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Chapter 1

Introduction

For most of us coloring is fun but packing is not. So, in layman terms it might
seem odd to talk about two very different activities, different at least on the fun
scale. Mathematically, these two problems are not so different as the fun scale
might lead you to believe.

The most commonly known coloring problem is the graph coloring problem.
Given a graph, i.e., a finite set of vertices V' = {v1,v9,...} and a set of edges
E = {(vi,v;) |vi,v; € V', i # j}, color its vertices such that no two end vertices
of any one of its edges get the same color. This problem can be applied to solve
certain scheduling problems, among other problems, where the task is to schedule
certain activities but some pairs of activities cannot be scheduled at the same
time in parallel.

Among packing problems, the most famous one is the one-dimensional bin
packing problem. In an instance of this problem we are given a finite list of
numbers (items) in the interval (0, 1] and lots of bins of size one. The aim is to
pack these numbers in bins, using minimum number of bins, such that for every
bin the sum of numbers in that bin is not more than its size. This problem has
many applications like packing a set of commercials (items) in commercial breaks
of pre-defined duration (bins), etc.

In this work we deal with multi-dimensional generalisations of the above men-
tioned problems. The more general forms of graphs are known as hypergraphs
(see Definition 3.1.1). In a hypergraph an edge can have two or more vertices.
On similar lines, in multi-dimensional bin packing we are given vectors as items
instead of numbers and the bins are multi-dimensional too. Two main problems
considered by us are as follows:

e Constrained Hypergraph Coloring or CHC (Chapter 4): given a hypergraph
with n vertices and s edges, color its vertices using minimum number of
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colors such that in each hyperedge 7 there are no more than b; vertices of
any color.

e Multi-dimensional Bin Packing or MDBP (Chapter 5): given n rational,
d-dimensional vectors with components from the interval [0, 1], pack these
vectors in minimum number of bins such that in each bin, for each of the d
dimensions, the sum over all vectors in that bin is at most one.

These problems can be written as integer programs and the set of problem in-
stances of CHC, for fixed b;s, is a subset of the set of problem instances of MDBP.
Let us denote by T,,; and 7™ the values of the optimum solutions of the integer
program and its LP-relaxation respectively, corresponding to the constrained hy-
pergraph coloring problem. Also, let opt and m* be the values of the optimum
solutions of the integer program and its LP-relaxation respectively, corresponding
to the multi-dimensional bin packing problem. We also apply our methods to a
similar problem called resource constrained scheduling (Chapter 4).

Special cases of CHC are well known. For a hypergraph H with hyperedges
Fi,... F;, and b; = |F;| — 1 Vi, CHC is closely related to the property B prob-
lem (i.e there exists a 2-coloring of H in which no hyperedge is monochromatic).
Whenever H has property B, CHC is equivalent to the problem of finding a non-
monochromatic 2-coloring of H. A coloring problem related to the CHC problem,
which also generalizes the property B problem to multicolors has been studied
by Lu [20]. The aim here is to color the vertices of H with k£ given colors such
that no color appears more than b times in any edge.

Previous approximations for T,,, and opt in this context are as follows. In [12]
Garey et al. use the First-Fit-Decreasing heuristic to give a polynomial time
(d+ %) approximation algorithm for MDBP problem. Subsequently De la Vega
and Lueker [28] improved this result and gave a linear time algorithm which,
for every € > 0, gives a (d + €) approximate solution. Recently Chekuri and
Khanna [7] further improved the long standing (d + €) bound, they gave a poly-
nomial time algorithm that, for any fixed € > 0, delivers a (1 + ed + O(loge 1))-
approximate solution. For arbitrary b;’s, Srivastav and Stangier [26, 27] gave a
polynomial time approximation algorithm that for every e > 0 delivers a coloring
using at most [(1+¢€)T,,;] colors provided that for all 7, b; > 3e2(1+¢€) log(8sT™).

In this work we apply probabilistic methods, mainly the Lovasz Local Lemma
(LLL) and its algorithmic version, to obtain algorithms with better approxima-
tion ratio for the above mentioned problems. In Chapter 2 we lay down the
basics of derandomization and other important tools like large deviation inequal-
ities. Chapter 3 develops the algorithmic version of Lovasz Local Lemma. We
end this chapter by applying a variation of the algorithmic LLL to approximately



solve a class of integer programs which captures the CHC problem and the re-
source constrained scheduling problem.

In Chapter 4 we use the result of Chapter 3 to obtain the following result:
given a hypergraph H with n vertices and s hyperedges we show that for every
€ € (0,1), H can be colored in polynomial time using at most [(1 + €)T,,| col-
ors provided that b; = Q (¢72(1 + ¢) log D) for all edges i € [s]. The parameter
D < dnt = O((sT*)?) where d is the maximum vertex degree of the hypergraph
and 7, 7 (defined in Section 3.4.2) depend on the structure of inequality con-
straints in the integer program. But depending on the problem instance, dnt
could be very small in comparison to s7™*. This improves the previous best lower
bounds on b;’s given by Srivastav and Stangier [27]. For nT = O(poly(r)) we are
able to construct a [(1+ €)T,,; |-coloring provided that b; = Q (e72(1 + €) log(dr))
Vi. We also give a negative result [1, 7] in this chapter. All these results also
hold for resource constrained scheduling.

In Chapter 5 we modify the algorithm of [7]. Let v be the minimum com-
ponent among all components in the given n vectors. The modified algorithm
achieves a (1 + e¢q + O(loge™!))-approximation ratio for any fixed ¢ > v, where

¢ = min{d, 10 (%)}. This leads to a classification of problem instances
for which our approximation ratio is better than the previous best. In the end we
conclude with Chapter 6 which contains the summary of the methods described

in the following chapters and some open questions.
Notation
Here are some standard symbols used by us:

Z : set of integers

Z, : set of positive integers

Q : set of rational numbers

Q4 : set of positive rational numbers

N : set of natural numbers

R : set of real numbers

R : set of positive real numbers

[n] : the set {1,...,n}

¢ . a simple or compound event

£¢ . the complement event of &

[5] : bibliographic reference to item 5

G(V, E) : a graph with vertex set V and edge set F
G(u,0) : Chernoff bound

H(V,E) : a hypergraph with vertex set V and edge set F
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Chapter 2

Basics of Derandomization

Often the probabilistic method yields efficient randomized algorithms for many
problems, specially in combinatorial optimization. Sometimes these randomized
algorithms can be derandomized to yield polynomial time deterministic algo-
rithms. It is well known that for various problems randomized algorithms out
perform the best deterministic algorithms in terms of simplicity, quality of solu-
tion provided, running time and ease of implementation. Thus, derandomizing
some of these randomized algorithms often gives us a deterministic algorithm
with performance ratio much better than that of the prviously known determin-
istic algorithms. On the other hand, a randomized algorithm after undergoing
through the process of derandomization often looses its simplicity and charm in
terms of running time. Roughly speaking, a randomized algorithm transforms
the underlying search space into an appropriate probability space and finds out
points of interest in this space, which yield near optimal solutions, with a rea-
sonably high probability. Derandomization then, is the process of finding out the
points of interest in this space deterministically. In this chapter we explain the
basics of derandomization.

2.1 The Method of Conditional Probabilities

The method of conditional probabilities can be best explained with the help of
an example. Suppose we have a random vector X = (x1,Z2, x3,24) Where each
z; is a 0/1 random variable for j = 1,2, 3,4 and is defined as follows :

0 with probability 0.5 ;
T, =
! 1 with probability 0.5 .
Let E be the event “either there is not a single 1 in vector X or there are
at least two 1s in X” which is of interest to us. We consider the complement

event F°¢ of event E. FE° is the event “vector X has exactly one component
1 and the other three components are 0”. Obviously P[E¢| = 0.25 < 1 and

9
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we want that E°¢ should not occur, 7.e. event E should occur. The idea now
is to sequentially assign a 0 or 1 to each of the z;s such that the conditional
probability of event E¢ decreases monotonically at each step. During the first
step we calculate P[E¢ | z; = 1] and P[E¢ | z; = 0]. They turn out to be 0.125
and 0.375 respectively, so we assign x; = 1. At the second step we calculate
P[E¢ |z, =1, 29 = 1] and P[E°|z; = 1, 2o = 0], and they come out to be 0
and 0.25 respectively. At this point we assign 1 to o and we are done because
no matter what values x3 and x4 take E° is not going to occur.

The credit of inventing the method of conditional probabilities goes to Erdos
and Selfridge [10]. As is usual, the method was first applied sporadically to
specefic problems and later it was picked up, extended and extensively applied
to many problems by other researchers. We now give a more general frame-
work for the method of conditional probabilities and the method of conditional
expectations.

Consider a probability space (£2,P), where Q = {1,2,...,m}” = [m]" and
m,n € Z,. P is a probability measure on Q. Let E C 2 be an event with P[E] >
0 and let E€ be the complement event. For X € Q let X = (z1,...,z,) and let
Wi, Wy, ... ,w, € [m]. Forl € [n], let P[E€ | wy,ws,...,w] be the conditional
probability of E¢ provided that x; = wy, 9 = ws, ..., £; = w;. In other words,
it is the probability that E° still occurs after fixing the first [ components of the
random vector X. Since we are interested in event F, we do the following: at
step [, | = 1,2,...,n, we find w € [m] such that P[E® | wi,ws, ... ,w_1,2; =
w] is minimum. So, the first step is to find w such that P[E® | z; = w] is
minimized. Let this value of w be w;. Subsequent steps are executed in a
similar fashion. The fact that guarantees a monotonically decreasing sequence of
conditional probabilities is that at each step the conditional probability can be
written as a convex combination

]P[Ec | w1, Wy, . .. ,wl_l] = Z IP[EC | W1, W2y ... , W1, = w] . ]P[l'l = w] .

wE[m)]

By following the procedure described above we are able to satisfy the following
chain of inequalities

1> P[E] > P[E* | w)] > --- > P[E | wy,wy, ... ,w,] € {0,1} .

Thus, we end up finding wy, wy, ... , w, such that P[E¢|wq, ws, ... ,w,] =0, i.e.,
E¢ does not occur but E, the event of our interest does.

The method of conditional expectations is based on similar arguments. We
have a function f : Q — Q and our aim is to find a vector (or a point) X €
such that f(X) < E[f]. The first step is to find a w € [m] such that E[f |z; = w]
is minimized. In the same way for [ = 2,...,n, in step [, when we have al-
ready set ©; = wy,...,r 1 = w1, we try to find a w € [m] such that
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E[f | wi,... ,w_1,2; = w] is minimized. As described in the case of condi-
tional probability method, at each step we are able to maintain monotonicity
because

E[f |wi,...,w1] = Y E[f [w,..., w1, 2 =w]- Py = w] .

we[m]
Since the following inequalities hold
E[f] > E[f |wi] > -+ > E[f [wy,wy, ... ,wy] = flwi,we,... ,wy) ,

in the end we get the required vector X.

Notice that in these methods we examine all m™ possibilities in order to find
a suitable n-dimensional vector X. So, in general, we cannot hope to apply de-
randomization and obtain efficient polynomial time algorithms. But all is not
lost because as the intricacies of these methods show, it suffices to have an up-
per bound on the corresponding conditional probabilities. Although the idea of
exploiting upper bounds was used before, it became popular after Raghavan [23]
formally defined and propogated it as pessimistic estimators in the context of
packing integer programs. Pessimistic estimators are explained in the following
section.

2.2 Pessimistic Estimator

Again, we denote by (2, P) a probability space, where Q = [m|® and m,n € Z,.
IP is a probability measure on 2. Let E C  be an event with P[E] > § for some
0 < 6 <1 and let E° be the complement event. We are now ready to define a
pessimistic estimator.

Definition 2.2.1 Forl=1,... n, let P be a family of functions PE; : [m]' — Q
containing a constant function PEy <1 — 4. P is called a pessimistic estimator
for event E, if for each | € [n| the following conditions are satisfied :

1. P(E|ws,...,w) < PEj(wy,...,w) for all wy,... ,w € [m].

2. Given wy,...,w;_1 there erists w; € [m] such that PEj(wi,...,w;) <
PEl—1(’w1, e 7wl—1)'

3. PE)(wy,...,w;) can be computed in time no more than a polynomial of
logédt, m and n.

Notice that condition 2 is automatically satisfied if there exist positive numbers
a1, a9, ... ,a, With > a,, = 1 such that for each | € [n]

PE, ((wy,...,w_1) > Zaw - PE(wy,...,w_1,w) . (2.1)
w=1
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Such a family P, satisfying equation (2.1) instead of condition 2, is called a
convex pessimistic estimator. Furthermore a family of functions P is called a
weak pessimistic estimator if it does not satisfy condition 3 in Definition 2.2.1
above. As mentioned above, a pessimistic estimator relieves us from the burden
of calculating conditional probabilities (resp. expectations) during the process of
derandomization. The following theorem states the result formally

Theorem 2.2.2 Given an event E C Q with Ple] > 6 > 0 and a pessimistic
estimator P for E, a vector X € E can be found in time bounded by a polynimial
of logd~t, m and n.

Proof. At each step [, where [ = 1,2,... ,n, having fixed 1 = wy,... ,2; 1 =
w;1 we try to find w € [m| which minimizes PEj(wi,...,w; 1,2, = w) and
set w; = w. We can find the minimum by checking out all m possibilities in

polynomial time because by Definition 2.2.1 PE; can be computed in polynomial
time. Since there are at most n steps to be performed, this procedure can be
completed in polynomial time. The correctness of this procedure follows from
the following inequalities which use the fact that at each step [ the value of PE;
is at most PE;_;

1—6ZPEQZPE1(’LU1)

2 PEn—l(wla s 7wn—1)

> PE,(wy,... ,Wpe1,wy,) > PEC|wy,... , wy_1,w,| =0.
Thus, in the end we get the required vector X = (z1,...,2,) € E in polynomial
time. 4

2.3 The Lovasz Local Lemma

As mentioned at the beginning of this chapter, we have a probability space (2, P)
and we are mainly interested in efficiently finding the points of interest corre-
sponding to the event £ C (). Sometimes &£ is large, i.e., the points of interest
to us are abundantly present and scattered in €2 and thus, it is not a difficult
task to efficiently find these points. In fact, this is most of what randomized
algorithms do. But, sometimes £ is very small, containing very few points which
are of interest to us. In these cases it is hard to show the existence of points in
2 corresponding to event £ (showing P[€] > 0), let alone find them efficiently.
For instance, let £ be the conjunction of n independent events &1, ... , &, with
P[&;] = 0.5 for each i € [n]. For large n the probability P[£] = 27" is very small
but non-zero. The same thing happens if £ = N_,&¢ and P[&;] < 0.9 for each
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i € [n] because

PlE] =[P =] - PE]) > 107
i=1 i=1
Here we were able to show that & # () inspite of it being small (rare event).

The Lovész Local Lemma (LLL) is a powerful tool which is used to show
the existence of rare, compound events even when the basic constituting events,
&;s, are dependent on each other to some extent. The local lemma was first
proved and applied by Erdés and Lovédsz [9]. Surprisingly, in some cases, the
Lovéasz Local Lemma can be converted into a polynomial time algorithm. We
will discuss these aspects of the local lemma in the next chapter, here we give
the basic (non-algorithmic) version.

Suppose we are given events &1, &s, ..., &, in an arbitrary probability space.
Each of these events is mutually independent of all but a few other events. Con-
sider a digraph G = (V, E) where there is a vertex v; representing each event &;
and an event &; is mutually independent of all the events {&; | (1,7) ¢ E, i # j}-
This digraph G is called the dependency graph. The Lovasz Local Lemma is:

Lemma 2.3.1 (General Case) Let &,&,, ... , &, be events in an arbitrary prob-
ability space and let G = (V, E) be the corresponding dependency graph. Suppose
there erist x; € [0,1] for i € [n] such that

P& <z [ 1-=)),
(i,§)€E

then

n

P& > [[(1— =) - (2.2)

i=1
Proof. We prove that for any S C [n] where |S|=s < n and any i ¢ S,
This can be used to prove the lemma because

PN, &= (1—-P&]) - 1—-P[& | &) ... (1 — P& | M= &)
> H(1 — ;).

To prove the statement of (2.3) we use induction. It holds for s = 0. So, let us
assume that it holds for all s' < s. Let S; = {j € S|(4,j) € E} and let Sy = S§;.
By the definition of conditional probability we have

P [gz N (ﬂjeslg;) | ﬂk652 glg]

P [& | Njes &) = P [Njesi & | Nies, &5

(2.4)
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The numerator of equation (2.4) can be bounded from above by using the facts
that P[&; N E;] < P[&] and &; is mutually independent of the set of events
{gk | ke SQ} Thus,

P [N (NjesiE5) | Niesy €] < P& | Nies, &) = P& < H (1—x).

(i.4)eE

To get a lower bound for the denominator of (2.4) let us suppose that S; =
{j1,---,Jr}- Note that the denominator is 1 if » = 0, so assume r > 0. Since
Sy C S we use the induction hypothesis to get the lower bound as follows:

P [8;1 N---NE | Nies, ]

=1 =Pl&, | Mies, &) - A =PI&;, [ €5, N~ NEF | Mies, &)
> (=) (1—a)...(1—=z;) > J[ G—g).
(i,j)€E
This proves (2.3), hence, completing the proof. O
While applying the local lemma &;,&,, ... , &, are considered as bad events,

i.e., we would not like any of these events to occur. The Lovasz Local Lemma is
usually applied in the following form.

Corollary 2.3.2 (Symmetric LLL) Let £,&,, ... ,&, be events in an arbitrary
probability space with P[E;] < p for all i. Suppose that each event & is mutually
independent of all but at most d other events. If ep(d+1) < 1 then P[N®_,EF] > 0.

Proof. If d = 0 the result is obvious, so let d > 0. The proof follows by applying
Lemma 2.3.1 after setting x; = 1/(d+ 1) for all 4 and showing that for each event

Ei, Ti H(i,j)EE(l — ;) > p. [

Sometimes the condition ep(d + 1) < 1 is replaced by 4pd < 1.

2.4 Large Deviation Inequalities

Probabilistic methods followed by derandomization are often used to tackle hard
problems. Usually these problems have a complex combinatorial structure which
is captured or modelled using different techniques like casting the problems in
the form of (non)linear optimization problem. After obtaining a satisfactory
formulation of the problem at hand randomness is introduced by considering
various parameters and/or variables of the model to be random variables. Thus,
the events of our interest, those which correspond to good approximate solutions,
are expressed in terms of these random variables. As we have already seen in the
previous section, to show the existence of a rare event £, we need to have an upper
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bound on the probability of basic events &£;. Such upper bounds on probabilities
of random variables or events are known as tail inequalities or large deviation
inequalities.

As the name itself suggests, the tail inequalities bound the probability of a
random variable deviating too far from its mean. Given below are some such
inequalities which are often used in analysing randomized algorithms and deran-
domization. We begin with the most basic Markov inequality which is later used
to derive more complex upper bounds.

Lemma 2.4.1 (Markov Inequality) If X is a random variable assuming non-
negative values x only, then for all r € Ry,
BE[X]

PX >r] < .
r

Proof. Define a function f(z) as follows:

1 ifx>r,

f(@) = {0 otherwise .

Note that P[X > r| = E[f(X)] and z/r > 1 > f(z) for all z. Therefore

and this completes the proof. 0

Notice that Markov inequality is a very general result assuming that the ran-
dom variable X takes just non-negative values. If we have some more information
about X then we can obtain better upper bounds. For instance if we know the
mean p = E[X] and variance 0? = E[(X — p)?] then we can apply Chebyshev
inequality which is as follows

Lemma 2.4.2 (Chebyshev Inequality) If X be a random variable with mean p
and standard deviation o (= +v0?), then for any r € Ry,

P[|X —p| >ro] <r 2. (2.5)
Proof. Notice that random variable Y = (X — p)? has expectation o2 and
P[|X — u| > ro] = P[Y > (ro)?]. Since Y takes on only non-negative values, one
can apply Markov inequality and prove inequality (2.5). O

We are now ready to state and prove much sharper and very useful Chernoff
bounds on probabilities of large deviations. Till now we have been concerned
with tail inequalities of simple random variables but usually, for solving a hard
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problem algorithmically, we need large deviation inequalities for more complex
and compound random variables. Now we will try to bound the probabilities
of large deviations of sums of independent random variables. These bounds are
heavily used while analysing various probabilistic algorithms or arguments. Let
Xi,...,X, be nindependent random variables with

o {ai with probability p; , (2.6)

0 with probability 1 — p;,

where 0 < p; < 1 and a; € (0,1] for each i € [n]. Let X = Y " X, with
p=E[X]=37", ap;.

For a § > 0, we are interested in bounding P[X > (1 4 §)u] from above. To
get good upper bounds we will apply Markov inequality to e* ¢ € R, instead
of X. As a result we will have the moment generating function E[e!*X] of X on
the right hand side. The advantage we get here is that E[e'*] = [[}_, E[e"]
because X;s are independent random variables. We then simplify each E[e!X:]
and choose ¢ so as to get the sharpest possible upper bound. This technique can
be applied in other cases too, so in that sense it is a general tool to get good
upper bounds.

Lemma 2.4.3 (Chernoff bound) Let X1, ..., X, be n independent random vari-
ables satisfying (2.6) and let X = > | X; then, for p = E[X] and any § > 0

2

el g
PIX > p(1 +90)] < G(u,0) = (m) : (2.7)
Proof. Fort e R, ,
E[e!X
PIX > u(1+0)] = P [ > ¢(+9] < etu[(1+5]) , (2.8)

where the inequality follows by applying Markov inequality. Now, using the
independence of the random variables X; we can replace E[e!X] by

EleX] = HetX’] = H]E[etxi] (2.9)
in (2.8) and get:
P[X > p(1+4)] < [T, Ble™] (2.10)

@tl‘(l'i"s)
According to (2.6),

E[e™] = pie™ +1—p; <pe' +1—p; . (2.11)
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Substituting this in (2.10) we obtain

[T+ pile = 1))

PIX > p(1+9)] < (1)

(2.12)

Setting y = p;(e! — 1) and using 1 + y < ¥ results in
n o(pi(ef—1))
PLX > (1 + )] < L=t
(0 pifet—1))
T
ehle’=1)
= (i)

Notice that the right hand side is minimum for ¢ = In(1 + §) and that minimum
is G(u,d). This proves the lemma. O
So now we have a good upper bound in the form of Chernoff bound but this
bound G(u,d) is a bit inconvenient to handle. Thus, for our convenience and
for the sake of simplifying the analyses appearing later, we give the following
definition and the subsequent corollary.

Definition 2.4.4 For any p > 0 and p € (0,1), § = H(u,p) > 0 is the smallest
value of & satisfying G(u,0) < p.

Corollary 2.4.5 For x> 0 and p € (0,1), there exists 6 = H(u,p) > 0 such

that G(, H(u,p)) < p and
0 (/=) if > g

logp~?! .
© (W) otherwise .

H(p,p) =

Again recall that the key to getting tight upper bounds for probabilities of
large deviations of X = )" | X, is to get good upper bounds on the moment
generating function E[e'*], where t € R, . Note that each X; is a binary random
variable and

o .
x _ N\ (XY

e’ = E T

Now, assuming a; = 1 for all 4 in (2.6), let us see what happens to X?.

n

=1 =1

1<i<j<n i=1 1<i<j<n
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One can also verify what happens to X7 for j > 3. It is not hard to see that X
can be expressed simply as

etX = ZakSk(Xl, A ,Xn) R
k=0

where for £k =0,1,... ,n, ax € Ry,

Se(Xi,- Xa) = Y, XaXio X,

1<i1 <2<+ <4 <n

and Sy(X71,...,X,) = 1. Also, since X;s are independent,

E[Sk(Xt,.... X)l= > pubucpi

1<41 <2< < <N

for all £ € [n] and therefore the moment generating function can be expressed as
1 [etX} = Zaksk(pla ee 3 Dn) - (2.13)
k=0

Thus, in the case of 0/1, independent random variables it makes sense to find
upper bounds for the linear combinations >",_, axSk(p1, - - . , pn) to bound E[e*¥]
from above. But, with the help of the following two facts we can get rid of E[e'*].

1. The class of functions {}_p_, axSk(X1, ..., Xs) e, ... , @, € Ry} contains
the class {e'* |t > 0}.

2. Let ¢ = p(1 + ) be integral. Then, for any non-negative integer | < n,
X =1 if and only if

n l
Za’ksk(le s 7Xn) = Zai (i) .
k=0 ]

The second point implies that

gaksk(xl, o X)) > Zq:a (‘Z)]

< E [ZZ:() OtkSk(Xl, s 7Xn)]

N q
;'1:0 Q; (Z)

_ ZZ:() a/ksk(pla s 7pn)

q
;1:0 Q; (Z>

P[X >q]=P

(by Markov inequality)
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The first point implies that on minimizing the fraction obtained above we can
get better upper bounds for P[X > u(1 4+ 6)], in fact, these bounds will not be
worse than the Chernoff bound G(p, 9).

These polynomials also come into play even when the random variables Xs
satisfy (2.6). Before stating and proving the main result (Lemma 2.4.7) which is
also a large deviation inequality [24, 25] and which will be of use later on, let us
state a simple Lemma.

Lemma 2.4.6 Suppose r = (r1,...,7m,) € [0,1]*, ¢ > 0 and Y ;7 > q. Then,
for a non-negative integer k < q,

Sp(r) = Sp(ry, ... 1) > (Z) . (2.14)

Proof. The case ) ;" , r; > ¢ directly follows from the case Y ! , r; = ¢, so let us
just prove the Lemma assuming the later case. Suppose Si(r) is minimum at the
point 7* € [0, 1]” under the constraint ) .. , 7; = ¢. It can be proved that at most
one component 77 € (0,1). To see this assume that r;, 75 € (0,1) and that w.l.o.g.
ri <r}. Reset rj :==rj —e and rj ;= r; +¢, where ¢ = min{r;,1—r3}. Obviously
Sk(r*) decreases, thus, contradicting our assumption that for the original r*
Sk(r*) is minimum. Now, if ¢ is integral then r; € {0,1} for all i and thus,
Sk(r*) = ({). Otherwise, if ¢ is not integral then r; = ¢ — |¢] for a j € [n] and
r3 € {0,1} for i € [n] — {j}. Also

5 = (1) + - tap (1)) -

By induction on k it can be easily shown that

(") + =10 (2) = (3)
thus completing the proof. 0

We are now ready for the following useful Lemma.
Lemma 2.4.7 ([25])

(i) For any § > 0, any non-empty event Z and any non-negative integer k <
(1 +96)

E[Sk(X1,...,Xn) | Z]

(u(llj 5))

PIX > p(1+96) 7] <
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(i1) If k = [pd], then for any 6 > 0
(1 +96)
k
Proof. (i) From Lemma 2.4.6 we have that if X = >"" | X; > u(1+ 0) then

Su(Xi,. .. X)) > (’”‘(1; 5)) .

< G(p,0) .

This holds inspite of the occurence of any non-empty event Z. Thus, by applying
Markov inequality we get the desired result:

PX > u(1+06) | 2] =P [Sk(Xl,... LX) > (““;‘”) |Z]

E[Sk(X1,...,Xn) | Z]

(u(llj 5)>

(77) Note that X;s are independent, so

E[Sk(X1,...,Xn)] = Sk(aip1, ..., anpy) -

Since (a1pi,...,anpn) € R™ and Y, a;p; = u, it can be shown that
=1 1

k
Se(a1pi, - anpn) < Sp(r1, ... ,10) = (Z) (ﬁ> ,

n

where 71 = -+ = r, = £ . Further it is not hard to see [24] that for £ = [ud]
and for any ¢ > 0,



Chapter 3

Algorithmic Lovasz Local Lemma

3.1 Introduction

The Lovasz Local Lemma is a powerful sieve method that can be used to prove
the existence of certain events (see Section 2.3). On the other hand, although the
local lemma shows the existence of a certain rare event, it provides us no answer
to the question: how to find a point corresponding to such an event in the huge
probability space without examining all points of this space? Usually, the sample
space is (sub-)exponential in size and examining even a constant sub-portion of
this space requires a lot of time. In other words, even after showing the existence
of an event with the help of the Lovasz Local Lemma, we get no clue about how
to find a point corresponding to our event in at most polynomial time.

In 1991 Beck [6] made the first breakthrough. He gave the first algorith-
mic version of the local lemma and applied it to obtain constructive results for
the property B problem. Before proceeding further we take a small digression
to define the property B problem and for this purpose we need the following
definitions.

Definition 3.1.1 Let V = {vy,...,v,} be a finite set and let E = {F\,... ,E,}
be a finite set such that for each i € [m], E; CV. A set system H = (V, E) is
called a hypergraph if

1. for each i € [m], E; # @, and
2. UM E=V.

FElements of V and E are called vertices and (hyper)edges of the hypergraph re-
spectively.

Definition 3.1.2 A hypergraph H = (V, E) is called k-uniform if |E;| = k for
each i € [m].

We are now ready to state the property B problem.

21
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Definition 3.1.3 (Property B) A hypergraph H = (V, E) has property B if the
vertices of H can be colored with two colors such that no edge of H is monochro-
matic.

The property B problem is to efficiently find such a 2-coloring. We discuss Beck’s
method of obtaining such 2-colorings in Section 3.2.

Beck’s algorithmic version was put into a simpler probabilistic setting by
Alon [4]. Molloy and Reed [21] gave a general randomized algorithm which seems
to capture all applications of Beck’s algorithm. This randomized algorithm can be
derandomized, thus, yielding a deterministic polynomial time algorithm in many
cases including the property B problem. This general algorithm is described in
Section 3.3. Molloy and Reed also extend their algorithmic version of the local
lemma to the problem of coloring a graph frugally, among other problems. We
swerve again to define frugal graph coloring.

A simple graph G = (V, E) is nothing but a 2-uniform hypergraph. A coloring
of the vertices of G is called proper if no two adjacent vertices (vertices having a
common edge) get the same color. We can now define frugal graph coloring.

Definition 3.1.4 For a positive integer b, a proper vertez-coloring of a simple
graph G = (V, E) is called b-frugal if for each vertex v € V and color c, the
number of vertices neighboring v and having color ¢ is at most b.

Naturally, the ideal is to find a b-frugal graph coloring with minimum number of
colors.

Inspite of these initial breakthroughs obstacles still existed because the algo-
rithmic version did not seem to apply to other NP-hard problems like solving
integer programs, etc. But, this changed with the appearance of a series of pa-
pers [25, 20, 17]. In Section 3.4 we describe the main result of this Chapter in
the form of an application of the algorithmic version of Lovasz Local Lemma to
a class of integer programs. This application is in turn based on the application
of the algorithmic version to minimaz integer programs by Leighton, et al. [17].

3.2 Beck’s Algorithm

We start this section by stating the first application of Lovasz Local Lemma in
the form of a corollary.

Corollary 3.2.1 Let H = (V, E) be a k-uniform hypergraph with |V| = n and
|E| = m. If every edge E; € E intersects at most 2873 other edges E; then H has
property B.

Proof. For each vertex v € V, independnet of other vertices, assign it the color
red with probability 1/2 and blue with probability 1/2. Let &; be the event that
edge E; becomes monochromatic, i.e., either all £ vertices of F; are colored blue
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or all of them are colored red. For any i € [m] we have P[§;] = p = 2!
Consider the dependency graph of these events. Vertices ¢ and j are adjacent in
the dependency graph if and only if F; and E; have at least one vertex in com-
mon. Thus, the maximum dependency among events d = 2¥=3. Since 4pd = 1,
it implies that there is a 2-coloring of vertices of H such that no edge F; € F is
monochromatic, i.e., P[N™,Ef] > 0. In other words, H has property B. O

Notice that Corollary 3.2.1 says that the number of edges, m, can be arbitrarily
large compared to k as long as no edge of H intersects more than 2¢3 other
edges.

The main result of this section is:

Theorem 3.2.2 Let H = (V, E) be a k-uniform hypergraph with M not neces-
sarily distinct edges. For each edge E; € E, let f; : E; — {r,b} be a 2-coloring
of E;. For k > 2, if every E; intersects at most 2°**1 other E; € E, where
« = 1/48, then a 2-coloring f : V — {r,b} can be found in O(M") time such
that for each edge E;, f|g, # fi-

The equality in the last sentence of the theorem above means the 2-coloring of
each edge F; under f is different from its given (or forbidden) 2-coloring f;. Note
that the edges in Theorem 3.2.2 are not necessarily distinct. So we can have two
copies E;, and E;, of each edge F; and define f;, : E;; — {r} (completely red)
and f;, : E;, — {b} (completely blue). Thus, the following result easily follows
from Theorem 3.2.2.

Corollary 3.2.3 Let H = (V, E) be a k-uniform hypergraph with |V| = n and
|E| = m. For k > 2, if every E; intersects at most 2°* other E; € E, where
o = 1/48, then a 2-coloring f : V — {r,b} can be found in O(m"") time such
that no edge of H is monochromatic.

This is the algorithmic version of Corollary 3.2.1.

We present the proof of Theorem 3.2.2 in the following section. Important
auxiliary results and concepts which act as ingredients in the proof of this main
Theorem are given in Section 3.2.2.

3.2.1 Main Result

We start by noting that if M < 2* then Theorem 3.2.2 is not needed because
a good 2-coloring f : V' — {r,b} can be found using the method of conditional
probabilities (see Theorem 3.2.7). So it can be assumed that M > 2*. Assuming
m to be an integer multiple of k, define m = Slg M where § > 1 is a constant.
Using Definition 3.2.10 the edges of H, {E}, ..., Ej} can be grouped in disjoint
(2, 6)-trees of size m/k, where size means the number of edges of H. The edges
of each (2,6)-tree, {Ey, ..., Ep/k}, are then united into one big set i.e., we set

Aj = U;l/lkEi and g; = U?i/lk i
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where g; : A; — {r,b}. Let A = {A;,A,,...} be the family of big sets corre-
sponding to (2, 6)-trees of size m/k. We also make a small concession and allow
|E;| > k (= ~k for a constant v > 1) for all i € [M].

Before proceeding further let us outline Beck’s idea: Apply Theorem 3.2.7 to
the family of big sets A and color S C V in Mt time. But, while doing so if
we encounter an edge E; with |[E;NS;| = £ and still g|,ns, = fi]s,, where S; C S
is the set of vertices in S colored so far, then we call E; dangerous and do not
consider its uncolored vertices for coloring. This gives us a partial coloring g with
S={veV]|glw)=rorgw)=>b}and V' =V —8, the set of uncolored vertices.
Also, for each E; € E with g|g,ns = fils, |[E:iNS| < g This means each edge of
the new hypergraph H = (V', E'), where E' = {E; NV | g|g,ns = fi|s}, has at
least k/2 vertices and it can be shown that H breaks up into small components
of size (number of vertices) at most (Ig M)%. Again applying a similar procedure
to H we get H' with very small disjoint components of size at most 1g M. The
partial 2-coloring obtained so far has the following characteristics.

1. Some edges of H are already non-monochromatic so these edges are left
out.

2. Some edges of H are still monochromatic. The still uncolored vertices
belonging to these edges are contained in edges of H' .

Since H" is decomposed into disjoint components with each component containing
at most lg M vertices, all 2-colorings of a component can be exhaustively tried
out in at most 2™ = M time. Obviously the number of components is at most
M, so all components can be 2-colored in at most M? time such that no edge of
H" is monochromatic.

Now we apply Theorem 3.2.7 to A with [ = Z. But in order to apply this
theorem the following inequality should hold

|A| < 2™/ = MP/2 (3.1)

So now the aim is to bound |A| from above and impose the condition that this
upper bound is at most M#/2. For this purpose let 7' be a fixed tree on m/k
vertices. Let

Ar = {A € A|the corresponding (2, 6)-tree of A is isomorphic to 7'} . (3.2)

Let d (< 2°*1!) be the maximum vertex degree of the dependency graph of H.
By Definition 3.2.10 it is clear that every vertex (or edge of H) in a (2, 6)-tree
has at most d° neighbors and thus

|-AT| < M(dG)%—l < M26(am+m/k) — M1+6aﬂ+6,8/k ] (3_3)
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Furthermore, the number of non-isomorphic trees on m/k vertices is at most
4™k g0

|.A‘ — 4m/k‘AT‘ < M1+6aﬁ+8ﬂ/k ) (3_4)

Finally, in order to apply Theorem 3.2.7 to A we need that

1+6aﬁ+%§é

- 5 (3.5)

so that (3.1) is satisfied.

As mentioned before, after applying Theorem 3.2.7 to A for the first time and
taking care of dangerous edges we obtain a partial coloring g of S C V. Call
V' =V — S the set of uncolored vertices. This partial coloring satisfies:

e forevery Ac A

m
[ANS| > 5 = 9lans # gals (3.6)
e for every dangerous edge E;

k
9lsne; = fils and |SNE;| = [51 ) (3.7)
and

e for every less dangerous edge E;
k
glsom; = fils and  [SNE;| < [F]. (3.8)

Less dangerous edges are the result of at least one neighboring edge becoming
dangerous. Consider now the family of monochromatic (dangerous and less dan-
gerous) edges E' = {E; € E | g|sng, = fils}- It can be shown that E' breaks up
into smaller components:

Lemma 3.2.4 If1+6aﬁ+8k—’3 < g then the number of vertices in every connected

component of the dependency graph of E' is at most

m2'**  Blg M

24&10 .
k k

This Lemma implies that the hypergraph H = (V',E'), where the edge set
E ={E;nNV'|glgns = fils}, has the following properties:

e It falls apart into components of at most (31g M/k)2'** edges.
e As discussed before (also see (3.7) and (3.8)), |E;| > |k/2] for all E; € E'.
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We choose = 4, thus satisfying (3.5) (recall that o = 1/48). So the connected
components have size at most (41g M/k)2¥/*2. Now, to proceed further we have
the following Lemma.

Lemma 3.2.5 After the first coloring step

(i) if (41g M/k)2¥/'2 < 218/2] then a 2-coloring of H' can be obtained in poly-
nomial time such that no edge is monochromatic.

(ii) if (41g M/k)2k/12 > 2Lk/2] then the number of vertices in every connected
component of the dependency graph of H' is O ((1g M)%/%).

Proof. (i) We have

E'| < # ok/12 < glk/2] (3.9)

Thus, we can straight away apply Theorem 3.2.7 to H because all its conditions
are satisfied. Thus, we obtain a 2-coloring of H in polynomial time such that no
edge is monochromatic.

(#7) In this case we have due to Lemma 3.2.4 the size of the connected com-

ponents of H' is at most (41g M/k)2¥/'? and this can be bounded from above as
follows:

4liM 9k/12 > 9lk/2] . ok/12 < (81gM)5 .

k
This means
1 6
41gM _, 4d1gM (8lgM\>? lg M\ ® 6
—o - 9k/12 < =0(=>— lg M)s ) . 1
: <% ( - 0(==) <o(tgm?). (310

O

If case (i) of Lemma 3.2.5 holds then we have to re-apply the whole coloring

procedure to color H' and this can be done by setting k' = |k/2], o' = £ and

Lk/2]
8 = 6 because
o |[E;| > |k/2) forall E; € E',
e any edge E, still intersects at most

gak+1 _ ga'k'+1

other edges, and
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e for sufficiently large k, the following analog of (3.5) still holds i.e.

t6as < D (3.11)
So, again using the coloring procedure we obtain a partial coloring h of H' . Let
S" = {v € V' |h(v) =rorh(v) = b} be the set of colored vertices of H and
let V' = V' — S be the set of uncolored vertices. Consider a new hypergraph
H' = (V",E") where E" = {E; NV | h|ly ¢ = fils}- The new coloring h and
the new hypergraph H' satisfy the following conditions.

e For every edge E; € E' we have |E; N S| < [k/4] if h|y o = filg-
o |[E/|=|E.NV'|>|k/2| — [k/4] > k/6 for every edge E; € E" of H'.

e The dependency graph of H breaks up into components of size at most
O (8821 2k/12 (see Lemma 3.2.4).

Just like Lemma 3.2.5 after the first coloring step, we have a similar Lemma
after the second coloring step

Lemma 3.2.6 After the second coloring step

(1) if O (lgl%M) ok/12  9k/6 then a 2-coloring of H' can be obtained in polyno-
mial time such that no edge is monochromatic.

(i) if O (%) 2k/12 > 9k/6 then the number of vertices in every connected

component of the dependency graph of H is O (lgM)

Proof. (i) Similar to the proof of the first case of Lemma 3.2.5, apply Theo-
rem 3.2.7.

(id) Clearly if O (1882) 2k/12 > 2k/6 then every connected component is of size
O ((®884)2)_ Recall that at the very beginning we assumed that M > 2* and
for sufficiently large k it can be easily shown that O ((lglgM )?) <O (lgM ). O

Now, since these components are nothing but groups of edges of H and originally

we assumed the hypergraph to be yk-uniform for a constant v > 1, therefore, the

number of vertices of the original hypergraph H in each component is O(lg M).
Notice that every edge of H" has at least k/6 vertices and

ak+1 _ oL 41 k_3
2 =287 <2677

for a sufficiently large k. Thus, all conditions of Corollary 3.2.1 are satisfied and
the Lovész Local Lemma shows the existence of a 2-coloring f : V' — {r,b}
such that no edge of H" is monochromatic. Coloring f can be found in time
Menst time by exhaustively trying out all 2-colorings for each of the (at most
M) components in M2908M) = pfeonst time. In the end we obtain the required
coloring f = f U hU g, hence proving Theorem 3.2.2.
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3.2.2 Subsidiary Concepts and Results

This section includes definitions and results used in Section 3.2.1. We start with
the derandomization step:

Theorem 3.2.7 Let H = (V, A) be a hypergraph with |V| =n, A= {Ay,... AL}
not necessarily distinct edges, and let g; : A; — {r,b} a 2-coloring for each edge
A;. Let l be a positive integer, S C V be an arbitrary subset, and v{,vq,... , v,
be an arbitrary permutation of S. If L < 2' then a 2-coloring g : S — {r,b} of
S can be found in polynomial time such that if |S N A;| > 1 for any i € [L] then

9lsna; # gils-

Proof. The idea is to avoid bad colorings g; and build an alternate coloring g
using the method of conditional probabilities. Let S; = {vy,...,v;} € S and

suppose the colors of vy,... ,v; are already fixed under the 2-coloring g. Define
1
Py = Z 9l—[S;NA;
i€[L],

9ls;na;=9ils;

Now we have to choose the color of v;;;. Depending on this choice we have

P = 3 _
J =18 +1NA;]
i€[L],
9lsjna;=gils; »
9i(vj1)=r whenever vj1€A;

1
b _
P = > ST AT -

i€[L],
9ls;jna;=gils; »
9i(vj41)=b whenever v; 1 €A;

Notice that these are nothing but conditional probabilities that the new coloring
g turns out to be exactly like the given bad colorings g;, something we want to
prevent. Clearly

1 1
[— . —_— —
PJ - Pj + Z 2l—‘5jﬂA¢| + Z 2l—|SjﬂAi| ’
i€[L], ielL],
9lsjna;=9gils; » 9lsjna;=gils; »
9i(vj4+1)=r whenever vj11€A; 9i(vj4+1)=b whenever v; 11€A;
and
1 1
b_ p S _
Pj _ P] + Z 2l7‘5jﬁAi| + Z 2l*|5jﬂA¢| )
i€[L], iell],
9lsjna;=dgils; » 9ls;na;=gils; »

9i(vj4+1)=b whenever v;11€A; 9i(vj4+1)=r whenever vj 11 E€A;
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Thus, P; = %(PJ + P}) and we color v;;1 red or blue depending on

Pji1 =min{P], P’} < P;. (3.12)

Repeating this step for all vertices of S gives us the following chain of inequalities
L

1>§:P02P12"'ZPS,12P3. (313)

But do we end up coloring S such that if |[S N A;| > [ then g|sna, # gils, for any
i € [L]? Yes because if, for an edge A,, |S N A,| > [ but still g|sna, = g.|s then
Pg > 1 which is a contradiction. O

We now give some definitions which provide the structure required for con-
necting the proof of Theorem 3.2.2 to Theorem 3.2.7.

Definition 3.2.8 Let H = (V, E) be a hypergraph with |E| = M and let G be a
graph with M wvertices. G is called the dependency graph of H when (i,j) is an
edge in G if and only if E;NE; #0, for1 <i<j < M.

Definition 3.2.9 Let G = (V, E) be the dependency graph of a hypergraph H.
For positive integers a and b, G(%® is the graph with the same verter set as G
but now (i, §) is an edge in G if and only if v;, v; € V are at a distance of at
least a and at most b in G.

Definition 3.2.10 Let G = (V, E) be the dependency graph of a hypergraph H
and let G be given for positive integers a and b. A set T C 'V is called (a,b)-
tree if the subgraph induced by T in G®Y is connected.

3.3 A General Setting

Beck’s constructive result opened up the way for more similar applications [16].
In 1998 Molloy and Reed [21] gave a general theorem (Theorem 3.3.1) which
captures almost all the applications of and including Beck’s 2-coloring construc-
tion. This theorem lays down a set of general but weaker conditions, similar in
essence to those of the Local Lemma. Any problem that satisfies these conditions
automatically satisfies the Local Lemma conditions ¢.e., not only can one prove
the existence of the desired object or structure, one can actually construct such
an object or structure in polynomial time. In this Section we discuss the general
setting of [21]. Before we proceed, we must also mention that some problems and
applications are not captured by these general conditions and therefore one has
to look at subtle variations and modifications of this general method. Two such
applications are discussed in subsequent sections.

As seen before, Lovasz Local Lemma and its applications involve random tri-
als, like assigning the vertices of a hypergraph one of the two colors (red and blue)
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randomly, and events (whether an edge of the hypergraph is monochromatic) de-
pending on those random trials. So, for a general discussion let us assume the
following:

e A=/{ay,...,a,} is the set of independent random trials.
o £ ={&,...,EL} is the set of events.

e Each event &; depends on the outcome of a subset F; C A of the independent
random trials and £ = {E\,... ,E,}.

e Two events &,&; € £, 1 # j are mutually dependent, or intersect each
other, if and only if E; N E; # 0.

e Without loss of generality let H = (A, E') be a hypergraph with vertex set
A and edge set E.

Note that if U" | E; # A then we can add an artificial edge to E (and therefore H)
to make sure that H is indeed a hypergraph in accordance with Definition 3.1.1.
We are now ready to state the general

Theorem 3.3.1 If the following conditions are satisfied
1. P&] < p for each event &;, i € [m] ,

2. each event &; depends on at most d other events &; ,

3. pd® < o5 ,

4. |E;| <k forallie[m],
5. for each j € [n], the size of the domain of a; is at most 7y ,
6. for each j € [n], the random trial a; can be carried out in time t; ,

7. for each i € [m], a;,,...,q;, € E;, and wj,,...,w; in the domains of
Qjys - - -,y Tespectively, P[E; | aj, = wj,, ..., a; = wj]| can be computed in
time at most ty

then we have a randomized algorithm that finds suitable outcomes of the random
trials ai, ... ,a, in O(nd(t; + t2) + ny*2818™) time such that P[N™,EF] > 0.

The proof is similar to Beck’s technique described in Section 3.2.1. We make a
constant number of passes and in each pass we try to fix the outcome of a portion
of the independent random trials, all the time taking care that the probability
of occurence of bad events does not come close to one. After each pass the
hypergraph restricted to the random trials with still variable outcomes breaks
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up into small connected components and each of these components requires less
work than before.

Before proceeding to the proof let us define some useful structures. We will use
a hypergraph H = (A, F) with vertex set as the set of independent random trials
and edge set E as defined before in this section. To this hypergraph H we will
apply Definition 3.2.8, Definition 3.2.10 and a modified version of Definition 3.2.9
which is as follows

Definition 3.3.2 ((a,b)-tree) Let G = (V, E) be the dependency graph of a hy-
pergraph H. For positive integers a and b, G(%® is the graph with the same vertez
set as G but now (i, 7) is an edge in G if and only if v;, v; € V are at a distance
of exactly a or b in G.

Proof. For finding suitable outcomes of random trials in A we need at most two
passes.

First Pass. We start by carrying out trials a;, as, ... in sequential order. After
carrying out each trial a; we compute the conditional probability of each event

P =Pl&i |a = wy,... a5 = wj],

assuming that w, ... ,w; were the outcomes so far. For any event &; if P§ < p?/3

then we carry on conducting the random trials. Otherwise, if P¢ > p?/® we
say that event &; is dangerous. This means that there is a potential danger of
occurence of &; if we do not take care of it now. It is clear that any event &;
becomes dangerous with probability no more than p'/? because for a particular
sequence of random trials and their outcomes

Pl | a1 = w,... a5 = w;] - Play = wy,...,a; =w;] =P[&] <p,

and if the probability that P¢ > p*? exceeds p'/® then P[&;] > p, which contra-
dicts our assumption. So, for any event & whenever we find P§ > p?/® we do the
following:

(i) undo the outcome of a;, and

(ii) remove or freeze all yet to be conducted random trials in E; including a;
from our list of trials. These trials are carried out in the second pass.

This ends the first pass.
Observe that at this point, for any event &;

IP[gZ] :P[5i|a1:w1,... ,aj:wj] Sp% .
Since

1> (8¢*pd®): = 4e’p3d® > 4pid, (3.14)



32 CHAPTER 3. ALGORITHMIC LOVASZ LOCAL LEMMA

and the dependency d among events does not increase by removing the random
trials fixed in the first pass, all conditions of the Local Lemma are satisfied and
we are guaranteed that a combination of outcomes of the remaining trials exists
such that P[N™,&f] > 0. Consider the hypergraph H = (A, E), its dependency
graph and (a, b)-trees. We call a

e (a,b)-tree dangerous if all events corresponding to the edges of this tree are
dangerous.

e (a,b)-tree maximal if there are no more vertices which can be added to it
such that it still remains a (a, b)-tree.

Keeping these definitions in mind it is not hard to see that no event & € &£
intersects two different events that belong to different maximal dangerous (1, 2)-
trees. This means maximal dangerous (1,2)-trees are isolated from each other
and we can deal with each such tree independently. We are now in a position to
state the key ingredient of this proof.

Lemma 3.3.3 The probability that there is no dangerous (1, 2)-tree of size greater
than 2d1gn is at least 1 — % .

Proof. (Lemma 3.3.3) Consider a (1, 2)-tree of size (number of vertices) dr where
r = 2lgn. By removing unnecessary vertices (and the corresponding edges) at
a distance one from each vertex in the tree we can obtain a (2, 3)-tree from this
(1,2)-tree. But we can remove at most d neighbours from each vertex. Thus, we
obtain a (2, 3)-tree of size at least r from this (1,2)-tree. We recall that vertices
of these trees correspond to events and for every event &;, the probability that
it becomes dangerous is at most p'/3. Since the vertices are not adjacent in a
(2, 3)-tree, its corresponding (1, 2)-tree of size dr is dangerous with probability
at most p3. For each a; the number of (1,2)-trees of size dr in H (see [17]) that

a; lies in is at most
d3
( TT) < (ed®)" .

So the total number of (1, 2)-trees of size dr is at most n(ed®)" and the probability
that at least one (1,2)-tree of size dr becomes dangerous is at most

n(ed®) ps = n(ep%d?’)’" : (3.15)
But since 8¢3pd® < 1 (assumption 3 of Theorem 3.3.1) and r = 21gn, the proba-
bility that at least one (1,2)-tree of size dr becomes dangerous is at most

n(epid®)™ < n (%) = (3.16)

1
o
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Thus, there is no dangerous (1, 2)-tree of size greater than 2d lgn with probability
at least 1 — L. O

This gives us a randomized algorithm which delivers small dangerous (1, 2)-
trees with high probability. We can boost this probability further by repeating
the whole procedure a constant number of times. Each random trial can be
conducted in time ¢;, after conducting a random trial we calculate conditional
probabilities of at most d + 1 events E; containing this particular random trial.
This can be done in at most (d + 1)t» time. So all together, the first pass takes
O(nd(t, + t2)) time even after a constant number of repetitions.

Second Pass. All dangerous (1, 2)-trees have size at most 2dlgn. We now carry
out the trials we froze/removed in the first pass. Notice that all these trials are
confined to dangerous (1,2)-trees and their neighbors. An event becomes dan-
gerous now if its conditional probability exceeds p/®. The analysis is similat to
that of the first pass except that now with high probability all dangerous (1, 2)-
trees have size at most 2d1glgn. In other words, the hypergraph H = (A, E)
disintegrates into small connected components with each component containing
at most 2dlglgn edges. Recall the assumption that every edge E; depends on
at most £ random trials. So, there are at most 2kdl1glgn frozen random trials
in each dangerous (1,2)-tree and for each dangerous (1,2)-tree a suitable out-
come of frozen trials can be found, by exhaustively searching their domains, in
O(~?kdlelen) time. Doing this for all dangerous (1, 2)-trees requires O (n-y2*d18lem)
time. Thus, with high probability we are able to find suitable outcomes of the
random trials ai, ... ,a, in O(nd(t; + to) + ny?*¢1818") time such that no event
&; occurs. O

Since Theorem 3.3.1 gives us a very general result, some remarks and obser-
vations are in order.

Remarks:

1. The assumption 8e®*pd® < 1 is weaker than the normal assumption ep(d +
1) <1 (or 4pd < 1) of the Lovédsz Local Lemma because it implies that the
probability of occurence of bad, undesirable events p is less. On the other
hand ep(d + 1) < 1 allows p to be as high as 1/e(d + 1) and still we have
a guarantee of at least one combination of outcomes of random trials such
that none of the bad events occur.

2. Sometimes, like in Section 3.2.1, Lemma 3.3.3 can be modified to convert
the %1818 term in the running time to a reduced 2°08™ term. We recall
that for property B, 7 = 2 because the vertices are colored randomly with
two colors.

3. Usually the dependency among events d > k. Since each random trial a;
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affects at most d+ 1 events and each event depends upon at most & random
trials, we have n(d 4+ 1) > mk.

4. This algorithm can be derandomized by derandomizing Lemma 3.3.3. The
idea is to make sure that there are no dangerous (1, 2)-trees of size 2d1gn or
more. So we calculate the probability that there is at least one dangerous
(1,2)-tree of size 2dlgn or more. Since for derandomization we have to
calculate conditional probabilities or evaluate the values of a pessimistic
estimator (see Section 2.1), our choice for the method of derandomization
depends on the answers of the following questions:

e Is t5 polynomially bounded from above?
e Does a pessimistic estimator exist?

e Can the values of this pessimistic estimator be calculated in polyno-
mial time?

3.4 A Class of Integer Programs

The probabilistic method in general and Lovéasz Local Lemma in particular have
been often used to solve different kinds of hard integer programs [1, 7, 17, 23,
25, 27]. In this section we apply the Local Lemma to solve the following integer
program: Let A € {0,1}**™ and b = (by,... ,bs)" € N*. We want to find vectors
.I(k) = (ml,k; Toky - - - ,a:n,k)t which

minimize T = max{z | z;, >0, j=1,2,... ,n} such that
(i) Az <b Vk=1,2,...,T ,

i) S ,zjx=1 Vi=1,2,...,n and

(i) z; € {0,1} Vj, k.

From now on we will assume 7,,, to be the value of the minimum solution of this
integer program and T* (< T,,) to be the value of the minimum solution of the
relazed problem where we allow real variables z; € [0,1], V7, k instead of binary
variables and leave the other constraints untouched.

This integer program has many applications [1, 2, 7, 26, 27]. For instance, let
H = (V,E) be a hypergraph with |V| = n and |E| = s. The integer program
described above models the following problem: using minimum number of colors,
color the vertices of H such that in each hyperedge E; there are no more than
b; vertices of any color. This coloring problem is a multicolor generalization of
the usual (property B) hypergraph coloring problem where the aim is to avoid
monochromatic edges. We will discuss this problem and other applications in
detail in Chapter 4 where we will also give a hardness of approximation result.
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We first give a polynomial time randomized algorithm for solving this integer
program. Our approach has two steps. First, we generate a feasible solution
of the corresponding relaxed integer program with value at most [(1 + €)T,p]
and then round the fractional solution to an integer one by generalizing the
randomized version of LLL given by Lu [20] and Leighton et al. [17] to minimax
integer programs with a fized right hand side (the b;’s in our case). In doing so we
end up violating the inequality constraints ((i) above) marginally. Later we show
how this algorithm can be derandomized to yield a polynomial time deterministic
algorithm. The randomized rounding procedure [22] used in the second step of
our algorithm is as follows: round a variable z;; € R to

o [z,,| with probability p = z;, — |z;], and to
e |z, | with probability 1 —p = [z;,] — =, -

This rounding method has the advantage that if y; is the random variable cor-

responding to x;; then Ely;x] = z;5. We will soon see how useful this can
be.

3.4.1 Generating Fractional Solutions

If we randomly round the fractional solution of the relaxed problem to an integral
one it can lead to an infeasible solution of the original problem. Thus, to reduce
infeasibility we define another LLP problem with more restricted constraints than
the original ones but with the same objective of minimizing 7" as in the original
integer program. Let o > 1 be a constant. The new constraints are:

(i) Az® <ba~! VEke[T],
(i) S5 zjx=1 Vj€n],and
(iii) z;x €1[0,1] Vi, k.
Subsequently we will refer to this problem as the reduced problem.
It is intuitively clear that after reducing the b;’s the value of the integer
progrem, T, will only increase. In fact if we have a feasible solution of the relaxed

problem with value T then a feasible solution of the reduced problem with value
[aT"] can be constructed from it as follows: for all k£ € [T7] let

P®) = (F1 4y s Tng)

be a feasible solution of the relaxed problem with value T. To obtain the corre-
sponding feasible solution of the reduced problem, for all j € [n] set

R :ij,la_l ifl=1,...,T,;
il =

oI e ol ey Fo g Ty ol
k=1 " (e D)7 il = , ,eee s |0

(3.17)

We now have the following lemma to prove our claim.
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Lemma 3.4.1 The vectors %) = (Z14,... ,Tnx), k =1,..., [oT] form a fea-
stble solution of the reduced problem.

Proof. Observe that Z;, € [0,1] Vj, k because we multiply the variables Z;, €
[0, 1] by some positive number which is at most one. For each j € [n]

[oT] T [aT] T 7 k(a’ _ l)a—l
PILTED DT EE DI Dy
=1 =1 =41 k=1 (@ —1)T7

~.

Furthermore, other constraints are also satisfied because for [ =1,... ,

n n

~ S 1 -1
E 4, ;T = E a0 < b
j:l j:l

and for | =T +1,...,[oT]

j=1 Jj=1 k=1
T (o 1
< Z bi( 1)0ﬁ
= [(a=1)T]
S bi(lfil

Thus, all three constraints of the reduced problem are satisfied and hence the
lemma is proved. 0

Note that the optimal solution of the relaxed problem is of value at most n.
Therefore, using the methods of Lenstra et al. [18] and [14] the optimal solu-
tion (Z;4) of the reduced problem and the corresponding value (f) can be found
by using binary search between 1 and an and solving at most O(logn) linear
programs in polynomial time. Lemma 3.4.1 implies that T < [aT*] < [aTopt ]
We will also assume, w.l.o.g, that this optimum feasible solution is basic. The
next step is to round this fractional solution to a feasible solution of our original
integer program. Also, from now onwards in this section all logarithms should
be read as base e logarithms.

3.4.2 Randomized Rounding

The randomized rounding procedure is quite simple. The equality constraints
i.e., Zle zjr = 1, Vj € [n], provide us with a straightforward method. For
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each j € [n] we round exactly one Z;; to one according to the probabilities
ZTjts--- ;7 Foreach j € [n] and k € [T] define binary random variable

(3.18)

_ )1 with probability Z; ,
Y5 =10 with probability 1 —Zj .

For example, if y;; = 1, that means Z;; has been rounded to one, then y;; =0
for all k € {2,3,...,T}. Let

(AyW) = a; -y = Zai,jyj,k ;

then by the linearity of expectation and equality constraints of the integer pro-
gram,

Ay(k) Za” (Y] = Zawx]k < bi ) (3.19)

e

For each i € [s] and k € [T] define an event

bi «

where §; > 0 for each i € [s]. & is the event that after rounding the dot product
(Ay®)). violates the inequality constraint by a multiplicative factor of at least
(1 + 0;). Now, since we have defined our events we also have to deal with the
dependencies among these events. To get a bound on the maximum dependency
D among these events let us define a few parameters.

e Let

d=max|{or | ai; £0, i € [s]} (3.21)
JEN

be the maximum number of non-zero entries in any column of matrix A.
o Let

7 = max {Zx |0<Zp <1, ke[T]}. (3.22)
JEn

In other words for any j € [n], n is the maximum number of variables among
Tjq,... ,35].? which have to be rounded.
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e For afixed i and k, and for any j € [n], let v; =1ifa;; # 0and 7, € (0, 1)
and v; = 0 otherwise. Define

n
T = max Vi . 3.23
i€[s] , ke[T] ; ! ( )

So 7 is the maximum number of variables to be rounded in any one of the
inequality constraints Az®) < ba~.

It is clear that two events &, and & are mutually dependent if for a j € [n],
Zik Tik € (0,1) and a; j, ay j # 0 because rounding Z ; or Z, ;> to one will affect
both & ; and &y ;7. Thus, maximum dependency among these events D is at most
dnT and we can use the Lovasz Local Lemma to show

Theorem 3.4.2 Given the integer program and the optimal solution (T;) of the
corresponding reduced problem, there exist vectors with binary components §*) =

(F1ks - -+ > Unp) € {0,1}" such that (Ag®). < b~ (146;) for alli € [s], k € [T].
Proof. By Corollary 2.4.5, if b; > alog(ey(D + 1))/2 then for

1 D+1
5 =0 \/O‘ Og(wb(_ +1) (3.24)
direct calculation shows that
1
Pri&y] <Glia ™", 6) <p=——1——,
TGRS

where i € [s] and v > 1 is also a constant. Since ep(D + 1) =~ ! < 1, the Local
Lemma ensures the existence of vectors §*) = (31 4,... , Jnx) € {0,1}" such that

for all i € [s], k € [T], no event &, occurs. O

Our objective is to use the algorithmic version of LLL to obtain good ap-
proximate solutions for our integer program. These solutions must have an extra
property, they should not violate the inequality constraints by much. Note that
Theorem 3.4.2 gives a probabilistic way of generating a good solution, but the
success probability i.e., the probability that (Agj(k))z. < bt (1+46;) for all 4, k, is
at least (1 — ep)(ﬁ) which is too small. Thus, we will have to use the algorithmic
Local Lemma and for this purpose we will need the weaker condition

pD* <1 (3.25)
rather than the usual ep(D + 1) < 1. Thus, we need

_ 1
P

ECESR (3.26)
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The important fact is that this changes the bound on 6; (see 3.24) by just a
constant factor because of Corollary 2.4.5. Since rounding a fractional solution
does not increase the value of the objective function, we end up with a 7" <
[aTopt |-approximate solution. Another thing to note is that D < dnr where
d<s,n< T and 7 < sT (here we use the assumption that the feasible solution
is basic). Next, we will construct an approximate solution without violating
the inequality constraints much, first in a randomized, then in a deterministic
(derandomized) way.

3.4.3 Randomized Construction

At the outset we again recall Definitions 3.2.8, 3.3.2 and 3.2.10 of and related to
the dependency graph of events. For each i € [s] and k € [T\] we define n zero-
one, independent random variables z; j » = a;;y; . Notice that random variables
Zijjly - -+ 5 % jp are not independent because of the equality constraints. The event
&ix can be re-written as

n
Gk =" zige > b (1+6)7.
J=1

Let G(V, E) be the dependency graph with vertex set V' = [sf] where each vertex
corresponds to an event &; ; and two vertices are adjacent iff they affect each other.

Theorem 3.4.3 ([1/) Given the integer program, for any o € (1,2), an approz-
imate solution §* = (Y1g, ..., Unx) € {0,1}", for k € [T], with value of the
objective function at most [aT,,| can be found in randomized polynomial time
such that (Ag(k))i < b (146;) for alli € [s], k € [T).

Note that d; here is the same as in 3.24, except that the constant hidden in the
O notation is much larger.

Proof. Call a vertex v, € V' bad if
a bi b 1

k> — 1+ H (2, — . 2
ob(en(ta)  om

Thus a vertex v;, € V is bad with probability at most 6% (by Corollary 2.4.5)
where D < dnr is the maximum dependency. Let 7 be a (1,2)-tree. Consider a

vertex v;, € V and let

Lyr=1{j€nl|Fv; € T\{vig}, st aij,a;;#0and Ty, 7, ¢ {0,1}}.
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I 7 is the set of indices of those variables 7;; which when re-rounded, affect
event & . Let I; 7 = [n|]\I;x,7. We call a vertex v;, € V bad for T if

b; b; 1
Z Zi.j.k 2 E[ Z Zi,j,k] + a H <a, @> . (328)
J€Lik,T J€lik,T
This also happens with probability at most zfz. Notice that the probability
bounds on these events hold because we assume that the §;’s satisfy the required
bounds. We say that a (1,2)-tree 7 is bad if every vertex in 7 is bad or bad for
T.
To round the fractional solution properly we require at most three phases.
Phase 1 requires the following lemma which is similar to Lemma 3.3.3.

Lemma 3.4.4 With probability at least 1 — st all bad (1,2)-trees have size at
most 2D log(sT)/ log D.

Proof. (Lemma 3.4.4) Consider a (1, 2)-tree of size Dr where

_210g(sf)
~ logD

By removing unnecessary vertices (and the corresponding edges) at a distance
one from each vertex in the tree we can obtain a (2, 3)-tree from this (1, 2)-tree.
But we can remove at most D neighbours from each vertex. Thus, we obtain
a (2,3)-tree of size at least r from this (1,2)-tree. Since the vertices are not
adjacent in a (2, 3)-tree, a (1, 2)-tree of size Dr is bad with probability at most

L1 T
6D* 6Dt (3D

The number of (1, 2)-trees of size Dr is at most ([17])

Sf D37' Ea Iy
(D2—1)Dr+1( . ) < sT(3D°)" .

So the probability of obtaining a bad (1, 2)-tree of size Dr, after rounding, is at
most

sT(3D%)"

Thus, with probability at least 1 — st no bad (1,2)-tree has size more than
2D log(sT)/ log D. O
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We continue with the proof of Theorem 3.4.3.

Phase 2. In Phase 2 we take a maximal bad (1, 2)-tree 7 and reround all variables
contained in it. But this may harm the neighbours of 7 which are not bad. Let
N(T) be the set of neighbours of 7. The following simple but crucial observation
is the key to Phase 2: No vertex v;; of G is adjacent to two vertices belonging
to different maximal bad (1, 2)-trees and no vertex in N(7) can harm any other
bad (1,2)-tree except 7. This means that we can deal with each bad (1, 2)-tree
independently.
Consider v;;, € N(T), since v;;, is not bad and is not bad for 7, therefore

b; b, 1
Z Zi gk < E[ Z zi,j,k] =+ a (a, @) .

J€L kT J€lik,T

After rerounding, let a vertex v;, € T U N(T) be bad if

" b; b, 1
i > — [ 14+2H [ 2, — . 2

j=1

If v;r € T then this happens with probability at most 6% and if v;, € N(T)
then

b; b 1
Z zijr > Ef Z Zijk] + o H (Ea @) (3.30)

JEL kT J€lik,T

because of (3.29) and this also happens with probability at most 5. We note
that there are at most
1

log D (2D log(sT) + 2D log(sT))

vertices in 7 U N(7). Now, depending on the value of dependency D we have
two cases:

1.ifD > \/ log sf/ loglog sT then the probability of having a bad vertex is
at most

log sT 1 <1

logD 6D

2D(D + 1)

In this case we can use a pessimistic estimator (see next section) and find
a good rerounding in deterministic polynomial time, otherwise

2.1t D < \/log sf/ loglog sT then it means that we cannot apply deran-
domization and the components ((1,2)-trees) are still not small enough to



42 CHAPTER 3. ALGORITHMIC LOVASZ LOCAL LEMMA

search for good reroundings exhaustively. So we apply Phase 1 to all bad
(1, 2)-trees to obtain smaller bad (1,2)-trees of size

\/log sT log log sT
log D

Phase 3. Till now we have rounded some variables Zj; to either zero or one
successfuly. But, we still have to reround the variables contained in bad (1, 2)-
trees. Since the probability of occurence of an event corresponding to a bad
vertex is still at most 1/6D%, all conditions of the Local Lemma (ep(D +1) < 1)
are satisfied and we are guaranteed the existence of a good rerounding. We know
that each bad vertex corresponds to a row of the inequality constraints and the
number of variables to be rounded in each such constraint is at most 7. Now,

because
T<D< _logsT’ STA
loglog sT'

and the size of each bad (1,2)-tree is O(\/log sTloglog sT/log D), the number
of variables to be rounded in each bad (1, 2)-tree is at most

\/log sT loglog sT log sT log sT
log D loglog sT logD

Since each variable can be rounded to either 0 or 1, we can now try all possible
combinations exhaustively in each bad (1, 2)-tree and this can be done in poly-
nomial time. Thus, we have proved Theorem 3.4.3 O

This algorithm can be made deterministic by derandomizing Lemma 3.4.4. This
is the subject of our discussion in the next section.

3.4.4 Derandomization

We have the dependency graph G = (V, E) of the events (3.20). Let Q be the
set of all (1,2)-trees of size 2D log(sT)/log D. The idea is to round the variables
in such a way that no (1,2)-tree 7 € Q becomes bad. We denote Z; to be the
vector (Zj,1,j2,.--,%;7) and y; to be (y;1,Yj2, ... ,y,7) for any j € [n]. For all
J € [n] we choose y; so as to minimize the probability of some (1,2)-tree 7 € Q
turning bad if we randomly round Z;44, ... ,7, conditional on the already fixed
T1 = Y1,-.-,Tj—1 = Yj—1. But calculating conditional probabilities takes a lot
of time. Recall that the number of variables to be rounded in each inequality
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constraint is at most 7 and hence we may need as much as O(27) time to calculate
conditional probabilities. So now our aim is to find a pessimistic estimator. This
is done in the proof of the following lemma which is the derandomized version of
Lemma 3.4.4.

Lemma 3.4.5 The variables Zjj can be rounded in deterministic polynomial
time such that all bad (1,2)-trees have size at most 2D log(sT)/logD.

Proof. Let 7 € Q be a (1,2)-tree and let 753 be an arbitrary maximal (2, 3)-tree
in 7. Suppose that we have already fixed yi,...,y;_1, then the probability that
at least one (1,2)-tree turns bad can be bounded from above as follows:

IP]',I = ]Pyj’,yn[(le € Q) A (T 1s bad) ‘ Y1, - - 7yj71]

< Z H P[(vi is bad) V (v, is bad for T) | y1, ..., y;j_1].
TeQ v;k€T2,3

Let us set
1
_ -1 1
ez’,k,T = ]E[ Z Zi,j,k] =+ bia H(bza . @) .
J€Lik, T
1
_ 1 1
I = [bja " H (b ,@)1 , and

1

= b (1 + H(bo ™", ——
g ="ba " (1+ H (b« 5D

) -
Let Sl(i’k) (I) denote the polynomial S; (see Lemma 2.4.6) on input E[z; j x| where

j € I and I C [n]. Consider the following candidate PE,_; for the pessimistic
estimator when y;,...,y;_1 have been fixed:

PE; =Y ] S ) + S i) : (3.31)

TeEQ v;,k€T2,3 (‘?) (ei’?’T)

By Lemma 2.4.7 it is clear that Pr;_; < PE;_; because by (3.27)

St ([n])

7y'7]§l7,
J—1 g
l

S (EkT)

) yjfl] S L
(ei,k,T>
l

IP[UZ',]C is bad ‘ Yiy-- -

and by (3.28)

Plv; ;. is bad for T | yi,...
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Furthermore Sl(i’k)([n]) and Sl(i’k) (fsz) are the sums of products of at most n
numbers

Elz ] = a; ;Yjk if Z;, has been rounded ,
i’jak - - :
a; T, otherwise ,

and can be calculated easily using dynamic programming. So PFE;_; is a pes-
simistic estimator. It is not hard to see that

S(i7k) n S(i7k) fz
PEjflz Z H Eyj l ([ ]) + l ( ,k,T)

TeEQ v;k€T2,3 <?> (61',?,7’)

S('L’k) S('L’k) j;
Sy, | 2D SO

TEQ v; k€T2,3 (‘?) (ei’?’T)

= Eyj [P Ej]'
because any two nodes of 753 do not affect each other, i.e., do not have any
variables in common. Thus, at each step we choose y; to minimize PE; and
obtain

P, < PB, < P,y <---< PEy < PEy < — .
sT
The upper bound on PEj follows from Lemmas 2.4.7 and 3.4.4. Since P,, can
be either 0 or 1, we successfully find a rounding such that no (1,2)-tree of size
2D log(sT)/log D is bad.
The number of (1,2)-trees in Q is O(poly(sT)) and they can be enumerated
in polynomial time (see [17]). This proves Lemma 3.4.5. O

Thus we obtain the deterministic version of Theorem 3.4.3 :

Theorem 3.4.6 ([1/) Given the integer program, for any o € (1,2), an approz-
imate solution §® = (Y14, ... ,Unk) € {0,1}", for k € [f], with value of the
objective function at most [T,y |, can be found in deterministic polynomial time
such that (Ag(k))z. < bja™'(1 4 6;) for alli € [s], k € [f] and suitably defined
0; > 0.

Proof. Everything remains the same as in the proof of Theorem 3.4.3 except
that Lemma 3.4.4 is replaced by Lemma 3.4.5. O
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Applications

Quite a few problems can be written in the form of the integer program described
in Section 3.4. We again recall that this integer program had the objective
function minimize T = max{z | z;, > 0, j = 1,2,...,n} and the following
constraints

(i) Az®) <b Vk=1,2,...,T ,
(i) S zjp=1 Vi=1,2...,n and
(i) z;x € {0,1} Vj, k.
Here A € {0,1}**", b = (by,...,bs)' € N°, and z¥) = (214,204, ... ,204)" In

this chapter we discuss two applications of Theorem 3.4.6, namely Constrained
Hypergraph Coloring (CHC) and Resource Constrained Scheduling (RCS).

4.1 Constrained Hypergraph Coloring

We briefly touched this problem in Section 3.4 but let us define it formally. As the
name suggests, we are given a hypergraph and the aim is to color the vertices of
this hypergraph according to some criteria. The constrained hypergraph coloring
problem is:

Definition 4.1.1 Given a hypergraph H = (V,E) with |V| = n wvertices and
|E| = s edges, color its vertices using minimum number of colors such that in
each hyperedge F; there are no more than b; € N vertices of any color.

It is not hard to see that a CHC problem can be written as the above men-
tioned integer program. Indeed, given a hypergraph H = (V| E) with V =
{v1,...,up} and E ={Fy,...  Es} , let
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o A={a;,} € {0,1}**" be its edge-vertex incidence graph. That is,

1 if edge E; contains vertex v; ,
a;j =
" 0  otherwise.

o b= (by,...,bs)" € N°, where the components are as mentioned in Defini-
tion 4.1.1.

The integer program tries to minimize 7', the number of colors, because for every
j € [n] and k € [T,

1 if vertex v; gets color £ ,
Ljk = .
0 otherwise.

Notice that this is the last ((iii)) constraint of the integer program. The first two
constraints make sure that

(i) for each color k € [T, in each edge E;, the number of vertices with color &
is no more than b;, and

(ii) each vertex v; gets exactly one out of T colors.

Special cases of CHC are well known and have been intensively studied. For
a simple graph with b; = 1 for all 7, CHC problem is nothing but the problem
of coloring the graph properly. For a hypergraph H with hyperedges Fi,... , Fj,
and b; = |F;| — 1 for all 4, CHC is closely related to the property B problem (see
Definition 3.1.3) because whenever H has property B, CHC is equivalent to the
problem of finding a non-monochromatic 2-coloring of H. Note that property B
requires logarithmic lower bounds on the b;’s (see Theorem 3.2.2). In fact if H
is r-uniform, then by the Lovédsz Local Lemma it has property B if its maximum
edge degree ® < 2773, and this implies

bi=r—1>log® +2

for all 7. We will see that in case of the CHC problem a similar condition is
required to obtain near-optimum colorings. A coloring problem related to the
CHC problem, which also generalizes the property B problem to multicolors has
been studied by Lu [20]. There the aim is to color the vertices of H with &k given
colors such that no color appears more than b times in any edge. Assuming H to
be r-uniform, the result of [20] says that if H is k-colorable and r/k = (log(dr))'*°
for § > 0 then b = © ((log(dr))**%) (> r/k). The algorithm of Lu does not provide
an approximation of the optimum T,y of the CHC problem. Our main result of
this section is the following
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Theorem 4.1.2 Given a constrained hypergraph coloring problem, for any e €
(0,1) a coloring with at most [(1+¢€)Top| colors can be found in polynomial time

provided that b; = Q (%) for all i € [s] where D < dnt = O((sT*)?).

Proof. Since CHC problem can be modelled as the above mentioned integer
programming problem, we refer to Theorem 3.4.6 which tells us that one can find
a coloring with at most [Ty, | colors, a € (1,2), but in doing so one ends up
stretching the right hand side of the inequality constraints from b; to b;a =" (1+4;).
Since we want to satisfy the original inequality constraints, we want

bia '(1+6;) < b

for all 7, where

5= © \/alog(ez)(? +1))

This gives us

@17 -0 (alog(ez)(iD + 1))) |

Thus, for any € € (0,1) and o = 1 + € we get

1 1 D+1
€
Since e and 7 are constants, the proof is complete. 0

For arbitrary b;’s, Srivastav and Stangier [26, 27] gave a polynomial time ap-
proximation algorithm which for every € > 0 builds a [(1 + €)T,, |-approximate
coloring provided that for all 4, b; > 3¢ 2(1 + €) log(8sT™*) (T* is the optimum
value of the relaxed problem). On the other hand, our algorithm constructs
a [(1 + €)T,p]-approximate coloring provided that the lower bound on b; is
Q (e 2(1 +€)logD) for all edges i € [s]. So, where is the difference? The differ-
ence lies in the dependency parameter D. Recall that D < dnt where d < s,
n < T and 7 < sT. Now obviously D < sT = O(sT*) but if d << s (sparse
hypergraph) or n << T 1.e., we have very few variables to round, then, our
lower bound on b; is a definite improvement from that of [27]. In other words,
the parameters d, n and 7 provide more flexibility in estimating the maximum
dependency among events.

For b; = 1 Vi the algorithm of de la Vega and Lueker [28] gives a (1 + €)s
approximation of T,,. We show in the following that for b; = O(1) Vi, the
approximation ratio cannot be independent of s.
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Theorem 4.1.3 The CHC problem with n vertices and s edges has no polynomial
time approrimation algorithm with approrimation ratio at most s2~¢, for any fized
€ >0, unless NP C ZPP.

Proof. Let G = (V, E) be a simple graph. The problem of properly coloring G
with minimum colors can be viewed as a CHC problem because G can be viewed
as a 2-uniform hypergraph with |V| vertices and |E| edges and a proper coloring
can be obtained by putting b, = 1 for all e € E. Feige and Kilian [11] showed
that if NP ¢ ZPP then it is impossible to approximate the chromatic number of
a n vertex graph within a factor of n'~¢, for any fixed € > 0, in time polynomial
in n. Therefore, the same applies for the CHC problem. Since s < n? in simple
graphs, the proof of the theorem follows. O

4.2 Resource Constrained Scheduling

We are given the following

e aset J = {Jj,...,J,} of independent jobs. Each job J; needs one unit
of time for its completion and it cannot be scheduled before its start time
t; €N

e aset R={Ry,..., R} of limited resources where every job needs one unit
of at least one resource and at any point of time the available amount of
each resource R; is at most b; € N.

e aset P={Py,...,P,} of identical processors. Each job needs one proces-
SOT.

The aim is to schedule these jobs subject to processor, resource and start time
constraints such that the total schedule length (= time at which the last job is
scheduled) is as small as possible.

Resource constrained scheduling problem can also be written as an integer
program similar to the one given in Section 3.4. Indeed, let A € {0,1}(+Dxn
where

1 if job J; needs one unit of resource R;,
Qij = .
0 otherwise,

where as;1,; = 1 for all j € [n] and bs;; = m takes care of the processors by
casting them as an extra constraint. Also, let the variables

1 if job J; is scheduled at time £ ,
ok = .
0 otherwise,

for all j and k. The resource constrained scheduling problem can now be written
as: minimize T = max{z | z;, >0, j =1,2,... ,n}, subject to
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1. Az®) <p Vk=1,2,...,T,

2. 2, =0 Vj=1,2,...,n, k<ty,
3.3 zjxg=1 Vi=1,2,...,n and
4. zj, € {0,1} Vj, k.

Notice that the start time constraints ((2) above) do not make much difference.
This problem is NP-hard in the strong sense, even if ¢; = 0 for all j € [n],
s = 1 and m = 3 [13]. For arbitrary b;’s, Srivastav and Stangier [26, 27] gave
a polynomial time approximation algorithm for resource constrained scheduling
problem with non-zero start times (problem class P|res,...1,r;,p; = 1|T). For
every € > 0 their algorithm delivers a schedule of size at most [(1 + €)T;p]
provided that for all i b; > 3¢ 2(1 + €) log(8sT™*) and the number of processors is
at least 3¢72(1 + ¢) log(87*). We again invoke Theorem 3.4.6 to get the following
result.

Theorem 4.2.1 Given a resource constrained scheduling problem with non-zero
start times, for any € € (0,1) a schedule of length at most [(1 + €)T,p| can be

found in polynomial time provided that m = Q ((Iﬂ#) and b; = Q (%#)
for all i € [s] where D < dnt = O((sT*)?).

Proof. Similar to the proof of Theorem 4.1.2. O

The negative result of Theorem 4.1.3 also holds for resource constrained schedul-
ing.
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Chapter 5

Multi-dimensional Bin Packing

Multi-Dimensional Bin Packing (MDBP) or Vector Packing (VP) problem is the

following: given n rational vectors vi,...,v, € [0,1]%, pack these vectors in
minimum number of bins, say m, such that || > ;.5 vl < 1 for each bin j €
[m] = {1,...,m}. Here B; is the set of indices of vectors assigned to bin j. In

other words we want to pack these vectors in minimum possible number of bins
such that in each bin, for each of the d components, the sum over all vectors in
that bin is at most one. The classical bin packing problem is one dimensional
version of the MDBP problem with numbers vy,...,v, € (0,1] replacing the
vectors.

The classical bin packing problem has been extensively studied and there
exists a large pool of literature on it, most of which can be found here [15]. Its
multi-dimensional generalization was introduced by Garey et al. [12], they gave a
polynomial time (d+ 1/3)-approximation algorithm. MDBP problem is NP-hard
and most of the results in this area are in the form of algorithms with asymptotic,
worst-case performance ratio. De la Vega and Lueker [28] gave an improved linear
time algorithm which gives a (d + €)-approximate solution for any fixed € > 0.
A variant of MDBP problem, namely Resource Constrained Scheduling problem,
was also studied in [27]. Recently Chekuri and Khanna [7] further improved the
long standing (d+ ¢€) bound, they gave a polynomial time algorithm that, for any
fixed € > 0, delivers a (1 + ed + O(loge'))-approximate solution.

We modify the algorithm of [7] to obtain better approximation for a class of
MDBP problem instances. For some of these instances our algorithm beats even
the lower bound of v/d [7]. We first cast the MDBP problem as an IP problem
in Section 5.1. Subsequently in Section 5.2 we present our algorithm which is
analysed in Section 5.3. All logarithms are base e logarithms throughout this
chapter.

ol
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5.1 Preliminaries

MDBP problem can be formulated as an integer programming problem with 0/1-
variables. For i € [n], j € [m] let

1 if vector v; is assigned to bin j, and
Tij = .
0 otherwise.

Qur aim is to minimize m such that
(a) Yo vfei; <1 Vkeld], j€[m],
(b) " xij=1 Vie[n] and

j=1
(c) x;; €{0,1} Vi,j.

Here the inequality constraints in (a) are nothing but the packing constraints
1> e B; Vi]lo < 1 and the equality constraints (b) combined with the integrality
constraints (c) make sure that each vector is assigned to exactly one bin. Let opt
be the value of the optimal solution of the IP described above. The LP-relaxation
of the integer program described above is obtained by replacing the integrality
constraint (c) by the constraint z;; € [0,1] for all ¢, j. Let m* be the value of the
optimum solution of the LP-relaxation.

Note that the integer program described above is similar to the one described
in Section 3.4, the vector v components being equivalent to the matrix entries
a;,; of the former integer program. In fact, one may wonder whether the they are
any different or not. Recall that the inequality constraints of the integer program
of Section 3.4 are of the form

Zai,jxj,k S bz VZ, k y

j=1
where b; > 1. Dividing by b; on both sides gives us the required form but then
the matrix entries are bounded from above by a/b, where

G = max a;; and b = min b; .
2, i

So, not all instances of MDBP are covered by the former integer program.
To describe our results exactly we need to define a parameter first. Let

<k

V= min v, . 5.1

min v, (5.1)
i€[n]

In the next section we give a polynomial time randomized algorithm that, for any

fixed € > v, achieves a (1 + g + O(loge™!))-approximation, where

1 log dm*
= mi — — | }. 2
¢ = min{d, 1/6 (log log dm* ) ) 5:2)



5.2. THE ALGORITHM 93

5.2 The Algorithm

We slightly modify the algorithm given by Chekuri and Khanna [7]. The modified
algorithm has the same performance ratio as that of [7] in most of the cases but
in some cases it delivers better results.

Algorithm : VecPack

1. Solve the LP-relaxation of the IP given in Section 5.1 to obtain the optimal
fractional solution.

2. Ifdv >0 (%) then go to step 3 else go to step 4.

3.1. Randomly round the fractional solution to an integral (possibly infeasible)
solution.

3.2. Remove the vectors causing infeasibility and mark them as unassigned.
4. Mark all fractionally assigned vectors as unassigned.

5. Greedily assign the unassigned vectors to new bins.

Before proceeding further let us clarify step 5. In step 5, the greedy method
used to pack unassigned vectors in new bins is the same as the greedy set cover
method. To be exact, let us take a diversion and describe the set cover problem
with its greedy algorithm.

Definition 5.2.1 (Set Cover) Given a ground set I of m elements, a set S =
{S1,...,Sp} with S; C I for all j € [n] and the corresponding weights of elements
of S, W ={wy,...,w,}. AsetS={S},,...,5;.} €S8 is called a cover of ground
set I with weight wg = _,_, wj, if U5_,S;, = 1.

So, the set cover problem is to find a cover S C § of ground set I such that wg
is minimum. We will use the set cover problem with unit weights, i.e., w; =1
for all j € [n]. The greedy algorithm for set cover is simple: at each step select
the largest set S; still in S. The performance ratio of this greedy algorithm is
H, [19, 8], where

)
1
s = max | S| and H, = E =
i
i=1

J€n]
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5.3 Analysis

In this section we present a step by step analysis of VecPack in the form of the
following theorem.

Theorem 5.3.1 (/2]) With high probability VecPack delivers a (1+eq+O(loge™"))-

approzimate solution in polynomial time, where ¢ = min{d, %@ (log)ﬁ)‘é’g;*)} and

€ > v is a fized number.

Proof.

Step 1. LP-relaxation is nothing but the same set of constraints as in Section 5.1
except that now we allow z;; € [0,1]. Since we know that the number of bins
required can be at most n, we use binary search to pinpoint m* and obtain the
optimal fractional solution by solving at most log n linear programs in polynomial
time [18]. Thus after step 1 we know the value of m* and a corresponding feasible
solution {z; | i € [n], j € [m]}. Let us assume, w.lo.g., that {z;} is a basic
feasible solution.

Step 3. In step 2 we verify whether
log dm*
dv >0 ——— ) =1. 5.3
g (1og log dm*> (5:3)

If dv > | we perform randomized rounding i.e for each vector v;, i € [n], which is
not completely assigned to a bin we assign it to bin j with probability z7;. Note
that this procedure is similar to the rounding procedure described in Section 3.4.2.
Let

R

_J 1 with probability x;
Yig = 0 with probability 1 — z7;

be the random variables obtained by rounding {z};}. Define dm* events

gjkE “ vayij>1+5", (54)

=1

where 6 > 0. Obviously the expected value
E)) vfyy] <1
i=1

for all j, k. Using Lemma 2.4.3 and Corollary 2.4.5 we can make P[] (< p) as

small as required. So, for p = (ﬁy we get

5=0 (M> | (5.5)

log log dm*
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Since there are dm* events, the probability that at least one of them occurs is at
most 1/dm* and hence

It means that with high probability randomized rounding yields an integral solu-
tion using m* bins but the size of the bins is stretched from 1 to at most 1+4. The
important fact is: in each bin at most |0/v] vectors are responsible for stretching
its size from 1 to at most 1 4+ §. Thus, after step 3.2 of our algorithm VecPack

we have at most |§/v|m* unassigned vectors.

Step 4. On the other hand if we directly jump to step 4 in our algorithm (i.e,
dv < 1) then by the basic feasibility of our optimal fractional solution {z};} we
have at most dm* unassigned vectors.

Step 5. In step 5, just like in [7], we use the greedy set cover algorithm to
pack unassigned vectors in new bins. So suppose we have gm* unassigned vec-

tors, where ¢ = min{d, 10 ( 284"} At each step we find the largest possible
v log log dm

set of vectors with up to s = [1/€], ¢ > v fixed, vectors which can be packed
together in a bin and assign them to a new bin. After taking care of all sets with
exactly s vectors we end up using at most (gm*/s) bins. Now we can pack at
most (s — 1) of the remaining unassigned vectors in a bin. Hence, by listing all
possible sets containing at most (s — 1) vectors and applying the greedy step on
this list we get a packing in at most (H,_; - opt) bins (see [19, 8]). Here

[y

% — O(log(s — 1)) .

s—
=1

Hs—l =

1

Thus, we manage to pack all vectors in at most

*

qm
S

bins. O

m* + + H, 1-opt < (1+eq+ O(loge™)) - opt (5.7)

Remarks

1. The randomized rounding step, step 3.1, can be derandomized to obtain a
deterministic version of Theorem 5.3.1. Indeed, suppose we have assigned

vectors vy, ... ,v;—1 and v; is to be randomly assigned to one of the m* bins.
At this point the probability that one of the events £, occurs is bounded
by

PE;, | = Z P&k | v1, ... ,vi_1have been assigned] .
J€[m] , keld]
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This is the pessimistic estimator which can be used to derandomize Theo-
rem 5.3.1.

. Our algorithm improves on the algorithm of [7] if dv > @( log dm” )

log log dm*
(clearly v > 0). This gives us the following upper bound on m*

=0 (SR o8

Thus, for MDBP problem instances with bounded optimum solution

6(dl/logdu)
opt =0 (T) , (5.9)

our algorithm gives better results. Furthermore, if the given instance has
at most a constant number of vectors with zero components, i.e v = 0, then
these vectors can be pre-packed in O(1) bins. This yields a new problem
instance with ¥ > 0 which can be given as input to VecPack.
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Conclusion

In general, we saw how seemingly difficult problems can be tackled using proba-
bilistic methods, particularly the Lovasz Local Lemma. This lemma started its
journey with an application to hypergraph coloring problem [9] and has come a
long way with applications to solve integer programming problems. We saw such
applications in Chapter 3, Section 3.4 and Chapter 4. The main ideas of the
methods used by us are:

e convert the solution space into a probability space, like the set of all possible
2-colorings in Section 3.2 or the set of all possible solutions of the integer
program in Section 3.4, by introducing a random process. For instance
the random process in Section 3.2 was to independently color each vertex
of the hypergraph red or blue with equal probability. In the remaining
applications and Section 3.4 the random process was to randomly round
the binary variables to 0 or 1.

e show that the desired structure, like the desired solutions of the integer
programs in Section 3.4 and Chapters 4 & 5, exists in this probability
space. Often we used the Lovasz Local Lemma for this purpose.

e use an efficient method to find the desired structure in the huge probability
space of all possible solutions. We used the randomized version of the
algorithmic Lovasz Local Lemma in Chapter 3 and a simple randomized
algorithm in Chapter 5.

e efficiently derandomize the randomized algorithm (see Theorem 3.2.7 and
Lemma 3.4.5) to obtain deterministic polynomial time algorithms.

In Chapter 2 we introduced the tools which we later used in the subsequent
chapters. These tools (pessimistic estimators, large deviation inequalities, etc.)
are simple yet powerful because they help in obtaining good results for hard
problems.

o7
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In Chapter 3, Section 3.2 we introduced the algorithmic version of Lovéasz
Local Lemma in the form of Beck’s application to property B problem [6]. This
was further put into perspective by a general (not problem-specefic) analysis
of the algorithmic version in Section 3.3. We then modified these ideas and
the ideas of [20, 17] to obtain a nearly feasible and near-optimal solution of
an interesting integer program (minimax integer program with fixed right hand
side) in Section 3.4. The algorithm we gave for this purpose is a polynomial time
algorithm (Theorem 3.4.6).

In Chapter 4 we presented two applications of Theorem 3.4.6 namely con-
strained hypergraph coloring and resource constrained scheduling. The main
results of Sections 4.1 & 4.2 are that if the right hand side (b;s) of the inequal-
ity constraints in the integer programming formulations of the respective prob-
lems are large enough, then we can obtain near-optimal solutions in polynomial
time [1]. This improved the previous best results of [27].

In Chapter 5 we dealt with the multi-dimensional bin packing problem. Here
we showed that the previous best algorithm (in terms of performance ratio) can
be modified so that the performance ratio improves, sometimes substantially, for
a class of problem instances [2].

6.1 Open Questions

Many interesting questions arise from the material presented in previous chapters.
In Section 3.3 we saw that in general we cannot get rid of the weaker condition
pd®®) < 1 in the algorithmic version of Lovdsz Local Lemma. But, can the
exponent be reduced in general or does it depend on the problem at hand (we
used pD* < 1 in Section 3.4.3)?

In Chapter 4, on one hand we have a (1 + €)s approximation of de la Vega
and Lueker [28] when b; = 1 Vi and on the other hand we have our (1 + ¢)
approximation for b; = Q((1 + €)e"2log D) (Theorem 4.1.2). But, we don’t know
the approximation quality for all values of b;. So two interesting questions come
to mind.

1. How exactly does the approximation ratio behave when b; € (1,log D] Vi ?
We believe that the approximation ratio depends on b;s, but how exactly
are they related is not known.

2. Is it possible to get better approximation bounds for the number of colors
without loosing much on b;’s 7

In Chapter 5 we showed that we get better results if v is appropriately bounded
away from zero and v comes into play because we take out some vectors from

each bin. But it does not shed any light on the important problem of closing in
on the lower bound v/d.
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