
LS-SDV: Virtual Network Management in
Large-Scale Software-Defined IoT

著者 LI He, OTA Kaoru, DONG Mianxiong
journal or
publication title

IEEE Journal on Selected Areas in
Communications

volume 37
number 8
page range 1783-1793
year 2019-08-05
URL http://hdl.handle.net/10258/00010049

doi: info:doi/10.1109/JSAC.2019.2927099

1

LS-SDV: Virtual Network Management in
Large-Scale Software Defined IoT

He Li, Kaoru Ota, Mianxiong Dong
Department of Information and Electronic Engineering, Muroran Institute of Technology,

Muroran, Hokkaido, Japan.
E-mail: {heli, ota, mxdong}@mmm.muroran-it.ac.jp

Abstract—Internet of Things (IoT) becomes a very important
area for providing various services on connected smart devices.
For isolation of different services in IoT, software defined
networking (SDN) based virtual networks will be a scalable
and flexible solution. However, in a large-scale IoT, as smart
devices will move long distance between different positions,
virtual network management becomes very difficult in providing
network services. In this paper, we propose LS-SDV, an efficient
virtual network management framework in large-scale software
defined IoT (SDIoT). In this framework, we design a two-layer
distributed control plane to manage devices and virtual networks
in a large-scale environment. To the best of our knowledge, LS-
SDV is the first work to apply distributed control plane for
virtual network management in softwarized networks. Moreover,
based on the novel structure of LS-SDV, we also provide a
solution for network flow scheduling through network analysis.
We evaluate the performance of our framework and virtual
network management by extensive simulation and experiment
in an open SDN framework.

Index Terms—Software Defined Networking, Network Virtu-
alization, Internet of Things (IoT)

I. INTRODUCTION

Internet of Things (IoT) is an important concept to provide
various convenient services in human life through connected
smart devices [1], [2], [3]. As large IoT infrastructures are
usually expensive, IoT providers want to provide different
services in a single network infrastructure [4], [5], [6]. Thus,
network virtualization becomes a solution to support different
services in a single IoT infrastructure with isolated virtual
networks [7]. As software defined networking (SDN) provides
a scalable and flexible programmable network management
platform, SDN-based network virtualization is an emerging
solution for providing virtual networks during forwarding
network flows [8].

Usually, as the coverage of a single wireless IoT network is
limited into a small area with several access points (APs), it
is not very hard to manage all network flows by a centralized
controller [9]. Meanwhile, as the moving area of smart devices
is also limited, each forwarding device can store all flow
control rules with some modifications to the wired SDN
for device mobility [10], [11], [12]. However, as more and
more IoT infrastructures begin to provide services in urban or
even larger scale environments with heterogeneous networks,
a single controller can hardly afford such complex network
flow management with enough quality of service (QoS) for
each virtual network.

A potential solution is to build a distributed control plane
[13]. As SDN decouples the network control and forwarding
function, the control plane is independent of the forwarding
devices [14]. Therefore, as the distributed structure can provide
better performance and scalability than the centralized struc-
ture, a distributed control plane can increase the capability
of network control for large-scale networks. There are some
solutions to the distributed SDN control plane that deploy
multiple controllers for large-scale wired networks. For large-
scale networks, the problem becomes difficult because of
the device mobility and heterogeneous network structures
[15], [16]. For example, in a wired network environment, as
the end node has determined position and connections, the
corresponding network controller can be easily determined
[17]. In the mobile environment, the problem becomes to find
the corresponding controller when the device moves from one
position to another [18].

Thus, in this paper, we propose large-scale software defined
virtualized networking (LS-SDV), a virtual network man-
agement framework in the large-scale software defined IoT
(SDIoT) with the nature of the distributed control plane. In
LS-SDV, we design a two-layer overlay structure to organize
distributed controllers because of the hierarchical structure of
network virtualization. Virtual devices can be used to enhance
IoT services at the SDN-based network by enhancing the
utilization of smart devices [19]. In IoT systems, the nodes
are limited by their energy lifetime. Therefore, at the step of
placing a controller, it is necessary to consider the cost of
communicating with IoT nodes, in order to reduce the overall
consumption. We introduce distributed hashing for addressing
virtual devices to corresponding controllers. After analyzing
the network status with the network information, we state
the problem of flow scheduling problem in virtual networks
and give a solution to optimize the network performance.
Finally, we implement our framework in a simulator and
test the performance with an open SDN framework. The
evaluation results prove that LS-SDV performs better than
other distributed or single control plane solutions.

The main contributions of this paper are summarized as
follows.
• We first study the virtual networks in large-scale IoT and

propose a two-layer overlay distributed control plane for
virtual network management. We also study and exam the
mobility and other issues in virtual network management.

• We study the problem of network flow scheduling in

2

virtual networks with LS-SDV. We propose a solution
for a determined traffic and flow scheduling in order
to optimize the network performance of each virtual
network.

• We evaluate the performance of LS-SDV through exten-
sive simulations and using an open SDN framework. We
also compare our work with the other methods and the
results show that our method performs better on network
performance in the large-scale IoT environment.

The rest of this paper is organized as follows. Section II re-
views the related work. The framework design and distributed
mechanisms of LS-SDV are introduced in Section III. The
network flow scheduling is proposed in Section IV. Section
V gives the simulation results. Finally, Section VI concludes
this paper and gives the future work.

II. RELATED WORK

In this section, we first discuss some related works on
SDIoT then we introduce some previous works focusing on
the distributed control plane.

A. SDN and IoT

As IoT systems often choose wireless networks as the
connection between devices and servers, we first list and
discuss some works focusing on software defined wireless
networks.

As SDN decouples the network control and data forwarding,
it needs a programmable data plane for network control in the
control plane. Thus, OpenRadio [20] is a programmable data
plane specifically designed for wireless networks. OpenRadio
decoupled processing and decision in wireless protocols and
provided a programmable interface while hiding the execution
in packet forwarding. It provides a fundamental solution of
software defined wireless networks.

Multinetwork information architecture (MINA) [11] is a
middleware solution for SDN-enable heterogeneous wireless
networks. MINA introduced a tree-based overlay network
to study the heterogeneous network view and proposed a
centralized network scheduling method through the observed
network view.

Loading balance method is required to respond to traffic
burst and relieve the heavy load. Chen et. al [21] proposes
a traffic-aware load balancing method to achieve various
requirements by traffic identification and scheduling ways.

To upgrade the traditional IoT system into SDN-based one,
the update cost is the main concern for administers. BLLC
[22] is proposed to meet the demand on low cost network
update. Such that, a new control rule is applied to compress
several control packets into the new one.

Meanwhile, as a global environment for networking innova-
tion, the global environment for networking innovation (GENI)
[23] integrates software defined vertical handover to support
mobile environments. Therefore, it is possible to provide a
software defined network for IoT systems with these software
defined wireless network solutions. For example, we have
proposed an SDN-based radio access network virtualization
for social IoT and optimized the capacity of a given radio

access network [7]. Muno et. al [24] introduces an integrated
framework of IoT, SDN and Edge systems. A scalable solution
is proposed to implement both network and cloud layer
resource management.

Network function virtualization is used to reduce the cost of
the network, the combination of SDN and NFV is promising
in IoT systems. SD-NFV based 6LoWPAN [25], [26] is an
energy-efficient mechanism to enhance the lifetime of IoT
nodes.

Chen et al. [27] is the first work moving SDN to Software-
Defined-Mobile-Network (SDMN) architecture, which also
brings some problems due to the hybrid properties. They
focus on the security issues on three layers: data layer, control
layer and application layer. Also, a method named STRIDE is
proposed to avoid attacks in all three layers.

B. Distributed SDN Control Plane

Distributed SDN structure is a major solution for scalable
SDN management. Onix [28] is the first work focusing on
distributed control plane, which provides a general API for
distributed network management. Further, Onix distributes the
network view among multiple controllers.

HyperFlow [29] is also a distributed control plane for SDN,
which brings good scalability with a customizable number
of controllers for different size of networks. Meanwhile,
HyperFlow is compatible with the standard OpenFlow pro-
tocols, which means it is easy to implement existing control
applications with minor modifications.

Kandoo [30] is a framework that provides good scalability
without modification to switches. Kandoo introduced a two-
layer of controllers in which only the controller in the top
layer maintains the entire network view while controllers in
the bottom layer can only manage the local devices.

SCL [31] is a simplifying framework to deploy one con-
troller network into distributed SDN systems. This coordi-
nation layer helps to seamlessly upgrade the original system
to a distributed one in which the consistency mechanisms is
complex and difficult to implement in practice.

Thus, locality becomes an important issue in the distributed
control plane. Schmid et al. [32] studied the importance of
the network view of local controllers. The authors found the
optimized locality can improve the network performance and
introduced a so-called supported locality model for a better
match with the distributed control plane.

Meanwhile, as placement is a solution for locality optimiza-
tion in distributed systems, Heller et al. [33] studied the control
placement problem in the control plane and found the problem
is relevant to the network topology.

ElastiCon [34] improves the distributed control plane with
better scalability, in which the number of controllers is dynam-
ically changed according to the network traffic. ElastiCon also
focused on the load balance between controllers with varying
network traffic.

The distributed control plane also has other issues even with
better scalability. For example, Canini et al. [35] proposed a
distributed SDN control plane which focuses on concurrent
and robust policy implementation, which is very important

3

c2

c3

c1

d1

d2
d3

d4

n2

n3

n1

d4

d2

V1

V2

Fig. 1. Example of virtual network management in large-scale IoT

to the network management. DevoFlow [36] is a centralized
alternative method of the distributed control plane that adds
some load balancing strategies to offload a part of the workload
from controllers to switches.

The distributed control plane is inevitable for SDN systems,
the guaranteeing performance is also important for these
systems. Xie et al. [37] introduces the validation problem of
control plane performance and proposes a robust validation
framework.

Above works provide examples and experiences on the
distributed control plane and show that a distributed control
plane is efficient for the SDN scalability especially in a
large-scale environment. However, as these works have little
consideration on mobility and wireless networks, we add SDN-
based mobility management in the IoT network.

III. FRAMEWORK DESIGN

In this section, we first describe the scenario of virtual net-
work management in large-scale SDIoT. Then, we introduce
LS-SDV framework design, addressing in overlays, and device
mobility management.

A. Scenario

We use an example to show the virtual network management
in a large-scale IoT environment. As shown in Fig. 1, there
are four virtual devices, d1, d2, d3, and d4, connected in a
IoT network. We assume all virtual devices perform similar
with physical devices and every virtual device is only allowed
to connect one virtual network. Therefore, we use two virtual
networks, v1 and v2, to group these four devices, while virtual
network v1 consists of virtual device d1 and d2, and virtual
network v2 consists of virtual device d3 and d4.

There are three physical networks, n1, n2, and n3, con-
necting these virtual IoT devices. We assume these networks
covering a large area and each network has one SDN controller
for network control, in which controller c1 manages network
n1, controller c2 manages network n2, and controller c3
manages network c3.

c4

c7

c1

c2

c3

c4 c5

c6
c9 c8

c7

Virtual network overlay

Device overlays

d1

d1

o1

o2 o3 o4

c1

Fig. 2. Two layers overlay structure in LS-SDV

For supporting virtual networks, each controller needs to
maintain the virtual network information and corresponding
forwarding strategies. At the beginning, as all devices are
connected to network n1, controller c1 needs to maintain the
forwarding strategy of virtual network v1 and v2.

When device d2 moves to the area of network n2, as
controller c2 has no information about virtual network v1, it is
impossible to maintain the network communication of virtual
network v1. Similarly, when device d4 moves to the area of
network n3, the network communication of virtual network v3
will be interrupted.

A possible solution is that all controllers maintain the virtual
network information and forwarding strategies. There are two
important issues for maintaining virtual networks in all con-
trollers. First, the update of virtual network information will be
very complex. Since all controllers should maintain concurrent
virtual network information and forwarding strategies, the
information update needs to be spread to each controller
instantly for guaranteeing concurrency. Second, maintaining
entire virtual network information in all controllers wastes
controller resources. Usually, as the moving area of members
in a virtual network is limited to several physical networks,
it is no need to maintain the virtual network information in
other physical networks. To solve these two issues, we discuss
our solution in the rest of this section.

B. Framework Design

We propose LS-SDV, a distributed control plane, to support
virtual network management in large-scale IoT. The main
principle of LS-SDV is that information of a given virtual
network is maintained by only one specified controller and a
given virtual device is also controlled by only one specified
controller. Therefore, the concurrency issue during updating
the information of each virtual network or each device in the
distributed control plane is avoided.

We investigate how our virtual network and virtual devices
are superior to physical devices. The virtual device and virtual
network can be controlled by SDN controller from the global
view, to provide the same services as physical devices. A
physical device can reduce energy consumption as its virtual
device is representing it in the network. In other words, the
physical devices can be in an idle mode while their virtual

4

duplicates are operating, which helps them reducing power
consumption. Therefore, virtual devices and networks are
suitable for tailoring specific service requirements.

We design a two-layer overlay distributed control plane to
support the main principle in LS-SDV. Layered overlay SDN
control network is a method using virtualized technology to
create separate virtualized network layer on the top of a physi-
cal network in the traditional network. We proposed a layered
network based on IoT network, which is not considered in
prior works. The properties of IoT nodes and traditional nodes
are different, which is the innovation of our work. In virtual
network management, there are two layers for addressing a
virtual device, the virtual network layer and the device layer.
Therefore, we use a similar hierarchical structure in LS-SDV.
As shown in Fig. 2, there are 9 controllers from c1 to c9
and one device d1. We use a two-layer overlay structure to
organize 9 controllers including the virtual network layer and
the device layer.

In the virtual network layer, we use one virtual network
overlay to organize controllers for virtual network manage-
ment. As the number of virtual networks is much fewer
than devices, we deploy virtual network management in parts
of controllers. The parts of controllers are organized in a
distributed hash table (DHT) like topology and each controller
manages parts of virtual networks [38]. In Fig. 2, controller
c1, c4 and c7 are organized into a virtual network overlay o1.

In the device layer, there are multiple device overlays
for management of network flows between devices. LS-SDV
assigns one controller for handling the network control of
each virtual device and controllers are organized into multiple
overlays. In Fig. 2, controller c1, c2 and c3 are organized into
overlay o2, c4, c5 and c6 are into o3, and c7, c8 and c9 are into
o4. The assigned controllers of all devices in a single virtual
network are organized into one overlay. There is no virtual
network in which the assigned controllers of devices belong
to different overlay. LS-SDV organizes one device overlay
for one controller in the virtual network overlay. Thus, all
devices in the virtual networks managed by one controller
are controlled by controllers in the same device overlay. For
example, devices in all virtual networks managed by controller
c1 are controlled by controller c1, c2 and c3 in overlay o1.

C. Overlay Addressing

Then, we introduce the addressing mechanism of virtual
networks and devices in LS-SDV. The addressing mechanism
is based on the address structures of devices. As shown in
Fig. 3(a), each virtual device has a global ID with m + n
bits. The value of m and n is elastic with the scale of virtual
networks and devices. The high m bits are used for addressing
the corresponding virtual network and low n bits are used for
addressing the controller assigned for the device. The high m
bits are also the ID of the virtual network and the low n bits are
the ID of the virtual device in the virtual network. Meanwhile,
each controller has a controller ID for identification. We use
an example to describe how the address structure ID works
in LS-SDV. When a virtual device d1 connects to a switch in
network n2 and the switch will inform the global ID of the

device to controller c2. Then, controller c2 will first resolve
the ID of virtual network v1 to find out the corresponding
controller c1 and inform controller c1. Then, controller c1 will
resolve the ID of device d1 to find the assigned controller c3
and inform controller c3.

LS-SDV organizes all controllers in DHT like overlay
structures including the virtual network overlay and device
overlays. We first describe the addressing mechanism of the
virtual network overlay. In the virtual network overlay, each
controller maintains a finger table containing up to k entries
while k is the bit number of controller ID. The controller
ID has p bits while the consistent hash function generates a
p bits key of each virtual network ID. The ith entry in the
table means the nearest controller to the queried key, of which
controller ID is more than l+ 2(i−1) where l is the controller
ID of the original one. Each device overlay also has the similar
structure with the virtual network overlay while the p bits key
is generated by the consistent function of the device ID.

As shown in Fig. 3(b), we use the addressing procedure
of device d1 as an example. When controller c(2) with ID=2
wants to find out the assigned controller of device d1, it first
finds out the virtual network ID is 102. With key=102, the
consistent hashing function generates the value of 4. From the
finger table of controller c(2), we can find that the controller
c(4) manages virtual network v(102). Therefore, controller
c(4) tries to find out the assigned controller of device d1 from
the device overlay. In device overly, controller c(4) has another
ID of 12. The hash value of key=119 is 5, which is more than
c′(12)+8 mod 16. From the finger table of controller c′(12),
the addressing mechanism will access controller c′(4). After
one step in controller c′(4), the addressing mechanism can find
out that controller c′(5) is the assigned controller of device d1.

Theorem 1: The time complexity of the addressing mecha-
nism in LS-SDV is 2 · O(logN) where N is the number of
controllers.

Proof: In the addressing mechanism, there are two steps
of query. The first step is to find the controller managing the
virtual network of the given device and the second step is
to find the assigned controller. Each step is similar to Chord
with a time complexity of O(log n) where n is the number
of the controllers in the overlay. Therefore, the entire time
complexity is max(O(log n1),O(log n2)) where n1 is the
number of controllers in the virtual network overlay and n2
is the number of controllers in the device overlay. Since the
maximum number of each overlay is N , the time complexity
of the addressing mechanism in LS-SDV is 2 · O(logN).

D. Device Mobility
The mobility in LS-SDV is a critical issue for network

management of large-scale IoT. When a new virtual network
with virtual devices joins LS-SDV, LS-SDV will assign a
controller for the management of the virtual network and some
controllers from the same device overly for the management of
devices. Meanwhile, each virtual device also has a temporary
controller for network connections. This temporary controller
stores the session when the device connects the network. For
example, in Fig. 1, the temporary controller of device d2 is
controller c1 at first then c2 at last.

5

Virtual network ID Device ID

High m bits Low n bits

Global ID

Controllers for virtual
network management

Controllers for device
management

(a) Address structure

c(2) +1

c(2)+2

c(2)+4

c(4)

c(4)

c(6)

c(1)
c(2)

c(4)

c(6)c(9)

c(11)

c(14)

c(2)+8 c(11)

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c c

Finger table of c(2)

Finger table of c

d1

v(102)

Global ID of d1

d(119)

(b) Addressing

c(4)

c

d1

d1

c

cd(5)

c(2)

co(14)

cd(14)

oo

od

ov

o

(c) Mobility management

Fig. 3. Addressing and mobility management in LS-SDV

Thus, after a device moves into a new network, the new
temporary controller will ask the assigned controller of the
device to find the previous temporary controller. Then, the
previous temporary controller will transfer the session of
the device to the new temporary controller. Thus, network
connections of the moving device will remain. Therefore, for
a given device, the assigned controller should maintain at least
two positions, the previous temporary controller and current
temporary controller.

As shown in Fig. 3(c), when device d1 moves from one
network to another network, LS-SDV will transfer the network
session from controller co(14) to controller cd(5) by assigned
controller c′(5). The steps are as follows. First, destination
controller cd(5) will ask controller cd(14) which is the
controller for virtual network management. Then, controller
cd(14) will find the controller managing the virtual network
of device d1 through overlay ov . As the procedures described
in Section III-C, the assigned controller c′(5) will be found by
the addressing mechanism. Controller c′(5) checks the current
temporary controller of device d1 which is controller co(14).
Then, controller c′(5) will ask controller co(14) to transfer the
network session of device d1 to controller cd(5) and set the
current temporary controller of d1 is cd(5). After transferring
network session, LS-SDV finishes the mobility management
of device d1. Since both controller co(14) In LS-SDV, the
assigned controller is able to manage multiple positions of the
given device.

Theorem 2: The time complexity of the mobility manage-
ment for a given device in LS-SDV is 2 · O(logN).

Proof: The time complexity of addressing the assigned
controller is 2 · O(logN) from Theorem 1. In mobility
management, it needs two more processes for querying the
controller for virtual network management and the previous
temporary controller. Thus, the time complexity of the mobil-
ity management is 2 · O(logN).

IV. FLOW SCHEDULING

In this section, we present the flow scheduling for virtual
networks in LS-SDV. We first describe the way to analyze the

network status then introduce our flow scheduling algorithm
in LS-SDV.

A. Network Analysis

It is necessary to understand the status of multiple networks
before network flow scheduling. As controllers can collect
most network information from software defined devices, it
is possible to analyze the network view through network
calculus [39]. In network calculus, a network flow can be
modeled as a set of cumulative functions denoted by F ,
where F (t) is the data transferred in the time period [0, t).
Functions in set F are increasing and non-negative while time
domain is a set of non negative real numbers. We use D to
denote the set of cumulative functions for the departure flow.
For expressing resources in a given network, we use S to
denote a set of service curves. From min-plus algebra [40],
if D(t) ≥ F (t) ⊗ S(t), the network can provide a minimal
service for the give network flow in time period [0, t).

Then, we define the service curve of the network. From a
previous work [11], service curves in IoT can be defined by

Si =
wi∑
j 6=i wj

B ·max{0, t− T} (1)

where i means the ith flow, wi means the weight of flow i,∑
j 6=i wj is the weight of all flows except flow i, B is the

maximum transmission rate, and T is the delay.
As the IoT communication needs multi-hop transmission,

the service curve for a given path will be summarized as
S(t) = S1(t) ⊗ S2(t) ⊗ ... ⊗ Sn(t) where 1, 2, ..., n is the
sequence number of hops in the communication.

For analyzing the transmission QoS of each packet in the
network flow, we use a discrete model of the network traffic.
We slight the traffic into packets and calculate the delay
of each packet. From the transmission model, the packet
delay in a given hop includes the transmission delay and the
transmission delay of the waiting queue. The length of the
queue can be monitored by the controller and transmission of
each packet costs approximately the same time period. Thus,
we can analyze the network status first from the information
in each controller of LS-SDV.

6

B. AP Assignment Based Flow Scheduling

Since all devices are connected by APs in wireless net-
works, APs are usually the bottleneck in network transmission.
Therefore, LS-SDV focuses on the network flow scheduling
to optimize the AP assignment for each virtual network. As
LS-SDV can obtain the network status through the network
analysis, it is possible to find out the workload of each access
point and assign them to devices in each virtual network. We
use A to denote the set of APs in all networks and aj to denote
an AP in set A. We use V to denote the set of virtual networks
and vi to denote a virtual network in set V . We use a value Xij

to denote the set of devices in virtual network vi connected
by AP ai and Rij to denote the required bandwidth of set
Xij . We use an elastic function Ui(·) to denote the utility of
the assignment of virtual network vi and the problem can be
formulated as

max
∑|V |

i=1

∑|A|
j=1 Ui(Xij)

s.t.,
∑|V |

i=1Rij ≤ Cj⋂|A|
j=1Xij = ∅⋃|A|
j=1Xij = Ei

(2)

where Cj is the available capacity of AP aj , and Ei is the
set of devices in virtual network vi.

For solving (2), we design an AP assignment algorithm
shown in Algorithm 1. The algorithm first finds an assign-
ment set X∗ to satisfy the minimal request of each virtual
network. Then, the algorithm initials all Xij as the output.
The algorithm uses an iteration to find out the assignment of
each AP in set X∗. Then, the algorithm tries to assign AP
aj to each virtual network. After assigning AP aj to virtual
network vi, we use a value Qij to measure the efficiency of the
assignment. We sort virtual networks with the non-decreasing
Qij and assign AP aj to the sorted virtual networks until AP
aj has no capacity for assignment. Obviously, since there is
no duplicated device in different virtual networks, the time
complexity of the proposed algorithm is O(M) where M is
the total number of devices.

Theorem 3: The AP assignment algorithm for virtual net-
works is a 2-approximation for solving (2).

Proof: When the algorithm assigns AP aj to virtual
networks, there must be a space without assignment, which
is Bj −Rj where Rj is total required bandwidth of assigned
virtual networks. If there is a fraction of a virtual network,
the algorithm will match or exceed the optimal solution U∗j
by adding Bj−R

re
·∆Ue where ∆Ue = Ue((X−X(e)j)∩X ′(e)j).

As
∑e−1

i=1 Rij∆Ui ≥ 1
2U
∗
j or ∆Ue ≥ Bj−R

re
· ∆Ue ≥ 1

2U
∗
j ,

the approximation ratio for assignment of AP aj is 2. For
the entire assignment, as

∑|A|
j=1Bj −Rj ≤

∑|A|
j=1 U

∗
j , the AP

assignment algorithm is a 2-approximation for solving (2).
We consider utility function Ui(·) as an elastic function for

different network condition. As we focus on QoS guarantee
of virtual networks, we choose a utility function based on
network analysis. We choose a popular method to design
the utility function, which is based on normalized weights.
We consider there are two requirements of the network flow
scheduling, including total bandwidth B and average delay D

Algorithm 1 AP Assignment for Virtual Networks
1: Find a set X∗ that meets the minimal request of the

assignment;
2: for i← 1 to |V | do
3: for j ← 1 to A do
4: Xij ← ∅;
5: end for
6: end for
7: for j ← 1 to |A| do
8: if ∃i : X∗ij 6= ∅ then
9: for i← 1 to |V | do

10: X ′ij ← X∗ij ;
11: for k ← 1 to |Ei| do
12: if dk 6∈ X∗ij then
13: X ′′ij ← X ′ij ∪ {dk};
14: else
15: X ′′ij ← X ′ij − {dk};
16: end if
17: if Ui((X

∗ −Xij) ∪X ′′ij) > Ui(X
∗) then

18: X ′ij ← X ′′ij
19: end if
20: end for
21: Qij ←

Ui((X
∗−Xij)∪X′ij)
Rij

;
22: end for
23: Sort V by Q1j ≥ Q2j ≥, ...,≥ Q|V |j ;
24: for i′ ← 1 to |V | do
25: if

∑i′

i′′←1Ri′′j > Bj then
26: e← i′;
27: Break;
28: end if
29: end for
30: for i← 1 to e− 1 do
31: Xij ← X ′ij ;
32: end for
33: end if
34: end for

of the AP. We use two functions to define the utilities from
these requirements, given by

UBi (Xij) = log(1 +
C(j)

Rij
), and (3)

UDi (Xij) = log(1 +
D′

D
) (4)

where D′ is the average latency after assigning devices in Xij

to the networks through network analysis.
Therefore, the utility function Ui(Xij) can be calculated

with (3) and (4), given by

Ui(Xij) = ωBUBi (Xij) + ωDUDi (Xij), ω
B + ωD = 1 (5)

where ωB and ωD are the normalized weights of function
UBi (·) and UDi (·), respectively.

C. Online Assignment

We also focus on the online assignment to schedule network
flows without having the entire virtual networks. Because

7

Algorithm 2 Online AP Assignment
Find X∗i that meets the minimal request of vi;
for j ← 1 to |A| do

if ∃i : X∗ij 6= ∅ then
X ′ij ← X∗ij ;
for k ← 1 to |Ei| do

if dk 6∈ X∗ij then
X ′′ij ← X ′ij ∪ {dk};

else
X ′′ij ← X ′ij − {dk};

end if
if Ui((X

∗ −Xij) ∪X ′′ij) > Ui(X
∗) then

X ′ij ← X ′′ij ;
end if

end for
Φ(zij)← (Umax · e/Umin)zij/(Umin/e);
if Ui((X

∗−Xij)∪X′ij)
Rij

≥ Φ(zij) then
Xij ← X ′ij ;
Break;

end if
end if

end for

virtual networks will be updated and changed, the online
assignment is very important for a dynamic environment.

We use a stream of |V | virtual networks having utilities and
required bandwidth (Ui(Xij), Rij), where i is the time when
the virtual network joins into the IoT network. We also use
an utility-to-bandwidth ratio of each virtual network as the
efficiency. The goal of the online assignment is to assign APs,
that is making a decision to maximize the total utility.

As shown in Algorithm 2, the algorithm assigns AP to
virtual network vi in an online fashion. When a virtual network
vi in time i joins into the IoT network, the algorithm first finds
a solution set X∗i to meet the minimal request of vi. After that,
the algorithm decides whether AP aj ∈ A is assigned to virtual
network vi. We design a function Φ(zij) for the assignment
decision, where zij is the remaining capacity of AP aj in time
i. In function Φzij , we use Umax and Umin to denote the upper
bound and lower bound of utilities and e is the base of the
natural logarithm. If the ratio of utility to the requirement is
more than the value of function Φ(zij), the algorithm assigns
AP aj to virtual network vi.

Theorem 4: For a given virtual network sequence V , the
online assignment algorithm can attain a competitive ratio as

OPT (V) ≤ U(V) · (ln(Umax/Umin) + 1) (6)

where U(V) is the utility of the online assignment, and
OPT (V) is the optimal utility.

Proof: Please see the appendix

V. PERFORMANCE EVALUATION

We use two different ways to evaluate the performance of
LS-SDV. We first study the performance of LS-SDV in a given
area then test the performance of an open SDN framework.
We also compare the performance of LS-SDV to some existing
methods as follows.

(a) APs and route

0 50 100150200250300350400
Throughput (kbps)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

LS-SDV

Hedera

DevoFlow

(b) Throughput

0.00.20.40.60.81.01.21.41.61.8
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

LS-SDV

Hedera

DevoFlow

(c) Delay

Fig. 4. Mobility management performance of LS-SDV

• Hedera [41] is a method focusing on scheduling elephant
flows to reduce the problem of load balance. Hedera aims
to reduce average flow completion time by scheduling
elephant flows, because they occupy bandwidth in a long
periods.

• DevoFlow [36] is also used to schedule the workload to
meet high performance of networks. Both of them achieve
good performance in flow scheduling. We test throughput
and delay with [23], [36] with several timeslots which
are both main targets in their work. Therefore, it is fair
to compare with them.

• GENI [23] is an acknowledged open SDN framework for
innovative network experiments, comparing with it is per-
suasive. In addition, we test throughput and delay factors,
which are dominate concern in network performance, so
it is fair to compare with GENI.

A. Mobility Management

We first analyze the performance with device mobility in
LS-SDV. All experiments are executed in OMNeT++ [42]
and we add the LS-SDV framework to support mobility
management. We choose an area near our university as a real
scenario for the virtual network management in LS-SDV. The
Nakajimacho is the downtown of Muroran city, in which many
APs are deployed for tourists. As shown in Fig. 4(a), we get
the positions of APs from service providers and divides all
APs into two groups. One group near to the railway station
has 6 APs, and another near to the shopping center has 5
APs. There APs are connected by two switches. Meanwhile,
we deploy two servers for providing services. The bitrate of
each AP is set to 12 Mbps with the 802.11g protocol and
each AP has a 1 Gbps wired link with the switch. There are
4 controllers managing the network, in which 2 controllers
manage the virtual networks.

We add 30 IoT devices grouped in 6 virtual networks
into the network, and each device has a network flow to
servers. These devices move along the yellow path. We use
a trace dataset of video streaming with 180 traces [43] and
we randomly select 30 traces in the test. We also compare
the performance of LS-SDV with DevoFlow [36] and Hedera
[41].

We test the throughput and delay from servers to devices
during the movement of devices. LS-SDV and Hedera consider
the capability of the entire network in network flow scheduling

8

1 2 3 4 5 6 7 8 9
Number of controllers

20000

30000

40000

50000

60000

70000

80000

90000
T
h
ro

u
g
h
p
u
t

(a) 1 controller in top

2 4 6 8
Number of controllers

40000

50000

60000

70000

80000

90000

100000

T
h
ro

u
g
h
p
u
t

(b) 2 controllers in top

3 6 9
Number of controllers

60000

70000

80000

90000

100000

110000

120000

T
h
ro

u
g
h
p
u
t

(c) 3 controllers in top

400 8001200160020002400
Packet Rate

0

10

20

30

40

De
la

y
(m

s)

3 controllers
4 controllers
6 controllers
8 controllers

(d) 1 controller in top

400 8001200160020002400
Packet Rate

2

4

6

8

10

12

De
la

y
(m

s)

4 controllers
8 controllers

(e) 2 controllers in top

400 8001200160020002400
Packet Rate

5

10

15

20

25

30

35

De
la

y
(m

s)

3 controllers
6 controllers

(f) 3 controllers in top

Fig. 5. Scalability of LS-SDV

while DevoFlow try to maximize the usage of each link. The
packet loss of wireless links in the IoT environment is much
more severe than wired links in the data center environment,
the methodology of DeveFlow is not appropriate for a wireless
environment. Therefore, as more packets will be dropped when
the capacity of a wireless link exceeds a threshold, LS-SDV
and Hedera provide higher server-to-device throughput than
DevoFlow as shown in Fig. 4(b). Then, we test the delay
in video streaming. As shown in Fig. 4(c), Hedera and LS-
SDV still perform better than DevoFlow because of the packet
loss in full assigned wireless links. Considering Hedera is a
centralized structure with less delay in the control plane, LS-
SDV still performs good enough with the distributed structure
in the given scenario.

B. Scalability of LS-SDV

The scalability of LS-SDV framework is an important issue
with the distributed structure. We also test the scalability of
LS-SDV by adjusting the number of controllers in the control
plane. From previous works on the evaluation of the SDN
control plane [44], the Packet-In is a basic and frequently
used message when a new flow joins the network. Thus, we
test the performance of serving Packet-In messages with a
different number of controllers. Since LS-SDV has a two-
layer overlay structure, we adjust the number of controllers
in different layers and test the system throughput.

As shown in Fig. 5(a), we use one controller for virtual
network management and increase the number of controllers
in the device overlay from 1 to 9 and add one controller in
each step. The throughput increases with more controllers in
the system. However, after the number of controllers is more
than 6, the performance can not be increased obviously. From
the results shown in Fig. 5(b) and 5(f), when we increase the
number of controllers for virtual network management, the
scalability of LS-SDV performs better than one controller in

0 2 4 6 8 10 12 14 16
Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

LS-SDV

GENI

(a) Throughput

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

LS-SDV

GENI

(b) Delay

Fig. 6. Open framework experiment results in ORBIT

0 5 10 15 20 25 30
Time slot

0

50

100

150

200

250

T
h
o
u
g
h
p
u
t

(M
b
p
s)

(a) Total throughput

0 5 10 15 20 25 30
Time slot

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

D
e
la

y
 (

s)

(b) Average delay

Fig. 7. Online assignment performance with the open framework experiment

the top layer. When the number of controllers in the top layer
is two, the scalability becomes a little worse when the number
of controllers exceeds 6. While the number of controllers in
the top layer is three, the scalability of LS-SDV maintains the
same with 9 controllers.

We also test the average response delay for processing
Packet-In messages. We set the packet rate from 400 to
2400 packets per second and increase 400 in each step. Each
packet has a 16-bit random device ID and a 16-bits random
virtual network ID. As shown in Fig. 5(d), we set the number
of controllers in the top layer to one and test the average
response delay with 3, 4, 6 and 8 controllers. With more
controllers in the control plane, the response delay decreases
obviously. From the results shown in Fig.5(e) and 5(f), as
LS-SDV uses the two-layer overlay structure in the control
plane, the additional addressing in the top layer increases the
response delay. Meanwhile, as the more controllers in the
virtual network overlay, the response delay with higher packet
rate is better than the delay with one controller in the top layer.
When the number of controllers in the top layer is set to 2,
the response delay with 2400 packets per second is slightly
shorter than the delay with one controller in the top layer.
When the number of controllers in the top layer increases to
3, the response delay is also shorter than the delay with one
controller in the top layer.

C. Open Framework Experiments

We also test LS-SDV with ORBIT which is an open SDN
framework composed of 400 radio nodes. In our experiments,
we use an ORBIT sandbox and set the number of APs as 12
and the number of controllers as 3. All controllers manage both
the virtual networks and devices. For the mobility issue of IoT

9

devices in experiments, we choose an AP access trace dataset
collected from mobile devices [45] as movement events.

We compare the performance of LS-SDV with GENI which
is an implementation of mobility management in the wireless
environment. From the formulations of (2) and (5), the flow
scheduling focuses on the QoS guarantee of virtual networks.
Therefore, we use cumulative distribution probability (CDF)
to reflect whether the QoS is guaranteed in the experiments.

We use the video streaming trace dataset as network flows
and randomly select 30 traffic traces. For devices in experi-
ments, we choose 30 most active traces in the AP access trace
file. As shown in Fig. 6(a), we compare the server-to-device
throughput of LS-SDV with GENI. The CDF plots show that
the throughput of LS-SDV is near 20% more than GENI. The
server-to-device delay results in Fig. 6(b) show that the server-
to-device delay with LS-SDV is less than the delay with GENI.
If we set 4 Mbps as the QoS requirement of throughput, the
QoS satisfied ratio of LS-SDV is 75% while the ratio of GENI
is only 52%. Meanwhile, the fluctuation of delay with LS-SDV
is also lower than GENI, which means devices in LS-SDV
have more stable communications. If the QoS requirement of
delay is set to 0.2 s, the QoS satisfied ratio of LS-SDV is 87%
while the ratio of GENI is only 64%. Since GENI applies a
first-come-first-served flow scheduling in order to simplify the
configuration, it is hard to guarantee the QoS with a heavy
traffic. Meanwhile, GENI only uses a centralized controller
without enough scalability. Therefore, our solution performs
better than GENI with higher throughput, lower delay and
higher QoS satisfied ratio.

Finally, we test the performance of the online assignment
with ORBIT. For the online assignment, we set the number of
time slots to 30 and add one virtual network in each time slot.
We record the total throughput and average delay from the
time slot 1 to 30. As shown in Fig. 7(a), the total throughput
with the online assignment algorithm increases linearly with
the time slots. Meanwhile, the delay performance in Fig. 7(b)
shows the online assignment algorithm can provide a stable
delay in scheduling network flows.

As a result, since LS-SDV introduces scalability and effi-
cient flow scheduling into large-scale IoT, LS-SDV performs
better than other solutions on both throughput and delay.
Furthermore, LS-SDV shows good scalability of the SDN
control plane with virtual network management in the large-
scale IoT environment.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate the problem of virtual network
management in the IoT environment. There are two important
issues in maintaining virtual networks, updating complex
virtual topology and storing massive data of all virtual network
information. We propose LS-SDV to address these issues,
which shows that a distributed structure brings much better
scalability than the centralized structure in large-scale SDIoT
networks. Meanwhile, LS-SDV introduces a delicate structure
for virtual network management in large-scale IoT. The two-
layer overlay structure avoids complex concurrency mecha-
nism for management of virtual networks in the distributed

environment. LS-SDV provides simple mobility management
through assigning a specific controller for each device. Mean-
while, the efficient network analysis based network flow
scheduling in LS-SDV also improves the network performance
of each virtual network. From the experiment results, LS-
SDV performs better than existing solutions in the mobile IoT
environment.

In the future, we plan to introduce LS-SDV into the IoT
cloud computing and implement an IoT cloud prototype with
real world IoT devices. Meanwhile, an online flow scheduling
strategy in large-scale SDIoT will be introduced for the virtual
network management.

ACKNOWLEDGMENTS

This work is supported by JSPS KAKENHI Grant Number
JP16K00117, JP17K12669, JP19K20250, KDDI Foundation,
and MEXT’s Leading Initiative for Excellent Young Re-
searchers (LEADER). Mianxiong Dong is the corresponding
author.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[2] D. Li, M. Dong, Y. Yuan, J. Chen, K. Ota, and Y. Tang, “SEER-MCache:
A prefetchable memory object caching system for IoT real-time data
processing,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3648–
3660, oct 2018.

[3] J. Zhou, Y. Wang, K. Ota, and M. Dong, “AAIoT: Accelerating artificial
intelligence in IoT systems,” IEEE Wireless Communications Letters,
vol. 8, no. 3, pp. 825–828, jun 2019.

[4] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social internet of
things (siot) – when social networks meet the internet of things: Concept,
architecture and network characterization,” Computer Networks, vol. 56,
no. 16, pp. 3594 – 3608, 2012.

[5] L. Atzori, A. Iera, and G. Morabito, “From ”smart objects” to ”social
objects”: The next evolutionary step of the internet of things,” IEEE
Communications Magazine, vol. 52, no. 1, pp. 97–105, January 2014.

[6] J. Xu, K. Ota, M. Dong, A. Liu, and Q. Li, “SIoTFog: Byzantine-resilient
IoT fog networking,” Frontiers of Information Technology & Electronic
Engineering, vol. 19, no. 12, pp. 1546–1557, dec 2018.

[7] H. Li, M. Dong, and K. Ota, “Radio access network virtualization for
the social internet of things,” IEEE Cloud Computing, vol. 2, no. 6, pp.
42–50, Nov 2015.

[8] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, March 2013.

[9] W. H. Chin, Z. Fan, and R. Haines, “Emerging technologies and research
challenges for 5g wireless networks,” IEEE Wireless Communications,
vol. 21, no. 2, pp. 106–112, April 2014.

[10] K. Pentikousis, Y. Wang, and W. Hu, “Mobileflow: Toward software-
defined mobile networks,” IEEE Communications Magazine, vol. 51,
no. 7, pp. 44–53, July 2013.

[11] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubra-
manian, “A software defined networking architecture for the internet-of-
things,” in 2014 IEEE Network Operations and Management Symposium
(NOMS), May 2014, pp. 1–9.

[12] M. Dong, H. Li, K. Ota, and J. Xiao, “Rule caching in sdn-enabled
mobile access networks,” IEEE Network, vol. 29, no. 4, pp. 40–45, July
2015.

[13] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
7–12.

[14] K. Kirkpatrick, “Software-defined networking,” Commun. ACM, vol. 56,
no. 9, pp. 16–19, Sep. 2013.

[15] T. Mahmoodi and S. Seetharaman, “On using a sdn-based control plane
in 5g mobile networks,” in Wireless World Research Forum, meeting,
vol. 32, 2014.

10

[16] J. Xu, K. Ota, and M. Dong, “Real-time awareness scheduling for
multimedia big data oriented in-memory computing,” IEEE Internet of
Things Journal, vol. 5, no. 5, pp. 3464–3473, oct 2018.

[17] J. Liu, Y. Li, and D. Jin, “Sdn-based live vm migration across datacen-
ters,” in Proceedings of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 583–584.

[18] H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, V. Mancuso, M. R. Sama,
P. Seite, and S. Shanmugalingam, “An sdn-based network architecture
for extremely dense wireless networks,” in 2013 IEEE SDN for Future
Networks and Services (SDN4FNS), Nov 2013, pp. 1–7.

[19] H. Flores, P. Hui, S. Tarkoma, Y. Li, T. Anagnostopoulos, V. Kostakos,
C. Luo, and X. Su, “Sensorclone: a framework for harnessing smart
devices with virtual sensors,” in Proceedings of the 9th ACM Multimedia
Systems Conference. ACM, 2018, pp. 328–338.

[20] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “Openradio: A pro-
grammable wireless dataplane,” in Proceedings of the First Workshop
on Hot Topics in Software Defined Networks, ser. HotSDN ’12. New
York, NY, USA: ACM, 2012, pp. 109–114.

[21] Y.-J. Chen, L.-C. Wang, M.-C. Chen, P.-M. Huang, and P.-J. Chung,
“Sdn-enabled traffic-aware load balancing for m2m networks,” IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1797–1806, 2018.

[22] W. Ren, Y. Sun, H. Luo, and M. Guizani, “Bllc: A batch-level update
mechanism with low cost for sdn-iot networks,” IEEE Internet of Things
Journal, vol. 6, no. 1, pp. 1210–1222, 2018.

[23] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar, “GENI: A federated testbed for innovative
network experiments,” Computer Networks, vol. 61, pp. 5–23, mar 2014.

[24] R. Munoz, R. Vilalta, N. Yoshikane, R. Casellas, R. Martinez, T. Tsuri-
tani, and I. Morita, “Integration of IoT, transport SDN, and edge/cloud
computing for dynamic distribution of IoT analytics and efficient use
of network resources,” Journal of Lightwave Technology, vol. 36, no. 7,
pp. 1420–1428, apr 2018.

[25] B. R. Al-Kaseem and H. S. Al-Raweshidyhamed, “Sd-nfv as an en-
ergy efficient approach for m2m networks using cloud-based 6lowpan
testbed,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1787–1797,
2017.

[26] W. Borjigin, K. Ota, and M. Dong, “In broker we trust: A double-auction
approach for resource allocation in NFV markets,” IEEE Transactions
on Network and Service Management, vol. 15, no. 4, pp. 1322–1333,
dec 2018.

[27] M. Chen, Y. Qian, S. Mao, W. Tang, and X. Yang, “Software-defined
mobile networks security,” Mobile Networks and Applications, vol. 21,
no. 5, pp. 729–743, 2016.

[28] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” in OSDI, vol. 10,
2010, pp. 1–6.

[29] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, 2010, pp. 3–3.

[30] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 19–24.

[31] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “Scl:
Simplifying distributed sdn control planes,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17). Boston,
MA: USENIX Association, 2017, pp. 329–345.

[32] S. Schmid and J. Suomela, “Exploiting locality in distributed sdn
control,” in Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’13. New
York, NY, USA: ACM, 2013, pp. 121–126.

[33] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng,
S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley, K. Zarifis, and
P. Kazemian, “Leveraging sdn layering to systematically troubleshoot
networks,” in Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’13. New
York, NY, USA: ACM, 2013, pp. 37–42.

[34] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Elasticon: An elastic distributed sdn controller,” in Proceedings of
the Tenth ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ser. ANCS ’14. New York, NY, USA: ACM,
2014, pp. 17–28.

[35] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed and
robust sdn control plane for transactional network updates,” in 2015
IEEE Conference on Computer Communications (INFOCOM), April
2015, pp. 190–198.

[36] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in Proceedings of the ACM SIGCOMM 2011 Conference, ser.
SIGCOMM ’11. New York, NY, USA: ACM, 2011, pp. 254–265.

[37] J. Xie, D. Guo, C. Qian, L. Liu, B. Ren, and H. Chen, “Validation
of distributed SDN control plane under uncertain failures,” IEEE/ACM
Transactions on Networking, vol. 27, no. 3, pp. 1234–1247, jun 2019.

[38] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ser. SIG-
COMM ’01. New York, NY, USA: ACM, 2001, pp. 149–160.

[39] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer Science & Business
Media, 2001, vol. 2050.

[40] A. Burchard, J. Liebeherr, and S. D. Patek, “A min-plus calculus for end-
to-end statistical service guarantees,” IEEE Transactions on Information
Theory, vol. 52, no. 9, pp. 4105–4114, Sept 2006.

[41] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Pro-
ceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 19–19.

[42] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, ser. Simutools ’08. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008, pp. 60:1–60:10.

[43] F. H. P. Fitzek and M. Reisslein, “Mpeg-4 and h.263 video traces for
network performance evaluation,” IEEE Network, vol. 15, no. 6, pp.
40–54, Nov 2001.

[44] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, “Ubiflow:
Mobility management in urban-scale software defined iot,” in 2015 IEEE
Conference on Computer Communications (INFOCOM), April 2015, pp.
208–216.

[45] K. Nahrstedt and L. Vu, “CRAWDAD data set uiuc/uim (v. 2012-01-
24),” Downloaded from http://crawdad.org/uiuc/uim/, Jan. 2012.

APPENDIX
PROOF OF THEOREM 4

For a given virtual network sequence V and a AP aj , the
algorithm assigns Zj to V and obtain utility Uj(V). Let Xj

and X∗j denote the set of virtual networks to which AP aj is
assigned by the online assignment algorithm and the optimum,
respectively. Let Uj = uj(Xj∩X∗j) and Rj = rj(Xj∩X∗j)) to
denote the utility and the required bandwidth of the common
virtual networks between two sets. For each virtual network vi
without assigned aj , the utility in its assignment is less than
Φ(zij) and Φ(zij) is less than Φ(Zj) since Φ(zij) is monotone
increasing of zij . Thus, OPTj(V) ≤ Uj + Φ(Zj)(Cj − Rj)
where OPTj is the optimal assignment for AP aj .

Since Uj(V) = Uj + uj(Xj X
∗
j), there is

OPTj(V)

Uj(V)
≤ Uj + Φ(Zj)(Cj −Rj)

Uj + uj(Xj \X∗j)
. (7)

As the value to the requirement of each virtual network vi
is no less than Φ(zij), we have

Uj ≥
∑

vi∈Xj∩X∗j

Φ(zij) ·Rij , and (8)

uj(Xj \X∗j) ≥
∑

vi∈Xj\X∗j

Φ(zij) ·Rij (9)

where we use U ′j and U ′′j to denote
∑

vi∈Xj∩X∗j
Φ(zij) · Rij

and
∑

vi∈Xj\X∗j
Φ(zij) ·Rij , respectively.

11

Therefore, (7) implies

OPTj(V)

Uj(V)
≤
U ′j + Φ(Zj) · (Cj −Rj)

U ′j + uj(Xj \X∗j)
(10)

We plug in values of U ′j and U ′′j with U ′j ≤ Φ(Zj) · Rij

and get
OPTj(V)

Uj(V)
≤ Φ(Zj)∑

vi∈Xj
Φ(zij) ·∆zij

(11)

where ∆zij = z(i+1)j − zij = Rij/Cj for all vi ∈ V .
We assume that the available bandwidth of each AP is much

larger than the requirement of each virtual network. Thus, we
use an integration to find the approximate by∑
vi∈Xj

Φ(zij) ·∆zij ≥(1− ε) ·
∫ Zj

0

Φ(zij)dx

=(1− ε) · (
∫ c

0

Umin +

∫ Zj

c

Φ(zij)dx)

=(1− ε) · (c · Umin+

Umin

e
· (U

max · e/Umin)Zj − Umax · e/Umin)c

ln(Umax · e/Umin)
)

=(1− ε) · Φ(Zj)

ln(Umax/Umin) + 1
(12)

where c = 1
1+ln(Umax/Umin) and ε = (maxRij)/Cj .

Therefore, the competitive ratio for assigning AP aj to
virtual machine sequence V is given by

OPTj(V)

Uj(V)
≤ 1− ε

ln(Umax/Umin) + 1
≤ 1

ln(Umax/Umin) + 1
.

(13)
Since OPT (V) =

∑|A|
j=1OPTj(V) and U(V) =∑|A|

j=1 Uj(V), the competitive ratio of the online assignment
algorithm is

1

ln(Umax/Umin) + 1
. (14)

He Li received the B.S., M.S. degrees in Computer
Science and Engineering from Huazhong University
of Science and Technology in 2007 and 2009, re-
spectively, and Ph.D. degree in Computer Science
and Engineering from The University of Aizu in
2015. He is currently an Assistant Professor with De-
partment of Information and Electronic Engineering,
Muroran Institute of Technology, Japan. In 2018,
he is selected as a Ministry of Education, Culture,
Sports, Science and Technology (MEXT) Excellent
Young Researcher. His research interests include

cloud computing and software defined networking. He has received the best
paper award from IEEE VTC2016-Fall. Dr. Li serves as an Associate Editor
for Human-centric Computing and Information Sciences (HCIS), as well as a
Guest Associate Editor for IEICE Transactions on Information and Systems.
He is the recipient of IEEE TCSC Outstanding Ph.D. Dissertation Award
2016.

Kaoru Ota was born in Aizu-Wakamatsu, Japan.
She received M.S. degree in Computer Science from
Oklahoma State University, USA in 2008, B.S. and
Ph.D. degrees in Computer Science and Engineering
from The University of Aizu, Japan in 2006, 2012,
respectively. She is currently an Assistant Profes-
sor with Department of Sciences and Informatics,
Muroran Institute of Technology, Japan. From March
2010 to March 2011, she was a visiting scholar at
University of Waterloo, Canada. Also she was a
Japan Society of the Promotion of Science (JSPS)

research fellow with Graduate School of Information Sciences at Tohoku
University, Japan from April 2012 to April 2013. Her research interests
include Wireless Networks, Cloud Computing, and Cyber-physical Systems.
Dr. Ota has received best paper awards from ICA3PP 2014, GPC 2015, IEEE
DASC 2015, IEEE VTC 2016-Fall, FCST 2017, 2017 IET Communications
Premium Award and IEEE ComSoc CSIM Best Conference Paper Award
2018. She is an editor of IEEE Transactions on Vehicular Technology
(TVT), IEEE Internet of Things Journal, IEEE Communications Letters, IEEE
Wireless Communications Letters, Peer-to-Peer Networking and Applications
(Springer), Ad Hoc & Sensor Wireless Networks, International Journal of
Embedded Systems (Inderscience) and Smart Technologies for Emergency
Response & Disaster Management (IGI Global), as well as a guest editor
of ACM Transactions on Multimedia Computing, Communications and Ap-
plications (leading), IEEE Internet of Things Journal, IEEE Communications
Magazine, IEEE Network, IEEE Wireless Communications, IEEE Access,
IEICE Transactions on Information and Systems, and Ad Hoc & Sensor
Wireless Networks (Old City Publishing). She is the recipient of IEEE TCSC
Early Career Award 2017, and The 13th IEEE ComSoc Asia-Pacific Young
Researcher Award 2018.

Mianxiong Dong received B.S., M.S. and Ph.D. in
Computer Science and Engineering from The Uni-
versity of Aizu, Japan. He is currently a Professor in
the Department of Sciences and Informatics, Advisor
to Executive Director, and Vice Director of Office
of Institutional Research at the Muroran Institute of
Technology, Japan. He was a JSPS Research Fellow
with School of Computer Science and Engineering,
The University of Aizu, Japan and was a visiting
scholar with BBCR group at University of Water-
loo, Canada supported by JSPS Excellent Young

Researcher Overseas Visit Program from April 2010 to August 2011. Dr. Dong
was selected as a Foreigner Research Fellow (a total of 3 recipients all over
Japan) by NEC C&C Foundation in 2011. He has received best paper awards
from IEEE HPCC 2008, IEEE ICESS 2008, ICA3PP 2014, GPC 2015, IEEE
DASC 2015, IEEE VTC 2016-Fall, FCST 2017, 2017 IET Communications
Premium Award and IEEE ComSoc CSIM Best Conference Paper Award
2018. He has been serving as the Vice Chair of IEEE Communications
Society Asia/Pacific Region Information Services Committee and Meetings
and Conference Committee, Leading Symposium Chair of IEEE ICC 2019,
Student Travel Grants Chair of IEEE GLOBECOM 2019, and Symposium
Chair of IEEE GLOBECOM 2016, 2017. He is the recipient of IEEE TCSC
Early Career Award 2016, IEEE SCSTC Outstanding Young Researcher
Award 2017, The 12th IEEE ComSoc Asia-Pacific Young Researcher Award
2017, Funai Research Award 2018 and NISTEP Researcher 2018 (one of only
11 people in Japan) in recognition of significant contributions in science and
technology from MEXT. He is currently the Member of Board of Governors
and Chair of Student Fellowship Committee of IEEE Vehicular Technology
Society, and Treasurer of IEEE ComSoc Japan Joint Sections Chapter.

