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ABSTRACT 

Immunoglobulins play a critical role in the adaptive immune system, existing as cell surface-

expressed B cell receptors and secreted antibodies. Circulating antibodies are the main 

correlate of protective immunity for most vaccines. An improved understanding of the 

germline genes that rearrange to encode the vast repertoire of antibodies is therefore of central 

interest. Despite this, current databases of immunoglobulin germline gene variation are 

incomplete, both for humans and research animal models, limiting studies of antigen-specific 

B cell responses.  

In Paper I, we developed a computational tool, IgDiscover, which infers germline 

immunoglobulin V alleles from the repertoire of expressed antibodies in a given individual. 

We validated IgDiscover for the identification of human, mouse and rhesus macaque IGHV 

alleles and described novel IGHV alleles in all three species. Our results highlighted a high 

degree of inter-individual allelic diversity in rhesus macaques. In Paper II, we optimized 

and compared two major immunoglobulin library production methods based on 5′RACE and 

5′multiplex PCR, respectively. We observed that, despite 5′RACE being unbiased in terms 

of amplification and having the advantage of not requiring 5′ end IGHV genomic 

information, current limitations on high-throughput sequence read length resulted in the 5′ 

multiplex method delivering a higher quality output due to its shorter amplicon size. In Paper 

III, we inferred germline immunoglobulin alleles in 45 macaques from four sub-populations 

of the two most common species used in biomedical research, rhesus and cynomolgus 

macaques. We confirmed and extended our observations concerning high inter-individual 

diversity, demonstrating that it was highest among Indonesian cynomolgus macaques and 

lowest among Mauritian cynomolgus macaques in the sub-populations studied. We compiled 

comprehensive IGHV, D and J allele databases and used several methods to independently 

validate novel alleles. 

In conclusion, the work presented in this thesis establishes a road map to generate 

individualized immunoglobulin germline gene databases from diverse species, even if 

genomic immunoglobulin loci information is limited. This thesis also examines the 

advantages and disadvantages of commonly used next generation sequencing library 

preparation methods. Finally, it reports novel inferred immunoglobulin alleles in humans and 

macaques and illustrates a high degree of inter-individual immunoglobulin allelic diversity 

in primates, underlining the utility of generating individualized immunoglobulin databases 

for studies of immune repertoires. 

  



 

 

POPULAR SCIENCE SUMMARY  

English: 

Antibodies are protein molecules produced by B cells in our bodies. They are present in all 

vertebrates where their primary role is to help fight infections. The two ends of an antibody 

have different functions: one end binds the pathogen (antigen) while the other end recruits 

other cells of the immune system to help control the infection. Antibodies are generated from 

different sets of genes, which are combined in a semi-randomized fashion to produce a great 

number of binding structures able to recognize a broad spectrum of antigens. When B cells 

encounter the same antigen several times, they accumulate mutations in their antibody genes. 

Some mutations are favorable and result in antibodies that bind the specific antigen better. B 

cells with improved antibodies survive and persist over time, offering long-lived immunity, 

while the other B cells are eliminated. By studying the antibodies generated after an infection 

or vaccination, researchers can better understand host immune responses to specific diseases 

and design strategies to develop protective vaccines. 

Antibody genes are quite variable between individuals and the specific alleles (gene variants) 

in an individual (human or animal) can affect the capacity to combat a certain disease. These 

genes, which in total are several hundred, are present in unusually complex regions of the 

genome that are difficult to characterize with standard sequencing techniques. As a result, 

the current databases of antibody gene variants are incomplete. Therefore, we developed an 

alternative way to define known and novel antibody alleles within an individual, which is 

both faster and more economic, using a program called IgDiscover. This method allows for 

the generation of antibody gene/allele databases from many individuals in a short period of 

time. In this thesis, I have applied IgDiscover to study antibody genes in both humans and 

medically relevant animal models. The results presented thus improve our understanding of 

host antibody genetics, which will help guide future efforts to develop effective vaccines. 

The papers included in this thesis describe: I) the process of discovering and defining 

immunoglobulin genes and alleles using IgDiscover; II) the development and evaluation of 

different protocols to study antibody genes using high-throughput sequencing; and III) the 

use of IgDiscover to define antibody germline genes in four sub-populations of macaques 

frequently used in vaccine studies. 

  



 

 

 

Svenska: 

Antikroppar är proteinmolekyler som produceras av B celler i våra kroppar. De hjälper oss 

att försvara oss mot infektioner, är evolutionärt konserverade och finns hos alla ryggradsdjur. 

Antikroppar består av två delar med olika funktioner: den ena delen binder främmande ämnen 

och den andra signalerar till immunsystemet för att förstärka svaret. Antikroppar produceras 

från gener som satts samman på ett kombinatoriskt sätt vilket ger upphov till ett stort antal 

bindningsspecificiteter. När en B cell aktiveras av samma främmande struktur flera gånger 

börjar mutationer ansamlas i generna. De B celler som har mest effektiva antikroppar 

selekteras och vissa av dessa ger livslång immunitet. Genom att studera antikroppar som 

genererats som svar mot infektioner eller vaccinationer kan forskare öka sin förståelse för 

immunsystemet och använda kunskapen för utveckling av nya vaccin. 

Antikroppsgener varierar mycket och de genvarianter (alleler) en individ har kan påverka 

dess känslighet mot vissa sjukdomar. Generna (flera hundra separata segment) finns i 

regioner av genomet som är mycket komplexa, vilket medför att traditionella 

sekvenseringsmetoder är ineffektiva. Tillgängliga databaser över antikroppsgener är därför 

ofullständiga. Vi utvecklade en alternativ metod för att karaktärisera antikroppsgener som är 

både billigare och mer effektiv, vilken vi kallar IgDiscover. In den här avhandlingen har jag 

använt IgDiscover för att studera antikroppsgener i både människa och medicinskt relevanta 

djurmodeller. Kunskapen ger detaljerad information som kan användas till att utveckla bättre 

vaccin och behandlingar.  

Arbeten som ingår i avhandlingen beskriver: I) IgDiscover processen för att upptäcka 

antikroppsgenerna och alleler; II) optimering av protokoll för hög-kvalitativ 

antikroppsrepertoaranalys; och III) tillämpning av IgDiscover på fyra populationer av 

primatsläktet makak, en djurmodell som ofta används i immunologiska studier. 

 

  



 

 

Català: 

Els anticossos són molècules proteiques produïdes pels limfòcits B en els nostres cossos. 

Estan presents en tots els vertebrats i ens ajuden a combatre les infeccions. Els dos costats de 

l'anticòs tenen diferents funcions: un s'uneix al patogen (antigen) i l'altre recluta cèl·lules del 

sistema immunitari per controlar la infecció. Els anticossos es generen a partir de diferents 

conjunts de gens que es combinen de forma semialeatòria per a produir una gran quantitat 

d'estructures que reconeixen un ampli espectre d'antígens. Quan els limfòcits B troben un 

antigen diverses vegades, acumulen mutacions als gens dels anticossos. Algunes d'aquestes 

mutacions són favorables, donant anticossos que s'uneixen millor a l'antigen. Els limfòcits B 

amb anticossos millorats sobreviuen i persisteixen al cap del temps, proporcionant immunitat 

a llarg termini, mentre que els altres limfòcits són eliminats. Estudiant els anticossos generats 

després d'una infecció o vacunació, els investigadors poden comprendre millor les respostes 

immunitàries de l’hoste contra malalties concretes i dissenyar estratègies per desenvolupar 

vacunes protectores. 

Els gens dels anticossos són força variables entre individus, i els al·lels (variants d'un gen) 

dels anticossos que posseeix un individu (humà o animal) poden afectar la capacitat d'aquest 

per a combatre una malaltia determinada. Els gens, que en total són uns centenars, es troben 

en una àrea del genoma inusualment complexa i són difícils de caracteritzar amb els mètodes 

tradicionals de seqüenciació. Com a resultat, les bases de dades de variants de gens 

d'anticossos actuals són incompletes. Per això, nosaltres hem desenvolupat una forma 

alternativa de definir els al·lels dels gens d'anticossos coneguts i nous en un individu, que és 

alhora més ràpida i econòmica, utilitzant un programa anomenat IgDiscover. Aquest mètode 

permet generar bases de dades per a molts individus en molt poc temps. En aquesta tesi, he 

aplicat IgDiscover per estudiar els gens dels anticossos en humans i animals de laboratori 

mèdicament rellevants. Els resultats milloren el nostre coneixement de genètica d'anticossos, 

el qual ajudarà a guiar esforços futurs per crear vacunes efectives. 

Els articles científics inclosos en aquesta tesi descriuen: I) el procés de descobrir i definir 

gens i al·lels utilitzant IgDiscover; II) el desenvolupament i avaluació de diferents protocols 

per estudiar els gens dels anticossos mitjançant seqüenciació massiva; i III) l'ús de IgDiscover 

per definir els gens dels anticossos en quatre subpoblacions de macacos utilitzats amb 

freqüència en estudis de vacunes. 

  



 

 

 

Castellano:  

Los anticuerpos son moléculas proteicas producidas por los linfocitos B en nuestros cuerpos. 

Están presentes en todos los vertebrados y nos ayudan a combatir las infecciones. Los dos 

lados del anticuerpo tienen diferentes funciones: uno se une al patógeno (antígeno) y el otro 

recluta células del sistema inmunitario para controlar la infección. Los anticuerpos se generan 

a partir de diferentes conjuntos de genes que se combinan de forma semialeatoria para 

producir una gran cantidad de estructuras que reconocen un amplio espectro de antígenos. 

Cuando los linfocitos B encuentran un antígeno varias veces, acumulan mutaciones en los 

genes de los anticuerpos. Algunas de estas mutaciones son favorables, dando anticuerpos que 

se unen mejor al antígeno. Los linfocitos B con anticuerpos mejorados sobreviven y persisten 

al cabo del tiempo, proporcionando inmunidad a largo plazo, mientras que los otros linfocitos 

son eliminados. Estudiando los anticuerpos generados después de una infección o 

vacunación, los investigadores pueden comprender mejor las respuestas inmunitarias del 

huésped contra enfermedades concretas y diseñar estrategias para desarrollar vacunas 

protectoras. 

Los genes de los anticuerpos son bastante variables entre individuos, y los alelos (variantes 

de un gen) de los anticuerpos que posee un individuo (humano o animal) pueden afectar la 

capacidad de este para combatir una dolencia determinada. Los genes, que en total son unos 

centenares, se encuentran en un área del genoma inusualmente compleja y son difíciles de 

caracterizar con los métodos tradicionales de secuenciación. Como resultado, las bases de 

datos de variantes de genes de anticuerpos actuales son incompletas. Por esto, nosotros hemos 

desarrollado una forma alternativa de definir los alelos de los genes de anticuerpos conocidos 

y nuevos en un individuo, que es a la vez más rápida y económica, utilizando un programa 

denominado IgDiscover. Este método permite generar bases de datos para muchos individuos 

en muy poco tiempo. En esta tesis, he aplicado IgDiscover para estudiar los genes de los 

anticuerpos en humanos y animales de laboratorio médicamente relevantes. Los resultados 

mejoran nuestro conocimiento de genética de anticuerpos, el cual ayudará a guiar esfuerzos 

futuros para crear vacunas efectivas. 

Los artículos científicos incluidos en esta tesis describen: I) el proceso de descubrir y definir 

genes y alelos utilizando IgDiscover; II) el desarrollo y evaluación de diferentes protocolos 

para estudiar los genes de los anticuerpos mediante secuenciación de alto rendimiento; y III) 

el uso de IgDiscover para definir los genes de los anticuerpos en cuatro subpoblaciones de 

macacos utilizados con frecuencia en estudios de vacunas. 
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1 B CELLS AND HUMORAL IMMUNITY 

1.1 INTRODUCTION TO IMMUNOGLOBULINS 

The production of immunoglobulins (Igs) (reviewed in (Schroeder and Cavacini 2010)) is a 

key defense mechanism in the immune system. Antibodies (Abs, secreted forms of Igs) help 

combat diseases by targeting antigens with high specificity and by promoting effector functions 

that help in clearing infections.  

Two key processes confer a high degree of specificity to Igs; first, the generation of an 

extremely diverse set of Igs capable of recognizing an extensive array of antigenic epitopes, 

and second, the incorporation of mutations and selection of the highest affinity antibodies, 

which occurs during the process of affinity maturation. Surface-bound Igs (B cell receptors, 

BCRs) are generated during B cell development through combinatorial assembly of gene 

segments of the heavy chain (HC) locus (IgH) and the kappa and lambda light chain (LC) loci 

(IgK and IgL). In each B cell, one HC and one LC randomly pair to generate a repertoire of 

highly diverse BCRs. Following productive rearrangements and pairing, the BCR is expressed 

on the cell surface, after which the B cell is subjected to different steps of negative selection to 

remove potentially self-reactive cells.  

When B cells become activated by protein antigens in the context of an immune response, they 

enter a germinal center (GC) reaction where they receive activating signals from cognate CD4+ 

T cells. This in turn switches on a process known as somatic hypermutation (SHM), which 

generates BCRs with decreased, equal or increased affinity for the antigen. Only B cells 

exhibiting improved affinity BCRs are positively selected in the GC, leading to the generation 

of antigen-specific memory B cells and plasma cells. The work described in this thesis focuses 

on the variable (V), diversity (D) and joining (J) gene segments, which are the building blocks 

of the antigen-binding regions of antibodies. In the interest of space, I am not describing the 

constant (C) genes or discussing antibody effector function in this thesis frame as this is a 

separate topic of investigation. 

 

1.2 IMMUNOGLOBULIN FORMATION 

As mentioned, Igs are formed by the pairing of a HC with a LC, either kappa or lambda. HCs 

are encoded by the semi-random joining of V, D and J gene segment, while LCs are formed by 

joining a V gene segment with a J gene segment (Tonegawa 1983). These processes occur in a 

highly coordinated manner (Alt, Blackwell, and Yancopoulos 1987) (Fig 1). First, a HC D 

(IGHD) and a HC J (IGHJ) segment from one of the maternal or paternal derived IgH loci are 

recombined. If this yields a stop codon or an out-of-frame sequence, then a IGHD-IGHJ 

rearrangement will be attempted in the IgH locus on the other chromosome. Following 

successful IGHD-IGHJ recombination, HC V (IGHV) rearrangement occurs the same way. 

Once a productive HC is generated, the LC will be rearranged. Rearrangement of kappa VJ 

(IGKV,J) genes will be attempted first, and if this fails, lambda VJ (IGLV,J) genes will be 
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used. This sequential process ensures that only one HC and one LC will be expressed in each 

B cell, which is referred to as allelic exclusion (Nussenzweig et al. 1987) (depicted in Fig. 1). 

 

 

 

Figure 1. Rearrangement of the V(D)J genes of HC and LC to form the Ig protein. 

 

1.3 VDJ RECOMBINATION 

V(D)J rearrangements (reviewed in (Van Gent and Van Der Burg 2007)) require sequences 

called recombination signaling sequences (RSS) that flank each V, D and J gene segment and 

are recognized by the recombination-activating gene enzymes, RAG-1 and RAG-2 (reviewed 

in (Jung and Alt 2004; Dudley et al. 2005)). These sequences contain a repetitive nonamer 

and heptamer sequence separated by a spacer of either 12 or 23 nucleotides. Once recognized, 

these sequences align with each other, resulting in the formation of double-stranded breaks 

and hairpins (reviewed in (Schatz and Swanson 2011)). Both hairpins are then cleaved and 

ligated in a process termed non-homologous end joining (NHEJ). Recruitment of the Artemis 

protein complex then opens the hairpins in an imprecise manner, which can generate 

palindromic overhangs. Once the ends are aligned, terminal deoxynucleotidyl transferase 
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(TdT) adds non-templated semi-random nucleotides (Gauss and Lieber 1996) to both 3′ ends 

(Yancopoulos et al. 1984; Benedict et al. 2000). Finally, exonucleases remove non-matching 

nucleotides at both ends and polymerases add missing ones, and the two sequences are 

subsequently merged. This procedure can easily produce frame shifts or stop codons, which 

would cause termination of the rearrangement in that locus and initiation of the same 

procedure on the other Ig locus. This process creates highly polymorphic HC VDJ and LC 

VJ junctions, which are located in the complementarity-determining region 3 (CDR3) of the 

antibody molecule The CDR3 thus provides an “identity tag”, which together with the VDJ 

gene usage can be used to identify clonally related sequences derived from the same B cell 

precursor. 

B cells require the formation of the HC and LC sequences at different steps of their 

development to receive positive survival signals; at the pro-B and pre-B cell stage, 

respectively. B cells that do not display a functional BCR are eliminated. B cells expressing 

functional BCRs are also tested for self-reactivity in a process called negative selection. If 

the affinity to self-antigen is too high, the cell may reactivate the RAG enzymes to try to 

produce an alternative LC in a process termed receptor editing (Tiegs, Russell, and Nemazee 

1993; Gay et al. 1993). If this is not successful, the B cell will undergo apoptosis to prevent 

the potential formation of autoantibodies. Once the BCR is formed and the cell has survived 

negative selection, the “fate” of the B cell is sealed and the Ig genes will not be further 

modified – except if it is selected into a GC reaction to undergo affinity maturation as 

described below. 

 

1.4 B CELL ACTIVATION AND PROLIFERATION 

Once a naïve B cell encounters an antigen (usually in one of the secondary lymphoid organs) 

and receives a positive signal through the BCR, it may proliferate and differentiate into a 

short-lived plasma cell (Coutinho and Möller 1973; Jacobs and Morrison 1975) (Fig. 2). Such 

rapid responses are T cell-independent and help mount a first-line response against invading 

pathogens (reviewed in (Fagarasan and Honjo 2000)). Short-lived plasma cell responses are 

important to control infections in the first week(s) before a more potent T-dependent antibody 

response is elicited (reviewed in (Nutt et al. 2015)). 

In parallel, B cells internalize and process protein antigens in order to present pathogen-

derived peptides to T cells via major histocompatibility complex II (MHC class II) molecules, 

to mount the T cell-dependent response. Interactions between B cells and cognate T cells 

seed GCs in B cell follicles of secondary lymphoid organs. The GCs are readily visible by 

optical microscopy around 10-14 days after antigenic challenge (reviewed in (MacLennan 

1994; Victora and Nussenzweig 2012). In the GC, B cells first locate to the dark zone (Fig. 

2), where they proliferate and the enzyme activation-induced cytidine deaminase (AID) 

introduces random deamination of cytosine residues in the actively transcribed rearranged Ig 

gene, generating uracil bases. This process is the aforementioned SHM, a hallmark of the GC 
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reaction ((Muramatsu et al. 2000) and reviewed in (Larson and Maizels 2004; Teng and 

Papavasiliou 2007; Milstein and Neuberger 1996)). Highly error-prone B cell polymerases 

are then recruited to fill the gaps created when uracil residues are removed, with mutations 

being generated at a much higher frequency than in other parts of the genome (Bachl, 

Ertongur, and Jungnickel 2006). Mutations that lead to unproductive BCR expression initiate 

apoptosis of the B cell. Only B cells that express a functional BCR migrate to the light zone 

of the GC, where selection occurs. The light zone is characterized by the presence of abundant 

follicular dendritic cells (FDC), an antigen-presenting cell (APC) of non-hematopoietic 

origin that presents intact protein antigen to B cells for their subsequent uptake and 

presentation of MHC class II-restricted peptides to follicular CD4+ T helper (Tfh) cells 

(reviewed in (Allen and Cyster 2008)) (Fig. 2). FDCs are known to present intact antigen on 

their surface for prolonged periods (Chen et al. 1978) via the complement system 

(Papamichail et al. 1975; Klaus and Humphrey 1977) and their expression of Fc receptors 

(Yoshida, van den Berg, and Dijkstra 1993), which capture antibody-antigen complexes 

(reviewed in (Kranich and Krautler 2016)). It is believed that competition for antigen 

presented by FDCs dictates which B cells take up and present more antigen to Tfh cells, 

which in turn provide pro-survival signals to cognate B cells (Victora et al. 2010). This 

process allows B cells that encode BCRs with improved antigen affinity to be successful in 

the GC and emerge as long-lived memory B cells and plasma cells (reviewed in (D. M. 

Tarlinton 2008)). 

 

 

 

Figure 2. B cell activation and proliferation outside and inside the GC. 
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Before exiting the GC, affinity-matured B cells undergo class switch recombination to 

acquire the effector function that best combats a given antigen. This involves switching from 

IgM/IgD isotype to IgA, IgE or IgG, depending on the type of signals the B cells receive 

from T cells. AID also participates in this process, but instead of generating random 

deaminations, like in SHM, AID is recruited to specific sites preceding the different constant 

region genes. The exact mechanism is not well understood. A possible solution could be that 

AID causes double-strand breaks in this region due to high concentration of deaminations 

(reviewed in (Durandy 2003)), or that it is involved in merging the double strand breaks 

generated (Zan and Casali 2008). 

B cells that exit the GC differentiate into either long-lived plasma cells, which home to the 

bone marrow and produce antibodies for long periods of time, or memory B cells, which 

circulate between the periphery and secondary lymphoid organs and are poised to generate 

rapid recall responses if re-exposed to the same or a similar antigen (Fig. 2). The mechanisms 

that dictate memory cell and plasma cell fates are not known. At least two models have been 

proposed (reviewed in (D. Tarlinton 2012)): either daughter cells of a given B cell clone 

proceed down the two different pathways through a stochastic process (Duffy et al. 2012), or 

that progeny of a given clone arise through asymmetric cell division where one daughter cell 

differentiates into a plasma cell and the other daughter cell remains a memory B cell (Barnett 

et al. 2012). In either case, a mechanism that retains the clonal lineage, while allowing both 

the generation of plasma cells and the maintenance of slowly dividing stem cell-like memory 

B cell pool must exist (Luckey et al. 2006). The mechanisms underlying these processes are 

highly relevant for the development of protective vaccines and this remains an important area 

of research.
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2 B CELL RESPONSES 

2.1 ANTIGEN-SPECIFIC B CELL RESPONSES IN VACCINATION 

Vaccination is a prophylactic approach that aims to induce a level of immunity that prepares 

the host to respond efficiently when exposed to the real infection, such that disease is 

prevented. Vaccines have improved greatly since the early engraftments reported in China 

(Needham 2000) and Edward Jenner’s smallpox variolation in 1796 (reviewed in (Stern and 

Markel 2005)). The development of vaccines represented a major breakthrough in healthcare, 

exemplified by the smallpox eradication (Foege, Millar, and Henderson 1975). Vaccines can 

be classified into two categories, whole pathogen vaccines (inactivated or attenuated) and 

component/purified antigens, including recombinant subunit vaccines. Whereas live 

attenuated vaccines are highly effective after a single immunization, due to their prolonged 

antigen expression and induction of innate immunity, inactivated and subunit vaccines 

usually need multiple immunizations. Purified subunit vaccines also need an adjuvant to 

boost the response, since they lack components that activate the innate immune system (Duan 

and Mukherjee 2016).  

The majority of licensed vaccines were developed empirically, but vaccine research is now a 

major branch of basic immunology. For pathogens that cause chronic infections, such as 

human immunodeficiency virus (HIV)-1, subunit vaccines represent the only acceptable 

option due to the severity of the disease they could generate if attenuation or inactivation 

failed. So far, the elicitation of cross-reactive antibody responses against HIV-1 by subunit 

vaccination has proven elusive (Mascola and Montefiori 2010). Broadly neutralizing Abs 

(bNAbs) are induced in a subset of chronically HIV-1-infected individuals ((Sather et al. 

2009; Gray et al. 2011), and reviewed in (Kwong, Mascola, and Nabel 2013)). A major focus 

in the field of HIV-1 vaccine research is to mimic these processes in the context of subunit 

vaccination (reviewed in (Burton and Mascola 2015; van Haaren, van den Kerkhof, and van 

Gils 2017; Kwong and Mascola 2018)). Two very recent studies reported long-awaited 

encouraging results when vaccine-induced bNAb responses were induced in rhesus 

macaques (Kong et al. 2019) and in rabbits (Dubrovskaya et al. 2019). Although other 

immune cells play important roles in the induction of vaccine-induced responses (e.g. innate 

immune cells and T cells, reviewed in (Pulendran and Ahmed 2011)), Abs are the main 

correlate of protection for most licensed vaccines (reviewed in (Plotkin 2008)). 

 

2.2 FUNCTIONAL STUDIES OF ANTIBODY RESPONSES 

Since the immune system produces an extremely broad array of Igs with very diverse 

specificities, the response to any given antigen is also diverse. The antibody response is 

usually studied at the polyclonal level, often by examining antigen-specific reactivity in 

serum. There are several methods to study polyclonal antibody responses (neutralization, 

ELISA or B cell ELISpot assays), which represent the standard ways to evaluate most vaccine 
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candidates. One disadvantage of these tests is that the results represent an average of a very 

diverse set of antibodies. For a more comprehensive understanding, the isolation of antigen-

specific monoclonal antibodies (mAbs) provides possibilities for in-depth examination of the 

elicited response. Once a mAb is isolated, its genetic and functional properties can be 

determined. Furthermore, structural studies can reveal how an Ab interacts with its target 

antigen, both in the context of infection (Wrammert et al. 2008; Wu et al. 2010; Scheid et al. 

2011; L. Huang, Lange, and Zhang 2014; Kallewaard et al. 2016; J. Huang et al. 2016; Cox 

et al. 2016; Murugan et al. 2018) and immunization (Sundling et al. 2012; Y. Li et al. 2013; 

Navis et al. 2014; Phad et al. 2015; Martinez-Murillo et al. 2017; K. Smith et al. 2013; Henry 

et al. 2019). However, the isolation of mAbs is low-throughput, which means that only a 

fraction of the elicited antibodies can be studied. Therefore, there is a great need for the 

development of higher throughput methods that can be applied to study highly polyclonal Ab 

repertoires.
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3 REPERTOIRE SEQUENCING 

3.1 SEQUENCING TECHNOLOGIES 

With the development of next-generation sequencing (NGS), also called high-throughput 

sequencing (HTS), immunologists quickly devised methods to study adaptive immune 

receptors, either B cell (Weinstein et al. 2009; Glanville et al. 2009; Boyd et al. 2009; Arnaout 

et al. 2011) or T cell repertoires (Freeman et al. 2009; Robins et al. 2009; 2010).  

In contrast to the conventional sequencing approaches used previously (Sanger and Coulson 

1975; Maxam and Gilbert 1977), NGS allows for much improved coverage of these highly 

diverse repertoires. One of the first methods reported was based on pyrosequencing (Nyrén, 

Pettersson, and Uhlén 1993), which allows for the real-time reading of DNA synthesis 

(Ronaghi et al. 1996). A limitation was that the signal emitted by a single DNA molecule is 

too weak to parallelize into many reactions. This roadblock was bypassed by the invention 

of bridge amplification (Illumina (Fedurco et al. 2006)) and emulsion amplification 

(Roche/454 (Margulies et al. 2005)) (Fig. 3A). An alternative is single-molecule real-time 

(SMRT) sequencing, in which a single DNA molecule is measured per well, using either 

bright fluorophores excited with a laser (PacBio (Korlach et al. 2010) and reviewed in 

(Rhoads and Au 2015)) or electrical currents being affected by the differential blockage of a 

nanopore (Nanopore (Branton et al. 2009)) (Fig. 3B). These methods, sometimes called third 

generation sequencing, generate a higher intensity signal from a single sequence and thus can 

forego the need for amplification, simplifying sample preparation for genome sequencing. 

Although these technologies have seen many improvements over the years, there has not been 

a clearly superior prevailing method, as was the case previously for Sanger sequencing. Each 

technology possesses different strengths and caters better to specific applications. As of the 

writing of this thesis, Illumina and other multi-sequence technologies have relatively low 

estimated error rates (0,01%) (Pfeiffer et al. 2018) and high-throughput (depending on 

instrument and read length). Illumina, specifically, has the lowest price per base sequenced. 

These technologies are well suited to amplicon sequencing for lengths below 600 base pairs 

(bp). The technology can also be applied to shotgun sequencing of the genome (explained 

below), but the short-read length makes repetitive areas of the genome a challenge to assemble, 

even at very high read depth. On the other hand, SMRT from PacBio, allows for extremely 

long subreads in the tens of kb, with the caveat of a 10-15% error rate in those reads. Pacbio 

fixes the quality scores by circular sequencing, which creates a trade-off between read length 

and quality. This makes the method specifically well suited for genome sequencing (with the 

ability to resolve repetitive regions that are intractable with short reads), although PacBio 

sequencing can also be applied to intermediate size amplicons (700-5000 bp) with a higher cost 

per read than Illumina. 
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Figure 3. Main high-throughput sequencing technologies. A) Amplification methods to increase the 

signal with bridge amplification (Illumina) and emulsion amplification (Roche). B) Single molecule 
sequencing methods either fluorophores (PacBio) or electrical sensor of ion blockage (Nanopore). 

 

3.2 APPLICATIONS 

The advent of improved sequencing technologies allowed for the exploration of Ig repertoires 

at an unprecedented level of detail (reviewed in (Georgiou et al. 2014; Robinson 2014; Calis 

and Rosenberg 2014; Wardemann and Busse 2017; Davis and Boyd 2019)). Sequence 

analysis of immune repertoires is commonly referred to as immune repertoire sequencing 

(Rep-seq) or adaptive immune receptor repertoire sequencing (AIRR-seq). However, these 

methods also require high quality bioinformatic analyses to filter and organize the data. So 

far, computational methods to study immune repertoires have focused on repertoire diversity, 

architecture, convergence and antibody evolution (reviewed in (Miho et al. 2018)). These 

features of the repertoire offer information about how individuals and populations respond to 

infection and vaccination (Jackson et al. 2014; C. Wang et al. 2015; Hoehn et al. 2016; 

Waltari et al. 2018; Hoehn et al. 2019), thus providing new opportunities for diagnosis and 

treatment. Specific population groups may also be interrogated, such as the elderly (C. Wang 

et al. 2014; De Bourcy et al. 2017; Hoehn et al. 2019) or individuals with immune 

dysregulations (Bashford-Rogers et al. 2013; Stamatopoulos et al. 2017). One of the most 

striking discoveries generated by these studies is the level of convergence of repertoires from 

different individuals, or different animals, when infected or vaccinated ((Jackson et al. 2014; 
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Galson, Trück, Fowler, Clutterbuck, et al. 2015; Trück et al. 2015; Greiff et al. 2017) and 

reviewed in (Collins and Jackson 2018)). These so-called public repertoires or clonotypes 

appear to be linked to immunogenicity and protection (Trück et al. 2015), and could possibly 

be used in diagnostics or for the development of new immunogens. 

As for all new technologies, it is important to understand potential sources of error when 

analyzing NGS data (reviewed in (Baum, Venturi, and Price 2012)). High-quality library 

construction methods are central for optimal downstream analysis, and method reliability is 

another field of study (Menzel et al. 2014). The analysis of the Rep-seq data without proper 

consideration of experimental design can lead to unreliable conclusions (Uduman et al. 2014), 

and close contact between experimentalists and analysts is strongly desired (Hoehn et al. 

2016). The use of unique molecular identifiers (UMI, also referred to as barcodes) is 

important to allow for sequencing error correction and potential PCR amplification biases 

(Kivioja et al. 2012). 

The rapid adoption of Rep-seq applications in the immunology field meant that the 

sequencing technology preceded the analysis tools and standards required to generate 

reproducible, robust and shareable data. In 2015, the Adaptive Immune Receptor Repertoire 

Community (AIRRc) was formed to address these issues (Breden et al. 2017). This 

community has already generated the Minimal Information about Adaptive Immune Receptor 

Repertoire (MiAIRR) data requirements to facilitate data comparison from different sources 

(Rubelt et al. 2017), created a pipeline based on the Center for Expanded Data Annotation 

and Retrieval (CEDAR) technology (CAIRR) for web-based metadata submission compliant 

with MiAIRR (Bukhari et al. 2018), and established the Inferred Allele Review Committee 

(IARC) for examining novel inferred sequences from Rep-seq data (Ohlin et al. 2019). The 

continued work of this community will be important for the Rep-seq field. 

The HCs and LCs of a functional antibody are produced from different mRNA molecules. 

The availability of methods to perform Rep-seq of the linked chains could facilitate the 

identification of clonal lineages, despite very recent reports indicating LC might not be 

necessary (Zhou and Kleinstein 2019), and would allow mAb isolation from such data. 

Researchers have attempted to resolve this shortcoming by stochastic linkage in well 

distributions (for T cells (Howie et al. 2015)), physical linkage of the chains (Dekosky et al. 

2013; DeKosky et al. 2015; Mcdaniel et al. 2016), and single cell well-barcoding (Busse et 

al. 2014; Lu et al. 2014). These methods focus exclusively on receptor identification. Another 

approach is to obtain this information bioinformatically from single-cell transcriptomic data 

(Upadhyay et al. 2018; Lindeman et al. 2018; Rizzetto et al. 2018; Afik, Raulet, and Yosef 

2019), which can provide additional information on the “parental” B cell. The throughput and 

complexity of each of these methods vary, so the particular application might define which 

one is more suitable. 

Rep-seq data, as mentioned, can provide an overview of the expressed repertoire at any given 

time, but the specificity and functionality of the response remains elusive. This has created 

an interest in predicting antibody structure from paired HC and LC sequencing data to deduce 
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function (DeKosky et al. 2016). A vast array of methods have been created to predict, in-

silico, the antibody structure ((Sircar, Kim, and Gray 2009; Klausen et al. 2015; Leem et al. 

2016; Lepore et al. 2017; Lapidoth et al. 2019) and reviewed in (Kovaltsuk et al. 2017)). 

These computational methods can be applied to a much greater number of sequences than 

experimental methods, and in some cases, can provide predictions of Ab-antigen interactions 

(Weitzner et al. 2017). Despite these advantages, it is worth noticing that these methods either 

require, or can benefit from, experimental data (Sela-Culang, Ofran, and Peters 2015; 

Weitzner et al. 2017). Often, they are based on previously published structural data, which 

can be limited, especially in different animal models (Weitzner et al. 2017). For these reasons, 

they are not a complete alternative to pairing Rep-seq data with mAb isolation, which is 

ultimately more reliable in phenotype (Jiang et al. 2013; J. Lee et al. 2016; Phad et al. 2019). 

Novel expression methods are being created, which greatly increase the throughput of mAb 

expression and link it with Rep-seq data (B. Wang et al. 2018). 

Both for studies of mAbs and Rep-seq data, a comprehensive knowledge of the Ig loci and 

germline gene segments is required. Specifically, a complete database (DB) of germline 

V(D)J genes for the species being studied is required. Despite the conservation of the 5′ 

untranslated region (UTR) and leader sequences of V genes, mixtures of many different 

primers are needed for unbiased amplification of antibody sequences (Chiang et al. 1989; 

Larrick et al. 1989). Comprehensive germline gene DBs are also necessary for correct allele 

assignment, which is especially important for Ab evolution/lineage tracing. Library 

preparation methods and sequencing quality affect those assignments and tools have been 

developed to decide which sequences can be assigned with confidence (B. Zhang et al. 2015). 

The level of SHM has been reported to be a requirement for bNAbs against HIV-1 (Klein et 

al. 2013; Garces et al. 2015; Bonsignori et al. 2016), and their calculation also depends on a 

correct allele assignment. One study investigated whether germline allele content differed 

between individuals producing bNAbs (Scheepers et al. 2015). The most interesting aspect 

of this study was the discovery of multiple novel alleles in individuals enrolled in the HIV+ 

cohort, suggesting that further work is needed to fully resolve this. It was also suggested that 

the individual germline content shapes the naive repertoire, gene usage and CDR3 length 

more strongly than the specific response to an antigen (C. Wang et al. 2015). Moreover, 

although the capacity to mount a response against a specific antigen is not generally germline 

gene-dependent, certain classes of bNAbs are germline-restricted, such as the VRC01 class 

of antibodies (against HIV-1) using VH1-2 specific alleles (Scharf et al. 2013), and IGHV1-

69 gene restricted bNAbs (against influenza) (Avnir et al. 2016). Further studies with the 

individual germline DBs are required to draw a stronger conclusion. As researchers move 

into lineage targeting for vaccine candidate epitopes, the frequency of specific alleles in the 

population will be important to consider. Taken together, increased knowledge of Ig genetics 

is extremely useful for studies of antigen-specific B cell responses.
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4 IMMUNOGLOBULIN GENETICS AND POLYMORPHISM 

4.1 IMMUNOGLOBULIN LOCI AND GENE DATABASES 

Shotgun sequencing (Staden 1979; Anderson 1981; Gardner et al. 1981) is the method of 

choice for assembling large portions of the genome from shorter reads. This approach was 

used for the assembly of the first human genomes (Venter et al. 2001; Lander et al. 2001), as 

well as for many other species (Waterston et al. 2002). It consists of breaking down longer 

DNA stretches into short segments, sequencing them, and subsequently assembling them into 

contigs computationally to recapitulate the sequenced area. This approach, which is very 

useful for most of the genome, encounters issues in the Ig loci, since the repetitive structure 

characteristic of these regions makes the assembly highly error-prone, even at high 

sequencing depth (reviewed in (Watson and Breden 2012)). Therefore, the Ig loci are less 

well characterized compared to other genomic regions. 

In addition to the large number of gene segments from which antibodies are assembled, there 

are frequent genetic polymorphisms in the Ig genes, resulting in substantial allelic diversity 

in the human population ((Willems van Dijk et al. 1989; van Dijk, Sasso, and Milner 1991; 

E H Sasso, Van Dijk, and Milner 1990; Weng et al. 1992; Boyd et al. 2010) and reviewed in 

(Watson, Glanville, and Marasco 2017)), much of which remains to be defined in populations 

from different parts of the world ((Weng et al. 1992; Eric H. Sasso, Buckner, and Suzuki 

1995) and reviewed in (Watson, Glanville, and Marasco 2017)). For these reasons, even 

though the first Ig loci maps were generated in the mid-1990s (Cook et al. 1994; Tomlinson 

et al. 1994), and more complete sequences were made available soon thereafter (Matsuda et 

al. 1998), the Ig gene DBs are not complete to this day.  

The reference DB for Ig genes is the International ImMunoGeneTics Information System® 

(IMGT) (http://www.imgt.org), founded in 1989 (reviewed in (Lefranc et al. 2015)). To date, 

the germline gene DB (Gene-DB (Giudicelli, Chaume, and Lefranc 2005)) of IMGT contains 

280 IGHV, 30 IGHD, and 13 IGHJ IGH alleles denoted as functional for humans, and 103 

IGHV and 14 IGHD pseudogenes and open reading frames (ORF)). Since a major proportion 

of the studies that defined these alleles were performed in humans of Caucasian background, 

the Gene-DB is biased towards alleles present in this population. Additional alleles are still 

being discovered (Ohm-Laursen, Larsen, and Barington 2005; Romo-González et al. 2005; 

Y. Wang et al. 2008; Boyd et al. 2010; Y. Wang et al. 2011; Watson et al. 2013; Scheepers 

et al. 2015). Moreover, many of the early IGHV alleles originally reported have been put into 

question (C. E. H. Lee et al. 2006; Y. Wang et al. 2008). Further studies are needed to make 

the reference germline Ig gene DBs comprehensive and error-free. 

Another common feature of the Ig loci is that there is considerable gene copy number 

variation (CNV) between individuals, involving deletions and/or duplications, sometimes of 

relatively large regions (Pramanik et al. 2011; Watson et al. 2013; Luo, Yu, and Song 2016). 

CNV adds another layer of complexity and suggests a certain level of redundancy between 

individual IGHV genes. Although the full extent of CNV is not known, software to identify 
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CNVs from NGS genomic data exist (Luo, Yu, and Song 2016). These approaches, though, 

still rely on the availability of genomic Ig loci information and could benefit from more 

comprehensive allelic DBs. 

 

4.2 GERMLINE GENE DISCOVERY 

The initial steps of any genetic analysis of Igs, whether from single B cell isolations or bulk 

Rep-seq, is assignment to a reference DB (Calis and Rosenberg 2014). This step defines 

gene/allele usage and forms the basis for SHM calculations. As mentioned, the current public 

Ig germline gene DBs are incomplete because the Ig loci are difficult to sequence with 

conventional genome sequencing approaches due to the presence of highly repetitive 

segments, as well as high allelic and structural variation (reviewed in (Watson and Breden 

2012)). Ongoing efforts are focused on obtaining higher resolution haplotype sequence 

information over these loci to facilitate annotation and resolve CNVs (Watson et al. 2013). 

Recent advances in SMRT might eventually overcome these difficulties by obtaining much 

longer reads to assemble, but the technology is costly, has a quality/length tradeoff, and is not 

widespread (reviewed in (Rhoads, Fai Au 2015)). To this end, the pairing of SMRT with 2nd 

generation sequencing methods has been tested to improve the quality in long reads of SMRT 

(Mahmoud et al. 2019). In addition, the Ig loci contain a high number of pseudogenes and 

other non-expressed genes, making it challenging to identify functional genes used in 

rearranged and expressed BCRs. 

Ig gene usage in functional repertoires can only be obtained from Rep-seq. Even if the number 

of V(D)J gene segments produce an extensive number of possible rearrangement 

combinations, early studies uncovered biases in the gene usage ((Suzuki et al. 1995; Rao et 

al. 1999) and reviewed in (Jackson et al. 2013)), which has been reported to be consistent 

amongst different individuals (Boyd et al. 2010), and is affected by CNVs of the gene segment 

(Glanville et al. 2011). It has also been reported that gene family usage is rather stable over 

time in the Ig repertoire, and infections only cause a temporary skewing of the repertoire (Van 

Dijk-Härd and Lundkvist 2002), likely due to the expansion of short-lived antigen-specific 

plasma cells. Comprehensive knowledge of allelic and structural variation in the human 

population (and in commonly used animal models) coupled with information about the 

frequency with which different V(D)J genes are used in naïve B cell repertoires, would be 

highly useful for immunological studies. 

Rep-seq analysis offers new opportunities to obtain germline data linked to gene/allele usage. 

Recently developed computational tools offer the capacity to infer complete genotypes, 

including novel alleles from expressed repertoires (Gadala-Maria et al. 2015; Corcoran et al. 

2016; W. Zhang et al. 2016; Ralph and Matsen 2019). These tools and others applied to Rep-

seq data have led to the discovery of increasing numbers of novel Ig alleles (Boyd et al. 2010; 

Gadala-Maria et al. 2015; Galson, Trück, Fowler, Münz, et al. 2015; Corcoran et al. 2016; 

Kirik et al. 2017; Vázquez Bernat et al. 2019; Ralph and Matsen 2019). Furthermore, Rep-
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seq V(D)J data can be used for haplotype analysis (Kidd et al. 2012; Kirik et al. 2017; Peres 

et al. 2019), which helps elucidate the structure of the Ig loci (Gidoni et al. 2019). Moreover, 

although it was reported that the human Ig DBs for LC are more comprehensive (Collins et 

al. 2008), we and others have reported many novel alleles, suggesting that more work is 

required also for the LC germline allele DBs (Watson et al. 2015; Vázquez Bernat et al. 2019). 

Interestingly, researchers have found evidence of the importance of population-specific LC 

alleles in immune susceptibilities (Feeney, Atkinson 1996) and further studies of Ig LC allelic 

variation can be expected to uncover additional medically relevant correlates. 

These advances in germline allele inference have led the AIRR community to create the IARC 

committee for the evidence-evaluation of novel inferred alleles (Ohlin et al. 2019). This 

committee created the Open Germline Receptor DB (OGRDB) (Lees et al. 2019), where 

novel alleles can be submitted for the committee’s consideration. Novel alleles identified by 

existing and new computational tools, and the meticulous analysis of the OGRDB, should 

lead to the generation of comprehensive DBs of Ig genes in the near future, resolving a long-

standing shortcoming in the immunology field. 

 

4.3 ANIMAL MODELS 

Laboratory mice are one of the most important animal models in biomedical research, due to 

the ease by which they can be manipulated and their inbred nature. To date, the germline gene 

DB (Giudicelli, Chaume, and Lefranc 2005) of IMGT contains 325 IGHV, 32 IGHD, and 8 

IGHJ functional alleles for mice, and 81 IGHV, 6 IGHD and 1 IGHJ pseudogenes and ORFs. 

These reference alleles consist mainly of alleles from the BALB/c and C57BL/6 strains, 

which share few alleles between them (Collins et al. 2015). A recent study also found little 

overlap between the available reference DB and inbred wild-derived species, with many 

novel alleles identified in the latter (Watson et al. 2019). This suggests that Ig germline gene 

DBs for mice are also incomplete and further studies are required, especially on strains other 

than BALB/c and C57BL/6.  

The IMGT DB contains even less information for other small animal models, with only 39 

IGHV, 10 IGHD and 11 IGHJ alleles listed for rabbits and no information listed for guinea 

pigs or ferrets, which are also frequently used in research. Focused efforts to develop germline 

Ig DBs also for these species and others are, therefore, needed. 

Small animal models are not suited for all research questions. In some cases, non-human 

primates, usually macaques, are required. Macaques offer a high degree of genetic similarity 

to humans (94% average), as well as similar anatomy and cell types. Also, several cell surface 

markers used to delineate immune cells are highly conserved between humans and macaques, 

meaning that many reagents used to phenotype cells by flow cytometry are cross-reactive. 

For these reasons, macaques, and specifically rhesus and cynomolgus macaques (reviewed in 

(Roos and Zinner 2015)), are commonly used in biomedical studies. An additional reason to 

use macaques is that they are susceptible to certain viral infections that small animals are not 
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(reviewed in (Estes, Wong, and Brenchley 2018)). For example, for studies of HIV-1, closely 

related simian immunodeficiency virus (SIV) (Chakrabarti et al. 1987), or viruses that are 

chimeras of SIV and HIV-1 (so called SHIVs (J. Li et al. 1992)), have shown utility as 

challenge models in macaques. In 2012, our group described a high degree of homology in 

Ig genes between macaques and humans, with a similar V gene family distribution (Sundling 

et al. 2012). Studies by others suggested that despite differences in the specific germline Ig 

genes between macaques and humans, their responses converge with similar characteristics 

in IgG class-switched responses (Vigdorovich et al. 2016), underlining their utility in 

immunogenicity studies. Currently, there is considerable ongoing effort in the field to obtain 

a better understanding of macaque Ig genes and alleles, as described below. 

For rhesus macaques used in medical research the two most common origins are India and 

China. India imposed an export ban on rhesus macaques in the 1970s. However, prior to this, 

animals were exported to the 7 large National Primate Centers in the USA 

(NPRCresearch.org), each of which houses its own self-contained breeding colony. Thus, 

while USA scientists primarily use Indian origin rhesus macaques, much of the rest of the 

world uses Chinese origin rhesus macaques imported from breeding facilities in China. In my 

thesis work, I mainly analyzed samples from animals maintained in the Astrid Fagreaus 

Laboratory (AFL), an AAALAC (Association for Assessment and Accreditation of 

Laboratory Animal Care)-accredited research facility at Karolinska Institutet equipped to 

handle work with macaques and other animal species. The AFL does not have its own 

macaque breeding colony and imports animals upon request - usually Chinese origin 

macaques. I have also collaborated with two European primate facilities from which we 

obtained samples (Göttingen in Germany and CEA in France) and with two US primate 

facilities, the Oregon National Primate Research Center outside Portland (ohsu.edu/onprc) 

and the Yerkes National Primate Research Center in Atlanta (yerkes.emory.edu/) from which 

we analyzed samples or shared protocols. 

Aside from Indian and Chinese origin rhesus macaques, several other macaque species are 

used in biomedical research, the most common being cynomolgus macaques. Cynomolgus 

macaques are distributed across Southeast Asia, spanning Myanmar, Thailand, Cambodia, 

Vietnam, Indonesia and the Philippines (Fig. 4). There is no physical natural barrier between 

the habitat of cynomolgus and rhesus macaques, meaning that there is likely a significant 

genetic overlap between these two types and introgression between the species was reported 

(Bonhomme et al. 2009). An interesting sub-group are the Mauritian cynomolgus macaques, 

a population of specific interest in biomedical research. These macaques are said to have been 

imported to the Mauritian island during the 16th century (reviewed in (Sussman and Tattersall 

1986)). The small number of animals imported (estimated less than 20 individuals from Java 

or Indochina (Bonhomme et al. 2008; Osada et al. 2015)) gave rise to a large colony, today 

estimated to be around 50,000 animals. Previous genetic analyses of these animals suggest a 

lower degree of inter-individual diversity compared to Malaysian cynomolgus macaques 

(Osada et al. 2015), consistent with a small founder population. Their decreased genetic 

diversity has been mainly studied in the context of the MHC (Leuchte et al. 2004; Krebs et 
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al. 2005; Budde et al. 2010; Blancher et al. 2012), where it is estimated that Chinese-breed 

cynomolgus macaques (Vietnamese, Cambodian and Indonesian origin) display a ten-fold 

higher level of diversity compared to their Mauritian counterparts (Karl et al. 2017). In this 

thesis, I collaborated with scientists at the CEA in Paris where Mauritian cynomolgus 

macaques are housed and used in vaccine trials (periscope-project.eu/consortium/cea/). 

 

 

 

Figure 4. Approximate distribution of rhesus (blue) and cynomolgus (orange) macaques and their 
overlap (striped) (based on (Street et al. 2007)). Insert in the bottom-left corner which includes the 

island of Mauritius, located near Madagascar.  

 

The first rhesus macaque genome was published in 2007 (Gibbs et al. 2007), while the 

cynomolgus genome was reported in 2011-2012 (Ebeling et al. 2011; Yan et al. 2011; 

Higashino et al. 2012). To date, the Ig germline gene DB (Gene-DB (Giudicelli, Chaume, 

and Lefranc 2005)) of IMGT contains 19 IGHV, 24 IGHD and 7 IGHJ functional alleles for 

rhesus macaques, and 62 IGHV, 25 IGHD and 6 IGHJ functional alleles for cynomolgus 

macaques. These numbers are very low when compared to humans and mice, suggesting that 

the reference DBs are incomplete. Indeed, many studies have reported a much greater number 

of Ig alleles (Francica et al. 2015; Corcoran et al. 2016; Ramesh et al. 2017; Rosenfeld et al. 

2019; W. Zhang et al. 2019; Kong et al. 2019; Cirelli et al. 2019; Sundling et al. 2012). The 

high levels of intra-species variation seen in macaque IGHV, compared to human, coincide 
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with variability in other immune loci (Otting et al. 2005) and other regions of the genome 

((Fawcett et al. 2011; Yuan et al. 2012) and reviewed in (Rogers and Gibbs 2014)). Macaque 

genetic variability, more generally, needs to be further studied and incorporated into 

guidelines for biomedical research and breeding facilities (Haus et al. 2014).  

Despite efforts to obtain higher quality Ig loci genomic data and gene annotations from these 

macaque species (Zimin et al. 2014; Osada et al. 2015; Yu et al. 2016; Ramesh et al. 2017; 

Cirelli et al. 2019), the previously described challenges associated with assembling sequence 

reads over these loci, and the inter-individual macaque diversity, make the currently available 

DBs incomplete. Moreover, the Southeast-Asian cynomolgus macaques are widely 

distributed and have differentially intermixed with rhesus macaques, making their nominal 

origin uninformative and genetic background controls necessary (Osada et al. 2010). 

Altogether, this underlines the importance of applying new inference tools to generate 

improved Ig germline allele DBs for animal models - especially for rhesus and cynomolgus 

macaques - in combination with genomic sequencing to obtain more reliable results when 

using these species in immunological studies. 
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5 AIMS 

 

 

The specific aims for the individual papers were: 

 

Paper I: To develop a computational approach for individualized Ig germline allele inference 

from expressed antibody repertoires, to identify the full allelic content from an individual, 

including novel alleles. 

 

Paper II: To determine the advantages and limitations of the two most common library 

preparation methods, 5′ rapid amplification of cDNA ends (5′RACE) and 5′ multiplex 

amplification (5′MTPX), by comparing the sequence quality and potential biases affecting 

the output data. 

 

Paper III: To investigate Ig germline allele diversity and overlap between groups of Chinese 

and Indian rhesus macaques, and Indonesian and Mauritian cynomolgus macaques, using 

germline allele inference, and to generate comprehensive DBs of well-validated IGHV, D 

and J alleles for these species.
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6 RESULTS AND DISCUSSION 

6.1 GERMLINE INFERENCE (PAPER I) 

To address the insufficiencies of the current Ig germline DBs, our group developed a 

computational tool, IgDiscover, which allows rapid identification of known and novel Ig V 

alleles from expressed antibody repertoires of humans and research animals. It analyses full-

length rearranged VDJ sequences from IgM libraries, or VJ sequences from IgK and IgL 

libraries, sequenced on Illumina’s MiSeq platform. From this analysis, the IgDiscover 

algorithm generates personalized V allele DBs and identifies novel alleles present in each 

individual. 

The algorithm of IgDiscover can be divided into four main steps: assignment, discovery, 

filtering, and replacement. Briefly, after the reads are merged (PEAR (J. Zhang et al. 2014)) 

and preprocessed, they are assigned to an initial DB with IgBlast (Ye et al. 2013). The 

algorithm then locates sequences in each of the assignments that cluster aside from the 

reference gene segment and generates novel allele candidates from the consensus of those 

sequences, removing random PCR and sequencing error (Fig. 5). These candidate alleles are 

then filtered to discern real germline alleles from spurious sequences by counting the number 

of individual rearrangements they are found to be associated with. IgDiscover computes all 

the CDR3s, Ds and Js associated with the V sequence in a cluster, as well as the frequency of 

the most common CDR3 length. A real germline allele is expected to be found in multiple 

independent rearrangements with different Ds and Js and different non-templated regions, 

yielding different CDR3s with a distribution of lengths. Candidate alleles that lack evidence 

of multiple rearrangements are discarded (Fig. 5). Once a new V DB is generated with the 

sequences that passed the filter, IgDiscover substitutes the initial DB for the new DB and, in 

case the initial DB was too limited, iterates the process several times to infer all unique alleles 

present in each individual. 

We evaluated IgDiscover using mouse, human and rhesus macaque IgM repertoires and 

demonstrated that, not only could the software recover alleles intentionally removed from the 

input DB, but it also inferred several previously undescribed alleles in all three species. 

Rhesus macaques displayed a high degree of IGHV allelic diversity; the combined IGHV DB 

obtained from five Chinese rhesus macaque had 240 unique alleles, of which 30 were found 

in the Indian rhesus macaque DB. To validate alleles, we designed primers for targeted PCR 

of genomic DNA and Sanger sequenced 42 allele segments that matched 100% those obtained 

by IgDiscover inference, of which 34 were novel. 

During the development of IgDiscover, we tested whether it could be used with a minimal 

initial DB, such as one with just one allele from each of the 7 IGHV families, or with an Ig 

DB from another species. This means that this approach can be used to construct germline 

antibody gene DBs from animal models with little or no prior information about the Ig loci. 

The IgDiscover tool could therefore be used to generate comprehensive DBs for multiple 

research animal species, including those commonly used in infection and immunization 
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studies, such as the guinea pig (Kennedy et al. 2019; Bernstein et al. 2019; Evseenko et al. 

2019; Abhishek et al. 2018), rabbits (McCoy et al. 2016; Tran et al. 2019), ferrets (Martina 

et al. 2003; De Jonge et al. 2016), camelids (McCoy et al. 2012; Forsman et al. 2008), and 

several primates (Geisbert, Strong, and Feldmann 2015), with very limited Ig DBs. Thus, 

inference tools such as IgDiscover will help bridge the knowledge gap and offer an efficient 

way to define germline alleles in a variety of species. 

 

 

 

Figure 5. Schematic of the consensus building and filtering of alleles in IgDiscover in three kinds of 

sequencing clusters: known allele (A), real novel allele (B) and false novel allele (C). Over the V 
segment there are represented single nucleotide polymorphisms in yellow, SHM in green and PCR 

and sequencing errors in light blue. 
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6.2 LIBRARY PREPARATION (PAPER II) 

Both Ig germline gene inference and Rep-seq analyses rely on robust library preparation 

methods for sequencing. The most common techniques used to produce the amplicons are 

5′RACE (Frohman, Dush, and Martin 1988) and 5′MTPX (Chamberlain et al. 1988). A main 

objective during my doctoral training was to develop improved library production protocols 

for HC and LC Rep-seq analysis for both PCR methods. The improved 5′RACE method 

included a novel approach to shorten the total amplicon length by 20-25 bp via the inclusion 

of Illumina’s Read1 sequence as universal forward primer in the template switch reaction. 

The 5′MTPX protocol included sets of primers for the human heavy, kappa and lambda 

chains, which were designed based on the information obtained from the 5′RACE libraries, 

and located in the upstream leader region of the V gene segments to obtain coverage of the 

full-length V(D)J sequence. Both protocols included UMIs to correct for potential biases in 

the template amplification and instrument-introduced errors. 

For this paper, I produced HC libraries from six human volunteers, which I sequenced using 

the Illumina MiSeq platform and analyzed with IgDiscover. The analysis demonstrated that 

the 5′RACE amplicons were on average 82±2 bp longer than the 5′MTPX amplicons. 

5′RACE is often considered to be advantageous to avoid the potential primer biases generated 

by 5′MTPX (Baum, Venturi, and Price 2012; He et al. 2014). In our paper, we found that 

with 5′RACE, the amplicon length for some of the VDJ sequences exceeded the limit of the 

MiSeq 2x300 bp V3 kit. Particularly, we observed a potential bias against IGHV3 family 

genes, since their 5′UTRs are the longest. This was reflected as a lower representation of 

IGHV3-using VDJ sequences in the data obtained by 5′RACE compared to the data from the 

5′MTPX libraries, which could specifically affect VDJ sequences with longer HCDR3s. 

Furthermore, we found a decreased percentage of sequences matching the inferred germline 

alleles in 5′RACE, despite the fact that the libraries were generated from the same starting 

mRNA. We observed that the increased amplicon length for 5′RACE caused the inclusion of 

more low-quality bp from the end of each sequencing read, which could not be corrected due 

to the smaller overlap between the merged reads in 5′RACE. Overall, we estimated a 20% 

decline in error-free sequences in 5′RACE, assuming per-read error is approximately Poisson 

distributed and averaging across all reads in each dataset. In all six subjects, the number of 

IGHV germline alleles inferred was lower for 5′RACE libraries. In brief, we identified, on 

average, 11 alleles more per individual with the 5′MTPX method. These findings 

demonstrated that with the current sequencing technologies, the 5′MTPX method is superior. 

We also tested the initial mRNA template amount in the 5′MTPX PCR and found that less 

than 200 ng of mRNA yielded fewer HCDR3s, HCDR3/UMI% and Ds per inferred allele. 

Finally, I produced IGHV, IGKV and IGLV libraries from one human individual, starting 

with 200 ng of mRNA and using the 5′MTPX method. We analyzed the sequenced libraries 

with IgDiscover to produce heavy, kappa and lambda individualized Ig DBs. We identified 

55 IGHV, 37 IGKV and 40 IGLV alleles, of which three IGHV, one IGKV and six IGLV 

were novel. Interestingly, it was previously reported that the IMGT’s LC DB (IGKV) is more 
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comprehensive than HC (Collins et al. 2008). However, our results from just one Caucasian 

individual seem to indicate otherwise, illustrating that further studies in LC Ig germline genes 

should be conducted. 

An important consideration is that IgDiscover utilizes a consensus building mechanism; thus, 

spurious sequencing and PCR errors are excluded from the inferred output. The higher error 

frequency found in the 5′RACE libraries could have a greater impact on lineage tracing 

analyses or studies of repertoire diversity. Our results indicate that the library preparation 

method, primer design and amount of template used all have effects on the efficiency of 

germline gene inference. These parameters therefore need to be taken into consideration. 

 

6.3 MACAQUE IMMUNOGLOBULIN GERMLINES (PAPER III) 

In paper III, the objective was to investigate the IGHV germline genes in rhesus and 

cynomolgus macaques from four sub-populations, Indian and Chinese origin rhesus 

macaques, and Indonesian and Mauritian origin cynomolgus macaques. I first produced 

5′RACE libraries from eight macaques (two per sub-population) and employed IgDiscover 

to obtain their allelic upstream sequences. I then designed two sets of 5′MPTX primers, 

placed in the 5′UTR and the leader region respectively. I produced one library with each of 

the sets of 15 Indian rhesus, 12 Chinese rhesus, 12 Mauritian cynomolgus and 6 Indonesian 

cynomolgus, and sequenced the libraries with Illumina’s MiSeq 2x300 bp V3 kits (90 

libraries in total). I analyzed the libraries using IgDiscover, filtered the output and obtained 

individualized DBs for all 45 macaques. 

For this study, we used as the initial DB a recently published set of 66 IGHV genes and 103 

IGHV alleles obtained from full genome sequencing of one Indian rhesus macaque (Cirelli 

et al. 2019). From the 45 macaques, IgDiscover re-identified exact matches for 54 genes and 

63 alleles described in the initial DB. In our initial analysis, we discovered IGHV gene 

segments that clustered separately from the reference DBs genes, suggesting that there may 

be other genes in addition to the 66 IGHV reported in Cirelli et. al. (2019). We therefore 

incorporated 26 of those sequences in the input DB of the analysis under the ID NGC (novel 

gene candidate) to avoid allelic exclusion. The “allelic ratio” filter employed by IgDiscover, 

removes alleles expressed below an adjustable ratio (0.12 default) of the highest expressed 

allele for that gene, which could erroneously remove mis-assigned alleles if some genes are 

not present in the initial DB.  

IgDiscover also uses the number of IGHD and IGHJ associated to a given IGHV segment to 

filter out false positives. Therefore, to identify as many Ds and Js as possible we designed 

primers encompassing the 37 IGHD and 7 IGHJ genes in the initial DB in BLAT (UCSC 

genome browser (Kent 2002)). We then PCR-amplified the genomic DNA from the macaques 

using these primers, and sequences were cloned into plasmids and Sanger sequenced. This 

yielded 19 IGHD and 6 IGHJ additional novel alleles, which we incorporated into the input 
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DB to improve the performance of IgDiscover. These Ds and Js were shown to be expressed 

after the analysis. 

We obtained a total of 1307 IGHV alleles, of which 641 were found in more than one animal, 

which serves as a means of validation (Collins et al. 2015; Scheepers et al. 2015). We found 

445 IGHV alleles in more than one animal that were not previously reported (297 for 

cynomolgus macaques and 221 for rhesus macaques). Furthermore, 42 of the alleles we found 

only in one animal were reported in previous studies. We designed genomic primers 

encompassing several of the gene segments. These were amplified, cloned and Sanger 

sequenced. This further validated 77 alleles (26 of which were found only in one animal). We 

produced DBs for rhesus and cynomolgus macaque Ig alleles, which were validated by at 

least one of the methods described above (cross-validation in more than one animal, targeted 

PCR and genomic sequencing, or previously reported). The full rhesus macaque DB 

contained 461 IGHV, 52 IGHD and 15 IGHJ alleles and the cynomolgus macaques DB 

contained 416 IGHV, 50 IGHD and 15 IGHJ alleles. 

In the DBs generated for the 45 animals, the rhesus and cynomolgus macaque DBs shared 

168 IGHV alleles, which is 26.1% of the 641 alleles present in more than one macaque. Indian 

and Chinese rhesus shared 172 IGHV alleles (42.4%), and Mauritian and Indonesian 

cynomolgus macaques shared 66 IGHV alleles (16.4%). We analyzed the diversity by the 

number of unique average alleles found per macaque sequenced and the average percentage 

of alleles found in just one macaque, and found that the Indonesian cynomolgus were the 

most diverse group and the Mauritian cynomolgus the least, with Chinese rhesus macaques 

being slightly more diverse than the Indian rhesus macaques. These data agree with previous 

reports of cynomolgus macaques from Mauritius having a less diverse genome (Osada et al. 

2015), MHC genes (Karl et al. 2017), and mitochondrial DNA (D. G. Smith, Mcdonough, 

and George 2007) compared to their Southeast-Asian counterpart. 

This work extended our knowledge about macaque Ig allele diversity and offered compelling 

evidence for the need to use individualized approaches if the goal is to understand the 

ontogeny and maturation of antibody repertoires in macaques. For genetic studies of antigen-

specific B cell responses (Rep-seq analysis or mAb isolation), there is a need to obtain 

individualized macaque Ig gene DB to correctly assign antibody sequences and accurately 

calculate SHM.
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7 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

The work described in this thesis constitutes a strategy for generating Ig germline DBs for 

any animal species, regardless of the Ig genomic information available. We demonstrated 

how libraries can be generated with only constant region genomic information using 5′RACE, 

to produce 5′ Ig V sequence information that can be used for 5′MTPX primer design, which 

in turn yields libraries well within the capacity of the Illumina MiSeq platform. Knowledge 

of the total number of V genes in humans and mice makes it abundantly clear that the DBs 

for research animals such as macaques and many small animal species are incomplete. The 

inference process described in this thesis, using the publicly available IgDiscover 

computational tool, can help create such DBs in a faster and more economic manner than 

what can be achieved using genomic sequencing methods. 

Ig germline gene inference is not a substitute for long-read genomic sequencing technologies 

like SMRT. The latter can provide coordinates and distribution of genes, discern what are 

genes and alleles, and identify placement of duplications and deletions events. A shortcoming 

of genomic sequencing approaches is the challenge of knowing which alleles are functional 

or not, especially given that the Ig loci harbors large numbers of pseudogenes and non-

expressed alleles that appear in genomic data but have no impact in the expressed, rearranged 

repertoire. Thus, germline inference using Rep-seq data and genomic sequencing can be 

considered complementary approaches. The combination of these two approaches will be 

important for the immunology field in the future. 

Germline gene identification and assignment is critical for antibody lineage studies since 

misidentification of the parental germline alleles not only result in inaccurate definition of 

clonal relatedness and overestimations of SHM, but also alter phylogenetic trees of the 

antibody evolution. This highlights the importance of individualized DB approaches in 

species with high genetic diversity. The extremely high level of diversity found in macaques 

makes these findings and the experimental approaches taken here highly relevant to the 

vaccine field. Further studies are necessary to generate comprehensive DBs for other species 

commonly used in biomedical research. 
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Marc P. perquè estem massa d’acord en tot i haver-nos conegut fa dos dies, i perquè vas tenir 

paciència amb els meus hobbies de disseny i programació. Ets un crack! Andrew for 

generously teaching me photography and beer culture and how to harass a harasser. 

International friends who despite being far away, sustained me when I needed it and were an 

all-present source of joy, especially when we did meet. Vinnie, perché senza il tuo e "savoir 

faire" italiano puro e perfetto la mia vita sarebbe sicuramente più desolante e il mio guardaroba 

molto meno elegante. Jessica, per tot l'esforç que poses a la nostra amistat fins i tot quan jo 

fallo, ets molt gran, i per ser el teu segon amic després del Marc S., qui deu ser la persona més 

alegre que he conegut mai. Maialen, porque detrás de lo arisca que eres se esconde mucho. 

Paco, porque al lado de la definición de buena persona en el diccionario no hay otra foto que 

la tuya. Nunca llegaré a ser tan bueno y generoso como tu, pero pienso intentarlo. Xavi, 

Robert, Edu i Edgar per les festes de nadal junts i els records. Steven, for your slow mornings, 

happy with everything attitude and crazy energy only surpassed by Greta, la hormiga atómica 

and word machinegun who turns any occasion into a party. Julia, for our serious conversation 

topics and our foolish ones. Camila, because life was indeed sweet enough. Idoia, perquè ens 

veiem molt poc però ens sentim molt aprop. Albert, per les converses, les discussions, les 

bromes, els silencis (tot i poquets) i les històries viscudes (que trigues vint minuts a explicar). 

Moltes gràcies Sara, de tot cor. No hauria vingut ni a Suècia si no fos per tu i en aquests 5 anys 

i mig al nord he après moltes coses de tu, d'entre elles a saber quan ser absolutament optimista 

és bo i a mai creure que quelcom és impossible. M'has acompanyat en la major part d'aquesta 

aventura al nord i mai hauria pogut triar millor companya de viatge. Vull fer les gràcies 

extensives a tota la teva família, i en particular a la Carmen, el Lluís i la Quica qui em van 

cuidar i tractar com a part de la família des de el primer minut. 

Finalment, res hauria estat possible sense la meva família a la qual estimo molt encara que sigui 

des de la distància. Tieta, amb les teves abraçades d'os i les marqueses de xocolata, Edgar, el 

meu primo de zumosol, amb el waterbasket, copichuelas i les pales a la platja, Estela, la mejor 

compañera de canasta, Aran el terremoto i astrònom en potencia y Telma la que em moro de 

ganes de conèixer. Sergi, per ser un buenazo sempre, Patri por centrarnos al primo y “en 

verdad” ser una gran incorporación a la familia, Andrea pel teu sentit de la moda que sempre 

m'omple l'armari al nadal i les teves abraçades i petons. Tere, por malcriarme todo lo que 

puedes, Sebas pel teu sentit de l'humor, Carlos por tus ganas de discutir y Abuela por tu 

corazón tan grande y el amor que me has dado. Avia i Avi, que em veu criar i cuidar tota la 

vida. Mai entendré com persones que van passar per tant podien tenir tota aquesta bondat i 
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amor a dins. Us trobo a faltar cada dia i hauria donat el que fos per tenir-vos encara aquí. Nil, 

gràcies per ensenyar-me a ensenyar i a tenir més paciència (encara que no ho sembli). Sé que 

no sempre he estat el millor germà gran, però sempre té estimat i he sentit la teva estima. No 

podria haver demanat un germà petit més gran en tots els sentits. Pares, potser sí que els pins 

són massa alts i que és la confitura el que importa i no el pot. Papa, tienes tus defectos como 

cualquier ser humano, pero algunos son virtudes disfrazadas. Gracias por enseñarme a 

defenderme, pelear y a ser tozudo como nadie, y que a veces ser un pesimista te ayuda a estar 

preparado. Gracias por darme tanto. Mama, tot i que tothom sempre em diu que sóc com el 

papa, són les parts en les quals he sortit a tu que la gent valora més. M'has donat la vida, l'amor, 

el costat artístic, la humilitat (de vegades massa) i tot el que sempre he necessitat i més i no hi 

ha prou paraules per agrair-ho tot. 

 

THANK YOU ALL
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