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Abstract : The synthetic utilization of a chiral building block obtained by the enzymatic asymmetric hydrolysis 

of a symmetric diester having the bicyclo[2.2.1]heptene system was investigated.  Several cyclopentanoids have 

been synthesized in high yields in enatiomerically enriched forms with the use of simple reactions.  These 

compounds are expected to serve as useful chiral synthons for cyclopentane-containing natural products and 

pharmaceuticals.   
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I. Introduction  
Development of efficient methodologies for controlling stereogenic centers has been the central issue 

for the synthesis of natural products and pharmaceuticals.  For production of enantiomerically enriched 

compounds, several methods are possible, such as utilization of chiral auxiliaries and asymmetric reactions.  

Among these methods, an enzymatic asymmetric reaction is one of the most powerful tools for performing these 

syntheses.  Although the drawback is that the mechanisms are not fully understood and therefore random 

screening of the enzymes and the substrates often becomes mandatory, the reaction conditions are mild, simple, 

and environmentally benign.  Therefore, a number of synthons produced by enzymatic reactions have been 

applied to synthesis of important classes of pharmaceuticals and bioactive natural products.  For example, Ohno 

et al. reported synthesis of various nucleosides and carbapenems [1-4].  Nagao et al. reported synthesis of (+)-

carbacyclin [5], and Yu et al. reported the paroxetine [6].  All of these compounds are known to exhibit 

important therapeutic properties.  More recently, Back and Materson et al. reported amino acid derivatives from 

chiral monoesters obtained by enzymatic reactions [7-8]. 

Here we wish to report our approach for synthesis of some cyclopentanoids initiated by an enzymatic 

reaction.  The cyclopentane ring and its derivatives are found in a number of significant pharmaceuticals and 

natural products, such as prostanoids and carbocyclic nucleosides as well as in their related compounds, and 

therefore such compounds are anticipated to be useful synthons for synthesis of these derivatives. 

 

II. Results and Discussion  
The symmetric bicyclo[2.2.1]heptene diester, 1, was monohydrolyzed with an enzyme, pig liver 

esterase, yielding the corresponding monoester, 2, according to the procedures Ohno et al. reported [1] (Scheme 

1).  This monoester, 2, was previously applied to the synthesis of carbocyclic nucleosides via the regiospecific 

decarboxylative ozonolysis of the double bond as noted above [1].  Here, a more challenging stereo-

differentiation was attempted by the cleaving of the C5-C6 bond, which is more remote from the two different 

substituents.   

The monoester, 2, possesses a characteristically long conjugated system in that it has a carboxyl group 

and a carbomethoxy group.  Although some attempts to modify only one of these functional groups were made, 

such as Arndt- Eistert homologation of the carboxyl group and selective reduction of one of the substituents, 

none was successful for this monoester.  However, hydrogenation of the C=C bond afforded 3 in quantitative 

yield, in which the two functional groups are closer to the C5-C6 bond (Scheme 2).  Although selective reduction 

of one of the substituents was still difficult at this stage due to the proximity of the two groups, diborane 

reduction of the carboxyl group in dilute THF solution followed by catalytic acid treatment afforded the lactone 

4 in 85% yield as a white solid.  The deprotection of the acetonide group of 4 unexpectedly required harsh 

conditions.  After several attempts at acid hydrolysis, refluxing 4 with the ion exchange resin Dowex 50W in 

water for two days turned out to be the only effective method, affording the diol, 5, in about 90% yield.   
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At this stage, the oxidative cleavage of the C5-C6 bond followed by regioselective modification to the 

resultant dialdehyde was extensively studied.  In the end, diol 5 was submitted to oxidative cleavage with 

Pb(OAc)4 in benzene containing 30% methanol.  The resultant dialdehyde was obtained as the hemiacetal, 6, in 

which the methoxy group was introduced exclusively from the carbonyl side.  Since the acetal, 6, is unstable, 

this acetal was immediately subjected to oxidation with PCC to afford a white crystalline solid, 7, in a 

reasonably high yield from the diol (73%, 2 steps).  This regioselective introduction of the methoxyl group is 

explained by the participation of the carbonyl group of the lactone ring (Scheme 2).   

The white solid, 7, is stable and can be a versatile potential intermediate for further stereoselective and 

stereospecific modification.  For example, selective methylation on the acetal carbon was possible under several 

conditions, although the conditions have not been optimized at this point.   

In another attempt, dimethylation of the dialdehyde derived from oxidative cleavage of diol 5 was 

carried out to yield a diastereomeric mixture of diol 8.  This stable diol also appears to be a potential precursor 

of cyclopentanoids, and it appears to be capable of selective monoprotection due to the steric hindrance by the 

carbonyl group of the lactone.  In fact, on a small scale, it underwent selctive monobenzylation (Ag2O/BnBr, 

Et2O reflux) yielding the monoprotected alcohol, and subsequent oxidation with PCC (PCC/3A molecular 

sieves, CH2Cl2) afforded the monomethyl ketone.   

 

III. Schemes 
Scheme 1 

 
 

Scheme 2 
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IV. Conclusion  
In summary, synthetic development of chiral bicyclo[2.2.1]cycloheptene monoester, 2, has been 

studied for the syntheses of several cyclopentanoids.  This monoester, 2, and the antipodal monoester 2’ were 

also synthesized non-enzymatically from D-mannitol by Ortuño et al. [9] and from a chiral sulfoxide by 

Carretero et al. [10], and some potential or true precursors for antibiotics were prepared from them [9].  They 

are applied to synthesis of precursors of carbocyclic nucleosides and relevant compounds.  Therefore, the 

synthetic versatility of this chiral building block, 2, is also anticipated [11].   

 

 

V. Experimental 
Representative experimental procedures are as follows: 

Compound 3:   

Monoester 2 (4.537 g, 16.9 mmol) was dissolved in MeOH 50 mL, and 10% Pd-C (700 mg) was added 

under an argon atmosphere. After replacing the argon with hydrogen, the mixture was stirred under a hydrogen 

atmosphere at room temperature overnight.  The mixture was filtered through celite, and evaporation under 

reduced pressure afforded a white solid, 3. Yield: 4.684 g (100%) 
1
H-NMR (100MHz, CDCl3) (ppm): 8.9 (1H, br.), 4.60 (2H, br. s), 3.68 (3H, s), 3.30 (2H, m), 2.65 (2H, br. s), 

1.95 (1H, br. d, J=11.4), 1.45 (3H, s), 1.29 (3H, s), 1.15 (1H, br. d, J=11.4); IR (CHCl3): 2500-3100, 1740, 1720, 

1200, 1140;  m.p.:149.5-150.5 
o
C (from hexane-EtOH);  []D

23: -4.42
o

(c=1.2 in CHCl3);  MS: 270 (M+), 255 

(M+-CH3) 

 

Compound 4:  

Compound 3 (2.644 mg, 9.79 mmol) was dissolved in freshly distilled THF (150 mL) and 9 mL of 

BH3/THF solution (2.43 mmol/mL) was added dropwise under an argon atmosphere at -5
 o

C ~ -10 
o
C.  The 

mixture was stirred at room temperature for 2 days, and water was added dropwise at 0 
o
C until gas evolution 

stops.  After a small amount of MeOH was added, the volume of the mixture was concentrated under reduced 

pressure to about 1/10, the product was extracted with CH2Cl2, and the organic layer was dried over anhydrous 

Na2SO4.  After the organic solvent was evaporated under reduced pressure, the residue was dissolved in MeOH 

1.5 mL and p-toluenesufonic acid (900 mg) was added.  After stirring for 3 days at room temperature, CH2Cl2 

(100 mL) was added to the mixture, washed with saturated sodium bicarbonate solution, brine, and dried over 

anhydrous Na2SO4, and purified by column chromatography to afford white crystal, 4.  Yield: 1.858 g (85%) 
1
H-NMR (400MHz, CDCl3) (ppm): 4.35-4.25 (4H, m), 3.06 (1H, m), 2.90 (1H, m), 2.76 (1H, m), 2.44 (1H, 

m), 2.00 (1H, br. d, J=12.0), 1.48 (3H, s), 1.35 (1H, br. d, J=12.0), 1.30 (3H, s); 
13

C-NMR (25MHz, CDCl3) 

(ppm): 189.04, 109.04, 78.64, 77.04, 67.84, 43.84, 43.52, 43.28, 38.64, 35.44, 25.44, 24.16;  IR (CHCl3): 

1760, 1260, 1100-1000; m.p.:129.5-130.5
 o

C (from hexane-CH2Cl2);  []D
23: -112.8

o 

(c=0.135 in CHCl3);  

Anal. Calc. for C12H16O4  C: 64.27 H: 7.19, found C: 64.06, H: 7.15 

 

Compound 5:  

To compound 4 (132 mg, 0.59 mmol) was added H2O (30 mL) and resin (Dowex 50W)(130 mg), and 

the mixture was refluxed for 2 days.  After cooling to r.t., the mixture was filtered through filtering paper and 

evaporated with a small amount of MeOH under reduced pressure to afford a white solid, 5, which was used 

without purification for further steps.  

Yield: 108 mg (99%) 
1
H-NMR (90 MHz, CDCl3/CD3OD) (ppm): 4.3 (2H, m), 3.9 (2H, m), 3.4 (1H, m), 3.0(1H, m), 2.6 (1H, m), 2.3 

(1H, m), 2.10 (1H, br. d, J=10.5), 1.43 (1H, br. d, J=10.5);  IR (CHCl3): 3400-3500, 1760, 1260 

 

Compound 7: 

Compound 5 (206 mmg, 1.120 mmol) was stirred with 90% Pb(OAC)4 (650 mg, 1.319 mmol) in 

benzene 9 mL and MeOH 2 mL at r.t. for 5h under an argon atmosphere.  After 30 mL of ether was added, the 

mixture was filtered through celite, and concentrated under reduced pressure.  At this point, the structure of the 

residue was confirmed as compound 6.  Then it was stirred overnight with PCC (375 mg, 1.74 mmol) and 

activated 3A molecular sieves in CH2Cl2 under an argon atmosphere at r.t.  The mixture was passed through a 

Florisil/ether short column and purified by column chromatography to afford a white solid, 7.  Yield: 165 mg 

(73%, 2 steps) 
1
H-NMR (400MHz, CDCl3) (ppm): 5.12 (1H, d, J=2.6), 4.82 (1H, dd, J=1.8, 10.3), 4.40 (1H, dd, J=10.3, 5.9), 

3.49 (3H, s), 3.35 (2H, m), 3.16 (1H, m), 2.99 (1H, m), 2.43 (1H, m), 2.26 (1H, m); 
13

C -NMR (25MHz, CDCl3) 

(ppm): 178.56, 175.58, 109.44, 67.49, 57.31, 49.06, 46.56, 46.08, 43.68 31.68;  IR (CHCl3): 1775;  
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m.p.:137.0-138.0 
o
C (from hexane-CH2Cl2);  []D

21: -3.45
o

(c=0.6 in CHCl3); Anal. Calc. for C10H12O5 C: 56.60 

H: 5.70, found C: 56.87, H: 5.71 

 

Compound 8: 
Compound 5 (398 mmg, 2.166 mmol) was stirred with 90% Pb(OAC)4 (1.173 g, 2.383 mmol) in 

benzene 17 mL for 5h at r.t. under an argon atmosphere.  After 35 mL of ether was added, the mixture was 

filtered through celite, and concentrated under reduced pressure.  This mixture in CH2Cl2 (2 mL) was added 

dropwise to another flask containing 1.25 M MeLi (26.3 mL, 32.9 mmol) and TiCl4 (6.26 g, 32.9 mmol) in 

freshly distilled ether (35 mL) at -78 
o
C under argon atmosphere.  The reaction mixture was worked up by ice-

salt water, extracted with ethyl acetate, and dried over anhydrous Na2SO4.  After the solvent was evaporated 

under reduced pressure, and the residue was purified by column chromatography to afford compound 8.  Yield: 

257 mg (55%) 
1
H-NMR (100MHz, CDCl3) (ppm): 4.2-4.4 (2H, m), 3.6-3.8 (2H,m), 3.1-3.3 (1H, m), 2.8-3.1 (1H, m), 1.8-2.2 

(4H, m), 1.6-1.8 (2H, m), 1.1-1.3 (6H, m);  IR (CHCl3): 3400, 1750, 1100;  MS: 214 (M+), 196 (M+-H2O), 178 

(M+-2H2O) 
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