
Software Verification

for

Programmable Logic Controllers

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(Dr. rer. nat.)
der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Ralf Huuck

Kiel,
2003

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250313362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1. Gutachter Prof. Dr. Yassine Lakhnech

2. Gutachter Prof. Dr. Willem-Paul de Roever

3. Gutachter Dr. habil. Oded Maler

4. Gutachter Prof. Dr. Thomas Wilke

Datum der mündlichen Prüfung 17. April 2003

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Control Engineering and Control Theory 13

1.3 Control Systems in Computer Science 15

1.4 PLCs and PLC Programming Languages 16

1.5 Scope of this Thesis . 18

1.5.1 Major Challenges . 18

1.5.2 Contribution of this Thesis 18

1.5.3 Summary . 20

1.6 Thesis Outline . 20

1.7 Bibliographic Notes . 22

1.8 Acknowledgments . 22

2 Related Work 25

2.1 Software Verification in General 25

2.1.1 Focus on Model Checking 25

2.1.2 Focus on Abstract Interpretation 26

2.1.3 Other Approaches . 27

2.2 PLC Verification . 27

2.2.1 Approaches Based on Instruction List 28

2.2.2 Approaches Based on Sequential Function Charts . . . 29

2.2.3 Approaches Based on Ladder Diagrams 30

2.2.4 Miscellaneous Other Approaches 31

2.2.5 Matrix of Surveyed PLC Papers 31

2.3 Discussion . 33

3 Foundations of Software Verification 35

3.1 Introduction . 35

3.2 Preliminaries . 36

3.2.1 Lattices . 36

3.2.2 Complete Partial Orders 39

3.2.3 Fixed Points . 40

3.3 Model Checking . 43

3

4 Contents

3.3.1 System Model . 43

3.3.2 Computational Model 46
3.3.3 Temporal Logics . 47

3.3.4 Tools and Limitations 49

3.3.5 Complexity Issues . 50

3.4 Data Flow Analysis . 53

3.4.1 Basic Definitions . 53

3.4.2 Classical Data Flow Examples 56

3.4.3 Formal Data Flow Framework 61

3.4.4 Iterative Solvers for General Frameworks 64

3.5 Abstract Interpretation . 67

3.5.1 Galois Connections . 68

3.5.2 Fixed Point Approximations 69

3.5.3 Abstract Interpretation for Program Analysis 74

4 Semantics 79

4.1 Introduction . 79

4.2 Modeling PLCs . 79

4.2.1 PLCs and their Environment 80

4.2.2 Scan Cycles . 80

4.2.3 Time . 82

4.2.4 Software Features . 82

4.2.5 Our Models . 85

4.3 Sequential Function Charts 86

4.3.1 Introduction . 86

4.3.2 Ambiguities in the Semantics 88

4.3.3 Syntax of SFCs with Actions 91

4.3.4 Semantics of SFCs with Actions 92

4.3.5 Example . 96

4.3.6 Extension to Timed SFCs 98

4.4 Instruction List . 102

4.4.1 Introduction . 102

4.4.2 Syntax . 102

4.4.3 Semantics . 103

4.4.4 Example Program . 111

5 Verification 115

5.1 Introduction . 115

5.2 Sequential Function Charts 116

5.2.1 An Abstract SFC Model 116

5.2.2 Translation to CaSMV 118

5.2.3 Safe Sequential Function Charts 125

5.3 Instruction List . 129

5.3.1 Abstract Simulation 130

Contents 5

5.3.2 Abstract Interpretation Applied to Program Analysis 136
5.3.3 Efficient Fixed Point Computation 139
5.3.4 Precision Impovement for Non-Relational Abstractions 142
5.3.5 Static Analysis . 146

6 Tools and Case Studies 155
6.1 SFCheck/S7Check and Homer 155
6.2 A Brick Sorter . 156

6.2.1 The Plant Layout . 156
6.2.2 Verification . 158

6.3 A Control Trigger . 160
6.4 A Batch Plant . 161

7 Conclusion 165
7.1 Summary . 165
7.2 Lessons Learned . 166
7.3 Future Work . 167

A Chemical Plant Code 169
A.1 SFC Code . 169
A.2 CaSMV Code . 170

Bibliography 175

6 Contents

List of Figures

1.1 PLC architecture . 16

1.2 PLC cyclic execution . 17

3.1 Discrete automaton for a tank model 44

3.2 Timed automaton for a tank model 45

3.3 Hybrid automaton for a tank model 46

3.4 Program example . 54

3.5 Partitioning in elementary and in basic blocks 55

3.6 Program example with labeled blocks 55

3.7 A data flow graph . 56

3.8 Data flow framework . 63

3.9 General Algorithm for forward analysis 65

3.10 General algorithm for backward analysis 66

3.11 Program fragment to illustrate semantics 75

4.1 Elements of SFCs . 86

4.2 Basic transition types. 87

4.3 Unsafe SFC . 88

4.4 In which order are the actions a1 and a2 executed? 89

4.5 How to deal with hierarchy? 90

4.6 Recursive action labeling collection 95

4.7 Approximated square root computation 113

5.1 Abstract SFC . 118

5.2 The plant . 123

5.3 Control SFCs . 123

5.4 Fraction of CaSMV input . 124

5.5 Various types of unsafe SFCs 126

5.6 SMV code for token overflow 129

5.7 Completely unsafe SFC . 129

5.8 Lattice of Booleans . 131

5.9 Simple IL example . 136

5.10 Application of WTO algorithm 141

5.11 IL program augmented by history expressions 145

7

8 List of Figures

5.12 Unreachable code and infinite loop 150

6.1 Plant from the side . 157
6.2 Plant from the top . 157
6.3 Sub-SFC of the control process 158
6.4 Chemical plant layout . 162
6.5 Sample of the IL control program 163

List of Tables

2.1 Matrix of surveyed PLC papers 32

3.1 Different analysis schemes . 64

4.1 List of selected IL commands 103
4.2 Operational semantics: Mode switches 106
4.3 Operational semantics: Basics 107
4.4 Operational semantics: Arithmetics 107
4.5 Operational semantics: Boolean logics 108
4.6 Operational semantics: Comparisons 109
4.7 Operational semantics: Jumps 110

5.1 Abstract Boolean connectivities 132
5.2 Abstract arithmetic operators 132
5.3 Abstract comparisons . 133
5.4 Abstract operational semantics: Mode switches 133
5.5 Abstract operational semantics: Basics 134
5.6 Abstract operational semantics: Arithmetics 134
5.7 Abstract operational semantics: Boolean logics 134
5.8 Abstract operational semantics: Comparisons 135
5.9 Abstract operational semantics: Jumps 135

9

10 List of Tables

Chapter 1

Introduction

1.1 Motivation

Computers are everywhere. As a matter of fact the routine of our daily
lives is more and more supported by, and at the same time dependent on,
computer driven hardware. Most of the electrical appliances we use at home,
e.g., the TV set, the refrigerator, and the telephone are nowadays driven by
micro-controllers or computers in general. And even computers take over
the task to stabilize cars during driving or to ignite air-bags; they restrict
access to certain areas or secure bank transfers, and so on. But a vast part of
these systems we never see. All the things natural to us like water, food, and
electricity rely on computers as far as their distribution and manufacturing
process is concerned.

Wherever we get directly or indirectly in touch with computers and
computer driven hardware, their main purpose is: control. The control of
the refrigerator temperature, the traction of the car wheels, the scheduling
and transport along the assembly lines that can food, and the control of
many safety-critical applications such as fission control in nuclear power
plants.

A question that arises is, what kind of systems are used for all these con-
trolling processes? Mostly not general-purpose PCs but specific industrial
computers. The reasons are simple and stem from the requirements of such
control systems: they have to be robust, reliable and cheap. Robustness
to ensure that these systems work also under unexpected conditions, which
might be heat, dust, and electro-magnetic noise [Mor]. Reliability in order
to have them running 24 hours a day over 5 or even 10 years. And they
have to be cheap to enter a mass market and to reduce the costs of the
manufacturing process.

Next to micro controllers, specific purpose computers on a single chip,
one prominent class of industrial controllers are so called programmable logic
controllers (PLC). First developed during the early 1970s, PLCs started as

11

12 Chapter 1. Introduction

simple devices to replace electro-mechanical relays. Using integrated circuit
technology, they performed simple sequential control tasks, in isolation from
other control and monitoring equipment. These simple devices have grown
into complex systems capable of almost any type of control application, in-
cluding motion control, data manipulation, and advanced computing func-
tions. Nowadays, PLCs are extensively used in the field of automation and
they are integrated into much larger environments, requiring communication
with other controllers or computer equipment performing plant management
functions [Lew98] [BMS99].

Control systems driven by PLCs are often complex, safety critical, and
involve a lot of money. Any failure of these systems might not only result
in a significant financial loss but lead to casualties as well. Hence, next to
robustness and reliability, their actual programming and the correctness of
the programs plays a vital role.

Since PLCs have been for a long time subject to the engineering commu-
nity only, their programming languages evolved out of historical needs. This
means, that they are particular suitable to implement controlling tasks as
the solution to control theoretic problems. Therefore, the used programming
languages are often close to relay ladder logic or assembly language.

In contrast to computer science, where a number of new programming
languages evolved, driven by the latest theoretical results, industrial pro-
grams often follow the well-known and established concepts of the first
programming languages. This means, that high-level languages including
object-orientation, abstract data-types, and graphical programming envi-
ronments, which support a more abstract and problem-oriented approach,
have not or to a much lesser extent found their way into industrial and PLC
programming [Mal99]. In this sense industrial programs are much more
exposed to design errors and more likely to fail than state-of-the-art pro-
gramming languages which demand a strict programming regime and foster
a more abstract development process.

There are at least two ways to improve the current situation.

1. One way is to design new programming languages and environments
for PLC programming. These languages should be high-level to allow
a development on an abstract, problem-oriented level and at the same
time they should be simple and rigorous enough to enable a clear
understanding and to support the development of safe programs right
from the beginning.

2. Another approach is to keep the existing programming languages and
to develop analysis and verification methods for PLC programs. These
methods should then aim at proving the correctness of PLC programs
and detecting even subtle bugs.

In this work we follow the second approach. The reasons for this are

1.2. Control Engineering and Control Theory 13

simple: today there are many PLC programs in existence which will not
be rewritten; however, there is a chance that they might be re-analyzed.
Moreover, it is not likely that people change domain specific languages easily
since there is a long tradition in using them and it takes time to build
confidence in new languages. On the other hand, a clear understanding of
the semantics of the current languages and tools to analyze the developed
programs is much more likely to make an impact on PLC programming.

The goal of the remainder of this chapter is to show how software engi-
neering can support the development of correct PLC (and in a broader sense
industrial) programs and which techniques we intend to develop and apply
in this work to achieve the correctness. As a prerequisite to understand the
needs and developments for control system we give a brief introduction to
control systems engineering and control theory in Section 1.2. Moreover,
we discuss in Section 1.3 how controlling issues are theoretically covered in
computer science. From this perspective we take a look at PLCs and their
programming languages in Section 1.4. In Section 1.5 we outline the major
challenges for the verification of PLC software and our contribution to mas-
ter these. Section 1.6 outlines the remainder of this thesis, while Section 1.7
gives references to work we published prior to this thesis on the same topic.

1.2 Control Engineering and Control Theory

Before taking a look at control system engineering and control theory we
briefly explain a number of terms. A control system is defined by Nise [Nis00]
as follows:

A control system provides an output or response for a given input
or stimulus.

This definition is vague but it stresses the importance of an input/output
behavior. What actually should be achieved is a desired response to a given
control problem, which is defined as the idealized instantaneous behavior
that we would like from the system. For instance, the temperature in a
refrigerator should always be between 4 and 6 degrees Celsius. Of course,
before connecting the refrigerator this requirement is in general not satisfied.
Once connected, it starts (most likely) to cool down; this phase is called
transient response, i.e., the gradual change in the system as it approaches
its approximation of the desired response. Once the system has finished
changing (cooling down), its approximation of the desired response is called
the steady-state response. E.g., the fridge is cooled down to 5 degrees Celsius.
Commonly it is required that once a system has reached its steady-state
response it can maintain it, i.e., it is stable. This means the temperature
will remain within 4 to 6 degrees and neither completely leave this range nor
oscillate around this range. Additionally, robustness is often required. This

14 Chapter 1. Introduction

implies that even if the systems parameters change it should still function
correctly. E.g., the fridge control should be unaffected as much as possible
by the number of items and their temperature inside it.

One of the first incidents in industrial engineering that suggested the
need for control systems engineering took place in the beginning of the nine-
teenth century. Watt built his first governor for a steam engine, a device to
control the speed of the engine. At that time the engines had such a poor
response and such a friction that the engine was always stable, even though
the transient response was slow. However, as steam engine technology im-
proved, it turned out that the governors that worked before did not do so
anymore, since their transient respond was simply too slow which more of-
ten than not led to a blow up of the engine. From this time onwards control
engineering became a science and contributed a lot to the development of
ship steering, robotics, air-craft and missile control, just to mention few.

Control theory concerns the mathematical formalization of problems in
control, the desired properties as stated above, and the control systems that
are the required solutions to the problems. The modeling is traditionally
close to the physical components involved. This means, e.g., that for me-
chanics and mechanical networks parameters such as force, velocity and mass
are taken into account. For electrical system elements the models include,
e.g., the current, voltage, and torque.

The implementation of control systems started off with analog boards
and (electro-)mechanical systems reflecting well the continuous control the-
ory. At some point analog controllers were replaced by digital ones. An
advantage is that digital systems were able to replace the relays used in
electrical systems. Relays were notorious for wearing out after a short time,
while in digital systems switching from one mode to another is all imple-
mented in software and, therefore, free of mechanical wear. The distinct
characteristics of digital systems compared to their analog counterparts is
their cyclic behavior: periodically, inputs are sampled, computations based
on the inputs and the internal state of the controller are performed and,
afterwards, the corresponding output is emitted. These systems match well
the theory of sampled control and signal processing systems [CF95].

Often the programming languages for these digital systems, like PLCs,
are still close to descriptions of their electro-mechanical counterparts which
they replaced. This has, e.g., as a consequence that a description language
for relay ladder logic is used as a programming language for PLCs. For
the same reason assembly languages, introduced as low level programming
languages for digital systems, are as well part of the widely used PLC pro-
gramming languages.

With history in mind, it is clear why PLC programming languages tend
to be arcane and low-level compared to current developments in software
engineering. They are the result of an evolution from electrical to digital
systems, and often remained as they were first designed because this proved

1.3. Control Systems in Computer Science 15

to be practical.

In contrast, many programming languages developed by computer scien-
tists were designed from scratch driven by latest theoretical insights without
the urge to take care of historical needs and evolution.

1.3 Control Systems in Computer Science

Computer science often tends to look at physical systems from a more ab-
stract level when compared with control theory. The fundamental issues
seem to be of higher interest than an actual model, which is close to the
underlying physics. We like to mention two aspects that reflect the ideas
of control systems: The continuous/discrete world and the input/output
behavior.

The view of control system as mixed continuous discrete systems led to
the notion of hybrid systems [NSY93] [ACHH93]. Research, both in the
computer science and the engineering community, has focused on hybrid
systems for many years in order to develop appropriate system models and
verification methods [Mal97, iee98, aut99, NK00].

Achievements have been made in describing such systems, to visualize
their effects, and to simulate some behaviors [mat]. On the verification side
the development of appropriate system models led to proof systems which al-
low the manual or computer supported verification of system properties, and
sub-classes have been detected which enable the use of automatic verification
tools to check certain kind of properties [ACH+95, DM98, AHLP00, DN00].

Overall, the verification of hybrid systems is still complex, time and
memory consuming and is still far from any automatic approach. Such an
approach, however, is limited by decidability results [HKPV98], and this
means that there are fundamental limits to handling the general class of
hybrid systems in a fully automated manner.

Another characteristic of control systems is their input/output behavior.
The continuous interaction of control systems with their environment at
the same speed as the environment led to the notion of reactive systems
[HP85, BG92]. Characteristic for reactive system is their instantaneous (or
negligibly short) reaction time to events stimulated by their environment.
Every reaction of a system produces a response to the environment quickly
enough not to miss any new event such that there is no overlap in reactions.
This assumption is the basis of the synchrony hypothesis [BG92]:

The reaction of a system takes negligible time with respect to its
environment.

The synchrony hypothesis is also the basis for a number of so-called
synchronous languages. These languages include state oriented imperative
synchronous languages such as Esterel [BG92], StateCharts [Har87], Grafcet

16 Chapter 1. Introduction

[DA92], and Argos [Mar92], as well as data-flow languages such as Lus-
tre [HCRP91] and Signal [BLJ91]. Although these languages found their
way into industry, e.g., telecommunication and avionics, they are not used
for PLC programming and are widely unknown in the respective industrial
fields.

Note on a side remark that the synchrony hypothesis is a very strong
hypothesis that does not always hold in practice. Moreover, the synchronous
approach has to deal with several other obstacles when it comes to distribu-
tivity and robustness in practice. An overview is given in [Cas01]. We do
not intend to go into detail here.

1.4 PLCs and PLC Programming Languages

The hardware of a PLC (see Figure 1.1) consists of a microprocessor based
CPU, a memory, input and output ports where signals can be received, e.g.,
from switches and sensors, and sent to actuators, e.g., to motors or valves.
A PLC is equipped with an operating system that allows to load and run
programs and perform self-checks. Traditionally, the PLC operating system
must respond to interrupts and must be real-time. Programs for PLCs
are developed and compiled on external devices and downloaded to them
afterwards.

programming
unit CPU memory

bus

I/O modules

sensors actuators

Figure 1.1: PLC architecture

The main difference to conventional systems such as PCs is the cyclic
operation mode illustrated in Figure 1.2: PLC programs are executed in
a permanent loop as mentioned in Section 1.2. Although PCs have also
input/output functionality to exchange information with, e.g., a keyboard
or a mouse, this i/o functionality is not their main reason of existence.

From a computer science perspective, PLCs have the characteristics of
real-time, reactive systems. If their environment is taken into account they
resemble hybrid systems.

There exist different programming languages for PLCs. They have been
designed with an emphasis to implement control tasks, each intended for

1.4. PLCs and PLC Programming Languages 17

computation

inputoutput

Figure 1.2: PLC cyclic execution

a specific application domain, and based on the background of the control
engineers who use them. In order to achieve more conformity of the different
PLC programming languages the standard IEC 61131-3 was developed.

Instruction List (IL) is a low level assembly language with one register
called current result. IL is still one of the main programming languages
for PLCs used in Europe, since it allows compact code and is very close
to hardware programming.

Structured Text (ST) is a PASCAL-like language. It is a higher level
language than IL and provides more convenient structuring and orga-
nizing constructs such as while-loops, if-then-else-conditionals and so
on. However, ST is used to a much less extent than IL.

Moreover, three graphical languages are defined:

Ladder Diagrams (LD) sometimes also called Relay Ladder Logic. In-
deed, LD programs resemble relay logic. The diagrams are drawn in
a graphical editor, e.g., on a PC, and then compiled and moved to
the PLC. Like IL the LD programming language is very low level, but
serves its purpose whenever relay ladder logics have to be compiled
into software. Until today LD programs are the major programming
language for PLCs used in the U.S.

Function Blocks (FB) are essentially a data-flow language for describing
a network of functions connected by signals. Pre-defined functions,
generally drawn as boxes, are combined by connecting inputs and out-
puts in a desired manner. They are interpreted along their flow of con-
trol, i.e., function blocks are interpreted along their connecting paths
and provide a better overview and understanding of how functions
relate than, e.g., LD programs.

Sequential Function Charts (SFC) is a graphical, high-level program-
ming language for PLCs which aims at providing a clear understanding

18 Chapter 1. Introduction

of the possibly interwoven program parts. SFCs allow to decompose
and structure program parts and include interesting concepts such as
parallelism, activity manipulation and hierarchy. Historically, they
take over ideas from Petri nets and Grafcet [DA92].

Most of these programming languages have additional PLC specific fea-
tures and allow the use of timers and to access system time. It is to be
expected that in several application areas PLCs will be replaced by PCs in
the future. However, the main principles such as a cyclic operation mode
and the use of timers will be maintained. Also it is unlikely that there will
be a change of programming languages in the near future. One indication
for this is that although higher-level languages such as ST are standardized,
still the lower-level languages such as IL and LD are most commonly used.
One exception to this are SFCs.

1.5 Scope of this Thesis

The goal of this work is to develop and apply software analysis techniques
for PLCs which lead to more reliable PLC programs. In this section we
outline the challenges which should be faced, as well as the solutions to
them developed in this thesis.

1.5.1 Major Challenges

Although PLC programming languages are standardized in IEC 611321-3, no
formal semantics is given there; this obstructs formal reasoning. Moreover,
the informal descriptions presented in the standard are often too incomplete
and ambiguous to directly infer a formal semantics.

The different PLC languages are of different nature. They range from
the low-level IL languages to the high-level graphical language SFCs with
its many unique features. Their different nature implies different analysis
objectives and, therefore, the use of different analysis techniques.

These analysis techniques should be applicable in an industrial setting.
Hence, they should scale to real-life problems and also be applicable by
non-experts in formal verification.

1.5.2 Contribution of this Thesis

Throughout this work we focus on two PLC programming languages: IL
and SFCs. These two languages complement each other in their level of
abstraction, their general size in terms of lines of code, and above all their
programming features. Therefore, they serve as a basis to counter the vari-
ous aspects of the challenges presented above.

1.5. Scope of this Thesis 19

Development of a Formal Semantics for SFCs and IL

A prerequisite for any formal reasoning about system behavior is a formal
semantics, i.e., a mathematical framework that represents the behavior of
such a system.

For SFCs, we first investigate their informal semantics as outlined in IEC
61131-3 and point to a number of ambiguities and incomplete descriptions
in the standard. We discuss several possibilities to remedy the situation
and, based on this, present a unifying formal operational semantics based
on transition systems. The semantics is unifying since it can be adjusted by
parameters to different interpretations of the standard and, hence, also to
different existing implementations. The semantics models the cyclic behav-
ior and is comprehensive, i.e., it covers all the main SFC features such as
hierarchy, parallelism, priorities as well as actions and action qualifiers. An
extension to timed SFCs is sketched.

Although the IL semantics as described in the standard is less ambigu-
ous, a formal approach does not exist. We develop a structural operational
semantics [Plo81] for IL programs. This semantics covers a significant core
set of the IL language and respects the cyclic behavior inherent to PLCs.

Combining Algorithmic Analysis Techniques

Due to the different nature of the examined languages we develop different
verification techniques for each of them. Common to all techniques is that
they are algorithmic and need no or little interaction with a user. Hence,
they are mostly applicable by non-experts.

We propose a model checking [QS82][CE82] approach for SFCs. We
introduce a finite abstraction for SFCs and develop a translation from such
SFCs to the input language of a model checker. This enables the analysis
of SFCs for a rich class of properties described in temporal logics [Pnu81].
Moreover, we propose a method also based on model checking to determine
safe SFCs. These are SFCs that comply to certain structural requirements.

IL programs make use of potentially infinite data structures such as inte-
gers and often consist of hundreds or thousands of lines of code. Therefore,
we propose verification techniques that are particularly scalable and can ap-
proximate infinite system behaviors. We choose and develop combinations
of abstract interpretation [Cou78][CC79] and data flow analysis [Hec77].
Abstract interpretation is used to approximate program behavior, i.e., to
determine the potential range of program variables during program execu-
tion. Data flow analysis is used to analyze the information flow and check,
e.g., for unreachable or dead code. The combination of both techniques gives
a significant boost to the obtained analysis result.

Furthermore, we develop an abstract simulation for testing IL programs
with sets of input values simultaneously. We also present a heuristics to

20 Chapter 1. Introduction

significantly improve the precision of the abstract interpretation process.

Tool Implementations and Case Studies

Based on the developed semantics these analysis techniques are implemented
in two types of tools. SFCheck (S7check) which support the verification of
SFCs as defined in the standard (S7check as defined by Siemens Corp) and
Homer which uses the proposed analysis techniques for IL.

The developed techniques and tools are successfully tested on a number
of case studies provided by academic partners as well as by industry.

1.5.3 Summary

We briefly summarize the main contributions of this thesis:

1. Investigation of semantics as defined in IEC 61131-3 and development
of a comprehensive formal semantics for SFCs and IL.

2. Verification of SFCs by model checking. Definition of safe SFCs and
development of an automatic analysis.

3. Abstract simulation of IL programs.

4. Combination of abstract interpretation and data flow analysis to verify
IL programs.

5. Implementation of analysis techniques and application up to industrial
size case studies.

1.6 Thesis Outline

In Chapter 2 we give an overview of related work. On the one hand, we
give references to other projects in software verification and their proposed
methods in general. On the other hand, we present a thorough overview of
existing work applying formal methods to PLC and PLC programming lan-
guages. We discuss the different approaches and relate these to the content
of this thesis.

Chapter 3 provides the reader with the necessary background to ver-
ification in general and software verification in particular. Next to basic
mathematical terms and notions, we introduce some major software verifi-
cation and analysis techniques. We start with model checking and temporal
logics, present some modeling frameworks, i.e., various kinds of automata,
and point to limits and complexity issues of the model checking approach.

Data flow analysis is introduced subsequently. We present a number
of classical examples which illustrate the different problems and analysis

1.6. Thesis Outline 21

techniques. Based on the examples, a general formal framework is presented
as well as a general solver that adepts to the various analysis classes.

Next, we present the concept of abstract interpretation. The basic terms
relating the different domains of abstractions are defined. Moreover, we
define safe approximations of one system to the other and go into detail
on how to compute fixed points on an abstract level effectively. Next to
the formal basics we explain the application of abstract interpretation to
program analysis.

Chapter 4 has as theme programmable logics controllers and their pro-
gramming language semantics. We give an introduction to PLC hard- and
software as well as different possible modeling approaches. We focus on
two programming languages: sequential function charts and instruction list.
The high level programming language SFCs has many convenient features;
however, its semantics is far from obvious. We highlight a number of am-
biguous or undefined cases before introducing a formal syntax and semantics
for SFCs. The semantics is aimed to be as flexible as possible with respect
to different interpretations, while at the same time providing a uniform for-
mal framework. Moreover, an extension from untimed to timed SFCs is
sketched.

On the other hand we introduce the IL language. We define the syntax
of IL programs for a relevant subset of instructions. Moreover, a structural
operational semantics for this subset is defined.

The different verification approaches to the PLC languages defined in
the previous chapter are the subject of Chapter 5. We present a method
to model check SFCs. This method relies on a translation from SFC source
code to the native language of the Cadence SMV model checker. We define
this translation in detail and illustrate it by an example process taken from
chemical engineering. Moreover, we are concerned about structural proper-
ties of SFCs and introduce the notion of safe SFCs. We slightly modify the
previous translation from SFCs to the model checker and generate temporal
logic properties to check for safe SFCs.

For IL programs we define an abstract semantics which can cope with
sets (intervals) of numbers and three-valued logic. Based on the abstract
semantics we introduce the notion of abstract simulation. Moreover, we
apply the abstract interpretation approach to program analysis. This, how-
ever, is based on a fixed point computation; we point at different ways to
compute them efficiently, resulting in the application of weak topological or-
ders. Moreover, due to the specific nature of IL programs, the abstract
interpretation often results into a gross over-approximation in which stan-
dard narrowing techniques do not work. Therefore, we introduce a heuristics
based on constraint solving to improve the precision of the analysis results.

Subsequently, we present a number of applications of data flow analysis
techniques to program analysis. These are mostly based on the previous
abstract interpretation results and we demonstrate how these results can

22 Chapter 1. Introduction

improve the precision of the data flow analysis significantly.

Chapter 6 presents two tools which are a result of the previous consid-
erations. One tool is called SFCheck, which is an implementation of the
translation from SFC code to the model checker input language, the check-
ing for safe SFCs, as well as various static properties. The other tool is called
Homer and is an implementation of verification techniques for IL programs.
A number of generic properties are checked. The capabilities of both tools
are demonstrated by a number of case studies.

A summary of achievements as well as possible directions for future re-
search spawning from this thesis are presented in Chapter 7. Moreover, the
subsequent appendix provides more details about the case studies.

1.7 Bibliographic Notes

All chapters of this thesis are based, at least to some extent, on earlier
publications. The model checking introduction of Chapter 3 is based on
[HLFE02]. The overview of PLC hardware and software in Chapter 4, as
well as the classification of related work in Chapter 2, is based on [MH02].
Moreover, the semantics of SFCs in Chapter 4 are covered by ideas and def-
initions in [BHLL00a], [BH02] and [BHL02]. The translation of SFCs to the
input language of the model checker in Chapter 5 is based on [BH01]. The
application of abstract interpretation to IL programs, as well as a technique
to enhance precision stems from ideas of [BHLL00b]. The brick sorting case
study of Chapter 6 is based on [Huu02].

A general overview of related work is presented in the subsequent Chap-
ter 2. It includes and extensive overview of publications in the area of PLC
(software) verification and points also to other software verification projects
and publications not in the area of PLCs. More specific references which do
not relate to the general theme of this thesis can be found in each chapter.

1.8 Acknowledgments

For his supervision of this thesis I thank Yassine Lakhnech, and Willem-
Paul de Roever for cherishing a successful research environment over the
last couple of years. Moreover, I thank Oded Maler for being the co-referee
of this work and also for many fruitful discussions at Verimag as well as
during the VHS1 project.

Most vital have been the collaborations with my colleague Ben Lukoschus
and my direct project partners Nanette Bauer2 and Goran Frehse3. With

1European Union Esprit-LTR project 26270 VHS (Verification of Hybrid Systems).
2DFG project Integration of Software Specification Techniques in Engineering Appli-

cations, LA 1012/6-1.
3DFG project Continuous-Dynamic Systems KONDISK, LA 1012/5-1.

1.8. Acknowledgments 23

them I shared a lot of hard work as well as many enjoyable moments at
various occasions. Thank you very much!

My colleagues Martin Steffen, Karsten Stahl, Kai Baukus and Marcel
Kyas have been a great help for me, discussing current research as well as
helping me to solve various problems over the last years. I appreciate that
together with Ben Lukoschus they also took over the painful job of proof
reading.

The cooperation with my colleagues at Verimag and with my partners in
the various projects I belonged to has been eclectic and stimulating. Among
many others, I like to thank in particular Angelika Mader, Gordon Pace,
and Sébastien Bornot.

I am grateful to Birgit Vogel-Heuser for providing me with an important
case study. Moreover, I thank Wai Wong who enabled me to continue our
joint research at Hong Kong Baptist University.

Above all, I wholeheartedly thank Reinhard and Erika, as well as Andrea
and Ernst.

24 Chapter 1. Introduction

Chapter 2

Related Work

This chapter provides an overview over different approaches to algorithmic
software verification. Section 2.1 surveys a number of recent contributions
software verification in general while different approaches for PLC verifica-
tion are covered in Section 2.2. In Section 2.3 connects of the surveyed work
with this thesis are discussed.

2.1 Software Verification in General

In this section we give reference to a number of projects concerned about
algorithmic software verification in general. We cluster the references by
projects rather than by methods and techniques to give some ideas about
the combinations of different approaches. Moreover, the related projects
can be roughly divided in pure abstract interpretation and static analysis
approaches and approaches where the main emphasis is on model checking.

2.1.1 Focus on Model Checking

The Bandera [CDH+00] project addresses one of the major obstacles in the
path of practical software verification. Tools like model checkers accept
as input a description of a finite state transition system, however, models
and even more real life systems are often not finite state. The goal of the
Bandera project is to integrate existing programming language processing
techniques with techniques to provide automated support for the extraction
of safe, compact, finite-state models from Java source code that are suitable
for verification. Therefore, a number of techniques such as program slicing
[DH99], program abstractions [DHJ+01] and other static analysis techniques
are combined [CDH01].

The SLAM [BR02] project at Microsoft Research has created an auto-
mated process for finding errors in C programs, driven by a user-supplied
(temporal safety) property. The process requires that the user states the

25

26 Chapter 2. Related Work

property of interest. Then, based on given property, abstractions of the
C code are automatically created and analyzed. The process is realized in
the SLAM toolkit, which supports the creation, analysis and refinement of
abstract models for C code. The toolkit iteratively refines the model until
it is precise enough to find a true defect or to validate the given property.
The key idea is to use predicate abstractions and abstraction refinements
[BMR02].

The FeaVer project [fea] is based on model checking software with the
help of the model checking tool SPIN [Hol97]. It has given rise to a stand-
alone tool, named FEAVER, for verification of general software written in
ANSI-C. The user’s responsibility is confined to maintaining a database of
properties that the software is required to satisfy, and to interpreting the
error scenarios that the system produces. The main components of the
Feature Verification System [HS00] are: A library of properties that cap-
tures the verifiable properties of the code being checked, a model extraction
capability that can derive abstracted verification models mechanically from
implementation level C code, and a model checker running in the background
to check the source against the properties. In the same context there is a
source code analyzer called UNO under development that statically finds
the following bugs: use of uninitialized variables, nil-pointer dereferencing,
and out-of-bound array indexing [Hol02].

The Java Path Finder (JPF) [HP00] is a tool-set developed at NASA
Ames to verify Java code. It is a verification and testing environment for
Java which integrates model checking, program analysis and testing. JPF
is the second Java Model Checker developed by the Automated Software
Engineering group at NASA Ames - JPF1 used a translation from Java to
the input language of the model checker SPIN.

The Symbolic Analysis Laboratory (SAL) [BGL+00] is based on a com-
mon platform where various components for different tasks can be plugged
in. In [PSSD00] initial results in model checking multi-threaded Java pro-
grams are presented. Java programs are translated into the SAL interme-
diate language, which supports dynamic constructs such as object instan-
tiations and thread call stacks. The SAL model checker then exhaustively
checks the program description for deadlocks and assertion failures. Basic
model checking optimizations that help to curb the state explosion problem
are implemented as well.

2.1.2 Focus on Abstract Interpretation

The PolySpace Verifier1 for C and Ada programs is a commercial tool de-
signed to directly detect run-time errors and non-deterministic constructs
in applications written in the respected programming languages at compila-

1PolySpace Technologies. http://www.polyspace.com/

2.2. PLC Verification 27

tion time. The PolySpace Verifier pinpoints the faulty code section that will
cause a run-time error if the application was executed. The core technique
used in this tool is abstract interpretation [Deu94].

PolySpace Verifier targets at checking automatically and exhaustively for
the following errors: Attempt to read a non-initialized variable access con-
flicts for unprotected shared data in multi threaded applications, referenc-
ing through nil-pointers, buffer overflows such as out-of-bounds array access
and out-of-bounds pointers, illegal type conversion, invalid arithmetic oper-
ations, and unreachable code [Pol02]. However, most algorithms and ideas
are not publicly available which makes comparison to other approaches dif-
ficult.

In the same context there exists an abstract debugger for Pascal pro-
grams [Bou92]. The debugger uses abstract interpretation to check annota-
tions of programs.

The AbsInt2 company makes use of compiler technology for microcon-
trollers and digital signal processors. In particular they focus on program
optimization and the prediction of worst case execution times [FHL+01].
The analysis requires some program annotations, e.g., the maximum num-
ber cycles of a loop.

2.1.3 Other Approaches

A tool that uses neither model checking nor abstract interpretation tech-
niques is the Compaq Extended Static Checker for Java [DLNS98]. Java
programs are annotated in a given language, i.e., invariants are specified.
From these verification conditions are generated and the ESC tool checks
for various generic properties such as array bound errors, NIL pointer deref-
erences, division by zero etc. In contrast to the other discussed approaches
a theorem prover is used for the underlying decision process [FLL+02].

Static analysis heuristics are used in the Splint (previously known as
LCLint) project [Eva96]. ANSI C programs can be annotated by pre- and
postconditions and, based on this, are checked for consistency. Moreover,
Splint can detect various program vulnerabilities such as buffer overflows
[EL02].

2.2 PLC Verification

This section presents various different ideas and approaches to PLC veri-
fication. We give a comprehensive list of different approaches to all PLC
programming languages, even though not all of these languages are subject
to this thesis. This helps to relate our approach in the context of PLC ver-
ification and might give rise to future research projects. A different survey

2AbsInt GmbH. http://www.absint.com

28 Chapter 2. Related Work

can be found in [RLR99].

The order of the listed references is insignificant, however, we cluster the
approaches by the PLC languages examined in the related papers. Moreover,
we classify the approaches by what is modeled, i.e., the stand alone program
or including its environment. Moreover, in with respect the cyclic behavior
is treated: In the reviewed work either it is neglected or the execution on
the machine (PLC) is modeled as well. This can be done explicitly by
including real-time for each cycle or instruction, or implicitly when the cycle
is considered on a more abstract level as a clock tick or alike. A more
comprehensive overview of these criteria cam be found in Section 4.2 A
matrix directly relating the publications with these criteria is displayed at
the end of this section.

2.2.1 Approaches Based on Instruction List

Timed automaton. In [MW99] a timed automaton semantics is given
to Instruction List. The language fragment does not contain function and
function block calls. Timers can be modeled, but variables are restricted to
Booleans. The scan cycle is modeled explicitly, with lower and upper time
bound.

Based on this work a tool was developed as described in [Wil99]. It
translates IL programs to timed automata. The IL programs considered
allow bounded integers as variables, too. The resulting timed automata are
represented in the format as used by the model checker UPPAAL [LPY97a].
The environment is also modeled as a timed automaton synchronizing with
the automaton modeling the PLC program. For model checking UPPAAL
is used.

There are two execution mechanisms treated: explicit cyclical execution
with time intervals of variable length and instantaneous execution whenever
input signals (or timer output) change.

C/E systems. In [Bau98] condition/event-systems (including real-time)
are used to model fragments of IL programs without jumps. Data-types
are restricted to Booleans. Timers can be modeled, under the assumption
that they are started only at the beginning of a program. The scan cycle
is modeled explicitly, but with constant cycle length. The environment is
also modeled as a condition/event-system. The verification of the whole
system can be done with help of the tool VERDICT [KBP+99]. VERDICT
provides an interface to already available verification tools, such as KRONOS
[OY93a], HyTech [HHWT97] and SMV [McM00].

In [BKT] this work is extended by including also jumps and a represen-
tation of scan cycles with variable cycle length. There is a duration assigned
to each instruction and the duration of a whole scan cycle results from the

2.2. PLC Verification 29

durations of all the instructions executed in this particular program execu-
tion.

Petri nets. In [HM98] IL programs are modeled as Petri nets. The sup-
ported language fragment includes the standard set of instructions without
commands from libraries. Possible data structures are anything that can be
coded within a 8-bit word. Real-time, however, is not represented in the
model and the execution mechanism relies on the Petri nets semantics. The
properties that can be verified are those expressible in the verification tools
PEP [pep] and SMV.

NCES. Also [HTLW97] deals with Instruction List programs. The models
are Net Condition/Event systems extended by time. There is an explicit
scan cycle considered with a lower and an upper time bound. The available
data structure are Booleans only. Instruction executions are modeled by
a sequence of transitions. Furthermore, the only instructions mentioned in
the paper are LD(N), AND, OR and ST. Timers can be modeled. However,
it is not completely clear how the timer model is related to a timer call in
an IL program. There is a tool automatically translating IL programs to
timed Net Condition/Event systems.

In [RK98] a translation of net C/E systems (NCES) to the input language
of the SMV model checker is proposed.

SMV. The verification of instruction list programs is the also the issue of
[CCL+00]. The considered language fragment is a small subset consisting
of load, store, loop and basic Boolean operations. The supported data type
are Booleans, integers are allowed for comparison only. For this language
fragment a semantics and a coding in SMV is sketched. Time and timers
are not part of the model, but the cycling behavior is implicitly embedded.

2.2.2 Approaches Based on Sequential Function Charts

Timed automaton. In [LPM95] Sequential Function Chart programs are
modeled as timed automata. They abstract from explicit scan cycles, mean-
ing that a change in the environment causes an instantaneous reaction of the
program. The use of timers is restricted to a special case: with activation of
each step an associated timer is started and transitions between steps may
depend on these timers. The data types are restricted to Booleans. There
exists a compiler from SFC programs to timed automata and the verification
is done with KRONOS [OY93b].

Execution model. SFCs are examined from a control theoretic point of
view in [HFL01]. This works examines different possible executions mecha-
nisms of SFCs. In particular alternatives for evaluating transition condition,

30 Chapter 2. Related Work

activating actions and taking steps are discussed. Explicit execution times
for cycles or timers are not considered. Moreover, an approach to translate
SFCs to LDs is sketched. The resulting LD has the same untimed behavior
as the SFC, but the cycling behavior is a different one.

Domain specific language. In [Tou96] fragments of FBs and SFCs are
modeled which is based on domain specific language. Time is included in
the model. The semantics is general enough to deal with variable scan cycle
length, but in this thesis it is generally assumed that scan cycles are of fixed
time. The definition of the semantics provides also proof rules as worked
out in [AT98]. Composition with an environment is not discussed.

2.2.3 Approaches Based on Ladder Diagrams

Set constraints. In [AFS98] programs of the language Ladder Diagrams
are investigated. Variables are of type Boolean. The programs are modeled
as set constraints. Only single program executions are considered. The main
correctness property that is checked is absence of races. The model does not
include real-time and there is no model covering the environment. Instead,
input signals are chosen randomly for a finite number of times, which does
not model the complete behavior. The program analysis is done by a general
constraint resolution engine.

Transition systems. In [Moo94] PLC programs in LD are investigated.
The model is a finite transition system. The Ladder Diagrams are straight-
forwardly translated to Boolean assignments. The assignments define the
transitions between states that represent the values of the Boolean vari-
ables. Time is only treated implicitly and the environment is not taken into
account. Model checking is done with support of the SMV tool.

In [TPP97] two case studies are presented for chemical processes. The
programs are modeled as in [Moo94]. Additionally, the environment is mod-
eled as finite state machine as well. The interaction of the environment and
controller is alternating: when the controller has reached a stable state (i.e.
the control variables do not change any more), the environment may takes
a step which may have consequences on the control variables etc.

Translation to SFCs. The goal of [FK92] is to rediscover the program
structure hidden in LD programs by translating these to the more intuitive
SFCs. Therefore, the authors present a translation from LDs to SFCs (in
fact Grafcet) discussing several design issues. This work does not consider
timers, but is concerned about scan cycles. However, programs that are
executed within one cycle in LD might be executed in several cycles in the
resulting SFCs. There is no explicit notion of cycling time here and the
interaction of the programs with the environment in not considered as.

2.2. PLC Verification 31

SMV. In [RS00] a formal modeling and verification approach for Ladder
Diagrams is presented. The considered ladder diagrams comprise Booleans
and particular timers. The semantics is given in terms of SMV code and the
execution cycle is explicitly modeled, but no timing information is given for
the cycle. Verification is directly based on the chosen semantic model, the
SMV code.

2.2.4 Miscellaneous Other Approaches

Duration calculus. The goal of [Die97b] is the derivation of correct
PLC programs. Specifications are written in a subset of duration calcu-
lus. They can be transformed to a graphical representation, that is called
PLC-automata [Die97a]. From PLC-automata programs in the language
Structured Text can be automatically derived.

The semantics of PLC-automata explicitly models scan cycles. The use
of timers is restricted to the special case that certain input may be ignored
for a specified time. Real-time behavior can be analyzed for programs using
Booleans.

In [DFMV98] a timed automaton semantics is given for PLC-automata.
Consequently, PLC-automata can be transformed to timed automata and
verified with, e.g., KRONOS. Tool support is available through Moby/PLC
[Tap98].

HOL. In [KV97] the authors model specifications and implementations in
higher order logics. Function blocks are modeled as relations on streams.
According to the framework, there are no restrictions on data types. Time
is treated implicitly. In the logical framework controller and environment
specifications are simply composed by conjunction. Proofs are done with
help of a theorem prover, the Isabelle/HOL system [TN02].

Signal. In order to benefit from representations and analysis tools of the
synchronous languages community, a translation from a basic fragment of
Structured Text to the relational declarative synchronous language SIGNAL
is developed in [JFR99]. In particular representations of assignments, con-
ditionals and bounded loops in SIGNAL are discussed. Execution cycles are
considered to be implicit, however, no time or timing behavior is taken into
account.

2.2.5 Matrix of Surveyed PLC Papers

Table 2.1 provides a brief overview of the surveyed PLC papers according
to the criteria discussed. The following abbreviations are used:

32 Chapter 2. Related Work

Table 2.1: Matrix of surveyed PLC papers
paper language domain cycle model method

[MW99, Wil99] IL prg. explicit TA MC
[Bau98, BKT] IL prg. explicit TCES MC
[HM98] IL prg. implicit PN MC
[HTLW97,
RK98]

IL prg.
+ env.

explicit NCES MC

[CCL+00] IL prg. implicit SMV MC

[LPM95] SFC prg. implicit TA MC
[HFL01] SFC prg. implicit LD –
[Tou96, AT98] SFC, FB prg. explicit DSL TP

[AFS98] LD prg. implicit SC CR
[Moo94] LD prg. implicit TS MC
[TPP97] LD prg.

+ env.
implicit TS MC

[FK92] LD prg. implicit SFC –
[RS00] LD prg. explicit SMV MC

[Die97b, Die97a,
DFMV98]

PLC PLC
+ env.

explcit DC, TA MC

[KV97] FB prg.
+ env.

explicit HOL TP

[JFR99] ST prg. implicit SIGNAL –

2.3. Discussion 33

Language: FB = function block, LD = ladder diagram, IL = instruction
list, PLC = model of the PLC itself, SFC = sequential function charts, ST
= structured text.

Domain: prg. = program, env. = environment.

Model: code = program code itself, DC = duration calculus, DSL = do-
main specific language, HOL = higher order logic, LD = ladder diagram,
NCES = net condition/event systems, PN = Petri nets, SC = set constraints,
SIGNAL = SIGNAL code, SMV = SMV code, TA = timed automata, TCES
= timed condition/event systems, TS = general transition systems.

Verification method: CR = constraint resolution, MC = model check-
ing, TP = theorem proving.

2.3 Discussion

Let us distinguish between the semantics and verification aspects of the PLC
languages, namely, SFCs and IL, we consider in this work.

Concerning the semantics of IL there is no other approach that provides
an SOS semantics for this language. In fact, most approaches are based on
modeling IL programs in terms of (timed) automata, Petri nets, and NCES.
These models are mostly abstractions or simplifications of the actual lan-
guage. This holds even more for SFC semantics. There is no work that
gives a comprehensive formal semantics for SFCs including hierarchy, pri-
orities on transitions, actions and action qualifiers. For both languages this
thesis provides a significant contribution for the understanding and formal
modeling of the considered languages.

There has been little work in providing verification methods for SFCs,
yet. The only algorithmic approach in [LPM95] deals with simplified SFCs
only, not taking hierarchy, priorities or activity manipulation into account
as it is pursued in this work. On the other hand, the use of model checking
is common amongst the mentioned algorithmic software verification groups.

Model checking is also used for all verification approaches dealing with
IL programs. While this provides more freedom in defining program specific
verification properties in contrast to the generic and program independent
properties we check in this work, it constraints to (unrealistic) simple IL pro-
grams or abstract models only. Potentially infinite data structures such as
integers cannot be treated well by model checking without (hand made) ab-
stractions or bounding the range of the integers a priori. Although bounding
of ranges leads to a finite model, it is likely to be too huge to check realistic
programs. On the other hand model checking is useful in timing analysis of
cycles, e.g., worst case execution times.

34 Chapter 2. Related Work

For the IL languages the verification goals closest to our work are the
ones of PolySpace, although they are concerned about checking Ada and C
code. However, they also advocate a static analysis and abstract interpreta-
tion approach. Unfortunately, their exact methods and techniques are not
disclosed, hence, we cannot further compare our approach to theirs, e.g., in
terms of the underlying data structures or the combinations of verification
techniques.

Similar approaches are also pursued by [Bou92] and AbsInt. The lan-
guage examined by the latter is also close to IL. Both approaches, however,
require an annotation of the respective programs. Although this provides
the possibility to check more specific properties, it contravenes our idea to
keep the human effort as low as possible.

Overall, this work provides the most comprehensive formal semantics
for the PLC languages IL and SFCs at present. It is the only work tackling
PLC software verification already at source level and the combination of
data flow analysis and abstract interpretation is a novel approach to PLC
verification. Moreover, this proposed combined verification method has only
partially been explored yet and, thus, provides relevant experiences for the
design of new verification approaches.

Chapter 3

Foundations of Software
Verification

3.1 Introduction

Software verification and validation of its design process has been an issue
since the early days of programming. This starts from the problem of defin-
ing software requirements and a model for the software design leading to the
verification of its implementation and its integration into larger components.

In the current design process some methods to enhance the quality of
software have already made their way into industrial standard practice.
These comprise techniques such as listing software requirements and striving
to a clean documentation for the design process as well as code review, soft-
ware simulation, and testing to check for the correctness of the implemented
software.

However, techniques in common practice have various drawbacks.

• They often lack a formal basis. E.g., the specification is defined in
natural language, which easily leads to misunderstanding and misin-
terpretation.

• The requirements are not complete, i.e., there are cases which are not
taken into account. Hence, parts of the system remain unspecified and,
thus, are allowed to behave differently than the designer had in mind.
Especially without a formal model it is more likely to forget cases, or
cases which are defined in a contradictory way remain undetected.

• The verification of the implementation might be approached in an
unorganized way. For instance, testing is done with some arbitrary in-
puts when it is more efficient to choose data according to the boundary
conditions of the model or the implementation, simulation focuses on
“non-important” variables, and code review neglects inter-procedural
dependencies etc.

35

36 Chapter 3. Foundations of Software Verification

• Most informal techniques are not exhaustive, i.e., they do not cover all
program executions and thus give way to subtle but often fatal flaws.

Formal methods promise to remedy the above mentioned weaknesses.
However, formal methods are not fool-proofed in themselves. Sometimes
they require exhaustive knowledge in mathematics, logics and the under-
standing of the system. Moreover, they do not a priori prevent to forget
requirements or even ensure to map the real world appropriate to the model.
Especially in software design, one often has a clear idea of what to achieve,
but much less of how to specify this formally or even to define what is con-
sidered to be legal and what to be harmful. Formal methods provide tools to
further investigate into the design and verification process and, thus, allow
to enhance the quality of software significantly, but they do not buy any
guarantee that what you prove is what you have in mind.

In this chapter we lay the ground for the technical background of soft-
ware verification. In particular, we introduce the necessary mathematics in
Section 3.2. In Section 3.3 the technique of model checking is introduced
and different kinds of system models are discussed. Static analysis is in the
focus of Section 3.4 and Section 3.5. In particular, we concentrate on data
flow analysis and abstract interpretation for program analysis.

3.2 Preliminaries

In order to define the key ideas of software verification techniques used
throughout this work – such as model-checking and abstract interpretation
– we present some basic notions and notations first. Therefore, we give a
brief introduction to lattices and fixed points. A more thorough introduction
can be found, e.g., in [DP90].

3.2.1 Lattices

Lattice theory is the study of sets of objects known as lattices. It is an
outgrowth of the study of Boolean algebras, and provides a framework for
unifying the study of classes and ordered sets in mathematics. The study of
lattice theory was given a great boost by a series of papers and a subsequent
textbook written by Brinkhoff [Bri67].

In our context we will use lattices to define certain structural properties
of programs, e.g., the arrangement of control points within a program, and
to reason about computation domains. We start with some basic definitions.

Definition 3.1 (partial order, poset)
A binary relation v on a set P is a partial order if and only if it satisfies
for all x, y, z ∈ P the following conditions:

1. x v x (reflexivity),

3.2. Preliminaries 37

2. x v y and y v x implies x = y (anti-symmetry), and

3. x v y and y v z implies x v z (transitivity).

The ordered pair 〈P,v〉 is called a poset (partially ordered set) when v
is a partial order on P .

The partial order relation v can be pronounced “approximates”. It
imposes some order on the members of P , but is less restrictive than a total
order (see below). In particular, it is possible for two members of P to be
incomparable, i.e., for neither x v y nor y w x to hold, in contrast to:

Definition 3.2 (total order, chain)
A binary relation v on a set P is a total order if and only if it is

1. a partial order, and

2. for any pair of elements x and y of P , (x, y) ∈ v or (y, x) ∈ v.

That is, every element is related with every element one way or the other.
A total order is also called a linear order. The ordered pair 〈P,v〉 is called
a chain or a totally ordered set when v is a total order.

Since an order defines something like “greater-than” or “less-than” we
can also think of an maximal or minimal element.

Definition 3.3 (minimal/maximal element)
Let 〈P,v〉 be a poset. An element y ∈ P is a minimal element of P if there
is no element x ∈ P that satisfies x v y. Similarly, an element y ∈ P is a
maximal element of P if there is no element x ∈ P that satisfies y v x.

A minimal or maximal does not necessarily exist, consider for instance
the set of numbers Z with the natural order ≤. Even if it exists it does not
necessarily have to be unique. The unique elements are defined as follows:

Definition 3.4 (least/greatest element)
Let 〈P,v〉 be a poset. Then an element y ∈ P is the least element of P if
for every element x ∈ P we have y v x. Similarly an element y ∈ P is the
greatest element P if for every element x ∈ P we have x v y.

Note that the least/greatest element of a poset is unique if one exists.
This is due to the anti-symmetry of v. We call the greatest element top,
denoted by >, and the least element bottom, denoted by ⊥. The bottom
element is often referred to as “undefined”. Although the bottom element of
every different poset is also different, we use the single symbol ⊥ to denote
all of them, if it is clear from the context. Otherwise, we use ⊥P to denote
the bottom element of 〈P,v〉.

Many important properties of an ordered set 〈P,v〉 can be expressed
in terms of the existence of certain upper or lower bounds of subsets of P .
Lattices and complete lattices are also characterized in this way. But first
let us define the notions of upper and lower bounds.

38 Chapter 3. Foundations of Software Verification

Definition 3.5 (lower/upper bound)
Let S ⊆ P be a subset of a poset 〈P,v〉. An element p ∈ P is called lower
bound of S if for any element s ∈ S we have p v s. Conversely, p ∈ P is
called upper bound of S if s v p for any element s ∈ S.

In contrast to a minimal (maximal) element, the lower (upper) bound
of a poset does not necessarily belong to the set itself but to a superset
of it. Since the superset can be arbitrarily large, there may be more than
one lower (upper) bound. To characterize the lower (upper) bound which is
“closest” to the considered poset we define:

Definition 3.6 (least upper bound, greatest lower bound)
Let S ⊆ P be a subset of a poset 〈P,v〉. An element x ∈ P is called least
upper bound of S, denoted by lubS, if

1. x is an upper bound of S, and

2. x v y for all upper bounds y of S.

Similarly, an element x ∈ P is called greatest lower bound of S, denoted by
glbS, if

1. x is an lower bound of S, and

2. y v x for all lower bounds y of S.

The greatest lower bound of a set S is sometimes also called the infimum
of S and the least upper bound the supremum of S. In general, the least
upper bound (greatest lower bound) of a poset does not necessarily exist.
It does, however, for chains. For convenience we introduce the following
notations:

x t y for lub{x, y},
x u y for glb{x, y},
⊔

S for lubS, andd
S for glbS.

Sometime we call u the meet operation and t the join operation. Based
on these notations we define a lattice as follows:

Definition 3.7 (lattice, complete lattice)
Let 〈P,v〉 be a non-empty poset. We call 〈P,v〉 a lattice, if xt y and xu y
exist for all x, y ∈ P . We call 〈P,v〉 a complete lattice, if

⊔

S and
d
S

exist for all subsets S ⊆ P .

A useful property for lattices and posets in general is to know whether
they are distributive, i.e., the least upper bound distributes over the greatest
lower bound relation.

3.2. Preliminaries 39

Definition 3.8 (distributive)
A complete lattice 〈L,v〉 is distributive if for all x, y, z ∈ L we have x u
(y t z) = (x u y) t (x u z).

Another interesting property is the existence or, more precise, non-
existence of infinite strict ascending chains.

Definition 3.9 (ascending chain condition)
Let 〈P,v〉 be an ordered set. P satisfies the ascending chain condition
(ACC), if for any chain x0 v x1 v . . . in P there exists k ∈ N such that
xk = xk+1 = · · ·.

This means, any ascending chain which satisfies ACC has a greatest
upper bound and it is an element of the chain.

In order to illustrate some of the introduced terms consider the following
example.

Example 3.1 Consider the set of natural numbers with the standard “less-
than” order 〈N,≤〉. Obviously, “less-than” is a total order and, hence, 〈N,≤〉
is a chain. Moreover, N has a minimal element, namely zero, which is at the
same time the least element. But N does not have any maximal or greatest
element since there is not even an upper bound in N.

However, we can augment N by a distinct element +∞ such that N
′ =

N ∪ {+∞} and extend the order ≤ to ≤′ such that for any n ∈ N
′ we have

n ≤ +∞. Then, the resulting lattice 〈N′,≤′〉 does have a maximal and
greatest element (which is of course +∞). Moreover, 〈N′,≤′〉 is a complete
lattice, while 〈N,≤〉 is a lattice, but not a complete one. 〈N,≤〉 does not
form a complete lattice since it does not always satisfy the ACC, e.g., the
subset of all even numbers does not have a greatest element in itself or even
in N.

For the remainder of this work we mostly consider complete lattices only.

3.2.2 Complete Partial Orders

Complete partial orders are often required as a minimum algebraic structure
in order to ensure some well-behavior or the solution to certain equations as
shown in Section 3.2.3.

Definition 3.10 (directed, consistent)
Let S be a non-empty subset of an ordered set 〈P,v〉.

• S is directed, if for every finite subset F of S there exists an upper
bound z of F such that z ∈ S.

• S is consistent, if for every finite subset F of S there exists an upper
bound z of F such that z ∈ P .

40 Chapter 3. Foundations of Software Verification

It is easy to see that non-consistency arises only in ordered sets without
a top element. Moreover, every directed set is consistent.

Definition 3.11 (CPO)
An ordered set 〈P,v〉 is a complete partial order (CPO) if

1. P has a bottom element, and

2. for every directed subset D of P the least upper bound
⊔

D exists.

Note that every complete lattice is a CPO. The converse does not hold
since it does not require any greatest lower bound.

3.2.3 Fixed Points

A point that is mapped to itself within an order-preserving selfmap is gen-
erally called a fixed point. Fixed points are a long studied subject and there
has been a classical question concerning fixed points:

Characterize those (finite) ordered sets that have the fixed point
property.

The recorded history of this problem seems to start in the papers by Knaster
in the twenties and then by Tarski and by Davis in the fifties, where the
questions are answered for lattices. However, the vague formulation of the
problem has inspired many possible approaches [Sch99].

We present the basic background and the most prominent results here.
Therefore, we first define some properties on mappings that help to reason
about fixed points and their existence in the latter.

Definition 3.12 (monotone, continuous, strict)
Let 〈P,vP 〉 and 〈Q,vQ〉 be ordered sets. Let φ : P → Q be a mapping. This
mapping φ is called

• monotone, if x vP y implies φ(x) vQ φ(y),

• continuous, if for every directed set D ⊆ P we have φ(
⊔

D) =
⊔

φ(D),
where

⊔

φ(D) :=
⊔

{φ(x) | x ∈ D},

• strict, if φ(⊥) = ⊥.

A monotone mapping is sometimes called order preserving or isotone.
Note that if P has no comparable members, any φ is trivially monotone.

Since P is complete, we know that for every directed subset D of P the
least upper bound

⊔

D exists. This definition is saying, as a side effect,
that

⊔

φ(D) also exists for a continuous function. Moreover, a continuous
function is limit-preserving. The limit of a continuous function evaluated
on a chain is equal to the function evaluated at the limit of the chain. The
following lemma shows that indeed any continuous function is monotone.

3.2. Preliminaries 41

Lemma 3.1
Every continuous mapping is monotone.

Proof Let φ : P → Q be continuous, and let x v y ∈ P . Since x t y = y,
and since φ is continuous, φ(x) v (φ(x) t φ(y)) = φ(x v y) = φ(y). This
means x t y implies φ(x) v φ(y), hence, φ is monotone.

Based on the previous definitions and results we define fixed points and
present a number of known results.

Definition 3.13 (fixed point)
Let 〈P,v〉 be an ordered set and φ : P → P a mapping. A fixed point
equation is an equation of the form

φ(x) = x

in which x ∈ P satisfying the equation is called a fixed point of φ. The set
of all fixed points is

fix(φ) := {x ∈ P | φ(x) = x}.

The least fixed point of φ is defined by

µ(φ) := min fix(φ)

if it exists. Similarly, the greatest fixed point of φ is defined by

ν(φ) := max fix(φ)

if it exists.

Subsequently, we give some theorems on the existence of fixed points.

Theorem 3.1 (Knaster-Tarski)
Let 〈L,v〉 be a complete lattice and φ : L→ L a monotone mapping. Then,
⊔

{x ∈ L | x v φ(x)} ∈ fix(φ).

Proof Let G = {x ∈ L | x v φ(x)} and let g =
⊔

G which exists by the
definition of complete lattice. Moreover, by definition x v g, for all x ∈ G.
Since φ is monotone x v φ(x) v φ(g). Thus x v φ(g) for all x ∈ G and,
therefore, φ(g) is an upper bound of G. Since g is the least upper bound of
G we have in particular g v φ(g).

Since φ is monotone, φ(g) v φ(φ(g)). Hence, φ(g) ∈ G and, thus,
φ(g) v g since g is the least upper bound of G. Together with the fact that
g v φ(g) yields g = φ(g), i.e., g ∈ fix(φ).

Theorem 3.2
Let 〈L,v〉 be a complete lattice and φ : L→ L a monotone mapping. Then,
φ has a least fixed point µ(φ) and µ(φ) =

d
{x ∈ L | φ(x) = x} =

d
{x ∈ L |

φ(x) v x}.

42 Chapter 3. Foundations of Software Verification

Proof Let G = {x ∈ L | φ(x) v x} and let g =
d
G which exists by the

definition of complete lattice. Similarly, let G′ = {x ∈ L | φ(x) = x} and let
g′ =

d
G′. In order to show that g = g′ is the least fixed point of φ we show

that g ∈ G,g ∈ fix(φ), and g = g′.

1. By the definition of greatest lower bound g v x, for all x ∈ G. Since
φ is monotone and x ∈ G we have φ(g) v φ(x) v x, for all x ∈ G.
Hence, φ(g) v x, for all x ∈ G, and by the definition of greatest lower
bound, φ(g) v g which means that g ∈ G.

2. From the above we know that φ(g) v g, hence, it remains to show
g v φ(g) to prove that g ∈ fix(φ). From φ(g) v g and the monotonicity
of φ it follows that φ(φ(g)) v φ(g). This implies φ(g) ∈ G. Hence,
g v φ(g) which yields that g ∈ fix(φ).

3. Since g ∈ fix(φ) and g′ =
d
G′ we know that g′ v g. On the other

hand, we have G′ ⊆ G, thus, g v g′. This yields g = g′ and completes
the proof.

Theorem 3.3
Let 〈P,v〉 be a CPO and φ : P → P a mapping such that x v φ(x) for all
x ∈ P . Then, φ has a fixed point.

Theorem 3.4
If 〈P,v〉 is a CPO and φ : P → P a monotone mapping then φ has a least
fixed point.

The proofs for the last two theorems are far from trivial and can be found
in [DP90]. Note also that the proof of Theorem 3.4 requires the Axiom of
Choice.

While the previous theorems stated the existence of fixed points under
certain conditions, the following gives also a constructive way to fixed points:

Theorem 3.5 (Kleene)
Let 〈P,v〉 be a CPO, let φ : P → P be a monotone mapping, and define
α :=

⊔

n≥0 φ
n(⊥). Then the following two properties hold:

1. If α ∈ fix(φ) then α = µ(φ).

2. If φ is continuous then α = µ(φ).

Proof

1. Certainly, ⊥ v φ(⊥), and since φ is monotone, we have φn(⊥) v
φn+1(⊥). Hence there is a chain

⊥ v φ(⊥) v · · · v φn(⊥) v φn+1(⊥) v · · ·

3.3. Model Checking 43

in P . Since P is a CPO, α :=
⊔

n≥0 φ
n(⊥) exists. Let β ∈ fix(φ).

By induction, φn(β) = β, for all n ∈ N. By multiple application
of monotonicity of φ and since β is a fixed point, we have for all
n: φn(⊥) v φn(β) = β. Hence, β is an upper bound of the chain.
Consequently, α v β and if α ∈ fix(φ), then α = µ(φ).

2. It suffices to show that α ∈ fix(φ). Let φ be continuous. Then:

φ(α) = φ(
⊔

n≥0

φn(⊥)) =
⊔

n≥0

φ(φn(⊥)).

Since ⊥ v φn(⊥), for all n ∈ N, this implies:

⊔

n≥0

φ(φn(⊥)) =
⊔

n≥1

φn(⊥) =
⊔

n≥0

φn(⊥) = α.

3.3 Model Checking

Common to every verification task is to prove that a system, a program,
or simply an abstract model of a problem satisfies certain requirements.
Formally, this is denoted by

M |= ϕ,

where M is a model of the system, ϕ is the requirement, and |= denotes the
satisfaction relation. Model checking [QS82, CE82] is an algorithmic way to
decide whether M satisfies ϕ. Although any verification approach is based
on this, the actual logic or – more general – the formalisms to denote these
three items vary a lot. In the following we present some formal models for
each of them. We mainly focus on the ones we will use throughout this
work.

3.3.1 System Model

In this work we concentrate on verification of reactive systems. These sys-
tems communicate with their environment and may often – like operating
systems – not terminate. Hence, a model which captures their infinite be-
havior in a concise way is desirable. Simply specifying their input/output
behavior is not sufficient, it is rather interesting to know the internal state
of a system, too.

Therefore, we start by describing the behavior of a system with some
state-based formalism. Such formalisms include Petri nets [Rei85], CSP
[BHR84, Hoa85], CCS [Mil80, Mil89], different forms of automata, LOTOS
[BB87], SDL [SDL92], etc. In these formalisms, the behavior of the sys-
tem is composed of a set of components, each described in terms of local

44 Chapter 3. Foundations of Software Verification

draining fillingdrain

drain

fill

fill

Figure 3.1: Discrete automaton for a tank model

state changes or events. The global behavior of the system is given as the
reachable state-space generated from the system description.

In this work we use mainly discrete systems which can be best understood
as discrete automata. However, to illustrate their connection to timed and
hybrid systems we add a paragraph to each of them.

Discrete Automaton

A discrete automaton A = (Q, q0, δ, F) over an alphabet Σ (events, actions)
is a structure where

• Q is a finite set of control locations,

• q0 is an initial location,

• δ : Q× Σ −→ Q is a transition function, and

• F is an acceptance condition.

A sequence of actions in Σ which is produced by taking a path through
the automaton, starting with the initial location and satisfying the accep-
tance condition, is called a word. The set of all words, i.e., the set of all
possible sequences, for an automaton A is called the language of A denoted
by L(A). The acceptance condition can vary from a single location which
indicates the end of the sequence once it is reached to a set of locations
which have to be reached infinitely often. The acceptance condition mainly
determines the different kinds of discrete automata which can be found in
the literature (e.g., [Tho90]).

An example for a discrete automaton is depicted in Figure 3.1. This
automaton gives a rough model for a tank. There are two control locations
draining and filling. The double framed circle around draining indicates the
initial location. Depending on the actions drain and fill transitions depicted
by arrows are taken. We do not give an explicit acceptance condition here
and note that the model is very simplified, i.e., it is not captured that the
tank might run empty or might overflow.

3.3. Model Checking 45

draining fillingdrain

drain

fill

fill

x>10 x:=0

x:=0x>10

x<=10x<=10

Figure 3.2: Timed automaton for a tank model

Timed Automaton

In contrast to discrete automata, the setting of timed automata [AD94] is in
a dense real-time world. To express quantitative time, clocks are introduced
which are real-valued variables evolving over time. Moreover, they can be
checked against thresholds, and they can be reset when a transition is taken.

Formally, a timed automaton over an alphabet Σ is a quadruple T =
(Q, q0, C,E) where

• Q is a finite set of locations,

• q0 is the initial location,

• C is a finite set of clocks, and

• E is a set of edges of the form (q, γ, a, ρ, q′), where q, q′ ∈ Q are the
source and target locations, γ is a transition condition, i.e., a Boolean
formula over clock variables and thresholds, a ∈ Σ is an action and ρ

is the set of clocks that are reset when this transition is taken.

The language of a timed automata is given by the set of all execution
sequences over time. Traditionally, infinite sequences are considered where
time grows infinitely.

A timed automaton example is depicted in Figure 3.2. In contrast to
Figure 3.1 there is a clock x which constraints the moments transitions are
taken. This clock serves as a timer for draining and filling periods. Starting
from the initial location draining the location is changed only if x is greater
than 10. If so the x is reset and control will reside in location filling until
the clock value exceeds 10 again. In the meanwhile self-loops are possible.

Hybrid Automaton

Discrete automata do not incorporate quantitative time, but timed au-
tomata do so by the use of clocks. However, they do not model arbitrary
continuous functions. This feature is covered by so-called hybrid automata
[ACHH93]. These allow do model and reason about a set of continuous
variables evolving over time.

Formally, a hybrid automaton H = (Q, q0,Var , E,Act , Inv) over an al-
phabet Σ consists of

46 Chapter 3. Foundations of Software Verification

draining fillingdrain

drain

fill

fill
h>=0h>=0

dh=−2

h<=10

dh=1

h<=10

Figure 3.3: Hybrid automaton for a tank model

• a finite set of locations Q with some initial location q0,

• a finite set of real-valued variables Var ,

• a finite set E of discrete transitions, where each transition e = (q, ρ, a,
q′) between two locations q, q′ ∈ Q is labeled by some action a ∈ Σ and
depends on a transition condition ρ which reasons about the variables
in Var ,

• a labeling function Act that assigns a set of activities to each loca-
tion q ∈ Q. The activities describe how the variables in Var evolve
continuously as long as control resides in q, and

• an invariant Inv(q) for each location q ∈ Q which defines the terms
on the variables in Var for control to reside in q.

The semantics of an hybrid automaton is defined by all trajectories of
the continuous variables as well as the actions over time.

A hybrid model for the tank example is shown in Figure 3.3. This model
describes the tank level h in a filling and draining process. Draining is two
times faster than filling. Although possible, there are no guards or resets
on the transitions, but invariants in the locations determine when exactly
control is allowed to stay there. Note that there also exist different timed
automaton models with invariants, deadlines, and urgency. Mostly this
has little effect on the expressiveness (cf. [Sta98]), but allows more or less
convenient notations.

3.3.2 Computational Model

In the previous section we described very briefly how to derive a behavior
from each description model. However, the models themselves are merely
syntax and in order to formally derive a semantics, i.e., the system’s be-
havior, the system description can be mapped to a mathematical abstract
representation. This abstract representation is also called computational
model and represents the semantics.

One way to describe a computational model is a state transition system.
It consists of states and and has also the ability to represent the fact that
in any given state the system reacts to certain actions and might enter new

3.3. Model Checking 47

system states. This pair of system states is then called a transition. The
semantics of a system is then determined by the sequences of all transitions
in a system that start from some given initial state. One formal way to
describe these state transition systems are Kripke structures [Kri63], named
after the logician Saul A. Kripke who used transition systems to define the
semantics of modal logics. Transition systems are graphs consisting of states,
transitions and a function that maps each state to a set of properties which
hold in that state.

Formally, we define a Kripke structure as follows: Given a set of atomic
properties P , also called propositions, a Kripke structure K = (S, S0, R, µ)
contains the following components:

• S is a set of states,

• S0 ⊆ S is a set of initial states,

• R ⊆ S × S is a transition relation, which is required to be total, i.e.,
for every state s ∈ S there exists an s′ ∈ S such that (s, s′) ∈ S, and

• µ : S −→ 2P is a labeling function that assigns a set of propositions
to every state.

An execution sequence of a Kripke structure is defined as a possibly
infinite sequence π = s0s1s2 . . . such that s0 ∈ S0 and for every index i > 0
in π we have (si−1, si) ∈ R. This means starting from the initial state we
go along a path in the graph represented by the Kripke structure. The
semantics of a system described by a Kripke structure is the set of all its
sequences, i.e., all possible paths from all initial states.

In order to describe the semantics of a system model it is translated into
such a computational model first. This means, the system model represents
the syntax and the computational model the semantics. For the different
types of automata presented above, the computational models are also dif-
ferent. While discrete automata only have to reflect the control location in
a state, timed and in particular hybrid systems need to reflect time as well
in a state. Since time is dense for both the latter models, it is not always
guaranteed to find a finite representation of these systems. However, using
abstract or symbolic state representations, i.e., the clustering of concrete
states into equivalence classes, in many cases a finite representation is pos-
sible also for timed and so called linear hybrid automata. The latter are
hybrid automata which only allow fixed (but arbitrary) rates for the con-
tinuous variables. A finite representation is important in order to guarantee
termination for algorithmic approaches like model checking.

3.3.3 Temporal Logics

Describing the system formally is only one thing. For verification it is also
necessary to describe the requirements posed to a system in a formal style.

48 Chapter 3. Foundations of Software Verification

There are different ways to do so. One fundamental issue is to choose be-
tween an operational or a declarative way. In this context operational means,
e.g., using automata itself in order to specify the desired properties. The
advantage is that the same framework for system modeling is also used to
specify the system requirements. However, it is often a bit tedious to for-
mulate requirements as automata, and automata are sometimes not as easy
to understand as requirements. The declarative way means using logics to
specify the requirements.

As mentioned before, we are mainly interested in reactive systems and,
therefore, are concerned about the states of a system as well as the transi-
tions between these states. Since basic propositional logic allows to reason
about states only but not sequences of states or transitions, so-called tempo-
ral logic [Pnu81] is used in order to remedy this fact. Temporal logic extends
propositional logic, i.e., Boolean proposition with connectivities such as log-
ical conjunction, disjunction and negation, with modal operators. These
are operators like always or eventually that allow reasoning over execution
sequences and can be combined with the usual connectivities.

Let us define propositional logic first. Based on propositions p logical
expressions can be constructed by the following rules:

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2

Other Boolean connectives like “∨”, “⇒”, and “⇔” can be derived from
“¬” and “∧” as usual.

The semantics is straightforward and we is not shown here. Next, we
present the extension from propositional to temporal logic. In general we
can define and distinguish between two main temporal sub-logics, namely,
linear time and branching time.

Linear Time Temporal Logic

One way to describe requirements is to define desired sequences in time.
Linear Time Temporal Logic (LTL) allows to reason about paths in compu-
tational models like Kripke structures. In order to do so, propositional logic
is extended by the following basic modal operators:

• ©. This denotes the modality “next” and requires that a property
holds in the next state of a path, e.g., a path π in a Kripke structure
satisfies ©ϕ if and only if ϕ is satisfied in the second state of π.

• U . This denotes the infix modality “until”. I.e., a path π in a Kripke
structure satisfies the expression ϕUψ if and only if ψ is satisfied in
some later state of π, and ϕ holds in all states in between, including
the first state of π. This is meant by the expression “ϕ until ψ”.

3.3. Model Checking 49

LTL is founded on these basic modalities and their free combination
with propositional logic. From these the following useful abbreviations can
be defined:

• 3 means “eventually”, and a path π satisfies the expression 3ϕ if and
only if there exists a state in π which satisfies ϕ.

• 2 means “always”, and a path π satisfies 2ϕ if and only if all states
in π satisfy ϕ.

Branching Time Temporal Logic

In contrast to LTL branching time logics do not reason over single paths
but over sets of paths, more precise, trees. One logic which does so is called
Computational Tree Logic (CTL) which is propositional logic extended by
path quantifiers and temporal operators. The temporal operators are the
same as in LTL presented above. The path quantifiers are “∃” which requires
a single path to exist that satisfies some property and “∀” which requires
all paths of the computational model to satisfy some property.

CTL formulas are constructed from propositional logic, temporal opera-
tors and path quantifiers in the following way: Every formula starts with a
path quantifier, every path quantifier is immediately followed by a temporal
operator, and every temporal operator is preceded by a path quantifier.

This allows to build formulas such as

• ∃2ϕ, which means that there exists a path where always, i.e, for all
states, ϕ holds, and

• ∃3∀2ϕ, which means there exist a path with a certain state from
whereon for all paths, i.e., branches, ϕ is always true.

Remarks

Note that CTL and LTL not only use different means to describe system
properties, but in general there are LTL formulas which cannot represented
in the CTL framework, and vice versa. Moreover, while linear time ap-
pears to be conceptually simpler than branching time, the latter is often
computationally more efficient.

For both types of logics there exist real-time extensions. This means the
logics provide the possibility to reason about explicit time and distances.
We do not go into detail here.

3.3.4 Tools and Limitations

Returning to the initial task of checking M |= ϕ, model checking is, as
mentioned, an algorithmic (i.e., automatic) way to decide whether a model

50 Chapter 3. Foundations of Software Verification

M satisfies ϕ or not. There are several tools supporting model checking.
For discrete automata and logics like CTL or LTL there for instance SPIN
[Hol97] and SMV [McM00] as well as its improved version CaSMV [JM01]
from Cadence Labs we use later in this work. For checking timed automata
with real-timed logics there are Uppaal [LPY97a], KRONOS [OY93a] and
extensions of SPIN. For linear hybrid systems HyTech [HHWT97] is a tool
that enables to check reachability of certain states of the corresponding
linear hybrid automaton. Moreover, there are many more tools which are
also based on other system description models as well as logics.

For checking reactive systems one of the presented system models and
logics is often used. However, due to fundamental limitations not every
model and every logics is applicable for model checking. Timed and even
more hybrid systems are restricted to certain classes, since a finite state
representation in whatever way has to be guaranteed in order to keep model
checking possible, i.e., decidable.

Despite of these basic fundamental restrictions model checking has also
to cope with serious complexity issues which are described in the next sec-
tion.

3.3.5 Complexity Issues

One of the main drawbacks of state-based formal verification methods is
the so-called state explosion problem: When a large system consists of sev-
eral smaller components (e.g., automata) running in parallel, the number of
global states increases exponentially with the number of components. For
instance, consider a system of 20 automata working in parallel, each of which
having 10 local states. This amounts to 1020 global states. The simple task
of enumerating these states on a machine that needs only one nanosecond
per state (which is considerably fast at the time of writing) already takes
over 3000 years. Building and searching a graph based on these states takes
significantly longer and is far beyond today’s memory capabilities.

The state explosion problem is inherent in any system having parallel
structures and poses a major complexity problem to any verification method
based on the exhaustive enumeration of global states. Several techniques
have been developed to minimize the impact of this problem on the time
and memory consumption of the model checking process. Often a model
checking algorithm uses a combination of several such techniques, which are
discussed in the following.

Note that although all these methods can result in a significant speedup
in practice, they are limited by the worst case complexity inherent to the
problem. E.g., model checking LTL or CTL properties for Kripke structures
is polynomial in space, in fact n logm where n is the length of the formula
and m is the size of the Kripke structure. When it comes to concurrent pro-
grams, i.e., different automata composed in parallel the problem is already

3.3. Model Checking 51

PSPACE-complete even for a fixed formula [LP85, VW94, KVW00]. For
an overview of different complexity issues in model checking LTL and CTL
formulas we refer the reader to [Var01].

Global vs. Local Strategy

In accordance with the two parameters of the model checking problem, the
model M and the requirement ϕ, there are two basic strategies when de-
signing a model checking algorithm, the “global” and the “local” strategy
[Mer01]. “Global” means the algorithm operates recursively on the structure
of ϕ and evaluates each sub-formula over the whole M , while the local strat-
egy checks only parts of the state space at a time but for all sub-formulas
of ϕ. The worst-case complexity of both approaches is the same, however,
the average behavior can differ significantly in practice. Traditionally, LTL
model checking is based on local approaches while for CTL global algorithms
are applied.

“On-the-fly” Techniques

The classical model checking approach builds a complete state transition
graph of the system and performs a search on this graph. But often a large
part of the graph is not traversed during the search or is even unreachable
from the initial state(s) of the search. Therefore it is often a good idea to
construct the graph in an “on-the-fly” fashion [CVWY92, BCG95]. That
is, only the part of the graph that is currently needed is constructed during
the search and kept in memory for later reuse, often supported by caching
algorithms.

Efficient Data Structures

A considerable amount of memory can be saved using efficient data struc-
tures during the model checking process. One prominent example are binary
decision diagrams (BDDs) [Bry86, Bry92], which are used as a compact rep-
resentation of Boolean functions. Ken McMillan suggested in his PhD thesis
[McM92] to use them for model checking, and today BDDs and similar data
structures are the key solution for efficient memory usage in many kinds of
computation software.

In the field of timed automata the observation that despite their contin-
uous nature, clocks are often compared only to each other and a finite and
bounded number of constants, opened the possibility to discretize the state
space for model checking. So called clock regions are stored in data struc-
tures like difference bounded matrices (DBMs) [Bel57, Dil90] and are used
in most model checking tools for timed automata like KRONOS [OY93b]
and Uppaal [LPY97b].

52 Chapter 3. Foundations of Software Verification

Abstraction

Abstraction is a fundamental concept used in all formal verification methods.
Abstracting means replacing a concrete object with an abstract one which
is more universal, and therefore, often has a simpler structure than before.
A well-chosen abstraction simplifies as much as possible, without losing too
much information about the concrete object. Abstractions can be used in
different ways during the specification and verification process:

• Building the system model: Every translation from a real-life system or
an informal system description into a formal model is an abstraction.

• Optimizing the system model: Depending on the property that is to
be checked, different abstractions of the system model can be useful,
e.g., by abstracting from data, time, or continuous variables to obtain
simpler models.

• Reducing the complexity of model checking: Model-checkers often use
abstractions to minimize time and space usage, e.g., by introducing
symbolic states.

When abstracting a system model, often a so-called safe abstraction is
chosen: Whenever a property holds for the abstract system, it also holds for
the concrete system. The converse, however, does not always hold, due to
the over-approximation which occurs in the abstraction process. A positive
model checking result on a safe abstraction therefore means that the concrete
system also fulfills the property, whereas a negative result can either mean
that the concrete system is not correct or that the abstraction is too coarse.

Thus, when getting a negative result, the counterexample provided by
the model-checker is examined to see if the error will also occur in the
concrete system. If it doesn’t, a finer abstraction has to be chosen.

Compositionality

Another important concept is compositionality. In a compositional approach
the system model is split into components. Each component is then specified
as a single entity, and its correct behavior can be proved by model checking.
The specifications of all components are then combined to get the global
property of the system model. A prerequisite for this approach is that the
behavior of the components is completely described by its specifications such
that the behavior of the global system model only depends on these specifi-
cations and not on any additional information about the internal structure
of the components.

The advantage of such an approach is obvious. Consider the example
at the beginning of this section (20 automata, 10 local states each). A
compositional approach yields 20 applications of a model checking algorithm,

3.4. Data Flow Analysis 53

each of which involving only 10 states, whereas the global approach applies
model checking once, but on a set of 1020 states. There is, however, some
(often significant) overhead for the decomposition of the system model and
the construction and the composition of the local specifications.

3.4 Data Flow Analysis

In this section we present a well-known static analysis technique called data
flow analysis (cf. [NNH99], [Muc97], [ASU86]). It is a flow sensitive method
to derive information related to the flow of data along control paths, more
precise, for every program point information that summarizes some property
of all the possible dynamic instances of that point are computed. It does
distinguish between when and how a particular instance is reached.

Data flow analysis originates from compiler construction and was born
out of the urge to develop efficient and compact code. For instance, a pro-
gram containing assignments to a variable which is not used in the latter, i.e.,
containing dead code, is sub-optimal, this code fragment can be eliminated
and the resulting program code is more compact.

After defining some basic terms and providing the necessary background
for data flow analysis in Section 3.4.1 we present a number of classical data
flow problems in Section 3.4.2. Subsequently, in Section 3.4.3 we provide the
formal framework for data flow analysis and present two general iterative
algorithms for the analysis in Section 3.4.4.

3.4.1 Basic Definitions

As mentioned, data flow analysis is concerned about the flow of data along
the control paths of a program. In order to reason about this, we define the
basic terms, i.e., we define what is a program, what is a control path and
what is a data flow.

A Simple WHILE Language

The kind of programs we consider throughout this section are simple Pascal-
like WHILE programs allowing assignments to variables, the empty assign-
ment SKIP, while-do-od constructs, and if-then-else conditionals. The se-
mantics should be clear from the context and we do not go into further
detail here, since we only use this language for high level demonstration
purposes.

A program example is shown in Figure 3.4. There is no particular func-
tionality we are interested in, but we use this program throughout the section
for mainly syntactic illustration purposes. It works as follows: The variables
x and y are initialized with the value of z+1. Afterwards, while x is less than
10, x is doubled in every iteration and depending on whether x equals the

54 Chapter 3. Foundations of Software Verification

square of y, y is set to either z+z or z*z. If control leaves the while-loop, the
empty statement SKIP is executed. Again, we are not so much interested in
the semantics of this program, but the flow of data as illustrated in the next
sections.

x:=z+1

y:=z+1

WHILE x<10 DO

x:=x+x

IF x=y*y

THEN y:=z+z

ELSE y:=z*z

OD

SKIP

Figure 3.4: Program example

For convenience we define for any program P the following abbreviations:

• VarP as the set of variables in P ,

• ExprP as the set of all arithmetic expressions occurring in P , and

• AssignP as the set of assignments occurring in P .

If the program we are referring to is clear from the context we may freely
omit the program index. Moreover, if not stated otherwise we use the term
expression as an abbreviation for arithmetic expression.

Flow Graphs

In general data flow problems can be interpreted as information flow prob-
lems on graphs. The vertices are elementary blocks and the edges describe
how control might pass from one block to the other.

Definition 3.14 (elementary block)
Any single assignment or Boolean test is called an elementary block.

We assume there is a unique identifier associated to each elementary
block. Sometimes we want to reduce the number of vertices in the graph by
not reasoning about elementary blocks but basic blocks.

Definition 3.15 (basic block)
A basic block is a maximal sequence of assignments which are executed
sequentially. In particular it does not contain loops or branching. The set
of all identifiers of elementary and basic blocks of a program P is denoted
by BlockP .

3.4. Data Flow Analysis 55

y:=z+1

x:=z+1

WHILE x<10 DO

x:=x+x

IF x=y*y

THEN y=z*z

ELSE y=z+z

OD

SKIP

y:=z+1

x:=z+1

WHILE x<10 DO

x:=x+x

IF x=y*y

THEN y=z*z

ELSE y=z+z

OD

SKIP

Figure 3.5: Partitioning in elementary and in basic blocks

For the example program of Figure 3.4 a partitioning into elementary
blocks and into basic blocks is depicted in Figure 3.5. Sometimes we do
not represent a partitioning graphically but print the identifiers of blocks as
labels to their statements. For the program in Figure 3.4 this is depicted in
Figure 3.6. In the latter when referring to a certain label we in fact refer to
the according statement.

[x:=z+1]1

[y:=z+1]2

WHILE [x<10]3 DO

[x:=x+x]4

IF [x=y*y]5

THEN [y:=z+z]6

ELSE [y:=z*z]7

OD

[SKIP]8

Figure 3.6: Program example with labeled blocks

The vertices of a flow graph are blocks while the edges is a relation on
blocks representing the flow of control.

Definition 3.16 (flow graph, flow, reverse flow)
A flow graph G = (N,E, nini , nfin) is a graph built from of a set of vertices
N consisting of elementary or basic blocks, a set of edges E ⊆ N × N , a
distinct initial vertex nini ∈ N and a final vertex nfin ∈ N .

The edge relation is sometimes called the flow. The reversed edge relation
to a given flow graph is called reverse flow and denoted by ER.

56 Chapter 3. Foundations of Software Verification

Since we allow SKIP statements in the WHILE language, we can assume
without loss of generality that every flow graph has isolated entries. This
means that for an edge relation E and an initial node nini :

∀n ∈ N : (n, nini) 6∈ E.

In the same way we assume that every flow graph has isolated exits which
means that for an edge relation E and a final node nfin :

∀n ∈ N : (nfin , n) 6∈ E.

These assumptions make things technically easier when doing data flow anal-
ysis and are generally assumed in standard literature.

Figure 3.7 shows the corresponding data flow graph for the example
program of Figure 3.4. The elementary blocks are number as is Figure 3.6.

1

2

3 4 5

6

7

8

Figure 3.7: A data flow graph

3.4.2 Classical Data Flow Examples

In order to illustrate data flow analysis techniques and what they are capa-
ble of, we present a number of classical analysis problems and relate these
to flow graphs. This section is mainly targeted to give some intuitive un-
derstanding about the class of problems and how these are solved. A formal
framework and algorithms for actually solving these problems are given in
the subsequent sections.

Available Expression Analysis

The problem to be solved for available expression analysis can be stated as
follows:

3.4. Data Flow Analysis 57

For all program nodes, which expressions must have already been
computed, and not modified, on all paths to the program point?

This question originates from compiler construction and the answer to it is
useful for avoiding re-computation of an expression. A bit more formal the
problem can be rephrased as:

Definition 3.17 (available expressions problem)
Determine for every node n of a program P the set of expression ExprP such
that in every path from the initial node nini to n all expression e ∈ ExprP
are computed and not modified prior to n.

Let us consider the labeled program of Figure 3.6. Obviously, at label
2 the expression z+1 is available, since it has just been computed in the
preceding assignment. Moreover, the variable z is never redefined in the
whole program, this means that for all program points the expression z+1

is available as well. On the other hand, the expression z+z is at no other
point available than at the exit of label 6, right after it has been computed.
For all other labels, e.g., at the entry of label 4, the expression z+z might
be still available after taking the then-branch of the conditional, but it is
not ensured that it must been available as demanded in the definition, since
on the first entry to the loop this expression is definitely not available and
afterwards only if the then-branch is taken. Hence, it is not available on
every path leading there.

We list for every program point of the program printed in Figure 3.6 the
set of available expressions:

label entry exit

1 ∅ {z+1}
2 {z+1} {z+1}
3 {z+1} {z+1}
4 {z+1} {z+1, x+x}
5 {z+1, x+x} {z+1, x+x, y*y}
6 {z+1, x+x, y*y} {z+1, x+x, z+z}
7 {z+1, x+x, y*y} {z+1, x+x, z*z}
8 {z+1} {z+1}

Note that it is not sufficient to talk about the available expressions “at
label” but one has to distinguish between “at the entry of label” and “at the
exit of label”, since any label corresponds to some block where expression
are generated while others are killed.

Section 3.4.3 and Section 3.4.4 present how the sets of available expres-
sions can be determined for each program point and how they are computed
in an algorithmic manner. Here the intuitive idea is the main objective.

58 Chapter 3. Foundations of Software Verification

Reaching Definitions Analysis

The reaching definition analysis is close to the available expressions analysis,
but not expressions are examined but assignments and it is a not a must
reachability but a may one. This can be phrased as:

For all program nodes, which assignments may have already been
made, and not overwritten, on all paths to the program point?

The motivation of this analysis is created from the urge to have compact
code and to determine relation between blocks that generate assignments
and blocks which use them (read the assigned values). This information
sometimes helps to reshuffle parts of the code to obtain better results for
compiling.

The above description of the reaching definitions problem can be defined
as follows:

Definition 3.18 (reaching definitions problem)
Determine for every node n of a program P the set of assignments A ⊆
AssignP such that for any assignments a ∈ A there exists a path from the
initial node nini to n where a is computed and not overwritten prior to n.

Let us consider the labeled program of Figure 3.6 once more. The avail-
able expressions analysis in the previous section yields that at the exit of
program point 2, the only available expressions is =z+1. However, the set of
assignments that may be made without prior overwriting at the entry of 3
is considerably larger: {x:=z+1, y:=z+1, x:=x+x, y:=z+z, y:=z*z}. Any
of these assignments may have been unaltered when reaching the entry of 3,
either since it is the first time the loop is entered or one of the if-then-else
branches has been taken. Moreover, the whole assignment is of interest and
not just the expression on the right hand side as in the previous example.
However, within the if-then-else construct it is clear that the assignment
x:=z+1 is not a reaching one, since the assignment in 4 has definitely over-
written it.

We list for every program point of the program in Figure 3.6 the set
of reaching definitions, for the sake of brevity we abbreviate any assign-
ment of the form x:=e by (x, n) where n is the number of the label of the
corresponding assignment.

3.4. Data Flow Analysis 59

label entry exit

1 ∅ {(x, 1)}
2 {(x, 1)} {(x, 1), (y, 2)}
3 {(x, 1), (x, 4), (y, 2), (y, 6), (y, 7)} {(x, 1), (x, 4), (y, 2), (y, 6), (y, 7)}
4 {(x, 1), (x, 4), (y, 2), (y, 6), (y, 7)} {(x, 4), (y, 2), (y, 6), (y, 7)}
5 {(x, 4), (y, 2), (y, 6), (y, 7)} {(x, 4), (y, 2), (y, 6), (y, 7)}
6 {(x, 4), (y, 2), (y, 6), (y, 7)} {(x, 4), (y, 6)}
7 {(x, 4), (y, 2), (y, 6), (y, 7)} {(x, 4), (y, 7)}
8 {(x, 1), (x, 4), (y, 2), (y, 6), (y, 7)} {(x, 1), (x, 4), (y, 2), (y, 6), (y, 7)}

As it is observable from this example, the set of reaching definition grows
very large if there are many variables which are not assigned a value fre-
quently or if there are many paths, i.e., there is a lot of branching.

Very Busy Expression Analysis

An expression is call very busy at the exit of some program point, if this
expression is used on all subsequent paths before being overwritten. The
goal is to determine:

For every program point, which expression must be very busy at
the exit from that point?

The use of this analysis is obvious, whenever it is known that an ex-
pression is very busy, it is for sure that it will be used again and, thus, it
value can be stored for later use. This technique is also known as hoisting
an expression. We define the very busy expression analysis goal as follows:

Definition 3.19 (very busy expression problem)
Determine for every node n ∈ N of a program P the maximal set of expres-
sions E ⊆ ExprP such that for every expression e ∈ E and for every path
leaving n, there exists a program point nk ∈ N such that e is used in the
statement corresponding to nk and any variable in e is not altered prior to
nk.

We illustrate this definition by Figure 3.6. The only very busy expression
available in the example is z+1 at the exit of block 1, since this expression
will definitely be used again in block 2. For all the other expressions it is
not guaranteed that they will ever be used at least twice. For instance, any
expression in the loop may be used again, by looping once more, but it is
not sure that they must be used again since the loop might as well terminate
without re-using any expression.

For the sake of completeness, we present the full analysis result to the
very busy expression problem of the program in Figure 3.6:

60 Chapter 3. Foundations of Software Verification

label entry exit

1 ∅ {z+1}
2 {z+1} ∅
3 ∅ ∅
4 ∅ ∅
5 ∅ ∅
6 ∅ ∅
7 ∅ ∅
8 ∅ ∅

Although in this example there is only one very busy expression, in
general there can be significant improvements from storing values that must
otherwise be re-computed.

Live Variable Analysis

A variable on is called live from the exit of the considered program point,
if there exists a path to a use of the variable such that the variable is not
overwritten in between. The task of the live variable analysis is to determine:

For every program point, which variables may be live at the exit
from that point?

This analysis appears to be useful for dead code elimination. Consider
an elementary block assigning some value to a variable v. If from that block
onwards the variable is not used anymore or is overwritten before being
used, i.e., is not live, the first assignment to v was obviously of no use at all,
hence, it can freely be eliminated. Formally, the live variable problem can
be phrased as:

Definition 3.20 (live variable problem)
For every program point n ∈ N of a program P determine the maximal set
of variables V ⊆ VarP such that for every variable v ∈ V there exists a path
from n to some program point nk ∈ N where v is used without being altered
prior to nk.

For the example in Figure 3.6 the variable x is live from the exit of block
1 for any program point despite 8 and the exit of 3. The reason is, there
exists always a path in the program such that x might be used without being
overwritten before. On the other hand, y is, e.g., not live anymore after the
exit of 5, since in every possible path from there, i.e., any if-then-else branch,
y is overwritten before being used again. However, from entry of 8 onwards
no variable is used anymore.

We give the full analysis result of the live variable problem:

3.4. Data Flow Analysis 61

label entry exit

1 ∅ {x}
2 {x} {x, y}
3 {x, y} {x, y}
4 {x, y} {x, y}
5 {x, y} {x}
6 {x} {x, y}
7 {x} {x, y}
8 ∅ ∅

3.4.3 Formal Data Flow Framework

In the previous sections we gave some basic definitions and provided some
intuition about different data flow analysis problems. The aim of this section
is to put data flow analysis into a formal framework.

First of all data flow analysis requires a framework for representing the
properties of the flow problem. Like in available expression analysis there
is the need to represent the space of possible expressions or in live variable
analysis the space of possible variables for each program point. Moreover,
operations and an order on these properties are necessary to compare dif-
ferent intermediate solutions and decide which one approximates better.

Definition 3.21 (property space)
The data flow information and operations on them are represented in a
property space 〈V,v〉, which forms a complete lattice.

As seen in Section 3.4.2 the properties for a given block may differ from
the entry to the exit of that block depending on its statements. Transfer
functions are used to produce this effect.

Definition 3.22 (transfer function)
A transfer function on a property space 〈V,v〉 if a monotone mapping fb :
V → V where b ∈ Block.

It is natural to demand monotonicity here, since any increase in the
input knowledge should definitely not lead to a decrease in the knowledge
about the output.

Definition 3.23 (monotone function space)
The monotone function space F over a lattice 〈V,v〉 is the set of all func-
tions such that:

1. ∃id ∈ F : ∀v ∈ V : id(v) = v,

2. ∀v ∈ V : ∃f ∈ F : ∀v′ ∈ V : f(v′) = v,

3. ∀f, g ∈ F : f ◦ g ∈ F , and

62 Chapter 3. Foundations of Software Verification

4. ∀f ∈ F : ∀v1, v2 ∈ V : f(v1 u v2) v f(v1) u f(v2).

The first requirement in the above definition demands the existence of
the identity relation, the second characterizes the zeros of a space, the third
the closure under composition and the last states monotonicity.

The combination of a lattice of values and a collection of transfer function
yields a description of a class of data flow problems.

Definition 3.24 (monotone data flow framework)
A data flow framework D = (V,F) consists of a lattice over data flow values
〈V,v〉 and function space F over it.

In order to implement a data flow framework, a common requirement
is that the lattice 〈V,v〉 satisfies the ascending chain condition, i.e., any
computation finally stabilizes.

Sometimes more efficient algorithms for a data flow problem can be con-
structed if a data flow framework is distributive.

Definition 3.25 (distributive data flow framework)
A data flow framework D = (V,F) is distributive if it is a monotone data
flow frame work and satisfies:

∀f ∈ F : ∀v1, v2 ∈ V : f(v1 t v2) = f(v1) t f(v2).

By now we have defined the notions of flow graphs and data flow frame-
works, however, there is yet no relation between them. This missing link is
given by the following definition:

Definition 3.26 (instance of a data flow framework)
An instance I = (G,β) of a data flow framework D = (V,F) is a binding of
transfer functions to nodes of the flow graph G = (N,E, nini , nfin). This is
accomplished through a binding function β : N → F .

The binding function β associates a transfer function f ∈ F to every
program node n ∈ N . This transfer function captures the effects of that
node with respect to the information being gathered throughout the analysis
process and which are represented as values in V . For convenience we denote
the transfer function β(n) by fn.

Example 3.2 The idea of a data flow framework is illustrated in Figure 3.8.
The given data flow graph represents the program of Figure 3.4 without the
explicit initial and final nodes. Moreover, it is illustrated for node 2, how
the binding function β associates a transfer function f to each node.

The solution of a data flow problem is an approximation to the problem
information to each program node in the flow graph. Data flow analysis
problems can be formulated directly as equations that give the information

3.4. Data Flow Analysis 63

1

2

3 4 5

6

7

8

V

V

fβ

Figure 3.8: Data flow framework

for a node in terms of the information at its predecessor and functions that
capture the local effects of a node:

out(n) = fn(in(npred1
), . . . , (inpredk

))

where in(n) is the problem information at the entry of node n ∈ N and
out(n) is the information at the exit of node n. A data flow framework is a
formalism for describing a class of data flow analysis problems. It provides
the types for the in(.)/out(.) variables and the transfer function f ∈ F . An
instance of a framework provides information that tells us which variables
and functions to equate; thus providing a system of related equations:

out(n0) = >

∀n ∈ N − {n0} : out(n) =
l

i∈Preds(n)

fi(in(i))

A data flow analysis problem is solved by computing the greatest fixed
point of the above equation system. In this equation system n0 denotes the
entry node of the analysis (either nini or nfin), > denotes the top element
of the lattice V ,

d
the meet operation and Preds(.) the set of predecessor

nodes. The actual instances of these notions depend on the analysis problem
and whether a forward or a backward directed analysis is performed.

For the classical examples, the instantiations of the analysis scheme is
presented in Table 3.4.3. Alternatively, the data flow problem can be stated
in terms of a least fixed point if in Table 3.4.3 top is replaced by bottom
and the order is reversed.

We go into detail for two examples of the presented table:

64 Chapter 3. Foundations of Software Verification

Table 3.1: Different analysis schemes
avail. expr. reaching def. very busy expr. live var.

V P(ExprP) P(ExprP × BlockP) P(ExprP) P(VarP)
w ⊇ ⊆ ⊇ ⊆d ⋂ ⋃ ⋂ ⋃

> ExprP ∅ ExprP ∅

flow E E ER ER

n0 nini nini nfin nfin

Example 3.3 For live variables the analysis is usually done in a backwards
fashion, i.e., we consider the backward flow ER of a program P . Starting
from the final node nfin , information is propagated backwards in such a
manner that every assignment to a variable makes the variable live before
this assignment, which is definitely true. For merging points the information
is the union of the incoming information, since we are interested in the set of
variables which may be live at this particular point. The least information
we might know, is that no variables are live, i.e., the bottom element is ∅
and, hence, we consider the sets are partially ordered by ⊆ resulting into
the lattice 〈P(VarP),⊆〉.

Example 3.4 In contrast to the live variable analysis the available expres-
sion analysis is a must analysis, i.e., we are interested in the set of expres-
sion which definitely must arrive at some program point. Hence, whenever
it comes to merging operations the intersection is used. Moreover, the avail-
able expression analysis is done in a forward directed way, i.e., starting from
the initial node nini the flow E is followed. This is clear when considering
that if an expression is used we are interested how long it will be available
without being overwritten. Since we are always interested in the least so-
lution of the equation system, it is natural to define the bottom element as
full set Expr and the partial order as ⊇. Hence, the lattice is 〈P(ExprP),⊇〉.

3.4.4 Iterative Solvers for General Frameworks

The formal data flow problem is defined in Section 3.4.3. But there is
no algorithmic way presented on how to solve data flow problems such as
the ones in Section 3.4.2. In this section we present for each class of for-
ward/backward data flow problems a general algorithm to their solution.

Algorithm 3.9: Iterative solution to general forward directed data flow
problems.

Input: A data flow framework D = (V,F) on a flow graph G = (N,E, nini ,

nfin) with a function Preds(.) to determine the set of predecessor nodes
and an extremal value vini for the initial node.

3.4. Data Flow Analysis 65

out(nini) = vini ;
for (each node n ∈ N other than nini) do out(n) = > od;
change = true;
while (change) do
change = false;
for (each node n ∈ N other than nini) do
in(n) =

d
ni∈Preds(n) out(ni);

oldout = out(n);
out(n) = fn(in(n));
if out(n) 6= oldout then change = true fi;

od
od

Figure 3.9: General Algorithm for forward analysis

Output: The data flow solutions in(n) and out(n) for every node n ∈ N .

Algorithm 3.10: Iterative solution to general backward directed data flow
problems.

Input: A data flow framework D = (V,F) on a flow graph G = (N,E, nini ,

nfin) with a function Succs(.) to determine the set of successor nodes
and an extremal value vfin for the final node.

Output: The data flow solutions in(n) and out(n) for every node n ∈ N .

The algorithms for forward and backward problems are very similar.
In both algorithms the starting node is initialized and all other nodes get
the information as given by the top value. For the forward analysis the
entry is the initial node and for the backward analysis the entry is the final
node. Next, the transfer functions and meet operations, where necessary,
are applied to each node. Depending on the result, i.e, whether anything
has changed or not, the whole process is iterated once more until every node
is stable, i.e., an application of the transfer functions and meet operations
to any node does not change the result. Hence, a fixed point is reached.

Remark 3.1 We can make the following observations:

1. If the algorithms converge, the result is a fixed point solution to the
data flow equation system.

2. Given a monotone framework and that all program point are initialized
with the > element. If the algorithm converges it will produce the
maximum fixed point (MFP) solution to the equation system.

66 Chapter 3. Foundations of Software Verification

out(nfin) = vfin ;
for (each node n ∈ N other than nfin) do in(n) = > od;
change = true;
while (change) do
change = false;
for (each node n ∈ N other than nfin) do
out(n) =

d
ni∈Succs(n) in(ni);

oldin = in(n);
in(n) = fn(out(n));
if in(n) 6= oldin then change = true fi;

od
od

Figure 3.10: General algorithm for backward analysis

3. If the data flow problem is based on a lattice of finite hight the algo-
rithms are guaranteed to converge.

Approximations of the Ideal

A valid question to ask is: What is the ideal solution to a data flow problem?
The ideal is to take the meet over all paths of a program which are actually
executed. This means, every run of a program is covered but nothing more
or less. Unfortunately, it is undecidable to determine exactly these paths.
An approximation to this is the set of all paths in a program. Certainly,
this is an over approximation, since the program semantics is not taken into
account and, i.e., more possible executions are considered than there actually
exist. For instance, if the condition of the while-loop of Figure 3.6 is set to
false there will be no execution of any assignment in its body. However,
it yields a solution to the data flow problem which is often called the meet
over all paths (MOP). Note that the set of all paths might still be infinite,
e.g., if the flow graph contains cycles. The computation of an MOP solution
is, hence, also undecidable.

The maximum fixed point solution does not first compute all paths and
afterwards the meet of them. It applies the meet operation whenever it
reaches some confluence point and it iterates not necessarily in the order
of execution. However, it is only guaranteed to exist under the mentioned
circumstances of Remark 3.1. What is it worth then?

Lemma 3.2
Given the instance I = (G,β) of a data flow framework D = (V,F). Then:

1. The MFP solution safely approximates the MOP solution. This means,
if the meet operation of V is

⋂

then the MFP solution is a subset of

3.5. Abstract Interpretation 67

the MOP solution and if the meet operation of V is
⋃

then the the
MFP solution is a superset of the MOP solution.

2. If the data flow frame work is distributive the MFP solution equals the
MOP solution.

Proof [NNH99]

Iteration Strategies

The random application of transfer functions to all nodes in each iteration is
not very efficient, it is just slightly better than completely randomly choosing
nodes and to do transformations on these, which is called chaotic iteration.
The reason is that these strategies to not take into account any information
flow and how information of different nodes interrelate. E.g., in the program
of Figure 3.6 information from node 1 will propagate via node 2, via node 3
and so on. It is therefore unnecessary to compute the information of node
7 or 8 right after a start from node 1. More efficient strategies often rely
on worklists. These represent ordered queues which determine the order of
transfer function applications. One task is to find well suited strategies to
build and update these worklists. We do not go into detail here, but return
to this topic more deeply in Section 5.3.3.

3.5 Abstract Interpretation

Abstractions are key issues when designing, verifying or implementing soft-
ware. Any model or specification of a system is an abstraction of the real
world. Certainly, not every aspect of the real world is covered by a specifica-
tion since it is based on ‘relevant’ facts only. The same holds for the analysis
of a program or a system specification. Abstractions are done in order to
obtain a finite model when, e.g., doing model checking or to reduce the size
of the model to relevant facts only. Even for programming abstractions are
done since a program does not take care of every aspect of the real world
and neglects aspects which are not directly related to the tasks which have
to be performed. For instance, it is not necessary to respect input values
from certain sensors if these sensors are irrelevant to the control task.

The goal of this section is to provide a notion of abstraction and the
interpretation of models or programs on abstract levels. We mainly focus on
ideas and notions introduced by Patrick and Radhia Cousot [Cou78], [CC79].
These have been used in various fields and a more complete introduction can
be found, e.g., in [Cou81], [CC92], [Cou01] or [NNH99].

68 Chapter 3. Foundations of Software Verification

3.5.1 Galois Connections

In order to reason formally about abstractions and abstract interpretation
let us consider two domains P and Q where P is the concrete and Q is the
abstract domain. To express a relationship between these domains we define
a an abstraction function

α : P → Q

mapping elements of the concrete domain to the abstract domain and
we define a concretion function

γ : Q→ P

mapping elements from the abstract domain to the concrete one. However,
abstractions and concretion should not be arbitrary mappings between two
domains but should reflect the intuitive notion of their relation, i.e., that
an abstraction is an approximation of something concrete and it should be
possible to move from one to the other. Therefore, we define in the spirit of
[Ore44]:

Definition 3.27 (Galois Connection)
Given two posets 〈P,vP 〉 and 〈Q,vQ〉 with their abstraction function α and
concretion function γ. Then, (P,α, γ,Q) forms a Galois connection if

∀x ∈ P : ∀y ∈ Q : α(x) vQ y ⇔ x vP γ(y).

In this work we regard abstractions in terms of Galois connections be-
tween two domains. This means, whenever going back and forth between
an abstract and a concrete domain we are still safe with respect to any local
approximation v although we might loose precision. This is illustrated in
the following example.

Example 3.5 Let I be the set of all intervals over numbers augmented by
the top element [−∞,+∞] which denotes the interval comprising all num-
bers including infinity. The empty interval [] represents the bottom element
⊥. Consider the poset 〈P(Z),⊆〉 which is the power set of numbers with the
standard partial order on inclusions. Moreover, consider the poset 〈I,⊆I〉
which is the set of intervals with the straightforward notion of inclusion. In
fact, both posets are lattices. Let the abstraction function α be determined
by

α : z 7→ [min z,max z]

mapping every set of numbers to the interval defined by the maximal and
minimal element of the set. Conversely, let the concretion function γ be
determined by

γ : [ql, qu] 7→ {z ∈ Z | ql ≤ z ≤ qu}

mapping every interval to the set of numbers covered by the interval.

3.5. Abstract Interpretation 69

For a given set Z = {−1, 4, 5} of numbers we have α(Z) = [−1, 5]
and γ(α(Z)) = {−1, 0, 1, 2, 3, 4, 5}. In particular, α(Z) ⊆I [−1, 5] ⇔ Z ⊆
γ([−1, 5]). It is easy to see that (P(Z), α, γ,I) forms a Galois connection
since, if the abstraction of a set, i.e., an interval, is included in another
interval, the concretion of the later interval yields at least a set that com-
prises the original one, and vice versa. This coincides well with the natural
understanding of abstractions.

Sometimes the interest lies not only in the abstraction of one system into
the other one but successive abstractions until a desired level is reached. This
requires some means of composition.

Definition 3.28 (Sequential Composition of Galois Connections)
Given the Galois connections (P,α1, γ1, Q) and (Q,α2, γ2, R). Their se-
quential composition is defined by (P,α2 ◦ α1, γ1 ◦ γ2, R).

Hence, the sequential composition is based on a sequential application of
the abstraction and concretion functions. It is easy to check that the result
of this composition is again a Galois connection.

For the remainder of this work we will assume that all the Galois con-
nections do not involve simple posets but complete lattices, if not otherwise
stated. Moreover, if we denote a concrete lattice by L then we denote the
abstract lattice by L#.

3.5.2 Fixed Point Approximations

As seen in the previous section Galois connections provide means of ab-
straction for related lattices, i.e., domains. In this section we study the
relationship of fixed points on concrete and abstract lattices.

Definition 3.29 (Safe Approximation)
Given a Galois connection (L,α, γ, L#) with the continuous functions φ :

L→ L and φ# : L# → L#. We say that φ# is a safe approximation φ if

α ◦ φ ◦ γ vL# φ#.

This means, the operator φ# approximates the operator φ safely, if on
an abstract level φ# comprises the effects of φ and ensures safety when going
back and forth between an abstract and a concrete domain.

Moreover, as shown in [Cou81] for any least fixed point µ(φ) its abstract
counterpart µ(φ#) is also iteratively computable and is a safe approximation,
i.e.:

µ(φ) vL γ(µ(φ#))

or in other words, the concretion of µ(φ#) safely approximates the concrete
fixed point µ(φ).

70 Chapter 3. Foundations of Software Verification

A question that arises is, how to compute safe approximating operators?
By definition, a safe approximation φ# of φ is always guaranteed by com-
puting φ# such that α ◦ φ ◦ γ = φ#. However, this is often impractical and
might even be uncomputable, since γ(l#) for l# ∈ L# is not necessarily fi-
nite. In these cases the abstract operator is constructed manually and later
shown to be a safe approximation.

Moreover, we are interested in reaching a fixed point on the abstract
level, even though there might be none on the concrete level. Fixed point
theory states that we can always effectively compute a fixed point of a
monotone function, if its lattice is finite or it satisfies the ascending chain
condition [DP90]. However, in practice the lattice might not satisfy either of
these requirements or it is of finite hight (i.e., it has only finite chains), but
it is still too costly to compute the fixed point. Subsequently, we present
acceleration techniques that ensure a safe approximation of abstract fixed
points for lattices of very high or even infinite hight.

Widening

As reasoned before, the least fixed point can be computed effectively on a
lattice, if the lattice satisfies the ascending chain condition. This means, the
chain produced by iterating

µ
#
0 = ⊥

µ
#
k+1 = φ#(µk)

where φ# is monotone, satisfies

µ
#
k v µ

#
k+1

and will always converge.

The crucial question is, how can we ensure the existence of finite ascend-
ing chains? One way to do so is to introduce some acceleration operator
that does terminate the iteration sequence (prematurely) by calculating an
upper bound which is a post-fixed point, i.e., a safe approximation of the
original fixed point.

Definition 3.30 (Widening Operator)
Given a complete lattice 〈L,v〉. A sequence ∇ = (∇n)n∈N of operators is
called widening operator, if every operator ∇n satisfies

∀x, y ∈ L : x t y v x∇n y

3.5. Abstract Interpretation 71

and for every chain (xn)n∈N the chain (yn)n∈N defined by

y0 = x0

yn+1 = yn ∇n xn+1

stabilizes at some point, i.e., there exists a certain nk ∈ N where

∀n ∈ N : n ≥ nk :⇒ yn = ynk
.

This means the resulting sequence is stable from a certain sequence element
onwards.

To understand that any fixed point induced by widening is indeed a safe
approximation of the original fixed point, consider the following: Given a
continuous function f : L→ L in a complete lattice 〈L,v〉. Let µf denote
the least fixed point of f which exists by Lemma 3.1 and Theorem 3.2. This
means

µf =
⊔

n∈N

fn(⊥).

In particular µf is an upper bound of the chain

µf0
= ⊥

µfn+1
= f(µfn

).

Assuming a widening operator ∇ we can compute the sequence

ϕ0 = ⊥

ϕn+1 =

{

ϕn ∇n f(ϕn) if ¬(f(ϕn) v ϕn)
ϕn if f(ϕn) v ϕn

and know by definition of the widening operator that there is a least element
where the sequence stabilizes, i.e., there exists a least fixed point, µ∇f , of the
widening sequence. Moreover, testing f(ϕn) v ϕn exactly corresponds to
testing whether ϕn is an upper approximation of f(ϕn). Hence, any fixed
point µ∇f is an upper approximation of µf . A detailed proof of this can be
found in [Bou92].

In particular this leads to the result that in a Galois connection setting
(L,α, γ, L#) any abstract fixed point µ(φ#) can be safely approximated by
its corresponding fixed point µ∇(φ#) obtained by iterated widening on the
abstract level defined as follows:

ϕ
#
0 = ⊥ (3.1)

ϕ
#
n+1 = ϕ#

n ∇n φ
#(ϕ#

n). (3.2)

72 Chapter 3. Foundations of Software Verification

Intuitively this means, if we start iterating the abstract fixed point from
the bottom element, apply widening in any iteration and use the result
for the next iteration. Since widening leads by definition to a converging
sequence the equation system determined by 3.1 and 3.2 computes a safe
approximation of the least abstract fixed point.

Example 3.6 Consider again the Galois connection (P(Z), α, γ,I) of Ex-
ample 3.5. Assume a function

f : P(Z) → P(Z)

on the concrete domain such that

f : Z 7→







{0} if Z = ∅
{z ∈ Z | minZ ≤ z ≤ (maxZ) + 1} if maxZ < 10
{z ∈ Z | (minZ) − 1 ≤ z ≤ maxZ} if maxZ ≥ 10

and a function
f# : I → I

on the abstract domain such that

f# : [a, b] 7→







[0, 0] if [a, b] = []
[a, b+ 1] if b < 10
[a− 1, b] if b ≥ 10.

We can observe that the least fixed point µf of f is {z ∈ Z | z ≤ 10}
and the least fixed point µf# of f# is [−∞, 10]. It is straightforward to

proof that f# is a safe approximation of f . However, for none of the two
functions we can effectively compute their fixed point by iteration, since this
would require infinitely many of them.

We define a widening operator ∇ on the abstract domain by

[] ∇ x = x∇ [] = x

[a1, b1] ∇ [a2, b2] = [if a2 < a1 then −∞ else a1,

if b2 > b1 then +∞ else b1].

It can be shown that ∇ is in fact a widening operator, however, a very crude
one. This means, whenever we do widening on two intervals and detect that
the second interval has higher upper bound or lower lower bound we jump
to the respective limit immediately. We use the widening operator ∇ to
compute the least fixed point µ∇

f# as follows:

ϕ
#
0 = []

ϕ
#
1 = [] ∇0 f

#([]) = [0, 0]

ϕ
#
2 = [0, 0] ∇1 f

#([0, 0]) = [0,+∞]

ϕ
#
3 = [0,+∞] ∇2 f

#([0,+∞]) = [−∞,+∞]

µ∇
f# = ϕ

#
4 = [−∞,+∞] ∇3 f

#([−∞,+∞]) = [−∞,+∞].

3.5. Abstract Interpretation 73

After only 3 iterations we obtain the least fixed point of the widening
sequence, µ∇

f# = [−∞,+∞], which is a safe approximation of µf# , however,
not a very precise one. Note, though, that slightly changing the threshold
in f# (and f) from 10 to 0 would yield the precise fixed point. In the same
way the widening operator can be adapted to the threshold 10 such that in
the above iteration process the precise fixed point is reached.

Unfortunately, there is always a trade off between quick termination of
the iteration process and high precision. Of course there is no algorithmic
way to determine the optimal widening operator with respect to the precise
fixed point, since otherwise it would be computable right away.

Narrowing

As seen above the use of an acceleration technique to enforce stabilization
might lead to great loss of precision. In oder to reduce this gross over-
approximation we introduce a second acceleration operator called narrowing.
The general idea is to start from the approximated fixed point obtained in
the widening phase and then to decrease towards the least fixed point but
without ever passing below it. Therefore, we define a narrowing operator as
follows:

Definition 3.31 (Narrowing Operator)
Given a complete lattice 〈L,v〉. A sequence ∆ = (∆n)n∈N of operators is
called widening operator, if every operator ∆n satisfies

∀x, y ∈ L : y v x ⇒ y v x∆n y v x

and for every chain (yn)n∈N the chain (zn)n∈N defined by

z0 = y0

zn+1 = zn ∆n yn+1

stabilizes at a certain nk ∈ N:

∀n ∈ N : n ≥ nk :⇒ zn = znk
.

Example 3.7 We continue with Example 3.6. We define a narrowing op-
erator ∆ on the abstract domain by

[] ∆ x = x∆ [] = []

[a1, b1] ∆ [a2, b2] = [if a1 = −∞ then a2 else min(a1, a2),

if b2 = +∞ then b2 else max(b1, b2)].

74 Chapter 3. Foundations of Software Verification

This means the ∆ operator gives an approximation better than infinity
whenever possible and, otherwise, returns the interval comprising exactly
both arguments. As mentioned before, the key idea is to apply the narrowing
operator to the abstract fixed point obtained through widening. This means,
we start from of [−∞,+∞] and obtain:

ψ
#
0 = [−∞,+∞]

µ∆
f# = ψ

#
1 = [−∞,+∞] ∆0 f

#([−∞,+∞]) = [−∞,+∞]

The least fixed point µ∆
f# obtained through narrowing remains the same

we already obtained in the widening phase. But let us consider a function
f

#
10 defined slightly different than f#:

f
#
10 : [a, b] 7→







[0, 0] if [a, b] = []
[a, b+ 1] if b < 10
[a− 1, 10] if b ≥ 10.

The only difference to the original function is that we explicitly give the
upper limit of the resulting interval (i.e., 10) in the case that b is greater
or equal 10. The abstract fixed point is still [−∞, 10] and by fixed point
iteration using widening we still obtain [−∞,+∞] as a fixed point. However,
using narrowing we now obtain

ψ
#
0 = [−∞,+∞]

ψ
#
1 = [−∞,+∞] ∆0 f

#
10([−∞,+∞]) = [−∞, 10]

µ∆
f
#
10

= ψ
#
2 = [−∞, 10] ∆1 f

#
10([−∞, 10]) = [−∞, 10]

which correspond to the least fixed point of f#.

As a conclusion we can draw that widening/narrowing allows us always
to effectively compute a fixed point. The design of the widening/narrowing
operator as well as the function itself determines the precision of the results.
Generally, the function itself cannot be changed and the widening/narrowing
is difficult to design such that it yields high precision. Hence, the main
contribution of the widening/narrowing operator is to find any fixed point,
precision might be enhanced by additional methods. We return to this issue
in Section 5.3.4.

3.5.3 Abstract Interpretation for Program Analysis

Abstract interpretation is a very general framework that can be applied
to various fields: To syntax in order to compare grammars, to semantics
that helps to design semantic hierarchies, to typing, to model checking and
program transformations in order to provide suitable means of abstractions.

3.5. Abstract Interpretation 75

In this work we are mainly interested in abstract interpretation for program
analysis.

In general, to prove any property, e.g., of the WHILE language we in-
troduced in Section 3.4.1 in an automated fashion is impossible due to un-
decidability. But as we have seen in the previous section, abstract inter-
pretation including widening/narrowing enables us to effectively compute
approximated fixed points even though the concrete ones cannot be com-
puted. Thus, the basic idea is to effectively compute approximations of
the program semantics and prove properties on this approximation. This
enables the detection of approximated run-time errors at compile time. In
particular, there are two issues we have to consider: What kind of seman-
tics serves best for this purpose and how should the abstract domain be
designed?

Collecting Semantics

A very general and low level approach to represent operational semantics
are traces. Traces correspond to possible infinite sequences of states. For
instance, every run in a Kripke structure as defined in Section 3.3.2 is a trace.
As already remarked by Floyd [Flo67], to prove static properties of programs
it is sufficient to consider sets of states associated with each program point.
To illustrate this, consider the program in Figure 3.11 annotated by labels
as in Section 3.4.1:

[x:=1]1

WHILE [x<10]2 DO

[x:=x+1]3

OD

[SKIP]4

Figure 3.11: Program fragment to illustrate semantics

A trace based semantics for this fragment yields a sequence (only state
changes recorded):

〈(x,⊥), (x, 1), (x, 2), (x, 3), (x, 4), (x, 5), (x, 6), (x, 7), (x, 8,)(x, 9,)(x, 10)〉

while the collecting semantics describes the sets of possible variable values
for each program point. In a data flow analysis like notation we obtain:

label entry exit

1 (x,∅) (x,{1})
2 (x,{1,. . . ,9}) (x,{1,. . . ,9})
3 (x,{1,. . . ,9}) (x,{1,. . . ,10})
4 (x,{1,. . . ,10}) (x,{1,. . . ,10})

76 Chapter 3. Foundations of Software Verification

In this table the entry row covers the possible program variable values
before a program point and the exit row after that program point, i.e.,
after executing the corresponding statement in the given semantics. More
formally:

Definition 3.32 (Collecting Semantics)
Consider a concrete domain D. The collecting semantics {|p|} ∈ P(D) of a
program p is the set {[[p]]ι | ι ∈ In} of possible output values in D correspond-
ing to a given set of input values Block as defined by the standard semantics
[[p]].

When analyzing program in an abstract interpretation framework, we
often ask question such as “Is it possible that x is zero at a specific program
point?” or “Does x ever exceed 10 at this program point”? We call questions
(and answers) like these concrete program properties. On an abstract level we
might ask similar questions about, e.g., intervals. However, in order to make
full use of the abstract interpretation framework it is necessary to relate the
concrete property space P = P(D) in the collecting semantics of domain D
with an abstract property space P# by a Galois connection (P,α, γ, P#).
In fact, the previous examples on (P(Z), α, γ,I) are just instances of this
idea. We return to this in Section 5.3.2.

Abstract Domains

Up to now we focused on intervals as abstract domains only. Although we
will use intervals for the remainder of this work, too, it is worth considering
other representations for abstract domains. The general idea is to find do-
mains that are most suitable for an abstraction of concrete domains and the
representation of the respective program properties to be examined. Finite
concrete domains are often less a problem since their analysis reduces to
finite state model checking. However, the domains may still be too large for
efficient analysis. More difficult are infinite domains like integers.

In general, abstractions can be classified as relational and non-relational.
Relational abstractions take relationships between different variables like
x = 2y into account, while non-relational abstraction neglect these relation-
ships and consider variables as single entities. For instance, ordinary interval
abstractions cover no information about the relationships of different vari-
ables. The same holds for the well known sign abstraction [CC79], where
values are classified in two categories whether they are negative or not. The
same holds, e.g., for simple congruence abstractions [Gra89].

On the other hand structures like octagons or, more general, polyhedra
[CH78] approximate the concrete space incorporating relationships between
variables. Sophisticated methods take also linear [Gra91] or trapezoid linear
congruences [Mas92] into account, which roughly resemble ideas from vector
spaces and spans.

3.5. Abstract Interpretation 77

It is not clear which abstraction method is optimal for a given class
of problems, but generally the more sophisticated representations require
also more computation to check for inclusion or to perform unions of such
elements. Since we are in particular interested in range checking and giving
an upper and lower bound to possible variable values we remain focused on
intervals.

78 Chapter 3. Foundations of Software Verification

Chapter 4

Semantics

4.1 Introduction

PLC programming languages are defined in [IEC98], but this standard is
mainly concerned with syntactic and technical issues. The semantics is de-
scribed in an informal way with leaves plenty of room for different interpreta-
tions. Moreover, the described behavior of the PLC programming languages
is often ambiguous or incomplete. Since any precise reasoning about PLC
programs requires a precise semantics, we define a formal semantics for SFCs
and IL in this chapter.

First we consider different modeling issues of PLCs and PLC languages
in Section 4.2. This serves as a basis for the design decisions we make about
the semantics we introduce subsequently. In Section 4.3 we give a com-
prehensive introduction to SFCs. We point to ambiguities of the informal
semantics as described in the standard and explain how to resolve them.
Based of these consideration we define a formal syntax and semantics for
SFCs. Moreover, the semantics is parametric, i.e., it can be easily adapted
to various interpretations of the semantics as used by existing tools and,
therefore, is a unification of existing implementations. Section 4.4 gives an
introduction to the language IL. The syntax is defined and we give an SOS
style semantics for this language.

4.2 Modeling PLCs

When designing or modeling PLCs there are a number of different views
and different level of abstractions possible. This is even more true, if there
is an interest in verification where the type of properties plays an impor-
tant additional role. In this section we describe some possible views and
categories that help to understand the different approaches in modeling and
verification.

79

80 Chapter 4. Semantics

4.2.1 PLCs and their Environment

PLC models and their verification can either concern the composition of
a PLC and its environment, or a PLC alone. In the latter case the PLC
is modeled in isolation of the environment it is embedded in, this means,
the reactive behavior is either built into the PLC model implicitly by the
integration of assumptions over the environment, it is neglected, or the PLC
is modeled as an open system allowing arbitrary environment behavior.

A PLC model can also be derived solely from the program code or its
specification. In principle, all the rich theory about modeling programming
languages can be applied here. PLCs use mainly domain specific languages
(apart from more recent developments where also languages like C are in-
troduced to PLCs). The advantage of such domain specific languages with
restricted functionality is that they allow tailored, optimal models. The dis-
advantage is, however, that the PLC languages actually used are extremely
diverse and often do not reflect the state of the art in programming lan-
guages.

On the other hand, to prove properties about the whole system behavior
it is desirable to consider both, the PLC and the environment, respectively
their models. With respect to modeling one of the relevant questions is how
to compose the model of the controller and the model of the environment.
This means, their interaction and communication is a crucial modeling as-
pect. Moreover, also for the environment one has to find a suitable level of
abstraction. Clearly, nobody wants to model the whole world around the
PLC but relevant parts only.

4.2.2 Scan Cycles

As we have seen in Section 1.4, one of the features that distinguishes PLCs
from other systems is that everything is bound to a scan cycle. There are a
number of possible ways to model or abstract from this cyclic behavior.

Explicit Scan Cycles

By explicit modeling of the scan cycle we understand that the model includes
the cyclic execution mechanism of the PLC program together with its timing
information, i.e., its execution times on a machine.

For modern PLCs it is the case that the scan cycle time depends on
the actual execution path of the program. A lower bound for a scan cycle
is always the (constant) time that the i/o phase takes, together with the
amount of operating system actions performed periodically (self-checks etc.).
The rest of the scan cycle time consists of the program execution time, which
can vary depending on the state of the program (i.e., internal variables and
input variables) and the code to be executed.

4.2. Modeling PLCs 81

An explicit scan cycle model often leads to the analysis of timing behav-
ior and worst case execution times. Consider, for instance, a PLC controlled
chemical plant: opening and closing a valve and starting or stopping the flow
of some liquid takes generally far more time than a scan cycle. Timing is
not that critical. On the other hand, “fast” applications as, for instance,
air bags have reaction times close to the scan cycle time. In fact, for these
applications it has to be shown that the scan cycle time is short enough
to solve the control problem adequately (tight loop control). In some envi-
ronments both phenomena can occur, a generally “slow” plant can contain
“fast” subparts. A timing analysis can be crucial.

Another example where an explicit timing model is useful comes with
asynchronous communication, where one PLC sends a signal which has to
be read by another PLC. The sending PLC must ensure that the signal is
stable long enough to be read by the receiving PLC. For the sending PLC,
the lower time bound is relevant, and for the receiving its upper time bound
of the scan cycle length. Of course, two different PLCs have independent
scan cycles.

Implicit Scan Cycles

By an implicit modeling of the scan cycle we understand that the cyclic
behavior for program execution is modeled, but the (real-time) duration of
each scan cycle is not considered. This abstraction is useful if there is no
need for a worst-case timing analysis or reaction times comply well to the
synchrony hypothesis anyway.

We consider the following examples: For older PLCs each program exe-
cution takes exactly the same time. There is a program memory for a fixed
number of instructions that are all executed in each scan cycle. For shorter
programs the remaining space is filled with skip-instructions. The worst-
case execution time is fixed. In some modern PLCs a similar behavior can
be found: an alternative program execution mode to the cyclic one as de-
scribed above is a periodical execution mode. There, the program execution
is started periodically with fixed time intervals (where the interval should
be longer than one program execution). Finally, there are PLCs with an
builtin time out, i.e., the cycle lengths might vary, but a worst-case time is
pre-defined.

For these examples the scan cycles can be assumed implicitly, e.g., by a
clock tick. The cycle time itself is irrelevant, what is of interest is that there
is a cycle and that these cycles can be distinguished.

Abstracted Scan Cycles

By abstracting from scan cycles we understand models where i/o-phase and
program execution take place in zero time and is generally not modeled at

82 Chapter 4. Semantics

all. This type of modeling is often sufficient where one is concerned about
program analysis only and not in any timing behavior at all. Generally,
these types of models to not include the environment or allow a chaotic
environment, i.e., where any input can occur anytime.

Without further assumptions zero execution time would allow for Zeno-
behavior, i.e., infinitely many program executions within a finite time inter-
val. Therefore, any combination of a timed model and a model where scan
cycles are abstracted has to be chosen carefully.

4.2.3 Time

One classification of PLC models closely related to the other categories de-
pends on the use of time and timers. Time can be incorporated in different
ways. Each instruction may take some time or each scan cycle may take
time. This notion of time can be based on real numbers or just on discrete
clock ticks.

The most precise way of modeling the real time behavior of the program
execution is to include the different program execution times explicitly into
the model. One possibility to do this is to model each program instruction
individually and attaching an explicit duration to it. A run of the model then
reassembles not only the concrete, actual program execution instruction-wise
but also sums up their execution times. Another possibility, which is less
precise, is to define an upper and a lower bound for a whole program exe-
cution and letting the program model non-deterministically execute within
the time interval defined.

Timing information is also suitable for analysis of delays that are caused
by the cyclic operation mode. For example, when analyzing an alarm clock
that ideally is started at some moment and should ring after a specified
delay, the question is whether this alarm does really ring after the exact
amount of time. In a PLC setting it almost never does. The reason is that
in general the cyclic behavior induces some additional delay. Therefore, one
has to be careful when testing for equality to a point in time or if delays in
a program are assumed to be exact.

Another aspect where time is introduced is given by the PLC program-
ming languages themselves. They allow the use of timers and to reason
about them.

In general, for approaches including real-time the models generated are
quickly getting very large, and further abstraction or sophisticated verifica-
tion techniques have to be used for analysis.

4.2.4 Software Features

Next to the different programming languages for PLCs as sketched in Sec-
tion 1.4 there are number a features specific to PLCs.

4.2. Modeling PLCs 83

Datatypes

In the standard PLC languages types such as Booleans, integers and reals
are available. For many control tasks reals are not necessary: if some sensor
data reaches a threshold then some actuators are set on or off. Moreover, real
number computations often cost much time and there is a trend to remove
costly real number computations from a PLC to a PC (that communicates
with the PLC) in order to keep the scan cycle within predictable bounds.
Therefore, it is reasonable to investigate the class of programs where the
only data-types are Booleans and Integers.

Language Fragments

PLCs are built by many different manufacturers. Many of them used to
define their own programming languages. One intention of the standard
was to bring conformity to the confusing variety of languages. The standard
contains the five different languages as introduced in Section 1.4.

Besides providing conformity, a standard should also aim to be accepted
by a large number of manufacturers. This happens only, if the difference
between their traditional programming environments and the ones provided
by the standard is not too big. Therefore, the standard has also a collecting
function. A sensible restriction of language constructs and a clear definition
of semantics of the languages would simply throw several brands out of the
game. As a consequence, these topics are on purpose not addressed by the
standard. However, this is a disadvantage for a formal treatment of the
languages. From the theoretician’s point of view the languages are over-
loaded with constructions that are not at all necessary for expressiveness.
Instead, some of them introduce non-trivial semantic ambiguities. On the
other hand, there is a precise but unimplementable semantics. An example
are the timers: there is a precise definition based on a continuous data-flow
model. It cannot and does not translate to any implementation as specified,
because every PLC only approximates a continuous control.

In this situation our conclusions are:

• It does not make sense to give semantics to a full language.

• When trying to formally analyze PLC programs it is essential to care-
fully select the fragments of languages that are treated.

• It is useful to develop programming guidelines and a programming
discipline which restrict the class of programs that should be verified.
Even in a defined language fragment it is not desirable to be able to
verify every thinkable (and possibly unstructured) program.

However, when considering only language fragments, this should be in
the first place a horizontal restriction. It is certainly necessary to integrate

84 Chapter 4. Semantics

different languages into one formal approach: many PLC programs are (and
have to be) written in more than one language. In a typical case, a program
structure is given in SFC, the transition conditions are Boolean expressions
written in ST, and the actions attached to each step may be in IL.

Timers

Basically, there are two reasons to use timers. They can be characterized as
follows:

1. The duration of an output signal is controlled, i.e., an output signal
has to be stable for a certain time. A simple example here is a flashing
signal indicating a critical process for the operator.

2. A timer as a substitute for incomplete knowledge about the environ-
ment. This knowledge might also be provided by extra sensors. I.e.,
a timer substitutes an input signal. This is certainly the most impor-
tant use of timers. E.g., in a chemical plant a valve is opened and the
process continues after the tank is empty; either a sensor can indicate
that the tank is empty (closed loop control) or experience tells that
after some time the tank is certainly empty and the process just waits
for that time before it continues (open loop control). In this sense
a level sensor can be substituted by a timer. This solution is often
chosen, when sensors are too expensive or not available.

This observation is also applicable for other cases: in protocols time-
outs can substitute the knowledge that, e.g., the communication part-
ner has not received a message.

For both classes there are applications where the use of timers can be
avoided. In the first case it can be sufficient to count scan cycles and mul-
tiply them by the lower cycle time bound, in the second case the controlled
environment may be fully equipped with sensors and timers are not needed.
1

It is obvious that models omitting timers can be useful for a big class
of applications. Furthermore, the intended correctness properties are also
relevant: many properties are time-independent.

Additional Features

Initially, PLCs were characterized by a very easy and also stable opera-
tion mode. Today all sorts of modern features also can be found in PLCs:
multi-tasking, interrupts and event-handling, watchdogs, various execution

1However, they can be useful for error detection by comparing expected processing
time and sensor data.

4.2. Modeling PLCs 85

modes and more. From the theoretical point of view, these features in-
crease complexity in a way that makes formal analysis difficult. The natural
consequence is to restrict the applications to those not making use of “com-
plicated” features. E.g., a non-restricted number of interrupts can increase
the scan-cycle length in a way that the cycle length gets unpredictable. In
extreme cases they can lead to an alarm of a watchdog leading to other inter-
rupts which altogether makes the correct behavior of the controller difficult
to guarantee.

On the other hand, there may be cases where interrupts are necessary:
e.g., the unfolding of the air-bag in a car has to happen as soon as possible,
without delay of even one scan cycle. In such a case interrupts are certainly
sensible, and can be treated formally, if we allow only for a restricted number
of interrupts within one scan cycle.

Therefore, in order to come closer to real applications also more complex
features have to be investigated. Here, the same holds as for the program-
ming languages: the features used should be well-chosen and restricted in
their application.

4.2.5 Our Models

As mentioned already in the introduction of this work, parts of this thesis are
motivated by struggling in the verification of full hybrid systems, i.e, PLCs
and their environment. As a consequence we focus on the most crucial
aspect: the software. In this work we focus on two distinct PLC languages
and their program verification, namely, SFCs and IL programs. In order to
reduce complexity as much as possible we restrict ourselves to the following
models:

The PLC is modeled without an explicit environment, we rather model
an open system. This means, we assume that the environment may behave
chaoticly, i.e., every possible reaction may occur and we have to take this
behavior into considerations.

In the verification process we abstract from the use of explicit time and
timers. Time always increases complexity significantly and we strive for a
system describing PLCs and their software as simple as possible. However,
we suggest extensions from untimed to timed SFCs, modeled as linear hybrid
systems. These allow to reason about time and timers.

For both semantics, IL and SFCs, we use an implicit scan cycle approach.
This means, e.g., we can reason about what is happening in a cycle or in a
future one, but we do not have any concrete timing information of how long
a cycle or a set of instructions takes.

For illustration purposes and to focus on the main features we generally
consider restricted sub-classes of each language. However, we cover most
concepts which are unique to a language or to PLCs. E.g., SFC concepts
such as hierarchy, parallelism or activity manipulation are fully covered while

86 Chapter 4. Semantics

other less unique concepts such as record data types, exception handling or
external function calls are neglected.

4.3 Sequential Function Charts

4.3.1 Introduction

Sequential function charts are defined in [IEC98] as elements of a graphical
programming and structuring language for programmable logic controllers.
The SFC definitions in the standard IEC 61131-3 are based on IEC 60848
[IEC92], which defines the specification language Grafcet. Grafcet in turn
is strongly related to Petri nets [DA92].

Basically, SFCs are transition systems consisting of steps (the locations)
and transitions. For every SFC there exists exactly one initial step. Ev-
ery transition is labeled by an associated transition condition, called guard.
Moreover, one or more actions may be associated to each step. Actions are
again SFCs or programs in one of the other programming languages pro-
posed by the standard. Since the actions associated to steps can be SFCs
themselves, a concept of hierarchy is provided. An example of a sequential
function chart is depicted in Fig. 4.1.

g2

guard

initial
step

step

transition g1

g3

N

action qualifier
action
name

action
blocka1

P1 a2
N a3

Figure 4.1: Elements of SFCs

The action blocks shown in Fig. 4.1 are a graphical means to associate
actions to steps. An action block consists of an action qualifier, which can
be used to specify the activity of the respective action, and the action name.
Concerning the action qualifiers defined in the standard, we concentrate on
those without an associated duration of time. These are the following:

• N – Non-stored

• R – Reset

• S – Set or Stored

4.3. Sequential Function Charts 87

• P1 – Pulse – rising edge (activation of corresponding step)

• P0 – Pulse – falling edge (deactivation of corresponding step)

Intuitively, the non-stored actions are always active while control resides
in the corresponding step, i.e., it is active. In contrast the stored actions
remain active even outside their step of activation until the corresponding
reset action is called. The actions with the pulse qualifier are performed
only once when entering (P1) or exiting (P0) a step, i.e., when the step gets
activated or deactivated. Note, we consider the qualifiers P1 and P0, as
introduced in [IEC98] instead of the P qualifier, which was defined in the
first edition of the standard and we neglect the rather non-intuitive and
optional final scan behavior which means that each non-Boolean action has
to be carried out a further time after being deactivated.

An SFC does not necessarily have to be a single sequence of steps and
transitions. For SFCs we can identify a number of different transition types
(cf. Figure 4.2). Transition (1) denotes a simple transition between two
steps, (2) describes alternative branching, i.e., the choice between several
transitions, (3) divergence, (4) convergence, and (5) a simultaneity of both
of the latter. In this context divergence means a parallel branching from one
step to a set of next steps while convergence means the synchronization of
several steps in parallel to a single one. Furthermore, direct combinations
of both as depicted in (5) are allowed. Moreover, the standard refers to
transition like the one guarded by g3 in Figure 4.1 as loops. From our point
of view loops as well as alternative branching belong to the same class,
namely (sets of) simple transitions.

s1

g1

s2

(1)

s3

g3g2 g4

s4 s5

(2)

s6

s7

g5

s8 s9

(3)

s10 s14

(4)

g6

s11 s12 s13

s18

(5)

s19

g7

s15 s16 s17

Figure 4.2: Basic transition types.

An additional feature of SFCs is to explicitly assign priorities to alter-
native branches. This means, when firing transitions the one which has the
highest priority among the enabled ones will be taken. If there are no pri-
orities given there often is the implicit rule that the transitions are ordered
“from left to right” in decreasing priority.

These basic transition types can be combined into more complex tran-
sition structures like in Figure 4.1 and 4.3. However, there are various
combinations which do not seem to make sense, e.g., in the SFC shown in
Figure 4.3. There we have the transition from s4 to s1 which jumps out of a

88 Chapter 4. Semantics

parallel branch, the converging transition from s2 to s5, which jumps from
one simultaneous branch to another, and the transition from s5 and s6 to
s7, which is a convergence of simultaneous sequences of two steps which are
part of an alternative branching starting in step s3.

s1

g1

s2

g2

-

s3 s4

g3

�

g4 g5

s5 s6

g6

s7

Figure 4.3: Unsafe SFC

Although the standard forbids to use such kinds of “unsafe” or “unreach-
able” SFCs, it does not give a precise characterization of this phenomenon.
For the time being we do not want to pose any explicit restrictions on the
SFC syntax. Mainly, because we want to allow as much freedom as possi-
ble and because there are commercial tools available which “support” SFCs
with these kinds of transitions and do simulations on them. Hence, in the
following we define a semantics for sequential function charts which can also
cope with such constructions. However, we return to this phenomenon in
Section 5.2.3 where we give a characterization of a safe SFC and propose a
method to decide this property.

4.3.2 Ambiguities in the Semantics

The standard defines rules for building an SFC from the aforementioned
basic elements and describes how to execute SFCs by giving evolution rules
similar to the firing rules of Petri nets. However, execution is only defined
on an abstract level not taking into account concrete aspects of program
execution. As SFC is a programming language the exact semantics of exe-
cution is of interest and it is therefore important to consider the cyclic SFC
execution on a PLC. In every scan cycle first the new input from the envi-
ronment (i.e., from the sensors of a plant such as pressure or temperature

4.3. Sequential Function Charts 89

sensors) is read and stored. Then the PLC program is executed based on
the stored input, i.e., the actions of the active steps are executed, which may
change the output, and afterwards the transitions are taken. At the end of
each cycle the output is sent to the environment, i.e., to the actuators of a
plant such as valves and motors.

Although the semantics of SFCs on an abstract level seems to be quite
simple, the exact semantics on an operational level is sometimes far from
obvious. Let us have a close look at some key issues:

In which order does the firing of transitions and execution of ac-
tions take place?

Does the PLC, after reading the inputs, fire the enabled transitions first and
then executes the actions or is this done the other way round? This order is
important for the initial step. If in the first PLC cycle (or the first time the
SFC is executed) the transition following the initial step is already enabled,
its actions will only be executed if the order is first executing actions and
then firing the transitions. Furthermore, the order is important since the
execution of actions might affect the guards of transitions. Consider for
instance SFC 1 in Fig. 4.5. Assume control resides in location s10 and g11 is
z 6= 1 then the order is obviously important. If the actions are executed first,
the transition guarded by g11 will never be taken whereas if the transition
might fire first this is not guaranteed.

How to deal with parallelism?

In which order are actions of parallel steps executed? Is there any order
at all or do we have to cope with non-determinism? As illustrated by the
example in Fig. 4.4 the order of execution makes a difference if the actions
modify the same variables. Depending on whether executing a1 before a2 or
not, the transition guarded with y = 2 is enabled or not.

The execution order is also not clear if we have more than one action
associated to the same step. Are they executed from top to bottom or
according to a different rule?

x ≤ 1 y = 2

s0

s1

N a0

N a1

x := 1 s2
N a2

y := 2x

x := 0, y := 0

y = 0

Figure 4.4: In which order are the actions a1 and a2 executed?

90 Chapter 4. Semantics

How to deal with hierarchy of SFCs?

Figure 4.5 shows a top level SFC SFC0 with a second SFC nested in step s1
(SFC1). Has the top level SFC higher priority, that is, are the actions of the
top level SFC executed prior to the actions of the nested SFC? If we enter
s1 in SFC0, does the execution order of actions depend on the hierarchy,
i.e., do we first execute a1 and then the actions a2 and a3 of SFC1? Can
SFC1 reset a2 or has the top SFC priority and a2 is executed? Which step
of the nested SFC will be entered if it is called again? For instance, if we
enter step s1 again, do we always activate s10 or is there a notion of history
and the last active step of SFC1 becomes activated?

g3

g1

s0

s1

S a2

P0 a3

g2

P1 a1

N SFC1

s10

s11

SFC1:

R a2

S a3

g11

g12

a1: y := x+z
a2: x := x+1
a3: z := 1

Actions :
SFC0:

Figure 4.5: How to deal with hierarchy?

Possible Answers to Ambiguities

The standard does not provide any explicit answer to these questions. For
the execution order of actions a comparison of different SFC programming
tools [BT01] yielded that there exist various orders on actions, e. g., for one
tool actions are executed according the alphabetic order of action names,
for another one by user pre-defined orders and so on. However, in no case
there is non-determinism. This seems to be reasonable since PLCs are in
general deterministic. The semantics defined in the following copes with
these different semantics by introducing a parameter for the order of actions.
Another parameter is introduced for the order of transitions as the standard
allows priorities if more than one transition of an alternative branching is
enabled.

For the execution order of firing transitions and executing actions we
decide that first all actions are executed and then the enabled transitions
are fired. This appears to be in line with examined tools. The same holds
for hierarchical SFCs where we define that there a notion of history, such
that the SFC re-enters into the last active step of the previous execution.

4.3. Sequential Function Charts 91

Finally, there is the question whether it is possible to create algebraic
loops, e.g., is it possible that a nested SFC calls again the top level SFC with
a different qualifier? In general this is not forbidden, but in our framework
we assume systems without algebraic loops and leave it to the program
designer to avoid these.

The given decisions are the basis for a clear non-ambiguous syntax and
semantics of SFCs which is presented in the following.

4.3.3 Syntax of SFCs with Actions

SFCs (or PLC programs in general) have different types of variables, such as
input variables, output variables, local variables. The values of the variables
may belong to different data types such as Boolean or integer. The valid
variable and data types are regulated by the standard IEC 61131-3, already
mentioned above. We abstract from these different variable and data types
simply saying an SFC has variables which may have different values. To
describe the values of all variables we use the notion of a state, which is a
function assigning a value to each variable.

Definition 4.1 (State)
Let Σ be a nonempty set of elements σ, called states.

A state (i. e., the values of the variables) can be modified by state trans-
formations. In [IEC98] different types of programming languages are defined
for such state transformations. We abstract from these types by simply say-
ing that a state transformation is a function that transforms a given state
into another state. Here state transformations are deterministic; in non-
deterministic languages a state is transformed into one of several possible
successor states.

Definition 4.2 (State transformation)
A state transformation is a function f : Σ → Σ. Let F be the set of all state
transformations.

Each step of an SFC is labeled with a (possibly empty) set of action
blocks, which are pairs of action names and qualifiers. We associate either a
unique state transformation or a call of a nested SFC with an action name.
Moreover, we simply say actions when in fact referring to action names.

Definition 4.3 (Action name, action block)
An action name is an identifier for either a state transformation f ∈ F or
an SFC S (defined below). An action block is a pair (a, q) consisting of an
action name a and qualifier q, where q ∈ {N, S, R, P0, P1}.

Let B denote the set of all action blocks. For any action block b ∈ B we
denote by ba the projection to the action name and by bq the projection to
the qualifier.

92 Chapter 4. Semantics

We define a guard as Boolean expression reasoning about variables and
step activities. Syntactically, the activity of a step si is tested by the ex-
pression si.X.

Definition 4.4 (Guard)
A guard g is a Boolean expression reasoning about program variable states
and step activities. We denote the set of all guards by G.

For the formal syntax for sequential function charts we further have to
incorporate the key points of orders on the actions as well as on the tran-
sitions. These allow to determine in which order actions are executed and
which transitions will be taken if several are in conflict with each other. In
conflict means, more than one alternative transition is enabled. Hence, the
order on transitions rules out any non-determinism, which is, as aforemen-
tioned, not natural for PLCs. Let SFC be the set of sequential function
charts, which are defined next.

Definition 4.5 (SFC)
A sequential function chart (SFC) is a 7-tuple S = (S,A, s0, T, block ,@,≺),
where

• S is a finite set of steps,

• A is a finite set of actions, which might be SFCs,

• s0 is an initial step in S,

• T ⊆ (2S \ {∅}) ×G× (2S \ {∅}) is a finite set of transitions,

• block : S → 2B is an action labeling function which assigns a set of
action blocks to each step,

• @ ⊆ A× A is an irreflexive total order on actions, used to define the
order in which the active actions are to be executed, and

• ≺ ⊆ T × T is an irreflexive partial order on transitions, to determine
priorities on conflicting transitions.

We uniquely represent a transition by its set of source steps, its guard
and its set of target steps.

When putting a sequential function chart into formal syntax the main
task is to determine the orders @ and ≺. As mentioned in Section 4.3.1 the
orders are in general implementation dependent and should be chosen in a
meaningful way or according to a existing tools.

4.3.4 Semantics of SFCs with Actions

In this section we provide an operational semantics for SFCs. Let S =
(S,A, s0, T, block ,@,≺) be an SFC, and let Si = (Si, Ai, s0,i, Ti, block i,@i,

≺i), i = 1, . . . , n, be the SFCs nested recursively inside the steps of S. For

4.3. Sequential Function Charts 93

a global, flat access to the nested structure we define the global set of steps
S̄ = S ∪ S1 ∪ . . . ∪ Sn and the global set of actions Ā = A ∪ A1 ∪ . . . ∪ An.
In the same way we extend the other components.

In the following we assume that the SFCs are nested in such a way that
there do not exist any algebraic loops, e. g., there are no conflicting circular
action qualifiers for action names.

There are several things we have to keep track of when observing execu-
tions of an SFC S. First, we need information about the current state of S,
i. e., the values of its variables. Moreover, we have to know in which steps
of S and its sub-SFCs S1, . . . ,Sn control resides and which actions are to be
performed in a cycle.

Let us introduce some notions. It is crucial to distinguish between ready
steps and active steps. Active steps are the ones control resides in and their
actions will be performed. On the other hand, there might be steps where
control resides in, but their actions will not be performed. The reason is,
these steps belong to nested SFCs which are currently not activated, i. e.,
there is no action active which points to this SFC. Control is “waiting” there
to resume. We call all steps where control resides in ready steps. Hence, each
active step is also a ready step, but the converse does of course not hold.

Moreover, active actions are actions which will potentially be executed
in the current SFC cycle. This means, unless there is no matching reset
action these actions will be performed. Stored actions are the ones which
have been tagged by an S qualifier and potentially keep on being active
outside their step of activation.

We store the information about the state and the other information of
S in a configuration:

Definition 4.6 (Configuration)
A configuration c of S is a 5-tuple (σ, readyS , activeS , activeA, storedA),
where σ ∈ Σ is the state of the variables, readyS ⊆ S̄ is the set of ready
steps, activeS ⊆ S̄ is the set of active steps, activeA ⊆ Ā is the set of ac-
tive actions, and storedA ⊆ Ā is the set of stored actions, i. e., the ones
which might remain active outside the step they were called. Moreover, let
C denote the set of all configurations.

Such a configuration is modified in the cycles of a PLC. In a cycle the
following sequence is performed:

1. Get new input from the environment and store the information into
the state of the variables σ.

2. Execute the set activeA of active actions and update σ accordingly.

3. Determine the set of next readyS , activeS , activeA, and storedA.

4. Send the outputs to the environment by extracting the required infor-
mation from the new state σ.

94 Chapter 4. Semantics

We do not specify formally how to interact with the environment, but
focus on items 2 and 3.

First, we define executions by means of configuration changes within a
cycle. In order to do so, we associate a transition system to an SFC and use
the following notations: For every transition of the form (χ, g, χ′) where χ
and χ′ are sets of steps let source(χ, g, χ′) = χ denote the set of all source
steps and target(χ, g, χ′) = χ′ the set of all target steps. We extend these
notions to sets of transition in the natural way.

A prerequisite for a program evaluation is an interpretation of the guards.
We interpret a guard by the set of configurations it describes.

Definition 4.7 (Guard interpretation)
Given a guard g ∈ G and a configuration c ∈ C, we say that “c satisfies g”
or “g is valid in c”, denoted by c |= g, if c ∈ g.

The semantics of an SFC is based on the transition system describing
its operational behavior:

Definition 4.8 (Transition System of an SFC)
With every SFC S = (S,A, s0, T, block ,@,≺) we associate a transition sys-
tem E(S) = (C, c0,−→), where C is the set of configurations, c0 ∈ C is the
initial configuration and −→ ⊆ C×C is the transition relation such that the
following properties are satisfied: (σ, readyS , activeS , activeA, storedA) −→
(σ′, readyS ′, activeS ′, activeA′, storedA′) iff

1. σ′ = (am ◦ · · · ◦ a1)(σ), where a1 @ · · · @ am and {a1, . . . , am} =
activeA \ SFC

2. readyS ′ = (readyS \ source(taken)) ∪ target(taken), where

(a) enabled = {(χ, g, χ′) ∈ T̄ |χ ⊆ activeS ∧ (σ′, readyS , activeS ,
activeA, storedA) |= g}, and

(b) taken = {t = (χ, g, χ′) ∈ enabled | ¬∃t1 = (χ1, g1, χ
′
1) ∈ enabled :

χ ∩ χ1 6= ∅ ∧ t1≺̄t} and

3. activeS ′, activeA′ and storedA′ are computed by

(α0, β0) := ϕ(αini, ∅,S)

(α1, β1) := ϕ(α0, β0,S1)

...

(αk, βk) := ϕ(αk−1, βk−1,Sk)

where ϕ is defined in Fig. 4.6, S is the top-level SFC, {S1, . . . ,Sk} =
storedA∩SFC are the SFCs in storedA, and αini is the initial mapping
of stored actions a ∈ storedA\SFC to {S} and to ∅ for all other actions.

4.3. Sequential Function Charts 95

Then, activeS ′ = βk, activeA′ = {ba |αk(ba) ∩ {N, P0, P1} 6= ∅ ∧ R 6∈
αk(ba)} and storedA′ = {ba | S ∈ αk(ba) ∧ R 6∈ αk(ba)}.

Moreover, the initial configuration c0 = (σ0, readyS 0, activeS 0, activeA0,

storedA0) is given by: σ0 is the pre-defined initial state of the variables,
readyS 0 = s̄0, and activeS 0, activeA0 and storedA0 are determined from
(α0, β0) like the primed ones above.

function ϕ(α, β,Γ)
(* (I) newsteps are the local ready steps, i. e., the active ones *)

newsteps := S ∩ readyS ′;
α′ := α;
β′ := β ∪ newsteps ;

(* (II) collect the relevant actions *)
for all s ∈ S, b ∈ block(s):

α′(ba) := α′(ba) ∪







{P0} if bq = P0 ∧ s ∈ source(taken)
{P1} if bq = P1 ∧ s ∈ target(taken)
{bq} if bq ∈ {N, S, R} ∧ s ∈ newsteps

;

(* (III) go into recursion for every new SFC which is not reset *)
for all s ∈ newsteps , b ∈ block (s):

if ba ∈ SFC ∧ R 6∈ α′(ba) ∧ α
′(ba) 6= ∅

then (α′, β′) := ϕ(α′, β′, ba);
return (α′, β′)

Figure 4.6: Recursive action labeling collection

Let us take a detailed look at the definition above. One transition in
the transition system above corresponds to one PLC cycle. First of all in
step 1 of Definition 4.8 the current active actions are ordered and executed
accordingly. In step 2 we determine the new ready steps. These are the
old ones plus the targets of the taken transitions, but without their source
steps. We distinguish taken and enabled transitions as follows: A transition
is enabled if it is an outgoing transition of an active step and its guard
satisfies the current configuration. A transition is taken, if it additionally
has the highest priority among its competing ones, which is expressed by
the ≺̄ relation.

In step 3 the new active steps, active actions and stored actions are
computed recursively on the structure of the SFC by the auxiliary function
ϕ. The function ϕ has the parameters α, β and Γ, where α is a mapping
from action names to sets of qualifiers and β ⊆ S̄ is a set of steps. Calling
ϕ for a specific SFC Γ with empty α and β results the pair (α′, β′), where
α′ contains for every active action all the “activated” qualifiers of the active
actions in Γ and its recursively nested SFCs and β′ contains all active steps.

This is computed as follows: starting on with the top-level of Γ, we
compute in (I) newsteps , which is the set of active steps on this level. The

96 Chapter 4. Semantics

function α is copied to α′ and β′ is the old β conjoined with the new active
steps. In (II), α′ is extended by further qualifiers for specific actions. The
inclusion of qualifiers depends on whether these qualifiers become relevant
now or not. The pulse qualifiers are relevant when taking a transition.
The other qualifiers are relevant when remaining in the active steps (i. e.,
newsteps). Finally, in (III) we go into recursion for every sub-SFC of the
current one which has become active after computing the new active steps
and implicitly the new active actions. These are the SFCs associated to the
new steps which are not reset.

In steps 3 of Definition 4.8 ϕ is called for the initial set of α, which is just
the mapping of stored actions to the corresponding qualifier and the empty
set for β. ϕ then needs to be called again for all k stored SFCs which are in
storedA. The result of the ϕ application is (αk, βk), where βk corresponds
to the new active steps, and activeA′ and storedA′ are the projections of αk

to the corresponding qualifiers taking into account any resets.
An execution sequence of an associated transition system is called run.

Definition 4.9 (Run of E)
A run r over a transition system E is a finite or infinite sequence 〈c1, c2, . . .〉
where each pair (ci, ci+1) ∈ −→, i. e., is in the transition relation of E.

The operational semantics [[S]] for an SFCs S is given by the set of runs
of its associated transitions system E(S).

4.3.5 Example

For the SFC given in Fig. 4.5 we explain how the semantics works for crucial
points such as actions where the execution order matters and hierarchy of
SFCs.

Assume the global order on actions is given by a1 @ a2 @ a3, and the
local order on transitions is given by g1 ≺ g2. Let the initial configuration
for the SFC be:

• σ0 = {x0, y0, z0} = {0, 0, 0},

• readyS 0 = s̄0 = {s0, s10},

• activeS 0 = {s0},

• activeA0 = {a2} and

• storedA0 = {a2}.

Assume, g1 and g2 are not true until we are in cycle number 14, but then
both guards g1 and g2 evaluate to true. At this point

σ = {x, y, z} = {13, 0, 0},

4.3. Sequential Function Charts 97

the sets of active steps, ready steps etc. have not changed compared to the
initial configuration. We compute according to step 1 of Definition 4.8:

σ′ = (a2)(σ) = {x′, y′, z′} = {14, 0, 0}

and according to step 2 of the same definition:

readyS ′ = ({s0, s10} \ {s0}) ∪ {s1} = {s1, s10}.

Moreover, enabled = {g1, g2}, and since g1 ≺ g2, we have taken = {g1}.
For the computation of the new active steps and actions we have to take
the nested SFC1 into account and recursively determine activeS ′ = {s0},
activeA′ and storedA′

0 using the auxiliary function ϕ. Because storedA ∩
SFC = ∅, i. e., there is no stored SFC, we only need to compute ϕ(αini, ∅,
SFC0) for the top level SFC which is SFC0. The initial mapping αini of
stored actions is given by

αini(a1) = ∅
αini(a2) = {S}
αini(a3) = ∅
αini(SFC1) = ∅.

First, we determine the active steps of the top level SFC by

newsteps = {s1, s2, s3} ∩ {s1, s10} = {s1}.

We set α′ = αini and β′ = {s1}. To update α′, all relevant action qualifiers
are collected. This yields

• α′(a3) = {P0}, since bq(a1, P0) = P0 and s0 ∈ source(taken),

• α′(a1) = {P1}, since bq(a1, P1) = P1 and s0 ∈ target(taken), and

• α′(SFC1) = {N}, since bq(SFC1, N) ∈ {S,R,N} and s1 ∈ newsteps.

Next, we go into recursion because there is a new SFC, which is not reset,
i. e., ba = SFC1 ∈ SFC, R ∈ α′(SFC1) and α′(SFC1) 6= ∅. Therefore, we
compute (α′, β′) = ϕ(α′, β′, SFC1). This results in

newsteps = S1 ∪ readyS
′ = {s10}, α

′ = α and β′ = {s1, s10}.

The update of α′ by collecting the relevant actions for all steps of SFC1

yields

• α′(a2) = {S,R}, since bq(a2, R) ∈ {S,R,N} and s10 ∈ newsteps and

• α′(a3) = {P0,S}, since bq(a3, N) ∈ {S,R,N} and s10 ∈ newsteps.

98 Chapter 4. Semantics

Since there are no new SFCs, the function terminates and returns β0 = β′

as given above and α0 = α′ with

α0(a1) = {P1}
α0(a2) = {S,R}
α0(a3) = {P0,S}
α0(SFC1) = {N}

Hence, we obtain

• activeS′ = β0 = {s1, s10},

• activeA′ = {a1, a3, SFC1} and

• storedA′ = {a3}.

Note, if we continue to compute the configuration for the next cycle 15,
the order on actions is important as more than one action is active:

σ′ = (a3 ◦ a1)(σ) = {x′, y′, z′} = {14, 0, 1}.

In this case a different order on a1 and a3 would lead to a different σ′.
Furthermore, since we do not reset a3 which is set in step s10 of SFC1 this
action will still be executed even if SFC1 is no longer active.

4.3.6 Extension to Timed SFCs

The SFCs presented earlier do not support any time or timing behavior.
However, the IEC standard defines the notion of time and timers which
allows to test and reason about the amount of time a step has been active
and to start actions after a delay of time or for some limited time only. In
this section we give an introduction to timed SFCs. We explain the main
features and how to extend the current SFC semantics to timed SFCs. Since
we are not going to use timed SFCs in the remainder of this work, we do
not present a comprehensive formal model for timed SFCs but describe a
possible extension of the untimed framework.

Timed Syntax

Guards are Boolean expressions over variables, where si.X denotes that step
si is active and si.T is the time that si has been active since its last acti-
vation. Additionally to the qualifiers presented in Section 4.3.1 there are a
number of time related qualifiers:

• L – Limited

• D – Delayed

4.3. Sequential Function Charts 99

• SL – Set Limited

• SD – Set Delayed

• DS – Delayed Set

All these qualifiers are followed by some duration and their meaning is as
follow: The limited qualifier L behaves as the standard non-stored qualifier
N with the only difference, that the corresponding action becomes at latest
inactive when the associated duration has elapsed. moreover, it is possible
to delay the activation of an action for a certain time after the step has
become active using the D qualifier. The L and D qualifiers can be combined
with S yielding DS, SD and SL. An action associated with DS will only be
activated if the delay time is reached before the step is left, whereas an SD

action always becomes active after the elapsed time, independent of the step
activity. Similar, an SL action is (in contrast to L) always activated for T
time units.

Although the action qualifier concept is defined using well-understood
function blocks, the definitions in the standard still are ambiguous. For
example, assume an SFC which calls an SD action in one step and in the
next step calls the action again with the SD qualifier but with a different
delay time. Assume that the activity time of the first step has been shorter
than the first delay time, i.e. the action is not yet activated when it is
called in the next step with a different delay time. Which delay time now
is relevant? These ambiguities clearly show that there is a need for an SFC
semantics which gives answers to these open questions. Here, we assume
that any call of a timed action resets the corresponding clock/stopwatch.
This means delays or limited actions restart the moment they got called.
However, other interpretations are possible.

To reason about timed SFCs we introduce the notions of clocks and
stopwatches.

Definition 4.10 (Stopwatch, Clock)
A stopwatch θs is a real valued variable that has a dynamical behavior given

by either f(θs) = θ̇s = 1 if the stopwatch is running, or f(θs) = θ̇s = 0
if it is stopped, whereas a clock θa cannot be stopped, i.e., the dynamical
behavior is always f(θa) = θ̇a = 1. Both can be reset to zero.

To describe the values of all stopwatches and clocks we use the notion of
a clock evaluation ν, which is a function assigning a value to each stopwatch
or clock.

Since guards may reason about the time a step is active or has been
active before, each step needs a stopwatch which is reset to zero when the
step is entered, runs when the step is active, and is stopped when the step
is deactivated. Second, we need stopwatches because we define that hierar-
chically nested SFCs have history, i.e., after deactivation nested SFCs are

100 Chapter 4. Semantics

activated in the step the have been last. The notion of history includes that
the SFCs remember the values of their clocks at the point of deactivation if
they are activated again.

Additionally we need a clock for those actions which are associated with
an SD or SL qualifier, because these actions might be deactivated (SL) or
activated (SD) independently from a step activity. Clocks are sufficient,
because according to the standard, guards cannot access the time an action
has been active, and, therefore, we do not need to memorize the activity
time after the action has been deactivated.

We define a timed SFC as follows:

Definition 4.11 (Timed SFC)
A sequential function chart (SFC) S = (X,Θ, S, s0, G, T,A, block ,@,≺) con-
sists of:

• a finite set X of variables,

• a finite set Θ of stopwatches and clocks,

• a finite set S of steps si,

• an initial step s0 ∈ S,

• a finite set G of guards gi,

• a finite set T of transitions ti,

• a finite set A of actions ai,

• an action labeling function block assigning a set of action blocks to
each step,

• an order on actions @ to define the execution order of conflicting ac-
tions, and

• an order on transitions ≺ to determine priorities on conflicting tran-
sitions.

Timed Semantics

The global state of an SFC (including all its nested SFCs) is given by the
values of all its variables, the evaluation of clocks and stopwatches, the sets of
active and ready steps and the sets of active and stored actions. In addition
to stored actions we also have to remember stored delayed actions associated
to a step with an SD qualifier, which potentially need to be activated after the
corresponding step has been deactivated and stored limited actions indicated
by the SL qualifier, which potentially have to be executed for a certain time
after the activating step has been deactivated.

We describe the global state of an SFC S by a configuration, given by:

Definition 4.12 (Timed Configuration)
A configuration c of S is an 8-tuple (σ, ν, readyS , activeS , activeA, storedA,
storedDA, storedLA), where

4.3. Sequential Function Charts 101

• σ is the state of the variables,

• ν is the evaluation of clocks and stopwatches,

• readyS ⊆ S̄ is the set of ready steps,

• activeS ⊆ S̄ is the set of active steps,

• activeA ⊆ Ā is the set of active actions,

• storedA ⊆ Ā is the set of stored actions,

• storedDA ⊆ Ā is the set of stored delayed actions, and

• storedLA ⊆ Ā is the set of stored limited actions.

We use the notions S̄ and Ā to denote the sets of all steps or actions of an
SFC including the sets of steps/actions of its nested SFCs.

The timed SFC program executions are again defined by means of con-
figuration changes within a cycle. We describe the change of configuration
by associating a transition system to an SFC. A transition c −→ c′ in this
transition system is computed by the following sequence:

1. Determine the new state σ′ by executing all actions in activeA except
for those which are SFCs. Conflicting actions have to be executed in
accordance with the order @.

2. Determine readyS ′. To do so, determine the set Tenabled of transitions
with source steps in activeS and guards holding for the current con-
figuration. Then, readyS ′ is given by joining readyS with the sets of
target steps of the transitions t ∈ Tready for which no other transition
t1 ∈ Tenabled with higher priority exists, and removing the source steps
of these transitions.

3. Determine activeS ′, activeA′, storedA′, storedDA′ and storedLA′. The
new sets are computed recursively on the structure of the SFC using an
auxiliary function. The function recursively searches the top-level SFC
and the hierarchically nested ones to find out if an action activated on
a higher level is reset within an hierarchical lower active SFC.

4. Stopwatches and clocks are reset to zero, if one of the following holds:

• The stopwatch θs belongs to a step s which has been activated in
this cycle, i.e., s ∈ activeS ′ \ activeS .

• The clock θa belongs to an action a which has been activated
“stored delayed” in this cycle, i.e., a ∈ storedDA′ \ storedDA.

• The clock θa belongs to an action a which has been activated
“stored limited” in this cycle, i.e., a ∈ storedLA′ \ storedLA.

A timed execution sequence 〈c0 −→ c1 −→ c2, . . .〉 is called timed run.
The operational semantics of an SFC S is given by the set of runs of its
associated transition system.

102 Chapter 4. Semantics

4.4 Instruction List

4.4.1 Introduction

Instruction List is often considered to be the most basic language defined
in IEC 1131-3, since every other programming language is expected to be
mappable to IL. This is, however, not fully true. There is no way to describe
parallelism as it occurs in SFCs, however, one might argue whether it is
possible to simulate the sophisticated scheduling of SFC programs by IL.

Since IL is a simple assembly language, it is the language of choice to
develop compact, time-critical code close to hardware. In fact, some PLCs
can download IL programs directly without the intermediate compile step.
A disadvantage for most people is that IL programs are hard to read as
soon as they grow in size since it is more difficult to understand the control
structure and the computation than in higher level languages.

IL supports a number of data types such as Booleans, integers, floating
point numbers, arrays of theses types and so on. For reasons of simplicity we
restrict ourselves in this work to the two most prominent types: Booleans
and integers. Next to variables IL supports the use of one distinct register
call current result (CR). Every computation takes place in the CR. E.g.,
first a variable value is loaded to the CR, afterwards some operations are
performed on the CR and finally the current value of the CR is stored back
to some variable. For this reason the CR is dynamically typed. In contrast
to most other assembly languages, IL only supports exactly one distinct
register.

The PLC execution mechanism for IL program is as follows: In each PLC
cycle the input is read, the whole IL program is executed and the output
is written. Note, that this contrast the SFC execution mechanism where in
each cycle all active steps are evaluated and executed, but not the whole
SFC program. However, IL has to be seen as integrated into SFCs. Actions
(and guards) of SFC programs might be IL programs. Hence, a complete
execution of an IL program within one cycle corresponds to the execution
of one SFC action.

In the following we precisely define the syntax and semantics of IL pro-
grams.

4.4.2 Syntax

Next to a declaration part, instruction list programs are sequences of state-
ments. A statement consist of an instruction (operator) and an operand
which can either be a variable, a constant or a jump label. Additionally,
programs can be augmented by comments. An example is shown below.

4.4. Instruction List 103

instruction operand comment
LD x (* loads operand value to CR *)
JMP lab1 (* jumps to lab1 *)

Some instructions can be augmented by modifiers. There are two modi-
fiers: N and C. The N modifier changes an operation from the original to an
operation with the negated argument, i.e., negated operand value while an
instruction augmented by the C modifier is only executed under the condi-
tion that the CR value is true. Moreover, the use of brackets is allowed to
force the evaluation of sub-expressions first and, hence, to avoid auxiliary
variables or additional load/store operations. However, it does not add to
the expressiveness of this language and we omit this feature in the follow-
ing. Table 4.1 lists the most prominent IL commands we use throughout
this work.

Table 4.1: List of selected IL commands

Instruction Modifier Operand Description

LD N variable, constant loads operand
ST N variable, constant stores operand
S variable sets operand to true
R variable sets operand to false
NOT Boolean negation
AND N variable, constant Boolean AND
OR N variable, constant Boolean OR
XOR N variable, constant Boolean XOR
ADD variable, constant addition
SUB variable, constant subtraction
MUL variable, constant multiplication
DIV variable, constant integer division
GT variable, constant comparison greater than
GE variable, constant comparison greater equal
LT variable, constant comparison less than
LE variable, constant comparison less equal
EQ variable, constant comparison equal
NE variable, constant comparison unequal
JMP N, C label jump to label
RET return from function (block)

4.4.3 Semantics

When talking about the semantics of an IL program it is useful to describe
IL programs in terms of labeled graphs representing the control structure.

104 Chapter 4. Semantics

We assume that every program location contains one IL statement. We
denote the set of all locations of a program P by LocsP . We omit the index
P if it is clear from the context.

Definition 4.13 (IL graph)
An IL graph GP = (N,E, nini , nfin , stm) of an IL program P is a graph
build from of a set of vertices N , a set of edges E ⊆ N × N , a distinct
initial node nini ∈ N and final node nfin ∈ N as well as a labeling function
stm : N → LocsP assigning a program location, i.e., statement, to every
node.

An IL graph is well-formed, if the initial node is mapped to the empty
statement (representing the declaration part), the edge relation corresponds
to the program structure, i.e., representing the sequential program as well as
jumps to labels, with correct mapping, and the final node is as well mapped
to the empty statement. Moreover, from every node with a RET statement
there is an edge to the final node nfin . Subsequently, when talking about an
IL graph we assume that it is well-formed. Sometimes we abbreviate stm(n)
by stmn.

By Var we denote the set of all program variables where we tacitly
assume all variables and expressions to be well typed. By the typing, some
variables are marked as input or output variables or both, and we write
Var in and Varout for the corresponding subsets of Var . Variables that are
neither input nor output variables are called local variables. The set of
all local variables is denoted by Var loc ⊆ Var . For the current result we
introduce a distinct variable cr 6∈ Var .

States and configurations

Similar to Section 4.3 we introduce the notions of states and configurations.
The difference of a state or configuration in an IL program from a state
or configuration of an SFC should be clear from the context. However,
whenever there might be an ambiguity we refer either to IL states or SFC
states; the same holds for configurations.

Definition 4.14 (IL State)
The global IL state contains the values of all variables and is modeled as
a mapping Σ : Var ∪ {cr} → D, where D stands for the union of all data
domains.

We assume the values in the state to be type-consistent; we use σ as
typical element of Σ. Note, the CR is dynamically typed and, thus, can
take on several types.

Definition 4.15 (IL configuration)
An IL configuration γ : Locs × Σ × Mode of a program is characterized by

4.4. Instruction List 105

• a location l ∈ Locs,

• a state σ ∈ Σ, and

• a configuration of type Mode, which can be either I, O or C(ILi), where
ILi is an IL instruction.

The mode in the configuration is used to control the various phases of
the system behavior and I stands for “input”, C(ILi) for “calculating” an
“instruction”, and O for “output”. We define some auxiliary functions instr
and op. The function instr maps any IL node l to the IL instruction of its
associated statement stm(l). Complementary, the function op maps any IL
node l to the operand of its associated statement stm(l). We assume that
any operand is either a constant, a variable or a label.

Operational semantics

We define an operational semantics for IL programs based on labeled tran-
sition systems. The nodes of the transitions systems are configurations and
the transitions themselves represent the i/o behavior as well as the execu-
tion of single IL statements. The transition system is labeled to distinguish
between input, output and internal transitions. Each execution of an IL
program is then covered by a run in this transition system. In contrast to
SFCs where every transition corresponds to one PLC cycle we describe for
IL programs also the internal transitions in between.

Definition 4.16 (Labeled Transition System of IL Program)
With every IL graph GP we associate a labeled transition system TP =
(Γ, γ0,→ξ), where

• Γ denotes the set of configurations,

• γ0 ∈ Γ is the initial configuration and

• →ξ is the transition relation between configurations.

The initial configuration γ0 is given by (l0, σ0, I), where the initial state σ0

evaluates all Booleans to false and all integers to 0. The operational rules
are shown in Tables 4.2–4.7 specifying the labeled transition relation →ξ

between system configurations.

The labeled transitions →?~v and →!~v are used to mark reading the input
and writing the output variables; all other transitions are unlabeled and
internal. The operator ⊕ denotes the “exclusive or” operation.

An execution cycle starts by reading the input (cf. rule Input), when the
system is currently in the waiting state. Afterwards the state σ is updated
by assigning values to all input variable as read from the environment and

106 Chapter 4. Semantics

we proceed to the next mode, the computation. During the computation
phase C the values of the variables or of the CR are updated according
to the operations. After performing an operation control moves to the next
statement. Note, that despite of jumps and the final return statement, every
statement has only one successor node in the IL graph, i.e., for a node l the
successor l′ ∈ Succ(l) is unique. Jumps are treated as (possible) branches to
nodes with the label statement. Jumps have exactly two successors and we
assume that only one of the successors is a label. IL programs are executed
until a return statement occurs (cf. rule RET). This statement forces a
function (block) to terminate and to return to its caller. Since we consider
functions only, i.e., programs that terminate with a return statement, we
move from C to O where the output values are written (cf. rule Output).
Afterwards, the complete cycle restarts.

Table 4.2: Operational semantics: Mode switches

σ′ = σ[~x 7→~v] ~x = Var in

Input
(l, σ, I) →?v (l, σ′,C(instr(l)))

instr(l) = RET
RET

(l, σ,C(instr(l))) → (l, σ,O)

~v = [[~x]](σ) ~x = Varout

Output
(l, σ,O) →!~v (l, σ, I)

4.4. Instruction List 107

Table 4.3: Operational semantics: Basics

instr(l) = LD σ′ = σ[op(l) 7→ cr] l′ ∈ Succ(l)
LD

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = LDN σ′ = σ[op(l) 7→¬cr] l′ ∈ Succ(l)
LDN

(l, σ,C(instr (l))) → (l′, σ′,C(instr(l′)))

instr(l) = ST σ′ = σ[cr 7→ op(l)] l′ ∈ Succ(l)
ST

(l, σ,C(instr (l))) → (l′, σ′,C(instr(l′)))

instr(l) = STN σ′ = σ[¬cr 7→ op(l)] l′ ∈ Succ(l)
STN

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = S σ′ = σ[true 7→ op(l)] l′ ∈ Succ(l)
S

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = R σ′ = σ[false 7→ op(l)] l′ ∈ Succ(l)
R

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

Table 4.4: Operational semantics: Arithmetics

instr(l) = ADD σ′ = σ[cr 7→ cr+op(l)] l′ ∈ Succ(l)
ADD

(l, σ,C(instr (l))) → (l′, σ′,C(instr(l′)))

instr(l) = SUB σ′ = σ[cr 7→ cr−op(l)] l′ ∈ Succ(l)
SUB

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = MUL σ′ = σ[cr 7→ cr∗op(l)] l′ ∈ Succ(l)
MUL

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = DIV σ′ = σ[cr 7→ cr÷op(l)] l′ ∈ Succ(l)
DIV

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

108 Chapter 4. Semantics

Table 4.5: Operational semantics: Boolean logics

instr(l) = NOT σ′ = σ[cr 7→¬cr] l′ ∈ Succ(l)
NOT

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = AND σ′ = σ[cr 7→ cr∧op(l)] l′ ∈ Succ(l)
AND

(l, σ,C(instr (l))) → (l′, σ′,C(instr(l′)))

instr(l) = ANDN σ′ = σ[cr 7→¬(cr∧op(l))] l′ ∈ Succ(l)
ANDN

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = OR σ′ = σ[cr 7→ cr∨op(l)] l′ ∈ Succ(l)
OR

(l, σ,C(instr (l))) → (l′, σ′,C(instr(l′)))

instr(l) = ORN σ′ = σ[cr 7→ ¬(cr∨op(l))] l′ ∈ Succ(l)
ORN

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = XOR σ′ = σ[cr 7→ cr⊕op(l)] l′ ∈ Succ(l)
XOR

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = XORN σ′ = σ[cr 7→ ¬(cr⊕op(l))] l′ ∈ Succ(l)
XORN

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

4.4. Instruction List 109

Table 4.6: Operational semantics: Comparisons

instr(l) = GT σ′ = σ[cr 7→ cr>op(l)] l′ ∈ Succ(l)
GT

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = GE σ′ = σ[cr 7→ cr≥op(l)] l′ ∈ Succ(l)
GE

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = LT σ′ = σ[cr 7→ cr<op(l)] l′ ∈ Succ(l)
LT

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = LE σ′ = σ[cr 7→ cr≤op(l)] l′ ∈ Succ(l)
LE

(l, σ,C(instr(l))) → (l′, σ′,C(instr(l′)))

instr(l) = EQ σ′ = σ[cr 7→ cr=op(l)] l′ ∈ Succ(l)
EQ

(l, σ,C(instr (l))) → (l′, σ′,C(instr(l′)))

instr(l) = NE σ′ = σ[cr 7→ cr 6=op(l)] l′ ∈ Succ(l)
NE

(l, σ,C(instr (l))) → (l′, σ′,C(instr(l′)))

110 Chapter 4. Semantics

Table 4.7: Operational semantics: Jumps

instr(l) = LABEL l′ ∈ Succ(l)
LABEL

(l, σ,C(instr (l))) → (l′, σ,C(instr (l′)))

instr(l) = JMP l′ ∈ Succ(l) instr(l′) = LABEL
JMP

(l, σ,C(instr(l))) → (l′, σ,C(instr (l′)))

instr(l) = JMPC l′ ∈ Succ(l)
cr(σ) = false instr(l′) 6= LABEL

JMPCff
(l, σ,C(instr(l))) → (l′, σ,C(instr (l′)))

instr(l) = JMPC l′ ∈ Succ(l)
cr(σ) = true instr(l′) = LABEL

JMPCtt
(l, σ,C(instr (l))) → (l′, σ,C(instr(l′)))

instr(l) = JMPCN l′ ∈ Succ(l)
cr(σ) = false instr(l′) = LABEL

JMPCNtt
(l, σ,C(instr(l))) → (l′, σ,C(instr (l′)))

instr(l) = JMPCN l′ ∈ Succ(l)
cr(σ) = true instr(l′) 6= LABEL

JMPCNff
(l, σ,C(instr (l))) → (l′, σ,C(instr(l′)))

4.4. Instruction List 111

4.4.4 Example Program

In this section we give a small example of an IL program. The program
displayed in Figure 4.7 computes the best lower approximation of a square
root of an integer.

The program works as follows: In the header the variables are declared.
We have input, output and local variables. First, the PLC is updating the
input variables, i.e., x. This is not part of the program. Then, the program
starts. The local variable v is initialized to zero. Within the loop from
start: to JMPC start the variable v is successively increased by 1 until
its square is greater or equal than the input x. If equal to x the result of
the computation is v, if greater than x the result is v-1 since we want to
compute the best lower approximation. After hitting the RET statement the
program is terminated and the output written to the environment.

This program is a simple approximation of a square root and the square
root function itself is part of the IL language, but it illustrates how an IL
looks like.

Below we present an example execution of the program. We assume
an input x = 2. The result is 1, since 12 ≤ 2 < 22, i.e., it is a lower
approximation of the square root of 2. The run of the example execution is
given as a list of configuration γ : Locs × Σ × Mode. However, we omit the
locations Locs , this should be clear from the context.

cr x result v vsqr Mode

0 0 0 0 0 I

0 2 0 0 0 C(LD)
0 2 0 0 0 C(ST)
0 2 0 0 0 C(LABEL)
0 2 0 0 0 C(LD)
0 2 0 0 0 C(ADD)
1 2 0 0 0 C(ST)
1 2 0 1 0 C(MUL)
1 2 0 1 0 C(ST)
1 2 0 1 1 C(LD)
2 2 0 1 1 C(GT)
true 2 0 1 1 C(JMPC)
true 2 0 1 1 C(LABEL)
true 2 0 1 1 C(LD)
1 2 0 1 1 C(ADD)
2 2 0 1 1 C(ST)
2 2 0 2 1 C(MUL)
4 2 0 2 1 C(ST)
4 2 0 2 4 C(LD)
2 2 0 2 4 C(GT)

112 Chapter 4. Semantics

false 2 0 2 4 C(JMPC)
false 2 0 2 4 C(LD)
2 2 0 2 4 C(EQ)
false 2 0 2 4 C(JMPC)
false 2 0 2 4 C(LD)
2 2 0 2 4 C(SUB)
1 2 0 2 4 C(ST)
1 2 1 2 4 C(JMP)
1 2 1 2 4 C(LABEL)
1 2 1 2 4 C(RET)
1 2 1 2 4 O

In the remainder we are concerned about proving certain properties
about IL programs.

4.4. Instruction List 113

FUNCTION PLC_PRG_SQRT

VAR_INPUT

x :INT; (* the input value *)

END_VAR

VAR_OUTPUT

result:INT; (* the output result *)

END_VAR

VAR

v :INT; (* auxiliary value *)

vsqr :INT; (* auxiliary value *)

END_VAR

LD 0

ST v (* v initialized to 0 *)

start:

LD v

ADD 1 (* v increased by 1 *)

ST v

MUL v (* compute square of v *)

ST vsqr (* store square *)

LD x

GT vsqr (* x greater than v square? *)

JMPC start (* jump to start to increase v *)

LD x

EQ vsqr (* x equals v square? *)

JMPC equal (* jump to ‘equal’ for output *)

LD v (* x must be greater than v square *)

SUB 1 (* subtract 1 from v *)

ST result(* write output *)

JMP end

equal:

LD v

ST result

end:

RET

Figure 4.7: Approximated square root computation

114 Chapter 4. Semantics

Chapter 5

Verification

5.1 Introduction

One goal of this work is to apply software verification techniques for selected
PLC languages to improve the overall reliability of control processes. The
previous chapter introduced a formal semantics for the languages IL and
SFCs. This semantics serves as a formal basis for the subsequent verification
methods applied to programs written in those two languages. Since the
nature of these two languages are quite different we also propose different
verification approaches to each of them.

SFCs are a high level structuring language based on transition systems.
Errors on this level are most likely to be of conceptual nature: Expected
mutual exclusions do not hold, certain steps are not reachable or on contrary
a step is never left. To prove the correctness of these desired properties we
suggest model checking as the verification technique of choice. Model check-
ing provides an exhaustive analysis of properties on finite state models. In
general, it is easy to find a finite abstraction for an SFC program. Basically,
the control structure, the activity of steps and actions are of interest. In Sec-
tion 5.2 we provide a translation from abstract SFCs to the input language
of the CaSMV [JM01] model checker. Moreover, we give a characterization
of safe SFC and define a model checking approach to identify them.

In contrast to SFCs the language IL is a low level, hardware oriented lan-
guage. There are less structuring possibilities, the code involves potentially
infinite data types (integers, reals) and can consist of thousands of lines
of instructions. Failures of these program are often due to programming
mistakes leading to run-time errors: variables exceed their allowed range,
code is unreachable or leads to infinite loops, there are typing mistakes or
illegal arithmetic operations. According to the nature of the language and
the properties to be checked we propose a combined method of abstract
interpretation and data flow analysis for verification. The advantage of our
approach is that the checking is done fully automatic and does not require

115

116 Chapter 5. Verification

and human interaction like in, e.g., model checking.
In Section 5.3 we first define an abstract simulation for IL programs.

This simulation allows to run an IL program for sets of inputs on an abstract
level simultaneously instead of testing single instances. This provides prac-
tical feedback to the user when testing programs for many possible inputs.
Moreover, for verification we propose a combination of abstract interpreta-
tion and data flow analysis techniques to check the generic properties. While
abstract interpretation helps to determine the range of program values, data
flow analysis allows to relate different program information according to spe-
cific requirements.

5.2 Sequential Function Charts

This section provides methods and techniques for the verification of SFC
properties. We distinguish between structural and semantic properties, al-
though these are interrelated.

The semantic properties we consider are mostly program dependent
reachability properties such as: mutual exclusion between shared variables,
termination, avoidance of undesired states etc. We validate these properties
by model checking SFCs. To enabled this, we present a translation of SFC
program into the input language of a model checker. This translation can be
performed automatically and, thus, does not require any error prone manual
work. Once translated, any temporal property of the considered SFC pro-
gram can be checked. This allows the verification of a rich class of semantic
properties of SFCs.

By the verification of structural properties we understand checking for
a correct syntax and “sensible” SFCs. Checking for a correct syntax is
easy, it is a conformance testing of the syntactic rules for building SFCs
as already define in the standard IEC 61131-3. However, the syntax allows
many constructions which do not make sense. Therefore, we introduce the
notion of a safe SFC, an SFC whose structure is sensible. Moreover, we
present a way to determine safe SFCs by model checking.

We start with introducing an abstract model for SFC programs. This
is the basis for later analysis. Afterwards, we define a translation from
the abstract model to into the input language of the model checker. This
is described in Section 5.2.2. A characterization of safe SFCs and their
determination is presented in the subsequent Section 5.2.3.

5.2.1 An Abstract SFC Model

In this work we are mainly interested in the SFC program organization, i.e.,
the steps, transitions, actions and their qualifiers. We are not concerned
about the programs others than SFCs referred by the individual actions.
Thus, we abstract from any concrete program, but analyze the program

5.2. Sequential Function Charts 117

activation, i.e., action activations. In the same way we abstract from guards
reasoning about anything else than step activities and Boolean variables,
either program or input variables. This results into a finite SFC model. We
define it as follows:

Definition 5.1 (Abstract SFC)
An abstract sequential function chart (SFC) is a 6-tuple S# = (S,A#, s0,

T#, block ,≺#), where

• S is a finite set of steps,

• A# is a finite set of abstract actions which might refer to SFCs and
are essentially Boolean variables,

• s0 is the initial step in S,

• T ⊆ (2S \{∅})×G# × (2S \{∅}) is a finite set of abstract transitions,
where guards are Boolean expressions over step activities and Boolean
variables,

• block : S → 2B is an action labeling function which assigns a set of
action blocks to each step,

• ≺# ⊆ T × T an order on abstract transitions.

The abstract guards g ∈ G# are Boolean expressions over step activities
and Boolean variables. Here, any concrete guard such as for instance x > 1
is replaced by a Boolean variable x gt 1. This Boolean variable is allowed to
behave arbitrarily during the program execution, i.e., it abstracts any con-
crete behavior. Moreover, any abstract action a# ∈ A# is the replacement
of the original action, i.e., a state transformation, by a Boolean variable indi-
cating that can be either active or not. This means, we abstract completely
from its program code.

In a first approach we also abstract from the order on transitions, i.e.,
we consider abstract SFCs of the form (S,A#, s0, T

#, block). This models
an SFCs whose execution is independent of any priorities and allows more
program behavior than there actually is on the concrete level. However, if
the program satisfies some safety property on the abstract level, it certainly
will do so on the concrete level. In the latter we show how to include
priorities on the abstract level as well.

The abstract semantics of a program is given by the operational seman-
tics as given for its concrete counterpart in Definition 4.8, but we do not
consider any effects of the actions and, thus, omit, e.g., item number 1 of
the definition.

Example 5.1 Consider again the SFC of Figure 4.4. The abstract coun-
terpart of the SFC depicted there is shown in Figure 5.1. Here, the concrete
guards y = 0, y = 1 and x ≤ 1 are replaced by the Boolean variables y eq 0,
y eq 1 and x leq 1. Moreover, we abstract from the the effect of actions if
they do anything else than calling sub-SFCs.

118 Chapter 5. Verification

s1 s2

s0

N a

N a

N a21

0

y_eq_2x_leq_1

y_eq_0

Figure 5.1: Abstract SFC

5.2.2 Translation to CaSMV

CaSMV is a symbolic model-checker which supports the verification of tem-
poral logic properties of Kripke structures. The transition relation of a
Kripke structure is expressed in CaSMV by evaluation rules depending on
the current and the next state of each system variable q, i.e., q and next(q)

in CaSMV notation. In order to translate an SFC to CaSMV we mimic the
transition relation on the configurations of the SFC semantics. Remember,
after reading the inputs, at every PLC cycle we first execute the actions
and then evaluate the transitions and determine the new active steps and
actions. Hence, whenever reasoning about guards or the new state of steps
and actions we refer to the next state of a variable.

In the beginning we do not consider any order on actions and transitions.
We assume that the activity of an action directly corresponds to an output
variable, which is often the case as many actions only consist of opening and
closing valves, switching motors on and off etc. In this case we do not need
an order on actions, because the actions do not share variables. Further-
more, we first have no order of transitions which allows us to additionally
check for conflicting transitions automatically. In Section 5.2.2 we show how
to extend this framework by embedding orders on transitions and actions,
which results into a deterministic execution model. This enables us to deal
with more complex actions and situations where one variable is modified by
more than one action and the result depends on the execution order.

Data Structure of the CaSMV Module

A system modeled in CaSMV can be composed from components called
modules. We use one module to describe the SFC and its actions and allow
further modules to describe the environment or parts of the environment.

In order to translate an abstract SFC S# = (S,A#, s0, T
#, block ,≺#)

to CaSMV we introduce the following Boolean variables:

• ready si for each step si, i.e., one variable for each step of the top
level SFC and its hierarchically nested ones. These variables model
whether the respective step is ready, this means, the step is active or
control resides in it and waits to resume.

5.2. Sequential Function Charts 119

• guardi for each guard gi. This variable represents the transition con-
dition and is in general a Boolean expression reasoning about program
variables and input variables inputi (e.g., process variables from the
plant to be controlled) and the activity of steps step.Xi. Where, e.g.,
step.X1 evaluates to true whenever step one is active.

• active ai for each action ai. This variable is introduced to code
whether an action is active or not. This action might be an SFC
itself.

• stored ai for each action ai, which indicates whether an action is
currently stored, i.e., has been activated in the current or a previous
step by an S qualifier.

Note, if we want to reason about the activity of a step si belonging
to a nested SFC ak, the variable step.Xi will statically be substituted by
ready si∧next(active ak). This means, a step si is active, if it is currently
ready and after the execution of all actions the SFC it is nested in becomes
(or remains) active.

Furthermore the CaSMV module has input parameters for each Boolean
input variable of the SFC program. The behavior of the input variables is
a priori chaotic, i.e., they might take any possible value, unless specified
otherwise. This allows to check an open system. Any restrictions on the
behavior of input variables can be modeled in an additional CaSMV module
representing the environment.

Evolution of State Variables

In this section we define how to code the transition relation on the variables
defined in the previous section. This is of special interest for the activity of
actions, which are tagged by qualifiers. Therefore, we explicitly define the
next-state of all variables, but guards and input variables, since inputs are
provided by some environment and the truth values of guards are determined
by the evaluation of the Boolean expressions they represent.

Ready steps. The next-state of a ready variable ready si of a step si is
true if and only if in the next-state there is a transition taken into si or it is
already true now and there is no transition leaving si. In case si belongs to a
nested SFC, it is additionally required that in the next-state the the nested
SFC itself is active. In detail, for a nested SFC associated by an action ak

the variables ready si for each step si ∈ ak, are set to true only the SFC
itself is active, i.e. next(active ak) holds, one of the preceding guards will
be true in the next cycle and the corresponding source steps are currently
ready.

120 Chapter 5. Verification

next(ready si) = si will be entered (5.1)

∨ (ready si ∧ si will not be left) (5.2)

Condition 5.1 states that step si becomes active if it will be entered in
the next cycle and 5.2 that it remains active if it is active now and no other
transition is taken. We define these conditions in detail:

si will be entered = (∃t = (A, g,A′) ∈ T : si ∈ A′

∧

sj∈A

ready sj ∧ next(g))

∧ (¬∃t′ = (B, g′, B′) ∈ T : t 6= t′ ∧A = B ∧
∨

sl 6=si∈B′

next(ready sl))

This means, step si will be entered if it is in the target of a transition that
is enabled in the next cycle, and there is no other transition from the same
source that will be taken instead. The second conjunction of the formula
above is necessary to cope, e.g., with alternative branches where several
guards are true at the same time. The details of condition 5.2 are:

si will not be left = ¬∃t = (A, g,A′) ∈ T : si ∈ A ∧
∧

sj∈A

ready sj ∧ next(g)

This means, step si will remain active if there is no outgoing transition
enabled. Note, however, that 5.1 and 5.2 are defined with respect to safe
SFCs as defined later.

As previously stated, if step si belongs to a sub-SFC ak we have to add
next(active ak) in conjunction to 5.1 and 5.2.

Active actions. The value of active ak for the activity of an action ak

depends on the activity of the steps sj, where ak ∈ blocka(sj), and the
qualifiers tagged to ak. The expression for determining next(active ak) is
defined by

(act N S steps∨act P1 steps∨act P0 steps∨stored ak)∧¬act R steps

where

• act N S steps is
∨

{sj | ak∈blocka(sj)}
(ready sj∧next(active al)) where

ak is tagged with the N or S qualifier and al is the SFC sj belongs to,

5.2. Sequential Function Charts 121

• act P1 steps is
∨

{sj | ak∈blocka(sj)}
(¬ready sj∧next(ready sj)) where

ak is tagged with the P1 qualifier,

• act P0 steps is
∨

{sj | ak∈blocka(sj)}
(ready sj∧next(¬ready sj)) where

ak is tagged with the P0 qualifier, and

• act R steps is
∨

{sj | ak∈blocka(sj)}
(ready sj ∧ next(active al)) where

ak is tagged with the R qualifier and al is the SFC sj belongs to.

This means, an action will become active if one of the following condi-
tions hold: The step the action is associated to will become active and the
action itself is tagged with either the N or the S qualifier, if a step the action
belongs to will be entered in the next cycle and the action is tagged with
the qualifier P1, the step the action belongs to is active and will be inactive
in the next cycle and the action is tagged with the qualifier P0, or the action
is a stored one (see below). However, resetting an action has always priority
and, thus, will in any case disable the activation.

Stored actions. The value stored ak is set to true, if one or more steps
where ak is associated to are active and ak is tagged with an S qualifier and
there is no matching reset. It is set to false, whenever a matching reset action
is called. Thus the next value of stored ak is defined by next(stored ak) =
(act S steps ∨ stored ak) ∧ ¬act R steps where

• (act S steps is
∨

{sj | ak∈blocka(sj)}
(ready sj∧ next(active al)) where

ak is tagged with the S qualifier and al is the SFC sj belongs to and

• act R steps as defined above.

Initialization The initial ready step s0 of the top-level SFC is initialized
to true, denoting that this step is active at the beginning. All other steps
are initially set to false. For reasons of simplicity we assume, that the initial
step of the top level SFC contains no nested SFCs. This does not limit the
set of translatable SFCs, because each SFC can be transformed into one
meeting this constraint. Furthermore, all variables coding if the action is
active or the action is a stored one are initially false.

Extension to Orders on Actions and Transitions

The translation presented above does not take into account the orders on
actions, @, and on transitions, ≺. Furthermore it only works for actions
whose activity is mapped to an output variable. However, this approach can
be extended to consider existing orders on transitions and actions. To take
the order on transitions into account we modify the guards of the transitions
such that there are no more conflicts. This can be done statically by adding
constraints such that a transition is enabled iff its guard holds and no other

122 Chapter 5. Verification

higher-priority transition which shares at least one common source steps is
enabled.

To consider more complex actions which make it necessary to deal with
the order on actions we introduce a micro-cycle. The micro-cycle length
equals the number of actions which have to put into an order. Then, each
action is triggered by the cycle according to its position in the order.

Example Application to a Chemical Plant

In this section we apply the presented approach to a laboratory plant which
was designed and built at the Process Control Laboratory of the University
of Dortmund to serve as a test-bed and a demonstration medium for control
and scheduling methods for multi product batch plants [BKSL00]. Com-
pared to batch plants of industrial scale this plant is still of moderate size
although it is already complicated enough to pose complex scheduling and
control tasks.

In the plant two products are produced from three raw materials in three
reactors simultaneously. The plant itself may be seen as part of a production
line, therefore, there are buffer tanks for the three raw materials which are
assumed to come from a preceding step of this production line. Additionally
there are buffer tanks for the products which are supposed to be consumed
in a following production step.

For illustration purposes we only focus on one part of the plant, the
production of one product in one of the reactors.

Example Process and Control Program In Fig. 5.2 the reactor T3
is depicted, which is used to produce the chosen product, referred to as C,
from two raw materials, referred to as A and B. The tanks T1 and T2 are
used as buffer tanks for A and B respectively. They can be filled via the
valves V1 and V2. The reaction is carried out by first filling A into T3 via
valve V3. After this the contents of tank T2 is given into the reactor via
V4, now B immediately reacts with A to C. Product C then directly can be
withdrawn via V5 for further processing. Tanks T1 and T2 are equipped
with sensors LIS+ for detecting the upper liquid level threshold and LIS-
for the detecting that the tank is empty. Apart from an LIS- sensor tank
T3 is also equipped with a stirrer M, which is used to ensure a homogeneous
solution within tank T3 during the reaction.

In Fig. 5.3 a control program for carrying out the reaction is shown. The
control program consists of a kind of master-SFC, which allows the following
three processes to run in parallel

• filling T1 with A given by action a1 in step s2,

• filling T2 with B given by action a2 in step s5 and

5.2. Sequential Function Charts 123

V3 V4

V1 V2

V5

LIS +
2

LIS -
2

LIS +
1

LIS -
1

LIS -
3

T1 T2

T3

M

A B

A+B®C

Figure 5.2: The plant

s0

s4

N a2

s7
N a3

s5

s1

N a1s2

g1

s3 s6

g2

g0

g3

g4

g6

s8

g5

a3:

“V 1” “V 2”

“start”

“true”

“LIS+ 1” “LIS+ 2”

“NOT s11.X” “NOT s12 .X”

s10

s11
N a4

s12

s13

g10

N a6

g11

g12

g13

S a5

R a5

N a7

“V 3”

“V 4”

“V 5”

“M”
“LIS- 1”

“LIS- 2”

“LIS- 3”

“LIS1+ AND LIS- 3”

P0 a8

“M”

“finished”

“finished”

Figure 5.3: Control SFCs

• reaction in T3 and emptying T3 given in step s7 as action a3.

Action a3 is given by an individual SFC, since this process itself has
a certain complexity. As we have conflicting processes, such as emptying
contents of T1 into T3, which is a sub step of a3 and filling T1 with A
we have the waiting steps s1, s4 and s10 which shall ensure that certain
conditions (given as guards) hold before the processes start.

Apart from a3 the actions are very simple. For these the value of actions
activity simply determines the value of an output variable, e.g. the valve
V1 is as long open, as a1 is active.

Note, the control routines presented differ from those given in [BKSL00]
as they are adapted to the excerpt of the plant presented.

Translation The translation of the control program into CaSMV code
follows directly from the definitions of Sect. 5.2.2. Here, we give just two
examples of how to define the transition relation on state variables. The

124 Chapter 5. Verification

CaSMV code for these examples are at Fig. 5.4, where the symbols ‘&’, ‘|’,
‘~’ (as well as ‘!’) denote logical ‘and’, ‘or’ and ‘not’. For the whole example
the code can be found at the Appendix A.

Steps. Step s12 of the nested SFC will become ready, if the preceding step
s11 is currently ready, the SFC it is nested in will be active and the
guard LISminus1 of the transition connecting these two steps will
evaluate to true. On the other hand step s12 will become inactive, if it
is currently ready, its SFC will be active and the outgoing transition
condition will hold. If none of these cases is satisfied s12 will keep its
current status.

Actions. Action a5 will become active if either s11 is active or a5 is already
stored and s13 is not a ready step, since a5 is reset in s13. In any other
case s13 will be inactive.

default next(ready_s12) := ready_s12;

in case{
(ready_s11 & next(active_a3)

& next(LISminus1)) : next(ready_s12) := 1;

(ready_s12 & next(active_a3)

& next(LISminus2)) : next(ready_s12) := 0; }

default next(active_a5) := 0;

in case{
(((ready_s11 & next(active_a3)) | stored_a5)

& ~ready_s13) : next(active_a5) := 1; }

Figure 5.4: Fraction of CaSMV input

Specification of Verification Tasks For the given SFCs we check the
following properties:

Reachability of each step. We check this to ensure that there is no un-
used code. The corresponding CTL specification added to the CaSMV
input file is for a step si: SPEC EF si , i.e., on all execution paths we
will eventually reach si.

Absence of deadlocks. We check that whenever a step si is reached it
is possible to extend this run such that si is reached once more, i.e.,
infinitely often. In CaSMV this is specified by: SPEC AG (AF si).

5.2. Sequential Function Charts 125

Plant specific requirements. For the design of control programs of batch
plants the allocation of plant equipment to different production steps
or processes is a central issue. There are often processes, which are in
conflict because they need the same resources. E.g., emptying contents
of T1 into T3 and filling T1 with A are in conflict, because they both
compete for tank T1. Therefore, it has to be checked that equipment
is exclusively used by one process at a time. In the given example it
has to be ensured that both valves for filling and emptying a tank are
not open simultaneously. E.g., for tank T1 the valves V1 and V3 shall
never be open at the same time, which leads to the specification: SPEC
AG !(V1 & V3).

The verification tasks presented here are independent of a specific envi-
ronment but reason about the control software only. In order to verify, e.g.,
that there is no overflow in a tank, parts of the plant and the environment
have to be included into the model and checked in combination with the
current controller.

Verification Results All verification tasks presented above are checked
within a fraction of one second on a SUN ULTRA 1. This is not surprising,
since the model is still of small size and for illustration purpose only.

It was proven that every step is reachable and there are no deadlocks.
We also verified that the tanks T1 and T3 are never filled and emptied at
the same time. However, tank T2 does not satisfy this requirement. The
counter trace produced by CaSMV shows that both valves V2 and V4 may
be opened simultaneously. This happens, because it is only required when
entering step s5 that step s12 is not active (NOT s12.X), i.e. that filling
T2 does not start, if it is already in the emptying phase. However, when
entering s12 there is no condition that checks, if the tank is still in the filling
phase.

Hence, the verification detects a flaw in the control program which is not
obvious to see and the counter trace helps to track back its origin, where it
can be remedied.

5.2.3 Safe Sequential Function Charts

In Figure 4.3 of Section 4.3 we first presented an SFC whose structure com-
plies to the syntax as given in IEC 61131-3, but which does not make sense.
We like to characterize what kind of constructions do not make any sense.
Any SFC without a divergence/convergence is always sensible as long as the
syntactic rules are followed. However, if we allow parallelism there are three
major violation that might occur:

1. There is a jump between different parallel branches without a proper
synchronization first. This violates a proper parallelism and does not

126 Chapter 5. Verification

make sense (cf. Figure 5.5 SFC a).

2. There is a jump out of a parallel branch, probably to some other level.
This violates a proper synchronization (cf. Figure 5.5 SFC b).

3. Two or more alternative branches of the same parallel branch are syn-
chronized. This does not make sense either (cf. Figure 5.5 SFC c).

s0

s1

s2

s3

s4

s5

(a)

s1

s2

s3

s4

s5

s0

(b)

s0

s1 s3

s5s4

s6

(c)

s2

Figure 5.5: Various types of unsafe SFCs

This leads to the following characterization:

Characterization 5.1 (safe SFC)
An SFC is safe if there are no jumps between parallel branches, no jumps
out of parallel branches and every branch is properly synchronized.

Although we have characterized safe SFCs we have not yet presented a
way to automatically determine if an SFC is safe and what are the semantic
consequences of the characterization above. This is done in the following.

A Model Checking Approach to Safe SFCs

The first two items of the characterization above describe a breach of proper
parallelism. If we consider parallel branches as independent processes we
clearly want control not to jump from one process to the other or to abort
when in fact we demand a proper synchronization.

Semantically, this means that control might be simultaneously at differ-
ent places in the same process. To understand this, imagine the following
scenario in Figure 5.5 (a): Control starts from step s0 moves on to s1 and
s3. While in the right branch control remains in s3 it moves from the left in
s1 to the right in s4. Now, control resides in two steps in the same process,
i.e., in s3 and s4. In the middle SFC we can construct a similar scenario
with the same result.

If we consider control as being tokens moved around according to the
SFC structure, we can phrase one verification condition for a safe SFC as
follows: There is never more than one token simultaneously in the same

5.2. Sequential Function Charts 127

process. If we completely abstract an SFC from guards and actions and allow
control to reside in a location as many cycles as wished, we can rephrase
the verification condition as: Determine that never more than one token is
in the same step. This abstraction to SFCs without guards where control
might reside in a step arbitrarily long is a sensible abstraction, since we
want to verify structural properties that do not depend on specific guards
and actions.

The issue of proper synchronization is slightly different. The SFCc in
Figure 5.5 is not unsafe because control might reside simultaneously in two
processes, but since there are not enough tokens for the convergence, which
is of course due to the alternative branches. Hence, a verification condition
for this problem is that there is a possibility to reach simultaneously all
source steps of a converging transition. Again it is useful to consider SFCs
abstracted from any guards and actions.

Definition 5.2 (safe SFC)
An SFC is safe if for all possible runs there is at most one token in a process
and for all converging transitions there exists a run such that they can be
taken.

Both verification conditions are stated as reachability problems over fi-
nite graphs and, hence, are solvable by model checking. Since we already
defined a translation from SFCs to the input language of the CaSMV model
checker we are going to make use of this and modify the translation slightly
to check for safe SFCs.

A modification of the translation. As mentioned, we check the struc-
ture independent of any guards, i.e., control might move in an arbitrary
way. Therefore, we substitute in the translation process every guard by
true. However, this alone is not sufficient. By the synchronous execution
mechanism in every cycle every enabled transition is taken. This means in
particular, if all guard evaluate to true control moves in every cycle out off
a step (if possible). However, we like the control to behave arbitrarily, in
particular it might remain in a step. Therefore, we introduce a self-loop
guarded by true for every step. This allows control either to stay in a step,
i.e., to self-loop, or to take an outgoing transition.

Token overflow flag. In preparation to check that there might be more
than one token in a step at a time we introduce an additional variable
token overflow to indicate just this. We define token overflow such that
it is set to 1 (true) whenever a step si ∈ S is ready and there is a transition t
leading to si and the source steps of t are ready steps themselves. Once set to
1 token overflow remains 1. It is initialized by 0. Formally, the transition

128 Chapter 5. Verification

relation is defined on all steps si which have an incoming transition by:

token overflow′ =
∨

si∈S

ready sj(
∨

{t=(A,g,A′)∈T | si∈A′}

∧

sj∈A

ready sj)

∨ token overflow

This means we have a possible token overflow in si, whenever si is ready
and so are the target steps of a transition leading to si. The reason is, in
the next cycle the token from the target step might move to si, while the
token in si might remain in si due to the self-loop. This results into more
than one token in si.

Verification conditions. To check for token overflow and proper synchro-
nization we define temporal logic properties on the new extended transition
system. Clearly, there are not more than one token in a step at a time if
there is always no token overflow, i.e.:

SPEC AG !token overflow.

The verification property for proper synchronization is slightly more
complex. We have to check for every converging transition t = (A, g,A′) ∈ T

with |A| > 1 that all steps in A might ready. Let the k-element set of all
converging transitions be

Tk = {t | t = (A, g,A′) ∈ T ∧ |A| > 1}

such that |Tk| = k. We require:

SPEC |t=(A,g,A′)∈Tk
EF &si∈Aready si .

This means for all converging transition eventually there are all source steps
ready. Note, however, this need not to be the case for the concrete SFC.
Here, we abstract from any restrictions imposed by guards etc. and, there-
fore, over-approximate the behavior to test for the structural compliance.

Example. Let us consider SFC a of Figure 5.5. The translation rela-
tion for a token overflow as well as the verification conditions are shown in
Figure 5.6

The verification result is, of course, that there is proper termination but
also that there is a possibility of a token overflow. When taking a look at
SFC c of Figure 5.5 on might suggest that detecting proper synchronization
equals detecting a token overflow in the reversed transition relation. This
means, we change the direction of all transitions and then check for a token
overflow. Although this works for the examples in Figure 5.5 this is generally
not possible. A counter example is shown in Figure 5.7.

5.3. Instruction List 129

default next(token_overflow) := token_overflow;

in case{
(ready_s1 & ready_s0 :=1;

(ready_s2 & ready_s1 :=1;

(ready_s3 & ready_s0 :=1;

(ready_s4 & (ready_s3 | ready_s1) :=1;

(ready_s5 & (ready_s2 & ready_s4) :=1;}

(* SPEC token overflow *)

SPEC AG ! token_overflow

(* SPEC proper synchronization *)

SPEC EF (ready_s2 & ready_s4)

Figure 5.6: SMV code for token overflow

Figure 5.7: Completely unsafe SFC

5.3 Instruction List

Run-time errors are assumed as a particularly high-risk type of software
fault whose consequences include processor halt, data corruption and secu-
rity breaches. They also cause applications to send uncontrolled commands
to external devices, causing non-deterministic, unpredictable behavior. Im-
pacts on business and corporate image may be catastrophic (due to loss of
service, loss of mission, etc.) [Pol02].

In this section we present a number of ways to detect possible run-time
errors of IL programs. To test IL programs we start with the development
of an abstract simulation framework in Section 5.3.1. This framework is
extended to abstract interpretation in Section 5.3.2 which allows to auto-
matically check for a number of properties such as range violation or divi-
sion by zero. A heuristics to improve the analysis results is presented in

130 Chapter 5. Verification

Section 5.3.4. Finally, we combinate abstract interpretation and data flow
analysis techniques in Section 5.3.5 which enables the checking for a large
set of generic properties.

5.3.1 Abstract Simulation

Program simulation is a valuable method to track program behavior for de-
bugging or testing. It is the execution of a program for a specific instance of
input and program variables. However, when considering input variables the
simulation has often to be performed for each single possible input in order
to track the different possible behaviors. This is time consuming or even
impossible when there are an infinite number of possible inputs. Therefore,
it is desirable to test all possible instances at once. We call such a simula-
tion abstract simulation which is in fact a form of abstract interpretation.
Abstract simulation comprises a number of possible simulation runs but as
simulation itself it is not guaranteed to terminate. In the following we refer
to abstract interpretation if we include additional acceleration techniques
which ensure termination and to abstract simulation if not. Hence, these
two terms are close to each other. Nonetheless, for debugging and testing on
an abstract level abstract simulation is as valuable as program simulation is
on the concrete level.

In this section we define an interval based abstract operational semantics
for IL programs which corresponds to the notion of the abstract collecting
semantics introduced in Section 3.5.3. Abstract simulation is the program
execution based on this abstract semantics. Note, as mentioned in the intro-
duction to the abstract interpretation framework any abstraction includes
the possibility of over-approximation. There is no difference for abstract sim-
ulation, e.g., when abstracting possible input values {1, 2, 4} by the interval
[1, 4] the abstract simulation takes also the input 3 into account, which is not
part of the original set. For debugging and the testing of safety properties
this is often acceptable and still better than testing any possible instance.

As its concrete counter-part in Section 4.4.3 the interpretation of the
abstract semantics is based on labeled transition systems where nodes are
configurations and the transitions themselves represent the i/o behavior as
well as the abstract execution of single IL statements. Each execution of an
IL program is then covered by a run in this transition system. We define
the notion of abstract states and abstract configurations as follows:

Definition 5.3 (abstract state)
The global abstract IL state contains the values of all variables and is mod-

eled as a mapping Σ# : Var ∪{cr} → D#, where D# stands for the abstract
data domain.

Again, we assume the values in the state to be type consistent and use
σ# as typical element of Σ#.

5.3. Instruction List 131

Definition 5.4 (abstract configuration)
An IL configuration γ : Locs ×Σ# ×Mode of a program is characterized by

• a location l ∈ Locs,

• an abstract state σ# ∈ Σ#, and

• a configuration of type Mode, which can be either I, O or C(ILi), where
ILi is an IL instruction.

The differences between abstract states or abstract configurations to
their concrete counterparts are mainly in the data domains. While on the
concrete level we assumed integers and Booleans as the underlying domains
we consider the lattice of intervals 〈I,⊆I〉 as presented in Example 3.5 and
the lattice of Booleans 〈B,⊆B〉 as depicted in Figure 5.8.

true false

>

⊥

Figure 5.8: Lattice of Booleans

Definition 5.5 (abstract labeled transition system)
With every IL graph GP we associate an abstract labeled transition system

T #
P = (Γ#, γ

#
0 ,→

#
ξ), where

• Γ# denotes the set of abstract configurations,

• γ
#
0 ∈ Γ# is the initial configuration and

• →#
ξ is the transition relation between abstract configurations.

The initial configuration γ#
0 is given by (l0, σ

#
0 , I), where the initial state

σ
#
0 evaluates all Booleans to > and all integer intervals to top element of

the lattice [−∞,+∞]. The operational rules are shown in Figure 5.4–5.9

specifying the labeled transition relation →#
ξ between system configurations.

The initial configurations are abstractions of the initial configuration
for the concrete level The operational rules a very similar to the ones of
Section 4.4.3. However, this time we do not operate on Booleans and integers
but on the lattices of Booleans 〈B,⊆B〉 and intervals 〈I,⊆I〉. Therefore, the
standard logical and arithmetic operators do not apply here. Tables 5.3.1
to 5.3.1 define the respective abstract operators. Note that we consider

132 Chapter 5. Verification

all operators to be strict, i.e., if any argument is the bottom element of
the respective lattice the result yields the bottom element. For the sake of
simplicity this is not explicitly mentioned in the definitions.

Since the operational rules of Figure 5.4–5.9 are very close to the ones
of Section 4.4.3 we do not explicitly define all operators. In particular the
operators augmented by the N qualifier are omitted. An extension to the
full set is straightforward. Note, however, that in an abstract semantics
comparisons and logic operations might result into an unknown, i.e., >,
result. This implies that conditional jumps cannot uniquely be determined.
In the rule set this is reflected by non-determinism in the case that the
current result is equal to >.

Table 5.1: Abstract Boolean connectivities
operator abstract semantics

¬# ¬#b =

{

> if b = >
¬b otherwise

∧# b1 ∧
b2 =

{

b1 ∧ b2 if b1 6= > and b2 6= >
> otherwise

∨# b1 ∨
b2 =







true if b1 = true or b2 = true

false if b1 = false and b2 = false

> otherwise

Table 5.2: Abstract arithmetic operators
operator abstract semantics

+# i1 +# i2 = [glb(i1 + i2), lub(i1 + i2)]
−# i1 −

i2 = [glb(i1 − i2), lub(i1 − i2)]
∗# i1 ∗

i2 = [min(product),max(product)]
where product = {glb(i1 ∗ i2), lub(i1 ∗ i2)}

5.3. Instruction List 133

Table 5.3: Abstract comparisons
operator abstract semantics

=# i1 =# i2 =

{

true if i1 =I i2
false if i2 6=I i1

6=# i1 6=# i2 =

{

true if i2 6=I i1
false if i1 =I i2

<# i1 <
i2 =







true if i1 ⊂I i2
false if i2 ⊆I i1
> otherwise

≤# i1 ≤# i2 =







true if i1 ⊆I i2
false if i2 ⊂I i1
> otherwise

># i1 >
i2 =







true if i2 ⊆I i1
false if i1 ⊂I i2
> otherwise

≥# i1 ≥# i2 =







true if i2 ⊂I i1
false if i1 ⊆I i2
> otherwise

Table 5.4: Abstract operational semantics: Mode switches

σ#′
= σ#

[~x 7→#
~v] ~x# = Var in

Input
(l, σ#, I) →#

?v
(l, σ′#,C(instr(l)))

instr(l) = RET
RET

(l, σ#,C(instr(l))) →# (l, σ#,O)

~v# = [[~x]]#(σ#) ~x# = Varout

Output
(l, σ#,O) →#

!~v (l, σ#, I)

134 Chapter 5. Verification

Table 5.5: Abstract operational semantics: Basics

instr(l) = LD σ#′
= σ#[op(l)# 7→# cr#] l′ ∈ Succ(l)

LD
(l, σ#,C(instr(l))) →# (l′, σ#′

,C(instr(l′)))

instr(l) = ST σ#′
= σ#

[cr# 7→# op#(l)] l′ ∈ Succ(l)
ST

(l, σ#,C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

instr(l) = S σ#′
= σ#[true 7→# op#(l)] l′ ∈ Succ(l)

S
(l, σ#,C(instr(l))) →# (l′, σ#′

,C(instr(l′)))

instr(l) = R σ#′
= σ#

[false 7→# op#(l)] l′ ∈ Succ(l)
R

(l, σ#,C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

Table 5.6: Abstract operational semantics: Arithmetics

instr(l) = ADD σ#′
= σ#

[cr# 7→# cr#+#op#(l)] l′ ∈ Succ(l)
ADD

(l, σ#,C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

instr(l) = SUB σ#′
= σ#[cr# 7→# cr##

−op#(l)] l′ ∈ Succ(l)
SUB

(l, σ#,C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

instr(l) = MUL σ#′
= σ#

[cr# 7→# cr##
∗op#(l)] l′ ∈ Succ(l)

MUL
(l, σ#,C(instr(l))) →# (l′, σ#′

,C(instr(l′)))

Table 5.7: Abstract operational semantics: Boolean logics

instr(l) = NOT σ#′
= σ#

[cr# 7→# ¬#cr#] l′ ∈ Succ(l)
NOT

(l, σ#,C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

instr(l) = AND σ#′
= σ#

[cr# 7→# cr#∧#op#(l)] l′ ∈ Succ(l)
AND

(l, σ#,C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

instr(l) = OR σ#′
= σ#

[cr# 7→# cr#∨#op#(l)] l′ ∈ Succ(l)
OR

(l, σ#,C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

5.3. Instruction List 135

Table 5.8: Abstract operational semantics: Comparisons

instr(l) = GT σ#′
= σ#[cr# 7→# cr#

>
#op#(l)] l′ ∈ Succ(l)

GT
(l, σ#,C(instr(l))) →# (l′, σ#′

,C(instr(l′)))

instr(l) = GE σ#′
= σ#

[cr# 7→# cr#≥#op#(l)] l′ ∈ Succ(l)
GE

(l, σ#,C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

instr(l) = LT σ#′
= σ#[cr# 7→# cr#

<
#op#(l)] l′ ∈ Succ(l)

LT
(l, σ#,C(instr(l))) →# (l′, σ#′

,C(instr(l′)))

instr(l) = LE σ#′
= σ#

[cr# 7→# cr#≤#op#(l)] l′ ∈ Succ(l)
LE

(l, σ#,C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

instr(l) = EQ σ#′
= σ#[cr# 7→# cr#=#op#(l)] l′ ∈ Succ(l)

EQ
(l, σ#,C(instr(l))) →# (l′, σ#′

,C(instr(l′)))

instr(l) = NEQ σ#′
= σ#

[cr# 7→# cr# 6
=#op#(l)] l′ ∈ Succ(l)

NEQ
(l, σ#,C(instr(l))) →# (l′, σ#′

,C(instr(l′)))

Table 5.9: Abstract operational semantics: Jumps

instr(l) = LABEL l′ ∈ Succ(l)
LABEL

(l, σ#,C(instr(l))) →# (l′, σ#,C(instr(l′)))

instr(l) = JMP l′ ∈ Succ(l) instr(l′) = LABEL
JMP

(l, σ#,C(instr(l))) →# (l′, σ#,C(instr(l′)))

instr(l) = JMPC l′ ∈ Succ(l)
cr#(σ#) = false∨ cr#(σ#) = > instr(l′) 6= LABEL

JMPCff
(l, σ#,C(instr(l))) →# (l′, σ#,C(instr(l′)))

instr(l) = JMPC l′ ∈ Succ(l)
cr#(σ#) = true ∨ cr#(σ#) = > instr(l′) = LABEL

JMPCtt
(l, σ#,C(instr(l))) →# (l′, σ#,C(instr(l′)))

136 Chapter 5. Verification

5.3.2 Abstract Interpretation Applied to Program Analysis

In this section we apply the idea of abstract interpretation to static program
analysis. In fact this corresponds closely to abstract simulation as defined
in the previous section but includes acceleration techniques for termination.

Abstract interpretation for program analysis is about the computation
of program properties, e.g., in our case the computation of all possible pro-
gram values at a given program node. This means, we like to compute an
approximation of the collecting semantics as introduced in Section 3.5.3.
This can be stated in terms of computing a (least) fixed point solution of a
system of semantic equations

~x1 = φ
#
1 (~x1, . . . , ~xn)

f# :
...

~xn = φ
#
n (~x1, . . . , ~xn)

where each index i, 1 ≤ i ≤ n, represents a program node of an IL
graph and each function φ#

i is a continuous function from L#n
to L# where

L# is the abstract lattice of program properties/information. Each function

φ
#
i computes the abstract property holding at program node i after the

execution of one program step from every node leading to i. In particular,
considering a set of variables Var ∪ cr of types Boolean and integer and the
standard abstractions used in this work so far, then L# is the product space
of 〈B,⊆B〉 and interval lattices 〈I,⊆I〉 representing the abstract values for
each program variable.

VAR

x:INT;

END VAR

LD 1

ST x

label:

LD x

ADD 1

ST x

LE 10

JMPC label

RET

Figure 5.9: Simple IL example

What does this mean in an IL setting? Consider the short IL program
P in Figure 5.9 which successively increases a variable x by 1, starting from

5.3. Instruction List 137

1, until 10 is reached. We consider the IL graph GP = (N,E, nini , nfin , stm)
representing the control structure of the IL program P . We number the
nodes as follows:

[LD 1]1

[ST x]2

[label:]3

[LD x]4

[ADD 1]5

[ST x]6

[LE 10]7

[JMPC label]8

[RET]9

Additionally we have the initial node nini with its edge to node number
1 and the finial node nfin with its edge from node number 9. We assign the
number 0 to nini and 10 to nfin .

If for each equation of the equation system we take into account only
the parameters the equation directly depends on, i.e., the predecessors of a
node we obtain the following equation system:

~x0 = φ
#
0 (~x0)

~x1 = φ
#
1 (~x0)

~x2 = φ
#
2 (~x1)

~x3 = φ
#
3 (~x2, ~x8)

~x4 = φ
#
4 (~x3)

~x5 = φ
#
5 (~x4)

~x6 = φ
#
6 (~x5)

~x7 = φ
#
7 (~x6)

~x8 = φ
#
8 (~x7)

~x9 = φ
#
9 (~x8)

~x10 = φ
#
10(~x9)

The program information at each node given by ~x are the array of ab-
stract values 〈cr#, x#〉 of the current result and the variable x.

The equations, e.g., ~x3 = φ
#
3 (~x2, ~x8), should read as follows: “The in-

formation about the variables in ~x at node 3 depend on the semantic effect
defined by φ#

3 depending on the information about ~x at nodes 2 and 8”. In

case of φ#
3 the semantic effect is the union of the information coming from

138 Chapter 5. Verification

node 2 and node 8. For all other program nodes their semantic effect is de-
scribed by the resulting program values defined by the abstract operational
semantics and its operator in Section 5.3.1.

Moreover, φ#
0 corresponds to the initialization of the variables in ~x on the

abstract level. This means, if there is no value specified in the declarative
part, it is either > or [+∞,−∞] depending on its type. This represents the
fact that the value is unknown. We assume that the current result, which is
dynamically typed, is initialized by >. For any type inconsistent operation
or union of values of different types the outcome is the bottom element ⊥.

A solution to the equation system can be:

~x0 = φ
#
0 (~x0) = 〈> , [−∞,+∞]〉

~x1 = φ
#
1 (~x0) = 〈[1, 1] , [−∞,+∞]〉

~x2 = φ
#
2 (~x1) = 〈[1, 1] , [1, 1]〉

~x3 = φ
#
3 (~x2, ~x8) = 〈⊥ , [1, 9]〉

~x4 = φ
#
4 (~x3) = 〈[1, 9] , [1, 9]〉

~x5 = φ
#
5 (~x4) = 〈[2, 10] , [1, 9]〉

~x6 = φ
#
6 (~x5) = 〈[2, 10] , [2, 10]〉

~x7 = φ
#
7 (~x6) = 〈> , [2, 10]〉

~x8 = φ
#
8 (~x7) = 〈> , [2, 10]〉

~x9 = φ
#
9 (~x8) = 〈false , [10, 10]〉

~x10 = φ
#
10(~x9) = 〈false , [10, 10]〉

In fact, this solution is the best solution, i.e., is the least fixed point of
the equation system.

As argued in Section 3.5 it is generally not ensured that any iteration
strategy solving these equations will terminate. We introduced the concept
of widening, which has to be applied here. These means for a chosen subset
of equations, we replace each equation by

~xi = ~xi ∇ φ
#
i (~x1, . . . , ~xn)

where ∇ is the widening operator. We apply the widening operator point-
wise to each component of ~x and interpret it for integers as defined in Ex-
ample 3.6:

[] ∇ x = x∇ [] = x

[a1, b1] ∇ [a2, b2] = [if a2 < a1 then −∞ else a1,

if b2 > b1 then +∞ else b1].

and for Booleans we define it as:

⊥∇ b = b∇⊥ = b

b1 ∇ b2 = if b1 6= b2 then > else b1.

5.3. Instruction List 139

Note, a widening operator for Booleans is not really necessary since
the lattice of Booleans is of finite hight. Moreover, the above definition of
Boolean widening corresponds to the definition of Boolean union, however,
we introduce this widening operator also for Booleans, in order to keep the
framework as consistent and as simple as possible.

In order to compute the least approximated fixed point (by widening)
we have to iterate

µ∇
f
#
0

= ⊥

µ∇
f
#
n+1

= f#(µ∇
f
#
n

)

as defined in Section 3.5. However, there remain two questions open:

1. What is a good iteration strategy?

2. What is a good set of widening points?

The answer to question number 1 is crucial to obtain an efficient method
for fixed point iteration. Especially, if the equation are loosely coupled as
in the example of Figure 5.9 a lot of time can be saved, if the number of
equation evaluations which “do not produce something new” are minimized.

A good set of widening point is as small as possible, since any widening
most likely will lead to a loss of precision. Moreover, the demand for a
good iteration strategy is closely related to widening points. Any iteration
strategy should apply widening as less as possible and as late as possible to
reduce the chances of unnecessary over-approximations. These two issues
are discussed in more detail in the next section.

5.3.3 Efficient Fixed Point Computation

Data flow analysis as well as abstract interpretation rely significantly on
the computation of fixed points. Simply because the fixed points in these
settings represent a stabilization of information propagation which is the
desired state. The iterations of fixed points are also the most time consuming
part in static program analysis. Hence, an efficient iteration strategy is
desireable.

Any fixed point iteration in static program analysis can be viewed as a
fixed point iteration of a finite equation system, which describes the data
dependencies between the different nodes of a data flow graph. We say an
interation strategy A is more efficient than another strategy B if the number
of equations which have to be evaluated with A are less than with B. In
the following we describe several iteration startegies. A more comprehensive
overview can be found in [Sch95].

140 Chapter 5. Verification

Chaotic Strategies

We already introduced in Section 3.4.4 the notion of chatoic iteration. In
fact, chaotic iteration is just a random evaluation of equations. Often a no-
tion of fairness is required, this means each equation will always enventually
be evaluated, i.e., is never neglected infinitely.

Numerical analysis suggest two more advanced variants of chaotic iter-
tations: Jacobi iteration and Gauss-Seidel itertation strategy. Devloped to
find solutions in sets of linear equations they provide effective means for fixed
point iteration in our context. Although the Gauss-Seidel itertation strat-
egy is in general slightly more efficient since in each iteration the computed
values are immediately re-used, if possible, they to not cover the structure
of the problem, e.g., the information flow in static program analyis, and,
therefore, cannot be considered as the best choice.

Worklists

A better strategy is to order the equations to be evaluated according to
the structure of the problem. This gave rise to methods using worklists. A
worklist is a list of equations (intitially all) where subsequently one equation
is taken (and removed), evaluated and depending on the underlying decision
algorithm on the worklist the equation is added again or not. A fixed point
is reached if the worklist ist empty.

There have been different approaches on how to implement a worklist
and its underlying decision algorithm. Two variants are workstacks where
equations are treated in a LIFO manner and priority queues where equations
are evaluated in reverse postorder.

Although worklists seem to work fine for acyclic graphs, it is not easy
to find a good underlying decision procedure anymore if it comes to cylic
graphs.

Weak Topological Order

Global static program analysis often operates on cyclic graphs, i.e., equa-
tion systems with cyclic dependencies, which originate from loops in the
programs. Iteration strategies should refelct these cycles and treat them in
an appropiate way.

One possibility to group cycles are is given by strongly connected com-
ponents (SCC). In a strongly connected component every node of graph in
this component can be reached from any other node in the same component
by following the vertices, i.e., by a path given by the edge relation. Tarjan
developed an efficient algorithm to obtain all SCCs from a given graph (cf.
[LT79]).

As itertation strategies there are a number of suggestion in which order
to visit these SCCs as well as domain independent dynamic optimisation for

5.3. Instruction List 141

orders within each SCC. These startegies comprise methods where worklist
are used inside the SCC sometimes combining reverse postorder traversals
with workstacks. The workstacks are optimised by certain criteria such as
youngest vertex first, depth first, or direct or indirect dependencies just to
mention some.

An ingenious idea was presented by Bourdoncle by the introduction of
weak topological orders (WTO) [Bou93] in the context of abstract interpre-
tation. The key idea is to hierarchically decompose a directed graph into
strongly connected components and subcomponents by the recursive appli-
cation of Tarjan’s algorithm. Subcomponents of an SCC are identified by
removing the head w of an SCC as well as all vertices pointing to w and
applying Tarjan’s algorithm once more. The head is determined though
the algorithm and is, generally spoken, the connecting node/program state-
ment of a loop. The advantage of Bourdoncle’s algorithm is that it can be
computed statically before the iteration process while at the same time it
reduces the number of widening application for abstract interpretation. The
heads exactly correspond to the widening points.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 5.10: Application of WTO algorithm

We illustrate the algorithm for constructing a WTO by a graph with
eight nodes and two loops as depicted in Figure 5.10. This first graph from
the left is the original which represents the information flow in a program
which might correspond to the control flow. The second graph is a decompo-
sition into SCCs. We have the trivial SCCs 1 and 8 as well as the non-trivial
SCC of nodes 2 to 7. In the third graph node number 2 is identified as the
head (dashed circle) as determined by the WTO algorithm and the back edge
to the head is removed. The result of more decompositions into srongly con-
nected sub-components is shown in the fifth graph, the nodes numbered 3 to
5 constitute a non-trivial sub-SCC. Its head is node number 3 as shown in

142 Chapter 5. Verification

the sixth graph. Any more application of Tarjan’s algorithm does only result
into trivial SCCs. Hence, we have two non-trivial SCCs: nodes 2 to 7 and 3
to 5 with their respective heads 2 and 3. Moreover, the second SCC is nested
in the first one which can be denoted using parentheses: 1 (2 (3 4 5) 6 7) 8.

As pointed out in [Sch95] WTOs appear to be the structure of choice
for fixed point computation in static program analysis, although [Edw97]
showed they are not necessarily optimal.

Iteration Strategies Weak topological orders provide a structure for
fixed point operation, however, there are at least two options for iteration
stragtegies: a recursive and an itertative strategy. For both strategies stabil-
isation is only tested at each component head, i.e., whenever all component
heads have stabelised a fixed point is reached.

For the recursive itertaion strategy the equations determined by the edge
relation are evaluated recursively to the nested sequence of components and
sub-components. This means whenever a sub-component C ′ is found in
an SCC C, the sub-component C ′ is stabilized first, before stabilizing the
original component C. In contrast, in the iterative strategy every outermost
component of a WTO is stabelized, thereby removing the sub-component
structure without loosing the order structure.

In the example of Figure 5.10 this means that the recursive startegy first
stabelized the SCC 3 to 5 before stabelizing 2 to 7. Note, however, that that
stabilizing 3 to 5 might be repreated several times depending on the outer
component. The iterative strategy stabilizes the SCC 2 to 7 where the order
provided by the WTO is taken into accound until all heads are stable.

As pointed out in [Bou93] the recursive startegy is in general computaion-
ally more efficient, however, this depends much on the actual graph structure
to be analysed. Nonetheless, in this work we us WTOs with a recursive it-
eration strategy.

5.3.4 Precision Impovement for Non-Relational Abstractions

As described in Section 5.3.3 good iteration strategies and sets can be ob-
tained through WTOs. Although the widening points are carefully choosen,
the over-approximation is in many cases immense. In this section we reason
that standard narrowing techniques to reduce this over-approximation are
hard to apply and better methods for enhancing the precision of the abstract
interpretation procedure are desired. Based on this consideration we present
a heuristics based on a constraint solving approach to achieve this goal.

5.3. Instruction List 143

The Dilemma

Consider again the program of Figure 5.9. The WTO structure for this
program based on its IL graph is:

0 1 (2 3 4 5 6 7 8) 9 10

which means node number 2 is the single widening point. If we apply the
recursive iteration strategy with the standard widening techniques to the
program, we obtain the following abstract interpretation result:

~x0 = φ
#
0 (~x0) = 〈> , [−∞,+∞]〉

~x1 = φ
#
1 (~x0) = 〈[1, 1] , [−∞,+∞]〉

~x2 = φ
#
2 (~x1) = 〈[1, 1] , [1, 1]〉

~x3 = ~x3 ∇ φ
#
3 (~x2, ~x8) = 〈⊥ , [1,+∞]〉

~x4 = φ
#
4 (~x3) = 〈[1,+∞] , [1,+∞]〉

~x5 = φ
#
5 (~x4) = 〈[2,+∞] , [1,+∞]〉

~x6 = φ
#
6 (~x5) = 〈[2,+∞] , [2,+∞]〉

~x7 = φ
#
7 (~x6) = 〈> , [2,+∞]〉

~x8 = φ
#
8 (~x7) = 〈> , [2,+∞]〉

~x9 = φ
#
9 (~x8) = 〈false , [2,+∞]〉

~x10 = φ
#
10(~x9) = 〈false , [2,+∞]〉

This result grossly over-approximates the best solution. There is no
longer any upper bound on x in most cases. In particular, the information
that the jump operation depends on whether x is less than 10 or not is lost.
The reason is the following: After a certain number of iterations and the
application of the widening operator we arrive at a state where

~x8 = φ
#
8 (~x7) = 〈> , [1,+∞]〉.

However, if we use this information to solve the dependent equations

~x3 = ~x3 ∇ φ
#
3 (~x2, ~x8) and

~x9 = φ
#
9 (~x8)

it is clear that there is no way to directly infer that the value of x is either
below or above 10. One reason is that we use a non-relational abstraction,
namely intervals, and relate them in such a way that we cannot connect
information gathered partially over several steps.

Although in a forward iteration using widening such a first over-approx-
imation is not uncommon, often in a second phase with a backward iter-
ation and standard narrowing this problem can be remedied. This is, un-
fortunately, not the case for IL programs where each single line of code is
examined in the way presented above. The problem remains the same, we
are unable to propagate partial information (of jump conditions).

144 Chapter 5. Verification

A Constraint Solving Heuristic

Every computation of an IL program takes place at the current result cr .
Therefore, to make use of the information gathered during the computation
process concerning the current result, we record its relevant history. This
information is then used to constrain the possible values of the program
variables, e.g., at jump labels.

History expressions. We include the history hcr of the current result
by representing it as an expression involving constants and variables. This
can be done completely statically in a one pass forward analysis. After each
statement, the expression of the history hcr is updated according to the
following rules:

• If the statement directly follows a conditional jump, the expression is
the negation of the expression at the jump. If the statement directly
follows a negated conditional jump, the expression is the same as the
expression at the jump.

• If the statement is a label, the expression is unknown.

• If the statement is a load (LD) or store (ST) instruction the expression
is the operand.

• In any other case the expression is updated according to the statement.

The rule set ensures that we always record the most recent history, i.e.,
the history from the last load or store statement. However, it is possible
to extend histories further backward to capture more complex effects. We
assume the history at jump labels to be unknown, because there might be
several jumps to the same label which makes a static determination of the
possible expression for the label more complicated. However, in the analysis
and constraining process of the information accumulated at the labels, all
possible jumps to that label are taken into account.

If we apply the set of rules to the program of Figure 5.9 we obtain the
result presented in Figure 5.11.

The history expressions record the most recent information about pro-
gram and i/o variables involved in the computation. They record the current
state of computation.

Constraint based analysis. The history expressions help to gather more
information at each program node than there was available in the original
setting. In particular, at any jump there is now explicitly the jump condition
available. This condition splits the possible program values depending on
whether the jump is taken or not. For instance in the example of Figure 5.11

5.3. Instruction List 145

VAR

x:INT;

END VAR

LD 1 hcr=1

ST x hcr=x

label: hcr=unknown

LD x hcr=x

ADD 1 hcr=x+1

ST x hcr=x

LE 10 hcr=x<10

JMPC label hcr=x<10

RET hcr=¬(x<10)

Figure 5.11: IL program augmented by history expressions

the condition x < 10 splits the state abstract space of x into all values less
than 10 and all values greater or equal to 10.

The result of constraining a vector of variables ~x is denoted by ~xc. Every
variable not effected by the constraints remain unaltered. The resulting
constrained vector at each label is the union of every constrained vector from
any jump to this label. Taking the union ensures a worst case approximation,
since in a worst case the information at a label be propagated from any jump
to that specific label. A more refined way is to determine the reachable code
beforehand and then take into account only constraints for reachable jumps
to the specific label.

We alter the original abstract interpretation procedure by constraining
each label by the set of constrained values leading to that label. This means
we have

~xi = ~xi ∩ φ
#c
i (~xc

1, . . . , ~x
c
n)

where φ
#c
i is just the union of the constrained values. Respectively, for

widening points we extend the framework to

~xi = (~xi ∇ φ
#
i (~x1, . . . , ~xn)) ∩ φ#c

i (~xc
1, . . . , ~x

c
n).

Similarly, each node after a (negated) conditional jumps is constrained as
well. This time by the constrain associated to its node.

~xi = ~xi ∩ ~x
c
i .

If we apply this to the example of Figure 5.11 we obtain the two altered
equations:

~x3 = (~x3 ∇ φ
#
3 (~x2, ~x8)) ∩ φ

#c
3 (~xc

2, ~x
c
8)

~x9 = φ
#
9 (~x8) ∩ ~x

c
9.

146 Chapter 5. Verification

where φ#c
3 (~xc

2, ~x
c
8) denotes the union of the constrained abstract state spaces

as resulted from node 2 and node 8. In the same way ~xc
9 denotes the con-

strained state space as determined by node 9. In both cases the constrained
information is intersected with the result of the widening, i.e., reduces the
effect of over-approximation. This results into the following analysis results:

~x0 = φ
#
0 (~x0) = 〈⊥ , [−∞,+∞]〉

~x1 = φ
#
1 (~x0) = 〈[1, 1] , [−∞,+∞]〉

~x2 = φ
#
2 (~x1) = 〈[1, 1] , [1, 1]〉

~x3 = (~x3 ∇ φ
#
3 (~x2, ~x8)) ∩ φ

#c
3 (~xc

2, ~x
c
8) = 〈⊥ , [1, 9]〉

~x4 = φ
#
4 (~x3) = 〈[1, 9] , [1, 9]〉

~x5 = φ
#
5 (~x4) = 〈[2, 10] , [1, 9]〉

~x6 = φ
#
6 (~x5) = 〈[2, 10] , [2, 10]〉

~x7 = φ
#
7 (~x6) = 〈> , [2, 10]〉

~x8 = φ
#
8 (~x7) = 〈> , [2, 10]〉

~x9 = φ
#
9 (~x8) ∩ ~x

c
9 = 〈false , [10, 10]〉

~x10 = φ
#
10(~x9) = 〈false , [10, 10]〉

The result by the improved method using constraints greatly enhances
the precision of the analysis result. In fact, it equals the optimal approxi-
mation. However, this is not guaranteed.

Remarks. Although in the example above the optimal approximation is
obtained, the use of constraints can only be a heuristic to improve analysis
results. In general, solving arbitrary constraints is undecidable. Moreover,
if more variables and more complex equations are involved the constraint
solving approach suffers precision. There are several ways to reduce this
effect. The history expression might be designed to incorporate longer his-
tories, i.e., to reach back over more than one load or store statement and
constraints themselves might be solved in an approximated manner. This
is, however, not part of this work and is considered for future research.

5.3.5 Static Analysis

In this section we present a number of generic goals for the verification
of IL programs together with techniques to check them statically. These
checks are mostly based on a combination of the aforementioned abstract
interpretation and data flow analysis techniques. The checks below are done
by examining the program code line by line if not otherwise stated.

Some checks broaden spectrum we previously discussed, e.g., we take
into account variables of types other than Booleans and integers, or we refer
to instructions not yet discussed but which are part of the full IL language.
New instructions or types should be clear where mentioned. We feel the

5.3. Instruction List 147

broadening gives additional insight into the applicability of the proposed
methods.

We classify the outcome of the checks according to their precision and
relevance for program correctness. Some results might be imprecise due
to (over-)approximation. However, since we are always conservative in the
analysis we rather issue a warning than miss an error. Some checks might
exhibit defects in the program which are not safety critical, i.e., immediately
repeated load or store instructions, in these cases either a warning or remark
is issued, depending on their relevance. We give the following classification:

• errors, denote that there definitely is an error,

• warnings, denote that there is the possibility of an error, but we cannot
be sure because of information loss due to abstraction,

• okays, denote that we can be sure that a certain statement will not
produce any run-time error for the property checked, and

• remarks, which indicate that the IL code can be optimized in some
way.

In the following the generic verification goals as well as their checking
methods and the classification of the outcome are described.

Checks of Assignments and Arithmetic Operations

The following checks make use of the results obtained by the abstract inter-
pretation process.

Overflow/underflow. We check whether an operation violates maximal
integer bounds. Violating means that, e.g., a subtraction with a positive
value takes place on variables already approximated by −∞ to their lower
bound or addition to an upper bound of +∞. In these cases warnings are
issued. Moreover, a possible check is to verify that operations do not exceed
the defined range for, e.g., the multiplication of two integers is still in the
program defined range for integers.

Division by zero. The abstract interpretation results are used to deter-
mine whether a division by zero occurs or not. Therefore, program code is
examined at the operators DIV and MOD which might provoke the arithmetic
run-time error. We distinguish between constants and variables as operands:
if the operand is a constant then an error is issued if the constant is 0 and
an okay otherwise. If the operand is a variable a we take a look at the
abstract value of a. If it is [0, 0] an error is issued, if 0 is contained in the
none-singleton abstract interval of a, a waring is issued. In all other cases
an okay is issued.

148 Chapter 5. Verification

Array bound checking. Since the full language of IL supports much
more complex structures such as arrays, we briefly comment on this. Checks
have to concern the indices used for array access. Basically, this is the same
as range checking for any other variable. The variable used for the index
has to remain within its predefined range. In particular this means that
when accessing the array the value of the index variable has to be within
the range of the given array size. For this check the abstract interpretation
framework has to be extended to arrays. The method remains the same.

Example 5.2 Consider the following analysis fragment:

cr# = >, x# = [−∞,+∞]
LD x

cr# = [−∞,+∞], x# = [−∞,+∞]
ADD 1

cr# = [−∞,+∞], x# = [−∞,+∞]
(* WARNING: CR overflow *)

DIV 0

cr# = ⊥, x# = [−∞,+∞]
(* ERROR: division by zero *)

Invariant Conditional Jumps

If the exact Boolean value of cr# is known at a conditional jump (JMPC,
JMPCN) after the abstract interpretation process, the program will either
always or never jump at this program point. We define this as:

Definition 5.6 (invariant conditional jump)
A conditional jump is called invariant if its jump condition is either always
true or always false.

If a conditional jumps is invariant, it is useless and reveals a possible
flaw. A warning is issued.

Example 5.3 Consider the following analysis fragment:

cr# = [1, 4], x# = [−∞,+∞]
LD 1

cr# = [1, 1], x# = [−∞,+∞]
LE 4

cr# = true, x# = [−∞,+∞]
JMPC label

(* WARNING: jump always ‘true’ *)

It is obvious that the conditional jump JPMC always branches to label.
This might exhibit an undesired behavior, at least the whole program frag-
ment can be substituted by JMP label.

5.3. Instruction List 149

Unreachable Code Detection

By unreachable code we refer to programming code which will never be
reached by any program execution. In terms of IL language, this means,
there are (conditional) jumps that prevent the control flow from sequentially
executing every line of code and instead always skip some lines. Hence, these
lines of code will never be executed.

There are two possibilities for unreachable code: On the one hand there
is simply a combination of JMP operators such that some lines are excluded
from program execution and on the other hand there are some invariant
JMPC or JMPCN operations producing the same effect.

For a given program P with its IL graph GP = (N,E, nini , nfin , stm) the
problem can be stated as a simple reachability task in a data flow setting:

Determine for every program node n ∈ N , if n may be reachable
from nini .

This leads to a forward directed data flow analysis on the lattice 〈P(N),⊆〉
with the top element ∅ where the greatest fixed point is computed. The
abstract interpretation results are taken into account, this means in contrast
to a standard reachability analysis information about invariant conditional
jumps are considered. This is a semantic based data flow analysis which
might improve the precision of the results significantly. As a result all nodes
not in the reachable set are issued in a warning.

Example 5.4 Consider the data flow graph of Figure 5.12 and assume there
is a conditional jump that is based on testing whether a variable x is less
than 10 or not.

By means of standard data flow analysis every block in the depicted
flow graph would be reachable. However, if we take into account a previous
abstract interpretation analysis of the respective program which yields that
before the conditional jump x is always less than 10, i.e., x# = [1, 9], then
we can deduce that block B3 is not reachable.

This shows that abstract interpretation can add precision to standard
data flow analysis. In fact, it leads to a semantics based analysis in contrast
to the standard semantics independent analysis.

Infinite Loop Detection

Infinite loops pose a severe threat to PLC based control. In general the
PLC operating system demands that programs terminate within a certain
amount of time. If there is an infinite loop in the program, i.e., it might
not terminate, there can be an abortion of the program or even a shutdown
of the whole system invoked by the operating system. Thus, it is crucial to
detect or rule out infinite loops.

150 Chapter 5. Verification

x<10 ?

B1

B2

B3

x# = [1, 9]

Figure 5.12: Unreachable code and infinite loop

To detect infinite loops it is helpful to analyze the topological structure of
loops in the program. This is exactly what has been done by determining the
WTO for the abstract interpretation process. WTOs represent a hierarchy of
strongly connected component. Hence, in a purely structure based analysis
a sub-SCC S is an infinite loop, if the last element of S is a JMP instruction
and there are no jumps or conditional jumps within this S with a target
outside S, i.e., there are no jumps leaving this SCC. If we take into account
the results of the abstract interpretation process, the above definition can
be relaxed towards: The last element might be an invariant jump (jumping
always into S) and there might be invariant conditional jumps within S

which always remain within the SCC S.

Example 5.5 Consider again the data flow graph of Figure 5.12. The loop
embracing block B2 can be determined as an infinite one: Due to the ab-
stract interpretation result, we know that there is an invariant conditional
jump, which always jumps back and there is no jump leaving block B2.

Type Checking

For the sake of simplicity we previously assumed that all programs are well-
typed. However, this cannot be assumed in general. Hence, each access to
a variable or the current result cr must be checked against well-typedness.
Moreover, the current result is dynamically typed, i.e., it can take Booleans
as well as integers. Any typing mistake is supposed to be a definite program
error.

Fortunately, type checking IL programs comes for free in our abstract in-
terpretation setting. Remember, that any typing mistake, i.e., none-defined

5.3. Instruction List 151

operation like adding a value to a Boolean leads to a ⊥ value in the abstract
interpretation process. Moreover, all arithmetic and Boolean operations
are strict, hence, the typing mistake is propagated throughout the program
(until a valid LD operation is reached). However, we do not want to issue
a typing mistake for all subsequent instruction neither do we want to issue
a typing mistake for labels, since this is not an operation in itself and it is
common that at this merging point from various jump nodes the current
result “arrives” with different types. This is not considered a mistake, how-
ever, if the current result is used in, e.g., an arithmetic operation in the next
instruction it results into an error, which will be issued.

We suggest the following on-the-fly type checking procedure during the
abstract interpretation process:

Algorithm:

1. Whenever the first time an operation (not a label) leads to an
abstract ⊥ value we issue a typing error.

2. There is a store operation writing a value v unequal ⊥ to a con-
stant or to a variable unequal the type of v, then an error is
issued.

3. Subsequent errors are not thrown until the abstract value of cr
is unequal ⊥. From that moment on we continue as in 1 and 2.

Item number 1 ensures that the first typing mistake is reported and not
all subsequent ones based on that particular one. Item number 2 cares about
well-typed store operations (the semantics does not implicitly take care of
this) and item number 3 determines when a typing error should no longer
be regarded as one dependent on a previous mistake.

In same cases when there are additional flaws in the program (certain
types of redundant code etc.) it might be necessary to restart the type
checking after correcting the previously detected typing errors in order to
find errors previously assumed as follow-ups. A restart of the checks after
correction of errors should, however, always be done.

Example 5.6 Consider the following analysis fragment:

152 Chapter 5. Verification

cr# = >, x# = [−∞,+∞]
LD x

cr# = [−∞,+∞], x# = [−∞,+∞]
OR true

cr# = ⊥, x# = [−∞,+∞]
(* ERROR: CR type mismatch *)

MUL 0

cr# = ⊥, x# = [−∞,+∞]
LD x

cr# = [−∞,+∞], x# = [−∞,+∞]
MUL 0

cr# = [0, 0], x# = [−∞,+∞]
ST true

cr# = [0, 0], x# = [−∞,+∞]
(* ERROR: writing on constant *)

Redundant Code

Useless jumps. A jump statement (JMP, JMPC, JMPCN) which jumps right
to the next statement is useless. A remark is should be issued.

Dead code. These problems correspond directly to a live variable analysis
as defined in Section 3.4. In fact, we are not interested in live but rather the
opposite “dead” variables. Again, abstract interpretation helps to reduce the
number of possible paths for live variables analysis. We do not go into details
about possible variations in dead code analysis here but refer to Section 3.4
and literature about compiler construction such as [Muc97, ASU86]. In any
case, a remark should be issued.

Useless statements. There are various combinations of statements which
do not make sense, and the a remark is issued:

Each load statement (LD, LDN) should be preceded by a store statement
(ST, STN, S, R) or a conditional jump (JMPC, JMPCN); if it is not, the code
before the load statement is unused, since the old value of cr is discarded
without having influenced variables or the program flow.

Between two store statements to the same variable there should be some
operations modifying cr .

Remarks

In this section we presented a number of possible checks for the verification
of IL programs. However, the list is in no sense complete and can be adjusted
by the given methods to personal needs. We like to stress, however, that
any of these checks can be done completely automatic on the IL source
code. Human interaction is only needed to interpret the warnings/errors

5.3. Instruction List 153

and removing them. This makes this approach applicable to IL programmers
and does not require further expertise in computer science or thinks alike.

154 Chapter 5. Verification

Chapter 6

Tools and Case Studies

In this chapter we show the applicability of the developed verification tech-
niques developed by a number of case studies. They have been provided by
academic and industrial partners and cover industrial processes mainly in
the field of chemical engineering. In each case the PLC program code for
the whole or selected parts of the control process has been provided as SFCs
or IL programs.

To apply the introduced verification techniques to the PLC software,
we developed two different tools: SFCheck and Homer. SFCheck performs
the translation of SFC source code to the native language of CaSMV and
provides additional checking methods, e.g., for safe SFCs. Homer performs
the abstract interpretation for IL programs. Both tools are written in the
functional language OCaml [CMP00] which is an object-oriented version of
ML.

In Section 6.1 we give an introduction to the verification tools developed.
The subsequent Sections 6.2 to 6.4 cover various case studies for the consid-
ered PLC languages. Note, however, that we presented the first case study
in the context of Section 5.2.2. The same tools as described have been used
for that one.

6.1 SFCheck/S7Check and Homer

SFCheck is a command line tool to analyze SFCs. It comprises all the veri-
fication techniques for SFCs presented in this work and has some additional
features as outlined below.

The tool is completely written in the functional object-oriented language
OCaml [CMP00]. While SFCheck supports the verification of SFCs given in
the standard textual representation, the tool S7Check supports the verifica-
tion of SFCs written in S7, the Siemens notation for SFCs. Since Siemens
is one of the world’s major supplier of PLCs it is sensible to have a tool to
cope with with these SFCs. Both tools have exactly the same functionality.

155

156 Chapter 6. Tools and Case Studies

Thus, for the remainder we refer to SFCheck only, but everything holds for
S7Check as well.

The tool has the following features: It automatically translates IEC
61131-3 compliant SFCs to the input language of CaSMV, it supports hi-
erarchical SFCs, action qualifiers, and guards which can also reason about
step activities. Moreover, it detects input variables automatically. Various
static aspects are analyzed. It checks whether SFCs are safe, steps in tran-
sitions are declared, all defined steps belong to some transition, there are
unused actions, or there are undefined actions.

Currently, this is a stand alone tool but since it is based on the standard
textual representation of SFCs it might well be used as a back-end for various
development tools. SFCheck can analyze systems structures or perform
model-checking for generic properties, such as reachability of every step, in
the background without interaction of the developer. Warnings are issued
to the developer if basic requirements appear to be violated.

The tool Homer implements the abstract interpretation process for IL
programs as well as basic analysis techniques such as syntax checking and
proper use of variables. I.e., type-checking and the use of all declared vari-
ables and vice versa, if all used variables are declared etc. It is a command
line tool operating directly on the IL source code.

The current state of the tool does not include the precision improving
techniques as outlined in Section 5.3.4. However, we did use the constraint
solving library FaCiLe [fac] for OCaml to enable a subsequent analysis of
the case study in Section 6.3.

6.2 A Brick Sorter

The following case study1 represents a plant sorting certain objects by cer-
tain criteria. It has been built as a PLC driven LEGO model and is an
abstraction from an industrial plant used for illustration purposes at the
University of Nijmegen.

6.2.1 The Plant Layout

The task of the plant is to sort a stack of objects by certain criteria into two
groups. Physically, these objects are transported separately from a stack on
a conveyor belt to a scanning device installed overhead the conveyor belt.
The scanning device determines to which of the two groups the scanned
object belongs and passes this information to a sorter at the end of the
conveyor belt. This sorter moves the objects either to its left or its right,
depending on the information from the scanner. Afterwards they undergo
some post-processing steps. A side view of the plant is depicted in Figure 6.1.

1Provided by Angelika Mader.

6.2. A Brick Sorter 157

Sorter

Scanner

Queue

Motor
A

Motor
B & C

Conveyor belt

Figure 6.1: Plant from the side

The different devices used in the sorting process are shown in the top
view of Figure 6.2. From a queue the objects are transported on the conveyor
belt which is driven by a motor A. Moreover, close to the end of the belt
there is a scanning device S and a light source L opposite to S in order to
create a stable environment for the scanner. The subsequent sorter consists
mainly of two rotating forks. The forks are are driven by two motors (B
and C). They move the objects to either side of the sorter according to the
scanning information.

Queue

Motor
A

Conveyer Belt

Scanner

Motor B

Motor C
Rotation
 C

Rotation
 B

Light

Figure 6.2: Plant from the top

This plant has been build for experimental purposes as a LEGO model
at the University of Nijmegen. In this model, the plant sorts LEGO bricks
by color, i.e., the stack is sorted into groups of yellow and blue bricks. The
whole plant is driven by a PLC and the control programs are given as SFCs
and instruction list programs. More precisely, the overall control structure is
determined by a SFC where the lower level functionality such as determining
the color of a brick from the scanner information is implemented as actions
of the SFCs written in instruction list.

For sake of brevity we do not show the whole control part here. The
main control SFC consists of seven processes running in parallel. Three of
them control the conveyor belt according to information from the sorter and
the scanning device. One process controls the scanner and the light source,
one initiates a safe shutdown if all bricks are processed, and two processes do
the actual sorting. The (simplified) sub-SFC for the sorting process of blue
bricks is depicted in Figure 6.3. Starting from the initial step control waits in

158 Chapter 6. Tools and Case Studies

empty63 until all bricks are processed or there is a brick in the scanner, the
conveyor belt is running and the sorter is not yet full. Subsequently, another
scanning is performed and if the result yields that the brick is blue and the
belt is still running the following actions (written in IL) are performed:
Some preparing operations of the sorter are done (sort blue), the motor B
is switch on and the rotation starts. If at least one full rotation has been
performed the sorter is switched off, and the whole process can start all over
again. The sorting program for the yellow bricks is similar, but is coupled
to motor C. Note that this SFC is comparatively simple but the whole
controlling process is complex, since this SFC interacts six other SFCs in
parallel.

6.2.2 Verification

For the case study above, the full CaSMV code was generated by SFCheck
from the textual representation of the SFCs without any user interaction.
This is, however, not always possible since the control programs might use
language fragments which are not implemented or where additional abstrac-
tions are needed. Moreover, the verification goals have to be set by the user
which requires a certain proficiency in temporal logics. The same holds for
the interpretation of the verification results. We illustrate this for selected
system properties.

P1 sort_blue

(sanned_blue OR
scanned_yellow)
AND (NOT sorter_full)
AND(NOT belt_is_off)

empty61

step63

step62

step61

empty68

empty67

empty64 empty65

empty63

true

allprocessd

get_scan_signal

scanned_blue

NOT belt_is_offbelt_is_off

true

fullrotation

true

P1 rotateB_on

P1 rotateB_off

NOT scanned_blue

Figure 6.3: Sub-SFC of the control process

6.2. A Brick Sorter 159

Some Verification Properties

Mutual exclusion of sorter motors. One obvious requirement for the
brick sorting software is that the motors B and C never run simultaneously,
i.e., each brick is sorted uniquely to one group. This requirement can be
stated in the linear time temporal logic LTL as follows:

2¬(activeA rotateB on ∧ activeA rotateC on).

This formula reads as follows: For all possible executions the actions
rotateB on and rotateC on are never active at the same moment. However,
checking this requirement with CaSMV yields that the property does in fact
not hold and a counter trace is produced. From analyzing this counter trace
it can directly be derived that the proof of this property needs an additional
assumption, namely, blue and yellow are never scanned at the same time.
This means, the scanning device has to produces a unique result. This leads
to the formula

2¬(scanned yellow ∧ scanned blue)
→ 2¬(activeA rotateB on ∧ activeA rotateC on)

which can be proven. The CaSMV code for this property is very similar to
the logic notation above where ¬ is replaced by ~ and 2 by G (globally):

assert ((G ~(scanned_yellow & scanned_blue)

-> (G ~(activeA_rotateB_on & activeA_rotateC_on)));

Note that the scanner is working correctly, i.e., it always detects either
yellow or blue in the right way, cannot be proven on the abstract level of
the control SFC but has to be shown on a lower level or even on hardware
level.

Liveness of sorting process. Another question that arises is whether it
always is guaranteed that a brick will be sorted if scanned correctly. This
property is expressed in LTL as

2(scanned blue ∨ scanned yellow)
→ 3(activeA rotateB on ∨ activeA rotateC on)

and means that for all executions whenever blue or yellow is scanned, even-
tually one of the sorters will be activated. The CaSMV notation is similar
to this one where the eventually operator 3 is replaced by F (finally):

assert G (scanned_blue | scanned_yellow)

-> F (activeA_rotateB_on | activeA_rotateC_on);

160 Chapter 6. Tools and Case Studies

From Figure 6.3 it is already clear that the single assumption that blue
or yellow is scanned is not sufficient. There are several other requirements
that have to be fulfilled as well: There has to be a scan signal, the signal
has to be stable, e.g., scanning blue will persist for some cycles, the belt has
to be running and other more implicit requirements. However, after adding
all these assumptions this property can be proven as well. The information,
which requirements have to be fulfilled, can be obtained from the analysis
of the counter traces produced by the model checker.

Verification Results

The above proofs of properties as well as several were computed on a SUN
SPARC Ultra I with 1 GB RAM. The verification time for each property
varies from less than a second to some twenty seconds. In general, live-
ness properties, i.e., properties with no finite counter examples (if any) take
longer to compute than safety properties. For all computations the full
control SFC consisting of seven parallel processes was taken into account.
The abstract system consists of 56 Boolean state variables which leads to
potentially 256 different states.

More interesting than these raw numbers is the information gathered
about the system during the verification process. E.g., the requirements that
the scanning device has to return some unique information or the scanning
signal has to be stable. This proved to be valuable also in validating the
system and debugging malfunctions. Moreover, counter traces produced
by the model checker did sometimes highlight specific requirements of the
plant layout as well. E.g., the control program works only correct if the
sorter is right after the scanning device. Otherwise, we were able to prove
some undesired behavior. Hence, the program does not work correctly for
any system layout. This has to be taken into account when extending or
re-designing the plant.

6.3 A Control Trigger

A real-life industrial case study has been provided to us by a leading chemical
company. It describes a measuring process where depending on the sampling
subsequent actions are triggered. For reasons of non-disclosure we do not
go into any technical details but briefly comment on some results.

For the case study a controlling SFC with 39 steps, 16 different actions
and 20 different guards was given. After minor adaptions and abstractions
(mainly replacing complex guards involving computations by Boolean vari-
ables) to fit it to our framework, the whole SFC was translated by SFCheck
to CaSMV. The analysis times are comparable to the case study above.

Although the given requirements were met, we discovered a potential
flaw. Some competing guards of alternative transitions are not disjoint and

6.4. A Batch Plant 161

if they are true, any of the transitions can chosen arbitrarily (i.e., accord-
ing to the choices made in the development software). The correctness of
the control SFC relies fully on the implicit assumption that all guards are
evaluated from left to right, even though no priorities are given. While this
assumption holds for the used development software, it is not true in gen-
eral. This means if switching to another development software, the program
is likely to fail.

For the given control SFC the potential flaw is not safety-critical, since it
will only enter an error state, although there is no error. Hence, it behaves
more conservative than necessary. From a financial point of view, however,
this false alarm can be severe, since it might imply the shutdown of the
process, error tracking and a subsequent restart.

Most notably to mention is that it appears possible to apply formal
verification techniques, like model checking, for the analysis of SFCs up to
industrial size. Moreover, little effort was necessary to do so.

6.4 A Batch Plant

The experimental batch plant we present in this section originates from the
Chemical Engineering department at the University of Dortmund. It has
been used as a case study for various aspects in the Esprit project on the
Verification of Hybrid Systems.

The piping and instrumentation diagram of this plant is depicted in
Figure 6.4. The plant produces batches of diluted salt solution from concen-
trated salt solution an water. In the beginning of the process the concen-
trated salt solution is stored in tank B1 and the water in tank B2. These
ingredients are mixed in tank B3 to obtain the diluted solution, which is
subsequently drained into tank B4 and then further on into B5. In B5 the
solution is heated and an evaporation process is started. The evaporated
water is cooled down in the condenser from where it goes to tank B6. In B6
it is further cooled down and then pumped back to B2. The remaining hot,
concentrated salt solution in tank B5 is drained to tank B7. There is cools
down to a certain temperature is reached and subsequently pumped to B1.

All operations are closely guided by different types of sensors: Liquid
level sensors (LIS), temperature sensors (TI), sensors for measuring the con-
centration of the salt solution (QIS) and the pumps status (PIS). The whole
controlling process is determined by the input from the different sensors and
decisions are taken accordingly.

The whole plant is PLC driven. The code we analyzed is completely
written in IL and comprises over 1, 500 lines of code. Moreover, 113 in-
put, output and program variables are used. The program performs mainly
simple comparison and decision procedures. There are about 110 jump op-
erations to about 55 labels.

162 Chapter 6. Tools and Case Studies

LIS
101

QI
102

LIS
201

QI
202

LIS
301

QI
302

LIS
401

FIS
801

LIS
501

QIS

TI

502

503

LIS
601

TIS
602

LIS
701

TIS
702

PIS
1001

PIS
901

B1 B2

B3

B4

K1

B6B5

B7

P1 P2

V2

V1

V3

V8 V9

V7

V6 V4

V5

V13

V11

V12

V29

V14

V15

V17

V16

V10

V18

V19

V21V23

V27 V20

V24

V25 V28V26 V22

cooling
water

salt

cooling
water

cooling
water

H O2

H O2

Figure 6.4: Chemical plant layout

6.4. A Batch Plant 163

The analysis time of the program by Homer takes about 16 seconds on
Intel Pentium III mobile CPU with 1000 MHz. Note that Homer is written
with a focus on clear programming and easy tracking down of analysis results
There is a lot of of room for improvement and optimization. The exact
execution times for this case study are listed below.

type seconds

real 16.109
user 15.750
sys 0.140

Mainly, the analysis revealed some dead code. Moreover, there are a
number of unused variables, which indicates that either some variables where
declared but not needed or that other variables where used when instead
some of the undeclared ones should have been used. One reason for this
might be that a lot of variable names are close to each other which resulted
in typos and double usage from cut-and-past operations.

The abstract interpretation process for this case study worked well, but
could not find any new errors. The reason is that the program has been
tested and used for the plant for quite some time and appears now to be
correct. Moreover, it performs relatively simple and straightforward control
decisions, where errors are not likely to occur. A small extract is shown in
Figure 6.5 which illustrates the nature of this program.

Start1_1:

LDN P1_1_X

ANDN T1_1

JMPC Start1_2

LDN P1_1_X

AND T1_1

JMPCN L1_1

LD true

ST P1_1_X

ST V8

Figure 6.5: Sample of the IL control program

We added some additional flaws to the program by purpose. For in-
stance, assumed that some input variables are always true or always f alse.
As a result Homer revealed several invariant jumps, unreachable code etc.
Moreover, we tested Homer on various smaller case studies we developed
mainly for testing purposes. When we inserted obvious bugs, such as con-
stants leading to invariant jumps etc., Homer performed well. However,

164 Chapter 6. Tools and Case Studies

if the invariant jumps resulted from more complex computations involving
loops, the analysis was often imprecise leading to many false alarms. This
was as expected without the use of precision improvement techniques.

An additional constraint solving as suggested in Section 5.3.4 was able
to reduce the number of false alarms significantly. This is, however, not yet
integrated into Homer. Future improvements should, therefore, concentrate
on this integrations and experiments with different lengths for the introduced
history expressions as well as the use of relational data abstractions such as
polyhedra instead of intervals.

Chapter 7

Conclusion

7.1 Summary

In this thesis we presented combined approaches to software verification of
PLC languages. For two chosen PLC languages, SFCs and IL, we defined a
formal operational semantics and applied various verification techniques.

The operational semantics defined for SFCs is the most comprehensive
on for SFCs existing today. It comprises SFC features such as hierarchy,
parallelism, priorities on transitions, as well as actions, and action quali-
fiers, which have been covered only partially before. Moreover, we sketched
an extension of the semantics to timed SFCs which led to linear hybrid
systems. For a significant sub-language of IL we defined a structural oper-
ational semantics. This is the first comprehensive semantics developed for
IL.

According to the different natures of these two programming languages
we used different verification approaches. The main approach for SFCs
is model checking. This has been implemented by the development of a
translation from SFCs to the input language of the model checker CaSMV,
which allows to analyze temporal logic properties of SFCs. Moreover, we
gave a characterization of safe SFCs, i.e., a subset of SFCs, which comply
to several well-formedness requirements exceeding the actual syntax. To
check for safe SFCs we modified the translation from SFCs to CaSMV and
generated proof obligations, which can be automatically checked. These
techniques have been implemented in a tool SFCheck, based on the standard
notation for SFCs as in IEC 61131-3, and a tool S7check, based on a Siemens
notation.

For IL we developed and a number of combined analysis and verification
techniques. We defined an abstract simulation of IL programs, based on an
abstract semantics, that approximates program behavior for sets (intervals)
of possible input values. Moreover, we developed an abstract interpretation
framework for IL, which is in particular helpful for range and type checking

165

166 Chapter 7. Conclusion

IL programs. A heuristics for improving the precision of the abstract inter-
pretation process was presented. We combined this framework with various
data flow analysis techniques to allow further analysis of generic properties
for IL programs. The combination of both techniques can significantly en-
hance the traditional data flow analysis, e.g., in checking for unreachable
code or infinite loops. These techniques have been implemented into a tool
called Homer.

The techniques and tools have been applied to a number of case stud-
ies both from academia and industry. They proved to be well capable of
analyzing even large scale PLC software.

7.2 Lessons Learned

In the following we sum up some observations that resulted from this work.

Understanding. Naturally, solving a problem requires to understand the
problem first. With respect to this, a formal semantics for SFCs and
IL proved highly valuable for the latter analysis process. In particular
the SFC language as defined in the standard is full of ambiguities and
incomplete descriptions which was remedied through a formal seman-
tics. This semantics served as a clear basis for further discussion.

Model Checking. One fundamental disadvantage of model checking re-
sults from the state explosion problem, which states a worst case ex-
ponential blow up by the number of components involved. In our
point of view, however, (discrete) model checking techniques are ma-
ture enough to cope with considerably large systems such as the ab-
stract SFCs in this work. Considering just the graph structure of the
SFCs (including actions etc.) only a fraction of the model checker’s
potential was used, although some SFCs were probably at the limit of
what is still readable by a programmer.

Abstract Interpretation. Although the idea of abstract interpretation
stems from the late 1970s, comparatively few applications have found
their way into static program analysis. We see, however, great poten-
tial, particularly in the combination with other static analysis tech-
niques. The precision of the analysis is crucial for the abstract in-
terpretation process and we believe there is still a lot of room for
improvements.

Combinations. As already reasoned above, we postulate that different for-
mal verification techniques should be used according to the problem
to be solved and the type of system to be analyzed. E.g., while model
checking makes sense for abstract SFCs, it does not for the type of
properties we had in mind for IL. Combining different methods such

7.3. Future Work 167

as abstract interpretation and data flow analysis can lead to results
more precise than by each of them alone. In this context we believe
that many formal methods can serve as a heuristics for other ones to
improve the overall combined analysis results.

7.3 Future Work

There are a couple of future challenges. One of them is the extension to
the verification of timed SFCs. If model checking is used for timed SFCs,
the major obstacle is the increasing state space complexity introduced by
timers, in particular if one considers linear hybrid systems. There are several
possible ways to cope with this: By neglecting hierarchical SFCs the problem
can be reduced from coping with timed systems instead of linear hybrid
systems. It is likely, however, that additional techniques are still necessary.
This can lead either to further abstractions or to decomposition methods
[Dij69a], e.g., based on assumption/commitment techniques as suggested by
[Jon81, Jon83, MC81] and already applied by us in the context of hybrid
systems [HLFE02].

Future work for IL should also include an extension of the current ap-
proach to time and timers. Moreover, we see potential in developing more
sophisticated heuristics to improve the precision of the abstract interpreta-
tion process. This can lead to the use of more complex data types than, e.g.,
intervals, or further improvements of the concept of history expressions.

An extension to the remaining languages of IEC 61131-3 should be pur-
sued. We propose the use of abstract interpretation for structured text and
model checking for ladder diagrams. For the function block language fur-
ther investigations are necessary to come up with appropriate verification
techniques. One solution could be a combination of control flow analysis
and model checking.

Since PLC programming allows the mixture of different programming
languages, e.g., SFCs whose guards are written in ladder diagram, the ulti-
mate goal should be the integration of the different programming languages
and verification techniques.

168 Chapter 7. Conclusion

Appendix A

Chemical Plant Code

This appendix presents the original SFC as well as the CaSMV code gener-
ated by SFCheck used for the chemical plant presented in Section 5.2.2.

A.1 SFC Code

The SFC code is given in its textual representation. It should be clear from
the context.

INITIAL_STEP s0: END_STEP

STEP s1 : END_STEP

STEP s2 : a1 (N); END_STEP

STEP s3 : END_STEP

STEP s4 : END_STEP

STEP s5 : a2 (N); END_STEP

STEP s6 : END_STEP

STEP s7 : a3 (N); END_STEP

STEP s8 : END_STEP

TRANSITION FROM s0 TO (s1, s4, s7) start END_TRANSITION

TRANSITION FROM s1 TO s2 (NOT s11.X) END_TRANSITION

TRANSITION FROM s2 TO s3 LISplus1 END_TRANSITION

TRANSITION FROM s4 TO s5 (NOT s12.X) END_TRANSITION

TRANSITION FROM s5 TO s6 LISplus2 END_TRANSITION

TRANSITION FROM s7 TO s8 finished END_TRANSITION

TRANSITION FROM (s3, s6, s8) TO s0 TRUE END_TRANSITION

ACTION a1: V1 END_ACTION

ACTION a2: V2 END_ACTION

ACTION a3:

(*********** sub SFC starting here ***********)

INITIAL_STEP s10: END_STEP

STEP s11 : a4 (N); a5 (S); END_STEP

STEP s12 : a6 (N); END_STEP

STEP s13 : a7 (N); a5 (R); a8 (P0); END_STEP

169

170 Appendix A. Chemical Plant Code

TRANSITION FROM s10 TO s11 LIS1plus AND LISminus3 END_TRANSITION

TRANSITION FROM s11 TO s12 LISminus1 END_TRANSITION

TRANSITION FROM s12 TO s13 LISminus2 END_TRANSITION

TRANSITION FROM s13 TO s10 LISminus3 END_TRANSITION

ACTION a4: V3 END_ACTION

ACTION a5: M END_ACTION

ACTION a6: V4 END_ACTION

ACTION a7: V5 END_ACTION

ACTION a8: finished END_ACTION

(*********** sub SFC ending here ***********)

END_ACTION

A.2 CaSMV Code

The CaSMV code of the previous SFC has been generated automatically by
SFCheck. Its notations are explained in Section 5.2.2.

module main()

/* the following variables are detected automatically */

/* they will be considered as uninitialized Booleans */

start : boolean;

LISplus1 : boolean;

LISplus2 : boolean;

finished : boolean;

LIS1plus : boolean;

LISminus1 : boolean;

LISminus2 : boolean;

LISminus3 : boolean;

/* declaration of ready steps */

readyS_s0 : boolean;

readyS_s1 : boolean;

readyS_s2 : boolean;

readyS_s3 : boolean;

readyS_s4 : boolean;

readyS_s5 : boolean;

readyS_s6 : boolean;

readyS_s7 : boolean;

readyS_s8 : boolean;

/* declaration of active actions */

activeA_a1 : boolean;

activeA_a2 : boolean;

activeA_a3 : boolean;

/* declaration of stored actions */

/* initialization ready steps */

init(readyS_s0) := 1;

init(readyS_s1) := 0;

init(readyS_s2) := 0;

init(readyS_s3) := 0;

init(readyS_s4) := 0;

init(readyS_s5) := 0;

A.2. CaSMV Code 171

init(readyS_s6) := 0;

init(readyS_s7) := 0;

init(readyS_s8) := 0;

/* initialization of active actions */

init(activeA_a1) := 0;

init(activeA_a2) := 0;

init(activeA_a3) := 0;

/* transition relation on ready steps */

default next(readyS_s0) := readyS_s0;

in case

(readyS_s3 & readyS_s6 & readyS_s8 & next(TRUE)) : next(readyS_s0) := 1;

(readyS_s0 & next(start)) : next(readyS_s0) := 0;

default next(readyS_s1) := readyS_s1;

in case

(readyS_s0 & next(start)) : next(readyS_s1) := 1;

(readyS_s1 & (~(readyS_s11 & activeA_a3))) : next(readyS_s1) := 0;

default next(readyS_s2) := readyS_s2;

in case

(readyS_s1 & (~(readyS_s11 & activeA_a3))) : next(readyS_s2) := 1;

(readyS_s2 & next(LISplus1)) : next(readyS_s2) := 0;

default next(readyS_s3) := readyS_s3;

in case

(readyS_s2 & next(LISplus1)) : next(readyS_s3) := 1;

(readyS_s3 & readyS_s6 & readyS_s8 & next(TRUE)) : next(readyS_s3) := 0;

default next(readyS_s4) := readyS_s4;

in case

(readyS_s0 & next(start)) : next(readyS_s4) := 1;

(readyS_s4 & (~(readyS_s12 & activeA_a3))) : next(readyS_s4) := 0;

default next(readyS_s5) := readyS_s5;

in case

(readyS_s4 & (~(readyS_s12 & activeA_a3))) : next(readyS_s5) := 1;

(readyS_s5 & next(LISplus2)) : next(readyS_s5) := 0;

default next(readyS_s6) := readyS_s6;

in case

(readyS_s5 & next(LISplus2)) : next(readyS_s6) := 1;

(readyS_s3 & readyS_s6 & readyS_s8 & next(TRUE)) : next(readyS_s6) := 0;

default next(readyS_s7) := readyS_s7;

in case

(readyS_s0 & next(start)) : next(readyS_s7) := 1;

(readyS_s7 & next(finished)) : next(readyS_s7) := 0;

default next(readyS_s8) := readyS_s8;

in case

172 Appendix A. Chemical Plant Code

(readyS_s7 & next(finished)) : next(readyS_s8) := 1;

(readyS_s3 & readyS_s6 & readyS_s8 & next(TRUE)) : next(readyS_s8) := 0;

/* transition relation on active actions */

default next(activeA_a1) := 0;

in case

(next(readyS_s2)) : next(activeA_a1) := 1;

default next(activeA_a2) := 0;

in case

(next(readyS_s5)) : next(activeA_a2) := 1;

default next(activeA_a3) := 0;

in case

(next(readyS_s7)) : next(activeA_a3) := 1;

/* translation of sub SFC a3 */

/* declaration of ready steps */

readyS_s10 : boolean;

readyS_s11 : boolean;

readyS_s12 : boolean;

readyS_s13 : boolean;

/* declaration of active actions */

activeA_a4 : boolean;

activeA_a5 : boolean;

activeA_a6 : boolean;

activeA_a7 : boolean;

activeA_a8 : boolean;

/* declaration of stored actions */

storedA_a5 : boolean;

/* initialization ready steps */

init(readyS_s10) := 1;

init(readyS_s11) := 0;

init(readyS_s12) := 0;

init(readyS_s13) := 0;

/* initialization of active actions */

init(activeA_a4) := 0;

init(activeA_a5) := 0;

init(activeA_a6) := 0;

init(activeA_a7) := 0;

init(activeA_a8) := 0;

/* initialization of stored actions */

init(storedA_a5) := 0;

/* transition relation on ready steps */

default next(readyS_s10) := readyS_s10;

A.2. CaSMV Code 173

in case

(readyS_s13 & next(LISminus3) & activeA_a3) : next(readyS_s10) := 1;

(readyS_s10 & next(LIS1plus) & next(LISminus3) & activeA_a3) : next(readyS_s10) := 0;

default next(readyS_s11) := readyS_s11;

in case

(readyS_s10 & next(LIS1plus) & next(LISminus3) & activeA_a3) : next(readyS_s11) := 1;

(readyS_s11 & next(LISminus1) & activeA_a3) : next(readyS_s11) := 0;

default next(readyS_s12) := readyS_s12;

in case

(readyS_s11 & next(LISminus1) & activeA_a3) : next(readyS_s12) := 1;

(readyS_s12 & next(LISminus2) & activeA_a3) : next(readyS_s12) := 0;

default next(readyS_s13) := readyS_s13;

in case

(readyS_s12 & next(LISminus2) & activeA_a3) : next(readyS_s13) := 1;

(readyS_s13 & next(LISminus3) & activeA_a3) : next(readyS_s13) := 0;

/* transition relation on active actions */

default next(activeA_a4) := 0;

in case

(next(readyS_s11)) & next(activeA_a3) : next(activeA_a4) := 1;

default next(activeA_a5) := 0;

in case

(next(readyS_s13)) & next(activeA_a3) : next(activeA_a5) := 0;

((next(readyS_s11)) & next(activeA_a3)) | next(storedA_a5) : next(activeA_a5) := 1;

default next(activeA_a6) := 0;

in case

(next(readyS_s12)) & next(activeA_a3) : next(activeA_a6) := 1;

default next(activeA_a7) := 0;

in case

(next(readyS_s13)) & next(activeA_a3) : next(activeA_a7) := 1;

default next(activeA_a8) := 0;

in case

((readyS_s13 & ~next(readyS_s13))) : next(activeA_a8) := 1;

/* transition relation on stored actions */

default next(storedA_a5) := storedA_a5;

in case

(next(readyS_s13)) & next(activeA_a3) : next(storedA_a5) := 0;

(next(readyS_s11)) & next(activeA_a3) : next(storedA_a5) := 1;

174 Appendix A. Chemical Plant Code

Bibliography

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1):3–34, 1995.

[ACHH93] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hy-
brid automata: An algorithmit approach to the specification
and verification of hybrid systems. In Hybrid Systems, volume
736 of LNCS, pages 209–229. Springer-Verlag, 1993.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[AFS98] A. Aiken, M. Fähndrich, and Z. Su. Detecting races in Relay
Ladder programs. In Proceddings of TACAS’98, volume 1384
of Lecture Notes in Computer Science, pages 184–199. Springer-
Verlag, 1998.

[AHLP00] Rajeev Alur, Tom Henzinger, Gerardo Lafferriere, and George J.
Pappas. Discrete abstractions of hybrid systems. volume 88,
pages 971–984, July 2000.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[AT98] S. Anderson and K. Tourlas. Design for proof: An approach
to the design of domain-specific languages. volume 10, pages
452–468, 1998.

[aut99] Special Issue on Hybrid Systems, volume 35 of Automatica, 1999.

[Bau98] N. Bauer. Übersetzung von Steuerungsprogrammen in formale
Modelle. Master’s thesis, University of Dortmund, 1998.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO
specification language LOTOS. Computer Networks, 14:25–59,
1987.

175

176 Bibliography

[BCG95] Girish Bhat, Rance Cleaveland, and Orna Grumberg. Efficient
on-the-fly model checking for CTL∗. In LICS ’95: 10th Annual
IEEE Symposium on Logic in Computer Science, San Diego,
California, USA, June 26–29, 1995, pages 388–397. IEEE Com-
puter Society Press, 1995.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University
Press, 1957.

[BG92] Gerard Berry and Georges Gonthier. The Esterel synchronous
programming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87–152, 1992.

[BGL+00] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Mu
noz, Sam Owre, Harald Rueß, John Rushby, Vlad Rusu, Has-
sen Säıdi, N. Shankar, Eli Singerman, and Ashish Tiwari. An
overview of SAL. In C. Michael Holloway, editor, LFM 2000:
Fifth NASA Langley Formal Methods Workshop, pages 187–196,
Hampton, VA, jun 2000. NASA Langley Research Center.

[BH01] N. Bauer and Ralf Huuck. Towards automatic verification of
embedded control software. In Asian Pacific Conference on
Quality Software, IEEE, December 2001.

[BH02] N. Bauer and Ralf Huuck. A parameterized semantics for se-
quential function charts. In Workshop of Semantic Foundations
of Engineering Design Languages (SFEDL), April 2002. Satel-
lite Event of ETAPS 2002.

[BHL02] N. Bauer, Ralf Huuck, and Ben Lukoschus. A stopwatch se-
mantics for hybrid controllers. In b’02: The XV. IFAC World
Congress, IFAC, July 2002. to appear.

[BHLL00a] Sébastien Bornot, Ralf Huuck, Yassine Lakhnech, and Ben
Lukoschus. An abstract model for sequential function charts.
In Discrete Event Systems: Analysis and Control, Proceedings
of WODES 2000: 5th Workshop on Discrete Event Systems,
Ghent, Belgium, August 21–23, 2000, The Kluwer International
Series in Engineering and Computer Science, pages 255–264,
2000.

[BHLL00b] Sébastien Bornot, Ralf Huuck, Yassine Lakhnech, and Ben
Lukoschus. Utilizing static analysis for programmable logic
controllers. In ADPM 2000: 4th International Conference
on Automation of Mixed Processes: Hybrid Dynamic Systems,
September 18-19, 2000, Dortmund, Germany, 2000.

Bibliography 177

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of
communicating sequential processes. Communications of the
ACM, 31(3):560–599, 1984.

[BKSL00] N. Bauer, S. Kowalewski, G. Sand, and T. Löhl. Case study:
A demonstration plant for the control and scheduling of multi-
product batch. In ADPM2000 Conference Proceedings, pages
383–388. Shaker Verlag, 2000.

[BKT] N. Bauer, S. Kowalewski, and H. Treseler. Model checking of
control software under consideration of the PLC behaviour. Sub-
mitted to the 5th Workshop on Discrete Event Systems.

[BLJ91] A. Benveniste, P. Leguernic, and Ch. Jacquemont. Synchronous
programming with events and relations. Science of Computer
Programming, 16:103–149, 1991.

[BMR02] Thomas Ball, Todd Millstein, and Sriram K. Rajamani. Poly-
morphic predicate abstraction. Technical Report MSR-TR-
2001-10, Microsoft Research, June 2002.

[BMS99] F. Bonfatti, P.D. Monari, and U. Sampieri. IEC 1131-3 Pro-
gramming Methodology. CJ International, Fontaine, France, first
edition, 1999.

[Bou92] François Bourdoncle. Sémantiques des Langages Impératifs
d’Ordre Supérieur et Interprétation Abstraite. PhD thesis, École
Polytechnique, 1992.

[Bou93] François Bourdoncle. Efficient chaotic iteration strategies with
widenings. In Proc. of the International Conference on Formal
Methods in Programming and their Applications, volume 735 of
LNCS, pages 128–141, 1993.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project:
Debugging system software via static analysis. In Principles of
Programming Languages, January 2002.

[Bri67] G. Brinkhoff. Lattice Theory. American Mathematics Society,
Providence, RI, 3rd edition, 1967.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677–
691, August 1986.

[Bry92] Randal E. Bryant. Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys, 24(3):293–
318, September 1992. Preprint version published as CMU Tech-
nical Report CMU-CS-92-160.

178 Bibliography

[BT01] N. Bauer and Heinz Treseler. Vergleich der Semantik der Ablauf-
sprache nach IEC 61131-3 in unterschiedlichen Programmier-
werkzeugen. GMA Kongress, 2001, Baden-Baden, Germany,
2001.

[Cas01] Paul Caspi. Embedded control: From asynchrony to synchrony
and back. In 1st International Workshop on Embedded Software,
EMSOFT2001, volume 2211 of LNCS, October 2001.

[CC79] P. Cousot and R. Cousot. Systematic design of program analy-
sis frameworks. In Conference Record of the Sixth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 269–282, San Antonio, Texas, 1979. ACM
Press, New York, NY.

[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511–547, August 1992.

[CCL+00] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and Ph. Schnoe-
belen. Towards the automatic verification of PLC programs
written in Instruction List. In Proc. IEEE Int. Conf. Systems,
Man and Cybernetics (SMC’2000), pages 2449–2454, 2000.

[CDH+00] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasare-
anu, Robby, Shawn Laubach, and Hongjun Zheng. Extracting
finite-state models from Java source code. In 22nd International
Conference on Software Engineering, June 2000.

[CDH01] James Corbett, Matthew Dwyer, and John Hatcliff. Expressing
checkable properties of dynamic systems: The Bandera speci-
fication language. Technical Report 2001-04, KSU CIS, June
2001.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis
of synchronization skeletons for branching time temporal logic.
In Dexter Kozen, editor, Logics of Programs Workshop, IBM
Watson Research Center, Yorktown Heights, New York, May
1981, volume 131 of LNCS, pages 52–71. Springer-Verlag, 1982.

[CF95] Tongwen Chen and Bruce Francis. Optimal Sampled-Data Con-
trol Systems. Springer-Verlag, 1995.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Conference Record
of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 84–97, Tucson,
Arizona, 1978. ACM Press, New York, NY.

Bibliography 179

[CMP00] Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano.
Développement d’applications avec Objective Caml. O’Reilly,
April 2000. ISBN : 2-84177-121-0.

[Cou78] Patrick Cousot. Méthodes itératives de construction et
d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. PhD thesis, Uni-
versité scientifique et médicale de Grenoble, France, 1978.

[Cou81] P. Cousot. Semantic foundations of program analysis. In S.S.
Muchnick and N.D. Jones, editors, Program Flow Analysis:
Theory and Applications, chapter 10, pages 303–342. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[Cou01] P. Cousot. Abstract interpretation based formal methods and
future challenges, invited paper. In R. Wilhelm, editor, In-
formatics — 10 Years Back, 10 Years Ahead, volume 2000 of
Lecture Notes in Computer Science, pages 138–156. Springer-
Verlag, 2001.

[CVWY92] Constantin Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and
Mihalis Yannakakis. Memory-efficient algorithms for the verifi-
cation of temporal properties. Formal Methods in System De-
sign, 1(2/3):275–288, 1992.

[DA92] R. David and H. Alla. Petri Nets & Grafcet. Prentice Hall,
1992.

[Deu94] Alain Deutsch. Interprocedural may-alias analysis for point-
ers: beyond k-limiting. ACM SIGPLAN Notices, 29(6):230–241,
1994.

[DFMV98] H. Dierks, A. Fehnker, A. Mader, and F. Vaandrager. Opera-
tional and logical semantics for polling real-time systems. Tech-
nical report, University of Nijmegen, 1998.

[DH99] Matthew B. Dwyer and John Hatcliff. Slicing software for model
construction. In ACM Workshop on Partial Evaluation and
Semantic-Based Program Manipulation, pages 105–118, 1999.

[DHJ+01] Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn
Laubach, Corina S. Pasareanu, Robby, Willem Visser, and
Hongjun Zheng. Tool-supported program abstraction for finite-
state verification. In Proceedings of the 23rd International Con-
ference on Software Engineering, May 2001.

180 Bibliography

[Die97a] H. Dierks. PLC-automata: A new class of implementable
real-time automata. In M. Bertran and T. Rus, ed-
itors, Transformation-Based Reactive Systems Development
(ARTS’97), volume 1231 of Lecture Notes in Computer Science,
pages 111–125. Springer-Verlag, 1997.

[Die97b] H. Dierks. Synthesising controllers from real-time specifications.
In Proceedings of Tenth International Symposium on System
Synthesis, pages 126–133. IEEE CS Press, 1997.

[Dij69a] Edsger W. Dijkstra. On understanding programs (EWD 264).
Published in an extended version as [Dij69b], August 1969.

[Dij69b] Edsger W. Dijkstra. Structured programming. In J.N. Bux-
ton and B. Randell, editors, Software Engineering Techniques,
Report on a conference sponsored by the NATO Science Com-
mittee, pages 84–88. NATO Science Committee, 1969.

[Dil90] David Dill. Timing assumptions and verification of finite-state
concurrent systems. In Joseph Sifakis, editor, International
Workshop on Automatic Verification Methods for Finite State
Systems, Grenoble, France, June 12–14, 1989, volume 407 of
LNCS, pages 197–212. Springer-Verlag, 1990.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. Technical Report
#159, Palo Alto, USA, 1998.

[DM98] T. Dang and O. Maler. Reachability analysis via face lifting.
In Hybrid Systems Computation and Control, volume 1386 of
LNCS, pages 96–109, 1998.

[DN00] J. Davoren and A. Nerode. Logics for hybrid systems. Proceed-
ings of the IEEE, 88, July 2000.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, Cambridge, 1990.

[Edw97] Stephen A. Edwards. The Specification and Execution of Hetero-
geneous Synchronous Reactive Systems. PhD thesis, University
of California, Berkley, 1997.

[EL02] David Evans and David Larochelle. Improving security using
extensible lightweight static analysis. IEEE Software, 19(1):42–
51, 2002.

[Eva96] David Evans. Static detection of dynamic memory errors. In
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’96), 1996.

Bibliography 181

[fac] FaCiLe: A functional constraint library. http://www.

recherche.enac.fr/opti/facile/.

[fea] The feaver feature verification system. http://cm.bell-labs.
com/cm/cs/what/feaver/.

[FHL+01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach,
Florian Martin, Michael Schmidt, Henrik Theiling, Stephan
Thesing, and Rheinhard Wilhelm. Reliable and Precise WCET
Determination for a Real-Life Processor. In Embedded Software
Workshop, Lake Tahoe, USA, October 2001. Springer-Verlag.

[FK92] A. Falcione and B.H. Krogh. Design recovery for relay ladder
logic. In First IEEE Conference on Control Applications, vol-
ume 2 of IEEE, pages 648–653, September 1992.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. Extended static
checking for java. In Proceeding of the ACM SIGPLAN 2002
Conference on Programming language design and implementa-
tion, pages 234–245. ACM Press, 2002.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In J.T.
Schwartz, editor, Proceedings AMS Symposium Applied Mathe-
matics, volume 19, pages 19–31, Providence, RI, 1967. American
Mathematical Society.

[Gra89] Philippe Granger. Static analysis of arithmetical congruences.
International Journal of Computer Mathematics, 30:165–190,
1989.

[Gra91] Philippe Granger. Static analysis of linear congruence equalities
among variables of a program. In TAPSOFT ’91: Proceedings
of the International Joint Conference on Theory and Practice
of Software Development, volume 493 of LNCS, pages 169–192,
1991.

[Har87] David Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274, June
1987.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous data-flow programming language LUSTRE. Proceed-
ings of the IEEE, 79(9):1305–1320, September 1991.

[Hec77] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland, 1977.

182 Bibliography

[HFL01] Anders Hellgren, Martin Fabian, and Bengt Lennartson. On the
execution of discrete event systems as sequential function charts.
In Conference on Control Applications, IEEE, September 2001.

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a model
checker for hybrid systems. International Journal on Software
Tools for Technology Transfer, 1:110–122, 1997.

[HKPV98] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaija. What’s
decidable about hybrid automata? Journal of Comput. Syst.
Sci., 57:94–124, 1998.

[HLFE02] Ralf Huuck, Ben Lukoschus, Goran Frehse, and Sebastian En-
gell. Compositional verification of continuous-discrete systems.
In S. Engell, G. Frehse, and E. Schnieder, editors, Modelling,
Analysis and Design of Hybrid Systems, volume 279 of Lec-
ture Notes in Control and Information Sciences, pages 225–244.
Springer-Verlag, 2002.

[HM98] M. Heiner and T. Menzel. A Petri net semantics for the PLC
language Instruction List. In Proceedings of the International
Workshop on Discrete Event Systems (WoDES), pages 161–166.
IEE Control, 1998.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-
Hall International, Engelwood Cliffs, 1985.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5):279–295, May 1997.

[Hol02] G.J. Holzmann. Static source code checking for user-defined
properties. Pasadena, CA, USA, June 2002.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems.
pages 447–498, 1985.

[HP00] Klaus Havelund and Tom Pressburger. Model checking Java
programs using Java PathFinder. International Journal on Soft-
ware Tools for Technology Transfer (STTT), April 2000. Special
issue containing selected submissions for the 4’th SPIN work-
shop, Paris, November 1998.

[HS00] G. J. Holzmann and Margaret H. Smith. Automating software
feature verification. Bell Labs Technical Journal, 5(2):72–87, -
2000.

[HTLW97] H.-M. Hanisch, J. Thieme, A. Lüder, and O. Wienhold. Mod-
eling of PLC behaviour by means of timed net condition/event

Bibliography 183

systems. In Proc. of IEEE Int. Symposium on Emerging Tech-
nologies and Factory Automation (EFTA ’97), pages 361–369,
1997.

[Huu02] Ralf Huuck. Software verification for embedded systems. In
MMAR ’02: The 8th IEEE International Conference on Meth-
ods and Models in Automation and Robotics, Szczecin, Poland,
September 2–5 , 2002, September 2002.

[IEC92] International Electrotechnical Commission, Technical Commit-
tee No. 848. IEC 60848, Preparation of function charts for
control systems, 1992.

[IEC98] International Electrotechnical Commission, Technical Commit-
tee No. 65. Programmable Controllers – Programming Lan-
guages, IEC 61131-3, second edition, November 1998. Com-
mittee draft.

[iee98] Special Issue on Hybrid Systems, volume 43 of IEEE Transac-
tions of Automatic Control, 1998.

[JFR99] F. Jimènez-Fraustro and E. Rutten. A synchronous model of the
PLC programming language ST. In 1st Euromicro Conference
on Real-Time Systems, pages 21–24, June 1999.

[JM01] Ranjit Jhala and Kenneth L. McMillan. Microarchitecture ver-
ification by compositional model checking. In G. Berry and
H. Comon, editors, Computer Aided Verification 13th Interna-
tional Conference, CAV 2001, volume 2102 of LNCS, pages 396–
410, 2001.

[Jon81] Cliff B. Jones. Development Methods for Computer Programs in-
cluding a Notion of Interference. PhD thesis, Oxford University
Computing Laboratory, June 1981. Printed as: Programming
Research Group, Technical Monograph 25.

[Jon83] Cliff B. Jones. Tentative steps toward a development method
for interfering programs. ACM Transactions on Programming
Languages and Systems, 5(4):596–619, 1983.

[KBP+99] S. Kowalewski, N. Bauer, J. Preußig, O. Stursberg, and H. Tre-
seler. An environment for model-checking of logic control sys-
tems with hybrid dynamics. In Proc. IEEE Int. Symp. On Com-
puter Aided Control System Design, 1999.

[Kri63] Saul A. Kripke. Semantical considerations on modal logic. Acta
Philosophica Fennica, 16:83–94, 1963.

184 Bibliography

[KV97] B. J. Krämer and N. Völker. A highly dependable computer
architecture for safety-critical control applications. Real-Time
Systems Journal, 13(3):237–251, 1997.

[KVW00] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An
automata-theoretic approach to branching-time model check-
ing. Journal of the ACM, 47(2):312–360, 2000.

[Lew98] R.W. Lewis. Programming industrial control systems using IEC
1131-3, volume 50 of Control Engineering Series. The Insti-
tution of Electrical Engineers, Stevenage, United Kingdom, re-
vised edition, 1998.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state con-
current programs satisfy their linear specifications. In Twelfth
ACM Symposium on the Priciples of Programming Languages,
pages 97– 105, 1985.

[LPM95] D. L’Her, P. Le Parc, and L. Marcé. Proving sequential function
chart programs using automata. In Proceedings of 2nd AMAST
workshop on Real-Time Systems, 1995.

[LPY97a] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
nutshell. International Journal on Software Tools for Technol-
ogy Transfer, 1(1–2):134–152, October 1997.

[LPY97b] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
nutshell. International Journal on Software Tools for Technol-
ogy Transfer, 1(1–2):134–152, October 1997.

[LT79] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dom-
inators in a flowgraph. In ACM Transactions on Progamming
Languages and Systems 1, pages 1:121–141. ACM Press, New
York, NY, 1979.

[Mal97] O. Maler, editor. Hybrid and Real-Time Systems, volume 1201
of LNCS. Springer-Verlag, 1997.

[Mal99] Oded Maler. On the programming of industrial computers.
Technical report, Verimag, 1999.

[Mar92] Florence Maraninchi. Operational and compositional seman-
tics of synchronous automaton compositions. In International
Conference on Concurrency Theory, pages 550–564, 1992.

[Mas92] François Masdupuy. Array abstractions using semantic anal-
ysis of trapezoid congruences. In ICS ’92: Proceedings of the
6th ACM International Conference on Supercomputing, ACM,
pages 226–235, 1992.

Bibliography 185

[mat] Mathlab and Simulimk. http://www.mathworks.com.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of pro-
cesses. IEEE Transactions on Software Engineering, 7(4):417–
426, July 1981.

[McM92] Kenneth L. McMillan. Symbolic Model Checking: An Approach
to the State Explosion Problem. PhD thesis, Carnegie Mellon
University, May 1992. CMU Technical Report CMU-CS-92-131.

[McM00] Kenneth L. McMillan. The SMV system. Carnegie Mellon Uni-
versity, November 2000. Manual for SMV version 2.5.4.

[Mer01] Stephan Merz. Model checking: A tutorial overview. In
F. Cassez et al., editor, Modeling and Verification of Parallel
Processes, volume 2067 of LNCS, pages 3–38. Springer-Verlag,
2001.

[MH02] Angelika Mader and Ralf Huuck. Modelling methods for PLC
applications. Unpublished Manuscript, 2002.

[Mil80] Robin Milner. A Calculus of Communicating Systems, vol-
ume 92 of LNCS. Springer-Verlag, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall
International, Engelwood Cliffs, 1989.

[Moo94] I. Moon. Modeling programmable logic controllers for logic ver-
ification. IEEE Control Systems Magazine, 14(2):53–59, 1994.

[Mor] Dick Morley. The history of the PLC. http://www.barn.org/
FILES/historyofplc.html.

[Muc97] S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, 1997.

[MW99] A. Mader and H. Wupper. Timed automaton models for sim-
ple programmable logic controllers. In Proceedings of the 11th
Euromicro Conference on Real Time Systems, pages 114–122.
IEEE Computer Society, 1999.

[Nis00] Norman Nise. Control Systems Engineering. John-Wiley &
Sons, Inc., third edition, 2000.

[NK00] N.Lynch and B. H. Krogh, editors. Hybrid Systems: Computa-
tion and Control, volume 1790 of LNCS. Springer-Verlag, 2000.

[NNH99] F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of
Program Analysis. Springer, 1999.

186 Bibliography

[NSY93] Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. From ATP to
timed graphs and hybrid systems. Acta Informatica, 30(2):181–
202, 1993.

[Ore44] Oystein Ore. Galois connexions. Transactions of the American
Mathematical Society, 55:493–513, 1944.

[OY93a] A. Olivero and S. Yovine. KRONOS: A tool for Verifying
Real-Time Systems. Userguide. VERIMAG, Grenoble, France,
1993. available at: http://www.imag.fr/VERIMAG/TEMPORISE/
kronos/.

[OY93b] A. Olivero and S. Yovine. KRONOS: A Tool for Verifying Real-
Time Systems. User’s Guide and Reference Manual. Verimag,
Grenoble, France, 1993.

[pep] PEP Homepage. http://theoretica.Informatik.

Uni-Oldenburg.DE/~pep/.

[Plo81] Gordon Plotkin. A structural approach to operational seman-
tics. DAIMI FN-19, Computer Scinece Depratment, Aarhus
University, 1981.

[Pnu81] Amir Pnueli. The temporal logic of concurrent programs. The-
oretical Computer Science, 13:45–60, 1981.

[Pol02] PolySpace C verifier: Product data sheet. http://www.

polyspace.com/docs/CLeaflet.pdf, 2002.

[PSSD00] David Y. W. Park, University Stern, Jens U. Sakkebaek, and
David L. Dill. Java model checking. In Automated Software
Engineering, pages 253–256, 2000.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and ver-
ification of concurrent systems in CESAR. In M. Dezani-
Ciancaglini and U. Montanari, editors, Proceedings of the 5th
International Symposium on Programming, Turin, April 6–8,
1982, pages 337–350. Springer-Verlag, 1982.

[Rei85] Wolfgang Reisig. Petri Nets, An Introduction. EATCS,
Monographs on Theoretical Computer Science. Springer-Verlag,
Berlin, 1985.

[RK98] M. Rausch and B. Krogh. Formal verification of PLC programs.
In American Control Conference, pages 234–238, June 1998.

[RLR99] O. Rossi, J. J. Lesage, and J. M. Roussel. Formal validation of
PLC programs: a survey. In Proceedings of European Control
Conference 1999 (ECC’99), 1999.

Bibliography 187

[RS00] O. Rossi and Ph. Schnoebelen. Formal modelling of timed
function blocks for the automatic verification of ladder dia-
gram programs. In ADPM 2000: 4th International Conference
on Automation of Mixed Processes: Hybrid Dynamic Systems,
September 18-19, 2000, Dortmund, Germany, 2000.

[Sch95] Erik Schön. On the computation of fixpoints in static program
analysis with an application to analysis of AKL. Master’s thesis,
School of Engineering Physics, Royal Institut of Technology,
Stockholm, October 1995.

[Sch99] Bernd S. W. Schröder. Algorithms for the fixed point property.
Theoretical Computer Science, 217(2):301–358, 1999.

[SDL92] Specification and Description Language SDL, blue book.
CCITT Recommendation Z.100, 1992.

[Sta98] Karsten Stahl. Comparing the expressiveness of different real-
time models. Master’s thesis, Christian-Albrechts-University of
Kiel, May 1998.

[Tap98] J. Tapken. Moby/PLC - A Design Tool for Hierarchical Real-
Time Automata. In Proceedings of FASE’98, volume 1382 of
Lecture Notes in Computer Science, pages 326–329. Springer-
Verlag, 1998. available at: http://theoretica.Informatik.

Uni-Oldenburg.DE/~moby/.

[Tho90] Wolfgang Thomas. Automata on infinite objects. pages 133–
191, 1990.

[TN02] M. Wenzel T. Nipkow, L. C. Paulson. A Proof Assistant for
Higher-Order Logic. Number 2283 in LNCS. Springer-Verlag,
2002.

[Tou96] K. Tourlas. Semantic analysis and design of languages for pro-
grammable logic controllers. Master’s thesis, Department of
Computer Science, The University of Edinburgh, 1996.

[TPP97] A. L. Turk, S. T. Probst, and G. J. Powers. Verification of
real time chemical processing systems. In O. Maler, editor,
Proc. International Workshop on Hybrid and Real-Time Sys-
tems (HAR’97), volume 1201 of Lecture Notes in Computer Sci-
ence, pages 259–272. Springer-Verlag, 1997.

[Var01] Moshe Y. Vardi. Branching vs. linear time: Final showdown.
In Tiziana Margaria and Wang Yi, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, 7th Inter-

188 Bibliography

national Conference, TACAS 2001, volume 2031 of lncs, pages
1–22. springer, 2001.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infi-
nite computations. Information and Computation, 115(1):1–37,
1994.

[Wil99] H.X. Willems. Compact timed automata for PLC programs.
Technical Report CSI-R9925:, University of Nijmegen, Com-
puting Science Institute, 1999. http://www.cs.kun.nl/csi/

reports/info/CSI-R9925.html.

