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ABSTRACT 

Chronic pain is a worldwide major problem that presents several challenges due to 
lack of treatment efficacy and/or side effects associated with long-term usage of 
analgesics. Autoimmune diseases such as rheumatoid arthritis (RA) are often 
characterized by pain components, which generally poorly respond to drug 
treatment. In fact, RA patients suffer from persistent pain even if the active disease 
and inflammation is under medical control or in remission. Moreover, pain appears 
years before the onset of the active disease. This indicates that RA pain components 
might underlie additional unknown mechanisms rather than only the classical view of 
pain strictly correlating with inflammation. Of note, recent studies show that RA 
autoantibodies are present in RA patients up to 10 years before the onset of 
inflammation and most of the available treatment options in the clinics do not affect 
antibody titers. Therefore, the aim of this thesis is to investigate possible 
autoantibody actions that could represent the missing link explaining pain in RA in 
the pre- and post-inflammatory phases of the disease. 

In study I, we explored the role of RA-relevant autoantibodies in directly activating 
sensory neurons. Injection of anti-collagen type II (CII) antibodies (Abs) promoted 
pain-like behavior in mice in the absence of any visual, histological or molecular 
inflammation. This pain-like behavior was not dependent on complement activation 
or destabilization of cartilage structure. Instead, our data suggested a direct 
activation of CII-immune complexes (ICs) on sensory neurons via the activation of 
Fc gamma receptors (FcγRs). Indeed, we found expression of FcγRI and FcγRIIb 
proteins on peripheral neuronal terminals in mouse skin. In addition, CII-IC in vitro 
stimulation of cultured dorsal root ganglia (DRGs) neuronal cells promoted release of 
a calcitonin gene related peptide (CGRP), intracellular increase of calcium levels and 
membrane depolarization. Interestingly, CGRP release was prevented in cultures 
from FcRγ chain deficient mice (lacking activating FcγRI, III and IV, but still 
expressing inhibitory FcγRIIb). Accordingly, injection of anti-CII Abs failed to induce 
pain-like behavior in FcRγ chain deficient mice or when the Ab-FcγR interaction was 
altered. Instead, mice expressing activating FcγRs only on non-hematopoietic cells 
(including neurons), but not on hematopoietic cells, displayed similar pain thresholds 
to wild type mice when injected with anti-CII Abs. Altogether our data suggested a 
novel RA-associated pain mechanism of direct interaction between Abs and FcγRI 
present on sensory neurons that is independent of inflammatory functions of 
pathological Abs. Finally, we showed that human DRG neurons also express the 
activating FcγRIIIA making our data translational to clinics, possibly explaining pain 
in RA patients before the onset of the disease or even when it is under medical 
control or in remission. 



 

 

In study II, we investigated pain-associated pathological actions of human anti-
citrullinated proteins antibodies (ACPA) purified from RA-patients. Injection of human 
ACPA, but not non-ACPA or IgGs from healthy individuals, promoted pain-like 
behavior in mice in the absence of visual, histological and molecular inflammation. 
Furthermore, ACPA did not induce significant increase of intracellular calcium levels 
or membrane depolarization in cultured DRG neurons, suggesting that ACPA do not 
exert their nociceptive functions through a direct action of their Fab region on 
sensory neurons. However, ACPA bound to osteoclasts, inducing the release of the 
mouse interleukin-8 analogue CXCL1, which subsequentially sensitized neurons. In 
fact, a CXCL1 receptor antagonist or an osteoclasts inhibitor prevented ACPA-
induced pain-like behavior. In conclusion, we provided evidence of novel nociceptive 
actions of human ACPA, offering new targets in IL-8 and osteoclasts for the pain 
treatment of the ACPA-positive subgroup of RA patients. 

In study III, we characterized B35, Neuro-2a (N2a) and F11 neuroblastoma cell 
lines, trying to find an alternative method to primary DRG cultures from rodents for 
pain-related in vitro experiments. We compared the cell lines subjected to two 
differentiation media to promote the acquisition of more neuronal-like features on 
parameters such as morphology, proliferation, metabolic activity, expression of 
neuronal markers and functional activity. While B35 showed the highest neuronal-
like morphological features, N2a the highest neuronal markers expression and F11 
the highest neuronal excitability in functional assays, all the cell lines compared to 
primary DRG cultures only to some extent. Therefore, our findings indicated that 
neuroblastoma cell lines should be carefully selected by researchers for studying 
neuronal processes, as they do not represent a complete substitute of primary DRG 
cultures. 

In summary, this thesis addresses the crucial need of better understanding the 
underlying pain mechanisms in RA and provides novel insights that could potentially 
benefit the clinical therapeutic strategies, opening new avenues for the development 
of innovative pain-relief drugs. 
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1 INTRODUCTION 

Nearly one out of five individuals in Europe and USA suffer from chronic pain. It is 
often difficult to provide adequate pain relief, which increases the risk for physical 
and psychological problems that dramatically reduce the quality of life for these 
individuals. Furthermore, chronic pain generates large socio-economical costs in the 
form of medical care, sick leave and loss of productivity (Andersson et al., 2013; 
Apkarian et al., 2009). The most common disorders associated with chronic pain are 
musculoskeletal joint conditions such as rheumatoid arthritis (RA) (Breivik et al., 
2006; Vos et al., 2012). Although the understanding of the pathophysiology of RA 
has greatly improved in the last decades and many drugs that dampen the disease 
activity have been developed (Firestein, 2003; McInnes and Schett, 2011), pain is 
still a major problem for 30-40% of the patients even when the disease is under 
medical control or in remission (Altawil et al., 2016; Lee et al., 2011). This makes 
pain management in RA still an important challenge and therefore it is critical to 
advance our understanding for the underlying molecular mechanisms that promote 
and regulate pain signal transmission in these types of conditions in order to open 
new avenues for drug development and treatment strategies that could effectively 
improve the life quality of millions of patients (Davila and Ranganathan, 2011; Walsh 
and McWilliams, 2014). 
 

1.1 Neurobiology of pain 

Pain per definition of the International Association for the Study of Pain (IASP) is “an 
unpleasant sensory and emotional experience associated with actual or potential 
tissue damage, or described in terms of such damage”. As a physiological role, pain 
valuably conveys information about threats and sources of injury, detecting 
peripheral noxious stimuli and elaborating those signals in the central nervous 
system. Pain is commonly classified into acute and chronic. When the noxious 
stimulus is avoided or removed, e.g. quick removal of the hand from a hot stove, the 
system reverts back to homeostasis and the acute pain process is ended. However, 
unceasing or recurring nociceptive stimulation results into a number of complex 
pathophysiological modifications of pain processing at all levels (both peripherally 
and centrally) and eventually leads to the development of a chronic pain condition. 
Thus, persistent pain differs from acute pain in that it goes beyond its original useful 
function as a protective and warning system and instead converts to an established 
and debilitating disease (Dubin and Patapoutian, 2010; Talbot et al., 2016). 
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1.1.1 Nociceptors 

Nociceptors are specialized peripheral sensory neurons, which are responsible of 
detecting noxious stimuli and transmitting the signal to the central nervous system. 
Their cell bodies are located in the dorsal root ganglia (DRGs) from which two 
axonal branches depart, one towards the periphery and the other towards the dorsal 
horn of the spinal cord. After the transduction of the noxious stimuli in the periphery 
an electric signal is transported towards the cell body of the neuron in the DRG and 
from there it reaches first the spinal cord and subsequentially the brain where it is 
processed and evokes a behavioral and emotional reaction (Figure 1). Nociceptors 
are heterogeneous and present a battery of sensory receptors and ion channels that 
provide the ability of detecting different types of noxious stimuli, e.g. heat, cold, 
mechanical pressure and damage associated molecules (Dubin and Patapoutian, 
2010). 

 

Figure 1. Nociceptive pathway, pain perception and behavioral reaction. The noxious stimuli are 
transduced in the periphery by sensory neurons and an electric signal is transported towards the DRG 
cell bodies and subsequentially to the spinal cord and the brain where the pain sensation is processed 
and perceived. A behavioral reaction to avoid the noxious stimuli is promoted by the brain and 
executed through withdrawal inputs sent to motor neurons and muscles. Reprinted with permission 
and adapted from (Talbot et al., 2016). 

 

1.1.1.1 Nociceptors classification 

In general, nociceptors can be classified based on their diameter and degree of 
myelination, which determine also their speed of signal conduction. Small diameter 
(0.2-1.5 µm) and unmyelinated axons are characteristics of C-fibers, which are most 
of the nociceptors. Their conduction velocity varies between 0.4 and 1.4 m/s and 
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they usually mediate poorly localized and slow pain. C-fibers are usually polymodal, 
meaning that they respond to more than one environmental modalities (thermal, 
mechanical or chemical). Importantly, one specific class of C-fibers in the joint is 
called “silent nociceptors”. They normally do not respond to mechanical stimuli but 
can become sensitized in disease or inflammatory states, firing and therefore 
contributing to the chronification of joint pain. Aδ fibers have medium diameter (1-5 
µm) and myelinated fibers and are responsible of mediating fast and localized pain, 
since their conduction velocity is approximately 5-30 m/s (Djouhri and Lawson, 2004; 
Dubin and Patapoutian, 2010). These can be further subdivided into two different 
types. Type I Aδ fibers respond to mechanical, chemical and high heat threshold 
(around 50 °C), while type II Aδ fibers have lower heat threshold but much higher 
mechanical threshold. Finally, Aβ fibers are large (6-12 µm) and myelinated and are 
associated with fast (33-75 m/s) low-threshold mechanoreceptors. 

Nociceptors can also be classified based on their neurotransmitter expression 
profile. All nociceptors release glutamate as principal neurotransmitter, but a specific 
subclass, the peptidergic neurons, also release substance P (SP) and calcitonin-
gene related peptide (CGRP) and express the receptor for nerve growth factor 
(NGF), known as tropomyosin kinase receptor A (TrkA). The central projections of 
these nociceptors mostly terminate in the superficial layers of the dorsal horn of the 
spinal cord. In contrast, the “non-peptidergic” neurons express purinergic receptors 
of the P2X type, stain positive for the isolectin B4 (IB4) and their central projections 
terminate in the deeper layers of lamina II of the dorsal horn of the spinal cord 
(Basbaum et al., 2009). 

The heterogeneity of nociceptors is vital for their role in responding to different 
noxious stimuli and, as new techniques are developed, the categorization of the 
nociceptors is becoming more refined. For example, based on single cell 
sequencing, the RNA expression profile supported classification of nociceptors into 
11 distinct categories (Figure 2) (Usoskin et al., 2015).  

 

Figure 2. Unbiased classification of mouse sensory neurons based on RNA transcriptome 
analyses. 11 categories in total are found with the suggested molecules as markers for identification 
of the different subtypes. Reprinted with permission and adapted from (Usoskin et al., 2015). 
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1.1.1.2 Stimuli detection and signal transduction 

There are three major classes of surface proteins on nociceptors responsible for the 
detection of noxious stimuli as well as the initiation and propagation of electrical 
signals towards the central nervous system: ion channels, G protein-coupled 
receptors (GPCRs) and receptors for cytokines and neurotrophins (Figure 3). 

 

Figure 3. Nociceptor heterogeneity. Nociceptors express numerous distinct surface proteins to 
respond to several different noxious stimuli and interact with the immune system. Reprinted with 
permission and adapted from (Ji et al., 2014). 

 

Ion channels involved in the sensory signaling are of two major different types: ligand 
gated and voltage gated ion channels. The first ones respond directly to the noxious 
input and change rapidly the membrane electric state to start the action potential that 
brings the information centrally. These types of channels are very common and 
different ones respond to different stimuli. Transient receptor potential (TRP) 
channels belong to the most well-known family of ligand gated ion channels. 
Transient receptor potential vanilloid 1 (TRPV1) responds to noxious heat, low pH, 
chemicals like capsaicin, the endogenous ligand N-arachidonoyl dopamine (NADA), 

and certain lipids, while TRPM8 detect innocuous and noxious cold and cooling 
chemicals like menthol (Julius, 2013). Another important class of ligand gated ion 
channels is the acid sensing channels (ASICs) that respond to low pH, which is 
characteristic of a number of noxious states like inflammation (Wemmie et al., 2013). 
Mechanical sensation can be detected by some TRP channels, some ASICs and 
another class of ion channels called Piezo. It is currently thought that pressure and 
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mechanical stimulus open these specific channels causing the depolarization and 
the initiation of the signal, but the mechanism is not yet completely understood 
(Basbaum et al., 2009; Ranade et al., 2015). Another group of ligand gated ion 
channels is the purinergic receptors, e.g. P2X2 and P2X3, which respond to the 
binding of ATP, which can be released during inflammatory processes and by 
damaged cells (Linley et al., 2010). In contrast, voltage gated channels do not 
directly transduce noxious stimuli, but have instead a modulatory effect in sensory 
neurons. Sodium channels, such as Nav1.7, Nav1.8 and Nav1.9, are important for 
action potential generation and levels of excitability of sensory neurons 
(Renganathan et al., 2001). Calcium channels with their critical subunit α2δ1 are 
also important voltage gated ion channels, since calcium is a crucial second 
messenger in many activating intracellular pathways in neurons (Grienberger and 
Konnerth, 2012). Finally, potassium channels usually dampen neuronal responses 
and excitability by regulating membrane potential, threshold of the action potential, 
as well as shape and frequency of the firing (Tsantoulas and McMahon, 2014). 

G protein-coupled receptors are important for pain signaling since once activated 
they promote intracellular pathways related to adenylate cyclase with the activation 
of downstream kinases such as protein kinases A or C (PKA or PKC) that eventually 
affect neuronal properties and excitability. Ligands for these receptors are for 
example CGRP, bradykinin, proteases and prostaglandins. Noteworthy, a special 
class of GPCRs drives instead inhibitory mechanisms. Opioid receptors are 
members of this subgroup and their activation promotes a decrease in the level of 
cAMP in the cell that eventually reduces neuronal excitability (Schaible et al., 2002).  

Peptidergic neurons express the receptor TrkA, which belongs to the receptor 
tyrosine kinase (RTK) family and binds the neurotrophin NGF. NGF is required for 
neuronal development, survival, but can be released after injury and promote 
neuronal sensitization. NGF can directly activate TrkA but also the low affinity 
receptor p75 to promote a rapid increase in TRPV1 activity. Additionally, NGF can 
affect neurons long-termly being internalized and inducing transcription of factors 
involved in the potentiation of nociception such as activating ion channels (Basbaum 
et al., 2009; Lewin et al., 2014). Neurons express also TrkB and TrkC, which are 
receptors for other important neurotrophins involved in pain processes, respectively 
brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (Dhandapani et al., 
2018; Siniscalco et al., 2011; Tender et al., 2011). 

The cross talk between the nervous and the immune systems is essential for the 
regulation of many of their processes. Therefore, sensory neurons express receptors 
for different cytokines and chemokines that allow them to rapidly detect ongoing 
inflammatory reactions through pain sensation. Receptors for the cytokines tumor 
necrosis factor alfa (TNFα), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-
8 (IL-8) are among the most important ones expressed by sensory neurons. These 
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cytokines can either directly activate sensory neurons or promote intracellular 
pathways that would long-termly sensitize neurons (Schaible et al., 2010). 

 

1.1.2 Chronic pain 

When peripheral and central sensitizations occur, acute pain shifts towards a chronic 
pain state. Peripheral sensitization is a consequence of persistent activation of 
nociceptors for instance during inflammation or tissue damage. Nociceptive factors 
released at the site of injury over-stimulate the respective receptors on sensory 
neurons inducing pathological changes so that the threshold required to fire after a 
certain stimulus is permanently lowered, the receptive field of the sensory neuron is 
increased and/or non-nociceptive fibers start firing producing and amplifying pain 
signals. In this context, hyperalgesia, described as increased pain intensity in 
response to a normal painful input, and allodynia, pain due to a stimulus that 
normally does not induce pain, are important terms describing features of chronic 
pain (Grigg et al., 1986; McDougall, 2006; Schaible and Schmidt, 1985). 

Central sensitization involves changes in the central nervous system and, in 
particular, in the dorsal horn of the spinal cord. In addition to neuronal changes 
taking place that facilitate and prolong the pain signal transmission, activation of glial 
cells is thought to contribute to the increased neuronal excitability (Tsuda et al., 
2003; Woolf, 1983; Woolf and Salter, 2000). Many of the nociceptive molecules 
produced during inflammation are also released by microglia and astrocytes in the 
spinal cord and, after the neuronal activity started in the periphery activates them, 
they can contribute to amplify, perpetuate and facilitate pain signaling. Recent 
studies have also shown that factors released in the dorsal horn can promote 
inhibitory neurotransmitters to switch their function to become activating, contributing 
to the transit to chronic pain (Coull et al., 2005). 

 

1.1.3 Model systems in preclinical pain research 

Animal models and genetically modified mice have served the ground for generation 
of important new insights to the pathophysiological and pharmacological aspects of 
nociception. The use of genetically modified animals has been an important tool for 
researchers to decipher the contribution of different genes to specific nociceptive 
processes. Furthermore, experimental animal models representing different 
diseases or tissue injuries are crucial in pain research based on the notion that each 
underlying pathology leads to distinct changes in the nociceptive pathways. Several 
different animal models are available for investigating RA pathology and pain state 
and will be discussed further below (Luo, 2004). 
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In parallel, in vitro approaches can be used as well-confined systems to complement 
information obtained from in vivo models, especially for investigating and 
understanding molecular mechanisms of neuronal excitability and neurotransmission 
(Luo, 2004). In fact, primary cultured DRG cells from rodents are widely used in the 
pain research field. While there are many advantages with primary DRG cultures, 
they display limitations in terms of number of cells generated, costs and poor 
transfection efficiency (Posadas, 2010). Much effort has been put towards 
developing alternatives to DRG primary cultures. Recent studies suggest that mature 
sensory neuron-like cells can be obtained by inducing differentiation of neural 
progenitor cells and pluripotent stem cells (PSCs) (Chambers et al., 2012; Kim et al., 
2017; Young et al., 2014) or by specifically reprogramming fibroblasts (Lee et al., 
2015; Wainger et al., 2015). However, these approaches still present many 
limitations regarding cost, complicated and time-consuming generation processes 
and low efficiency. Considering the advantages of providing infinite number of cells 
and significantly high transfection efficiency, cell lines from neuroblastoma could be 
contemplated as substitute for in vitro studies in DRGs (Posadas, 2010). B35, 
Neuro-2a (N2a) and F11 cell lines are examples of commonly used neuroblastoma 
cell lines in the neuroscience field. B35 cells derive from a rat neuroblastoma and 
have been used in analyses of signaling pathways in cell motility and axonal 
outgrowth (Otey et al., 2003). N2a cells originate from a mouse brain tumor and 
were employed to investigate neuronal differentiation, neurite growth and 
neurotoxicity (Olmsted et al., 1970; Suzuki et al., 2014). F11 cells display properties 
of both rat and mouse cells since they are a fusion of embryonic (E13) rat DRG cells 
with a mouse neuroblastoma cell line (N18TG2) (Platika et al., 1985), and have been 
previously applied for neuro-inflammation and differentiation studies (McIlvain et al., 
2006; Wang et al., 2014). However, despite the fact that these neuroblastoma cell 
lines have been used for nociception-related studies, e.g. ion channel kinetics and 
regulation of intracellular signaling pathways, little information about their differences 
and similarities to primary DRG sensory neurons is available in the literature. 
Therefore one part of the work in this thesis was aimed at comparing these three 
different cell lines to each other and to mouse primary DRG neuronal cell cultures 
(Study III). 

 

1.2 Rheumatoid arthritis 

1.2.1 Epidemiology 

Rheumatoid arthritis (RA) is an autoimmune disease that primarily targets joints 
causing symptoms such as pain, swelling and stiffness. RA affects 0.5-1% of the 
population in developed countries. There is a higher prevalence of the disease in 
women compared to men (ratio 3:1) and its incidence increases with age (Symmons 
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et al., 2002). RA frequency also changes geographically, with northern Europe and 
North America being the most affected areas compared to developing countries 
(Biver et al., 2009; Costenbader et al., 2008; Kalla and Tikly, 2003). This indicates 
specific differences in genetic and environmental factors that participate to its 
etiology. 

Although research on the specific causes of the disease is still ongoing, many risk 
factors have already been identified. A very high percentage of the risk of developing 
RA (50%) is ascribable to genetic factors with 30 different regions of single 
nucleotide polymorphisms already classified. Among these, the most studied ones 
are PTPN22 and HLA genes and others that often are associated with the immune 
system function, which could explain in some cases how the disease is initiated 
(Barton and Worthington, 2009; Orozco et al., 2010; Stahl et al., 2010; van der 
Woude et al., 2009). Besides genetics, several environmental factors have been 
connected to higher chances of developing RA. The clearest one is by far cigarette 
smoking, which doubles the risk for the disease and has been associated especially 
to a specific subgroup of patients (ACPA-positive, see below) (Källberg et al., 2007; 
Morgan et al., 2009). Moreover, exposure to silica dust or certain mineral oils is also 
listed as environmental causes increasing the risk for RA (Stolt et al., 2005; Sverdrup 
et al., 2005). Other evidences show factors like periodontitis, specific strains of gut 
microbiota and obesity to be involved in RA etiology (Mercado et al., 2000; Scher et 
al., 2013). Even though with weaker supporting indications, more potential risk 
factors involve alcohol and coffee intake, vitamin D levels, low socio-economical 
status and use of oral contraceptive (Liao et al., 2009). 

 

1.2.2 Pathophysiology 

RA is a chronic autoimmune disease characterized by the presence of several 
different autoantibodies that, recognizing autoantigens, drive persistent synovitis and 
systemic inflammation against self-structures. The continuous erosive synovial 
inflammation eventually leads to damage of articular cartilage, underlying bone and 
soft tissue that ultimately promotes joint destruction and loss of function with 
associated long-term disability (Lillegraven et al., 2012; van Oosterhout et al., 2008). 
RA mainly affects small joints of hands and feet, but with disease progression larger 
joints are interested too, mainly wrists, hips, knees and ankles (Firestein, 2003; 
McInnes and Schett, 2011). 

Several cell types of both the innate and adaptive immune system are involved in RA 
pathophysiology, including T and B lymphocytes, monocytes, dendritic cells 
macrophages and mast cells. These are all stimulated and attracted to the joint site 
by the presence of immune complexes (antibodies bound to their antigens, ICs), 
which also promote extensive complement activation. As a consequence of the 
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immune cells trigger, a complex cocktail of cytokines and chemokines is secreted in 
the inflamed joint, which contributes to further exacerbate the painful inflammatory 
process. The primary inflammatory cytokines involved in RA are TNF, IL-1, IL-6 and 
IL-17 (Choy et al., 2002; Feldmann et al., 1996), but other cytokines are also 
contributing. With disease progression, activation of synovial fibroblasts, 
osteoclastogenesis and chondrocyte catabolism induces matrix degradation, bone 
erosion and cartilage destruction respectively, which ultimately results in articular 
impairment (McInnes and Schett, 2011). 

In addition to joint pathology, circulating inflammatory cytokines and ICs have 
systemic effects, which increase the patient’s risk of mortality. The main extra-
articular comorbidities are cardiovascular diseases (e.g. myocardial infarctions, 
strokes and hypertension), reduced cognitive function, interstitial lung disease (ILD) 
and cancers (e.g. lymphoma, lung cancer and melanotic and non-melanotic skin 
cancers) (Chakravarty et al., 2005; Dougados et al., 2014; Kaiser, 2008; Levy et al., 
2008; McInnes and Schett, 2011). 

RA presents several different modalities when it comes to the active disease course. 
In most cases, it is a polycyclic disease characterized by two phases that follow each 
other during time: an active phase with visible inflammation in numerous joints and a 
dormant phase with no signs of inflammation but still some other symptoms among 
which pain and stiffness. Less frequently, RA can be monocyclic, with just one flare 
of inflammation and active phase that, after it has resolved, never awakes from the 
dormant phase. Finally, in some instances, it has a progressive course with the 
active phase that keeps on increasing in severity over time without going in the 
dormant phase (Graudal et al., 1998; Masi et al., 1976; Pincus and Callahan, 1993). 

 

1.2.3 Pre-RA 

In recent years more attention has been paid to a preclinical period, defined as “Pre-
RA”, which consists of all the events that precede the clinical occurrence of 
established RA with the full spectrum of symptoms and the actual diagnosis. Pre-RA 
is characterized by symptoms such as joint pain (arthralgia), stiffness, bone erosion 
and some abnormalities of the immune system without detectable inflammation 
(Deane and El-Gabalawy, 2014; Paul et al., 2017). Importantly, several types of 
autoantibodies are found in the serum of future RA patients even 10 years before the 
onset of the active disease (Kurki et al., 1992; Nielen et al., 2004; Rantapää-
Dahlqvist et al., 2003). Thus autoimmunity represents a very early event in RA 
development and recent studies show that it is generated outside the joints. Little is 
known how the autoimmunity is then propagated to the joints where the destructive 
process starts and progresses. The “double-hit” theory proposes that genetic and 
environmental factors (e.g. trauma or infection) promote this transition to active RA. 
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Increased understanding of pre-RA and the transition to the active phase of the 
disease is needed in order to develop successful strategies to reduce the symptoms 
and ideally prevent the disease progression (Klareskog et al., 2014). 

 

1.2.4 Autoantibodies in RA 

Antibodies are proteins produced by the immune system to protect the body, 
neutralizing pathogenic intruders. Antibodies consist of a variable region (Fab) to 
recognize a particular epitope on an antigen and a constant region (Fc) that allows 
interaction with immune cells via Fc receptors (FcRs) expressed on their 
membranes. In mammals there are five isotypes of antibodies (IgA, IgD, IgE, IgG 
and IgM), which vary in their biological properties, function, location and ability to 
deal with different antigens. IgGs are the most common antibodies, accounting for 
around 75% of the whole antibodies pool. There are four different subclasses of 
mouse IgGs and each presents distinctive properties (e.g. affinities for the different 
FcRs): IgG1, IgG2a, IgG2b and IgG3. Antibodies exert their functions by binding a 
specific antigen with their variable region, directly promoting functional alterations of 
the antigen and forming immune complexes (ICs), which can further trigger the 
complement system and FcRs expressing cells. 

Antibodies-producing cells are selected during their maturation not to produce 
antibodies that recognize self-structures of the individual’s body so to prevent self-
damage. In autoimmune diseases this regulation process, called immunological 
tolerance, is broken so that autoantibodies targeting self-antigens are produced and 
start causing tissue damage. 

RA is characterized by the presence of many different types of autoantibodies (Table 
1), which are also used as diagnostic criteria. The most important autoantibodies are 
targeting other IgGs (Rheumatoid Factor, RF), citrullinated proteins (Anti-citrullinated 
protein antibodies, ACPA), peptidyl arginine deiminases 3/4 (anti-PAD3/4 
antibodies), carbamylated proteins (anti-CarP antibodies), glucose-6-phosphate 
isomerase (anti-GPI antibodies) and collagen type II (anti-CII antibodies) (Bugatti et 
al., 2014). 
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Table 1: Autoantibodies in RA. Reprinted with permission and adapted from (Bugatti et al., 2014). 

 

RF mainly consists of IgM and IgA antibodies against the Fc region of IgGs, and was 
the first autoantibody characterized and introduced as diagnostic and prognosis tool 
in RA. RF was indeed shown to be present in up to 80% of RA patients and to 
correlate with a more severe disease phenotype. However, further studies proved 
that RF is not specific for RA, being present in several other autoimmune diseases, 
systemic infections and even in 15% of healthy individuals (Bukhari et al., 2002; 
Franklin et al., 1957; Nienhuis et al., 1964). 

ACPA were discovered at the end of the 1990s and are present in around 60-70% of 
the RA patients. ACPA, which target citrullinated self-antigens, are used as 
diagnostic tool since they are highly specific for RA. Citrullination is a post-
translational modification (PTM) that consists of the conversion of the amino acid 
arginine to citrulline (Figure 4). This is catalyzed by PADs in the presence of high 
calcium and, due to the variation of the charge of the amino acid (from positive to 
neutral), structural and properties changes in the target protein are promoted to 
regulate for instance its activation/deactivation. Although the physiological role of 
citrullination is not completely clear, it seems to make the target proteins more 
immunogenic and therefore more prone to break self-tolerance. Target proteins for 
ACPA are vimentin, fibrinogen, histone proteins, collagen type II and alfa-enolase, 
but recent studies show that many ACPA have cross-reactivity for epitopes on 
different antigens and therefore are able to bind more than one protein. Recent 
findings illustrate that ACPA have a prominent involvement in RA pathogenesis and 
progression by being able to directly activate osteoclasts, inducing bone erosion. 
(Klareskog et al., 2013; Krishnamurthy et al., 2016; Schellekens et al., 1998; 
Schellekens et al., 2000; Sokolove and Pisetsky, 2016; van Gaalen et al., 2004; 
Vossenaar et al., 2003). 
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In recent years more attention has been paid to a class of RA autoantibodies 
recognizing PAD 3/4 enzymes, which catalyze citrullination. Interestingly, studies 
show that these autoantibodies not only bind PAD enzymes but also activate them, 
partially explaining their pathological role and contribution to the expansion of 
autoimmunity (Darrah et al., 2013). 

Another PTM important in RA is carbamylation (Figure 4), which is the conversion of 
the amino acid lysine to homocitrulline. Similarly to citrullination the change in 
charges of the amino acids promotes variations in the target proteins’ functions and 
properties. These autoantibodies were just recently discovered and the fact that 
citrulline and homocitrulline present very similar structures gave rise to speculation 
that ACPA antibodies could bind also homocitrullinated proteins, but studies have 
shown that most ACPA antibodies have not such cross-reactivity. Anti-CarP 
antibodies are present in 45% of RA patients and interestingly around 30% of the 
ACPA-negative patients show reactivity to carbamylated proteins, making these 
autoantibodies a powerful tool for the diagnosis of this specific subgroup of patients 
(Shi et al., 2011). 

 

Figure 4: Important PMTs of amino acids in RA. Citrullination transforms arginine into citrulline, 
while carbamylation is the conversion of lysine to homocitrulline. Reprinted with permission and 
adapted from (Bax et al., 2014). 

 

Anti-GPI antibodies are present in 15% of RA patients, but they appear also in other 
autoimmune disorders so their specificity for RA is limited. However, anti-GPI 
antibodies correlate with a higher disease severity, which makes them an interesting 
prognosis tool. GPI is an enzyme involved in the glycolytic process converting 
glucose-6-phosphate to fructose-6-phosphate, but it is also important for some 
extracellular processes, acting for example as a neurotrophic factor to promote 
neuronal survival. Therefore, GPI is also present extracellularly in the articular cavity, 
explaining the pathogenicity of its targeting autoantibodies (Matsumoto et al., 2003). 

CII is a structural protein that is prominent in cartilage formation, accounting for 
around 50% of its all proteins. Anti-CII autoantibodies are present in almost 30% of 
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RA patients and their pathological role is quite clear since they are one of the main 
drivers of the inflammation in the joint where cartilage is largely present. For this 
reason, to study RA pathology in details, many animal models have been created 
based on immunization with CII, both in rodents and in primates (see below) (Cook 
et al., 1996; Holmdahl et al., 2014; Mullazehi et al., 2012; Nandakumar, 2009). 

As already mentioned, these autoantibodies, especially ACPA, can be present in the 
pre-RA phase many years before the onset and diagnosis of the disease. Some 
symptoms exist in the absence of detectable inflammation and arthralgia is one of 
the most characteristic ones, suggesting that the nociceptive signaling starts already 
in this early phase. The active disease process initiates after a sequence of events 
that promote maturation of the autoimmunity with increase in titer and affinity for the 
target proteins, epitope spreading, isotype switching and changes in the 
glycosylation state of the autoantibodies. This stimulates their pathogenicity so that 
they start the active phase of the disease via forming ICs with self-antigens that 
activate FcRs on immune cells and give rise to the inflammatory cascades and 
processes (Rombouts et al., 2014; van de Stadt et al., 2011; Verpoort et al., 2006). 
In details, the deposition of ICs triggers inflammation via 2 specific pathways. The 
first one is the activation of the classical complement cascade where complement 
C1q binds the Fc portion of an antibody in IC formation and then activates 
complement components C5a and C3a. These two anaphylatoxins are able to 
attract and activate effector cells such as neutrophils and natural killer cells to 
release proteolytic enzymes and inflammatory cytokines. Alternatively, the Fc part of 
an antibody in IC formation can be bound by FcRs on the effector cells that are 
therefore directly activated to promote inflammation in the so called antibody-
dependent-cell-mediated cytotoxicity (ADCC) or other cell specific processes like 
degranulation in neutrophils, phagocytosis in macrophages and bone resorption in 
osteoclasts. Moreover, antibodies in IC formation have a role in the facilitation of 
antigen uptake by antigen presenting cells (APCs). Monocytes, macrophages and 
dendritic cells can uptake antigens from ICs with the binding Fc–FcR so that it 
becomes ten to a hundred times easier to stimulate T-cells. Thus, autoantibodies 
have impact also in the break of tolerance of T-cells that is detected in autoimmune 
diseases such as RA. All of these activated cells at the inflammatory joint site 
produce several nociceptive factors that promote chronic inflammation and pain 
(Figure 5) (Amigorena and Bonnerot, 1999; Celis et al., 1984; Martin and Chan, 
2004). 
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Figure 5. RA autoantibodies promote pain through direct and indirect mechanisms. 
Autoantibodies directly activate sensory neurons, binding to neuronally expressed FcγRs (Study I), 
but also stimulate several different immune cells at the inflamed joint site, which contribute to pain 
releasing numerous nociceptive molecules. Reprinted with permission and adapted from (Catrina et 
al., 2017). 

 

1.2.5 Fc-gamma receptors 

Fc-gamma receptors (FcγRs) are membrane glycoproteins expressed mainly by 
immune cells, but also by some other cell types (e.g. endothelial cells and 
osteoclasts), that bind the constant region of IgG antibodies when forming an IC and 
are involved in the recruitment and activation of inflammatory cells. 

There are 4 different FcγRs in rodents: FcγRI, FcγRIIb, FcγRIII and FcγRIV. FcγRs 
are quite conserved proteins in mammals and so the corresponding human 
orthologous are called FcγRIA, FcγRIIB (CD32B), FcγRIIA (CD32A), FcγRIIC, and 
FcγRIIIA (CD16) (Figure 6). 

 

Figure 6: FcγRs in mice and humans. Reprinted with permission and adapted from (Nimmerjahn 
and Ravetch, 2008). 
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Structurally, all of the mouse FcγRs, except FcγRI, present two extracellular 
domains that form the ligand binding subunit, which is able to recognize the Fc part 
of an antibody. Instead, FcγRI has three extracellular domains, which confer it a 
higher affinity for IgGs. For this reason, FcγRI is the only receptor that displays also 
a significant binding to monomeric antibodies, while in general they only bind the Fc 
region of antibodies in IC formation (Daëron, 1997; Nimmerjahn and Ravetch, 2005; 
Nimmerjahn and Ravetch, 2006; Nimmerjahn and Ravetch, 2008). 

Functionally, these receptors belong to the tyrosine kinases family, but three, FcγRI, 
FcγRIII and FcγRIV, are considered activating receptors and present an intracellular 
immune-receptor tyrosine-based activation motif (ITAM), while only FcγRIIb is 
inhibiting with an intracellular immune-receptor tyrosine-based inhibitory motif (ITIM). 
The intracellular signaling pathway activated by ITAM is a kinase cascade that 
through Syk, PI3K and PLCγ promotes intracellular calcium increase that triggers 
downstream pathways and eventually the effector functions already discussed. On 
the contrary, ITIM activation dampens these activation pathways through specific 
phosphatases like SHIP that restrict the generation of the important intermediates in 
the ITAM pathway such as PIP3 (Figure 7) (Dijstelbloem et al., 2001; Nimmerjahn 
and Ravetch, 2005; Nimmerjahn and Ravetch, 2006; Nimmerjahn and Ravetch, 
2008). 

 

Figure 7: ITAM and ITIM intracellular pathways. After the bound of an IC, ITAM is triggered in 
mouse FcγRI, FcγRIII and FcγRIV, which are considered activating FcγRs, while ITIM is activated in 
FcγRIIb, which is the only inhibitory FcγR in mice. Reprinted with permission and adapted from 
(Nimmerjahn and Ravetch, 2007). 

 

Importantly, ligands that display low affinity for the activating receptors (like 
monomeric antibodies or deglycosylated antibodies even if in IC formation) are not 
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able to promote the downstream events and act instead as receptor antagonists 
(Anthony et al., 2012; Nandakumar et al., 2013). 

While FcγRs are predominantly expressed by immune cells, several studies now 
show their expression also on neurons. FcγRIIb is expressed on cerebellar and 
hippocampal neurons in the brain and has an important pathological role in 
Alzheimer’s disease. In fact, it is able to bind amyloid fibers and promote neuronal 
apoptosis through SHIP2-GSK3β signaling pathway (Kam et al., 2016; Kam et al., 
2013; Nakamura et al., 2007). Moreover, motor neurons display FcγRs in their 
terminals and increase their intracellular calcium after binding to ICs (Mohamed et 
al., 2002). Finally, in rat sensory neurons FcγRI is responsible for neuronal activation 
(increased calcium and release of substance P) both in vitro and in vivo after 
stimulation with ICs through the activation of the Syk–PLC–IP3–TRPC3 intracellular 
pathway (Andoh and Kuraishi, 2003; Jiang et al., 2017; Qu et al., 2012; Qu et al., 
2011). 

 

1.2.6 RA treatment 

Disease-modifying antirheumatic drugs (DMARDs) are a heterogeneous group of 
drugs with the common denominator of reducing joint swelling, inflammation, pain 
and limit the progressive tissue damage in RA. The immunosuppressant 
methotrexate is the first line of treatment in Sweden. While its inhibitory effect on 
dihydrofolate reductase is utilized for cancer treatment, its anti-inflammatory 
properties seen with low dose treatment in RA are not fully understood, but thought 
to include the inhibition of enzymes involved in purine metabolism. Methotrexate is 
used alone or in combination with other DMARDs and provides efficient disease 
control in about 50% of the patients. Other small molecules that proved efficacy in 
treatment of RA are Janus kinase (JAK) inhibitors, such as tofacitinib or baracitinib. 
These compounds act on the JAK/STAT signaling pathway preventing the release of 
cytokines, the increase of matrix proteinases and the apoptosis of chondrocytes, 
which characterize the RA inflamed joints (Malemud, 2018). Furthermore, in recent 
years, an increasing use of biologicals for treatment of RA patients that did not 
respond to conventional DMARDs has developed. Biologicals differ from the “small 
molecule” compounds in that they are manufactured or extracted by biological 
sources. The most frequently used biologicals for RA treatment are soluble decoy 
TNF receptors (etanercept), anti-TNF antibodies (e.g. golimumab), IL-1 inhibitors 
(anakinra) and anti-IL-6 receptor antibodies (tocilizimab). Other biologicals target 
specific proteins on immune cells to prevent activation of the cell or deplete them. 
Examples of these are abatacept (protein that prevents binding between CD28 on T 
cells and CD80/86 on antigen presenting cells) and rituximab (antibody against 
CD20 on B cells) (An et al., 2009; Maxwell and Singh, 2010; Mok, 2014). 
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Analgesics such as nonsteroidal anti-inflammatory drugs (NSAIDs), paracetamol and 
glucocorticoids are used to reduce pain, joint stiffness and in some cases also 
synovitis and tissue damage (Kirwan et al., 2007; Wienecke and Gøtzsche, 2004). 
Unfortunately, due to lack of efficacy of analgesics and their side effects associated 
with long-term use, a frequent problem in RA is adequate pain relief (Scott et al., 
2007). In fact, as already mentioned, most of RA patients suffer from pain years 
before the onset of the active disease and 30-40% of the patients still perceive pain 
even if the disease is under medical control or in remission (Lee et al., 2011; Welsing 
et al., 2005). The difficulty in controlling pain in RA is at least partly due to the lack of 
understanding of the mechanisms that induce and maintain pain in the different 
phases of the disease, especially in the non-inflammatory states. Thus, research on 
this topic, as our studies I and II, is of great importance and hopefully deciphering 
these mechanisms will open new avenues for pain management in RA and other 
autoimmune diseases. 

 

1.2.7 Animal models of RA 

In the pain field, the most commonly used models for studies of arthritis-associated 
pain are based on subcutaneous intraplantar injections of complete Freund’s 
adjuvant (CFA) or carrageenan. These models are associated with robust and 
transient inflammation in the joints and pain-like behavior that lasts for days up to 1-2 
weeks. From an RA perspective, the short time-span of the pain-like phenotype is 
not optimal, and moreover, these models lack several immunological aspects of 
human RA, e.g. bone erosion and cartilage destruction. Therefore, we argue that this 
type of models, while being good models of soft tissue inflammation-associated pain, 
may not be the best representation of arthritis-associated pain (Ahlqvist et al., 2009; 
Hu et al., 2013). 

The collagen-induced arthritis (CIA) model is one of the most frequently used models 
in studies of RA pathology. CIA is an immunization model that promotes production 
of autoantibodies against CII after the inoculation of CII in CFA at the base of the 
tails of rats or mice. CIA is considered a good polyarthritic model of RA due to 
specific characteristics that resemble human RA, such as targeted cartilage 
autoimmunity, break of immunological tolerance and T and B cells activity. However, 
the production of autoantibodies is constant due to the immunization and the course 
of the disease is progressive with higher severity over time until the endpoint is 
reached and the animals are sacrificed. This does not resemble the characteristic 
polycyclic RA course in humans with several flares of inflammation alternated to 
dormant phases and can make pain like-behavior testings difficult in advance stages 
of the model due to the sickness of the animals (Trentham et al., 1977). 
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Another immunization model of RA is the antigen-induced arthritis (AIA) model, 
which usually involves immunization against antigens such as ovalbumin or bovine 
serum albumin inoculated in CFA at the base of the tail of rats and mice. A second 
injection of the antigen in the joints of the animals is necessary to direct the 
autoimmunity effects there. AIA generates a transitory local RA-like pathology that 
lasts for weeks/months, but, as downsides, the inflammation is very localized and it 
involves the usage of exogenous antigens, which are not found in the human 
pathology. Moreover, the duration of pain-like behavior in these animals is shorter (2-
3 weeks) compared to other models (Brackertz et al., 1977). 

The K/BxN serum transfer arthritis model involves the use of a specific transgenic 
mouse strain (K/BxN) that spontaneously develops arthritis-like joint pathology 
(Kouskoff et al., 1996). Serum from these mice can be extracted and when 
transferred to wild-type mice it induces transient inflammation and arthritis-like 
pathology also in the joints of the recipient animals (Ji et al., 2001). Another common 
passive transfer model of RA in mice is the collagen antibody-induced arthritis 
(CAIA) model. CAIA is induced by intravenous or intraperitoneal injection of a 
cocktail of anti-CII antibodies followed by a small dose of lipopolysaccharide (LPS) 
injection few days later (3-7), in order to synchronize and boost the immune system. 
The mice develop robust but transient inflammation in the joints clearly detectable 
between approximately days 10-25 (Nandakumar and Holmdahl, 2007; Nandakumar 
et al., 2003; Terato et al., 1992). In both the K/BxN and CAIA models the 
inflammation resolves as the antibodies are cleared, thus representing models of 
transient, rather than chronic, joint inflammation (Ji et al., 2001; Nandakumar and 
Holmdahl, 2007). Interestingly, mice lacking activating FcγRs or the complement 
factor C5a do not develop any inflammation when injected with anti-CII antibodies 
and therefore are not susceptible to CAIA even if IgGs or C3 accumulate at the 
cartilage and joint sites. This illustrates the relevance of the innate immune system in 
initiating the inflammatory process in the effector phase of RA (Grant et al., 2002; 
Kagari et al., 2003; Watson et al., 1987). One downside of passive transfer models is 
that they do not involve the full spectrum of the immune activation of RA 
pathophysiology such as for instance break of tolerance of T and B cells and 
therefore can be considered more as tool to investigate the effector phase of arthritis 
(Christianson et al., 2012; Kouskoff et al., 1996). However, from a pain perspective 
they offer the opportunity to investigate how a resolving flare of antibody-driven joint 
inflammation affects the sensory nervous system. Importantly, while pain-like 
behavior as expected is present during the inflammatory phase of the model, 
mechanical hypersensitivity develops days before the visual inflammation starts and 
also persists for weeks after the inflammation has resolved (Agalave et al., 2014; 
Bas et al., 2012; Christianson et al., 2012; Christianson et al., 2011). This implies 
that the pain mechanisms in the model could mimic not only the inflammatory phase 
of the disease but also the clinical situation of “pre-RA pain” and “remaining pain” in 
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RA. In Study I, we focus on exploring novel pain mechanisms that could explain 
pain-like behavior in the pre-inflammatory (early) phase of the CAIA model. 

 

1.2.7.1 What have we learned about nociception from RA models?  

Experimental RA animal models have been an important tool in the advancement of 
our knowledge regarding several molecules involved in both peripheral and central 
nociceptive mechanisms.  

The role of cytokines in nociceptive signal transmission has been extensively studied 
in experimental models of RA. TNF has received most of the attention as it is one of 
the main driver cytokine in RA pathology. TNF does not only promote the release of 
other neuronal sensitizers from surrounding immune cells, but can also directly 
activate sensory neurons, which express TNF receptor 1 and 2. TNF has been 
detected in serum and joints of CAIA, CIA and AIA models and injection of TNF 
blockers such as etanercept attenuates mechanical and thermal hypersensitivity in 
these models before significantly affecting inflammatory scores. This is coherent with 
some patients’ reports where beneficial effects of TNF-blockers on pain scores are 
noted earlier than observations of anti-inflammatory results. (Bas et al., 2012; 
Boettger et al., 2008; Hess et al., 2011; Inglis et al., 2005; Schaible, 2014; Shubayev 
and Myers, 2001). 

IL-1β is another cytokine involved in RA pathogenesis. While sensory neurons 
express IL-1β receptor, IL1-R1, and their excitability can be increased in vitro by 
stimulation with IL-1β, in vivo injection of IL-1β blockers such as anakinra was only 
successful in attenuating heat, but not mechanical, hypersensitivity in the AIA model, 
suggesting that IL-1β involvement in joint nociception is only partial and explaining 
the limited clinical effects of anakinra on disease activity in RA patients (Binshtok et 
al., 2008; Ebbinghaus et al., 2012; McInnes and Schett, 2011). 

IL-6 cytokine is elevated in the joints and in the sera of RA patients. This is coherent 
with data coming from CAIA and CIA models where IL-6 has also been found 
increased in the animals’ joints. IL-6 receptor is expressed both by neurons and 
satellite glial cells and in vitro studies show that IL-6 can directly stimulate sensory 
neurons to release CGRP. IL-6 blockers when injected intra-articularly in the AIA 
model are able to decrease mechanical hypersensitivity without affecting 
inflammatory scores. Similarly, in the clinic some patients report effects of tocilizimab 
(anti-IL-6 receptor antibody) on pain scores independently of the results on disease 
activity and inflammation (Gardiner et al., 2002; Hirano et al., 1988; Marinova-
Mutafchieva et al., 1997; Obreja et al., 2005; Opree and Kress, 2000; Vazquez et al., 
2012). 
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IL-17 is also a critical cytokine in RA pathogenesis. Both neurons and satellite glial 
cells express IL-17 receptor and in vitro stimulation has been shown to upregulate 
neuronal TRPV4, which is a receptor involved in mechanical sensitivity. In the AIA 
model injection of IL-17 blockers has been shown to reduce mechanical 
hypersensitivity without affecting inflammation scores (Pinto et al., 2010; Richter et 
al., 2012; Segond von Banchet et al., 2013). 

Prostaglandins (PGs) such as PGE2 or PGD2 are important inflammatory mediators 
and nociceptive factors since sensory neurons express G-protein coupled receptors 
that recognize PGs as ligands. PGs have been found elevated in the joints of RA 
patients and this is consistent with the elevation of mRNA for COX2, a prostaglandin 
producing enzyme, in the joints of mice in the inflammatory phase of the CAIA 
model. Moreover, COX-inhibitors, such as ketorolac, celcoxib and diclofenac, have 
shown efficacy as anti-nociceptive compounds in the CAIA, CIA and K/BxN models 
during joint inflammation. However, these compounds have no effect on CAIA or 
K/BxN late phase hypersensitivity, suggesting that PGs have a prominent role during 
inflammation but not after it has resolved (Bas et al., 2012; Christianson et al., 2012; 
Fattahi and Mirshafiey, 2012; Inglis et al., 2007; Park et al., 2016). 

The expression of neuropeptides such as SP, CGRP, neuropeptide Y (NPY) and 
galanin is also differentially altered in DRG sensory neurons during inflammation or 
nerve injury states. SP and CGRP are usually elevated in inflammatory models and 
decreased in nerve-injury (neuropathic) states, while NPY and galanin are increased 
in neuropathic models, but show no changes in inflammatory states. While in the AIA 
and CIA models, SP receptor and CGRP are respectively elevated in the DRGs, in 
the CAIA model, galanin is upregulated but all the other neuropeptides mentioned 
above show no difference compared to controls. This is in accordance with nerve 
injury markers, such as ATF3 and GAP-43, found increased in the DRGs of mice 
both in the inflammatory and post-inflammatory phases of the CAIA model. This 
suggests that anti-CII antibodies-driven inflammation promotes a unique pain state 
that resembles for some features the classical inflammatory models and for some 
others the classical neuropathic ones, suggesting that long-term inflammation might 
promote nerve damage in sensory neurons (Bileviciute et al., 1993; Calza et al., 
1998; Hokfelt et al., 1987; Ji et al., 1994; Nieto et al., 2015; Su et al., 2015; von 
Banchet et al., 2000). 

Finally for what concerns peripheral mechanisms, the contribution to nociception of 
certain ion channels has also been investigated in the already mentioned models. 
The α2δ1 subunit of calcium voltage gated channels is usually upregulated only in 
neuropathic pain models. However, α2δ1 is also increased in DRG neurons in the 
CAIA model and gabapentin and pregabalin that are thought to act on calcium 
channels through direct interaction with α2δ1 subunit reverse mechanical 
hypersensitivity both in the CAIA and K/BxN models, suggesting once more the 
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neuropathic-like phenotype of arthritis-induced pain (Bas et al., 2012; Christianson et 
al., 2012; Rahman and Dickenson, 2013; Su et al., 2015). The TRPV1 agonist, 
resiniferatoxin, which acts through desensitization of the ion channel, has proven to 
be effective in attenuating hypersensitivity in the K/BxN model (Borbély et al., 2015). 
Coherently, topical application of capsaicin (TRPV1 agonist) cream has shown 
promising pain relief effects in RA patients (Deal et al., 1991). Mice deficient for the 
ASIC channel ASIC3 showed decreased hypersensitivity in the CAIA model, but 
more severe inflammation. This might be explained by the presence of this channel 
both on sensory neurons and synovial fibroblasts, and its involvement in respectively 
nociception and inflammatory regulation (Ikeuchi et al., 2008; Sluka et al., 2013). 

 

Central factors involved in central sensitization mechanisms have also been studied 
in RA-induced pain models. Over the past decade, glial cells in the central nervous 
system have moved away from the concept of just being support cells or providers of 
protection for neurons. In fact, both microglia and astrocytes have been found 
responsible for pain sensitization in several distinct human pathologies and pre-
clinical models (Ji et al., 2013). Even if there is still no clinical evidence of the 
contribution to nociception of glial cells in RA patients, activation of both microglia 
and astrocytes has been demonstrated in the CIA, CAIA and K/BxN models. 
However, some differences are found concerning the sex of the animals used for the 
studies, since glial central mechanisms of arthritis induced pain seem to be specific 
for male mice. Indeed, microglia and astrocytes can be directly stimulated by factors 
released by neurons, such as ATP, SP, CGRP, PGs, change their morphology, 
becoming activated and releasing nociceptive factor in a positive feedback that 
eventually leads to sensitization of central sensory neurons and chronic pain. 
Accordingly, the use of intrathecal glia inhibitors, such as pentoxyfilline, was proven 
effective in attenuating CAIA induced hypersensitivity (Agalave et al., 2014; Bas et 
al., 2012; Loggia et al., 2015; Sorge et al., 2015). 

Cytokines such as TNF, fractalkine or high mobility group box 1 (HMGB1) have also 
been proven to have roles in central nociception. For instance, TNF blockers show 
effects on reducing nociceptive brain activity in RA patients before signs of efficacy 
on peripheral inflammation. This was confirmed in animal models where repeated 
injections of intrathecal etanercept reduce AIA-induced firing of spinal neurons (Hess 
et al., 2011; Konig et al., 2014). Fractalkine mediates neuron-glia interaction in the 
dorsal horn of the spinal cord. Microglia activated by ATP can release cathepsin S, 
which is responsible of cleaving neuronal membrane-bound fractalkine, releasing its 
soluble fragment. This can then bind to fractalkine receptor, CX3CR1, on microglia, 
promoting the release through p38-MAPK signaling pathway of factors that activate 
enhance pain transmission. This mechanism was shown to be crucial for the CIA 
model where a cathepsin S inhibitor is able to reduce mechanical pain-like behavior 
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and microglia activation, even in the absence of efficacy on peripheral inflammation 
(Clark et al., 2012). Disulfide HMGB1 is able to activate TLR4 receptors expressed 
on neurons and glial cells, promoting increase of other nociceptive factors such as 
COX2, TNF and IL-1β. Spinal HMGB1 has been found elevated in the CAIA model 
both in the inflammatory and post-inflammatory phases. Its nociceptive function was 
then confirmed showing that intrathecal injection of HMGB1 blockers is able to 
attenuate CAIA-induced hypersensitivity (Agalave et al., 2014; Kim et al., 2006; 
Pedrazzi et al., 2007). 

Finally, spinal CGRP neuropeptide was found increased in the CIA model, where an 
injection of a CGRP receptor antagonist reduced both mechanical hypersensitivity 
and microglia activation without affecting peripheral inflammation (Nieto et al., 2015). 

  

In conclusions, the recent knowledge provided by animal models has been often 
supported by clinical evidence. Strikingly, specific DMARDs appear to show direct 
effect on sensory neurons before even affecting the immune system. The historical 
concept of specific immune cells’ receptors has therefore been challenged by the 
discovery that most of these receptors are also expressed on sensory neurons. In 
this thesis, we contribute to this growing field by showing how autoantibodies can 
directly activate sensory neurons via neuronal FcγRI, uncoupled from the 
inflammatory process. This can expand our views on how immune and nervous 
systems interact even when it comes to pharmacological treatment, providing 
grounds for the development of novel pain killer drugs and new therapeutic 
strategies in RA and other autoimmune diseases.  
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2 AIMS 

2.1 General aim 

The proposed thesis has the overall aim to investigate the involvement of 
rheumatoid arthritis (RA) relevant autoantibodies in promoting novel pain 
mechanisms, challenging the classical view of autoantibodies contributing to 
nociception solely by inducing the inflammatory process. 

 

2.2 Specific aims 

• To explore the mechanisms responsible for pain-like behavior in the early 
phase of the collagen antibody-induced arthritis (CAIA) model 

 

• To investigate potential direct effects on sensory neurons of anti-citrullinated 
proteins antibodies (ACPA) purified from RA patients. 

 

• To characterize three neuroblastoma cell lines as an alternative in vitro model 
to mouse primary dorsal root ganglia (DRGs) for nociception-related studies. 
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3 METHODS 

3.1 Animal models 

3.1.1 Animals 

The local ethics committee for animal experiments in Sweden (Stockholm Norra 
Djurförsöksetiska nämnd) approved all the tests included in this work. This thesis 
work conforms to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) 
guidelines. 

Several distinct mouse strains were used in the different experiments and studies. 
For Study I, C57BL/6, CBA and, for certain experiments, BALB/c mice were 
obtained from Janvier Laboratories and Charles River. The B10Q and B10.RIII mice 
strains were bred at Karolinska Institutet (Stockholm, Sweden), while, for certain 
experiments, BALB/c mice were bred at the National Veterinary Institute (Uppsala, 
Sweden). Numerous genetically modified mouse lines were used (details in Study I 
paper): B10Q.C5* (B10Q background; non-functional complement 5) (Johansson et 
al., 2001) mice were bred at Karolinska Institutet, while FcRγ chain-/- mice (BALB/c 
background, lacking functional FcγRI, FcγRIII and FcγRIV) (Nimmerjahn et al., 2005; 
Takai et al., 1994) were bred at the National Veterinary Institute. The genetically 
modified lines were backcrossed for at least 10 generations and wild-type (WT) 
littermates were used as controls in all the experiments, except for FcRγ chain-/- 
mice where the WT line originated from the same breeding but was kept as 
homozygous animals in parallel. For Study II, BALB/c mice were purchased from 
Harlan, while B10.RIII mice were bred at Karolinska Institutet. For Study III, Balb/c 
mice were purchased from Charles River. 

Mice of around 12-22 weeks of age both sexes were used. Animals were housed in 
standard cages (3-5 per cage) with environmental enrichments (mouse house and 
tissue paper) in a temperature-controlled system keeping a 12 h light/dark cycle with 
the possibility of accessing water and food ab libitum. 

 

3.1.2 Autoantibodies 

3.1.2.1 Anti-collagen type II antibodies 

For Study I, the collagen antibody-induced arthritis (CAIA) model was achieved by 
injecting a cocktail of four different anti-collagen type II (CII) monoclonal Abs (mAbs) 
intravenously (i.v.; 4 mg in 150 µl of saline) on day 0 followed by lipopolysaccharide 
(LPS) intraperitoneal (i.p.) injection on day 5 (25 µg in 100 µl of saline). LPS 
enhances and synchronizes the inflammation, which is then rapidly detectable as 
arthritis score. Noteworthy, the full protocol of CAIA injection was used in few 
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experiments, since for most of Study I we concentrated on the pre-inflammatory 
stage of the CAIA model (first 5 days) prior to the i.p. injection of LPS, thus 
investigating the effect of only the mAbs injection. 

When not stated otherwise all of the mAbs or modified Abs were injected i.v. in the 
amount of 4 mg in 150 µl of saline. The four arthritogenic anti-CII mAbs present in 
the cocktail used for CAIA induction, CIIC1 (IgG2a, C1 epitope), CIIC2 (IgG2b, D3 
epitope), M2139 (IgG2b, J1 epitope) and UL1 (IgG2b, U1 epitope) (Nandakumar and 
Holmdahl, 2005) were also administered individually. As isotype control, we used 
mIgG2a (mouse anti-human HLA-DRa) and mIgG2b (mouse anti-human parathyroid 
epithelial cells). Furthermore, CIIF4 was utilized as nonarthritogenic anti-CII mAb 
(Croxford et al., 2010; Nandakumar et al., 2008). All antibodies were generated and 
purified as explained previously (Nandakumar and Holmdahl, 2005). 

The cocktail of four anti-CII mAbs used for CAIA induction was also used for 
preparing CII-immune complex (IC). CII-IC was prepared by mixing rat CII (antigen) 
with the anti-CII mAbs cocktail at a ratio of 1:1 at 37°C for 30 min with gentle shaking 
(Burkhardt et al., 2002). CII-IC was then used for cell culture experiments or intra-
articular (i.a.) injections (500 ng in 5 µl of saline). 

Fab fragments of the cocktail of mAbs used for induction of CAIA were produced 
using the Pierce Fab Preparation Kit, following the producer's guidelines. 

Endo-β-N-acetylglucosaminidase (EndoS) hydrolyzes N-linked Fc-glycans and, 
fused with glutathione S-transferase (GST), was used to produce EndoS-treated 
M2139 or anti-CII mAbs cocktail, as explained earlier (Collin and Olsen, 2001). In 
summary, GST-EndoS was mixed with anti-CII mAbs and incubated at 37°C for 16 
h. Glutathione-Sepharose 4B columns were then used to eliminate and an ion 
exchange column was utilized to purify the Abs. 

 

3.1.2.2 Anti-citrullinated protein antibodies (ACPA) 

For Study II, mice were injected i.v. with human IgGs coming from healthy 
individuals or RA patients (ACPA or non-ACPA IgGs (Flow Through, FT); 0.125-4 
mg in 150 µl of saline). 

Plasma, serum and synovial fluid samples were collected and stored at -80°C from 
ACPA-positive, ACPA-negative and healthy donors. RA patients were tested for anti-
CCP2 (ACPA positivity) reactivity while visiting the Rheumatology clinic at the 
Karolinska University Hospital. In Study II, three distinct pools of autoantibodies 
were used: ACPA pool 1 (38 plasma samples), ACPA pool 2 (5 plasma and 1 serum 
samples) and ACPA pool 3 (15 plasma and 10 sera samples). 
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Human antibodies were then purified as described earlier (Ossipova et al., 2014). 
Briefly, from diluted plasma or serum IgGs were purified in HiTrap Proteing G HP 
columns. The fraction of ACPA IgGs was then purified from total IgGs using the 
CCP2 affinity column. The non-ACPA IgGs (i.e. not binding to the CCP2 column) 
represented the FT fraction and were used as controls in the experiments. Purity and 
endotoxin levels were analyzed in all the different pools of autoantibodies. 

 

3.1.2.3 Other antibodies 

For Study I, 15A11 was used as anti-cartilage oligomeric matrix protein (COMP) 
mAb (Geng et al., 2012). Similarly to the production of CII-IC, COMP-IC and IgG-IC 
were produced by mixing COMP or rat IgGs (respective antigens) with 15A11 anti-
COMP or mouse anti-rat IgGs (respective Abs) at the respective ratios of 6:1 or 1:1 
at 37°C for 1 h with gentle shaking. These ICs were used for cell culture experiments 
or i.a. injections (500 ng in 5 µl of saline). 

 

3.1.3 Experimental models 

For Study I, nerve ligation was achieved by ligating the common peroneal and tibial 
branches of the sciatic nerve under isoflurane anesthesia. Subsequent to the 
surgical procedure, animals were then given buprenorphine (0.1 mg/kg, 
subcutaneously (s.c.)) every 12 h for 2 days. 

For chimera mice generation, recipient BALB/c FcRγ chain-/- or WT mice were 
irradiated with 750 rad. The next day, ten millions cells collected from bone marrow 
(BM) from tibia and femur of donor mice were inoculated i.v. in recipient mice. 
Irradiated WT mice received BM cells from FcRγ chain-/- mice, producing mice with 
activating FcγRs expressed solely on nonhematopoietic cells (including neurons), 
but not on hematopoietic cells (ko-WT). Vice versa, irradiated FcRγ chain-/- mice 
were injected with WT BM cells, producing chimera animals expressing activating 
FcγRs on hematopoietic cells but not on nonhematopoietic cells (including neurons) 
(wt-KO). Controls were generated transplanting BM from WT donors into WT 
recipient mice (wt-WT). Chimera mice were kept resting for 6 weeks before injecting 
them with anti-CII mAbs cocktail (4 mg in 150 µl of saline). 

 

3.1.4 Assessment of arthritis 

For Study I and II, arthritis signs in all the four paws of mice injected with anti-CII 
mAbs or ACPA was examined by visual inspection as explained earlier (Bas et al., 
2012). In summary, scientists blinded for the origin and treatment of the animals 
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scored visually detectable inflammation, i.e. swelling and redness, on a 0-60 score 
scale. Each inflamed toe or knuckle was counted as 1 point, while 
metacarpus/metatarsus or ankle joint inflammation was counted as 5 points each, 
thus the maximum score reachable per paw was 15. Incidence of arthritis was 
estimated as percentage of animals that developed any signs of arthritis. 

 

3.1.5 Pharmacology 

In Study I, mice were treated with PMX53, a cyclic peptide C5a receptor inhibitor. 
PMX53 (3 mg/kg) was applied s.c. 1 h prior to anti-CII mAbs injection and then once 
per day (for 5 days) 3 h before the assessment of mechanical hypersensitivity. 

In Study II, animals were administered reparixin, a CXCR1/2 (mouse analogues of 
IL-8, CXCL1/2, receptor antagonist). Reparixin was applied s.c. twice per day (30 
mg/Kg) throughout the experimental period. 

 

3.2 Assessment of pain-like behavior 

In Study I and II, measures of evoked and spontaneous pain-like behavior were 
used, e.g. mechanical hypersensitivity and locomotion monitoring respectively. 
Mechanical pain-like behavior was assessed during specified test days between 
10:00-17:00, while locomotor activity was always monitored during the night between 
day 2 and 3 of the respective model. The scientists did not know the origin and 
treatment of the animals throughout the experiments and their analysis. 

 

3.2.1 Mechanical hypersensitivity 

Mechanical hypersensitivity in the hind paws was assessed using von Frey 
filaments. Animals were habituated to the experimental environment, single units on 
top of a wire-mesh surface, before testing of baselines (3-5 measurements) and 
subsequent randomization in experimental groups. On indicated test days, mice 
were allowed to acclimatize to testing cages for 1 h prior to the experiment. 
Withdrawal thresholds were measured with von Frey OptiHair filaments of 
logarithmic growing stiffness (0.5, 1, 2, 4, 8, 16, and 32 mN, corresponding to 0.051, 
0.102, 0.204, 0.408, 0.815, 1.63 and 3.26 g, respectively), but with the cutoff of 4 g 
possible tissue damage was prevented. Filaments were pressed perpendicularly 
against the plantar surface of mouse hind paws and a positive response was 
considered if a brusque removal of the paw from the filament was noted within 2-3 
seconds of application. The Dixon up-down method (Chaplan et al., 1994) was used 
to calculate 50% withdrawal thresholds (i.e. filaments’ force needed to induce a 
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response from the mouse in 50% of the solicitations). Withdrawal thresholds from 
both hind paws were averaged, except in monolateral experiments such as i.a. 
injections where only the ipsi-lateral paw was considered, and presented in grams or 
percentage change compared to baseline. 

 

3.2.2 Locomotor activity 

Locomotion was examined operating the Comprehensive Lab Animal Monitoring 
System (CLAMS). Animals were habituated to the system’s enclosures and to single 
caging for 1 d. On the third night (12 h period from 18:00 to 6:00) of the experimental 
model, mice’s activities in the x, y and z axes were examined by automated 
recording of the amount of infrared beams breaks every 20 min. Data are presented 
as total movement (total amount of x and y axes beam breaks) and rearing (total 
number of z axis beam breaks). In each CLAMS run, one or two control mice were 
included so that the reference control group was collected over the course of 
locomotor tests. 

 

3.3 Cell cultures 

3.3.1 Dorsal root ganglia (DRGs) cell culture 

In Study I, II and III, sensory neurons cultures were used for several in vitro assays. 
DRGs (C1-L6) from BALB/c WT (Study I, II and III) or FcRγ chain-/- (Study I) 
animals were dissected and kept in cold phosphate-buffered saline (PBS) until 
enzymatically treated initially with papain (1.7 mg/ml; 30 min at 37°C) followed by a 
mix of collagenase I and dispase II (2 and 8 mg/ml respectively; 30 min at 37°C). 
DRG cells were then mildly triturated in Leibovitz’s (L15) or F12 media added with 10 
µM of the mitotic inhibitor 5-fluoro-2-deoxyuridine, 1% penicillin and streptomycin 
and 10% heat-inactivated fetal bovine serum (FBS). For Study I CGRP release 
trials, nerve growth factor (NGF, 30 ng/ml) was supplemented to the medium. To 
produce a neuronally enriched culture partially depleting satellite glia, the triturated 
cells were then plated on uncoated wells for 1.5 h before transfer to wells pre-coated 
with laminin and poly-D-lysine. Cells were then kept in 5% CO2 environment at 37°C 
and medium was changed after 1 d and then every third day. 

 

3.3.1.1 CGRP release 

For Study I, after 6 days in culture and initial washes with Hepes buffer (25 mM 
Hepes, 2.5 mM CaCl2, 3.5 mM KCl, 135 mM NaCl, 1 mM MgCl2, 3.3 mM dextrose 
and 0.1% BSA; brought to pH 7.4 using NaOH), sensory neurons were put in new 
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Hepes buffer for 30 min at 37°C to collect pre-stimulation samples (baseline level of 
CGRP). The cells were then stimulated with CII-IC (0.1, 1 and 10 µg/ml), CII antigen, 
anti-CII mAb cocktail, control IgG2b (all 1 µg/ml) or only Hepes buffer at 37°C for 30 
min. These post-stimulation samples were then collected for CGRP analysis. 
Capsaicin (50 nM) (10 min at 37°C) was applied as positive control. An enzyme 
immune assay (EIA) kit was used to measure the levels of CGRP in each sample. 
The percentage change before and after stimulation was then calculated for each 
well and plotted. 

 

3.3.1.2 Calcium imaging 

Fluo-3AM (4.4 µM) for 30 min at room temperature was used as calcium indicator to 
load DRG neurons (after 24 or 48 h in culture). Modified Hepes buffer (10 mM 
Hepes, 2 mM CaCl2, 3 mM KCl, 145 mM NaCl, 2 mM MgCl2, 10 mM glucose; 
brought to pH 7.4 using NaOH) was used to wash the cells, which were then 
positioned in the experimental chamber and unceasingly perfused with modified 
Hepes buffer at the rate of 1 ml/min. A Nikon Diaphot inverted microscope with a 40x 
oil-immersion objective and a diode laser (488-nm excitation) were used for the 
experiments. The variation in emission (506 nm), promoted by the binding of 
intracellular calcium to Fluo-3AM, was measured every 7-15 s using a 
photomultiplier tube. 

Depending on the study different substances were applied as stimulation factors. For 
Study I, the cells were stimulated with CII-IC or control IgG2b (both 1 µg/ml) for 3 
min. For Study II, the cells were challenged with human ACPA or control FT (both 1 
µg/ml) for 5 min. For both studies I and II, the two different reagents were used in 
random order to the same cells and with 10 min washing between stimulations. 
Moreover, after each recording, the cells were stimulated with KCl (50 mM) for 1 min 
to identify functional and alive neurons. For Study III, KCl (50 mM) or Ionomycin (to 
enable amplitude comparisons, 5 µM) were applied for 1 min to the cells. 

Modified Hepes buffer was used to prepare all the reagents used in the studies. The 
acquired images with around 15 cells per image were analyzed using the software 
ImageJ. In each image, the mean fluorescence intensity (F) was calculated for all the 
visible neuronal cell bodies, which were manually selected. The baseline recording 
(F0) was measured as the average mean signal of the initial 5-9 images of the series 
before any reagents was applied. Data are presented as F/F0 and we noted as 
positive, cells in which the increase of the fluorescent signal was at least ≥20% or 
25% (respectively for Study I and II or Study III) compared to baseline. 
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3.3.1.3 Electrophysiology 

DRG neurons within 24 and 48 h of culturing were picked for electrophysiological 
whole-cell voltage-clamp. The recordings were carried out at room temperature, 
using a patch-clamp amplifier and then analyzed by using Clampex 10.4 software. 
Patch pipettes were in house-made starting from borosilicate glass capillaries using 
a vertical puller. The resistance of patch pipettes was 4-5 MΩ when filled with 
internal solution (120 mM K+-gluconate, 2 mM MgCl2, 1 mM CaCl2, 20 mM KCl, 11 
mM EGTA, 10 mM Hepes and 2 mM NaATP; brought to pH 7.15 using Tris-base). 
During the experiments, sensory neurons were unceasingly perfused with modified 
Hepes solution (see section 3.3.1.2) at the rate of 1 ml/min. 

Different substances were applied to DRG neurons in the different Studies. For 
Study I, the cells were stimulated with CII-IC, IgG-IC or control IgG2b (all 1 µg/ml) 
for 1 min. For Study II, the cells were challenged with human ACPA or control FT 
(both 1 µg/ml) for 1 min. In both studies I and II, at the end of each experiment, the 
cells were stimulated with capsaicin (0.5 µM) for 10 s for detecting TRPV1 positive 
cells. In between the different applications 4 min were waited as washing period. 

Cells were accepted and included in the analysis if their resting potential was lower 
than -40 mV. Furthermore, positive cells were counted when the detected current 
was at least 20 pA. All reagents were prepared in modified Hepes solution and 
applied via an 8-channels pressure-controlled application system. 

 

3.3.2 Neuroblastoma cell lines 

In Study III, F11, B35 and Neuro-2a (N2a) neuroblastoma cell lines were used for 
several in vitro assays and compared to primary DRG neuronal cell cultures on 
numerous characteristics. 

F11 cells were gifted by Dr. Michel Pohl (Université Pierre et Marie Curie 6, Paris, 
France), while B35 and N2a cells were obtained from American type culture 
collection. The cell lines were kept in liquid nitrogen until the start of the experiments. 
Specific media (complete medium) were used for culturing the different cells and for 
promoting neuronal differentiation (serum starvation or differentiation media) (Table 
1). 
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Cell lines 
Complete medium 

composition 
Serum Starvation 

medium composition 
Differentiation medium 

composition 

B35 and N2a 

DMEM, 10% heat 
inactivated FBS, 
Penicillin/streptomycin/glut
amine 

DMEM, 0.1% heat 
inactivated FBS, 
Penicillin/streptomycin/glut
amine 

DMEM, 10% heat 
inactivated FBS, 
Penicillin/streptomycin/glut
amine. NGF 10 ng/ml and 
dibutyryl cyclic AMP (db-
cAMP) 0.5 mM 

F11 

Ham’s F-12 Nutrient Mix, 
GlutaMAXTM supplement, 
15% heat inactivated FBS, 
Sodium hypoxanthine, 
aminopterin and thymidine 
(HAT). 
Penicillin/streptomycin. 
Allo-4-hydroxy-L-proline 
100 µg/ml. 

Ham’s F-12 Nutrient Mix, 
GlutaMAXTM supplement, 
1% heat inactivated FBS, 
Penicillin/streptomycin. 

Ham’s F-12 Nutrient Mix, 
GlutaMAXTM supplement, 
1% heat inactivated FBS, 
Penicillin/streptomycin. 
NGF 10 ng/ml and db-
cAMP 0.5 mM 

Table 2: Complete, serum starvation and differentiation media used for culturing B35, N2a and 
F11 neuroblastoma cell lines.  

 

The cells were thawed and initially cultured in complete medium. After reaching 70-
75% confluence, the cells were disattached (PBS-EDTA for F11, Trypsin-EDTA for 
B35 and N2a) and plated in different well-plates in accordance with experimental 
requirements. For calcium imaging studies, cover slips coated with poly-D-lysine and 
laminin were used to culture the cells. The plated cells were kept in complete media 
for three days before switching either to complete, serum starvation or differentiation 
media. The cells were maintained in those media for three further days to allow 
differentiation and then processed for the different experiments. 

 

3.4 Tissue analyses 

3.4.1 Joint histology 

For Studies I and II, the degree of arthritis was also examined by histology. After 
deep anesthesia with isoflurane mice were perfused with saline followed by 4% 
paraformaldehyde (PFA). Subsequentially, PFA 4% was used to post-fix dissected 
hind ankle joints for 48 h, then EDTA solution for 4-5 weeks (changing the solution 
every 7 days) was used for decalcification, ethanol for dehydration and finally 
paraffin for embedding. Cut sections of 5 µm were stained with H&E and given 
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scores on a 0-3 scale on parameters like synovitis, bone erosion and cartilage 
destruction by blinded investigators as previously explained (Bas et al., 2012). 

 

3.4.2 Mouse immunohistochemistry and immunocytochemistry 

For Study I, immunohistochemistry (IHC) was performed on mouse lumbar DRGs, 
sciatic nerve and hind paw’s glabrous skin, using distinct protocols. Mice were 
deeply anesthetized and perfused with PFA 4%. After dissection, skin, sciatic nerve 
and DRGs were post-fixed in PFA 4% for respectively 4, 24 and 24 h and 
subsequentially cryoprotected in sucrose 30% at 4°C for 48 h. Importantly, FcγRIIb 
mAb (Tutt et al., 2015) required a different post-fixation for a successful protocol, 
thus for its IHC anesthetized mice were perfused only with PBS before dissection. 
Collected skin and DRGs were then frozen in optimal cutting temperature (OCT) 
compound and kept at -80°C until cutting with a cryostat. Tissues were 
cryosectioned (skin 20 µm, sciatic nerve 10 µm and DRGs 14 µm) and mounted on 
glass slides. For IHC with FcγRIIb mAb, tissues were post-fixed on the glass slides 
with acetone 50% for 10 min at 4°C, directly after cutting. 

For Study I and III, immunocytochemistry (ICC) was performed on DRG primary cell 
cultures or neuroblastoma cell lines. For Study I, after 6 days in culture sensory 
neurons were fixed in acetone 50% for 10 min at 4°C, while for Study III DRG 
neurons or cell lines were fixed in PFA 4% for 10 min at room temperature. 

On the day of the staining protocol, tissues were permeabilized with TritonX-100 and 
non-specific binding was prevented using normal serum 5% (from the species of 
secondary antibody) in PBS. Primary antibodies (Table 2 for Study I) (Tutt et al., 
2015) were diluted in the blocking solution and then incubated with the tissues 
overnight at room temperature (Study I) or 4°C (Study III) and Alexa Fluor-
conjugated or cyanine (Cy)-conjugated secondary antibodies (all 1:300) were 
incubated for 1 h at room temperature to visualize the immunoreactivity. 
Coverslipping was achieved using Prolong Gold antifade mounting medium with 
DAPI and a confocal microscope (Zeiss LSM800) (Study I) was used to collect 
images. Figures were then composed in Adobe Illustrator CS6. 
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Mouse 
Tissue 

Fixation Primary antibody 

DRG 
Fresh 

PFA 10 min RT 

Rabbit anti-NeuN 

(1:100, Alexa Fluor-488 conjugated, ABN78A4, Millipore) 

DRG and 
DRG 

Cultures 

Fresh 

Acetone 10 min 4°C Rat anti-FcγRI 

(2 µg/ml, gift from Dr Cragg, University of Southampton, 
Southampton, United Kingdom) 

Skin 
PFA-perfused 

4 h post-fixation PFA 4% 

DRG 
PFA-perfused 

24 h post-fixation PFA 4% 

Rabbit anti-Iba1 

(1:500, 019-19741, Wako) 

DRG and 
DRG 

Cultures 

Fresh 

Acetone 10 min 4°C Rat anti-FcγRIIb 

(2 µg/ml, gift from Dr Cragg, University of Southampton, 
Southampton, United Kingdom) 

Skin 
PFA-perfused 

4 h post-fixation PFA 4% 

Sciatic 
Nerve 

Fresh 

PFA 10 min RT 

Goat anti-TrkA 

(1:50, AF1056, R&D systems) 

Skin 
PFA-perfused 

4 h post-fixation PFA 4% 

Rabbit anti-PGP9.5 

(1:500, ab37188, Abcam) 

DRG and 
DRG 

Cultures 

Fresh 

Acetone 10 min 4°C 

Rat anti-FcγRIII 

(2 µg/ml, gift from Dr Cragg, University of Southampton, 
Southampton, United Kingdom) 

DRG and 
DRG 

Cultures 

Fresh 

Acetone 10 min 4°C 

Rat anti-FcγRIV 

(2 µg/ml, gift from Dr Cragg, University of Southampton, 
Southampton, United Kingdom) 

Table 3: Primary antibodies used for Study I mouse IHC. 
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For the IHC analyses of Study III, the subsequent primary antibodies were used: 
mouse anti-Peripherin (1:200, MAB1527, Millipore), mouse anti-NF200 (1:400, 
N0142, Sigma), mouse anti-β-III-Tubulin (1:300-1000, ab78078, Abcam), rabbit anti-
PGP9.5 (1:500, ab37188, Abcam), IB4-488 (1:200, t21411, Molecular probes), rabbit 
anti-CGRP (1:10000, Terenius L.). For the acquisition of the images, a Nikon TE300 
fluorescence microscope was used keeping fixed settings for each marker across 
the different cell lines and culture conditions. Six fields were randomly selected and 
image analysis performed with a customized python script. Briefly, the images were 
first thresholded with a combination of Ostu and adaptive thresholding methods. The 
objects smaller than 500 pixels or connected to the borders of the image were 
discarded. The remaining components were segmented using a watershed algorithm 
and area and fluorescence intensity of the isolated connected components were 
quantified. Data are presented as signal intensity/cell area. 

 

3.4.3 Human immunohistochemistry 

For Study I, IHC was performed on human DRGs (snap-frozen L4-5) harvested from 
brain-dead individuals after asystole (n = 4) at the University of Pittsburgh, shipped 
and maintained at -80°C until embedded in OCT medium.  

The University of Pittsburgh Committee for Oversight of Research and Clinical 
Training Involving Decedents and the Center for Organ Recovery and Education 
approved all the procedures. 

Similar, IHC protocol as the one for mouse DRGs was used, with the exception of 
tyramide signal amplification (cy5-TSa) with appropriate HRP-conjugated secondary 
antibodies to visualize the immunoreactivity. 

Human 
Tissue 

Fixation Primary antibody 

DRG Acetone 10 min 4°C 
Mouse anti-FcγRI 

(1:100, hCD64, clone 10.1, MCA756g, Serotec) 

DRG Acetone 10 min 4°C 
Mouse anti-FcγRIIa 

(1:100,hCD32a, clone IV.3, Stem cell tech) 

DRG Acetone 10 min 4°C 
Mouse anti-FcγRIIIa/b 

(1:100, hCD16 PE/cy7-conjugated, clone 3G8, Biolegend) 

Table 4: Primary antibodies used for human IHC. 
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3.4.4 Quantitative real-time polymerase chain reaction (qPCR) 

For Study I, after decapitation under isoflurane anesthesia, mouse ankle joints were 
harvested subsequently to trimming from muscle and tendons. The joints were then 
frozen and kept at -70°C until the experiments. For extracting the RNA, a 
BioPulverizer was used to macerate the joints and an ultrasonic processor was 
utilized to briefly sonicate the pulverized joints in TRIzol. For Study III, cells in the 
different conditions were washed in ice-cold PBS and then transferred to TRIzol. 

RNA was extracted according to the producer’s protocol and reverse transcribed to 
complementary DNA. qPCRs were run with the standard curve method using 
particular primers (Table 5-6) to define threshold cycle values to estimate the cell 
equivalents’ number for each sample. The house-keeping gene Hprt1 values were 
used to normalize the data, which was then plotted relative expression units. 

Gene Primer 

Hprt1 Mm01545399_m1 

Ccl2 (Mcp-1) Mm00441242_m1 

Tpsb2 (Mcp-6) Mm01301240_g1 

Mcpt4 (Mcp-4) Mm00487636_g1 

Tnf Mm00443258_m1 

Mmp2 Mm00439498_m1 

Mmp9 Mm00442991_m1 

Mmp13 Mm00439491_m1 

Cox2 Mm00478374_m1 

Il1b Mm00434228_m1 

Il6 Mm00446190_m1 

Table 5: Primers used for Study I qPCR assay. 
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Gene F11 and B35 cell lines N2a cell line 

Scn8a Rn00570506_m1  Mm00488110_m1 

Scn9a Rn00591020_m1 Mm00450762_s1 

Cacna1b Rn01643813_m1 Mm01333678_m1 

Cacna2d1 Rn01442580_m1 Mm00486607_m1 

P2Xr3 Rn00579301_m1 Mm00523699_m1 

MrgprD Rn01785783_s1 Mm01701850_s1 

Calca1 Rn01511353_g1 Mm00801462_m1 

TRPV1 Rn00583117_m1 Mm01246302_m1 

TrkA Rn00572130_m1 Mm01219406_m1 

Hprt1 Rn01527838_g1 Mm03024075_m1 

Table 6: Primers used for Study III qPCR assay. 

 

3.5 Statistics 

GraphPad Prism 6 software was used to run statistical analyses. For comparing 
changes over time, repeated measures two-way ANOVA was used followed by 
Bonferroni post-hoc test. For differences in three groups or more, one-way ANOVA 
was used followed by Bonferroni post-hoc test. For differences in two groups, 
Student’s t-test was used. For Studies I and II, arthritis and histological scores were 
compared using the Kruskal-Wallis test followed by Dunn’s multiple comparison 
post-hoc test. P values <0.05 were considered significant. No statistical method was 
applied to pre-determine sample sizes. 
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4 RESULTS AND DISCUSSION 

4.1 Study I: Autoantibodies in immune complex formation induce 
pain independently of inflammation via neuronally expressed 
FcγRI 

Pain in rheumatoid arthritis (RA) has always been attributed to the ongoing 
inflammatory processes affecting the patients’ joints. However, RA individuals report 
arthralgia many years before the onset of the disease (with detectable tissue injury 
and inflammation) and even after the disease is under medical control or in 
remission, suggesting a clear disconnect between inflammation and pain in RA 
pathophysiology (de Hair et al., 2014; Taylor et al., 2010). Noteworthy, 
autoantibodies are present in future RA patients’ sera up to 10 years before the RA 
diagnosis and most of the anti-rheumatic drugs used nowadays in the clinic to stop 
RA progression do not affect autoantibody titers (Bos et al., 2008; Rantapää-
Dahlqvist et al., 2003; Ronnelid et al., 2005). 

The aim of Study I was to explore mechanisms that could explain the enhancement 
in pain sensitivity prior to the typical signs of RA disease activity. Specifically, we 
hypothesized that autoantibodies could have a more prominent role in promoting 
nociception than only via the classical processes of inducing inflammation. 

To investigate RA-induced pain, we worked with the collagen antibody induced-
arthritis (CAIA) mouse model of RA. As briefly discussed in the introduction, in this 
model, a single dose of antibodies (Abs) against collagen type II (CII) is injected on 
day 0 followed by a low dose of lipopolysaccharide (LPS) on day 5 to boost the 
immune system and synchronize the onset of RA-like pathology. Mice develop 
robust but transient inflammation clearly detectable in the joints between days 10-25. 
Afterwards, inflammation resolves due to the clearance of injected Abs. In contrast, 
while pain-like behavior during the inflammatory flare is quite expected, we found 
that mechanical hypersensitivity develops days before the start of visually detectable 
inflammation and persists for weeks after inflammation has resolved (Agalave et al., 
2014; Bas et al., 2012; Fernandez-Zafra et al., 2019; Su et al., 2015). This implies 
that the pain mechanisms driving CAIA hypersensitivity could well mimic the pain 
profile experienced by RA patients. 

In this study, we explored the underlying pain mechanisms of the early phase of the 
CAIA model (after the injection of anti-CII Abs up to day 5, before LPS injection), 
where both evoked and spontaneous pain-like behaviors appear in mice before any 
signs of inflammation detectable by visual inspection (Figure 8). 
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Figure 8: Evoked and spontaneous pain-like behavior in the early phase of the CAIA model. 
Mice injected with anti-CII Abs develop evoked pain-like behavior measured with von Frey filaments 
detectable as early as day 2 after injection (A), in the absence of significant visual signs of 
inflammation measured by arthritis score and incidence (B and C, n = 9-10). Mice subjected to CAIA 
display also spontaneous pain-like behavior measured with comprehensive lab animal monitoring 
system (CLAMS) during the third night after the anti-CII abs injection (D, n = 15-19). Data are 
presented as mean ± SEM. *, p < 0.05; **, p < 0.01; ***, P < 0.001 compared to saline controls. 

 

During the first 24 h after the injection, anti-CII Abs rapidly bind to CII in the articular 
joints of the animals’ joints and form immune complexes (ICs) (Jonsson et al., 1989). 
ICs attract and activate immune cells, which promote the development of a joint 
pathology that resembles clinical features of RA in humans. Our initial hypothesis for 
explaining early CAIA hypersensitivity involved the possibility of CII-ICs driving low-
grade inflammation, which would not be visually detectable as redness or swelling, 
but could induce the release of neuronal-sensitizing factors and promote pain-like 
behavior. Therefore, we examined ankle joints of mice subjected to CAIA both at an 
early (day 5) or inflammatory (day 15) phase stages both at histological and 
molecular levels. No significant histological signs of synovitis, bone erosion and 
cartilage destruction or increase in mRNA of several commonly known inflammatory 
and pain-related factors were detected in ankle joints at day 5 of the CAIA model, 
while all of these parameters were prominent at the peak of inflammation (day 15). 
Moreover, ICs also activate the complement cascade, releasing C5a peptides, 
which, binding to their receptor C5aR, have a critical role in the genesis of acute and 
chronic pain states (Jang et al., 2010; Ting et al., 2008). Thus, we explored the 
possible involvement of complement activation in our model and found that both 
using a C5aR antagonist or C5a-depleted mice we could not reverse early CAIA 
pain-like behavior. Taken together these data suggest that other factors rather than 
classical inflammatory molecules are mediating early CAIA hypersensitivity. 

Importantly, the four different Abs in the anti-CII Abs cocktail have distinct 
arthritogenic potencies and when injected alone they can induce different degrees of 
arthritis scores and incidence (Nandakumar and Holmdahl, 2005). Therefore, if early 
CAIA hypersensitivity was connected to the actual pathology promoted by the anti-
CII Abs, we would expect the pain-inducing properties of each anti-CII Abs in the 
cocktail to be proportional to their pathological potential. However, when we injected 

A B C D 
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the four anti-CII Abs alone they all induced the same degree of pain-like behavior, 
comparable to the full Abs cocktail. Noteworthy, injection of isotype controls (IgG2a 
and IgG2b Abs), which would not bind and form ICs with any mouse protein, was not 
able to promote any pain-like behavior. 

Another common feature of arthritogenic anti-CII Abs is to cause denaturation of CII 
and loss of both CII and proteoglycans from cartilage in vitro and in vivo even in the 
absence of inflammation (Nandakumar et al., 2008). To test if these actions could 
have pro-nociceptive properties, we injected a non-arthritogenic antibody CIIF4 that 
binds to CII (forming therefore ICs), but does not lead to any cartilage damage and it 
is instead protective when injected together with pathogenic anti-CII Abs both in vitro 
and in vivo (Croxford et al., 2010; Nandakumar et al., 2008). Strikingly, mice injected 
with CIIF4 developed robust mechanical hypersensitivity comparable to all 
pathogenic anti-CII Abs (Figure 9). 

 

Figure 9: The non-arthritogenic anti-CII Ab CIIF4 induces pain-like behavior in mice 
comparable to pathological anti-CII Abs. Mice injected with CIIF4, which binds to CII and forms 
ICs, develop evoked pain-like behavior measured with von Frey filaments even if CIIF4 does not 
induce any pathology (n = 7-8). Data are presented as mean ± SEM. *, p < 0.05; ***, P < 0.001 
compared to saline controls. 

 

The fact that a non-pathogenic Ab could have similar effects on pain-like behavior as 
arthritogenic Abs led us to conclude that the mechanistic explanation for early CAIA 
hypersensitivity could not be found on any strictly pathological feature of the Abs, but 
rather on their capacity to bind epitopes on the CII molecule, thus forming ICs.  
Prompted to explore other mechanisms we investigated possible direct actions of 
anti-CII Abs and ICs on peripheral sensory neurons, turning our attention to the IgGs 
receptors, Fc gamma receptors (FcγRs).  

Using several techniques, we evaluated the expression pattern of the four FcγRs in 
mouse sensory neurons. With single molecule fluorescence in situ hybridization, we 
detected mRNA molecules for Fcgr1, Fcgr2b and Fcgr3 in the soma of primary 
afferents located in the dorsal root ganglia (DRGs). At a protein level, DRG neuronal 
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cell bodies expressed only FcγRIIb protein, while FcγRI was present exclusively in 
Iba1-positive resident macrophages. On a side note, this differs from rat FcγRs 
expression pattern, where rat FcγRI is the only FcγRs expressed in DRGs and it is 
found in sensory neurons (Qu et al., 2012; Qu et al., 2011). Importantly, mRNAs can 
be transported and translated in loco at the neuronal peripheral terminals, since the 
machinery responsible for the translation process can be found along the axons of 
sensory neurons and it has been shown that peripheral expression of specific 
proteins is involved in regulating neuronal plasticity (Jimenez-Diaz et al., 2008; 
Obara et al., 2012; Price and Geranton, 2009). In fact, following ligation of the sciatic 
nerve, we could detect accumulation of mouse Fcgr1 and Fcgr2b mRNA molecules 
at the ligature site in fibers positive for TrkA, which is a marker highly expressed in 
nociceptors innervating the joints (Mantyh et al., 2011). This suggested mRNA 
transport and possible local translation at the peripheral terminals of sensory 
neurons, which we later confirmed by detection of FcγRI and FcγRIIb proteins in skin 
neuronal fibers. Both FcγRI and FcγRIIb were expressed also in non-neuronal cells 
in the skin (Figure 10). Instead, FcγRIII and FcγRIV proteins were not detected in 
any of the analyzed tissues. 

 

Figure 10: FcγRI and FcγRIIb are present on sensory neurons in mouse skin. FcγRI and FcγRIIb 
immunoreactivity co-localizes with the neuronal marker PGP9.5 in sections of mouse skin. Non-
neuronal cells are also stained positive for FcγRI and FcγRIIb. 

 

Based on FcγRI and FcγRIIb expression on sensory fibers, we speculated that ICs 
could directly activate neurons therefore acting as pain-inducing molecules 
completely uncoupled from the inflammatory process. We tested this hypothesis in 
experiments in vitro, using DRG cell cultures, which were neuronal-enriched due to a 
pre-absorption step in the culture protocol to remove of most of the satellite glial 
cells. Interestingly, we found that a RA-relevant IC, CII-IC (CII as antigen and 
antibodies anti-CII), could promote calcitonin gene related peptide (CGRP) release, 
increase of intra-cellular calcium levels and positive inward currents when applied to 
cultured DRG neurons from wild type (WT) mice (Figure 11A-C). Thus, CII-IC can 
directly activate sensory neurons in vitro in the absence of any immune or accessory 
cells, further strengthening the link between autoantibodies and their pro-nociceptive 
properties. Moreover, when CII-IC was applied to cultured DRG neurons from FcRγ-
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chain-/- mice, which lack the activating FcγRs (I, III and IV) but retain the inhibitory 
FcγRIIb, CGRP release was prevented (Figure 11D), suggesting that FcγRI, and not 
FcγRIIb, is the receptor responsible for CII-IC activation of sensory neurons in vitro. 
This is in accordance with previous work showing generic IgG-ICs promoting 
increase of calcium levels, membrane depolarization and release of substance P 
from cultured rat sensory neurons via FcγRI and the Syk–PLC–IP3–TRPC3 
intracellular pathway (Qu et al., 2012; Qu et al., 2011). 

 

Figure 11: In vitro, CII-IC activates DRG sensory neurons from WT, but not from FcRγ-chain-/- 
mice. CII-IC, but not controls, promotes increase of intracellular calcium levels (A), membrane 
depolarization (B) and CGRP release (C) in WT DRG neurons in culture. Neurons from FcRγ-chain-/- 
mice are protected from CII-IC activation (D). IgG2b, CII and anti-CII Abs are used as negative 
controls, while capsaicin (CAP) and KCl as positive controls. Data are presented as mean ± SEM. ***, 
P < 0.001 compared to saline controls. 

 

Next, we confirmed that autoantibodies could also act on neuronal FcγRI in vivo. 
Therefore, we injected CII-IC in the intra-articular space of the ankle joint of WT and 
FcRγ-chain-/- mice and, while WT mice developed pain-like behavior, FcRγ-chain-/- 
mice were protected. Moreover, injection of Fab fragments (Abs depleted of their Fc 
region) or EndoS-treated anti-CII Abs (presenting reduced affinity for FcγRs) failed to 
induce any pain-like behavior, indicating that the Fc-FcγRI interaction is also 
necessary for developing anti-CII Abs induced hypersensitivity in vivo. 

A B 

C D 
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As FcγRs detect the constant region of Abs in IC formation, the observed pain-like 
behavior should not depend on the ICs constituents. Therefore, we tested if other 
ICs could promote similar results as CII-IC and found that both a generic IC (rat IgGs 
and mouse anti-rat IgGs) or cartilage oligomeric matrix protein (COMP)-IC (COMP 
and anti-COMP Ab) were able to promote pain-like behavior in WT mice when 
injected intra-articularly in the ankle joint. Importantly, while we used another RA-
relevant IC to confirm our results, since it has been shown that COMP is released 
from cartilage during development of RA (Saxne and Heinegard, 1992), work from 
other groups, in which ovalbumin (OVA)-ICs induced pain-like behavior in rat when 
injected intraplantarly, also supported our findings (Jiang et al., 2017). 

However, none of our previous experiments excludes the role of immune cells in 
participating to the induction of pain-like behavior in vivo. Therefore, we used 
chimera mice as an approach to address the contribution to early CAIA 
hypersensitivity of FcγRI of hematopoietic cells as compared to non-hematopoietic 
cells (including neurons). Hence, mice were irradiated to deplete hematopoietic cells 
and then transplanted with bone marrow from either WT or FcRγ-chain-/- mice. Mice 
lacking activating FcγRs solely on non-hematopoietic cells were protected from early 
CAIA hypersensitivity, while mice lacking activating FcγRs on hematopoietic cells but 
still expressing them on non-hematopoietic cells (including neurons) developed 
mechanical hypersensitivity indistinguishable from control mice (Figure 12). These 
data provide evidence that FcγRs on immune cells are not essential for promoting 
early CAIA hypersensitivity, supporting the in vivo role of FcγRI on neurons, although 
the involvement of other non-hematopoietic cells cannot be excluded. 

 

Figure 12: FcγRI on non-hematopoietic cells is essential for early CAIA hypersensitivity. 
Chimera mice injected with anti-CII Abs develop evoked pain-like behavior only when FcγRI was 
expressed on non-hematopoietic cells (B; ko-WT), but not when it was present solely on 
hematopoietic cells (A; wt-KO). Control mice (C; wt-WT) for the irradiation and bone marrow transfer 
processes still develop early CAIA hypersensitivity. Data are presented as mean ± SEM. *, p < 0.05; 
**, p < 0.01; ***, P < 0.001 compared to saline controls. n = 8-9. 
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Finally, to examine the translational potential of our study we characterized the 
FcγRs expression pattern in human DRGs. While human FcγRI is solely expressed 
on macrophage-like cells in the DRGs, similarly to mouse but not rat FcγRI, we 
discovered that the activating FcγRIIIA is expressed in human sensory neurons and 
could theoretically drive similar mechanisms in clinical autoimmune diseases, such 
as RA. 

Together our data suggest that local ICs directly interact with FcγRI present on 
sensory neurons, leading to pain-like behavior independently of inflammation. As 
cartilage is not innervated, it is more likely that early CAIA hypersensitivity is driven 
by the injected anti-CII Abs bound to soluble CII, rather than the Abs bound to CII on 
the cartilage surface. Soluble CII is known to be present in human synovial fluid 
(Lohmander et al., 2003; Yoshida et al., 2006), and is also likely to be present in 
rodents. CII-ICs would then be responsible of inducing and maintaining pain-like 
behavior, first interacting with FcγRI expressed on sensory neurons innervating the 
synovial tissue and bone structures and subsequentially promoting the development 
of the inflammatory process with all the connected nociceptive factors released by 
activated immune cells. While the latter represents the classical concept on how 
autoantibodies contribute to nociception, the first is a novel view defined in this study 
for which autoantibodies are functionally coupled to pain transmission, even in the 
absence of inflammation. This might explain initial and persistent pain in RA patients, 
since autoantibodies are present many years before the onset of the disease and 
nowadays available treatment options often do not affect antibody titers in the 
patients (Bos et al., 2008; Rantapää-Dahlqvist et al., 2003; Ronnelid et al., 2005). 
Therefore, targeting this novel mechanism may represent a new strategy for 
development of disease-related pain-relieving therapies, not only for RA, but also for 
other autoimmune diseases, which are associated with IC formation in innervated 
tissues. 

 

4.2 Study II: Anti-citrullinated protein antibodies induce 
nociception via release of CXCL1 from osteoclasts, but not through 
direct stimulation of sensory neurons 

Anti-citrullinated protein antibodies (ACPA) are used as diagnostic marker since their 
presence is very high and specific for RA patients (Schellekens et al., 1998). 
Importantly, ACPA are associated with arthralgia before the onset of the 
inflammatory phase of RA and predict a worse prognosis since they correlate with a 
more destructive disease phenotype (van de Sande et al., 2011). Moreover, ACPA 
titers remain high even after successful treatment (Bos et al., 2008; Ronnelid et al., 
2005). However, if and how ACPA present pathological properties or contribute to 
pain in RA is still unknown. 
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In Study II, we aimed at investigating the pro-nociceptive and pathological roles of 
human ACPA purified from RA patients using a pre-clinical approach. 

Mice injected with ACPA, but not non-ACPA IgGs (flow through, FT) or IgGs purified 
from healthy individuals, developed evoked and spontaneous pain-like behavior that 
persisted for at least 28 days without any signs of joint inflammation (visual, 
histological or at a molecular level) (Figure 13). 

 

Figure 13: Evoked and spontaneous pain-like behavior in mice after the injection of human 
ACPA. Mice injected with ACPA, but not FT, develop evoked pain-like behavior measured with von 
Frey filaments detectable for at least 28 days (A, n = 4-6), in the absence of significant visual signs of 
inflammation (data not shown). Moreover, ACPA also induce spontaneous pain-like behavior 
measured with CLAMS during the third night after the anti-CII abs injection (B, n = 4-6). Data are 
presented as mean ± SEM. *, p < 0.05; **, p < 0.01; ***, P < 0.001 compared to saline controls. 

 

Similarly to anti-CII Abs from Study I, ACPA-ICs in the animals’ joints could directly 
participate in inducing nociception via neuronal FcγRI uncoupled from the 
inflammatory process. Unfortunately, at the time of the study, there was no soluble 
ACPA-IC (with any citrullinated antigens) available for in vitro testings. However, 
autoantibodies can exert their pathological functions not only in IC formation with 
their Fc portion, but also through their antigen binding region (Fab). For instance, 
antibodies targeting a potassium channels complex or specifically contactin-
associated protein 2 (CASPR2) have been related to neuropathic pain via actions 
promoted by their Fab regions (Dawes et al., 2018; Klein et al., 2012). Therefore, the 
focus of my project was to examine if ACPA could directly activate DRG neurons in 
culture through their Fab regions, potentially explaining in vivo ACPA effects 
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uncoupled from inflammation. Importantly, ACPA failed to promote significant 
increase in intracellular calcium levels or positive inward currents in sensory 
neurons, proving that the pro-nociceptive actions of ACPA in vivo are not due to an 
acute direct effect on sensory neurons (Figure 14). 

 

Figure 14: In vitro, ACPA does not directly activate sensory neurons. ACPA stimulation of 
sensory neurons promotes minimal increase of intracellular calcium levels, comparable to FT controls 
(A). Moreover, none of the cells stimulated with ACPA was depolarized in electrophysiological 
recordings (B). FT is used as negative control, while capsaicin (CAP) and KCl as positive controls. 

 

Prompted to find other cell targets that could be involved in explaining ACPA pro-
nociceptive properties, we stained mouse bone and joints with ACPA and indeed 
found that they bind to osteoclasts. Moreover, mouse osteoclasts stimulated with 
ACPA, but not FT, released one of the mouse interleukin-8 (IL-8) analogues 
(CXCL1) in vitro. This is in accordance with another work from our collaborators 
where they showed that human osteoclasts release IL-8 when stimulated by ACPA 
in vitro (Krishnamurthy et al., 2016). 

Since sensory neurons express CXCR2, the receptor for CXCL1/2, they can be 
sensitized by these chemokines (Qin et al., 2005; Wang et al., 2008; Zhang et al., 
2013). In fact, CXCL1/2 have been shown to promote neuronal sensitization in vitro, 
increasing ion currents and TRPV1 activity, and to induce pain-like behavior when 
injected peripherally or centrally into mice (Cunha et al., 2005; Dong et al., 2012; 
Guerrero et al., 2012; Yang et al., 2009; Zhang et al., 2013). To test the role of 
CXCL1/2 in vivo after the injection of ACPA, we used reparixin, a CXCR1/2 receptor 
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antagonist. In the published paper, we showed that monoclonals Abs produced from 
synovial B cells sorted from RA patients, induced hypersensitivity, which was 
partially reversed by reparixin (Figure 15).  

 

 

Figure 15: Antagonizing CXCL1/2 receptor partially reverses monoclonal “ACPA”-induced 
mechanical hypersensitivity. Monoclonal Abs, initially thought as ACPA, but later proven not to 
have specific citrulline reactivity, induced hypersensitivity measured with von Frey filaments, which is 
partly reversed by several injections of reparixin (n = 9). Data are presented as mean ± SEM. * or #, p 
< 0.05; comparing saline and mACPA/saline (#) or mACPA/reparixin and mACPA/saline (*). 

 

However, while the monoclonal Abs used for this experiment were initially reported 
to have citrulline peptide reactivity, later developed assays showed that they do not 
actually display such reactivity and cannot therefore be considered ACPA. A 
correction statement has been published to inform the scientific community that the 
effects promoted by these Abs cannot be attributed to citrulline reactivity. However, 
we repeated the same experiment using polyclonal ACPA (total IgGs isolated from 
patients), similar as the one used for figures 13 and 14, and found that reparixin as 
well as zoledronate, an osteoclasts inhibitor, prevent ACPA-induced hypersensitivity 
(Figure 16). Although these data are not yet published, the results support a 
functional connection between ACPA, CXCL1/2, osteoclasts and nociception in vivo. 
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Figure 16: Antagonizing CXCL1/2 receptor or inhibiting osteoclasts prevent ACPA-induced 
mechanical hypersensitivity. ACPA induced hypersensitivity measured with von Frey filaments is 
prevented by pre-treatment with reparixin (A; n = 6-9) or zoledronate (B; n = 6-9). Data are presented 
as mean ± SEM. *, p < 0.05; **, p < 0.01; ***, P < 0.001 compared to saline controls. Unpublished 
data. 

 

In conclusion, here we showed the possible pathological role of human ACPA in 
driving pain in RA through osteoclasts activation and CXCL1 release, which 
subsequentially sensitizes neurons. However, we cannot exclude that also other 
pathological mechanisms could be promoted by ACPA, such as ACPA-IC 
stimulation of neurons via FcγRI or direct effect on neurons through ACPA’s Fab 
region site in a long-term stimulation setting.  

While more studies are needed to further elucidate even more deeply the 
pathological role of ACPA, we here show another novel indirect mechanism by which 
autoantibodies contribute to neuronal sensitization other than the classical 
inflammatory pathways. This could majorly change the way we treat the ACPA-
positive subgroup of RA patients, providing new cells of interest in osteoclasts and 
novel potential therapeutic targets in IL-8 and all the connected pathways. Most 
importantly, these clinical implications affect even the early stages of the disease 
and/or when the disease is under control or in remission, which nowadays represent 
the main challenge in RA pain-management. 
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4.3 Study III: Characterization of neuroblastoma cell lines as 
possible alternative to primary DRG neuronal cell cultures for 
nociception-associated studies 

Rodent primary cultures of sensory neurons are often employed to address 
mechanistic aspects in pain studies. In this thesis, we used mouse DRG cultures for 
in vitro assays both in Studies I and II. Primary neuronal cultures present not only 
experimental difficulties (for instance poor transfection efficiency) and high costs, but 
also an ethical dilemma for the elevated number of animals sacrificed. Thus, during 
the past decades in the neuroscience field, many approaches to find viable 
alternatives to primary neuronal cultures were developed. Examples of these 
strategies include stem cells differentiation or fibroblasts reprogramming into 
neuronal-like cells, which still exhibit several limitations for cost and feasibility 
matters.  

Furthermore, rodents’ neuroblastoma cell lines, such as B35, Neuro-2a (N2a) or 
F11, have been widely used in pain-related studies. Although they pose several 
advantages, such as low costs, high cell numbers and transfection efficiency, little 
information is available in the literature about how these cell lines compare to 
primary DRG cultures regarding overall similarity and therefore if they really 
represent a valuable alternative in vitro method. 

In Study III, we aimed at testing how B35, N2a and F11 cell lines relate to each 
other and to mouse primary sensory neurons cultures concerning several pain-
associated features. We further evaluated if and how two differentiation protocols 
(serum starvation or a cocktail of differentiation factors) would promote a more 
neuronal-like phenotypical change in the cell lines. 

Initially, we examined the effects of the above mentioned differentiation media on the 
cell lines’ morphology. While N2a and F11 cells exhibited no obvious morphological 
changes, B35 cells assumed a more neuronal-like phenotype, such as longer 
neurites and more complex network structure, upon differentiation. However, 
proliferation and/or metabolic activity, which if reduced are known to correlate with a 
more neuronal-like phenotype (Cho et al., 2001; Shea et al., 1985), were partially 
reduced in both B35 and F11 cells using one or the other differentiation media. 
Surprisingly, N2a cells showed an increase in both these parameters upon 
differentiation. 

Next, we examined the expression of several neuronal markers highly expressed in 
DRG neurons at both mRNA and protein levels. Details about these results can be 
found in the correlated Study III manuscript. 

Importantly, at a protein level, for all of the markers tested, N2a displayed the highest 
signal intensity followed by F11 compared to B35 cells. In all the three cell lines, 
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differentiation protocols generally improved the markers’ expression, but N2a cells 
still remained the most neuronal-like on this aspect. Noteworthy, none of the cell 
lines expressed detectable CGRP levels. Thus despite their high TrkA mRNA 
expression and previous reports showing F11 cells releasing substance P 
(Puttfarcken et al., 1997), these cells cannot be considered peptidergic. 

Finally, we evaluated functional activity in the cell lines measuring their excitability 
after stimulation with a depolarizing agent as KCl. The readout of intracellular 
increase of calcium was utilized to analyze cellular activation and compare the cell 
lines and the differentiation protocols to mouse primary DRG cell cultures. For this 
assay, F11 showed both higher number of cells and amplitudes of responses to KCl 
followed by N2a compared to B35 cells, which in fact displayed minimal and under-
threshold responses. Interestingly, upon differentiation F11 cells showed lower 
number of responding cells and therefore a less neuronal-like phenotype. These 
data correlate with voltage-gated calcium channels’ expression where F11 showed 
the highest expression of Cacna2d1 mRNA and with previous studies showing 
higher calcium responses in F11 compared to N2a after ATP stimulation (Vetter and 
Lewis, 2010). However, while F11 cells’ results seem to be the best among the three 
cell lines, they were still significantly lower, both in number of responses and 
amplitudes, compared to those of primary DRG cells (Figure 17). This could be 
explained with a limited and overall lower ion channels’ expression in the cell lines 
compared to mouse DRGs. 

 

 

Figure 17: Number and amplitude of B35, N2a and F11 cells’ responses to KCl-induced 
depolarization. In calcium imaging experiments, F11 in complete medium showed the highest 
number of responses and amplitudes, followed by N2a cells among the different cell lines. B35 
displayed minimal responses to KCl application. Primary DRG neurons showed significantly higher 
responses both in number and amplitudes compared to any of the cell lines in any of the culture 
conditions. Data are presented as mean ± SEM. *, p < 0.05; **, p < 0.01; ***, P < 0.001 compared to 
saline controls. 
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Taken all the data together, while all of the cell lines with or without the differentiation 
protocols showed particular neuronal-like properties in some of the analyzed 
parameters, they overall compare only to some extent to mouse primary DRG 
cultures and hence cannot replace them completely. We consider these data a 
valuable source of information to enable neuroscientists to carefully select a 
particular cell line or culture condition for a specific experiment. However, the take-
home message of Study III is that, even though primary DRG cultures also do not 
mimic completely the in vivo pain processes, they are still the most preferable choice 
for in vitro nociception-associated experiments. 
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5 FUTURE PERSPECTIVES AND CONCLUSIONS 

In this thesis we focused on exploring novel mechanisms involved in nociception in 
autoimmune diseases, specifically rheumatoid arthritis (RA).  

In Study I, we showed in a mouse model of RA that autoantibodies in immune 
complex (IC) formation can directly activate neuronal FcγRI and therefore promote 
pain independently of inflammation. Noteworthy, a paper published by an 
independent group (at the same time as ours) shows data completely in line with our 
results. They found that IC-induced pain was decreased in mice with a conditional 
deletion of FcγRI in Nav1.8 expressing nociceptive neurons (Wang et al., 2019). 
Moreover, our work is the first demonstration that FcγRIIb is also present in sensory 
neurons. However, its functional role in regulating IC-induced hypersensitivity is 
unknown and should be explored. Indeed, future studies are warranted to examine 
changes in neuronal FcγRs expression in reaction to inflammation or disease states, 
since this could potentially enable an increased capability to respond to IC.  

In order to increase the translational aspects of our studies, we strive to use disease-
related animal models and when possible to validate our findings in human material. 
For instance, our discovery of a homologue receptor, FcγRIIIa, on human sensory 
neurons could provide support for the strategy of targeting FcγRs, antibody 
production or antibody recycling as avenues to approach for treatment or prevention 
of the early and persistent pain in RA. Most of the currently used drugs do not affect 
the FcγRs signaling pathway directly, but target the immune system through other 
types of intervention. Therefore, autoantibody activation of sensory neurons would 
not be inhibited and this could explain why pain is such a difficult symptom to treat in 
these patients. However, drugs targeting FcγRs or their intracellular pathway in 
immune cells could potentially have similar effects in the neuronal setting. Several 
drugs recently developed following this approach are currently studied in clinical 
trials for several autoimmune diseases (Zuercher et al., 2019). Our hope is that 
acting on neuronal FcγRs, these drugs could promote also a better pain-relief 
outcome. 

Furthermore, our ambition to undertake studies with high disease-relevance is 
demonstrated in Study II, where we use anti-citrullinated protein antibodies (ACPA) 
purified from RA patients to examine their possible link to nociception. We found that 
ACPA induce pain-like behavior when injected into mice without generating 
activation of classical inflammatory processes. Thus, also in this case our work 
suggests that RA-associated autoantibodies can be coupled to pain through novel 
mechanisms. Importantly, further studies are needed to deepen our understanding of 
how ACPA activate sensory neurons, in particular in the light of the first generation 
monoclonal “ACPA” not having the citrulline reactivity that was initially proposed. 
Nonetheless, we were first to show that a reverse translational approach, using 
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human antibodies in a serum transfer pre-clinical model, can be successfully 
implemented to study RA pain-pathology. This is an expanding field as the same 
approach has been used for other diseases with pain components (Dawes et al., 
2018; Tekus et al., 2014). We strongly believe that this new concept of performing 
pre-clinical research will enable a stronger connecting bridge between researchers, 
doctors and patients, which could potentially provide more valuable data and clinical 
impact. 

Finally, in Study III, we showed the importance of characterizing alternative in vitro 
methods compared to primary cultures. Although neuroblastoma cell lines cannot be 
considered a complete substitute to dorsal root ganglia cultures, they can still be 
utilized for specific experiments in the investigation of particular nociceptive 
processes. Continuing to invest in this field will eventually identify an equivalent 
strategy to substitute primary cultures hence reducing the animal use in scientific 
experiments. 

In conclusions, the pre-clinical work showed in this thesis has provided several novel 
molecular insights that could explain unknown pain mechanisms in autoimmune 
diseases. While further studies are needed to know if the translational impact of this 
work will be substantial, several indications hinted the potential of this work to 
positively affect pain management in RA, with the ultimate hope of improving 
patients’ quality of life. 
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My grandparents, Peppo, Titina, Gianni and Marisa, for teaching me the value of 
family and for all the love and support you showed me since I was a child. I wish one 
day I could form a family as beautiful as yours. 

Antonella, for all of your positive energy and the great chats about so many different 
topics we have when I come to dinner at your place. We can talk for hours without 
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stopping and I love every single second of that. I am very happy you are in my 
father’s life since I really think you complete each other. 

Dante, for having taken care of my mom soon after I left for Sweden and for all the 
interesting moments we share every time I come back to Italy. Your intelligence is 
remarkable and I admire your achievements and work in research, even if in a 
different field compared to mine. Thanks for your career advice and for listening to all 
of my stories with particular attention. Please keep on taking the same beautiful care 
of my mom for all of the years to come. I trust you! 

My father, Mauro, for always supporting me throughout my studies with advice and 
fatherly love. I admire your absolute generosity towards everyone you love. I 
personally took inspiration from it and I try to do myself always the same. Thanks for 
all of your motivational speeches and life lessons, which taught me to be more 
confident and to face life with renovated energy. I hope you are pleased with what I 
do and what I have become as a person and I look forward to sharing with you all my 
subsequent challenges since I know I will always have you by my side. 

My mom, Natalizia, for just everything. I always say that if I had half of the strength 
that you have for facing life I would be set no matter what difficulty I would get thrown 
at. I admire you for the great woman that you are and I love you for the best mother 
that you have always been. One of your hugs is enough for making any pain 
disappear and your unconditional acceptance and love will forever be my home. I 
thank you for all the things you taught me in life and for constantly giving me pure 
and wise example to follow. Since I were your little child, you have been not only my 
biggest supporter, but the cornerstone of my well-being, and I simply cannot thank 
you enough for this. I always hope that who I am and what I do makes you proud, 
because that is what makes me feel accomplished. You mean the world to me! “Io lo 
so…ma anche tu lo sai!” <3 

And last, but not least, dad Giancarlo, who, I am sure, guides me from the sky. 
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