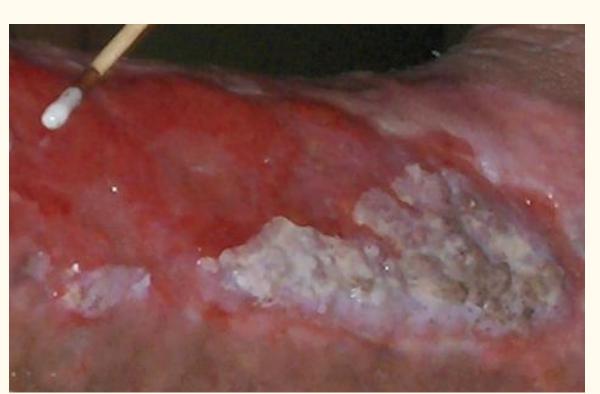


TREATMENT OF HYPERTROPHIC GRANULATION IN BURNS: REVIEW OF THE LITERATURE

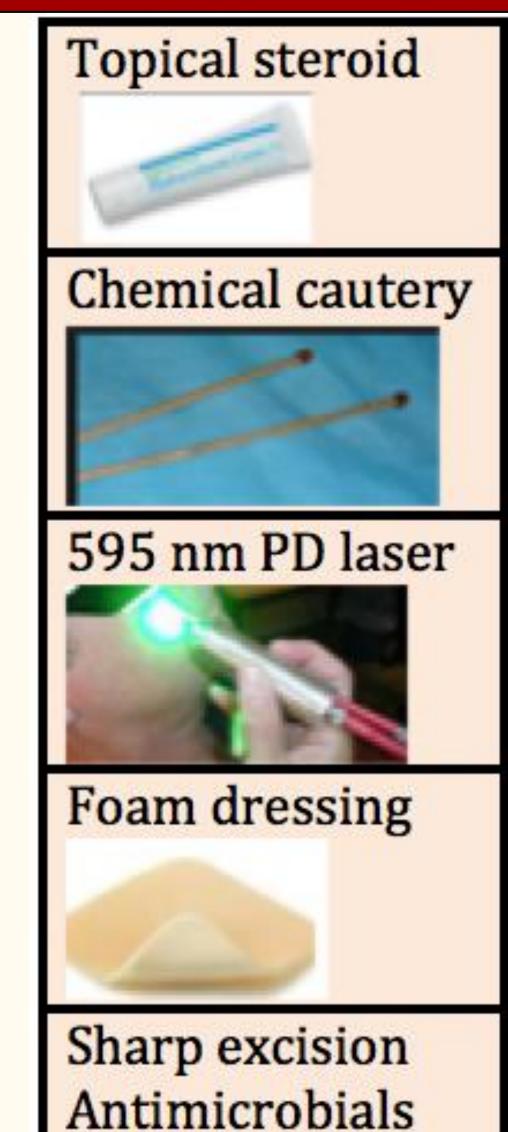
Paul Linneman, RN, Jeff Litt, DO, Carolyn Crumley, DNP Sinclair School of Nursing, University of Missouri Health Care

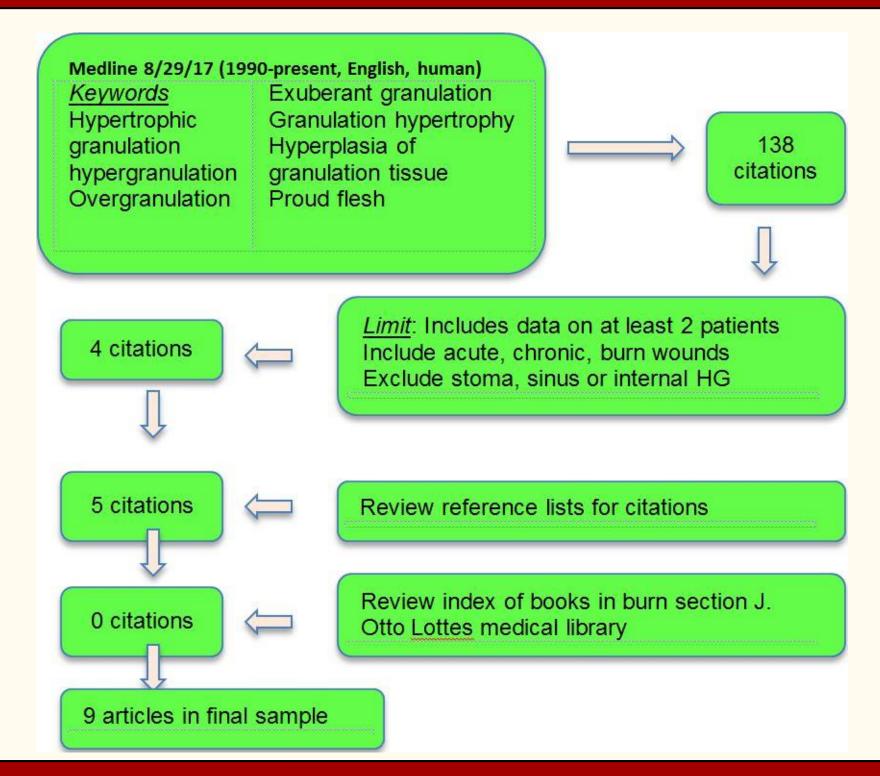
INTRODUCTION

- Hypertrophic granulation (HG) is defined as abnormal granulation tissue, raised above the level of surrounding skin.
- HG often occurs with delayed healing, or in areas of graft failure in burns.
- HG impedes wound healing.
- Treatment may vary by practitioner. Includes *chemical cautery* with silver nitrate sticks, *topical steroids*, and dressing strategies.

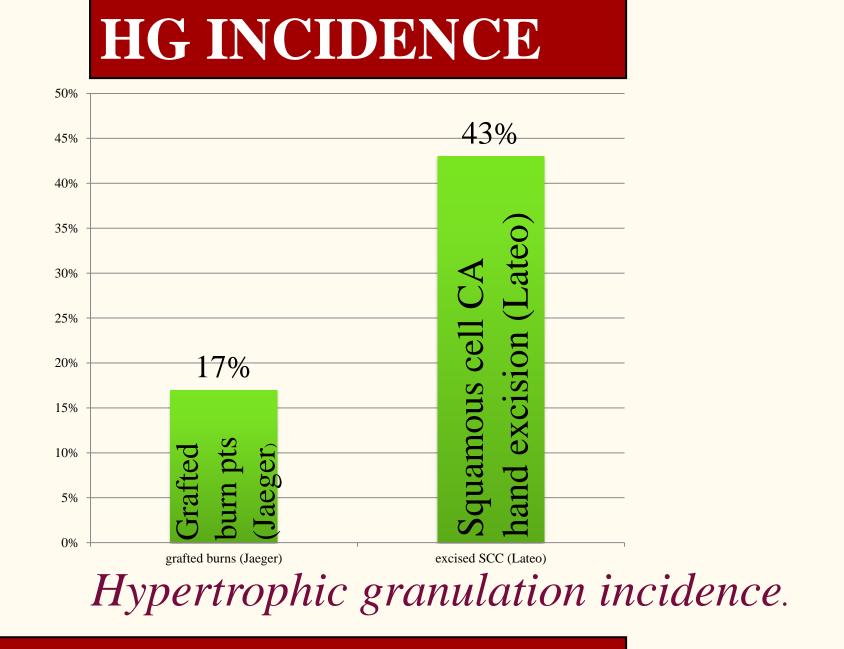

STUDY QUESTIONS

- 1. What modalities to treat HG are published?
- 2. How much does HG slow epithelialization?
- 3. How do treatment modalities compare in speeding healing?
- 4. What is the incidence of HG in burn care?


HG EXAMPLES



HG TREATMENTS


Pressure dssg

METHODS: SEARCH STRATEGY

LITERATURE FINDINGS				
Author	Subjects/HG size	Treatment	Tx time	Outcome measure
Jaeger 2016	5 burn pts	Steroid (hydrocortisone	4-20 d	HG regress, no regraft, no infection
	2.4% BSA	acetate .25% diluted)		
Shalom 2003	12 burn/plastic pts	Steroid: 1%	7-14 d	Complete epithelialization
	50 cm ²	hydrocortisone bid		
Lateo 2013	12 excised hands	Steroid: clobetesol	7-14 d	HG subsided
	4.5 cm ²	proprionate .05% daily		
McShane 2012	3 wounds	Steroid: clobetesol .05% or	14-60 d	Healed
	1.8 cm ²	fluocinonine .05%		
Wang 2007	9 MOHS surgery	Laser + steroid: 595 nm	7-63 d	"Healed or nearly healed"
	23.3 cm ²	PDL + fluocinonide .05%		
Moody 2011	4 scalp excisions	Laser: 595 nm PDL	28-63 d	HG resolved
	4.9cm ²			
Harris 1994	10 chronic & acute	Foam dressing: 3x/week	14 d	Decreased wound size 67%, HG height
	6.5 cm ²			88%
Johnson 2007	25 chronic & acute	Steroid tape vs foam, silver	7 d	HG resolution, more quickly with
	wounds	foam, silver alginate		steroid tape
Jewell 2007	9 grafted burns	Not stated	38 d	Complete healing (non-HG healed in
			mean	mean 26 days, $p=0.02$)

Moody (laser) Wang (steroid/laser) McShane (steroid) Lateo (steroid) Shalom (steroid) Average Healing Times.

. Ostomy/Wound Management, 40

Harris, A., & Rolstad, B. S. (1994). Ostomy/Wound Management, 40(5), 20-30.

Jaeger, M.et al. (2016). International Medical Case Reports Journal, 9, 241-245.

Jewell, L. et al. (2007). Plastic and Reconstructive Surgery, 120(2), 451-456.

Johnson, S. (2007). Wounds UK, 3(3), 70-74.

Lateo, S. A., & Langtry, J. A. (2013). Clinical and Experimental Dermatology, 38(6), 606-611.

McShane, D. B., & Bellet, J. S. (2012). Pediatric Dermatology, 29(5), 675-678.

Moody, M. N. et al. (2011). Dermatology Online Journal, 17(7), 2.

Shalom, A., & Wong, L. (2013). Journal of Burn Care & Rehabilitation, 24(2), S113.

Wang, S. Q., Goldberg, L. H. (2007). Journal of Drugs and Dermatology, 6(12), 1191-1194.

CITED STUDY CHARACTERISTICS

- •Eight case series, one comparison study
- •Small series, total 89 patients in all (mean=10)
- •No control group reported in any studies
- •Outcome measures varied ('time to healing',
- 'significant improvement', '% reduction in size',
- 'reduced granulation height')
- •No standardization for wound size
- •Risk of bias due to non-random selection, no controls, many do not state study protocol

STUDY FINDINGS

- 1. Only steroid, laser, & foam dressing studied. Other modalities published w/o data: silver nitrate cautery, compression dssg, avoid occlusive dssg, excison & more.
- 2. No data comparing epithelialization with HG vs. with normal granulation
- 3. Median healing 14-45 days, steroid &/or laser. Insufficient data to compare tx
- 4. 17% incidence of HG in grafted burns, 43% incidence in excised dorsal hands

DISCUSSION POINTS

- •HG incidence, impact on healing, and current practice by wound & burn providers needed
- •Healing time for untreated HG is needed as baseline to evaluate treatments
- •Is treatment effective if average healing time 2-6 weeks

FUTURE RESEARCH NEEDS

- •Survey current practice in burn and wound care
- •Compare healing of granulation vs. HG
- Compare outcomes with different treatments