ligated DNA. In the next step, primers containing a T7 RNA 

polymerase promoter are used to amplify the ligated DNA within 5-7 cycles, allowing the 

production of large amounts of RNA from small amounts of input material. These chimeric 

RNA sequences are subsequently converted to DNA for high throughput sequencing using 

cDNA primers strategically positioned close to the ligated restriction site. This technique 

allows the reproducible identification of stochastic chromatin interactions in input material 

corresponding to at least 7 cells [29] (schematically shown in Fig. 1b).  

 

Figure 1. Schematic illustration of different types of 3C-based techniques 

 

Although the “C” techniques provide direct evidence of interactions between chromatin 

fibers, they are generally poor in assessing the frequencies of such interactions and their 

positions within the nuclear architecture. These shortcomings are neutralized by confocal 

microscopic analysis, which can then be combined with 3D FISH to provide information 
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about the location of proximities between different chromatin regions in single cells. Image-

based approaches benefit from the preserved natural spatial context of individual loci to 

enable direct analysis of the physical distance between regions of interest. However, the 3D-

DNA FISH approach suffers from the limitation of the light microscope. Moreover, although 

the automation of FISH protocol and advancing of imaging techniques have made it possible 

to map the position and proximity of multiple endogenous loci in single cells [30-32], it still 

suffers from a relatively low output in comparison with the “C” techniques.  

While the resolution of 3C-based methods is determined by the length of fixation reagent 

(5,9Å for monomeric formaldehyde) and thus rather high, these techniques offer only average 

information of chromatin fiber interactions. The resolution of 3D DNA FISH is limited by the 

wavelength of the fluorophores, which is much lower than 3C-based methods, while provides 

a powerful visualization of chromatin organization in single nuclei. To fill this gap between 

3C-based and 3D DNA FISH techniques, an in situ technique termed chromatin in situ 

proximity (ChrISP) was developed and successfully used to quantitatively detect chromatin 

proximity in single cells with a resolution exceeding those of super-resolution microscopes 

[33] (schematically shown in Fig. 2).  

 

Figure 2.  Chromatin in situ proximity 



 

 13 

Combining the “C” techniques with ChrISP analyses thus provides an unprecedented insight 

into 3D chromatin features and their relationships to hallmarks of the nuclear architecture. 

1.2.2 The genome organizer CTCF and its PARP1 partner 

Using the “C” technologies it was observed that the communication between enhancers and 

promoters could be regulated by so-called insulator elements when placed in between the 

gene and its related enhancer [34]. The H19 imprinting control region (ICR) is so far the only 

well-characterized insulator in the mammalian genome, which regulates the monoallelic 

expression of a pair of imprinted genes, H19 from the maternal allele and Igf2 from the 

paternal allele [7, 35]. This feature is manifested by a cluster of binding sites of CCCTC-

binding factor (CTCF) at the H19 ICR, positioned between a downstream enhancer and 

upstream Igf2, which is methylated on the paternal but not the maternal allele. The maternal-

specific binding of CTCF to the H19 ICR thus ensures the monoallelic expression of Igf2 [35, 

36]. This feature has a critical role in differential regulation of higher order chromatin 

conformations [34, 37, 38].  

CTCF is an eleven-zinc factor that binds to its targets by the combinatorial usage of a subset 

of the zinc fingers [39]. Mutations in the 11 zinc finger domains [40-43] thus inhibit CTCF 

binding to specific target sites [43]. Mutations, disruption in the associated modifications, or 

structural changes in CTCF binding sites adjacent to oncogenes and cancer-related genes 

frequently occurred in cancer resulting in deregulation of cancer associated genes, as well as 

the local and long-range chromatin structure in cancer cells [44-49]. It is not surprising 

therefore that CTCF has been linked with the regulation of cancer cell proliferation and 

clonogenicity [40, 50, 51]. Based on these and other features (see below) CTCF has been 

coined as the master regulator of the genome [52]. 

It is not known how CTCF imparts chromatin insulator functions, although it involves the 

enzymatic activity of PARP1. PARP1 enzymatically poly(ADP-ribosy)lates (PARylates) 

itself and its protein partners, including CTCF, and affects a number of cellular and biologic 

outcomes by mediating the genotoxic stress response, DNA repair, regulating genome 

integrity, chromatin structure and transcription [53, 54]. Inhibition of the PARP1 function 

thus counteracted the insulator function of CTCF to generate biallelic IGF2 expression [55]. 

Of note, we show in Paper I that CTCF can activate PARP1 enzymatically to provide a 

plausible explanation for how PARP1 and CTCF collaborate to manifest the chromatin 

insulator function. It is, moreover, of interest that the potential for interactions between CTCF 

and PARP1 is under circadian control (Paper I) to raise the tantalizing possibility that the 
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function of chromatin insulators oscillates to diversify enhancer-gene communications in 

rhythmic manners. 

1.2.3 Compartmentalization of nuclear functions in 3D 

During interphase, individual chromosomes occupy certain nuclear space, the so-called 

chromosome territory (CT), and display radial orientation [6]. AT-rich sequence elements 

tend to localize to the nuclear periphery while GC-rich and gene-rich domains move towards 

the interior of the nucleus. However, specific regions have the probability to loop out from 

their corresponding territory to intermingle in inter-chromosomal contacts to influence and 

coordinate nuclear functions [6]. Active and inactive chromatin domains are separated 

spatially in the nuclei; this is one of the most striking features of the nuclear architecture [11, 

15]. In the vast majority of differentiated mammalian cells studied, FISH along with 3C-

based analyses thus show that transcriptionally active or poised chromatin has a tendency to 

be located in the nuclear interior, whereas repressed chromatin states containing gene deserts 

as well as genes repressed in a cell type-specific manner tend to tether at the nuclear 

periphery, or cluster around the nucleolus [12, 56, 57]. 

The spatial separation between active and inactive chromatin states likely reflects the 

maintenance of stable cellular memories by reducing transcriptional noise [4]. As chromatin 

modifications are reversible, the nuclear environment is expected to have an influence on the 

dynamics and stability of histone modifications. For example, the re-localization of 

developmentally regulated genes to and away from the nuclear periphery has been linked to 

transcriptional repression or activation, respectively. Similarly, artificial tethering of certain 

loci to the lamina has been shown to induce repression, although there are examples where 

localization does not affect transcription [12]. Paper I demonstrates that circadian genes 

exploit their dynamic juxtaposition to inactive domains at the nuclear periphery to effectuate 

transient repression. 

1.2.4 The active compartments:  nuclear interior 

Chromatin fiber interaction occurs often within active chromatin states in the nuclear interior. 

Using high-throughput assays that are capable to map long-range transient chromatin fiber 

interactions, dynamic physical contacts between regulatory elements that are located far apart 

from each other in linear distance have been captured [58]. Chromatin fiber interactions are 

most frequent within the same chromosome to form chromatin loops in cis.  It can also, 

however, involve large-scale movements and form transient contacts between different 
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chromosomes in trans.  Such enhancer-promoter and gene-gene communications have been 

liked with transcriptional coordination [59].  

1.2.4.1 Topologically associating domains (TADs) 

Hi-C revealed that mammalian genomes are compacted into evolutionary conserved self-

interacting chromatin domains in mega base scale. Such regions, named topologically 

associating domains (TADs) [60], may influence gene expression by constraining chromatin 

movements to involve only neighboring enhancer-promoter contacts [61]. Disruptions of 

TADs lead to de novo enhancer-promoter interactions and mis-expression [62]. Despite the 

underlying mechanisms of TAD formation remain to be obscured, some evidence pointed 

that architectural proteins or genome organizers, such as CTCF, can participate in the 

formation of TAD boundaries [61, 63, 64]. Preventing CTCF binding to a TAD boundary 

thus disrupt TAD integrity and lead to mis-expression of limb developmental associated 

genes causing limb developmental defects [62]. 

1.2.4.2 Enhancer usage in 3D  

Enhancer-promoter interactions are cell type- and differentiation stage-specific to manifest 

developmental decisions. The underlying molecular mechanisms include the stochastic 

chromatin fiber movements and transient stabilization of chromatin fiber interactions, which 

form the basis of transcriptional regulation [65]. Such functional contacts between enhancers 

and promoters, which are constrained by the 3D organization of the chromosome, are thus 

influenced by the binding of transcription factors (TFs) and stabilized by the interaction 

between TFs and chromatin architectural proteins or genome organizers, such as CTCF[62, 

66-71]. Enhancer-promoter contacts could also be influenced by chromatin mobility, which is 

constrained by the 3D organization of the nearby chromatin context[62, 69]. It has been 

shown that intra-TADs CTCF binding sites stabilizes enhancer–promoter interactions and 

maintains robust gene expression, so as to reduce cell-to-cell variation of gene expression 

[71]. The cohesin complex plays an important role in this process is exemplified by the 

observation that OCT4 (octamer-binding transcription factorÊ4) expression was lost when 

one of its members was down regulated [72]. Enhancer RNAs (eRNAs), a class of long 

noncoding RNAs that transcribed by and characterize active enhancers, have also been shown 

to take part in the regulation of enhancer-promoter contacts through promoting the 

recruitment and enhancing the kinase activity of the Mediator complex [73]. Furthermore, 

mutations of the mediator subunit 12 (MED12) abolished the interaction between eRNAs and 

MED12 to cause developmental defects. The frequency of enhancer–promoter interactions 



 

16 

might therefore regulate the frequency and/or duration of productive transcription, and 

modulate the variability of gene expression in a cell population.  

Multiply enhancer elements covering tens or hundreds of kilo bases tend to form clusters, so-

called super-enhancers, to ensure robust expression of cell fate–determining genes and to 

maintain cellular phenotypes during development and cancel evolution [74, 75]. However, 

such regions can be formed de novo during cancer development and integrate several 

different signaling pathways, such as the WNT pathway, to form oncogenic super-enhances 

(OSEs). This feature is thought to cause unscheduled activation of cancer genes, such as MYC 

[75, 76]. Transcriptional regulators and genome organizers, such as CTCF [76] and the 

Mediator complex [67], influence the formation and dissolution of super-enhancers. CTCF 

often occupies the promoter of oncogenes and facilitates their docking with essential 

enhancers [76]. The Mediator complex is an essential regulator of transcription by affecting 

enhancer-promoter contact, chromatin remodeling, as well as RNA Pol II activity [38]. 

While 3D genome organization regulate cell type-specific enhancer-promoter interaction [69, 

70], transcription activation in turn influence subnuclear positioning of local chromosome 

[77]. The interplay between gene expression and chromatin conformation is a driving force 

for cell-fate decisions [69]. It is still not clear, however, how the physical constrains of 3D 

genome organization govern cell type- and differentiation stage-specific crosstalk between 

enhancers and promoters. This issue is compounded by the observations that some enhancers 

have restricted access to only a gene in their neighborhood, while other enhances regulate the 

expression of several different genes located far apart [10]. To understand how enhancer-

associated chromatin state transitions could manipulate gene expression during differentiation, 

3D maps of dynamic chromatin fiber interactions between enhancer and promoter, as well as 

between enhancers have been elaborated to uncover a new feature of genome organization. 

1.2.5 The inactive nuclear compartments 

As noted above, the compartmentalization within the nucleus plays a key role in the 

regulation of transcriptional activity [12, 57, 78]. Long-range heritable repressive epigenetic 

modifications contribute to the establishment of stable repressive chromatin domains during 

differentiation [6, 7]. Such repressed domains, which are positioned at the nuclear periphery 

and/or at the nucleolus, are functionally and physically separated from transcriptionally active 

regions by boundary elements.  
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1.2.5.1 Formation of repressive compartment at the nuclear periphery 

The inner nuclear membrane, the nuclear lamina and the lamina-associated proteins constitute 

the nuclear periphery. The repressive environment at the nuclear periphery is based on the 

regulated interaction between the inner nuclear membrane and silenced chromatin [79]. 

Repressive histone modifications [15, 80] and specific genome organizers [57] coordinately 

drive dynamic interactions between genomic loci and the transcriptionally repressive 

environment at the nuclear periphery. 

The genomic regions that directly associated with nuclear lamins are termed LADs. These 

regions are approximately 10 Kb to a few megabases in size, covering around 40 % of the 

genome. LADs contain the AT-rich, repressed portion of the genome and include the so-

called constitutive LADs (cLADs) that are present at lamina in at least two different cell 

types the facultative LADs (fLADs) that cover developmentally silenced genes which are 

recruited to the periphery in a cell type-specific manner. Around 30% of LADs are positioned 

at the periphery at any given time, dynamically contacting with the nuclear lamina [81]. In 

mammalian cells, LADs might correspond to large blocks of peripheral heterochromatin that 

were first observed by electron microscopy [82, 83] and detected by native ChIP [81]. LADs 

thus substantially overlap with large domains that are enriched in repressive histone 

modifications, rich in Histone 3 Lysine 9 di- and tri-methylation (H3K9me2 and me3) [78, 

80], the so-called “Large Organized Chromatin K9-modifications” (LOCKs), which emerge 

during differentiation [12, 78]. 

Lamin proteins, such as Lamin A/C and Lamin B1, have been shown to regulate tethering of 

LADs at the nuclear lamina [84, 85], while the exact role of lamin proteins in chromatin 

organization is not clear. Murine embryonic stem cells (mESCs) with triple knockout of 

lamin proteins are still viable and DamID detected that the organization of LADs remains 

unchanged in these cells [86], suggesting that tethering of LADs to the nuclear lamina does 

not need the presence of lamins in mESCs. Removal of both the Lamin B receptor (LBR) and 

lamin A/C proteins, on the other hand, inverts the architecture of the nucleus and causes 

heterochromatin to accumulate in the center of the nucleus, suggesting that LBR is involved 

in mediating interactions between LADs and the repressive nuclear periphery at least in 

certain cell types [87]. The inner nuclear membrane protein emerin, in complex with histone 

deacetylase 3 (HDAC3) or other nuclear envelope transmembrane proteins (NETs), has also 

been implicated in mediating interactions between LADs and the nuclear periphery. Indeed, 

some of these NETs were shown to control the positioning of individual chromosomes 
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relative to the nuclear periphery [88]. 

Since the formation of repressive environment at the nuclear periphery involves the 

acquisition of large blocks of repressive histone modifications during cell differentiation, it is 

not surprising that factors depositing repressive histone marks have been shown to promote 

LAD-lamina interactions. For example, the histone methyltransferases (HMTs) MET-2 and 

SET-25 are responsible for regulating the localization of heterochromatin to the nuclear 

periphery in C. elegans [80]. In mammalian cells, the loss of K3K9 mono-methylation 

(H3K9me1) results in the disruption of the nuclear lamina [89]. Furthermore, methylation of 

H3K9 by G9a, a histone methyltransferase, has been shown to regulate the recruitment of 

LADs to the nuclear lamina [81]. Ying Yang 1 (YY1), in collaboration with lamin A/C, 

Histone 3 Lysine 27 tri-methylation (H3K27me3) and H3K9me2/3, has also been observed to 

promote the maintenance of lamina-proximal positioning[90]. CTCF, a major 3D genome 

organizer [91, 92], is enriched at the border between active and inactive domains [36] as well 

as at LAD boundaries [93]. In Drosophila, down regulation of CTCF reduces H3K27me3 

levels within inactive domains, indicating that CTCF is required for the maintenance of 

repression, however its involvement in maintaining LAD-lamina interactions has not been 

examined [94].  

1.2.5.2 The heterochromatic compartment at the nucleolus 

Genomic regions in addition to ribosomal DNA (rDNA) surround the nucleoli are termed 

nucleolus-associated domains (NADs) [95]. NADs have a relatively high density of AT-rich 

regions, low density of gene-rich domains and enriched in transcriptionally repressed genes 

[95]. Moreover, NADs substantially overlap with LADs suggesting that silenced regions can 

be dynamically repositioned between the nuclear periphery and nucleolus [95, 96]. Indeed, 

certain silent chromatin loci are recruited to the nuclear periphery or to the nucleolus in a 

dynamic and stochastic manner after each cell division, suggesting a substantial mobility 

between these two compartments [81]. The silenced compartment seems to be established 

first during differentiation around the nucleolus and then promote the expansion of H3K9me2 

LOCKs at NADs and LADs, raising the question that perhaps chromatin movements between 

these two compartments is necessary for the establishment of differentiated phenotypes [82, 

97, 98]. Nuclear lamina and the nucleolus might thus contribute to the global 3D organization 

of the genome by constituting two alternative locations for repressed genomic domains. 
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1.3 NUCLEOPORINS AND THE GENE GATING PRINCIPLE 

Although the nuclear periphery provided a well-documented transcriptionally repressed 

environment, it was early observed that heterochromatin patches were intermingled with 

euchromatin staining at the nuclear periphery and recruitment of genes to the periphery [99] 

provided the basis of the so-called “gene gating hypothesis”. This fact prompted the 

formulation of the so-called “gene gating” hypothesis by Günter Blobel already in 1985. This 

principle posits that yeast nuclear pore complexes (NPCs) and their components coordinate 

transcription, mRNA processing and nuclear export, serving as gene-gating organelles[100]. 

This hypothesis is supported by studies focusing on nuclear pore complexes and their 

components in yeast and mammalian cells during the last decades. NPCs are large uniform 

transmembrane complexes (approximately 50 MDa) consisting of multiple copies of about 30 

distant conserved proteins called nucleoporins (NUPs) [100-102] (Fig 3. NPC structure and 

molecular composition).  Each fully assembled NPC thus consists of 500 to 1000 nucleoporin 

molecules [101, 103, 104]. NPCs non-randomly span the nuclear envelope with a large 

degree of structural and compositional conservation [101]. In humans, the NPC is structurally 

constituted by cytoplasmic filaments, nuclear basket formed by NUP153 and TPR [105], the 

central pore formed by Nup93/Nup205 and two rings composed of the NUP107/NUP160 

complex flanking the central pore in the vertical plane [106]. 

 

Fig 3. NPC structure and molecular composition 
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NUPs have been involved in the regulation of both transcriptional activation and repression in 

a transport-independent manner, as exemplified by NUP98 in transcriptional activation and 

NUP153 in transcriptional repression [107, 108]. Accumulated evidence indicated that certain 

inducible genes are frequently relocated to the NPCs upon transcriptional activation, while 

maintaining or increasing their transcriptional activity at the nuclear periphery [109-111]. 

NUP133 and NUP155 can moreover mediate the transport of a target plasmid DNA molecule 

from an intra-nucleoplasmic position to the nuclear pores [112]. Studies among yeast and 

mammals have implicated NUPs in the regulation of gene expression through accumulating 

specific factors to form evolutionary conserved protein interaction hubs. Those hubs maintain 

the chromatin-to-pore and nascent mRNA-to-pore interactions to regulate gene expression at 

different stages during development and adaptation to the environment [99].  

The recruitment of nuclear pore sub-complex NUP107-160 to chromatin is regulated by 

interaction between AHCTF1 and chromatin [113]. AHCTF1 interacts with chromatin 

directly via its AT-hook domain and is essential for compartmentalization of chromosomal 

DNA [113]. In line with all the functions listed above, NUPs are essential not only for the 

regulation of pluripotency and differentiation, but also the plasticity of phenotypes during 

adaption to environmental cues [107, 114]. It is not surprising therefore that deregulation of 

NUP expression or mutations of NUPs have been found during aging as well as in variety of 

tissue specific and systemic human diseases [115-117].  

NPCs and NUPs interacting with chromatin have been suggested to form a transcriptional 

memory of previous gene activation processes in yeast [118, 119]. This is a phenomenon 

called epigenetic transcriptional memory that persists through several cell generations [118, 

120]. NUP98 in human and NUP100 in yeast interact with promoters to modulate H3K4me2 

resistance and poised Pol II binding after expose to the prior stimuli [118]. Formation of gene 

loops between the promoter and 3′end of the responsive genes through interaction with the 

nuclear pore complex is also involved in the maintenance of transcriptional memory [121]. 

Such chromatin loops at the nuclear pore complex were suggested to provide a platform for 

the fast of RNA Pol II recruitment the re-initiation of transcription and thereby for facilitating 

the RNA processing [121]. NUP98 was also shown recently to promote enhancer-promoter 

looping of ecdysone-inducible silent genes in Drosophila cells and tissues [119]. Apart from 

their role in nucleocytoplasmic transport, NUPs has also been shown to contribute to the 3D 

genome organization, maintenance of memory gene loops and genome stability [119, 122, 

123].  
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1.4 REGULATION OF CIRCADIAN TRANSCRIPTION IN THE 
COMPARTMENTALIZED NUCLEUS 

Almost all the organisms sensitive to light display behavioral and biochemical oscillations 

with an approximately 24h period, referred to as circadian rhythms [124]. Circadian (Latin; 

circa-, ‘‘approximately’’, -diem, ‘‘day’’) rhythm is a cell-autonomous and evolutionarily 

conserved timing system govern the oscillation of a large variety of physiological and 

behavioral reactions [124]. Consequently, many processes, such as body temperature, blood 

pressure, sleep–wake cycles, glucose and lipid metabolism, and behavior, e.g. food intake, are 

all under circadian control. Such rhythms in phenotype require flexible, rhythmic gene 

expression patterns at a subset of genes, which is governed by circadian chromatin transitions 

within the 3D nuclear architecture. 

Circadian systems are composed of three major components: the input pathways that receive 

environmental cues (mostly known ones are light, temperature and food) and entrain the 

oscillator; the central oscillator that ensures endogenous rhythmicity; and the output pathways 

that drive rhythmic biological processes, such as sleep–wake cycles, body temperature and 

metabolism. This endogenous clock system is a free-running system, which maintains the 

circadian oscillation even when the external cue is absence, while it is entrained or 

synchronized by external time cues to adjust to the geophysical time.  

1.4.1 The central and peripheral clocks 

Mammalian circadian rhythms are controlled by endogenous biological oscillators, that 

include a central pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) [125] and 

other oscillators referred as the peripheral oscillators. Peripheral oscillators reside in other 

tissues in the brain, such as hypothalamic nuclei [126], in peripheral tissues, like liver and 

adipose tissue [127, 128], and even in cell lines maintained in culture [128, 129]. As the 

central clock system, the SCN is responsible for the biological rhythms in peripheral organs 

and is influenced by both internal and external cues[125]. Peripheral tissues contain self-

sustained oscillators with a molecular composition similar to that of SCN neurons [130-133]. 

1.4.2 The entrainment of circadian rhythm by external time cues 

To maintain the synchrony between endogenous clocks and the environment, the clock 

system is readjusted daily by external time cues through inducing alteration in gene 

expression level of clock genes and stability of clock proteins, during the so-called 

entrainment process [134]. External time cues are termed as “Zeitgebers”, which is German 
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for “giving time”.  A Zeitgeber is any exogenous or environmental cue that entrains or 

synchronizes an organism's biological rhythms.  

The most dominant synchronizer or Zeitgeber of the SCN is light: the retina perceives photic 

cues and transmits the signal to SCN through the retino-hypothalamic tract [135], the SCN 

receives external light signals to synchronize all the oscillators and is highly resistant to phase 

perturbations [136]. Other cues, such as food availability, strongly influence the clock system 

of peripheral cells [137, 138]. The phase of peripheral clocks in various tissues is 

synchronized and reset by signaling from the SCN directly, by the cooperation of neural, 

humoral and other signals indirectly, as well as by feeding-fasting cycles and humoral signals 

independent of the central clock [139, 140]. Food intake is the best-documented time cue for 

the periphery clocks for in particular the liver [139, 141, 142]. As the humoral signals, 

transforming growth factor- β (TGF-β) or activin signals induces the resetting of the cellular 

clock through activation of activin receptor-like kinase (ALK) independently of light-input 

signaling pathway in mice [143]. Furthermore, high concentration of horse serum could 

transiently synchronize circadian transcription of various genes in mammalian tissue culture 

cells [129]. 

1.4.3 The clock machinery: driving circadian transcription  

The circadian clock, operating as a cell-autonomous molecular oscillator, is built on 

conserved negative transcriptional and translational feedback loops [144] (Figure 4). CLOCK 

(circadian locomotor output cycles kaput) and BMAL1 (brain and muscle arnt-like 1, also 

known as ARNTL) as core clock proteins belong to the basic HLH (helix-loop-helix)-PAS 

(period-arnt-single-minded) (bHLH-PAS) transcription factor family. CLOCK and BMAL1 

form heterodimers and work as the positive limb of the feedback loop. The heterodimeric 

CLOCK:BMAL1 binds to E-box regulatory elements and drives transcription of clock-

controlled genes (CCGs), such as Period-encoding genes (Per1-3) and Cryptochrome-

encoding genes (Cry1-2) [145, 146]. PER and CRY proteins assemble into one or more 

protein complexes (PER complexes) [147, 148] in the cytoplasm. Upon translocation into the 

nucleus, PER complexes establish the negative limb by interfering with the BMAL1 and 

CLOCK function. The PER complexes thus suppress transcription of their own genes [149-

151]. Once the levels of the PER complexes have been lowered, the BMAL1/CLOCK 

complex will be re-activated to reform the positive limb.  

To further adjust the precision of the central system, other regulatory feedback loops, such as 

transcription factors RORs (retinoic acid receptor-related orphan receptors) and REV-
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ERBα/β (reverse erithroblastosis α and β), have been evolved [152-155]. RORs and REV-

ERBα/β bind to the ROR/ REV-ERB-binding element (RRE) on the Bmal1 promoter to 

promote or inhibit its transcription, respectively [152-156]. Ror and Rev-erbα/β are also 

CCGs transcriptionally regulated by CLOCK:BMAL1 [152-155]. Rhythmic transcription of 

REV-ERBα and RORα drive oscillations in BMAL1 expression while the CLOCK:BMAL1 

heterodimer feeds back on the Ror and Rev-erbα/β genes to form an “accessory” loop.  

This feedback loop also mediates rhythmic expression of several other transcription factors, 

including DBP (D-site binding protein), HLF (hepatic leukemia factor), TEF (thyrotroph 

embryonic factor), E4BP4 (E4 promoter–binding protein 4), as well as the bHLH 

transcription factors, DEC1 (also known as BHLHB2, STRA13, or SHARP2) and DEC2 

(BHLHB3 or SHARP1)) [137]. DBP, HLF, TEF, and E4BP4 bind to D-boxes in the genome 

and function in the circadian output pathways that drive rhythmic biological processes. These 

interconnected feedback loops, together with yet other regulatory factors, drive multiple 

patterns of transcriptional oscillations [157].  

 

Figure 4: The molecular components of the mammalian circadian clock. Adapted from Masri, 

S., Sassone-Corsi, P. The emerging link between cancer, metabolism, and circadian rhythms. 

Nat Med 24, 1795–1803 (2018). Reprinted with permission from publisher. 
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1.5 CIRCADIAN CHROMATIN TRANSITIONS 

As accounted for above, the core clock molecular machinery consists of transcription factors 

and regulators, both activators and repressors, which drive circadian expression of a fraction 

of the genome. Depending on the tissue or cell type, approximately 3–30% of the transcripts 

are under circadian regulation [158-160]. As transcription of a circadian gene, like that of any 

other gene, is influenced by its chromatin environment [65], the chromatin transitions 

enabling plasticity and specificity of circadian transcription are likely controlled by members 

of the positive and negative limbs of the circadian oscillator.  

1.5.1 The establishment of active chromatin states by the positive limb 

To initiate the transcription, the central circadian regulators BMAL1 and CLOCK act in 

combination with histone acetyltransferases (HATs) CREB binding protein (CBP) and p300, 

respectively, to acetylate histones and assist accessible chromatin state at promoters of CCGs 

[161-163]. Most likely, CLOCK itself functions as a HAT on H3K9 and H3K14 [164], both 

chromatin marks are associated with an active chromatin state. CLOCK: BMAL1 

heterodimer has been shown to interact also with other regulatory factors that have been 

associated with transcriptional activation, including histone methyltransferase (HMT) MLL 

[165], Jarid1a [166], Trap150 [167], and P300/CBP-associated factor PCAF [161]. Moreover, 

in the mouse liver, recruitment of RNA polymerase II (Pol II) to promoters was reported to be 

rhythmic and chromatin marks H3K4me3 and H3K36me3 linked with active transcription are 

highly dynamic and globally remodeled during the 24-hour period [168].  

1.5.2 The establishment of repressed chromatin states by the negative limb 

During the transition from the transcriptionally active state to the repressed state, the 

CLOCK: BMAL1 complex interacts with the PER complex at the beginning of the night as 

the levels of PER and CRY accumulate and translocate to the nucleus. The PER complex acts 

as a platform for recruitment of chromatin modifiers that can suppress transcription, e.g., 

acetylation is counterbalanced by a number of histone deacetylases (HDACs).  SIN3A-

HDAC1 [169] rhythmically deacetylates histone H3K9 at the Per1 promoter to contribute to 

the feedback repression of the clock. Moreover, the NAD+ - dependent enzyme SIRT1 

targets and deacetylates histone H3K9 and K14 on the promoter sites of Bmal1 and Per2, 

whereas SIRT6 deacetylates histone H3K9 and is involved in the recruitment of the circadian 

transcriptional machinery (CLOCK and BMAL1) to E-box containing CCG promoters [170-
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172]. 

To further perform the transition from activation to repression, histone methylations are 

recruited to the target promoters of circadian genes. The HMT Hp1γ-Suv39h, which regulates 

circadian di- and tri-methylation of H3K9 at the Per1 promoter, is recruited to the Per1 and 

Per2 promoters approximately 4 hours after recruitment of HDAC1 [173]. Recruitment of 

PER complexes could also repress the transcriptional re-initiation through inhibiting action of 

SETX and other helicases [147]. 

Very little is known about how such circadian chromatin transitions are integrated into the 

compartmentalized 3D architecture of the nucleus. Most of the studies exploring the circadian 

dynamics of higher order chromatin states thus focus on circadian enhancer-promoter 

interactions or interactions between circadian genes transcribed in the same phase [174-178] 

without exploring the role of nuclear hallmarks and compartments in oscillating gene 

expression. 

1.5.3 Crosstalk between the positive and negative limb of the clock 
machinery during chromatin transitions 

As mentioned above, post-translational modifications represent an important level of 

regulation of circadian expression. This is exemplified by the observation that the 

CLOCK:BMAL1 heterodimer recruits the Ddb1–Cul4 ubiquitin ligase to Per, Cry and other 

CCGs. Ddb1 and Cul4 are E3 ubiquitin ligases, which monoubiquitinate H2B and possibly 

other histones on neighboring nucleosomes. This process stabilizes the PER complex with 

DNA-bound CLOCK:BMAL1 at Per genes to reinforce its negative feedback function [179].  

Interestingly, the Mi-2/nucleosome remodeling and deacetylase (NuRD) transcriptional 

corepressor complex interacts with both the CLOCK:BMAL1 and PER complexes [180]. 

Thus, the CLOCK:BMAL1 heterodimer complexes with two NuRD subunits, MTA2 and 

CHD4, the latter of which promotes the transcriptional activity of CLOCK:BMAL1 on 

CCGs. Only when the PER complex carries the remaining complementary NuRD subunits to 

the DNA-bound CLOCK:BMAL1 complex, the NuRD complex could be rebuilt as an active 

corepressor that is important for the negative limb of circadian regulation. Thus, achieving 

the full repressor activity of the PER complex requires its successful targeting of 

CLOCK:BMAL1-occupied genomic loci [180].  

In another example, entrainment of circadian clock by feeding is initiated by binding of 

PARP1 to CLOCK:BMAL1 heterodimers. Poly(ADP-ribosyl)ation (PARylation) of CLOCK 
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at the beginning of the light phase evicts it from chromatin, due to the introduction of 

negative charges provided by Poly(ADP-Ribose)(PAR) chains, to inhibit transcription of 

CCGs. Conversely, induced loss of PARP1 enhances the binding of CLOCK:BMAL1 to 

DNA and leads to a phase-shift of the interaction of CLOCK:BMAL1 with PER and CRY 

repressor proteins. It is not surprising therefore that the entrainment of liver clocks to inverted 

feeding is significantly delayed in the absence of PARP1 [141]. 

PARP1 is a factor with a more general involvement in the regulation of chromatin structure, 

which acts either by direct protein-protein interactions or by the NAD+-dependent 

PARylation process [181, 182]. While it is associated with DNA damage response pathways, 

being activated by damaged DNA ends [183], its activity can be modulated by other factors. 

This is exemplified by CTCF, which is not only a major factor of transcriptional regulation in 

3D [91, 92], but also a main activator of DNA damage-independent PARP1 activity. We 

envisage therefore, that CTCF and PARP1 are dynamic partners of the DNA-bound 

CLOCK:BMAL1 complex to regulate the rhythmic activity of CLOCK. 

1.6 CIRCADIAN CLOCK, CELLULAR METABOLISM AND COMPLEX 
DISEASES 

Although features of clock-resetting factors and how they synchronize peripheral oscillators 

have not yet been fully understood, mounting evidences showed that circadian clocks in 

peripheral tissues are not only frequently linked to cellular metabolism, but also that the 

disruption of circadian rhythms might contribute to complex diseases, such as tumorigenesis, 

via perturbation to metabolic states [184, 185].  

As early as in 1998, Balsalobre and Schibler already demonstrated that horse serum shock 

could entrain circadian gene expression in mammalian tissue culture cells [129]. The 

components of the serum responsible for resetting the rhythm and the underling mechanisms 

remains to be elucidated, although Kon et al has shown that the resetting of cellular clocks 

can be induced by the activation of ALK, triggered by TGF-beta, activin or alkali signals. 

This process occurred independently of PER induction and was mediated by DEC1 [143]. 

Moreover, Yamajuku et al established a real-time monitoring cell culture system and could 

demonstrate that insulin directly regulates the phase entrainment of hepatocyte circadian 

oscillators [186]. 

Although it is known that metabolic processes regulate circadian patterns, while the 

underlying molecular mechanisms are still not yet fully explored. However, cellular 

javascript:void(0);
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NAD+/NADH levels, mirroring metabolic states, appear to regulate the function of the 

circadian oscillator [187]. Meanwhile, loss of circadian function might increase NAD+ levels 

in cancer cells because of higher rate for glycolysis [185, 188]. Moreover, the mammalian 

sirtuins, particularly SIRT1, which forms complex with CLOCK, has been shown to regulate 

circadian transcription through the NAD+-dependent deacetylation of circadian transcription 

factors and chromatin-associated proteins [170, 171]. Similarly, PARP1, a NAD+-dependent 

ADP-ribosyltransferase, plays essential roles in the entrainment of peripheral clocks to food 

intake [141].   

The close association between circadian rhythms and cellular metabolism likely and underlies 

its link with a number of pathologies such as metabolic syndrome, diabetes, obesity, sleep 

disorders, and some tumorigenic processes [171]. Therefore, it is of great importance to 

understand the molecular mechanisms underlying clock function and how these can be 

perturbed pathologically. 
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2  AIMS 

The overall aim of this thesis was to explore the regulation of chromatin transitions in the 3D 

architecture of the nucleus in relationship to biological processes. To this end, two different 

studies were implemented to address the role of the nuclear architecture in transcriptional 

regulation with the following specific questions: 

 How do external time cues reset the phase of circadian transcription in the 

compartmentalized 3D architecture of the nucleus? Specifically, does synchronization 

of circadian chromatin transitions upon entrainment involve communication between 

transcriptionally repressive and permissive sub-nuclear environments? 

 How do enhancer-promoter interactions collaborate with the compartmentalized 3D 

nuclear architecture in the regulation of gene expression? More specifically, does the 

gene gating principle exist in human cells, and if so what is the underlying 

mechanism?  
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3 METHODS AND MATERIALS 

3.1 CELL CULTURES AND TREATMENTS 

Female hESCs (HS181) were maintained on irradiated male feeder fibroblasts, and HEBs 

were generated as described previously [189]. HCT116 cells were maintained in complete 

growth medium (McCoy’s 5A modified medium (Thermo Fisher Scientific, 26600023) 

supplemented with 10 % Fetal Bovine Serum (FBS) (Thermo Fisher Scientific, 16141079) 

and 1% penicillin-streptomycin. HCECs were maintained in Colonic Epithelial Cell Medium 

(HCoEpiC, ScienCell, 2950). Cells were cultured at 37 °C under 5 % CO2 and routinely 

tested mycoplasma contamination using EZ-PCR Mycoplasma Test Kit (Biological 

Industries, 20-700-20). 

Serum shock treatments were performed as described previously [129]. Briefly, HCT116 

cells were cultured with serum-rich medium (McCoy’s 5A modified medium, supplemented 

with 50% horse serum (Thermo Fisher Scientific, 16050122)) for 2 hours. Cells were 

cultured with complete growth medium subsequently for indicated periods.  

HCT116 cells were transfected with 20 nM of CTCF siRNA (h) (sc-35124) or GFP siRNA 

(sc- 45924); 20nM PARP1 siRNA (h) (sc-29437) or GFP siRNA (sc- 45924); 50 nM of 

ELYS siRNA (h) (sc-77266) or GFP siRNA (sc- 45924) from Santa Cruz Biotechnology 

cells using Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific, 

13778150) following the manufacturer’s instructions respectively. Cells were harvested after 

48h incubation. qRT-PCR analysis, immunofluorescence staining and/or western blot were 

performed to detect the efficiencies. 

HCT116 cells were treated with Olaparib (0.3 mM final concentration) for 24 hours, 

Flavopiridol (2 mM final concentration) for 8 hours, or 0.5 µM G9a enzymatic inhibitor BIX 

01294 trihydrochloride hydrate (Sigma-Aldrich, B9311) for 72 hours before harvesting as 

described in paper I.  

HCT-116 cells were treated with 10 μM β-Catenin/TCF Inhibitor V, (BC21) 

(Merckmillipore, 219334), or an equivalent amount of the solvent DMSO for 16 hours in 

paper II. Recombinant human Wnt3a (R&R Systems, 5036-WN) was reconstituted in PBS 

containing 0.1% BSA and added directly to the cell culture medium for indicated lengths of 

time.  
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3.2 RNA/DNA FISH ANALYSES 

H19/IGF2, TLK1, VAT1L, PARD3, TARDBP, LADs and 4C interactors in Paper I and MYC 

probes in Paper II were generated based on bacterial artificial chromosome/clone (BAC). The 

MYC exon/intron probe and enhancer probes was generated from a pool of 4 PCR products 

spanning the MYC promoter and its gene body (chr8:128,746,000-128,756,177 (GRCh37). 

The BACs and PCR products were sonicated to 500-2000 bps range and followed by 

labelling with Biotin-16-dUTP (Roche, 11093070910) using Bioprime Array CGH kit (Life 

technologies, 18095-011).  A mixture of equal amounts of each labelled PCR product was 

used as FISH probe. The single-stranded intron 1 probe was prepared by generating double-

stranded PCR fragments spanning MYC intron1 (chr8:128,749,271-128,750,480).  

RNA FISH was performed on cells cultured on chamber slides (Thermo Fisher Scientific, 

154534) were crosslinked with 3 % formaldehyde for 15 minutes at room temperature (RT). 

The crosslinked slides were stored in 70% Ethanol at -20°C until further use. The 

ribonuclease inhibitor Ribonucleoside Vanadyl Complex (NEB, S1402S) was added to the 

buffers at all steps. Cells were rehydrated in 2 x sodium salt citrate (SSC), and permeabilised 

with 0.5 % Triton X-100 in 2 x SSC for 10 minutes at room temperature. The FISH probe 

was mixed with a 10-fold excess of human Cot-1 DNA (Thermo Fisher Scientific, 15279011) 

and hybridised to the slides in a buffer containing 2 x SSC, 50% formamide and 10 % dextran 

sulphate overnight at 37°C. Cells were washed twice with 2 x SSC/ 50% formamide for 15 

minutes at 40°C and with 2 x SSC for 15 minutes at 40°C, followed by mounting with 

Vectashield mounting medium containing 4,6-diamidino-2-phenylindole (DAPI) (Vector 

Labs, H-1200). 

DNA FISH analyses were performed on cells that were crosslinked and permeabilised as 

described for RNA FISH. After denaturation in 2 x SSC/ 50% formamide for 40 minutes at 

80°C, cells were kept in ice cold 2 x SSC for 5 minutes. The following hybridization and 

washing steps were prepared as described for RNA FISH.  

3.3 IN SITU PROXIMITY LIGATION ASSAY (ISPLA) 

ISPLA was performed on cells that were fixed with 1% formaldehyde to detect proximities 

between different proteins: CTCF-PARP1, CTCF-CTCF, PARP1-PARP1 in Paper I; ß-

catenin-TCF4, ß-catenin-ELYS, TCF4-ELYS in Paper II.  Modified antibodies (termed R+ 

and M-) were added to the slides following incubation with primary antibodies, followed by 

hybridization of backbone and splinter oligo DNAs, ligation and rolling-circle amplification, 
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as described [190]. 

3.4 CHROMATIN IN SITU PROXIMITY (CHRISP) 

ChrISP assay was performed and quantitated as previously described [191]. Briefly, cells 

were crosslinked and permeabilised as described for RNA FISH.  Following hybridization of 

the FISH probes and incubation with primary antibodies, the cells were incubated with 

modified antibodies (termed R+ and M-), hybridized with backbone and green splint, and 

ligated with T4 ligase, as described [191]. 

For the proximity analysis between the Digoxigenin-labelled probes annealing to either the 

MYC promoter/gene body or the OSE and the nuclear pore component NUP133, a Tyramide 

signal amplification step (TSA™ Kit with Biotin-XX Tyramide, Thermo Fisher Scientific, 

T20931) was included to increase the concentration of biotin molecules in the vicinity of the 

NUP133 epitopes. The TSA reaction was performed as described in the manufacturer’s 

protocol. In brief, after hybridization of the FISH probes and incubation with the primary 

antibodies anti-NUP133 (Abcam, ab155990) and anti-Digoxigenin (Roche, 11333062910), 

cells were incubated with anti-HRP antibody, treated with the TSA-working solution and 

then incubated with anti-biotin antibody (Abcam, ab53494).  

3.5 GRID WIDE-FIELD MICROSCOPY 

Cell imaging and generation of optical section in 3D were carried out on Leica DMI 3000B 

fluorescent microscope with OptiGrid device (Grid confocal) using Volocity software 

(Quorum Technologies Inc). Stacks were taken at 0.3 μm intervals in the Z-axis. On average, 

150-300 alleles were counted for distance measurements and/or ChrISP and ISPLA signal 

intensity in each case. RNA FISH signals were determined by subtracting the intensity of the 

background in the immediate surroundings.  

3.6 CHROMATIN NETWORKS AND INTEGRATION ANALYSES 

3.6.1 Circular chromatin conformation capture sequencing (4C-Seq) 

Using the human H19 ICR region as targeting bait, 4C-seq was performed in both HESCs 

and HEBs as previously described [192].  Briefly, formaldehyde crosslinking of hESCs and 

hEBs was performed with/without the presence of Olaparib (0.3 mM final concentration) in 

the presence of 4 mM (final concentration) Ribonucleoside Vanadyl Complex. Upon PARG 

treatment, crosslinked chromatin was treated with recombinant PARG (25 ng/ml final 

concentration) (catalog no. 4680-096-01, Trevigen) in the presence of 2 mM (final 
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concentration) DTT in BglII restriction buffer at 25°C prior to BglII digestion for 24 hours.  

Chromatin was digested with BglII for 2 weeks at 37°C in the presence of 1 U/ml RNasin 

Plus (Promega). RNase A (0.8 mg/ml final concentration) was added during the period of 

BglII digestion for RNase treatment. After digestion, intra-molecular ligation, reversal of 

crosslink and DNA purification were performed.  

3.6.2 Nodewalk 

The identification of chromatin networks impinging on MYC and flanking enhancers was 

done as has been previously described [29]. 

3.7 RNA ANLYSES 

3.7.1 Pulse labeling of RNA 

Newly synthesized RNA samples were generated by incubating the cells with 0.5 mM (final 

concentration) 5-ethynyl uridine (EU, Thermo Fisher Scientific, E10345) for 15 or 30 

minutes. For pulse chase, cells were washed with 5xPBS after the labeling with EU and then 

incubated with pre-warmed normal growing medium for indicated periods.  

3.7.2 The nuclear RNA export assay 

To determine the ratio between exported cytoplasmic and nascent nuclear RNA, EU-labelled 

nuclear and cytoplasmic RNA were fractionated, processed to cDNA and analysed for the 

presence of intronic and exonic regions of MYC by QPCR analysis. The separation of the 

nuclear and cytoplasmic fraction and the RNA isolation was performed by using the 

Ambion® PARIS™ system (Thermo Fisher Scientific, AM1921) according to the 

manufacturer's protocol. Briefly, 300 µl of Fractionation buffer was used to lyse the cells. 

The nuclear and cytoplasmic fractions were separated following centrifugation at 500 g for 5 

minutes. Labelled RNA or total RNA was purified with RNeasy Mini kit (Qiagen, 74014). 

EU-labelled RNAs were captured using Click-iT Nascent RNA capture kit (Thermo Fisher, 

C10365) following the manufacturer’s instruction before their conversion into cDNA using 

SuperScript VILO cDNA Synthesis Kit (Thermo Fisher Scientific, 11754050). 

3.7.3 mRNA decay analyses 

To block elongation of transcription, cells were incubated with 5 µg/ml Actinomycin D 

(Sigma Aldrich, A1410) for 0, 0.5, and 1 hour. Cytoplasmic and nuclear fractions were 

separated and total RNA purified as described above. An additional DNA digestion step was 

included to remove residual DNA (TURBO™ Dnase, Ambion, AM1907). The samples were 
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normalized against the total recovery of the nuclear and cytoplasmic fractions, respectively.  

3.7.4 RT-QPCR analysis of transcription 

The quality of purified RNA samples was assessed before cDNA synthesis (SuperScript 

VILO cDNA Synthesis Kit, Life Technology, 11754050) using Bioanalyzer 2100 (Agilent). 

All the QPCRs were performed using 10-fold diluted cDNA and iTaq Universal SYBR 

Green Supermix (Bio-Rad, 1725125) on RotorGene 6000 (Corbett Research).  
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4 RESULTS 

4.1 PAPER I: PARP1- AND CTCF-MEDIATED INTERACTIONS BETWEEN 
ACTIVE AND REPRESSED CHROMATIN AT THE LAMINA PROMOTE 
OSCILLATING TRANSCRIPTION 

4.1.1 Interactome connecting circadian loci and LADs 

To uncover the dynamic feature and function of chromatin crosstalk in the 3D space of the 

nucleus, we took the advantage of the 4C technique to capture more than two ongoing 

chromatin fiber interactions simultaneously.  Using a well-characterized epigenetically 

regulated imprinting region H19 ICR as the bait, 4C was performed and 518 regions were 

observed that reproducibly interacted with the bait region in Human embryonic stem cells 

(hESCs), as well as in the derived embryoid bodies (hEBs) in a developmentally regulated 

manner.  Approximately two thirds of regions detected by the 4C analyses formed a highly 

modular and approximately scale-free network, which covered both intra- and inter-

chromosomal chromatin fiber interactions. The detected network represents the sum of 

interactions from a cell population, where the individual interactions are dynamic and 

variable at the single cell level. Thus, only regions with more frequent interactions 

reproducibly emerged as central nodes in two or more samples within the network.       

The networks were validated by 3D DNA FISH analysis by measuring the physical distance 

between two loci identified by 4C. Unsurprisingly, it turned out that interactors with high 

read counts in the 4C library were more proximal to the bait than nodes with low read counts. 

The central nodes with higher connectivity were thus proximal to each other much more 

frequently than regions further apart in the topology of the network. To further validate this 

observation, we employed a chromatin hub connected to every module of the H19 ICR 

interactome, i.e. the VAT1L locus (coding for a vesicle amine transport 1 homolog-like 

protein), as a new 4C bait. Apart from reproducing the interaction between VAT1L and H19 

ICR, we also identified regions interacting both with VAT1L and H19 ICR, as well as loci that 

interacted with VAT1L independently of the H19 ICR. These results reinforced the topology 

of the network and that the existence was independent of H19 ICR. 

We further analyzed the feature of the network based on chromatin states. Surprisingly, the 

interactome impinging on H19 ICR covered various chromatin states ranging from 

transcriptionally permissive to transcriptionally repressive without either segregation away 
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from each other, or preferred interactions in between active loci in both hESCs and hEBs. 

This is striking since it did not follow the generally believed hallmark of the nuclear 

architecture that active and inactive chromatin domains are dynamically and spastically 

separated [11, 15]. 

4.1.2 Molecular ties connecting circadian loci to LADs 

The reproducibility of the network suggested that the encounters between the nodes were 

regulated and that there might be dynamic molecular ties connecting different nodes. Since 

long-range insulation by the maternal H19 ICR requires PARylated CTCF and our data 

showed that PARP1 bound to the same, maternal allele as CTCF [35, 36], we predicted that 

PARylation and/or PARP1 together with CTCF contributed to the chromatin crosstalk. This 

hypothesis was confirmed: the depletion of PAR chains from cross-linked chromatin by PAR 

glycohydrolase (PARG) collapsed the chromatin network between H19 ICR and its 

interactors in both hESCs and hEBs. This observation demonstrates that PAR chains were 

present between the interacting nodes at the time of interaction, although it does not explain if 

PARylation was the cause or consequence underlying the network formation.  

PAR chains are generated by the enzymatic activity of PARP1, which could be activated by 

CTCF independently of DNA damage [193]. Reduction of CTCF expression by small 

interfering RNA (siRNA) indeed reduced cellular PAR levels in HCT116 cells, indicating 

that PARylation of chromatin complexes and hence the network might be caused by 

functional CTCF-PARP1 interactions. This deduction was supported by two different 

experiments. First, ChIP-loop assays revealed that PARP1 is part of the H19 ICR-VAT1L 

complex. Second, treating hESCs with Olaparib, an inhibitor of PARP1 enzymatic activity 

[194], for 24 hours not only significantly reduced cellular PAR levels, but also affected 

chromatin movements and disrupted chromatin fiber interactions impinging on the H19 ICR. 

Furthermore, ChIP analyses showed that binding of PARP1 to VAT1L, H19 ICR, and other 

chromatin hubs, as well as indirect binding of CTCF to several interactors of H19 ICR were 

disrupted by a 24-hour Olaparib treatment. Conversely, direct binding of CTCF to the H19 

ICR was insensitive to Olaparib treatment to suggest that the CTCF-PARP interaction was 

directly or indirectly underlying the formation of the chromatin network. Finally, 4C analyses 

illustrated that incubation with Olaparib during a mere 10-min during the formaldehyde 

crosslinking step, could disassemble the majority of interactions in hESCs despite that it did 

not remove already existing PAR chains. Taken together, the results indicated that the 

interaction between CTCF and PARP1 was essential for the connection between H19 ICR 
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and its interacting chromatin hubs in the initial phase. The in situ generated PAR chains could 

then regulate the stability of the CTCF-PARP1 interaction and provide a platform for 

interaction with other proteins to further diversify the network.  

Given that transcriptionally active and repressed genes communicated with each other 

extensively within the network, we next addressed the underlying reason. One clue was 

provided by the findings that PARP1 activity is rhythmic and that PARP1 participates in the 

entrainment of circadian rhythm in response to feeding in the mouse liver [141]. Enrichment 

analysis showed that the network was enriched in potential circadian control genes, 

particularly in the flanking regions located 10-kb or less distal to the site of interaction, 

indicating a cis-acting regulatory role of the interactors. The phenomenon that four chromatin 

hubs were proximal to LADs at the nuclear periphery frequently raised the idea that 

chromatin fiber interactions in the H19 ICR interactome was established at this compartment. 

Indeed, 3D DNA FISH combined with Olaparib treatment confirmed the frequent proximities 

between circadian loci and LADs in untreated control cells, as well as the involvement of 

PARP1 activity or protein interactions in the recruitment of circadian genes to LADs. 

Moreover, nearest neighbor analysis illustrated that the circadian genes that were active in 

hESCs and hEBs interacted with LADs more frequently than with other circadian genes. 

4.1.3 The role of the nuclear periphery in circadian transcriptional 
attenuation 

In contrast to the general dogma that active and repressed domains were segregated to 

different compartments [11, 13, 15], we considered the possibility that there might be an 

oscillating re-positioning of active circadian loci to the repressed compartment at the nuclear 

periphery. This perception was reinforced by the observation that repressive chromatin 

modifiers that contribute to the regulation of the repressive sub-compartment at nuclear 

periphery [195] are also involved in the regulation of circadian transcription by acting in 

company with factors that regulate the negative limb of the circadian feedback loop [173, 

180]. To explore this issue, serum shock was used to synchronize circadian gene expression 

in cultured cells [129]. Using this method, we managed to synchronize or reset the circadian 

rhythm of the human colon cancer cell line HCT116. Strikingly, in situ proximity ligation 

assay (ISPLA) revealed that CTCF and PARP1 were in close physical proximity to each 

other primarily at the nuclear periphery and the interaction displayed a circadian rhythm. 

Similarly, 3D DNA FISH analyses showed that the IGF2/H19, VAT1L, PARD3 and TARDBP 

loci co-localized with the lamina in a rhythmic manner following serum shock. Moreover, the 

phase of recruitment was dependent on transcriptional activity in HCT116 cells, as loci with 
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low transcriptional activity, such as IGF2/H19 and VAT1L, peaked at 0 and 24 hours upon 

serum shock, while active loci, such as PARD3 and TARDBP peaked around 8 hours later. 

This deduction was reinforced by the observation that inhibiting transcriptional elongation by 

Flavopiridol [196] accelerated the recruitment of PARD3 and TARDBP to the lamina by 

about 8 hours upon serum shock. Finally, both Olaparib treatment and knocking down of 

either CTCF or PARP1 not only abolished the rhythmic tethering of circadian loci to the 

lamina, but also the rhythmic transcription of PARD3. Therefore, both protein levels and 

protein interaction of CTCF and PARP1 as well as PARP1 activity were critical for the 

entrainment of circadian transcription and for the rhythmic recruitment of circadian loci to the 

nuclear periphery. 

Interestingly, although transcription level of PARD3 peaked at the time when it was recruited 

to the nuclear periphery in the highest level, its activity dropt notably a few hours later at this 

sub-compartment, documenting that its juxtaposition to the nuclear periphery indeed 

preceded its transcriptional attenuation. Since transcriptional repression is not immediate and 

the periphery is enriched in repressive chromatin modifiers as well as in H3K9me2 LOCKs, 

enrichment of H3K9me2 while not H3K27me3 at PARD3 was documented by ChIP 

sequencing analysis in unsynchronized cell populations. ChrISP analysis was performed to 

further explore the presence of H3K9me2 at PARD3 alleles at the single cell level. 

Oscillating acquisition of the repressive H3K9me2 mark at PARD3 peaked at the time of 

transcriptional attenuation upon serum shock. Moreover, inhibiting the HMT activity of 

G9a/Glp [197-199] to deplete the H3K9me2 mark not only abolished the juxtaposition of 

PARD3 to the nuclear periphery, but also reduced its rhythmic transcription. Overall, the data 

are consistent with the observation that circadian transcriptional attenuation of PARD3 took 

place at the nuclear periphery requiring a time-dependent acquisition of the repressive 

H3K9me2 modification. 

4.1.4 Summary: novel principles in the entrainment of circadian 
transcription 

Taken together, in Paper I we have uncovered a chromatin network regulated by the genome 

organizers PARP1 and CTCF. The network is organized mainly by inter-chromosomal 

interactions connecting transcriptionally active loci enriched in circadian genes to repressed 

LADs at the nuclear periphery. Serum-shock induced entrainment of the circadian rhythm 

involves the rhythmic recruitment of clock controlled genes to the repressive environment at 

the nuclear periphery, followed by the time-dependent acquisition of the repressive 

H3K9me2 mark, leading to circadian transcriptional attenuation. PARP1 and CTCF not only 
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facilitate the recruitment of circadian loci to the lamina in an oscillating manner, but also 

promote rhythmic transcription upon serum shock (Figure 5, Model explaining the oscillating 

recruitment of circadian loci to the nuclear periphery).  

The circadian system uncovered in this paper is likely to interplay with the core clock 

machinery. The NAD+-dependent PARP1 activity has been shown to be rhythmic in mouse 

liver and regulated by feeding [141]. PARP1 has been shown to bind to and PARylate 

CLOCK in a circadian manner, and this PARylation prevents the binding of negative limb 

proteins to CLOCK, as well as evicts CLOCK:BMAL1 from the E-box elements [141]. Thus, 

PARP1 modulates the temporal interactions between CLOCK:BMAL1 and PER complexes 

to potentially regulate transcriptional attenuation. Our findings are in line with the 

observation that PARP1 collaborate with CTCF to modulate the circadian chromatin 

transition from active to repressive chromatin states. PARP1 and CTCF thus interact with 

each other in a circadian manner to regulate and promote the rhythmic recruitment of active 

circadian loci to the repressive nuclear periphery. This in turn ensured the gradual attenuation 

of circadian transcription upon entrainment by serum shock. This finding opens up new 

avenues for our understanding of the complex role of PARP1 in the entrainment of peripheral 

circadian clocks to feeding.     

In summary, Paper I describes a novel principle of the entrainment of circadian transcription 

that involves rhythmic chromatin mobility between active and repressive sub-nuclear 

compartments.  This observation demonstrates the critical role of nuclear architecture in 

circadian regulation. Given the tight link between circadian rhythms, cellular metabolism and 

pathologies such as metabolic syndrome, diabetes, and some tumorigenic processes [170], 

Paper I might have an impact on our understanding of the molecular mechanisms underlying 

complex diseases and how these can be perturbed. Erosion of the repressive domains might 

thus counteract circadian transcription to perturb metabolic states in complex diseases. 

Questions not addressed here include how the circadian loci are released from the repressive 

periphery and how PARP1- and CTCF-regulated circadian oscillations collaborate with the 

core clock machinery. Since CTCF-PARP1 interaction is essential for the recruitment of 

circadian genes to the lamina, we predict that dissociation of this complex probably 

contribute to the release process. Factors under circadian control might influence the PARP1 

activity [200] to rhythmically destabilize the CTCF-PARP1 complexes. The interplay with 

the central clock machinery needs to be further analyzed using other model systems. Finally, 

the observation that circadian genes remain active at the lamina for several hours after their 
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initial recruitment suggests that they might land in an environment that is transcriptionally 

permissive. Such an environment might be represented by the nuclear pores, raising the 

possibility that rhythmic chromatin mobility to the lamina is coordinated with the rhythmic 

nuclear export of circadian gene products. 

 

 

Figure 5, Model explaining the oscillating recruitment of circadian loci to the nuclear 

periphery. Adapted from H.Zhao et al. PARP1- and CTCF-Mediated Interactions between 

Active and Repressed Chromatin at the Lamina Promote Oscillating Transcription. Mol 

Cell. 17;59(6):984-97 (2015). Reprinted with permission from publisher. 
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4.2 PAPER II: WNT SIGNALING AND AHCTF1 PROMOTE ONCOGENIC MYC 
EXPRESSION THROUGH SUPER-ENHANCER-MEDIATED GENE GATING 

Enhancers and super-enhancers stabilize the expression of cell fate-determining genes during 

normal development. In some instances, abnormal super-enhancers can be formed during 

neoplasia to drive pathologically high levels of expression of oncogenes, such as MYC [68, 

74]. As MYC plays key roles in cell cycle progression and apoptosis [201], the emergence of 

an oncogenic super-enhancer (OSE) promotes uncontrolled cell proliferation.  

4.2.1 Regulation of MYC transcription in 3D 

To identify the enhancer network impinging on MYC gene in HCT116 cells, we have 

performed earlier a novel 3C-based technique named Nodewalk [29], which could 

comprehensively detect stochastic and dynamic interactions with high resolution and ultra-

sensitivity using small input material. Using several enhancer regions as baits in HCT116 

cells and human colon epithelial cells (HCECs), we have uncovered an extensive network 

covering active regions enriched in H3K27ac marks and inactive regions represented by 

cLADs located primarily at the nuclear periphery [81]. Although the nuclear periphery 

provides a well documented transcriptionally repressed environment [81, 85] and recruitment 

of genes to the periphery could promote silencing, peripheral localization leads not only to 

silencing [103]. Recruitment of genes to the NPCs can be associated to both transcription 

activation and repression [107, 108].  Some nucleoporins could bind to enhancers to form 

clusters and could also interact with lamins directly [202, 203] to provide a potential link 

between active genes and cLADs. We could show that NUP153-binding enhancer regions 

cluster with high connectivity impinging on MYC (within two TADs flanking MYC), which is 

in line with the notion that NUP153 generally associates with enhancer domains 

preferentially localized at NPCs [203].  

In contrast to NUP153, another nucleoporin, NUP133, showed little or no binding to the 

MYC promoter in either HCT116 or primary cultures of normal human colon epithelial 

(HCEC) cells.  However, ChIP analyses showed a broad occupancy of NUP133 within both 

the hematopoietic super-enhancer region and the colorectal super-enhancer region, the OSEs 

of HCT116 cells, with markedly less binding to the region corresponding to the OSE in 

HCECs. Taken together, the OSE has both NUP153 and NUP133 occupancy, while MYC is 

occupied primarily by NUP153. Given that NUP153 and NUP133 contribute to the formation 

of nuclear basket/cage and ring structure respectively, there might be a division of labor 
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between the OSE and the MYC gene at the nuclear pore.  

We next determined the sub-nuclear location of NUP133 and OSE interaction by using the 

ChrISP technique [33].  This technique allows the detection of the NUP133 epitope in the 

proximity of the OSE with a resolution less than 16.2 nm. Compared with the negative 

control, lacking one of the secondary antibodies, we could document specific ChrISP signals 

between NUP133 and the OSE in HCT116 cells, while rarely in HCECs. Importantly, 73% of 

the OSE alleles juxtaposed to the nuclear periphery are proximal to the NUP133 epitope. 

There is also a fraction of OSE-NUP133 ChrISP signals within the nucleus, which is in line 

with the presence of NUP133 in the intra-nuclear space [112]. Conversely, MYC itself was 

rarely in direct physical contact with NUP133, thus independently validating the low 

NUP133 occupancy at MYC promoter detected by the ChIP assay. 

To explore the relationship between NUP133 occupancy and OSE-MYC interaction, we first 

measured the physical distance between MYC or OSE and the nuclear periphery by 3D DNA 

FISH analysis in both HCT116 cells and HCECs. The OSE was observed to be generally 

closer to the nuclear periphery than MYC in HCT116 cells. Intriguingly, the MYC and OSE 

regions appeared more proximal to each other only when the OSE region was within 1 μm 

from the periphery. A similar tendency was observed in HCECs.  To independently validate 

this observation, we scored for ChrISP signals between MYC and OSE in relation to the 

nuclear periphery. The results confirmed that the proximity between the OSE and MYC 

directly correlated with their proximity to the nuclear periphery. To rule in or out that this 

pattern was specific to the OSE region, we compared this data using another enhancer region 

(EnhD) more proximal to MYC and not binding NUP153, as identified by Nodewalk and 

ChIP analyses. Indeed, although its proximity to MYC was generally prominent, these two 

regions were rarely proximal to each other at the nuclear periphery. The results therefore 

suggest that the EnhD region loops out when OSE-MYC approach the nuclear periphery.  

By analogy to the ability of the nuclear pore to coordinate transcription, mRNA processing 

and nuclear exports in lower model systems [100], we considered the possibility that the 

nuclear pore provides a platform for MYC expression by recruiting the OSE when interacting 

with MYC. First, the presence of transcriptionally active MYC at the nuclear periphery was 

assessed through 3D RNA FISH analysis using both probes targeting intron 1 and probes 

covering both exons and introns. In order to identify the MYC mRNA signal, the RNA FISH 

analyses were followed by denaturation and DNA FISH using a large BAC probe to identify 

the corresponding genomic location of MYC. The results showed that most of the MYC alleles 
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juxtaposed to the nuclear periphery/pore were transcriptionally active. However, those MYC 

transcripts were largely devoid of intron 1 sequences, suggesting that mRNA processing is 

being completed when MYC approaches the periphery. 

When we compared the ratio of the MYC mRNA FISH signals generated by the intron 1 and 

intron/exon probes, it turned out that the transcriptionally active alleles could be discerned 

into two different populations: one more proximal to the nuclear periphery (within 0.3-0.7 

μm) and the other more distal (within distance bin 1.1-1.3 μm). This biphasic pattern is 

strikingly similar to the distribution of the OSE-MYC or EnhD-MYC ChrISP signals. Thus, 

the distribution of EnhD-MYC proximities was similar to the intron 1 RNA FISH signals 

while the distribution of the OSE-MYC proximities showed an emphasis on the intron/exon 

RNA FISH signals. Furthermore, there were frequently more than one OSE and MYC alleles 

in each cell that were within 0.7μm from the nuclear periphery, indicating that there is a 

dynamic repositioning of MYC alleles to the nuclear periphery. 

4.2.2 Contribution of gene gating to MYC mRNA accumulation 

In a next step we compared the expression levels of both nascent and total MYC mRNA 

levels in HCT116 cells and HCECs by RT-QPCR analysis. Although cytoplasmic mRNA 

levels in HCT116 cells were 3-fold higher than in HCECs; the nascent transcripts in the 

nucleus were paradoxically lower in HCT116 cells than in HCECs. To explain this 

discrepancy, we considered the scenario that the proximity of MYC to the nuclear pore would 

facilitate nuclear export of processed mRNA. We therefore developed a 5-ethynyl uridine (5-

EU) pulse-chase analysis technique in HCT116 cells and HCECs. Total RNA was extracted 

from the nuclear and cytoplasmic fractions followed by purification of newly synthesized 

RNA by immunopurification. Levels of newly exported versus newly transcribed MYC RNA 

were determined by RT-QPCR. Visualizing the efficiency of nuclear export by cytoplasmic/ 

nuclear ratios showed that the nuclear export of MYC mRNA is on average 5-fold more 

efficient in HCT116 cells than in HCECs. This result is in line with our observation that the 

OSE region or corresponding region is juxtaposed to the nuclear pore in HCT116 cells, but 

not in HCECs.  

However, this process would contribute to higher total MYC mRNA levels only if the 

stability of the MYC transcripts is lower in the nucleus than in the cytoplasm. We addressed 

this issue by inhibiting transcriptional elongation using Actinomycin D, followed by RT-

QPCR analyses of the levels of nuclear and cytoplasmic MYC transcripts during a time 

course. While there was no difference in overall MYC mRNA stability between HCT116 and 
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HCEC cells, there was in both cell types a several-fold difference in the decay rates between 

the nuclear and cytoplasmic MYC transcripts. The main difference in cytoplasmic MYC 

mRNA levels between HCT116 and HCEC cells therefore likely reflects the more than 3-fold 

difference in decay rates between the nuclear and cytoplasmic compartments in combination 

with the facilitated export in HCT116 cells.  

Considering that the assembly of NUP107/160 nuclear pore sub-complex on chromatin 

requires the transcription factor AHCTF1 [112, 113], we analyzed the effects of knock down 

of AHCTF1 expression on the binding of NUP133 to MYC and the OSEs and the export ratio 

of MYC transcripts. Indeed, ChrISP analyses showed that knockdown of AHCTF1 expression 

reduced the binding of NUP133 to the OSE at, or close to the nuclear pores. Conversely, it 

did not interfere with the polarized anchoring of the OSE-MYC complex to the nuclear pores. 

These results document that AHCTF1 controls the anchoring of the OSE to nuclear pores but 

is not involved in the migration of OSE/MYC to the nuclear periphery/pore. Importantly, as 

the attenuation of AHCTF1 expression reduced the nuclear export of MYC transcripts, we 

argue that AHCTF1 is essential for both the anchoring of super-enhancer to the nuclear pores 

and the facilitated nuclear export of MYC transcripts. 

4.2.3 The role of WNT in the super-enhancer mediated gene gating of MYC 

Tumorigenesis has been associated with hyperactivity of the WNT/β-catenin pathway [204]. 

WNT/β-catenin pathway frequently target to MYC expression in the majority of colorectal 

cancers [205, 206].  As the DNA binding protein TCF7L2/transcription factor TCF4, which 

forms a complex with β-catenin in the nucleus of cells with an activated canonical WNT 

signaling pathway, binds to the OSE at the MYC locus in HCT116 cells [75], we 

hypothesized that the WNT/β-catenin pathway might be the upstream regulator of OSE-

mediated MYC gene gating. To address this possibility, we treated HCT116 cells with BC21, 

which specifically interferes with the complex formation between TCF4 and β-catenin [207]. 

Both ISPLA and, in particular co-immunoprecipitation (co-IP) assays showed that AHCTF1 

and ß-catenin bound to each other in a BC21-independent manner, while AHCTF1 binding to 

TCF4 was BC21-dependent. TCF4-ß-catenin complex formation is therefore likely needed 

for AHCTF1 to be able to interact with the OSE at the MYC locus in HCT116 cells, which 

was subsequently confirmed by ChIP analyses.  

To further examine whether the interaction between AHCTF1 and TCF4 is linked to the 

regulation of the anchoring of the OSE to the nuclear periphery/pore, we performed ChrISP 

analyses between the OSE, which has TCF4 occupancy, and NUP133, which is recruited to 
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chromatin via AHCTF1. The results confirmed that BC21 treatment indeed suppressed both 

the binding of NUP133 to the OSE and the recruitment of OSE to the nuclear periphery/pore. 

Given that MYC is a WNT/β-catenin target gene and AHCTF1 physically interacts with ß-

catenin, we further analyzed the presence of AHCTF1 at one prominent MYC WNT-

responsive DNA element (WRE) WRE-520 [208] by ChIP. The results showed that AHCTF1 

binding to this site was attenuated in BC21-treated HCT116 cells. Of note, the conditions we 

used for the BC21 treatment reduced cytoplasmic MYC mRNA without any significant effect 

on the levels of MYC transcription. Taken together, our results are consistent with that WNT 

signaling regulates pathological MYC mRNA export post-transcriptionally by tethering the 

OSE-MYC complex to the nuclear pores mediated by AHCTF1/ß-catenin.  

While the gene gating principle has been documented in yeast and Drosophila systems, it was 

not well understood in mammals [209]. Although the results in Paper II agree with the basic 

features of this principle and extend its validity to humans, they have also uncovered novel 

features. In particular, the OSE-mediated, post-transcriptional increase of cytoplasmic levels 

of MYC mRNA in response to extra-cellular cues is novel. Given that MYC is a key regulator 

of diverse biological processes particularly in cancer, targeting WNT-regulated gating of 

MYC may provide an alternative way for cancer therapy.  
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5 DISCUSSIONS 

5.1 THE ROLE OF NUCLEAR PERIPHERY IN THE REGULATION OF GENE 
EXPRESSION 

The nuclear periphery provides environments for both transcriptional activation and 

repression. LADs and LOCKs form the repressive components at the periphery. Repressive 

histone modifications [15, 210] and specific genome organizers [34] thus coordinately drive 

dynamic interactions between genomic loci and the transcriptionally repressive environment 

at the nuclear periphery. While the nuclear pores supply a platform for both transcription 

activation and repression in various organisms, nuclear pore complexes (NPCs) and their 

components (NUPs) coordinate transcription, mRNA processing and nuclear export in lower 

eukaryotes [100].  

Paper I described a novel principle of circadian transcriptional regulation involving the 

rhythmic recruitment of active clock controlled genes to the nuclear periphery and following 

a time-dependent transcriptional attenuation. This observation not only demonstrated a 

critical role of the nuclear architecture, the nuclear periphery in particular, in circadian 

regulation, but also suggested that transcriptional attenuation from activation was not 

immediate, and involved a delayed acquisition of the repressive H3K9me2 modification at 

the lamina during the circadian cycle. Circadian genes thus maintained their activity for 

several hours after their recruitment to the nuclear periphery. Taken together with the results 

of Paper II, showing that the colorectal super-enhancer facilitates the accumulation of MYC 

transcripts in the cytoplasm by anchoring MYC to the nuclear pore in colon cancer cells, we 

speculate that CTCF and PARP1 recruit active genes to the nuclear pore prior to reaching the 

repressive environment at the periphery. 

5.2 MYC AND THE CIRCADIAN CLOCK 

MYC and perturbed circadian rhythm are frequently linked to tumorigenesis [211].  While 

whether altered MYC expression in cancer could be mechanistically related to deregulated 

circadian rhythm either directly or indirectly remains to be established. While E-box elements 

exist in MYC gene itself [212], MYC and MYC-target genes have been demonstrated to be 

regulated by CLOCK-BMAL1 at both transcriptional and posttranscriptional levels in 

mammals [213, 214]. Of note, the circadian repressor CRY2 promotes ubiquitylation and 

degradation of the MYC protein, suggesting that circadian disruption might promote 

tumorigenesis in part through MYC protein stabilization [215].  
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Alternatively, given the master role of MYC in cell proliferation and metabolism, a hyper-

activated MYC could interfere with the clock system and thus change circadian oscillation of 

metabolism in cancer cells. Altman and colleagues have documented that an overexpressed 

MYC could alter the expression of the negative limb members of the core clock machinery, 

e.g. PER2 and CRY1, via direct binding to E-boxes [216]. Moreover, direct activation of 

REV-ERBs repressed BMAL1 expression thus suspend the molecular clock in vitro [216]. 

Shostak et al further identified that MYC mediated circadian repression requires interaction 

with MIZ1 and suggested that MYC/MIZ1complex-dependent gene repression inversely 

coordinates the circadian clock [217]. The observation that MYC overexpression profoundly 

disrupted oscillation of glucose metabolism [216] suggests that pathological expression of 

MYC promotes tumor growth by disrupting circadian gene expression and cell metabolism. 

Given these observations it is conceivable that a too efficient gating of MYC might provide a 

negative feed-back to the clock machinery, a deduction in line with our observation that only 

a subpopulation of MYC alleles are subjected to gene gating (Paper II).    

The observations that factors involved in oncogenic pathways, such as MYC, are strongly 

regulated by the circadian machinery suggest there is an interdependent relationship between 

MYC and circadian rhythms. Both oncogenic alterations and circadian rhythms are involved 

in the regulation of many cellular processes, including metabolism, and metabolism itself 

could also regulate circadian patterns.  The close association between circadian rhythms and 

oncogenic alterations might be changed during tumorigenesis, while the underlining 

mechanism has not been explored. Combining the findings from Paper I and II, one new 

opening is that PARP1 and CTCF complexes formation facilitates the recruitment of 

circadian genes, such as MYC, first by anchoring them to the nuclear pore followed by a 

lateral transition to repressive LADs.  

5.3 ADAPTATION TO THE ENVIRONMENT 

5.3.1 WNT signaling 

The WNT signaling cascade is a critical and highly evolutionally conserved regulatory 

pathway that has been implicated in a wide range of processes such as embryonic 

development, tissue regeneration and carcinogenesis. It mediates metabolic reprogramming 

of both normal and tumor cells by directly regulating downstream signaling pathways such as 

TCF/LEF, MYC [218] and negative regulation of tumor repressor proteins, such as p53 

[219]. In addition, WNT can regulate the expression and activity of enzymes involved in 

metabolic pathways and oncogenes to promote metabolic changes.  
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WNT signaling is, moreover, involved in mechanisms sensing and translating environmental 

cues into complex cellular programs during both normal and pathological proliferative states. 

The expression level of β-catenin is thus sensitive to changes in glucose levels in macrophage 

cell lines in a hexosamine-dependent manner conceivably linking the canonical WNT/β-

catenin pathway to glucose availability [220]. Moreover, the WNT modulator 

Dapper1/Frodo1 (Dact1) coordinated expression of WNT ligands WNT10b, WNT3a and 

WNT antagonists in response to in vivo adipogenesis, and nutritional cues, as well as during 

the development of dietary and genetic obesity [221].  

5.3.2 Circadian entrainment 

Circadian entrainment is a necessary adaptation of organisms to a changing environment. To 

maintain the synchrony between endogenous clocks and the environment, the clock system 

has to be readjusted by external time cues or “Zeitgebers” by inducing alterations both in the 

expression levels of clock genes and in the stability of clock proteins, this is what entrainment 

stand for [134]. In the presence of an external time cue or a Zeitgeber, an organism's 

biological clock readjusts its amplitude, phase and period every day to the geophysical time 

cycle.  

The most dominant synchronizer or Zeitgeber of the SCN is light, SCN receives external 

light signals to synchronize all the oscillators and is highly resistant to phase perturbations 

[136].  The clock system of peripheral cells in various tissues are synchronized and reset by 

signaling from the SCN directly or indirectly by the cooperation of neural, humoral, and other 

signals.  The clock system of peripheral clocks can also, however, be strongly influenced by 

other cues, such as food availability [137, 138]. The phase of peripheral clocks can therefore 

be entrained or reset by feeding-fasting cycles and humoral signals independent of the central 

clock [139, 140]. Food intake is thus the most documented time cue for the periphery clocks 

for in particular the liver [141, 142]. Moreover, humoral TGF-β or activin signals can induce 

the resetting of the cellular clock through activation of ALK independent of light-input 

signaling pathway in mice [143]. Given the central role of CTCF and PARP1 in mediating 

circadian transcriptional oscillation, we speculate that several external cues regulate circadian 

transcription by targeting the formation of this complex. 

5.3.3 Nucleoporins and the transcriptional memory 

The transcriptional memory, maintained by epigenetic/chromatin marks, endows cells to 
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quickly respond to environmental cues to change the transcription repertoire. The 

juxtaposition of chromatin regions to the NPC provides one of such memory to increase the 

rate of responses to external signals by accelerating RNA Pol II recruitment in yeast and 

Drosophila [121]. For example, Nup98 binds to ecdysone-inducible genes and mediates their 

enhancer-promoter looping upon activation in Drosophila cells and tissues [119].  Such a 

transcriptional memory could be regulated by modulating NUP98 levels without affecting 

ongoing transcription [119]. Paper II uncovered another principle that how NUPs can confer 

transcriptional memory by showing that the OSE promotes the anchoring of MYC to the 

nuclear pore to facilitate the nuclear export of MYC mRNA in colon cancer cells.  

5.4 CTCF AND PARP1 IN COMPLEX DISEASES 

5.4.1 CTCF in disease 

CTCF is a versatile factor linked to inhibition of cancer cell proliferation and clonogenicity 

[40, 50, 51]. Mutations in the 11 zinc finger domains [40-43] inhibit CTCF binding to 

specific target sites [43]. Deletion of CTCF or mutations in the 11 zinc finger domains [40-

43] to inhibit CTCF binding to specific target sites [43], has been observed in leukaemia [42, 

222], Wilms’ tumour [43], as well as breast [47, 51, 223] and prostate cancers [47]. 

Mutations, disruption in the associated modifications, or structural changes in CTCF binding 

sites adjacent to oncogenes and cancer-related genes result in the deregulation of cancer 

associated genes, as well as in the changes of the local and long-range chromatin structures in 

cancer cells [44-49]. For example, epimutations of CTCF binding sites within the H19 ICR in 

patients suffering from the Beckwith–Wiedemann syndrome, predispose to paediatric cancer 

development [224, 225]. Mutation in the isocitrate dehydrogenase (IDH) gene resulted in 

loss of CTCF binding and the disruption of TAD organization in human gliomas [226]. 

Furthermore, disruption of CTCF-associated TAD boundary domains rewired long-range 

enhancer-promoter interactions, and the ensuing mis-expression resulted in malformation 

syndromes [62]. These diverse observations indicate that deregulation of CTCF or its DNA 

occupancy play important roles in cancer development. 

5.4.2 PARP1 in disease 

PARP1 mediates the genotoxic stress response, DNA repair, gene integrity, chromatin 

structure and transcription by PARylating itself and its protein partners to affect a number of 

cellular and biologic outcomes [53, 54]. PARP1 participates in transcriptional regulation in 

diverse manners, including physical and functional interactions with genomic DNA and 

chromatin, with chromatin modifying proteins and transcription factors [227, 228] partly 
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through the synthesis of PAR at its targets. These processes underlie pathological conditions, 

including cancer, inflammation-related diseases, and metabolic dysregulation [229].  

At a low level of DNA damage, PARP1 acts as a survival factor and initiates repair through 

recruiting factors involved in DNA repair pathways. Conversely, when DNA damage is high, 

PARP1 promotes cell necrosis [230], suggesting that the available levels of its NAD+ 

substrate influences the decision between cell survival and cell death [231]. Inhibition of 

PARP1 activity or genetic deletion of PARP1 thus prevents animals from aberrant cell death 

caused by DNA damage [232, 233].  

PARP1 has also been shown to interact with TCF-4/β-catenin complex and works as a co-

activator of their transactivation [234-237]. Inhibition of PARP1 activity thus represses β-

catenin signaling to reduce the expression of β-catenin, Myc, cyclin D1 and matrix 

metalloproteinase (MMP)-7. The PARP1 activity playing a role in colorectal [234, 237] ad 

cervical carcinogenesis [235]. Accordingly, silencing PARG function suppressed cancer 

development induced Benzo(a)pyrene by in mice [238]. Auto-PARylation of the PARP-1 

protein induced by DNA damage inhibited the functional interaction of PARP-1 with TCF-4 

[237]. The interplay between PARP1, the DNA damage response and WNT signaling may 

thus constitute a new option for the diagnosis and treatment of cancer. 

It will be of importance to explore whether the consequences of altered CTCF or PARP1 

function in the above mentioned diseases involve a perturbation of the circadian clock and/or 

the gene gating process. 
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6 SUMMARY 

This thesis focuses on exploring the interplay between epigenetic regulation, enhancer-

promoter interaction, 3D genome organization and circadian homeostasis in the 3D 

architecture of the nucleus. 

In Paper I, we uncovered a novel principle of circadian transcriptional regulation: 

coordination of circadian transcriptional oscillations by external time cues involves the 

rhythmic mobility of circadian genes between transcriptionally permissive and repressive 

sub-nuclear compartments. The transient localization of clock-controlled genes to the lamina 

promoted the formation of dynamic inter-chromosomal chromatin fiber interactions between 

circadian genes and LADs, prior to the gradual attenuation of their transcriptional activity and 

the subsequent release of clock-controlled genes from the lamina to the nuclear interior. 

These LAD-circadian gene interactions were regulated by rhythmic complex-formation 

between the 3D genome organizers PARP1 and CTCF, which not only served as molecular 

ties of the chromatin fiber network, but also regulated chromatin mobility to and from the 

lamina. 

In Paper II, we described the discovery that the OSE regulates MYC expression post-

transcriptionally by facilitating its gating to the nuclear pore in colon cancer cells. This cancer 

cell-specific tethering of OSE/MYC complexes to the nuclear pores was regulated by 

AHCTF1, resulting in several-fold increase of cytoplasmic MYC mRNA levels in human 

colon cancer cells, but not in normal cell counterparts. Finally, we showed that WNT 

signaling regulates this process by promoting the binding of AHCTF1 to the OSE, as 

mediated by ß-catenin-TCF4-AHCTF1 complex formation. 

These findings provide new perspectives to understand not only the function of the dynamic 

3D nuclear architecture and genome organization, but also how to antagonize cancer cells in 

therapeutic strategies.  
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