
APPROXIMATION AND ONLINE ALGORITHMS

IN

SCHEDULING AND COLORING

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(Dr. rer. nat.)
der Technische Fakultät

der Christian-Albrechts-Universität zu Kiel

Aleksei V. Fishkin

Kiel 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250313338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Gutachter: Prof. Dr. Klaus Jansen
2. Gutachter: Prof. Dr. Anand Srivastav
3. Gutachter: Prof. Dr. Evripidis Bampis
Tag der mündlichen Prüfung: 16.06.2003
Zum Druck genehmigt: 16.06.2003

PREFACE

This thesis includes part of my research from the past three years. I am indebted
to my teachers, colleagues, and friends for their help and support. First of all
this concerns my advisor Klaus Jansen. He has devoted many hours of his time
for introducing me into the field of combinatorial optimization and approximation
algorithms during my first year in Kiel, when I needed it the most. This was of
great benefit to my work. Only with his help I was able to get my first results and
work further as a researcher. I am grateful to him for his support, advising, and
friendship. I am also sincerely appreciate Maxim Sviridenko for recommending
me to Klaus. I wish to thank Maxim and Klaus for their trust andconfidence in
my research abilities. Without all of this my thesis would never have never been
written.

I have been fortunate to meet many wonderful people who have contributed to my
research. I would especially like to thank Lorant Porkolab and Evripidis Bampis.
Lorant supervised and later edited my first works on approximation schemes for
scheduling problems. His ability to listen, his understanding, his confidence, and
support will always be an inspiration. Collaboration with Evripidis in several
projects gave me an impetus to produce some results in onlinescheduling. I have
learned a lot from his calm and diligent approach to research.

I have spent three productive years at Kiel University and thank all my colleagues
in the group “Theory of Parallelism” at the Institute of Theoretical Computer Sci-
ence and Applied Mathematics for a pleasant environment anda stimulating work-
ing atmosphere. Long evenings of discussions that I have spent with Jǐrí Fiala at
the University guesthouse have turned into a joint work on the graph labeling
problem. My trip to Prague, as a guest at his marriage, our jokes and our friend-
ship stay with me forever. I am also happy to meet Monaldo Mastrolilli, Manuela
Montangero, Guochuan Zhang, Jana Chlebíková and Hu Zhang. My colabaration
with Monaldo and Guochuan resulted in several joint papers on scheduling, which
are partially included here. I would like to thank Marian Margraf for working with
me on different topics, Brigitte Preuss for her help with thepaperwork, and them
both for improving my German.

My special thanks to Martin Skutella for several helpful discussions and for his
help with every small request I have made of him.

I made my research as a member of the graduate school 357 “Effiziente Algorith-

iv

men und Mehrskalenmethoden” supported by the Deutsche Forschungsgemein-
schaft. I am also grateful for the funding support provided by the EU project
ARACNE “Research Training Network” (HPRN-CT-199-00112),the EU projects
APPOL I and II “Thematic Network” (IST-1999-14084, IST-2001-32007), the
DAAD project Procope “Scheduling of Malleable Tasks”, and the EU-Project
CRESCCO “Critical Resource Sharing for Cooperation in Complex Systems”
(IST-2001-33135).

Finally, I would like to express my gratefulness to my mother. Her unconditional
love and support, though sometimes irrational, plays an important role in my life.
I dedicate this thesis to her for all that she has done for me.

Aleksei V. Fishkin
Kiel, October 2002.

CONTENTS

Introduction 1

1 On Minimizing Average Weighted Completion Time 13

1.1 Introduction . 13

1.2 Designing a PTAS: The Input Transformation Technique 19

1.3 Scheduling on a Single Machine: A refined PTAS 22

1.3.1 Basic Structuring . 25

1.3.2 Huge and Tiny Jobs . 28

1.3.3 Scheduling Tiny Jobs: Smith’s Rule 30

1.3.4 Assigning to Intervals: LP formulation 31

1.3.5 Assigning to Intervals: LP Rounding 32

1.3.6 Packing in Single Intervals 35

1.3.7 Weight-Shifting . 36

1.3.8 Merging . 37

1.3.9 Blocks . 37

1.3.10 The Dynamic Programming Framework 38

1.4 A PTAS for the Job-Shop Scheduling Problem 39

1.4.1 Basic Structuring . 41

1.4.2 Main and Negligible Operations 42

1.4.3 Main Structuring . 45

1.4.4 Profiles, Huge and Tiny Jobs, Local Profiles and Patterns . 48

1.4.5 Scheduling Tiny Jobs: Smith’s Rule 50

1.4.6 Assigning to Intervals and Patterns: LP formulation 52

1.4.7 Assigning to Intervals and Patterns: LP Rounding 55

1.4.8 Packing in Single Intervals: A PTAS for Makespan 59

vi CONTENTS

1.4.9 Weight-Shifting and Merging 71

1.4.10 Blocks and Dynamic Programming 72

1.5 A PTAS for the Multiprocessor Task Scheduling Problem 72

1.5.1 Basic Structuring . 75

1.5.2 The Schedule-Shifting Technique 76

1.5.3 Creating of Gaps . 77

1.5.4 Profiles . 79

1.5.5 Huge and Tiny Tasks . 79

1.5.6 Scheduling Tiny Tasks: Smith’s Rule 80

1.5.7 Assigning to Intervals 81

1.5.8 Packing in Single Intervals 83

1.5.9 Weight-Shifting and Merging 95

1.5.10 Blocks and Dynamic Programming 96

1.5.11 Extension to General Multiprocessor Tasks96

1.6 Concluding Remarks . 98

2 Distance Constrained Labeling of Disk Graphs 101

2.1 Introduction . 101

2.2 Preliminaries . 107

2.2.1 Cells . 108

2.2.2 Cell Cliques . 108

2.2.3 Plane and Mesh Distance 109

2.2.4 Patterns . 111

2.3 Circular Labeling . 112

2.3.1 A Circular 25-Labeling for
�
p1� p2� � �

2�1� 115

2.4 General Online Labeling ofσ-Disk Graphs 116

2.5 Lower Bounds: Online Coloring and Labeling118

2.5.1 Coloring of Unit Disk Graphs 118

2.5.2 Labeling of Unit Disk Graphs 119

2.5.3 General Labeling of Disk Graphs 121

2.6 Offline Labeling of Unit Disk Graphs 125

CONTENTS vii

2.6.1 Cutting Technique and Strip Graphs 126

2.6.2 Coloring and Labeling of Strip Graphs 127

2.6.3 Cutting of Unit Disk Graphs 130

2.6.4 Robust Algorithms . 133

2.7 General Offline Labeling ofσ-Disk Graphs 137

2.8 Concluding Remarks . 139

3 Scheduling of Dedicated Multiprocessor Tasks 141

3.1 Preliminaries . 145

3.1.1 Coloring ofk-tuple Graphs 145

3.1.2 Coloring of the Conflict Graph 147

3.2 Scheduling of Tasks with Unit Processing Times 149

3.3 Scheduling of Tasks with Arbitrary Processing Times 150

3.3.1 First-Fit Technique . 151

3.3.2 Split-Round Technique 152

3.3.3 Passive-Active-Bin Scheduling 155

3.4 Concluding Remarks . 157

4 On Maximizing the Throughput of Multiprocessor Tasks 159

4.1 Introduction . 159

4.2 Preliminaries . 162

4.2.1 Task Size and Common Due Date 163

4.2.2 Scheduling on Time Slots 163

4.2.3 First-Fit and Last-Fit . 164

4.2.4 Scheduling in EDD and LDD 166

4.2.5 Scheduling in Increasing Size 168

4.3 Scheduling of Parallel Tasks . 170

4.3.1 Complexity . 170

4.3.2 The Algorithm FFIS . 171

4.3.3 The Algorithm LFIS . 173

4.3.4 A Hybrid Algorithm . 180

4.4 Scheduling of Dedicated Tasks 186

viii CONTENTS

4.4.1 Complexity . 187

4.4.2 The FFIS and LFIS Algorithms 188

4.5 Concluding Remarks . 191

Appendix A: Classification Scheme 193

Appendix B: Rounding Procedure 197

Appendix C: Graphs 201

Appendix D: Complexity and NPO Problems 205

Bibliography 211

Index 227

Conclusions 233

Curriculum Vitae 235

INTRODUCTION

It frequently happens that in attempting to obtain a solution to an important prob-
lem we realize that this problem is difficult. This observation is especially true for
many optimization problems [AGG�99, BEY98, CCPS98, FW98, GJ79, Hoc96,
Hro01, NW88, Pap94, PS82].

Solving an optimization problem we want to have an algorithmthat will find an
optimal solution for any instance of the problem. It is commonly held opinion
that an optimization problem has not been solved efficientlyuntil a polynomial
time (deterministic) algorithm has been obtained for it. Unfortunately, most real
world optimization problems seem to be too hard to be solved efficiently and, in
fact, even many simply stated problems are believed to be intractable. The theory
of NP-completenessprovides a mathematical foundation for this belief [Coo71,
GJ79].

We can informally summarize it as follows. A decision problem is one whose so-
lution is either “yes” or “no”. There are two classes of decision problems NP and
P. It holds that P� NP. Furthermore, all problems in P can be solved efficiently,
whereas all problems in NP� P are intractable. An NP-complete problemΠ � NP
has the property:Π � P if and only if P� NP.

It is now widely accepted that NP-complete problems cannot be solved efficiently
and P �� NP. However, the problem “P versus NP” still remains one of the most
challenging problems in theoretical computer science which is also included in
the list of Millennium Prize Problems [CMI00].

The decision versions of many combinatorial optimization problems have been
shown to be NP-complete[Kar72]. We might say that such combinatorial opti-
mization problems are NP-hard, since they are, in a sense, at least as hard as the
NP-complete problems.

If an optimization problem is NP-hard, then there exists no algorithm which would
compute optimal solutions in polynomial time, unless P� NP. But, we can ask
for less. We could relax the requirement the running time be polynomial or we
need not require the solutions be optimal. Indeed, we can useheuristic algo-
rithms like Local Search [AL97] andenumerationalgorithms like Branch-and-
Bound [HS78]. However, in theworst-case analysissuch algorithms are either
not polynomial or produce verysub-optimalsolutions.

2 INTRODUCTION

Here we are interested in the design and analysis ofapproximation algorithmsthat
always computenear-optimalsolutions in polynomial time [AGG�99, Hoc96,
Hro01].

Approximation Algorithms. An optimization problem can be either cost min-
imization or profit maximization. Informally, an optimization problemΠ of cost
minimization consists of a set	 of instances (inputs) and a cost functionC. As-
sociated with each instanceI � 	 is a set of feasible solutions (outputs)F

�
I �. For

each instanceI and a feasible solutionS � F
�
I �, the cost associated withI andS

is C
�
I �S� �
 � . The kind of optimization problems we typically concerned with

are of cost minimization problems; therefore, the discussion here is primarily in
terms of cost problems. It is not difficult to develop the analogous concepts for
profit maximization problems.

Let ALG be any algorithm for a cost minimization problemΠ. Let ALG�I � denote
a feasible solution produced by ALG given the instanceI , and let

ALG
�
I � � C

�
I �ALG �I ��

denote the cost incurred by ALG. Anoptimal algorithmOPT is such that for each
instanceI ,

OPT
�
I � � min

SF �I �C�
I �S� �

An algorithm ALG is aρ-approximation algorithm for a cost minimization prob-
lem Π if for all instancesI ,

ALG
�
I � � ρ �OPT

�
I � �

The running time of ALG is polynomial in the instance size�I �. The value ofρ � 1
is called theapproximation ratioor performance ratioor worst-case ratioof ALG
and in general can be a function of�I �.
A family of approximation algorithms,�Aε�ε�0, for a cost minimization problem
Π is called apolynomial time approximation schemeor a PTAS, if algorithmAε
is a

�
1 � ε�-approximation algorithm and its running time is polynomial in the

size of the instance for a fixedε. If the running time of eachAε is polynomial in
the size of the instance and 1�ε, then �Aε�ε�0 is called afully polynomial time
approximation schemeor a FPTAS.

For any given NP-hard optimization problem, we wish to determine whether it
possesses aρ-approximation algorithm, or a PTAS, or even a FPTAS. Thus, on
one hand,positive (approximability) resultsin the area of approximation concern

INTRODUCTION 3

the design and analysis of good polynomial time approximation algorithms and
schemes, and on the other hand, thenegative (inapproximability) resultsdisprove
the existence of such algorithms.

So far we assumed that the input instance of an optimization problem is com-
pletely known prior to the beginning of the computations. Onthe basis of this
complete input, an algorithm produces an optimal or near-optimal solution as the
output. In other words, we assumed problems and algorithms beoffline.

Optimization problems in which the input is received in an online manner and in
which the output must be produced online are calledonline problems. The com-
plication is that each online output influences on the cost ofthe overall solution.
This suggest a “natural” partition of optimization problems into online and of-
fline problems. Another field of our interest is the design andanalysis ofonline
algorithmswhich solve online problems [BEY98, FW98].

Online Algorithms. Here we only consider a special class of online optimiza-
tion problems. For an online optimization problemΠ each instanceI � 	 appears
as a finite sequenceI � i1 � i2� � � � � in and a corresponding feasible solutionS� F

�
I �

is a finite sequenceS� s1 �s2� � � � �sn. An online algorithm ALG forΠ must pro-
duce a feasible solution in stages such that at thejth stage (j � 1�2� � � � �n) the
algorithm is presented with thejth component of the instance and must produce
the jth component of a feasible solution before the rest of the instance is made
known.

Let OPT be an optimalofflinealgorithm for a cost minimization problemΠ. An
online algorithm ALG isc-competitive(or “attains a competitive ratio ofc”) if for
each instanceI ,

ALG
�
I � � c �OPT

�
I � �

The smallestc such that ALG isc-competitive is called ALG’scompetitive ratio.
Thus, ac-competitive algorithm is quaranteed to incur a cost no larger thanc times
the smallest possible cost for each input sequence. We assume thatc � 1 and in
general it can be a function of some problem parameters.

For any given online problem, we wish to find anc-competitive algorithm with
the smallest ratioc. Accordingly, alower boundon the competitive ratio implies
that no online algorithm can have a competitive ratio less than this bound.

Notice that the competitiveness of an online algorithm is evaluated with respect to
an offline optimal algorithm. Strictly speaking, it does notindicate the loss asso-
ciated with the computational resources availability, butwith not having complete

4 INTRODUCTION

information of the input instance. Hence,c-competitive andρ-approximation al-
gorithms are not comparable, even ifc � ρ. However, here we consider only “ef-
ficient” online algorithms and, in particular, algorithms that do terminate within a
polynomial (in the relevant parameters) time.

Outline of the thesis

In the last three decades, approximation and online algorithms have become a ma-
jor area of theoretical computer science and discrete mathematics, rich in its pow-
erful techniques and methods [FW98, Hoc96]. Scheduling andcoloring problems
are among the most popular ones for which approximation and online algorithms
have been analyzed. On one hand, motivated by the well-knowndifficulty to ob-
tain good lower bounds for the problems, it is particularly hard to prove results on
the online and offline performance of algorithms. On the other hand, the theoreti-
cally oriented studies of approximation and online algorithms for scheduling and
coloring have also impact on the development of better algorithms for real world
applications.

In this thesis we contribute in two ways. First, we design polynomial approxima-
tion algorithms, in particular PTASs, for two wide classes of NP-hard scheduling
problems which concern minimizing theaverage weighted completion time. Sec-
ond, we develop a number of online and approximation algorithms for several
multiprocessor taskscheduling problems and several generalizations of the col-
oring problem, namelydistance constrained labelingproblems, which are pri-
marily motivated by applications. We answer theoretical questions, present new
and improve on previous results, develop novel techniques and methods, and give
pointers to some experimental results.

The main part of this thesis is divided into four chapters. One can find some
relationship between them. However, each chapter is intended to be mostly self-
contained, and we hope that the reader interested in a particular topic would have
no problem in reading only the corresponding part.

CHAPTER 1: In this chapter we present new approximation results for sche-
duling to minimize the average weighted completion time with release dates. We
are givenn jobs, where jobj (j � 1�2� � � � �n) has a processing timep j , a positive
weightw j and a release dater j . We consider several variants but the objective in
all of them is to minimize the average weighted completion time∑w jCj , where
Cj is the completion time of jobj in the schedule. If there are no release dates and
the goal is to schedule jobs on a single machine without preemptions, the problem

INTRODUCTION 5

can be solved optimally in polynomial time by scheduling jobs in non-increasing
order ofw j �p j , what is known as Smith’s rule [Smi56]. Introducing releasedates
makes the problem strongly NP-hard [LLKS93, CPW98].

Recently there has been significant progress in giving approximation algorithms
with good performance quarantees for a variety of strongly NP-hard scheduling
problems with the average weighted completion time objective and release dates,
e.g. scheduling on a single machine, on parallel (related) machines, on a constant
number of unrelated machines, ect. [AM01]. There are just few approximation
approaches. One one hand, one can either use a linear programming (LP) re-
laxation or preemptive relaxation to find a schedule [Sch96,Shm98, Sku98], or
use an algorithm which first defines the most profitable jobs and then packs them
into contiguous intervals of geometrically increasing sizes [HSSW97, CPS�96].
Indeed, a series of ideas along these lines have led to many nice and practical app-
roximation algorithms. On the other hand, there seem to be fundamental barriers
to turning these algorithms intopolynomial time approximation schemes(PTASs):
algorithms that, for any fixed accuracyε � 0, find a schedule within a

�
1� ε� fac-

tor of the optimum in polynomial time. In order to build a PTAS, a new approach
was proposed in [ABC�99]. This involves the input transformation technique, the
idea of intervals, the idea of huge-tiny jobs, the weight-shifting technique, and
dynamic programming [AM01, CK01].

At the same time, it was always hard to say whether one can use already known
approximation algorithms for the makespan version of the problem. Chandra
Chekuri’s Ph.D. thesis [Che98] concludes with the following question:

“ Is there a polynomial time algorithm that uses as a subroutine a procedure for
minimizing makespan and outputs an approximate schedule for minimizing

weighted completion time?”

Indeed, several algorithms of this kind are known [CPS�96, QS00]. However,
these results give only a partial answer to the question, andgiving a fully positive
answer - for instance, a PTAS that uses as a subroutine a PTAS for minimizing
makespan - remained an interesting challenge.

Here we also combine several ideas – the input transformation technique, the idea
of intervals, the idea of huge-tiny jobs, the weight-shifting technique, an LP re-
laxation (formulation), rounding, a PTAS for minimizing makespan, and dynamic
programming – into one approximation method. In particular, we demonstrate the
power of our method on the job shop scheduling and multiprocessor (dedicated
and parallel) tasks scheduling problems. This improves andgeneralizes a number
of results presented in [CPS�96, CLL98, ABC�99, ABKM00, ABF�00, FJP01b].

6 INTRODUCTION

Interestingly, here we just relay on the properties of the known PTASs [JSOS99,
CM99, JP99b] modifying them in some parts. Our method uses a PTAS for the
makespan version of the problem not as a subroutine, but as a main part of a spe-
cial proof technique. However, the techniques developed can be used for making
the PTASs faster and simpler [FJM01].

In addition, our method can also lead to the design of PTASs for many variant
of the multistage scheduling problem with the average weighted completion time
objective and release dates, e.g. open shop, flow shop, dag shop, and their pre-
emptive or multiprocessor versions. Thus, we not only give the answer to the
above question, but also make a major step to understanding the approximability
of shop scheduling problems with the sum of completion time objective, a ques-
tion mentioned by Schuurman & Woeginger [SW99].

In Section 1.3 we first consider the problem of scheduling jobs on a single ma-
chine: Givenn jobs, where each jobj (j � 1�2� � � � �n) has a processing timep j ,
a release dater j , and a weightw j , schedule the jobs on a single machine so that
the average weighted completion time∑w jCj is minimized, whereCj denotes the
completion time of jobj.

As we mentioned before, the problem is strongly NP-hard [LLKS93, CPW98] and
there are a number of polynomial (efficient) approximation algorithms [Sch96,
Sku98, Che98]. Here we start with reviewing and refining a PTAS proposed
in [ABC�99]. We outline the main steps of our method. We repeat and modify
some lemmas and proofs in [ABC�99] adding some new features and introduc-
ing the basic techniques. This provides a gentle introduction to the subject and
simplifies the presentation of subsequent results.

Next, in Section 1.4, we consider the following job shop scheduling problem.
We are given a set ofm machinesM � �1�2� � � � �m� and a set ofn jobs J ��1�2� � � � �n�. Each job j (j � 1�2� � � � �n) has a weightw j , a release dater j , and
consists ofµ � 2 operationso1 j � � � � �oµ j that have to be processed in the given
order. Each operationoi j (i � 1�2� � � � �µ) requires a machineτi j � M and has a
processing timepi j . Each job can be processed only by one machine at a time
and each machine can process only one job at a time. The goal isto find a non-
preemptive feasible schedule which minimizes∑w jCj .

The problem is hard even if it is assumed that there are no weights (all w j � 1)
and no release dates (allr j � 0). The problem with two machines and at most
two operations per job is already strongly NP-hard [GJS76],and if the number
of machinesm and the number of operations per jobµ are arbitrary, the gen-
eral job shop scheduling problem is APX-hard [HSW98]. However, there is a�
5�78� ε�-approximation algorithm for the problem in the case whenm andµ are

fixed [CPS�96], and aÕ
�
log2mµ�- approximation algorithm for the problem with

INTRODUCTION 7

arbitrary (not fixed)mandµ [QS00].

Here we present a PTAS for the problem which computes for any fixed valuesm,
µ andε � 0 accuracy, a

�
1� ε�-approximate schedule inO

�
nlogn� time. Notice

that our PTAS for the problem with fixedm andµ, cannot be extended to a FP-
TAS [GJ79] (a PTAS which is also polynomial in 1�ε), and it does not generalize
to the case when bothm andµ are not fixed. It remains an open question whether
one can obtain a PTAS when only one of the parameters, eitherm or µ, is fixed.

Finally, in Section 1.5, we address multiprocessor scheduling problems, where a
set ofn tasks has to be executed by a set ofmprocessors such that each processor
can work on at most one task at a time and a task can (or may need to be) processed
simultaneously by several processors. The objective is to minimize the average
weighted completion time∑w jCj .

In the dedicatedmodel, each task requires a simultaneous use of a prespecified
set of processors. In theparallel model, each task requires a prespecified number
of processors. In thegeneralmodel, each task can have a number ofalternative
modes, where each processing mode is specified by a subset of processors and the
execution time of the task on that particular processor set.

Both dedicated and parallel versions are strongly NP-hard even if it is assumed
that there are no weights, no release dates and two processors m � 2 [XL99,
CLL98]. In [FJP01b] we have proven that scheduling dedicated tasks with unit
processing times on an arbitrary number (not fixed) of processorsm cannot be
approximated within a factor ofm

1
2 �ε, neither for someε � 0, unless P� NP; nor

for anyε � 0, unless NP� ZPP.

There are only few known approximation results for scheduling multiprocessor
tasks. Furthermore, they only address the case when it is assumed that there are no
weights and no release dates. It has been known, that there exist a 2-approximation
algorithm for scheduling dedicated tasks on two processors[CLL98], a 32- app-
roximation algorithm for scheduling parallel tasks on arbitrary number of pro-
cessors [TLWY94], and - as we have shown recently - a PTAS for scheduling
dedicated tasks on a fixed number of processors [ABF�00].

By combining various ideas we provide here generalizationsof several results and
obtain PTASs for both parallel and dedicated models (with release dates) that com-
pute for any fixed value ofm and accuracyε � 0,

�
1� ε�-approximate schedules

in O
�
nlogn� time. We also prove that there is a PTAS for the general model,but

in the case when there are no release dates. However, we conjecture the existence
of a PTAS in the case when general multiprocessor tasks have release dates.

8 INTRODUCTION

CHAPTER 2: In this chapter we consider the followingdistance constrained
labelingproblem [Lee98]. We are given a graphG � �

V�E� and a non-increasing
sequence ofdistance constraints p1 � p2� � � � � pk. The goal is to find anL�p1 ���� �pk�-
labeling c: V

�
G� � �1�2� � � � �L� of G such that�c�

u� � c
�
v� � � pi whenever the

verticesu andv are at graph distancei, for i � 1�2� � � � �k, and the number of labels
L is minimized.

The problem is a generalization of the well-known coloring problem, where given
a graph the goal is to find an assignment of colors (numbers 1�2�3� � � �) to the ver-
tices of the graph such that any two adjacent vertices have distinct colors and the
number of colors is minimized [JT95, SU97]. The most intensively studied case
of distance constrained labeling isk � 2 and

�
p1 � p2� � �

2�1�. The hardness and
approximability of anL�2�1�-labeling was explored for different graph classes, e.g.
cycles, paths, treesandco-graphs[BKTvL00, CK96, GM96, GY92, vdHLS98,
FKK99, MS]. For general graphs, it is expected that for everyfixedk-tuple ofdis-
tance constraints

�
p1 � � � � � pk� whether exists a boundL0 such that it is NP-hard to

decide where there exists anL�p1 ���� �pk�-labeling with the number of colorsL � L0.
So far, this conjecture has been only proven fork � 2 andp1 � 2p2 [Fia00].

The intersection graphG of a setD of disks in the plane is called adisk graph,
andD is called thedisk representationof G. If all disks ofD have unit diameter,
G is called aunit disk graph, and if the diskdiameter ratiois bounded by some
constantσ, G is called aσ-disk graph.

The recognition problem of a (unit,σ-) disk graph is NP-hard [BK96, BK98,
HK01]. There are a number of offline and online approximationalgorithms for
coloring of (unit) disk graphs [BK98, Pee91, Mal97, Pee91].

Here we consider the problem of distance constrained labeling of σ-disk graphs.
We present a number offline and online algorithms for the caseof general distance
constraints and for the case whenk � 2 and

�
p1 � p2� � �

2�1�. We derive upper
and lower bounds on the approximation and competitive ratioof the algorithms
presented.

First, for each fixedk-tuple of distance constraints
�
p1 � � � � � pk� we give an online

L�p1 �����pk�-labeling algorithm which requires the disk representation of a σ-disk
graph, i.e. it works on sets of disks with the disk diameter ratio at σ as the input.
The algorithm is based on the so-calledhexagonal tiling, circular labeling, and
first-fit techniques. We derive an upper bound on its competitive ratio and show
that for each fixedk-tuple

�
p1 � � � � � pk� of distance constraints and each fixed diam-

eter ratioσ, the algorithm is constant competitive. As an example, we demonstrate
the algorithm for the casek � 2 and

�
p1 � p2� � �

2�1�.
Next, we derive lower bounds for online coloring and labeling. We consider the
case when the disk representation of a disk graph is known. Westart with simple

INTRODUCTION 9

lower bounds for unit disk graphs. Then, we switch to disk graphs and prove
that in the case when either the disk representation of disk graphs is not given or
the diameter ratio is not bounded, no online labeling algorithm with a constant
competitive ratio exists. In addition, we find a lower bound on any general online
labeling algorithm forσ-disk graphs. By using this result we show that our online
labeling algorithm is asymptotically optimal for the classof unit disk graphs.

Finally, we deal with the offline setting. We explore the casewhenk � 2 and�
p1 � p2� � �

2�1�. We present two approximation algorithms for unit disk graphs.
The first algorithm is based on the so-calledcutting technique, which uses the
disk representation of unit disk graphs. The second algorithm isrobust, what is, it
does not require the disk representation, and it either outputs a feasible labeling or
shows that the input is not a unit disk graph. For the case of arbitrary distance con-
straints, we present a general offline labeling algorithm for σ-disk graphs which
does not require the disk representation. For each fixedσ andk the approximation
ratio of the algorithm is constant.

CHAPTER 3: In this chapter we address the followingdedicatedvariant of the
multiprocessor tasks scheduling problem. We are given a setof n tasksT ��1� � � � �n� and a set ofmprocessorsM � �1�2� � � � �m�. Each taskj � T has a pro-
cessing timep j , a release dater j and a prespecified set of processors fixj � M.
Preemptions are not allowed. Each processor can work on at most one task at
a time, each taskj � T must be processed simultaneously by all processors of
fix j . The goal is to find a non-preemptive feasible schedule whichminimizes the
makespan Cmax � maxj Cj .

The three-processor problem is already strongly NP-hard, and there exists no poly-
nomial approximation algorithm with performance ratio smaller than 4

3, unless
P=NP [HdVV94]. Furthermore, in [FJP01b] we proved that the problem cannot
be approximated within a factor ofm

1
2 �ε, neither for someε � 0, unless P=NP;

nor for anyε � 0, unless NP=ZPP. However, there is a polynomial time approxi-
mation scheme (PTAS) for the variant of the problem with fixednumber of pro-
cessorsm [ABKM97]. The best known low time complexity algorithms area 7

6-
approximation algorithm and a98-approximation algorithm for the three-processor
problem presented in [Goe95, CH01].

In the online context, there are several results known for theparallel variant of the
multiprocessor task scheduling problem [FST94, FKST93, BM98]. Up to our best
knowledge, no online algorithms with guaranteed competitive ratio are known for
the dedicated variant of the multiprocessor model considered here. Although some
algorithms have been recently proposed in the literature, their performance is only
simulated and is not analyzed analytically [CDI01b, CDI01a].

10 INTRODUCTION

Here we present several results, important from both theoretical and practical
points of view. First, we deal with the problem where tasks have unit process-
ing times. We propose an online algorithm for the variant in which tasks arrive
over-list and an online algorithm for the variant in which tasks arrive over-time.
The competitive ratio of these algorithms is bounded by 2�m and

�
2�m� 1�

respectively. Next, we switch to the general problem with arbitrary processing
times. We show that any online algorithm which schedules tasks arriving over-
list and leaves no unnecessary idle time cannot be better than m-competitive. In
some sense, this leaves no hope for contracting any good online algorithm based
on the first-fit technique. To simplify the problem we consider the case when all
tasks are released at the beginning of scheduling. By using our split-roundtech-
nique, we first give an offline 2k-approximation algorithm for the problem where
the maximum task size∆max is bounded by some constantk, and modify it to an
offline 3�m-approximation algorithm for the general case. Then, by using the so-
calledactive-passive-binsscheduling technique [SWW95], we outline an online
algorithm for the variant in which tasks arrive over-time and the existence of a
task is unknown before its release date. The competitive ratio of the algorithm is
bounded by 6�m.

CHAPTER 4: In this last chapter we address the following multiprocessor sche-
duling problem. We are given a set ofn tasksT � �1�2� � � � �n� and a set ofm
processorsM � �1�2� � � � �m�. Each taskj (j � 1�2� � � � �n) has a unit processing
time p j � 1 and a due dated j . Each processor can work on at most one task at a
time and a task can (or may need to be) processed simultaneously by several pro-
cessors. In thededicatedmodel, for each taskj � T there is given a prespecified
set fixj � M which indicates the task must be processed by all the the processors
of fix j . In theparallel model, the multiprocessor architecture is disregarded and
for each taskj � T there is given a prespecified numbersizej � M which indicates
that the task can be processed by any subset of processors of the cardinality equal
to sizej . Here we assume that all tasks are available at time zero and the goal is
to find a feasible schedule which maximizes thethroughput∑Ū j , whereŪ j � 0 if
task j completes afterd j , andŪ j � 1 otherwise.

There are a lot of results known for the classical (non-multiprocessor) job sche-
duling problems, where the objective is either to minimize the (weighted) number
of late (tardy) jobs or to maximize the (weighted) number of on time (early) jobs,
see e.g. [Bru98, DP95, HPW00, KIM78, Law76, Law82, LM69, LKB77, Mon82,
Moo68, RW98]. In the multiprocessor setting, the previous research has mainly
focused on the objectives of minimizingthe makespanandthe sum of completion
times. As a rule, scheduling multiprocessor tasks with unit processing times is
a stronglyNP-hard problem [Llo81, HdVV94]. However, a number of differ-

INTRODUCTION 11

ent approximation algorithms have been recently proposed in [ABKM97, BM98,
CH01, CLL98, FST94, FKST93, Goe95, Llo81, TLWY94]. Up to ourknowledge,
no results are known for the multiprocessor tasks scheduling problem which con-
cern either minimizing the number of late (tardy) tasks or maximizing the number
of on time (early) tasks.

Here, focusing on the throughput objective, we present the first results in this
direction. We derive the complexity results and present several approximation
algorithms, for both parallel and dedicated variants of theproblem.

We start with the parallel variant of the problem. We prove that the problem is
strongly NP-hard and propose two simple greedy algorithms.Then, we present an
improved algorithm with the worst-case ratio at most 3�2� 1� �

2m� 2� (herem �
2). Finally, we consider the dedicated variant. For the casewhen all tasks have a
common due date, we adopt the complexity result for MAXIMUM CLIQUE [Has99].
We prove that for any givenε � 0 the problem cannot be approximated within
m1 2�ε unless NP� ZPP, wherem is number of processors. However, for this
special case, we are able to show that the worst-case ratio ofa greedy algorithm
does not exceed�m� 1. To grip on the case of individual due dates, we generalize
this algorithm and demonstrate that bound�m� 1 remains valid.

Interestingly, there are a number of different relations tosome well-known com-
binatorial problems. Just beyond the mentioned relation toMAXIMUM CLIQUE,
BIN PACKING and MULTIPLE KNAPSACK correspond to the parallel variant of
our problem.

Last notes. Throughout the thesis we use the standard three-fieldα �β �γ sche-
duling notation introduced in [GLLK79, LLKS93, Dro96]. We give a short ver-
sion of this scheme in Appendix A on page 193. In Chapter 1 we use a rounding
procedure included into Appendix B on page 197. For the sake of convenience, we
also give all main definitions used from graph theory in Appendix C on page 201,
and from complexity theory in Appendix D on page 205.

We assume that the reader is familiar with the basic conceptsof combinatorial
optimization, complexity theory, approximation and online algorithms which can,
for instance, be found in the following books [AGG�99, BEY98, CCPS98, FW98,
GJ79, Hoc96, Hro01, NW88, PS82, Pap94]. There are a number ofbooks on ma-
chine scheduling [CCLL95, Pin95], on graph theory [Bol98, BR99, Wes01], and
on linear programming [BT97, Sai95]. We would also recommend the following
surveys [AM01, CPW98, Dro96, Kos99, SS00].

Parts of this thesis have been published or will be publishedin [ABF�00, FJP01b,
FJP01a, FFF01, FJM01, BCF�02, FJM02, FZ02].

CHAPTER 1

ON M INIMIZING AVERAGE WEIGHTED COMPLETION

TIME

1.1 INTRODUCTION

In this chapter we present new approximation results for several NP-hard sche-
duling problems in which jobs have release dates and the objective is to mini-
mize the average weighted completion time. We are primarilyinterested in the
design of PTASs: algorithms that, for any fixed accuracyε � 0, find a solu-
tion within a

�
1� ε� factor of the optimum in polynomial time. Here we com-

bine a number of ideas into one approximation method. Our approach is built
on the input transformation technique [ABC�99] which makes the use of in-
tervals with geometrically increasing sizes [HSSW97, CPS�96], LP formula-
tion [Sch96, Shm98, Sku98, Che98], LP rounding [JSOS99], and approxima-
tion algorithms (PTASs) for makespan minimization [ABKM97, CM99, JP99b,
JSOS99]. We demonstrate the power of our method on the job shop scheduling
problem and the multiprocessor (dedicated and parallel) tasks scheduling prob-
lem. In particular, this improves and generalizes a number of results presented
in [CPS�96, CLL98, ABC�99, ABKM00, ABF�00, FJP01b]. As a consequence,
we make a major step to the answer to the questions mentioned in [Che98, SW99].

Scheduling on a Single Machine. We consider the following problem of sche-
duling jobs on a single machine: Givenn jobs, where jobj (j � 1�2� � � � �n) has a
processing timep j , a positive weightw j and a release dater j , schedule the jobs
on a single machine so as to minimize∑w jCj , whereCj is the completion time of
job j. The problem is denoted by 1�r j �∑w jCj .

If there are no release dates and the goal is to schedule jobs on a single machine
without preemptions, 1��∑w jCj , the problem can be solved optimally in polyno-
mial time by scheduling jobs in non-increasing order ofw j �p j , what is known
as Smith’s rule [Smi56]. Introducing release dates makes the problem strongly
NP-hard [LLKS93, CPW98].

There are a number of nice and practical algorithms for 1�r j �∑w jCj which are

14 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

based on the LP and preemptive relaxations [Sch96, Shm98, Sku98, Che98].
However, there seem to be fundamental barriers to turning any of these algorithms
into a PTAS: an algorithm which givenε � 0 accuracy will output a

�
1 � ε�-

schedule in polynomial time. From one side, there is always agap between the
objective values of an LP relaxation and an optimal schedule. Hence, any algo-
rithm that compares itself to the LP optimum inherits this gap, and so it cannot
be a PTAS. From another side, as it was shown in [TU99], any algorithm for
1�r j �∑Cj that starts with the preemptive relaxation created by shortest remaining
processing time (SRPT) algorithm [LLKS93] cannot find an approximation ratio
better thane� �

e� 1�. This matches the best known upper bound [CMNS97].

In order to build a PTAS a new approach was proposed in [ABC�99]. This em-
ploys the well-known input transformation technique [SW02], the idea of intervals
with geometrically increasing sizes [HSSW97, CPS�96], and the weight-shifting
and merging techniques [AM01]. The approach to approximation is to perform
several “transformations” that simplify the input problemwithout dramatically in-
creasing the objective value, such that the final result is amenable to a fast dynamic
programming solution.

Informally, in order to find a
�
1 � ε�-approximate schedule one proceeds as fol-

lows. First, all processing times and release dates are rounded to integer powers
of

�
1� ε�. This transformation increases the objective function by at most a fac-

tor of 1� ε. Furthermore, this breaks the time line into contiguousgeometrically
increasing intervals Ix � ��

1� ε�x� �1 � ε�x�1�, x � ! , where release dates only
happen at the beginning of intervals. Then, jobs are dividedinto tiny andhuge
ones. In particular, a job ishugewith respect to an interval if its length is at least
ε2 times the size of the interval, andtiny otherwise. For one intervalIx, huge
jobs of the same size (a power of 1� ε) are prioritized by decreasing weightsw j ,
and all tiny jobs are prioritized by decreasing ratiow j �p j (Smith’s rule). Next,
the weight-shifting technique is applied. If many jobs released at intervalIx, it
is known that some of them with low priority will have to wait to be processed.
Shifting refers to the process of moving the excess jobs to the next intervalIx�1.
Finally, the merging technique is used. The set of tiny jobs released at interval
Ix is partitioned into a constant number of subsets with roughly equal total pro-
cessing time, and the jobs of each subset are grouped into onesingle tiny job.
From one side, both techniques increase the objective valueby at most a factor of
1� O

�
ε�. From another side, now it is quite simple to enumerate all reasonable�

1� ε�-schedules by using dynamic programming.

Here we start with reviewing and refining a PTAS for 1�r j �∑w jCj presented
in [ABC�99]. We repeat and modify some lemmas and proofs in [ABC�99],
introducing some basic techniques and adding some new features. By such means
we outline main parts of our method: (1) Structuring (2) Compacting, and (3)

1.1 INTRODUCTION 15

Dynamic Programming. Similarly to the above approach [ABC�99], in (1) and
(2) we show how one can simplify the input problem, and in (3) we show how
one can solve the final problem by using dynamic programming.This provides
a gentle introduction to the subject and simplifies the presentation of subsequent
results.

Job Shop Scheduling. We consider the following job shop scheduling prob-
lem. We are given a set ofn jobs J � �1�2� � � � �n� and a set ofm machines
M � �1�2� � � � �m�. Each jobj (j � 1�2� � � � �n) has a positive weightw j , a release
dater j , and consists of a sequence ofµ � 2 operationso1 j �o2 j � � � � �oµ j that must
run in the given order. Each operationoi j (µ � 1�2� � � � �µ) has a processing time
pi j and requires a machineτi j � M. Each job can be processed only by one ma-
chine at a time and each machine can process only one job at a time. Here we
assume thatm andµ are fixed, and the goal is to find a non-preemptive feasible
schedule which minimizes∑w jCj , whereCj denotes the completion time of job
j. The problem is denoted byJm�op � µ�r j �∑w jCj .

The above problem is an important generalization of single machine scheduling
problem 1�r j �∑w jCj . However, it seems to be harder for approximating even if in
the case when there are unit weights and no release dates. It was shown that two
machine problemJ2�op � 2 �∑Cj with at most two operations per job is already
strongly NP-hard [GJS76], and general problemJ ��∑Cj with arbitrarym andµ is
APX-hard [HSW98].

For a long period only a simpleO
�
m�-approximation algorithm forJ ��∑Cj has

been known [GS78]. Until recently, a
�
5�78� ε� - approximation algorithm for

problemJm�op � µ�r j �∑w jCj with fixed m andµ, and anÕ
�
log2�

mµ�� - app-
roximation algorithm for problemJ �r j �∑w jCj with arbitrarym andµ have been
proposed in [CPS�96] and [QS00], respectively. Both algorithms follow the same
approach. One first uses a subroutine for “assigning” jobs tointervals with ge-
ometrically increasing sizes, and then a subroutine for “packing” jobs in single
intervals. However, subroutines are different. In the firstcase, there are adual
algorithm and a

�
2 � ε�-approximation algorithm [SSW94], whereas in the sec-

ond case, there are an LP relaxation and anÕ
�
log2�

mµ�� - approximation algo-
rithm [GPSS97].

Here we improve on the result by Chakrabarti et al. and prove that there is a PTAS
for problemJm�op � µ�r j �∑w jCj which computes for any fixedm, µ andε � 0
accuracy, a

�
1� ε�-approximate schedule inO

�
nlogn� time. Notice that our PTAS

for the problem with fixedm andµ, cannot be extended to a fully PTAS [GJ79]
(a PTAS which is also polynomial in 1�ε), and it does not generalize to the case
when bothm andµ are not fixed. It remains an open question whether one can

16 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

obtain a PTAS when only one of the parameters, eitherm or µ, is fixed.

In order to build a PTAS we follow the main parts of our method:(1) Structuring
(2) Compacting, and (3) Dynamic Programming. We make almostno chances in
parts (2) and (3) presented for the single machine problem 1�r j �∑w jCj , but we
generalize part (1) in a non-trivial way.

In the case of single machine it is easy to structure the inputproblem. In contrast, a
job in the job shop problem is a chain of operations, that creates a lot of difficulties.
Here we have to definemain andnegligibleoperations of a job. All negligible
operations are very small ones, and we can round their processing times to zero.
All main operations are very big, and we can round them such that the input
instance becomes simpler. Only after this, by a non-trivialproof we are able to
show that any job can be completed within a constant number ofintervals.

Another important difference is that for problem 1�r j �∑w jCj tiny jobs can be pri-
oritized by Smith’s rule. When the job shop problem is addressed, several aspects
become complex and some important generalizations are needed. We first par-
tition all jobs into a constant number of subsets sharing similar characteristics,
calledprofile. This introduces a special structure on a schedule in which each tiny
job has apattern. Then, by using intervals and patterns we are able to modify
Smith’s rule, but for tiny jobs of the same profile. In order toprove this, similarly
to ideas in [CPS�96, QS00], we first use a subroutine for “assigning” tiny jobs
to intervals and patterns, and then as a subroutine for “packing” jobs in single
intervals. From one side, for assigning we can use an LP formulation and a spe-
cial rounding procedure. From another side, packing jobs ineach single interval
corresponds to the makespan version of the job shop scheduling problem which
is known to be NP-hard [GJ79]. To copy with that, we follow ideas of the PTAS
which first presented in [JSOS99] and later modified in [FJM01]. This the most
difficult step of part (1) of our method.

Interestingly, we can generalize all above mentioned ideasand techniques. By
following our method we can prove that there are PTASs for many variants of
the shop scheduling problem, e.g. open shop, flow shop, dag shop, and their
preemptive versions.

Multiprocessor Task Scheduling. We address non-preemptive multiprocessor
scheduling problems, where a set ofn tasksT � �1�2� � � � �n� has to be executed
by a set ofm processorsM � �1�2� � � � �m� such that each processor can work on
at most one task at a time and a task can (or may need to be) processed simultane-
ously by several processors. Each taskj � T has a processing timep j , a positive
weightw j and a release dater j . Here we assume thatm is fixed and the goal is to
find a non-preemptive schedule which minimizes∑w jCj .

1.1 INTRODUCTION 17

In thededicatedmodel, denoted byPm�fix j �r j �∑w jCj , each taskj � T requires
the simultaneous use of a prespecified set of processors fixj � M. In theparallel
model, denoted byPm�sizej �r j �∑w jCj , the multiprocessor architecture is disre-
garded and for each taskj � T there is given a prespecified number sizej � M
which indicates thatj can be processed by any subset of processors of cardinal-
ity sizej . In thegeneralmodel,Pm�setj �r j �∑w jCj , each task can have a num-
ber of alternative modesand for each taskj � T there is an associated function
p" j : 2M �� !� # ��∞� which gives the execution timepτ j of task j in terms of
a set of processorsτ � M that areallottedto j.

In the multiprocessor setting, problemP�fix j �∑Cj was first studied in [HdVV94]
and shown to be strongly NP-hard even when all tasks have unitprocessing times.
If the number of processors is fixed, then problemPm�fix j � p j � 1�∑Cj with unit
processing times becomes polynomial-time solvable [BK96]even if the tasks have
release dates. The negative result was strengthened in [CLL98], where the authors
proved that already problemP2�fix j �∑Cj is strongly NP-hard. The problem of
scheduling parallel multiprocessor tasks on two processors P2�sizej �∑w jCj was
also shown to be strongly NP-hard [XL99]. Contrasting this with the fact that
for identical parallel machines, in the non-multiprocessor model, only general
problemP��∑Cj is strongly NP-hard, whilePm��∑Cj is just weakly NP-hard, in-
dicates that computing optimal or approximate schedules for multiprocessor tasks
is likely to be much harder than the corresponding (classical) non-multiprocessor
variants.

There are only few known approximation results for multiprocessor scheduling
with the average completion time objective. Furthermore, they only address un-
weighted versions where it is also assumed that all tasks arereleased at the be-
ginning. It has been known, that there exist a 2-approximation algorithm for
P2�fix j �∑Cj [CLL98], a 32-approximation algorithm forP�sizej �∑Cj [TLWY94],
and - as we have recently shown - a PTAS forPm�fix j �∑Cj [ABF�00].

Here we provide generalizations of several results and prove the following: There
are PTASs for bothPm �fix j �r j � ∑w jCj andPm�sizej �r j � ∑w jCj that compute
for any fixedm andε � 0 accuracy,

�
1 � ε�-approximate solutions inO

�
nlogn�

time. If the number of processorsm is not fixed, then the problem becomes harder
from the point of view of computing approximate solutions for any given relative
accuracy. It turns out that the classicalgraph coloringproblem can be reduced to
the problem of scheduling dedicated tasks of unit length. Based on this reduction
it was proved in [HdVV94] that forP�fix j � p j � 1�Cmax there exists no polyno-
mial approximation algorithm with performance ratio smaller than 4�3, unless
P=NP. (This can be strengthened by using inapproximabilityresults from [LY94]
and [FK98]). Following the same line of ideas, one can construct a reduction
from theminimum color sumproblem (introduced in [Kub89]), where the sum

18 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

of the assigned colors is minimized (instead of the largest one), hence differing
from the classical coloring problem only in the objective. By using this reduction
along with the hardness results [BNBH�98, BNHK�99] for approximating the
minimum color sum problem, one can obtain the following negative (inapprox-
imability) results:

Theorem 1.1.1.Problem P�fix j � p j � 1�∑Cj cannot be approximated within a

factor of m
1
2 �ε, neither for someε � 0, unlessP� NP; nor for anyε � 0, unless

NP=ZPP.

The problem of scheduling general multiprocessor tasksPm�setj � ∑w jCj (with-
out release dates) can be also viewed as a generalization of two well (but mainly
independently) studied scheduling problems: scheduling tasks on unrelated paral-
lel machinesRm��∑w jCj and multiprocessor task scheduling with dedicated pro-
cessorsPm�fix j �∑w jCj . In the case of unrelated machines, for each task (job)
there arem processing modes, each with a single processor (machine). In the
case of dedicated processor sets, each task has only a singleprocessing mode but
including (typically) several processors. Since both of the above special cases
are strongly NP-hard [BCJS74, CLL98] for general weights and m � 2, even if
there are only a constant number of processors, it is naturalto study how closely
the optimum can be approximated by efficient algorithms. Focusing on the case
wherem is fixed, we integrate many of the above mentioned recent results that
have shown the existence of PTASs for the two special cases, by providing the
following generalization: There is a PTAS forPm�setj �∑w jCj that computes, for
any fixedmandε � 0 accuracy, a

�
1� ε�-approximate schedule inO

�
nlogn� time.

This work was motivated by [ABC�99], where it was also announced that there
is a PTAS for scheduling on unrelated parallel machines withrelease datesRm�r j � ∑w jCj , and our very recent work [FJP01b], where we have shown the ex-
istence of a PTAS forPm�fix j �r j �∑w jCj . Our original goal was to provide a
generalization for all previous results on scheduling problems involving a fixed
number of processors (machines), release dates and the average weighted com-
pletion time objective. Here we do not achieve this goal completely, but our result
provide hopefully a major step towards it. We conjecture that there is a PTAS for
Pm�setj �r j �∑w jCj .

In order to build PTASs, here we also follow three main parts of our method:
(1) Structuring (2) Compacting, and (3) Dynamic Programming. Interestingly,
similar to the job shop problem, we make almost no chances in parts (2) and (3),
but in part (1) we add some novel non-trivial ideas which werenot used before.

There is one very important feature of the multiprocessor tasks scheduling prob-
lem which contrasts it from all previously considered problems. Here, a task can

1.2 DESIGNING A PTAS: THE INPUT TRANSFORMATION TECHNIQUE 19

require more than one processor. Thus, while tasks run in a schedule, more “ear-
lier” tasks can intersect in a very irregular way blocking more “later” tasks. This
creates some difficulties in using the already developed techniques. However, in
order to be able to cope with multiprocessor tasks we can enforce regulargapsin
a schedule. A gap is an interval in time where all the processors are idle. This sim-
ple idea leads to PTASs for the dedicated and parallel tasks scheduling problems
with release dates and a PTAS for the general multiprocessortasks scheduling
problem without release dates.

Similarly to the one machine case, we can round tasks and classify tasks as huge
and tiny. Similarly to the job shop case, we can define profilesand prioritizing
tiny tasks of the same profile by Smith’s rule. However, in order to prove the later
result, we again use an LP formulation, a rounding procedure, and a PTAS for the
makespan version of the problem [ABKM97, CM99, JP99b].

Unfortunately, our method fails in the case of general multiprocessor tasks with
release dates. Rounding of general multiprocessor tasks without release dates is
quite simple, but as soon as release dates are introduced, the problem becomes
more complex. Here we need some new ideas for defining profiles, tiny and huge
tasks, and Smith’s rule.

Organization of the Chapter. The rest of the chapter is organized as follows.
In the next section we give a short overview of the input transformation technique,
which can be also found in [SW02]. In Section 1.3 we consider the problem of
scheduling on a single machine. In Section 1.4 we consider the job shop problem,
and in Section 1.5 we discuss the multiprocessor tasks scheduling problem. In
Section 1.6 we give concluding remarks.

1.2 DESIGNING A PTAS: THE INPUT TRANSFORMATION TECHNIQUE

Suppose we want to find a PTAS for a strongly NP-hard scheduling problem. How
we should proceed?

We know that any approximation algorithmA should take an instanceI , process it
for some time, and finally output an approximate (near-optimal) solutionApp

�
I �.

Indeed, all known approximation schemes are based on the diagram depicted in
Figure 1.1 on the following page consisting of three well-separated parts: The
input I on the left, the outputApp

�
I � on the right, and the algorithmA in the

middle.

However, one can find a number of different approaches to the construction of app-
roximation schemes. One of the standard approaches is the so-called technique of

20 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

AI App$I %
Figure 1.1: Solving of the input.

simplifying of the instance. Here, one first turns a difficult instance into a more
simpler instance which is easier to tackle, and then uses an optimal (or approx-
imate) solution for this instance in finding an approximate solution the original
instance.

Less formally, we add a bit morestructure to the diagram in Figure 1.1. For
an illustration see Figure 1.2. Here, due to the NP-hardnessof our scheduling
problem, instanceI is very complicated and irregularly shaped, and it would be
difficult to go directly formI to an approximate solutionApp

�
I �. Hence, one takes

the detour via a simplified instanceI# for which it is easy to obtain an optimal
solution OPT

�
I#� or an approximate solutionApp

�
I#�. Finally, one translates

OPT
�
I#� or App

�
I#� into an approximate solutionApp

�
I � for the original instance

I .

I#

Solve

I

Simplify

App
�
I � OPT

�
I#�

App
�
I#�TranslateApp

�
I � or

Figure 1.2: Simplifying of the instance

The approach described can be presented by the following two-phase procedure:

(A) Simplify: Simplify instanceI to an instanceI#. The simplification depends
on the desired accuracyε � 0 of approximation; the closerε is to zero, the

1.2 DESIGNING A PTAS: THE INPUT TRANSFORMATION TECHNIQUE 21

closer instanceI# should resemble instanceI . The time needed to transform
I into I# must be polynomial in the size ofI (it can be exponential in 1�ε).

(B) Solve: Determine an optimal solutionOPT
�
I#� or a near-optimal solution

App
�
I#� for I#, and then translateOPT

�
I#� or App

�
I#� back into an app-

roximation solutionApp
�
I �. It should be done in polynomial time in the

size of I (it can be exponential in 1�ε), and solutionApp
�
I � should stay

close toOPT
�
I �.

Of course, finding the right simplification in stepA is an art. On one hand, ifI# is
too close toI , thenI# can be still hard to solve to optimality. On the other hand,
if I# is too far away fromI#, then solvingI# will not tell us anything about how
to solveI . The following techniques for simplifying the input instance often work
well.

Rounding. The simplest way of adding structure to the input is to round some
of the numbers in the input. For instance, we may round all joblengths to
perfect powers of two.

Merging. Another way of adding structure is to merge small pieces intolarger
pieces of primitive shape. For instance, we may merge a largenumber of
tiny jobs into a single job with processing time equal to the processing time
of all tiny jobs.

Cutting. Yet another way of adding structure is to cut away irregular shaped
pieces from the instance. For example, we may remove a small set of jobs
with a broad spectrum of processing times from the instance.

In the following sections, we will combine these techniques, though named dif-
ferently, into one approximating method which consists of three main parts in our
method: (1) Structuring, (2) Compacting, and (3) Dynamic Programming. Here,
parts (1) and (2) correspond to phase(A), and part (3) corresponds to phase(B) of
the input transformation technique.

Informally, given a fixed accuracyε � 0 and an instanceI of sizen we proceed
as follows. In parts (1) and (2), we construct an instanceI# from an instanceI
of the problem inO

�
nlogn� time. In part (3), we find a near-optimal solution for

I# by using dynamic programing inO
�
n� time. The objective value of the found

solution is within a factor of 1� O
�
ε� of the original optimumOPT

�
I �, and the

algorithm derived is a PTAS withO
�
nlogn� running time (it can be exponential

in 1�ε).

22 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

1.3 SCHEDULING ON A SINGLE MACHINE: A REFINED PTAS

In this section we consider the following problem of scheduling jobs on a single
machine: Givenn jobs, where jobj (j � 1� � � � �n) has a processing timep j , a
positive weightw j and a release dater j , schedule the jobs on a single machine
so as to minimize∑w jCj , whereCj denotes the completion time of jobj. For an
illustration see Figure 1.3.

p1 p2 p4 p3

Jobs

Schedule

r1 & 1

r2 & 3

r4 & 2

r3 & 4'5 w1 & 20

w3 & 1

w2 & 5

w1 & 10

1 6

∑wjCj & 10 (2'5) 5 (4) 20 (5'5) 1 (7 & 162

p4 & 1

p1 & 1'5
p2 & 1

p3 & 1'25

4 5 732

Figure 1.3: A schedule for 4 jobs

A very simple idea can be to use a dynamic programming algorithm which works
over release dates and enumerates all possible schedules for the jobs released at
each distinct date. However, there are two potential difficulties which can lead to
an exponential inO

�
n� running time. First, it can happen that “too many” jobs get

released at the same time. Second, it can happen that some jobs wait “too long”
time for processing.

Indeed, in order to “speed up” the running time we will avoid both these extreme
cases. We use the technique of simplifying of the instance. Our main goal is to
structure the problem such that there is at most a “constant”number of jobs at
each distinct release date, and then to find a near-optimal schedule in which every
job completes “close” to its release date.

Informally, we perform severaltransformationsthat simplify the input problem.
Many of our transformations are thought modifications applied to the optimal
schedule to argue that some schedule nearly as good has very simple structure. For
example, we can modify an optimal schedule such that all starting timesSj � εp j

and the objective value increases by at most a factor of 1� ε. Then, we say that
with 1 � ε loss, we canassumethat all Sj � εp j in any schedule. Others our

1.3 SCHEDULING ON A SINGLE MACHINE: A REFINED PTAS 23

transformations are actual simplifying modifications of the instance that run in
polynomial time and do not increase the objective value too much. For exam-
ple, inO

�
n� time we can round all processing timesp j to integer powers of 1� ε.

Then, we say thatwith 1� ε lossand inO
�
n� time, we canenforceall p j be integer

powers of 1� ε.

As we discussed, there are three main parts of our approximation method: (1)
Structuring, (2) Compacting, and (3) Dynamic Programming.In part (1), Sec-
tions 1.3.1,1.3.2, 1.3.3,1.3.4,1.3.5,1.3.6, we derive several transformations that
add more structure to the problem. In part (2), Sections 1.3.7,1.3.8, we provide
two main transformations for compacting the problem instance. In part (3), Sec-
tion 1.3.9,1.3.10, we give a dynamic programming algorithmfor finding a near-
optimal schedule.

As a preliminary step of part (1), in Section 1.3.1 we performbasic structuring
of instances and schedules. The first transformation isgeometric-rounding: we
round all release datesr j and processing timesp j to integer powers of 1� ε, and
perturb weightsw j such that allw j �p j are distinct (Lemmas 1.3.2 and 1.3.3).
This guarantees that there are only a small number of distinct processing times
and release dates to worry about, and lets us break the time line intogeometri-
cally increasing intervals, where release dates only happen at the beginning of
intervals, that is useful for dynamic programming. Our second transformation is
schedule-stretching: we multiply all job completion times by 1� ε and increase
the starting times to match. From one side, this increases the objective function
by a factor of 1� ε. From another side, assuming that every job does not start
too early (Lemma 1.3.6), we can define a relationship betweenrelease dates and
processing times. Furthermore, assuming that no job can cross too many intervals
(Lemma 1.3.4), we can definecrossing jobs.

As an intermediate step of part (1), in Section 1.3.2 we classify jobs into tiny and
hugeones. In particular, a job ishuge in an interval if its length is at leastε2

times the size of the interval, andtiny otherwise. Accordingly, there is at most a
constant number of huge job sizes, that are powers of 1� ε (Lemma 1.3.7). Our
next transformation istime-stretching: we add small amounts of idle time into
intervals. This can be used to “clean up” the schedule. With 1� ε loss, we can
assume that no tiny job crosses an interval in a schedule (Lemma 1.3.8).

As the final step of part (1), we perform several transformations that structure
scheduling of tiny jobs. In total, Section 1.3.3, we can assume that all tiny jobs
“obey” Smith’s rule: if two tiny jobsk and j such thatw j �p j * wk�pk are available
in an interval, then jobk of greater valuewk�+k completes not later than jobj with
respect to intervals (Lemma 1.3.9). Informally, in order toprove this, we first use
a subroutine for “assigning” tiny jobs to intervals, and then as a subroutine for

24 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

“packing” jobs in single intervals. In Section 1.3.4, we take an optimal schedule
and formulate an linear programming (LP) which gives a fractional assignment
of tiny jobs to intervals. In Section 1.3.5, we round an optimal LP solution to
an integral assignment in which tiny jobs obey Smith’s rule.Rounding does not
increase the objective value and can only lead to small increase in each “interval
load” (Lemma 1.3.11). In Section 1.3.6, we apply the time-stretching technique
and reschedule tiny jobs in the optimal schedule with respect to the found integral
assignment. These transformations increase the objectivevalue by at most a factor
of 1� 7ε.

After these three steps of part (1), we can simply proceed throughout part (2) of
our method described in Sections 1.3.7 and 1.3.8. The first transformation here is
weight-shifting(Lemma 1.3.13). If many jobs are released at one date, we know
that some of them will have to wait to be processed. Shifting refers to the process
of moving the excess jobs in the current interval to the next interval. For tiny jobs,
we prioritize them in order of decreasing ratiow j �p j , and retaining only those
that can be executed. For large jobs of each particular size (power of 1� ε), we
prioritize them in order of decreasing weightsw j and simply retain the maximum
number that could be potentially scheduled. Our second transformation here is
merging(Lemma 1.3.14). We first take the set of tiny jobs released at the same
date. Then, we partition this ordered set into a constant number of roughly equal
subsets. Merging refers to the process of grouping the tiny jobs of each subset into
one single tiny job. Both sifting and merging can be done with1� O

�
ε� loss and

in O
�
nlogn� time. Hence, we can enforce that there is at most a constant number

of jobs released at each interval, and their total processing time is a small multiple
of the size of the interval.

At this point, in Sections 1.3.9 and 1.3.10, we complete the algorithm by proceed-
ing part (3) of our method. We first use time-stretching. We show that every job
can be completed within a constant number of intervals afterits release date in a
near-optimal schedule (Lemma 1.3.15). Our next idea here isto find such a near-
optimal schedule by using dynamic programming. Accordingly, we define spe-
cial blockstructure over intervals and derive recurrent equations (1.8) on page 38
which define the dynamic programming framework. The corresponding dynamic
programming algorithm for our problem runs inO

�
n� time (Lemma 1.3.16). In

total, we prove the following result:

Theorem 1.3.1.There is a PTAS for1�r j �∑w jCj that computes for any fixedε � 0
accuracy, a

�
1� ε�-approximate schedule in O

�
nlogn� time.

1.3 SCHEDULING ON A SINGLE MACHINE: A REFINED PTAS 25

1.3.1 Basic Structuring

To simplify notations we will use throughout this section that 1�ε is integer (and
in particularε * 1�4). We useCj andSj to denote the completion and start time
of job j, OPT to denote the objective value of the optimal schedule. For a job set
X, we usep

�
X� to denote the total processing time of the jobs ofX.

Geometric Rounding. First, we usegeometric roundingto create a well-structured
set of processing times and release dates.

Lemma 1.3.2. With 1� ε loss and in O
�
n� time, we can enforce all rj and pj be

integer powers of1� ε.

Proof. For an illustration see Figure 1.4. Take an optimal scheduleof objective
valueOPT, Figure 1.4 a). Then, multiply allr j and p j by 1� ε. The optimal
objective value is

�
1� ε�OPT, Figure 1.4 b). Useεr j andεp j to round(decrease)

p j
�
1� ε� andr j

�
1� ε� to the nextlower integer powers of 1� ε. This can only

decrease the objective value of the optimal schedule.

p j a) OPT

b) OPT,1- ε.p j $1) ε% εp jεr j

r j

r j $1) ε%
Figure 1.4: Geometric rounding

Intervals. For an arbitrary integerx, defineRx � �
1 � ε�x. Now, all release

dates are of the formRx � �
1 � ε�x for some integerx. For an illustration see

Figure 1.5 on the next page. We partition
�
0�∞� into disjoint intervals of the form

Ix :� �Rx �Rx�1�. We will use �I �x to refer to the size
�
Rx�1 � Rx� of intervalIx.

There are two very simple properties of intervals�I �x � εRx and �I �x�1 � �
1� ε� �I �x�

This means that the size of each interval isε times its start time, and the size of
two consecutive intervals differs by a factor of 1� ε.

26 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

0 Rx� 2Rx� 1Rx1 � εε �I �x �I �x� 1

Figure 1.5: Intervals

Weights. Similarly, we can perturb weights.

Lemma 1.3.3. With 1� ε loss and in at most O
�
nlogn� time, we can enforce all

w j �p j be distinct.

Proof. Multiply all w j by 1� ε, and thendecrease(round) some of them by small
values until allw j �p j are distinct.

Schedule-Stretching. Next, we show that jobs cannot neither start nor be re-
leased too early. This will help in the later analysis.

Lemma 1.3.4. With 1� ε loss, we can assume that all starting times Sj � εp j in
a schedule.

Proof. For an illustration see Figure 1.6 on the facing page. Take anoptimal
schedule of objective valueOPT, Figure 1.6 a). Multiply allCj by 1� ε and
increase Sj to matchwithout changing job processing times, Figure 1.6 b). The
objective value of the final schedule is at most

�
1� ε�OPT, and all starting times�

1 � ε�Cj � p j � �
1 � ε�p j � p j

are at leastεp j .

As a consequence, we can move all release dates as follows:

Lemma 1.3.5. With 1� ε loss and in O
�
n� time, we can enforce rj � εp j for all

jobs j.

Proof. By Lemma 1.3.4 allSj � εp j in an optimal schedule. Then, w.l.o.g. we
can simply move each release dater j by εp j .

1.3 SCHEDULING ON A SINGLE MACHINE: A REFINED PTAS 27

a) OPT

b) OPT,1- ε.εp j

CjSj

Cj $1) ε%Sj $1) ε%
p j

p j

Figure 1.6: Stretching of a schedule

Crossing Jobs. Now we can prove that no job can cross too many intervals:

Lemma 1.3.6. With1� ε loss, we can assume that each job crosses at most

s/ � 0
log1�ε

�
1� 1

ε �1
intervals in a schedule.

Proof. Take a schedule. By Lemma 1.3.4 allSj � εp j . Consider a crossing jobj.
For an illustration see Figure 1.7. LetSj � Ix � �Rx�Rx�1�. Then, completion time

Rx Rx21

p j

Cj 3 Sj 41) 1
ε 5Sj

Rx22

6
I
6
x

6
I
6
x21

6
I
6
x2s7

Rx2s721Rx2s7
Figure 1.7: A crossing jobj

Cj � Sj � p j � Sj 81� 1
ε 9 �

and processing time

p j � Sj �ε � Rx�1�ε �
Let s/ � :log1�ε

�
1� 1

ε �;. Considers/ intervals which followIx. Their total length
can be bounded as

x�s<
∑

i=x�1
�I �i � Rx�s<�1 � Rx�1 � Rx�1

��
1� ε�s< � 1� � Rx�1�ε �

28 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Hence, theses/ intervals cover�Sj �Cj �.
Notice that we do not use the above fact in this section. However, this will be used
later in a generalized form.

1.3.2 Huge and Tiny Jobs

Now we introduce two different types of jobs. We say that jobj is hugein an
interval Ix if its processing timep j � ε2 �I �x, andtiny otherwise. We will writeHx

andTx to denote sets of huge and tiny jobs released atRx (H for huge andT for
tiny).

Lemma 1.3.7. There are at most2�ε4 distinct sizes (pj powers of1� ε) in Hx.

Proof. We havep j � r j �ε � Rx�ε for any job j (Lemma 1.3.5). Then, for a huge
job j we have

ε2 �I �x� j � � ε3Rx� j � � p j � Rx� j � �ε �
Let p j � Rx� j � �1� ε�s, for some integers (Lemma 1.3.2). Then, we have

ε3Rx� j � � Rx� j � �1� ε�s � Rx� j � �ε �
Hence,

s � ��3log1�ε � log1�ε� �
andk is integer. From

4:log1�ε; � 1 � 2log1�ε4 � 2�ε4

we can state that there are at most 2�ε4 distinct huge job sizess (powers of 1�
ε).

Time-Stretching. Now we introduce thetime-stretchingtechnique. For an il-
lustration see Figure 1.8 on the facing page. The formal description is given in the
proof of Lemma 1.3.8. Less formally, we can describe the technique as follows.
Take an optimal schedule, w.l.o.g. in intervalsI1�I2� I3� � � �, see Figure 1.8 a). In-
crease the size of each ofIx, x � 1�2� � � � by 1� ε. This createsε �I �x idle time in
each intervalIx, and increases the objective function value at most 1� ε factor, see
Figure 1.8 b).

By using this simple idea we can prove the following:

1.3 SCHEDULING ON A SINGLE MACHINE: A REFINED PTAS 29

I1 I2 I3 I4 I5 I6

a)OPT

b) $1) ε%OPT

ε >I >2 ε >I >3 ε >I >4ε >I >1
Figure 1.8: Time-stretching

Lemma 1.3.8. With1� ε loss, we can assume that no tiny job crosses an interval
in a schedule.

Proof. For an illustration see Figure 1.9. Take an optimal scheduleof valueOPT.
Start from its first interval and go further up to the end. Assume that we meet a
tiny job jb in an intervalIb such thatRb � �

Sjb �Cjb�. In other words, jobjb crosses
Ib, see Figure 1.9 a), and its processing timep jb * ε �I �b. Then, start this jobjb
exactly atRb by moving all later jobs, see Figure 1.9 b).

Rb

jb

jb

ε �I �b

a)OPT

b) ,1- ε.OPT

Figure 1.9: A jobjb with Rb � �
Sjb �Cjb�

Clearly, no tiny job crosses an interval in the final schedule. Observe also that
this procedure increasesOPT by at most a factor of 1� ε. For an illustration see
Figure 1.10 on the next page. Consider any jobj in the optimal schedule. Let
Cj � Ix � �Rx�Rx�1�, see Figure 1.10 a). Then, we have moved this jobs by at
most

∑
b?x

p jb � ∑
b?x

ε �I �b � ε �I �x ∑
t@1

1�
1� ε�t � ε �I �x1

ε � �I �x � εRx�

30 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

p j

Ix

Cj

p j

Ib

Rx Rx21ε
6
I
6
b

a)OPT

b) A1B εCOPT

Figure 1.10: A jobj with Cj � Ix

SinceεRx � εCj , the completion time of jobj increases by at most a factor of
1� ε, see Figure 1.10 b).

1.3.3 Scheduling Tiny Jobs: Smith’s Rule

We first need to introduce some notations. By Lemma 1.3.8 no tiny job crosses
an interval in a schedule. Then, for a tiny jobj we define two indicesx

�
j � � y

�
j �

such thatRx� j � � r j andSj �Cj � Iy� j �. Less formally, jobj is released atRx� j � and
completely scheduled in intervalIy� j �.
Smith’s Rule. Let j andk be two tiny jobs such thatx

�
k� � x

�
j � (hererk � r j)

and wk
pk

� w j
p j

(see Lemma 1.3.3). We say that tiny jobs obeySmith’s rulein a

schedule ify
�
k� � y

�
j � (Sk � Sj) for all such pairs of jobsj andk. In other words,

if jobs k� j are available in an interval, then jobk with greater valuewk�pk starts
not later than jobj with respect to intervalsIy�k� andIy� j �.
Now we can prove the following:

Lemma 1.3.9. With 1 � 7ε loss, we can assume that all tiny jobs obey Smith’s
rule in a schedule.

Proof. The proof is given in Sections 1.3.4,1.3.5,1.3.6. Informally, we first use
a subroutine for “assigning” tiny jobs to intervals, and then as a subroutine for
“packing” jobs in single intervals. Here, assigning is based on an LP formula-
tion and a rounding procedure, whereas packing procedure isbased on the time-
stretching technique. We can briefly sketch the proof as follows.

We take an optimal schedule. For each tiny jobj we find indexy
�
j �. By using

y
�
j �, for each intervalIy we find a setYy of tiny jobs processed insideIy.

1.3 SCHEDULING ON A SINGLE MACHINE: A REFINED PTAS 31

Next, by using the values ofDy � p
�
Yy� we formulate a linear program (LP) which

defines a fractional assignment of tiny jobsj to intervalsIy. Then, we round an
optimal LP solution to an integral assignment.

By using this integral assignment, for each tiny jobj we can define new index
y
�
j �, and for each intervalIy we can define a new setDYy of tiny jobs assigned to

Iy. From one side, tiny jobsj obey Smith’s rule with respect to thesey
�
j �. From

another side, the rounding procedure does not increase the objective value, but
increases the value of eachDy by at mostε2 �I �y.
We notice that

p
�DYy� � Dy � ε2 �I �y � p

�
Yy� � ε2 �I �y�

We simply take the optimal schedule and use time-stretching. We addε �I �y idle
time in each intervalIy. Then, we replace the tiny jobs ofYy by the tiny jobs ofDYy inside each intervalIy�1. This gives us a schedule with the objective function
value at most

�
1� 7ε�OPT in which all tiny jobs obey Smith’s rule.

1.3.4 Assigning to Intervals: LP formulation

Consider an optimal schedule of objective valueOPT. Then, for each tiny job
j we define two indicesx

�
j � � y

�
j � such thatRx� j � � r j and Sj �Cj � Iy� j �. In

addition, for each intervalIy, we define setYy of tiny jobs scheduled insideIy, i.e.
Yy � � j �y�

j � � y�.

Now we can formulate the fractional assignment problem for all tiny jobs as the
following LP:

Minimize F
�
ξ� � ∑ j w j ∑y@x� j � ξ jy �Ry

s.t. (1) ∆y � ∑ j ξ jy � p j � Dy � p
�
Yy� for all y�

(2) ∑y@x� j � ξ jy � 1 for all j �
(3) ξ jy � 0 for all y � x

�
j � and j �

(1.1)

where

ξ jy: theyth fraction of tiny job j assigned to intervalIy � �Ry �Ry�1�,
Dy: the load in intervalIy � �Ry�Ry�1�,
∆y: the fractional load in intervalIy � �Ry�Ry�1�, and

32 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

F
�
ξ�: the fractional average weighted completion time of tiny jobs.

Accordingly, the LP constraints have the following meaning: (1) the value of
fractional load∆y in each intervalIy is at mostDy, and(2)-(3) each tiny jobj is
assigned completely to intervalsIy, y � x

�
j �.

Informally, in the optimal schedule we allow tiny jobs be fractionally processed in
several intervals. From one side, we assign eachyth fraction of job j be completed
in interval Iy � �Ry �Ry�1�, and takeRy as its “completion time”. From another
side, preserving “loads”Dy � p

�
Yy� in all intervalsIy, we keep the schedule of

huge jobs without changes.

We can bound the fractional average weighted completion time as follows:

Lemma 1.3.10.For any optimal solutionξ of the LP it holds that F
�
ξ� � OPTE,

where OPTE is the total weighted completion time of all tiny jobs in the optimal
schedule.

Proof. Consider all tiny jobsj in an optimal schedule. We define indicesx
�
j � �

y
�
j � such thatRx� j � � r j andSj �Cj � Iy� j �. Sincey

�
j � � x

�
j �, for an assignment

ξ � �
ξ jy� we can defineξ jy � 1 if y � y

�
j � andξ jy � 0 otherwise. Then,ξ is

feasible. Furthermore, sinceCj � Iy� j � � �Ry� j � �Ry� j ��1� we have

F
�
ξ� � ∑

j
w j �Ry� j � � ∑

j
w j �Cj � OPTE �

1.3.5 Assigning to Intervals: LP Rounding

Let ξ � �
ξ jy� be an optimal LP solution. Ifξ is integral, then for each tiny job

j there is exactly oney
�
j � such thaty

�
j � � x

�
j � andξy� j � j � 1. In other words,

an integral LP solution can be treated as an integral assignment of tiny jobs to
intervals. Here we prove the following result:

Lemma 1.3.11.An optimal solutionξ of the LP can be rounded into an integral
assignment of tiny jobs to intervals such that

(1) F
�
ξ� does not increase;

(2) the value of each∆y increases by at mostε2 �I �y;
(3) tiny jobs j obey the modified Smith’s rule with respect to intervals Iy� j � given

by roundedξ.

1.3 SCHEDULING ON A SINGLE MACHINE: A REFINED PTAS 33

Proof. Let ξ � �
ξ jy� be an optimal LP solution. Letj andk be two tiny jobs

with x
�
k� � x

�
j � and w j

p j
* wk

pk
(that isw j pk * wkp j). Assume that there exist two

fractionsξ jy� j � � 0, ξky�k� � 0 with y
�
j � * y

�
k�. Informally, this means that there

are two fractions which break Smith’s rule.

Then, there exist valuest j andtk such that

0 * t j � ξ jy� j � and 0 * tk � ξky�k� � (1.2)

and

t j p j � tkpk � (1.3)

We define a new solutionξE � �
ξEjy� as follows. First, we exchange they

�
j �th and

y
�
k�th fractions of jobsj andk

ξEjy� j � � ξ jy� j � � t j ξEjy�k� � ξ jy�k� � t j

ξEky�k� � ξky�k� � tk ξEky� j � � ξky� j � � tk � (1.4)

After this, we define the rest ofξE as inξ. For an illustration see Figure 1.11.

p j

pk

tkpk

t j p j

tkt j

ξkyF j G ξkyF j G
tk t j

IyF j G IyFkG

ξ jyF j G ξkyFkG
ξ jyF j G ξkyFkG
ξkyF j G ξkyF j G
Figure 1.11: They

�
j �,y�

k�th fractions of jobsk and j

Due to (1.2), (1.3) and (1.4) we have that solutionξE is feasible. Furthermore,

F
�
ξE � � F

�
ξ� � Ry� j � �wktk � w j t j � � Ry�k� �w j t j � wktk�

� �
Ry� j � � Ry�k� � �wktk � t jw j � � (1.5)

34 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Fromy
�
j � * y

�
k� we haveRy� j � � Ry�k� * 0. Fromw j pk * wkp j and (1.3) we

have
�
wktk � w j t j � � 0. Thus, from (1.5) we conclude that

F
�
ξE � * F

�
ξ� �

This is a contradiction to the optimality ofξ.

In the following we roundξ into an integral solution. We will use the above
property ofξ. First, for each tiny jobj we find the earliest indexy

�
j � with ξ jy� j � �

0. Then, we simply putξ jy� j � � 1 for each suchy
�
j �, andξ jy � 0 for othersy.

Clearly,ξ is integral.

Let j andk be two tiny jobs withw j
p j * wk

pk
andx

�
k� � x

�
j �. Then, due to the above

property ofξ, it holdsy
�
k� � y

�
j � for any such pairs of jobsj andk. Thus, all tiny

jobs j obey Smith’s rule with respect toy
�
j � given byξ.

One can see that we cannot increase the value ofF
�
ξ�. From another side, we

can violate some constrains (2) of the LP. However, we can again use the above
property ofξ. For an intervalIy, there is at most one tiny job, sayjy, which does
not “fit” into Dy. One can also think thatjy “crosses”Iy. Sincep jy � ε2 �I �y, each
load∆y increases by at mostε2 �I �y.
Now we use an integral assignmentsξ. For each tiny jobj we define new index
y
�
j � � x

�
j �, respectively. Then, by usingy

�
j �, for each intervalIy, we define the

setDYy of tiny jobs that are assigned toIy. Then, we can prove the following:

Lemma 1.3.12.For all tiny jobs j it holds that y
�
j � � x

�
j � and

∑w jRy� j � � OPTE � (1.6)

Furthermore, for each interval Iy it holds

p
�DYy� � p

�
Yy� � ε2 �I �y� (1.7)

Proof. By Lemmas 1.3.10 and 1.3.11, for all tiny jobs it holds that

∑w jRy� j � � F
�
ξ� � OPTE �

To define setsDYy, we have used a rounded solutionξ for the LP. Hence, it holds
that

∆y � p
�DYy� �

Then, by the LP formulation and Lemma 1.3.11 it holds that

y
�
j � � x

�
j �

1.3 SCHEDULING ON A SINGLE MACHINE: A REFINED PTAS 35

and

∆y � Dy � ε2 �I �y� p
�
Yy� � ε2 �I �y�

1.3.6 Packing in Single Intervals

Here, by using the results of Lemmas 1.3.11 and 1.3.12, we complete the proof of
Lemma 1.3.9.

We first take an optimal schedule of valueOPT. Then, for each tiny jobj we
define two indicesx

�
j � � y

�
j � such thatRx� j � � r j andSj �Cj � Iy� j �. In addition,

for each intervalIy, we define setYy of tiny jobs scheduled insideIy, i.e. Yy �� j �y�
j � � y�, and defineDy � p

�
Yy�.

Next, we formulate the LP and round an optimal solution. Letξ be an integral
assignment as defined in Lemma 1.3.11. Then, for each tiny jobj we define new
indexy

�
j � such thaty

�
j � � x

�
j � andξ jy� j � � 1. For each intervalIy, we also defineDYy � � j �y�

j � � y�.

From one side, all tiny jobsj obey Smith’s rule with respect to these newIy� j �.
From another side, by Lemma 1.3.12 it holds (1.6) and (1.7).

a) OPT

Iy

b)
�
1� ε�OPT

c)
�
1� ε�2OPTDDy

Dy

Figure 1.12: Scheduling inside intervalIy

Now we proceed as follows. For an illustration see Figure 1.12. We take the
optimal schedule, see Figure 1.12 a), and move jobs processed inside each interval
Iy such that the tiny jobs ofYy are placed together in a gap of valueDy � p

�
Yy�,

36 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Figure 1.12 b). This increases the objective function valueby at most a factor of
1� ε.

Next, we apply time-stretching to the schedule, Figure 1.12c). In each interval
Iy, we addε �I �y idle time to the gap of valueDy. The objective function value
increases by at most a factor of 1� ε, but there is a gap of lengthDy � ε �I �y in each
intervalIy�1 of the schedule.

Finally, we reschedule all tiny jobs. For each intervalIy�1, we simply complete
the jobs ofDYy inside a gap of lengthDDy � p

�DYy� � Dy � ε2 �I �y�
Once can see that each tiny jobj completes atCj � Iy� j ��1. By Lemma 1.3.12 the
average weighted completion time of all tiny jobs can be bounded as follows

∑
j

Cj � ∑
j

�
1 � ε�Ry� j ��1 � �

1 � ε�2OPTE �
whereOPTE is the total weighted completion time of all tiny jobs in the optimal
schedule. Hence, the objective function value of the final schedule is at most�

1� ε�3OPT � �
1� 7ε�OPT�

This completes the proof of Lemma 1.3.9.

1.3.7 Weight-Shifting

Consider some release dateRx. Assume that there are “too many” huge jobs inHx

and tiny jobs inTx. Which jobs have more higher priority and should be scheduled
first?

By Lemma 1.3.3 all valuesw j �p j are distinct. From one side, by Lemma 1.3.7
the huge jobs ofHx have at most 2�ε4 distinct sizes (processing times). Hence,
we can prioritize the huge jobs ofHx having the same size by ordering them in
decreasing order of weightsw j . From another side, by Lemma 1.3.9 the tiny jobs
of Tx obey Smith’s rule. Hence, we can prioritize tiny jobs ofTx by ordering them
in decreasing order of ratiow j �p j .

Indeed, there are at most�I �x available time in intervalIx. The processing time
of any huge job inHx is at leastε2 �I �x. Hence, for each size we can select the
first 2�ε2 high priority huge jobs and move the others huge job inHx to the next
release dateRx�1. Similarly, we can select tiny jobs with higher priority up to at
most 2�I �x total processing time, and move the others tiny jobs inTx to Rx�1. As a
result of the procedure we can prove the following:

1.3 SCHEDULING ON A SINGLE MACHINE: A REFINED PTAS 37

Lemma 1.3.13.With1� O
�
ε� loss and in O

�
nlogn� time, we can enforce p

�
Tx� �

2�I �x and �Hx � � 4�ε6 for all x.

1.3.8 Merging

By Lemma 1.3.13, for each release dateRx there is at most a constant number of
jobs inHx, but in Tx. However, jobs inTx are tiny and their total processing time
is bounded by 2�I �x. Our next transformation is merging tiny jobs together.

For each release dateRx, we partition the ordered set of tiny jobsTx into at most
4�ε2 subsets of roughly equal sizeH ε2 �I �x�2, but less thanε2 �I �x. Then, we merge
the jobs of each such subset into a new tiny job. Then, by usingarguments similar
to the ones in Lemma 1.3.8 we can prove the following:

Lemma 1.3.14.With 1� O
�
ε� loss and in O

�
nlogn� time, we can enforce�Tx #

Hx � � 8�ε6 for all x.

Proof. Take an instance as in Lemma 1.3.13. Take an optimal scheduleof value
OPT. Let Db be the time used to execute tiny jobs in intervalIb. Take a release
dateRx. The tiny jobs ofTx are scheduled by Smith’s rule. We replace the tasks of
Tx by the new created jobs. For an intervalIb with b � x, it may happen that some
new tiny job, sayjx � Tx, does not fit intoDb. However, the processing time of
each such jobjx, x * b, is at mostε2 �I �x. Hence, the total overload inDb caused
by all jobs jx, x * b is at most

∑
x?b

p jx � ∑
x?b

ε2 �I �x � ε2 �I �b ∑
k@1

1�
1� ε�k � ε2 �I �b � ε � ε �I �b�

Then, we increase the value ofDb by addingε �I �b idle time, and complete all
new tiny jobs. The time-stretching technique implies that the value of the final
schedule is at most

�
1� ε�OPT.

1.3.9 Blocks

Lemmas 1.3.5 and 1.3.14 imply that the total number (if thereis any) of jobs re-
leased at eachRx is bounded by 8�ε8. Thus, by Lemma 1.3.5 the total processing
time of these jobs is bounded by 8�I �x�ε10. Recall that we are dealing with in-
tervals of increasing sizes. Thus, we can find a constantd/ such that 8�I �x�ε10 is
bounded byε2 �I �x�d< . Hence, in intervalIx�d< one can treat all jobs released atRx

as one tiny job. Again, the ideas of Lemma 1.3.8 and Lemma 1.3.14 lead to the
following:

38 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Lemma 1.3.15.With1� ε loss, we can assume that in a schedule each job com-
pletes within d/ intervals after its release date.

We partition the time line into a sequence ofblocks, where each block consists of
d/ consecutive intervals.

1.3.10 The Dynamic Programming Framework

The basic idea here is to use dynamic programming with blocksas units. By
lemma 1.3.15, the jobs of blocki run either in blocki or i � 1. A pseudo-schedule
S�i � describes a possible placement of the jobs of blocki. For each job it is enough
to define two intervals in which the job starts and completes.

ii I 1 i) 1

SFiG
SFiJ1G

Figure 1.13: Pseudo-schedulesS�i � andS�i�1� for block i

The dynamic programming entryE
�
i �S�i �� stores the minimum weighted comple-

tion time achievable by completing all the jobs released before or in blocki while
leaving pseudo-scheduleS�i � for block i � 1. Given all table entries fori � 1, the
values fori can be computed as follows.

E
�
i �S�i � � � min

SKiL1M �E
�
i � 1�S�i�1�� � W

�
i �S�i�1� �S�i ��� � (1.8)

whereW
�
i �S�i�1� �S�i �� is the minimum weighted completion time achievable by

scheduling the jobs in intervals of blocki with respect to theincomingpseudo-
scheduleS�i�1� and theoutgoingpseudo-scheduleS�i �, respectively. For an illus-
tration see Figure 1.13.

By Lemmas 1.3.14,1.3.15 there is at most a constant number ofjobs released in a
block. Hence, both the feasibility test and computation ofW

�
i �S�i�1� �S�i � � can be

done inO
�
1� time. There aren jobs, each of which can cross at mosts/ intervals

(Lemma 1.3.6). Hence, there are at mostO
�
n� relevant blocks and we have the

following:

Lemma 1.3.16.The entire table E
��� can be computed in O

�
n� time.

Combining this result with Lemma 1.3.14 we complete the proof of Theorem 1.3.1.

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 39

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM

In this section we consider the following job-shop scheduling problem. We con-
sider the following job shop scheduling problem. We are given a set ofn jobs
J � �1� � � � �n� and a set ofmmachinesM � �1� � � � �m�. Each jobj (j � 1� � � � �n)
has a positive weightw j , a release dater j , and consists of a sequence ofµ � 2
operationso1 j �o2 j � � � � �oµ j that must run in the given order. Each operationoi j

(µ � 1� � � � �µ) must run without interruption on a required machineτi j � M, dur-
ing pi j time units. Each job can be processed only by one machine at a time and
each machine can only process one job at a time. Here we assumethat m and
µ are fixed, and the goal is to find a feasible schedule which minimizes average
weighted completion time∑w jCj , whereCj denotes the completion time of job
j. For an illustration see Figure 1.14.

O13 O23 O33 O 43

O O21 O31 O41

22

11

11

O21

O31

O41

O 12

22O

O 32

O 42

O13

O23

O33

O 43O

42O32OO12O

Job 1

Job 2

Job 3

Operations

Schedule

53 4 6 7 8

Machine 3

Machine 1

Machine 2

0 1 2

p42 N 0O75
τ42 N 2

τ23 N 2 τ33 N 1 τ43 N 3

p32 N 1O25

p33 N 1O25 p43 N 1O25
τ13 N 1

τ32 N 3
p22 N 1O5

p23 N 1O5p13 N 1O5

p21 N 1O25
τ21 N 2

p11 N 1O25
τ31 N 1
p31 N 1O5 τ41 N 3

τ22 N 1

p41 N 1

p12 N 1
τ12 N 2

τ11 N 3r1 N 1

w1 N 2

r2 N 0
w2 N 4

r3 N 2
w3 N 1

∑w jCj N 2 P6O5B 4 P6O25B 1 P8N 46

Figure 1.14: A schedule for 3 jobs

The above problem is a generalization of 1�r j �∑w jCj . Here we also follow the
main parts of our method: (1) Structuring, (2) Compacting, and, (3) Dynamic Pro-
gramming. Indeed, we use ideas and techniques described in the single machine

40 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

case. We will make almost no changes in parts (2) and (3), Sections 1.4.9 and
1.4.10, but in part (1), Sections 1.4.1 – 1.4.8, we generalize the previous ideas for
structuring in a non-trivial way.

In Section 1.4.1 we use already known rounding and stretching (Lemmas 1.4.2
– 1.4.5). We round release dates, weights and introduce intervals. However, we
only deal with operations, that provides the basic structuring step of part (1). To
complete the main structuring step, we use some new ideas throughout next three
sections.

In Section 1.4.2, we partition operations of any job into twoclasses, themainand
thenegligibleoperations: the sum of processing times of negligible operations are
less thanε4µ times the processing time of any main operation. We show thatfor
a job j the processing time of a main operation can be bounded from below by
ε5µ2 � + j , where+ j � ∑µ

i=1 pi j is the length of jobj (Lemma 1.4.6).

In Section 1.4.3 by using different combinations of known techniques, we show
that processing time of any negligible operation can be rounded to zero, and pro-
cessing time of any main operation can be rounded to aε2 multiple of a small
constant fraction of the total job length (Lemma 1.4.7). In addition, we round re-
lease dates (Lemma 1.4.8). By using this, we can conclude that no job crosses too
many intervals (Lemma 1.4.9). Informally, this means that any job is processed
“locally” in a schedule.

In Section 1.4.4, we give some notations and definitions thathelp in structuring
instances and schedules. We first specify jobprofiles. Each profileϕ is a 2µ-tuple
which consists of twoµ-tuplesτ � �

τi � andπ � �
πi �. If a job j has profileϕ, then

each operationoi j (i � 1� � � � �µ) requiresπi � + j processing time on machineτi . We
prove that there is a constant number of possible profiles (Lemma 1.4.10). Next, as
in the single machine case, we classify jobs intotiny andhugeones. In particular,
a job is huge in an interval if its length is at leastε2�q/ times the size of interval,
and huge otherwise. Here, parameterq/ � q/1 �q/2, where the values ofq/1, q/2 are
defined later in Sections 1.4.7,1.4.8, respectively. For tiny jobs, we prove that
no tiny operation crosses an interval (Lemma 1.4.11). For huge jobs, we prove
that there is at most a constant number of huge job “sizes” at each release date
(Lemma 1.4.12). Finally, for tiny jobs we introducelocal profilesandpatterns.
Informally, each profile represents a set of allµ operations, whereas each local
profiles represents a subset of the operations. Then, each pattern is a collection
local profiles, that represents a way in which a tiny job can beprocessed inside
several intervals of a schedule. We prove that there is at most a constant number
of distinct local profiles and patterns (Lemma 1.4.13).

As the final step of part (1), similarly to the single machine case, we perform sev-
eral transformations that structure scheduling of tiny jobs. In total, Section 1.4.5,

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 41

we can assume that tiny jobs of one profileϕ “obey” Smith’s rule: if two jobsk
and j of profile ϕ with w j �+ j * wk�+k are available in an interval, then jobk of
greater valuewk�+k completes not later than jobj with respect to intervals and
patterns (Lemma 1.4.14). However, our non-trivial proof ofthis result spans over
Sections 1.4.6,1.4.7,1.4.8.

Indeed, we proceed as in the single machine case. Informally, we first use a sub-
routine for “assigning” tiny jobs to intervals and patterns, and then as a subroutine
for “packing” jobs in single intervals. In Section 1.4.6, wetake an optimal sched-
ule and formulate an LP(ϕ) which defines a fractional assignment of tiny jobs
of profile ϕ to patterns and intervals. In Section 1.4.7, we round an optimal LP
solution to an integral assignment in which tiny jobs of profile ϕ obey Smith’s
rule. We define the value of parameterq/1 such that rounding does not increase
the objective value and can only lead to small increase in “loads” on local profiles
(Lemma 1.4.16). In Section 1.4.8, we obtain a near-optimal schedule in which tiny
jobs of each profileϕ obey Smith’s rule. First, by combining integral assignments
over all profilesϕ we find new sets of tiny operations for every single interval of
the optimal schedule. Then, we apply the time-stretching technique to the optimal
schedule and create some idle time inside intervals. Finally, we pack new sets of
tiny operations by rescheduling operations inside single intervals. This procedure
increase the objective value by at most a factor of 1� 7ε.

In contrast to the single machine case, here “packing” jobs in each single interval
corresponds to the makespan version of the job shop scheduling problem which
is known to be NP-hard [GJ79]. To copy with that, we follow ideas of the PTAS
which was first presented in [JSOS99] and later modified in [FJM01]. We define
the value of parameterq/2 such that the PTAS can output a feasible schedule inside
any single interval (Lemma 1.4.18).

After we have proved Smith’s rule for tiny jobs, the rest of our method follows
straightforward. Part (2) Compacting, Section 1.4.9, and part (3) Dynamic Pro-
gramming, Section 1.4.10, are similar to the single machinecase. In total, we
prove the following main result:

Theorem 1.4.1.There is a PTAS for Jm�op � µ�r j �∑w jCj that computes for any
fixed m, µ andε � 0 accuracy, a

�
1� ε�-approximate schedule in O

�
nlogn� time.

1.4.1 Basic Structuring

To simplify notations we will use that 1�ε is integer (in particularε * 1�2mµ). For
an operationoi j , we useSi j andCi j to denote the start and completion time of
oi j . For a job j, we useCj andSj to denote the completion and start time, and use

42 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

+ j � ∑µ
i=1 pi j to denote thelengthof job j. For a job setX, we useD

�
X� :� ∑ jX + j

to denote the total length ofX. Following previous notations,OPT denotes the
objective value of the optimal schedule,Ix denotes interval�Rx�Rx�1� and �I �x �
Rx�1 � Rx denotes its size, whereRx � �

1� ε�x for integerx � ! .

As in the single machine case, we first use geometric roundingand stretching.
Following the same line of ideas we can prove:

Lemma 1.4.2. With 1� ε loss and in O
�
n� time, we can enforce all+ j and rj be

integer powers of1� ε.

Hence, all release datesr j are of the formRx � �
1� ε�x for some integerx.

Lemma 1.4.3. With 1 � ε loss and in time O
�
n�, we can enforce all wj �+ j be

distinct.

Lemma 1.4.4. With1� ε loss, we can assume that all Si j � εpi j in a schedule.

Lemma 1.4.5. With1� ε loss, we can assume that each operation crosses at most
s/ � :log1�ε

�
1� 1

ε �; intervals in a schedule.

1.4.2 Main and Negligible Operations

Consider a jobj. Let + j � ∑µ
i=1 pi j be its length. Let operationsoi j (i � 1� � � � �µ)

be indexed byi1 � i2� � � � � iµ such thatpi1 j � pi2 j � � � � � piµ j . Then, if there exist
somek � �1� � � � �µ� such that

ε4µ � pik j � µ

∑
s= k� 1

pis j � (1.9)

then we select the smallest value ofk and define operationsoikQ1 j � � � � �oiµ j beneg-
ligible, and operationsoi1 j � � � � �oik j bemain. For an illustration see Figure 1.15.R RRpi1 j pi2 j pik j

ε4µpik j

∑µ
sSkT1 pis j

Figure 1.15: Main and negligible operations

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 43

Lemma 1.4.6. Each main operation oi j has processing time pi j � ε5µ2 � + j .

Proof. W.l.o.g. we rename the operations of jobj such that processing times
p1 j � p2 j � � � � � pµ j. Let + j � ∑µ

i=1 pi j be the length of jobj, and letρ � ε4µ.

Assume thatk � 1. Then, the first operation is main and the otherµ� 1 operations
are negligible. Let + j

�
1� � + j � p1 j

Then, from (1.9) we have

ρ � p1 j � + j
�
1� �

Thus,

p1 j � + j
�
1��ρ � �+ j � p1 j ��ρ �

Finally, we have that

p1 j 81� 1
ρ9 � + j and p1 j � 8 ρ

1� ρ9 + j �
Fromε � 1�2 andρ � ε4µ we conclude

8 ε4µ

1 � ε4µ9 � ε4µ

2
� ε5µ2 �

Assume thatk � 2. Then, the firstk � 2 operations are main and the otherµ � k
operations are negligible. Let+ j

�
t � :� + j � t

∑
i = 1

pi j � for t � 1� ����k� (1.10)

Accordingly, it holds that+ j
�
1� � + j � p1 j and + j

�
t � � + j

�
t � 1� � pt j � for t � 2� � � � �k� (1.11)

In (1.9) the value ofk is smallest. Hence, it follows that

pk j � + j
�
k� � ρ and pt j � + j

�
t � � ρ � for t � 1� � � � �k � 1� (1.12)

Since + j
�
1� � + j � p1 j and p1 j � + j

�
1��ρ

44 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

we have + j
�
1� � + j � + j

�
1��ρ �

Thus, + j
�
1� � 81 � 1

ρ9 � + j and + j
�
1� � 8 ρ

1 � ρ9 � + j � (1.13)

Similarly, from (1.11), (1.12) we have+ j
�
t � � + j

�
t � 1� � pt j and pt j � + j

�
t � � ρ �

Thus, + j
�
t � � 8 ρ

1 � ρ9 � + j
�
t � 1� � for t � k � 1� � � � �2� (1.14)

Summarizing, from

pk j � + j
�
k� � ρ � �+ j

�
k � 1� � pk j � � ρ

it follows that

pk j � 81 � 1
ρ9 � + j

�
k � 1� �

Then, using (1.14) and (1.13) we get

pk j � 8 ρ
1 � ρ 9 � + j

�
k � 1�� 8 ρ

1 � ρ 92 � + j
�
k � 2�

...� 8 ρ
1� ρ9k�1 + j

�
1�� 8 ρ

1� ρ9k � + j �
Finally, pt j � pk j, t � 1� � � � �k, andk � µ it implies that

pt j � 8 ρ
1� ρ9k � + j � 8 ρ

1 � ρ9µ � + j � for t � 1� � � � �k�
Fromε � 1�2 andρ � ε4µ we conclude8 ε4µ

1 � ε4µ9µ � 8ε4µ

2 9µ � ε4µ2

2µ � ε4µ2�µ � ε5µ2 �

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 45

1.4.3 Main Structuring

By combining several techniques we eliminate all negligible operations and round
all main operations.

Lemma 1.4.7. With1� 3ε loss and in O
�
n� time, for all jobs j we can enforce all

operation processing times

pi j � πi j � + j � (1.15)

where

πi j � Uz �ε5µ2�2 � z � 0�1 � � � � 1

ε5µ2�2 V � (1.16)

Proof. Assume thatpi j � 0 for all negligible operationsoi j . Consider an optimal
schedule of objective valueOPT. Each operation crosses at mosts/ intervals
(Lemma 1.4.5), and there areµ operations per job.

o4 j

o3 j

o2 j

o1 j
sW sW sW

Figure 1.16: Main operationo1 j and negligible operationso2 j �o3 j �o4 j

First, we “shrink” the schedule as follows. Take a jobj and consider its operations.
We let all the main operations ofj at their positions. For the negligible operations
of j, we reschedule them as closer to the main operations as possible. For example,
if there is a sequence of negligible operations which followa main operation,
then we simply reschedule these negligible operations in a first-fit manner. (See
Figure 1.16.) Since processing timespi j � 0 for all negligible operationsoi j , this
does not increase the objective value. Repeating this procedure for all jobsj, we
get a schedule in which each negligible operationoi j is scheduled at mosts/µ
intervals away from some main operation of jobj.

Next, take an intervalIx. Let Nx be the set of negligible operations fall intoIx. For
each operationoi j � Nx we take the closest main operation of jobj. Let Mx be
the set of such main operations. Considerµs/ consecutive intervals from the left
side and the right side ofIx. By using the above property, the main operations of

46 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

IxIxJs7µ Ix2s7µ
Rx$1) ε%s7µ

Nx
Mx Mx

Figure 1.17: IntervalIx with setsNx andMx

Mx run (and complete) within these 2µs/ intervals. (See Figure 1.17.) There is at
most

m
x�s<µ
∑

y=x�s<µ � 2mRx
�
1� ε�µs<

� 2mRx 81 � 1
ε 9µ �

heres/ � log1�ε
�
1� 1�ε��

� 2m 82
ε 9µ �I �x � ε � �I �x � ε2µ �

using 2µ�m � 1� ε�
(1.17)

time available onm machines. Hence, the total processing time ofMx is bounded
by �I �x�ε2µ. Recall (1.9), for a jobj the total processing time of the negligible
operations ofj is not larger thanε4µ times the size of a main operation ofj.
Thus, the total processing time of the negligible operations of Nx is at mostε4µ �� �I �x�ε2µ� � ε2 �I �x. By using time-stretching we addε �I �x time in each interval
Ix and restore all the negligible operations ofNx. The objective value of the final
schedule is at most

�
1� ε�OPT. Thus, with 1� ε loss and inO

�
n� time, we can

enforcepi j � 0 for all negligible operationsoi j .

Now we can round main operations as follows. We first take an optimal schedule
of objective valueOPT. Then, we multiply allCi j by 1� ε and increaseSi j to
match (without changing operation processing times). The objective value of the
final schedule is at most

�
1 � ε�OPT, and there is at leastεpi j idle time before

each operationoi j . (See Lemma 1.3.4.)

For all main operationsoi j we havepi j � ε5µ2 � + j (Lemma 1.4.6). Then, we can

useεpi j � ε2 � �ε5µ2� �+ j idle time to roundpi j to the nextε2 multiple value ofε5µ2 �+ j . Thus, we getpi j :� πi j �+ j , whereπi j � �z�ε5µ2�2 �z � 1� � � � �1�ε5µ2�2�.

We can also move release dates.

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 47

Lemma 1.4.8. With 1 � ε loss and in O
�
n� time, we can enforce rj be at least

ε10µ2 � + j for all jobs j.

Proof. We follow the same ideas as in the proof of Lemma 1.4.7. First,we take
an optimal schedule of objective valueOPT. Next, we multiply allCi j by 1� ε
and increaseSi j to match (without changing operation processing times). The
objective value of the final schedule is at most

�
1 � ε�OPT, and there is at least

εpi j idle time before each operationoi j . (See Lemma 1.3.4.)

Take a job j. If the first operationo1 j is main, we increaser j to enforcer j �
ε2�

ε5µ2+ j �. If o1 j is negligible, then it is at mostµs/ intervals away from some
main operation ofj. We increaser j to enforce

r j � ε2�
ε5µ2+ j �� �

1� ε�s<µ � ε5µ2�2+ j � �
1� 1�ε�µ � ε10µ2+ j �

Crossing Jobs. Now we can prove that no job can cross too many intervals.

Lemma 1.4.9. With 1 � ε loss, each job crosses at most a constant number of
intervals e/.
Proof. Take an optimal schedule of objective valueOPT. Consider all jobs those
main operations complete in an intervalIx. By Lemmas 1.4.5 and 1.4.7 we can
bound the total length of these jobs byh/ �I �x, whereh/ is some constant. (In some
sense, we follow the ideas in Section 1.3.10.) Thus, after a constant number of
intervals, saye/, this total length is only at mostε2 �I �x�e< .
For an intervalIb, consider all the non-completed jobs that starte/ intervals before.
Their total length

∑
x?b�e< ε2 �I �x � ε2 �I �b ∑

k@1

1�
1� ε�k � ε2 �I �b � ε � ε �I �b�

Then, we complete each of the jobs by scheduling its operations in afirst-fit man-
ner within µs/ intervals followingIb. (Since each operation crosses at mosts
intervals, for any jobj in J one can always find a sequence of “gaps” correspond-
ing to machine orderτ1 j �τ2 j � � � � �τµ j. See also Figure 1.16 on page 45 and the
proof of Lemma 1.4.7.) Again, by using time-stretching the objective value of the
final schedule is at most

�
1� ε�OPT.

48 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

1.4.4 Profiles, Huge and Tiny Jobs, Local Profiles and Patterns

Here we introduce some definitions that will be used throughout next three sec-
tions. We first define job profiles. Two jobs of the same profile have the same
set of required processors and their operations form the same set of multiples, but
they can differ in length. Next, we define huge and tiny jobs, which depends on
the value of parameterq/ � q/1 �q/2. The idea behind is to define the value ofq/i
(i � 1�2) later in Sections 1.4.7,1.4.8, respectively. Finally, we define local pro-
files and patterns for tiny jobs. This allows us to formulate Smith’s rule for tiny
jobs in Section 1.4.5.

Profiles. Consider a jobj. By Lemma 1.4.7, each operationoi j (i � 1� � � � �µ) has
processing timeπi j �+ j and requites machineτi j . Then,µ-tuplesπ j :� �

πi j �µ
i=1 and

τ j :� �
τi j �µ

i=1 are called theexecutionandmachineprofile of a job j, respectively.

We say that two jobs have the same profileϕ � �
π �τ�, if they have the same

execution profileπ and machine profileτ. Notice that two jobs of profileϕ can
only differ in their length and release dates. Furthermore,as a consequence of
Lemma 1.4.7 we can prove the following:

Lemma 1.4.10.The number of distinct profiles is bounded by a constantν/.
Huge and Tiny Jobs. We say that a jobj is hugein an intervalIx if its length+ j � ε2 �I �x� j ��q/, andtiny otherwise. The value of parameterq/ � q/1 �q/2 X 1 is
defined later in Lemmas 1.4.16 and 1.4.18, respectively. We will write Hx andTx

to denote sets of huge and tiny jobs released atRx (H for huge andT for tiny).

As in the single machine case, we can use time-stretching to “clean up” a schedule.
Similarly to Lemma 1.3.8, but regarding operations, we can prove the following:

Lemma 1.4.11.With1� ε loss, we can assume that no tiny operation crosses an
interval in a schedule.

Furthermore, similarly to Lemma 1.3.7, by using Lemmas 1.4.2 and 1.4.8 we can
prove the following:

Lemma 1.4.12.There is at most a constant number z/ � z/ �
q/1 �q/2� of distinct

sizes (+ j powers of1� ε) in Hx.

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 49

Local Profiles and Patterns. Take an optimal schedule. Consider a tiny jobj.
Let x

�
j � be the index for whichRx� j � � r j . Let y

�
j � andz

�
j � be whose indices for

which Sj � Iy� j � andCj � Iz� j �. Then, job j runs in intervalsIy� j � � � � � �Iz� j �.
By Lemma 1.4.11, the operations of tiny jobj do not cross intervals. Hence, the
set O j of all operationso1 j � � � � �oµ j “splits” into a constant number of subsets,

Oy� j �
j � � � � �Oz� j �

j , where each subsetOx
j � O j consists of operations which “fall”

into intervalIx, for x � y
�
j � � � � � �z�

j �.
IyF j G Ix IzF j G
ϕ̄0 ϕ̄x ϕ̄zF j GJyF j G

eY B 1

Figure 1.18: Local profiles of jobj

Assume that tiny jobj has some profileϕ � �
π �τ�, where twoµ-tuplesπ � �

πi �µ
i=1

andτ � �
τi �µ

i=1. Then, we have thatπi � πi j andτi � τi j , for all operationsoi j � O j .
Informally, we can say that the operations of setO j “form” profile ϕ � �

π �τ�.
If we restrict ourselves to the operations of setOx

j , we can define a 2�Ox
j �-tuple

ϕ̄x � �
π̄x � τ̄x� such thatπ̄x

i � πi j and τ̄x
i � τi j , for all operationsoi j � Ox

j . In this
case, we can also say that the operations of setOx

j “form” the local profile ϕ̄x in
intervalIx, x � y

�
j � � � � � �z�

j �.
In other words, tiny operations “locally” form “profiles” for jobs. Notice that
every local profile is just a prototype of the profile which corresponds to a subset
of the operations. However, the operations of two jobs with different profiles can
form the same local profile in an interval.

We say that a tiny jobj haspattern f
�
j � � * ϕ̄0 �ϕ̄1 � � � � �ϕ̄ >f � j � > � in a schedule

if tiny job j starts inIy� j � and completes inIy� j �� > f � j � >, and in each intervalIy� j ��k

the operations of tiny jobj form local profileϕ̄k, for k � 0� � � � � �f �
j � �. For an

illustration see Figure 1.18. Notice some local profilesϕ̄k can be empty, but the
combination of all local profiles gives the profile of tiny jobj.

By Lemmas 1.4.9 any tiny job crosses at most a constant numbere/ of intervals.
By Lemma 1.4.10 there is at most a constant numberν/ of profiles. Hence, we
can prove the following:

Lemma 1.4.13.There is at most a constant numberν̄/ of distinct local profiles,
and at most a constant number f/ of distinct patterns.

50 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

1.4.5 Scheduling Tiny Jobs: Smith’s Rule

We first need to introduce some notations. Consider an optimal schedule. Then,
for a tiny job j we can define two indicesx

�
j � � y

�
j � and patternf

�
j � such that

job j is released atRx� j �, starts atSj � Iy� j � having patternf
�
j � and completes at

Cj � Iy� j �� >f � j � >.
Smith’s rule. Let k and j be two tiny jobs withx

�
k� � x

�
j � (hererk � r j) and

w jZ
j

* wkZ
k

(see Lemma 1.4.3). We say that tiny jobsobeySmith’s rule if y
�
k� ��f �

k� � � y
�
j � � �f �

j � � for all such pairs of jobsj andk. In other words, if the two
jobs are available in an interval, then jobk of greater valuewk�+k completes not
later than jobj with respect to intervalsIy�k�, Iy� j � and patternsf

�
k�, f

�
j �. For an

illustration see Figure 1.19.

IyFkGIyF j G IyFkG2 [f FkG [IyF j G2 [f F j G [
f $k% f $ j % wk\

k] w j\
j

Figure 1.19: Smith’s rule for jobsk and j

We are interested in the following result:

Lemma 1.4.14.The value of parameter q/ � q/1 �q/2 can be defined such that with
1 � 7ε loss, for each profileϕ we can assume that tiny jobs of profileϕ obey
Smith’s rule in a schedule.

Proof. The proof is given in Sections 1.4.6,1.4.7,1.4.8. In fact, we follow the
same line of ideas as in the single machine case. As before, wefirst use a subrou-
tine for “assigning” tiny jobs to intervals, and then as a subroutine for “packing”
jobs in single intervals. From one side, assigning and packing here are also based
on an LP formulation, a rounding procedure, and the time-stretching technique.
From another side, we have to generalize both the LP formulation and rounding
procedure for dealing with operations defined by profiles, patterns and local pro-
files, and we have to combine the time-stretching technique with a PTAS for the
makespan version of the problem [JSOS99, FJM01]. We can briefly sketch the
proof as follows.

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 51

We first take an optimal schedule of objective valueOPT, and consider one profile
ϕ. For each tiny jobj of profile we find indexy

�
j � and patternf

�
j �. By using

y
�
j � and f

�
j �, for each intervalIx and local profileϕ̄ we define setsYϕ̄

x
�
ϕ� of tiny

jobs of profileϕ which operations form̄ϕ in Ix.

Next, by usingD
�
Yϕ̄

x
�
ϕ��, we formulate a linear program (named LP(ϕ)) which

defines a fractional assignment of tiny jobs ofϕ to intervals and patterns. Then, by
using Lemmas 1.4.13 and the rounding procedure from Appendix B on page 197,
we round an optimal LP solution to an integral assignment.

By using this integral assignment, for each tiny jobj we can define new index
y
�
j � and new patternf

�
j �. Then, for each intervalIx and local profileϕ̄ we can

define new setsDYϕ̄
x

�
ϕ� of tiny jobs of profileϕ which operations are assigned toϕ̄

in Ix.

From one side, the rounding procedure does not increase the objective value for
tiny jobs. From another side, tiny jobsj of profileϕ obey Smith’s rule with respect
to these newy

�
j � and f

�
j �. Our main idea here is to define the value of parameter

q/1 in the definition of tiny jobs such that

D
�DYϕ̄

x
�
ϕ�� � D

�
Yϕ̄

x
�
ϕ�� � ε2 �I �x� �

2ν̄νq/2� � (1.18)

Indeed, we can combine integral assignments over all profiles ϕ. Thus, we can
find new indicesy

�
j � and patternsf

�
j � for all tiny jobs j. Our next idea is to

modify the optimal schedule such that in a near-optimal schedule for each profile
ϕ tiny jobs ofϕ obey Smith’s rule with respect to thesey

�
j � and f

�
j �.

Consider intervalIx in the optimal schedule. LetYϕ̄
x be the union of setsYϕ̄

x
�
ϕ�

over all profilesϕ. Then, the operations of tiny jobs inYϕ̄
x form local profileϕ̄ in

Ix, and

D
�
Yϕ̄

x � � ∑
ϕ

D
�
Yϕ̄

x
�
ϕ�� � (1.19)

Now letDYϕ̄
x be the union of new setsDYϕ̄

x
�
ϕ� over all profilesϕ. Then, the operations

of tiny jobs inDYϕ̄
x also form local profilēϕ in Ix. Furthermore, by Lemmas 1.4.10

and (1.18), (1.19) we can bound

D
�DYϕ̄

x � � D
�
Yϕ̄

x � � ε2 �I �x� �
2ν̄q/2� � (1.20)

We simply take the optimal schedule and use time-stretching. We addε �I �x idle
time on machines in each intervalIx. Then, we replace the tiny operations ofYϕ̄

x by
the tiny operations ofDYϕ̄

x inside each single intervalIx�1. This gives us a schedule

52 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

with the objective function value at most
�
1� 7ε�OPT in which for each profileϕ

tiny jobs of profileϕ obey Smith’s rule.

However, this last packing procedure is a form of the makespan version of the
problem, which is known to be NP-hard. To copy with that, we use (1.20) and a
PTAS for the makespan version of the problem [JSOS99, FJM01]. Our idea here
is to define the value of parameterq/2 in the definition of tiny jobs such thatYϕ̄

x can
be replaced byDYϕ̄

x inside intervalIx�1.

1.4.6 Assigning to Intervals and Patterns: LP formulation

Consider an optimal schedule of objective valueOPT. For each tiny jobj we
define two indicesx

�
j � � y

�
j � and profilef

�
j � such that jobj is released atRx� j �,

starts atSj � Iy� j � having patternf
�
j � and completes atCj � Iy� j �� >f � j � >.

Now we use thesey
�
j � and f

�
j � in dealing with each intervalIx and local profilēϕ.

First, considering all tiny jobs, we define the setYϕ̄
x of tiny jobs which operations

form local profileϕ̄ in Ix. Next, considering tiny jobs of profileϕ, we define the
setYϕ̄

x
�
ϕ� of tiny jobs of profileϕ which operations form local profilēϕ in Ix.

Clearly,

Yϕ̄
x � #ϕYϕ̄

x
�
ϕ� (1.21)

and

D
�
Yϕ̄

x � � ∑
ϕ

D
�
Yϕ̄

x
�
ϕ�� � (1.22)

For each tiny jobj of profile ϕ we define anassignmentξ� j � � �
ξ� f � j �

y � such that

∑
f

∑
y@x� j � ξ� f � j �

y � 1� (1.23)

whereξ� f � j �
y � �0�1� is the

�
y� f �th fractionof job j which assigned to intervalIy

and patternf .

Let f � �
ϕ̄0 �ϕ̄1� � � � �ϕ̄ >f >�. Then,ξ� f � j �

y � 0 means that the fractional lengthξ� f � j �
y �+ j is assigned to eachkth intervalIy�k on local profileϕ̄k, for k � 0� � � � � �f �. For

an illustration see Figure 1.20 on the facing page.

Consider an intervalIx, local profileϕ̄ and patternf � �
ϕ̄0�ϕ̄1� � � � �ϕ̄ > f >�. Then,

we can define

dx
�
f �ϕ̄� � ∑

k= 0���� � > f >
ϕ̄k = ϕ̄

^
∑

j :x� j � _ y= x� k

ξ� f � j �
y � + j` � (1.24)

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 53

Iy

eW Ix2 [f [Patternf

Ix & Iy2k

ϕ̄ & ϕ̄k

Figure 1.20: Patternf and its load in an intervalIx

Informally, this value is equal to the “load” of patternf on local profileϕ̄ in
interval Ix. We take allkth local profilesϕ̄k (k � 0� � � � � �f �) in pattern f that are

equal toϕ̄, and then we sum up fractionsξ� f � j �
y � + j over all jobs j for which y �

x � k � x
�
j �. In other words, we sum up all

�
y� f �th fractions which are assigned

k intervals beforeIx and have thekth local profileϕ̄k � ϕ̄.

Thefractional loadon local profileϕ̄ in intervalIx is defined as follows

∆ϕ̄
x
�
ϕ� � ∑

f

dx
�
f �ϕ̄� � (1.25)

The fractional weighted completion timeof a tiny job j of profile ϕ is defined as
follows

w j ∑
f

∑
y@ x� j � ξ� f � j �

y �Ry� > f >� (1.26)

Here,Ry� >f > is the
�
y� f �th fractional completion timeof job j. Then, thefrac-

tional average weighted completion timeof tiny jobs of profileϕ is defines as
follows

Fϕ
�
ξ� � ∑

jT �ϕ�w j ∑
f

∑
y@x� j � ξ� f � j �

y �Ry� >f >� (1.27)

We formulate thefractional assignment problemfor the tiny jobs of profileϕ as
the following LP(ϕ):

Minimize Fϕ
�
ξ�

s.t. (1) ∆ϕ̄
x
�
ϕ� � Dϕ̄

x
�
ϕ� � D

�
Yϕ̄

x
�
ϕ�� � for all ϕ̄ andx�

(2) ∑ f ∑y@x� j � ξ� f � j �
y � 1� for all j �

(3) ξ? f � j�
y � 0� for all f � y � x

�
j � and j �

(1.28)

54 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

where the constraints have the following meaning:(2)-(3) each tiny jobj is as-
signed completely to patternsf and intervalsIy, y � x

�
j �; (1) in each intervalIy

the fractional load∆ϕ̄
x
�
ϕ� on each local profilēϕ is at mostDϕ̄

x
�
ϕ�.

Informally, in the optimal schedule we allow all tiny jobs ofprofile ϕ be fraction-
ally assigned to distinct intervals and patterns. However,preserving all “loads”
Dϕ̄

x
�
ϕ� � D

�
Yϕ̄

x
�
ϕ�� on local profilesϕ̄ in every single intervalIx, we keep the

schedule of huge jobs without changes.

We can bound the fractional average weighted completion time as follows:

Lemma 1.4.15.For any optimal solutionξ of the LP
�
ϕ� it holds that

Fϕ
�
ξ� � OPTE �ϕ� � (1.29)

where OPTE �ϕ� is the average weighted completion time of the tiny jobs of profile
ϕ in the optimal schedule. Accordingly, it also holds that

∑
ϕ

Fϕ
�
ξ� � OPTE � (1.30)

where OPTE is the average weighted completion time of all tiny jobs in the optimal
schedule.

Proof. Consider all tiny jobsj of profile ϕ in an optimal schedule. Lety
�
j �, x

�
j �

and f
�
j � be such that jobj is released atRx� j �, starts atSj � Iy� j � having pattern

f
�
j � and completes atCj � Iy� j �� > f � j � >.

Sincey
�
j � � x

�
j �, for a solutionξ we can defineξ� f � j �

y � 1 if y � y
�
j �, f � f

�
j �,

andξ� f � j �
y � 0 otherwise. Then,ξ is feasible. Furthermore, sinceCj � Iy� j �� >f � j � >

we have

Ry� j �� >f � j � > � Cj

and

Fϕ
�
ξ� � ∑

j
w jRy� > f � j � > � ∑

j
Cj � OPTE �ϕ� �

Finally, from

OPTE � ∑
ϕ

OPTE �ϕ�
we also have

∑
ϕ

Fϕ
�
ξ� � OPTE �

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 55

1.4.7 Assigning to Intervals and Patterns: LP Rounding

For each profileϕ, let ξ be an optimal solution for the LP(ϕ). Assume thatξ is
integral. Then, for each tiny jobj of profile ϕ we can find exactly one indexy

�
j �

and patternf
�
j � such thatξ f � j �

y� j � j � 1 andy
�
j � � x

�
j �. In other words, an integral

LP solution can be treated as an integral assignment of tiny jobs to intervals and
patterns.

Here we prove the following result:

Lemma 1.4.16.Define the value of q/1 :� 24ν/ �ν̄/e/ �2. Then, for each profileϕ,
an optimal solutionξ of the LP(ϕ) can be rounded into an integral assignment of
tiny jobs of profileϕ to intervals and patterns such that

(1) Fϕ
�
ξ� does not increase;

(2) the value of each∆ϕ̄
x
�
ϕ� increases by at mostε2 �I �x� �

2ν̄/ν/q/2�;
(3) tiny jobs j of profileϕ obey the modified Smith’s rule with respect to intervals

Iy� j � and patterns f
�
j � given by roundedξ.

Proof. Let ξ be an optimal LP(ϕ) solution. Let j andk be two jobs of profileϕ
with x

�
k� � x

�
j � andw jZ

j * wkZ
k

(w j +k * wk+ j). Assume that there exist two fractions

ξ f � j �
jy� j � � 0,ξ f �k�

ky�k� � 0 with y
�
j � � � f �

j � � * y
�
k� � �f �

k� �. Informally, this means that
jobs j andk do not obey Smith’s rule.

Then, there exist valuest j andtk such that

0 * t j � ξ f � j �
jy� j � and 0 * tk � ξ f �k�

ky�k� � (1.31)

and

t j+ j � tk+k � (1.32)

We define a new solutionζ as follows. First we exchange they
�
j �th andy

�
k�th

fractions of jobsj andk:

ζ f � j �
jy� j � � ξ f � j �

jy� j � � t j ζ f �k�
jy�k� � ξ f �k�

jy�k� � t j

ζ f �k�
ky�k� � ξ f �k�

ky�k� � tk ζ f � j �
ky� j � � ξ f � j �

ky� j � � tk � (1.33)

After this, we define the rest ofζ as inξ.

56 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Due to (1.31), (1.32) and (1.33) solutionζ is feasible. Furthermore,

F
�
ζ� � F

�
ξ� � Ry� j �� > f � j � >�wktk � w j t j � � Ry�k� � >f �k� > �w j t j � wktk�

� �
Ry� j �� > f � j � > � Ry�k�� >f �k� >� �wktk � t jw j � � (1.34)

Fromy
�
j � � �f �

j � � * y
�
k� � �f �

k� � we haveRy� j �� > f � j � > � Ry�k�� >f �k� > * 0. From
w j +k * wk+ j and (1.32) we have

�
wktk � w j t j � � 0. Hence, from (1.34) we con-

clude

F
�
ζ� * F

�
ξ� �

This is a contradiction to the optimality ofξ.

In the following we roundξ into an integral solution. We will use the above
property ofξ. We will not increase the value ofF

�
ξ�, but the values of∆ϕ̄

x
�
ϕ�.

One can see that for each intervalIy variablesξy � �
ξ� f � j �

y � appear in at most
ν̄/ �

e/ � 1� constraints(1) of the LP corresponding to intervalsIy �Iy�1� � � � �Iy�e< .
W.l.o.g. we can reassign the values ofξy such that there are at mostν̄/ �e/ � 1�
jobs j with fractionsξ� f � j �

y � 0 for at least two different patternsf , see Appendix
B on page 197. Then, for each such jobj we can select one pattern having the
smallest length, and then round the values ofξ� j �. We use this property as follows.
We start from the first interval of the schedule and go furtherup to the end. For
each intervalIy, we perform the rounding procedure for the values ofξy such that

for each jobj there is at most one patternf for which ξ� f � j �
y � 0. This completes

the first step of rounding.

One can see that that the value ofF
�
ξ� does not increase. Furthermore, the above

stated property ofξ (Smith’s rule) is still valid. However, rounding the valuesof
ξ violates constraints(2) of the LP(ϕ). Recall that the length of any patternf
is bounded bye/, see Figure 1.20 on page 53. Consider one intervalIx and the
values of∆ϕ̄

x
�
ϕ� in (2) of the LP(ϕ). By the above rounding procedure, only the

jobs which we have rounded ine/ � 1 foregoing intervalsIy, y � x� � � � �x � e/,
increase the values of∆ϕ̄

x
�
ϕ�. There are at most

�
e/ � 1� �ν̄/ �e/ � 1�� such jobs.

Each of these jobs is tiny and released beforeIx, i.e. its length is at mostε2 �I �x�q/.
Thus, the total increase in the value of each∆ϕ̄

x
�
ϕ� is at most�

e/ � 1� �ν̄/ �e/ � 1�ε2 �I �x�q/ � � (1.35)

At the second step, we enforce each tiny job to be completed within e/ � 1 con-
secutive intervals. First, one can see the following fact. For each intervalIy there

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 57

is at most one jobk with ξ? fy �k�
y � 0 andζ? fx �k�

x � 0, wherex � �fx � � y � e/.
If there are two such jobs, say jobsj andk such thatw j �+ j * wk�+k, then we
can replace a fraction of jobj by a fraction of jobk in interval Iy. This will be a
contradiction to the above stated property ofξ (Smith’s rule). We use this fact as
follows. We start from the first interval of the schedule and go further up to the
end. In each intervalIy we find such a jobk (if it exists) and round the values of
ξ�k�.
Similar to the first step,F

�
ξ� does not increase and the above stated property of

ξ (Smith’s rule) is still valid. The total increase in the value of each∆ϕ̄
x
�
ϕ� is at

most �
e/ � 1�ε2 �I �x�q/ � (1.36)

At the third step, we roundξ into an integral solution. First, let us observe the
following fact. For an intervalIy, let Xy be the set of all jobsj that are not assigned

to previous intervals and for whichξ� f � j �
y � 0, i.e. the set of tiny jobs that are

fractionally assigned for the first time. Then, by the secondrounding step, the jobs
of Xy complete withine/ � 1 intervalsIy �Iy�1� � � � � Iy�e< . W.l.o.g. we can reassign
the values ofξ� j � for each jobj � Xy such that there are at mostν̄/ �

e/ � 1� jobs in
Xy with non-unique assignment to the intervalsIy �Iy�1� � � � � Iy�e< and patternsf ,
see Appendix B on page 197. We use this fact as follows. We start from the first
interval of the schedule and go further up to the end. In each intervalIy we round
the values ofξ� j � for all jobs j � Xy.

As before,F
�
ξ� does not increase and the above stated property ofξ (Smith’s rule)

is still valid. The total increase in the value of each∆ϕ̄
x
�
ϕ� is at most�

e/ � 1� �ν̄/ �e/ � 1�ε2 �I �x�q/ � � (1.37)

Summing up (1.35), (1.36) and (1.37), after three steps of rounding the value of
each∆ϕ̄

x
�
ϕ� increases by at most

3
�
e/ � 1�ν̄/ε2 �I �x�q/ � 3

�
2e/ �2ν̄/ε2 �I �x�q/ � (1.38)

In q/ � q/1 �q/2 we define

q/1 :� 24ν/ �ν̄/e/ �2 �
Hence, we can bound (1.38) by

ε2 �I �x� �
2ν̄/ν/q/2� �

58 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Now ξ is integral solution of LP
�
ϕ�. Then, for each tiny jobj of profile ϕ we can

find y
�
j � and f

�
j � such thatξ f � j � j

y� j � � 1 andy
�
j � � x

�
j �. Since the above stated

property ofξ remains valid throughout the rounding procedure, tiny jobsj of
profile ϕ obey Smith’s rule with respect to thesey

�
j � and f

�
j � given byξ.

Now we combine integral assignmentsξ for all profilesϕ. For each tiny jobj we
define indexy

�
j � � x

�
j � and patternf

�
j �, respectively. Then, by usingy

�
j � and

f
�
j �, for each intervalIx and local profilēϕ, we define setsDYϕ̄

x of tiny jobs that are
assigned tōϕ in Ix. Then, we can prove the following:

Lemma 1.4.17.For all tiny jobs j it holds that y
�
j � � x

�
j � and

∑w jRy� j �� >f � j � > � OPTE � (1.39)

Furthermore, for each interval Ix and local profile loc it holds

D
�DYϕ̄

x � � D
�
Yϕ̄

x � � ε2 �I �x� �
2ν̄q/2� � (1.40)

Proof. By Lemmas 1.4.15 and 1.4.16, for all tiny jobs it holds that

∑w jRy� j �� >f � j � > � ∑
ϕ

Fϕ
�
ξ� � OPTE �

To define setsDYϕ̄
x , we have used rounded solutionsξ for the LP(ϕ) over all profiles

ϕ. Hence, it holds that

∑
ϕ

∆ϕ̄
x
�
ϕ� � D

�DYϕ̄
x � �

Then, by the LP(ϕ) formulation and Lemma 1.4.16 it holds that

y
�
j � � x

�
j �

and

∆ϕ̄
x
�
ϕ� � Dϕ̄ �

ϕ� � ε2 �I �x� �
2ν̄/ν/q/2�� D

�
Yϕ̄

x
�
ϕ�� � ε2 �I �x� �

2ν̄/ν/q/2� �
By Lemma 1.4.10 the number of distinct profiles is bounded byν/. Hence, com-
bining with (1.21) and (1.22) we have (1.40).

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 59

1.4.8 Packing in Single Intervals: A PTAS for Makespan

Here, by using the results of Lemmas 1.4.16 and 1.4.17, we complete the proof of
Lemma 1.4.14.

First, we take an optimal schedule of valueOPT. For an illustration see Fig-
ure 1.21. Consider an intervalIx. Each operation that runs inIx can be either
tiny or huge, and each huge operation can be either crossing or non-crossing, see
Figure 1.21 a). There are at most 2m huge crossing operations, and non-crossing
operations form local profiles̄ϕ with respect to jobs. Then, we can define the set
Kx of huge crossing jobs, and setsNϕ̄

x andYϕ̄
x of non-crossing huge jobs and tiny

jobs, respectively.

b) A1B εCOPTa) OPT

o1 j

o2 j

o1 j

o2 j

o3 j o3 j

Rx Rx

a
I
a
x

RxT1

a
I
a
xT1

RxT2

Figure 1.21: Operations in intervalIx andIx�1

Now we apply time-stretching to the optimal schedule. We addε �I �x idle time
on machines in each intervalIx, see Figure 1.21 b). This increases the objective
function value by at most a factor of 1� ε. Furthermore, the operations of setKx

and setsNϕ̄
x , Yϕ̄

x run in intervalIx�1.

Next, we use the results of Lemmas 1.4.16 and 1.4.17. For eachtiny job j we
find newy

�
j � and f

�
j �, and for each intervalIx we find new setsDYϕ̄

x of tiny jobs.
We simply reschedule all tiny jobs in the schedule. Inside each intervalIx�1 we
replace the tiny operations of setsYϕ̄

x by the tiny operations of setsDYϕ̄
x .

Then, each tiny jobj completes atCj � Iy� j �� f � j ��1. By Lemmas 1.4.16 and 1.4.17
we have that

∑
j

Cj � ∑
j

�
1 � ε�Ry� j �� f � j ��1 � �

1 � ε�2OPTE � (1.41)

In order to get a feasible schedule, we reschedule the operations of setKx and sets
Nϕ̄

x , DYϕ̄
x inside each single intervalIx�1. This also increases the objective function

60 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

value by at most a factor of 1� ε, and the objective function value of the final
schedule is at most �

1� ε�3OPT � �
1� 7ε�OPT�

To complete the proof of Lemma 1.4.14, in the rest of this section we prove the
following result:

Lemma 1.4.18 ([JSOS99, FJM01]).Define the value of q/2 � �
4µm � 1� b2me<

ε7 c
.

Then, the operations of set Kx and sets Nϕ̄x , DYϕ̄
x can be scheduled inside each single

interval Ix�1.

General Problem. In order to prove the above stated lemma we need to solve
the following problem. We are given job setsKx, Nϕ̄

x , Yϕ̄
x , DYϕ̄

x (over allϕ̄) and their
corresponding operations. It is known:

(i) there exists a schedule for the operations of setKx and setsNϕ̄
x , Yϕ̄

x inside
intervalIx;

(ii) the length of setsYϕ̄
x andDYϕ̄

x differs by at mostε2 �I �x�2ν̄/q/2;

(iii) for each jobj in Yϕ̄
x or DYϕ̄

x it holds+ j � ε2 �I �x�q/2.

Can we define the value of parameterq/2 such that there exists a schedule for the
operations of setKx and setsNϕ̄

x , DYϕ̄
x inside intervalIx�1?

Let us first consider this problem informally. On an upper level, we can reformu-
late it as follows: We are a set of jobsJx. There is a schedule forJx of length �I �x.
Can we find a schedule forJx of length �I �x�1 � �

1� ε� �I �x?
Indeed, the answer is “yes”. We can simply use a PTAS for the makespan version
of the problem [JSOS99, FJM01]. We can takeδ � ε�2 and run the PTAS onJx

with δ. The output schedule has length at most�
1 � δ�OPT

�
Jx� * �

1 � ε� �I �x�
Now assume that we have a new setYx of jobs. Can we find a schedule forJx # Yx

of length �I �x�1 � �
1� ε� �I �x? Intuitively, the answer is “yes” if we can guarantee

that all jobs inYx are small enough with respect to length�I �x.
For example, assume that the total lengthD

�
Yx� is at mostε2 �I �x�2. Then, we can

takeδ :� ε2�2, run the PTAS onJx with δ, and then add the jobs ofYx at the end
of the output schedule. The final schedule has length at most�

1 � δ�OPT
�
Jx� � ε2 �I ��2 * �

1 � ε� �I �x � �I �x�1�

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 61

In fact, our problem is quite similar. We have our auxiliary parameterq2. Due
to (i), there exists a schedule for the operations of setsKx, Nϕ̄

x , Yϕ̄
x of length �I �x.

Due to (ii) and (iii), if q2 tends to the infinity, the difference between setsDYϕ̄
x and

Yϕ̄
x slowly disappears. The idea behind our approach is to define the value ofq2

such that given the operations of setKx and setsNϕ̄
x , DYϕ̄

x the PTAS withδ :� ε2�2
outputs a schedule which has length at most�

1 � δ� �I �x � ε2 �I ��2 * �
1� ε� �I �x � �I �x�1 �

Clearly, this provides a positive answer to the general problem.

Simplified Problem. Formally, in a local profilēϕ � �
π̄ � τ̄� both tuplesπ̄ andτ̄

can correspond to less thanµ operations. This information is very important when
we deal with a schedule which spans several intervals. Here,we only deal with a
schedule inside single interval.

To simplify further presentation, w.l.o.g. we introduce some dummy operations
with zero processing times. We replace bothτ̄ andπ̄ by µ-tuplesπ � �

πi �µ
i=1 and

τ � �
τi �µ

i=1. However, not abuse the notations too much, we will writeϕ̄ � �
π �τ�.

To simplify the description, we first consider the case when the set of crossing
huge jobsKx � /0. We also define

Jϕ̄
x � Nϕ̄

x # Yϕ̄
x and Jx � # ϕ̄Jϕ̄

x �
Then, all jobsj in setJϕ̄

x have the same local profilēϕ � �
π �τ�, but differ in length+ j . Formally, each jobj in Jϕ̄

x consists of operationso1 j � � � � �oµ j, where each
operationoi j has processing timeπi � + j and requires machineτi , for i � 1� � � � �µ.

Due to (i), there exists a schedule for the operations of setsJϕ̄
x which length is

at most �I �x. By Lemma 1.4.9 any job crosses at moste/ intervals. Thus, the
total length of the jobs inJx is at most the total time available withine/ intervals
following Ix. If m � 2 ande/ � 2 we can bound

D
�
Jx� � m

�
e/ �I �x� e< � � me/ �

1 � ε�e< �I �x � me/2e< �I �x � 2me< �I �x� (1.42)

In the following we will use the known PTAS for the makespan version of the
problem [JSOS99, FJM01]. First, we deduce a schedule for theoperations of sets
Jϕ̄

x . By defining the value of parameterq/2 we ensure that the schedule length is
bounded by�I �x�1 � �

1� ε� �I �x. Then, we show that this bound remains valid even
if we replace the jobs ofYϕ̄

x by the jobs ofDYϕ̄
x in Jϕ̄

x . Finally, for the general case
when the set of crossing huge jobsKx �� /0, we change the value ofq/2.

62 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Long and Short Jobs. We take all jobs inJx and number them by 0�1�2� � � � �nE
in order of non-increasing lengths+0 � +1 � +2 � � � � � +nd � (1.43)

Here,nE � 1 is the total number of jobs inJx.

Next, we introduce an integerk/x and a constantq/2 � 0. We will specify their
exact values later. In addition, we introduce setsUx, Lx andSx as follows. We first
define

Ux � � j � j � Jx and+ j � ε2 �I �x�q/2�� (1.44)

Informally, we put all jobsj from setJx with length + j � ε2 �I �x�q/2 into setUx.
Then, with respect to the number of jobs inUx and the value ofk/x we consider
two cases:

(1) If �Ux � � k/x then we defineLx :� Ux andSx :� Jx eUx;

(2) If �Ux � � k/x then we put the firstk/x jobs 0�1� � � � �k/x � 1 into setLx, and other
jobsk/x �k/x � 1� � � � �nE into setSx.

For simplicity, we call the jobs inLx long and the jobs inSx short. Finally, we
define

Sϕ̄
x � Sx f Jϕ̄

x �
Notice that in both cases (1) and (2) it holds that

Lx � Ux and Sx � Jx e Lx � (1.45)

Furthermore, the number of long jobs�Lx � :� min�k/x � �Ux � � � (1.46)

i.e. eitherUx � Lx or the firstk/x longest jobs fromUx are inLx.

Snapshots and Relative Schedules.We say that two operationsoi j andoi d j d are
compatibleif τi j �� τi d j d . Then, asnapshotis a set of compatible operations (it can
be empty). In the following we consider the operations of long jobs inLx. A
relative scheduleof Lx is a sequenceM

�
1� � � � � �M �

g� of g snapshots such that for
each long jobj � Lx holds

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 63

M $1% M $g%M $βi j %M $αi j %
oi j

Figure 1.22: A relative schedule and an operationoi j

g each operationoi j (i � 1� � � � �µ) occurs in a sequence of consecutive snap-
shotsM

�
αi j �, � � �, M

�
βi j �, 1 � αi j � βi j � g, whereM

�
αi j � andM

�
βi j � are

the first and last snapshots containingoi j ,g βi j * αi�1� j for two consecutive operationsoi j andoi�1� j , andg any two consecutive snapshots are different.

Less formally, a relative schedule corresponds to an execution order of the long
operations ofLx. One can associate a relative schedule to each non-preemptive
schedule ofLx by looking at every time in the schedule when a long operation
starts or ends and creating a snapshot right after that time.For an illustration see
Figure 1.22. Notice that for each long job there areµ operations. Hence, the
number of snapshots

g � 2µ�Lx �� (1.47)

Free machines and Assignments. Assume that we are given a relative schedule
M

�
1� � � � � �M �

g�. Our next goal is to schedule the jobs inSx # Lx such that (a) all
short operations ofSx are completed; (b) each long operation ofLx runs as it is
defined in snapshotsM

�
1� � � � � �M �

g�.
Fors � 1� � � � �g we define the set

F
�
s� :� M e hi j

oi j M �s� � jLx

�τi j �kl (1.48)

of free machinesin snapshotM
�
s�. Clearly, the short operations ofSx can only be

processed onF
�
s� in M

�
s�.

Take a local profilēϕ � �
π �τ�, whereπ � �

πi �µ
i=1 andτ � �

τi �µ
i=1. Consider sort

jobs j in Sϕ̄
x . All ith operationsoi j require the same machineτi , for i � 1� � � � �µ.

64 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Then, we define the set

Aϕ̄ :� �* s1� � � � �sµ � �1 � s1 � � � � � sµ � g and

τi � F
�
si � � for i � 1� � � � �µ� (1.49)

of possibleassignmentsof operationsoi j to snapshotsM
�
si � in which machinesτi

are free, fori � 1� � � � �µ. Accordingly, fors � 1� � � � �g, τ � M � �1� � � � �m� andm
a � * s1 �s2� � � � �sµ �� Aϕ̄ we define the set

Bϕ̄
�
s�τ � ma� :� �i �si � s� τi � τ andi � 1� � � � �µ� (1.50)

of all indicesi which correspond toith operations assigned by
m
a to machineτ in

snapshotM
�
s�.

Fractions and Loads. Take a local profileϕ̄ � �
π �τ�, whereπ � �

πi �µ
i=1 and

τ � �
τi �µ

i=1. Consider setSϕ̄
x of short jobs. LetD

�
Sϕ̄

x � � ∑ jSϕ̄
x
+ j be the total

length of the jobs inSϕ̄
x . Then, allith operations of these jobs require the same

machineτi and their total processing time is equal toπi �D�
Sϕ̄

x �, for i � 1� � � � �µ.
We simply treat all jobs inSϕ̄

x as one job of local profilēϕ which has lengthD
�
Sϕ̄

x �.
We defineξϕ̄ � �

ξna�naAϕ̄ such that

∑naAϕ̄

ξ na � 1� (1.51)

whereξna � �0�1� is the fraction of the jobs ofSϕ̄
x assigned by

m
a � Aϕ̄. Accordingly,

for s � 1� � � � �g andτ � �1� � � � �m�
L�s�τ �ϕ̄� �ξ� :� ∑naAϕ̄

hi ∑
i Bϕ̄ �s�τ �na� ξ na �πi �D�

Sϕ̄
x �kl (1.52)

is theload of Sϕ̄
x on machineτ in snapshotM

�
s�.

Regarding all short jobs inSx � # ϕ̄Sϕ̄
x ,

L�s�τ� �ξ� � ∑̄
ϕ

L�s�τ �ϕ̄� �ξ� (1.53)

is theload of Sx on machineτ in snapshotM
�
s�.

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 65

LP Formulation. Let M
�
1� � � � � �M �

g� be a relative schedule ofLx. Then, we
formulate the problem of scheduling the long jobs inLx and the short jobs inSx as
the following LP:

Minimize L
�
ξ �t � � ∑g

s= 1 ts

s.t. (1) ts � 0� for s � 1� � � � �g�
(2) ∑

βi j
s= αi j ts � pi j � for i � 1� � � � �µ and all j � Lx �

(3) L�s�τ� �ξ� � ts� for s � 1� � � � �g and allτ � M �
(4) ∑ naAϕ̄ ξ na � 1� for all ϕ̄ �
(5) ξ na � 0� for all

m
a � Aϕ̄ and allϕ̄ �

where the variables have the following interpretation:

ts: the lengthof snapshotM
�
s�, and

L
�
ξ �t �: thetotal schedule length.

Accordingly, the constraints have the following meaning:(2) each long operation
oi j fits into the corresponding snapshotsM

�
αi j � � � � � �M �

βi j �, for i � 1� � � � �µ; (3)
the load on each machineτ in snapshotM

�
s� does not exceed the snapshot length

ts; (4)-(5) all short jobs inSϕ̄
x are assigned completely.

Proposition 1.4.19.There exists a relative schedule of Lx such that L
�
ξ �t � � �I �x.

Furthermore, if each value D
�
Sϕ̄

x � increases by at mostε2 �I �x�2ν̄/, then L
�
ξ �t �

increases by at mostε2 �I �x�2, i.e. L
�
ξ �t � � �I �x � ε2 �I �x�2.

Proof. Recall that there exists a schedule for the operations of jobs in setsJϕ̄
x

which length is at most�I �x. We can “copy” a relative schedule ofLx from this
schedule. Due to the LP formulation, there exists a solution

�
ξ �t � of the LP such

thatL
�
ξ �t � � �I �x.

We fix the values ofξ and increase each value ofD
�
Sϕ̄

x � by ε2 �I �x�2ν̄/. Then, the
values ofL�s�τ �ϕ̄� �ξ� increase as well, see (1.52), but constraints(4)-(5) of the LP
remain valid.

Now we fix the values ofξ and solve the LP over variablest � �
ts�. Informally, we

restrict the LP to constraints(1)-(3)and find new values fort � �
ts�. Let

�
ξ � t̃ � be a

new solution. In the following we show thatL
�
ξ � t̃ � is at mostL

�
ξ �t � � ε2 �I �x � 2.

66 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Indeed, by the above construction the objective value

L
�
ξ � t̃ � � g

∑
s= 1

t̃s � g

∑
s= 1

L̃�s�τs� �ξ� � (1.54)

wheret̃s � L̃�s�τs� �ξ� for some machineτs � M, s � 1� � � � �g. (See(3) in the LP.)
Then, from (1.52) each load

L̃�s�τs� �ξ� � ∑̄
ϕ

∑naAϕ̄

hi ∑
i Bϕ̄ �s�τs�na� ξ na �πi � �D�

Sϕ̄
x � � ε2 �I �x�2ν̄/ �kl

� L�s�τs� �ξ� � ∑̄
ϕ

∑naAϕ̄

hi ∑
iBϕ̄ �s�τs�na� ξ na �πikl �ε2 �I �x�2ν̄/ �

(1.55)

We know thatπi � 1 (Lemma 1.4.7), and from (1.49), (1.50) it follows that the
number of indices �#g

s=1 B
�
s�τs� ma� � � µ�

Hence,

g

∑
s= 1

hi∑̄
ϕ

∑naAϕ̄

hi ∑
iBϕ̄ �s�τs�na� ξ naklkl � ∑̄

ϕ
∑naAϕ̄

hi g

∑
s= 1

hi ∑
iBϕ̄ �s�τs�na� ξ naklkl

� ∑̄
ϕ

∑naAϕ̄

µ �ξ na� (1.56)

From(3)-(4) of the LP it follows

∑naAϕ̄

ξna � 1 and
g

∑
s= 1

L�s�τs� �ξ� � g

∑
s= 1

ts�
The number of local profiles is bounded byν̄/ (Lemma 1.4.13). Thus, we get

L
�
ξ � t̃ � � g

∑
s= 1

t̃s � g

∑
s= 1

ts � ε2 �I �x � 2

� L
�
ξ �t � � ε2 �I �x � 2� (1.57)

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 67

Assignment to Snapshots: Unbalanced Short Jobs.Take a relative schedule
M

�
1�, � � �, M

�
g� and an optimal solution

�
ξ �t � of the LP with the objective value

L
�
ξ �t � � �I �x (Proposition 1.4.19). Look at the LP:(3) there aremg constraints

on ξ � �
ξna�; (4) there is at least one assignment

m
a � Aϕ̄ such thatξ na � 0. Hence,

w.l.o.g. we can reassign the values ofξ such that that there are at mostmgdistinct
assignments

m
a for which 1 � ξ na � 0 (they may correspond to several local pro-

files), and for all other assignments
m
a eitherξ na � 1 or ξ na � 0. (See Appendix B

on page 197.) Notice thatξ na � 1 only for one
m
a � Aϕ̄.

Now we assign the short operations ofSx to snapshotsM
�
1� � � � � �M �

g�. For
each local profilēϕ we assign the operations ofSϕ̄

x with respect to
�
ξ na�, m

a � *
s1 � � � � �sµ �� Aϕ̄. If ξ na � 1, then we select all jobsj from Sϕ̄

x . If 1 � ξ na � 0, we

select jobsj from Sϕ̄
x in a greedy manner until the total length of the selected jobs

does not exceedξ na �D�
Sϕ̄

x �. Then, for each selected jobj we assign operationoi j

to snapshotM
�
si �, i � 1� � � � �µ. By (1.49), eachoi j is assigned to to a free ma-

chine in snapshotM
�
si �. Here, the last selected job, which can cause the exceed

of valueξ na �D�
Sϕ̄

x �, is also assigned with respect to
m
a. Since there are at mostmg

distinct assignments
m
a for which 1 � ξ na � 0, there are at mostmgsuch short jobs

in Sx, and we call themunbalanced.

Deducing a Schedule: Sevastianov’s Algorithm. Here we will use Sevas-
tianov’s algorithm [Sev86]. Assume that we are given an instance of the makespan
version of the job shop problem. There arem machines andµ operations per job.
Let Π � maxτM ∑τi j =τ pi j be the maximum machine load andpmax � maxi j pi j be
the maximum operation processing time. Then, Sevastianov’s algorithm outputs
a schedule of length at mostΠ � 2mµ3pmax.

We deduce a schedule for the long operations ofLx as it is defined in snapshots
M

�
1�, � � �, M

�
g�. In order to deduce a schedule for the short operations ofSx we

proceed as follows.

First, fors � 1� � � � �g, we define the seto �
s� of short operations assigned to snap-

shotM
�
s�. The maximum load ofo �

s� can be bounded by the lengthts of snapshot
M

�
s� with some additive increase∆

�
s� � 0, called thesnapshot enlargement. The

overall snapshot enlargement∑g
s= 1 ∆

�
s� is bounded by the total length of the un-

balanced jobs fromSx.

Next, we apply Sevastianov’s algorithm to each seto �
s�. The length of the output

schedule foro �
s� is at most

ts � ∆
�
s� � 2mµ3pmax

�
s� � (1.58)

wherepmax
�
s� is the length of the longest operation ino �

s�.

68 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Finally, we unite schedules over all snapshotsM
�
s�, s � 1� � � � �g into one feasible

schedule for the jobs ofSx andLx. The length of the deduced schedule is at most

g

∑
s= 1

�
ts � ∆

�
s� � 2mµ3pmax

�
s�� � L

�
x�t � � ∆x � (1.59)

where

∆x :� g

∑
s= 1

∆
�
s� � 2mµ3

g

∑
s= 1

pmax
�
s� (1.60)

is theschedule enlargement.

Defining the values ofk/x and q/2. Here, we define the values ofk/x andq/2 such
that

∆x � ε2 �I �x � 2� (1.61)

There are two important values

∆1
x :� g

∑
s= 1

pmax
�
s� and ∆2

x :� g

∑Z = 1

∆
�+ � � (1.62)

Form one side, we can bound the value of∆1
x by the total length of the first longest

g jobs in Sx. From another side,∆2
x corresponds tomg unbalanced jobs inSx,

and we can bound its value by the total length of the first longest mg jobs inSx,
respectively.

Now we use (1.43), (1.45) and (1.47). Then,g � 2µ�Lx �. Let D be the total length
of the first 2µ�Lx � jobs inSx. These jobs are numbered by�Lx �� �Lx �� � � � � �Lx � � 2µ�Lx � � 1�
Then, 2m �D is an upper bound for∆1

x � ∆2
x, and 2mµ3 �2m �D is an upper bound

for 2mµ3�
∆1

x � ∆2
x�. From (1.60) and (1.62) we have that

∆x � 4m2µ3�+ >Lx > � + >Lx >�1 � � � � � + >Lx >�2µ>Lx >�1� � (1.63)

Next, we use the following result.

Proposition 1.4.20 ([CM99, JP99b]).Suppose+0 � +1 � � � � � +nd � 0 is a se-
quence of real numbers and P� ∑nd

j = 0 + j . Letβ be a nonnegative integer,α � 0,
and assume that nE is sufficient large (i.e. all the indices of the+ j ’s in the statement

are smaller than nE; e.g. nE � �
β � 1� p1

α q suffices). Then, there exists an integer

k � k
�
β �α� such that+k � � � � � +k� βk�1 � α �P, and k� �

β � 1� p1
α q �1.

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 69

From (1.42) and (1.43) we can find an upper boundP on ∑nd
j = 0 + j . We simply

define

P � 2me< �I �x� α � ε2� �
8m2µ32me< � and β � 2µ� (1.64)

Then, by Proposition 1.4.20 we can define

k/x :� k
�
β �α� � �

2µ � 1� b8m2µ32me<
ε2 c �1

(1.65)

such that

4m2µ3�+k<x � +k<x � 1 � � � � � +k<x � 2µk<x �1� � ε2 �I �x�2� (1.66)

Now we use (1.44), (1.45) and (1.46), respectively. We definethe value ofq/2 such
that (1.61) holds. Consider case (1). We have�Lx � � k/x and �Ux � � k/x. Then,
∆x � ε2 �I �x � 2 holds by (1.63) and (1.66). Consider case (2). We haveLx � Ux

andSx � Jx e Ux. Then, �Lx � � �Ux � � k/x and for each shot jobj in Sx it holds+ j * ε2 �I �x�q/2. From (1.65) we have

�Lx � � k/x � �
2µ� 1� b8m2µ32me<

ε2 c �1 � (1.67)

From (1.63) we have

∆x � 4m2µ3�+ >Lx > � + >Lx >� 1 � � � � � + >Lx >� 2µ>Lx >�1�
� 4m2µ3 82µ�Lx �ε2 �I �x

q/2 9 � (1.68)

Hence, from (1.67) it follows that

∆x � �
2mµ�4k/x 8ε2 �I �x

q/2 9
� �

2mµ�4�
2µ� 1� b8m2µ32me<

ε2 c �1 8ε2 �I �x
q/2 9

� �
2µ� 1� K2mµM32me<

ε2 � �2mµ�4 8ε2 �I �x
q/2 9

� �
2µ� 1� bK2mµM52me<

ε2 c 8ε2 �I �x
q/2 9

70 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

For 2mµ� 1�ε we define

q/2 � �
2µ � 1� b2me<

ε7 c � 2
�
2µ� 1� bK2mµM52me<

ε2 c �
This gives∆x � ε2 �I �x � 2.

Solving the Simplified Problem. One can see that we have deduced a schedule
for the operations of setsJϕ̄

x � #Nϕ̄
x # Yϕ̄

x . From (1.59) and (1.61) the length of
schedule is at most

L
�
ξ �t � � ε2 �I �x�2 � �I �x � ε2 �I �x�2 � �

1� ε� �I �x � �I �x� 1 � (1.69)

Furthermore, even if we replace the tiny jobs ofYϕ̄
x by the tiny jobs ofYϕ̄

x in each
setJϕ̄

x , we will be able to deduce a schedule for the operations of sets Jϕ̄
x . Indeed,

all new jobs fromJϕ̄
x will fall into set Sϕ̄

x of short jobs. (See the definition of set
Sx and setsSϕ̄

x .) Due to (ii) and (iii) in the definition of general problem, this
increases the value ofD

�
Sϕ̄

x � by at most

ε2 �I �x�2ν̄/q/2 * ε2 �I �x�2ν̄/ �
By Proposition 1.4.19, the objective function valueL

�
ξ �t � increases by at most

ε2 �I �x�2, i.e.

L
�
ξ �t � � �I �x � ε2 �I �x�2�

Thus, by following the same line of ideas, we can deduce a schedule which length
is bounded by

L
�
ξ �t � � ε2 �I �x�2 � ε2 �I �x � 2 * �

1� ε� �I �x � �I �x�1� (1.70)

Solving the General Problem. Clearly, we can also follow all above procedures
in the case when the set of crossing huge jobsKx �� /0. However, we need to adjust
the values ofk/x andq/2. Furthermore, we need to adjust the processing times of
the crossing operations, see Figure 1.21 b) on 59.

We simply add all jobs inKx into setLx of long jobs. As we discussed, there are
at most 2mcrossing operations. Hence,�Kx � � 2mand the number of snapshots in
any relative schedule can be bounded as follows

g � 2µ�Lx � � 2µ
� �Lx e Kx �� 2m� � 4µm�Lx e Kx ��

1.4 A PTASFOR THE JOB-SHOP SCHEDULING PROBLEM 71

Then, in (1.64) the value ofβ changes to 2µm, and in (1.67) we have

�LxeKx � � k/x :� k
�
β �α� � �

µm� 1� b8m2µ32me<
ε3 c�1 �

In (1.68) we also have

∆x � 4m2µ3�
4µm�LxeKx �� 8ε2 �I �x

q/2 9 � �
2µm�4k/x 8ε2 �Ix �

q/2 9 �
Similarly, we can define

q/2 � �
4µm � 1� b2me<

ε7 c �
Hence, we can claim (1.70).

In total, we can deduce a schedule for the operations of setKx and setsNϕ̄
x , DYϕ̄

x

which will fit inside intervalIx�1. This completes the proof of Lemma 1.4.18.

1.4.9 Weight-Shifting and Merging

After we have proved the modified Smith’s rule for tiny jobs, the compacting step
of our method is quite simple. We can follow the same line of ideas as for the
single machine problem 1�r j �∑w jCj . We simply use weight-shifting and merging
described in Sections 1.3.7 and 1.3.8, respectively.

Weight-Shifting. Assume that at some release dateRx we have a lot of huge
jobs (Hx) and tiny jobs (Tx). Which jobs can wait until the next interval? Take one
profile π. The jobs ofHx

�
π� having the same size must complete by decreasing

weightsw j . By Lemmas 1.4.12,1.4.16,1.4.18 there is at most a constantnumber
of such sizes. By Lemma 1.4.14, the jobs ofTx

�
π� must complete by decreasing

ratio w j �+ j . By Lemma 1.4.9, all jobs that start inIx must complete within the
nexte/ intervals. We select only the jobs that can be potentially scheduled inIx.

Lemma 1.4.21.With1� O
�
ε� loss and in O

�
nlogn� time, we can enforce D

�
Tx� �

t / �I �x and �Hx � � H / at each release date Rx, where t/ and H/ are some constant.

Merging. At each release dateRx we partition the ordered set of tiny jobsTx
�
π�

into subsets of roughly equal sizeH ε2 �I �x�2q/ (but less thanε2 �I �x�q/). Then, we
merge the jobs of each such subset into a new tiny job of profileπ.

Lemma 1.4.22.With 1� O
�
ε� loss and in O

�
nlogn� time, we can enforce�Tx � �

T / and �Hx � � H / at each release date Rx, where T/ and H/ are some constant.

72 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

1.4.10 Blocks and Dynamic Programming

Here, we follow the ideas of Lemmas 1.3.8,1.3.14 and Lemma 1.4.7. As in the
one machine case, we can consider only near-optimal schedules where every job
to be completed within a constant number of intervals after its release date.

Lemma 1.4.23.With1� ε loss, we can assume that each job completes within d/
intervals after its release in a schedule, where d/ is some constant.

Similarly to Section 1.3.9, we can define blocks, and then usethe dynamic pro-
gramming framework presented in Section 1.3.10. The combination of the struc-
turing and compacting steps with a dynamic programming algorithm gives a PTAS
with O

�
nlogn� running time. This completes the proof of Theorem 1.4.1.

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM

In this section we address the following multiprocessor task scheduling problem.
We are given a set ofn tasksT � �1�2� � � � �n� and a setM � �1� � � � �m� of m
processors. Each taskj � T has a positive weightw j , a release dater j , and an
associated functionp" j : 2M �� !� # ��∞� that gives the processing timepτ j

of task j in terms of the set of processorsτ � M that areallotted to j. (Here
2M denotes the set of all non-empty subsets ofM.) Each processor can work on
at most one task at a time, and given anallotmentτ

�
j � � M for a task j � T,

the processors ofτ
�
j � are required to execute taskj in union duringpτ� j � j time

units. Here we assume thatm is fixed, and the goal is to find a task allotment
and a non-preemptive feasible schedule under this allotment such that∑w j Cj is
minimized.

We will consider the following two basic versions. In the dedicated version, each
task j � T has a processing timep j and a prespecified processor set fixj � M
such that for functionp" j it holds pτ j � p j if τ � fix j , andpτ j � ∞ otherwise. In
the parallel version, each taskj � T has a processing timep j and a prespecified
number sizej � M such that for functionp" j it holds pτ j � p j if �τ � � sizej , and
pτ j � ∞ otherwise. For an illustration see Figure 1.23 on the facingpage and
Figure 1.24 on the next page.

As the jobs shop problem considered in Section 1.4, the abovestated problem of
scheduling multiprocessor (dedicated and parallel) tasksis also a generalization
of the single machine problem 1�r j �∑w jCj . Here we also follow the main parts
of our method: (1) Structuring, (2) Compacting, and, (3) Dynamic Programming.
Indeed, in coping with multiprocessor tasks we combine all already known tech-
niques from both the single machine case and the job shop case. In part (1), Sec-

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 73

2

∑wjCj & 10 (1'5) 10 (3) 5 (1) 5 (2 & 50

1

3

3

0 1

4

3

2

1'5
j

1'5
r
2s

wj

p j

r j 1

1

5 5

0'5
01'5 1

1010

r
3s r

1t2t3s1 2 3 4

fix j
r
1t3s

Figure 1.23: A schedule for 4 dedicated tasks

1

0 1 2 3

1'5
1

5

1

5

0'5
1'501'5 1

1010

1 2 3 4

1 2

3

2

4

1

∑wjCj & 10 (2'5) 10 (2) 5 (1) 5 (3 & 65

3sizej

wj

j

p j

r j

Figure 1.24: A schedule for 4 parallel tasks

74 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

tions 1.5.1–1.5.8, and in parts (2) and (3), Sections 1.4.9 and 1.4.10, we just apply
adopted transformations. However, in many things we add some novel non-trivial
ideas which were not used before.

As the first step of part (1), in Section 1.5.1, we perform basic structuring of the
problem. Similar to the single machine case, we can round processing times,
release dates, weights and introduce intervals.

As the next step of part (1), in Sections 1.5.5 and 1.5.4, similar to the job shop
case, we introduceprofilesand classify tasks ashugeandtiny ones.

As the final step of part (1), in Section 1.5.6–1.5.8, we formulate and prove
Smith’s rule for scheduling tiny tasks of the same profile. Following the main
ideas of our method, we first use an LP formulation, LP rounding procedure for
“assigning” tiny jobs to intervals, and then a special procedure for “packing” tasks
inside single intervals. From one side, the LP formulation and its rounding pro-
cedure here are similar to the ones in the single machine case. From another side,
the packing procedure here is similar to the one in the job shop case, we use a
PTAS for the makespan version of the problem [ABKM97, CM99, JP99b].

In part (2) of our method, Section 1.4.9, we apply the well known weight-shifting
and merging techniques. We enforce that there is at most a constant number of
tasks released at each interval, and their total processingtime is a small multiple
of the size of the interval.

Surprisingly, the main difficulty occurs in part (3) of our method. There is one
very important feature of the problem. Here, any task can require more than one
processor. Thus, while tasks run in a schedule, more “earlier” tasks can intersect
in a very irregular way blocking more “later” tasks.

In order to copy with this, we can enforce regulargapsin a schedule, see cor-
responding Sections1.5.2 and 1.5.3. Agap is an interval in time where all the
processors are idle. This simple idea allows us to show that in a near-optimal
schedule every task can be completed within a constant number of intervals after
its release date. Similar to the single machine case, as it described Sections 1.3.9
and 1.3.10, we can introduce a block structure and apply the dynamic program-
ming framework.

In total, we conclude with the following main result:

Theorem 1.5.1.There are PTASs for Pm�fix j �r j �∑w jCj , Pm�sizej �r j �∑w jCj and
Pm�setj �∑w jCj that compute for any fixed m andε � 0 accuracy,

�
1� ε�- approx-

imate schedules in O
�
nlogn� time.

Unfortunately, for the case of general multiprocessor tasks we can only define task
profilesin the case when tasks have no release dates. (The same technique works

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 75

for the case when preemptions are allowed.) In this particular case, we can follow
the same line of ideas and construct a PTAS. When we add release dates to general
multiprocessor tasks, the definition ofprofilesbecomes very complex. Here, we
just give some preliminary results and point out some main ideas which can lead
to a PTAS. However, we conclude with the following:

Conjecture 1.5.2. There is a PTAS for Pm�setj �r j �∑w jCj .

1.5.1 Basic Structuring

In the following we consider only dedicated and parallel versions of the problem.
For both variants we will usep" j andp j to denote the function and the processing
time associated with taskj. We will also useτ

�
j � to denote the the allotment of

task j. In the dedicated version, where it holdspτ j � p j if τ � fix j , andpτ j � ∞
otherwise, we defineτ

�
j � be equal to fixj . In the parallel version, where it holds

pτ j � p j if �τ � � sizej , andpτ j � ∞ otherwise, we define�τ�
j � � be equal to sizej .

To unify these two basic versions, we will usep j :� minτ pτ j to denote thelength
of task j. Notice that the lengthp j is just the processing time of jobj in both
dedicated and parallel but the general version.

To simplify notation we will use that 1�ε is integral (in particularε � 1�2m). For a
task j, we will useSj andCj to denote the start and completion time ofj. For a task
setX, we useD

�
X� :� ∑ jX p j to denote the total length ofX. As before,OPT

denotes the objective value of the optimal schedule,Ix denotes interval�Rx �Rx�1�
and �I �x denotes its lengthRx�1 � Rx, whereRx � �

1� ε�x for integerx.

As in previous cases, we first use geometric rounding to create a well-structured
set of task processing times, release dates and weights:

Lemma 1.5.3. With 1� ε loss and in O
�
n� time , we can enforce all pτ j , τ � 2m,

and rj be integer powers of1� ε.

Hence, all release datesr j are of the formRx � �
1� ε�x for some integerx.

Lemma 1.5.4. With 1 � ε loss and in time O
�
n�, we can enforce all wj �p j be

distinct.

Next, we use stretching to structure schedules:

Lemma 1.5.5. With1� ε loss, we can assume that all Sj � εpτ� j � j in a schedule.

Lemma 1.5.6. With1� ε loss and in O
�
n� time, we can enforce all rj � εp j .

Lemma 1.5.7. With1� ε loss, we can assume that any task crosses at most s/ �:log1�ε
�
1� 1

ε �; intervals in a schedule.

76 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

1.5.2 The Schedule-Shifting Technique

Take a feasible schedule. For each taskj, let τ
�
j � be the allotment,z

�
j � andy

�
j �

be whose indices for whichSj � Ry� j � andCj � Rz� j �. (See Figure 1.25.)

CjSj

τ$ j %
IyF j G IzF j G

Figure 1.25: Indices

Then, we create a new schedule by settingSEj � Sj � Rz� j � � Rz� j ��1 for all tasks
j. The new schedule is feasible, and the distance betweenCj and the end of
interval Iz� j � is preserved. This generatesε

�
Rz� j � � Ry� j � � additional idle time on

the processors ofτ
�
j � before the start of a taskj. See Figure 1.26. In a schedule

Cj

Cuj
b

RyF j G RzF j G
Sj Suj

RzF j G21RyF j G21

c

ba

a

τ$ j %
τ$ j %

pτF j G j

pτF j G j

Figure 1.26: Shifting

Sj � Ry� j � � a andCj � Rz� j � � b for a taskj. When constructing the new schedule,
a andb are preserved, i.e.CEj � Rz� j ��1 � b and the processors inτ

�
j � may be busy

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 77

up toRy� j ��1 � a. Thus, the created idle time for jobj is equal to

c � SEj � �
Ry� j � � 1 � a� � CEj � pτ� j � j � Ry� j ��1 � a� Rz� j ��1 � b � pτ� j � j � Ry� j ��1 � a �� ε

�
Rz� j � � Ry� j � � � �

Rz� j � � b� � pτ� j � j � �
Ry� j � � a�� ε

�
Rz� j � � Ry� j � � � Sj � pτ� j � j � Cj� ε
�
Rz� j � � Ry� j � � �

1.5.3 Creating of Gaps

A gapis an interval in time where all the processors ofM are idle. We can enforce
regular gaps in a schedule.

Lemma 1.5.8. With 1 � 8ε loss, we can assume that there is a gap within any
sequence of4s/�ε consecutive intervals of a schedule.

Proof. Take an optimal schedule of valueOPT. For an illustration see Figure 1.27
on the next page. We first partition it into a sequence ofsuperblocks, where each
superblock consists of 2s/�ε consecutive intervals. Heres/ � :log1�ε

�
1 � 1

ε �;,
Lemma 1.5.7. Next, we partition each superblock into 1�ε blocks, where each
block consists of 2s/ consecutive intervals. See Figure a) 1.27. There are 1�ε
blocks in a superblock. Hence, there is one block out of these1�ε blocks in which
the average weighted completion time of the tasks is at most an ε factor of the
total weighted completion time of the tasks that complete inthe superblock.

Take such a block, say blockB. Let b andbE � b � 2s/ � 1 be the indices of the
first and lastB’s intervals. Let alsot � Ib�ε2 be the middle point inB. Note that

Rb � t � Rb � Ib�ε2 � Rb
�
1 � 1�ε� � Rb�s< �

We split the tasks that complete inB into two subsetsT� andT� of tasks j with
completion timesCj � Rb � t andCj � Rb � t, respectively. See Figure a) 1.27.

We shift the optimal schedule. In this new schedule the tasksof T � T� # C�
run in �Rb�1 �Rbd�2�, i.e. in intervalsIb�1 � � � � �Ibd�1, and each taskj has at least
ε
�
Rz� j � � Ry� j � � idle time on the allotted processors ofτ

�
j �. See Section 1.5.2, and

Figure b) 1.27.

Then, we reschedule the tasks ofT as follows:

78 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

tasksTv tasksTT
Ibw

tasksTT Ibw T1RbT1 x t

Ib

IbT1 tasksTv

Rb x t

s7 intervals s7 intervals

s7 intervals s7 intervals

a crossing task

idle time

a)

b)

c)

Figure 1.27: Creating a gap

Step 1. Reschedule the tasks fromT� by eliminating all created idle time from
Rb�1 up toRb�1 � ti (i.e. the tasks are shifted backwards),

Step 2. Reschedule the tasks formT� by eliminating all created idle time from
Rb�1 � ti up toRbd�2 (i.e. the tasks are shifted forwards).

Thus, the idle time within all intervalsIb�i ��1 � � � � �Ibd �i ��1 is moved to the time
pointRb�i ��1 � t. See Figure c) 1.27.

Since in any schedule tasks start and complete consecutively, ands/ � :log1�ε
�
1�

1
ε �;, the total idle time in intervalsIb�i ��1 � � � � � Ibd �i ��1 is at least

bd �1

∑Z= b

εIZ � ε
�
Rb�2s< � Rb�

� εRb
��

1 � ε�2s< � 1�� Ib
��

1 � 1�ε�2 � 1�� Ib�ε2 �

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 79

Recall that each task crosses at mosts/ intervals. Thus, no task fromT� crosses
the time point̄t � Rb�1 � t. To observe that no task fromT� crosses̄t we use the
following fact. The distance between any task inT� and any task inT� on any
machine has to be at leastIb�ε2. Hence, since all tasks fromT� complete before
t̄ � Rb�1 � t � Rb�1 � Ib�ε2, no task is processed on any machine att̄. Thus,t̄ is
a gap.

Consider the tasks ofT� . By the above procedure, only their completion times
can increase dramatically. However, we can bound them as follows

Cj � Cj � ε
�
Rb�2s< � 1 � Rb� � Cj � εRb

��
1 � ε�2s< � 1 � 1�� Cj � εRb

��
1 � 1�ε�2�

1� ε� � 1� � Cj � εRb
�
2
�
1 � 1�ε�2 � 1�� Cj � Rb

�
5 � 2�ε� � Cj � 5Rb

�
1 � 1�ε�� Cj � 5t � 6Cj �

In a similar way we reschedule tasks in each superblock of theschedule. The
objective value of all blocks is just anε factor of OPT. Thus, by shifting and
rescheduling the objective value of the new schedule is at most�

1 � ε� �1 � 6ε�OPT � �
1 � 8ε�OPT�

Since there is a gap in each superblock, i.e. in a sequence of 2s/ �ε intervals, there
is a gap within any sequence of 4s/�ε consecutive intervals.

1.5.4 Profiles

For a taskj we can defineπτ � ∞ if pτ j � ∞, andπτ � 1 if pτ j � p j . Then, we
define �2M �-tupleπ � �

πτ�τ2M be theprofileof j.

Lemma 1.5.9. The number of distinct profiles is bounded by a constantν/.
Notice that two dedicated tasksj andk have the same profile iff fixj � f ixk, and
two parallel tasksj andk have the same profile iff sizej � sizek.

1.5.5 Huge and Tiny Tasks

We say that taskj is hugein an intervalIx if p j � ε2 �I �x�q/, andtiny otherwise.
We define the value of parameterq/ later in Lemma 1.5.16. We will writeHTx

80 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

andTTx to denote sets of huge and tiny tasks released atRx (HT for huge tasks
andTT for tiny tasks).

By Lemma 1.5.6, we can also bound the number of huge task sizesas follows:

Lemma 1.5.10.There are at most z/ � O
�
ε �q/� distinct sizes (pj powers of1� ε)

in HTx.

By using the schedule-stretching technique we can prove thefollowing:

Lemma 1.5.11.With1� ε loss, we can assume that no tiny task crosses an inter-
val in a schedule.

1.5.6 Scheduling Tiny Tasks: Smith’s Rule

We first need to introduce some notations. By Lemma 1.5.11 no tiny task crosses
an interval in a schedule. Then, for a tiny jobj we define two indicesx

�
j � � y

�
j �

such thatRx� j � � r j andSj �Cj � Iy� j �. Less formally, jobj is released atRx� j � and
completely scheduled in intervalIy� j �.
Smith’s Rule. Let j andk be two tiny tasks such thatx

�
k� � x

�
j � (hererk � r j)

andwk
pk

� w j
p j

(see Lemma 1.5.4). We say that tiny tasksobeySmith’s rule ify
�
k� �

y
�
j � (hereSk � Sj) for all such pairs of tasksj andk. In other words, if tasksk� j

are available in an interval, then taskk with greater valuewk�pk starts not later
than taskj with respect to intervalsIy�k� andIy� j �.
Now we can prove the following:

Lemma 1.5.12.With 1� 7ε loss, for each profileπ we can assume that all tiny
jobs ofπ obey Smith’s rule in a schedule.

Proof. We can briefly sketch the proof given in Sections 1.5.7,1.5.8as follows.
We first take an optimal schedule. Then, for each intervalIy we define setsYy

�
π� of

tiny jobs of profileπ processed insideIy. Then, by using valuesDy
�
π� � D

�
Yy

�
π��

we formulate an LP(π) which defines a fractional assignment of tiny jobs of pro-
file π to intervals. We show that any optimal LP solution can be rounded to an
integral assignment. This does not change the objective value but increases the
value of eachDy

�
π� by at mostε2 �I �y�q/. By using such an integral assignment

over all profilesπ, we can find new indicesy
�
j � and new setsDYy

�
π�. Then, tiny

jobs of profileπ obey Smith’s rule with respect to thesey
�
j �. Finally, by us-

ing the time-stretching technique and a PTAS for the makespan version of the

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 81

problem [ABKM97, CM99, JP99b], we replace all setsYy
�
π� by DYy

�
π� in the op-

timal schedule. This gives us a schedule with the objective function value at most�
1� 7ε�OPT in which all tiny jobs obey Smith’s rule.

1.5.7 Assigning to Intervals

Suppose we are given an optimal schedule. Take an intervalIy. Let Yy
�
π� be the

set of tiny tasks ofπ scheduled inside intervalIy.

LP Formulation. Then, we formulate the fractional assignment problem for all
tiny tasksj of profile π as the following LP(π):

Minimize Fπ
�
ξ� � ∑ j w j ∑y@x� j � ξ jyRy

s.t. (1) ∆y
�
π� � ∑ j ξ jy p j � Dy

�
π� � D

�
Yy

�
π�� for all y�

(2) ∑y@x� j � ξ jy � 1 for all j �
(3) ξ jy � 0 for all y � x

�
j � and j �

(1.71)

where the variables have the following interpretation:

ξ jy: the fraction of tiny taskj assigned to an intervalIy � �Ry�Ry�1�;
Dy

�
π�: the load in intervalIy � �Ry�Ry�1� on profileπ,

∆y
�
π�: the fractional load in intervalIy � �Ry �Ry�1� on profileπ, and

Fπ
�
ξ�: the average weighted fractional completion time of tiny tasks of profileπ.

Accordingly, the constraints have the following meaning:(1) in each intervalIy
the fractional load∆y

�
π� on profilepi is at mostDy

�
π�, (2)-(3) each tiny taskj is

assigned completely.

Informally, in the optimal schedule we allow tiny jobs of profile π be fractionally
processed in several intervals. From one side, we assign each yth fraction of job
j be completed in intervalIy � �Ry �Ry�1�, and takeRy as its “completion time”.
From another side, preserving “loads”Dy

�
π� � D

�
Yy

�
π�� in all intervalsIy, we

keep the schedule of huge jobs without changes.

As in Lemmas 1.3.10 and 1.4.15, we can bound the average weighted fractional
completion time as follows:

82 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Lemma 1.5.13.For any optimal solutionξ of the LP
�
π� it holds that

Fπ
�
ξ� � OPTE �ϕ� � (1.72)

where OPTE �ϕ� is the average weighted completion time of the tiny tasks of profile
π in the optimal schedule. Accordingly, it also holds that

∑
ϕ

Fϕ
�
ξ� � OPTE � (1.73)

where OPTE is the average weighted completion time of all tiny tasks in the opti-
mal schedule.

LP Rounding. Let ξ � �
ξ jy� be an optimal solution of the LP(π). If ξ is integral,

then for each tiny taskj there is exactly oney
�
j � such thatξy� j � j � 1. In other

words, an integral LP solution can be treated as an integral assignment of tiny
tasks of profileπ to intervals. As in Lemmas 1.3.9 and 1.4.16, we can prove the
following result:

Lemma 1.5.14.For each profileπ, an optimal solutionξ of the LP(π) can be
rounded into an integral one such that

(1) Fπ
�
ξ� does not increase;

(2) each∆y
�
π� increases by at mostε2 �I �y�q/;

(3) tiny tasks j of profileπ obey Smith’s rule with respect to intervals Iy� j � given
by roundedξ.

Now we combine integral assignmentsξ for all profilesπ. For each tiny taskj we
define new indexy

�
j � � x

�
j �, respectively. Then, by usingy

�
j �, for each interval

Iy and profileπ, we define setsDYy
�
π� of tiny tasks of profileπ that are assigned to

Iy. As in Lemmas 1.3.12 and 1.4.17, we can prove the following:

Lemma 1.5.15.For all tiny tasks j it holds that y
�
j � � x

�
j � and

∑w jRy� j � � OPTE � (1.74)

Furthermore, for each interval Iy and profile pi it holds

D
�DYy

�
π�� � D

�
Yy

�
π�� � ε2 �I �y�q/ � (1.75)

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 83

1.5.8 Packing in Single Intervals

Here, by using the results of Lemmas 1.5.14 and 1.5.15, we complete the proof of
Lemma 1.5.12.

First, we take an optimal schedule of valueOPT. For an illustration see Fig-
ure 1.28. Consider an intervalIx. Each task that runs inIx can be either tiny or
huge, and each huge task can be either crossing or non-crossing, see Figure 1.28
a). There are at most 2m huge crossing task. Then, we can define the setKx

of huge crossing tasks, and for each profileπ we define setsNx
�
π� andYx

�
π� of

non-crossing huge tasks and tiny tasks, respectively.

RxQ1Rx RxQ1 RxQ2

>I >x >I >xQ1

a)OPT b) $1) ε%OPT

Figure 1.28: Tasks in intervalIx�1

Now we apply time-stretching to the optimal schedule. We addε �I �x idle time
on machines in each intervalIx, see Figure 1.28 b). This increases the objective
function value by at most a factor of 1� ε. Furthermore, the tasks of setKx and
setsNx

�
π�, Yx

�
π� run in intervalIx�1.

Next, we use the results of Lemmas 1.5.14 and 1.5.15. For eachtiny task j we
find newy

�
j � � x

�
j �, and for each intervalIx we find new setsDYx

�
π� of tiny tasks.

We simply reschedule all tiny tasks in the schedule. Inside each intervalIx�1 we
replace the tiny tasks of setsYx

�
π� by the tiny tasks of setsDYx

�
π�.

Then, each tiny taskj completes atCj � Iy� j ��1. By Lemmas 1.5.14 and 1.5.15
we have that

∑
j

Cj � ∑
j

�
1 � ε�Ry� j ��1 � �

1 � ε�2OPTE � (1.76)

In order to get a feasible schedule, we reschedule the tasks of set Kx and sets
Nx

�
π�, DYx

�
π� inside each single intervalIx�1. This also increases the objective

function value by at most a factor of 1� ε, and the objective function value of the
final schedule is at most�

1� ε�3OPT � �
1� 7ε�OPT�

84 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

To complete the proof of Lemma 1.5.12, in the rest of this section we prove the
following result:

Lemma 1.5.16.Define q/ � ν/ �
2
�
m� 1�! � 1� b2ms<

ε5 c
. Then, the tasks of sets Yx

�
π�

can be replaced by the tasks of setsDYx
�
π� inside each single interval Ix�1.

General Problem. In order to prove the above stated lemma we need to solve
the following problem. We are given task setsKx, Nx

�
π�, Yx

�
π�, DYx

�
π� (over allπ).

It is known:

(i) there exists a schedule for the tasks of setKx and setsNx
�
π�, Yx

�
π� inside

intervalIx;

(ii) the length of setsYx
�
π� andDYx

�
π� differs by at mostε2 �I �x�q/;

(iii) for each taskj in Yx
�
π� or DYx

�
π� it holds p j � ε2 �I �x�q/.

Can we define the value of parameterq/ such that there exists a schedule for the
tasks of setKx and setsNx

�
π�, DYx

�
π� inside intervalIx�1?

Simplified problem. To simplify the description, we first consider the case
when the set of crossing huge tasksKx � /0. We also define

Tx
�
π� � Nx

�
π� # Yx

�
π� and Tx � #πTx

�
π� �

Then, all tasksj in setTx
�
π� have the same profileπ � �

πtau�τ2M , but differ in
lengthp j . Formally, each taskj in Tx

�
π� has processing timeπτ j � πτ � p j on the

processors ofτ � 2M.

Due to (i), there exists a schedule for the tasks of setsTx
�
π� which length is at most�I �x. By Lemma 1.5.7 any task crosses at mosts/ intervals. Thus, the total length

of the jobs inTx is at most the total time available withins/ intervals followingIx.
If m � 2 ands/ � 2 we can bound

D
�
Tx� � m

�
s/ �I �x� s< � � ms/ �

1 � ε�s< �I �x � ms/2s< �I �x � 2ms< �I �x� (1.77)

In the following we will use the known PTAS for the makespan version of the
problem [ABKM97, CM99, JP99b]. First, we deduce a schedule for the tasks of
setsTx

�
π�. By defining the value of parameterq/ we ensure that the schedule

length is bounded by�I �x�1 � �
1� ε� �I �x. Then, we show that this bound remains

valid even if we replace the tasks ofYx
�
π� by the tasks ofDYx

�
π� in Tx

�
π�. Finally,

for the general case when the set of crossing huge jobsKx �� /0, we change the
value ofq/.

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 85

Long and Short Tasks. We take the tasks inTx and number them by 0�1� � � � �nE
in order of non-increasing lengths

p0 � p1 � p2 � � � � � pnd � (1.78)

Here,nE � 1 is the total number of tasks inTx.

Next, we introduce an integerk/x and a constantq/ � 0. We will specify their
exact values later. In addition, we introduce setsUx, Lx andSx as follows. We first
define

Ux � � j � j � Tx andp j � ε2 �I �x�q/ � � (1.79)

Informally, we put all tasksj from setTx with lengthp j � ε2 �I �x�q/ into setUx.
Then, with respect to the number of tasks inUx and the value ofk/x we consider
two cases:

(1) If �Ux � � k/x then we putLx :� Ux andSx :� Tx eUx;

(2) If �Ux � � k/x then we put the firstk/x tasks 0�1� � � � �k/x � 1 into setLx, and other
tasksk/x �k/x � 1� � � � �nE into setSx.

For simplicity, we call the tasks ofLx long and the tasks ofSx short. Finally, for
each profileπ we define set

Sx
�
π� � Sx f Tx

�
π� �

Notice that in both cases (1) and (2) it holds that

Lx � Ux and Sx � Jx e Lx � (1.80)

Furthermore, the number of long tasks�Lx � :� min�k/x � �Ux � � � (1.81)

i.e. eitherUx � Lx or the firstk/x longest tasks fromUx are inLx.

Snapshots and Relative Schedules.A processor assignmentfor the long tasks
in Lx is a mappingτ : Lx � 2M which defines the allotmentτ

�
j � for each long

task j � Lx. Two long tasksk and j are calledcompatible, if τ
�
k� f τ

�
j � � /0. A

snapshotis a set of compatible tasks. Given a processor assignment, arelative
scheduleis a sequence of snapshotsM

�
1� � � � � �M �

g�, such that

86 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIMEg each long taskj from Lx occurs in a subsequence of consecutive snapshots
M

�
u j � � � � � �M �

v j �, 1 � u j � v j � g, andg any two consecutive snapshots are different.

For an illustration see Figure 1.29. The number of snapshots

g � 2�Lx �� (1.82)

Roughly speaking, each relative schedule corresponds to anorder of processing
of the long tasks. To any given non-preemptive schedule ofLx, one can associate
a relative schedule in a natural way by looking at every instant where a task ofLx

starts or ends, and writing the set of tasks of being processed with their allotments
right after that transition.

j

t0 tu j �1 tv j tg

M
�
1� M

�
u j � M

�
v j � M

�
g�

Figure 1.29: Long taskj in a relative schedule

Configurations and Free Processors. Given a setµ � M, a µ-configuration
C

�
µ� is a partition ofµ into non-empty sets. LetN

�
µ� be the total number of

µ-configurations and letC
�
µ�1� � � � �C�

µ�N�µ� be allµ-configurations. Notice that

N
�
µ� � N

�
M� � B

�
m� � m! � (1.83)

whereB
�
m� is themth Bell’s number [Knu68].

For a fixed processor assignment ofLx, τ : Lx � 2M, we consider a relative sched-
ule,M

�
1� � � � � �M �

g�. Then,

F
�
s� :� M e j

jM �s� τ
�
j �

is the set offree processorsin snapshotM
�
s�, s� 1� � � � �g. For each such setF

�
s�

we haveF
�
s�-configurationsC

�
F

�
s��i, i � 1� � � � �N�

F
�
s��.

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 87

LP Formulation. Assume that we have a processor assignment for the long
tasks inLx, τ : Lx � 2M. Let M

�
1� � � � � �M �

g� be a relative schedule ofLx with
respect to this assignment.

Assume that we have scheduled the long tasks ofLx as inM
�
1� � � � � �M �

g�. This
creates a structure where each snapshotM

�
s� represent an interval in which free

processors inF
�
s� do not process long tasks. For an illustration see Figure 1.29

on the preceding page. Our next goal is to use these free processors for executing
all short tasks inSx � #πSx

�
π�.

Recall that all tasksj in Sx
�
π� have the same profileπ � �

πτ�τ2M , but differ in
lengthp j . Thus, to execute all tasks inSx

�
π� on a processor setτ � 2M we need

pτD
�
Sx

�
π�� � pτ ∑ jSx �π� p j total processing time.

Here, we can formulate the relaxed problem as the following LP:

Minimize tg

s.t. (0) t0 � 0�
(1) ts � ts�1 � for s � 1� � � � �g�
(2) tv j � tu j �1 � pτ� j � j � for all j � Lx �
(3) ∑N�F �s��

i=1 xi �s � ts � ts�1� for s � 1� � � � �g�
(4) ∑g

s=1 ∑i :τC�F �s��i xi �s � ∑π πτ �D�
Sx

�
π�� �yτ �π � for all τ � 2M �

(5) xi �s � 0� for s � 1� � � � �g� i � 1� � � � �N�
F

�
s�� �

(6) ∑τ yτ �π � 1� for all π �
(7) yτ �π � 0� for all π �

where the variables have the following interpretation:

ts: a time point at which snapshotM
�
s� ends andM

�
s� 1� starts; here,t0 � 0 and

tg is the starting time and the finishing time of the schedule, see Figure 1.29
on the facing page;

xi �s: the length of theith F
�
s�-configurationC

�
F

�
s��i in snapshotM

�
s�; here, the

short tasks ofSx can be executed on processor setsτ � C
�
F

�
s��i during an

interval of lengthxi �s insideM
�
s�, see Figure 1.31 on page 92;

88 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

yτ �π: theτth fraction of tasks inSx
�
π� allotted to a processor setτ � 2M; Here, for

each profileπ � �
π�τ2M , πτ �D�

Sx
�
π�� is the total processing time of the

tasks inSx
�
π� allotted to a processor setτ � 2M.

The constants have the following meaning. Constraints(0)-(2) define a schedule
for the large tasks inLx with respect to snapshotsM

�
1� �M �

2� � � � � �M �
g�. Con-

straints(3) define a structure for allF
�
s�-configurationsC

�
F

�
s��i inside each

snapshotM
�
s�. Constraints(4), for each processor setτ � 2M, define a balance

between allxi �s configurationsC
�
F

�
s��i which have the processors ofτ and all

yτ �πth fractions ofSx
�
π� allotted to the processors ofτ. Constraints(6)-(7) define

that each setSx
�
π� is allotted completely to setsτ � 2M.

xi ystsv1 ts

F ,s.
CzF zs{{i

Figure 1.30: Inside a snapshot

Proposition 1.5.17.There exists a processor assignment and a relative schedule
of the long tasks in Lx such that tg � �I �x. Furthermore, if each D

�
Sx

�
π�� increases

by at mostε2 �I �x�2ν/, then tg increases by at mostε2 �I �x�2, i.e. tg � �I �x� ε2 �I �x�2.

Proof. Recall that there exists a schedule for the tasks ofTx in intervalIx. We just
“copy” the processor assignment and the relative schedule for the tasks inLx. Due
to the LP formulation, there exists a solution

�
t �x�y� of the LP such thattg � �I �x.

Let us fix such these processor assignment and relative schedule. Take
�
t �x�y�.

Then, from(3) of the LP we have

tg � g

∑
s=1

�
ts � ts�1� � g

∑
s=1

N�F �s��
∑
i = 1

xi �s� (1.84)

Now we increase eachD
�
S
�
π�x� by ε2 �I �x�2ν/. How much do we increasetg

solving the LP?

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 89

Fix the values ofy. Then, we find a minimal increase∆i �s in eachxi �s �� 0 such that
(0)-(5) of the LP are satisfied. (We also find the corresponding increase in each
ts �� 0.) Let x̃ � x� ∆ andt̃ be the new found values ofx andt, respectively. Then,
from (3) of the LP we have

t̃g � g

∑
s=1

N�F �s��
∑
i=1

x̃i �s� (1.85)

We increase the length of eachD
�
Sx

�
π� by ε2 �I �x�2ν/. Thus, in(4) of the LP we

have new total processing times

D̃τ
�
π� :� πτ � �D�

Sx
�
π� � ε2 �I �x�2h/ν/ �

� πτ �D�
Sx

�
π�� � πτε2 �I �x�2ν/ � (1.86)

By the definition of profileπ � �
πτ�τ2M it holds that allπτ � �1�∞�. Thus,

πτε2 �I �x�ν/ � ε2 �I �x�2ν/ � (1.87)

Look at (3), (4) of the LP. Here ˜x � x � ∆ and each∆i �s in a minimal increase in
xi �s �� 0 under fixedy. Hence, for eachτ in 2M there are two cases: (a)(4) holds
on τ as an exact equality, and (b)(4) holds onτ as a strong inequality.

Consider a processor setτ̄ in case (a). Then, for ˜x we have

g

∑
s=1

^
∑

i : τ̄C�F �s��i x̃i �s` � ∑
π

D̃τ̄
�
π� �yτ̄�π

� ∑
π

�
πτ̄ �D�

Sx
�
π� � ε2 �I �x�2ν/ � � (1.88)

Remember that for
�
t �x�y� in (4) of the LP it holds

g

∑
s=1

^
∑

i : τ̄C�F �s��i xi �s` � ∑
π

πτ̄D
�
Sx

�
π�� �yτ̄�π �

Thus, from ˜xi �s � xi �s� ∆i �s we have

g

∑
s=1

^
∑

i : τ̄C�F �s��i ∆i �s` � ε2 �I �x�2ν/ ∑
π

yτ̄ �π � (1.89)

90 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Recall that the values of∆i �s are minimal. Hence, each∆i �s �� 0 occurs at least
once in (1.89) while we run through such processor subsetτ̄ in case (a). Thus,
combining we have

t̃g � tg � g

∑
s=1

N̂�F �s��
∑
i=1

∆i �s`
� ∑̄

τ

g

∑
s=1

^
∑

i : τ̄C�F �s��i ∆i �s`
� ∑̄

τ
8ε2 �I �x�2ν/ ∑

π
yτ̄ �π9

� ε2 �I �x�2ν/ �∑
π

∑̄
τ

yτ̄ �π� �
(1.90)

From(6) of the LP we have

∑̄
τ

yτ̄ �π � ∑
τ2M

yτ �π � 1�
and by Lemma 1.5.9 we have

∑
π

∑̄
τ

yτ̄ �π � ν/ �
Thus, we get

t̃g � tg � ε2 �I �x�2� (1.91)

Allotment to Processors: Unbalanced Short Tasks. Take a processor assign-
ment forLx and a relative schedule with snapshotsM

�
1� �M �

2� � � � � �M �
g� as in

Proposition 1.5.17. Let
�
t �x�y� be an optimal solution of the LP with the objective

valuetg � �I �x.
Next, we fix the values oft andx. Look aty in (4) and(6) of the LP. There are
2m common constraints on allyτ �π. (See Appendix B on page 197.) Hence, we
can reassign the values ofy such that there are at most 2m distinct

�
τ �π� for which

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 91

1 � yτ �π � 0 (oneτ can correspond to several profilesπ), and for all the other either
yτ �π � 1 oryτ �π � 0 (yτ �π � 1 only for oneτ � 2M).

First, we allot the tasks inLx as it is defined in the processor assignment ofLx.
Next, we allot the short tasks ofSx to processors setsτ � 2M as follows. For each
profile π we allot the tasks ofS

�
π�x with respect to the values of

�
yτ �π�, τ � 2M. If

yτ �π � 1, then we allot all tasksj from S
�
π�x to the processors ofτ. If 1 � yτ �π � 0,

we select jobsj from S
�
π�x in a greedy manner until their total length is less than

D
�
S
�
π�x� �yτ �π �

and then we allot all selected tasks to the processors ofτ. Here, we also allot the
last selected taskj, which can cause the exceed of valueD

�
S
�
π�x� �yτ �π, marking

it asunbalanced. Since there are at most 2m distinct
�
τ �π� for which 1� yτ �π � 0,

there are at most 2m such unbalanced tasks inSx.

Deducing a Schedule. Now we want to deduce a schedule for the tasks inLx

andSx. We use snapshotsM
�
1� �M �

2� � � � � �M �
g�, solution

�
t �x�y�, and allotments

for Lx andLx as it is defined above.

First, we schedule the tasks inLx with respect to snapshotsM
�
1� �M �

2� � � � � �M �
g�

and the values oft. Due to the LP formulation, it gives a feasible schedule.

Next, we schedule the short tasks ofSx on the free processors inF
�
s� inside snap-

shotsM
�
s�, s � 1� � � � �g, as follows. Fors � 1� � � � �g we select configurations

C
�
F

�
s��i with xi �s � 0, i � 1� � � � �N�

F
�
s��. Then, for eachτ � C

�
F

�
s��i we select

the tasks inSx allotted toτ (except the unbalanced ones) in a greedy manner un-
til their total length does not exceedxi �s � 0. Then, we schedule these selected
tasks on the processors ofτ inside an interval of lengthxi �s � 0 inside snapshot
M

�
s�. (For an illustration see Figure 1.30 on page 88.) If it happens that for some

τ � C
�
F

�
s��i the selected tasks do not fit inside intervalxi �s � 0, we increase its

length by a small value∆i �s. At the end of the procedure, we assign the unbalanced
tasks in a similar way.

To remain correct, we always adjust the values ofts such thatts� ts�1 (s� 1� � � � �g)
increases by

∆
�
s� � N�F �s��

∑
i=1

∆i �s�
called thesnapshot enlargement. (See Figure 1.31 on the next page.) Then, the
length of the deduced schedule is at most

g

∑
s= 1

�
ts � ts�1� � tg � g

∑
s=1

∆
�
s� � tg � ∆x � (1.92)

92 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

∆$2% ∆$3%t0

M $1% M $2% M $3%

Figure 1.31: Deducing a schedule

where

∆x � g

∑
s= 1

∆
�
s� (1.93)

is the the totalschedule enlargement.

Defining the values ofk/x and q/2. Here, our goal is to define the values ofk/x
andq/ such that

∆x � ε2 �I �x � 2� (1.94)

Remember the allotment procedure. We add∆i �s to xi �s only in two cases. In the
first case we accommodate a short task which cannot fit into an interval of length
xi �s � 0. In the second case we accommodate an unbalanced short task.

There are at most 2m unbalanced tasks. From (1.82) and (1.83), there are at most
2�Lx �B�

m� intervals. In total, we add∆i �s to xi �s for accommodating at most

2�Lx �B�
m� � 2m � 2m�1� �Lx �B�

m��
tasks fromSx. Now we use (1.78) and (1.80). By (1.93), we can bound the total
schedule enlargement as follows

∆x � 2m�1�
p>Lx > � p>Lx > � 1 � � � � p>Lx > � >Lx >B�m��1� � (1.95)

i.e. 2m�1 times the total length of the�Lx �B�
m� longest tasks inSx.

Next we use the following result.

Proposition 1.5.18 ([CM99, JP99b]).Suppose p0 � p1 � � � � � pnd � 0 is a
sequence of real numbers and P� ∑nd

j = 0 p j . Let β be a nonnegative integer,
α � 0, and assume that nE is sufficient large (i.e. all the indices of the pj ’s in the

statement are smaller than nE; e.g. nE � �
β � 1� p1

α q suffices). Then, there exists an

integer k� k
�
β �α� such that pk � � � � � pk� βk�1 � α �P, and k� �

β � 1� p1
α q �1.

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 93

From (1.77) and (1.78), we can find an upper boundP on ∑nd
j = 0 p j . We simply

define

P � 2ms< �I �x� α � ε2� �
22m�12ms< � and β � B

�
m� � (1.96)

Then, by Proposition 1.5.18 we can define

k/x :� k
�
β �α� � �

B
�
m� � 1� b2ms<QmQ2

ε2 b�1
(1.97)

such that

2m�1�
pk<x � pk<x�1 � � � �pk<x�k<xB�m��1� � ε2 �I �x�2� (1.98)

In the following we define the value ofq/. Consider case (1). We have�Lx � � k/x
and �Ux � � k/x. Then,∆x � ε2 �I �x � 2 holds by (1.95) and (1.98). Consider case (2).
We haveLx � Ux, Sx � Jx eUx. Then, �Lx � � �Ux � � k/x for each taskj in setSx it
holdsp j * ε2 �I �x�q/. Furthermore, by (1.98) we have�Lx � � k/x � �

B
�
m� � 1� b2ms<QmQ2

ε2 c �1 � (1.99)

Then, by (1.95) we have

∆x � 2m�1�
p>Lx > � p>Lx >�1 � � � � p>Lx >� >Lx >B�m��1�

� 2m�1 �Lx �B�
m� 8ε2 �I �x

q/ 9
* �Lx ��B�

m� � 1�2mQ1 8ε2 �I �x
q/ 9 �

(1.100)

For 2m � 1�ε andm � 2 we define

q/ � ν/ � �2m! � 1� b2ms<
ε5 c

� �
2m! � 1� b2ms<Q3m

ε2 c
� �

2B
�
m� � 1� b2ms<QmQ2

ε2 c�2mQ1�1

X 2ν/ �
(1.101)

Then, from (1.99) and (1.100) we have∆x � ε2 �I �x � 2.

94 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Solving the Simplified Problem. One can see that we have deduced a schedule
for the tasks of setsTx

�
π� � #Nx

�
π� # Yx

�
π�. From (1.92) and (1.94) the length of

the deduced schedule is at most

tg � ∆x � tg � ε2 �I �x�2 � �I �x � ε2 �I �x�2 � �
1� ε� �I �x � �I �x�1� (1.102)

Furthermore, even if we replace the tiny tasks ofYx
�
π� by the tiny tasks ofYx

�
π�

in each setTx
�
π�, we will be able to deduce a schedule for the tasks of setsTx

�
π�.

Indeed, all new tasks fromTx
�
π� will fall into set Sx

�
π� of short tasks. (See the

definition of setSx and setsSx
�
π�.) Due to (ii) and (iii) in the definition of general

problem, and (1.101), this increases the value ofD
�
Sϕ̄

x � by at most

ε2 �I �x�q/ * ε2 �I �x�2ν/ �
By Proposition 1.5.17, the objective function valuetg increases by at mostε2 �I �x�2,
i.e.

tg � �I �x � ε2 �I �x�2�
Thus, by following the same line of ideas, we can deduce a schedule which length
is bounded by

tg � ε2 �I �x�2 � ε2 �I �x � 2 * �
1� ε� �I �x � �I �x�1� (1.103)

Solving the General Problem. Clearly, we can also follow all above procedures
in the case when the set of crossing huge tasksKx �� /0. However, we need to adjust
the values ofk/x andq/. Furthermore, we need to adjust the processing times of
the crossing tasks, see Figure 1.28 b) on 83.

We simply add all tasks inKx into setLx of long tasks. As we discussed, there are
at most 2m crossing tasks. Hence,�Kx � � 2m and the number of snapshots in any
relative schedule can be bounded as follows

g � 2�Lx � � 2
� �Lx e Kx �� 2m� � 4m�Lx e Kx ��

Then, in (1.96)β changes to 4mB
�
m� and we have

�LxeKx � � k/x � k
�
β �α� � �

B
�
m� � 1� b2ms<QmQ2

ε2 c �1 �
In (1.100) we also get

∆x � 2m�1�
2mB

�
m� �LxeKx �� |ε2 �I �x�q/}

� �LxeKx ��2mB
�
m� � 1�2mQ1�1 |ε2 �I �x � q/} �

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 95

Similarly, we can define

q/ � ν/ �2�
m� 1�! � 1� b2ms<

ε5 c
� ν/ �2mB

�
m� � 1� b2ms<QmQ2

ε2 c�2mQ1�1

X 2ν/ �
Hence, we can claim (1.103).

In total, we can deduce a schedule for the tasks of setKx and setsNx
�
π�, DYx

�
π�

which will fit inside intervalIx�1. This completes the proof of Lemma 1.5.16.

1.5.9 Weight-Shifting and Merging

After we have proved the modified Smith’s rule for tiny jobs, the compacting step
of our algorithm is quite simple. We can follow the same line of ideas as in one
machine case 1�r j �∑w jCj . We simply use weight-shifting and merging described
in Sections 1.3.7 and 1.3.8, respectively.

Weight-Shifting. Assume that there are a lot of tasks at someRx. Which tasks
can wait until the next interval? Consider huge tasksHTx and tiny tasksTTx.
Take one profileπ. The tasks ofHTx

�
π� having the same size must complete by

decreasing weight. By Lemma 1.5.10 there is at most a constant number of such
sizes. The tasks ofTTx

�
π� must complete by decreasing ratiow j �p j . We select

only the tasks that can be potentially scheduled inIx.

Lemma 1.5.19.With 1 � O
�
ε� loss and in O

�
nlogn� time, we can enforce that

D
�
TTx� � t / �I �x and �HTx � � H / at each release date Rx, where t/ and H/ are

some constant.

Merging. At each release date we partition the ordered set of tiny jobsTTx
�
π�

into sets of roughly equal lengthH ε2 �I �x�2q/ (but less thanε2 �I �x�q/). Each such
set creates a new tiny job with the weight equal to the total weight of the set.

Lemma 1.5.20.With 1 � O
�
ε� loss and in O

�
nlogn� time, we can enforce that�TTx � � T / and HTx � � H / at each release date Rx, where T/ and H/ are some

constant.

96 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

1.5.10 Blocks and Dynamic Programming

Here, we first use the result of Lemma 1.5.8 and then we follow the known ideas of
Lemmas 1.3.8,1.3.14. We can consider only near-optimal schedules where every
job to be completed within a constant number of intervals after its release date.

Lemma 1.5.21.With1� O
�
ε� loss, we can assume that each job completes within

d/ intervals after its release, where d/ is some constant.

Similarly to Section 1.3.9, we can define blocks, and then usethe dynamic pro-
gramming framework presented in Section 1.3.10. The combination of the struc-
turing and compacting steps with a dynamic programming algorithm gives a PTAS
with O

�
nlogn� running time. This completes the proof of Theorem 1.5.1.

1.5.11 Extension to General Multiprocessor Tasks

Let us consider the problem of scheduling general multiprocessor tasks. We are
given a set ofn tasksT � �1�2� � � � �n� and a setM � �1� � � � �m� of m processors.
Each taskj � T has a positive weightw j , a release dater j , and an associated
function p" j : 2M �� !� # ��∞� that gives the processing timepτ j of task j in
terms of the set of processorsτ � M that areallottedto j. (Here 2M denotes the set
of all non-empty subsets ofM.) Each processor can work on at most one task at a
time, and given anallotmentτ

�
j � � M for a task j � T, the processors ofτ

�
j � are

required to execute taskj in union duringpτ� j � j time units. Here we assume that
m is fixed, there are no restrictions onp" j , and the goal is to find a task allotment
and a non-preemptive feasible schedule under this allotment such that∑w j Cj is
minimized.

Scheduling without Release dates. Here we assume that there are no release
dates, i.e. allr j � 0. For each taskj � T we also define thelength pj � minτ2M pτ j .

We first follow the same line of ideas as in Sections 1.5.1. We create a well-
structured set of task processing times and weights.

Lemma 1.5.22.With1� ε loss and in O
�
n� time , we can enforce all pτ j , τ � 2m,

be integer powers of1� ε.

Lemma 1.5.23.With 1 � ε loss and in time O
�
n�, we can enforce all wj �p j be

distinct.

Lemma 1.5.24.With1� ε loss, we can assume that all Sj � εpτ� j � j in a schedule.

1.5 A PTASFOR THE MULTIPROCESSORTASK SCHEDULING PROBLEM 97

Lemma 1.5.25.With 1 � ε loss, we can assume that any task crosses at most
s/ � :log1�ε

�
1� 1

ε �; intervals in a schedule.

There are no changes in Section 1.5.3. However, we will need the following result.

Lemma 1.5.26.With1� O
�
ε� loss, in any schedule we can assume all allotments

τ
�
j � be such that pτ� j � j � h/ � p j , where pj � minτ pτ j is the length of task j and

h/ is some common constant.

Proof. Take a feasible schedule of valueOPT. By Lemma 1.5.8, there are at most
4s/�ε intervals between two consecutive gaps. If there is a gap inIx, the total time
available in 4s/�ε next intervals can be estimated as follows

mIx
�
1� ε�4s< ε � h/ �

ε2Ix�2m� �
whereh/ is some constant. If there are some tasksj with pτ� j � j � h/ � p j in these
intervals, then running them on the fastest processor subsets requires at mostε2Ix
idle time. (There are at most 2m subsets.) By using time-stretching we createεIx
idle time in each gap, and reschedule the tasks. The objective value of the final
schedule is at most

�
1� 6ε� �1� ε�OPT � �

1� 14ε�OPT.

Profiles. For a taskj we can definepτ j � ∞ wheneverpτ j � h/ � p j . Now we
define theprofileof j to be an�2M �-tupleπ � �

πτ�τ2M such thatpτ j � p j � �1� ε�πτ.
We adopt the conversion thatπτ � ∞ if pτ j � ∞.

Lemma 1.5.27.The number of distinct profiles is bounded by a constantν/.
Release Index. By Lemma 1.5.24, we can assume that any taskj starts later
εp j . We introduce an indexx

�
j � for each taskj that corresponds to the interval

Ix� j � earlier which processing ofj can not be started. By Lemma 1.5.24, we put
Rx� j � � εp j � Rx� j ��1, and callx

�
j � therelease indexof j.

Huge and Tiny Tasks. We say that taskj is huge in an intervalIx if p j �
ε2 �I �x�q/, andtiny otherwise. Then,HTx andTTx are sets of huge and tiny tasksj
with x

�
j � � x.

A PTAS. Now we have profilesπ and release indicesx
�
j �. Furthermore, we

have a boundh/ on the difference between lengthp j and all processing times
pτ j . By adjusting the value of parameterq/ and using a PTAS for the makespan
version of the problem [JP99a], we can prove Smith’s rule. Then, we can proceed
with the same procedures in compacting and dynamic programming. As for the
parallel and dedicated case, this gives a PTAS withO

�
nlogn� running time.

98 ON M INIMIZING AVERAGE WEIGHTED COMPLETION TIME

Scheduling with Release Dates. As we saw, rounding of general multiproces-
sor tasks without release dates is quite simple. However, assoon as release dates
are introduced, the problem becomes more complex. It can happen that some
tasks cross a release date making some processors busy for next several intervals.
Then, a new released task should either wait until the fastest processors are free
or try to run on some other ones which, it can happen, are much slower. Thus, the
bound in Lemma 1.5.26 and the definition of profiles do not work.

From another side, by Lemma 1.5.8 there is a gap within any sequence of 4s�ε
consecutive intervals. Letx

�
j � andy

�
j � be whose indices for whichr j � Rx� j � and

Sj � Ry� j �. Then, we can reformulate the result of Lemma 1.5.26 as follows

Lemma 1.5.28.With 1� ε loss, in any schedule we can that for each task j that
either the processing time pτ� j � j � h/ � p j or y

�
j � � x

�
j � � 4s/�ε.

We note that the special casepτ� j � j � h/ � p j occurs when, at timer j � Rx� j �, the
processors ofτ

�
j � are busy processing a crossing task, whose processing time

spans all of the intervalIx� j � and beyond. Thus, if we know the schedule of the
crossing tasks, we can, for each taskj, replacep j by

min�pτ j �processors ofτ are not busy at timer j

with a crossing task spanning all ofIx��
Since we do not know ahead of time the schedule of the crossingtasks, the dy-
namic program will have to perform these updates dynamically.

Furthermore, there is a need for a more suitable definition ofhuge and tiny task.
Here, we have to add the task processor allotment and the length of an interval
where the task is scheduled. In this case we have to “guess” a lot of information
before we can deduce a schedule. Hence, we can conclude that there is a need for
a special a number of new ideas which would replace Smith’s rule, the weight-
shifting technique, and the merging technique.

1.6 CONCLUDING REMARKS

With this work we continue a series of recent papers on approximation algorithms
for scheduling problems with the average weighted completion time objective;
see, in particular, [ABC�99, CPS�96, Che98, HSSW97, Sch96, Shm98, Sku98].
On one hand, one can use several rounding techniques which transform optimal
solutions to LP relaxations to near-optimal solutions. This idea leads to many
good practical approximation algorithms. On the other hand, one can use the
input transformation technique and the weight-shifting technique. This idea leads

1.6 CONCLUDING REMARKS 99

to polynomial time approximation schemes (PTASs): algorithms that compute�
1� ε�-solutions in polynomial time, but exponential in 1�ε.

Thereby, the results obtained show that a combination of both these ideas is a quite
powerful method for designing PTASs. They also prove the strength of PTASs
for the makespan version of the problem. In fact, if we consider the problem of
scheduling on a single machine, there is no need for some special techniques.
However, if we consider the job shop problem or the multiprocessor scheduling
problem, we cannot avoid using PTASs for the makespan versions. One of the
interesting aspects here is that we do not really use it as a subroutine, but rather as
a part of our proof technique which includes LP formulations, rounding of opti-
mal LP solutions to integer assignments, and scheduling jobs (tasks) inside single
intervals. This fits nicely with the observation that in the single machine problem
Smith’s rule for tiny jobs can be simply obtained by rounding, see Sections 1.3.4
and 1.3.5,1.3.6.

We improve and generalize a number of results presented earlier in [CPS�96,
CLL98, ABC�99, ABKM00, ABF�00, FJP01b]. However, many interesting
questions remain. Though we have obtained PTASs for the problems with a fixed
number of machinesm, the running time of these algorithms is impractical. Basi-
cally, we depend on the running time of PTASs for the makespanversions and the
running time of the enumeration procedure in dynamic programming. Although
desirable, we do not believe that a running time of the formf

�
m� �poly

�
n1 ε�, for

a
�
1� ε�-approximation, is achievable. Regarding the job shop scheduling prob-

lem, we considered the case when the number of operations perjob µ is a fixed
constant. Indeed, one of the most interesting questions is extending of our results
for an arbitrary (not fixed)µ. However, to our best knowledge, there is no PTAS
known for the corresponding makespan variant of the problem, and we rather ex-
pect the discovery of some inapproximability results. For future results, it would
be interesting if new more powerful technique be developed and our conjecture be
proven.

CHAPTER 2

DISTANCE CONSTRAINEDLABELING OF DISK

GRAPHS

2.1 INTRODUCTION

The frequency assignmentproblem (FAP) addresses questions pertinent to the
point-to-point communication inradio/mobile telephonynetworks. It asks for an
assignment of frequencies to transmitters so as to avoid interference in a situation
when signals of similar frequencies are used in the same location. It also asks that
the assignment should use as less frequencies as possible.

Another important aspect of the FAP concerns the fact that the number of trans-
mitters in modern communication networks increases. This means that the corre-
sponding transmitter systems should be flexible to possiblechanges, e.g. installing
or disinstalling of a group of transmitters. Hence, an assignment of frequencies to
new transmitters should not lead to major changes in the already existing transmit-
ter system, and should not decrease the quality of communication. Thus, taking
into account all these features, one needs to consider the FAP as an on-line prob-
lem.

Figure 2.1: Transmitter - Disk

The most common model for an instance of the FAP is theinterference graph.
Each vertex of the interference graph represents a transmitter. If simultaneous

102 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

broadcasting by two transmitters may cause an interference, then they are con-
nected by an edge in the interference graph. Often interference graphs are as-
sumed to have a special structure, e.g. planar graphs, or grids [vdHLS98].

Alternatively, one can associate the coverage area of a transmitter with a disk of a
particular diameter. Then, if two disks intersect, the vertices are connected by an
edge in the interference graph . In this case, the underlyinginterference graph is
a disk graph, that is the intersection graph of disks in the plane.

1 3

2

2

1

3

3
2

Transmitters

Interference Graph

Coloring

Figure 2.2: FAP – Coloring

Regarding the assumption that a pair of “close” transmitters should be assigned
different frequencies, the FAP is equivalent to the problemof coloring the inter-
ference graph. (See Figure 2.2.)

Coloring. A (vertex) k-coloring of a graphG � �
V�E� is a functionc : V ��1� � � � �k� such thatc

�
u� �� c

�
v� wheneveru is adjacent tov. If a k-coloring ofG

exists, thenG is calledk-colorable. Thechromatic numberof G is defined as

χ
�
G� � min�k : G is k-colorable��

However, it was observed in [Hal80] that the signal propagation may affect the
interference even in distant regions (but with decreasing intensity). Hence, not
only “close” transmitters should get different frequencies, but also frequencies
used at some distance should be appropriately separated. Inthis case, the FAP can
be modeled as the problem ofdistance-constrained labelingof the interference
graph [Lee98]. For an illustration see Figure 2.3 on the nextpage.

Distance Constrained Labeling. Let p1 � p2 � � � � � pk be a non-increasing se-
quence of positive integers, calleddistance constraints. An L�p1 ���� �pk�-labeling, or

2.1 INTRODUCTION 103

1 3

5
8

6

2
4

7

1

6

3

5

2

4

2
2

2

1
1

8

7

1 31
1

1
3 2

1
2

3

2

2

1
1

Coloring L(2,1) −labeling

Figure 2.3: FAP –L�2�1�-labeling

a distance constrained labeling, of a graphG is a functionc : V
�
G� � �1� � � � �L�

such that�c�
u� � c

�
v� � � pi whenever the distance betweenu andv in G is at least

i, for i � 1� � � � �k. If a L�p1 ���� �pk�-labeling ofG exists, thenG is calledL�p1 ���� �pk�-
labeled. The

�
p1� � � � � pk�-labeling number ofG is defined as

χ�p1 ���� �pk� �G� � min�L : G is L�p1 ���� �pk�-labeled��
First, we can observe the following simple properties. Ifk � 1 andp1 � 1, then

χ�1� �G� � χ
�
G� � (2.1)

whereχ
�
G� is the chromatic number ofG. If p1 � p2 � � � � � pk � 1, then

χ�1�����1� �G� � χ
�
Gk� � (2.2)

whereGk is thek-th power ofG, i.e. a graph which arises fromG by adding the
edges which connect all the vertices at the graph distance atmostk. Furthermore,
as it was shown in [GY92, FK02], for any integert it holds

χ�t p1 �����t pk� �G� � t � �χ�p1 �����pk� �G� � 1� � 1� (2.3)

Hence, we can assume w.l.o.g. that all integersp1 � � � � � pk have no common divisor.
Combining (2.2) and (2.3), we can bound

χ�p1 �����pk� �G� � χ�p1 �����p1� �G�
� 1 � p1

��χ �1�����1� �G� � 1�
� 1 � p1

�
χ�1� �Gk� � 1� �

(2.4)

104 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

Accordingly, fork � 2 and
�
p1� p2� � �

2�1� we have

χ�2�1� �G� � χ �2�2� �G�
� 2

�
χ�1�1� �G� � 1� � 1

� 2χ �1� �G2�
� 2χ

�
G2� �

(2.5)

McCormick [McC83] showed that for any fixedk � 2 finding the value ofχ
�
Gk�

is an NP-hard problem. Furthermore, even if one restricts toa planar graphG,
computingχ

�
G2� is still an NP-hard problem. There is the long-standing Wegner’s

conjecture [Weg77]: For any planar graphG with the maximum degree∆
�
G� � 8,

the chromatic number of the 2nd power graphG2 is at least:3
2∆; � 1. There are a

number of recent results coming closer and closer to the conjectured bound. The
current best resultχ

�
G2� � 5

3∆ � 78 is due to Molloy & Salavatipour [MS].

The most intensively studied case of distance-constrainedlabeling isk � 2 and�
p1 � p2� � �

2�1�. The existence of anL�2�1�-labeling was explored for differ-
ent graph classes in [BKTvL00, CK96, GM96, GY92, vdHLS98]. The exact
value of χ �2�1� can be derived forcycles, and there are polynomial-time algo-
rithms which compute the value ofχ�2�1� for treesandco-graphs[CK96]. For
any fixed L � 4, the problem of recognizing graphsG such thatχ �2�1� �G� �
L is NP-complete [FKK99]. For a planar graphG, the problem of deciding
whetherχ�2�1� �G� � 9 was shown to be NP-complete in [BKTvL00]. Molloy
& Salavatipour [MS] presented an approximation algorithm which produces an
L�p1 �p2�-labeling of a planar graphGwith the largest label at most5

3

�
2p2 �1�∆�

G��
12p1 � 144p2 � 78.

It is expected that for everyk-tuple of distance constraints
�
p1 � � � � � pk� and a

graphG, there exists a boundL0 such that for everyL � L0 the decision prob-
lem χ�p1 �����pk� �G� � L is NP-complete. So far, this conjecture has been proven for
k � 2 and

�
p1 � p2�, wherep1 � 2p2 [Fia00].

Disk Graphs. The intersection graphG of a setD of disks in the plane is called
a disk graph, andD is called thedisk representationof G. Thediameter ratioof
D is denoted byσ

�
D�. If all disks ofD have unit diameter andσ

�
D� � 1, thenG

is called aunit disk graph. If 1 * σ
�
D� � σ for some constantσ, thenG is called

a σ-disk graph.

2.1 INTRODUCTION 105

Interestingly, every planar graph is acoin graph, i.e. the intersection graph of
interior-disjoint disks [Koe36]. Hence, the class of disk graphs is more general
than the class of planar graphs. The recognition problem of a(unit, σ-) disk graph
is NP-hard [BK96, BK98, HK01]. Hence, an algorithm that works on the set of
graph’s disks as the input is substantially weaker than one which works only on
the sets of graph’s nodes and edges. From this point of view, the requirement of
the disk representation of a disk graph is very strong. From another side, it is not
hard to find the disk representation of a disk graph when dealing with real-world
applications, e.g. in constructing the interference graphfor a radio and/or mobile
telephony network.

There are a number of results on coloring of disk graphs. For aunit disk graph, the
3-coloring is NP-complete even when the disk representation is given [CCJ90].
There are a 3-approximation algorithm [BK98, Pee91] and a 5-competitive al-
gorithm [Mal97, Pee91]. Both algorithms assume the knowledge of the disk
representation of a disk graph, but they can be also easily adjusted to the gen-
eral case [EF01]. Regarding disk graphs, there is a 5-approximation algorithm
which uses the disk representation of a disk graph [Mal97]. On the other hand,
there is no online coloring algorithm with a constant competitive ratio for planar
graphs [GL88]. Hence, there is no such an on-line algorithm for general disk
graphs as well.

Our Results. Here we consider the problem of distance-constrained labeling of
σ-disk graphs. We present several off-line and on-line algorithms for the case
of general distance constraints

�
p1� � � � � pk� and for the case whenk � 2 and�

p1 � p2� � �
2�1�.

First, for a fixedk-tuple of distance constraints
�
p1� � � � � pk� we give an on-line

L�p1 �����pk�-labeling algorithm which requires the disk representation ofσ-disk graphs,
i.e. it works on a set of disksD with σ

�
D� � σ as the input. The algorithm is

based on the so-calledhexagonal tiling, circular labeling, andfirst-fit techniques.
We derive an upper bound on its competitive ratio and show foreach fixedk-tuple�
p1 � � � � � pk� of distance constraints and each fixed diameter ratioσ the on-line

algorithm is constant competitive. As an example, we demonstrate the algorithm
for the casek � 2 and

�
p1 � p2� � �

2�1�. We show that forσ-disk graphs with at
least one edge andσ � �7�2 the competitive ratio of the algorithm is bounded
by 16�67. The ratio also tends to 12�5 as the clique number of a graph grows to
infinity.

Next, we derive lower bounds for on-line coloring and labeling. We consider the
case when the disk representation of disk graphs is known. Westart with simple
lower bounds for unit disk graphs. We show that no on-line coloring algorithm

106 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

can be better than 2-competitive, and no on-lineL�2�1�-labeling algorithm can be
better than 5-competitive. Then, we switch to disk graphs. We prove that in the
case when either the disk representation of disk graphs is not given or the diame-
ter ratio is not bounded, no on-line labeling algorithm witha constant competitive
ratio exists. In addition, we give a lower bound on any general L�p1 ���� �pk�-labeling
algorithms forσ-disk graphs. By using this result we show that our on-line label-
ing algorithm is asymptotically optimal for the class of unit disk graphs.

Finally, we deal with the off-line setting. We explore the casek � 2 and
�
p1� p2� ��

2�1�. We present two approximation algorithms for unit disk graphs. The first
algorithm is based on the so-calledcutting technique, which uses the disk repre-
sentation of a unit disk graph. The second algorithms isrobust, what is, it does not
require the disk representation, and it either outputs a feasible labeling or shows
that the input is not a unit disk graph. The approximation ratio of thecuttingalgo-
rithm is bounded by 12, whereas the approximation ratio of therobustalgorithm is
bounded by 10�67. The bound also tends to 9 and to 10 as the clique number of a
unit disk graph grows to infinity, respectively. Finally, wepresent a simple offline
L�p1 ���� �pk�-labeling algorithm forσ-disk graphs which does not require the disk
representation. For each fixedσ andk the approximation ratio of the algorithm is
constantO

�
k2σ2�.

The following table summarizes the known and new online and approximation
algorithms for coloring and labeling problems on unit disk graphs (UDG), onσ-
disk graphs (σ-DG), and on disk graphs (DG).

Offline Online) I) I
Coloring

UDG 3 [Pee91] 3 [Pee91] 5 [Mal97, Pee91] 5 [Mal97, Pee91]
σ-DG 5 [Mal97] 5 [Mal97] ~�� YES [EF01]
DG 5 [Mal97] 5 [Mal97] NO [EF01] NO [GL88]

LF2�1G-labeling
UDG 12 ~�� 10'6 ~�� 16'67 ~�� NO ~��

LFp1�����pkG-labeling
UDG YES ~�� YES ~�� YES ~�� NO ~��
σ-DG YES ~�� YES ~�� YES ~�� NO ~��
DG ? ? NO ~�� NO ~��

Here, “+/-” shows either the disk representation of graphs is given or not; “YES”
means a constant competitive algorithm; “NO” means that no constant competi-
tive algorithms can exist; “?” shows an open problem; “���” means a result pre-
sented in this chapter; “number” corresponds to the approximation ratio or the
competitive ratio of the respective algorithm.

2.2 PRELIMINARIES 107

Last Notes. Let A be an algorithm which works on disk graphs. LetD ��D1 �D2� � � � �Dn� be a set of disks. LetG be the disk graph ofD. If A works
on D as the input, we say thatA requiresthe disk representation ofG, and if A
works onV

�
G� andE

�
G� as the input, we say thatA does not requirethe disk

representation ofG. We say that an algorithmA is anoffline L�p1 �����pk�-labeling
algorithm if it runs in polynomial time and outputs a proper labeling ofthe ver-
tices ofG. If the maximum label used is at mostρ �χ �p1�����pk� �G�, thenA is called
anρ-approximationalgorithm. The valueρ is called theapproximation ratioof A.
We say that an algorithmA is anonline L�p1 �����pk�-labeling algorithmif it properly
labels the vertices ofG in an externally determined orderD1 � � � � � Dn, and at
each timet it irrevocably assigns a label toDt seeing only the edges which connect
verticesD1 � � � � �Dt . If the maximum label used is at mostρ �χ�p1 �����pk� �G� for any
order� on D, thenA is called anρ-competitivealgorithm. The valueρ is called
thecompetitive ratioof A.

The rest of this chapter is organized as follows. In Section 2.2 we give some pre-
liminary results. In Section 2.3 we introduce acircular labeling. In Section 2.4 we
present a general online algorithm and derive an upper boundon its competitive
ratio. In Section 2.5 we present lower bounds for online coloring and labeling. In
Section 2.6 we present two offlineL�2�1�-labeling algorithms. In Section 2.7 we
derive a general offline labeling algorithm. Finally, in Section 2.8 we give some
concluding remarks.

2.2 PRELIMINARIES

In this section we give some preliminary results which will be used throughout
this chapter. First, we introduce hexagonal cells on the plane and cell cliques in a
disk graph. Then, we introduce the plane-mesh distance, andderive some simple
results.

Let � be the Euclidean plane. Letx�y be the coordinates in�. For a σ-disk
graphG we will useD � �D1 � � � � �Dn� to denote the disk representation ofG.
Then, for eachDi , i � 1� � � � �n, we will usedi �
 � and

�
xi �yi � to denote the

diameter and center ofDi. We will also writeσ
�
D� to denote the diameter ratio

maxdi � mindi � σ. For each vertexv � V
�
G�, we will useDv to denote the disk

of v. Thus, an edgee � �u�v� � E
�
G� iff Dv f Du.

108 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

1 �
3 4

2
3 z��3xx 3y{ � � i x j x 1

2
3 z�3xx 3y{ � i x j x 1

4
3�3x � 2i � j x 1

Figure 2.4: A simplexCi j

2.2.1 Cells

We will use the following partition of plane� into hexagons. Fori � j � ! we
define a unit hexagonCi j is the set of all points

�
x�y� � � such that:

2i � j � 1 * 4
3
�3x � 2i � j � 1

i � j � 1 * 2
3

��3x� 3y� � i � j � 1�i � 2 j � 1 * 2
3

���3x� 3y� � �i � 2 j � 1�
Here,Ci j contains exactly two adjacent corners of the bounding simplex, and the
distance between every two points insideCi j is at most one. For an illustration
see Figure 2.4. Furthermore, each point of plane� belongs to exactly one cell
Ci � j . For an illustration see Figure 2.5 on page 110. For simplicity, anyCi j will be
called acell, and� will denote the set of all cellsCi j , for i � j � ! .

2.2.2 Cell Cliques

For a disk graphG given by a disk setD, and a cellCi j let

D
�
i � j � :� �Dk � Dk � D and

�
xk �yk� � Ci j �

be the set of disks with centers inCi j , and let

V
�
i � j � :� �v � V

�
G� � Dv � D

�
i � j ��

2.2 PRELIMINARIES 109

be the set of vertices with disks inCi j . Then, we can prove the following simple
result:

Lemma 2.2.1. Each set V
�
i � j � induces a clique in G. Hence,�D�

i � j � � � �V �
i � j � �

is at most the clique numberω
�
G�.

Proof. The distance between every two points inside cellCi j is at most one.
Hence, any pair of disks inD

�
i � j � intersect. This means that for any twou�v �

V
�
i � j � holds�u�v� � E

�
G�. Hence,V

�
i � j � induces a clique inG.

2.2.3 Plane and Mesh Distance

Let dist� �
p� pE � denote the standard plane distance between two pointsp� pE � �.

Then, theplane distancebetween two cellsC andCE is defined as

dist� �
C�CE � � inf�dist� �

p� pE � : p � C� pE � CE � �
With every cellCi j � � we associate a vertex

�
i � j � in an infinite triangular meshM.

We connect any two vertices by an edge if the corresponding cells are neighbors.
For an illustration see Figure 2.5 on the following page.

We will write distM
�
Ci j �Cst� to denote themesh distancebetween two cellsCi j

andCst, which is measured as the number of edges in the shortest pathconnecting�
i � j � and

�
s�t � in meshM.

Lemma 2.2.2. For m � 2 and i� j � ! , each of cells Ci�t � j , Ci � j�t , Ci�t � j�t, where

t � �m� 1� �m� 1�, have mesh distance m� 1 and plane distancem

�
3

2 from Ci j .
Furthermore, any cell at mesh distance m� 1 from Ci j has plane distance at least�m

2 � � 1
2 :m

2 ;.
Proof. Every cell has size�3�2, see Figure 2.4 on the preceding page. For sim-
plicity, we consider the case wheni � 0 andj � 0 andt � m� 1. For an illustration
see Figure 2.6 on the following page. Clearly,Cm�1�0, C0�m�1 andCm�1�m�1 are
at mesh distancem� 1, see Figure 2.6 b). Furthermore, there arem cells on the
shortest line fromC0�0, see Figure 2.6 a). Hence, the plane distance ism

�
3

2 .

Consider the cells which are mesh distancem� 1. For an illustration see Figure 2.7
on page 111. From one side, the “corner” cellsCm�1�0 andCm�1�m�1 are at the
maximum plane distance fromC0�0, see Figure 2.7 a). From another side, the
“middle” cells,Cm�1�m 2 if m is even andC�mQ1

2 � �m�1, Cm�1� �mQ1
2 � �m� 1 if m is

odd, are at the minimum plane distance fromC0�0. Then, the minimum plane
distance can be bounded as

�m
2 � times cell’s diameter 1 and:m

2 ; times the cell’s
side 1

2. This is equal to
�m

2 � � 1
2 :m

2 ;.

110 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

a) Cells in� b) MeshM

C0�1 C1�1
1C�1�0

C0��1C�1��1

C0�0 C1�0
z0�1{ z1�1{z1�0{z0�0{z�1�0{z�1� �1{ z0� �1{

Figure 2.5: Cells-Mesh

C0�0
a) b)

C0�m�1 Cm�1�m�1

Cm�1�0 m� 1

m� 1

Figure 2.6: Cells fori � 0 and j � 0 andt � m� 1

2.2 PRELIMINARIES 111

a)
C0�0

Cm�1�m�1

Cm�1�0
b)

m� 2

m� 1

Figure 2.7: Middle cells

Corollary 2.2.3. For m� 2and i� j � ! , cellsCi � j , Ci�m�1� j , Ci � j�m�1, Ci�m�1� j�m�1

have pairwise mesh distance m� 1 and plane distancem

�
3

2 .

Corollary 2.2.4. Let a� �2kσ
�

3 �, where k� 2 andσ � 1. Then, cells Ci � j , Ci�t � j ,
Ci � j�t , Ci�t � j�t , where t� �a� 1� �a � 1�, have pairwise mesh distance a� 1 and
pairwise plane distance greater than kσ.

2.2.4 Patterns

Let k � 2 andσ � 1. As in Corollary 2.2.4, we definea � �2kσ
�

3 �. Then, the set of

a2 cellsCst with coordinatess�t � �0� ���a� is called a pattern.

We say that a cellCi j � � belongs to the
�
s�t �th classif

i � 1 � smoda

and

j � 1 � t moda�
In total, there area2 classes.

Informally, by sifting the pattern around the plane, we “copy” its cells. For an
illustration see Figure 2.8 on the following page. Then, a cell Ci j belongs to a the�
s�t �th class if it is a “copy” of the

�
s�t �th cell in the pattern.

Now we can prove the following simple result:

112 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

C0�0

Figure 2.8: Shifting the pattern: The copies ofC0�0
Lemma 2.2.5. Any two cells in one class have plane distance greater than kσ.

Proof. The proof follows the definition of classes and Corollary 2.2.4.

2.3 CIRCULAR LABELING

Here we introduce and prove the existence of a specialcircular labeling for the
cells in�. This will will be used later in Section 2.4.

Let σ � 1 be the diameter ratio,
�
p1 � � � � � pk� be ak-tuple of distance constraints,

where p1 � p2 � � � � � � pk, and � be the set of cellsCi j , where i � j � ! . We
say that a mappingϕ : � � �1�2� � � � � + � is an +-circular labeling of � with re-
spect to

�
p1� � � � � pk� andσ if for any two cellsCE andCEE in � at plane distance

dist� �
C�CE� � i �σ it holds

min� �ϕ�
C� � ϕ

�
CE� �� + � �ϕ�

C� � ϕ
�
CE� �� � pi �

for all i � �1� � � � �k�.

For an illustration see Figure 2.9 on the next page. Informally, we take a circle
with nodes 1�2� � � � �+. Then, every cellC is assigned to a nodeϕ

�
C� � �1�2� � � � � + �.

The “circular distance” between any two cellsC andCE is equal to the number

2.3 CIRCULAR LABELING 113

edges between nodesϕ
�
C� andϕ

�
CE �. This can be defined as

min� �ϕ�
C� � ϕ

�
CE� �� + � �ϕ�

C� � ϕ
�
CE� �� �

Then, we require any two cellsC andCE at plane distance at leasti �σ be at “circular
distance” at leastpi , for all i � �1� � � � �k�.

The existence of such a circular labeling is guaranteed by the following:

Theorem 2.3.1.For every k-tuple
�
p1� � � � � pk� andσ � 1, an + /-circular labeling

of � can be found in O
�+ /σ4k4� time, where

+ / :� 1 � 6 4̂
�
2p1 � 1� � a

∑
m=2

�
m � 1� � �2pp3m L 4

4σ q � 1�` �
Proof. Givenk andσ � 1, we definea � :2kσ

�
3 ;, and define a pattern with all cells

Cs�t , wheres�t � �0� ���a�.

We select the cells in the pattern one by one while labeling with an initial sequence
of labels 1�2�3� � � � in afirst-fit manner. For a selected cellCst from the pattern we
first find the least feasible labelϕs�t , and then we defineϕ

�
C� � ϕs�t for any cell

C in the
�
s�t �th class. By Lemma 2.2.5, any two cells in one class have plane

distance greater thankσ. Hence, at the end of the procedure we find a feasible
circular labeling of�.

In the following we show that+ / is a upper bound on the largestϕs�t label used in
the pattern, and the labeling procedure takes at mostO

�+ /σ4k4� steps. This will
complete the proof of the theorem.

Consider a cellC in the pattern. For an illustration see Figure 2.10 on the following
page. By Corollary 2.2.4, every cell which is at mesh distance at leasta� 1 is at

ϕzC� {
ϕzC{a
ϕzC� { � ϕzC{ a

� � a
ϕzC� { � ϕzC{ a

Figure 2.9: A circle with+ nodes, and cellsC andCE

114 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

C

a) b)

Figure 2.10: Labeling ofC

plane distance greater thankσ. Hence, in order to find a feasible label forC we
need to check all already labeled cells at mesh distance at mosta.

There are 6 cells at mesh distance 1 fromC, see Figure a) and b) 2.10. Each
of these 6 cells has plane distance at most 1�σ from C. In the worst case, all 6
cells are labeled, and any two of the labels differ by 2p1 � 1. Hence, in order
to select a feasible label forC we will “skip" at most 6

�
2p1 � 1� “forbidden”

numbers. Similarly, for 12 cells at mesh distance 2 fromC, we will “skip" at most
12

�
2p1 � 1� “forbidden” numbers.

Form� 2, there are 6
�
m� 1� cells at mesh distancem� 1 fromC. By Lemma 2.2.2,

the plane distance fromC is at mostm�3�2 but at least

�m
2 � � 1

2 �m2 � �
By the definition of a circular labeling, we need to find the least integeri � k such
that

�m
2 � � 1

2 �m2 � � i �σ �

2.3 CIRCULAR LABELING 115

We can bound it as follows

i � 1
σ 8�m

2 � � 1
2 �m2 �9

� 1
σ �m

2
� 1 � m

4 �
� �

3m � 4�
4σ �

Then, in the worst case, all 6
�
m� 1� cells are labeled, and any two of the labels

differ by

2pp3mL4
4σ q � 1�

As before, in the worst case we will “skip” at most

6
�
m� 1� �2pp3m L 4

4σ q � 1�
“forbidden” numbers.

In total, summing up for mesh distance 1, 2 and over all 3� m� 1 � a at most

6 4̂
�
2p1 � 1� � a

∑
m=2

�
m � 1� � �2pp3m L 4

4σ q � 1�` � +/ � 1

numbers are “forbidden” be selected as a label for cellC in the pattern.

There area2 � O
�
k2σ2� cells in the pattern. For each cellC in the pattern we

have to check all cells at mesh distance at mosta, and each cell for at most+ /
numbers. Thus, the labeling procedure procedure finds an+ /-circular labeling of� in at mostO

�+ /a4� � O
�+ /k4σ4� steps.

2.3.1 A Circular25-Labeling for
�
p1� p2� � �

2�1�
Considerk � 2 and

�
p1 � p2� � �

2�1�. We take a pattern with 25 cells, and label the
cells of � as it is depicted in Figure 2.11 on the next page. One can see that any
two cells with the same label are at plane distance at least 2�3. Furthermore, any
two cells with+ and+ � 1 labels,+ � 1� � � � �24, are at plane distance at least

�
7

2 . If

we defineσ � �
7

2 , then 2σ * 2�3. Hence, the depicted labeling is a 25-circular

labeling with respect to
�
p1� p2� � �

2�1� andσ � �
7

2 .

116 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

1

13 21 9 17 25 13 21 9 17 25

18 14 22 5 18 1 14 22

6 19 2

11 24

16 4

21

1185221411852214

132517

82012

315

2310 6 19 2 10 23

11 24 7 15 3

16 4 12 20 8

21 9 17 25 13

�
7�2 & σ 2

�
3] 2σ

� & 25

Figure 2.11: A 25-circular labeling with
�
p1 � p2� � �

2�1� �σ � �
7

2

2.4 GENERAL ONLINE LABELING OF σ-DISK GRAPHS

Let G be aσ-disk graphs given by a setD � �D1 � � � � �Dn� of n disks in�. In the
following we assume, w.l.o.g., that the coordinates of plane � are scaled such that
minimum diameter mindt � 1 and the diameter ratioσ

�
D� � σ.

For a fixedk-tuple
�
p1 � � � � � pk� of distance constraints, wherep1 � p2 � � � � � pk,

and a fixedσ � 1, we describe the following online labeling algorithm:

ONLINE DISK LABELING (ODL):
Input: An ordered sequence of disksD1 � � � � � Dn.
Output: An L�p1 ���� �pk�-labelingc of G.
1. Find a circular+ /-labelingϕ : � � �1� � � � � + / �.

2. For all cellsCi � j � � defineD
�
i � j � :� /0.

3. Select the disks one by one in the given order.
4. For the diskDt perform

4a. FindCi j such that
�
xt �yt � � Ci � j .

4a. Definet � V
�
G�. 4b. Definec

�
t � :� ϕ

�
Ci � j � � +/ � �D�

i � j � �.
4c. PutDk into D

�
i � j �.

Informally, for each new disk the algorithm assigns a label which consists two
parts: (1) the label of the cell which will contain this disk;(2) + / times the number
of the disks which are already in the cell. The last part insures that all disk labels
are properly separated.

2.4 GENERAL ONLINE LABELING OF σ-DISK GRAPHS 117

We can prove the following result:

Lemma 2.4.1. The maximum label used byODL is most+ / �maxi � j �D�
i � j � �.

Proof. The first disk inD
�
i � j � will get a label equal to

ϕ
�
Ci � j � � +/ �

The last disk inD
�
i � j � will get a label equal to

ϕ
�
Ci � j � � +/ � � �D�

i � j � �� � +/ �max
i � j �D�

i � j � ��
Since, ODL handles allD

�
i � j � separately, the maximum label ised is bounded by+ / �max

i � j �D�
i � j � ��

Furthermore, we can prove the following result:

Lemma 2.4.2. Let G be a disk graph given by a disk set D. Then, for any k-tuple�
p1 � � � � � pk� of distance constraints it holds

χ�p1 �����pk� �G� � 1 � p1
�
ω

�
G� � 1� � 1� p1

�
max

i � j � �D�
i � j � �� � 1� �

Proof. Let K be a clique inG. Assume that one vertex inK has the least label
1, and other�K � � 1 vertices have larger labels. By the definition of aL�p1 �����pk�-
labeling, the labels of any two vertices inK should differ by at leastp1. Thus, the
minimum label forK is at least

1 � p1
� �K � � 1� �

By Lemma 2.2.1 for any setD
�
i � j � of disks, the vertices ofV

�
i � j � form a clique in

Gand �D�
i � j � � � �V �

i � j � � is at most the clique numberω
�
G�. Thus, the

�
p1� � � � � pk�-

labeling number forG is at least 1� p1
�
ω

�
G� � 1�.

Combining the above results, we can prove the following maintheorem:

Theorem 2.4.3.For every
�
p1 � � � � � pk� andσ � 1, the algorithmODL is an online

Lp1 ���� �pk-labeling algorithm forσ-disk graphs G with given disk representation.
The competitive ratioρ of ODL is bounded by

ω
�
G� � + /

1 � �
ω

�
G� � 1� � p1

� +/ � (2.6)

118 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

Proof. Let G be aσ-disk graph given by a disk setD. Notice that the value
of �D�

i � j � � does not depend on an order in which the disks ofD presented to
ODL. Hence, ODL an onlineL�p1 ���� �pk�-labeling algorithm forG. Furthermore,
by Lemma 2.4.1 and Lemma 2.4.2, we can bound its competitive ratio ρ as it is
defined in (2.6).

Corollary 2.4.4. The algorithmODL is 2
Z<

1�p1
-competitive for the class ofσ-disk

graphs with at least one edge and given disk representation.Furthermore, the
bound on its competitive ratioρ tends to+ /�p1 as the clique number ofσ-disk
graphs grows to infinity.

Proof. If a disk graphG has at least one edge, thenω
�
G� � 2. From (2.6), for

w
�
G� � 2�3�4� � � � we have

2+ /
1 � p1

� 3+ /
1 � 2p1

� 4+ /
1 � 3p1

� � � � � + /
p1

�
Corollary 2.4.5. For

�
p1 � p2� � �

2�1� andσ � �
7

2 , there is an online L�2�1�-labeling
algorithm which competitive ratioρ is bounded by25 for a class ofσ-disk graphs
of given disk representation, by50

3 H 16�67 for a class ofσ-disk graphs of with at
least one edge and given disk representation, and the bound on ρ tends to12�5 as
the clique number ofσ-disk graphs grows to infinity.

Proof. We use the algorithm ODL combined with a 25-circular labeling depicted
in Figure 2.11 on page 116.

2.5 LOWER BOUNDS: ONLINE COLORING AND LABELING

Here we present some lower bounds for online coloring and labeling of disk
graphs.

2.5.1 Coloring of Unit Disk Graphs

We start with a simple lower bound for online coloring of unitdisk graphs.

Lemma 2.5.1. For any positiveε, there is no
�
2 � ε�-competitive coloring algo-

rithm for the class of unit disk graphs, even if the disk representation of unit disk
graphs is given.

2.5 LOWER BOUNDS: ONLINE COLORING AND LABELING 119

Proof. Let A be an algorithm with competitive ratio 2� ε, for someε � 0. Con-
sider a unit disk graphGbad depicted in Figure a) 2.12 on the next page. Let the
vertices ofGbadbe ordered as shown in Figure b) 2.12 on the following page.

From one side, vertices 1–6 form an independent set. The algorithm A has to color
them by the same color. If it is not the case, thenA is not

�
2 � ε�-competitive.

From another side, vertices 1–12 form a bipartite graph. To color them properly,
the algorithmA needs exactly two more colors. Then, vertices 13, 14 and 15
require three extra colors. These vertices form a triangle,so they cannot share the
same color, and each of them is adjacent to three vertices among 1–12 that are
colored by three distinct colors.

In other words,A is forced to use at least six colors for online coloring ofGbad.
However, the graph is 3-colorable. Hence,A is not an

�
2 � ε�-competitive algo-

rithm, if the disk representation of unit disk graphs is given.

2.5.2 Labeling of Unit Disk Graphs

Now we present a simple lower bound for onlineL�p1 �p2�-labeling of unit disk
graphs.

Lemma 2.5.2. For any distance constraints
�
p1 � p2� andε � 0, there is no

�
4p2 �

1 � ε�-competitive L�p1 �p2�-labeling algorithm for the class of unit disk graphs,
even if the disk representation of unit disk graphs is given.

Proof. Consider a unit disk graphGbad given by five “outer” unit disks 1, 2, 3, 4,
5 depicted in Figure 2.13 on the next page. No two of these five disks intersect.
Hence, in the offline case, one needs exactly one label forGbad. Hence, we have
thatχ�2�1� �Gbad� � 1.

Let A be an onlineL�p1 �p2�-labeling for unit disk graphs of given disk representa-
tion. For any disk graph and any order of the disks,A always outputs a feasible
L�p1 �p2�-labeling.

It is not a matter in which order we present the disks ofGbad, any two labels
assigned byA differ by at leastp2. If it is not the case, then adding the “central”
unit disk 6 leads to a non-feasible for a unit disk graph givenby all disks 1, 2, 3,
4, 5, 6, that is a contradiction.

Thus, the maximum label assigned byA to the disks ofGbad is at least

1 � p2 � p2 � p2 � p2 � 1 � 4p2�
However,χ�2�1� �Gbad� � 1. Hence, the competitive ratio ofA is at least 4p2 � 1,
even if the disk representation of unit disk graphs is given.

120 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

a) b)

71 8 2

3

9

10

4

5

11

12

6 15
14

13

Figure 2.12: GraphGbad for coloring

1

2 3

4

5

6

Figure 2.13: GraphGbad for L2�1-labeling

2.5 LOWER BOUNDS: ONLINE COLORING AND LABELING 121

2.5.3 General Labeling of Disk Graphs

Let k � 2 and
�
p1 � p2� be a 2-tuple of distance constraints. We can prove the

following simple result:

Lemma 2.5.3. If the disk representation of disk graphs is not given, no online
L�p1 �p2�-labeling algorithm can be constant competitive.

Proof. Let D be a set ofn mutually disjoint disks. LetG a disk graph given byD.
Then, there are no edges inG, andχ�p1 �p2� �G� � 1.

Let A be an onlineL�p1 �p2�-labeling algorithm which is not given the disk represen-
tation of disk graphs. For any disk graph and any order of the vertices,A always
outputs a feasibleL�p1 �p2�-labeling.

We present the verticesv in V
�
G� in an arbitrary order. IfA assigns the same

label to any two vertices inV
�
G�, then we add a new disk toD extending graph

G such that these two vertices in are connected by a path of length 2. In this case,
A outputs a non-feasible labeling for the “extended” graph, that is a contradiction.
Hence,A will use distinct labels for all�D � vertices inV

�
G�.

Thus, the maximum label used byA for G is at least�D � � n. However,χ�p1 �p2� �G� �
1. Hence, the competitive ratio ofA is bounded byn from below.

This result can be generalized for anyk-tuple
�
p1 � p2 � � � � � pk� of distance con-

strains. Hence, in the following we only consider online algorithms which are
given the disk representation of disk graphs. The next result shows the impor-
tance of an upper bound on the diameter ratio:

Lemma 2.5.4. If an upper bound on the diameter ratio is not given, no online
L�p1 �p2�-labeling algorithm can be constant competitive.

Proof. Let D be a set ofn mutually disjoint unit disks. For an illustration see
Figure 2.14 on the following page. LetG a disk graph given byD. Then, there are
no edges inG, andχ�p1 �p2� �G� � 1.

Let A be an onlineL�p1 �p2�-labeling algorithm which is not given an upper bound
on the diameter ratio. For any disk graph and any order of the disks, A always
outputs a feasibleL�p1 �p2�-labeling.

We present the disks ofD in an arbitrary order toA. If A assigns the same label to
any two disks ofD, then we add a new disk toD of larger diameter which intersent
any disks inD, see Figure 2.14. In this case,A outputs a non-feasible labeling for
a disk graph given by the “extended” set of disks, that is a contradiction. Hence,
A will use distinct labels for all disks inD.

122 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

Figure 2.14: A setD of disks

The maximum label used byA for G is at least�D � � n. However,χ �p1 �p2� �G� � 1.
Hence, the competitive ratio ofA is bounded byn from below.

This result can be also generalized for anyk-tuple
�
p1 � p2 � � � � � pk� of distance

constraints. Hence, in the following we only consider online algorithms which
deal with σ-disk graphs. Now we are ready to present a lower bound on the
competitive ratio of any onlineL�p1 �����pk�-labeling algorithm forσ-disk graphs:

Theorem 2.5.5.For any fixed k-tuple
�
p1 � � � � � pk� of distance constraints (k� 2),

any fixedσ � 1 and anyε � 0, there is no
�
ρ̄ � ε�-competitive online L�p1 �����pk�-

labeling algorithm for the class ofσ-disk graphs of given disk representation,
where

ρ̄ � 1 � σ2

9
max

i=2�����k�i2pi ��
Proof. Take anyt � �

1� �2� and defineak � ��k�1�σ�1
t

�
2

� 1�. Next, define a set

D � �D1�1�D1�2� � � � �Dak �ak � of a2
k unit disks, where each diskD j �l is defined by

its center in
�
j � t � l � t �, and all j � l are integers from�1�2� � � � �ak�. All disks are

mutually disjoint and the centers of any two closest disks atplane distancet. For
an illustration see Figure 2.15 on the next page.

Consider a unit disk graphG given byD. Clearly,G consists ofa2
k independent

vertices (disks). In the offline case, we only need one label for G, i.e.,

χ�p1 ���� �pk� � 1�

2.5 LOWER BOUNDS: ONLINE COLORING AND LABELING 123

ak

t

Figure 2.15: The setD of a2
k unit disks

D$ j t l %
3 $i I 1%σ

D$ j u t l u %
Figure 2.16: DisksD j �l andD j d �l d

124 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

Now consider two disksD j �l andD j d �l d in D with coordinatesj � l and j E � l E, respec-

tively. Let ai � ��i�1�σ�1
t

�
2

� 1� for i � 2� � � � �k. Let i be the minimum such that� j � j E � � ai and �l � l E � � ai . Then,D j �l andD j d �l d are at plane distance at most�
i � 1� �σ. We construct a setD

�
j � l � j E � l E � of

�
i � 1� disks of diameterσ which

will connectD j �l andD j d �l d by a path of length at mosti. For an illustration see
Figure 2.16 on the preceding page. In other words, in aσ-disk graphG

�
j � l � j E � l E �

given byD # D
�
j � l � j E � l E � the vertices of disksD j �l andD j d �l d are at graph distance

i.

Let A be an onlineL�p1 ���� �pk�-labeling algorithm for the class ofσ-disk graphs of
given disk representation. For anyσ-disk graph and any order of the disks,A
always outputs a feasibleL�p1 ���� �pk�-labeling.

We present the disks ofD in an arbitrary order toA. For somei from �2� � � � �k�,
let D j �l andD j d �l d be any two disks inD such that� j � j E � � ai and �l � l E � � ai. If
A assigns the labels toD j �l andD j d �l d which differ by at mostpi � 1, then we add
the disks ofD

�
j � l � j E � l E � to D. In this case,A outputs a non-feasible labeling for

σ-disk graphG
�
j � l � j E � l E � given byD # D

�
j � l � j E � l E �, that is a contradiction.

In total, for eachi � 2� � � � �k, and for any two disks from setDi � �D j �l �1 � j � l �
ai � of a2

i disks,A assigns the labels which differ by at leastpi . As in Lemma 2.5.2,
for eachi � 2� � � � �k the maximum label used byA is at least

1 � pi � �a2 � 1� � 1� ���
i � 1�σ � 1

t�2
� 1�2�1� �

In total, the maximum label used byA for a σ-disk graphG given byD is at least

1 � max
i=2�����k� ���

i � 1�σ � 1

t�2
� 1�2�1� pi �

and fort � 3
2

�
2

ρ̄ � 1 � σ2

9
max

i = 2�����k� i2 � pi ��
From another side,χ�p1 �����pk� �G� � 1. Hence,Acannot be better than̄ρ-competitive.

From Theorem 2.4.3 and Theorem 2.5.5 we have the following result:

Corollary 2.5.6. For any k-tuple
�
p1 � � � � � pk� of distance constraints (k� 2), and

anyσ � 1, the competitive ratio of the algorithmODL is at most O
�
logk� times

larger than the competitive ratio of any online L�p1 �����pk�-labeling algorithm for
the class ofσ-disk graphs with at least one edge and given disk representation.
Therefore, the algorithmODL is asymptotically optimal.

2.6 OFFLINE LABELING OF UNIT DISK GRAPHS 125

Proof. Take a setD of unit disks as described in the proof of Theorem 2.5.5. Add
a pair of new intersecting disks. These two disks intersect no disk inD.

Let G be aσ-disk graph given byD and the new disks. There is only one edge in
G. We can use label 1 for all disks inD, and use labels 1 andp1 � 1 for the new
disks. Hence, we can show that

χ�p1 ���� �pk� � p1 � 1�
Then, following the proof of Theorem 2.5.5 we can show that a lower bound on
the competitive ratio of any online algorithm is at least

1� σ2

9 maxi=2�����k�i2pi �
1� p1

� c � σ2maxi=2�����k�i2pi �
1� p1

� (2.7)

wherec is some suitable constant which neither depends onσ nor
�
p1 � � � � � pk�.

From another side, by using Theorem 2.3.1 and Theorem 2.4.3,we can show that
an upper bound on the competitive ratio of our algorithm ODL is at most

2+ /
1 � p1

� 2 � 1 � 6
�
4
�
2p1 � 1� � ∑a

m=2
�
m � 1� � �2pp3m L 4

4σ q � 1��
1 � p1� cE � σ2∑k

i=2 ipi

1� p1
� O

�
1� � (2.8)

wherecE is some suitable constant which also neither depends onσ nor
�
p1 � � � � � pk�.

Let s � 2 be such thatpi � �s2

i2 � � ps for all i � 2� � � � �k. Heres � �2� � � � �k� delivers
the maximum toi2 � pi . Then,

k

∑
i=2

i � pi � k

∑
i=2

8s2

i 9 � ps � s2 � ps

^
k

∑
i=2

1
i ` � max

i=2�����k�i2pi � �O�
logk� � (2.9)

Indeed, we can combine (2.7), (2.8) and (2.9). This will showthat the competitive
ratio of our algorithm OLD is at mostO

�
logk� times the competitive ratio of any

onlineL�p1 �����pk�-labeling algorithm.

2.6 OFFLINE LABELING OF UNIT DISK GRAPHS

Here we explore the offline version of the distance-constrained labeling problem
in the case whenk � 2 and distance constrains

�
p1 � p2� � �

2�1�. We deal with unit
disk graphs. First, we consider the case when the disk representation of unit disk

126 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

graphs is given, and present a simple approximation algorithm which is based on
the so-calledcutting technique. Then, we present a robust algorithm, i.e., it does
not require the disk representation and either outputs a feasible labeling, or shows
that the input graph is not a unit disk graph.

2.6.1 Cutting Technique and Strip Graphs

The main idea of our cutting technique is rather simple: We “cut” the plane into
strips of small width. Then, we take a unit disk graph and split it into several
“strip” unit disk graphs which are induced by the strips. Finally, we label each
strip disk graph, and combine all these together into one labeling for the original
unit disk graph.

A unit disk graphG is called a 1
�

2
-strip unit disk graphif there is a mapping

f : V
�
G� �
 ¡ �0� 1

�
2
� such that

�
u�v� � E

�
G� iff dist� �

f
�
u� � f

�
v�� � 1. Infor-

mally, G is given by a setD of unit disks such that each disk fromD has its center
in astrip of width 1

�
2
. For an illustration see Figure 2.17.

We will use the following simple properties which were mentioned in the intro-
duction. LetG be a graph. LetG2 be the 2nd power ofG, i.e. a graph which arises
from G by adding the edges which connect all vertices at graph distance 2. Then,
a coloring ofG2 is anL�1�1�-labeling ofG and vise versa, i.e.

χ�1�1� �G� � χ
�
G2� �

Furthermore, by multiplying all labels in anL�1�1�-labeling for G by 2 we can
obtain anL�2�2�-labeling forG, i.e.

χ�2�1� �G� � χ �2�2� �G� � 2 �χ�1�1� �G� �
For an illustration see Figure 2.18.

1��2

Figure 2.17: A 1
�

2
-strip unit disk graph

2.6 OFFLINE LABELING OF UNIT DISK GRAPHS 127

1

2

3

4

2

4

6

8

G G2

χ ¢2£2¤ ,G. ¥ 8 χ,G2. ¥ 4

Figure 2.18: AnL�2�2�-labeling ofG and a coloring ofG2

2.6.2 Coloring and Labeling of Strip Graphs

We start with the following result:

Lemma 2.6.1. Let G be a 1
�

2
-strip unit disk graph and let v be a vertex such

that the unit disk corresponding to v has the least x-coordinate. Then, for G2, the
cardinality of the vertex set

NG2
�
v� � �u � V

�
G� � �v� : distG

�
u�v� � 2�

is at most3ω
�
G� � 1.

Proof. There is astrip of width 1
�

2
, and each vertexv in G corresponds to a unit

disk Dv with the center in this strip. Letv be a vertex inG which unit diskDv

has the smallestx-coordinate. For an illustration see Figure 2.19 on the following
page.

Consider all verticesu in V
�
G� which are at graph distance at most 2 fromv, i.e.

distG
�
u�v� � 2. Then, for each suchu, thex-coordinate of diskDu and diskDv

differ by at most 2, see Figure 2.19 a) and b).

Consider all disks in a square of side1
�

2
, see Figure 2.19 b). Clearly, all of them

intersect in pairs. This forms a clique inG. Hence, we can bound the maximum
number of the disks in a square byω

�
G�.

Consider all disksDu in a rectangleR of width 1
�

2
and length 2, see Figure 2.19

c). It can be covered by three squares of width1
�

2
. Hence the maximum number

of disks inR is at most 3ω
�
G�.

128 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

v

v

2

a � 1��2

a aa

R

a

a

a a)

b)

c)

Figure 2.19: A 1
�

2
-strip unit disk graph

v

uv

R

Figure 2.20: A vertexv � V
�
G� and a vertexu � NG2

�
v�

2.6 OFFLINE LABELING OF UNIT DISK GRAPHS 129

Consider verticesu from NG2
�
v�. Eachu is at graph distance at most 2 fromv

in G. Hence, each diskDu is in a rectangleR having the center of diskDv on
its left side. For an illustration see Figure 2.20. Excepting disk Dv the number
of such disksDu in R is at most 3ω

�
G� � 1. Hence, we can bound�NG2

�
v� � by

3ω
�
G� � 1.

Let G be 1
�

2
-strip unit disk graph. LetDv be the disk ofv � V

�
G�. We order

verticesv in V
�
G� such that thex-coordinate of disksDv does not increase. If�V �

G� � � n, then such andecreasingorder � for the vertices ofV
�
G� can be

found inO
�
nlogn� time.

Informally, given a vertexv and all verticesu in V
�
G� such thatv � u, disk Dv

has the leastx-coordinate within all disksDu. For an illustration see Figure 2.20.
Then, by using Lemma 2.6.1, for each vertexv we can bound the number of such
verticesu in NG2

�
v� by 3ω

�
G� � 1.

This helps in the following coloring algorithm:

FIRST FIT COLORING (FFC):
Input: A 1

�
2
-strip unit disk graphG,

Output: A coloring ofG2.
Select verticesv from G

�
V � in adecreasingorder� while coloring with

an initial sequence of colors 1�2� � � �. Assign the vertexv the least color
that has not already been assigned to any vertexu adjacent tov in G2.

Lemma 2.6.2. The maximum color used by the algorithmFFC is bounded by
3ω

�
G�.

Proof. For the first vertex in the order the algorithm FFC uses color 1. Then, for
each next vertexv the algorithm FFC assigns the least color which is not used for
verticesu in NG2

�
v�. As we know, the number of colored verticesu in NG2

�
v� is

bounded by 3ω
�
G� �1. Hence, FFC only uses colors from�1�2� � � � �3ω

�
G��.

Now we can give the following simple labeling algorithm:

STRIP LABELING (SL):
Input: A 1

�
2
-strip unit disk graphG,

Output: An L�2�1�-labeling ofG.
1. Find anL�1�1�-labeling forG.

2. Multiply all labels by 2.

130 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

Lemma 2.6.3. The maximum label used by the algorithmSL is bounded by6ω
�
G�.

Furthermore, all labels used are even.

Proof. By Lemma 2.6.2 we can colorG2 with at most 3ω
�
G� colors. This gives

a feasibleL�1�1�-labeling forG. Then, we multiply all labels by 2. This gives a
feasibleL�2�2�-labeling forG which is also a feasibleL�2�1�-labeling forG. Thus,
all labels used are even, and the maximum label used is at most2 � �

3ω
�
G�� �

6ω
�
G�.

2.6.3 Cutting of Unit Disk Graphs

Now we are ready to describe an approximation algorithm for labeling of unit disk
graphs. W.l.o.g. we assume that a unit disk graphG is connected and has at least
one edge, i.e.ω

�
G� � 2.

Given a unit disk graphG, we partition the plane intok � O
� �V �

G� �� stripsS0, S1,� � �, Sk of width 1
�

2
. Strip S0 contains a disk with the mosty-coordinate and and

Sk contains a disk the leasty-coordinate. All other strips are numbered from top
to bottom, respectively. For an illustration see Figure 2.21 on the next page. This
partition induces a partition ofG into 1

�
2
-strip unit disk graphsG0� � � � �Gk. In the

case of disks with centers in two strips ties are broken arbitrarily.

Our main idea is as follows. Consider consecutive stripsS0�S1�S2 andS3 �S4 �S5.
The width of each strip is1

�
2
, and the width of two consecutive strips�2 is larger

than the diameter of a unit disk. Thus, two disks inS0�S1�S2 or S3 �S4 �S5 can
intersect. However, no disk inS0 (S1,S2) can intersect with a disk inS3 (S4, S5),
see Figure 2.21.

We are interested in anL�2�1�-labeling. Hence, any two vertices in#3
i=1Gi or in#5

i=3Gi may require their labels be different by 2, and any vertex inG0 (G1,G2) and
any vertex inG3 (G4, G5) may require their labels be different by 1. By using the
algorithm SL we find anL�2�1�-labeling for eachGi , i � 0� � � � �5. By Lemma 2.6.3,
we can bound the maximum label used as maxi ω

�
Gi � � ω

�
G�. Furthermore, all

labels are even.

To obtain a feasibleL�2�1�-labeling for#3
i=1Gi , we let the labels ofG0 be the same

(increase by 0), and increase the labels ofG1 and G2 by 6ω
�
G� and 12ω

�
G�,

respectively. This defines all labels be even, and any two labels be different by
at least 2. To obtain a feasibleL�2�1�-labeling for#5

i=3Gi , we decrease the labels
of G3 by 1 (increase by�1), and increase the labels ofG4 andG5 by 6ω

�
G� � 1

and 12ω
�
G� � 1, respectively. (Rememberω

�
G� � 2.) This defines all labels be

odd, and any two labels of#5
i=3Gi be different by at least 2. Finally, we simply

2.6 OFFLINE LABELING OF UNIT DISK GRAPHS 131

S1

S0

S2

S3

S4

S5

1��2

�6ω
�
G�

�0

�12ω
�
G��1

�1� 6ω
�
G��1� 12ω
�
G�

Sk�1

Sk

Figure 2.21: StripsS0 �S1 � � � �Sk

132 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

combine both parts. Since the labels of#3
i=1Gi are even and the labels of#5

i=3Gi

are odd, it holds that any vertex inG0 (G1,G2) and any vertex inG3 (G4, G5) differ
by 1. Hence, we have found a feasibleL�2�1�-labeling for#5

i=0Gi .

By generalizing this idea we present the final algorithm:

CUTTING DISTANCE LABELING (CDL):
Input: A unit disk graphG,
Output: An L�2�1�-labeling forG.
1. Partition the plane intok � O

�
V

�
G�� stripsS0 � � � � �Sk of width 1

�
2
.

2. For eachi � �0� � � � �k� find anL�2�1�-labeling ofGi.
3. Change the labels of graphGi by adding integer #�i mod6�, where�

#0 � � � � �#5� � �
0� 6ω

�
G� � 12ω

�
G� � �1� 6ω

�
G� � 1� 12ω

�
G� � 1� �

Theorem 2.6.4.The maximum label used by the algorithmCDL is at most18ω
�
G�.

Proof. By Lemma 2.6.3, the maximum label used on everyGi (i � 1� � � � �k) is at
most 6ω

�
G�. Hence, the maximal label assigned by the algorithm CDL is atmost

12ω
�
G� � 6ω

�
G�.

Corollary 2.6.5. The approximation ratio of the algorithmCDL is bounded by
12, and the bound tends to9 as the clique numberω

�
G� of unit disk graphs grows

to infinity.

Proof. W.l.o.g. we can assume thatω
�
G� � 2. Then, in order to label a clique

of sizeω
�
G� we must use the maximum label at least 1� p1

�
ω

�
G� � 1�, where

p1 � 2. Thus, by Theorem 2.6.4, the approximation ratio of CDL is bounded by

18ω
�
G�

2ω
�
G� � 1 �

For ω
�
G� � 2, the bound is equal to 12. Ifω

�
G� grows to infinity, then the bound

tends to 9.

As the last note, it is not hard to observe that1
�

2
-strips were used in the description

of the algorithm to simplify the explanation. To avoid irrational numbers, 1
�

2
-

strips in the algorithm can be replaced byc-strips, wherec is any rational number
between2

3 and 1
�

2
.

2.6 OFFLINE LABELING OF UNIT DISK GRAPHS 133

2.6.4 Robust Algorithms

Here we present an approximation labeling algorithm which does not need the
disk representation of a unit disk graph as a part of the input. (Recall that it is
NP-hard to recognize unit disk graphs.)

An algorithm which solves an optimization problem on a class� of inputs is called
robustif it satisfies the following conditions [RS01]:

1. Whenever the input is in�, the algorithm finds the correct solution.

2. If the input is not in�, then the algorithm either finds the correct solution,
or reports that the input is not in�.

Based on the ideas of [CCJ90], a robust algorithm computing the maximal clique
of a unit disk graph is given in [RS01]. Every unit disk graph has an edge ordering
e1 �e � � � �e em such that for every edgeei the neighbors of its endpoints induce
a cobipartite subgraphCi (i.e., the complement of a bipartite graph) of a graph in-
duced by�e1 � � � � �ei �. If such an ordering�e exists, then each clique is contained
in the cobipartite graphCi for some edgeei . The robust algorithm first constructs
(if any exists) an edge ordering�e in timeO

�
m2n�, and then the algorithm finds a

maximal clique in each graphCi . This is equivalent to finding the maximum inde-
pendent set in a bipartite graph which can be done inO

�
m�n� time by using the

matching technique [HK73]. Therefore, the running time of the entire algorithm
is O

�
m2n�.

Let G be a unit disk graph and letG2 be the 2nd power ofG, i.e. a graph which
arises fromG by adding the edges which connect all vertices at graph distance 2.
Then, we can prove the following simple result:

Lemma 2.6.6. Every unit disk graph G has a vertex v such that the set

NG
�
v� � �u �� v: �u�v� � E

�
G��

contains at most3ω
�
G� � 3 vertices and the set

NG2
�
v� � NG

�
v�

contains at most11ω
�
G� vertices.

Proof. Let G be a unit disk graph. LetDv be the unit disk ofv � V
�
G�. Then, we

can select a vertexv such thatDv has the leasty coordinate. For an illustration see
Figure 2.22 on the following page.

134 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

y

v

Figure 2.22: A vertexv with the leasty-coordinate

Now consider the sector partition aroundv depicted in Figure 2.23. There are
14 sectorsSi , i � 1� � � � �14. Consider a vertexu in V

�
G�. We sayDu is in Si

(i � 1� � � � �14) if its center inSi. To break ties, any disk on a border of two sectors
is in the sector with smaller index.

Then, we have the following property. Ifu � NG
�
v�, i.e. Du intersectsDv, thenDu

in one of sectorsSi , i � 1�2�3. If u � NG2
�
v� � NG

�
v�, i.e. there is a disk which

intersectsDv andDu, thenDu in one of sectorsSi , i � 4� � � � �14.

The sectors are constructed such that any two unit disks in one sector intersect.
Thus, for each sectorSi , i � 1� � � � �14, verticesu from V

�
G� with disksDu in Si

form a clique. Hence, for each sectorSi, i � 1�2�3, we can bound the number of
the disks byω

�
G� � 1 (excepting ourDv), and for each sectorSi , i � 4� � � � �14,

v 1 2
¦

2

S1

S2

S3
S4

S13

S14

S12
S11

S10

S5 S6

S7

S9

S8

Figure 2.23: The sector partition around a vertexv

2.6 OFFLINE LABELING OF UNIT DISK GRAPHS 135

we can bound the number of disks byω
�
G�. In total, we can bound�NG

�
v� � by

3
�
ω

�
G� � 1�, andNG2

�
v� � NG

�
v� by

�
14� 3�ω�

G�.
We say that a vertex orderingv1 � � � � � vn of G is goodif for every 2� i � n: (i)�NG

�
vi � f �v1� � � � �vi�1� � � 3ω

�
G� � 3; (ii) ��NG2

�
vi � � NG

�
vi �� f �v1� � � � �vi�1� � �

11ω
�
G�.

Notice, that by Lemma 2.6.6 every unit disk graph has a good vertex ordering.
Also, for a graphG one can either find a good vertex ordering, or conclude that
there is no good ordering forG. Furthermore, ifG hasn vertices, this can be done
in O

�
n3� time.

Now we are ready to present a robustL�2�1�-labeling approximation algorithm for
unit disk graphs. The algorithm described below, called RDL, does not use the
disk representation of a unit disk graphG. It either concludes thatG is not a unit
disk graph, or it finds anL�2�1�-labeling ofG.

ROBUST DISTANCE LABELING (RDL):
Input: A graphG given as an adjacency list.
Output: An L�2�1�-labelingc of V

�
G�, or the conclusion thatG is not a

unit disk graph.
1. Run the robust algorithm to computeω

�
G�. This algorithm either

computesω
�
G� or concludes thatG is not a unit disk graph. 2. Find a

good vertex orderingv1 � � � � � vn. If there is no such an ordering, then
conclude thatG is not unit disk graph.
3. Label vertices sequentially in the order� as follows:

3a. Assume that verticesv1 � � � � �vi�1 are already labeled.
3b. Letλ � 1 be the smallest integer which is not used as a label of

vertices inNG2
�
vi � f �v1� � � � �vi�1� nor is a member of the setj
j?i:v j NG�vi ��c

�
v j � � 1�c�

v j � �c�
v j � � 1��

3c. Labelvi by c
�
vi � � λ.

Theorem 2.6.7.For any graph G, the algorithmRDL either produces an L�2�1�-
labeling for G with the maximum label at most20ω

�
G� � 8, or concludes that G

is not a unit disk graph.

Proof. Suppose that the algorithm RDL outputs thatG is not a unit disk graph. If
it occurs after the first step, thenG has no edge ordering�e and therefore is not

136 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

a unit disk graph. If the algorithm halts at the second step, then its conclusion is
verified by Lemma 2.6.6.

Suppose that RDL outputs a labeling. Let us first show that themaximum label
used by the algorithm is not larger than 20ω

�
G� � 8. We proceed by induction.

The vertexv1 is labeled by 1, since both sets declared in 3b are empty. Suppose
that we have labeled verticesv1 � � � � �vi�1. We need to assign a label tovi . If
a neighbor ofvi has a labelx then labelsx � 1�x andx � 1 are “forbidden” for
vi . If a vertex at distance two fromvi has a labelx thenx is “forbidden” for vi .
By (i), vi has at most 3ω

�
G� � 3 labeled vertices inNG

�
vi �. By (ii), there are at

most 11ω
�
G� labeled vertices inNG2

�
vi � � NG

�
vi �. Hence, the total number of

“forbidden” labels forvi is at most

3 � �3ω
�
G� � 3� � 11ω

�
G� � 20ω

�
G� � 9�

Since there are 20ω
�
G� � 8 labels, it holdsc

�
vi � � 20ω

�
G� � 8.

Corollary 2.6.8. The approximation ratio of the algorithmRDL is bounded by
32
3 H 10�67, and the bound tends to10 as the clique numberω

�
G� of unit disk

graphs grows to infinity.

Proof. W.l.o.g. we can assume thatω
�
G� � 2. Then, in order to label a clique of

sizeω
�
G�, the maximum label used is at least 1� p1

�
ω

�
G� � 1�, wherep1 � 2.

Thus, by Theorem 2.6.7, the performance ratio of RDL is bounded by

20ω
�
G� � 8

2ω
�
G� � 1 �

For ω
�
G� � 2, the bound is equal to32

3 H 10�67. If ω
�
G� grows to infinity, then

the bound tends to 10.

We observe that the knowledge of geometrical disk representation is crucial for
the construction of online algorithms with constant competitive ratio on unit disk
graphs. For the coloring problem similar robust algorithm on unit disk graphs can
be turned into online coloring algorithm (with worse competitive ratio). However,
this is not the case for the labeling problem. The main reasonwhy RDL cannot be
turned into a “First-Fit” algorithm is that at the moment when we have to select a
suitable label for a vertexvi we need the corresponding information about all ver-
tices from set�v1 � � � � �vi�1� which are at distance two fromvi in G. Unfortunately,
this information cannot be fully derived fromG restricted to�v1 � � � � �vi �.

2.7 GENERAL OFFLINE LABELING OF σ-DISK GRAPHS 137

2.7 GENERAL OFFLINE LABELING OF σ-DISK GRAPHS

Here we discuss an offline labeling algorithm forσ-disk graphs. We assume that
the disk representation ofσ-disk graphs is not given. We will need the following
simple result:

Lemma 2.7.1. For each vertex v in aσ-disk graph G, the set

N�k�
G

�
v� � �u �� v: distG

�
u�v� � k�

consists of at most
�
8k�2σ2ω

�
G� vertices.

Proof. Let Dv be the disk forv � V
�
G�. Assume w.l.o.g. that the smallest disk

diameter is equal to 1, and the largest disk diameter is equalto σ.

Take a vertexv � V
�
G� and consideru � N�k�

G

�
v�. The centers ofDv andDu are at

plane distance at mostkσ from each other. For illustration see Figure 2.24 on the
following page.

Consider a squareS of width 4kσ. We put the center ofS at the center ofDv.

Then, all disksDu, u � N�k�
G

�
v�, fall into S. Next, we partitionS into

�
4�2�

2�2k2σ2

small squares of width 1�2. For an illustration see Figure 2.25 on the next page.
Any two disks that fall into a small square intersect. Hence,the set of vertices

u � N�k�
G

�
v� which have disksDu in one small square form a clique. Thus, the

number of vertices in any such set is bounded by the maximum clique number

ω
�
G�. In total, we can bound�N�k�

G

�
v� � by

�
8�2k2σ2ω

�
G�.

Consider the following algorithm:

FIRST FIT LABELING (FFL):
Input: A σ-graphG in an adjacency list, and ak-tuple

�
p1� p2 � � � � � pk�

of distance constraints.
Output: An L�p1 ���� �pk�-labeling forG.

For eachv � V
�
G� find N�k�

G

�
v�. Select verticesv from G

�
V � in an ar-

bitrary order while labeling with an initial sequence of labels 1�2� � � �.
Assign the vertexv the least feasible label which respects

�
p1� � � � � pk�.

Now we can prove the following main result.

Theorem 2.7.2.The algorithmFFL is an O
�
k2σ2�-approximate L�p1 �����pk�-labeling

algorithm for the class ofσ-disk graphs.

138 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

v

u

Figure 2.24: Verticesv andvE

1
2

4kσ

u

v

Figure 2.25: A squareSat a vertexv

2.8 CONCLUDING REMARKS 139

Proof. LetG be aσ-disk graph. Assume w.l.o.g. that the clique numberω
�
G� � 2.

By Lemma 2.7.1, for any vertexv the number of vertices inN�k�
G

�
v� is bounded by�

8k�2σ2ω
�
G�. Even if any two labels foru � N�k�

G

�
v� differ by 2p1, that is more

thanp1 � p2 � � � � � pk, the the label assigned tov by FFL is most

1 � 2p1
��

8k�2σ2ω
�
G�� �

From another side, in labeling a clique of sizeω
�
G� the maximum label is at least

1 � p1
�
ω

�
G� � 1� �

Sinceω
�
G� � 2, the approximation ratio of FFL is bounded by

1 � 2p1
��

8k�2σ2ω
�
G��

1 � p1
�
ω

�
G� � 1� � O

�
k2σ2� �

Finally, we can notice that for each vertexv in V
�
G� we findN�k�

G

�
G�. Hence, FFL

is not an online algorithm. Furthermore, the approximationguarantee holds only
for σ-disk graphs. Due to the NP-hardness of theσ-disk graph recognition prob-
lem, this assumption is essential. However, it remains an open question whether
our algorithm can be turned into a robust one.

2.8 CONCLUDING REMARKS

The distance constrained labeling problem, which is a natural generalization of
the coloring problem, has only recently received increasedattention. There were
only few known results on the approximability of the problemand on the online
version of the problem. In this chapter we considered the distance constrained
labeling problem for the class of disk graphs. This model is related to the fre-
quency assignment problem in radio and mobile telephony networks. We pre-
sented a number of approximation and online algorithms for different variants of
disk graphs and distance constraints, obtaining the first results in this direction.
We derive several new techniques, e.g. hexagonal tiling, circular labeling, plane
cutting and neighborhood sectoring. These techniques are quite general and can
be used in designing of online and offline algorithms for manyother variants of
the labeling problem. In fact, our results forL�2�1�-labeling can be simply ex-
tended forL�p�1�-labeling. Furthermore, all our techniques are very simpleand do
not require larger computational resources. The realization of our online labeling
algorithm can be found in [Maš01].

140 DISTANCE CONSTRAINED LABELING OF DISK GRAPHS

Indeed, many interesting questions still remain. There is anumber of known
results regarding the complexity of several variants of theproblems, but the com-
plexity of the general labeling labeling problem, previously studied in [Fia00], and
the complexity ofL�p1 �p2�-labeling for planar graphs is still open. Regarding disk
graphs, it is still unclear how powerful is the information about the geometrical
disk representation. Though this information is importantfor online coloring and
labeling algorithms, even in very simple cases, we can find offline robust algo-
rithms which can avoid using of the disk representation. However, we think that
one should first address the question of approximability of the maximum clique
in the disk graphs. Regarding distance constrains, there are a number of results
on L�2�1�-labeling for different graph classes. However, there are no known re-
sults onL�3�2�1�-labeling, that can be a natural generalization. We believethat our
techniques can be quite useful here. Finally, one of the mainquestions concerns
real-world applications, which have not been widely discussed so far. Anyway, we
believe that in the near future there will be a great demand for algorithms solving
both offline and online versions of the labeling problem.

CHAPTER 3

SCHEDULING OF DEDICATED MULTIPROCESSOR

TASKS

Optical networks employing wavelength division multiplexing (WDM) are now a
viable technology for implementing a next-generation network infrastructure that
will support a diverse set of existing, emerging, and futureapplications [GLM�00].
WDM technology initially was deployed in point-to-point links inwide areadis-
tances [WASG96]. However, the work on WDMlocal areanetworks has also
been currently under way, see e.g. [Hel00, KFH�00]. These networks are also
known assingle-hopWDM networks [Muk92].

The main future of broadcast WDM local area networks is the so-calledone-to-
many transmissionor multicastingability [APE97]. For an illustration see Fig-
ure 3.1 on the following page. That is, a transmission by a node in such a network
on a given channel (wavelength) is received byall nodes listening on that channel
at that point in time [SS00].

Since the number of channels may be less than the number of nodes and two or
more nodes may want to send data packets to the same destination node, coordi-
nation among nodes that wish to communicate with each other is required. Many
transmission protocolsfor coordinatingmulticastdata transmissions have been
proposed in the literature (see [TR00] for a survey). The approaches used range
from sending a different copy of each data packet to each one of the correspond-
ing destinations (unicast service, or multicast service with full fanout splitting),
to transmitting a single copy of the data packet to all the destinations at once
(multicast service with no fanout splitting).

Due to the relation to the later approach, here we address thededicatedvariant
of the multiprocessor tasks scheduling problem. We are given a set ofn tasks
T � �1� � � � �n� and a set ofmprocessorsM � �1�2� � � � �m�. Each taskj � T has a
processing timep j , a release dater j and a prespecified set of processors fixj � M.
Preemptions are not allowed. Each processor can work on at most one task at a
time, each task must be processed simultaneously by all processors of fixj . The
objective is to minimize themakespan Cmax � maxj Cj , whereCj denotes the
completion time of taskj.

142 SCHEDULING OF DEDICATED MULTIPROCESSORTASKS

Workstation

1

2

3

45

Multicast

Unicast

Figure 3.1: A passive-star-based local optical WDM network

2

1

2

3 4

1

3

4

5

3 4

5

1

2

3

4

5

6

Packets

2

Destinations

Figure 3.2: Multi-destination data packets

143

1

2

3

4

210 3 4 5 6 7 8

1 5

2

1

2

2 3

4

4

4

6

6

6

5

Packets Flow

Figure 3.3: A schedule

In this framework,processorscorrespond tonodes, anddedicated tasksto multi-
destinationdata packets. For an illustration see Figure 3.2 on the preceding page
and Figure 3.3. The goal, minimizing the schedule makespan of dedicated tasks,
corresponds to the overalltransmissiontime, i.e. the time needed to send all data
packets out.

We call fixj the typeand �fix j � the sizeof task j � T, and use∆max to denote
maxj �fix j � andrmax to denote maxj r j . To refer to the variants of the above sche-
duling problem, we use the standard notation scheme by Graham at al. [GLLK79].
Here,P�fix j �r j �Cmax denotes the above problem itself in the offline case. In offline
scheduling, the scheduler has full information of the problem instance. In contrast,
in online scheduling, information about the problem instance is made available
during the course of scheduling. Thus,P�online� fix j � p � 1�Cmax denotes the on-
line variant where allp j � 1 and the tasksarrive over listandP�online� fix j �r j �Cmax

denotes the online variant where allp j are arbitrary and the tasksarrive over time.
In the first case, the tasks ofT are ordered in some list (sequence) and presented
one by one to the scheduler according to this list. The existence of a job is not
known until all its predecessors in the list have already been scheduled. In the sec-
ond variant, tasksj in T arrive at their release datesr j . The tasks can be started
at a time bigger than or equal to their release dates, and at any point of time, the
scheduler only has knowledge of the released tasks.

144 SCHEDULING OF DEDICATED MULTIPROCESSORTASKS

Known Results and Our Contribution. Variants of the multiprocessor tasks
scheduling problem have been studied, but the previous research has mainly fo-
cused on the offline case. Hoogeveen et al. [HdVV94] showed that already the
three-processor problemP3 �fix j �Cmax is strongly NP-hard, and proved that even
if all tasks have unit processing times, there exists no polynomial approximation
algorithm forP �fix j � p j � 1�Cmax with performance ratio smaller than43, unless
P=NP. However, in the same work it was shown that if the numberof processors
m is fixed, i.e.Pm�fix j � p j � 1�Cmax, then the problem is solvable in polynomial
time. Later, Amoura et al. [ABKM97] proposed a polynomial time approxima-
tion scheme (PTAS) for problemPm�fix j �Cmax, and Bampis & Kononov [BK01]
extended this result to a PTAS forPm�fix j �r j �Cmax. A 7

6-approximation algo-
rithm for P3�fix j �Cmax, which is due to Goemans [Goe95], remained the best low
time complexity approximation algorithm for a long time, until very recently it
has been improved to a98-approximation algorithm by Chen & Huang [CH01].
Fishkin et al. [FJP01b] extended the negative results presented in [HdVV94]. It
has been proven thatP �fix j � p j � 1�Cmax cannot be approximated within a fac-
tor of m1 2�ε, neither for someε � 0, unless P=NP; nor for anyε � 0, unless
NP=ZPP.

In the online context, there are several results known for the parallel variant of
the multiprocessor tasks scheduling problem, see e.g. [FST94, FKST93, BM98].
Up to our best knowledge, no online algorithms with guaranteed competitive ra-
tio are known for the dedicated variant of the multiprocessor model, considered
in this paper. Although some algorithms have been recently proposed in the lit-
erature, their performances are not evaluated analytically, but by using simula-
tions [CDI01b, CDI01a].

Here we present several results, important from both theoretical and practical
point of view. First, we deal with the problems where tasks have unit process-
ing times. Using the so-calledfirst-fit technique, we give an online algorithm
for P�online� f ix j � p j � 1�Cmax, which isk-competitive if the maximum task size
∆max is bounded by some constantk. It is interesting to point out that our anal-
ysis is based on a transformation of our scheduling problem to the classical (ver-
tex) coloring problem of a particular class of graphs, the intersection graphs of
k-tuples. We propose simple extensions of this algorithm to a2�m-competitive
algorithm forP �online� fix j � p j � 1�Cmax and

�
2�m� 1�-competitive algorithm

for P �online� fix j � p j � 1�r j �Cmax. Clearly, the 2�m-competitive algorithm and
the first-fit algorithm are complementary. For instance, ifk � 2 then the first-fit
algorithm is better. From another side, wheneverk � m the first algorithm outper-
forms the second one.

Next, we switch to the general problem with arbitrary processing times. We show
that any online algorithm which schedules tasks arriving over-list and leaves no

3.1 PRELIMINARIES 145

unnecessary idles cannot be better thanm-competitive. In some sense, this leaves
no hope for contracting any good on-line algorithm based on the first-fit tech-
nique. However, using oursplit-round technique, we first give an off-line 2k-
approximation algorithm forP�online� f ix j �Cmax if the maximum task size∆max

is bounded by some constantk, and modify it to an off-line 3�m-approximation
algorithm forP �fix j �Cmax. Then, by using the so-calledactive-passive-binssche-
duling technique by Shmoys, Wein & Williamson [SWW95], we give an online
6�m-competitive algorithm forP �online� fix j �r j �Cmax in which the existence of a
task is unknown until its release date.

Last Notes. We say that a polynomial algorithmA is a ρ-approximationalgo-
rithm if for all problem instances it outputs a schedule withmakespan at most
ρ �OPT, whereOPT is the makespan of the optimal schedule. The value ofρ is
called the approximation ratio ofA. If A is an onlineρ-approximation algorithm,
then we say that it is aρ-competitivealgorithm orA is ρ-competitive. In this case,
ρ is called the competitive ratio ofA.

The rest of this chapter is organized as follows. In Section 3.1.1 we give some pre-
liminary results. In Section 3.2 we consider scheduling dedicated tasks with unit
processing times, and then in Section 3.3 we consider scheduling dedicated tasks
with arbitrary processing times. Finally, in Section 3.4 wegive some concluding
remarks.

3.1 PRELIMINARIES

Here we introduce some general definitions from the graph theory and prove some
simple results that will be used throughout this chapter. Wefirst discuss the prob-
lem of coloring ofk-tuple graphs. Then, we discuss the problem of coloring of
the task conflict graph. The properties proven pertain to thecase when the tasks
have unit processing times. However, the ideas will be used in a generalized form
for arbitrary processing times as well.

3.1.1 Coloring of k-tuple Graphs

Here we first give the definition for a graph clique, a graph coloring, and ak-tuple
graph. Then, we preset a simple online algorithm for coloring of k-tuple graphs.

Clique. Given an undirected graphG � �
V�E�, a subsetK � V is a clique if

every two vertices inK are joined by an edge inE. A maximum cliqueis, naturally,

146 SCHEDULING OF DEDICATED MULTIPROCESSORTASKS

a clique whose number of vertices is at least as large as that for any other clique
in the graph, and its sizeω

�
G� is called theclique numberof G.

Coloring. A (vertex)k-coloring of a graphG � �
V�E� is a functionc : V

�
G� ��1� � � � �k� such thatc

�
u� �� c

�
v� wheneveru is adjacent tov. If a k-coloring ofG

exists, thenG is calledk-colorable. Aminimum coloringof G is a coloring that
uses as few different colors as possible, and its number of colors

χ
�
G� � min�k : G is k � colorable�

is called thechromatic numberof G.

Clique and coloring problems are very closely related. It isstraightforward to see
that the clique number ofG is a lower bound on the chromatic number ofG, i.e.

ω
�
G� � χ

�
G� � (3.1)

Graph of k-tuples. Let X be a finite set. Ak-tupleof X is a set havingk (or
less) elements ofX. A graphG � �

V�E� is ak-tuple graphif there exists a setX
such that each node ofV corresponds to ak-tuple ofX and there is an edge inE
between any two vertices iff the intersection of the correspondingk-tuples is not
empty. Notice that several vertices can correspond to a single k-tuple.

First Fit Coloring. Different variants of the graph (vertex) coloring problem
have been studied. It is widely known that coloring of arbitrary graphs is strongly
NP-hard. Furthermore, there is noρ-approximation algorithm withρ � n1 7�ε un-
less P=NP, wheren is the number of vertices of the graph [BGS98]. However, for
restricted graph classes, there can exist either exact polynomial time algorithms or
better approximation algorithms, as well as online coloring algorithms [FW98].

For a graphG � �
V�E�, an online coloring algorithm colors the vertices inV one

vertex at a time in the externally determined orderv1 � v2 � � � � � vn. At each
time t the algorithm must irrevocably assign a color to vertexvt , while it can only
see the subgraph ofG induced by the vertices inVt :� �vi �i � 1� � � � �t �.

Now we are ready to present a very simple variant of an online coloring algorithm:

FIRST FIT COLORING (FFC):
Select verticesv from V in an arbitrary order while coloring with an

initial sequence of colors 1�2� � � �. Assign the vertexv the least color
that has not already been assigned to any vertex adjacent tov.

3.1 PRELIMINARIES 147

Lemma 3.1.1. For a k-tuple graph G, the number of colors used by the algorithm
FFC is at most k� �ω�

G� � 1� � 1, whereω
�
G� is the clique number of G.

Proof. Let X be a finite set andG � �
V�E� be ak-tuple graph with the corre-

spondingk-tuples ofX. Take a vertexv in V. Let �a1� � � � �ak� be thek-tuple ofv.
Let

N
�
v� � �u � V � �

u�v� � E�
be the neighborhood ofv.

v

N$v%
K $a1% K $a2%

K $ak%
Figure 3.4: A vertexv andN

�
v�

We select elements from�a1� � � � �ak� one by one. For each selectedai (i �
1� � � � �k) we put all vertices fromN

�
v� whose correspondingk-tuples ofX con-

tain ai into setK
�
ai �, and thenN

�
v� :� N

�
v� e K

�
ai �. In the end, we have sets

K
�
a1� �K �

a2� � � � � �K �
ak�. For an illustration see Figure 3.4.

By the definition ofk-tuple graphs, eachK
�
ai � i � 1� � � � �k) is a clique inG.

By the construction, these cliquesK
�
a1� �K �

a2� � � � � �K �
ak� are disjoint and cover

N
�
v�. Furthermore, eachK

�
ai � # �v� (i � 1� � � � �k) is also a clique. Hence,�K �

ai � # �v� � � ω
�
G� (i � 1� � � � �k). Combining, we have�N�

v� � � �#k
i=1K

�
ai � � �

k
�
ω

�
G� � 1�. Thus, FFC uses at mostk

�
ω

�
G� � 1� � 1 colors onN

�
v� # �v� for

any vertexv � V.

3.1.2 Coloring of the Conflict Graph

We are given a task setT � �1� � � � �n� and a processor setM � �1�2� � � � �m�.
Each taskj � T has a processing timep j , a release dater j , and a type fixj � M.
The goal is to find a non-preemptive schedule which minimizesthe makespan
Cmax � maxj Cj .

148 SCHEDULING OF DEDICATED MULTIPROCESSORTASKS

Two tasksi and j in T are calledincompatibleiff fix j f fix j �� /0. Theconflictgraph
of T is a graphGT such thatV

�
GT � � T and there is an edge� j � i� � V

�
GT � iff

tasks j andi are incompatible.

Consider the case when for all tasksj in T it holds r j � 0 and p j � 1. Then,
any clique inGT corresponds to a set of pairwise incompatible tasks, and any
coloring ofGT corresponds to assigning every incompatible pair to distinct colors.
Furthermore, if there is a coloring ofGT with L colors, then there is a schedule
for T of makespanL. For an illustration see Figure 3.5. Hence, by (3.1), the
maximum clique numberω

�
GT � is a lower bound on the schedule makespan for

T.

0 321

1 4

5

6

2

3

Cmax � 3Time

Colors

5

χ
�
GT � � 3

1

2

3

4

T5

T5

T3

T4

T6

T2

T2T3

T4

T1

Figure 3.5: Scheduling ofT � �1�2�3�4�5�6� and coloring ofGT

Now we can give the following simple algorithm:

FIRST FIT SCHEDULING (FFS):
Schedule the tasks ofT by starting the taskj at the earliest interval�t �t � 1� in which the processors of fixj are not busy.

Consider the case when the maximum task size∆max � maxjT �fix j � is bounded
by some constantk. Then, the conflict graphGT ak-tuple graph, and by using the
result of Lemma 3.1.1 we have:

Lemma 3.1.2. If the maximum task size∆max is bounded by some constant k, then
the algorithmFFS is k-competitive for P�online� fix j � p j � 1�Cmax.

Proof. First consider the case when the tasks ofT arrive over-list. LetOPT be the
optimum makespan forP �fix j � p j � 1�Cmax. Let GT be the corresponding conflict

3.2 SCHEDULING OF TASKS WITH UNIT PROCESSINGTIMES 149

graph of task setT. One can see that FFC working onGT cannot outperform FFS
working onT, in the worst case analysis. Each interval�t �t � 1� corresponds to
color t, the schedule length corresponds to the number of colors, and vice versa.
Thus, sinceω

�
GT � is a lower bound onOPT, by Lemma 3.1.1 the makespan of

the output schedule by FFS is at mostk �OPT.

The above lemma does not guarantee a good performance of FFS on instances
with ∆max � m. Furthermore, there is no such a simple algorithm for the case
when allr j � 0, but all p j are arbitrary. Indeed, we can add a weightp j to each
vertex j of the conflict graphGT and deal with the maximum weighted clique
problem. In this framework, the sum of vertex weights in a maximum weighted
clique ofGT is a lower bound on the schedule makespan ofT. However, we will
not consider this approach.

3.2 SCHEDULING OF TASKS WITH UNIT PROCESSINGTIMES

Now we consider the online version of the dedicated scheduling problem. In this
section we study the simplest case when tasks have unit processing times, i.e. all
p j � 1.

As the first step, we modify the algorithm FFS as follows:

FIRST FIT SCHEDULING+ (FFS+):
Schedule the tasks ofT by starting the taskj at the earliest interval�t �t � 1�, t � r j in which the processors of fixj are not busy and there is
no task in�t �t � 1�g of size greater than�m if �fix j � � �m, andg of size at most�m if �fix j � � �m.

Less formally, the output schedule can be split into two parts. The first part in-
cludes the intervals during which each processed task has size at most�m, we
call these intervals “red” colored. The second part includes the intervals during
which each processed task has size greater than�m, we call these intervals “blue”
colored. For an illustration see Figure 3.6 on the next page.Accordingly, one can
think in terms of assigning the tasks ofT, depending on their sizes, to either blue
or red colored intervals.

We can prove the following:

150 SCHEDULING OF DEDICATED MULTIPROCESSORTASKS

b r r r b r

Figure 3.6: Red and blue intervals in a schedule

Lemma 3.2.1. The algorithmFFS+ is 2�m-competitive for P�online� fix j � p j �
1�Cmax and is

�
2�m� 1�-competitive for P�online� fix j � p j � 1�r j �Cmax.

Proof. Let OPT denote the optimal makespan forP �fix j � p j � 1�Cmax. Let T� :�� j � T : �fix j � � �m� andT� :� � j � T : �fix j � � �m�.

Assume that the tasks ofT arrive over-list. Consider the “red” part of the output
schedule, which corresponds toT�. The maximum task size∆max

�
T�� � �m.

Thus, the number of “red” colored intervals is at most�mOPT (Lemma 3.1.2).
Consider the “blue” part of the output schedule, which corresponds toT� . There
is at least one task appears in each “blue” colored interval.For each taskj � T�
we have �fix j � � �m. There arem processors. Hence, we can place at most
m��m � �m tasks in each “blue” colored interval. Thus, the number of “blue”
colored interval is at most�mOPT. Combining the two bounds we get that the
length of the output schedule is at most 2�mOPT.

Assume that the tasks ofT arrive over-time. LetOPTE denote the optimal makespan
for P �fix j � p j � 1�r j �Cmax. Let rmax :� maxr j be the last release date. Clearly,
OPT � OPTE and rmax � OPTE. Assume that each taskj in T arrives atrmax.
Then, as we saw above, the length of the schedule output by FFS+ is at most
2�mOPT. Hence, if each taskj in T arrives atr j , the length of the schedule
output by FFS+ is at mostrmax� 2�mOPT. That is,

rmax � 2�mOPT � OPTE � 2�mOPTE � �
2�m � 1�OPTE �

3.3 SCHEDULING OF TASKS WITH ARBITRARY PROCESSINGTIMES

Here we consider the general case when all processing timesp j are arbitrary. In
the first part we analyze the first-fit technique. In the secondpart, we consider the

3.3 SCHEDULING OF TASKS WITH ARBITRARY PROCESSINGTIMES 151

offline version of the problem in the case when all release datesr j � 0. We present
our split-round technique, and derive an approximation algorithm. In the final
part, we consider the online version where tasks arrive over-time. We present an
online algorithm which is based on the well-known passive-active-bin technique.

3.3.1 First-Fit Technique

Considerm tasksT1 �T2 � � � �Tm with processing timespk � 1� k
mε and types fixk ��k� (k � 1� � � � �m), and, in addition,m� 1 tasksTm�1, Tm�2, � � �, T2m�1 with the

same type fixk � �1� � � � �m� and processing timepk � ε
m�1 (k � m� 1� � � � �2m�

1).

εε

Figure 3.7: The output and optimal schedules

If all these 2m � 1 tasks arrive in the order 1� �m� 1� �2� �m� 2� � � � � � i � �
m�

i � � � � � � �m� 1� � �2m� 1� �m, then any deterministic on-line algorithm which leaves
no unnecessary idles produces a schedule of makespan greater thanm� 2ε, while
an optimal schedule has a makespan equal to 1� 2ε. For an illustration see Fig-
ure 3.7. Thus,m is a lower bound on the competitive ratio of any on-line algorithm
which uses the first-fit technique.

We defineP
�
T � � ∑ jT p j to be the total processing time of tasks ofT, and

L
�
T � � 1

m ∑ jT p j �fix j � to be the average load ofT. Then, it holds that

P
�
T � � m �L�

T � and L
�
T � � OPT � max

jT
r j � P

�
T � �

whereOPT is the minimum makespan forT.

Consider the following algorithm:

152 SCHEDULING OF DEDICATED MULTIPROCESSORTASKS

GENERAL FIRST FIT SCHEDULING (GFFS):
Schedule the tasks ofT by starting the taskj at the earliest timet � r j

such that the processors of fixj are not busy in interval�t �t � p j �.
Sure, the above algorithm uses the first-fit technique and cannot be better than
m-competitive. However, it cannot be much worse than that as well.

Lemma 3.3.1. The algorithmGFFSis m-competitive for P�online� fix j �Cmax and�
m� 1�-competitive for P�online� fix j �r j �Cmax.

Proof. Consider the case where the tasks ofT arrive over-list. LetOPT be the
minimal makespan forT. Let C denote the makespan of the schedule found by
GFFS working onT. Since for each taskj � T the release dater j � 0 and the
algorithm GFFS uses the first-fit technique,P

�
T � is an upper bound onC. Hence,

it holds that

C � P
�
T � � m �L�

T � � m �OPT�
Consider the case where the tasks ofT arrive over-time. LetOPTE denote the
optimal makespan forP �fix j �r j �Cmax. LetCE denote the makespan of the schedule
found by GFFS working onT. Let rmax :� maxr j be the last release date. Clearly,
OPT � OPTE and rmax � OPTE. Assume that each taskj in T arrives atrmax.
Then, as we saw above, the length of the schedule (afterrmax) output by GFFS is
at mostmOPT. Hence, if each taskj in T arrives atr j , the length of the schedule
output by GFFS is at mostrmax� mOPT. That is,

CE � rmax � mOPT � OPTE � mOPTE � �
m � 1�OPTE �

3.3.2 Split-Round Technique

Here we consider the offline versionP �fix j �Cmax. We start with the following
simple algorithm:

ROUND SCHEDULING (RS):
1. For each taskj � T roundp j to the smallest power of two, say�p j �a.

2. Apply GFFS to tasksj � T ordered by non-increasing�p j �’s.

aHere ~p j � & 2a § p j and 2aJ1 ¨ p j .

3.3 SCHEDULING OF TASKS WITH ARBITRARY PROCESSINGTIMES 153

By using the result of Lemma 3.1.1 we can prove the following result:

Lemma 3.3.2. If the maximum task size∆max is bounded by some constant k, then
the algorithmRS is 2k-approximation algorithm for P�fix j �Cmax.

Proof. Let OPT be the optimal makespan for the tasks inT. We round each
processing timep j , j � T, to the smallest power of 2. This increases the objective
function value by at most a factor of 2, i.e. the new minimal makespanOPTE �
2OPT. Now all processing times�p j �, j � T, are powers of 2. We schedule the
tasks ofT in non-increasing order of processing times.

Consider an illustration in Figure 3.8. We schedule tasks 1�2�3 and 4. First, look
at a schedule for the non-rounded tasks in a). The processorsrequired by task
2 are free right after task 2, but task 4 cannot start. This creates a “gap”. Now,
look at a schedule for the rounded tasks in b). There is no such“gap”. Task 4
starts right after task 2. Here, the processing time of task 1is exactly the sum of
processing times of task 2 and 4. If processing times are not powers of two, we
cannot guarantee this property.

a) non-rounded tasks b) rounded tasks

T1

T2

T3 T4
T2

T1

T4 T3

Figure 3.8: Scheduling 4 tasks

Consider the schedule found by GFFS while working on the rounded tasksj � T
ordered by non-increasing�p j �’s. Let C be the makespan of the output schedule
by SR.. Letz be a task such thatC � Cz. Accordingly,

Sz � Cz � pz � C � pz

is the starting time of taskz.

By the above observation, there are no “gaps” on the processors of fixz up to time
Sz. Hence, there is a sequences1 �s2 � � � � �sq of tasks inT such that at each moment
t � �0�Sz� for exactly one tasks

�
t � � �s1 �s2 � � � � �sq� it holds that fixs�t � f fixz �� /0.

(See Figure 3.9 on the following page). Hence,

Sz � q

∑
i=1

psi and C � pz � q

∑
i=1

psi �

154 SCHEDULING OF DEDICATED MULTIPROCESSORTASKS

Sz C

Ts1

Ts2 Ts3

Ts4
Ts5

Tz

Figure 3.9: A taskzand a sequences1 �s2 �s3�s4�s5

As we saw, each tasksi , i � 1� � � � �q, requires at least one of the processors in fixz.
Assume that at each moment of time all processors in fixz are busy processing
only taskss1 �s2 � � � � �sq, z. By �fixz� � ∆max � k, the processors in fixz can be free
only after

LE � 1
k

^
pz � q

∑
i=1

psi ` �
From another side,

1
k

^
pz � q

∑
i=1

psi ` � C
k �

Furthermore, alls1 �s2� � � � �sq andz are inT. Hence,LE � OPTE � 2OPT. Com-
bining, we have

C � kLE � 2kOPT�
As before, the above lemma does not guarantee a good performance of RS on
instances with∆max � m. However, we can modify the algorithm as follows:

3.3 SCHEDULING OF TASKS WITH ARBITRARY PROCESSINGTIMES 155

SPLIT ROUND SCHEDULING (SRS):
1. FormT� :� � j � T : �fix j � � �m� andT� :� � j � T : �fix j � � �m�.

2. Apply GFFS to tasksj � T� ordered in an arbitrary way.
3. For each taskj � T� roundp j to the smallest power of two, say�p j �a.
4. Apply GFFS to tasksj � T� ordered by non-increasing�p j �’s.

aHere ~p j � & 2a § p j and 2aJ1 ¨ p j .

We can state the following

Theorem 3.3.3.The algorithm SRS is a 3�m-approximation algorithm
for P �fix j �Cmax.

Proof. Let OPT be the minimum makespan forP �fix j �Cmax. Let C� be the
makespan of the schedule found by GFFS while working on the tasks of T�
ordered arbitrary (Step 2), andC� be the makespan of the schedule found by
GFFS while working on the rounded tasksj � T� ordered by non-increasing�p j �’s (Steps 3 and 4).

Since for each taskj � T� the size�fix j � � �m, it holds that

L
�
T� � � 1

m ∑
jTQ p j �fix j � � �m

m ∑
j TQ p j � P

�
T� ��m �

Thus,

C� � P
�
T� � � �mL

�
T� � � �mOPT�

For the tasks ofT� � T by Lemma 3.3.2 we haveC� � 2�mOPT. Hence, we
get

C� � C� � �mOPT � 2�mOPT � 3�mOPT�
i.e. the makespan of the output schedule by SRS is at most 3�mOPT.

3.3.3 Passive-Active-Bin Scheduling

We are ready to present the following main algorithm forP �online� fix j �r j �Cmax:

156 SCHEDULING OF DEDICATED MULTIPROCESSORTASKS

SPLIT-ROUND SCHEDULING+ (SRS+):
1. B :� /0, BE :� /0, t :� 0.

(B – active bin,BE – passive bin,t – time.)
2. B collects the tasks released at timet.
3. If B �� /0, then (a) the processors start att and work until the timet E
when the schedule forB defined by SRS completes, (b)BE collects the
tasks released in

�
t �t E�.

4. If BE �� /0, thenB :� BE, BE :� /0, t :� t E. Go to Step 3.
5. If BE � /0, then (a) all processors remain idle until the timet E when
the next job is released, (b)t :� t E andB :� /0. Go to Step 2.

Less formally, we proceed as follows. At each moment of time we deal with two
bins, one of which is set to “active” and the other one is set to“passive”. For an
illustration see Figure 3.10. At the first release date, we collect all released tasks
into the active bin. Then, with the time flow, we schedule the tasks of the active
bin by SRS and collect the tasks being released into the passive bin. At each
moment of time when SRS has no task to schedule, we exchange the activities of
bins (if there are any tasks to schedule at all).

0 t 0 0
BE jobs release times

t E

Schedule forB jobs

Figure 3.10: Passive-Active-Bin scheduling

Here we call the following result by Shmoys, Wein & Williamson in [SWW95]:
“Let A be a polynomial-time scheduling algorithm that works in an environment
in which each job to scheduled is available at time 0 and whichalways produces
a schedule of length at mostρC/. For the analogous environment in which the ex-
istence of a job is unknown until its release date, there exists another polynomial-
time algorithmAE that works in this more general setting and produces a schedule
of length at most 2ρC/”. In fact, SRS is similar to the algorithm constructed, and
we can give the following result

3.4 CONCLUDING REMARKS 157

Theorem 3.3.4. SRS+ is 6�m-competitive for P�online� fix j �r j �Cmax in which
the existence of a task is unknown until its release date.

3.4 CONCLUDING REMARKS

In this chapter we considered the problem of scheduling independent dedicated
tasks to minimize the makespan. The problem is well-known and there are a num-
ber of approximability results. However, most of them concern the case when the
number of processors is equal to 2, 3 or when it is a fixed constant. Furthermore,
no results were known for the online version of the problem, which applications
can be found in WDM LANs. Here we presented the first results inthis direc-
tion. We derived some simple online algorithms for both over-list and over-time
scheduling concepts. The techniques used are very simple and all algorithms have
quite low running time, that is important for applications.

One of interesting questions is an extension of the results for the cases when tasks
can have precedence constrains. We believe that our algorithms and techniques
can be generalized here. We are convinced that boundO

��m� will remain for the
general case. However, the study of simple cases with the number of processors 2
and 3 is also very interesting.

CHAPTER 4

ON MAXIMIZING THE THROUGHPUT OF

MULTIPROCESSORTASKS

4.1 INTRODUCTION

In the traditional theory of scheduling, each task is processed by only one pro-
cessor at a time. However, due to the rapid development of parallel computer
systems, new theoretical approaches have emerged to model scheduling on paral-
lel architectures. One of these is scheduling multiprocessor tasks, see e.g. [Dro96,
GLLK79].

In this paper we address the following multiprocessor scheduling problem. A
set T � �T1 �T2� � � � �Tn� of n tasks has to be executed by a set ofm processors
P � �P1 �P2 � � � � �Pm�. Each taskTj (j � 1�2 � � � �n) has a unit processing time
p j � 1 and an integral due dated j . Each processor can work on at most one
task at a time, and each task can (or may need to) be processed simultaneously by
several processors. Here we assume that all tasks are available at time zero and the
objective is to maximize thethroughput∑Ū j , whereŪ j � 1 if taskTj is completed
before or at timed j (Tj is said to beon timeor early), andŪ j � 0 otherwise (Tj is
said to belateor tardy).

We deal with two variants of this problem. In theparallelvariant, the multiproces-
sor architecture is disregarded and for each taskTj (j � 1�2 � � � �n) there is given
a prespecified number sizej � �1�2� � � � �m� which indicates thatTj requires the
simultaneous use of sizej processors inP. In thededicatedvariant, each taskTj

(j � 1�2 � � � �n) there is given a prespecified set fixj � �1�2� � � � �m� which indi-
cates thatTj requires the simultaneous use of the processors ofP with indices in
fix j . For an illustration see Figure 4.1 and Figure 4.2 on the following page.

To refer to the variants of the problem, we use the standard notation scheme intro-
duced in [GLLK79, LLKS93, Dro96]. We will writeP�sizej � p j � 1�∑Ū j and
P�fix j � p j � 1�∑Ū j to denote the parallel and dedicated variants of the prob-
lem. If all tasks have a common due dateD, i.e. all d j � D, we will write
P�sizej � p j � 1�d j � D �∑Ū j andP�fix j � p j � 1�d j � D �∑Ū j , respectively.

160 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

1

T1 T2 T3 T4

sizej 2

1 2

1 2

3

T4

2

T1

T3 T2
P3

P2

P1

Tj

d j

0 1 2 3

∑Ū j & 1) 0) 1) 1 & 3

Figure 4.1: Scheduling parallel tasksT1�T2 �T3 andT4

T3

fix j

T1 T2

T3

T4

T4 T2

T3

1

T1
P2

P3

P1

d j

Tj

0 32

∑Ū j & 0) 1) 1) 1 & 3

r
1t2t3sr

1t3sr
2sr

2t3s
1 2 2 3

Figure 4.2: Scheduling dedicated tasksT1�T2 �T3 andT4

4.1 INTRODUCTION 161

Known Results and Our Contribution. There are a lot of results known for
the classical (non-multiprocessor) job scheduling problems, where the objective
is either to minimize the (weighted) number of late (tardy) jobs or to maximize
the (weighted) number of on time (early) jobs, see e.g. [Bru98, DP95, HPW00,
KIM78, Law76, Law82, LM69, LKB77, Mon82, Moo68, RW98]. In the mul-
tiprocessor setting, the previous research has mainly focused on the objectives
of minimizing the makespanand the sum of completion times. As a rule, sc-
heduling multiprocessor tasks with unit processing times is a stronglyNP-hard
problem [Llo81, HdVV94]. However, a number of different approximation algo-
rithms have been recently proposed in [ABKM97, BM98, CH01, CLL98, FST94,
FKST93, Goe95, Llo81, TLWY94]. Up to our knowledge, no results are known
for the multiprocessor tasks scheduling problem which concern either minimiz-
ing the number of late (tardy) tasks or maximizing the numberof on time (early)
tasks.

Here, focusing on the throughput objective, we present the first results in this
direction. We derive the complexity results and present several approximation
algorithms, for both parallel and dedicated variants of theproblem.

In the first part of the chapter we consider the parallel variant of the problem. Each
parallel task requires a prespecified number of processors,and there are at mostm
processors available at any the same time slot. By adopting the complexity result
for 3-PARTITION [GJ79], we prove that problemP�sizej � p j � 1�∑Ū j is strongly
NP-hard. Next, we propose two simple greedy algorithms, namely FFIS and
LFIS. We prove that the worst-case ratio of FFIS is 2, and the worst-case ratio of
LFIS is 2� 1�m, respectively. Finally, by refining both algorithms, we introduce
an improved algorithm HA with the worst-case ratio at most 3�2 � 1� �

2m� 2�.
In the second part of the chapter we consider the dedicated variant. Each dedicated
task requires a prespecified subset of processors, and any two tasks that share a
processor cannot be executed at the same time slot. By adopting the complex-
ity result for MAXIMUM CLIQUE [Has99], we prove that problemP�fix j � p j �
1�d j � 1�∑Ū j with the common due dateD � 1 is strongly NP-hard, and for any
givenε � 0 it cannot be approximated within a factor ofm1 2�ε unless NP� ZPP,
wherem is the number of processors. Next, for the common due date problem
P�fix j � p j � 1�d j � D �∑Ū j we show that both algorithms FFIS and LFIS have
the worst-case ratio at least�m but at most�m� 1. At the same time, both al-
gorithms are optimal in the case when the number of processors m � 2, and their
worst case ratio is 3�4 in the case when the number of processorsm � 3. Fi-
nally, we show bounds�mand�m� 1 on the worst case ratio of FFIS and LFIS
remain valid for the general problem problemP�fix j � p j � 1�∑Ū j .

Interestingly, there are a number of different relations tosome well-known com-

162 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

binatorial problems. Just beyond the relation to 3-PARTITION and MAXIMUM

CLIQUE, we can also find that BIN PACKING and MULTIPLE KNAPSACK corre-
spond to the parallel variant of our problem. We will discussthis in successive
sections.

Last Notes. The quality of an approximation algorithm ALG is measured byits
worst-case ratiodefined as

RALG � sup
T

�NOPT
�
T ��NALG

�
T �� �

whereNOPT
�
T � denotes the number of early tasks produced by an optimal algo-

rithm OPT for a task setT, andNALG
�
T � denotes the number of early tasks in the

schedule produced by ALG forT. For simplicity, throughout of this chapter we
will write NOPT andNALG if no confusion is caused.

Notice that if we know the number of tardy tasks in an optimal schedule, we can
simply find the number of early tasks, and vice versa. In fact,it is convectional
to consider minimizing the number of tardy tasks in investigating optimal algo-
rithms. From another side, it can happen that there are no tardy tasks in an optimal
schedule, but almost all tasks are early in a near-optimal schedule obtained by an
approximation algorithm. In this case, even if the algorithm performs well from
a practical point of view, its formal performance is evaluated as quite bad. The
same situation can be also observed in online scheduling [HPW00]. Thus, for
investigating approximation algorithms it is reasonable to choose the objective of
maximizing the number of early tasks, i.e. the throughput objective.

The rest of this chapter is organized as follows. In Section 4.2 we introduce some
notations and provide some preliminary results which will be used throughout
the chapter. In Section 4.3 we present the results for the parallel model. In Sec-
tion 4.4 for the dedicated model. Finally, in Section 4.5, wegive some concluding
remarks.

4.2 PRELIMINARIES

An instance of our scheduling problem is given as follows. There are a setT ��T1 �T2 � � � � �Tn� of n tasks and a set ofmprocessorsP � �P1 �P2� � � � �Pm�. For each
taskTj (j � 1�2 � � � �n), there are a unit processing timep j � 1 and an integral
due dated

�
Tj �. In the parallel model, for each taskTj (j � 1�2 � � � �n) there is a

prespecified number sizej � �1�2� � � � �m�. In the dedicated model, for each taskTj

(j � 1�2 � � � �n) there is a prespecified subset fixj � �1�2� � � � �m�. If taskTj meets
its due dated

�
Tj � (Tj starts before or atd j � 1 andŪ j � 1) it is said to be early,

4.2 PRELIMINARIES 163

otherwise (Tj starts at or afterd j andŪ j � 0) it is said to be late. Our objective is
to maximize thethroughput∑Ū j .

4.2.1 Task Size and Common Due Date

Throughout of the chapter we will use the following notations. For simplicity, we
will write sj instead ofsizej andτ j instead off ix j . For a taskTj (j � 1�2� � � � �n)
the value ofsj (for parallel) and�τ j � (for dedicated) is called thesizeof Tj . Then,
Tj is calledlarge if its size is greater thanm�2, andsmallotherwise.

In addition, we will write 0* d1 * � � � * dg � D to denote all distinct due dates,
whereD is the largest due date maxj d

�
Tj �. Thus, each taskTj (j � 1�2� � � � �n) has

its integral due dated
�
Tj � � �d1�d2� � � � �dg�. We say that tasks have acommon

due dateD if d
�
Tj � � D for all tasksTj , j � 1�2� � � � �n.

4.2.2 Scheduling on Time Slots

Informally, in order to construct a schedule forT we proceed as follows. We first
partition interval�0�D� into time slots It � �t �t � 1�, t � 1� � � � �D. Then, we define
an order on the tasks inT and process them one by one in this order. For taskTj ,
we try to add it to a partial schedule in one of time slotsIt , t � d

�
Tj �. If this can be

done, we declareTj be early (̄U j � 1), otherwise we declareTj be late (̄U j � 0).
We finish when all tasks are processed and output the final schedule.

Let ALG be a scheduling algorithm. For simplicity, we assumethat ALG either
acceptsor rejectsthe tasks inT. Every accepted task inT is scheduled by ALG
before its due date, and it is early in the output schedule. From another side, every
rejected task inT is not scheduled by ALG, and it islost(late) the output schedule.
Thus, the number of tasks in the output schedule is equal to the number of early
tasksNALG

�
T �.

As we discussed, an algorithm ALG schedules the accepted tasks of T in time
slots It � �t �t � 1�, t � 1� � � � �D. We will write Nt andm

�
It � to denote the total

number and the total size of the accepted tasks by algorithm ALG in time slotIt.
Clearly, for each time slotIt , t � 1� � � � �D, it holds that

m
�
It � � m�

wherem is the number of processors inP. Thus, the total number of accepted
(early) tasks

NALG
�
T � � g

∑
t=1

Nt �

164 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

and the total size of the accepted (early) tasks

D

∑
t=1

mt � m �D �
Finally, we say that a time slotIt is closedif algorithm ALG meets the first task
for which there is no room inIt , and we say thatIt is openif it is not closed yet.
For an illustration see Figure 4.3.

0

P3

P2

P1

1 2 3 Dt © 1

It

mAI1C N 2
N AI1C N 2

I1

t

ID

D © 1

T1

T3

Tj

T2

I2

mAI1C N 2
N AI1C N 1

"Open"

mAIDC N 0
N AIDC N 0

mAIt C N 3
N AIt C N 1
"Closed""Closed""Closed"

Figure 4.3: Scheduling on time slots

4.2.3 First-Fit and Last-Fit

We will consider two basic scheduling techniques:First-Fit andLast-Fit. Infor-
mally, First-Fit uses the concept of scheduling tasksas early as possible, whereas
Last-Fit uses the concept of scheduling tasksas late as possible.

The difference can be seen from the following example. Let ALG be a scheduling
algorithm andT be a task set. We first define an order on the tasks ofT, and then
let ALG process the tasks in this order. LetTj be a task being processed by ALG.
For an illustration see Figure 4.4 on the facing page.

TaskTj must be scheduled in one of time slotsI1 �I2� � � � � Id�T � j ��. From one side,
if non of time slots can “accommodate”Tj , then algorithm ALG rejectsTj . From
another side, it can happen that in several time slots there are “free” processors
which can be assigned to taskTj . Which time slot should be selected forTj?

Indeed, there are two natural strategies for algorithm ALG:either select the first
(earliest) time slot or the last (latest) time slot. If ALG always selects the the first
time slot, we say that ALG is a FIRST-FIT algorithm. If ALG always selects the
the last time slot, we say that ALG is a LAST-FIT algorithm.

4.2 PRELIMINARIES 165

I1 IdªTj «I2

First-Fit
Tj

0 dATj C
FREE FREE FREE

Last-Fit

Figure 4.4: First-Fit and Last-Fit for taskTj

T1

T2

T1

P2

P1

P3

P2

P1

P3

T2 T3 T3

1

b) OPT

T4

T1 T2 T3 T4

1

d j 3

1

3

2 3

2

Tj

210 33210

∑Ū j & 1) 1) 1) 0 & 3 ∑Ū j & 1) 1) 1) 1 & 4

sizej

a) First-Fit

Figure 4.5: First-Fit scheduling of parallel tasksT1�T2 �T3 andT4

166 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

10

T1

P2

P1

P3

P2

P1

P3

2 3

31

3210

T1 T2 T3 T4

1

d j

1

Tj

1 2

3

3

T1

T4

2 3

T2 T3

T3

T2

a) Last-Fit

T5

T5

∑Ū j & 1) 1) 1) 0) 0& 3 ∑Ū j & 1) 1) 1) 1) 1& 5

sizej

b) OPT

Figure 4.6: Latest-Fit scheduling of parallel tasksT1 �T2�T3 �T4 andT5

Unfortunately, we can give simple examples showing that neither FIRST-FIT nor
LAST-FIT is optimal. See Figure 4.5 on the page before. There are only tree tasks
accepted in First-Fit scheduling, whereas all four tasks can be scheduled on time.
See Figure 4.6. There are only four tasks accepted in First-Fit scheduling, whereas
all five tasks can be scheduled on time. We will also refer to these examples later.

4.2.4 Scheduling in EDD and LDD

Here we discuss two main techniques for processing multiprocessor tasks. Con-
sider one machine scheduling problem 1�p j � 1�∑Ū j . There aren jobs. Each
job j (j � 1� � � � �n) has a unit processing time and a due dated j . The goal is to
maximize the throughput. In [Mon82], it was observed that, by creating sets

Sn � � j � d j � n� and Sk � � j � k � d j * k � 1�� for k � 1� � � � �n � 1�
and processing jobs in the orderS1�S2� � � � �Sn, rejecting a job when it is late, an
optimal solution is obtained inO

�
n� time. Similarly, an optimal solution cab be

obtained by processing jobs in the reverse orderSn �Sn�1 � � � � �S1 and rejecting a
job when it is late.

Indeed, in both algorithms processing of tasks takes place either in EARLIEST

DUE DATE (EDD) order –in non-decreasing order of due datesor in LATEST

DUE DATE (LDD) order – in non-increasing order of due dates. Furthermore,
by using First-Fit or Last-Fit we can generalize the algorithms for multiprocessor
task scheduling. We can prove the following:

4.2 PRELIMINARIES 167

Lemma 4.2.1. If all multiprocessor tasks are large or all multiprocessortasks
have size one, then usingFIRST-FIT in EDD order or LAST-FIT in LDD order,
an optimal solution is obtained in O

�
nm� time.

Proof. If all multiprocessor tasks are large, then no two tasks, either parallel or
dedicated, can be processed in one time slot. Hence, the problem can be reformu-
lated as 1�p j � 1�∑Ū j . For an illustration see Figure 4.7.

T2T1 TnT3

m
m¬2T1 T2 T3 Tn

Figure 4.7: Scheduling large tasks

Now assume that all multiprocessor tasks have size one and there arem proces-
sors. If tasks are dedicated, then any two tasks with the samerequired processor
cannot be scheduled in one time slot. Hence, the problem of scheduling tasks on
m processors can be reformulated asm independent problems 1�p j � 1�∑Ū j . For
an illustration see Figure 4.8.

m Pk

Pk

Figure 4.8: Scheduling dedicated tasks of size one

If tasks are parallel, then anym tasks can be scheduled in one time slot. Hence,
by “scaling” the time line, the problem can be reformulated as 1�p j � 1�∑Ū j . For
an illustration see Figure 4.9.

168 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

m

m mm

Figure 4.9: Scheduling parallel tasks of size one

Unfortunately, both EDD and LDD are not that good for the general case. See
Figures 4.5 on page 165 and 4.5 on page 165. Furthermore, consider the following
example. There arek large tasksTj (j � 1� � � � �k) with sj � m andd

�
Tj � � k, and

m
�
k � 1� small tasksTj (j � k � 1� � � � � �m� 1� �k � 1�) with sj � 1 andd

�
Tj � �

k� 1. Then, the number of tasks in theOPT scheduleNOPT � m
�
k� 1�, but EDD

schedules onlyk large tasks andmsmall tasks. For an illustration see Figure 4.10.
Thus, ask � ∞, the ratio tends tom.

k � 50 0 k � 5

a) EDD schedule b) OPT schedule

Figure 4.10: Schedulingk large andm
�
k � 1� small tasks in EDD

order, fork � 5 andm � 5

4.2.5 Scheduling in Increasing Size

Consider the following single bin packing problem:

INSTANCE: A setA � �a1 �a2� � � � �an� of n items and a single bin of sizem� N.
Each itema j (j � 1� � � � �n) has sizesj � N.

OBJECTIVE: Find a subsetAE � A such that∑ jAd sj � m and such that�AE � is
maximized.

4.2 PRELIMINARIES 169

Informally, we are given a set of items an one bin, and out goalis to maximize the
number of items in the bin.

It is not hard to see that 2-PARTITION can be simply reduced to the problem,
that gives NP-hardness [GJ79]. Furthermore, the problem isjust a version of
KNAPSACK and BIN PACKING [GJ79], and there are a number of approximation
algorithms are known [Hoc96, Vaz00, Hro01]. We consider a very simple one:

FIRST FIT INCREASING (FFI):
Add items into the bin in order of non-decreasing sizes. If the addition
of an item results in the bin being “overloaded”, reject thisitem and all
later items.

Lemma 4.2.2. Let OPT be the number of items in the optimal packing. Then, the
number of items accepted byFFI is at least OPT� 1.

Proof. Assume w.l.o.g. that itemsa1�a2� � � � �ak are accepted and all itemsak�1,
ak�2, � � �, an are rejected by FFI. Then, there arek items in the bin, and the total
size of packed items

S� k

∑
j=1

sj � m andS � sk�1 � m�
Clearly, replacing any of itemsa1�a2� � � � �ak, ak�1 by one of later rejected items

m

a1

ak

a2

a3

a1

ak

a2

a3

ak1

Figure 4.11: Itemsa1 �a2 � � � � �ak andak�1

ak�2 � � � � �an can only increase the value ofS � ak�1. For an illustration see
Figure 4.11. Hence, any set ofk � 2 items will “overload” the bin. Thus, the
optimal valueOPT at mostk� 1.

170 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

Unfortunately, the algorithm FFI cannot be formally generalized for scheduling
multiprocessor tasks. However, its main idea, that is processing of tasks by IN-
CREASING SIZE (IS) – non-decreasing order of sizes, will be analyzed later in
Section 4.3 for the parallel model and in Section 4.4 for the dedicated model. We
will also use the main idea of “overloading”, which is described in Lemma 4.2.2.

4.3 SCHEDULING OF PARALLEL TASKS

In this section we consider the following problem of scheduling parallel multi-
processor tasks. We are given a setT � �T1�T2 � � � � �Tn� of n tasks and a setP ��P1 �P2� � � � �Pm� of m processors. Each taskTj has a unit processing timep j � 1,
an integral due dated

�
Tj � � �d1�d2� � � � �dg�, where 0* d1 * d2 * � � � * dg � D,

and requiressj � �1� � � � �m� processors for its processing. The goal is to maxi-
mize thethroughput, i.e. the number ofearly tasksTj that meet their due dates
d

�
Tj �.

4.3.1 Complexity

We start with the following result:

Theorem 4.3.1.Problem P�sizej � p j � 1�d j � D �∑Ū j is stronglyNP-hard.

Proof. Problem 3-PARTITION can be formulated as follows [GJ79]:

INSTANCE: SetA of 3N elements, a boundB � Z� , and a sizes
�
a� � Z� for

eacha � A such thatB�4 * s
�
a� * B�2 and such that∑aBs

�
a� � NB.

QUESTION: CanA be partitioned intoN disjoint setsA1 �A2 � � � � �AN such that,
for 1 � i � N, ∑aAi

s
�
a� � B?

We transform 3-PARTITION to our problem as follows. We first definem� B and
form a setP � �P1�P2� � � � �Pm� of m processors. Next, we replace each element
a � A by a single taskTa which has a unit processing time, a due dated

�
Ta� � N,

and requiress
�
a� processors inP. In total, there aren � 3N tasks inT � �Ta : a �

A� and all of them have a common due dateD � N. Clearly, such an instance of
our problem can be constructed in polynomial time. Furthermore, the answer to a
given instance of 3-PARTITION is YESif and only if all tasks meet the common
due date. Since 3-PARTITION is strongly NP-complete [GJ79], our problem is
strongly NP-hard.

4.3 SCHEDULING OF PARALLEL TASKS 171

The common due date problemP�sizej � p j � 1�d j � D �∑Ū j can be reformulated
as the problem of finding a maximum cardinality subset of the given list of items
which can be packed into a given number of bins with a given capacity. This is
a special variant of the BIN PACKING problem [CLT78, ECL79] and the MUL-
TIPLE KNAPSACK problem [Kel99, CK00, CKP00]. The later problem admits
a polynomial approximation scheme (PTAS). Hence, we can conclude with the
following:

Theorem 4.3.2.There is a PTAS for problem P�sizej � p j � 1�d j � D �∑Ū j .

4.3.2 The Algorithm FFIS

Here we analyze the following algorithm for the parallel model:

FIRST FIT INCREASING SIZE (FFIS):
Select the tasks one by one in IS order. If the task can be completed
before or at its due date, it is scheduled as early as possible. If the
task cannot be assigned to meet its due date, it gets lost (it will not be
scheduled).

We start with the case when all tasks have a common due date:

Theorem 4.3.3.For the common due date problem P�sizej � p j � 1�d j � D �∑Ū j ,
the worst-case ratio

RFFIS � 4
3 �

Proof. As we discussed before, problemP�sizej � p j � 1�d j � D �∑Ū j can be
reformulated as the bin packing problem for maximizing the number of items
packed, which was studied by Coffman, Leung and Ting [CLT78]. They presented
an algorithm called FFI and proved the tight asymptotic worst-case ratio is 4�3.
In fact, their proof is also valid for the absolute worst-case ratio. Furthermore,
FFIS is similar to FFI. By using this result, we can prove thatthe worst-case ratio
of FFIS is not greater than 4�3.

We can also show that the bound 4�3 for RFFIS is tight if m � 3. Consider the
following example. There are two small tasks,T1 andT2, each of which requires
only one processor, and there are two large tasks,T3 andT4, each of which re-
quiresm� 1 processors. LetD � 2 be a common due date. Clearly, FFIS can
only schedule three of them. However, all four tasks can be scheduled. For an
illustration see Figure 4.12 on the following page.

172 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

P2

T3

P1

P2

T3

P1

a) FFIS schedule

T1

b) OPT schedule

0

T2T2

T3
T1

T3 T4

10 2 1 2

Figure 4.12: Scheduling tasksT1 �T2�T3 andT4

Now we can prove the following main result:

Theorem 4.3.4.For the general problem P�sizej � p j � 1�∑Ū j , the worst-case ra-
tio

RFFIS � 2�
Proof. We first prove thatRFFIS � 2. Consider the OPT schedule withNOPT tasks
and the FFIS schedule withNFFIS tasks, respectively. Remove from the OPT
schedule all tasks which are involved in the FFIS schedule. Let +t be the number
of left tasks in each time slotIt .

If we prove that
D

∑
t=1

+t � D

∑
t=1

Nt � NFFIS� (4.1)

we will have

RFFIS � NOPT

NFFIS
� 2� (4.2)

Recall that all+t left tasks in the OPT schedule are lost in the FFIS schedule.
Since FFIS schedules the tasks in non-decreasing order of size, in each time slot
It the left +t tasks of the OPT schedule are not smaller in size than those ofthe
FFIS schedule. Hence, the number of scheduled tasksNt cannot be less than+t.
Thus, we have

Nt � +t � for t � 1� � � � �D �
and both (4.1), (4.2) hold.

The bound is tight. Consider the following example. There are two tasksT1 and
T2. TaskT1 has sizes1 � 1 and dated

�
T1� � 2, whereas taskT2 has sizes2 � m

and due dated
�
T2� � 1. In the optimal schedule bothT1 andT2 are scheduled, but

the algorithm FFIS only accepts taskT2. For an illustration see Figure 4.13 on the
next page.

4.3 SCHEDULING OF PARALLEL TASKS 173

dAT1C
b) OPT schedulea) FFIS schedule

T1

T2 T2
T1

0 dAT2C dAT1C dAT2C0

Figure 4.13: Scheduling tasksT1 andT2

4.3.3 The Algorithm LFIS

Here we analyze the following algorithm for the parallel model:

LAST FIT INCREASING SIZE (LFIS):
Select the tasks one by one in IS order. If the task can be completed
before or at its due date, it is scheduled as later as possible. If the
task cannot be assigned to meet its due date, it gets lost (it will not be
scheduled).

Indeed, the performance ratio of FFIS and LFIS is the same forthe common due
date problem. However, LFIS performs better for the generalproblem. We start
with the following simple result:

Lemma 4.3.5. For the general problem P�sizej � p j � 1�∑Ū j , the worst-case ratio

RLFIS � 2 � 1
m�

where m� 2 is the number of processors.

Proof. Consider the following example. For an illustration see Figure 4.14 on the
following page. There aremsmall tasksTj (j � 1� � � � �m) with sizesj � 1 and due
dated

�
Tj � � j. These small tasks are denoted bys in Figure 4.14 a) and b). In

addition, there arem� 1 large tasksTj (j � m� 1� � � � �2m� 1) with sizesj � m
and due dated

�
Tj � � m. These large tasks are denoted byL in Figure 4.14 b).

Clearly, all tasks are early in the optimal schedule. We can schedule all small
tasks in the first time slotI1 and schedule all large tasks in later time slots, see

174 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

s

s
s
s
s

s

a) LFIS schedule

0 2

b) OPT scheduleL L

s s s

0 2 m© 13

3

m

mm© 1

Figure 4.14: Scheduling small and large tasks

Figure 4.14 b). However, the algorithm LFIS only accepts small tasks, see Fig-
ure 4.14 a). Hence the worst-case ratio

RLFIS � 2m� 1
m � 2 � 1

m�
Now we can prove the following main result:

Theorem 4.3.6.For problem P�sizej � p j � 1�∑Ū j , the worst-case ratio

RLFIS � 2 � 1
m�

Proof. By Lemma 4.3.5, we only need to show thatRLFIS � 2 � 1�m. In the
following we will prove this by a contradiction.

Assume thatRLFIS � 2 � 1�m. Accordingly, letTmin be the minimum task set, in
terms of the number of tasks, such that

NOPT
�
Tmin�

NLFIS
�
Tmin� � 2 � 1

m� (4.3)

Then, for all task setsT with �T � * �Tmin �, it follows

NOPT
�
T �

NLFIS
�
T � � 2 � 1

m� (4.4)

4.3 SCHEDULING OF PARALLEL TASKS 175

Consider the OPT schedule forTmin. There areD time slotsIt , t � 1� � � � �D. As-
sume that there exists one taskTj in Tmin which is lost by the optimal algorithm
OPT. In this case we have that

NOPT
�
Tmin� � NOPT

�
Tmin e �Tj �� �

Furthermore, since LFIS acceptsTj in Tmin, the lost tasks have larger size thanTj .
Hence, LFIS working onTmin e �Tj � cannot accept more thanNLFIS

�
Tmin� tasks.

Thus, from (4.3) we have that

NOPT
�
Tmin e �Tj ��

NLFIS
�
Tmin e �Tj �� � NOPT

�
Tmin�

NLFIS
�
Tmin� � 2 � 1

m�
This gives a contradiction to (4.4).

Thus, w.l.o.g. we can assume that all tasks inTmin are accepted by the optimal
algorithm OPT. Then, �Tmin � � NOPT

�
Tmin� � (4.5)

and the total size of tasks inTmin

Smin � m �D � (4.6)

Tj

di Dd$Tj %1

I1 ItJ1 It It21

0

Figure 4.15: A tasksTj with d
�
Tj � � di

Consider the LFIS schedule forTmin. There areD time slotsIt , t � 1� � � � �D.
Assume that there is exactly one time slotI1 in the schedule. If it is open, then all
the tasks ofTmin are accepted. In this case,

NLFIS
�
Tmin� � �Tmin � � NOPT

�
Tmin� �

This gives a contradiction to (4.3).

Now assume that there is a time slotIt in the LFIS schedule such that 1* di *
t � D and it is open. Letk be the number of tasksTj with due datesd

�
Tj � � di.

176 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

Clearly, all thesek tasks are accepted by LFIS. For an illustration see 4.15 on the
page before. From (4.3) we have

NOPT
�
Tmin� � 82 � 1

m9 NLFIS � k � k
m

and

NOPT
�
Tmin� � k�

NLFIS � k� � 82 � 1
m9 �

Hence, by removing thesek tasks fromTmin we obtain a smaller setTmin. This
gives a contradiction to (4.4).

Thus, w.l.o.g. we can assume that there are no open time slotsin the LFIS sched-
ule forTmin. Then, each time slot has at least one task. Hence, the total number of
accepted tasks

NLFIS
�
Tmin� � D � (4.7)

Let h be such that�Tmin � � NOPT
�
Tmin� � NLFIS

�
Tmin� � h�

Informally, h is the number of tasks inTmin which are accepted by OPT, but lost
by LFIS. Then, from (4.3) we have

NLFIS
�
Tmin� � h � NLFIS

�
Tmin� 82 � 1

m9
and from (4.7) it follows that

h � NLFIS
�
Tmin� 81 � 1

m9 � D � 81 � 1
m9 � (4.8)

Consider the LFIS schedule forTmin. There areD time slotsIt , t � 1� � � � �D.
Consider a lost taskTj . For illustration see Figure 4.16 on the facing page. There
are three simple properties for the schedule. TaskTj cannot fit into any of time
slotsIt , t � 1� � � � �d�

Tj �. The size ofTj is not less than the size of any accepted
task in time slotsIt , t � 1� � � � �d�

Tj �. If there is a taskTk which is accepted not
later than time slotId�Tj � and its due dated

�
Tk� � d

�
Tj �, thenTk cannot fit into any

of time slotsIt , t � d
�
Tj � � 1� � � � �d�

Tk�.
Assume that we “load” this lost taskTj into the LFIS schedule. For illustration see
Figure 4.17 on the next page. There are two possibilities. EitherTj “overloads”

4.3 SCHEDULING OF PARALLEL TASKS 177

Tj

I1 I2 IdªTj «It

dATj C
Tk

IdªTk«

dATkC

Figure 4.16: TasksTj andTk in the LFIS schedule

I1 I2 IdªTj «

dATj C
IdªTk«

I1 I2 IdªTj «

dATj C
Tk

IdªTk«
Tj

Tk

Tj

dATkC

dATkC
a)

b)

Figure 4.17: Loading tasksTj andTk

178 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

one of time slotsIt , t � 1� � � � �d�
Tj �, see Figure 4.17 a), orTk “overloads” one of

time slotsIt, t � d
�
Tj � � 1� � � � �d�

Tk�, see Figure 4.17 b). In both cases we create
at least one “overloaded” time slot.

By using this simple procedure we can load lost tasks one by one into the LFIS
schedule. Furthermore, we can ensure that in every time slotthere is at most one
“overloading” task. If we load allh lost tasks, there are at leasth “overloaded”
time slots, and the total size of tasks in each of them is at least m� 1. If h � D,
then the total size of tasks is at leastD

�
m� 1�, that gives a contradiction to (4.6).

Hence, the number of lost tasks and the number “overloaded” time slotsh * D.
Furthermore, all tasks ofTmin are scheduled.

0 1 2 D I 2 D I 1$D I h%h) 1

m

h "overloading" tasks

h

h D

Figure 4.18: “Overloading”

Remember that all time slots are closed in the LFIS schedule.Hence, there is at
least one task in each time slotIt , t � 1� � � � �D. For an illustration see Figure 4.18.
Here, for simplicity, we have puth “overloaded” time slots at the beginning of
the schedule. Then, the total size of the tasks in the firsth time slots is at least�
m� 1�h and the total size of the tasks in the lastD � h time slots is at leastD � h.

Finally, the total size ofTmin is bounded by

h
�
m � 1� � �

D � h� � Smin � m �D � (4.9)

Hence,

h � D
�
m� 1�
m � D � 81 � 1

m9 �
This gives a contradiction to (4.8). Hence, our assumption is wrong. This com-
pletes the proof.

By using the ideas from Theorem 4.3.6, we can also prove the following result:

4.3 SCHEDULING OF PARALLEL TASKS 179

Theorem 4.3.7. If all tasks are small in the general problem P�sizej � p j � 1�∑Ū j ,
then the worst-case ratio

RLFIS � 3
2

� 1
2m� 2 �

Proof. As in the proof of Theorem 4.3.6, letTmin be the minimum task set such
that

NOPT
�
Tmin�

NLFIS
�
Tmin� � 3

2
� 1

2m � 2 � (4.10)

Similarly, we can show the following. The optimal algorithmOPT accepts all
tasks inTmin. Hence,

NOPT
�
Tmin� � �Tmin ��

and the total size ofTmin is bounded by

Smin � m �D �
Regarding the LFIS schedule, all time slots are closed. Remembering that all
tasks are small, there are at least two tasks in each time slotand

NLFIS
�
Tmin� � 2D �

1 2 D I 2 D I 1

2

h) 1

m

Dh0

h "overloading" tasks

h $D I h%
Figure 4.19: “Overloading”

Let h be the number of tasks inTmin which are lost by LFIS. For an illustration
see Figure 4.19. Then, as in (4.9), the total size is bounded by

h
�
m � 1� � 2

�
D � h� � Smin � m �D �

180 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

and

h � D � �
m � 2��
m� 1� �

Thus,

NOPT
�
Tmin�

NLFIS
�
Tmin� � NLFIS

�
Tmin� � h

NLFIS
�
Tmin�

� 1 � m � 2
2m � 2

� 3
2

� 1
2m � 2 �

This gives a contradiction to (4.10). Hence, our assumptionis wrong. This com-
pletes the proof.

4.3.4 A Hybrid Algorithm

It seems that both FFIS and LFIS algorithms attach too much importance to the
task size. In some sense, FFIS “groups” small tasks together, whereas LFIS
“spreads” them. Can we do something better?

Indeed, we can combine all our ideas together. Informally, we proceed as follows.
First, we split all tasks into small and large ones. Then, we schedule the set of
small tasks by the algorithm LFIS. For an illustration see Figure 4.20 a). Clearly,
scheduling a large tasks in a closed time slot can only decrease the number of
tasks accepted. Hence, we need to schedule large tasks in open time slots. It
can happen that there are single small tasks in open time slots. From one side,
these small tasks can “block” some large tasks. From anotherside, they can be
scheduled together. Here, we simply reschedule small tasksin open time slots.
We select these tasks one by one as they appear in the scheduleand reschedule
them by First-Fit. For an illustration see Figure 4.20 b). One can see that all new
closed time slots include at least two small tasks and there is at most one open
time slot with small tasks at the end. Finally, we schedule the set of large tasks by
using either First-Fit in EDD order or Last-Fit in LDD order.

Now we summarize the algorithm as follows:

4.3 SCHEDULING OF PARALLEL TASKS 181

I1

OPEN OPEN OPEN OPEN

A
B

D

ID

EC
a) LFIS

OPEN OPEN

B

IDI1

A b) First-Fit
E

D

C

OPENOPEN

OPEN

OPEN

Figure 4.20: Scheduling small tasks

HYBRID ALGORITHM (HA):

1. Define small and large tasks.

2. Schedule the set of small tasks by LFIS.

3. If there are no open time slots with small tasks, go to Step 6.

4. Reindex small tasks in open time slots with an initial sequence
1�2�3� � � � in the “left to right” and “bottom to top” manner. For
an illustration see Figure 4.21 a).

5. Reschedule small tasks in open time slots by using First-Fit in the
given order. For an illustration see Figure 4.21 b).

6. Schedule the set of large tasks in open time slots by using either
First-Fit in EDD order or Last-Fit in LDD order.

We fisrt start with the following simple result:

Lemma 4.3.8. For the general problem problem P�sizej � p j � 1�∑Ū j , the worst-
case ratio

RHA � ®̄° 3�2 � 1� �
2k � 2� � if m � 3k�

3�2 � 1� �
2k � 1� � if m � 3k� 1�

3�2 � 1� �
2k� � if m � 3k� 2�

182 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

T1

T2

T3

T4

T5

a) Reindexing

b) Rescheduling

T2

T1

T5

T4

T3

Tq

TqJ1

OPEN

OPEN

Figure 4.21: Reindexing and rescheduling of small tasks

Proof. Consider the following example. There are 3n tasks. The value ofn relates
with the value ofm and it will be specified later. Fori � 1� � � � �n, there are three
tasksXi �Yi andZi which have the due date equal toi. Their sizes are denoted by
xi �yi andzi , respectively. We define the values ofxi �yi andzi , i � 1� � � � �n� 1, such
thatg xi �yi � zi ,g xi � xi�1; yi � yi�1; zi * zi�1,g xi � yi � zi � m� 1,g andxi�1 � yi�1 � zi � m.

The exact values are specified below.

Clearly, the algorithm HA schedules two tasksXi andYi in time slotIi , i � 1� � � � �n,
and alln tasksZi are lost. Then, the number of tasks accepted

NHA � 2n�
For an illustration see Figure 4.22 a). Clearly, the optimalalgorithm OPT can
schedule three tasksXi�1�Yi�1 andZi together in time slotIi , i � 1� � � � �n � 1, and
schedule taskZn in time slotIn. Then, the number of tasks accepted

NOPT � 3n � 2�
For an illustration see Figure 4.22 b). Thus, the worst case ratio

RHA � NOPT

NHA
� 3n � 2

2n � 3
2

� 1
n �

4.3 SCHEDULING OF PARALLEL TASKS 183

a) HA schedule

I1 Ii In

b) OPT schedule
X2 Xi1

Yi1

Zi

X1

Y1

I1 Ii
Xi

Yi

Xn

Yn

In

Xn

YnY2

Z1 Zn�1 Zn

Figure 4.22: Scheduling tasksXi �Yi �Zi

Now we specify the exact values by considering the followingthree cases:

1. If m � 3k, then n � 2k � 2, andxi � yi � 2k � i, zi � k � i � 1, for i �
1� � � � �2k � 2.

2. If m � 3k � 1, thenn � 2k � 1, andxi � yi � 2k � i � 1, zi � k � i � 1, for
i � 1� � � � �2k � 1.

3. If m � 3k � 2, thenn � 2k, and xi � yi � 2k � i � 2, zi � k � i � 1, for
i � 1� � � � �2k.

This completes the proof.

Now we are ready to prove the following main result:

Theorem 4.3.9.For the general problem P�sizej � p j � 1�∑Ū j , the worst-case ra-
tio

RHA � 3
2

� 1
2m� 2 �

Proof. We first consider the following two cases: (I): There are no large tasks
after Step 1; (II) There are no open time slots with small tasks after Step 2.

Case (I). Only small tasks are lost by the algorithm HA. By Lemma 4.3.7,

RHA � 3
2

� 1
2m� 2 �

Case (II). Only small tasks close time slots at Step 2. Hence,no large task can fit
into a closed time slot. Furthermore, replacing any small task in closed time slots

184 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

can only decrease the number of tasks accepted. By Lemma 4.2.1, the algorithm
HA is optimal at Step 6. Hence, as in case (I), we have

RHA � 3
2

� 1
2m� 2 �

Now we consider the general case when the algorithm HA proceeds all Steps
1, 2, 3 and Steps 4, 5, 6. Consider the LFIS schedule. For an illustration see
Figure 4.23. For simplicity, we assume that after Step 2 all time slotsI1 � � � � � It�1

are closed with small tasks, after Step 5 all time slotsIt � � � � �Ik include rescheduled
small tasks, and after Step 6 all time slotsIk � � � � � ID include large tasks. Here time
slot Ik can include several small task and one large task.

0 1

I1 It21 IDIk

t t) 1 k I 1 k D I 1 D

H
IkJ1ItJ1 It

t I 1

FREE FREE FREE

Figure 4.23: The LFIS schedule

Clearly, the LFIS schedule in time slotsI1 � � � � �It�1 andIk � � � � � ID can be handled
as in case (I) and (II). We only need to deal with the the LFIS schedule in time
slotsIt � � � � �Ik�1.

Each of time slotsIt � � � � �Ik�1 is closed and consists of at least two small tasks.
Let H � k � t � 1 be the number of these time slots. Then, the number of small
tasks accepted

#S � 2H � (4.11)

FREE p I 1

H

m& 2p

Figure 4.24: Free time form � 2p

4.3 SCHEDULING OF PARALLEL TASKS 185

Assume that the number of processorsm is even, and letm� 2p. Then, any small
task is at mostp in size, and any large task is at leastp� 1 in size. Since small
tasks are scheduled by using First-Fit, there are at mostp � 1 “free time” in each
of theseH time slots. For an illustration see Figure 4.23 on the facingpage. The
total “free time” is at most

H
�
p � 1� (4.12)

Hence, the total number of large tasks which can be scheduledby the optimal
algorithm OPT is at most

#L � H
�
p � 1�� �

p � 1� � (4.13)

Then, the number of small and large tasks accepted by OPT is atmost #S� #L.
Hence, from (4.11) and (4.13), we have that

NOPT

NHA
� #S � #L

#S

� 1 � #L
#S

� 1 � H
�
p � 1�

2H
�
p � 1�

� 1 � H
�
p� 1� � 2H

2H
�
p � 1�

� 3
2

� 1
p � 1

� 3
2

� 2
m� 2 �

(4.14)

Notice if p � 1, there is no “free time”. Hence, we assume thatp � 2 andm �
2p � 4.

Assume that the number of processorsm is odd. Letm� 2p� 1. Then, any small
task is at mostp in size, and any large task is at leastp� 1 in size. Hence, both

186 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

FREE

H

p

m& 2p) 1

Figure 4.25: Free time form � 2p� 1

(4.12) and (4.13) remain the same. As in (4.14), we have that

NOPT

NHA
� #S � #L

#S

� 1 � #L
#S

� 3
2

� 1
p� 1

� 3
2

� 2
m� 1 �

(4.15)

Notice if p � 1, there is no “free time”. Hence, we assume thatp � 2 andm �
2p� 1 � 5.

Finally, for all cases we can conclude that the algorithm HA only fails on small
tasks, and the worst case ratio

RHA � 3
2

� 1
2m� 2 �

4.4 SCHEDULING OF DEDICATED TASKS

Here we consider the following problem of scheduling dedicated multiproces-
sor tasks. We are given a setT � �T1 �T2 � � � � �Tn� of n tasks and a setP ��P1 �P2� � � � �Pm� of m processors. Each taskTj has a unit processing timep j � 1,
an integral due dated

�
Tj � � �d1�d2� � � � �dg�, where 0* d1 * d2 * � � � * dg � D,

and requires the processors with indices inτ j � �1� � � � �m�. The goal is to max-
imize thethroughput, i.e. the number ofearly tasksTj that meet their due dates
d

�
Tj �.

4.4 SCHEDULING OF DEDICATED TASKS 187

4.4.1 Complexity

We start with the following result:

Theorem 4.4.1.The common due date problem P�fix j � p j � 1�d j � 1�∑Ū j is NP-

hard. Furthermore, it cannot be approximated within a factor of m
1
2 �ε for any

givenε � 0, unlessNP � ZPP.

Proof. Our problem can be formulated as follows:

INSTANCE: A setT � �T1�T2 � � � � �Tn� of n tasks and a setP � �P1�P2� � � � �Pm�
of mprocessors. Each taskTj has a unit processing timep j � 1 and requires
the processors with indices inτ j � �1� � � � �m�.

OBJECTIVE: Find a subsetT E � T such that for every pair of tasksTi andTj in
T E it holdsτi f τ j � /0 and such that�T E � is maximized.

Problem MAXIMUM CLIQUE can be formulated as follows [GJ79]:

INSTANCE: A graphG
�
V�E� with �V � � n.

OBJECTIVE: Find a subsetV E � V such that every pair of verticesv andu in V E
it holds �v�u� � E and such that�V � is maximized.

We can transform MAXIMUM CLIQUE to our problem as follows. We define

T
�
G� � �Tv �v � V � and P

�
G� � �Pe �e �� E�� (4.16)

Foe each taskTv we definepv � 1 and

τv � �e�e � �v�u� �� E�� (4.17)

Clearly, �T �
G� � � �V � � n (4.18)

and

m � �P�
G� � � �V �� �V � � 1��2 � �E � � n

�
n � 1��2� (4.19)

Let T E � T
�
G� be a solution to our problem. Then, for every pair of tasksTv and

Tu in T E it holds

τu f τv � /0 �

188 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

We can define

V E � �v�Tv � T E � � (4.20)

By (4.16) and (4.17), for every pairv andu in V E their edgee � �
u�v� is in E.

Hence,V E is a clique inG, by (4.20) its size�V E � � �T E �� (4.21)

In other words, finding a maximal clique in graphG
�
V�E� is equivalent to finding a

maximal subset of tasks inT
�
G� with respect toP

�
G�. Furthermore, the objective

value remains the same.

It is well-known that MAXIMUM CLIQUE is NP-hard [GJ79], and it cannot be ap-
proximated within a factor ofn1�ε for any givenε � 0, unless NP� ZPP [Has99].
Due to the transformation, our problem is NP-hard. Furthermore, due to (4.19),
(4.20) and (4.21), if for someε0 � 0 the value of�T E � is within a factor ofm

1
2 �ε0

of the optimum, then for someε � 0 the value of�V E � is within a factor of

m
1
2 �ε0 � �

n
�
n � 1��2� 1

2 �ε0 � n1�ε

of the optimum. Hence, our problem cannot be approximated within a factor of
m

1
2 �ε for any givenε � 0, unless NP� ZPP.

4.4.2 The FFIS and LFIS Algorithms

Here we analyze both FFIS and LFIS algorithms presented in Sections 4.3.2,4.3.3,
respectively. We first consider the common due date problem,and prove the fol-
lowing main result:

Theorem 4.4.2.For problem P�fix j � p j � 1�d j � D �∑Ū j , the worst case ratio of
FFIS andLFIS is at least�m and at most�m� 1.

Proof. We only prove the result for the algorithm FFIS. However, theresult for
LFIS will follow from our proof as well.

As before, we useNOPT andNFFIS to denote the number of early tasks accepted
by the optimal algorithmOPT and by algorithm FFIS, respectively. For time
slot It � �t � 1�t � (t � 1� � � � �D), let acct be the set of tasks accepted by FFIS
in It . Assume w.l.o.g. that there arek tasks inacct , denoted byT1 � � � � �Tk, and�τ1 � � �τ2 � � � � � � �τk �.
Observe the following facts for taskTi , i � 1� � � � �k:

4.4 SCHEDULING OF DEDICATED TASKS 189g TaskTi occupies�τi �processors. Thus, at most�τi � lost tasks can be accepted
if Ti is removed.g For any lost taskTj it holds �τ j � � �τi �. Thus, at mostm� �τi � lost tasks can
be accepted ifTi is removed.

Combining, at most

min� �τi ��m� �τi �� � �m

tasks can be accepted if taskTi is removed.

Hence, for each time slotIt , t � 1� � � � �D, the maximum number of tasks which
can be accepted is at most�acct � � �acct � � �m � �

1 � �m� � �acct ��
Summarizing, we have

NOPT � D

∑
t=1

�
1 � �m� � �acct �

� �
1 � �m� � ^

D

∑
t=1

�acct �̀
� �

1 � �m� �NFFIS�
Thus, the worst-case ratio

RFFIS � �m� 1�
Consider the following simple example. Letm � q2. There areT1, T2, � � �, Tq,
Tq�1 tasks, and the common due dateD � 1. For each taskTj (j � 1� � � � �q� 1)
we defineτ j � �1�2� � � � �m� such that�τ j � � �mand such that the firstq tasksT1,
T2, � � �, Tq are compatible with in pairs, but the last taskTq�1. For an illustration
see Figure 4.26.

Then, in the worst case, FFIS only accepts taskTq�1. However, the optimal algo-
rithm OPT can acceptq tasksT1, T2, � � �, Tq. Thus,

RFFIS � NOPT

NFFIS
� �m

1 � �m�

190 ON MAXIMIZING THE THROUGHPUT OFMULTIPROCESSORTASKS

T1

T2

T±
m

m

²
m²
m

²
m²
m

T±
m1

Figure 4.26: TasksT1�T2� � � � �Tq andTq�1, wherem � q2

Both bounds on the performance ratio in Theorem 4.4.2 are valid only for gen-
eral m. However, for some specified value ofm, algorithms can have a better
performance ratio. Indeed, form� 2 algorithms output an optimal schedule. Fur-
thermore, we can prove the following:

Lemma 4.4.3. For the three-processor problem P3�fix j � p j � 1�D � d j �∑Ū j , both
algorithmsFFIS andLFIS have the worst case ratio4�3.

Proof. We only prove the result for the algorithm FFIS. However, theresult for
LFIS will follow from our proof as well.

Consider the following simple example. There are four tasksT1 �T2�T3�T4, where
τ1 � �1�, τ2 � �3�, τ3 � �2�3� andτ4 � �1�2�. The common due dateD � 2.
The optimal algorithm OPT accepts all tasks, whereas FFIS rejects eitherT3 or
T4. Hence, the worst case ratio

RFFIS � 4
3 �

Clearly, if there is an empty time slotIt in the FFIS schedule, we can claim that it
is optimal.

Assume that there is an time slotIt with a single taskTj . Assume also that the size
of Tj is equal to one. Then, all tasks which are compatible withTj are accepted by
FFIS beforeIt , whereas all task accepted by FFIS afterIt are incompatible with
Tj . Since the size ofTj is one, all later tasks are incompatible in pairs and can be
only scheduled one per time slot. Hence, the FFIS schedule isoptimal.

In the worst case, the FFIS schedule is not optimal. However,any time slot
contains either at least two tasks of size one or one task of size two. In other

4.5 CONCLUDING REMARKS 191

words, there are three processors and in any time slot there is at most one idle
processor. Clearly, all lost tasks are greater in size than the accepted ones. Hence,
the number of accepted tasks by the optimal algorithmOPT

NOPT � NFFIS � 1
3

�NFFIS � 4
3

�NFFIS�
Hence, the worst case ratio

RFFIS � 4
3 �

Finally, we consider the general case that each task has individual due date.

Theorem 4.4.4.For the general problem P�fix j � p j � 1�∑Ū j , both algorithms
FFIS andLFIS have the worst case ratio at least�m and at most�m� 1.

Proof. Informally, we follow similar ideas as in Theorem 4.4.2. Consider FFIS
or LFIS. If there are open time slots in the output schedule, then some parts of the
schedule are optimal and cab be discarded in the worst case analysis. For every
closed time slot, the number of lost tasks which can be “potentially” accepted
is a factor of�m of the number of accepted tasks. Hence, we can bound the
number of tasks accepted by the optimal algorithm OPT as a factor of

�
1� �m�

the number of tasks accepted by FFIS or LFIS. The worst case ratio is bounded
by

�
1� �m�.

4.5 CONCLUDING REMARKS

In this chapter we initiate the study of the problem of scheduling multiprocessor
tasks with the throughput objective, that is, scheduling tomaximize the number
of early tasks in the schedule. Although multiprocessor task scheduling problems
have been studied extensively, the throughput objective isnew. We presented the
first results in this direction. For both dedicated and parallel models, the complex-
ity of the problem was established, and several approximation algorithms have
been proposed and analyzed. However, many interesting questions remain. As we
pointed out, in the parallel model there is a PTAS for the common due date prob-
lem. Is there a PTAS for the general problem? Is it APX-Hard? What happens if
we add release dates or precedence constraints? We have onlyconsidered the case
when tasks have unit processing times, and all problems withnon-identical (arbi-
trary) processing times are open. Finally, the most interesting area is the design of
online algorithms for the problem. We believe that our techniques and ideas can
be very useful here.

APPENDIXA: CLASSIFICATION SCHEME

Because of a huge variety of machine scheduling problems, Graham, Lawler,
Lenstra and Rinnooy Kan [GLLK79] proposed a classification scheme to make
them easy to refer to. Later this scheme was also extended by Lawler, Lenstra,
Rinnooy Kan and Shmoys [LLKS93] and by Drozdowski [Dro96]. Here, due to
space limitations, we give only a short classification scheme. However, it suffices
our purposes and we hope that the reader finds here all information needed.

Machine Scheduling. In general, the machine scheduling problems that we
consider can be described as follows. There arem machines andn jobs. Asched-
ulespecifies, for each machine/processori (i � 1� � � � �m) and each jobj � 1� � � � �n,
one or more time intervals throughout which processing is performed onj by i. A
schedule isfeasibleif there is no overlapping of time intervals corresponding to
the same job (so that a job cannot be processed by two machinesat once), or time
intervals corresponding to the same machine (so that a machine cannot process
two tasks at the same time), and also if it satisfies various requirements relating to
the specific problem type.

The problem type is specified by the machine environment, thejob characteris-
tics and optimality criterion (objective function). Accordingly, classification takes
place by using of a three-field notationα �β �γ.

The field α � �1�P�Q�R�O�F�J�D� specifies the machine environment. Ifα ��1�P�Q� R�, we have asingle-stagesystem where each jobj consists of a single
operation that can be processed on any machine. Ifα ³ 1, there issingle machine.
In the case ofidentical parallel machines, i.e., α ³ P, a job j has the same pro-
cessing timep j on each of the machines, whereas in the case ofuniform parallel
machines(α ³ Q), the processing time of each jobj on machinei is p j �si where
si is the speed of machinei, and in the case ofunrelated parallel machines(α ³ R)
the processing time of each jobj on machinei is equal topi j . If α � �O�F�J�, we
have amulti-stagesystem where the processing of each jobj is split into several
operations. In anopen shop, indicated byα ³ O, and in aflow shop, indicated
by α ³ F, each job j has exactlym operations and itsi-th operation has to be
processed on thei-th machine duringpi j time units. The difference is that in an
open shop the order in which the operations of a job to be executed is immaterial,
whereas in a flow shop the operations execution order of a job is fixed, and is the

194

same for all jobs. Ifα ³ J, we have a job shop where each jobj consists of a
chain of operations, and chains of different jobs may be distinct. Sometimes, one
usesD in α. In this case we have a dag shop in which the operation precedence
constraints of a job are given as adag - directed acyclic graph. In general, the
number of machines is specified as a part of the problem instance. However, if
the symbolsP�Q�R�O�F�J�D are immediately followed by an integer orm, then
the number of machines is specified as a part of the problem type and equal to this
integer orm, respectively.

The field β contains the job characteristics. In this field, there may occur the
entriespmtn, r j , d j , p j � 1/pi j � 1, andop � µ. Accordingly, it indicates that
preemption is allowed (the processing of any operation/jobmay be interrupted
and resumed at a later time on the same or on a different machine), that jobs
have release dates (the availability of each jobj is restricted by its integerr j that
defines when it becomes available for processing), that jobshave due dates (each
job j has due dated j), that all jobs/operations have unit processing times, and
that there are at most a constant number of operations per job(this is only for
multi-stage scheduling problems). If fieldβ includes non of these entries, then the
default assumption applies. This means thatpreemptionsof jobs are not allowed,
that there are no release dates and due dates, and that the processing requirements
are arbitrary positive integers.

To denote online problems, one can putonline into filed β to denote online sche-
dulingover list, and bothonlineandr j to indicate online schedulingover time. In
the model ofscheduling over list, the scheduler is confronted with the jobs one-
by-one as they appear on a list. The existence of a job is not known until all its
predecessors in the list have already been scheduled. In themodel ofscheduling
over time, all jobs arrive at their release dates. The jobs are scheduled with pas-
sage of time and, at any point of time, the scheduler only has knowledge of those
jobs that have already arrived.

Lastly, the third fieldγ refers to the optimality criterion (objective function). We
are mainly interested inmakespan Cmax � maxCj , average (weighted) completion
time∑

�
w j �Cj , andthroughput∑Ū j , wherew j is the weight of job/taskj, Cj is the

completion time of job/taskj, Ū j � 1 if Cj � d j , andŪ j � 0 otherwise.

To illustrate the three-field descriptor, we present four examples: 1�r j �∑w jCj is
the problem of scheduling jobs with release dates on a singlemachine to minimize
the average weighted completion time,J3�pi j � 1�Cmax is the problem of sche-
duling unit operations in a three-machine job shop to minimize the makespan,
R�pmtn�∑Cj is the problem of preemptive scheduling on unrelated machines,
P�on� line�r j �Cmax is the problem of on-line scheduling over time on identical
parallel machines.

195

Multiprocessor Task Scheduling. In order to model scheduling on multipro-
cessor architectures one must assume that a job can require more than one machine
at a time. However, this would conflict to the “classical” job-machine scheduling
assumptions. To make things simply, but remain correct, it is widely accepted to
speak about scheduling a setT � �1�2� � � � �n� of n multiprocessor taskson a set
M � �1�2� � � � �m� of m processorsextending the aboveα �β �γ notation.

It is assumed that each processor can work on at most one task at a time and a task
can (or may need to be) processed simultaneously by several processors. In the
dedicatedvariant of this model, denoted byα ³ P and fixj in β field, each task
j � T requires the simultaneous use of a prespecified set fixj � M of processors.
In theparallel variant, denoted byα ³ P and sizej in β field, the multiprocessor
architecture is disregarded and for each taskj � T there is given a prespecified
number sizej � M which indicates that the task can be processed by any subset of
processors of the cardinality equal to this number. In thegeneralmodel,α ³ P
and setj in β field, each task can have a number ofalternative modes, where each
processing mode is specified by a subset of processors and theexecution time of
the task on that particular processor set.

We can give the following examples:Pm�fix j �∑w jCj denotes the problem of sc-
heduling dedicated tasks on a fixed number of processors to minimize the the to-
tal weighted completion time,P�setj �r j �Cmax denotes the problem of scheduling
general multiprocessor tasks with release dates to minimize the makespan, and
P�on� line� sizej � p j � 1�Cmax denotes the problem of on-line over list scheduling
of unit parallel tasks. Notice that in some works the words “scheduling on ded-
icated/parallel processors” are used, e.g. in the book by Brucker [Bru98] and in
Krämer’s Ph.D. thesis [Krä95]. However, we will avoid it here.

APPENDIXB: ROUNDING PROCEDURE

For a detailed treatment of linear programming we refer the reader to two nice
books [Sai95, BT97]. Here, we just briefly sketch the rounding technique used in
Chapter 1. The main ideas of the technique can be found in [JSOS99].

Linear System. Let K, M be constant, and letN X K �M. GivenM ¡K matrices
A j (j � 1�2� � � � �N) and a vectorb � �

b1 �b2 � � � � �bM �T , we consider the following
linear system (LS):

(1) ∑ j A jx j � b�
(2) ∑i xi j � 1� for all j �
(3) xi j � 0� for all i and j �

wherexi j (i � 1�2� � � � �K) is theith part ofx j � �
x1 j �x2 j � � � � �xK j �T (j � 1�2� � � � �N).

In the following we show how one can modify a solutionx � �
x j � to a new solution

xE � �
xEj �.

Removing ofxk j � �0�1�. Consider a solutionx � �
x j �. We update LS in two

cases: (I) there isx j with xk j � 1 (here,xi j � 0 for all i �� k); (II) there isx j with
xk j � 0 (here, 0� xi j * 1 for all i �� k), as follows:

(I) removex j from x, setb equal tob � A jx j in (1), remove thejth line in (2),
remove all thejth lines in(3);

(II) remove thisxk j from x j , removekth column fromA j in (1), remove thekth
sum component in thejth line of (2), remove thek� jth line in (3).

Less formally, we always eliminate 0s and 1s fromx first, and then modify the LS
respectively.

198

Rounding of xk j to 1 or 0. Let eK � �
1� � � � �1� be theK vector of all ones,bE �8b

19 be theM � N vector which extendsb by ones, andA be the
�
M � N� ¡ �

K �N�
matrix as

A � h́́́́i
A1 A2 � � � AN

eK

eK� � � � � � � � � � �
eK

kµµµµl �
Then, we can write the LS as

Ax � bE x � 0�
Assume that after removing ofxk j � �0�1� there are noxi j � �0�1� in a solution
x � �

x j � of the LS. We select the columns inA corresponding toM � 1 variables
x j . (If there are less thanM � 1 variablesx j we are done.) Then, the induced
matrixAE is just a singular matrix of constant size. (Since there are no xi j � �0�1�,
due to(2) of the LS, for eachx j there are at least two 0* xi j * 1. Thus, there are
M � �

M � 1� rows and between 2
�
M � 1� andK

�
M � 1� columns inAE.) Hence,

one can find a non-zero vectory in the null space of this matrix, i.e.,AEy � 0.

Let δ �
 andxE � x� δy. (If the dimension ofy is smaller than the dimension of
x, we augment it by adding an appropriate number of zero entries.) Then,

AxE � Ax � δAy � bE � δAEy � bE �
Since all 0* xi j * 1, there existsδ (if δ tends to 0) such that all 0* xi j � δyi j * 1.
Thus, one can increase or decrease the value ofδ until at least one of variablesxEk j
gets either 0 or 1.

This process rounds the value of at least one variable. Furthermore, sinceAE has
constant size one can findy andδ in constant time (simple linear algebra).

Rounding of x. We repeat rounding and removing procedures for variablesxk j

until there are at mostM vectorsx j left. (HereAE can become non-singular.) At
the end of this iterative process, all, but theseM, vectorsx j have allxi j � �0�1�.
The total number of iterations is at mostN � M and each iteration takes a constant
number of steps. Thus, we can prove the following:

Lemma 4.5.1. A solution x� �
x j � for the LS can be transformed in O

�
n� time to

another solution xE � �
xEj � in which there are at most M vectors xj with xEi j � �

0�1�,
and all other xj with xi j � �0�1�.

199

In fact, it is enough to have 2
�
M � 1� variablesxi j � �

0�1� for buildingAE. Then,
AE is singular and we can repeat rounding. Hence, we can also conclude the fol-
lowing:

Lemma 4.5.2. A solution x� �
x j � for the LS can be transformed in O

�
n� time to

another solution xE � �
xEj � in which at most2

�
M � 1� variables xi j � �

0�1� and all
other xi j � �0�1�.

APPENDIXC: GRAPHS

Due to space limitations, here we give only some basic definitions and notations
for graph. However, we hope that the reader will find here all information needed.
For more details, we refer to a number of excellent books [CL86, Bol98, GY98,
Wes01].

Simple Graphs. An undirected graphG � �
V�G� consists of a finite non-empty

setV of verticesand a finite setE of edges. (Later we can use the notationV
�
G�

andE
�
G� for the vertex set and edge set ofG.) With every edgee � E, an un-

ordered pair�u�v� of vertices is associated and we say thate is incidentto u and
v. We assume that the two vertices of an edge are distinct, i.e., G is simple. Con-
sequently, we writee� �u�v�. Two verticesu andv that are joined by an edge are
calledadjacentor neighbors.

For a vertexv theneighborhoodof v, N
�
v�, is defined as

N
�
v� � �u � V � u is adjacent tov in G��

Thedegreeof a vertexv, deg
�
v�, is the number of edges which are incident with

v, or equivalently,

deg
�
v� � �N�

v� ��
We use∆

�
G� to denote the maximum degree of graphG.

We say that graphH is a subgraphof a graphG if V
�
H � � V

�
G� andE

�
H � �

E
�
G�. If U � V

�
G�, we useG�U � to denote theinduced subgraphof G whose ver-

tex set isU and whose edge set is the subset ofE
�
G� consisting of those edges with

both ends inU . If S � E
�
G�, we useG�S� to denote the edge induced subgraph

of G whose edge set isSand whose vertex set is the subset ofV
�
G� consisting of

those vertices incident with any edge inS.

The complement,G¶ of a graphG is a graph with the same vertices asG and
with the property that two vertices inG¶ are adjacent if and only if they are not
adjacent inG.

202

Simple Structures. A walk is an alternating sequencev0 �e1 �v1� � � � �ek �vk of ver-
tices and edges, with each edge being incident to the vertices immediately preced-
ing and succeeding it in the sequence, i.e.ei � vi�1vi for all i. A trail is a walk
with no repeated edges. Apath is a walk with no repeated vertices. A walk is
closedif the initial vertex is also the terminal vertex. Acycle is a closed trail
with at least one edge and with no repeated vertices except that the initial vertex is
the terminal vertex. Thelengthof a walk is the number of edges in the sequence
defining the walk. Thus, the length of a path or cycle is also the number of edges
in the path or cycle.

A graphG is connectedif it has au�v-path for each pairv�u � V
�
G�. The con-

nected parts of a disconnected graph are called theconnected componentsof that
graph. (A connected graph is therefore a graph with exactly one connected com-
ponent.) Ifu andv are vertices, the distance fromu to v, writtendistG

�
u�v�, is the

minimum length of any path fromu to v. (In an undirected graph, this is obviously
a metric.)

A graph isacyclic if it has no cycles. An acyclic graph is also called aforest. A
tree is a connected, acyclic graph. Thus every connected component of a forest
is a tree. Aspanning treeof a graphG is a subgraphT of G which is a tree and
which satisfies�V �

T � � � V ��G� �.
A graph is calledcompleteif every two of its vertices are joined by an edge. A
complete graph of ordern hasn

�
n � 1��2 edges and is denoted byKn.

A graphG is bipartite if V
�
G� � X # Y andX f Y � /0 such that every edge inG

joins a vertex inX and a vertex inY. We writeG � �
X �Y� sometimes.G is a

complete bipartite graphif every vertex inX is joined to every vertex inY. We
use the notationKm�n for a complete bipartite graph withm vertices inX andn
vertices inY. K1�n is also called astar.

A graphG is calledplanar if it can be drawn on a plane in such a way that there
are no "edge crossings", i.e. edges intersect only at their common vertices.

The intersectiongraphG of a systemS � �
Sx�Sy�Sz� ���� has verticesx�y�z� � � �.

Two distinct verticesx�y are joined by an edge wheneverSxandSyhave non-
empty intersection.S is called therepresentationof G.

The intersection graphG of a set of intervalsI � �I1 � � � � �In�, where eachI j ��a j �b j � ·
 , is called aninterval graph.

The intersection graphG of a set of disksD � �D1� � � � �Dn� in the plane, where
eachD j is defined by its center in

�
a j �b j � �
 2 and its diameterd j �
 , is called

a disk graph. Then,D is called thedisk representationof G. The valueσ
�
D� �

maxd j � mind j is called thediameter ratioof D. Accordingly, if σ
�
D� � 1, i.e.

all disks ofD have unit diameter, thenG is called aunit disk graph, and if 1*

203

σ
�
D� � σ for some constantσ, thenG is called aσ-disk graph.

Let X be a finite set. Ak-tupleof X is a set havingk (or less) elements ofX. The
intersection graphG of a set ofk-tuples ofX is called ak-tuple graph. In this case,
several vertices can correspond to a singlek-tuple.

The square productof G andH, is the graph whose vertex-set is the cartesian
product ofV

�
G� andV

�
H �, and where the pair

�
ax�by� is an edge if and only if

eithera � b and�x�y� is an edge ofH, or x � y and�a�b� is an edge ofG. The
square product of two paths is frequently called thegrid graph.

A co-graphis a graph which can be generated by disjoint union and join opera-
tions on graphs, starting with a single-vertex graph. The union # �

G1 �G2� and the
join � �

G1 �G2� of two graphsGi � �
Vi �Ei �, i � 1�2 is defined by# �

G1 �G2� � �
V1 # V2 �E1 # E2� �

and � �
G1�G2� � �

V1 # V2 �E1 # E2 # ��x1 �x2� �xi � Vi �� �
Clique, Independent Set, Coloring and Labeling. For a graphG, a subset
V E � G

�
V � is acliqueif every two vertices inV E are joined by an edge inG

�
E�. A

maximum cliqueis, naturally, a clique whose number of vertices is at least as large
as that for any other clique in the graph, and its size,ω

�
G�, is called theclique

numberof G.

For a graphG, a subsetV E � G
�
V � is anindependent setif no its vertices are adja-

cent. Similarly, amaximum independent setis an independent set whose number
of vertices is at least as large as that for any other clique inthe graph, and its size,
α

�
G�, is called theindependence numberof G.

A (vertex)k-coloring of a graphG � �
V�E� is a functionc : V

�
G� � �1� � � � �k�

such thatc
�
u� �� c

�
v� wheneveru is adjacent tov. If a k-coloring ofG exists, then

G is calledk-colorable. Thechromatic numberof G is defined as

χ
�
G� :� min�k � G is k � colorable��

Obviously, we have

χ
�
G� � ω

�
G� and χ

�
G� � ∆

�
G� � 1�

A graphG is perfectif, for any induced subgraphH of G, the chromatic number
of H is equal to the size of a maximum clique ofH, that is,χ

�
H � � ω

�
H �.

204

Let p1 � ���� pk be a non-increasing sequence of positive integers, calleddistance
constraints. An L�p1 �����pk�-labeling, or adistance-constrainedlabeling, of a graph
G is a functionc : V

�
G� � �1� ����L� such that�c�

u� � c
�
v� � � pi wheneveru

andv are at the graph distancei, for i � 1� � � � �k. If an L�p1 �����pk�-labeling ofG
exists, thenG is calledL�p1 �����pk�-labeled. The

�
p1� � � � � pk�-labeling numberof G

is defined as

χ �p1 �����pk� �G� :� min�L � G is L�p1 ���� �pk� � labeled��

APPENDIXD: COMPLEXITY AND NPO PROBLEMS

Here we give an overview of complexity theory for the algorithm designer. This
only includes some main definitions. For more details we refer to the following
excellent books [GJ79, Pap94, AGG�99].

Complexity Classes. Let �0�1� �/ be the set of all possible strings over alphabet�0�1�. Denote by�x� the length of a stringx. A languageL � �0�1�/ is any col-
lection of strings over�0�1�. The correspondinglanguage recognitionproblem
is to decide whether a given stringx � �0�1�/ belongs toL. An algorithm solves
a language recognition problem for a specific languageL by accepting(output
“yes”) any input string contained inL, andrejecting(output “no”) any input string
not contained inL.

A complexity class is a collection of languages all of whose recognition problems
can be solved under prescribed bounds on the the computational resources. We are
primarily interested in various of efficient algorithms, where efficient is defined as
beingpolynomial time. Recall that an algorithm has polynomial running time if it
halts withinnO�1� on any input of lengthn.

The class P consists of all languagesL that have a polynomial time algorithm ALG
such that for any input stringx � �0�1�/,g x � L �¸ ALG

�
x� accepts, andg x �� L �¸ ALG
�
x� rejects.

The class NP consists of all languagesL that have a polynomial time algorithm
ALG such that for any input stringx � �0�1�/,g x � L �¸ there is a stringy � �0�1�/, ALG

�
x�y� accepts, where length�y�

is polynomial in �x�.g x �� L �¸ for any stringy � �0�1�/, ALG
�
x�y� rejects.

Obviously, P� NP, but it is not known whether P� NP.

206

For any complexity class�, we define the complexity class co-� as the set of
languages whose complement is in class�. That is

co-� � �L �L̄ � ���
It is obvious that P� co-P and P� NPf co-NP.

NP-completeness. A polynomial reductionfrom a languageLE � �1�0�/ to a
languageL � �1�0�/ is function f : �1�0�/ � �1�0�/ such that:g There is a polynomial time algorithm that computesf .g For all x � �1�0�/, x � LE if and only if f

�
x� � L.

Clearly, if there is a polynomial reduction fromLE to L, thenL � P implies that
LE � P.

A languageL is NP-hard if for every languageLE � NP, there is a polynomial
reduction fromL to LE. A languageL is NP-completeif L � NP andL is NP-hard.

Randomized Complexity Classes. The class RP (for Randomized Polynomial
Time) consists of all languagesL � �0�1�/ that have a randomized algorithm ALG
running in worst-case polynomial time such that for anyx � �0�1�/:g x � L �¸ Pr �ALG

�
x� accepts� � 1

2.g x �� L �¸ Pr �ALG
�
x� accepts� � 0.

Clearly,

P � RP� NP�
A language belonging to both RP and co-RPcan be solved by a randomized al-
gorithm with zero-sided error, i.e., aLas Vegasalgorithm. The class ZPP (for
Zero-error Probabilistic Polynomial time) is the class of all languages that have
Las Vegas algorithms running in expected polynomial time. Clearly,

ZPP � RP# co-RP�

207

NP-hard Decision Problems. Informally, adecision problemis one whose an-
swer is either “yes” or “no”, and it can be treated as a language recognition prob-
lem.

Abstractly, a decision problemΠ consists simply of a setDΠ of instancesand a
subsetYΠ � DΠ of yes-instances. An encoding schemefor problemΠ provides a
way of describing each instanceI in DΠ by an appropriate string in�0�1�/. Then,
the language assosited withΠ is defined as

L �Π� :� �x � 0�1/ �x is the encoding undereof an instanceI � YΠ��
We say that a decision problemΠ is NP-hard (complete) ifL �Π� is NP-hard (com-
plete).

There are two common ways for encoding numbers (integers):unaryandbinary.
Clearly, the hardness of a decision problem can change when one switches from
binary to unary encoding.

We say that a decision problemΠ is NP-hard (complete) in thestrong senseor
Π is stronglyNP-hard (complete) ifL �Π� is NP-hard (complete) under an unary
encoding scheme.

NPO Problems. An NP-optimization problem(NPO),Π, consists of:g A set of input instances, 	, recognized in polynomial time. Thesizeof
instanceI � 	, denoted by�I �, is defined as the number of bits needed to
write I under the assumption that all numbers occurring inI are written in
binary.g Each instanceI � 	 has a set of feasible solutionsF

�
I �. We require that

F
�
I � �� /0, and that every solutionS � F

�
I � is of length polynomial in�I �.

Furthermore, there is polynomial time algorithm that, given a pair
�
I �S�,

decides whetherS� F
�
I �.g There is a polynomial time computableobjective function, ob j, that assigns

a nonnegative rational number to each pair
�
I �S�, whereI � 	 andS� F

�
I �.g Finally,Π is specified to be either aminimization problemor amaximization

problem.

An optimal solutionfor an instance of a minimization (maximization) NPO prob-
lem is a feasible solution that achieves the smallest (largest) objective function
value.OPT

�
I � will denote the objective value of an optimal solution for instance

I .

208

An algorithm ALG is said to beoptimal for an NPO problemΠ if, on each in-
stanceI , ALG computes anoptimal solution, i.e. a feasible solutionS� F

�
I � such

thatob j
�
I �S� � OPT

�
I �, and the running time of ALG is polynomial inI .

The decision version of an NPO problemΠ consists of pairs
�
I �B�, whereI is an

instance ofI andB is a rational number. IfΠ is a minimization problem (maxi-
mization problem), then the answer to the decision problem is “yes” iff there is a
feasible solution toI of the objective function value� B (� B). If so, we will say
that

�
I �B� is a yes-instance.

An NPO problemΠ is said to be (strongly) NP-hard if its decision version is
(strongly) NP-complete. Assuming P�� NP, no (strongly) NP-hard NPO problem
has an optimal algorithm.

Approximation Algorithms. An approximation algorithm produces a feasibel
“near-optimal” solution, and it is time efficient. The formal definition differs for
minimization and maximization problems. LetΠ be a minimization problem.
An algorithm ALG is said to be aρ-approximation algorithm forΠ, if on every
instanceI of Π, ALG computes a feasible solutionS� F

�
I � such that

ob j
�
I �S� � ρ �OPT

�
I � �

and the running time of ALG is polynomial in�I �. For a maximization problem
Π, aρ-approximation algorithm satisfies

ob j
�
I �S� � 1

ρ
�OPT

�
I � �

The asymmetry in the definition is due to ensure thatρ � 1. The value ofρ � 1 is
called theapproximation ratioor performance ratioor worst-case ratioof ALG
and in general can be a function of�I �.
A family of approximation algorithms,�Aε�ε�0, for an NPO problemΠ, is called
a polynomial time approximation schemeor a PTAS, if algorithmAε is a

�
1� ε�-

approximation algorithm and its running time is polynomialin the size of the
instance for a fixedε. If the running time of eachAε is polynomial in the size of the
instance and in 1�ε, then�Aε�ε�0 is called afully polynomial time approximation
schemeor a FPTAS.

Assuming P�� NP, a PTAS is the best result we can obtain for a strongly NP-hard
problem, and a FPTAS is the best result we can obtain for an NP-hard problem.

AP-Reduction. The concept of approximation preserving reductions primarily
provides a method for proving that an NPO problem does not admit any PTAS,
unless P� NP.

209

For a constantα � 0 and two NPO problemsA andB, we say thatA is α-AP-
reducible toB if two polynomial-time computable functionsf andg exist such
that the following holds:g For any instanceI of A, f

�
I � is an instance ofB.g For any instanceI of A, and any feasible solutionSE for f

�
I �, g

�
I �SE� is a

feasible solution forI .g For any instanceI of A and anyr � 1, if SE is is anr-approximate solution
for f

�
I �, theng

�
I �SE� is an

�
1 � �

r � 1�α � o
�
1��-approximate solution for

I , where theo notation is with respect to�I �.
We say thatA is AP-reducible toB if a constantα � 0 exists such thatA is α-AP-
reducible toB. Clearly, ifA is AP-reducible toB, then anρ-approximate solution
for B is mapped to anh

�
ρ� approximate solution forA, whereh

�
ρ� � 1 asρ � 1.

The class APX consists of all NPO problems that have a constant factor approxi-
mation. Then, AP-reductions preserve membership in APX. Furthermore, ifA is
AP-reducible toB and there is a PTAS forB, there is a PTAS forA as well.

An NPO problemΠ is APX-hard if every APX problem is AP-reducible toΠ. An
NPO problemΠ is APX-completeif Π � APX andΠ is APX-hard.

Assuming P�� NP, no APX-hard (complete) problem has a PTAS.

A Little Bit of History. In [Gra66] a simple algorithm for scheduling jobs on a
single machine was presented: Suppose we are given a single machine and a list
of n jobs in some order. Whenever a machine becomes available, itstarts process-
ing the next job on the list. Graham made a complete worst-case analysis of this
algorithm and showed that the maximum job completion time (or makespan) of
the schedule is at most twice the makespan of an optimal schedule. It was perhaps
the first polynomial time approximation algorithm for an NP-hard optimization
problem, and at the same time, the first competitive analysisof an on-line algo-
rithm.

Only several years later, immediately after the concepts ofNP-completeness and
approximation algorithms were formalized [Coo71, GGU72].However, a pa-
per [Joh74] of Johnson may be regarded as the real starting point in the field.
The terms “approximation scheme”, “PTAS”,“FPTAS” are due to a seminal pa-
per [GJ78]. The first inapproximability results were also derived about this time,
see e.g. [SG76, LK78].

210

Much of the work has been also devoted to classifying the optimization problems
with respect to their polynomial time approximability. Thenotion ofstrongNP-
completenesswas introduced in [GJ78]. It was also shown thatstrongNP-hard
problems do not have FPTASs unless P� NP [GJ79].. AstronglyNP-hard prob-
lem is a problem that remains NP-hard even if the numbers in its input are unary
encoded [GJ79].

In [PY91] the class MAX-SNP was introduced by a logical characterization and
the notion of completeness for this class by using the so-called L-reduction. The
idea behind this concept was that every MAX-SNP-complete optimization prob-
lem does not admit any PTAS iff MAX -3SAT does not admit any PTAS. A number
of optimization problem were proven to be MAX-SNP-complete. In a remark-
able line of work that culminated in [ALM�92], it was shown that MAX -3SAT
has no PTAS, unless P� NP.

Later, based on known results about the approximability thresholds of various
problems, researches have classified problems into a numberof classes [AL96].
One of these classes is APX. It was established in [KMSV94, CKST95, CT00]
that MAX -3SAT is APX-complete under AP-reduction and under subtlernotion
of reductions. Many problems have been shown to be either APX-complete or
APX-hard, and thus do not have a PTAS, unless P� NP.

Generalizing NP to allow forrandomizedalgorithms has led to a number of new
complexity classes, e.g. ZPP (Zero-error Probabilistic Polynomial) and PCP (Prob-
abilistically Checkable Proofs). It was shown that the so-called PCP-theorem
(NP � PCP

�
logn�1�) implies that the problem of finding a maximum clique in

an n-vertex graph cannot be approximated within a factor ofn1�ε, neither for
someε � 0, unless P� NP; nor for anyε � 0, unless NP� ZPP [Aro94, AL96,
AGG�99, MPS98].

BIBLIOGRAPHY

[ABC�99] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S.Khanna,
I. Millis, M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko,
Approximation schemes for minimizing average weighted comple-
tion time with release dates, Proceedings 40th IEEE Symposium on
Foundations of Computer Science, 1999, pp. 32–43.

[ABF�00] F. Afrati, E. Bampis, A. V. Fishkin, K. Jansen, and C. Kenyon,Sche-
duling to minimize the average completion time of dedicatedtasks,
Proceedings 20th Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, LNCS 1974, Springer Ver-
lag, 2000, pp. 454–464.

[ABKM97] A. K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, Sche-
duling independent multiprocessor tasks, Proceedings 5th European
Symposium on Algorithms, LNCS 1284, Springer Verlag, 1997,
pp. 1–12.

[ABKM00] F. Afrati, E. Bampis, C. Kenyon, and I. Milis,A PTAS for the av-
erage weighted completion time problem on unrelated machines,
Journal of Scheduling, Special Issue on Approximation Algorithms
3 (2000), 323–332.

[AGG�99] G. Ausiello, P. Grescenzi, G. Gambosi, V. Kann, M. Marchetti-
Spaccamela, and M. Protasi,Complexity and approximation: Com-
binatorial optimization problems and their approximability proper-
ties, Springer Verlag, 1999.

[AL96] S. Arora and C. Lund,Approximation algorithms for NP-hard prob-
lems, ch. Hardness of approximation (D. S. Hochbaum ed.), pp. 1–
45, PWS Publishing Company, Boston, 1996.

[AL97] E. Aarts and J. K. Lenstra (eds.),Local search in Combinatorial Op-
timization, Willey-Interscience series in discrete mathematics and
optimization, John wiley and Sons, 1997.

212 BIBLIOGRAPHY

[ALM �92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy,Proof
verification and hardness of approximation problems, Proceedings
33rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, 1992, pp. 14–23.

[AM01] F. Afrati and I. Milis, Designing PTASs for MIN-SUM scheduling
problems., Proceedings 13th International Symposium on Funda-
mentals of Computation Theory, LNCS 2138, Springer Verlag,
2001, pp. 432–444.

[APE97] M. Ammar, G. Polyzos, and S. Tripathi (Eds.),Special issue on net-
work support for multipoint communication, IEEE Journal Selected
Areas in Communications15 (1997).

[Aro94] S. Arora,Probabilistic checking of proofs and the hardness of app-
roximation problems, Ph.D. thesis, U.C. Berkley, 1994.

[BCF�02] E. Bampis, M. Caramia, J. Fiala, A. V. Fishkin, and A. Iovanella,
On scheduling of independent dedicated multiprocessor tasks, Pro-
ceedings 13th International Symposium on Algorithms and Com-
putation (Vancouver, BC, Canada), LNCS 2518, Springer Verlag,
2002, pp. 391–402.

[BCJS74] J. L. Bruno, E. G. Coffman, Jr., and R. Sethi,Scheduling indepen-
dent tasks to reduce mean finishing time, Communications of the
ACM 17 (1974), 382–387.

[BEY98] A. Borodin and R. El-Yaniv,Online computation and competitive
analysis, Cambridge University Press, 1998.

[BGS98] M. Bellare, O. Goldreich, and M. Sudan,Free bits, PCPs, and non-
approximability — towards tight results, SIAM Journal on Comput-
ing 27 (1998), 804–915.

[BK96] P. Brucker and A. Kräsmer,Polynomial algorithms for resource
constrained and multiprocessor task scheduling problems, Euro-
pean Journal of Operational Research90 (1996), 214–226.

[BK98] H. Breu and D. G. Kirkpatrick,Unit disc graph recognition is NP-
hard, Computational Geometry: Theory and Applications9 (1998),
3–24.

BIBLIOGRAPHY 213

[BK01] E. Bampis and A. Kononov,On the approximability of scheduling
multiprocessor tasks with time dependent processing and proces-
sor requirements, Proceedings 15th International Parallel and Dis-
tributed Processing Symposium (San Francisco), 2001.

[BKTvL00] H. L. Bodlaender, T. Kloks, R. B. Tan, and J. van Leeuwen, λ-
coloring of graphs, Proceedings 17th International Symposium on
Theoretical Aspects of Computer Science, LNCS 1770, Springer
Verlag, 2000, pp. 395–406.

[BM98] S. Bischof and E.W. Mayr,On-line scheduling of parallel jobs with
runtime restrictions, Proceedings 9th Annual International Sympo-
sium on Algorithms and Computation, LNCS 1533, Springer Ver-
lag, 1998, pp. 119–129.

[BNBH�98] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and
T. Tamir, On chromatic sums and distributed resource allocation,
Information and Computation140(1998), 183–202.

[BNHK�99] A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, R. Salman, and
H. Shachnai,Sum multicoloring of graphs, Proceedings 7th Eu-
ropean Symposium on Algorithms, LNCS 1643, Springer Verlag,
1999, pp. 390–401.

[Bol98] B. Bollobás,Modern graph theory, Graduate Texts in Mathematics
184, Springer Verlag, 1998.

[BR99] R. Balakrishnan and K. Ranganathan,A textbook of graph theory,
Springer Verlag, 1999.

[BR02] E. Bampis and G. Rouskas,The scheduling and wavelength assign-
ment problem in optical wdm networks, Journal of Lightwave Tech-
nology20 (5)(2002), 782–789.

[Bru98] P. Brucker,Scheduling algorithms, Springer Verlag, 1998.

[BT97] D. Bertsimas and J. N. Tsitsiklis,Introduction to linear optimiza-
tion, Athena Scientific, Belmont, Massachusetts, 1997.

[CCJ90] B. N. Clark, C. J. Colbourn, and D. S. Johnson,Unit disk graphs,
Discrete Mathematics86 (1990), 165–177.

[CCLL95] P. Chrétienne, E. G. Coffman, J. K. Lenstra, and Z. Liu (eds.),Sc-
heduling theory and its applications, John Wiley and Sons, 1995.

214 BIBLIOGRAPHY

[CCPS98] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, andA. Schri-
jver, Combinatorial optimization, Wiley-Interscience series in dis-
crete mathematics and optimization, John Wiley and Sons, Inc,
1998.

[CDI01a] M. Caramia, P. Dell’Olmo, and A. Iovanella,Lower bound algo-
rithms for multiprocessor task scheduling with ready times, 2001,
Personal communications.

[CDI01b] M. Caramia, P. Dell’Olmo, and A. Iovanella,On-line algorithms
for multiprocessor task scheduling with ready times, 2001, Personal
communications.

[CH01] J. Chen and J. Huang,Semi-normal scheduling: Improvement on
goemans’ algorithm, Proceedings 12th International Symposium on
Algorithms and Computation, LNCS 2223, Springer Verlag, 2001,
pp. 48–60.

[Che98] C. Chekuri,Approximation algorithms for scheduling problems,
Ph.D. thesis, Department of Computer Science, Stanford Univer-
sity, 1998.

[CK96] G. J. Chang and D. Kuo,The L
�
2�1�-labeling problem on graphs,

SIAM Journal of Discrete Mathematics9 (1996), 309–316.

[CK00] C. Chekuri and S. Khanna,A PTAS for the multiple knapsack prob-
lem, Proceedings 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2000, pp. 213–222.

[CK01] C. Chekuri and S. Khanna,A PTAS for minimizing weighted com-
pletion time on uniformly related machines, Proceedings 28th Inter-
national Colloquium on Automata, Languages and Programming,
LNCS 2076, Springer Verlag, 2001, pp. 848–861.

[CKP00] A. Caprara, H. Kellerer, and U. Pferschy,The multiple subset sum
problem, SIAM Journal on Optimization11 (2000).

[CKST95] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan, Structure in
approximation classes, Proceedings 1st Computing and Combina-
torics Conference, LNCS 959, Springer Verlag, 1995, pp. 539–548.

[CL86] G. Chartrand and L. Lesniak,Graphs and digraphs, Wadsworth and
Brooks/Cole, 1986.

BIBLIOGRAPHY 215

[CLL98] X. Cai, C.-Y. Lee, and C.-L. Li,Minimizing the total completion
time in two-processor task systems with prespecified processor al-
location, Naval Research Logistics45 (1998), 231–242.

[CLT78] E. G. Coffman, J. Y-T. Leung, and D.W. Ting,Bin packing: max-
imizing the number of pieces packed, Acta Informatica9 (1978),
263–271.

[CM99] J. Chen and A. Miranda,A polynomial time approximation scheme
for general multiprocessor job scheduling, Proceedings 31st ACM
Symposium on the Theory of Computing, 1999, pp. 418–427.

[CMI00] Clay Mathematics Institute,Millennium Prize Problems, URL:
http://www.claymath.org/prizeproblems/index.htm, Announced
16:00, on Wednesday, May 24, 2000.

[CMNS97] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein,Approximation
techniques for average completion time scheduling, Proceedings of
8th Annual ACM-SIAM Symposium on discrete Algorithms, 1997,
pp. 609–618.

[Coo71] S. A. Cook,The complexity of theorem proving procedures, Pro-
ceedings 30th ACM Symposium on the Theory of Computing,
1971, pp. 151–158.

[CPS�96] S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein,
and J. Wein,Improved scheduling algorithms for minsum crite-
ria, Proceedings 23rd International Colloquium on Automata, Lan-
guages and Programming, LNCS 1099, Springer Verlag, 1996,
pp. 646–657.

[CPW98] B. Chen, C. N. Potts, and G. J. Woeginger,Handbook of combinato-
rial optimization (D.-Z. Du and P. M. Paradalos eds.), ch. A review
of machine scheduling: complexity, algorithms and approximabil-
ity, pp. 21–169, Kluwer, 1998.

[CT00] P. Crescenzi and L. Trevisan,On approximation scheme preserving
reducibility and its applications, Theory of Computer Systems33
(2000), 1–16.

[DP95] S. Dauzère-Pérès,Minimizing late jobs in the general one machine
scheduling problem, European Journal of Operational Research81
(1995), 134–142.

216 BIBLIOGRAPHY

[Dro96] M. Drozdowski,Scheduling multiprocessor tasks - an overview, Eu-
ropean Journal on Operations Research (1996), 215–230.

[ECL79] Jr. E.G. Coffman and J.Y. Leung,Combinatorial analysis of an effi-
cient algorithms for processor and storage allocation, SIAM Jour-
nal on Computing8 (1979), 202–217.

[EF01] T. Erlebach and J. Fiala,Independence and coloring problems on
intersection graphs of disks, manuscript, 2001.

[FFF01] J. Fiala, A. V. Fishkin, and F. Fomin,Off-line and on-line dis-
tance constrained labeling of disk graphs, Proceedings 9th Annual
European Symposium on Algorithms (Arhus), LNCS 2161, 2001,
pp. 464–475.

[Fia00] J. Fiala,Locally injective homomorphisms, Ph.D. thesis, Charles
University, Prague, 2000.

[FJM01] A. V. Fishkin, K. Jansen, and M. Mastrolilli,Grouping techniques
for scheduling problems: Simpler and faster, Proceedings 9th An-
nual European Symposium (Arhus), LNCS 2161, Springer Verlag,
2001, pp. 206–217.

[FJM02] A. V. Fishkin, K. Jansen, and M. Mastrolilli,A PTAS for shop sche-
duling with release dates to minimize the average weighted comple-
tion time, Tech. report, Kiel University, 2002.

[FJP01a] A. V. Fishkin, K. Jansen, and L. Porkolab,On minimizing average
weighted completion time: A PTAS for scheduling general multipro-
cessor tasks, Proceedings 13th International Symposium on Funda-
mentals of Computation Theory (Riga), LNCS 2138, Springer Ver-
lag, 2001, pp. 495–507.

[FJP01b] A. V. Fishkin, K. Jansen, and L. Porkolab,On minimizing aver-
age weighted completion time of multiprocessor tasks with release
dates, Proceedings 28th International Colloquium on Automata,
Languages and Programming (Crete), LNCS 2076, Springer Ver-
lag, 2001, pp. 875–886.

[FK98] U. Feige and J. Kilian,Zero-knowledge and the chromatic number,
Journal of Computer and System Science57 (1998), 187–199.

[FK02] J. Fiala and J. Kratochvíl,Partial covers of graphs, Discussions
Mathematics Graph Theory22 (2002), 89–99.

BIBLIOGRAPHY 217

[FKK99] J. Fiala, J. Kratochvíl, and T. Kloks,Fixed-parameter tractability of
λ-colorings, Proceedings 25th International Workshop on Graph-
Theoretic Concepts in Computer Science (Ascona), 1665, Springer
Verlag, 1999, pp. 350–363.

[FKST93] A. Feldmann, M.-Y. Kao, J. Sgall, and S.H. Teng,Optimal online
scheduling of parallel tasks with dependencies, Proceedings 25th
ACM Symposium on the Theory of Computing, 1993, pp. 642–651.

[FST94] A. Feldmann, J. Sgall, and S-H. Teng,Dynamic scheduling on par-
allel machines, Theoretical Computer Science130(1994), 49–72.

[FW98] A. Fiat and G. J. Woeginger (eds.),Online algorithms. The state of
the art, LNCS 1442, Springer Verlag, 1998.

[FZ02] A. Fishkin and G. Zhang,On maximizing the throughput of mul-
tiprocessor tasks, Proceedings 27th International Symposium on
MFCS (Warsaw-Otwock, Poland), LNCS 2420, Springer Verlag,
2002, pp. 269–279.

[GGU72] M. R. Garey, R. L. Graham, and J. D. Ullman,Worst case analysis of
memory allocation algorithms, Proceedings 4th ACM Symposium
on Theory of Computing, 1972, pp. 143–150.

[GJ78] M. R. Garey and D. S. Johnson,Strong NP-completeness results:
Motivation, examples and applications, Journal of the Association
for Computing Machinery (1978), 499–508.

[GJ79] M. R. Garey and D. S. Johnson,Computers and intractability: A
guide to the theory of NP-completeness, Freeman, San Francisco,
CA, 1979.

[GJS76] M. R. Garey, D. S. Johnson, and R. Sethi,The complexity of flow-
shop and jobshop scheduling, Mathematics of Operation Research
1 (1976), 117–129.

[GL88] A. Gyárfás and J. Lehel,On-line and first fit colorings of graphs,
Journal of Graph Theory12 (1988), 217–227.

[GLLK79] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G.Rinnooy
Kan, Optimization and approximation in deterministic scheduling:
A survey, Annals of Discrete Mathematics (1979), 287–326.

218 BIBLIOGRAPHY

[GLM �00] O. Gerstel, B. Li, A. McGuire, G. N. Rouskas, K. Sivalingam, and
Z. Zhang (Eds.),Special issue on protocols and architectures for
next generations optical wdm networks, IEEE Journal Selected Ar-
eas in Communications18 (October 2000).

[GM96] J. P. Georges and D. W. Mauro,On the size of graphs labeled with
a condition at distance two, Journal of Graph Theory22 (1996),
47–57.

[Goe95] M. X. Goemans,An approximation algorithm for scheduling on
three dedicated processors, Discrete Applied Mathematics61
(1995), 49–59.

[GPSS97] L. A. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk,Better
approximation guarantees for job-shop scheduling, Proceedings 8th
Symposium on Discrete Algorithms, 1997, pp. 599–608.

[Gra66] R. L. Graham,Bounds for certain multiprocessing anomalies, Bell
system Technical Journal45 (1966), 1563–1581.

[GS78] T. Gonzales and S. Sahni,Flowshop and jobshop schedules: Com-
plexity and approximation, Operations Research26 (1978), 36–52.

[GY92] J. R. Griggs and R. K. Yeh,Labeling graphs with a condition at
distance 2, SIAM Journal of Discrete Mathematics5 (1992), 586–
595.

[GY98] L. Gross and J. Yellen,Graph theory and its applications, CRC
Press, 1998, URL: http://www.graphtheory.com.

[Hal80] W. K. Hale,Frequency assignment: Theory and Applications, Pro-
ceedings of the IEEE, vol. 68, 1980, pp. 1497–1514.

[Has99] J. Hastad,Clique is hard to approximate within n1�ε, Acta Mathe-
matica182(1999), 105–142.

[HdVV94] J. A. Hoogeveen, S. L. Van de Velde, and B. Veltman,Complex-
ity of scheduling multiprocessor tasks with prespecified processor
allocations, Discrete Applied Mathematics55 (1994), 259–272.

[Hel00] The NGI Helious project: Regional Testbed Optical Ac-
cess Network For IP Multicast and Differentiated Services,
http://projects.anr.mcnc.org/Helios/, 2000.

BIBLIOGRAPHY 219

[HK73] J. E. Hopcroft and R. M. Karp,A n5 2 algorithm for maximum
matchings in bipartite graphs, SIAM Journal on Computing2
(1973), 225–231.

[HK01] P. Hliněný and J. Kratochvíl,Representing graphs by disks and
balls, Discrete Mathematics229(2001), 101–124.

[Hoc96] D. S. Hochbaum (ed.),Approximation algorithms for NP-hard
problems, Thomson, 1996.

[HPW00] H. Hoogeveen, C. N. Potts, and G.J. Woeginger,On-line scheduling
on a single machine: maximizing the number of early jobs, Opera-
tions Research Letters27 (2000), 193–197.

[Hro01] J. Hromkovǐc, Algorithms for Hard Problems, Springer Verlag,
2001.

[HS78] E. Horowitz and S. Sahni,Fundamentals of Computer Algorithms,
Computer Science Press, 1978.

[HSSW97] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein,Scheduling to
minimize average time: Off-line and on-line algorithm, Mathemat-
ics of Operation Research (1997), 513–544.

[HSW98] H. Hoogeveen, P. Schuurman, and G. Weoginger,Non-
approximability results for scheduling problems with minsum cri-
teria, Proceedings 6th Conference on Integer Programming and
Combinatorial Optimization, LNCS 1412, Springer Verlag, 1998,
pp. 353–366.

[Joh74] D. S. Johnson,Approximation algorithms for combinatorial prob-
lems, Journal of Computational System Science9 (1974), 256–278.

[JP99a] K. Jansen and L. Porkolab,General multiprocessor task sche-
duling: Approximate solution in linear time, Proceedings 6th In-
ternational Workshop on Algorithms and Data Structures, LNCS
1663, Springer Verlag, 1999, pp. 110–121.

[JP99b] K. Jansen and L. Porkolab,Linear-time approximation schemes for
scheduling malleable parallel tasks, Proceedings 10th ACM-SIAM
Symposium on Discrete Algorithms, 1999, To appear in Algorith-
mica, pp. 490–498.

220 BIBLIOGRAPHY

[JSOS99] K. Jansen, R. Solis-Oba, and M. Sviridenko,Makespan minimiza-
tion in job shops: A polynomial time approximation scheme, Pro-
ceedings 31st Annual ACM Symposium on Theory of Computing
(Atlanta), 1999, To appear in SIAM Journal on Discrete Mathemat-
ics, pp. 394–399.

[JT95] T.R. Jensen and B. Toft,Graph coloring problems, Wiley-
Interscience, 1995.

[Kar72] R. M. Karp,Reducibility among combinatorial problems, Proceed-
ings of the Symposium on the Complexity of Computer Computa-
tions (York-town Heights, NY), Plenum Press, New York, March
1972, pp. 85–103.

[Kel99] H. Kellerer, A polynomial time approximation scheme for the
multiple knapsack problem, Proceedings 2nd International Work-
shop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems & 3rd International Workshop on Randomization
and Approximation Techniques in Computer Science (RANDOM-
APPROX’99), LNCS 1671, Springer Verlag, 1999, pp. 51–62.

[KFH�00] M. Kuznetsov, N. Froberg, S. Henion, H. Rao, J. Korn,
K. Rauschenbach, E. Modiano, and V. Chan,A next-generation op-
tical regional access networks, IEEE Communications Magazine38
(January 2000), 66 – 72.

[KIM78] H. Kise, T. Ibaraki, and H. Mine,A solvable case of the one-
machine scheduling with ready due times, Operations Research26
(1978), 121–126.

[KMSV94] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani,On syntactic
versus computational views of approximability, Proceedings 35th
Annual Symposium on Foundations of Computer Science (Santa
Fe, New Mexico), IEEE, 20-22 November 1994, pp. 819–830.

[Knu68] D. E. Knuth,Fundamental algorithms, The art of computer pro-
gramming, vol. 1, Addison-Wesley, Reading, MA, 1968.

[Koe36] P. Koebe,Kontaktprobleme der konformen Abbildung, Math.-Phys.
Klasse, vol. 88, Berichte Verhande. Saechs. Akad. Wiss. Leipzig,
1936, pp. 141–164.

[Kos99] A. Koster,Frequency assignment: Models and algorithms, Ph.D.
thesis, Proefschrift Universiteit Maastricht, 1999.

BIBLIOGRAPHY 221

[Krä95] A. Krämer,Scheduling multiprocessor tasks on dedicated proces-
sors, Ph.D. thesis, Fachbereich Mathematik/Informatik, Universität
Osnabrück, 1995.

[Kub89] E. Kubicka,The chromatic sum of a graph, Ph.D. thesis, Western
Michigan University, 1989.

[Law76] E.L. Lawler,Sequencing to minimize the weighted number of tardy
jobs, RAIRO Recherche opérationnele10 (1976), 27–33.

[Law82] E.L. Lawler,Scheduling a single machine to minimize the number
of late jobs, Tech. report, Computer Science Division, University of
California, Berkeley, 1982, Preprint.

[Lee98] R. A. Leese,Radio spectrum: A raw material for the telecommu-
nications industry, Proceedings 10th Conference of the European
Consortium for Mathematics in Industry (Goteborg), 1998.

[LK78] J. K. Lenstra and A. H. G. Rinnoy Kan,Complexity of scheduling
under precedence constraints, Operations Research26 (1978), 22–
35.

[LKB77] J. K. Lenstra, A. H. G. Rinnoy Kan, and P. Brucker,Complexity
of machine scheduling problems, Annals of Operation Research4
(1977), 343–362.

[LLKS93] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, andD. B.
Shmoys,Logistics of production and inventory, Handbooks in Op-
eration Research and Management Science, vol. 4, ch. Sequencing
and scheduling: Algorithms and complexity, pp. 445–522, North-
Holland, Amsterdam, 1993.

[Llo81] E.L. Lloyd, Concurrent task systems, Operations Research29
(1981), 189–201.

[LM69] E.L. Lawler and J.M. Moore,A functional equation and its applica-
tion to resource allocation and sequencing problems, Management
Science16 (1969), 77–84.

[LY94] C. Lund and M. Yannakakis,On the hardness of approximating min-
imization problem, Journal of the ACM41 (1994), 960–981.

[Mal97] E. Malesínska,Graph theoretical models for frequency assignment
problems, Ph.D. thesis, Technical University of Berlin, Germany,
1997.

222 BIBLIOGRAPHY

[Maš01] K. Mašek,Distance constrained labeling of disk graphs: An on-line
algorithm, http://www.ii.uib.no/¶fiala/odcl, 2001.

[McC83] S. T. McCormick,Optimal approximation of sparse Hessians and
its equivalence to a graph coloring problem, Mathematical Pro-
gramming26 (1983), 153–171.

[Mon82] C. L. Monma,Linear-time algorithms for scheduling on parallel
processors, Operation Research30 (1982), 116–124.

[Moo68] J. M. Moore,A n jobs, one machine sequencing algorithm for min-
imizing the number of later jobs, Management Science15 (1968),
102–109.

[MPS98] E. W. Mayr, H. J. Prómel, and A. Steger (eds.),Lectures on proof
verification and approximation algorithms, LNCS 1367, Springer
Verlag, 1998.

[MS] M. Molloy and M. S. Salavatipour,A bound on the chromatic num-
ber of the square of a planar graph, manuscript.

[Muk92] B. Mukherjee, WDM-Based local lightwave networks Part I:
Single-hop systems, IEEE Network Magazine (1992), 12–27.

[NW88] G. L. Nemhauser and L. A. Wolsey,Integer and Combinatorial Op-
timization, John Wiley and Sons, New York, 1988.

[Pap94] C. H. Papadimitriou,Computational Complexity, Addison Wesley,
1994.

[Pee91] R. Peeters,On coloring j-unit sphere graphs, Tech. report, Depart-
ment of Economics, Tilburg University, 1991.

[Pin95] M. Pinedo,Scheduling: Theory, algorithms and systems, Prentice-
Hall, 1995.

[PS82] C. H. Papadimitriou and K. Steiglitz,Combinatorial optimization:
Algorithms and complexity, Prentice-Hall, 1982.

[PY91] C. H. Papadimitriou and M. Yannakakis,Optimization, approxima-
tion, and complexity classes, Journal of Computer and System Sci-
ence43 (1991), 425–440.

[QS00] M. Queyranne and M. Sviridenko,New and improved algorithms
for minsum shop scheduling, Proceedings 11th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2000, pp. 871–878.

BIBLIOGRAPHY 223

[RS01] V. Raghavan and J. Spinrad,Robust algorithms for restricted do-
mains, Proceedings 12th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (Washington), 2001, pp. 460–467.

[RW98] G. Rote and G. J. Woeginger,Minimizing the number of tardy jobs,
Acta Cybernetica13 (1998), no. 4, 423–430.

[Sai95] R. Saigal,Linear programming: A modern integrated analysis,
Kluwer Academic Publishers, 1995.

[Sch96] A. S. Schulz,Polytopes and scheduling, Ph.D. thesis, Technical
University of Berlin, Germany, 1996.

[Sev86] S. V. Sevast’janov,Bounding algorithm for the routing problem
with arbitrary paths and alternative servers, Cybernetics22 (1986),
773–780, In Russian.

[SG76] S. Sahni and T. F. Gonzalez,P-complete approximation problems,
Journal of the ACM23 (1976), 555–565.

[Shm98] D. B. Shmoys,Using linear programming in the design and analysis
of approximation algorithms: Two illustrative examples, Proceed-
ings 1st International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, LNCS 1444, SpringerVer-
lag, 1998, pp. 15–32.

[Sku98] M. Skutella, Approximation and randomization in scheduling,
Ph.D. thesis, Technical University of Berlin, Germany, 1998.

[Smi56] W. E. Smith,Various optimizers for single-stage production, Naval
Research Logistic Quarterly3 (1956), 59–66.

[SS00] K. M. Sivalingam and S. Subramaniam (eds.),Optical WDM net-
works: Principles and practice, Kluwer Academic Publishers,
2000.

[SSW94] D. B. Shmoys, C. Stein, and J. Wein,Improved approximation algo-
rithms for shop scheduling problems, SIAM Journal of Computing
23 (1994), 617–632.

[SU97] E. R. Scheinerman and D. Ullman,Fractional graph theory, John
Wiley & Sons, 1997.

224 BIBLIOGRAPHY

[SW97] C. Stein and J. Wein,On the existence of schedules that are near-
optimal for both makespan and total weighted completion time, Op-
erations Research Letters21 (1997), 115–122.

[SW99] P. Schuurman and G. J. Woeginger,Polynomial time approximation
algorithms for machine scheduling: Ten open problems, Journal of
Scheduling2 (1999), 203–213.

[SW02] P. Schuurman and G. J. Woeginger,Approximation schemes – a tu-
torial, To appear in the book Lectures on Scheduling, edited by R.
H. Moehring, C. N. Potts, A. S. Schulz, G. J. Woeginger and L. A.
Wolsey., 2002.

[SWW95] D.B. Shmoys, J. Wein, and D.P. Williamson,Scheduling parallel
machines on-line, SIAM Journal on Computing24 (1995), 1313–
1331.

[TLWY94] J. Turek, W. Ludwig, J. Wolf, and P. Yu,Scheduling parallel tasks
to minimize average response times, Proceedings 5th ACM-SIAM
Symposium on Discrete Algorithms, 1994, pp. 112–121.

[TR00] D. Thaker and G. N. Rouskas,Multi-destination communication in
broadcast WDM networks: A survey, Tech. Report 2000-08, North
Caroline State University, 2000.

[TU99] E. Torng and P. Uthaisombut,Lower bounds for SRPT-subsequence
algorithms for non-preemptive scheduling, Proceedings 10th ACM-
SIAM Symposium on Discrete Algorithms, 1999, pp. 973–974.

[Vaz00] V. Vazirani,Approximation algorithms, Springer, New–York, 2000.

[vdHLS98] J. van den Heuvel, R. A. Leese, and M. A. Shepherd,Graph labeling
and radio channel assignment, Journal of Graph Theory29 (1998),
263–283.

[WASG96] R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman,
MONET: Multiwavelength Optical Networking, Journal of Light-
wave Technology14 (June 1996), 1349.

[Weg77] G. Wegner,Graphs with a given diameter and a coloring problem,
Tech. report, University of Dortmund, Germany, 1977.

[Wes01] D. West,Introduction to graph theory, Prentice-Hall Inc., 2001.

BIBLIOGRAPHY 225

[XL99] X.Cai and C.Y. Lee,Scheduling multiprocessor tasks without pre-
specified processor allocations, IIE Transactions - Scheduling and
Logistics31 (1999), 445–455.

INDEX

�
2�1�, seedistance constraints�
p1 � � � � � pk�, seedistance constraints

Aϕ̄, 64
B

�
m�, seeBell number

Bϕ̄
�
s�τ � ma�, 64

C
�
µ�i, see µ-configuration

Cj �Ci j , seecompletion time
Cmax, seemakespan
D

���, 42, 75
D

�
i � j �, seecell clique

Di � �
di �xi �yi �, seedisks

Dϕ̄
x
�
ϕ�, 52

Dy, 31
Dy

�
π�, 81

F
�
ξ�, 32

F
�
s�, 63, 86

Fπ
�
ξ�, 81

G � �
V�E�, seegraph

G2, 126
Gk, 103
Hx, 28
It , seetime slots
Ix � � I �x, seeintervals
Jx �Jϕ̄

x , 61
Kx, 59, 83
L

�
T �, 151

L
�
ξ �t �, 65

Lx, 62, 85
L�p1 �����pk�, seelabeling
L�s�τ �ϕ̄�, 64
M

�
s�, seesnapshot

N
�
v�, seeneighborhood

N�k�
G , 137

NALG, 162
NOPT, 162
Nx, 59

Nx
�
π�, 83

NG2
�
v�, 127

OPT, 3, 25, 42, 75, 148, 150, 162
OPTE, 32, 81, 150
OPTE �π�, 81
RALG, 162
Rx, seeintervals
Sj �Si j , seestarting time
Sx �Sx

�
π�, 85

Sx �Sϕ̄
x , 62

TTx �HTx, seetiny huge tasks
T� , 150, 155
T�, 150, 155
Tx, 28
Tx�Tx

�
π�, 84

Tx�Hx, seetiny huge jobs
Ux, 62
Yx

�
π�, 83

Yϕ̄
x

�
ϕ�, 52

Yy, 31
Yy

�
π�, 81

∆ϕ̄
x
�
ϕ�, 53

∆y, 32
∆y

�
π�, 81

∆max, 143,seemaximum task size
Π �∆�

s�, 67
α � β � γ notation, 193
ν̄/, 49
ρ̄, 122�, seecells�, 107o �

s�, 67
χ

�
G�, seechromatic number

χ�2�2� �χ�1�1� �χ �2�1�, seelabeling
χ�p1 �����pk� �G�, seelabeling
distM

��� ��, seemesh distance

228 INDEX

dist� ��� ��, seeplane distance+ /, 113
ε, 25
fix j , seetasks dedicated
ϕ̄ �ϕ̄x, seeprofile local
µ, seeoperations
µ-configuration, 86
ν/, 48, 79, 97
ω

�
G�, seeclique number

πi j , 45
σ, seediameter ratio
sizej , seetasks parallel
∑

�
w j �Cj , seeaverage (weighted) com-

pletion time
∑Ū j , seethroughput
τ
�
j �, seeallotment

ϕ
���, seelabeling circular

ϕ �ϕ � �
π �τ�, seeprofilem

a, 64DYϕ̄
x , 59

ξ �ξ jy, 32

ξ �ξ� f � j �
y , 53

ξ �ξ jy, 81
d

�
Tj �, seedue dates

d/, 38
d j , seedue dates
e/, 47
f
�
j �, 52

f � � f �, seepattern
f /, 49
k-coloring, 203
k/x, 62, 85
p
���, 25

p j � pi j � p" j , seeprocessing times
pmax� pmax

�
s�, 67

q/, 80, 84, 93, 95
q/ �

q/1 �q/2�, 48, 55, 60, 70, 71
r j , seerelease dates
s/, 27, 42
ts, 65

w j , seeweights
x
�
j �, 30, 52, 80

y
�
j �, 30, 52, 80

z/, 48
3-PARTITION, 170
MAXIMUM CLIQUE, 187

algorithm
ρ-approximation, 2, 145, 208
ρ-competitive, 145
c-competitive, 3
CDL, 132
FFC, 129, 147
FFIS, 171
FFI, 169
FFL, 137
FFS+, 149
FFS, 148
GFFS, 152
HA, 181
LFIS, 173
ODL, 116
RDL, 135
SL, 130
SRPT, 14
SRS, 155
SR, 153
offline, 3
online, 3
robust, 133
Sevastianov’s, 67
SRS+, 156

allotment, 72
AP-reduction, 208
average (weighted) completion time,

22, 39, 194

Bell number, 86
blocks, 38

cell clique, 109
cells, 108

INDEX 229

chromatic number, 102, 146, 203
circular labeling, 113
class

APX, 209
NP, 205
P, 205
RP, 206
ZPP, 206
co-class, 206

clique, 146, 203
clique number, 146, 203
coloring, 102, 146, 203
competitiveness, 145
completion time, 22, 25, 39, 42

degree, 201
diameter ratio, 104, 203
disk representation, 104, 203
disks, 107
distance

mesh, 109
plane, 109

distance constraints, 103, 204
due dates, 159, 163, 194

common, 163

FAP, 101

gap, 77
good ordering, 135
graph, 201

L�p1 ���� �pk�-labeled, 204
σ-disk, 104
σ-disk graph, 203
k-colorable, 102, 203
k-tuple, 146, 203
acyclic, 202
bipartite, 202
closed walk, 202
co-graph, 203
complete, 202
conflict, 148

connected, 202
cycle, 202
disk, 104, 203
forest, 202
grid, 203
interference, 102
intersection, 202
interval, 202
path, 202
perfect, 203
planar, 202
representation, 202
simple, 201
spanning tree, 202
square product, 203
star, 202
strip graph, 126
subgraph, 201
trail, 202
tree, 202
unit disk, 104, 203
walk, 202

independence number, 203
independent set, 203
intervals, 25, 42

red and blue, 149

job characteristics, 193
jobs, 13, 15, 22, 39, 193

crossing, 27, 47
huge, 28, 48
long, 62
short, 62
tiny, 28, 48
unbalanced, 67

labeling, 103, 204
circular, 113
number, 103, 204

language, 205
LP, 32, 65, 87

230 INDEX

LP(π), 81
LP(ϕ), 53

machine environment, 193
machines, 15, 39, 193

identical, 194
required, 15, 39
single, 13, 22, 194
uniform, 194
unrelated, 194

makespan, 141, 194
maximum clique, 203
maximum independent set, 203

neighborhood, 147, 201

objective function, 193
on-line

over list, 194
over time, 194

operations, 15, 39, 194
compatible, 62
main, 42
negligible, 42

optimality criterion, 193
order

EDD, 166
IS, 170
LDD, 166

pattern, 49, 111
polynomial reduction, 206
preemptions, 194
problem

APX-hard (complete), 209
NP-hard (complete), 207
NPO, 207
offline, 3
online, 3
strongly NP-hard, 207

processing times, 13, 15, 16, 22, 39,
72, 141, 159, 194

processor assignment, 86
processors, 16, 72, 141, 159, 193, 195
profile, 48, 79, 97

local, 49
PTAS (FPTAS), 2, 208

ratio
approximation, 2, 208
competitive, 3
performance, 2, 208
worst-case, 208

relative schedule, 62, 86
release dates, 13, 16, 22, 39, 72, 141,

194
results

approximability, 3
inapproximability, 3

schedule, 193
schedule enlargement, 68, 92
shop (open, flow, job, dag), 39, 194
Smith’s rule, 13, 30, 50, 80
snapshot, 62, 86
snapshot enlargement, 67, 91
solution

near-optimal, 2
starting time, 25, 42

tasks, 16, 72, 141, 159, 193, 195
compatible, 86
dedicated, 17, 72, 141, 159, 195
general, 17, 72, 195
huge, 80
incompatible, 148
late, tardy, 159
long, 85
multiprocessor, 72, 141, 195
on time, early, 159
parallel, 17, 72, 159, 195
short, 85
size, 143
tiny, 80

INDEX 231

type, 143
unbalanced, 91

technique
geometric rounding, 25
merging, 37
schedule-stretching, 26
split-round, 152
time-stretching, 28
weight-shifting, 36

throughput, 159, 194
time slots, 163
total processing time, 151

weights, 13, 16, 22, 39, 72, 194

CONCLUSIONS

We presented approximation algorithms and online algorithms for several sche-
duling and labeling problems. Our work on the problem of minimizing average
weighted completion time in Chapter 1 is primarily motivated by some theoretical
questions which were open for a number of last years. We presented a general
approximation method which leads to PTASs for two wide classes of scheduling
problems with the average weighted completion time objective and release dates,
which are strongly NP-hard even in very simple cases. The labeling problem in
Chapter 2, which is a natural generalization of the classical graph coloring prob-
lem, and the multiprocessor task scheduling problems considered in Chapter 3 and
Chapter 4 are new problems suggested by practical applications. We considered
online and offline versions of the problems. In the offline setting, we first showed
that the problems are NP-hard, and then presented approximation algorithms. In
the online setting, we first presented online algorithms forthe problems, and then
derived upper and lower bounds on the competitive ratio.

Indeed, there are still many interesting research areas remain. At the end of each
chapter we point out specific open problems related to the topic addressed in that
chapter. Here we suggest some broader directions for futureresearch.

Our first observation regards average (weighted) completion time scheduling, or
similarly, the sum of (weighted) completion times. Minimizing makespan is a
special case of the problem of minimizing average weighted completion time.
Stein and Wein [SW97] show that, for a very general class of scheduling models,
there exists a schedule that is simultaneously within a factor of 2 of the optimal
schedule values for both average weighted completion time and makespan. Their
proof is based on transforming on optimal schedule for average weighted comple-
tion time to a schedule that is approximately good for both objective functions.
Chekuri [Che98] asked for a converse to their transformation. That is, is there a
polynomial time algorithm that uses as a subroutine a procedure for minimizing
makespan and outputs an approximate schedule for minimizing weighted com-
pletion time? In [CPS�96, QS00] and in this work a number of different approxi-
mation algorithms and methods have been presented which give answers to these
interesting theoretical questions.

Here we raise the question of finding schedules that are simultaneously good for
both the sum of completion times and the sum of weighted completion times.

234

This question seems to be non-trivial even in the case of scheduling on a single
machine. Extending Chekuri’s question, we ask for the design of algorithms in
the multiple machine case which use approximation algorithms for the makespan
objective as a subroutine.

Our next observation concerns the labeling problem. As we have observed in
Chapter 2, the labeling problem is a good model for the frequency assignment
problem [Kos99]. However, it is quite common in practice that neither coloring
nor labeling of the interference graph fits well. The main problem behind this
is that in the real frequency assignment some nodes, which are connected in the
interference graph, can have the same frequency. In other words, nodes having
either the same color or the same label can form a clique. In order to model
this situation, we propose the following problem of minimizing the maximum
color clique. We are given a graphG andk colors 1�2�3� � � � �k. A coloring is an
assignment one of the colors to each node ofG. (In a standard graph coloring it
is required that very two connected nodes are colored distinctly.) Each set of the
nodes having the same color induces a subgraph inG, and a clique in this subgraph
is called a color clique. The maximum color clique inG is a color clique which has
the maximum size. The goal is to find a coloring which minimizes the maximum
color clique.

It is not hard to see that the complexity of the color clique problem depends on
the number of available colorsk. Furthermore, for a graphG andk colors, the
maximum color clique is at leastω

�
G��k, whereω

�
G� is the clique number ofG.

In general, approximation algorithms for the chromatic number can be adopted
for approximating the maximum color clique. The color clique problem is simple
for approximation in planar graphs or trees. However, the problem seems to be
non-trivial in the case of (unit) disk graphs.

Finally, we have an observation regarding multiprocessor task scheduling. We
propose to consider the model in which tasksplitting is allowed. Informally, in
splitting of a task, one first divides the set of required processors into a num-
ber subsets, and then consecutively executes of the task on each of these subsets
of processors. From one side, this model fits more for applications in WDM
LANs [BR02]. From another side, this model is strongly related to the multipro-
cessor task variant of flow, open and job shop scheduling problems [Krä95].

CURRICULUM V ITAE

11. Aug. 1975: born in Novokuznetsk, Russia.

1989-1991 : student at Gymnasium No.11,
Novokuznetsk, Russia.

1991 - 1992 : student at Scientific Study Center,
Novosibirsk, Russia.

1992 - 1996 : student at Department of Mechanics and Mathematics,
Novosibirsk State University, Novosibirsk, Russia.

June 1996: BS degree in Mathematics (with honors).

1996 - 1998 : master student at Department of Mechanics and Mathematics,and
student at Department of Economics,
Novosibirsk State University, Novosibirsk, Russia.

June 1998: MS degree in Computer Science and Applied Mathematics, and
Diploma of Economist.

Sept. 1998 : field engineer trainee by Schlumberger Limited,
April 1999 Bryan , Texas, USA.

Nov. 1999 : PhD student at Graduiertenkolleg 357
April 2002 “Effiziente Algorithmen und Mehrskalenmethoden”,

University of Kiel, Germany.

since May 2002: research assistant at EU-Project CRESCO
“Critical Resource Sharing for Cooperation in Complex Systems”
Institute for Computer Science and Applied Mathematics,
University of Kiel, Germany.

