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Kurzfassung

Das Nächste-Nachbar-(NN) Verfahren ist eine der nichtparametrischen Klas-
sifikationtechniken, wobei ein nichtparametrischer Klassifikator auf keinen
Annahmen hinsichtlich der Struktur der zugrundeliegenden Verteilung beruht.
Das NN-Verfahren wurde zuerst durch Fix und Hodges [9], [10] studiert.

Cover und Hart [2] bewiesen, daß unter bestimmten Bedingungen an die
Verteilungen der erwartete Fehler Rm des NN-Verfahrens gegen einen Wert
R∞ konvergiert, der zwischen dem Bayes-RisikoR? und dem doppelten Bayes-
Risiko liegt. Cover [3] untersuchte die Eigenschaft des NN-Klassifikators für
den ein-dimensionalen Fall mit beschränkten Träger und Mischungsdichte
f ≥ c > 0 und fand heraus, dass Rm asymptotisch durch O (m−2) beschränkt
ist, wobeim der Umfang der Trainingsfolge ist. Psaltis, Snapp und Venkatesh
[19] leiteten eine asymptotische Darstellung von Rm unter der euklidischen
Metrik für ein Zweikategorienproblem ab. Dieses wurde ausgeweitet auf
weitere Metriken von Snapp und Venkatesh [20]. Kulkarni und Posner [16]
studierten die Rate der Konvergenz für nächste Nachbarschätzung mittels der
Überdeckungzahlen total beschränkter Mengen und fanden obere Schranken
der Konvergenzrate für Verteilungen mit Trägern auf total beschränkten
Teilmengen eines separable metrischen Raumes, ausgedrückt durch deren
Überdeckungzahlen.

Es gibt eine Fülle von Konvergenzresultaten anderer Ausrichtung für NN-
Verfahren: siehe die Sammlung von Dasarathy [4] und die Monographie von
Devroye, Györfi und Lugosi [6].

Der Hauptinhalt dieser These wird wie folgt zusammengefaßt: Begründet auf
einem exakten Ausdruck für das Risiko, wird eine asymptotische Auswertung
des bedingten Risikos Rm(x) für unbeschränkten Träger gefunden. Dann wer-
den die Probleme und die Moglichkeiten bei der Integration dieser asympto-
tischen Entwicklung behandelt. Anschließend wird eine alternative asympto-
tische Entwicklung mit der Methode von Laplace gegeben. Schließlich werden
NN-Abstände für unbeschränkte Träger behandelt.
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1 Introduction and Model

Pattern recognition is about inference on the unknown nature of an obser-
vation. More formally, an observation is a d−dimensional vector x, and the
unknown nature of the observation is called a class. It is denoted by ϑ and
takes values in a finite set M = {1, 2, ..., C}. Suppose that we have a function
δ : Rd → {1, 2, ..., C} where δ (x) represents one’s guess of ϑ given x. This
mapping is called a classifier. Our classifier errs on x if δ (x) 6= ϑ.

That is, pattern recognition considers the following basic situation: A random
variable (X, θ) consists of an observed pattern X ∈ Rd from which we wish
to infer the unobservable class θ. This class belongs to the known finite set
M = {1, 2, ..., C}. The probability of error for a classifier δ is P (δ (X) 6= θ).

If the joint distribution of (X , θ) is known, then we may compute the Bayes
classifier δ? which is defined by

δ?(x) = arg mini=1,...,C P (θ 6= i|X = x)

The problem of finding δ? is called the Bayes problem and the resulting
probability of misclassification is usually called the Bayes risk.

In general the joint distribution of (X, θ) will be unknown, and we have a

training sequence Zm =
((
X(1), θ(1)

)
,
(
X(2), θ(2)

)
, ...,

(
X(m), θ(m)

))
at our

disposal, where patterns and corresponding classes are observed. We shall
assume that

(
X(1), θ(1)

)
,
(
X(2), θ(2)

)
, ...,

(
X(m), θ(m)

)
, the data, stem from a

sequence of independent identically distributed (iid) random pairs with the
same distribution as (X, θ).

1.1 Nearest Neighbor Procedure

The nearest neighbor rule is one of the nonparametric classification tech-
niques, where a nonparametric classifier does not rely on any assumptions
concerning the structure of the underlying distribution.

Let
(
X(1), θ(1)

)
,
(
X(2), θ(2)

)
, ...,

(
X(m), θ(m)

)
be independent identically dis-

tributed random variables taking values in Rd × {1, 2, ..., C}. Let (X, θ) be
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another independent sample of the same distribution, such that X is an ob-
served pattern and it is desired to estimate θ. The nearest neighbor rule
assigns X to a class θ(i) with the property∥∥∥X −X(i)

∥∥∥ ≤ ∥∥∥X −X(j)
∥∥∥ for all i 6= j,

using suitable tie-breaking.

1.1.1 Definition

The nearest neighbor procedure assigns any input feature vector to the class
given by the label θ′ of the nearest reference vector.

1.2 Literature Review

The nearest neighbor rule was first studied by Fix and Hodges [9] and [10].
Cover and Hart [2] proved that under certain conditions on the distribution
the expected error of the nearest neighbor rule converges, as the sample size
tends to infinity, to a value R∞ which lies between the Bayes error R? (the
minimum probability of error over all decision rules) and twice the Bayes
error, i.e. R? ≤ R∞ ≤ 2R?(1− R?). Cover [3] investigated the finite-sample
performance of the nearest neighbor classifier for the one-dimensional case
with bounded support and mixture density f ≥ c > 0 and found under some
additional conditions that the bias of the nearest neighbor error from its
asymptotic value is bounded by O (m−2) where m is the sample size.

Fukunaga and Hummels [11] studied the rate of convergence of the above bias
in d-dimensional feature space using a series of nonrigorous approximations
based on a second-order Taylor series expansion, they obtained the heuristic
estimate Rm ∼ R∞ +B Γ(m+1)

Γ(m+1+ 2
d)

, where Γ is the gamma function and B is a

distribution-dependent constant. This approximation indicates m−2/d as the
rate of convergence of Rm to R∞.

Psaltis, Snapp and Venkatesh [19] derived an asymptotic representation of the
finite sample risk of a nearest neighbor classifier under the Euclidean metric
for a two-class problem. They assume bounded support and that the class-
conditional distributions are absolutely continuous with densities admitting
uniform asymptotic expansions, that the mixture density satisfies f ≥ c > 0
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and that one of the class-conditional densities vanishes close to the boundary
of the support. They proved that Rm ∼ R∞ +

∑∞
k=2 ckm

−k/d (m −→ ∞),
where the coefficients ck are distribution-dependent constants independent
of the sample size m. This was extended to other metrics in Snapp and
Venkatesh [20].

Kulkarni and Posner [16] studied the rate of convergence for nearest neighbor
estimation in terms of the covering numbers of totally bounded sets. They
found upper bounds on the convergence rate for distributions with support on
a totally bounded subset of a separable metric space in terms of the covering
numbers of this support.

There is a wealth of consistency results in different directions available for
nearest neighbor rules; see the collection of Dasarathy [4] and the monograph
by Devroye, Györfi and Lugosi [6].

1.3 Results of the work

The main contents of this thesis are summarized as follows: Based on an
exact integral expression for the risk, we find an asymptotic evaluation of the
conditional risk Rm(x) for unbounded support. Then the problems and the
applicability of integrating these asymptotic expansions are discussed. This
is followed by an alternative asymptotic approach using Laplace’s method.
Finally nearest neighbor distances are treated, again for unbounded support.

In the next section we give the integral expressions for Rm(x) and Rm in the
form

Rm(x) = P (θ
′ 6= θ |X = x) = p1p2f1(x)

f(x)
I + p1p2f2(x)

f(x)
J ,

where
I = I(x) =

∫
S f2(x

′)mP (|X − x| > |x′ − x|)m−1dx′,

J = J(x) =
∫
S f1(x

′)mP (|X − x| > |x′ − x|)m−1dx′,

hence
Rm = p1p2

∫
S

∫
Sm(P (|X − x| > |x′ − x|))m−1

· (f1(x)f2(x
′) + f1(x

′)f2(x)) dx
′dx,
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where the densities fl are those of the class-conditional distributions which
are assumed absolutely continuous, for l = 1, 2, f = p1f1 + p2f2 denotes the
mixture density, S being its support in Rd.

Chapter 2 evaluates the probability of error conditioned on the event that
X = x (m-sample conditional risk Rm(x)) for different supports S in R1

by using partial integration and presents a general representation for Rm(x)
when X has support in Rd.

Chapter 3 discusses the problem of integrating Rm(x) with respect to x to
obtain Rm. We find that, in example like the normal and exponential dis-
tribution, the integrals diverge. This seems to be typical for the case of
unbounded support. For the triangular distributions as an example for the
case of bounded support we find that the integrals exist and the rate of con-
vergence of Rm to R∞ is O(m−2), which is in accord with Cover’s result
[3].

Chapter 4 presents another method to evaluate Rm(x) by using the asymp-
totic expansion by Laplace’s method. We derive an exact integral expression
for I and J in the form

∫
S ge

−mh, where g and h are nonnegative functions.
For large m, as in typical Laplace integrals, most of the contribution to the
integral arises from a neighborhood of the point where h has a minimum.
We represent g and h as asympototic power series in a neighborhood of this
minimum, and then the integral itself may be represented as an asymptotic
power series in reciprocal powers of m. We look at the error estimates for
this case.

In chapter 5 we study the rates of convergence of nearest neighbor classifi-
cation in terms of metric covering numbers of the underlying space, present
an upper bound on the expected nearest neighbor distance for all distribu-
tions with support on a totally bounded subset of a separable metric space in
terms of the covering numbers of the support (see [16]). We then give some
contributions in the case of unbounded support for which we find upper and
lower bounds for the normal and exponential distributions as typical.

10



1.4 The Finite Sample Risk

In this section we shall derive an exact integral expression for the finite-
sample risk Rm.

1.4.1 Definition

The risk of the nearest neighbor procedure from a training sequence of size
m is defined by

R(δ1,m) = P (δ1,m(X,Zm) 6= θ)·

We can write this in the simple form Rm = P
(
θ
′ 6= θ

)
.

The finite-sample risk Rm can be written in integral form by taking the
expectation of the probability of the event θ′ 6= θ conditioned on the training
sequence and the test feature vector. Then the asymptotic risk is given by
the following Lemma, compare [19].

For this Lemma, we suppose that the class-conditional distributions Fl are
absolutely continuous with corresponding densities fl, for each l ∈ M . Let
f =

∑C
l=1 plfl denote the mixture density, and let S be its support in Rd.

Introduce the notation B(ρ, x) ≡
{
x′ ∈ Rd : ‖x− x′‖ ≤ ρ

}
for the closed ball

of radius ρ at x. We shall assume C = 2, i.e. M = {1, 2}, in the following.

1.4.2 Lemma

Rm = p1p2

∫
S

∫
Sm(P (|X − x| > |x′ − x|))m−1

· (f1(x)f2(x
′) + f1(x

′)f2(x)) dx
′dx

Proof:
Let X ′ denote the nearest neighbor feature vector in the training sequence
Zm =

((
X(1), θ(1)

)
,
(
X(2), θ(2)

)
, ...,

(
X(m), θ(m)

))
that is closest to the ran-

dom test vector X, and let θ′ be the class label associated with X ′. Then
from the definition (1.4.1)

Rm = P (θ
′ 6= θ) =

∫
S P (θ′ 6= θ |X = x) f(x)dx, (1.4.1)

11



where P (θ′ 6= θ |x) denotes the probability of error conditioned on the event
that X = x.

Taking expectation with respect to the value of the nearest neighbor of x, we
hence obtain:

P (θ
′ 6= θ |X = x) =

∫
S P (θ′ 6= θ |X ′ = x′ , X = x) fm(x′ | x) dx′, (1.4.2)

where fm (x′ |x) denotes the conditional density of X ′ given X = x. That
is, the event X ′ = x′ occurs if one of the training sequence X(j) assumes the
value x′ and every other feature vector X(k), k 6= j, assumes a value outside
B(ρ, x) with ρ = |x′ − x|. We thus obtain:

fm (x′ |x) = P ( one of theX ′
js ∈ B(ρ, x), all others /∈ B(ρ, x))f(x′)

=
∑m
j=1

(∏
k 6=j P

[
X(k) /∈ B(|x′ − x| , x)

])
f(x′)

= m(1− P (X ∈ B(|x′ − x| , x))m−1f(x′),

where X is a feature vector in Rd drawn from the mixture distribution F (x).
Thus we can write fm (x′ |x) in the form:

fm (x′ |x) = m(P (|X − x| > |x′ − x|))m−1f(x′). (1.4.3)

Furthermore:

P (θ′ 6= θ |X ′ = x′ , X = x)

= P (θ = 1, θ′ = 2 |X ′ = x′, X = x) + P (θ = 2, θ′ = 1 |X ′ = x′, X = x)

= P (θ = 1 |X = x)P (θ′ = 2 |X ′ = x′) + P (θ = 2 |X = x) P (θ′ = 1 |X ′ = x′)

= p1p2
f(x)f(x′)

(f1(x)f2(x
′) + f1(x

′)f2(x)). (1.4.4)

Substituting (1.4.3) and (1.4.4) in (1.4.2) yields
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P (θ
′ 6= θ |X = x) =

∫
Sm(P (|X − x| > |x′ − x|))m−1

· p1p2
f(x)f(x′)

(f1(x)f2(x
′) + f1(x

′)f2(x)) f(x′)dx′

= p1p2
f(x)

∫
Sm(P (|X − x| > |x′ − x|))m−1

· (f1(x)f2(x
′) + f1(x

′)f2(x)) dx
′. (1.4.5)

Then

Rm = p1p2

∫
S

∫
S m(P (|X − x| > |x′ − x|))m−1

· (f1(x)f2(x
′) + f1(x

′)f2(x)) dx
′dx. (1.4.6)

1.4.3 Definition

We denote the probability of error conditioned on the event that X = x by
Rm(x), that is Rm(x) = P (θ

′ 6= θ |X = x).

From equation (1.4.5)

Rm(x) = p1p2f1(x)
f(x)

∫
S f2(x

′)mP (|X − x| > |x′ − x|)m−1dx′

+p1p2f2(x)
f(x)

∫
S f1(x

′)mP (|X − x| > |x′ − x|)m−1dx′

Put
I = I(x) =

∫
S f2(x

′)mP (|X − x| > |x′ − x|)m−1dx′, (1.4.7)

J = J(x) =
∫
S f1(x

′)mP (|X − x| > |x′ − x|)m−1dx′ (1.4.8)
Then

Rm(x) = P (θ
′ 6= θ |X = x) = p1p2f1(x)

f(x)
I+ p1p2f2(x)

f(x)
J (1.4.9)

= p2

1+
p2f2(x)

p1f1(x)

I(x) + p1

1+
p1f1(x)

p2f2(x)

J(x). (1.4.10)
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2 The Asymptotic Evaluation of Rm(x)

In this chapter we evaluate the probability of error conditioned on the event
that X = x for a two-class pattern recognition problem for different supports
S in R1.

2.1 Support S = (−∞,∞) :

Firstly, we evaluate the asymptotic expansions for I and J in (1.4.9).

2.1.1 Lemma

Let x ∈ Rd, x ∈ S. Assume that the densities fi are k−times differentiable
and (f(x− ρ) + f(x+ ρ)) > 0 for all ρ > 0. Define

q◦(x, ρ) = f2(x−ρ)+f2(x+ρ)
f(x−ρ)+f(x+ρ)

and qk(x, ρ) =
q′k−1(x,ρ)

f(x−ρ)+f(x+ρ)
for k ≥ 1,

and
q◦(x, ρ) = f1(x−ρ)+f1(x+ρ)

f(x−ρ)+f(x+ρ)
and qk(x, ρ) =

q′k−1(x,ρ)

f(x−ρ)+f(x+ρ)
for k ≥ 1.

Then
I = q◦(x, 0) + 1

m+1
q1(x, 0) + 1

(m+1)(m+2)
q2(x, 0)

+...+ 1
(m+1)(m+2)...(m+k)

qk(x, 0) + 1
(m+1)(m+2)...(m+k)

Ik+1

and
J = q◦(x, 0) + 1

m+1
q1(x, 0) + 1

(m+1)(m+2)
q2(x, 0)

+...+ 1
(m+1)(m+2)...(m+k)

qk(x, 0) + 1
(m+1)(m+2)...(m+k)

Jk+1

where
Ik+1 = Ik+1(m,x) =

∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ

k = 1, 2, 3, ...
and

Jk+1 = Jk+1(m,x) =
∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ

k = 1, 2, 3, ...
Proof:
From equation (1.4.7)
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I =
∫∞
−∞ f2(x

′)mP (|X − x| > |x′ − x|)m−1dx′

= m
∫ x
−∞ f2(x

′)P (|X − x| > |x′ − x|)m−1dx′

+m
∫∞
x f2(x

′)P (|X − x| > |x′ − x|)m−1dx′

= m
∫ x
−∞ f2(z) [P (X < z) + P (X > x+ (x− z))]m−1 dz

+m
∫∞
x f2(z) [P (X > z) + P (X < x− (z − x))]m−1 dz

= m
∫∞
0 f2(x− ρ) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

+m
∫∞
0 f2(x+ ρ) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

= m
∫∞
0 (f2(x− ρ) + f2(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

= −
∫∞
0

f2(x−ρ)+f2(x+ρ)
f(x−ρ)+f(x+ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m dρ

= −
∫∞
0 q◦(x, ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m dρ,

where q◦(x, ρ) = f2(x−ρ)+f2(x+ρ)
f(x−ρ)+f(x+ρ)

. (2.1.1)

Let u = q◦(x, ρ), dv = d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m dρ,

du = q′◦(x, ρ) dρ, v = [P (X < x− ρ) + P (X > x+ ρ)]m.

Then, by partial integration

I =
∫∞
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

− [q◦(x, ρ)(P (X < x− ρ) + P (X > x+ ρ))m]∞0

=
∫∞
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

−{(q◦(x,∞) [(P (X < x−∞) + P (X > x+∞)]m)

− (q◦(x, 0) [(P (X < x) + P (X > x)]m)}
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=
∫∞
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ− (0− q◦(x, 0))

= q◦(x, 0) +
∫∞
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

= q◦(x, 0) + I1, (2.1.2)

where I1 = I1(x) =
∫∞
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ.

Now, we evaluate I1.

I1 =
∫∞
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

= −1
m+1

∫∞
0

q′◦(x,ρ)
f(x−ρ)+f(x+ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ

= −1
m+1

∫∞
0 q1(x, ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ,

where q1(x, ρ) = q′◦(x,ρ)
f(x−ρ)+f(x+ρ)

. (2.1.3)

We integrate by parts with

u = q1(x, ρ), dv = d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ, then

I1 = 1
m+1

∫∞
0 q′1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ

− 1
m+1

[q1(x, ρ)(P (X < x− ρ) + P (X > x+ ρ))m+1]
∞
0

= 1
m+1

∫∞
0 q′1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ+ 1

m+1
q1(x, 0)

= 1
m+1

q1(x, 0) + 1
m+1

I2, (2.1.4)

where I2 =
∫∞
0 q′1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ.

Similarly,

I2 = −1
m+2

∫∞
0

q′1(x,ρ)

f(x−ρ)+f(x+ρ)
d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ,

where q2(x, ρ) =
q′1(x,ρ)

f(x−ρ)+f(x+ρ)
. (2.1.5)
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Now, we evaluate I2.

I2 = 1
m+2

∫∞
0 q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ

− 1
m+2

[q2(x, ρ)(P (X < x− ρ) + P (X > x+ ρ))m+2]
∞
0

= 1
m+2

∫∞
0 q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ+ 1

m+2
q2(x, 0)

= 1
m+2

q2(x, 0) + 1
m+2

I3,

where I3 = I3(x) =
∫∞
0 q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ.

By repeating this procedure, we obtain an asymptotic expansion for I(x) in
the form:

I = q◦(x, 0) + 1
m+1

q1(x, 0) + 1
(m+1)(m+2)

q2(x, 0)+...+ 1
(m+1)(m+2)...(m+k)

qk(x, 0)

+ 1
(m+1)(m+2)...(m+k)

∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ

= q◦(x, 0)+ 1
m+1

q1(x, 0)+ 1
(m+1)(m+2)

q2(x, 0)+...+ 1
(m+1)(m+2)...(m+k)

qk(x, 0)

+ 1
(m+1)(m+2)...(m+k)

Ik+1,

where
Ik+1 = Ik+1(m,x) =

∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ

k = 1, 2, 3, ....
Similarly,

J = q◦(x, 0)+ 1
m+1

q1(x, 0)+ 1
(m+1)(m+2)

q2(x, 0)+ ...+ 1
(m+1)(m+2)...(m+k)

qk(x, 0)

+ 1
(m+1)(m+2)...(m+k)

Jk+1,
where

Jk+1 = Jk+1(m,x) =
∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ

k = 1, 2, 3, ....

Now we show that under suitable conditions Ik+1(m) → 0 when m→∞ for
all k ≥ 2.
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2.1.2 Lemma

Assume that there exist j, l such that the following conditions are satisfied

(i)
∣∣∣q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]j

∣∣∣ is bounded for ρ and

(ii) [P (X < x− ρ) + P (X > x+ ρ)]l is integrable for ρ.

Then Ik+1 → 0 when m→∞,

where Ik+1 =
∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ.

Proof:
Ik+1 =

∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]j

· [P (X < x− ρ) + P (X > x+ ρ)]l

· [P (X < x− ρ) + P (X > x+ ρ)]m+k−j−l dρ

|Ik+1| =
∣∣∣∫∞0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]j

· [P (X < x− ρ) + P (X > x+ ρ)]l

· [P (X < x− ρ) + P (X > x+ ρ)]m+k−j−l dρ
∣∣∣

≤
∫∞
0

∣∣∣q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]j
∣∣∣

· [P (X < x− ρ) + P (X > x+ ρ)]l

· [P (X < x− ρ) + P (X > x+ ρ)]m+k−j−l dρ

≤ supρ′
∣∣∣q′k(x, ρ′) [P (X < x− ρ′) + P (X > x+ ρ′)]j

∣∣∣
·
∫∞
0 [P (X < x− ρ) + P (X > x+ ρ)]l

· [P (X < x− ρ) + P (X > x+ ρ)]m+k−j−l dρ

≤ C
∫∞
0 f(ρ,m) dρ,

18



where C is a constant, and

f(ρ,m) = [P (X < x− ρ) + P (X > x+ ρ)]l

· [P (X < x− ρ) + P (X > x+ ρ)]m+k−j−l

≤ f(ρ) = [P (X < x− ρ) + P (X > x+ ρ)]l

We have f(ρ,m) → 0 for all ρ when m → ∞, and from condition (ii)∫∞
0 f(ρ) dρ <∞. This implies

∫∞
0 f(ρ,m) dρ→ 0 by the dominated conver-

gence theorem. Then Ik+1 → 0 when m→∞.

Similarly, we show that Jk+1 → 0 when m→∞.

2.1.3 Lemma

Assume that there exist j, l such that the following are satisfied

(i)
∣∣∣q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]j

∣∣∣ is bounded for ρ and

(ii) [P (X < x− ρ) + P (X > x+ ρ)]l is integrable for ρ.

Then Jk+1 → 0 when m→∞,

where Jk+1 =
∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ.

Proof:
As the proof of Lemma 2.1.2.

Now we give an example for normal distribution to show that the conditions
(i) and (ii) in the above Lemmas are satisfied when the support is unbounded.

2.1.4 Example

Let f1(x) = 1√
2π
e−

(x−a)2

2 , f2(x) = 1√
2π
e−

(x−b)2

2 be two densities for nor-
mal distributions with prior probabilities p1, p2 such that p1 + p2 = 1, and
f = p1f1 + p2f2.
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Firstly we show that there exist j such that∣∣∣q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]j
∣∣∣ is bounded for ρ.

Since q2(x, ρ) =
q′1
g

then

q′2(x, ρ) =
(
q′1
g

)′
= h′′′g−6h′′g′g2−h′g′′g2−7hgg′g′′+3h′(g′)2g+3h(g′)3

g6

where h(x, ρ) = f2(x+ ρ) + f2(x− ρ), and g(x, ρ) = f(x+ ρ) + f(x− ρ).

Substituting this functions in above equation, then q′2(x, ρ) can be bounded
in the following form where we assume x > 0:

q′2(x, ρ) ≤
(a◦+a1(x+ρ)+a2(x+ρ)2+a3(x+ρ)3)

(
e−

((x+ρ)−a)2

2

)4

(
e−

((x+ρ)−a)2

2

)6 ≤ C(
e−

((x+ρ)−a)2

2

)3 ,

where a◦, a1, a2, a3, and C are constants. Then∣∣∣q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]j
∣∣∣

≤ C e
3((x+ρ)−a)2

2 [P (X < x− ρ) + P (X > x+ ρ)]j

≤ C1 e
C2ρ2

2 [P (X < x− ρ) + P (X > x+ ρ)]j.

But

[P (X < x− ρ) + P (X > x+ ρ)]j ≤ C3

[(
e−

((x−ρ)+a)2

2

)
+
(
e−

((x+ρ)+a)2

2

)]j
≤ C4e

−C5jρ2

2

That is, we can find j such that∣∣∣q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]j
∣∣∣ is bounded for ρ.

Now we show that there exists l such that [P (X < x− ρ) + P (X > x+ ρ)]l is
integrable for ρ.
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Since [P (X < x− ρ) + P (X > x+ ρ)] = [P (|X − x| > ρ)]

= P
(
et|X−x| > etρ

)
≤ Eet|X−x|

etρ ≤ C6

etρ ,

where t > 0, then

∫∞
0 ([P (X < x− ρ) + P (X > x+ ρ)])l dρ ≤ C l

6

∫∞
0 e−ltρdρ =

Cl
6

lt
= C7

l
.

Thus there exists l such that

[P (X < x− ρ) + P (X > x+ ρ)]l is integrable for ρ.

Here C1, C2, ..., C7 are constants only depending on x, a, b.

2.1.5 Corollary

I = q◦(x, 0)+
∑∞
k=2

qk(x,0)∏k

n=1
(m+n)

, (2.1.6)

J = q◦(x, 0) +
∑∞
k=2

qk(x,0)∏k

n=1
(m+n)

(2.1.7)

under the condition that Ik+1∏k

n=1
(m+n)

and Jk+1∏k

n=1
(m+n)

tend to zero when k →∞,

where
Ik+1 =

∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ,

Jk+1 =
∫∞
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ,

and qk(x, 0), qk(x, 0) are defined as in Lemma 2.1.1 when ρ = 0. We note
that q1(x, 0) = 0 and q1(x, 0) = 0.

Proof:
This is immediate from Lemmas 2.1.1 and 2.1.3.

2.1.6 Theorem

Let the conditions of Lemmas 2.1.1-2.1.3 and Corollary 2.1.5 be satisfied.
Then
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Rm(x) = P (θ
′ 6= θ |X = x) = 2p1p2f1(x)f2(x)

f2(x)
+
∑∞
k=2

ηk(x,0)∏k

n=1
(m+n)

(2.1.8)

where ηk(x, 0) = p1p2 f1(x)
f(x)

qk(x, 0)+ p1p2 f2(x)
f(x)

qk(x, 0), and qk(x, 0), qk(x, 0) are
defined as in Lemma 2.1.1 when ρ = 0.

Proof:
This is immediate from the above results. By substituting (2.1.6) and
(2.1.7) in to (1.4.9) we obtain

Rm(x) = p1p2 f1(x)
f(x)

{
q◦(x, 0) +

∑∞
k=2

qk(x,0)∏k

n=1
(m+n)

}
+p1p2 f2(x)

f(x)

{
q◦(x, 0) +

∑∞
k=2

qk(x,0)∏k

n=1
(m+n)

}
= 2 p1p2f1(x)f2(x)

f2(x)
+
∑∞
k=2

ηk(x,0)∏k

n=1
(m+n)

.

2.1.7 Multidimensional Case

Now we present a general representation for Rm(x) when X has support in
Rd. Since Rm(x) take the following form:

Rm(x) = p1p2f1(x)
f(x)

∫
S f2(x

′)mP (|X − x| > |x′ − x|)m−1dx′

+p1p2f2(x)
f(x)

∫
S f1(x

′)mP (|X − x| > |x′ − x|)m−1dx′

= p1p2f1(x)
f(x)

I + p1p2f2(x)
f(x)

J ,

where
I = I(x) =

∫
S f2(x

′)mP (|X − x| > |x′ − x|)m−1dx′,

J = J(x) =
∫
S f1(x

′)mP (|X − x| > |x′ − x|)m−1dx′.

Using the function H(ρ) = mP (|X − x| > ρ)m−1, we have

I(x) = E2H (|X − x|) =
∫
H (|X − x|) dP2 =

∫∞
0 H (ρ)P

|X−x|
2 dρ

=
∫∞
0 H (ρ) f

|X−x|
2 dρ,
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similarly,
J(x) = E1H (|X − x|) =

∫
H (|X − x|) dP1 =

∫∞
0 H (ρ)P

|X−x|
1 dρ

=
∫∞
0 H (ρ) f

|X−x|
1 dρ,

where E1, E2 denote the expectations with respect to the densities f1, f2

respectively. Then Rm(x) take the following form :

Rm(x) = p1p2f1(x)
f(x)

∫∞
0 H (ρ) f

|X−x|
2 dρ+ p1p2f2(x)

f(x)

∫∞
0 H (ρ) f

|X−x|
1 dρ

We note that we may expand as in Lemma 2.1.1 for any dimension d if X
has unbounded support in Rd with fi and f replaced by f

|X−x|
i and f |X−x|

the densities of |Xi − x| and |X − x| respectively, where i = 1, 2.

2.1.8 Example

Consider X = (X1, X2) having a joint density f(x1, x2) = 1
2πσ2 e

− (x1−µ1)2+(x2)2

2σ2 .

Define Z = |X − x| =
√

(X1 − x1)
2 + (X2 − x2)

2 =
√
X ′2

1 +X ′2
2

where X ′
1 = X1 − x1, and X ′

2 = X2 − x2.

Then the region 4Dz of the plane such that z <
√
X ′2

1 +X ′2
2 < z + dz is a

circular ring with inner radius z and thickness dz. With

x′1 = z cos θ, x′2 = z sin θ, we have dx′1dx
′
2 = zdzdθ, it follows that

f|X−x|(z) = fZ(z) =
∫ ∫

4Dz
f(x′1, x

′
2) dx

′
1dx

′
2

= 1
2πσ2

∫ 2π
0 e−

(z cos θ−µ)2+(z sin θ)2

2σ2 zdzdθ

Hence

f|X−x|(z) = z
2πσ2 e

− (z+µ2)

2σ2
∫ 2π
0 e

zµ cos θ

σ2 dθ = z
σ2 I◦

(
zµ
σ2

)
e−

(z+µ2)

2σ2 , z > 0,

where I◦ (x) = 1
2π

∫ 2π
0 ex cos θdθ =

∑∞
n=0

x2n

22n(n!)2
is the modified Bessel function

of order zero, see [18].
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2.2 Support S = (0,∞) :

Firstly, we evaluate the asymptotic expansions for I and J in (1.4.9). From
equation (1.4.7)

I =
∫∞
0 f2(x

′)m [P (|X − x| > |x′ − x|)]m−1 dx′

= m
∫ x
0 f2(x

′) [P (|X − x| > |x′ − x|)]m−1 dx′

+m
∫∞
x f2(x

′) [P (|X − x| > |x′ − x|)]m−1 dx′

= m
∫ x
0 f2(z) [P (X < z) + P (X > x+ (x− z))]m−1 dz

+m
∫∞
x f2(z) [P (X > z) + P (X < x− (z − x))]m−1 dz

= m
∫ x
0 f2(x− ρ) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

+m
∫∞
0 f2(x+ ρ) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

= m
∫ x
0 (f2(x− ρ) + f2(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

+m
∫∞
x f2(x+ ρ) [P (X > x+ ρ)]m−1 dρ = I ′ + I ′′, (2.2.1)

where
I ′ = m

∫ x
0 (f2(x− ρ) + f2(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

(2.2.2)
and

I ′′ = m
∫∞
x f2(x+ρ) [P (X > x+ ρ)]m−1 dρ. (2.2.3)

Now we estimate I ′ and I ′′.

2.2.1 Lemma

Let x ∈ Rd, x ∈ S. Assume that the densities fi are k−times differentiable
and f(z) > 0 for all z ∈ S. Define

q◦(x, ρ) = f2(x−ρ)+f2(x+ρ)
f(x−ρ)+f(x+ρ)

and qk(x, ρ) =
q′k−1(x,ρ)

f(x−ρ)+f(x+ρ)
for k ≥ 1,

and
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λ◦(x, ρ) = f2(x+ρ)
f(x+ρ)

and λk(x, ρ) =
λ′k−1(x,ρ)

f(x+ρ)
for k ≥ 1.

Then
I ′ = q◦(x, 0)− q◦(x, x) · (P (X > 2x))m+ q1(x,0)

m+1
− q1(x,x)

m+1
(P (X > 2x))m+1

+ q2(x,0)
(m+1)(m+2)

− q2(x,x)
(m+1)(m+2)

(P (X > 2x))m+2 + ...+ qk(x,0)
(m+1)(m+2)...(m+k)

− qk(x,x)
(m+1)(m+2)...(m+k)

(P (X > 2x))m+k + 1
(m+1)(m+2)...(m+k)

I ′k+1

and
I ′′ = λ◦(x, x) · (P (X > 2x))m + λ1(x,x)

m+1
(P (X > 2x))m+1

+ λ2(x,x)
(m+1)(m+2)

(P (X > 2x))m+2 + ...+ λk(x,x)
(m+1)(m+2)...(m+k)

(P (X > 2x))m+k

+ 1
(m+1)(m+2)...(m+k)

I ′′k+1

where
I ′k+1 = I ′k+1(x) =

∫ x
0 q

′
k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ

k = 1, 2, 3, ...

and
I ′′k+1 = I ′′k+1(x) =

∫ x
0 λ

′
k(x, ρ) [P (X > x+ ρ)]m+k dρ k = 1, 2, 3, ...

Proof:
First we estimate I ′.

I ′ = m
∫ x
0 (f2(x− ρ) + f2(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

= −
∫ x
0
f2(x−ρ)+f2(x+ρ)
f(x−ρ)+f(x+ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m dρ

= −
∫ x
0 q◦(x, ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m dρ,

where q◦(x, ρ) = f2(x−ρ)+f2(x+ρ)
f(x−ρ)+f(x+ρ)

. (2.2.4)

Let u = q◦(x, ρ), dv = d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m dρ,

du = q′◦(x, ρ)dρ, v = [P (X < x− ρ) + P (X > x+ ρ)]m.
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Then, by partial integration

I ′ =
∫ x
0 q

′
◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

− [q◦(x, ρ)(P (X < x− ρ) + P (X > x+ ρ))m]x0

=
∫ x
0 q

′
◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

− [q◦(x, x) · (P (X > 2x))m − q◦(x, 0)]

= q◦(x, 0)−q◦(x, x) ·(P (X > 2x))m+I ′1, (2.2.5)

where I ′1 = I ′1(x) =
∫ x
0 q

′
◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ.

We evaluate I ′1.

I ′1 =
∫ x
0 q

′
◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

= −1
m+1

∫ x
0

q′◦(x,ρ)
f(x−ρ)+f(x+ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ

= −1
m+1

∫ x
0 q1(x, ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ,

where q1(x, ρ) = q′◦(x,ρ)
f(x−ρ)+f(x+ρ)

. (2.2.6)

We integrate by parts with

u = q1(x, ρ), dv = d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ, then

I ′1 = 1
m+1

∫ x
0 q

′
1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ

− 1
m+1

[q1(x, ρ)(P (X < x− ρ) + P (X > x+ ρ))m+1]
x
0

= 1
m+1

∫ x
0 q

′
1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ

− 1
m+1

[q1(x, x) · (P (X > 2x))m+1 − q1(x, 0)]

= 1
m+1

I ′2+
1

m+1
q1(x, 0)− 1

m+1
q1(x, x)·(P (X > 2x))m+1, (2.2.7)

26



where I ′2 =
∫ x
0 q

′
1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ.

Evaluating I ′2:

I ′2 =
∫ x
0 q′1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ

= −1
m+2

∫ x
0

q′1(x,ρ)

f(x−ρ)+f(x+ρ)
d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ

= −1
m+2

∫ x
0 q2(x, ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ,

where q2(x, ρ) =
q′1(x,ρ)

f(x−ρ)+f(x+ρ)
. (2.2.8)

I ′2 = 1
m+2

∫ x
0 q

′
2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ

− 1
m+2

[q2(x, ρ)(P (X < x− ρ) + P (X > x+ ρ))m+2]
x
0

= 1
m+2

∫ x
0 q

′
2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ

− 1
m+2

[q2(x, x) · (P (X > 2x))m+2 − q2(x, 0)]

= 1
m+2

q2(x, 0)− 1
m+2

q2(x, x)·(P (X > 2x))m+2+ 1
m+2

I ′3, (2.2.9)

where I ′3 = I ′3(x) =
∫ x
0 q

′
2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ.

By repeating this procedure, we can obtain an asymptotic expansion for I ′(x)
in the form:

I ′ = q◦(x, 0)− q◦(x, x) · (P (X > 2x))m+ q1(x,0)
m+1

− q1(x,x)
m+1

(P (X > 2x))m+1

+ q2(x,0)
(m+1)(m+2)

− q2(x,x)
(m+1)(m+2)

(P (X > 2x))m+2 + ...+ qk(x,0)
(m+1)(m+2)...(m+k)

− qk(x,x)
(m+1)(m+2)...(m+k)

(P (X > 2x))m+k + 1
(m+1)(m+2)...(m+k)

I ′k+1,

where I ′k+1 = I ′k+1(x) =
∫ x
0 q

′
k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ

k = 1, 2, 3, ...
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Now we evaluate I ′′.

I ′′ = m
∫∞
x f2(x+ ρ) [P (X > x+ ρ)]m−1 dρ

= −
∫∞
x

f2(x+ρ)
f(x+ρ)

d
dρ

[P (X > x+ ρ)]m dρ

= −
∫∞
x λ◦(x, ρ)

d
dρ

[P (X > x+ ρ)]m dρ,

where λ◦(x, ρ) = f2(x+ρ)
f(x+ρ)

. (2.2.11)

Let u = λ◦(x, ρ), dv = d
dρ

[P (X > x+ ρ)]m dρ,

du = λ′◦(x, ρ)dρ, v = [P (X > x+ ρ)]m.

Then
I ′′ =

∫∞
x λ′◦(x, ρ) [P (X > x+ ρ)]m − [λ◦(x, ρ)(P (X > x+ ρ))m]∞x

=
∫∞
x λ′◦(x, ρ) [P (X > x+ ρ)]m dρ+λ◦(x, x) · (P (X > 2x))m

= λ◦(x, x)·(P (X > 2x))m+I ′′1 , (2.2.12)

where I ′′1 = I ′′1 (x) =
∫∞
x λ′◦(x, ρ) [P (X > x+ ρ)]m dρ.

We estimate I ′′1 .

I ′′1 =
∫∞
x λ′◦(x, ρ) [P (X > x+ ρ)]m dρ

= −1
m+1

∫∞
x

λ′◦(x,ρ)
f(x+ρ)

d
dρ

[P (X > x+ ρ)]m+1 dρ

= −1
m+1

∫∞
x λ1(x, ρ)

d
dρ

[P (X > x+ ρ)]m+1 dρ,

where λ1(x, ρ) = λ′◦(x,ρ)
f(x+ρ)

. (2.2.13)

We integrate by parts with

u = λ1(x, ρ), dv = d
dρ

[P (X > x+ ρ)]m+1 dρ, then
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I ′′1 = 1
m+1

∫∞
x λ′1(x, ρ) [P (X > x+ ρ)]m+1 dρ

− 1
m+1

[λ1(x, ρ)(P (X > x+ ρ))m+1]
∞
x

= 1
m+1

∫∞
x λ′1(x, ρ) [P (X > x+ ρ)]m+1 dρ+ 1

m+1
λ1(x, x)(P (X > 2x))m+1

= 1
m+1

λ1(x, x)(P (X > 2x))m+1+ 1
m+1

I ′′2 , (2.2.14)

where I ′′2 = I ′′2 (x) =
∫∞
x λ′1(x, ρ) [P (X > x+ ρ)]m+1 dρ.

We estimate I ′′2 .

I ′′2 =
∫∞
x λ′1(x, ρ) [P (X > x+ ρ)]m+1 dρ

= −1
m+2

∫∞
x

λ′1(x,ρ)

f(x+ρ)
d
dρ

[P (X > x+ ρ)]m+2 dρ

= −1
m+2

∫∞
x λ2(x, ρ)

d
dρ

[P (X > x+ ρ)]m+2 dρ,

where λ2(x, ρ) =
λ′1(x,ρ)

f(x+ρ)
. (2.2.15)

We integrate by parts with

u = λ2(x, ρ), dv = d
dρ

[P (X > x+ ρ)]m+2 dρ, then

I ′′2 = 1
m+2

∫∞
x λ′2(x, ρ) [P (X > x+ ρ)]m+2 dρ

− 1
m+2

[λ2(x, ρ)(P (X > x+ ρ))m+2]
∞
x

= 1
m+2

∫∞
x λ′2(x, ρ) [P (X > x+ ρ)]m+2 dρ+ 1

m+2
λ2(x, x)(P (X > 2x))m+2

= 1
m+2

λ2(x, x) (P (X > 2x))m+2 + 1
m+2

I ′′3 , (2.2.17)

where I ′′3 = I ′′3 (x) =
∫∞
x λ′2(x, ρ) [P (X > x+ ρ)]m+2 dρ.

By repeating this procedure, we can obtain an asymptotic expansion for I ′′(x)
in the form:
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I ′′ = λ◦(x, x) · (P (X > 2x))m + λ1(x,x)
m+1

(P (X > 2x))m+1

+ λ2(x,x)
(m+1)(m+2)

(P (X > 2x))m+2 + ...+ λk(x,x)
(m+1)(m+2)...(m+k)

(P (X > 2x))m+k

+ 1
(m+1)(m+2)...(m+k)

I ′′k+1,

where I ′′k+1 = I ′′k+1(x) =
∫∞
x λ′k(x, ρ) [P (X > x+ ρ)]m+k dρ k = 1, 2, 3, ...

Similarly, we can show that I ′k+1(m), I ′′k+1(m) → 0 when m→∞ for all k ≥ 2
under suitable conditions as in part (2.1).

2.2.2 Lemma

Assume that there exist j, l such that the following conditions are satisfied

(i)
∣∣∣q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ] j

∣∣∣ is bounded for ρ and

(ii) [P (X < x− ρ) + P (X > x+ ρ) ] l is integrable for ρ.

Then I ′k+1 → 0 when m→∞,

where I ′k+1 =
∫ x
0 q

′
k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ]m+k dρ.

Proof:
As in part (2.1).

2.2.3 Lemma

Assume that there exist j, l such that the following conditions are satisfied

(i)
∣∣∣λ′k(x, ρ) [P (X > x+ ρ)]j

∣∣∣ is bounded for ρ and

(ii) [P (X > x+ ρ)]l is integrable for ρ.

Then I ′′k+1 → 0 when m→∞,

where I ′′k+1 =
∫∞
x λ′k(x, ρ) [P (X > x+ ρ)]m+k dρ.
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Proof:
As in part (2.1)

Now we give an example for exponential distribution to show that the con-
ditions (i) and (ii) in the above Lemmas are satisfied in the case of support
(0,∞).

2.2.4 Example

Let f1(x) = ae−ax, f2(x) = be−bx be two densities for exponential distribu-
tions with prior probabilities p1, p2 such that p1+p2 = 1, and f = p1f1+p2f2.

Fix x > 0. Firstly we show that there exist j such that∣∣∣q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ] j
∣∣∣ is bounded for ρ.

Since q2(x, ρ) =
q′1
g

then

q′2(x, ρ) =
(
q′1
g

)′
= h′′′g−6h′′g′g2−h′g′′g2−7hgg′g′′+3h′(g′)2g+3h(g′)3

g6
,

where h(x, ρ) = f2(x+ ρ) + f2(x− ρ), and g(x, ρ) = f(x+ ρ) + f(x− ρ).

Substituting these functions in the above equation, q′2(x, ρ) can be bounded
in the form:

q′2(x, ρ) ≤ C1

(e−a(x+ρ))
2 ≤ C2e

C3ρ.

Since [P (X < x− ρ) + P (X > x+ ρ) ] = [P (|X − x| > ρ)]

= P
(
et|X−x| > etρ

)
≤ Eet|X−x|

etρ ≤ C4

etρ , then

[P (X < x− ρ) + P (X > x+ ρ) ] j ≤ C5e
−jtρ,

where 0 < t < min{a, b}. Then∣∣∣q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ] j
∣∣∣ ≤ C2e

C3ρC5e
−jtρ ≤ C6e

(C3−jt)ρ
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That is, we can find j such that∣∣∣q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ] j
∣∣∣ is bounded for ρ.

Now we show that there exists l such that [P (X < x− ρ) + P (X > x+ ρ) ] l is
integrable for ρ.

Above we showed that
[
P (X < x− ρ) + P (X > x+ ρ) ]l ≤ C7e

−ltρ which
immediatedly shows integrability.

2.2.5 Corollary

I ′ = q◦(x, 0)− q◦(x, x) · (P (X > 2x))m +
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

−∑∞
k=1

qk(x,x)·(P (X>2x))m+k∏k

n=1
(m+n)

(2.2.18)

and

I ′′ = λ◦(x, x) ·(P (X > 2x))m+
∑∞
k=1

λk(x,x)·(P (X>2x))m+k∏k

n=1
(m+n)

(2.2.19)

under the condition that
I′k+1∏k

n=1
(m+n)

and
I′′k+1∏k

n=1
(m+n)

tend to zero when k →∞,

where
I ′k+1 =

∫ x
0 q

′
k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ]m+k dρ,

I ′′k+1 =
∫∞
x λ′k(x, ρ) [P (X > x+ ρ)]m+k dρ,

qk(x, 0), qk(x, x) and λk(x, x) are defined as in Lemma 2.2.1.

2.2.6 Lemma

Let the conditions of Lemmas 2.2.1-2.2.3 and Corollary 2.2.5 be satisfied.
Then

I = q◦(x, 0) + (λ◦(x, x)− q◦(x, x)) · (P (X > 2x))m +
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x)−qk(x,x))·(P (X>2x))m+k∏k

n=1
(m+n)

(2.2.20)
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where qk(x, 0), qk(x, x) and λk(x, x) are defined as in Lemma 2.2.1.

Proof:
Substituting (2.2.18) and (2.2.19) into (2.2.1).

Similarly, we can obtain an asymptotic expansion for J where

J =
∫∞
0 f1(x

′)mP (|X − x| > |x′ − x|)m−1dx′

= m
∫ x
0 (f1(x− ρ) + f1(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ) ]m−1 dρ

+m
∫∞
x f1(x+ ρ) [P (X > x+ ρ)]m−1 dρ.

2.2.7 Lemma

Under conditions as in Lemma 2.2.6, then

J = q◦(x, 0) +
(
λ◦(x, x)− q◦(x, x)

)
· (P (X > 2x))m +

∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x)−qk(x,x))·(P (X>2x))m+k∏k

n=1
(m+n)

(2.2.21)

where

q◦(x, ρ) = f1(x−ρ)+f1(x+ρ)
f(x−ρ)+f(x+ρ)

and qk(x, ρ) =
q′k−1(x,ρ)

f(x−ρ)+f(x+ρ)
for k ≥ 1,

and

λ◦(x, ρ) = f1(x+ρ)
f(x+ρ)

and λk(x, ρ) =
λ
′
k−1(x,ρ)

f(x+ρ)
for k ≥ 1.

2.2.8 Theorem

Let the conditions of Lemmas 2.2.6 and 2.2.7 be satisfied. Then

Rm(x) = P (θ
′ 6= θ |X = x)

= p1p2f1(x)f2(x)
f2(x)

+
∑∞
k=1

αk∏k

n=1
(m+n)

+β◦(P (X > 2x))m+
∑∞
k=1

βk(P (X>2x))m+k∏k

n=1
(m+n)

(2.2.22)
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where αk = p1p2
f(x)

(f1(x)qk(x, 0) + f2(x)qk(x, 0)), k = 1, 2, 3, ...

βk = p1p2
f(x)

(
f1(x) (λk(x, x)− qk(x, x)) + f2(x)

(
λk(x, x)− qk(x, x)

))
,

k = 0, 1, 2, ...

Proof:
Substituting (2.2.20) and (2.2.21) in to (1.4.9) we obtain

Rm(x) = p1p2 f1(x)
f(x)

{q◦(x, 0) + (λ◦(x, x)− q◦(x, x)) · (P (X > 2x))m

+
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x)−qk(x,x))·(P (X>2x))m+k∏k

n=1
(m+n)

}
+p1p2 f2(x)

f(x)

{
q◦(x, 0) +

(
λ◦(x, x)− q◦(x, x)

)
· (P (X > 2x))m

+
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x)−qk(x,x))·(P (X>2x))m+k∏k

n=1
(m+n)

}

= p1p2f1(x)f2(x)
f2(x)

+ p1p2
f(x)

∑∞
k=1

f1(x)qk(x,0)+f2(x)qk(x,0)∏k

n=1
(m+n)

+p1p2(P (X>2x))m

f(x)

(
f1(x) (λ◦(x, x)− q◦(x, x)) + f2(x)

(
λ◦(x, x)− q◦(x, x)

))
+p1p2
f(x)

∑∞
k=1

f1(x)(λk(x,x)−qk(x,x))+f2(x)(λk(x,x)−qk(x,x))(P (X>2x))m+k∏k

n=1
(m+n)

= p1p2f1(x)f2(x)
f2(x)

+
∑∞
k=1

αk∏k

n=1
(m+n)

+β◦(P (X > 2x))m +
∑∞
k=1

βk(P (X>2x))m+k∏k

n=1
(m+n)

,

where αk and βk are defined as above.
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2.3 Support S = (a, b) :

Firstly, we evaluate the asymptotic expansions for I and J in (1.4.9). From
equation (1.4.7)

I =
∫ b
a f2(x

′)m [P (|X − x| > |x′ − x|)]m−1 dx′

= m
∫ x
a f2(x

′) [P (|X − x| > |x′ − x|)]m−1 dx′

+m
∫ b
x f2(x

′) [P (|X − x| > |x′ − x|)]m−1 dx′

= m
∫ x
a f2(z) [P (X < z) + P (X > x+ (x− z))]m−1 dz

+m
∫ b
x f2(z) [P (X > z) + P (X < x− (z − x))]m−1 dz

= m
∫ x−a
0 f2(x− ρ) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

+m
∫ b−x
0 f2(x+ ρ) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

For the rest of 2.3 we only treat x−a ≤ b−x i.e. x ≤ a+b
2

. The case x ≥ a+b
2

is treated similarly. Then

I = m
∫ x−a
0 (f2(x− ρ) + f2(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ

+m
∫ b−x
x−a f2(x+ ρ) [P (X > x+ ρ)]m−1 dρ = I ′ + I ′′, (2.3.1)

where

I ′ = m
∫ x−a
0 (f2(x− ρ) + f2(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ)]m−1 dρ,

(2.3.2)

I ′′ = m
∫ b−x
x−a f2(x+ρ) [P (X > x+ ρ)]m−1 dρ. (2.3.3)

2.3.1 Lemma

Let x ∈ S, x ≤ a+b
2

. Assume that the densities fi are k−times differentiable
and f(z) > 0 for all z ∈ S. Define
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q◦(x, ρ) = f2(x−ρ)+f2(x+ρ)
f(x−ρ)+f(x+ρ)

and qk(x, ρ) =
q′k−1(x,ρ)

f(x−ρ)+f(x+ρ)
for k ≥ 1,

and
λ◦(x, ρ) = f2(x+ρ)

f(x+ρ)
and λk(x, ρ) =

λ′k−1(x,ρ)

f(x+ρ)
for k ≥ 1.

Then

I ′ = q◦(x, 0)+ q1(x,0)
m+1

+ q2(x,0)
(m+1)(m+2)

− q◦(x, x− a) · (P (X > 2x− a))m

− q1(x,x−a)
m+1

(P (X > 2x− a))m+1 − q2(x,x−a)
(m+1)(m+2)

(P (X > 2x− a))m+2

+...+ qk(x,0)
(m+1)(m+2)...(m+k)

− qk(x,x−a)
(m+1)(m+2)...(m+k)

(P (X > 2x− a))m+k

+ 1
(m+1)(m+2)...(m+k)

I ′k+1

and

I ′′ = λ◦(x, x− a) · (P (X > 2x− a))m + λ1(x,x−a)
m+1

(P (X > 2x− a))m+1

+ λ2(x,x−a)
(m+1)(m+2)

(P (X > 2x− a))m+2

+...+ λk(x,x−a)
(m+1)(m+2)...(m+k)

(P (X > 2x− a))m+k + 1
(m+1)(m+2)...(m+k)

I ′′k+1

where
I ′k+1 = I ′k+1(x) =

∫ x−a
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+k dρ

k = 1, 2, 3, ...

and
I ′′k+1 = I ′′k+1(x) =

∫ b−x
x−a λ

′
k(x, ρ) [P (X > x+ ρ)]m+k dρ k = 1, 2, 3, ...

Proof:
First we estimate I ′.

I ′ = −
∫ x−a
0

f2(x−ρ)+f2(x+ρ)
f(x−ρ)+f(x+ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m dρ

= −
∫ x−a
0 q◦(x, ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m dρ,

where q◦(x, ρ) = f2(x−ρ)+f2(x+ρ)
f(x−ρ)+f(x+ρ)

. (2.3.4)
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Let u = q◦(x, ρ), dv = d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m dρ,

du = q′◦(x, ρ)dρ, v = [P (X < x− ρ) + P (X > x+ ρ)]m.

Then
I ′ =

∫ x−a
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

− [q◦(x, ρ)(P (X < x− ρ) + P (X > x+ ρ))m]x−a0

=
∫ x−a
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

− [ q◦(x, x− a) · (P (X > 2x− a))m − q◦(x, 0) ]

= q◦(x, 0)−q◦(x, x−a)·(P (X > 2x−a))m+I ′1, (2.3.5)

where I ′1 = I ′1(x) =
∫ x−a
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ.

We evaluate I ′1.

I ′1 =
∫ x−a
0 q′◦(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m dρ

= −1
m+1

∫ x−a
0

q′◦(x,ρ)
f(x−ρ)+f(x+ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ

= −1
m+1

∫ x−a
0 q1(x, ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ,

where q1(x, ρ) = q′◦(x,ρ)
f(x−ρ)+f(x+ρ)

. (2.3.6)

We integrate by parts with

u = q1(x, ρ), dv = d
dρ

[P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ , then

I ′1 = 1
m+1

∫ x−a
0 q′1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ

− 1
m+1

[q1(x, ρ)(P (X < x− ρ) + P (X > x+ ρ))m+1]
x−a
0

= 1
m+1

∫ x−a
0 q′1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ

− 1
m+1

[ q1(x, x− a) · (P (X > 2x))m+1 − q1(x, 0) ]

37



= 1
m+1

q1(x, 0)− 1
m+1

q1(x, x− a) · (P (X > 2x− a))m+1 + 1
m+1

I ′2, (2.3.7)

where I ′2 =
∫ x−a
0 q′1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+1 dρ.

Evaluating I ′2:

I ′2 =
∫ x−a
0 q′1(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ]m+1 dρ

= −1
m+2

∫ x−a
0

q′1(x,ρ)

f(x−ρ)+f(x+ρ)
d
dρ

[P (X < x− ρ) + P (X > x+ ρ) ]m+2 dρ

= −1
m+2

∫ x−a
0 q2(x, ρ)

d
dρ

[P (X < x− ρ) + P (X > x+ ρ) ]m+2 dρ,

where q2(x, ρ) =
q′1(x,ρ)

f(x−ρ)+f(x+ρ)
. (2.3.8)

I ′2 = 1
m+2

∫ x−a
0 q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ]m+2 dρ

− 1
m+1

[q1(x, ρ)(P (X < x− ρ) + P (X > x+ ρ))m+2]
x−a
0

= 1
m+2

∫ x−a
0 q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ)]m+2 dρ

− 1
m+2

[q2(x, x− a) · (P (X > 2x− a))m+2 − q2(x, 0)]

= 1
m+2

q2(x, 0)− 1
m+2

q2(x, x−a)·(P (X > 2x−a))m+2+ 1
m+2

I ′3, (2.3.9)

where I ′3 = I ′3(x) =
∫ x−a
0 q′2(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ]m+2 dρ.

By repeating this procedure, we can obtain an asymptotic expansion for I ′(x)
in the form:

I ′ = q◦(x, 0)+ q1(x,0)
m+1

+ q2(x,0)
(m+1)(m+2)

− q◦(x, x− a) · (P (X > 2x− a))m

− q1(x,x−a)
m+1

(P (X > 2x− a))m+1 − q2(x,x−a)
(m+1)(m+2)

(P (X > 2x− a))m+2

+...+ qk(x,0)
(m+1)(m+2)...(m+k)

− qk(x,x−a)
(m+1)(m+2)...(m+k)

(P (X > 2x− a))m+k

+ 1
(m+1)(m+2)...(m+k)

I ′k+1,
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where
I ′k+1 = I ′k+1(x) =

∫ x−a
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ]m+k dρ

k = 1, 2, 3, ...

Now we evaluate I ′′.

I ′′ = m
∫ b−x
x−a f2(x+ ρ) [P (X > x+ ρ)]m−1 dρ

= −
∫ b−x
x−a

f2(x+ρ)
f(x+ρ)

d
dρ

[P (X > x+ ρ)]m dρ

= −
∫ b−x
x−a λ◦(x, ρ)

d
dρ

[P (X > x+ ρ)]m dρ,

where λ◦(x, ρ) = f2(x+ρ)
f(x+ρ)

. (2.3.10)

Let u = λ◦(x, ρ), dv = d
dρ

[P (X > x+ ρ)]m dρ,

du = λ′◦(x, ρ)dρ, v = [P (X > x+ ρ)]m.

Then
I ′′ =

∫ b−x
x−a λ

′
◦(x, ρ) [P (X > x+ ρ)]m dρ − [λ◦(x, ρ)(P (X > x+ ρ))m]b−xx−a

=
∫ b−x
x−a λ

′
◦(x, ρ) [P (X > x+ ρ)]m dρ +λ◦(x, x− a) · (P (X > 2x− a))m

= λ◦(x, x− a) · (P (X > 2x− a))m + I ′′1 , (2.3.11)

where I ′′1 = I ′′1 (x) =
∫ b−x
x−a λ

′
◦(x, ρ) [P (X > x+ ρ)]m dρ.

We estimate I ′′1 .

I ′′1 =
∫ b−x
x−a λ

′
◦(x, ρ) [P (X > x+ ρ)]m dρ

= −1
m+1

∫ b−x
x−a

λ′◦(x,ρ)
f(x+ρ)

d
dρ

[P (X > x+ ρ)]m+1 dρ

= −1
m+1

∫ b−x
x−a λ1(x, ρ)

d
dρ

[P (X > x+ ρ)]m+1 dρ,

where λ1(x, ρ) = λ′◦(x,ρ)
f(x+ρ)

. (2.3.12)
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We integrate by parts with

u = λ1(x, ρ), dv = d
dρ

[P (X > x+ ρ)]m+1 dρ, then

I ′′1 = 1
m+1

∫ b−x
x−a λ

′
1(x, ρ) [P (X > x+ ρ)]m+1 dρ

− 1
m+1

[λ1(x, ρ)(P (X > x+ ρ))m+1]
b−x
x−a

= 1
m+1

∫ b−x
x−a λ

′
1(x, ρ) [P (X > x+ ρ)]m+1 dρ

+ 1
m+1

λ1(x, x− a) (P (X > 2x− a))m+1

= 1
m+1

λ1(x, x−a)(P (X > 2x−a))m+1 + 1
m+1

I ′′2 , (2.3.13)

where I ′′2 = I ′′2 (x) =
∫ b−x
x−a λ

′
1(x, ρ) [P (X > x+ ρ)]m+1 dρ.

We estimate I ′′2 .

I ′′2 =
∫ b−x
x−a λ

′
1(x, ρ) [P (X > x+ ρ)]m+1 dρ

= −1
m+2

∫ b−x
x−a

λ′1(x,ρ)

f(x+ρ)
d
dρ

[P (X > x+ ρ)]m+2 dρ

= −1
m+2

∫ b−x
x−a λ2(x, ρ)

d
dρ

[P (X > x+ ρ)]m+2 dρ,

where λ2(x, ρ) =
λ′1(x,ρ)

f(x+ρ)
. (2.3.14)

We integrate by parts with

u = λ2(x, ρ), dv = d
dρ

[P (X > x+ ρ)]m+2 dρ, then

I ′′2 = 1
m+2

∫ b−x
x−a λ

′
2(x, ρ) [P (X > x+ ρ)]m+2 dρ

− 1
m+2

[λ2(x, ρ)(P (X > x+ ρ))m+2]
b−x
x−a

= 1
m+2

∫ b−x
x−a λ

′
2(x, ρ) [P (X > x+ ρ)]m+2 dρ

+ 1
m+2

λ2(x, x− a)(P (X > 2x− a))m+2
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= 1
m+2

λ2(x, x−a)(P (X > 2x−a))m+2 + 1
m+2

I ′′3 , (2.3.15)

where I ′′3 = I ′′3 (x) =
∫ b−x
x−a λ

′
2(x, ρ) [P (X > x+ ρ)]m+2 dρ.

By repeating this procedure, we can obtain an asymptotic expansion for I ′′(x)
in the form:

I ′′ = λ◦(x, x− a) · (P (X > 2x− a))m + λ1(x,x−a)
m+1

(P (X > 2x− a))m+1

+ λ2(x,x−a)
(m+1)(m+2)

(P (X > 2x− a))m+2

+...+ λk(x,x−a)
(m+1)(m+2)...(m+k)

(P (X > 2x− a))m+k + 1
(m+1)(m+2)...(m+k)

I ′′k+1

where I ′′k+1 = I ′′k+1(x) =
∫ b−x
x−a λ

′
k(x, ρ) [P (X > x+ ρ)]m+k dρ k = 1, 2, 3, ...

Similarly, we can show that I ′k+1(m), I ′′k+1(m) → 0 when m → ∞ for all
k ≥ 2 under suitable conditions as in part (2.1).

2.3.2 Lemma

Assume that there exist j, l such that the following conditions are satisfied

(i)
∣∣∣q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ] j

∣∣∣ is bounded for ρ and

(ii) [P (X < x− ρ) + P (X > x+ ρ) ] l is integrable for ρ.

Then I ′k+1 → 0 when m→∞,

where I ′k+1 =
∫ x−a
0 q′k(x, ρ) [P (X < x− ρ) + P (X > x+ ρ) ]m+k dρ.

Proof:
As in part (2.1).

2.3.3 Lemma

Assume that there exist j, l such that the following conditions are satisfied
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(i)
∣∣∣λ′k(x, ρ) [P (X > x+ ρ)]j

∣∣∣ is bounded for ρ and

(ii) [P (X > x+ ρ)]l is integrable for ρ.

Then I ′′k+1 → 0 when m→∞,

where I ′′k+1 =
∫ b−x
x−a λ

′
k(x, ρ) [P (X > x+ ρ)]m+k dρ.

Proof:
As in part (2.1).

2.3.4 Corollary

I ′ = q◦(x, 0)− q◦(x, x− a)(P (X > 2x− a))m

+
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

−∑∞
k=1

qk(x,x−a)(P (X>2x−a))m+k∏k

n=1
(m+n)

(2.3.16)

and
I ′′ = λ◦(x, x−a)(P (X > 2x−a))m+

∑∞
k=1

λk(x,x−a)(P (X>2x−a))m+k∏k

n=1
(m+n)

(2.3.17)

under the condition
I′k+1∏k

n=1
(m+n)

and
I′′k+1∏k

n=1
(m+n)

that tend to zero when k →∞,

where qk(x, 0), qk(x, x− a) and λk(x, x− a) are defined as in Lemma 2.3.1.

2.3.5 Lemma

Let the conditions of Lemmas 2.3.1-2.3.3 and Corollary 2.3.4 be satisfied.
Then

I = q◦(x, 0) + (λ◦(x, x− a)− q◦(x, x− a)) (P (X > 2x− a))m

+
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x−a)−qk(x,x−a))(P (X>2x−a))m+k∏k

n=1
(m+n)

, (2.3.18)

where qk(x, 0), qk(x, x− a) and λk(x, x− a) are defined as above in Lemma
2.3.1.

Proof:
Substituting (2.3.16) and (2.3.17) in to (2.3.1).
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Similarly, we can obtain an asymptotic expansion for J where

J =
∫ b
a f1(x

′)mP (|X − x| > |x′ − x|)m−1dx′

= m
∫ x−a
0 (f1(x− ρ)+ f1(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ) ]m−1 dρ

+m
∫ b−x
x−a f1(x+ ρ) [P (X > x+ ρ) ]m−1 dρ

2.3.6 Lemma

Under suitable conditions as in Lemma 2.3.5

J = q◦(x, 0) +
(
λ◦(x, x− a)− q◦(x, x− a)

)
(P (X > 2x− a))m

+
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x−a)−qk(x,x−a))(P (X>2x−a))m+k∏k

n=1
(m+n)

(2.3.19)

where
q◦(x, ρ) = f1(x−ρ)+f1(x+ρ)

f(x−ρ)+f(x+ρ)
and qk(x, ρ) =

q′k−1(x,ρ)

f(x−ρ)+f(x+ρ)
for k ≥ 1,

and

λ◦(x, ρ) = f1(x+ρ)
f(x+ρ)

and λk(x, ρ) =
λ
′
k−1(x,ρ)

f(x+ρ)
for k ≥ 1.

2.3.7 Theorem

Let the conditions of Lemmas 2.3.5 and 2.3.6 be satisfied. Then

Rm(x) = P (θ
′ 6= θ |X = x) = p1p2f1(x)f2(x)

f2(x)
+
∑∞
k=1

ζk∏k

n=1
(m+n)

+ξ◦(P (X > 2x−a))m+
∑∞
k=1

ξk(P (X>2x−a))m+k∏k

n=1
(m+n)

(2.3.20)

where
ζk = p1p2

f(x)
[f1(x) qk(x, 0) + f2(x) qk(x, 0)], k = 1, 2, 3, ...

ξk = p1p2
f(x)

[f1(x) (λk(x, x− a)− qk(x, x− a))

+f2(x)
(
λk(x, x− a)− qk(x, x− a)

)]
, k = 0, 1, 2, ...
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Proof:
Substituting (2.3.18) and (2.3.19) in to (1.4.9). We hence obtain

Rm(x) = p1p2f1(x)
f(x)

{q◦(x, 0) + (λ◦(x, x− a)− q◦(x, x− a)) (P (X > 2x− a))m

+
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x−a)−qk(x,x−a))(P (X>2x−a))m+k∏k

n=1
(m+n)

}

+p1p2f2(x)
f(x)

{
q◦(x, 0) +

(
λ◦(x, x− a)− q◦(x, x− a)

)
(P (X > 2x− a))m

+
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x−a)−qk(x,x−a))(P (X>2x−a))m+k∏k

n=1
(m+n)

}

= p1p2f1(x)f2(x)
f2(x)

+ p1p2
f(x)

∑∞
k=1

f1(x)qk(x,0)+f2(x)qk(x,0)∏k

n=1
(m+n)

+p1p2(P (X>2x−a))m

f(x)
[f1(x)(λ◦(x, x− a)− q◦(x, x− a))

+f2(x)(λ◦(x, x− a)− q◦(x, x− a)
]

+p1p2
f(x)

∑∞
k=1

f1(x)(λk(x,x−a)−qk(x,x−a))+f2(x)(λk(x,x−a)−qk(x,x−a))(P (X>2x−a))m+k∏k

n=1
(m+n)

= p1p2f1(x)f2(x)
f2(x)

+
∑∞
k=1

ζk∏k

n=1
(m+n)

+ξ◦(P (X > 2x− a))m

+
∑∞
k=1

ξk(P (X>2x−a))m+k∏k

n=1
(m+n)

.
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2.4 Special Case: S = (0, 1)

We can obtain an expansion for P (θ
′ 6= θ |X = x) when the support is S =

(0, 1) by using a = 0, b = 1 in the previous part. Then we obtain the following
form for 0 ≤ x ≤ 1

2
:

Rm(x) = p1p2f1(x)
f(x)

{q◦(x, 0) + (λ◦(x, x)− q◦(x, x)) (P (X > 2x))m

+
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x)−qk(x,x))(P (X>2x))m+k∏k

n=1
(m+n)

}

+p1p2 f2(x)
f(x)

{
q◦(x, 0) +

(
λ◦(x, x)− q◦(x, x)

)
(P (X > 2x))m

+
∑∞
k=1

qk(x,0)∏k

n=1
(m+n)

+
∑∞
k=1

(λk(x,x)−qk(x,x))(P (X>2x))m+k∏k

n=1
(m+n)

}

= p1p2f1(x)f2(x)
f2(x)

+
∑∞
k=1

ζk∏k

n=1
(m+n)

+ξ◦(P (X > 2x))m

+
∑∞
k=1

ξk (P (X>2x))m+k∏k

n=1
(m+n)

, (2.4.1)

where

ζk = p1p2
f(x)

(f1(x)qk(x, 0) + f2(x)qk(x, 0)) , k = 1, 2, 3, ...

ξk = p1p2
f(x)

[
f1(x)(λk(x, x)− qk(x, x)) + f2(x)(λk(x, x)− qk(x, x))

]
,

k = 0, 1, 2, ...
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3 Integrating the Asymptotic Expansion for

Rm(x)

In the previous chapter we evaluated the probability of error conditioned on
the event {X = x} by averaging P (θ

′ 6= θ |X ′ = x′, X = x) over the value of
the nearest neighbor of x to obtain an asymptotic expansion for Rm(x) =

P
(
θ
′ 6= θ |X = x

)
.

Now we shall attempt to average this result over x in order to obtain an
asymptotic expansion for Rm. Hence Rm take the form as (1.4.1):

Rm =
∫
S P (θ

′ 6= θ |X = x) f(x) dx (3.0.1)

There we find essentially different situations for bounded and unbounded
support.

Integrating P
(
θ
′ 6= θ |X = x

)
with respect to x we find that, in examples like

the normal and exponential distribution, the integrals diverge. This seems
to be typical for the case of unbounded support.

3.1 The Case of Unbounded Support

In this section we shall present an example for normal distributions where
S = (−∞,∞), and an example for exponential distributions where S =
(0,∞).

3.1.1 The Example of Normal Distributions

Let f1(x) = 1
σ1

√
2π
e
− (x−a)2

2σ2
1 , f2(x) = 1

σ2

√
2π
e
− (x−b)2

2σ2
2 be two densities for normal

distributions with prior probabilities p1, p2 such that p1 + p2 = 1, and let
σ1 = σ2 = 1.

Let us look at the expansion up to the second order. Then

Rm(x) = 2 p1p2f1(x)f2(x)
f2(x)

+ 1
(m+1)(m+2)

(
p1p2 f1(x)
f(x)

q2(x, 0) + p1p2 f2(x)
f(x)

q2(x, 0)
)

+ 1
(m+1)(m+2)

(I3 + J3),
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where I3, and J3 as in Lemma 2.1.1.

Substituting this equation in to (3.0.1) we would obtain formally

Rm =
∫∞
−∞

2 p1p2 f1(x)f2(x)
f(x)

dx

+
∫∞
−∞

1
(m+1)(m+2)

(p1p2f1(x)q2(x, 0) + p1p2f2(x)q2(x, 0)) dx

+
∫∞
−∞

f(x)(I3+J3)
(m+1)(m+2)

dx,

where

q2(x, 0) = h′′(x,0)g(x,0)−h(x,0)g′′(x,0)
g4(x,0)

, q2(x, 0) = h
′′
(x,0)g(x,0)−h(x,0)g′′(x,0)

g4(x,0)
,

h(x, ρ) = f2(x+ ρ) + f2(x− ρ), h(x, ρ) = f1(x+ ρ) + f1(x− ρ),

g(x, ρ) = f(x+ ρ) + f(x− ρ), and f(x) = p1f1(x) + p2f2(x).

Then

h(x, 0) = 2f2(x) = 2√
2π
e−

(x−b)2

2 , h(x, 0) = 2f1(x) = 2√
2π
e−

(x−a)2

2 ,

h′′(x, 0) = 2((x−b)2−1)√
2π

e−
(x−b)2

2 , h
′′
(x, 0) = 2((x−a)2−1)√

2π
e−

(x−a)2

2 ,

g(x, 0) = 2f(x) = 2p1√
2π
e−

(x−a)2

2 + 2p2√
2π
e−

(x−b)2

2 , and

g′′(x, 0) = 2p1((x−a)2−1)√
2π

e−
(x−a)2

2 + 2p2((x−b)2−1)√
2π

e−
(x−b)2

2 .

Now, by using these functions to evaluate the second integral we find that

L =
∫∞
−∞

1
(m+1)(m+2)

(p1p2f1(x)q2(x, 0) + p1p2f2(x)q2(x, 0)) dx

= p1p2
(m+1)(m+2)

(∫∞
−∞

f1(x)h′′(x,0)g(x,0)−f1(x)h(x,0)g′′(x,0)
g4(x,0)

dx

+
∫∞
−∞

f2(x)h
′′
(x,0)g(x,0)−f2(x)h(x,0)g′′(x,0)

g4(x,0)
dx
)

These integrals can be written in the form
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L = p1p2
(m+1)(m+2)

(∫∞
−∞C1(x)e

(x−a)2

2 dx +
∫∞
−∞C2(x)e

(x−b)2

2 dx
)

Looking at C1(x) and C2(x), it is easily seen that these integrals are divergent,
that is, the integrals in the expansion of Rm(x) with respect to x in the case
of normal distribution diverge.

3.1.2 The Example of Exponential Distributions

Let f1(x) = ae−ax, f2(x) = be−bx be two densities for exponential distribu-
tions with prior probabilities p1, p2 such that p1 + p2 = 1, and a, b > 0.

Let us look at the expansion up to the second order. Then

Rm(x) = 2p1p2f1(x)f2(x)
f2(x)

+ P1P2

(m+1)(m+2)f(x)
(f1(x)q2(x, 0) + f2(x)q2(x, 0))

+p1p2
f(x)

(f1(x) (λ◦(x, x)− q◦(x, x))

+f2(x)
(
λ◦(x, x)− q◦(x, x)

))
(P (X > 2x))m

+ p1p2
(m+1)f(x)

(f1(x) (λ1(x, x)− q1(x, x))

+f2(x)
(
λ1(x, x)− q1(x, x)

))
(P (X > 2x))m+1

+ p1p2
(m+1)(m+2)f(x)

(f1(x) (λ2(x, x)− q2(x, x))

+f2(x)
(
λ2(x, x)− q2(x, x)

))
(P (X > 2x))m+2 + (I3+J3)

(m+1)(m+2)

where I3 = I ′3 + I ′′3 , and J3 = J ′3 + J ′′3 as in part 2.2.

Substituting this equation in to (3.0.1) we would obtain formally

Rm =
∫∞
0

2p1p2f1(x)f2(x)
f(x)

dx+
∫∞
0

p1p2
(m+1)(m+2)

(f1(x)q2(x, 0) + f2(x)q2(x, 0)) dx

+
∫∞
0 β◦(P (X > 2x))mf(x)dx+

∫∞
0

p1p2
(m+1)

(f1(x) (λ1(x, x)− q1(x, x))

+f2(x)
(
λ1(x, x)− q1(x, x)

))
(P (X > 2x))m+1dx
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+
∫∞
0

p1p2
(m+1)(m+2)

(f1(x) (λ2(x, x)− q2(x, x))

+f2(x)
(
λ2(x, x)− q2(x, x)

))
(P (X > 2x))m+2dx

+
∫∞
0

f(x)(I3+J3)
(m+1)(m+2)

dx,

where
q2(x, 0) = h′′(x,0)g(x,0)−h(x,0)g′′(x,0)

g4(x,0)
, q2(x, 0) = h

′′
(x,0)g(x,0)−h(x,0)g′′(x,0)

g4(x,0)
,

h(x, ρ) = f2(x+ ρ) + f2(x− ρ), h(x, ρ) = f1(x+ ρ) + f1(x− ρ),

g(x, ρ) = f(x+ ρ) + f(x− ρ), and f(x) = p1f1(x) + p2f2(x).

Then
h(x, 0) = 2f2(x) = 2b e−bx, h(x, 0) = 2f1(x) = 2a e−ax,

h′′(x, 0) = 2b3e−bx, h
′′
(x, 0) = 2a3e−ax,

g(x, 0) = 2f(x) = 2p1ae
−ax + 2p2be

−bx, and

g′′(x, 0) = 2p1a
3e−ax + 2p2b

3e−bx.

Now, by using these functions to evaluate the second integral we find that

L =
∫∞
0

p1p2
(m+1)(m+2)

(f1(x)q2(x, 0) + f2(x)q2(x, 0)) dx

= p1p2
(m+1)(m+2)

(∫∞
0

f1(x)h′′(x,0)g(x,0)−f1(x)h(x,0)g′′(x,0)
g4(x,0)

dx

+
∫∞
0

f2(x)h
′′
(x,0)g(x,0)−f2(x)h(x,0)g′′(x,0)

g4(x,0)
dx
)

These integrals can be written in the form

L = p1p2
(m+1)(m+2)

(∫∞
0 C1e

axdx+
∫∞
0 C2e

bxdx
)

Looking at C1(x) and C2(x), it is clear that these integrals are divergent,
that is, the integrals in the expansion of Rm(x) with respect to x in the case
of exponential distribution diverge.
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3.2 The Case of Bounded Support

In this case we present the following condition, and an asymptotic expansion
for Rm in the case of triangular distributions.

3.2.1 A General Condition

Assume that the denominator in our expansions is bounded away from zero.
Then we may integrate the asymptotic expansion.

We present the example of triangular distributions such that S = (0, 1).

3.2.2 The case of triangular distributions

Consider the one-dimensional triangular distribution over the unit interval,
f1(x) = 2 − 2x, and f2(x) = 2x with prior probabilities p1 = p2 = 1

2
. Then

the density f = p1f1 + p2f2 is uniform on [0, 1]. We may use the special
case (2.4) when S = (0, 1). Thus using the expansion up to second order we
obtain

Rm =
∫ 1
0 p1p2f1(x) {q◦(x, 0) + (λ◦(x, x)− q◦(x, x)) · (P (X > 2x))m

+ 1
m+1

λ1(x, x)(P (X > 2x))m+1
}
dx

+
∫ 1
0 p1p2f2(x)

{
q◦(x, 0) +

(
λ◦(x, x)− q◦(x, x)

)
· (P (X > 2x))m

+ 1
m+1

λ1(x, x)(P (X > 2x))m+1
}
dx+ ...

Since q1 = q1 = 0 and all second derivatives of f1 and f2 are identically zero
the remainder term is equal to zero.

Using symmetry with respect to the point 1/2 we get

Rm = 1
2

∫ 1
2

0 (2− 2x) ·
{
2x+ 2x (1− 2x)m + 2

m+1
(1− 2x)m+1

}
dx

+1
2

∫ 1
2

0 2x ·
{
(2− 2x)− 2x (1− 2x)m − 2

m+1
(1− 2x)m+1

}
dx

= 2
{∫ 1

2
0 (x− x2)dx+

∫ 1
2

0 (x− x2)(1− 2x)mdx+
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+ 1
m+1

∫ 1
2

0 (1− x)(1− 2x)m+1dx+
∫ 1

2
0 (x− x2)dx

−
∫ 1

2
0 x2(1− 2x)mdx− 1

m+1

∫ 1
2

0 x(1− 2x)m+1dx
}

= 4
∫ 1

2
0 (x− x2)dx+ 2

∫ 1
2

0 (x− 2x2)(1− 2x)mdx

+ 2
m+1

∫ 1
2

0 (1− 2x)(1− 2x)m+1dx

= 1
3

+ 1
2(m+1)(m+2)

− 1
(m+1)(m+2)(m+3)

+ 1
(m+1)(m+3)

= 1
3

+ 3m+5
2(m+1)(m+2)(m+3)

We remark that in this case the infinite sample risk R∞ = 1
3

and the rate of
convergence of Rm to R∞ is O(m−2). This example was treated by differnt
methods in [2].
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4 The Asymptotic Evaluation of Rm(x) by

Laplace’s Method

In this chapter we present another method to evaluate Rm(x) . In chapter
one, we showed that

Rm(x) = P (θ
′ 6= θ |X = x) =

p1p2f1(x)

f(x)
I +

p1p2f2(x)

f(x)
J

The method of evaluation Rm(x) proceeds in several stages:

First, we derive an exact integral expression for I and J in the form
∫
S g e

−mh

where g and h are nonnegative functions. For largem, this integral appears to
be in a form amenable to Laplace’s asymptotic method. This asserts that for
large m the dominant contribution to the integral arises from a neighborhood
of the point where h has a minimum. If h has more than one minimum, then
the domain of integration can be partitioned so that each subdomain contains
only one minimum.

Second, we represent g and h as asymptotic power series in a neighborhood of
this minimum, and then the integral itself may be represented as an asymp-
totic power series in reciprocal powers of m, compare [19], [20].

4.1 A General Result

From chapter one, the probability of error conditioned on the event {X = x}
can be written in the form

Rm+1(x) = P (θ
′ 6= θ |X = x) = p1p2f1(x)

f(x)
I+p1p2f2(x)

f(x)
J (4.1.1)

where
I = I(x) = (m+ 1)

∫∞
−∞ f2(x

′)(P (|X − x| > |x′ − x|))mdx′

= (m+ 1)
∫∞
0 (f2(x− ρ) + f2(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ) ]m dρ

= (m+1)
∫∞
0 (f2(x−ρ)+f2(x+ρ)) (1− (F (x+ ρ)− F (x− ρ)))m dρ (4.1.2)

and
J = J(x) = (m+ 1)

∫∞
−∞ f1(x

′)(P (|X − x| > |x′ − x|))m dx′
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= (m+ 1)
∫∞
0 (f1(x− ρ) + f1(x+ ρ)) [P (X < x− ρ) + P (X > x+ ρ) ]m dρ

= (m+1)
∫∞
0 (f1(x−ρ)+f1(x+ρ)) (1− (F (x+ ρ)− F (x− ρ)))m dρ (4.1.3)

Putting P (x, ρ) = − log (1− (F (x+ ρ)− F (x− ρ))) (4.1.4)

=⇒ e−mP (x,ρ) = (1− (F (x+ ρ)− F (x− ρ)))m

Then the integrals of I and J take the forms:

I = (m+1)
∫∞
0 (f2(x−ρ)+f2(x+ρ))e

−mP (x,ρ)dρ = (m+1)I1 (4.1.5)

J = (m+1)
∫∞
0 (f1(x−ρ)+f1(x+ρ))e−mP (x,ρ)dρ = (m+1)J1 (4.1.6)

where
I1 =

∫∞
0 (f2(x− ρ) + f2(x+ ρ))e−mP (x,ρ)dρ,

and
J1 =

∫∞
0 (f1(x− ρ) + f1(x+ ρ))e−mP (x,ρ)dρ.

The above integrals have the desired form, so that we can apply Laplace’s
method for fixed x.

The asymptotic expansions for I1 and J1 are given by the following Lemma.
For this Lemma, we set Q(x, ρ) = f2(x − ρ) + f2(x + ρ), and Q(x, ρ) =
f1(x− ρ) + f1(x+ ρ). We proceed as in [17].

4.1.1 Lemma

Let the functions P (x, ρ), Q(x, ρ), and Q(x, ρ) be defined as above. Assume
that the following conditions are satisfied:

(i) f1, f2 have a power series expansion.

(ii) I1(m) ≡
∫∞
0 e−mP (x,ρ)Q(x, ρ) dρ, J1(m) ≡

∫∞
0 e−mP (x,ρ)Q(x, ρ) dρ

converge absolutely throughout its range for all sufficiently large m.
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Then

I1 =
∫∞
0 e−mP (x,ρ)Q(x, ρ) dρ ∼ e−mP (x,0) ∑N−1

s=0 Γ(s+ 1) as

ms+1 +O(m−(N+1)),

and

J1 =
∫∞
0 e−mP (x,ρ)Q(x, ρ) dρ ∼ e−mP (x,0) ∑N−1

s=0 Γ(s+ 1) a′s
ms+1 +O(m−(N+1))

where the as and a′s are defined through the proof, and Γ denotes the Gamma
function s.t. Γ(x) =

∫∞
0 e−ttx−1dt.

Proof:
We start by expanding I1:

(i) We compute an asymptotic expansion for the function Q(x, ρ) .

By using a Taylor expansion for the functions f2(x + ρ) and f2(x − ρ), we
obtain

f2(x+ ρ) = f2(x) + f ′2(x)
ρ
1!

+ f ′′2 (x)ρ
2

2!
+ f ′′′2 (x)ρ

3

3!
+ ...,

f2(x− ρ) = f2(x)− f ′2(x)
ρ
1!

+ f ′′2 (x)ρ
2

2!
− f ′′′2 (x)ρ

3

3!
+ ...

Then
f2(x+ ρ) + f2(x− ρ) = 2f2(x) + 2f ′′2 (x)ρ

2

2!
+ 2f

(4)
2 (x)ρ

4

4!
+ ...

that is,

Q(x, ρ) =
∑∞
s=0

2
(2s)!

f
(2s)
2 (x) ρ2s =

∑∞
s=0 αs (x) ρs (ρ −→ 0) (4.1.7)

where

α◦ = 2f2(x), α1 = 0, α2 = f ′′2 (x), α3 = 0, α4 =
f
(4)
2 (x)

12
, α5 = 0, ...

(ii) We now compute an asymptotic expansion for the function P (x, ρ).
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Firstly, we need good asymptotic estimates, as (ρ −→ 0), for F (x + ρ) −
F (x − ρ). By using the Taylor expansion for the functions F (x + ρ) and
F (x− ρ) we obtain

F (x+ ρ) = F (x) + f(x)ρ
1!

+ f ′(x)ρ2

2!
+ f ′′(x)ρ3

3!
+ f ′′′(x)ρ4

4!
+ f (4)(x)ρ5

5!
+ ... ,

F (x− ρ) = F (x)− f(x)ρ
1!

+ f ′(x)ρ2

2!
− f ′′(x)ρ3

3!
+ f ′′′(x)ρ4

4!
− f (4)(x)ρ5

5!
+ ...

Then
F (x+ ρ)− F (x− ρ) = 2f(x)ρ

1!
+ 2f ′′(x)ρ3

3!
+ 2f (4)(x)ρ5

5!
+ ...

=
∑∞
s=0 P̃s(x) ρ

s+1, (4.1.8)

where P̃2n(x) = 2f (2n)(x)
(2n+1)!

for n = 0, 1, 2, ... , and P̃1(x) = P̃3(x) = ... = 0.

Use (4.1.8) and the series representation

∑∞
s=1

ys

s
= − log(1− y), y ∈ (−1, 1).

After substituting in (4.1.4) we obtain

P (x, ρ) =
∑∞
s=1

(
∑∞

k=0
P̃k(x) ρk+1)

s

s

= ρP̃◦(x) + ρ2

(
P̃ 2
◦
2

+ P̃1

)
+ ρ3

(
P̃ 3
◦
3

+ P̃◦P̃1 + P̃2

)
+ ...

=
∑∞
s=0 Ps(x)ρ

s+1 (ρ −→ 0) (4.1.9)

where P◦(x) = 2f(x), P1(x) = 2f 2(x), P2(x) = 8
3
f 3(x) + 1

3
f ′′(x), ...

We note that P (x, 0) = 0.

Equation (4.1.9) can be differentiated, that is

P ′(x, ρ) =
∑∞
s=0 (s+1)Ps(x) ρ

s (ρ −→ 0) (4.1.10)

(iii) Now we change the variable of integration.
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We can find a number z which is close enough to 0 to ensure that in (0, z],
P ′(x, ρ) is continuous and positive and Q(x, ρ) is continuous. Since P (x, ρ)
increases in (0, z) we may take

v = P (x, ρ)− P (x, 0).

as new integration variable in this interval. Then v and ρ are continuous
functions of each other and

e−mP (x,0)
∫ z

0
Q(x, ρ) e−mP (x,ρ) dρ =

∫ Z

0
e−mv f(v) dv

where Z = P (x, z)− P (x, 0) , f(v) = Q(x, ρ)dρ
dv

= Q(x,ρ)
P ′(x,ρ)

Although P (x, 0) = 0 we insert this term to show that the argument is also
valid for P (x, 0) > 0.

(iv) We now need an asymptotic expansion for f(v).

Since v = P (x, ρ) − P (x, 0) =
∑∞
s=0 Ps(x)ρ

s+1, we obtain, compare [5], by
using Lagrange inversion formula an expansion of the form

ρ =
∑∞
s=1 Cs v

s (v −→ 0)

where the coefficients Cs are

Cs =
1

s!

( d

dρ

)k−1

(h(ρ))k


ρ=0

,

h(ρ) = (
∑∞
s=0 Ps(x)ρ

s)−1, and v = ρ
h(ρ)

= ρ

(
∑∞

s=0
Ps(x)ρs)

−1 .

The first three coefficients are

C1 = 1
P◦
, C2 = − P1

P 3
◦
, C3 =

4P 2
1−2P◦P2

2P 5
◦

.

We substitute this result in (4.1.7) and (4.1.10), and use the equation f(v) =
Q(x,ρ)
P ′(x,ρ)

. Then

f(v) =
∑∞
s=0 bs ρ

s (ρ −→ 0)
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where b◦ = α◦
P◦

, b1 = α1P◦−2α◦P1

P 2
◦

,

b2 =
P 2
◦α2−3P◦P2α◦−2P◦P1α1+2P 2

1 α◦
P 3
◦

, ...

Since ρ =
∑∞
s=1 Cs v

s when (v −→ 0), then

f(v) =
∑∞
s=0 bs (

∑∞
k=1 Ckv

k)s =
∑∞
s=0 bs (C1v

1 + C2v
2 + C3v

3 + ...)s

= b◦ + b1C1v + (b1C2 + b2C
2
1) v2 + ... =

∑∞
s=0 as v

s (v −→ 0)

where a◦ = b◦, a1 = b1C1, a2 = b1C2 + b2C
2
1 , ..., hence

a◦ = f2
f
, a1 = −f2

f
, a2 = f2

2f
+

f ′′2 f−f
′′f2

8f4 =
4f2f3+f ′′2 f−f

′′f2
8f4 , ...

(v) Asymptotic evaluation on the range of integration (0, z).

For each positive integer N , let the remainder term fN(v) be defined by
fN(0) = aN and

f(v) =
∑N−1
s=0 asv

s+ vNfN(v) (v > 0). (4.1.11)

Then

∫ Z
0 e−mvf(v)dv =

∫ Z
0 e−mv

(∑N−1
s=0 asv

s + vNfN(v)
)
dv

=
∫ Z
0 e−mv

∑N−1
s=0 asv

sdv +
∫ Z
0 e−mvvNfN(v)dv

=
∑N−1
s=0 as (

∫∞
0 e−mvvsdv −

∫∞
Z e−mvvsdv) +

∫ Z
0 e−mvvNfN(v)dv

=
∑N−1
s=0 Γ(s+ 1) as

ms+1 −
∑N−1
s=0 Γ(s+ 1, Zm) as

ms+1 +
∫ Z
0 e−mvvNfN(v)dv

=
∑N−1
s=0 Γ(s+ 1) as

ms+1 − εN,1(m) + εN,2(m),

where εN,1(m) =
∑N−1
s=0 Γ(s+ 1, Zm) as

ms+1 , (4.1.12)

εN,2(m) =
∫ Z
0 e−mvvNfN(v)dv (4.1.13)
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Since Γ(α,m) ∼ e−mmα−1∑∞
s=0

(α−1)(α−2)...(α−s)
ms for fixed α and large m, then

εN,1(m) = O
(
e−Zm

m

)
. (4.1.14)

Also, since Z is finite and fN(v) is continuous in [0, Z], Then |fN | is bounded,
as v −→ 0, that is fN(v) = O(1), it follows that

εN,2(m) =
∫ Z
0 e−mv vNO(1) dv = O

(
1

mN+1

)
. (4.1.15)

(vi) Asymptotic evaluation on the range (z,∞).

For the remaining range (z,∞), let M be a value of m for which I1(m) is
absolutely convergent and write

ζ ≡ inf
[k,∞)

{P (x, ρ)− P (x, 0)}

Since P (x, 0) = 0, and P (x, ρ) strictly increasing in ρ from (4.1.9), hence
(P (x, ρ)−P (x, 0)) > 0 for all ρ > 0. Then ζ is positive. Restricting m ≥M ,
we have

mP (x, ρ)−mP (x, 0) = (m−M){P (x, ρ)−P (x, 0)}+M{P (x, ρ)−P (x, 0)}

≥ (m−M)ζ +MP (x, ρ)−MP (x, 0),

then we obtain∣∣∣emP (x,0)
∫∞
z Q(x, ρ)e−mP (x,ρ)dρ

∣∣∣ ≤
e−(m−M)ζ+MP (x,0)

∫∞
z |Q(x, ρ)|e−MP (x,ρ)dρ (4.1.16)

Thus
I1 =

∫∞
0 Q(x, ρ)e−mP (x,ρ) dρ ∼ e−mP (x,0)∑∞

s=0 Γ (s+ 1) as

m(s+1)

= e−mP (x,0) ∑N−1
s=0 Γ(s+1) as

ms+1 +O(m−(N+1)) (4.1.17)

Similarly,
J1 =

∫∞
0 Q(x, ρ) e−mP (x,ρ) dρ ∼ e−mP (x,0) ∑∞

s=0 Γ (s+ 1) a′s
m(s+1)
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= e−mP (x,0) ∑N−1
s=0 Γ(s+ 1) a′s

ms+1 +O(m−(N+1)) (4.1.18)

where a′◦ = f1
f
, a′1 = −f1

f
, a′2 = f1

2f
+

f ′′1 f−f
′′f1

8f4 =
4f1f3+f ′′1 f−f

′′f1
8f4 , ...

4.1.2 Theorem

Let the conditions of Lemma 4.1.1 be satisfied for allN so that the expansions
(4.1.7), (4.1.9), and (4.1.10) hold. Then

Rm+1(x) = e−mP (x,0)
(

2p1p2f1(x)f2(x)
f2(x)

+ p1p2
m2

(
f1f ′′2 f−2f1f2f ′′+f ′′1 f2f

4f5

)
+p1p2

m3

(
2f1(x)f2(x)

f2 +
f1f ′′2 f−2f1f2f ′′+f ′′1 f2f

4f5

)
+(m+ 1)

∑N−1
s=3

As

ms+1 +O
(
m−N

))
where As = p1p2Γ(s+ 1)

(
f1as+f2a′s

f

)
, and as, a

′
s as in Lemma 4.1.1.

Proof:
Substituting (4.1.17) in to (4.1.5) we obtain

I = (m+ 1)I1 = (m+ 1)(e−mP (x,0)∑N−1
s=0 Γ(s+ 1) as

ms+1 +O(m−(N+1)))

= (m+ 1)e−mP (x,0)
(
a◦
m

+ a1

m2 + 2a2

m3 +
∑N−1
s=3 Γ(s+ 1) as

ms+1 +O(m−(N+1)))
)

= e−mP (x,0)
(
m+1
m

f2
f
− m+1

m2
f2
f

+ 2(m+1)
m3

(
f2
2f

+
f ′′2 f−f

′′f2
8f4

)
+ ...

)
= e−mP (x,0)

(
f2
f

+ 1
m
f2
f
− 1

m
f2
f
− 1

m2
f2
f

+ 1
m2

f2
f

+ 1
m3

f2
f

+2(m+1)
m3

(
f ′′2 f−f

′′f2
8f4

)
+ ...

)
= e−mP (x,0)

(
f2
f

+ 1
m2

(
f ′′2 f−f

′′f2
4f4

)
+ 1

m3

(
f2
f

+
f ′′2 f−f

′′f2
4f4

)
+ ...

)
= e−mP (x,0)

(
f2
f

+ 1
m2

(
f ′′2 f−f

′′f2
4f4

)
+ 1

m3

(
f2
f

+
f ′′2 f−f

′′f2
4f4

)
+(m+ 1)

∑N−1
s=3 Γ(s+ 1) as

ms+1 +O(m−(N+1))
)

(4.1.19)

Similarly, substituting (4.1.18) in to (4.1.6) we obtain
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J = (m+ 1)J1 = (m+ 1)(e−mP (x,0) ∑N−1
s=1 Γ(s+ 1) a′s

ms+1 +O(m−(N+1)))

J = e−mP (x,0)
(
f1
f

+ 1
m2

(
f ′′1 f−f

′′f1
4f4

)
+ 1

m3

(
f1
f

+
f ′′1 f−f

′′f1
4f4

)
+(m+ 1)

∑N−1
s=3 Γ(s+ 1) a′s

ms+1 +O(m−(N+1))
)

(4.1.20)

Substituting (4.1.19) and (4.1.20) in to (4.1.1), then we obtain

Rm+1(x) = p1p2f1(x)
f(x)

e−mP (x,0)
(
f2
f

+ 1
m2

(
f ′′2 f−f

′′f2
4f4

)
+ 1

m3

(
f2
f

+
f ′′2 f−f

′′f2
4f4

)
+ (m+ 1)

∑N−1
s=3 Γ(s+ 1) as

ms+1 +O(m−(N+1))
)

+p1p2f2(x)
f(x)

e−mP (x,0)
(
f1
f

+ 1
m2

(
f ′′1 f−f

′′f1
4f4

)
+ 1

m3

(
f1
f

+
f ′′1 f−f

′′f1
4f4

)
+(m+ 1)

∑N−1
s=3 Γ(s+ 1) a′s

ms+1 +O(m−(N+1))
)

= e−mP (x,0)
(

2P1P2f1(x)f2(x)
f2(x)

+ p1p2
m2

(
f1f ′′2 f−2f1f2f ′′+f ′′1 f2f

4f5

)
+p1p2

m3

(
2f1(x)f2(x)

f2 +
f1f ′′2 f−2f1f2f ′′+f ′′1 f2f

4f5

)
+(m+ 1)

∑N−1
s=3

As

ms+1 +O
(
m−N

))
,

where As = p1p2Γ(s+ 1)
(
f1as+f2a′s

f

)
.

The following Corollary adresses P (x, 0) = 0, that is, e−mP (x,0) = 1.

4.1.3 Corollary

Under the conditions in Theorem 4.1.2, and if P (x, 0) = 0 we have

Rm+1(x) = 2p1p2f1(x)f2(x)
f2(x)

+ p1p2
m2

(
f1f ′′2 f−2f1f2f ′′+f ′′1 f2f

4f5

)
+p1p2

m3

(
2f1(x)f2(x)

f2 +
f1f ′′2 f−2f1f2f ′′+f ′′1 f2f

4f5

)
+(m+ 1)

∑N−1
s=3

As

ms+1 +O
(
m−N

)
,

where As = p1p2Γ(s+ 1)
(
f1as+f2a′s

f

)
.
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4.2 Error Estimates

It is well-known, compare [17], and can be seen from the proof of the Lemma
4.1.1 that theN th truncation error of the expansion (4.1.17) can be expressed
as ∫∞

0 Q(x, ρ)e−mP (x,ρ) dρ− e−mP (x,0) ∑N−1
s=1 Γ(s+ 1) as

ms+1

= −e−mP (x,0)εN,1(m)+e−mP (x,0)εN,2(m)+
∫∞
z Q(x, ρ)e−mP (x,ρ)dρ, (4.2.1)

where z is a number in (0,∞], and εN,1(m) and εN,2(m) are defined by (4.1.12)
and (4.1.13).

If the requirement in the proof of the Lemma 4.1.1 that z and Z be finite
does not apply in (4.2.1), that is, if we take z = ∞, and P (x,∞) = ∞, we
obtain Z = P (x,∞) − P (x, 0) = ∞. Then the first error εN,1(m) in (4.2.1)
is absent.

In other cases, since the asymptotic expansion for the complemently incom-
plete Gamma funcation Γ(α, m) can be writen in the form:

Γ(α,m) = e−mmα−1
(
1 + (α−1)

m
+ (α−1)(α−2)

m2 + ...+ (α−1)(α−2)...(α−N+1)
mN−1

)
+εN(m),

where N is an arbitrary nonnegative integer, and

εN(m) = (α− 1)(α− 2)...(α−N)
∫∞
m e−ttα−N−1 dt.

We can show that

|εN(m)| ≤ (α−1)(α−2)...(α−N) e−mmα−N

m−α+N+1
(m > α−N − 1 > 0)

For the particular case N = 0, we have

Γ(α,m) ≤ e−m mα

m−α+1
, (α > 1, m > α− 1)

and for the special case α = 1, m > 0 we have Γ(1,m) ≤ e−m. Then
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Γ(α,m) ≤ e−m mα

m−max(α−1,0)
(m > max(α− 1, 0))

Substituting in (4.1.12) by means of this inequality, we obtain∣∣∣e−mP (x,0) εN,1(m)
∣∣∣ ≤ e−mP (x,z)

Zm−αN

∑N−1
s=1 |as|Zs+1 (m > αN

Z
)

where Z = P (x, z)− P (x, 0) as before, and αN = max {(N − 1) , 0}.

The second error term e−mP (x,0) εN,2(m), can be bounded by the following
method: We introduce a number σN such that the function vNfN(v) is ma-
jorized by ∣∣∣vNfN(v)

∣∣∣ ≤ |aN | vNeσN v. (4.2.2)

Then ∣∣∣∫ Z0 e−mv vN fN(v) dv
∣∣∣ ≤ ∣∣∣∫ Z0 |aN | e−(m−σN )v vNdv

∣∣∣
≤ Γ(N + 1) |aN |

(m−σN )N+1 (m > σN) (4.2.3)

The best value of σN is given by

σN = sup(0,∞) {ψN(v)}, (4.2.4)

where ψN(v) = 1
v
ln
∣∣∣vN fN (v)
aN vN

∣∣∣.
The bounded (4.2.3) has the property of being asymptotic to the absolute
value of the actual error when m −→ ∞. But the preceding approach fails
when σN is infinite. This happens when aN = 0, so we would proceed to a
higher value of N at this case. If aN 6= 0, then the failure occurs when ψN(v)
tends to +∞ as v −→ 0+. But for small v, we have from (4.1.11)

vN fN(v) = aN v
N+1 + aN+1 v

N+2 + ...

Therfore

ψN(v) ∼ aN+1

aN
+
(
aN+2

aN
− a2

N+1

2a2
N

)
v + ...

For the tail, the inequality (4.1.16) can be used, the integral on the right-hand
side being found numerically for a suitably chosen value of M .
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5 Risk and Nearest Neighbor Distances

In this chapter we study the rates of convergence of nearest neighbor classi-
fication in terms of metric covering numbers of the underlying space, present
an upper bound on the expected nearest neighbor distance for distributions
having support on a totally bounded set and give some contributions in the
case of unbounded support for special distributions.

5.1 Introduction

Recall that the problem to be considered is the classification of a random
variable θ taking values in M = {1, 2} given a sample X in χ. Somewhat
more generally we consider X taking values in some general separable metric
space χ equipped with metric ρ which we denote as the pair (χ, ρ). That is, a
random variable (X, θ) consists of an observed pattern X ∈ χ from which we
wish to infer the unobservable class θ, such that θ ∈ {1, 2}. The probability
of error for a classifier δ is P (δ (X) 6= θ).

For a given x, a classifier δ yields a conditional risk P (θ 6= δ (x) |X = x). If
the joint distribution of (X, θ) is known then the best classifier is the Bayes
classifier, see Section 1. The Bayes classifier δ? minimizes this risk resulting
in the conditional Bayes risk

r?(x) = P (θ 6= δ?(x)|X = x) ≤ P (θ 6= δ(x)|X = x) for all classifier δ.

The Bayes risk is given by R? = Er?(x) =
∫
r?(x)PX(dx).

Define the conditional mean of θ given X = x as

m(x) = P (θ = 1|X = x) = E (θ|X = x)

and the conditional variance as

σ2(x) = P (θ = 1|X = x)− [P (θ = 1|X = x)]2 = m(x)− (m(x))2

= P (θ = 1|X = x)P (θ = 0|X = x)
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5.2 Nearest Neighbor Classification

As in section 1 we have a training sequence Zm =
((
X(1), θ(1)

)
,
(
X(2), θ(2)

)
, ...,

(
X(m), θ(m)

))
at our disposal, where patterns and corresponding classes

are observed. Recall from chapter one that the nearest neighbor procedure
assigns any input feature vector to the class given by the label θ′ of the
nearest reference vector.

The conditional probability of error for the nearest neighbor rule is defined as
the probability of error in classification θ by θ′ given X and its nearest neigh-
bor X ′ and denoted by Rm(X,X ′), that is Rm(X,X ′) = P (θ 6= θ′|X,X ′). By
averaging P (θ 6= θ′|X,X ′) over X ′, we obtain the m-sample conditional av-
erage probability of error

Rm(X) = P (θ 6= θ′|X) =
∫
P (θ′ 6= θ |X ′ , X) fm(x′|X)dx′,

and by averaging P (θ 6= θ′|X) with respect toX, we obtain the unconditional
probability of error

Rm = P (θ 6= θ′) =
∫
P (θ′ 6= θ|X) f(x)dx

=
∫ ∫

P (θ′ 6= θ |X ′ = x′ , X = x) fm(x′|x)f(x)dx′dx.

Define the nearest distance at time m as dm = ρ(X,X ′).

5.2.1 Lemma

Rm(X,X ′) = σ2(X) + σ2(X ′) + (m(X)−m(X ′))
2
.

Proof:
We have

Rm(X,X ′) = P (θ 6= θ′|X,X ′)

= P (θ = 1, θ′ = 0|X,X ′) + (θ = 0, θ′ = 1|X,X ′)

= P (θ = 1|X)P (θ′ = 0|X ′) + P (θ = 0|X)P (θ′ = 1|X ′)
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= m(X)((1−m(X ′))+m(X ′)((1−m(X)) = m(X)+m(X ′)− 2m(X)m(X ′)

= m(X)+m(X ′)−2m(X)m(X ′)+(m(X))2−(m(X))2+(m(X ′))2−(m(X ′))2

= [m(X)− (m(X))2] + [m(X ′)− (m(X ′))2] + [(m(X))2 −m(X)m(X ′)]

+ [(m(X ′))2 −m(X)m(X ′)]

= [m(X)− (m(X))2] + [m(X ′)− (m(X ′))2] +m(X) [m(X)−m(X ′)]

−m(X ′) [m(X)−m(X ′)]

= σ2(X) + σ2(X ′) + (m(X)−m(X ′))2.

The following Corollary provides an upper bound on Rm(X,X ′) in terms of
dm.

5.2.2 Corollary

If, for some K1 > 0 and α > 0 we have |m(x)−m(x′)| ≤ K1ρ(x, x
′)α for all

x, x′ ∈ χ, then, for some suitable K > 0 independent of m,

Rm(X,X ′) ≤ 2σ2(X) +K
(
dαm + d2α

m

)
.

Proof:
From Lemma 5.2.1

Rm(X,X ′) = σ2(X) + σ2(X ′) + (m(X)−m(X ′))2

= 2σ2(X) + [σ2(X ′)− σ2(X)] + (m(X)−m(X ′))2.

Note that

|σ2(X ′)− σ2(X)| = |m(X ′)((1−m(X ′))−m(X)((1−m(X))|

≤ |m(X ′)−m(X)|.

Then
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Rm(X,X ′) ≤ 2σ2(X) + |m(X ′)−m(X)|+ (m(X)−m(X ′))2

≤ 2σ2(X) +K1ρ(x, x
′)α +K2

1ρ(x, x
′)2α

≤ 2σ2(X) +K (dαm + d2α
m ),

where K = max {K1, K
2
1}.

5.3 Covering Numbers and Supports

Define the open ball of radius ε about a point x ∈ χ as

B(x, ε) = {y ∈ χ |ρ(x, y) < ε} .

5.3.1 Definition

Let A be a subset of the metric space (χ, ρ). The metric covering number
N (ε) is defined as the smallest number of open balls of radius ε that cover
the set A. That is

N (ε) = inf

{
k : ∃x1, ..., xk ∈ χ s.t. A ⊂

k⋃
i=1

B(xi, ε)

}
.

The logarithm of the metric covering number is often referred to as the metric
entropy or ε−entropy. A set A is said to be totally bounded ifN (ε, A, ρ) <∞
for all ε > 0.

5.3.2 Definition

The metric covering radius N−1(k) is defined as the smallest radius such that
there exist k balls of this radius which cover the set A, that is

N−1(k) = inf

{
ε : ∃x1, ..., xk ∈ χ s.t. A ⊂

k⋃
i=1

B(xi, ε)

}
.

Note that N−1(.) is a nonincreasing discrete function of k. In particular,
N−1(1) is the radius of the smallest ball to cover A and is referred to as the
radius of A.
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5.3.3 Example:

For any bounded set A in Euclidean r−space, the covering number of A
satisfies N (ε, A) ≤ (β/ε)r for all ε ≤ β =N−1(1, A) (the radius of the set)
and the covering radius satisfies N−1(m,A) ≤ β/m1/r. In addition, if A
contains an interior point in Rr then N (ε, A) ≥ (β1/ε)

r for some β1 > 0, and
N−1(m,A) ≥ β1/m

1/r, see [15], [16].

5.3.4 Lemma

Let A be a totally bounded subset of (χ, ρ), then

lim
m→∞

N−1(m,A, ρ) = 0

Proof:
Assume the statement is false. Then since N−1(m) is nonincreasing, there
exists ε > 0 such that N−1(m) ≥ ε for all m. But this implies that N (ε) ≥ m
for all m, i.e., N (ε) = ∞, which contradicts the fact A is totally bounded.

We next define the standard notion of the support of a measure

5.3.5 Definition

The support of a probability measure µ defined on (χ, ρ) is defined as

κ(µ) = {x ∈ χ : µ(B(x, ε)) > 0 ∀ε > 0} .

For a probability measure µ on a separable metric space χ it is well known
that µ(support(µ)) = µ(κ(µ)) = 1.

5.4 A Bound for the Risk

In this section we find an upper bound on the finite sample performance in
terms of the nearest neighbor distance.

5.4.1 Lemma

Under the assumptions of 5.2.2 with α ≤ 1

Rm ≤ R∞ +K
[
(Edm)α +

(
Ed2

m

)α]
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Proof:
From Corollary 5.2.2

Rm(X,X ′) ≤ 2σ2(X) +K (dαm + d2α
m )

By taking expected values on this conclusion, we obtain withR∞ = 2E[σ2(X)] =
2R?

Rm ≤ R∞ +K [E (dαm) + E (d2α
m )].

Using Jensen’s inequality since h(t) = tα is concave for 0 < α ≤ 1

Rm ≤ R∞ +K
[
(Edm)α + (Ed2

m)
α
]
.

5.5 The case of bounded support

We consider the case of totally bounded support of µ. The following theorem,
compare [16], provides a bound on Edm and Ed2

m.

5.5.1 Theorem

Let X,X1, X2, ... be i.i.d. according to a probability measure µ with κ(µ) a
totally bounded subset of (χ, ρ). Then

Edm ≤ 3
m

∑m
i=1N−1(i, κ(µ))

and
Ed2

m ≤ 8
m

∑m
i=1 [N−1(i, κ(µ))]

2
.

Proof:
Note that P [dm > ε|X] = (1− µ(B(X, ε)))m and P [X ∈ κ(µ)] = 1.

Fix ε > 0. Now take an ε/2-covering of κ(µ), B1, B2, ...BN (ε/2). Then for
X ∈ κ(µ), there exists an i such that Bi ⊂ B(X, ε). Let N ≡ N (ε/2). Now
define an ε/2-partition as follows. For each i = 1, ..., N , let Pi = Bi−

⋃i−1
k=1Bk.

Then
Pi ⊂ Bi

⋃N
i=1Bi =

⋃N
i=1 Pi
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and Pi
⋂
Pj = 0. Also

∑N
i=1 µ(Pi) = 1.

Then for X ∈ κ(µ) there exists an i such that Pi ⊂ Bi ⊂ B(X, ε) and in turn
pi ≡ µ(Pi) ≤ µ(B(X, ε)). Hence

P [dm > ε|X ∈ Pi] ≤ (1− pi)
m

and
P [dm > ε] =

∑N
i=1 P [dm > ε|X ∈ Pi]µ(Pi)≤

∑N
i=1 pi(1− pi)

m.

As dm ≥ 0, then Edm =
∫∞
0 P [dm > ε]dε.

We now prove that

∑N
i=1 pi(1− pi)

m ≤
{

1 m ≤ N
N
2m

m > N
.

The case m ≤ N follows from

∑N
i=1 pi(1− pi)

m ≤ ∑N
i=1maxpi

pi(1− pi)
m = N

N
(1− 1

N
)m ≤ 1,

the case m > N from

∑N
i=1 pi(1− pi)

m ≤ ∑N
i=1maxpi

pi(1− pi)
m=

∑N
i=1

1
m

(1− 1
m

)m ≤ N
2m

.

Hence we have that

P [dm > ε]≤ ∑N (ε/2)
i=1 pi(1− pi)

m ≤
{

1 m ≤ N (ε/2)
N (ε/2)

2m
m > N (ε/2)

That is P [dm > ε]≤
{

1 ε ≤ 2N−1(m)
N (ε/2)

2m
ε > 2N−1(m)

Since P [dm > ε] = 0 for ε > 2N−1(1), we have

Edm =
∫∞
0 P [dm > ε]dε ≤

∫ 2N−1(m)
0 dε

+
∫ 2N−1(1)
2N−1(m)

N (ε/2)
2m

dε = 2N−1(m) + 1
m

∫N−1(1)
N−1(m)N (ε)dε.

Since N (ε) = i for N−1(i) ≤ ε < N−1(i− 1) we get
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∫N−1(1)
N−1(m)N (ε)dε =

∑m
i=2

∫N−1(i−1)
N−1(i) N (ε)dε

=
∑m
i=2 i [N−1(i− 1)−N−1(i)]

= 2N−1(1) +N−1(2) + ...+N−1(m− 1)−mN−1(m)

= 2N−1(1)−mN−1(m)+
∑m−1
i=2 N−1(i) = N−1(1)−mN−1(m)+

∑m−1
i=1 N−1(i)

Hence

Edm ≤ N−1(m)+N−1(1)
m

+ 1
m

∑m−1
i=1 N−1(i) ≤ 3

m

∑m
i=1N−1(i). (5.5.1)

Similarly

Ed2
m =

∫∞
0 P [d2

m > ε]dε ≤
∫∞
0 P [dm >

√
ε]dε

= 4(N−1(m))2 + 4
m

∫ (N−1(1))2

(N−1(m))2 N (
√
ε)dε

and since

∫ (N−1(1))2

(N−1(m))2 N (
√
ε)dε = [N−1(1)]2 −m[N−1(m)]2 +

∑m−1
i=1 [N−1(i)]2

Then

Ed2
m ≤

4[N−1(1)]2

m
+ 4

m

∑m−1
i=1 [N−1(i)]2. (5.5.2)

As an example, take κ(µ) a bounded subset of Rr for some integer r > 1.
Then

E[dm] ≤ 3βr
r−1

m−1/r,

where β is the radius of κ(µ).
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5.6 Specific bounds for nearest neighbor distances

5.2 shows that the risk of nearest neighbor procedures may be bounded using
the distance to the nearest neighbor. For bounded support, covering numbers
may be used to estimate the expected distance. It is not clear how to use
covering numbers for unbounded support. Here we give some contributions to
these questions for special distributions. We look at real-valued observations
and remark on the multidimensional case.

5.6.1 Deriving a lower bound

We know, letting S denote the support of our random variables

Edm =
∫∞
0 P (dm > ε) dε

=
∫
S

∫∞
0 P (dm > ε|X = x) dε PX(dx)

=
∫
S

∫∞
0 P (|X − x| > ε)m dε PX(dx)

=
∫∞
0

∫
S P (|X − x| > ε)m PX(dx) dε

≥
∫∞
0

(∫
S P (|X − x| > ε)PX(dx)

)m
dε,

using Jensen’s inequality.

This shows

Edm ≥
∫∞
0 P

(∣∣∣X − X̃
∣∣∣ > ε

)m
dε = 2

∫∞
0 P (Z > ε)m dε, say.

Here X̃ is an independent copy of X, Z =
∣∣∣X − X̃

∣∣∣ and X − X̃ has a sym-

metric distribution on S − S = {x− y : x, y ∈ S}.

Let ψ denote the density of Z and assume smoothness to apply partial inte-
gration. Then in the case of unbounded support and positive density

Edm = −2
∫∞
0

1
(m+1)ψ(ε)

d
dε

[
P (Z > ε)m+1

]
dε

= −2
(m+1)

[
1

ψ(ε)
P (Z > ε)m+1

]∞
0
− 2

(m+1)

∫∞
0

ψ′(ε)
(ψ(ε))2

P (Z > ε)m+1 dε.
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If we have 1
ψ(ε)

P (Z > ε)m+1 −→ 0 for ε −→∞ and

∫∞
0

ψ′(ε)
(ψ(ε))2

P (Z > ε)m+1 dε −→ 0 for m −→∞,

as is e.g. the case for exponential and normal distributions, then

Edm ≥ 2
(m+1)

1
ψ(0)

An analogous lower bound also holds for the multidimensional case, using

Edm =
∫∞
0 P (Z > ε)m+1 dε with Z denoting Euclidean norm of X − X̃.

5.6.2 A lower bound for the exponential distribution

Applying a different method, we look at dm in the case of an exponential
distribution with density e−x, x > 0. Then

Edm =
∫∞
0

∫∞
0 P (|X − x| > ε)m dε e−xdx

≥
∫∞
0

∫∞
0 P (X < x− ε)m dε e−xdx

=
∫∞
0

∫ x
0 P (X < z)m dz e−xdx

=
∫∞
0

∫ x
0 (1− e−z)

m
dz e−xdx

=
∫∞
0

∫∞
z e−xdx (1− e−z)

m
dz

=
∫∞
0 e−z (1− e−z)

m
dz.

To evaluate this integral note that

e−z (1− e−z)
m

=
∑m
k=0(−1)k

(
m
k

)
e−z(k+1) ,

hence∫∞
0 e−z (1− e−z)

m
dz =

∑m
k=0(−1)k

(
m
k

)
1

k+1
.
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This sum may be computed as

1
m+1

∑m
k=0(−1)k

(
m+ 1
k + 1

)

= − 1
m+1

[∑m+1
k=0 (−1)k

(
m+ 1
k

)
−
(
m+ 1

0

) ]
= − 1

m+1
[(1− 1)m+1 − 1] = 1

m+1
.

We obtain the lower bound Edm ≥ 1
m+1

.

We may also use the integral at hand using Stieltjes integration:

∫∞
0 e−z (1− e−z)

m
dz =

∫∞
0 (1− e−z)

m
d (1− e−z)

=
∫ 1
0 y

mdy = 1
m+1

.

5.6.3 A lower bound for the normal distribution

We look at dm in the case of a normal distribution with density φ(x) =
1√
2π
e−

x2

2 , distribution function Φ(x) and let H(x) = 1 − Φ(x), using the
method of 5.6.2.

Then as in 5.6.2

Edm =
∫∞
−∞

∫∞
0 P (|X − x| > ε)m dε φ(x)dx

≥
∫∞
−∞

∫∞
0 P (X < x− ε)m dε φ(x)dx

=
∫∞
−∞

∫ x
−∞ P (X < z)m dz φ(x)dx

=
∫∞
−∞

∫∞
z φ(x)dxP (X < z)m dz

=
∫∞
−∞ (1− Φ(z)) (Φ(z))m dz

≥
∫∞
0 H(z) (1−H(z))m dz.
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For a first estimate use Stieltjes integration to obtain

Edm ≥
∫∞
−∞ (1− Φ(z)) (Φ(z))m dz

≥
∫∞
−∞ φ(z) (1− Φ(z)) (Φ(z))m dz =

∫∞
−∞ (1− Φ(z)) (Φ(z))m dΦ(z)

=
∫ 1
0 (1− y)ymdy = Γ(2)Γ(m+1)

Γ(m+3)
= 1

(m+1)(m+2)
.

To proceed, note first that for any c > 0

∫ c
0 H(z) (1−H(z))m dz −→ 0 exponentially fast as m −→∞.

So we only have to look at
∫∞
c H(z) (1−H(z))m dz, fixing some c > 1.

Now use the well known inequalities

1
x
φ(x) ≥ H(x) ≥ 1

x

(
1− 1

x2

)
φ(x), x > 0,

which imply

φ(x) ≥ H(x) ≥ 1
x

(
1− 1

c2

)
φ(x), x ≥ c > 1.

Hence

∫∞
c H(z) (1−H(z))m dz ≥

∫∞
c

(
1− 1

c2

)
1
z
φ(z) (1− φ(z))m dz,

and we look at

∫∞
c

1
z
φ(z) (1− φ(z))m dz =

∫∞
c

1
z
γe

−z2

2

(
1− γe

−z2

2

)m
dz

=
∫∞
a

1
2y
γe−y (1− γe−y)

m
dy, y = z2

2
, a = c2

2
, γ = 1√

2π
.

Thus we have to treat, as m −→∞,

∫∞
a

1
y
γe−y (1− γe−y)

m
dy.
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If we could show that, for a > 0,

∫∞
a

1
y
γe−y (1− γe−y)

m
dy ≥ c

m
,

then this would imply Edm ≥ c̃
m

for some suitable c̃ > 0. But as we see now,
this is not the case:

Assume that for some c > 0, a > 1 we have

∫∞
a

1
y
γe−y (1− γe−y)

m
dy ≥ c

m+1
for all m.

This implies by partial integration for all m

c ≤
∫∞
a

1
y
d
dy

(1− γe−y)
m+1

dy

=
[

1
y
(1− γe−y)

m+1
]∞
a

+
∫∞
a

1
y2

(1− γe−y)
m+1

dy.

Obviously
[

1
y
(1− γe−y)

m+1
]∞
a
−→ 0 as m −→∞ and by dominated conver-

gence also
∫∞
a

1
y2

(1− γe−y)
m+1

dy −→ 0 as m −→∞.

This gives a contradiction. Our arguments thus do not provide the bound
of 5.6.1. Here it is interesting to note that the bound P (|X − x| > ε) ≥
P (X ≤ x− ε) does not yield the right asymptotic bound for normal distri-
butions.

We can came arbitrarily close to a bound of the type c
m

by the following
method:

For any β > 1 choose a (β) > 1 such that 1
y
≥ e−βy for y ≥ a (β). Then

∫∞
a(β)

1
y
e−y (1− e−y)

m
dy ≥

∫∞
a(β) e

−(β+1)y (1− e−y)
m
dy,

and

∫∞
0 e−(β+1)y (1− e−y)

m
dy =

∫ 1
0 y−β (1− y)m dy = Γ(β+1)Γ(m+1)

Γ(β+m+2)
.
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5.6.4 An upper bound

We use constants, −∞ < K1(m) ≤ 0 ≤ K2(m) < ∞ depending on m, to
write

Edm =
∫∞
−∞

∫∞
0 P (|X − x| > ε)m dε PX(dx)

=
∫K1(m)
−∞

∫∞
0 P (|X − x| > ε)m dε PX(dx)

+
∫∞
K2(m)

∫∞
0 P (|X − x| > ε)m dε PX(dx)

+
∫K2(m)
K1(m)

∫∞
0 P (|X − x| > ε)m dε PX(dx)

= L1(m) + L2(m) + L3(m), say.

5.6.4.1 Bounding L1(m), L2(m)

We assume for the following that |X − x| has a finite moment generating
function

ψ(t, x) = Eet|X−x|, x ∈ R, 0 < t < 1.

By Markov’s inequality for any 0 < t < 1

∫∞
0 P (|X − x| > ε)m dε =

∫∞
0 P

(
et|X−x| > etε

)m
dε

≤
∫∞
0 ψ(t, x)me−mtεdε = 1

mt
ψ(t, x)m,

hence for t = 1
αm

, α ≥ 1

∫∞
0 P (|X − x| > ε)m dε ≤ αψ( 1

αm
, x)m.

It follows

L1(m) ≤ α
∫K1(m)
−∞ ψ( 1

m
, x)m PX(dx),

L2(m) ≤ α
∫∞
K2(m) ψ( 1

m
, x)m PX(dx).
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5.6.4.2 The case of the exponential distribution

Let X have density e−x, x > 0.

Then we take K1(m) = 0 and L1(m) vanishes.

We have

ψ(t, x) = Eet|X−x| ≤ EetX+tx = etx
∫∞
0 etye−ydy = etx 1

1−t ,

hence for t = 1
2m

ψ( 1
2m
, x)m ≤ e

x
2

(
1

1− 1
2m

)m
= e

x
2

(
1 + 1

2m−1

)m
.

It follows, using 5.6.4.1

L2(m) ≤ 2
∫∞
K2(m) e

x
2

(
1 + 1

2m−1

)m
e−xdx = 2

(
1 + 1

2m−1

)m ∫∞
K2(m) e

−x
2 dx

= 4
(
1 + 1

2m−1

)m
e−K2(m).

For K2(m) = logm, it follows

L2(m) ≤ 2
(
1 + 1

2m−1

)m
1
m

= O
(

1
m

)
,

since
(
1 + 1

2m−1

)m
−→ e

1
2 (m −→∞).

5.6.4.3 The case of the normal distribution

Let X have density φ(x) = 1√
2π
e−

x2

2 , x ∈ R.

We take −K1(m) = K2(m) > 0.

For x ∈ R, t > 0

ψ(t, x) = Eet|X−x| ≤ Eet|X|+t|x| = et|x|Eet|X|,

hence for t = 1
m

, using Jensen’s inequality
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ψ( 1
m
, x)m ≤ e|x|

(
Ee

1
m
|X|
)m

≤ e|x|E
(
e

1
m
|X|
)m

= e|x|Ee|X|

= 2e|x|
∫∞
0

1√
2π
eye−

y2

2 dy = 2e|x|e
1
2
∫∞
0

1√
2π
e−

(y−1)2

2 dy ≤ 2e|x|e
1
2 .

It follows for K(m) > 1

L1(m) + L2(m) ≤ 4e
1
2
∫∞
K2(m) e

xφ(x)dx

= 4e
1
2
+ 1

2
∫∞
K2(m)

1√
2π
e−

(x−1)2

2 dx = 4 e P (X + 1 ≥ K2(m))

≤ 12
K2(m)−1

e−
(K2(m)−1)2

2 .

For K2(m) =
√

2 logm+ 1, it follows

L1(m) + L2(m) = o
(

1
m

)
.

5.6.4.4 Bounding L3(m)

We write, for X with density f ,

L3(m) =
∫K2(m)
K1(m)

∫∞
0 P (|X − x| > ε)m dε PX(dx)

=
∫K2(m)
K1(m)

∫∞
0 e−mG(x,ε)f(x)dε dx,

where G(x, ε) = − logP (|X − x| > ε).

Assume that the following inequality holds:

There exists c > 0 such that for all x in the support of X and for all ε > 0

G(x, ε) ≥ cεf(x).

From this inequality we obtain

∫K2(m)
K1(m)

∫∞
0 e−mG(x,ε)f(x)dε dx ≤

∫K2(m)
K1(m)

∫∞
0 e−mcεf(x)f(x)dε dx

=
∫K2(m)
K1(m)

1
cm
dx = (K2(m)−K1(m)) 1

cm
.
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So if −K1(m) , K2(m) have logarithmic growth as in 5.6.4.2, 5.6.4.3, we
obtain

L3(m) = o
(

1
mβ

)
for all β < 1.

We have to investigate validity of the inequality

− logP (|X − x| > ε) = − log (1− P (|X − x| ≤ ε)) ≥ cεf(x).

Noting

− log (1− y) ≥ y for all 0 ≤ y ≤ 1,

we see that

− logP (|X − x| > ε) ≥ P (|X − x| ≤ ε).

Hence a sufficient condition for

G(x, ε) ≥ cεf(x)

is given by

P (|X − x| ≤ ε) ≥ cεf(x).

Note that this second condition will always be violated for unbounded sup-
port letting ε tend to ∞.

Furthermore we remark:

If [x, x+ ε] is contained in the support of X and f is increasing on [x, x+ ε]
then

P (|X − x| ≤ ε) ≥ εf(x).

This also holds if [x− ε, x] is contained in the support ofX and f is decreasing
on [x− ε, x].
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If [x− ε, x+ ε] is contained in the support ofX and f is convex on [x− ε, x+ ε]
then

P (|X − x| ≤ ε) ≥ 2εf(x).

5.6.4.5 The case of the exponential distribution

We look at the validity of the inequality in 5.6.4.4.

If [x− ε, x+ ε] ⊂ [0,∞), then by convexity

P (|X − x| ≤ ε) ≥ 2εf(x).

If x− ε ≤ 0, then

− logP (|X − x| > ε) = − logP (X > x+ ε)

= − log e−(x+ε) = x+ ε ≥ εf(x).

This shows validity with c = 1.

Using K1(m) = 0 and K2(m) = logm we obtain with 5.6.4.2

Edm ≤ 2 1
m

+ logm
m

.

5.6.4.6 The case of the normal distribution

Again we look at the validity of the inequality in 5.6.4.4.

Due to symmetry it is enough to treat x > 0. Let ε > 0.

(a) If x− ε ≥ −x, then

P (|X − x| ≤ ε) ≥ P (x− ε ≤ X ≤ x) ≥ εφ(x).

(b) So assume x− ε < −x, i.e. ε > 2x. We can show
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− logP (|X − x| > ε) = − log (P (X < −(ε− x)) + P (X > x+ ε))

≥ − log 2P (X < −(ε− x)) = − log 2− logP (X > ε− x)

≥ − log 2− log
(

1
ε−x

1√
2π
e−

(ε−x)2

2

)
= log

(√
2π
2

)
+ log(ε− x) + (ε− x)2.

(c) Firstly, let x ≥ 1. Then log(ε− x) ≥ 0 and from ε > 2x

(ε− x)2 ≥ ε2

4
≥ 1

2
εφ(x).

(d) Finally, let x < 1. If ε ≥ 2 then

log(ε− x) ≥ 0 and we proceed as in (c).

So it remains to consider x < 1, ε < 2.

But then P (|X − x| ≤ ε) ≥ cε,

where c = inf |y|<3 φ(y), hence

P (|X − x| ≤ ε) ≥ cεφ(x)

(e) Conclusion.

Retracting (a)-(d) we find a constant c? > 0 such that

− logP (|X − x| > ε) ≥ c?εφ(x), for all x, ε > 0.

Using −K1(m) = K2(m) =
√

2 logm+ 1 we obtain with 5.6.4.3.

Edm ≤ o
(

1
m

)
+ c?

√
2 logm+1

m
.
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