
Compositional Verification of
Industrial Control Systems

Methods and Case Studies

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Ben Lukoschus

Kiel

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250313068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Gutachter Prof. Dr. Willem-Paul de Roever

2. Gutachter Prof. Dr.-Ing. Sebastian Engell

3. Gutachter Prof. Dr.-Ing. Stefan Kowalewski

Datum der mündlichen Prüfung 16. Juli 2004

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 The Subject of the Thesis . 2
1.2 Programmable Logic Controllers 3
1.3 Formal Verification . 4

1.3.1 Challenges in Formal Verification 4
1.3.2 The State Explosion Problem 5
1.3.3 Optimizing the Model 5

1.4 Case Studies . 7
1.5 Technical Contributions of the Thesis 8

1.5.1 Analysis and Definition of PLC Software Semantics . 8
1.5.2 Automatic Generation of SMV Code 9
1.5.3 Modeling of Hardware Components 9
1.5.4 Compositional Verification 10
1.5.5 Communicating Linear Hybrid Automata 10

1.6 Structure of the Thesis . 10
1.7 Bibliographic Notes . 11
1.8 Acknowledgments . 12

2 Programmable Logic Controllers 13
2.1 What is a PLC? . 13
2.2 Fields of Applications . 14
2.3 Programming PLCs . 14

2.3.1 The IEC 61131-3 Standard 14
2.4 PLC Semantics . 19

2.4.1 SFC Syntax . 19
2.4.2 Operational SFC Semantics 21

2.5 Verification of SFC Programs 25

iii

iv Contents

3 Case Studies 27
3.1 The Experimental Batch Plant 27
3.2 The Multi-Product Batch Plant 30

4 Modular Verification 33
4.1 Introduction . 33
4.2 The Modular Verification Approach 34
4.3 Example . 34

4.3.1 Properties . 35
4.4 Plant Model . 36

4.4.1 Physical Devices . 37
4.4.2 Control Programs . 43

4.5 Transformation to SMV . 48
4.6 Verification . 52

4.6.1 Example . 52
4.6.2 Verification Results . 53

4.7 Discussion . 65

5 Compositional Verification 67
5.1 Introduction . 67
5.2 The Compositional Verification Approach 68

5.2.1 Decomposition . 68
5.2.2 Abstraction and Modeling 69
5.2.3 Local Verification . 70
5.2.4 Deduction . 70

5.3 Example . 70
5.3.1 Desired Properties . 70

5.4 Plant Model . 72
5.4.1 Plant Hardware . 72
5.4.2 Plant Software . 75

5.5 Compositional Verification . 76
5.5.1 Establishing Local Specifications 76
5.5.2 Desired Properties . 77
5.5.3 Plant Specifications 78
5.5.4 Deduction . 81
5.5.5 Temporal Induction 83

5.6 Algorithmic Verification . 84
5.7 Discussion . 86

6 Hybrid Systems 89
6.1 Introduction . 89
6.2 Communicating Linear Hybrid Automata 90

6.2.1 Variables . 90
6.2.2 Syntax . 91

Contents v

6.2.3 Computation Semantics 92
6.2.4 Parallel Composition 93
6.2.5 Trace Semantics . 96

6.3 Propositional Linear Temporal Logic 98
6.3.1 Syntax . 98
6.3.2 Semantics . 99
6.3.3 PLTL for CLHA . 99

6.4 Example . 100
6.4.1 CLHA Model . 100
6.4.2 Verification With HyTech 104

7 Conclusions 107
7.1 Summary . 107
7.2 Lessons Learned . 108

7.2.1 Programmable Logic Controllers 109
7.2.2 Abstraction and Modeling 109
7.2.3 Modular Verification 110
7.2.4 Compositional Verification 110

7.3 Future Work . 111

A Condition/Event Systems 113
A.1 Introduction . 113

A.1.1 Notational Conventions 115
A.2 The Condition/Event System Framework 116

A.2.1 Conditions, Events, and Signals 116
A.2.2 Condition/Event Systems 117
A.2.3 Discrete Condition/Event Systems 118

A.3 The Parallel Interconnection 121
A.3.1 Adding Component Names to C/E Systems 122
A.3.2 Graphical Descriptions of Discrete C/E Systems . . . 125
A.3.3 The Parallel Interconnection of C/E Systems 126
A.3.4 The Parallel Interconnection of Discrete C/E Systems 128

B Verification of Discrete Condition/Event Systems 135
B.1 Transforming a System of DCESs into the SMV framework . 135

B.1.1 Conversion of Identifiers 136
B.1.2 Translating a DCES into an SMV Module 136
B.1.3 Combining the SMV Modules 139
B.1.4 Well-Definedness . 141
B.1.5 A Complete Example 141

B.2 Verification with SMV . 142

Bibliography 145

vi Contents

List of Figures

1.1 The three phases of a PLC cycle 3
1.2 A compositional verification approach 6

2.1 The three phases of a PLC cycle 13
2.2 Implementations of the operation “x becomes y ∨ z” 15
2.3 Elements of sequential function charts 16
2.4 Transition types in sequential function charts 17
2.5 The block diagram ACTION CONTROL given in IEC 61131-3 18
2.6 Recursive collection of action qualifiers 23

3.1 P/I diagram of the experimental batch plant 28
3.2 P/I diagram of the multi-product batch plant 31

4.1 Communication structure of the experimental batch plant . . 34
4.2 Block diagram of the physical devices modeled as DCESs . . 38
4.3 Block diagram of Valve1 . 39
4.4 Transition diagram of Valve1 39
4.5 Block diagram of Pump1 . 40
4.6 Transition diagram of Pump1 40
4.7 Block diagram of Tank1 . 41
4.8 Transition diagram of Tank1 41
4.9 Block diagram of Tank5 . 42
4.10 Transition diagram of Tank5 42
4.11 Block diagram of Tank6 . 43
4.12 Transition diagram of Tank6 43
4.13 Block diagram of Heater . 43
4.14 Transition diagram of Heater 44
4.15 Block diagram of PrgB2 . 44
4.16 Transition diagram of PrgB2 45
4.17 Block diagram of PrgB5 . 46
4.18 Transition diagram of PrgB5 46
4.19 Block diagram of PrgSP1 . 49
4.20 Transition diagram of PrgSP1 50
4.21 The LATEX source for Tank5 52

vii

viii List of Figures

4.22 SMV input file for the parallel composition of PrgB5 and Tank5 54

5.1 The compositional verification approach 69
5.2 Block diagrams of the modules for the physical devices. . . . 73
5.3 SFC program for the production of “blue” in R21 (excerpt) . 85
5.4 SAL module PrgProduceBlueInR21 (excerpt) 86

6.1 CLHA tank model . 101
6.2 CLHA controller model . 103
6.3 CLHA model of T ‖C . 104
6.4 A run of the system T ‖C . 105
6.5 HyTech code for the controller C 105

A.1 Example of an algebraic loop 115
A.2 Example of a condition signal 117
A.3 Example of an event signal 117
A.4 A block diagram of a condition/event system 118
A.5 Block diagram of Switch . 126
A.6 The transition system of Switch 126
A.7 Example of a parallel interconnection 127
A.8 The composition of the system in Figure A.7 127
A.9 Mutually connected DCESs 130

B.1 The TRANS declaration representing the functions f and h . . 138
B.2 A DCES transition and its SMV representation 138
B.3 Block diagram of Switch . 142
B.4 The transition system of Switch 142
B.5 The SMV code for the DCES Switch 143

List of Tables

2.1 Action qualifiers . 17

3.1 Control programs for the experimental batch plant 29

ix

x List of Tables

Chapter 1

Introduction

The increased use of computers in our private, public, and business life has
become self-evident in the recent decades, and still new fields for computer
applications are being explored. Electronic controllers are present in home
appliances as well as automobiles, planes, and industrial plants of all kinds.

An integral part of any computer-controlled system is its software. Its
reliability is crucial for the correct functioning of the system. In practice,
however, software errors are often the cause of system malfunctions. In one
of his last writings, Edsger W. Dijkstra summarizes the current situation:

“The average customer of the computing industry has been served
so poorly that he expects his system to crash all the time, and we
witness a massive world-wide distribution of bug-ridden software
for which we should be deeply ashamed.” [Dij00]

This observation calls for quality assurance measures. Apart from in-
tensive testing and validation efforts, formal verification of software and
hardware has become a much needed and widely accepted technique for
quality assurance which is used especially in fields where undetected flaws
in the final product are not acceptable because of imminent losses of repu-
tation, money, or even human lives, e.g., in medical systems,1 chip design,2

avionics,3 communication protocols,4 space exploration,5 or control of nu-
clear reactors.

11985–1987: Due to two software flaws, several Therac-25 radiation therapy machines
massively overdose six people, three of them are killed [LT93, Lev95].

21994: A subtle flaw in the floating point divide unit of the Pentium processor [Int94]
forces Intel to put aside $420 000 000 to cover replacement costs.

31996: The complete loss of the Ariane 501 launcher and $500 000 000 payload is due
to specification and design errors in the software of the inertial reference system [LL+96].

42001: The link-layer security protocol for encryption in IEEE 802.11 wireless networks
is found to be vulnerable to passive attacks [FMS01, SIR01].

52004: The Mars exploration rover “Spirit” temporarily stops communicating with
Earth due to a “too many files” error in its flash memory filesystem [WS04].

1

2 Chapter 1. Introduction

1.1 The Subject of the Thesis

In this work we focus on the formal verification of industrial systems in
the field of chemical process engineering which are driven by programmable
logic controllers (PLCs), a class of automated control hardware (introduced
in Section 1.2).

Chemical plants pose an interesting challenge for formal verification
methods:

• Chemical plants involve a wide range of different concepts, such as dis-
crete and continuous processes, distributed process and control struc-
tures, and scheduling as well as control tasks.

• In contrast to many other fields in which formal software verification
is desired, control software for chemical plants is often not written by
computer scientists, but by chemical and process control engineers.
Therefore, formal verification methods are relatively new to that field.

Both noncompositional and compositional verification methods are pre-
sented. Compositional techniques reduce the verification of large systems
to the independent verification of their parts, whereas noncompositional ap-
proaches need to verify depending parts of the system as a single connected
unit. Given the PLC software, descriptions of the hardware that is con-
trolled by the PLC, and information about the process itself, we develop a
formal model on the basis of which properties of the system have to be veri-
fied. The verification methods are illustrated using two chemical laboratory
batch plants which are used for teaching in the Chemical Process Control
Laboratory at the University of Dortmund, Germany.

The main contributions of this thesis are:

• The translation of PLC programs (specifically, sequential function
charts) into the framework of discrete condition/event systems and
the input languages of the verification tools SAL and SMV.

• The implementation of a compiler which translates sets of discrete
condition/event systems into the input language of the verification tool
SMV. This is very useful when composing a large number of different
system parts.

• Modeling strategies for the non-software parts of the system, e.g., de-
vices like tanks, valves, and sensors.

• Deductive reasoning methods to combine local properties of modules
describing the behavior of the plant hardware as well as its control
into global properties of the complete chemical batch plant.

• The introduction of communicating linear hybrid automata as a com-
positional modeling framework for the specification of hybrid systems.

1.2. Programmable Logic Controllers 3�
�

�

?

?6

• read inputs from environment (e.g., sensor readings)
• compute
• write outputs to environment (e.g., actuator commands)

Figure 1.1: The three phases of a PLC cycle

The verification of the chemical batch plants mentioned above presents
a clear example of a system of which only its components can be verified
algorithmically, but because of the exessive time and memory requirements
of the verification process this is not feasible for the complete system as
a whole. This applies a fortiori to the verification of software for real-life
chemical industrial plants. Therefore, the verification of the latter definitely
requires a combination of algorithmic and deductive methods.

1.2 Programmable Logic Controllers

Programmable logic controllers, PLCs for short, have been introduced in
the 1970s as an advanced replacement for electrical control circuits based on
relay switches. These circuits were able to perform simple control decisions
hard-wired into the relay structure.

PLCs introduced a much more flexible way of building controllers. A
PLC is a piece of hardware (usually a single-board computer) equipped with
a microprocessor, memory, and various kinds of input/output ports. It op-
erates in a cyclic manner. One PLC cycle has the following three phases (see
Figure 1.1) which are typical of reactive synchronous systems: First inputs
are sampled at the input ports and stored into memory, then a computa-
tion takes place, and finally output values are written to the output ports.
This cycle is repeated until the PLC is interrupted by external intervention,
e.g., shutdown or reset commands. The cycle time is usually around a few
milliseconds, depending on the timing demands of the controlled process.

The control functionality of a PLC is not hard-coded into its hardware;
it is a piece of software which is usually written with the support of external
programming environments and then downloaded into the PLC memory.
This approach allows for easy reconfiguration during tests as well as during
the operational phase of the controlled system. Several programming lan-
guages of differing flavors are used for PLCs; the most prevalent ones were
standardized in the late 1990s through IEC 61131-3 [IEC98].

PLCs are mainly used to control industrial processes (or parts thereof)
where there is usually little or no need for human interaction, such as chemi-
cal production processes, packaging lines, or power plants. Most PLCs work
reliably in hazardous environments and can therefore be located close to the
controlled process itself.

4 Chapter 1. Introduction

1.3 Formal Verification

Formal verification involves establishing properties of hardware and software
components using methods in formal frameworks based on mathematics and
logic. These properties are proven formally, and not simply argued to be
correct by (often incomplete) testing or informal reasoning.

A prerequisite for the application of formal proof methods is the existence
of a formal model of the system that is to be verified. In case of software, such
a formal model can often be derived from the semantics of the programming
languages involved.

Given a formal model M of the system, several techniques have been
developed to prove that M fulfills some requirement ϕ. So-called state-
based verification methods describe the behavior of M through changes of
a state, which is a complete description of the current operational status of
the system, e.g., values of variables, program counters, timer values, etc. If
the set of all states is finite (or can be expressed by finite abstractions), an
algorithmic method called model checking [CE82, QS82] can often be used
to check automatically if M fulfills ϕ, denoted as M |= ϕ (“M satisfies ϕ”
or “M is a model of ϕ”).

In case model checking is not possible, e.g., in case the state space is too
large, and its automatic exploration takes too much space or time (see the
discussion below), or because essentially properties of infinite state spaces
need to be proven, deductive verification methods are used. The deductive
analysis can often be supported by semi-automatic theorem provers.

1.3.1 Challenges in Formal Verification

The main challenge in formal verification is to keep up with the ever-growing
complexity of the systems we are faced with. This applies to hardware as well
as software: Gordon E. Moore estimated in 1965 that integrated circuits such
as microprocessors and memory chips double their number of transistors
every one to two years [Moo65]—this observation known as “Moore’s Law”
still holds today (though physical limits are now within sight). The first
public release of the Linux operating system started with 10239 lines of
code (version 0.01, September 1991), and today the Linux kernel source has
over 6 million lines of code (version 2.6.11.5, March 2005).

These figures show that viable verification methods must be able to cope
with very large systems, and they must be scalable to meet future demands.

A second challenge is the increased interconnectedness of systems. The
behavior of many software applications depends on communication with ex-
ternal components like sensors, actuators, or other software-controlled sys-
tems. Since these external components often need to be taken into account
in the verification of the system, we face a much bigger system than just a
local one. This adds to the main complexity challenge mentioned above.

1.3. Formal Verification 5

1.3.2 The State Explosion Problem

One of the drawbacks of state-based formal verification methods is their
so-called state explosion problem: When a large system consists of sev-
eral smaller components (e.g., automata) running in parallel, the number
of global states increases exponentially with the number of components.
For instance, consider a system of 20 automata working in parallel, each
of which having 10 local states. This gives rise to 1020 global states. The
simple task of enumerating these states on a machine that needs only one
nanosecond per state (which is a rather tight estimation at the time of writ-
ing) already takes well over 3000 years. Building and searching a graph
based on these states takes significantly longer and is far beyond today’s
memory capabilities.

The state explosion problem is inherent in any system having parallel
structures and poses a major complexity barrier to any verification method
based on only the exhaustive enumeration of the global states. Several
techniques have been developed to minimize the impact of this problem on
the consumption of time and memory during the verification process.

These techniques can be divided into two classes: optimizations in the
model-checking process itself (not a subject of this thesis) and optimizations
of the model before handing it over to the model checker.

1.3.3 Optimizing the Model

Our main focus of research is not the optimization of tools, but of the way
these can be used efficiently by optimizing the models we feed into them. The
main techniques for efficient modeling are abstraction and compositionality.

Abstraction

Abstraction is a fundamental concept used in all formal verification meth-
ods. Abstracting means replacing a concrete object with an abstract one
which has a simpler structure. A well-chosen abstraction simplifies as much
as possible, without losing essential (i.e., verification-relevant) information
about the concrete object. Abstractions can be used in different ways during
the specification and verification process:

• Building the system model: Every translation from a real-life system
into a formal model is an abstraction.

• Optimizing the system model: Depending on the property that is to
be checked, different abstractions of the system model can be useful,
e.g., by abstracting from data, time, or continuous variables in order
to obtain simpler models.

6 Chapter 1. Introduction

process ↔ controller System

ϕ Global Property

����� ?

HHHHj
Decomposition

M1 ↔ M2 . . . Mn Modules

? ? ?

Abstraction and
Modeling

S1 ↔ S2 . . . Sn Automata

? ? ?
Local Verification

ϕ1 ϕ2 ϕ3 Local Properties
H

HHHj ?

��
���

Deduction

Figure 1.2: A compositional verification approach

• Reducing the complexity of model checking: Model checkers often use
abstractions to minimize time and space usage, e.g., by introducing
symbolic states.

When abstracting a system model, often a so-called safe abstraction is
chosen, i.e., whenever a property holds for the abstract system, this property
also holds for the concrete system. The converse, however, does not always
hold, due to the over-approximation which occurs in the abstraction process.
A positive model-checking result on a safe abstraction therefore means that
the concrete system also fulfills the property, whereas a negative result can
either mean that the concrete system is not correct or that the abstraction
is too coarse.

Thus, when getting a negative result, the counterexample provided by
the model checker is examined to see if the error will also occur in the
concrete system. If it does not, a finer abstraction has to be chosen.

Compositionality

Compositional reasoning is a methodology in which a system can be speci-
fied by providing descriptions of its constituent parts and the ways they are
put together, such that the behavior of the complete system can be inferred
from these descriptions only [Fre23]. Figure 1.2 shows a compositional ap-
proach to the verification of a system. First the system is split into smaller
components, called modules. Each module is then formally specified at a
suitable abstraction level as a single entity, and its correct behavior is proven
locally, e.g., by model checking. The specifications of all modules are then
combined in a deduction step to infer a global property of the system model.

1.4. Case Studies 7

A prerequisite for a compositional approach is that the behavior of a
component is completely described by its interface specification such that
the behavior of the global system model can be expressed using only these
interfaces and does not depend on any additional information about the
internal structure of the components (“black box” principle, see [Zwi89]).

The advantage of such an approach is obvious. Recall the example intro-
duced above (20 automata, 10 local states each). A compositional approach
yields 20 applications of a model-checking algorithm, each involving only 10
states, whereas the global approach applies model checking once, but on a
set of 1020 states. There is, however, some (often significant) overhead for
the decomposition of the system and the construction and composition of
the local specifications. To quote Edsger W. Dijkstra once more:

“You see, while we all know that unmastered complexity is at the
root of the misery, we do not know what degree of simplicity can
be obtained, nor to what extent the intrinsic complexity of the
whole design has to show up in the interfaces.” [Dij00]

1.4 Case Studies

This thesis discusses two examples in detail. Both are laboratory batch
plants, used for teaching at the Chemical Process Control Laboratory at
the University of Dortmund, Germany. They have also been used as case
studies in several research projects, e.g., the VHS project6 [VHS].

The first plant combines a mixing and a separation step into a closed
recycling process: A highly concentrated salt solution is diluted with water,
resulting in in a salt solution with a lower concentration. This solution is
heated until steam evaporates. The steam is cooled down in a condenser,
and the condensate (distilled water) is collected. The evaporation continues
until the original salt concentration is reached, and both liquids, distilled
water and salt solution, can be used to restart the process.

The second plant is a multi-product batch plant. Two different colored
liquids, “blue” and “green”, are produced in three independent reactors by
mixing three raw materials, “yellow”, “red”, and “white”. The production
is run in batches: Each of the tanks is capable of containing a maximal
number of fixed volumes, called batches. The raw material storage tanks
and the reactors have a maximum capacity of two batches, and the product
tanks can hold up to three batches. The independent reactors allow the
concurrent production of several batches.

Both plants are controlled by PLC systems. The complexity of these
plants demonstrates the need for the verification strategies discussed in this
thesis:

6VHS – Verification of Hybrid Systems. EU Esprit Long-Term Research Project 26270.

8 Chapter 1. Introduction

1. The need for automatic verification of single plant components. Proofs
carried out by hand are not convincing and too error-prone because of
the size and the resulting complexity of the components.

2. The need for deductive verification. Experiences with the plant mod-
els created in step 1 above show that the complete product of all
components suffers from the state explosion problem and makes fully
algorithmic verification impossible.

3. The interplay between automatic and deductive verification. The in-
terfaces of the single plant components need to be defined in such a
way that the verification results from step 1 above can easily be used
as a basis for deductive reasoning in step 2.

1.5 Technical Contributions of the Thesis

This thesis develops methods for the verification of industrial control systems
for chemical plants. The starting point is a description of the industrial
process and its control structure. This usually includes:

• A description of the plant’s physical structure, often given as a “pip-
ing and instrumentation diagram” (a schematic picture of the plant
layout).

• Descriptions of the physical components of the plant, such as tanks,
pumps, and valves.

• A description of the process taking place, e.g., chemical reactions.

• The software used to control the process, and the hardware platform
running it, e.g., a PLC.

• Information on how the process and the control are related to each
other, usually through sensors and actuators.

Furthermore, we have a list of verification goals, i.e., process states that
need to be reached (e.g., “production finished”) or situations that should be
avoided (e.g., “tank overflow”).

In the following we list the main technical contributions of this thesis
that enable the verification of industrial control systems for chemical plants.

1.5.1 Analysis and Definition of PLC Software Semantics

Formal reasoning about PLC programs requires a clear understanding of
their underlying semantics. In the field of computer science, semantics of
programming languages is a well-researched field, and various kinds of formal

1.5. Technical Contributions of the Thesis 9

semantics for all flavors of languages have been established. PLC program-
ming languages, however, emerged from hard-wired logical and relay circuits
and are therefore based on knowledge about electrical circuits rather than
mathematics.

Based on informal descriptions and observations in the behavior imple-
mented in PLC programming tools, an unambiguous operational semantics
for PLCs is defined (more precisely, for the programming language Sequen-
tial Function Charts (SFCs)). This semantics serves as the basis for the
translation of SFC programs into other frameworks such as the input lan-
guages of model-checking tools.

1.5.2 Automatic Generation of SMV Code

As we have seen in Section 1.3.2, it is often not possible to model-check a
complete system (modeled by the full product of all its parts) due to com-
plexity problems. We propose a modular (though not fully compositional)
method which allows to reduce the complexity of the verification process
by composing only those parts of the system which are necessary to estab-
lish (or to show the violation of) the property in question. This results in
a number of relatively small open systems, i.e., systems which have some
unrestricted inputs showing arbitrary (also called “chaotic”) behavior.

When using the SMV model checker, the verification of each property
requires a systematic modification on the communication interfaces of the
system parts to reflect the “openness” of some inputs. Since these modifica-
tions are tedious and error-prone, we have built a tool which automatically
translates the models of the parts of the system into SMV code while ap-
plying these modifications.

1.5.3 Modeling of Hardware Components

Models of software components can usually be developed from (an abstrac-
tion of) the formal operational semantics of the programming language in-
volved, e.g., sequential function charts for PLC programs. For hardware
components, however, such a formal basis for a model seldom exists. We
show how the hardware parts of our examples, such as valves, pumps, and
tanks, can be modeled as condition/event systems, which can automatically
translated into SMV code (see above). Compositional verification offers an-
other approach: We give specifications for hardware components directly,
and assume them to be correct, without proving them by model checking,
since we gain no additional confidence from a specification proven by model
checking if the model had been built by hand just to reflect the component’s
expected behavior.

10 Chapter 1. Introduction

1.5.4 Compositional Verification

We use the multi-product batch plant to illustrate the compositional verifi-
cation approach sketched in Figure 1.2. Software and hardware components
are identified, and we model a communication structure of the components
which represents flows of information (sensor data and actuator commands)
as well as material flows (liquids). Furthermore, local specifications are given
for the components. The control programs, written in the sequential func-
tion chart language, are modeled in the input language of the SAL model
checker, and the local specifications are proven algorithmically. Finally, we
use deduction to derive global properties of the complete plant from the
local specifications.

1.5.5 Communicating Linear Hybrid Automata

Properties which depend on the continuous behavior of a system need to be
verified in a formal framework which is capable of expressing such behavior.
We define communicating linear hybrid automata (CLHA) as a modeling
framework for the specification of hybrid systems, i.e., systems which have
continuous as well as discrete components. CLHA provide modular descrip-
tions of system components and subsume most of the characteristics that
are used in verification tools, e.g., discrete and continuous transitions, in-
variants, and communication through shared variables as well as through
synchronization symbols.

In contrast to some other existing modeling paradigms, such as timed
automata [AD94] or CSP [Hoa85], our model uses a directed one-to-many
way of communication, which, in our experience, better suits the structure
of real-life systems than models with only undirected synchronization or
one-to-one communication channels.

1.6 Structure of the Thesis

Chapter 2 introduces programmable logic controllers (PLCs), the hardware
platforms on which the software runs which we will verify. Five programming
languages for PLCs, standardized in IEC 61131-3 [IEC98], are introduced.
Our focus is on the graphical language sequential function charts (SFC).

Two industrial batch plants are described in Chapter 3. These serve
as running examples illustrating the verification approaches followed in the
subsequent chapters.

Chapter 4 presents a modular verification approach: The system is di-
vided into small units, called modules. Each module is modeled locally,
and for every global property that needs to be proven about the system, a
minimal set of modules that is needed to fulfill that property is composed,
and the validity of the global property is proven by model checking. This

1.7. Bibliographic Notes 11

approach is illustrated using the experimental batch plant introduced in
Chapter 3.

The compositional verification approach illustrated in Figure 1.2 is de-
scribed in Chapter 5. It is illustrated using the multi-product batch plant
introduced in Chapter 3.

Chapter 6 introduces communicating linear hybrid automata (CLHA) as
a modeling framework for the specification of hybrid systems. The syntax
and a compositional semantics of CLHA are defined formally, and proposi-
tional linear temporal logic is introduced as an abstract specification lan-
guage for CLHA behavior. An example illustrates the use of the presented
framework, and an application of the HyTech model checker is shown.

We conclude this thesis in Chapter 7.
Appendix A describes in detail the formal framework of discrete condi-

tion/event systems which are used as the modeling language in Chapter 4.
The full details of the translation from discrete condition/event systems

into the input language of the model checker SMV as used in Chapter 4 are
explained in Appendix B.

1.7 Bibliographic Notes

Almost all parts of this thesis are based on earlier publications.
First versions of a formal syntax and semantics for sequential function

charts as presented in Chapter 2 have been contributed by the author to
[BHLL00b] and [BHLL00a]. Later, timing was added [BHL02]. The pre-
sented SFC semantics adds some details to previously published versions.

The experimental batch plant and the multi-product batch plant in-
troduced in Chapter 3 have been used as case studies in several research
projects, and descriptions of these plants can be found in the many publi-
cations of these projects [Kow98, KS98, Bau00, BKSL00].

The modular verification approach of Chapter 4 and its application to
the experimental batch plant have been developed by the author within the
VHS project and published as technical reports [Luk99b, Luk99a]. A short-
ened illustration of these results, along with another verification approach,
appeared in [HLL01].

Descriptions of the compositional approach of Chapter 5 have been pub-
lished in [FSE+01], [FSE+02], and [HLFE02]. The application to the multi-
product batch plant (i.e., modeling, algorithmic verification, and deduction)
has not been published before in detail.

The syntax of an earlier version of the linear hybrid automata framework
presented in Chapter 6 was shown in [FSE+01] and [FSE+02]; the present
version has been extended and completely reworked.

Appendices A and B have been published as part of a technical report
[Luk99b].

12 Chapter 1. Introduction

1.8 Acknowledgments

This thesis would not be in its current state without the help and support
of many individuals.

I thank Willem-Paul de Roever for many things: for providing an enjoy-
able research environment at the Chair of Software Technology, for widening
my horizon by supporting visits abroad, especially my stay at SRI Interna-
tional (many thanks to John Rushby and his colleagues for six excellent
months), and for supporting me in finishing this thesis.

Very enjoyable has been the work with Ralf Huuck, my colleague in all
research projects I have worked in. I am grateful for his collaboration as
well as many other memorable events.

I also thank all of my present and former colleagues at the University of
Kiel for an excellent working atmosphere, interesting discussions, relaxing
chats in the hallway and on our IRC channel, and help on many occasions.
Martin Steffen, Kai Baukus, Karsten Stahl, and Marcel Kyas deserve a
mention here. Sincere thanks for proof reading go to Kai, Martin, and Ralf.

Many stimulating cooperations and visits were supported by Yassine
Lakhnech and his colleagues at Verimag.

The Process Control Laboratory at the Department of Biochemical and
Chemical Engineering at the University of Dortmund has been our part-
ner in several research projects.7 8 9 10 I thank Sebastian Engell and his
colleagues, particularly Stefan Kowalewski, Olaf Stursberg, Nanette Bauer,
Goran Frehse, and Sven Lohmann, for fruitful collaborations over the past
seven years.

My brother Jan helped me programming the LATEX-to-SMV compiler
prototype. Thank you for helping out with tackling Lex and YACC.

Our secretaries Sabine Hilge and especially Änne Straßner have always
been very helpful when administrative tasks threatened to slow down my
scientific progress. Thanks a lot!

Finally, I owe a lot of support to my parents.

“I don’t know half of you half as well as I should like; and I like
less than half of you half as well as you deserve.”

J.R.R. Tolkien, The Lord of the Rings

You do the math.

7DFG project on Specification and Verification of Discrete Controllers for Continuous
Systems Based on Modular and Compositional Analysis (RO 1122/2-1, RO 1122/2-2)

8EU Esprit long-term research project 26270 on Verification of Hybrid Systems (VHS)
9DFG project on Integrated Algorithmic and Deductive Verification of Distributed

Control Systems for Hybrid Processes (LA 1012/5-1, RO 1122/7-1)
10DFG project on Transformation Procedures for Sequential Function Charts and State-

charts (LA1012/6-1, RO 1122/10-2)

Chapter 2

Programmable Logic
Controllers

This chapter introduces programmable logic controllers, PLCs for short, a
class of hardware platforms used for automated control purposes in the field
of industrial process control.

2.1 What is a PLC?

A PLC is a piece of hardware (usually a single-board computer) equipped
with a microprocessor, memory, and various kinds of input/output ports.
It operates in a cyclic manner. One PLC cycle involves the following three
phases (see Figure 2.1): first input values are sampled at the input ports
and stored into memory, then a computation takes place, and finally output
values are written to the output ports. This cyclic operation is repeated
until the PLC is interrupted by external intervention, e.g., shutdown or reset
commands. The cycle time is usually around a few milliseconds, depending
on the timing restrictions of the controlled process.

The control software inside a PLC is not hard-coded into its hardware; it
is usually written with the support of external programming environments
(e.g., on a PC system) and then downloaded into the PLC memory. This
approach allows for easy reconfiguration of the control functionality during
tests as well as the operational phase.

�
�

�

?

?6

• read inputs from environment (e.g., sensor readings)
• compute
• write outputs to environment (e.g., actuator commands)

Figure 2.1: The three phases of a PLC cycle

13

14 Chapter 2. Programmable Logic Controllers

2.2 Fields of Applications

PLCs are mainly used to control industrial processes (or parts thereof) where
there is usually little or no need for human interaction, such as chemical
production processes, packaging lines, or power plants. Most PLCs work
reliably in hazardous environments and can therefore be located close to the
controlled process itself.

PLCs are less useful if very fast response times (some microseconds or
even nanoseconds) or very complex calculations are required, as, e.g., in avi-
ation, audio/video processing, or high-speed communication equipment. For
such applications, specialized hardware components, e.g., signal processors,
are used.

Related to PLCs are embedded controllers, which are specifically designed
and built for fixed control functions inside consumer products suitable for
mass production, e.g., mobile phones, electronic toys, or washing machines.
These controllers are often smaller and cheaper than PLCs, but usually not
fully reconfigurable after production.

2.3 Programming PLCs

The software for PLCs is usually developed with the aid of programming en-
vironments which typically run on a PC system. The programming process
is often supported by debugging and simulation tools which allow to test a
program before it is compiled and transferred to the PLC.

2.3.1 The IEC 61131-3 Standard

The confusing variety of programming languages supported by different PLC
vendors led to the IEC 61131-3 Standard [IEC98] (called “the standard” in
the following) which defines a small set of the programming languages for
PLC software which are mainly used in industry. After introducing common
elements such as data types, two textual and two graphical programming
languages are defined.

Next we briefly introduce each of these four languages. Figure 2.2 shows
a small example for programs written in these languages.

Instruction List (IL)

Instruction List is a textual assembler-like language for a one-register ma-
chine. The register, called “current result”, can operate on the PLC variables
with load and store instructions as well as algebraic and Boolean operations.
The program flow can be controlled by conditional and unconditional jumps,
and modularity can be achieved by using call and return instructions.

2.3. Programming PLCs 15

LD x
OR y
ST z

z := x OR y

Instruction List Structured Text

q y

qq x
()

z q ≥ 1

y

x z

(Relay) Ladder Diagram Function Block Diagram

Figure 2.2: Implementations of the operation “x becomes y ∨ z”

Structured Text (ST)

The second textual language is Structured Text, which is a dialect of Pascal.
Its programming constructs include function calls, if–then–else, case, and
for, while–do, and repeat–until loops.

Ladder Diagram (LD)

The graphical language Ladder Diagram (sometimes called Relay Ladder
Diagram) uses a network of graphic symbols to describe PLC operations.
These symbols are used to read and write variables and are placed between
and connected to two “power rails”. The “flow of current” from left to right
denotes the transfer of Boolean values. Historically, this language emerged
from hard-wired logical circuits using relay switches for Boolean variables.

Function Block Diagram (FBD)

The Function Block Diagram language uses a network of electrical circuit
diagrams consistent with IEC 617-12 to describe logic operations on Boolean
PLC variables.

Sequential Function Chart (SFC)

The standard introduces sequential function charts (SFCs) as a graphical
means for structuring PLC programs written in one of the four languages
described above. But since SFCs have all the characteristics of a program-
ming language, such as case distinctions and while loops, it is justified to
consider them as a fifth PLC programming language.

SFCs as given in IEC 61131-3 are based on IEC 60848 [IEC92] which
defines the specification language Grafcet. The Grafcet language is based
on Petri nets. For details on Grafcet and Petri nets see [DA92].

16 Chapter 2. Programmable Logic Controllers

s0 � step (initial)
� transition
g1 � transition condition (guard)

s1 S action1

N action2

� action block
XXXXy

action name
PPPPPPPi

action qualifierg2

s2 R action1

g3

?

Figure 2.3: Elements of sequential function charts

An SFC is given as a transition system, cf. Figure 2.3. Its locations are
called steps, with one step denoted (with a double-framed box) as the initial
step. Steps can be connected by transitions. Each transition is labeled with
a transition condition (also called guard). Guards can be written as Boolean
expression in one of the four other PLC programming languages. If not de-
noted otherwise by an arrowhead, transitions are directed downwards. In
addition to the single-sequence transitions shown in Figure 2.3, which relate
exactly one step to one another, there are various possibilities for alternative
and parallel branching as shown in Figure 2.4. Sequence selections imple-
ment alternative choice: only one of several transitions starting at the same
source step can be taken. Simultaneous sequences implement parallelism:
When the source step is active and the guard is enabled, all the target steps
become active simultaneously. Furthermore, there are constructs for the
convergence of parallel branches.

With each step a (possibly empty) set of action blocks is associated. Each
action block consists of an action qualifier and an action name. An action
name can be a Boolean variable, a call of another PLC program written
in one of the four languages mentioned above, or the identifier of another
SFC, which introduces hierarchy for SFC programs. The action qualifier
associated with an action name determines when and for how long the action
is executed. Table 2.1 lists all action qualifiers, which are explained below.

The execution of SFC programs happens on two levels: the changes of
step activity and the execution of actions. Initially, only the initial step
is active (“has a token” in the Petri net sense), and the activity of steps
changes by moving tokens through transitions. The actual computation and

2.3. Programming PLCs 17

s1

g

s2

single sequence

s1

g2g1 g3

s2 s3

sequence selection
(divergence)

s4

s1 s2 s3

g2g1 g3

s4

sequence selection
(convergence)

s1

g

s2 s3

simultaneous sequence
(divergence)

s4 s4

simultaneous sequence
(convergence)

g

s1 s2 s3

s4

simultaneous sequence
(convergence/divergence)

s5

g

s1 s2 s3

Figure 2.4: Transition types in sequential function charts

Table 2.1: Action qualifiers

untimed qualifiers timed qualifiers

N non-stored L limited
R reset D delayed
S set (or stored) SD stored and delayed
P0 pulse (falling edge) DS delayed and stored
P1 pulse (rising edge) SL stored and limited

control functionality of an SFC program is given by its actions, which are
executed depending on their associated action qualifiers at active steps: For
any action name, the set of qualifiers associated with that name in action
blocks of active steps is collected. The N qualifier executes the action as
long as the step is active, e.g., in Figure 2.3 action2 is executed as long
as s1 is active. The S qualifier marks the action as “stored”; it will be
executed until a R qualifier occurs for that action, even if the step with the
S qualifier is exited in the meantime. The R qualifier has priority over all
other qualifiers, e.g., action1 will never be executed whenever s2 is active.
The pulse qualifiers execute an action for one PLC cycle only when the step
is entered (P1) or exited (P0). The timed qualifiers are used in conjunction
with a time parameter to limit or delay actions depending on the activity
of steps.

For those familiar with the concept of logical circuits and function blocks,
the standard defines the semantics of the action qualifiers by a block diagram

18 Chapter 2. Programmable Logic Controllers

N

R q
d

q

q

q

S
R1
S Q1

RS

S FF

L

PT
IN Q

TON

L TMR
&q d

D
PT
IN Q

TON

D TMR

P CLK Q

P TRIG

SD
R1
S Q1

RS

SD FF

PT
IN Q

TON

SD TMR

DS
PT
IN Q

TON

DS TMR

R1
S Q1

RS

DS FF

SL
R1
S Q1

RS

SL FF

PT
IN Q

TON

SL TMR
&q d

P1 CLK Q

R TRIG

P0 CLK Q

F TRIG

T q

q
q

q

≥ 1

& Q

Figure 2.5: The block diagram ACTION CONTROL given in IEC 61131-3

ACTION CONTROL associated with each action name, see Figure 2.5. The
Boolean inputs on the left are set to 1 if and only if the respective qualifier
appears in an active step, the input T is the time parameter, and the Boolean
output value Q on the right determines if the action is executed or not.

The next section introduces a formal operational semantics for SFCs.

2.4. PLC Semantics 19

2.4 PLC Semantics

Even though the standard defines the syntax for PLC programs and some
aspects of their semantics (e.g., the meaning of action qualifiers through the
block diagram in Figure 2.5) quite clearly, the overall semantics of these is
not always obvious. Especially SFCs lack a formal execution model which is
free from ambiguities. As comparisons of a wide range of PLC programming
environments show [Bau03, BHLL04], there is no common semantics for the
same SFC in different tools. This is a big drawback for the interoperability of
PLC software, especially since the need for interoperability among different
PLC manufacturers was one of the very reasons for introducing IEC 61131.

This section introduces a formal semantics for SFCs which is based on
the analysis of the standard as well as observations of the SFC behavior
implemented in various PLC programming environments. This semantics
can be parameterized to match the particular semantics of most PLC pro-
gramming environments.

2.4.1 SFC Syntax

A prerequisite for a formal semantics is a clear syntactic description of the
objects it reasons about. This section introduces a syntax for SFCs. We
only present a model without quantitative timing, i.e., we omit the timed
action qualifiers listed in Table 2.1. See [BHL02] for a discussion of timed
action qualifiers.

PLC programs operate on a finite set of typed variables. A type-respect-
ing function assigning values to the variables is called state.

Definition 2.1 (variables, states) Let V be a finite set of variables, and
let type be a function assigning a type (a set of values like B = {true, false})
to each variable. A function σ assigning to each variable v ∈ V a value
σ(v) ∈ type(v) is called state. We denote the set of all states by Σ.

As mentioned before, action names in SFCs can refer to a Boolean vari-
able, to another SFC, or to the call of another PLC program written in one
of the four programming languages IL, ST, LD, or FBD. For the sake of sim-
plicity, we will use in the latter case a state transformation which represents
the variable modifications taking place in the referenced PLC program.

Definition 2.2 (state transformation) A state transformation is a func-
tion f : Σ → Σ. Let F be the set of all state transformations.

We define W as the set of Boolean variables in V which appear as action
names in the SFCs.

20 Chapter 2. Programmable Logic Controllers

Definition 2.3 (actions, action qualifiers) We define A = W ∪SFC∪F
(with SFC defined below) as the set of actions, and U = {N,R,S,P0,P1}
as the set of action qualifiers.

The behavior of an SFC depends on the order in which its actions are
executed. Thus, an irreflexive ordering @ ⊆ A × A on actions needs to be
defined, such that a1 @ a2 means that action a1 must be executed before
action a2. Any two actions which use a common variable need to be ordered.
For the sake of simplicity in the following definitions, we demand (without
loss of generality) that @ is linear. The ordering depends on the particular
PLC programming tool that we want to represent.

A transition t is represented as a triple (Q , g ,Q ′), where Q is the set
of source steps which have to be active before firing the transition and Q ′

is the set of target steps which are active after the transition has been
taken. E.g., the transition at the bottom left of Figure 2.4 is represented
as ({s1, s2, s3}, g , {s4, s5}). Transitions which are part of sequence selections
are given as several single-sequence transitions (i.e., the diverging sequence
selection in Figure 2.4 is represented by three transitions: ({s1}, g1, {s2}),
({s1}, g2, {s3}), and ({s1}, g3, {s4})). A guard g is a Boolean expression over
the variables in V . Furthermore, the Boolean expression si .X can be used
in g , representing that step si is currently active.

For a set T of transitions, we define the abbreviations

src(T) = {Q | (Q , g ,Q ′) ∈ T} and tgt(T) = {Q ′ | (Q , g ,Q ′) ∈ T}

as the unions of all source, respectively target, steps of transitions in T .
Similar to the ordering on actions, we also need a partial ordering ≺

on transitions to determine which of several alternative transitions in a se-
quence selection has priority. Any two transitions t1 = (Q1, g1,Q ′

1) and
t2 = (Q2, g2,Q ′

2) have to be ordered if they share a common source step, i.e.,
if Q1 ∩Q2 6= ∅. The term t1 ≺ t2 means that transition t1 has priority over
t2. In contrast to the global action ordering @, the transition ordering will
be defined locally in each SFC.

Now we can define the formal syntax for SFCs. Let SFC be the set of
all SFCs S defined as follows:

Definition 2.4 (SFC) An SFC is a 5-tuple S = (S, s0, T, a,≺), where S is
a finite set of steps, s0 ∈ S is the initial step, T is a finite set of transitions,
a : S → 2U×A is an action labeling function which assigns a finite set of
action blocks to each step, and ≺ ⊆ T × T is an irreflexive partial order on
transitions.

For any b ∈ U × A, we use bq to denote the first component of b (the
action qualifier) and ba to denote the second component of b (the action
name).

2.4. PLC Semantics 21

The orders @ and ≺ are used to adapt our model to the semantics used
by the different PLC programming tools. For transitions, the IEC 61131-3
standard defines the default priorities to be assigned “from left to right”,
and some tools allow to add explicit priorities. For actions, many different
ways to define the priorities exist, e.g., by the graphical position of action
blocks, or by alphabetical or user-defined orderings of action names. See
[Bau03, BHLL04] for a list of tool-specific transition priorities and action
orderings.

2.4.2 Operational SFC Semantics

Now we provide a semantics for SFCs. Let S = (S, s0, T, a,≺) be an SFC,
and let Si = (Si , s0,i , Ti , ai ,≺i), i = 1, . . . ,n, be the SFCs nested recursively
inside the action blocks of S. For a global, flat access to the nested structure
we define S̄ = S ∪ S1 ∪ . . .∪ Sn , T̄ = T ∪ T1 ∪ . . .∪ Tn , ā = a∪ a1 ∪ . . .∪ an ,
and ≺̄ =≺1 ∪ . . .∪ ≺n .

There are two different things we have to keep track of when observing
executions of S. First, we need information about the current state of S,
i.e., the values of its variables. And we must know in which steps of S and
its sub-SFCs S1, . . . ,Sn control resides, i.e., which steps “have a token”.
Furthermore, we need information about which actions are currently active
and which actions are “stored”, i.e., have been activated by an S qualifier
in a previous cycle. In Figure 2.5, the latter information is stored in the
state of the flipflop S FF. A timed semantics would also consider the other
flipflops and the values of the timers.

It is crucial to notice that there is a difference between control residing in
a step and steps whose actions are actually performed. The former we will
call ready steps, and the latter active steps. Each active step is also a ready
step, but the converse does not hold, since actions in ready steps of nested
SFCs will only be performed if the nested SFC itself is active, because, e.g.,
it is activated by an N qualifier in a step of a top-level SFC. Since we can
always deduce the active steps from the other information, they need not to
be saved from one PLC cycle to the following.

We store the above information about S in a configuration:

Definition 2.5 (configuration) A configuration of S is a quadruple (σ,
ready , activeA, storedA), where σ ∈ Σ is a state, ready ⊆ S̄ is the set of
ready steps, activeA ⊆ A is the set of active actions, and storedA ⊆ A is the
set of stored actions. Let C be the set of all configurations.

Such a configuration is changed in the cycles of an SFC. A cycle of an
SFC can be seen as a concretization of the PLC cycle depicted in Figure 2.1
and performs the following sequence:

22 Chapter 2. Programmable Logic Controllers

1. Get new input from the environment and store the information into
the state σ.

2. Compute the SFC behavior:

(a) Execute all active actions in activeA, in the sequence determined
by @, changing the state σ into σ′.

(b) Change the set ready into ready ′ by taking transitions. Guards
are evaluated using the new state σ′, and conflicts are solved
using ≺. Furthermore, update activeA to activeA′ and storedA
to storedA′.

3. Send the outputs to the environment by extracting the required infor-
mation from the new state σ′.

The interaction with the environment is not discussed here in detail; we
focus on items 2a and 2b.

Some PLC programming environments exchange the order of items 2a
and 2b above, thus taking the enabled transitions before executing the active
actions. Another possible deviation from the semantics presented here is
the so-called “final scan logic” which executes each active action once more
before it gets deactivated.

We define the operational semantics for SFCs by showing how a config-
uration changes when one SFC cycle is executed. That is, given a config-
uration (σ, ready , activeA, storedA), with σ already containing the new in-
put information from the environment, we compute the next configuration
(σ′, ready ′, activeA′, storedA′) by executing all active actions, computing the
new set of ready steps, and by updating the sets of active and stored ac-
tions. Then the output information for the environment can be extracted
from σ′. This single-cycle semantics, which is defined next, can be extended
to a multi-cycle semantics which computes a sequence of outputs from a
given sequence of inputs from the environment.

Definition 2.6 (SFC semantics) The transition relation−→ ⊆ C×C for
the SFC S is defined as follows: (σ, ready , activeA, storedA) −→ (σ′, ready ′,
activeA′, storedA′) if and only if

1. σ1 = (am ◦ . . . ◦ a1)(σ), where {a1, . . . , am} = activeA ∩ F and a1 @
. . . @ am ,

2. ready ′ = (ready \ src(taken)) ∪ tgt(taken), where

(a) taken = {t = (Q , g ,Q ′) ∈ enabled | ¬∃t̄ = (Q̄ , ḡ , Q̄ ′) ∈ enabled :
Q ∩ Q̄ 6= ∅ ∧ t̄ ≺ t},

(b) enabled = {(Q , g ,Q ′) ∈ T̄ |Q ⊆ active ∧ (σ1, active) |= g}, and

2.4. PLC Semantics 23

(c) active = {s ∈ ready | s ∈ S ∨ ∃i ∈ {1, . . . ,n} : s ∈ Si ∧ Si ∈
activeA},

3. activeA′ = {act ∈ A | aq(act) ∩ {N,S,P0,P1} 6= ∅ ∧ R /∈ aq(act)}
and storedA′ = {act ∈ A |S ∈ aq(act) ∧ R /∈ aq(act)}, where aq =
collect(aq0, S0) with

(a) aq0(act) =
{
{S}, if act ∈ A ∩ storedA
∅ , if act ∈ A \ storedA

,

(b) S0 = S ∪ {Si | i ∈ {1, . . . ,n} ∧ Si ∈ storedA},

and the recursive function collect as given in Figure 2.6, and

4. for all v ∈ V , σ′(v) =

σ1(v), if v /∈ W
true , if v ∈ W ∩ activeA′

false , if v ∈ W \ activeA′
.

The definition above and Figure 2.6 need some explanation. In step (1),
all active actions which represent a state transformation are sorted using
the global action ordering @, and they are used to modify the current state
σ in that order. The result is stored in σ1.

Step (2) describes how transitions are taken. In (2c) the set active is
computed which contains all active steps. These are all ready steps which
are either in the top-level SFC S (which is always active), or are ready steps
of an active nested SFC Si . The set enabled defined in (2b) contains all
transitions which are enabled, i.e., transitions where all source steps are
active and where the guard is satisfied. The validity of a guard, expressed
by (σ1, active) |= g , depends on the current variable evaluation σ1 and the
set active of active steps, since the activity of a step s can be expressed
in g by s.X . Not all enabled transitions will be taken: In (2a) the set
taken contains only those transitions t from enabled for which there exists
no other conflicting transition t1 which has priority over t (expressed by
t1 ≺ t). Two transitions are in conflict if they share at least one common
source step. Finally, all transitions in taken are fired, which is expressed

function collect(aq ,St)
for all s ∈ St ∩ ready ′, b ∈ ā(s) : aq(ba) := aq(ba) ∪ ({bq} ∩ {N,S,R});
for all s ∈ St ∩ src(taken), b ∈ ā(s) : aq(ba) := aq(ba) ∪ ({bq} ∩ {P0});
for all s ∈ St ∩ tgt(taken), b ∈ ā(s) : aq(ba) := aq(ba) ∪ ({bq} ∩ {P1});
for all i ∈ {1, . . . ,n}, s ∈ St , b ∈ ā(s) :

if Si = ba ∧ aq(Si) 6= ∅ ∧ {R} /∈ aq(Si) then aq := collect(aq , Si)
return aq

Figure 2.6: Recursive collection of action qualifiers

24 Chapter 2. Programmable Logic Controllers

by removing all source steps of these transitions from ready and adding all
target steps. The result is stored in ready ′.

In step (3) the sets activeA′ (new active actions) and storedA′ (new stored
actions) are computed recursively over the SFC nesting structure by the
function collect (shown in Figure 2.6). This function has two parameters:
aq is a function which maps actions to the set of action qualifiers that
already have been found for that action in action blocks of active steps.
E.g., if step s1 in Figure 2.3 on page 16 is active, we have aq(action1) = {S}
and aq(action2) = {N}, and if s2 is active, we have have aq(action1) = ∅
and aq(action2) = {R}. The second parameter St is a set of steps that still
need to be visited to collect more qualifiers. The return value of collect is aq
extended with the qualifiers that have been found while visiting the steps in
St .

Initially, collect is called with aq0 which assigns the S qualifier to all
actions in storedA, since these have to be memorized for the next cycle (if
they are not reset by an R qualifier), and with S0 containing all steps of
the top-level SFC S and each nested SFC Si which is active because Si is a
stored action.

The function collect adds qualifiers to aq in four for-loops. The first
loop collects all N, S, and R qualifiers from the steps which are active at the
beginning of the next cycle. The next two loops add the P0 (respectively,
P1) qualifier if the step having that qualifier in one of its action blocks is
in a source step (respectively, target step) of a transition that was taken in
this cycle. The last loop recursively collects the action qualifiers from each
nested SFC Si which has been activated by a qualifier in one of the steps in
St and which is not reset somewhere else.

After all qualifiers have been collected, activeA′ contains all actions for
which there exists at least one activating qualifier and no reset qualifier.
These actions will be executed at the beginning of the next cycle. The set
storedA′ contains all actions for which there exists an S qualifier and no reset
qualifier.

Step (4) updates all Boolean variables which appear as action names
in the SFCs. Each of these variables v ∈ W is set to true if they are in
activeA′, i.e., they are active at the beginning of the next cycle, and set to
false, otherwise. All other variables get their values from the state σ1. The
resulting state is stored in σ′.

The single-cycle semantics −→ given in Definition 2.6 can be extended to
a multi-cycle trace semantics. The initial configuration (σ0, ready0, activeA0,
storedA0) of the SFC S is the following: σ0 contains the initial variable
evaluation, assigning false to all Boolean variables and 0 to all numerical
variables, ready0 and activeA0 both contain only the initial step s0 of the
top-level SFC, and storedA0 = ∅, i.e., there are no stored actions. The ini-
tial configuration may be different if there are any action blocks associated

2.5. Verification of SFC Programs 25

with the initial step s0, which is discouraged, since this may lead to se-
mantic ambiguities. By iteratively applying the single-cycle semantics −→
to the initial configuration, a sequence of configurations is generated which
describes the behavior of the SFC S over time. The behavior of the envi-
ronment (i.e., the changes of the input variables) needs to be inserted into
σ between consecutive applications of −→.

2.5 Verification of SFC Programs

The formal semantic model presented in the previous section enables us to
apply formal verification techniques to PLC software. The direct use of the
operational semantics is however difficult, for various reasons. The calcula-
tion of active steps and actions is rather complex in the general case, and a
direct implementation in a verification tool, e.g., the model checker SMV, is
tedious, though doable, see [Huu03]. Given a concrete SFC program, often
simplifying abstractions are obvious and can be incorporated into the ver-
ification process, whereas a direct translation of the SFC according to the
operational semantics would lead to an unnecessarily large model. Further-
more, given SFCs often do not contain structures like nested SFCs or the
pulse qualifiers P0 and P1 which contribute much to the complexity of the
presented operational semantics.

Therefore, the model-checking approaches to the verification of SFCs
followed in Chapter 4 and Chapter 5 translate SFCs intro transition systems
which resemble the step/transition structure of the SFC rather than the
full execution model of Definition 2.6 considering all details of the cyclic
execution.

A model-checking-based verification approach which implements the full
operational SFC semantics, including timed action qualifiers, can be found
in [Bau03].

26 Chapter 2. Programmable Logic Controllers

Chapter 3

Case Studies

This chapter introduces two chemical laboratory batch plants which serve as
running examples for the remainder of this work. Both plants are used for
teaching and research in the Chemical Process Control Laboratory at the
University of Dortmund, Germany. Although they are of smaller size and
reduced complexity compared to industrial-scale plants, they still contain
the main features of real-life systems. As a consequence, both plants were
used, among other industrial examples, as case studies in the VHS project1

[VHS], where they were known as “CS1” and “CS7”.

3.1 The Experimental Batch Plant

The first of the two plants combines a mixing and a separation step into a
closed recycling process. Figure 3.1 shows the piping and instrumentation
diagram (P/I diagram for short) of the plant. The P/I diagram describes the
layout of the physical devices of the plant without the control equipment.
The plant consists of seven tanks equipped with level sensors (LIS in the
P/I diagram) for measuring the amount of liquid in the tank. Some tanks
also have sensors to determine the salt concentration in the liquid (QI/QIS)
and/or temperature (TI/TIS). There are also some sensors to measure water
flow (FIS) and water pressure (PIS). Tank B3 is equipped with a mixing
unit, tank B5 with a heater, and tanks B6 and B7 with cooling devices.
Steam which evaporates from B5 is collected in condenser K1, which is also
equipped with a cooling device. Tank B3 is called reactor, and tank B5
evaporator. Furthermore, there are two pumps (P1 and P2) for transferring
liquids against gravitation. Tanks and pumps are connected with pipes
which can be opened and closed through valves (V1, . . . , V29).

Initially, the storage tank B1 is filled with a highly concentrated salt
(sodium chloride, NaCl) solution, and B2 is filled with water. Then both
liquids are mixed in reactor B3. This results in a salt solution with a lower

1VHS – Verification of Hybrid Systems. EU Esprit Long-Term Research Project 26270.

27

28 Chapter 3. Case Studies

LIS
101

QI
102

LIS
201

QI
202

LIS
301

QI
302

LIS
401

FIS
801

LIS
501

QIS

TI

502

503

LIS
601

TIS
602

LIS
701

TIS
702

PIS
1001

PIS
901

B1 B2

B3

B4

K1

B6B5

B7

P1 P2

V2

V1

V3

V8 V9

V7

V6 V4

V5

V13

V11

V12

V29

V14

V15

V17

V16

V10

V18

V19

V21V23

V27 V20

V24

V25 V28V26 V22

cooling
water

salt

cooling
water

cooling
water

H O2

H O2

Figure 3.1: P/I diagram of the experimental batch plant

concentration, which is drained into storage tank B4. The next process
step takes place in the evaporator B5. The salt solution is heated until
steam evaporates. The steam is cooled down in condenser K1, and the
condensate (distilled water) is collected in tank B6. The evaporation process
is kept running until the salt concentration level in evaporator B3 reaches
the original concentration level of the liquid in storage tank B1. Then the
highly concentrated solution is drained into tank B7. The hot liquids in

3.1. The Experimental Batch Plant 29

Table 3.1: Control programs for the experimental batch plant

Name Function

B2 Startup: Fill B2 with fresh water via V7
B3 Mix lower concentrated solution in B3, drain into B4
B3K Startup: Mix highly concentrated solution in B3; salt is added

manually
B3U Startup: Pump manually produced highly concentrated solution

from B3 to B1 via P1
B5 Drain solution from B4 into B5, evaporate solution in B5 until

high concentration is reached, drain highly concentrated solution
into B7

B6 Cool down the distilled water in B5
B6A Shutdown: Drain B6 via V27
B6S Pump the distilled water from B6 into B2 via P1
B6U Pump the distilled water from B6 into B2 via P2
B7 Cool down the highly concentrated solution in B7
B7U Pump the highly concentrated solution from B7 into B1 via P1
SP1 Maintenance: Rinse the outer ring pipe with water from B2
SP2 Maintenance: Rinse the outer ring pipe with water from B6

tanks B6 (distilled water) and B7 (highly concentrated salt solution) are
cooled down to ambient temperature, and are finally pumped back into the
storage tanks B2 and B1, respectively, which completes the recycling run.

The plant is controlled by a Siemens S7-300 PLC system which reads
the input values from the sensors listed above and controls the valves, the
pumps, and the mixing and the heating units. The software consists of 13
independent control programs implementing the production steps described
above as well as startup, shutdown, and maintenance functions. Table 3.1
shows the program names along with their function. All control programs
are written in the Sequential Function Charts (SFC) language.

A complete mixing and recycling run is executed by running the following
programs (in that order): B3, B5, B6, B7, B6S, and B7U. Program B6U
can be used to replace B6S if P1 is not working. For the initialization of
the plant program B2 is used to fill tank B2 with water, and programs B3K
and B3U, together with some human interaction involving a ladder and a
box of salt, are used to produce the highly concentrated solution in tank
B1. In regular intervals the pipes and valves need to be cleaned, otherwise
the pipes get clogged and valves may get stuck. Control programs SP1 and
SP2 run this cleaning procedure.

30 Chapter 3. Case Studies

Complete descriptions of the experimental batch plant and its control
software can be found in [Kow98, KS98].

Using the experimental batch plant in teaching and research revealed
three disadvantages of this particular plant construction:

1. There is only one “product”, and there are no redundant resources to
produce it. Therefore, interesting aspects such as concurrent produc-
tion, resource allocation, and scheduling are not covered.

2. The processing times (especially of the evaporation procedure) are
too long to use this plant efficiently for teaching and demonstration
purposes.

3. The plant cannot be used as a demonstration object at science fairs
or conferences, since it is not transportable, and it is not a particular
“eye-catcher”, e.g., spectators cannot tell the difference between salt
solutions of low and high concentration, since they both look the same.

With these aspects in mind, a second plant was constructed, which is
described next.

3.2 The Multi-Product Batch Plant

The piping and instrumentation diagram of the second plant is shown in
Figure 3.2. The plant’s purpose is to provide two different liquid products
called “blue” and “green”, which are to be stored in the product tanks B31
and B32, respectively. Three independent reactors (R21, R22, and R23)
equipped with mixing units (M1, M2, and M3) are used to produce these
two products from three different raw materials. These raw materials, called
“yellow”, “red”, and “white”,2 needed for the production are available in the
storage tanks B11, B12, and B13. These storage tanks can be refilled from
external tanks (B41, . . . , B44, not shown in the diagram) via three pumps
(P1, P2, and P3). The tanks and reactors are equipped with level sensors
(LIS11, . . . , LIS32) measuring the amount of liquid and are connected by
pipes. Each connecting pipe between two vessels contains exactly one valve
(V111, . . . , V312) for opening and closing that pipe.

The production of “blue” and “green” is run in batches: each of the
tanks is capable of containing a maximal number of fixed volumes, called
batches. The raw material storage tanks and the reactors have a maximum
capacity of two batches, and the product tanks can hold up to three batches.

Producing “blue” works as follows: first one of the available reactors is
filled with one batch of “yellow” from B11. Then the mixing unit is turned
on, and one batch of “white” from B13 is added. During the blending

2Actually, the liquid called “white” is transparent.

3.2. The Multi-Product Batch Plant 31

-kP1?
from B41

-

V111
��HH s

-

V112
��HH

s

-

V113
��HH

����
LIS
11�� ��

B11

-kP2?
from B42

-

V121
��HH s

-

V122
��HH

-

V123
��HH

����
LIS
12�� ��

B12

-kP3?
from B43/B44

-

V131
��HH s

-

V132 ��AA

s

-

V133
��HH

����
LIS
13�� ��

B13

-

V211 ��AA

s

-

V212
��HH

����
LIS
21�� ��

R21

kMM1

-

V221
��HH s

-

V222
��HH

����
LIS
22�� ��

R22

kMM2

-

V231
��HH s

-

V232��AA

����
LIS
23�� ��

R23

kMM3

?

V311 ��AA

����
LIS
31�� ��

B31

?

V312 ��AA

����
LIS
32�� ��

B32

Figure 3.2: P/I diagram of the multi-product batch plant

32 Chapter 3. Case Studies

process, the liquid turns into “blue”. After the mixing unit is stopped, the
reactor is drained into product tank B31. The product “green” is created
analogously by mixing “red” and “white” in one of the reactors. Since one
batch of a product is the mixture of two raw material batches, one batch in
a product tank has twice the volume of one batch of raw material.

The change of colors is caused by a neutralization reaction: “yellow”
and “red” are diluted hydrochloric acid (HCl) with different pH indicators
which change their color from yellow into blue and from red into green,
respectively, when neutralized. The third raw material “white” is diluted
sodium hydroxide (NaOH) without any pH indicator.

Note that the existence of three independent reactors makes it possible to
run the production of several batches of “blue” and “green” in a concurrent
fashion. The concurrency is limited however, since any vessel should neither
be filled from two different sources at the same time nor filled and emptied
simultaneously.

In addition to the chemical apparatus shown in Figure 3.2, there are
several layers of control software running on a PLC system. The main
purpose of the software is to implement the production as described above,
obeying the restrictions upon concurrent operation. Among the software
tasks are:

Scheduling Based on input data like raw material delivery times and future
demands for “blue” and “green”, a production schedule is generated.

Raw material delivery Whenever new raw material arrives in tanks B41–
B44, the pumps P1–P3 can be used to refill the raw material tanks
B11–B13.

Production This software controls the production of “blue” and “green”
in the reactors R21–R23 as described above.

Resource management It has to be ensured that the access to hardware
resources (e.g., reactor R21) is exclusive, i.e., two control programs
must not use the same resource simultaneously.

Emergency shutdown, maintenance, etc. There are several programs
used for exceptional plant operations, e.g., rinsing all pipes and tanks
with water.

Complete descriptions of the multi-product batch plant and its control
software can be found in [Bau00, BKSL00].

Chapter 4

Modular Verification

As we have argued in Section 1.3, the main challenge in formal verification
is the state explosion problem emerging from the parallel composition of
many system components. This chapter introduces a modular verification
approach which uses decomposition and a minimization technique for the
composition of system parts to mitigate complexity issues.

This approach is demonstrated by the verification of safety properties of
the first batch plant introduced in Chapter 3.

4.1 Introduction

During the verification task of proving a list of properties about a system,
several decisions need to be made which influence the effectivity (i.e., the
proof is possible) and efficiency (i.e., the proof can be done with small effort)
of the verification process:

• The system needs to be modeled in a formal framework. This frame-
work must be capable of modeling the behavior that is referred to in
the list of properties.

• During the modeling phase, the level of abstraction must be selected in
such a way that the properties can still be proven, without introducing
too much details which slow down the verification process or even make
it infeasible.

• The way of formal reasoning has to be chosen. Algorithmic methods
like model checking are fully automatic, whereas deductive reason-
ing is undertaken manually, though tool support exists (e.g., theorem
provers).

In this chapter we choose discrete condition/event systems as our mod-
eling framework, since these systems can be structured modularly and have
a flexible means for describing communication structures. For proving the

33

34 Chapter 4. Modular Verification

properties we use algorithmic verification (model checking with the SMV
tool).

4.2 The Modular Verification Approach

The verification approach followed in this chapter is based on decomposition,
abstraction, and model checking of (re)composed of parts of the system.

First the system is decomposed into small parts, called modules. For
each module, a suitable abstraction (i.e., a simplification that does not lose
essential information needed for the verification) is chosen. Each abstracted
module is modeled in a state-based framework which allows formal verifica-
tion by model checking.

The core of the modular approach aims at minimizing the number of
modules that need to be composed for model checking. For each property
that needs to be verified, only those modules are composed which directly
or indirectly influence the variables of that property. In same cases, even
fewer modules are sufficient to prove the property. If the set of composed
modules can be kept small, state explosion only has a minor impact on the
feasibility of algorithmic verification.

In the following, the details of this verification approach are worked out
on a running example.

4.3 Example

We illustrate the modular verification approach by proving some properties
of the first batch plant introduced in Chapter 3.

The experimental batch plant can be divided into two parts, the physical
part consisting of tanks, valves, pumps, the heater, the condenser, cooling
units, piping, and sensors (temperature, water level, concentration, pres-
sure), and the control part, namely the distributed control system with the
13 control routines given as sequential function charts. The control part re-
ceives sensor readings from the physical part and sends control commands to
the physical devices. This communication structure is shown in Figure 4.1.

physical part control part
-

sensor readings

�
control commands

Figure 4.1: Communication structure of the experimental batch plant

The verification goal of this chapter is to establish some properties of the
control programs on a formal basis. We focus on safety requirements which
help to ensure that the control programs will not cause any damages to the

4.3. Example 35

plant, e.g., by proving that the heater is never switched on while the tank
is empty.

In order to check these requirements formally, we need a modeling frame-
work which allows formal verification. Our approach uses discrete condi-
tion/event systems (DCESs) for both the physical and the control part. A
modular structure is used; we define one DCES model for each valve, pump,
tank, heater, and also one DCES for each of the 13 control programs. This
enables modular reasoning in the verification process.

Since DCESs are finite-state, they can be verified algorithmically using
model checking. We use the tool SMV (Symbolic Model Verifier) to perform
this verification. A compiler prototype translates a set of given DCESs into
an SMV input file, and each safety property is written as a formula in CTL
(computation tree logic), which is then verified automatically by SMV.

4.3.1 Properties

We want to check safety properties of the control programs. The following
ones have to be checked for each of the control programs:

• Whenever a control program terminates, all valves are closed.

• Whenever a control program terminates, the pumps are switched off.

• Whenever a control program terminates, the heater is switched off.

These properties can be seen as “generic”, since they apply to a wide range
of control programs for chemical processes without being specific about the
nature of the controlled process, such as how tanks are connected or what
kind of chemical reaction takes place. Such generic properties are especially
interesting since they can be introduced without prior knowledge about the
plant.

If these three properties are valid in our plant, we are sure that the
property “all valves closed, pumps off, heater off” is not only fulfilled by the
initial plant state, but also holds after the termination of a control program.
Since the top-level control of the plant (run by an operator or a scheduling
program) is furthermore designed in such a way that two programs never
run simultaneously, we know that during normal operation of the plant
the state at the start of a program always fulfills “all valves closed, pumps
off, heater off”. This allows us to analyze the programs independently, i.e.,
when checking the properties of one program, we do not have to consider the
commands sent to valves, pumps, or the heater by other programs running
before or simultaneously.

However, the states of the tanks are not preserved by the programs. We
have to take this into account when verifying properties which depend on
tank states.

36 Chapter 4. Modular Verification

The following properties are specific to this plant and should be satisfied
to ensure a safe operation of the plant.

To prevent the heating unit in tank 5 to be damaged by overheating we
need to establish the following property:

• Whenever the heater in tank 5 is turned on, the water level of tank 5
is high enough.

We demand that during the heating process steam can leave tank 5 into
the condenser only:

• Whenever the heater in tank 5 is working, none of the valves 12, 15,
and 16 are open.

Furthermore, the cooling device in the condenser must be provided with
cold water during the heating process to prevent a dangerously high pressure
inside the condenser:

• Whenever the heater in tank 5 is working, valve 13 is open.

The regular pressure of the cooling water supply is not sufficient if all
three cooling units operate at the same time. The following property pre-
vents this undesired situation:

• At most two cooling units are active simultaneously.

Although the pumps are equipped with pressure limit switches, we de-
mand the following to prevent damages of the pumps:

• Pumps are not pumping against closed valves.

We do not want an uncontrolled flow of water through a tank; if some
amount of liquid is to be transferred through a tank, it should be filled into
that tank completely and drained from the tank afterwards:

• Each tank’s input and output valves are not open simultaneously.

To check the properties listed above formally, we need formal models for
all parts of the plant. The next section presents an abstract model of the
plant hardware as well as of the control programs.

4.4 Plant Model

We use a discrete, untimed model. Although it is quite simple, many safety
aspects of the interaction of the plant and its control programs can be ex-
amined. As the modeling paradigm we use discrete condition/event systems
(DCESs), which are introduced in [SK91]. To illustrate the connections
within a network of DCESs more clearly, we assign names to their input

4.4. Plant Model 37

and output components, and thus extend them to named DCESs, a notion
which is introduced in Appendix A, Section A.3.1.

Informally, DCESs are discrete transition systems which communicate
by exchanging two kinds of signals, namely condition and event signals.
Condition signals represent system states (e.g., the information if a valve is
currently open or closed) and can be used to enable or disable transitions,
whereas event signals represent instantaneous actions (e.g., the commands
“open” and “close” sent to a valve in order to change its state) and can be
used to trigger transitions.

Based on the plant description in [Kow98], our model consists of two
parts. The first part contains the physical devices of the plant, like valves,
pumps, tanks, etc. The second part introduces one DCES for each of the
control programs, which are given as sequential function charts (SFCs) in
the plant description.

4.4.1 Physical Devices

We model the following physical devices of the plant:

• The 29 valves. These are either closed or open, and discrete events
can be used to force them to change their state.

• The 2 pumps. They are either not pumping or pumping, and discrete
events can force them to change their state.

• The 7 tanks. For each tank we define a discrete model keeping track of
the quantity of water in that tank, which depends on the states of the
valves connected to the tank. We choose a very abstract representation
which only consists of two different states, empty and full . For tank
5 we add a third state half , which denotes that the water level is just
below the position of the heating coils.

• The heating unit. It is either off or on, and discrete events are used to
change its state.

Figure 4.2 shows a block diagram of the interconnections of all physical
devices. The input event connections which can be accessed by the control
programs are at the left and right hand side of the diagram. The devices
are arranged in such a way that their positions approximate their actual
location in the plant layout as shown in the piping and instrumentation
diagram (Figure 3.1). In the P/I diagram and the following block diagrams
we use an arrow like - to denote the flow of a condition signal and

- for an event signal flow.
Since we do not model different concentrations or temperatures of the

salt solutions or any pressure differences in pipes or tanks, and since we
always assume that the condenser is working properly, the following devices

38 Chapter 4. Modular Verification

Valve2

Status-V2
-

Cmd-V2
-

Valve1

Status-V1
-

Cmd-V1
-

Valve3

Status-V3Cmd-V3
-

?

Tank1

Level1
-

Valve8

Status-V8Cmd-V8
-

?

�

Valve5

Status-V5
�

Cmd-V5
�

Valve4

Status-V4
�

Cmd-V4
�

Valve6

Status-V6 Cmd-V6
�

?

Valve7

Status-V7 Cmd-V7
��Tank2

Level2
�

Valve9

Status-V9 Cmd-V9
�

?

-

Tank3
Level3

� Valve10

Status-V10 Cmd-V10
��

Valve11

Status-V11Cmd-V11
-

6

�

Valve13

Status-V13
�

Cmd-V13
�

Valve14

Status-V14
�

Cmd-V14
�

Tank4

Level4
�

Valve12

Status-V12Cmd-V12
-

�

�
Tank5

Level5
�

Heater
Status-H

-
Cmd-H

-

Valve15

Status-V15Cmd-V15
- -

�

Valve16

Status-V16Cmd-V16
-

6

Tank6
Level6

�

Valve29

Status-V29
�

Cmd-V29
�

Valve19

Status-V19 Cmd-V19
�

?

Valve20

Status-V20 Cmd-V20
��

Valve27

Status-V27 Cmd-V27
�6

Tank7

Level7
-

Valve18

Status-V18Cmd-V18
-

6
Valve17

Status-V17
�

Cmd-V17
�

Valve22

Status-V22
-

Cmd-V22
-

Valve26

Status-V26
-

Cmd-V26
-

Valve21

Status-V21
-

Cmd-V21
-

Valve23

Status-V23
-

Cmd-V23
- Valve24

Status-V24
�

Cmd-V24
�

Valve25

Status-V25
�

Cmd-V25
�

Valve28

Status-V28
�

Cmd-V28
�

Pump1

Status-P1
-

Cmd-P1
- Pump2

Status-P2
�

Cmd-P2
�

Figure 4.2: Block diagram of the physical devices modeled as DCESs

4.4. Plant Model 39

of the plant are not modeled: The condenser, the cooling units, and all kinds
of sensors (pressure, concentration, temperature), except for the water level
sensors, which are implicitly modeled as a condition output of each tank
model. The mixing unit in tank 3 is not modeled either, since we do not
have any properties concerning the use of the mixer.

For each of the devices, the input and output components with their
associated alphabets of the respective DCES are shown in a block diagram.
The block diagrams also show the names of the signals and the sets of
symbols that can be transmitted. The states and transitions of the DCES,
which define its internal operation and its input/output behavior, are shown
in a transition diagram. The precise semantics of such a transition diagram,
i.e., the transformation from a transition diagram into the formal syntax of
a DCES, is defined in Appendix A, Section A.3.2.

Valves

We have one DCES Valve i for each valve i , i ∈ {1, . . . , 29}. Since all the
valves are isomorphic, we only describe Valve1 here.

Valve1-Cmd-V1

{0, open, close}
-Status-V1

{closed , open}

Figure 4.3: Block diagram of Valve1

&%
'$

q0
@@R

closed

-Cmd-V1 : open/

&%
'$

q1

open
� Cmd-V1 : close/

Figure 4.4: Transition diagram of Valve1

The valve has one event input named Cmd-V1 with the associated al-
phabet {0, open, close}. The special symbol 0 is an element of every event
alphabet and denotes that no event is currently present. Here it means that
the valve should remain in its current position. Initially, the valve is closed.
The state of Valve1 can be changed by the control programs by sending a
Cmd-V1 : open or Cmd-V1 : close event. The current state of the valve can
be observed at the condition output named Status-V1, which can take on
the values closed or open.

In our abstract model, the valves have no switching delays or malfunc-
tions.

40 Chapter 4. Modular Verification

Pumps

The two pumps are modeled by the DCESs Pump1 and Pump2. Since both
are isomorphic, only pump 1 is shown.

Pump1
-Cmd-P1

{0, start , stop}
-Status-P1

{off , on}

Figure 4.5: Block diagram of Pump1

&%
'$

q0
@@R

off

-Cmd-P1 : start/

&%
'$

q1

on
� Cmd-P1 : stop/

Figure 4.6: Transition diagram of Pump1

The pump has one event input named Cmd-P1 with the associated al-
phabet {0, start , stop}. Initially, the pump is off. The state of Pump1 can
be changed by sending a Cmd-P1 : start or Cmd-P1 : stop event. The current
state of the pump can be observed at the condition output named Status-P1,
which can take on the values off or on.

Our models of the pumps also don’t have switching delays or malfunc-
tions. The pressure limit switches of the pumps are not modeled; we do
however verify later that the control programs never switch on a pump that
would work against a closed valve, which might destroy the pump.

Tanks

Each DCES model of a tank is used to provide information about the water
level in the respective tank of the plant. We use two different levels (empty
and full) in our model, only tank 5 has a third level (half). These are output
condition symbols of the DCES tank models. Whenever a control program
needs to access a water level sensor, it checks the condition output of the
respective tank. We do not model the water level sensors themselves.

A change of the water level of a tank depends on the amount of water
flowing in and out of the tank. This again depends on pressure differences
and the state of the valves. In this model a simple abstraction is chosen:
Whenever a valve controlling an input pipe of a tank is open, water may
flow into the tank, and the tank’s level may change from empty to full . And
whenever a valve controlling an output pipe of a tank is open, water may
leave the tank, and the tank’s level may change from full to empty . Since
the transitions between the full and empty states will only be guarded by

4.4. Plant Model 41

conditions and not by events, the state is not forced to change immediately
when the condition input changes; it even can remain the same forever. It
is obvious that this is an abstraction of the real plant behavior.

Tank 1

-Status-V3

{closed , open}
-Status-V8

{closed , open}

-Level1
{empty , full}

Figure 4.7: Block diagram of Tank1

&%
'$

q0
@@R

empty

-Status-V3 : open/

&%
'$

q1

full
� Status-V8 : open/

Figure 4.8: Transition diagram of Tank1

Tank 1 can be filled via valve 3 and emptied via valve 8. Thus, Status-V3

and Status-V8 are condition input names of Tank1. Status-V3 : open enables
the transition from q0 to q1 (when taken, this transition yields the condition
output change from Level1 : empty to Level1 : full), and Status-V8 : open
enables the transition from q1 to q0, and if this transition is taken, the
condition output changes from Level1 : full to Level1 : empty .

As mentioned above these transitions need not to be taken when they
are enabled; in fact they may never be taken, since condition changes cannot
force any transitions.

The control programs can read the condition output Level1 to obtain the
current water level in tank 1.

Since the structure of the DCES models of tank 2, tank 3, tank 4, and
tank 7 are very similar to the DCES of tank 1, we do not show their block
and transition diagrams here; these can be found in [Luk99a]. The interfaces
of all tanks can also be gathered from the block diagram shown in Figure 4.2.

Tank 2 can be filled via valve 6 or valve 7, and it can be emptied via
valve 9. The water level is represented by the condition output Level2.

Tank 3 can be filled via valve 8 or valve 9, and it can be emptied via
valve 10 or valve 11. The water level is represented by the condition output
Level3. The mixing unit and the manual input of salt is not modeled.

Tank 4 can be filled via valve 11 and emptied via valve 12. The water
level is represented by the condition output Level4.

Tank 5 can be filled via valve 12 and emptied via valve 15 or valve 16.
The water level is represented by the condition output Level5, which can take
on the values empty , half , and full . We use the value half to model that
the level has fallen below 8 cm, the level at which control program B5 aborts

42 Chapter 4. Modular Verification

the evaporation process because the heating coils are no longer covered by
water.

If the heater is working, steam may be produced, decreasing the water
level in tank 5. This is modeled by the two transitions enabled by the
Status-H : on condition.

Tank 5

-Status-V12

{closed , open}
-Status-V15

{closed , open}
-Status-V16

{closed , open}
-Status-H

{off , on}

-Level5
{empty , half , full}

Figure 4.9: Block diagram of Tank5

&%
'$

q0
@@R

empty

Status-V12 : open/� �
?

&%
'$

q1

half

Status-V12 : open/� �
?� Status-V15 : open/

� Status-V16 : open/

Status-H : on/ ��6
&%
'$

q2

full

� Status-V15 : open/

� Status-V16 : open/

Status-H : on/ ��6
Figure 4.10: Transition diagram of Tank5

Tank 6 can be filled via valve 14 or by water pouring out of the con-
denser, and it can be emptied via valve 19, valve 20, or valve 27. The water
level is represented by the condition output Level6. We assume that water
can leave the condenser at any time, even if the heater is not working, since
it takes some time to cool down the steam and since there is a delay be-
tween switching off the heater and the end of steam production in tank 5.
Therefore, we have an unconditional transition from state q0 to state q1. As
a side effect of this we do not need Status-V14 as a condition input, since an
additional transition from q0 to q1 enabled by Status-V14 : open would not
change the semantics of the DCES Tank6. The cooling unit of tank 6 is not
modeled.

Tank 7 can be filled via valve 15 and emptied via valve 17. The water
level is represented by the condition output Level7. The cooling unit of
tank 7 is not modeled.

4.4. Plant Model 43

Tank 6

-Status-V19

{closed , open}
-Status-V20

{closed , open}
-Status-V27

{closed , open}

-Level6
{empty , full}

Figure 4.11: Block diagram of Tank6

&%
'$

q0
@@R

empty

/� �
?

&%
'$

q1

full

� Status-V19 : open/

�Status-V20 : open/

� Status-V27 : open/

Figure 4.12: Transition diagram of Tank6

Heater

The heater is modeled by the DCES Heater . Heating can be started by
sending the Cmd-H : start event and stopped by sending the Cmd-H : stop
event. The current state of the heater can be observed at the Status-H
condition output.

Heater-Cmd-H

{0, start , stop}
-Status-H

{off , on}

Figure 4.13: Block diagram of Heater

4.4.2 Control Programs

The control programs are given in [Kow98] as Sequential Function Charts
(SFCs). We manually modeled these SFCs as DCESs, trying to stay as
close to their original structure as we can in our abstract framework. Each
numbered step i of the SFC becomes a control state qi in the DCES. The
commands executed in step i are represented in the events generated when
entering qi . Conditions which enable the change from step i to step j are
the enabling conditions of the DCES transition from qi to qj .

The following parts of the SFCs are not modeled, since we do not model
the respective physical devices: User interaction with a display and some

44 Chapter 4. Modular Verification

&%
'$

q0
@@R

off

-Cmd-H : start/

&%
'$

q1

on
� Cmd-H : stop/

Figure 4.14: Transition diagram of Heater

confirmation input, concentration sensor inputs, the cooling liquid flow sen-
sor, and temperature sensors.

All DCES control programs are started by an external event Cmd-PrgN :
start , where N is the name of the program. The start events are either
sent by an operator or a scheduling program which controls the complete
recycling process. When this event occurs, the control state changes from
q1 to q2, and the control program interacts with the physical devices until
some final control state is reached. In contrast to the SFCs, the DCESs only
run through once, i.e., they do not return to the initial control state when
they have reached some final control state. This is just a design choice for
the abstract model; the correctness of our properties is not affected, since
they to do not consider repeated execution by a supervisory control program
sending the start events.

For the sake of brevity we only show some of the block and transi-
tion diagrams of the control programs here (among others, those for which
the verification reveals an error); the full set of diagrams can be found in
[Luk99a].

Program PrgB2

This program fills tank 2 with fresh water via valve 7 until the maximum
level is reached. Note that the program initially closes valve 6 and valve 9.
As a safety measure, each program sends an initial open or close event to
any valve connected to a tank used by the program, and even if the valve is
not used later on, a close event is sent. This is not necessary, since we prove
later that all valves are already closed if a program is started.

PrgB2

-Level2
{empty , full}

-Cmd-PrgB2

{0, start}

-Cmd-V6

{0, open, close}
-Cmd-V7

{0, open, close}
-Cmd-V9

{0, open, close}

Figure 4.15: Block diagram of PrgB2

4.4. Plant Model 45

&%
'$

q1
@@R

-Cmd-PrgB2 : start
/Cmd-V6 : close,
Cmd-V9 : close,
Cmd-V7 : open

&%
'$

q2
-Level2 : full

/Cmd-V7 : close &%
'$

q3

Figure 4.16: Transition diagram of PrgB2

Program PrgB3

This program produces the concentrated brine in tank 3 by mixing highly
concentrated brine from tank 1 via valve 8 and water from tank 2 via valve 9.
Finally, the solution is drained into tank 4 via valve 11. Note that the mixing
unit and the concentration sensor is not modeled.

Program PrgB3K

This program controls the manual production of the concentrated brine in
tank 3. First tank 3 is filled with water from tank 2 via valve 9 until a
desired level is reached. Then salt is inserted manually by the operator (not
modeled) while the mixing unit (not modeled) is working until a certain
concentration is reached (concentration sensor not modeled), which is sig-
naled to the operator. Then again some water is added via valve 9 until
the desired concentration is reached. This last step is needed because the
user will normally add some more salt before she reacts to the stop signal.1

Finally the mixing unit is stopped and valve 9 is closed.
Our model of program B3K, as well as the models of the other programs,

obviously neglect some aspects like the measuring of salt concentration, but
since the models are abstractions (i.e., over-approximations) of the real con-
trol programs (given as SFCs), we are still able to verify the safety properties
listed in Section 4.3.1. If, however, other properties need to be verified which
reason, e.g., about certain salt concentrations, a finer abstraction needs to
be chosen.

Program PrgB3U

This program controls pumping the manually produced concentrated brine
in tank 3 into tank 1 via valves 10, 23, 22, 1, and 3, using pump 1.

1We believe that a malicious user could add a lot more salt after she is signaled to stop,
and, as a consequence, control program B3K would produce an overflow of tank 3 while
trying to reach a low concentration by adding water, since the water level is not checked
during this filling step. Unfortunately, our abstract model is too coarse to find this error in
program B3K by model checking without getting false warnings in other control programs.

46 Chapter 4. Modular Verification

Program PrgB5

This program controls the evaporation of the concentrated brine in tank 5
until the desired concentration is reached. First some concentrated brine
from tank 4 is filled into tank 5 via valve 12 until tank 5 is full. Then
the cooling in the condenser is started by opening valve 13. The heater
is switched on, and the evaporation starts. If the desired concentration is
reached (concentration sensor not modeled), the heater is switched off, and
the tank 5 is drained into tank 7 via valve 12.

PrgB5

-Level5
{empty , half , full}

-Cmd-PrgB5

{0, start}

-Cmd-V12

{0, open, close}
-Cmd-V13

{0, open, close}
-Cmd-V15

{0, open, close}
-Cmd-V16

{0, open, close}
-Cmd-H

{0, start , stop}

Figure 4.17: Block diagram of PrgB5

&%
'$

q1
@@R

-Cmd-PrgB5 : start
/Cmd-V13 : close,
Cmd-V15 : close,
Cmd-V16 : close,
Cmd-H : stop,
Cmd-V12 : open

&%
'$

q2
-Level5 : full

/Cmd-V12 : close,
Cmd-V13 : open &%

'$
q3

?

Level5 : full
/Cmd-H : start

&%
'$

q4
�/Cmd-H : stop,

Cmd-V13 : close

?

Level5 : half
/Cmd-H : stop

&%
'$

q6

&%
'$

q7
�/Cmd-V15 : open

&%
'$

q8

?

Level5 : empty
/Cmd-V15 : close

&%
'$

q9

Figure 4.18: Transition diagram of PrgB5

4.4. Plant Model 47

If during the evaporation process the water level in tank 5 goes below
8 cm (modeled as Level5 : half), the heater is switched of, and we enter
state q6, denoting a failure. Note that this transition from q4 to q6 cannot
be forced by a level change in tank 5, since Level5 is a condition, which can
only enable transitions, but not trigger them. Our model-checking approach
however considers all possible executions, which includes one that enters q6

(see, e.g., the SMV trace on page 56). A possible extension of our plant
model could include additional events generated whenever a level change
occurs. These events could be used to trigger transitions.

Program PrgB6

This program controls the cooling of the distilled water in tank 6. The
cooling water valve 29 is opened until the temperature in tank 6 is below
25 ◦C (temperature sensor not modeled). If tank 6 is empty at the start of
the cooling phase, we enter state q3, denoting a failure.

Program PrgB6A

This program drains the contents of tank 6 via valve 27.

Program PrgB6S

This program controls pumping the cooled distilled water from tank 6 into
tank 2 via valves 20, 21, 23, 22, 1, 2, 4, and 6, using pump 1.

Program PrgB6U

This program controls pumping the cooled distilled water from tank 6 into
tank 2 via valves 20, 24, 25, 5, and 6, using pump 2. It can be used instead
of program PrgB6S if pump 1 is not working.

Program PrgB7

This program controls the cooling of the concentrated brine in tank 7. The
cooling water valve 17 is opened until the temperature in tank 7 is below
25 ◦C (temperature sensor not modeled). If tank 7 is empty at the start of
the cooling phase, we enter state q3, denoting a failure.

Program PrgB7U

This program controls pumping the cooled concentrated brine from tank 7
into tank 1 via valves 18, 23, 22, 1, and 3, using pump 1.

48 Chapter 4. Modular Verification

Program PrgSP1

This maintenance program is used for rinsing the outer ring pipe with water
from tank 2 using pump 1. First tank 2 is filled with fresh water via valve 7.
If tank 2 is full, valve 7 is closed, valve 9 opened, and tank 3 is filled. If
the level in tank 3 has reached some desired level, valve 10 is opened and
pump 1 is started. Now water is flowing through the valves 10, 23, 22, 1,
2, 4, 5, and 28. If tank 3 is empty, the pump is stopped, and all valves are
closed.

Program PrgSP2

This maintenance program is used for rinsing the outer ring pipe with water
from tank 6 using pump 1. First tank 6 is filled with fresh water via valve 14.
If tank 6 is full, valve 14 is closed, and the valves 19, 23, 22, 1, 2, 4, 5, and
28 are opened. Then pump 1 is started, and water is flowing through these
valves. If tank 6 is empty, the pump is stopped, and all valves are closed.

4.5 Transformation to SMV

We transform the DCESs into the input language of the symbolic model
checker SMV [McM93, McM00]. The transformation is described in full
detail in Appendix B.

Each DCES is translated into one SMV module. A straightforward global
verification approach would apply a parallel composition operation to all
modules (29 valves, 2 pumps, 7 tanks, one heating unit, and 13 control
programs). This full product would contain the complete model of the plant
including its control programs and could, in theory, be used to verify the
desired plant properties listed in Section 4.3.1. There are, however, two
reasons which prevent us from following this approach:

1. As we will see later, the complexity of the full product model is too
large for SMV. The memory and time requirements render the model-
checking process impossible.

2. Signals in the DCES framework can only communicate in a one-to-
many fashion; it is not allowed that a signal can be sent by different
DCES. But in our model, e.g., the Cmd-V6 : close event is sent to
Valve6 by several DCESs, namely PrgB2, PrgB6S , PrgB6U , PrgSP1,
and PrgSP2. Even with using the fact that two control programs
never run simultaneously, there would still be some work (e.g., SMV
constructs which “merge” several events into one) to adapt our model
to the one-to-many communication restriction.

These two reasons and the observation that not all parts of the plant
depend on each other’s behavior to lead the following approach: For every

4.5. Transformation to SMV 49

PrgSP1

-Level2

{empty, full}

-Level3

{empty, full}

-Cmd-PrgSP1

{0, start}

-Cmd-V1

{0, open, close}

-Cmd-V2

{0, open, close}

-Cmd-V3

{0, open, close}

-Cmd-V4

{0, open, close}

-Cmd-V5

{0, open, close}

-Cmd-V6

{0, open, close}

-Cmd-V7

{0, open, close}

-Cmd-V8

{0, open, close}

-Cmd-V9

{0, open, close}

-Cmd-V10

{0, open, close}

-Cmd-V11

{0, open, close}

-Cmd-V18

{0, open, close}

-Cmd-V19

{0, open, close}

-Cmd-V21

{0, open, close}

-Cmd-V22

{0, open, close}

-Cmd-V23

{0, open, close}

-Cmd-V25

{0, open, close}

-Cmd-V26

{0, open, close}

-Cmd-V28

{0, open, close}

-Cmd-P1

{0, start, stop}

Figure 4.19: Block diagram of PrgSP1

50 Chapter 4. Modular Verification

&%
'$

q1
@@R

-Cmd-PrgSP1 : start
/Cmd-V1 : close,Cmd-V2 : close,Cmd-V3 : close,
Cmd-V4 : close,Cmd-V5 : close,Cmd-V6 : close,
Cmd-V7 : close,Cmd-V8 : close,Cmd-V9 : close,
Cmd-V10 : close,Cmd-V11 : close,Cmd-V18 : close,
Cmd-V19 : close,Cmd-V21 : close,Cmd-V22 : close,
Cmd-V23 : close,Cmd-V25 : close,Cmd-V26 : close,
Cmd-V28 : close,Cmd-P1 : stop

&%
'$

q2

?

/Cmd-V7 : open

&%
'$

q3
� Level2 : full
/Cmd-V7 : close,
Cmd-V9 : open,
Cmd-V1 : open,
Cmd-V2 : open,
Cmd-V4 : open,
Cmd-V5 : open,
Cmd-V22 : open,
Cmd-V23 : open,
Cmd-V28 : open

&%
'$

q4

6
Level3 : full
/Cmd-V10 : open,
Cmd-P1 : start

&%
'$

q5
� Level3 : empty
/Cmd-P1 : stop,
Cmd-V9 : close,
Cmd-V1 : close,
Cmd-V2 : close,
Cmd-V4 : close,
Cmd-V5 : close,
Cmd-V10 : close,
Cmd-V22 : close,
Cmd-V23 : close,
Cmd-V28 : close

&%
'$

q6

?

/

&%
'$

q7

Figure 4.20: Transition diagram of PrgSP1

property that is to be verified, we compose only a minimal set of DCESs
that is needed to satisfy (or disprove) this property. Furthermore, if there
are several control programs which need to be checked for a property, we
compose several such sets, one for each of the control programs.

In general it is difficult to decide which set of DCESs is minimal. But
a safe and in most cases also optimal approximation of such a set is to
take only into account the DCESs which directly or indirectly modify the
signals mentioned in the property in question. The block diagram shown in
Figure 4.2 can be used to find these DCESs. E.g., if we need to verify a
property over Level4, we know from the communication structure shown in
Figure 4.2 that Tank4 influences Level4, and that Tank4 itself is influenced
by Valve11 and Valve12. Therefore, it is sufficient for the verification of
that property to analyze the DCESs for Tank4, Valve11, Valve12, and any

4.5. Transformation to SMV 51

control program that sends Cmd-V11 and/or Cmd-V12 events. If such a
control program is influenced by other DCESs, these may have to be added
as well.

Once we have fixed a set of DCESs, each DCES is translated into an SMV
module. The translation works as follows: The discrete control state of the
DCES is stored in a local variable state. While communication between
condition/event systems is achieved by using condition and event signals,
SMV modules communicate via shared variables. Therefore, we introduce a
variable for each event output occurring in one of the DCESs. This variable
is local to and written by the module of the DCES generating that event,
and it can be read by the modules of other DCESs having this event as
input.

Conditions are handled differently. Since a condition output symbol only
depends on a DCES’s current state and its current condition input symbols,
we do not need to introduce a variable, but use SMV’s DEFINE declaration
to describe the mapping of the state and the input symbols to the output
symbol in a direct way. As an advantage of this construction, no variable
is needed to store the condition output symbol, which can significantly de-
crease memory and time consumption during the model checking process.
The DEFINE declaration will be given in the module of the DCES generating
the respective condition, and the modules of DCESs having this condition
as input can access it.

Once every DCES is translated into an SMV module, a global declaration
defines the connection of each module’s outputs to other modules’ inputs
according to Figure 4.2. If there is an input for which there is no matching
output in one of the modules, a global unrestricted variable for that input is
also added to the SMV code. This is, e.g., the case for all Cmd-PrgN events,
since these are sent by an operator or a superior control program, both of
which are not part of our model.

Since the transformation from a set of DCESs to an SMV input file
has to be done repeatedly (once for each set we need to compose for a
property), and since a transformation by hand can be the source of many
errors, we use a compiler prototype to perform this step. This compiler
takes the LATEX [Lam94] source of the DCESs’ graphical description (even
the source code of this chapter can be used) consisting of a block diagram
and a transition diagram, and a list of module names (e.g., PrgB6A, Valve19,
Valve20, Valve27) as input, and produces the respective SMV code of the
parallel interconnection of these DCESs as output.

Figure 4.21 shows the LATEX source for the DCES Tank5. For the sake of
readability, optional parameters controlling the graphical position of states
and transitions have been removed (these are ignored by the compiler). The
syntax is self-explanatory, given the block and transition diagrams shown in
Section 4.4.1. A part of the resulting SMV module is shown in Figure 4.22.

Since SMV specifications are written in the temporal logic CTL (compu-

52 Chapter 4. Modular Verification

\begin{CES}
{\Name{\Tank5}
\Connections{\inputC{\StatusV{12}}{closed,open}

\inputC{\StatusV{15}}{closed,open}
\inputC{\StatusV{16}}{closed,open}
\inputC{\StatusH}{off,on}
\outputC{\Level5}{empty,half,full}}

}
\State{q_0}{\Initial\Coutconst{empty}

\Trans{q_1}{\Label{ {\StatusV{12}:open} / }}
}
\State{q_1}{\Coutconst{half}

\Trans{q_2}{\Label{ {\StatusV{12}:open} / }}
\Trans{q_0}{\Label{ {\StatusV{15}:open} / }}
\Trans{q_0}{\Label{ {\StatusV{16}:open} / }}
\Trans{q_0}{\Label{ {\StatusH:on} / }}

}
\State{q_2}{\Coutconst{full}

\Trans{q_1}{\Label{ {\StatusV{15}:open} / }}
\Trans{q_1}{\Label{ {\StatusV{16}:open} / }}
\Trans{q_1}{\Label{ {\StatusH:on} / }}

}
\end{CES}

Figure 4.21: The LATEX source for Tank5

tation tree logic) [CE82] we reformulate the properties in CTL. Now SMV
can check the DCESs against the desired properties.

4.6 Verification

For each of the desired properties and each control program involved in the
validity of this property we perform the following steps to verify it:

1. Use the LATEX-to-SMV compiler to generate the SMV code for the
DCESs we need to model check the property.

2. Write the property as a CTL formula and insert it into the SMV code
using a SPEC declaration.

3. Use SMV to verify the property. If the verification fails, SMV produces
an execution trace leading to a state showing the error. This trace can
be used to track down the problem in the control software.

4.6.1 Example

We illustrate the three steps above in detail with the property “Whenever
the heater in tank 5 is turned on, the water level of tank 5 is high enough”:

4.6. Verification 53

The DCESs we have to inspect are PrgB5 (since this is the only control
program sending commands to the heater) and Tank5 (because we must
take a look at its condition output Level5). Thus, we use the LATEX-to-SMV
compiler to generate the parallel composition of PrgB5 and Tank5 as an
SMV file. The LATEX source for the DCES Tank5 is shown in Figure 4.21,
the resulting SMV file in Figure 4.22.

We could have put more than just PrgB5 and Tank5 into the parallel
composition to verify the property, like the valves 12, 15, 16, or the heater.
This is not necessary, since in this case these additional DCESs are not
needed: The outputs of these DCESs are simply defined as global variables
(StatusV12, StatusV15, StatusV16, and StatusH in the first VAR declara-
tion in Figure 4.22), and SMV chooses arbitrary values for these variables in
each computation step. In other words, we have “chaotic” behavior of the
physical devices not contained in the parallel composition. So any behavior
of the parallel composition of PrgB5, Tank5, and some more DCESs is also
a behavior of the parallel composition of just these two DCESs.

We are only investigating safety properties that describe all possible
behaviors, i.e., CTL formulae of the form ∀2(ϕ). Thus, we can always
try to compose a small set of DCESs, and if the verification fails due to a
behavior that is not a behavior of the complete system, we can add more
DCESs to the parallel composition until we succeed (or encounter an error
in the system).

We formulate the property as a CTL formula:

∀2(Cmd-H = start ⇒ Level5 6= empty)

and insert it into the SMV file using the following SPEC declaration (note
that variable names must be preceded by the module that is writing the
variable):

SPEC
AG (PrgB5.CmdH=start -> !Tank5.Level5=empty)

The resulting SMV input file is shown in Figure 4.22. For the sake of brevity
we left out the TRANS declarations which define the output events and the
discrete transitions for the state variables.

Now we use SMV to verify the property. The output of SMV is:

-- specification AG (PrgB5.CmdH = start ->
!Tank5.Level5 ... is true

Thus, control program PrgB5 satisfies the property.

4.6.2 Verification Results

Now we start to verify if the control programs satisfy our list of properties.
In the following we will list for each property which DCESs have to be

54 Chapter 4. Modular Verification

MODULE main

VAR StatusV12: {closed,open}; StatusV15: {closed,open};
StatusV16: {closed,open}; StatusH: {off,on};
CmdPrgB5: {0,start};

VAR conditionsymbols: {closed,open,off,on,empty,half,full};

VAR Tank5: Tank5_module(StatusV12,StatusV15,StatusV16,StatusH);
PrgB5: PrgB5_module(Tank5.Level5,CmdPrgB5);

INIT CmdPrgB5=0

SPEC AG (PrgB5.CmdH=start -> !Tank5.Level5=empty)

MODULE Tank5_module(StatusV12,StatusV15,StatusV16,StatusH)

VAR state : {q_0,q_1,q_2};

INIT state in {q_0}

DEFINE Level5 := case
state=q_0: empty;
state=q_1: half;
state=q_2: full;

esac;

TRANS [...]

MODULE PrgB5_module(Level5,CmdPrgB5)

VAR state : {q_1,q_2,q_3,q_4,q_6,q_7,q_8,q_9};

VAR CmdV12: {0,open,close}; CmdV13: {0,open,close};
CmdV15: {0,open,close}; CmdV16: {0,open,close};
CmdH: {0,start,stop};

INIT state in {q_1}

INIT CmdV12=0 & CmdV13=0 & CmdV15=0 & CmdV16=0 & CmdH=0

TRANS [...]

Figure 4.22: SMV input file for the parallel composition of PrgB5 and Tank5

4.6. Verification 55

composed, the respective CTL formula (in SMV syntax), and the verification
result obtained by SMV. We also note why a certain verification fails and
what the consequences are.

Whenever a control program terminates, all valves are closed. All
control programs open at least one valve, so we compose each control pro-
gram with the valves it sends commands to. We check if the status variable
of each valve has the value closed when the control program is at a termi-
nating state. Since we know that all valves are closed when a program is
started and two programs do not run simultaneously, we do not need to con-
sider valves that are not switched by the program. Programs PrgB5, PrgB6,
PrgB7 have two terminating states which we need to take into consideration;
all the other programs have one terminating state.

• PrgB2, Valve6, Valve7, Valve9

SPEC
AG (PrgB2.state=q_3 ->

Valve6.StatusV6=closed & Valve7.StatusV7=closed &
Valve9.StatusV9=closed)

Verification result: true

• PrgB3, Valve8, Valve9, Valve10, Valve11

SPEC
AG (PrgB3.state=q_6 ->

Valve8.StatusV8=closed & Valve9.StatusV9=closed &
Valve10.StatusV10=closed & Valve11.StatusV11=closed)

Verification result: true

• PrgB3K , Valve8, Valve9, Valve10, Valve11

SPEC
AG (PrgB3K.state=q_9 ->

Valve8.StatusV8=closed & Valve9.StatusV9=closed &
Valve10.StatusV10=closed & Valve11.StatusV11=closed)

Verification result: true

• PrgB3U , Valve1, Valve2, Valve3, Valve8, Valve10, Valve11, Valve19,
Valve21, Valve22, Valve23

SPEC
AG (PrgB3U.state=q_6 ->

Valve1.StatusV1=closed & Valve2.StatusV2=closed &
Valve3.StatusV3=closed & Valve8.StatusV8=closed &
Valve10.StatusV10=closed) & Valve11.StatusV11=closed) &
Valve19.StatusV19=closed) & Valve21.StatusV21=closed) &
Valve22.StatusV22=closed) & Valve23.StatusV23=closed)

Verification result: true

56 Chapter 4. Modular Verification

• PrgB5, Valve12, Valve13, Valve15, Valve16

SPEC
AG (PrgB5.state=q_9 ->

Valve12.StatusV12=closed & Valve13.StatusV13=closed &
Valve15.StatusV15=closed & Valve16.StatusV16=closed)

Verification result: true

SPEC
AG (PrgB5.state=q_6 ->

Valve12.StatusV12=closed & Valve13.StatusV13=closed &
Valve15.StatusV15=closed & Valve16.StatusV16=closed)

Verification result: false

If control program PrgB5 enters state q6 this indicates that during the
evaporation process the water level in tank 5 has fallen too low. Therefore
the heater is switched off, and the program stops. The verification result
however shows that valve 13, which was opened earlier when entering state
q3, is still open. This is indicated by the following trace generated by SMV
(we omit some less interesting output):

state 1.1: state 1.3:
Valve12.StatusV12 = closed Valve12.StatusV12 = closed
Valve13.StatusV13 = closed Valve13.StatusV13 = open
Valve15.StatusV15 = closed PrgB5.state = q_3
Valve16.StatusV16 = closed
PrgB5.state = q_1 state 1.4:

Level5 = half
state 1.2: PrgB5.state = q_4
CmdPrgB5 = start
Valve12.StatusV12 = open state 1.5:
PrgB5.state = q_2 PrgB5.state = q_6

The violation of our property “whenever a control program terminates,
all valves are closed” should lead to some action to ensure a safe operation
of the plant. Two possible solutions are:

1. Change control program PrgB5 in such a way that valve 13 is closed
some time after state q6 has been reached.

2. Make sure that valve 13 is closed (e.g., by manual intervention) before
another program is started.

Note that a permanent open state of valve 13 does not endanger the
plant, since valve 13 only controls the cooling water supply for the condenser.
If, e.g., valve 12 would remain open permanently, an overflow of tank 5 might
occur.

4.6. Verification 57

• PrgB6, Valve14, Valve29

SPEC
AG (PrgB6.state in {q_3,q_5} ->

Valve14.StatusV14=closed & Valve29.StatusV29=closed)

Verification result: true

• PrgB6A, Valve19, Valve20, Valve27

SPEC
AG (PrgB6A.state=q_3 ->

Valve19.StatusV19=closed & Valve20.StatusV20=closed &
Valve27.StatusV27=closed)

Verification result: true

• PrgB6S , Valve1, Valve2, Valve3, Valve4, Valve5, Valve6, Valve10,
Valve18, Valve19, Valve20, Valve21, Valve22, Valve23, Valve24,
Valve26, Valve27

SPEC
AG (PrgB6S.state=q_6 ->

Valve1.StatusV1=closed & Valve2.StatusV2=closed &
Valve3.StatusV3=closed & Valve4.StatusV4=closed &
Valve5.StatusV5=closed & Valve6.StatusV6=closed &
Valve10.StatusV10=closed & Valve18.StatusV18=closed &
Valve19.StatusV19=closed & Valve20.StatusV20=closed &
Valve21.StatusV21=closed & Valve22.StatusV22=closed &
Valve23.StatusV23=closed & Valve24.StatusV24=closed &
Valve26.StatusV26=closed & Valve27.StatusV27=closed)

Verification result: true

• PrgB6U , Valve4, Valve5, Valve6, Valve19, Valve20, Valve21, Valve24,
Valve25, Valve27, Valve28

SPEC
AG (PrgB6U.state=q_6 ->

Valve4.StatusV4=closed & Valve5.StatusV5=closed &
Valve6.StatusV6=closed & Valve19.StatusV19=closed &
Valve20.StatusV20=closed & Valve21.StatusV21=closed &
Valve24.StatusV24=closed & Valve25.StatusV25=closed &
Valve28.StatusV28=closed & Valve27.StatusV27=closed)

Verification result: true

• PrgB7, Valve17

SPEC
AG (PrgB7.state in {q_3,q_5} -> Valve17.StatusV17=closed)

Verification result: true

58 Chapter 4. Modular Verification

• PrgB7U , Valve1, Valve2, Valve3, Valve18, Valve19, Valve21, Valve22,
Valve23, Valve26

SPEC
AG (PrgB7U.state=q_6 ->

Valve1.StatusV1=closed & Valve2.StatusV2=closed &
Valve3.StatusV3=closed & Valve18.StatusV18=closed &
Valve19.StatusV19=closed & Valve21.StatusV21=closed &
Valve22.StatusV22=closed & Valve23.StatusV23=closed &
Valve26.StatusV26=closed)

Verification result: true

• PrgSP1, Valve1, Valve2, Valve3, Valve4, Valve5, Valve6, Valve7,
Valve8, Valve9, Valve10, Valve11, Valve18, Valve19, Valve21, Valve22,
Valve23, Valve25, Valve26, Valve28

SPEC
AG (PrgSP1.state=q_7 ->

Valve1.StatusV1=closed & Valve2.StatusV2=closed &
Valve3.StatusV3=closed & Valve4.StatusV4=closed &
Valve5.StatusV5=closed & Valve6.StatusV6=closed &
Valve7.StatusV7=closed & Valve8.StatusV8=closed &
Valve9.StatusV9=closed & Valve10.StatusV10=closed &
Valve11.StatusV11=closed & Valve18.StatusV18=closed &
Valve19.StatusV19=closed & Valve21.StatusV21=closed &
Valve22.StatusV22=closed & Valve23.StatusV23=closed &
Valve25.StatusV25=closed & Valve26.StatusV26=closed &
Valve28.StatusV28=closed)

Verification result: true

This result was difficult to obtain due to the state explosion problem;
the verification took about 23 hours on a Sun UltraSPARC system running
at 167 MHz and consumed about 340 Megabytes of main memory. This
is not surprising: The full product of the control states of the 20 modules
involved has 7 · 219 = 3670016 elements, and we have 319 = 1.2 · 109 dif-
ferent combinations for events sent to the valves. From this fact and the
observation that this verification step only considered a small part of the
complete plant model we can safely assume that the straightforward veri-
fication approach mentioned at the beginning of Section 4.5 which builds
the full system model will be too complex to be handled by SMV, even on
state-of-the-art machines.

In this special case avoiding this problem is easy. We split up the con-
junction in the formula, thus yielding the task of checking the simple formula

AG (PrgSP1.state=q_7 -> Valvei.StatusVi=closed)

on the parallel composition of PrgSP1 and Valve i for each i ∈ {1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 18, 19, 21, 22, 23, 25, 26, 28}. Each of these 19 checks suc-
ceeds within a fraction of a second.

4.6. Verification 59

• PrgSP2, Valve1, Valve2, Valve3, Valve4, Valve5, Valve6, Valve10,
Valve14, Valve18, Valve19, Valve20, Valve21, Valve22, Valve23,
Valve25, Valve26, Valve27, Valve28

SPEC
AG (PrgSP2.state=q_7 ->

Valve1.StatusV1=closed & Valve2.StatusV2=closed &
Valve3.StatusV3=closed & Valve4.StatusV4=closed &
Valve5.StatusV5=closed & Valve6.StatusV6=closed &
Valve10.StatusV10=closed & Valve14.StatusV14=closed &
Valve18.StatusV18=closed & Valve19.StatusV19=closed &
Valve20.StatusV20=closed & Valve21.StatusV21=closed &
Valve22.StatusV22=closed & Valve23.StatusV23=closed &
Valve25.StatusV25=closed & Valve26.StatusV26=closed &
Valve27.StatusV27=closed & Valve28.StatusV28=closed)

Verification result: true

Obtaining this result was similarly difficult as above: SMV needed 3.5
hours to complete and used 119 Megabytes of main memory.

Whenever a control program terminates, the pumps are switched
off. There are five control programs which send commands to pump 1:
PrgB3U , PrgB6S , PrgB7U , PrgSP1, and PrgSP2. We compose each of these
programs with Pump1 and check if the status variable of pump 1 has the
value off when the control program is at its terminating state.

• PrgB3U , Pump1

SPEC
AG (PrgB3U.state=q_6 -> Pump1.StatusP1=off)

Verification result: true

• PrgB6S , Pump1

SPEC
AG (PrgB6S.state=q_6 -> Pump1.StatusP1=off)

Verification result: true

• PrgB7U , Pump1

SPEC
AG (PrgB7U.state=q_6 -> Pump1.StatusP1=off)

Verification result: true

• PrgSP1, Pump1

SPEC
AG (PrgSP1.state=q_7 -> Pump1.StatusP1=off)

Verification result: true

60 Chapter 4. Modular Verification

• PrgSP2, Pump1

SPEC
AG (PrgSP2.state=q_7 -> Pump1.StatusP1=off)

Verification result: true

Analogously, we check this for program PrgB6U , which is the only pro-
gram using pump 2.

• PrgB6U , Pump2

SPEC
AG (PrgB6U.state=q_6 -> Pump2.StatusP2=off)

Verification result: true

Whenever a control program terminates, the heater is switched
off. Only control program PrgB5 uses the heater. We compose PrgB5 and
Heater and check if the heater’s status variable is off when the program is
in one of its final states.

• PrgB5, Heater

SPEC
AG (PrgB5.state in {q_6,q_9} -> Heater.StatusH=off)

Verification result: true

Now we know that whenever a control program terminates, all valves are
closed (with one exception listed above), and the pumps and the heater are
switched off, provided this was also the case when the control program was
started. We further know that two programs are never run simultaneously.
This allows us to verify the rest of our properties.

Whenever the heater in tank 5 is turned on, the water level of
tank 5 is high enough. Only control program PrgB5 uses the heater.
We compose PrgB5 and Tank5 and check if the tank’s water level does not
have the empty value when the Cmd-H : start event occurs. We do not need
to include the heater in the composition, since we are only interested in the
starting command generated by the control program.

• PrgB5, Tank5

SPEC
AG (PrgB5.CmdH=start -> !Tank5.Level5=empty)

Verification result: true

4.6. Verification 61

Whenever the heater in tank 5 is working, none of the valves 12,
15, and 16 are open. Again, only control program PrgB5 uses the heater.
We compose PrgB5, Heater , Valve12, Valve15, and Valve16, and check the
status variables of the valves if the heater status is on.

• PrgB5, Heater , Valve12, Valve15, Valve16

SPEC
AG (Heater.StatusH=on ->

Valve12.StatusV12=closed &
Valve15.StatusV15=closed &
Valve16.StatusV16=closed)

Verification result: true

Whenever the heater in tank 5 is working, valve 13 is open. We
compose PrgB5, Heater , and Valve13, and check the status variable of valve
13 if the heater status is on.

• PrgB5, Heater , Valve13

SPEC
AG (Heater.StatusH=on -> Valve13.StatusV13=open)

Verification result: true

At most two cooling units are active simultaneously. Each of the
three cooling units is active when the valve through which the cooling water
flows is open. These are the valves 13, 17, and 29. Since there is no control
program which sends commands to all three valves and since any two pro-
grams never run simultaneously, this property is trivially fulfilled. This is
an example of a property which can be established solely by manual analysis
of the plant structure; tool support is not necessary.

Pumps are not pumping against closed valves. We show that when-
ever a pump is working, the water flowing through the pump can leave the
system via valve 26 or valve 28, or is pumped into tank 1 or tank 2.

For pump 1, this leads to four possible paths:

1. From pump 1 through valves 22 and 26.

2. From pump 1 through valves 22, 1, and 3 into tank 1.

3. From pump 1 through valves 22, 1, 2, 4, and 6 into tank 2.

4. From pump 1 through valves 22, 1, 2, 4, 5, and 28.

This yields the SMV specification show below. Pump 1 is used by the control
programs PrgB3U , PrgB6S , PrgB7U , PrgSP1, and PrgSP2.

62 Chapter 4. Modular Verification

• PrgB3U , Pump1, Valve1, Valve2, Valve3, Valve4, Valve5, Valve6,
Valve22, Valve26, Valve28

SPEC
AG (Pump1.StatusP1=on -> Valve22.StatusV22=open &

(Valve26.StatusV26=open | Valve1.StatusV1=open &
(Valve3.StatusV3=open |
Valve2.StatusV2=open & Valve4.StatusV4=open &
(Valve6.StatusV6=open |
Valve5.StatusV5=open & Valve28.StatusV28=open))))

Verification result: true

• PrgB6S , Pump1, Valve1, Valve2, Valve3, Valve4, Valve5, Valve6,
Valve22, Valve26, Valve28

SPEC
(same as above)

Verification result: true

• PrgB7U , Pump1, Valve1, Valve2, Valve3, Valve4, Valve5, Valve6,
Valve22, Valve26, Valve28

SPEC
(same as above)

Verification result: true

• PrgSP1, Pump1, Valve1, Valve2, Valve3, Valve4, Valve5, Valve6,
Valve22, Valve26, Valve28

SPEC
(same as above)

Verification result: true

• PrgSP2, Pump1, Valve1, Valve2, Valve3, Valve4, Valve5, Valve6,
Valve22, Valve26, Valve28

SPEC
(same as above)

Verification result: true

For pump 2, this also leads to four possible paths:

1. From pump 2 through valves 25 and 28.

2. From pump 2 through valves 25, 5, and 6 into tank 2.

3. From pump 2 through valves 25, 5, 4, 2, and 3 into tank 1.

4. From pump 2 through valves 25, 5, 4, 2, 1, and 26.

4.6. Verification 63

This yields the SMV specification show below. Pump 2 is only used by
control program PrgB6U .

• PrgB6U , Pump2, Valve1, Valve2, Valve3, Valve4, Valve5, Valve6,
Valve25, Valve26, Valve28

SPEC
AG (Pump2.StatusP2=on -> Valve25.StatusV25=open &

(Valve28.StatusV28=open | Valve5.StatusV5=open &
(Valve6.StatusV6=open |
Valve4.StatusV4=open & Valve2.StatusV2=open &
(Valve3.StatusV3=open |
Valve1.StatusV1=open & Valve26.StatusV26=open))))

Verification result: true

Each tank’s input and output valves are not open simultaneously.
This property ensures that we have a controlled flow of liquids in the plant,
i.e., no program lets water flow directly through a tank without storing it
first in that tank. For all tanks, we check this property on each program
that is controlling at least one of the tank’s input valves and one of the
tank’s output valves.

Tank 1

• PrgB3U , Valve3, Valve8

SPEC
AG !(Valve3.StatusV3=open & Valve8.StatusV8=open)

Verification result: true

• PrgSP1, Valve3, Valve8

SPEC
AG !(Valve3.StatusV3=open & Valve8.StatusV8=open)

Verification result: true

Tank 2

• PrgB2, Valve6, Valve7, Valve9

SPEC
AG !((Valve6.StatusV6=open | Valve7.StatusV7=open) &

Valve9.StatusV9=open)

Verification result: true

• PrgSP1, Valve6, Valve7, Valve9

SPEC
AG !((Valve6.StatusV6=open | Valve7.StatusV7=open) &

Valve9.StatusV9=open)

Verification result: true

64 Chapter 4. Modular Verification

Tank 3

• PrgB3, Valve8, Valve9, Valve10, Valve11

SPEC
AG !((Valve8.StatusV8=open | Valve9.StatusV9=open) &

(Valve10.StatusV10=open | Valve11.StatusV11=open))

Verification result: true

• PrgB3K , Valve8, Valve9, Valve10, Valve11

SPEC
AG !((Valve8.StatusV8=open | Valve9.StatusV9=open) &

(Valve10.StatusV10=open | Valve11.StatusV11=open))

Verification result: true

• PrgB3U , Valve8, Valve10, Valve11

SPEC
AG !(Valve8.StatusV8=open &

(Valve10.StatusV10=open | Valve11.StatusV11=open))

Verification result: true

• PrgSP1, Valve8, Valve9, Valve10, Valve11

SPEC
AG !((Valve8.StatusV8=open | Valve9.StatusV9=open) &

(Valve10.StatusV10=open | Valve11.StatusV11=open))

Verification result: false

The trace generated by SMV shows that valve 9 is opened in the step
from state q3 to state q4, and valve 10 is opened in the following step to
state q5. This violates our property, since water is now flowing through
tank 3. Since programs PrgSP1 and PrgSP2 are used for maintenance pur-
poses only and are not part of the normal production cycle, PrgSP1 and
PrgSP2 should be allowed to let water flow through tanks and can be ex-
cluded from checking the property “each tank’s input and output valves are
not open simultaneously”.

Tank 4 There is no control program that uses valve 11 and valve 12,
so nothing has to be checked, and the property is trivially fulfilled.

Tank 5

• PrgB5, Valve12, Valve15, Valve16

SPEC
AG !(Valve12.StatusV12=open &

(Valve15.StatusV15=open | Valve16.StatusV16=open))

Verification result: true

4.7. Discussion 65

Tank 6

• PrgSP2, Valve14, Valve19, Valve20, Valve27

SPEC
AG !(Valve14.StatusV14=open &

(Valve19.StatusV19=open | Valve20.StatusV20=open |
Valve27.StatusV27=open))

Verification result: true

Tank 7 There is no control program that uses valve 15 and valve 18,
so nothing has to be checked, and the property is trivially fulfilled.

4.7 Discussion

A discrete, untimed model of the batch plant and its control programs has
been used to verify some safety properties. These properties help to ensure
that the control programs do not cause damages to the plant’s devices.

We used discrete condition/event systems (DCESs) to model the valves,
the tanks, the pumps, the heater, and the 13 control programs. For each
property, we used a compiler prototype to transform the DCESs required to
check the property into SMV input, and provided SMV with the property
in CTL syntax.

The formal verification reveals that all properties are fulfilled, with two
exceptions. In these cases SMV shows the trace of a computation prefix lead-
ing to the state where the error occurs. This trace provides a convenient way
of finding the error in the control program that causes the violation of the
property. However, the two violations detected will not cause any damages
to the plant; they can merely be regarded as small design inaccuracies which
can be fixed with little effort.

The error in control program B3K mentioned on page 45 reveals that an
abstract model like the one presented in this chapter cannot find all errors
that may be hidden in the control programs. A straightforward test if control
programs always prevent overflows by checking the level in a tank while it is
being filled will show that many programs do not always make these checks.
But this does not necessarily mean that there is a problem, since, e.g., the
upstream tank may be much smaller than the tank being filled, and thus, an
overflow is not possible, just by construction of the plant. This means that
we need a finer model which is able to make statements about quantities of
liquid in a tank. A modeling framework which leads into this direction is
presented in Chapter 6.

The plant model presented in this chapter is an example of a system in
which there are only a few dependencies between its constituent parts. Con-
sequently, the sets of modules that need to be composed for model checking

66 Chapter 4. Modular Verification

are relatively small, and model checking these is easy. If there are more
dependencies, these sets tend to get larger, and in the worst case, the full
product of all modules needs to be built and model checked, which brings
us back to the very problem why we started with the modular approach—
state explosion. The following chapter presents a compositional verification
approach which is better suited to systems with more dependencies.

Chapter 5

Compositional Verification

The previous chapter showed that a modular approach to a verification task
can significantly reduce the complexity problem of state-based verification.
There still remains, however, the problem that if many modules depend
on each other, the model-checking process needs to run on a large set of
components and can therefore reach its limits and fail due to time and
space restrictions.

This chapter presents a compositional verification method which takes
the modular approach of Chapter 4 one step further. Every module of
the system is model-checked on its own, and local properties gained from
the model-checking results are then combined by deduction to yield global
properties of the system.

5.1 Introduction

The main underlying concepts used in the verification method presented in
this chapter have already been introduced in Chapter 1: abstraction and
compositional reasoning. We briefly recall these two ideas:

The concept of abstraction replaces concrete objects with abstract ones,
often by simplifying structures which are not relevant to the current ob-
jective (e.g., verification of certain properties) and which can therefore be
neglected. Safe abstractions have the characteristic that properties of the
abstract object also hold for the concrete object. The converse needs not
to hold, and when a certain property cannot be established for an abstract
system (e.g., by model checking), this property either does not hold for
the concrete object, or the chosen abstraction was too coarse, and a finer
abstraction has to be chosen (“abstraction refinement”).

Compositional reasoning is a methodology in which a system is described
by the behavior of its constituent parts (for which we use the term “mod-
ules”) and the ways these are put together. The behavior of the complete
system can be inferred from these descriptions only [Fre23]. No further in-

67

68 Chapter 5. Compositional Verification

formation about the internal structures of the modules is needed (“black
box” principle, see [Zwi89]).

Another important principle in compositional reasoning is the use of
open systems for the specification of the modules at all levels of abstraction.
That is, the behavior of a module is specified relative to the behavior of its
environment. In most cases a module can only satisfy its required properties
if its environment displays some expected behavior. Therefore, the specifi-
cation of a module usually consists of a description of its output behavior
as well as a description of the expected inputs. A module is considered to
fulfill its specification if any input which meets these requirements will only
lead to outputs described in the specification. Therefore, if the input differs
from the expectations, the output behavior of the module is not required to
meet the requirements. Thus, a specification for a module can be written
as an implication (see Section 5.5.1), giving an approximate notion of weak-
est precondition of that module w.r.t. a given requirement upon its output
behavior [dRdBH+01].

When modules are combined, however, the possibility of feedback arises,
i.e., some module A may depend on another module B in that an assumption
upon a trace in A’s behavior actually depends on output requirements upon
proper prefixes w.r.t. B ’s behavior, and vice versa. There are several ways to
break the circularity which arises from feedback, e.g., Assume/Guarantee-
based reasoning [MC81, Jon83]. In the particular example considered in this
chapter, no such feedback arises, and a simplified way of Assume/Guarantee-
based reasoning can be applied.

5.2 The Compositional Verification Approach

Figure 5.1 illustrates the compositional verification approach that is followed
in this chapter. First the system is split into smaller parts, the modules.
Then each module is formally specified at a suitable abstraction level as a
single entity and its correct behavior w.r.t. the specification is proven locally,
e.g., by algorithmic verification tools like model checkers. The specifications
of all modules are then combined by various means of logical deduction in
order to derive the desired global property of the system.

In the sequel we discuss practical aspects of the work steps of this com-
positional verification approach.

5.2.1 Decomposition

The system we want to verify, consisting of a process (e.g., a chemical plant)
and a controller (e.g., a PLC), is split into smaller components, called mod-
ules. The decision where to split the system is an optimization task depend-
ing on two main objectives:

5.2. The Compositional Verification Approach 69

process ↔ controller System

ϕ Global Property

����� ?

HHHHj
Decomposition

M1 ↔ M2 . . . Mn Modules

? ? ?

Abstraction and
Modeling

S1 ↔ S2 . . . Sn Local Models

? ? ?
Local Verification

ϕ1 ϕ2 ϕn Local Properties
H

HHHj ?

��
���

Deduction

Figure 5.1: The compositional verification approach

1. The complexity of each resulting module should be small enough for
a local verification process, without running into the state explosion
problem. One the other hand, a large number of modules will result in
an unnecessary overhead for the specification and verification of each
module.

2. The interface of each resulting module should be kept simple, as com-
plex interfaces will make the subsequent deduction step harder.

A straightforward decomposition strategy (which was also mostly fol-
lowed in Chapter 4) is to define each physical component of the plant (e.g.,
valves, tanks, sensors, pumps) as a module, as well as each logical unit of
the control software. But other decompositions are possible, such as the cre-
ation of functional groups as a module, e.g., by defining a tank, its adjacent
valves, and the piece of software that controls these valves as one module.

The decomposition step does not involve any formal specification work;
it is merely providing a structure for the steps to follow.

5.2.2 Abstraction and Modeling

Now each module needs to be modeled in a formal framework which allows
formal verification. An important choice that has to be made is the abstrac-
tion level on which the module will be described. It is advised to make each
model as abstract as possible, but without losing too much information.
Furthermore, each module needs to be specified in a formal specification
language. The specification should describe the part of the module behavior
that is needed to conclude the global system specification.

70 Chapter 5. Compositional Verification

It is not necessary that everything is modeled in the same framework.
Often parts of the system can be modeled as discrete automata, whereas
other parts need continuous variables.

5.2.3 Local Verification

Each model is now checked against its specification. Model checkers allow
to fully mechanize this step. If the size and abstraction level of each module
was chosen carefully, the state explosion problem is not an issue during the
model-checking process.

If a verification fails, the model checker usually produces a counterex-
ample which can be used to correct the error in the model or specification.

5.2.4 Deduction

Finally, the global system property is proven. The local module specifica-
tions are combined using deductive techniques. This can be supported by
theorem proving tools.

If the global property cannot be proven, the most likely reason is that
information is missing in one or more of the local specifications. Usually
intermediate results from the proof show the missing information. After the
local specifications have been corrected and verified, the proof is tried again.

5.3 Example

We illustrate the compositional approach by verifying the multi-product
batch plant introduced in Chapter 3. From a list of desirable global plant
properties we choose two representative cases and prove them correct. The
full proof of all desirable properties would render this chapter unreadable
without leading to more insights.

As before, we use the term “hardware” for any physical part of the system
that is shown in Figure 3.2, and the term “software” for the programs that
run on the PLC system. The actual PLC hardware and the electrical wiring
between the PLC and the sensors and actuators are not discussed.

5.3.1 Desired Properties

We assume that there are no hardware failures, i.e., valves do not get stuck,
pumps always have their nominal throughput, mixers function normally,
pipes do not get clogged, sensors always show correct readings, etc. Since
the control software was not designed to detect such failures, we can only
prove its correct functioning in the absence of these disturbances.

Furthermore we assume that there is an unlimited supply of raw materi-
als in tanks B41–B44. Therefore, these four tanks will be modeled implicitly.

5.3. Example 71

Below we describe two classes of desired properties: those related to the
normal operation of the plant, i.e., properties that describe the purpose of
the plant, and those describing failures which should not happen, since these
may lead to a damage of the plant and/or its environment.

Normal Operation

Since the purpose of the plant is to deliver the products “blue” and “green”
in tanks B31 and B32, the only property desired for normal operation is:

• There is always a nonzero amount of liquid in the product tanks B31
and B32; the total amount of liquid entering B31 and B32 is un-
bounded.

Prevention of Failures

The following properties must hold to ensure the safe operation of the plant.

• There is no overflow in any of the tanks or reactors, i.e., they are never
filled beyond their nominal capacity.

• No mixer operates when the reactor is empty.

• Each reactor is filled with “yellow” or “red” first, and then “white” is
added.

• During a reaction in any of the reactors (i.e., filling in “white” after
filling in “yellow” or “red”) the mixer is always in operation.

• Each reactor is drained only if the reaction has finished, i.e., the reactor
contains either “blue” or “green”.

• B11 contains only “yellow”, B12 “red”, B13 “white”, B31 “blue”, and
B32 “green”.

• From one tank or reactor, the liquid is drained to only one tank or one
reactor at a time.

• Inlet and outlet valves of a tank or reactor are never open simultane-
ously.

• Only complete batches are transferred:

– Draining from a tank is not started while the tank is being filled.

– Draining is started only if at least one batch is available.

– Draining is stopped after exactly one batch has been transferred.

72 Chapter 5. Compositional Verification

Once the last property about complete batches has been verified (the
proof is not shown in this chapter), an abstract model which only considers
transfers of complete batches can be used to establish the other properties.
This model is developed next.

5.4 Plant Model

We choose a discrete abstraction as our formal model: Although the flow of
liquids during the production steps is continuous, an analysis of the plant and
its control software (not shown in this chapter) yields that the production
process is designed in such a way that only complete batches are being
transferred between vessels. It is therefore possible to use a discrete model
in which the transfer of one batch is modeled as one discrete state change.

Our system model can be partitioned into three main parts: the plant
hardware (tanks, reactors, mixers, valves, pumps, and pipes), the software
(production programs for “blue” and “green”, resource management, etc.),
and transfers among and between the two parts (liquids, level sensor data,
commands to valves, pumps, and mixers, etc.).

All pieces of hardware and software are modeled as single modules. Com-
munication between modules is based on shared variables (for level sensor
data and other state information) and events (e.g., for sending commands
to valves and passing on information about liquid transfers). Events can be
seen as Boolean variables which are true if and only if the event occurs in
the current computation step. Communication via events is synchronous.

In the following we describe the purpose of each module and the events
and variables that are used for the interaction of the modules.

5.4.1 Plant Hardware

This section lists all modules that represent some physical device of the
plant, i.e., tanks, reactors, sensors, actuators, and the piping. Figure 5.2
contains the block diagrams of these modules showing their interconnections.
Each arrow represents a directed data flow (either via an event or a shared
variable) from one module to another. Arrows not pointing to a specific
module denote outputs that are sent to modules representing the control
software (not shown in Figure 5.2), and arrows not starting at a module
represent commands sent from the control software to the actuators.

The modules in Figure 5.2 have been arranged to resemble the topological
structure of the piping and instrumentation diagram in Figure 3.2; note
that arrows in Figure 5.2 represent data flows in our abstract plant model,
whereas arrows in Figure 3.2 denote the flow of liquids through pipes in the
actual plant.

5.4. Plant Model 73

PipeOutB11

6
yellowB11To

Valve111

6transferV111

6
yellowToR21 q Valve112

6transferV112

6
yellowToR22 q Valve113

6transferV113

6
yellowToR23 q

TankB11
�LIS11

�stateB11

Pump1

?
yellowToB11

-transferP1

PipeOutB12

6
redB12To

Valve121

6transferV121

6
redToR21 q Valve122

6transferV122

6
redToR22 q Valve123

6transferV123

6
redToR23 q

TankB12
�LIS12

�stateB12

Pump2

?
redToB12

-transferP2

PipeOutB13

6
whiteB13To

Valve131

6transferV131

6
whiteToR21 q Valve132

6transferV132

6
whiteToR22 q Valve133

6transferV133

6
whiteToR23 q

TankB13
�LIS13

�stateB13

Pump3

?
whiteToB13

-transferP3

ReactorR21

�LIS21

�stateR21

?

b
lu

eR
2
1
T
o

?

g
re

en
R
2
1
T
o

?

yellowToR21

?

redToR21

?

whiteToR21

Mixer1

6statusM1

6startM1 6stopM1

PipeOutR21

6

drainR21

Valve211

6transferV211

6
drainR21V211 q Valve212

6transferV212

6
drainR21V212 q

ReactorR22

�LIS22

�stateR22

?

b
lu

eR
2
2
T
o

?

g
re

en
R
2
2
T
o

?

yellowToR22

?

redToR22

?

whiteToR22

Mixer2

6statusM2

6startM2 6stopM2

PipeOutR22

6

drainR22

Valve221

6transferV221

6
drainR22V221 q Valve222

6transferV222

6
drainR22V222 q

ReactorR23

�LIS23

�stateR23

?

b
lu

eR
2
3
T
o

?

g
re

en
R
2
3
T
o

?

yellowToR23

?

redToR23

?

whiteToR23

Mixer3

6statusM3

6startM3 6stopM3

PipeOutR23

6

drainR23

Valve231

6transferV231

6
drainR23V231 q Valve232

6transferV232

6
drainR23V232 q

PipeInB31

�
errorPipeInB31

?
blueToB31

??

q

?

q
?

q
?

q
?? ? ?

TankB31
�LIS31

�stateB31

Valve311

6transferV311

�blueB31To

PipeInB32

�
errorPipeInB32

?
greenToB32

? ?? ? ? ?

q
?

q
? ?

TankB32
�LIS32

�stateB32

Valve312

6transferV312

�greenB32To

Figure 5.2: Block diagrams of the modules for the physical devices.

74 Chapter 5. Compositional Verification

Pumps A pump Pj , j ∈ {1, 2, 3}, is represented by a module Pumpj . The
event transferPj sent by the control software triggers the transfer of one
batch of liquid to TankB1j .

Raw Material Tanks A raw material tank B1j , j ∈ {1, 2, 3}, is repre-
sented by a module TankB1j . The event cToB1j (sent by Pumpj) triggers
the transfer of one batch of color c into B1j . The event cB1jTo (sent by
PipeOutB1j) triggers the draining of one batch of color c from B1j into
one of the reactors. The variable LIS1j ∈ {0, 1, 2} contains the number of
batches in B1j .

Reactors A reactor R2j , j ∈ {1, 2, 3}, is represented by a module Reac-
torR2j . The event cToR2j triggers the transfer of one batch of color c into
R2j , and drainR2j triggers the draining of the reactor. The events blueR2jTo
and greenR2jTo denote which of the two products is inside the reactor when
it is drained. The variable LIS2j ∈ {0, 1, 2} contains the number of batches
in R2j .

Mixers A mixer Mj , j ∈ {1, 2, 3}, is represented by a module Mixerj .
It is operated by the events startMj and stopMj , and its current status is
passed to R2j using the statusMj variable.

Product Tanks A product tank B3j , j ∈ {1, 2}, is represented by a
module TankB3j . The event cToB3j triggers the transfer of one batch of
color c from one reactor into B3j . The event cB3jTo triggers the draining
of one batch of color c from B3j . The variable LIS3j ∈ {0, 1, 2, 3} contains
the number of batches in B3j .

Valves Valve V1jk , j , k ∈ {1, 2, 3}, connects B1j with R2k . Valve V2jk ,
j ∈ {1, 2, 3}, k ∈ {1, 2}, connects R2j with B3k . Valve V31j , j ∈ {1, 2},
is used for draining B3j . The event transferVijk triggers the transfer of one
batch through Vijk .

Pipes The modules PipeOutB1j , PipeOutR2j , and PipeInB3k are intro-
duced to keep the communication interfaces of the tanks and reactors small.
E.g., it is not important for TankB11 into which of the three reactors “yellow”
is drained. Therefore, PipeOutB11 abstracts all three yellowToR2j events
into one yellowB11To event which is sent to TankB11. The other pipe mod-
ules work similarly.

State Variables The variables stateB11, stateB12, stateB13, stateR21,
stateR22, stateR23, stateB31, stateB32, errorPipeInB31, and errorPipeInB32
show the current state of the respective module. These variables are not

5.4. Plant Model 75

used by the control programs, but in the specifications they describe “bad”
states that should be avoided.

5.4.2 Plant Software

Our abstract model of the control software consists of the following modules:

Semaphores The modules SemaphoreB11, SemaphoreB12, Semaphore-
B13, SemaphoreR21, SemaphoreR22, SemaphoreR23, SemaphoreB31, and Se-
maphoreB32 are used by the production and delivery programs to con-
trol concurrent access to the tanks and reactors. The semaphore modules
have one Boolean input variable for each program to request access the
resource (lock B1j D, lock B11 Bj , lock B12 Gj , lock B13 Bj , lock B13 Gj ,
lock R2j B, lock R2j G, lock B31 Bj , lock B32 Gj , lock B31 C, lock B32 C),
and output variables (Bij user, R2j user) that show to which program access
is currently granted.

Counters The modules CounterB11, CounterB12, CounterB13, Counter-
B31, and CounterB32 are used to count the number of batches in the raw
material and product tanks. Each module has input events for each program
that needs to increase or decrease the counter (add B1j , sub Bij Bk , sub -
Bij Gk , add B31 Bk , add B32 Gk , sub B3j), and one output variable cij that
shows the current counter value for tank Bij .

Raw Material Delivery The module PrgDeliverToB1j , j ∈ {1, 2, 3},
delivers one batch of liquid into tank B1j , using pump Pj . It requests
access through SemaphoreB1j and notifies CounterB1j that one batch was
added to B1j .

Production The modules ProduceBlueInR2j and ProduceGreenInR2j ,
j ∈ {1, 2} control the production of “blue”, resp., “green” in reactor R2j .
They use SemaphoreB11, resp., SemaphoreB12, SemaphoreB13, Semaphore-
R2j , and SemaphoreB31, resp., SemaphoreB32 to request access to resources.
Transfer events are sent to Valve11j , resp., Valve12j , Valve13j , and Val-
ve2j1, resp., Valve2j2. Furthermore, Mixerj is turned on if and only if the
second ingredient is drained into reactor R2j .

The model presented above is adequate for the verification of the prop-
erties listed in Section 5.3.1. If we are interested in other classes of desired
plant properties, e.g., information about production times based on the du-
rations of the basic production steps (like filling a reactor) given in the plant
description [BKSL00], different models are required.

76 Chapter 5. Compositional Verification

5.5 Compositional Verification

This section illustrates the verification step in our approach for proving
global properties of the batch plant. We apply the approach to the following
two global properties:

1. There is no overflow in tank B11, i.e., at any time there are no more
than two batches of “yellow” in B11.

2. There is no “underflow” in tank B11, i.e., one never tries to drain a
batch of “yellow” from B11 when it is already empty.

These properties are illustrative for showing our verification concept, for
the following reasons: The non-existence of overflows and underflows in the
other vessels is symmetrical to the situation with tank B11. The properties
referring to the reactors can be proven by analysis of the production pro-
grams. The property that a tank only contains liquids of a certain color is
trivial for B11, B12, and B13; for B31 and B32 this can also be shown from
properties of the production programs. The remaining properties (draining
only to one destination at a time, no simultaneous opening of inlet and out-
let valves) can be proven from properties of the production and semaphore
programs.

These proofs make no qualitative difference to the proofs of the two
properties of B11.

5.5.1 Establishing Local Specifications

Since we are interested in formally proving global properties of the plant,
it is necessary to establish local specifications for each module which en-
tail global properties. The abstract model presented in Section 5.4 already
introduced all modules and the communication structure, along with an
informal description of the modules’ behavior. Now we define their local
specifications formally.

We specify each module as an open system, i.e., the outputs of a module
depend on inputs from its environment. Most modules cannot guarantee a
certain behavior without assuming some behavior of other modules. E.g.,
TankB11 can only guarantee to avoid overflows if Pump1 does not fill another
batch into B11 when it is already full. Specifications of such dependent
behavior are therefore given as implications: “if the environment behaves
as expected, then we guarantee something”.

The specification language we use is LTL (linear time temporal logic)
[Pnu77] which is interpreted over sequences of states displaying the activi-
ties of the modules in a discrete time framework. Each state contains the
current evaluation of the variables as well as the existence of events (en-
coded as a Boolean variable) at the beginning of the current computation

5.5. Compositional Verification 77

step. Changes between steps can be logically related by using the next
operator, denoted by the symbol ©, which refers to the next state in the
computation. Propositions which hold at all states in the computation are
preceded by the always operator, denoted by the symbol 2.

In the case of the modules for the plant hardware, the local specifications
are formalizations of the physical behavior of their real-life counterparts, like
“if one never fills another batch into a tank which already contains a max-
imal number of batches, it will never overflow”. These specifications are
assumed to be correct, based on the knowledge about physical facts. Simi-
larly, we accept the chemical fact that mixing “yellow” and “white” results
in “blue”. Local properties for the modules TankB11, Pump1, Valve111,
Valve112, Valve113, and PipeOutB11 are given in Section 5.5.3.

In the case of the control software, things are different. Properties of
finite-state programs can be proven algorithmically. The control software for
the batch plant runs on a PLC. The PLC programming language used for
the implementation is sequential function charts (SFC), and the execution
model of an SFC is finite-state. Therefore, we translate each SFC program
into the modeling language of a model checker, and prove its correctness
with respect to local properties, such as (5.12)–(5.23) listed in Section 5.5.3.
The translation is discussed in Section 5.6. For more background on model
checking see [CGP00].

Local properties for the modules Counter11, PrgDeliverToB11, and
PrgProduceBlueInR2j , j ∈ {1, 2, 3}, are given in Section 5.5.3.

It is of course possible to give algorithmically checkable models for the
plant hardware as well, but these would not give us any additional knowledge
about the real plant. Such models are simply based on the physical and
chemical facts mentioned above, and will trivially fulfill the requirements
posed upon them, without adding any confidence about the correctness of
the plant. When using a global model-checking approach, such models are
required, since the full automata product of the model includes the software
as well as the hardware parts.

5.5.2 Desired Properties

Now we show that that there is no overflow in tank B11, i.e., that at any
time there are no more than two batches of “yellow” in B11. Furthermore,
we also want to prevent an “underflow”, i.e., one should never try to drain
a batch from B11 if B11 is empty.

In our model the variable stateB11 contains the current state of TankB11.
The two values describing “bad” states are over and under. Therefore, the
requirements above can be formalized in LTL as

2(stateB11 6= over) (5.1)

78 Chapter 5. Compositional Verification

and

2(stateB11 6= under), (5.2)

i.e., it is always the case that stateB11 /∈ {over, under}.

5.5.3 Plant Specifications

We list the local specifications that are needed to prove the global proper-
ties (5.1) and (5.2). Note that there are more specifications for the modules
than those mentioned below, but we restrict ourselves to those necessary for
proving these global properties.

Recall that the symbols used for events and variables used in the follow-
ing specifications have been introduced in Section 5.4.

Plant Hardware

As argued in Section 5.5.1, the following local specifications for the hardware
components are derived from their physical characteristics and are assumed
to be correct, without further proof.

Raw Material Tank B11 Recall that the module TankB11 maintains the
variable LIS11 which counts the number of batches in B11. A batch of
“yellow” is added if the yellowToB11 event is received, and a batch of “yel-
low” is drained from B11 if the yellowB11To event is received. Furthermore,
stateB11 is used to indicate if B11 is in a “bad” state.

Initially, the tank is empty:

LIS11 = 0 (5.3)

The level stays the same if there is no filling or draining:

2(¬©(yellowToB11 ∨ yellowB11To)⇒© LIS11 = LIS11) (5.4)

The following two specifications contain the requirement that the control
programs never send the filling and draining events simultaneously.

Filling the tank when not full increases the level:

2¬(yellowToB11 ∧ yellowB11To)
⇒2(© yellowToB11 ∧ LIS11 6= 2⇒© LIS11 = LIS11 + 1)

(5.5)

Draining the tank when not empty decreases the level:

2¬(yellowToB11 ∧ yellowB11To)
⇒2(© yellowToB11 ∧ LIS11 6= 0⇒© LIS11 = LIS11− 1)

(5.6)

If the tank is not drained while empty, there is no underflow:

2(LIS11 = 0⇒¬© yellowB11To)⇒2(stateB11 6= under) (5.7)

If the tank is not filled while full, there is no overflow:

2(LIS11 = 2⇒¬© yellowToB11)⇒2(stateB11 6= over) (5.8)

5.5. Compositional Verification 79

Pump P1 The module Pump1 converts the transfer event from the control
software into a filling event for TankB11: A batch of “yellow” is filled into
B11 whenever transferP1 is sent:

2(transferP1⇔ yellowToB11) (5.9)

Valve V11j , j ∈ {1, 2, 3} The module Valve11j converts the transfer
event from the control software into a filling event for ReactorR2j : A batch
of “yellow” is filled into R2j whenever transferV11j is sent:

2(transferV11j ⇔ yellowToR2j) (5.10)

Pipes Connecting B11 with the Reactors The module PipeOutB11
provides the yellowB11To event for TankB11. Filling one batch of “yellow”
into one of the reactors is equivalent to draining one batch of “yellow” from
B11. The antecedent of the following implication ensures that two reactors
are never filled simultaneously from B11:

2¬(yellowToR21 ∧ yellowToR22 ∨ yellowToR21 ∧ yellowToR23 ∨
yellowToR22 ∧ yellowToR23)

⇒2(yellowToR21 ∨ yellowToR22 ∨ yellowToR23⇔ yellowB11To)
(5.11)

Plant Software

In the following we list local specifications of the control software. In contrast
to the specifications of the hardware parts given above, these have been
proven correct by model checking, as mentioned in Section 5.5.1.

The Counter for Tank B11 The module Counter11 provides a variable
c11 which is used by the control programs to keep track of the number of
batches in B11, which is not allowed to be larger than two. Note that by
using c11 the control programs do not rely on LIS11 provided by B11, but
have their own information about the number of batches in B11.

Initially, the counter is zero:

c11 = 0 (5.12)

The counter stays the same if there is no increasing or decreasing event:

2(¬©(add B11 ∨ sub B11 B1 ∨ sub B11 B2 ∨ sub B11 B3)
⇒© c11 = c11)

(5.13)

The following two specifications require that there is at most one in-
creasing or decreasing event at a time.

80 Chapter 5. Compositional Verification

Sending an increasing event while c11 6= 2 increases the counter by one:

2¬(add B11 ∧ sub B11 B1 ∨ add B11 ∧ sub B11 B2 ∨
add B11 ∧ sub B11 B3 ∨ sub B11 B1 ∧ sub B11 B2 ∨
sub B11 B1 ∧ sub B11 B3 ∨ sub B11 B2 ∧ sub B11 B3)

⇒2(© add B11 ∧ c11 6= 2⇒© c11 = c11 + 1)

(5.14)

Sending a decreasing event while c11 6= 0 decreases the counter by one:

2¬(add B11 ∧ sub B11 B1 ∨ add B11 ∧ sub B11 B2 ∨
add B11 ∧ sub B11 B3 ∨ sub B11 B1 ∧ sub B11 B2 ∨
sub B11 B1 ∧ sub B11 B3 ∨ sub B11 B2 ∧ sub B11 B3)

⇒2(©(sub B11 B1 ∨ sub B11 B2 ∨ sub B11 B3) ∧ c11 6= 0
⇒© c11 = c11− 1)

(5.15)

Production of “blue” in R2j , j ∈ {1, 2, 3} The module PrgProduce-
BlueInR2j controls the production of “blue” in reactor R2j . It sends the
transferV11j event to Valve11j , decreases the counter c11, and it regards
the B11 user semaphore.

Initially, no events are sent by the program:

¬transferV11j ∧ ¬sub B11 Bj (5.16)

If the counter equals zero, B11 is not drained via V11j :

2(c11 = 0⇒¬© transferV11j) (5.17)

Whenever V11j is used to transfer one batch, the counter is notified to
decrease:

2(transferV11j ⇔ sub B11 Bj) (5.18)

Whenever an event related to B11 is sent, the semaphore for B11 is
reserved:

2(©(transferV11j ∨ sub B11 Bj)⇒ B11 user = PrgBj) (5.19)

Raw Material Delivery for Tank B11 The module PrgDeliverToB11
controls the delivery of “yellow” into tank B11. It sends the transferP1 event
to Pump1, increases the counter c11, and it regards the B11 user semaphore.

Initially, no events are sent by the program:

¬transferP1 ∧ ¬add B11 (5.20)

If the counter equals 2, B11 is not filled via P1:

2(c11 = 2⇒¬© transferP1) (5.21)

5.5. Compositional Verification 81

Whenever P1 is activated to pump one batch, the counter is notified to
increase:

2(transferP1⇔ add B11) (5.22)

Whenever an event related to B11 is sent, the semaphore for B11 is
reserved:

2(©(transferP1 ∨ add B11)⇒ B11 user = PrgD) (5.23)

5.5.4 Deduction

Now we come to the crucial step in this verification methodology: From the
correct (proven by model checking for the software part) local specifications
we deduce more complex specifications for the parallel composition of all
plant parts.

The local specifications given above are used to deduce our global re-
quirements (5.1) and (5.2). We start by collecting the specifications for the
software parts PrgDeliverToB11 and PrgProduceBlueInR2j , j ∈ {1, 2, 3}.

From (5.16) and (5.20) we know that no transfer events and no counter
changing events are present in the initial state:

¬transferV111 ∧ ¬transferV112 ∧ ¬transferV113 ∧ ¬transferP1 ∧
¬sub B11 B1 ∧ ¬sub B11 B2 ∧ ¬sub B11 B3 ∧ ¬add B11

(5.24)

From (5.17) we get that no draining transfer events are sent when the
counter equals 0, and from (5.21) we know that no filling transfer events are
sent when the counter equals 2:

2(c11 = 0⇒¬©(transferV111 ∨ transferV112 ∨ transferV113))
∧2(c11 = 2⇒¬© transferP1)

(5.25)

From (5.18) and (5.22) we get that whenever a transfer event is sent, the
counter is updated accordingly:

2(transferV111⇔ sub B11 B1) ∧
2(transferV112⇔ sub B11 B2) ∧
2(transferV113⇔ sub B11 B3) ∧
2(transferP1⇔ add B11)

(5.26)

From (5.19) and (5.23) we collect the information about the use of the
semaphore B11 user:

2(©(transferV111 ∨ sub B11 B1)⇒ B11 user = PrgB1) ∧
2(©(transferV112 ∨ sub B11 B2)⇒ B11 user = PrgB2) ∧
2(©(transferV113 ∨ sub B11 B3)⇒ B11 user = PrgB3) ∧
2(©(transferP1 ∨ add B11)⇒ B11 user = PrgD)

(5.27)

82 Chapter 5. Compositional Verification

By using the specifications of Valve11j , j ∈ {1, 2, 3}, and Pump1, we can
substitute in (5.24)–(5.27) transferV11j by yellowToR2j , for j ∈ {1, 2, 3}, and
transferP1 by yellowToB11, and we get:

¬yellowToR21 ∧ ¬yellowToR22 ∧ ¬yellowToR23 ∧ ¬yellowToB11
∧ ¬sub B11 B1 ∧ ¬sub B11 B2 ∧ ¬sub B11 B3 ∧ ¬add B11

(5.28)

2(c11 = 0⇒¬©(yellowToR21 ∨ yellowToR22 ∨ yellowToR23))
∧2(c11 = 2⇒¬© yellowToB11)

(5.29)

2(yellowToR21⇔ sub B11 B1) ∧
2(yellowToR22⇔ sub B11 B2) ∧
2(yellowToR23⇔ sub B11 B3) ∧
2(yellowToB11⇔ add B11)

(5.30)

2(©(yellowToR21 ∨ sub B11 B1)⇒ B11 user = PrgB1) ∧
2(©(yellowToR22 ∨ sub B11 B2)⇒ B11 user = PrgB2) ∧
2(©(yellowToR23 ∨ sub B11 B3)⇒ B11 user = PrgB3) ∧
2(©(yellowToB11 ∨ add B11)⇒ B11 user = PrgD)

(5.31)

From (5.28) and (5.31) we can conclude that at most one of the events
yellowToR2j occurs at a time; thus we get the following from the specification
of PipeOutB11:

2(yellowToR21 ∨ yellowToR22 ∨ yellowToR23⇔ yellowB11To) (5.32)

Similarly, we conclude that there is at most one of the add or sub events
at a time, and get from the specification of Counter11 and (5.30):

c11 = 0 (5.33)

2(¬©(yellowToB11 ∨ yellowB11To)⇒© c11 = c11) (5.34)

2(© yellowToB11 ∧ c11 6= 2⇒© c11 = c11 + 1) (5.35)

2(© yellowB11To ∧ c11 6= 0⇒© c11 = c11− 1) (5.36)

From (5.29) we conclude with (5.32):

2(c11 = 0⇒¬© yellowB11To) (5.37)

2(c11 = 2⇒¬© yellowToB11) (5.38)

From (5.28) and (5.31) we get:

2¬(yellowToB11 ∧ yellowB11To) (5.39)

5.5. Compositional Verification 83

Now recall the specification of module TankB11, where the requirement
2¬(yellowToB11 ∧ yellowB11To) is already discharged using (5.39):

LIS11 = 0 (5.40)

2(¬©(yellowToB11 ∨ yellowB11To)⇒© LIS11 = LIS11) (5.41)

2(© yellowToB11 ∧ LIS11 6= 2⇒© LIS11 = LIS11 + 1) (5.42)

2(© yellowToB11 ∧ LIS11 6= 0⇒© LIS11 = LIS11− 1) (5.43)

2(LIS11 = 0⇒¬© yellowB11To)⇒2(stateB11 6= under) (5.44)

2(LIS11 = 2⇒¬© yellowToB11)⇒2(stateB11 6= over) (5.45)

We can prove the global properties (5.1) and (5.2) from (5.44) and (5.45)
if we can establish 2(LIS11 = 0 ⇒ ¬© yellowB11To) and 2(LIS11 = 2 ⇒
¬© yellowToB11). These two conditions can be proven from (5.37) and
(5.38) if we can prove 2 LIS11 = c11, i.e., the counter variable c11 always
has the same value as the level sensor variable LIS11.

The validity of 2 LIS11 = c11 is proven in Section 5.5.5. This completes
the deductive proof of the global properties (5.1) and (5.2).

5.5.5 Temporal Induction

As explained above, we need to prove 2 LIS11 = c11 to complete the proof
of (5.1) and (5.2). By comparing (5.33)–(5.36) and (5.40)–(5.43), it can be
deduced that LIS11 and c11 always have the same values, since they are
both initialized to 0, and both change in the same way triggered by the
same events.

A formal proof of 2 LIS11 = c11 requires a technique that is more elabo-
rate than the implication-driven deduction used in Section 5.5.4. This proof
technique is called temporal induction [ZdBdR84].

We prove 2 LIS11 = c11 by temporal induction over all traces of the
system. A trace t is a sequence of states that are generated by the system.
The sequence tk , for k ∈ N, denotes t without its first k elements. The LTL
semantics defines that we can relate a state and its successor state by using
the following formula:

tk |= ©ϕ if and only if tk+1 |= ϕ,

for any LTL formula ϕ and k ∈ N.
Proof. Let t be a trace of the system. In Section 5.5.4 we have already
established several LTL properties of the system. These properties restrict
t , and we will make use of that in this proof.

We show t |= 2 LIS11 = c11, i.e., ∀k ∈ N : tk |= LIS11 = c11, by
induction on k :

84 Chapter 5. Compositional Verification

Induction base (k = 0): t0 |= LIS11 = c11 follows from (5.40) and (5.33).
Induction step: Let k ∈ N, and let the induction hypothesis

tk |= LIS11 = c11

hold. We need to prove tk+1 |= LIS11 = c11, i.e., tk |= © LIS11 = © c11.
Case 1: tk+1 6|= yellowToB11 ∨ yellowB11To. By (5.41), tk |= © LIS11 =

LIS11, and, by (5.34), tk |= © c11 = c11. With the induction hypothesis,
we get tk |= © LIS11 = © c11.

Case 2: tk+1 |= yellowToB11 ∨ yellowB11To. By (5.39), we know that
tk+1 |= yellowToB11 ∧ yellowB11To does not hold, and thus, either tk+1 |=
yellowToB11 or tk+1 |= yellowB11To holds.

Case 2a: tk+1 |= yellowToB11. By (5.38), we have tk |= c11 6= 2, and by
the induction hypothesis, tk |= LIS11 6= 2. With (5.39), we get from (5.42):
tk |= © LIS11 = LIS11+1. We get from (5.35): tk |= © c11 = c11+1. With
the induction hypothesis, we conclude tk |= © LIS11 = © c11.

Case 2b: tk+1 |= yellowB11To. Follows analogously from (5.37), (5.43),
and (5.36).

Inductive reasoning is also needed if there is feedback between modules,
i.e., the behavior of one part of the system depends on the behavior of
another part, and vice versa. A detailed example for this proof technique is
given in [ZdBdR84].

5.6 Algorithmic Verification

The previous section showed how local properties can be used to deduce
global properties. This section illustrates how the correctness of local prop-
erties of the PLC programs used in the plant can be established by algorith-
mic verification. We show the correctness of a representative part which has
been chosen since it controls valves and uses semaphores as well as counters,
which constitute the main control features of the plant.

Figure 5.3 shows an excerpt of the SFC program that controls the pro-
duction of “blue” in reactor R21, in particular, the part which controls the
filling of one batch of “yellow” from raw material tank B11 into reactor R21
through Valve V111. We show how this part is translated into the input lan-
guage of the SAL model checker [BGL+00], which we use to mechanically
verify the local LTL properties.

The part of the SFC shown in Figure 5.3 operates as follows: Control
waits in step S1 until the guard associated with T1 evaluates to true. The
guard is written in the language Ladder Diagram with embedded Function
Block Diagrams (see Section 2.3.1) describing that the Boolean semaphore
variables t_11_free and t_21_free have to be true (meaning that the re-
sources B11 and R21 are currently available), and the counter variable c_11
has to be larger than zero (i.e., there is at least one batch of “yellow” in

5.6. Algorithmic Verification 85

SIMATIC IDA_2\SPS_IDA\CPU315\...\FB10, DB10 - <Offline> 07.06.2001 17:33:25

 Seite 1..

T8

S1
wait1

T1
Trans1

S2
fill_reactor

T2
Trans2

S3
wait2

T3
Trans3

S4
reaction

T4
Trans4

S8
wait_for_2sek

T9
Trans9

S5
drain_reactor

T5
Trans5

S7
wait_until_valve

s_empty

T8
Trans8

S1

"v4auto".
s_rp_1in21

"v4auto".
t_11_free

"v4auto".
t_21_free

"v4auto".
c_11

0

>I

CMP

"v4auto".
c_11

1

==I

CMP

"LIS11"

800

<=I

CMP

"v4auto".
c_11

2

==I

CMP

"LIS11"

"Plant".L
is1

<=I

CMP

wait2.T

"v4auto".
wait1_in21

>=D

CMP

"v4auto".
t_13_free

"v4auto".
c_13

0

>I

CMP

"v4auto".
c_13

1

==I

CMP

"LIS13"

800

<=I

CMP

"v4auto".
c_13

2

==I

CMP

"LIS13"

"Plant".L
is1

<=I

CMP

wait_for_
2sek.T

T#2S

>=D

CMP

"v4auto".
c_31

3

<I

CMP

"v4auto".
t_31_free

"LIS21"

800

<=I

CMP

wait_unti
l_valv...

T#1S

>=D

CMP

S1 R "v4auto".t_21_free
S1 R "v4auto".t_11_free
N "V111"
S0 S "v4auto".t_11_free
S0 CALL "Sub1fromCounter"

aCounter:="v4auto".c_11(INT) (IN_OUT)

S1 R "v4auto".t_13_free
N "V131"
N "M1"
S0 S "v4auto".t_13_free
S0 CALL "Sub1fromCounter"

aCounter:="v4auto".c_13(INT) (IN_OUT)

N "M1"

S1 R "v4auto".t_31_free
N "V211"

N "V211"
S0 S "v4auto".t_21_free
S0 S "v4auto".t_31_free
S0 CALL "Add1toCounter"

aCounter:="v4auto".c_31(INT) (IN_OUT)
S0 R "v4auto".s_rp_1in21

production recipe educt 1 in R21

wait1

fill_reactor

wait2

reaction

wait_for_2sek

drain_reactor

wait_until_valves_empty

Figure 5.3: SFC program for the production of “blue” in R21 (excerpt)

B11). When S2 is entered, the variables t_11_free and t_21_free are
set to false (meaning that B11 and R21 are no longer available for other
programs), and valve V111 is opened. When S2 is left via transition T2
(which is guarded by expressions over LIS11 stating that the level B11 has
decreased by the amount of one batch), valve V111 is closed, t_11_free is
set to true (the resource B11 is available again), and the counter c_11 is
decreased (by calling the PLC program Sub1fromCounter with parameter
c_11).

Now we translate the SFC program into our discrete model as described
in Section 5.4, which abstracts the sequence “open V111, wait for LIS111
to decrease by the amount of one batch, close V111” into one discrete step
“drain one batch from B11 into R21”.

For technical reasons, our model handles the semaphores differently than
the SFC programs1; the variables lock B11 B1 and lock R21 B are set to true
to request access, and the variables B11 user and R21 user contain the value
PrgB1 when the access has been granted.

Figure 5.4 shows the translation of the SFC transition and actions shown
in Figure 5.3 into the modeling language of the SAL model checker. The
variable step models the current active step of the SFC. Whenever this
variable equals 2, the semaphore access is granted, and the counter c11 is
greater than zero, then in the next step (denoted by the primed variables)
the event transferV111 (drain one batch from B11 into R21) is sent, the
request for B11 is no longer sent (because after draining, B11 is available
again), the request for R21 is kept (because the production in R21 is not yet
finished), the event sub B11 B1 is sent to Counter11 to decrease c11, and
the step variable is set to 2.

This translation is done for all software modules described in Section
5.4.2. Finally, all local LTL specifications (see Section 5.5.3) are fed into the

1The use of “pulse” qualifiers to change the semaphores is difficult to model in the
synchronous framework of the SAL model checker.

86 Chapter 5. Compositional Verification

TRANSITION

[

step=1 AND B11_user=PrgB1 AND R21_user=PrgB1 AND c11>0

--> transferV111’=TRUE; transferV131’=FALSE; transferV211’=FALSE;

lock_B11_B1’=FALSE; lock_B13_11’=FALSE; lock_R21_B’=TRUE;

lock_B31_B1’=FALSE;

sub_B11_B1’=TRUE; sub_B13_B1’=FALSE; add_B31_B1’=FALSE;

startM1’=FALSE; stopM1’=FALSE; step’=2

Figure 5.4: SAL module PrgProduceBlueInR21 (excerpt)

model checker in SAL syntax, e.g.,

THEOREM PrgProduceBlueInR21
|- ltl!G (transferV111 <=> sub_B11_B1)

for specification (5.18), and then model checked. The model checker either
acknowledges that the LTL formula is valid, or gives a counterexample that
shows a computation trace leading to the error.

Experiments show that even model checking the parallel composition of
a small set of modules is not possible, since the state explosion problem
forces the model checker to run out of memory. Hence, the compositional
approach is absolutely necessary.

5.7 Discussion

We have presented a compositional method for the verification of chemical
batch plants, illustrated by an example which is considered to be repre-
sentative for this class of systems. The approach avoids the state explosion
problem by decomposing the plant and its controller into smaller units which
can be specified and model-checked locally. At the next stage the local spec-
ifications are composed by deduction to get global properties of the plant.

The main advantage of this method is the avoidance of the state explo-
sion problem during model checking by splitting the task of checking one
large system into several small checks. Furthermore, it is not necessary that
all modules are formalized in the same modeling language, making it pos-
sible to use different tools during the local verification, e.g., model checkers
for discrete and hybrid systems. The modular approach also promotes the
reuse of modules from libraries containing models which have already been
verified w.r.t. a standard interface specification. And if some part of the
plant is changed after a successful verification, e.g., if some control program
is rewritten, it is often possible to re-check the changed module locally,
without invalidating the global proof.

A disadvantage of the compositional approach in comparison to a global
one is the (often significant) overhead for the decomposition of the system
model and the construction and the composition of the local specifications

5.7. Discussion 87

(see Section 1.6.5 of [dRdBH+01]). This can be ameliorated by choosing
a coarse decomposition which creates modules that are just small enough
to be locally checked by algorithmic means. The deduction process also
requires more knowledge about mathematics, logic, and proof theory than
a global approach. Actually this disadvantage played a significant role in
the acceptance of compositional methods in several teams of engineers with
whom we have collaborated.

Experiments show that given the present state of the art it is impossi-
ble to model-check our batch plant example on the basis of explicit prod-
uct automata. That is, currently only (a combination of) abstraction and
compositionality—as the one presented in this chapter—can lead to a ma-
chine-checkable proof.

88 Chapter 5. Compositional Verification

Chapter 6

Hybrid Systems

The previous chapters used discrete frameworks for the modeling and spec-
ification of hardware and software components. Often these discrete models
are sufficient to cover a wide range of behaviors and properties. However,
especially when modeling hardware parts, such frameworks are not suffi-
cient when continuous behavior needs to be studied. In that case, models
for hybrid systems can be used. Hybrid systems contain discrete as well as
continuous parts.

This chapter presents communicating linear hybrid automata (CLHA)
as a modeling framework for the specification of hybrid systems. CLHA
provide modular descriptions of system components and subsume most of
the characteristics that are used in verification tools, e.g., discrete and con-
tinuous transitions, invariants, and communication via shared variables as
well as synchronization symbols. The syntax and a compositional seman-
tics of CLHA is defined formally, and propositional linear temporal logic is
introduced as an abstract specification language for CLHA behavior. An
example illustrates the use of the presented framework, and an application
of the HyTech model checker is shown.

6.1 Introduction

Formal reasoning about hybrid systems often involves a lot of different mod-
eling frameworks. Since many systems consist of a wide range of of hardware
and software subsystems with varying complexities, it is necessary to individ-
ually choose models that are precise enough to describe a certain behavior,
but on the other hand as coarse as possible to avoid complexity problems
during the specification and verification process.

These choices lead to the use of different verification tools and their
associated specification languages, e.g., the model checkers SMV (Symbolic
Model Verifier) [McM00] and Uppaal [LPY97] for purely discrete systems,
KRONOS [OY93] for timed automata [AD94], and HyTech [HHWT97] for

89

90 Chapter 6. Hybrid Systems

linear hybrid systems [ACHH93]. The models used in these tools employ
different formalisms for state changes, communication and synchronization.
All of them use discrete transition systems, some use continuous transitions.
Communication can be implemented by shared variables, synchronization
symbols, or both.

This heterogeneous field of models can make formal reasoning about the
systems difficult, especially when interfaces between different subsystems
are concerned. Therefore, we propose a formal modeling framework that
subsumes a wide range of formalisms used in formal verification and that
can be simplified on a case-by-case basis to match the input language of
the tool one intends to use. This modeling framework is presented in the
following section.

[ACH+95] presents a specification and verification framework for linear
hybrid systems and points out decidability results. In [LSVW99] such a
framework is generalized to hybrid I/O automata for modeling nonlinear
systems.

6.2 Communicating Linear Hybrid Automata

This section introduces a formal modeling framework for the description of
linear hybrid systems that is capable of subsuming a wide range of model-
ing paradigms used in formal verification, e.g., discrete or timed automata
[AD94], discrete or timed condition/event systems [SK91, EKKP95], or lin-
ear hybrid automata [ACHH93]. We define communicating linear hybrid
automata which have the following characteristics:

• discrete control locations,

• input and output variables,

• communication via shared variables,

• communication via synchronization symbols (directed, one-to-many),
and

• continuous variables restricted by invariants and linear rates at each
control location.

Other models can be embedded into this framework by syntactic re-
strictions. E.g., timed automata only have one kind of continuous variables
called clocks. These are restricted to the fixed rate 1 and can only be set
to 0 in discrete transitions.

6.2.1 Variables

Our modeling framework uses a global set V of typed variables. Each vari-
able v ∈ V can be read by any CLHA in the system, but at most one CLHA

6.2. Communicating Linear Hybrid Automata 91

is allowed to change it. We call the changeable (or controlled) variables of
a CLHA its output variables.

Let V be a finite set of variables, and let type be a function assigning
a type, i.e., a set of possible values like B (Booleans) or R (reals), to each
variable.

Definition 6.1 (Evaluation) A function σ assigning to each variable v ∈
V a value σ(v) ∈ type(v) is called evaluation of V . We denote the set of all
evaluations of V by Σ.

Notation: Given some subset of the variables (e.g., V x
y ⊆ V), we use Σ

with the same decorations (e.g., Σx
y) to denote the set of all evaluations of

these variables and σ with the same decorations (e.g., σx
y) to denote the

restriction of a given σ ∈ Σ on these variables, if not defined otherwise.
Furthermore, for any set M , let 2M denote the set of all subsets of M .

6.2.2 Syntax

The formal syntax of a communicating linear hybrid automaton is defined
as follows:

Definition 6.2 (Communicating linear hybrid automaton) A com-
municating linear hybrid automaton (CLHA)

A = (Q ,Q0,V out ,Σ0,R, I ,L,E)

consists of

• a finite set Q of locations,

• a set Q0 ⊆ Q of initial locations,

• a set V out ⊆ V of output variables, constituting the set of input vari-
ables V in = V \V out ,

• a set Σ0 ⊆ Σ of initial variable evaluations,

• a function R : Q×V cout → R assigning a rate at each location to each
of the continuous output variables V cout = {v ∈ V out | type(v) = R},

• a function I : Q → 2Σcout
assigning an invariant for the continuous

output variables to each location,

• a finite set L of synchronization symbols, consisting of two disjoint sets
of input symbols Lin and output symbols Lout , and

• a set E of edges, where each edge e = (q , l , ρ, q ′) ∈ E consists of a
source location q ∈ Q , a destination location q ′ ∈ Q , a set of synchro-
nization symbols l ⊆ L, and a variable transition relation ρ ⊆ Σ×Σout .

92 Chapter 6. Hybrid Systems

6.2.3 Computation Semantics

The computations of a CLHA are defined by changes in three components:
its (discrete) location, its variable evaluations, and the synchronization sym-
bols that are communicated between the CLHA and its environment.

Initially, the CLHA is in one of the initial locations Q0, and its variables
are set to one of the initial variable evaluations Σ0. These are changed
during two different kinds of computation steps:

1. Discrete step: The CLHA changes its location and its variables ac-
cording to one of its edges e ∈ E . The transition is instantaneous;
time does not progress. The synchronization symbols of e will be used
later to combine edges during parallel composition (see Section 6.2.4).

2. Continuous step: The CLHA remains at its current location for a finite
amount of time t ∈ R>0, and the continuous output variables change
according to their rate defined in R. The other output variables do not
change. During the time period t , the invariant of the current location
has to hold. No synchronization symbols are sent during continuous
steps.

Definition 6.3 (Computations of a CLHA) Given a CLHA A as in
Definition 6.2, a computation of A is a maximal or infinite sequence

(q0, σ0)
l1−→ (q1, σ1)

l2−→ (q2, σ2)
l3−→ . . . ,

where q0 ∈ Q0, σ0 ∈ Σ0, qi ∈ Q , σi ∈ Σ, li is either a set of synchronization
labels (li ⊆ L) or a time span (li ∈ R>0), and for all i , one of the following
cases applies:

1. Discrete step: li+1 ⊆ L ∧ ∃ρ ⊆ Σ × Σout : (qi , li+1, ρ, qi+1) ∈ E ∧
(σi , σ

out
i+1) ∈ ρ.

2. Continuous step (evolution of continuous output variables): li+1 ∈
R>0∧qi+1 = qi∧σout

i+1 = σout
i ⊕qi

R li+1∧∀0 ≤ t < li+1 : σcout
i ⊕qi

R t ∈ I (qi),
where

(σ ⊕q
R t)(v) =

{
σ(v) + t · R(q , v) if v ∈ V cout ,
σ(v) otherwise.

We denote the set of all computations of A by Comp(A).

Note that both discrete and continuous steps do not impose any restric-
tions on the values of the input variables in σi+1; they can change arbitrarily.
Thus, it is possible for A to accept any changes of these variables by the
environment of A during a transition. This is the basis of the parallel com-
position of CLHA, which is defined next.

6.2. Communicating Linear Hybrid Automata 93

6.2.4 Parallel Composition

The parallel composition of two CLHA A1 and A2 formally defines how
these two automata interact. An obvious prerequisite for a successful com-
position is that A1 and A2 have no outputs in common, neither variables
(V out

1 ∩ V out
2 = ∅) nor synchronization symbols (Lout

1 ∩ Lout
2 = ∅), since

we want one distinct writer for each variable and one single source for each
synchronization symbol.

The parallel composition of A1 and A2 has the following characteristics:

• its (initial) location set is the Cartesian product of the (initial) location
sets of A1 and A2,

• its set of output variables is the union of the output variables of A1

and A2,

• its set of the initial variable evaluations is the intersection of the initial
variable evaluations of A1 and A2,

• its rates for the continuous output variables are taken from A1 and
A2,

• its invariants are taken from A1 and A2, and

• its set of output synchronization symbols is the union of the respective
sets ofA1 andA2, whereas the union of the input symbols is reduced by
each other’s output symbols. An effect of the output symbols staying
visible for other components is a directed one-to-many communication.

Two edges of A1 and A2 can be combined if:

• the edge labeling l2 of A2 contains all the synchronization symbols that
the edge labeling l1 of A1 needs as input from A2 (i.e., l1∩Lin

1 ∩Lout
2 ⊆

l2), and vice versa.

The variable transition relation of the resulting edge combines the elements
of the variable transition relations of the edges of A1 and A2 which have a
common pre-state σ.

In our experience this form of communication using sets of input/output
symbols instead of undirected synchronization (often with only one sym-
bol) as used in (timed) automata makes modeling of complex systems much
easier.

Definition 6.4 (Parallel composition of CLHA) Given the two CLHA
Ai = (Qi ,Q i

0,V
out
i ,Σi

0,Ri , Ii ,Li ,Ei), i ∈ {1, 2}, with V out
1 ∩ V out

2 = ∅ =
Lout

1 ∩ Lout
2 , the parallel composition of A1 and A2, denoted by A1‖A2, is

defined as the CLHA A = (Q ,Q0,V out ,Σ0,R, I ,L,E) with

94 Chapter 6. Hybrid Systems

• Q = Q1 ×Q2, Q0 = Q1
0 ×Q2

0 ,

• V out = V out
1 ∪V out

2 ,

• Σ0 = Σ1
0 ∩ Σ2

0,

• for all q1 ∈ Q1, q2 ∈ Q2, and v ∈ V out ,

R((q1, q2), v) =
{

R1(q1, v) if v ∈ V out
1 ,

R2(q2, v) if v ∈ V out
2 ,

• for all q1 ∈ Q1 and q2 ∈ Q2, I ((q1, q2)) = {σ1 ∪ σ2 |σ1 ∈ I1(q1) ∧ σ2 ∈
I2(q2)},

• L = L1 ∪ L2, Lin = (Lin
1 \ Lout

2) ∪ (Lin
2 \ Lout

1), Lout = Lout
1 ∪ Lout

2 ,

• for all q1, q ′1 ∈ Q1, q2, q ′2 ∈ Q2, ρ1 ⊆ Σ × Σout
1 , ρ2 ⊆ Σ × Σout

2 , l1 ⊆
L1, and l2 ⊆ L2, ((q1, q2), l1 ∪ l2, ρ1 � ρ2, (q ′1, q

′
2)) ∈ E if and only if

(qi , li , ρi , q ′i) ∈ Ei , for i ∈ {1, 2}, l1∩Lin
1 ∩Lout

2 ⊆ l2, and l2∩Lin
2 ∩Lout

1 ⊆
l1, where ρ1�ρ2 = {(σ, σout) ∈ Σ×Σout | (σ, σout

1) ∈ ρ1∧(σ, σout
2) ∈ ρ2}.

Definition 6.4 combines two CLHA on the syntactic layer, i.e., by combin-
ing their sets of edges. Parallel composition can also be defined semantically,
by composing computations. This is formalized in the following definition.
As notation we use “‖”, the same operator as in Definition 6.4; these two
can be distinguished from each other by looking at the types of the operands
(CLHA or sets of computations).

Definition 6.5 (Parallel composition of computations) Given the two
CLHA A1 and A2 as in Definition 6.4 and given their sets of computations
c1 = Comp(A1) and c2 = Comp(A2), the parallel composition of c1 and

c2, denoted by c1‖c2, is defined as follows: The computation (q0, σ0)
l1−→

(q1, σ1)
l2−→ . . . is in c1‖c2 if and only if there exist computations (q1

0 , σ
1
0)

l11−→

(q1
1 , σ

1
1)

l12−→ . . . in c1 and (q2
0 , σ

2
0)

l21−→ (q2
1 , σ

2
1)

l22−→ . . . in c2, where for all
indices i ,

• qi = (q1
i , q

2
i),

• σi = σ1
i = σ2

i , and

• l1i = l2i = li ∈ R>0 or li = l1i ∪l2i ∧l1i ∩Lin
1 ∩Lout

2 ⊆ l2i ∧l2i ∩Lin
2 ∩Lout

1 ⊆ l1i
hold.

Since we now have two different ways of defining parallel composition,
it is natural to demand that both ways coincide. The next lemma shows
that the composition of the computation sets of A1 and A2 equals the com-
putation set of A1‖A2. Thus, the parallel composition of computations is
compositional.

6.2. Communicating Linear Hybrid Automata 95

Lemma 6.6 (Parallel composition) Given two CLHA A1 and A2 as in
Definition 6.4, we have

Comp(A1)‖Comp(A2) = Comp(A1‖A2) .

Proof. Let A1, A2, and A be given as in Definition 6.4. Then,

(q0, σ0)
l1−→ (q1, σ1)

l2−→ . . . ∈ Comp(A1)‖Comp(A2)

if and only if (by Definition 6.5)

∃(q1
0 , σ

1
0)

l11−→ (q1
1 , σ

1
1)

l12−→ . . . ∈ Comp(A1),

(q2
0 , σ

2
0)

l21−→ (q2
1 , σ

2
1)

l22−→ . . . ∈ Comp(A2) :
∀i : qi = (q1

i , q
2
i) ∧ σi = σ1

i = σ2
i ∧ (l1i = l2i = li ∈ R>0 ∨

(li = l1i ∪ l2i ∧ l1i ∩ Lin
1 ∩ Lout

2 ⊆ l2i ∧ l2i ∩ Lin
2 ∩ Lout

1 ⊆ l1i))

if and only if (by Definition 6.3)

∃(q1
0 , σ

1
0)

l11−→ (q1
1 , σ

1
1)

l12−→ . . . : q1
0 ∈ Q1

0 ∧ σ1
0 ∈ Σ1

0 ∧
∀i : (l1i+1 ⊆ L1 ∧ ∃ρ1 ⊆ Σ× Σout

1 : (q1
i , l

1
i+1, ρ1, q1

i+1) ∈ E1 ∧
(σ1

i , σ
1,out
i+1) ∈ ρ1) ∨

(l1i+1 ∈ R>0 ∧ q1
i+1 = q1

i ∧ σ
1,out
i+1 = σ1,out

i ⊕q1
i

R1
l1i+1 ∧

∀0 ≤ t < l1i+1 : σ1,cout
i ⊕q1

i
R1

t ∈ I1(q1
i)) ∧

∃(q2
0 , σ

2
0)

l21−→ (q2
1 , σ

2
1)

l22−→ . . . : q2
0 ∈ Q2

0 ∧ σ2
0 ∈ Σ2

0 ∧
∀i : (l2i+1 ⊆ L2 ∧ ∃ρ2 ⊆ Σ× Σout

2 : (q2
i , l

2
i+1, ρ2, q2

i+1) ∈ E2 ∧
(σ2

i , σ
2,out
i+1) ∈ ρ2) ∨

(l2i+1 ∈ R>0 ∧ q2
i+1 = q2

i ∧ σ
2,out
i+1 = σ2,out

i ⊕q2
i

R2
l2i+1 ∧

∀0 ≤ t < l2i+1 : σ2,cout
i ⊕q2

i
R2

t ∈ I2(q2
i)) ∧

∀i : qi = (q1
i , q

2
i) ∧ σi = σ1

i = σ2
i ∧ (l1i = l2i = li ∈ R>0 ∨

(li = l1i ∪ l2i ∧ l1i ∩ Lin
1 ∩ Lout

2 ⊆ l2i ∧ l2i ∩ Lin
2 ∩ Lout

1 ⊆ l1i))

⇔ (rearrange quantors and variables)

∃(q1
0 , σ

1
0)

l11−→ (q1
1 , σ

1
1)

l12−→ . . . , (q2
0 , σ

2
0)

l21−→ (q2
1 , σ

2
1)

l22−→ . . . :
q1
0 ∈ Q1

0 ∧ q2
0 ∈ Q2

0 ∧ σ1
0 ∈ Σ1

0 ∧ σ2
0 ∈ Σ2

0 ∧
∀i : qi = (q1

i , q
2
i) ∧ σi = σ1

i = σ2
i ∧ (l1i = l2i = li ∈ R>0 ∨ li = l1i ∪ l2i) ∧

((l1i+1 ⊆ L1 ∧ l2i+1 ⊆ L2 ∧ ∃ρ1 ⊆ Σ× Σout
1 , ρ2 ⊆ Σ× Σout

2 :
(q1

i , l
1
i+1, ρ1, q1

i+1) ∈ E1 ∧ (q2
i , l

2
i+1, ρ2, q2

i+1) ∈ E2 ∧
l1i ∩ Lin

1 ∩ Lout
2 ⊆ l2i ∧ l2i ∩ Lin

2 ∩ Lout
1 ⊆ l1i ∧ (σi , σ

out
i+1) ∈ ρ1 � ρ2)

∨ (l1i+1 = l2i+1 ∈ R>0 ∧ q1
i+1 = q1

i ∧ q2
i+1 = q2

i ∧
σ1,out

i+1 = σ1,out
i ⊕q1

i
R1

l1i+1 ∧ σ
2,out
i+1 = σ2,out

i ⊕q2
i

R2
l2i+1 ∧

∀0 ≤ t < li+1 : σ1,cout
i ⊕q1

i
R1

t ∈ I1(q1
i) ∧ σ2,cout

i ⊕q2
i

R2
t ∈ I2(q2

i)))

96 Chapter 6. Hybrid Systems

⇔ (introduce/remove Q0, Σ0, R, I , E , using Definition 6.4)

∃(q1
0 , σ

1
0)

l11−→ (q1
1 , σ

1
1)

l12−→ . . . , (q2
0 , σ

2
0)

l21−→ (q2
1 , σ

2
1)

l22−→ . . . :
(q1

0 , q
2
0) ∈ Q0 ∧ σ1

0 ∪ σ2
0 ∈ Σ0 ∧

∀i : qi = (q1
i , q

2
i) ∧ σi = σ1

i = σ2
i ∧ (l1i = l2i = li ∈ R>0 ∨ li = l1i ∪ l2i) ∧

((l1i+1 ⊆ L1 ∧ l2i+1 ⊆ L2 ∧ ∃ρ1 ⊆ Σ× Σout
1 , ρ2 ⊆ Σ× Σout

2 :
((q1

i , q
2
i), l1i+1 ∪ l2i+1, ρ1 � ρ2, (q1

i+1, q
2
i+1)) ∈ E ∧

(σi , σ
out
i+1) ∈ ρ1 � ρ2)

∨ (l1i+1 = l2i+1 ∈ R>0 ∧ (q1
i+1, q

2
i+1) = (q1

i , q
2
i) ∧

σout
i+1 = σout

i ⊕(q1
i ,q2

i)
R li+1 ∧

∀0 ≤ t < li+1 : σcout
i ⊕(q1

i ,q2
i)

R t ∈ I ((q1
i , q

2
i))))

⇔ (remove/introduce q1
i , q2

i , σ1
i , σ

2
i , l1i , l2i)

q0 ∈ Q0 ∧ σ0 ∈ Σ0 ∧ ∀i :
(li+1 ⊆ L ∧ ∃ρ ⊆ Σ× Σout : (qi , li+1, ρ, qi+1) ∈ E ∧ (σi , σ

out
i+1) ∈ ρ)

∨ (li+1 ∈ R>0 ∧ qi+1 = qi ∧ σout
i+1 = σout

i ⊕qi
R li+1

∧ ∀0 ≤ t < li+1 : σcout
i ⊕qi

R t ∈ I (qi))

⇔ (Definition 6.3)

(q0, σ0)
l1−→ (q1, σ1)

l2−→ . . . ∈ Comp(A)

⇔

(q0, σ0)
l1−→ (q1, σ1)

l2−→ . . . ∈ Comp(A1‖A2) .

6.2.5 Trace Semantics

While the notion of computations is well-suited to describe the way a sin-
gle CLHA operates, it is not wise to use computations for specifying the
interaction of several automata. Computations contain information about
the changes of locations, which should be considered as internal and not
observable from outside.

Therefore, we remove the locations from the computations and use the
resulting sequences, called traces, for our compositional CLHA semantics.

Definition 6.7 (Trace of a CLHA) Given a CLHA A as in Definition 6.2,
a sequence

σ0
l1−→ σ1

l2−→ σ2
l3−→ . . .

is called trace of A if and only if there exist q0, q1, q2, . . . ∈ Q such that

(q0, σ0)
l1−→ (q1, σ1)

l2−→ (q2, σ2)
l3−→ . . .

is a computation of A.

6.2. Communicating Linear Hybrid Automata 97

Now we define the semantics of a CLHA by its traces:

Definition 6.8 (Semantics of a CLHA) The semantics of a CLHA A,
denoted by [[A]], is the set of all traces of A.

Definition 6.5 introduces the parallel composition of computations. Anal-
ogously, we can define the parallel composition of traces (we overload the
“‖” operator one more).

Definition 6.9 (Parallel composition of traces) Given the two CLHA
A1 and A2 as in Definition 6.4 and given their sets of traces t1 = [[A1]] and
t2 = [[A2]], the parallel composition of t1 and t2, denoted by t1‖t2, is defined

as follows: The trace σ0
l1−→ σ1

l2−→ . . . is in t1‖t2 if and only if there exist

traces σ1
0

l11−→ σ1
1

l12−→ . . . in t1 and σ2
0

l21−→ σ2
1

l22−→ . . . in t2, where for all
indices i ,

• σi = σ1
i = σ2

i and

• l1i = l2i = li ∈ R>0 or li = l1i ∪l2i ∧l1i ∩Lin
1 ∩Lout

2 ⊆ l2i ∧l2i ∩Lin
2 ∩Lout

1 ⊆ l1i

hold.

Similarly to Lemma 6.6 for computations we can show that the parallel
composition of traces is compositional:

Lemma 6.10 (Parallel composition) Given two CLHA A1 and A2 as in
Definition 6.4, we have

[[A1]]‖[[A2]] = [[A1‖A2]] .

Proof. Let A1, A2, and A be given as in Definition 6.4. Then,

σ0
l1−→ σ1

l2−→ . . . ∈ [[A1]]‖[[A2]]

if and only if (by Definition 6.9)

∃σ1
0

l11−→ σ1
1

l12−→ . . . ∈ [[A1]], σ2
0

l21−→ σ2
1

l22−→ . . . ∈ [[A2]] :
∀i : σi = σ1

i = σ2
i ∧ (l1i = l2i = li ∈ R>0 ∨

li = l1i ∪ l2i ∧ l1i ∩ Lin
1 ∩ Lout

2 ⊆ l2i ∧ l2i ∩ Lin
2 ∩ Lout

1 ⊆ l1i)

if and only if (by Definition 6.8 and Definition 6.7)

∃q0, q1, . . . ∈ Q :

∃(q1
0 , σ

1
0)

l11−→ (q1
0 , σ

1
1)

l12−→ . . . ∈ Comp(A1),

(q2
0 , σ

2
0)

l21−→ (q2
0 , σ

2
1)

l22−→ . . . ∈ Comp(A2) :
∀i : qi = (q1

i , q
2
i) ∧ σi = σ1

i = σ2
i ∧ (l1i = l2i = li ∈ R>0 ∨

li = l1i ∪ l2i ∧ l1i ∩ Lin
1 ∩ Lout

2 ⊆ l2i ∧ l2i ∩ Lin
2 ∩ Lout

1 ⊆ l1i)

98 Chapter 6. Hybrid Systems

if and only if (by Definition 6.5)

∃q0, q1, . . . ∈ Q :

(q0, σ0)
l1−→ (q1, σ1)

l2−→ . . . ∈ Comp(A1)‖Comp(A2)

if and only if (by Lemma 6.6)

∃q0, q1, . . . ∈ Q :

(q0, σ0)
l1−→ (q1, σ1)

l2−→ . . . ∈ Comp(A1‖A2)

if and only if (by Definition 6.7)

σ0
l1−→ σ1

l2−→ . . . ∈ [[A1‖A2]] .

6.3 Propositional Linear Temporal Logic

Using the trace semantics of Definition 6.8, we are able to describe the
exact behavior of a CLHA. However, in practice a much simpler description
language is sufficient, since one is usually interested in an abstract and
finite way to describe the system behavior. One possibility is the use of
temporal logic. This section introduces propositional linear temporal logic,
which describes sequences of sets of propositions. Linear (time) temporal
logic was first introduced by Amir Pnueli in [Pnu77].

6.3.1 Syntax

Definition 6.11 (PLTL syntax) Given a countable set of propositions,
the set of Propositional Linear Temporal Logic (PLTL) formulae is given by
the following BNF notation:

〈formula〉 ::= 〈proposition〉 | 〈formula〉 ∧ 〈formula〉 | ¬〈formula〉
〈formula〉 U 〈formula〉 | ©〈formula〉

Other Boolean operators are defined as abbreviations in the usual way:
ϕ∨ψ ≡ ¬((¬ϕ)∧ (¬ψ)), ϕ⇒ψ ≡ (¬ϕ)∨ψ, ϕ⇔ψ ≡ (ϕ⇒ψ)∧ (ψ⇒ϕ). The
Boolean constant true can be abbreviated as p ∨ (¬p) for some proposition
p, and false ≡ ¬true.

In addition to the temporal operators ϕUψ (“ϕ until ψ”) and©ϕ (“next
ϕ”), we introduce two temporal operators as abbreviations: 3ϕ ≡ true U ϕ
(“eventually ϕ”), 2ϕ ≡ ¬(3(¬ϕ)) (“always ϕ”).

The temporal operators U , ©, 3, and 2 have the highest binding power,
followed by (in decreasing order) ¬, ∧, ∨, ⇒, and ⇔.

6.3. Propositional Linear Temporal Logic 99

6.3.2 Semantics

The semantics of a PLTL formula is given by its interpretation over an
infinite sequence of sets of propositions.

Notation: Given a sequence P = P0P1 . . . and k ∈ N, we denote by Pk

the sequence P without its first k elements, i.e., PkPk+1

Definition 6.12 (PLTL semantics) Given an infinite sequence of sets of
propositions P = P0P1 . . ., the validity of a PLTL formula ϕ over P, denoted
as P |= ϕ, is defined inductively over the structure of PLTL formulae as
follows:

P |= p if and only if p ∈ P0

P |= ϕ ∧ ψ if and only if P |= ϕ and P |= ψ
P |= ¬ϕ if and only if not P |= ϕ
P |= ϕ U ψ if and only if ∃k ∈ N : Pk |= ψ and

∀0 ≤ i < k : P i |= ϕ
P |= ©ϕ if and only if P1 |= ϕ

Lemma 6.13 (PLTL semantics for 3 and 2) By Definition 6.12, we
have the following semantics for the 3 and 2 operators:

P |= 3ϕ if and only if ∃k ∈ N : Pk |= ϕ
P |= 2ϕ if and only if ∀k ∈ N : Pk |= ϕ

6.3.3 PLTL for CLHA

We want to use PLTL formulae to describe the behavior of CLHA. Since
the PLTL semantics operates on sequences of sets of propositions, we need
to transform the semantical concept for CLHA (traces as introduced in Def-
inition 6.7) into such sequences. This transformation depends on the kind
of information we want to describe in the PLTL formulae. E.g., if we want
to specify the changes of synchronization symbols along the run

σ0
l1−→ σ1

l2−→ σ2
l3−→ . . .

by a PLTL formula ϕ, we can use the set of synchronization symbols L as
the set of propositions and use the sequence of synchronization symbol sets

li1 li2 li3 . . .

(with i1i2i3 . . . being the ordered sequence of indices i with li ⊆ L, thus
leaving out all continuous computation steps) to check the validity of ϕ.

If we also need to reason about variable evaluations in PLTL formulae,
it is necessary to choose abstractions of sets of evaluations like “x > 0” as
propositions. If each single variable evaluation was encoded as a proposition,

100 Chapter 6. Hybrid Systems

many infinite sets of evaluations (like “x > 0” with type(x) = R) could not
be expressed in a PLTL formula, since one formula can only contain finitely
many propositions.

In the following we assume that we have a function pseq which transforms
a CLHA run into a sequence of sets of propositions.

Definition 6.14 (PLTL for CLHA) Given a CLHA A and a PLTL for-
mula ϕ, the validity of ϕ over A, denoted as A |= ϕ, is defined as

A |= ϕ if and only if ∀t ∈ [[A]] : pseq(t) |= ϕ .

Using the CLHA formalism presented above, components of a linear
hybrid system can be specified in a unified framework. To formally verify a
component, it can be translated into the input language of a model-checking
tool that fits best to the features used in the component, e.g., SMV if the
component only uses discrete variables, and KRONOS or Uppaal if clocks
are involved.

6.4 Example

We illustrate the CLHA formalism by modeling one of the product storage
tanks of the multi-product batch plant introduced in Chapter 3. This tank
stores a liquid product and can be filled and drained via inlet and outlet
pipes. The maximal capacity of the tank is 3.0 volume units. Filling the
tank increases the volume of its content linearly by 0.05 volume units per
second, while draining the tank changes the volume linearly by −0.10 volume
units per second. These numbers are approximations of measurements on
the actual plant given in the plant description [BKSL00].

6.4.1 CLHA Model

Our CLHA model uses five discrete locations, idle (meaning that no in-
or outflow occurs), fill (filling the tank), drain (draining the tank), both
(filling and draining happens simultaneously), and error (after an error has
occurred). Four self-explanatory input symbols are used to change the lo-
cation: start fill , stop fill , start drain, and stop drain. One continuous
variable vol contains the current liquid volume of the tank.

There are two possibilities for the occurrence of an error: The tank
overflows if vol ≥ 3.0, and if vol ≤ 0.0, the tank has run empty, which we
consider as an “underflow” error. If an error occurs, the output symbol
over , resp., under is sent, and the location error is entered. If an input
symbol arrives “just in time” before an error occurs (start drain or stop fill
when vol = 3.0 in state fill , start fill or stop drain when vol = 0.0 in state
drain, stop drain or stop fill when vol = 0.0 in state both), the CLHA model
chooses nondeterministically if the error location is entered or not.

6.4. Example 101

&%
'$

idle

0.00

@@R -start fill

?

st
ar

t
dr

ai
n

@
@

@
@

@
@

@
@

@
@

@
@
@R

start fill
start drain

&%
'$

fill

0.05

vol < 3.0

� stop fill

?

start
drain

�
�

�
�

�
�

�
�

�
�

�
�

�	

sto
p
fil
l

sta
rt

dr
ain

A
A
A
A
A
A
A
A
A
A
A
A
A
AU

vol ≥
3.0

over

&%
'$
drain

−0.10

vol > 0.0

-start fill

6

st
op

dr
ai

n

�
�

�
�

�
�

�
�

�
�

�
�
��

sta
rt

fil
l

sto
p
dr
ain

vol ≤ 0
under

� �6
&%
'$

both

−0.05

vol > 0.0
� stop fill

6

stop
drain

@
@

@
@

@
@

@
@

@
@

@
@

@I

stop
fill

stop
drain

-vol ≤ 0
under &%

'$
error

0.00

Figure 6.1: CLHA tank model

Figure 6.1 illustrates the CLHA model of the tank. The locations are
marked with the flow rates of vol , and locations with nonzero rates are
labeled with invariants (vol > 0.0 and vol < 3.0) to force the discrete
transition to the error location if vol leaves its allowed range. Note that
in Figure 6.1 and all following CLHA figures in this chapter, we do not
display self-loop transitions from the set of edges E which do not change
any variables, for the sake of readability.

The system uses two real-valued variables (the variable t will be used in
a second CLHA introduced later): V = {vol , t}, type(vol) = type(t) = R.
The model of the tank is given as the CLHA T = (Q , {idle}, {vol},Σ0,R, I ,
L,E), where

• Q = {idle,fill , drain, both, error}, Σ0 = {σ ∈ Σ |σ(vol) = 3.0},

• R((q , vol)) =

0.00, if q ∈ {idle, error}
0.05, if q = fill

−0.10, if q = drain
−0.05, if q = both

,

• I (q) =

Σcout , if q ∈ {idle, error}

{σ ∈ Σcout |σ(vol) < 3.0}, if q = fill
{σ ∈ Σcout |σ(vol) > 0.0}, if q ∈ {drain, both}

, and

• L = Lin ∪Lout , with Lin = {start fill , stop fill , start drain, stop drain}

102 Chapter 6. Hybrid Systems

and Lout = {over , under}.

The set of edges E is defined as follows: for all l ⊆ L, ρ = (σ, σout) with
σ ∈ Σ, and q , q ′ ∈ Q ,

• (idle, l , ρ, q ′) ∈ E if and only if l ⊆ Lin and one of the following cases
holds:

– start fill /∈ l ∧ start drain /∈ l ∧ q ′ = idle

– start fill ∈ l ∧ start drain /∈ l ∧ q ′ = fill

– start fill /∈ l ∧ start drain ∈ l ∧ q ′ = drain

– start fill ∈ l ∧ start drain ∈ l ∧ q ′ = both

• (fill , l , ρ, q ′) ∈ E if and only if l ⊆ Lin and one of the following cases
holds:

– stop fill ∈ l ∧ start drain /∈ l ∧ q ′ = idle

– stop fill /∈ l ∧ start drain /∈ l ∧ q ′ = fill

– stop fill ∈ l ∧ start drain ∈ l ∧ q ′ = drain

– stop fill /∈ l ∧ start drain ∈ l ∧ q ′ = both

• (drain, l , ρ, q ′) ∈ E if and only if l ⊆ Lin and one of the following cases
holds:

– stop drain ∈ l ∧ start fill /∈ l ∧ q ′ = idle

– stop drain ∈ l ∧ start fill ∈ l ∧ q ′ = fill

– stop drain /∈ l ∧ start fill /∈ l ∧ q ′ = drain

– stop drain /∈ l ∧ start fill ∈ l ∧ q ′ = both

• (both, l , ρ, q ′) ∈ E if and only if l ⊆ Lin and one of the following cases
holds:

– stop drain ∈ l ∧ stop fill ∈ l ∧ q ′ = idle

– stop drain ∈ l ∧ stop fill /∈ l ∧ q ′ = fill

– stop drain /∈ l ∧ stop fill ∈ l ∧ q ′ = drain

– stop drain /∈ l ∧ stop fill /∈ l ∧ q ′ = both

• (error , l , ρ, error) ∈ E

• (q , l , ρ, error) ∈ E if and only if q ∈ {drain, both}, under ∈ l , over /∈ l ,
and σ(vol) ≤ 0.0

• (fill , l , ρ, error) ∈ E if and only if over ∈ l , under /∈ l , and σ(vol) ≥ 3.0

6.4. Example 103

&%
'$

wait
@@R

1.0
t < 1
 	6

t = 1, vol > 1.0
t := 0

-t = 1, vol ≤ 1.0
start fill , t := 0

&%
'$

refill

1.0
t < 20� t = 20

stop fill , t := 0

Figure 6.2: CLHA controller model

Now that we have a complete CLHA model of the tank, we add a simple
controller to the tank’s environment which controls the refilling of the tank
in case it impends to run empty. The refilling process always adds a fixed
amount of 1.0 units to the tank (which corresponds to draining the contents
of one reactor containing the product into the tank). This controller is mod-
eled as follows: every second, the controller checks the volume of the tank’s
content; if it is below 1.0 units, start fill is sent, and a clock t is started.
After 20 seconds (t = 20), stop fill is sent. Note that this controller is not
a part of the original plant, which has a more complex refilling mechanism
based on schedules for product demands and raw material deliveries. Fig-
ure 6.2 shows the CLHA model of the controller. The model of the controller
is given as the CLHA C = (QC , {wait}, {t},ΣC

0 ,R
C , I C ,LC ,EC), where

• QC = {wait , refill}, ΣC
0 = {σ ∈ Σ |σ(t) = 0.0},

• RC((wait , t)) = RC((refill , t)) = 1.0,

• I C(wait) = {σ ∈ Σcout |σ(t) < 1}, I C(refill) = {σ ∈ Σcout |σ(t) < 20},
and

• LC = Lin
C ∪ Lout

C , with Lin
C = ∅ and Lout

C = {start fill , stop fill}.

The set of edges is defined as follows: for all l ⊆ LC , ρ = (σ, σ′) with
σ ∈ Σ, σ′ ∈ Σout , and q , q ′ ∈ QC , we have (q , l , ρ, q ′) ∈ E if and only if one
of the following cases holds:

• q = q ′ = wait ∧ l = ∅ ∧ σ(vol) > 1.0 ∧ σ′(t) = σ(t)

• q = q ′ = wait ∧ l = ∅ ∧ σ(vol) > 1.0 ∧ σ(t) = 1 ∧ σ′(t) = 0

• q = wait ∧ q ′ = refill ∧ l = {start fill} ∧ σ(vol) ≤ 1.0 ∧ σ(t) = 1 ∧
σ′(t) = 0

• q = q ′ = refill ∧ l = ∅ ∧ σ′(t) = σ(t)

• q = refill ∧ q ′ = wait ∧ l = {stop fill} ∧ σ(t) = 20 ∧ σ′(t) = 0

104 Chapter 6. Hybrid Systems

&%
'$

idle
wait

@@R
t < 1

-t = 1, vol ≤ 1.0, t := 0

?

st
ar

t
dr

ai
n

@
@

@
@

@
@

@
@

@
@

@
@
@R

vol ≤
1.0

t =
1, t :=

0

start drain

&%
'$

fill
refill

vol < 3.0
t < 20

� t = 20, t := 0

?

start
drain

�
�

�
�

�
�

�
�

�
�

�
�

�	

t =
20
, t

:=
0

sta
rt

dr
ain

A
A
A
A
A
A
A
A
A
A
A
A
A
AU

vol ≥
3.0

over

&%
'$
drain
wait

vol > 0.0
t < 1

-t = 1, vol ≤ 1.0, t := 0

6
st

op
dr

ai
n

�
�

�
�

�
�

�
�

�
�

�
�
��

vo
l ≤

1.0

t =
1,
t :

=
0

sto
p
dr
ain

&%
'$

both
refill

vol > 0.0
t < 20

� t = 20, t := 0

6

stop
drain

@
@

@
@

@
@

@
@

@
@

@
@

@I

t =
20, t :=

0

stop
drain

-vol ≤ 0
under &%

'$
error
refill

t < 20

6

t
=

20,t
:=

0

&%
'$

error
wait

t < 1

?

t
=

1,vol≤
1.0,t

:=
0

Figure 6.3: CLHA model of T ‖C

The product automaton T ‖C is shown in Figure 6.3. Product locations
which are obviously not reachable from the initial location, e.g., (idle, refill)
are not shown, as well as transitions which are never enabled. For readability
we also left out the rates for vol and t , the self-loops labeled “t = 1, vol >
1.0, t := 0” at all wait-states, and all occurrences of start fill and stop fill .

Figure 6.4 shows how vol evolves over time in a scenario where the tank
is drained at time 2 (start drain is received) for a duration of 23 seconds.
After 20 seconds of draining (i.e., at time 22), vol falls below 1.0 units,
and the controller sends start fill , which increments the change rate of vol
from −0.10 to −0.05 units per second. 3 seconds later, the draining stops
(stop drain), and the level in the tank rises. After 20 seconds (at time 42)
the filling is stopped (stop fill), and vol has reached 1.7 units.

6.4.2 Verification With HyTech

CLHA can easily be translated into the input language of the model-checking
tool HyTech [HHWT97]. Figure 6.5 shows the HyTech code for the controller
C. Note that we multiply the volumes and rates by 100 to get integer values.
If we add another automaton to the model which sends start drain at time
2 and stop drain at time 25, a reachability analysis with HyTech computes
the following regions, which correspond to the five line segments drawn in
Figure 6.4 (g denotes the global time):

6.4. Example 105

-

0 10 20 30 40 time/s

6

0.0

1.0

2.0

3.0

vol start drain���)
@

@
@

@
@

@
@

@
@

@
@

@
@

˙vol = −0.10/s
���

start fill
�

�
��
HH

˙vol = −0.05/s �
��

stop drain@
@I

���
���

���
��

˙vol = +0.05/s
�

�
�

�
�

��
stop fill

A
AAK

Figure 6.4: A run of the system T ‖C

automaton controller
synclabs: start_fill, stop_fill;
initially waiting & t=0;

loc waiting: while t<=1 wait {dt=1}
when t=1 & vol<=100 sync start_fill do {t’=0} goto refill;
when t=1 & vol> 100 do {t’=0} goto waiting;

loc refill: while t<=20 wait {dt=1}
when t=20 sync stop_fill do {t’=0} goto waiting;

end

Figure 6.5: HyTech code for the controller C

1. vol = 300 ∧ g ≤ 2

2. 100 ≤ vol ≤ 300 ∧ vol + 10g = 320

3. 85 ≤ vol ≤ 100 ∧ vol + 5g = 210

4. 85 ≤ vol ≤ 170 ∧ 5g = vol + 40

5. vol = 170 ∧ g ≥ 42

106 Chapter 6. Hybrid Systems

We can also use HyTech to determine under which conditions the tank
can run empty. E.g., if fixed batches of 1.0 units are repeatedly drained from
the tank, a delay of at least 10 seconds between two consecutive drainings is
needed to prevent an underflow. If the batch size is increased to 2.0 units,
an underflow is inevitable, no matter how long the delay is chosen.

Chapter 7

Conclusions

This last chapter summarizes the main topics and results of this thesis and
points out future work.

7.1 Summary

This thesis presented methods for the formal verification of control software
in the field of chemical process engineering. We focussed on software running
on programmable logic controllers (PLCs), in particular, programs written
in the standardized programming language sequential function charts (SFC).
The verification methods have been illustrated by checking properties of the
control software of two chemical batch plants.

The formal verification task can be described as follows: Given some
system (in our case, a chemical plant) and a list of requirements, prove
formally that the system satisfies these requirements. To perform this task,
several steps need to be carried out, all addressed in this thesis:

• The system needs to be modeled in a framework which allows formal
reasoning. This framework should have a level of abstraction that
makes formal verification with respect to complexity feasible.

• The requirements also need to be formulated in a framework appro-
priate for the application of formal methods, e.g., temporal logic.

• The model of the system is checked against the formal requirements,
e.g., by model checking and/or deductive reasoning.

The feasibility and efficiency of the last step depends heavily on the frame-
works and abstraction levels chosen in the first two steps.

A prerequisite for formal verification methods is a clear semantics of the
programming languages involved. Therefore, we explained in Chapter 2 the
particularities of PLC program execution, and we defined a formal opera-
tional semantics for the SFC language.

107

108 Chapter 7. Conclusions

Chapter 3 described the two case studies considered in this thesis, one
implementing a mixing and separation process (experimental batch plant)
and the other implementing the concurrent production of two different liquid
products (multi-product batch plant).

Two different verification methods have been presented. Both methods
first decompose the system into its constituent parts (called modules), i.e.,
the physical components (e.g., tanks and valves) and the software compo-
nents (PLC programs written in the SFC language).

The modular approach of Chapter 4 introduced a discrete model for each
of the modules which was translated by a compiler into the input language of
the model-checking tool SMV. For each property that needed to be proven,
only a small subset of all modules sufficient for satisfying the property was
translated to SMV and model-checked. This procedure reduced the state
space of the model-checking process significantly, and the verification results
were computed much faster than in a setting where all modules are included
in the verification of each property. In our case, it is even questionable if
the full product of all modules can be model-checked at all because of the
state-explosion problem. The verification of the experimental batch plant
revealed two minor errors in the control programs, and another flaw was
found by manual inspection of a control program.

The compositional approach presented in Chapter 5 introduced a discrete
model for each of the control programs. Local specifications were given for
each module. Then each of the models of a control program was checked
against its local specifications by the model checker of the SAL system.
The specifications of the modules for physical parts of the system were not
verified by model checking; we assumed that these specifications describe
the modules’ behaviors, and a formal proof of that is not possible anyway,
since we have no formal models for devices like tanks or valves. Once we
had established the local specifications, these were combined by deduction to
gain the global safety properties we are interested in. This approach avoided
the state explosion problem by applying model checking to each separate
module one by one, thus keeping the state space as small as possible.

These two approaches only used discrete models. Chapter 6 introduced
communicating linear hybrid automata (CLHA) as a modeling framework
for hybrid systems, which contain discrete as well as continuous components.
An example shows a CLHA model of a part of the multi-product batch plant,
and we use the hybrid model checker HyTech to compute properties of this
model.

7.2 Lessons Learned

For each of the main topics discussed in this thesis, we give a short summary
of the observations made.

7.2. Lessons Learned 109

7.2.1 Programmable Logic Controllers

For the formal treatment of PLC software it is essential to have a clear and
unambiguous semantics for PLC programs. We focussed on the program-
ming language sequential function charts (SFC). As examinations of the
IEC 61131-3 standard [IEC98] and various PLC programming environments
[Bau03, BHLL04] have shown, the semantics of SFCs is far from obvious
and implemented differently in different tools, which aggravates the inter-
operability of PLC software. The research during the construction of the
semantics for SFCs revealed details of the program execution which would
not have become apparent if we had been content with an intuitive semantics
as suggested in the standard.

In our experience most ambiguities play a minor role in the everyday
programming of PLCs, but we cannot rule out that an ambiguity will cause
problems when the PLC behavior deviates from what the programmer had
in mind. Therefore, programmers should be aware of these problems, and
some effort should be put into the standard to clarify semantic ambiguities.

7.2.2 Abstraction and Modeling

The abstraction level of models for parts of a plant depends on the level
of detail we need for the verification process. In our examples, discrete
abstractions of the continuous processes have been chosen, since these have
shown to be able to express the properties we were interested in. Since
the state explosion problem is always imminent in state-based verification,
one should always aim for a safe abstraction which is as coarse as possible,
without losing essential information needed to prove the properties.

It is important to notice that the models of hardware parts, irrespective
of their level of detail, are often just representations of the expected plant
behavior, and therefore, proven properties about these models alone merely
state that we have chosen our models in accordance with their expected
properties. If we strive for proving reliable properties of the plant, we need
verification results obtained in combination with models of the plant that
have been created on a formal basis, e.g., PLC program semantics.

Note that a clear distinction just between hardware and software can
be difficult, and finer differentiations are possible, e.g., in the hardware
of the plant, the PLC control hardware, products processed by the plant,
communication infrastructure, human operators, etc.

In our examples, the PLC software is given as SFCs. Since these have a
discrete control structure, we keep this structure also in the model. If the
SFCs do not have nested structures and only use the N, S, P0, P1 and R
qualifiers, there is no need to model the complex action qualifier treatment
of SFCs, and a simple transition system is sufficient to represent the SFCs’
behavior on an abstract level.

110 Chapter 7. Conclusions

It is not mandatory that all modules of the plant are modeled in the same
framework; only if two modules need to be composed for model checking,
they should be given in the same language. It is even possible to provide
several models for one module, e.g., with different levels of abstractions or
the input language of different model checkers.

7.2.3 Modular Verification

The modular verification method presented in Chapter 4 showed that a care-
ful selection of the modules composed for model checking can significantly
reduce the time and memory consumption of the verification process. In
one case, the verification time has been reduced from 23 hours to a few sec-
onds by splitting the property into several small properties, each of which
only requiring the composition of two modules instead of 20 for the original
property.

This example shows that there is a lot of potential in optimizing how a
model checker is used, even after a certain model has been built.

7.2.4 Compositional Verification

The compositional verification method reduces the algorithmic verification
to model checking each model one by one, and thus, the complexity is
kept small. Furthermore, different modeling paradigms and different model
checkers can be used in the local verification step. More work lies in the
construction of local properties and the deductive reasoning undertaken to
combine the local properties into global properties.

Consequently, it seems to be appropriate to use the modular or even
a global approach for the verification of small systems, avoiding the over-
head work of specifying and proving local properties. For systems of high
complexity, compositional verification is mandatory, since noncompositional
methods are bound to fail because of excessive time and memory require-
ments. Nevertheless it is important to realize that a compositional approach
requires much more efforts in the modeling and specification phase that the
modular or global approaches. In our experience, often several iterations of
specification and deductive verification are necessary, as local specifications
may turn out to be too weak to establish global properties. In that case, the
local specification has to be rephrased and proven correct by local model
checking. Usually this rephrasing is a refinement step, and in this case, the
iteration will eventually terminate, since in the worst case, one ends up with
a local specification which describes the full semantics of the module.

Note that the compositional approach does not require a formal model
for each module; it is sufficient to provide local specifications. This promotes
the use of libraries of modules of which local properties already have been
proven. Furthermore, specifications of hardware parts can be given directly,

7.3. Future Work 111

without having to introduce an algorithmically checkable model on the basis
of expected behavior.

7.3 Future Work

The PLC programming languages standardized in IEC 61131-3 are rather
new in the field of software verification and have many interesting aspects
from the viewpoint of formal methods. Further investigations of their seman-
tics are necessary to advance formal methods for PLC software. Especially
the combined use of different languages (e.g., ladder diagrams and func-
tion blocks as guards in SFCs) pose challenges for the integration of their
semantics.

Further work in the modular approach lies in automated techniques to
determine which modules have to be composed to prove a given property,
and in other methods for reducing time and memory consumption (like the
splitting of a property for several verification steps), and in using other levels
of abstraction for the models.

The deductive reasoning in the compositional approach calls for tool sup-
port. Theorem proving systems like PVS (Prototype Verification System)
[ORS92] can be used to execute and organize the proofs, and their builtin
heuristics can even automatize some proof steps. Future work lies in the
construction of proof strategies for these tools, which help to complete the
deduction part with little manual effort.

Another challenge is the integration of timing and continuous behavior
into the verification methods presented. Though the basic concepts will
remain the same, the verification tools which are able to handle timed and
hybrid models are even more sensitive to complexity issues than tools for
purely discrete models.

112 Chapter 7. Conclusions

Appendix A

Condition/Event Systems

This appendix introduces the formal framework used for the models in
Chapter 4 and their transformation into SMV code as explained in Ap-
pendix B. We introduce condition/event systems, discrete condition/event
systems, named discrete condition/event systems, and define the parallel in-
terconnection of named discrete condition/event systems.

The contents of Appendices A and B have been published as part of a
technical report [Luk99b] for the VHS project [VHS].

A.1 Introduction

Condition/event systems (CESs) have been introduced in [SK91]. CESs are
a class of continuous-time discrete event systems and can be represented
graphically as block diagrams. Communication between CESs takes place
by exchanging two different kinds of symbols, called condition and event
symbols. A set of condition or event symbols is called condition or event
alphabet. Condition symbols are used to describe system states and to enable
or disable state changes, whereas event symbols denote certain actions at
discrete points in time and can be used to trigger state changes. To describe
the semantics of a CES, condition and event signals are used. A signal is a
function which maps points in time to a condition or event alphabet, i.e., at
each moment, one symbol of an alphabet is visible. The behavior of a CES
is given by a function which associates with each pair of an input condition
signal and an input event signal a nonempty set of possible outputs, which
are pairs of output condition signals and output event signals.

This way of describing a system’s behavior has some disadvantages. The
behavior of a CES is given by relating signals, and one signal describes the
current symbol visible at a CES’s input or output component for all points
in time. This is a very abstract view, since normally a dynamic system’s
output symbols at a certain moment depend only on its internal state and
its input symbols at that very moment. Furthermore, we would like to

113

114 Appendix A. Condition/Event Systems

have an operational description of the system using functions mapping input
symbols to output symbols (and not relating signals like in CESs), since this
makes the implementation and the reasoning about systems much easier.
Therefore discrete condition/event systems (DCESs) have been introduced,
which communicate using the same symbols as CESs, but are described
operationally using a finite set of internal states, a transition function, and
output functions which compute output symbols using the current internal
state and the current input symbols. So a DCES can be understood as a
finite automaton having two output functions, one for conditions and one
for events. The semantics of a DCES is described as a CES, but not every
behavior of a CES is expressible using a DCES.

For composing CESs and DCESs, the notions of cascade and feedback
connections are presented in [SK91]. These connections are very restrictive
in the sense that they do not provide many ways of connecting systems, e.g.,
feedback allows no additional external input signals.

We present a formal framework for composing DCESs. Intuitively, sys-
tems are composed by connecting output components to input components,
and the signals of the connected components have to be equal. We dis-
cuss the following two questions which arise when constructing a system
consisting of some interconnected modules (DCESs in our framework):

1. Can we express the semantics of the compound system by using the
semantics of its modules?

2. Can we compose the modules into one DCES having the same seman-
tics as the compound system?

For answering these questions, we must of course have a formal definition
of the semantics of the compound system. This must not necessarily be
expressible in the way we express the semantics of its parts.

The answers to both questions depend on the way the systems are con-
nected. If there are no interconnections at all, i.e., the parts do not exchange
any information and are independent from each other, both answers are ob-
viously yes. We simply can use Cartesian products of the parts’ signals to
form the signals of the compound system (this answers question 1), and we
can use a Cartesian product of the parts’ sets of states to gain the set of
states for the DCES needed in question 2. No synchronization is needed,
since the parts have no common signals.

If there are interconnections of the parts, which is usually the case for
non-trivial systems, the answers are not that easy to find. Although ques-
tion 1 might be positively answered, a DCES for question 2 may not exist
due to so-called algebraic loops. For example, consider the two DCESs D1

and D2 in Figure A.1. Both systems are mutually connected by condition
signals that can take on the values “a” or “b”. D1 just copies its input (from

A.1. Introduction 115

D1

a 7→ a
b 7→ b

- D2

a 7→ b
b 7→ a

�

Figure A.1: Example of an algebraic loop

D2) to its output (to D2), while D2 is an inverter, i.e., input “a” yields out-
put “b” and input “b” yields output “a”. Since we have no time delays
during communication in our model, this connection leads to contradiction;
there are no feasible values for the symbols exchanged between D1 and D2,
and therefore, no DCES for the composed system can be given.

In synchronous languages [Hal93], much research is done to examine
such algebraic loops. One way of dealing with this is to demand unique
solutions for the symbols between D1 and D2 (e.g. in Lustre [CPHP87]
and ESTEREL [BG92]). Systems which do not fulfill this property must
not have that kind of mutual connection. Another way is to demand that
there exists at least one solution (e.g. in Signal [GGB87, BG90]).

If the answer to question 2 is yes, one is interested in a composition oper-
ators which effectively construct the DCES for the compound system, using
the parts and information about the connections between them. In [SK91]
two operators are introduces: The cascade interconnection operator defines
the connection of a DCES’s outputs with the inputs of another DCES, and
the feedback connection operator defines the connection of a DCES’s out-
puts with its own inputs. We define the parallel interconnection operator,
which allows arbitrary connections among a set of DCESs and can therefore
also express feedback and cascade. We define a parallel interconnection op-
erator which handles systems with unique solutions; the case with multiple
solutions is discussed in [Luk99b].

A.1.1 Notational Conventions

For a set X , we denote by 2X the set of all subsets of X . Given a finite set
D and a function r : R≥0 → D , we call r finite-variable, if in any bounded
subinterval of R≥0, r changes its value only finitely often, i.e, r has only a
finite number of discontinuity points. If r is finite-variable, r is furthermore
called right-continuous, if for all t ∈ R≥0 there exists an ε > 0 such that
r(t + x) = r(t) for all x ∈ (0, ε). And for any finite-variable r , we define for
all t ∈ R>0 the limit from the left of r at t : r(t−) = limε>0

ε→0 r(t − ε).
For any n-tuple x , we denote by xi the projection of x on its ith compo-

nent. This notion is extended to Cartesian products of sets and to functions
having a Cartesian product as range. The domain of a function f is denoted
by dom(f), and its range by ran(f).

116 Appendix A. Condition/Event Systems

A.2 The Condition/Event System Framework

Condition/event systems (CESs) are a class of continuous-time discrete
event systems and have been introduced in [SK91]. The CES model is
widely used to describe the behavior of discrete and hybrid systems. It al-
lows to develop complex systems by means of block diagrams and signal
flows, which is standard practice in system theory.

A.2.1 Conditions, Events, and Signals

Let D be a set of symbols. These will be the symbols in the range of
condition and event signals.

Definition A.1 (Condition alphabet, event alphabet) A condition al-
phabet is a nonempty, finite set U ⊆ D , and its elements are called condition
symbols or simply conditions.1

An event alphabet is a nonempty, finite set V ⊆ D containing a special
null symbol 0V . Any v ∈ V is called event symbol, or simply event, and if
v 6= 0V , it is also called proper event.

We write 0 for the null symbol 0V , if the event alphabet V is known
from the context. A Cartesian product V = V1×. . .×Vn of event alphabets
is also an event alphabet, and we abbreviate its null symbol (0V1 , . . . ,0Vn)
also with 0V or 0. In the following, we will use the letters U and Y for
condition alphabets, and V and Z for event alphabets.

Condition and event alphabets serve as the range for condition signals
and event signals, which are functions mapping points in time to such al-
phabets. In our framework, time is modeled by the set R≥0 of nonnegative
real numbers.

Definition A.2 (Condition signal, event signal) A condition signal
over a condition alphabet U is a right-continuous, finite-variable function
sU : R≥0 → U . The set of all condition signals over U is denoted by C (U).

An event signal over an event alphabet V is a function sV : R≥0 → V , if
sV (0) = 0 and for any bounded subinterval I of R≥0, there are only finitely
many t ∈ I with sV (t) 6= 0. The set of all event signals over V is denoted
by E (V).

Figure A.2 shows an example of a condition signal sU over the condition
alphabet U = {on, off, auto}. Figure A.3 shows an example of an event
signal sV over the event alphabet V = {0, start, stop}.

1The reader is warned not to confuse the usage of “condition” as an abbreviation
for “condition symbol” with the notion of “condition” for “property”, “prerequisite”,
“Boolean expression”, etc.

A.2. The Condition/Event System Framework 117

-
t

6
sU (t)

off

on

auto

0

s c

s c
s c

s

Figure A.2: Example of a condition signal

-
t

6
sV (t)

0

stop

start

0

c

s

c
s

c

s

c

s

Figure A.3: Example of an event signal

A.2.2 Condition/Event Systems

Now we define condition/event systems. As said before, such a system is
characterized by a relation between input and output signals. The relation
can also be seen as a function mapping input signals to sets of output signals.
So for each input there may be more than one possible output behavior, but
there has to be at least one, since CESs are not allowed to refuse generating
output (from a practical point of view, you can always measure some values
at the CES’s output “connectors”).

Definition A.3 (Condition/event system) A quintuple S = (U ,V ,Y ,
Z , S) is called condition/event system (CES), where U is the input condition
alphabet, V is the input event alphabet, Y is the output condition alphabet,
Z is the output event alphabet, and S : C (U) × E (V) → 2C (Y)×E(Z) \ {∅}
is the system behavior function.

We also use the symbol S for the system behavior relation R ⊆ Beh(U ,
V ,Y ,Z) = C (U)× E (V)×C (Y)× E (Z) with (sU , sV , sY , sZ) ∈ R if and
only if (sY , sZ) ∈ S(sU , sV).

118 Appendix A. Condition/Event Systems

S
-U

-V

- Y

- Z

Figure A.4: A block diagram of a condition/event system

For the purpose of brevity, we will use the symbols sU , sV , sY , and sZ
to denote the four projections of a given behavior s ∈ Beh(U ,V ,Y ,Z) on
its components.

Figure A.4 shows a block diagram of a condition/event system. We use
an arrow like - to denote the flow of a condition signal and - for
an event signal flow. If we need systems with more than these four signals,
we use Cartesian products like U = U1 × U2 as alphabets, and we draw
signal flows for each Ui in the block diagrams (see, for example, the block
diagrams in Section 4.4.1). Formally, we access a certain alphabet Ui , its
symbols ui ∈ Ui , or its signals sUi ∈ C (Ui) by using a projection on the ith
component of U , (u1, u2) ∈ U , or (sU1 , sU2) ∈ C (U).

A.2.3 Discrete Condition/Event Systems

With the notion of condition/event systems we have introduced a model
describing a relation of input and output signals. However, it is in prac-
tice very difficult to relate signals, since they range over the infinite time
domain R≥0.

Moreover, changes in the condition input might force the CES to gen-
erate a proper output event at the time the condition change occurs. This
behavior is not intended; only input events should be able to force output
events. And since one specifies behaviors over the whole time domain, you
can even build systems that are able to look into the future, e.g., a CES
that sends an event as a reaction to an input event exactly one time unit
before this input occurs.

Strange behaviors of such nature can be avoided by demanding certain
properties like causality, time-change invariance, and spontaneity [SK91].

Another way of avoiding this, and, which is most important, a way of
describing a CES in an operational way, is the model of discrete condi-
tion/event systems. These systems communicate with their environment
via condition and event signals just like CESs, but an internal finite transi-
tion system is used to compute the current output symbols from the current
input symbols at each point in time. The input conditions can enable or
disable state changes in the transition system, and input events may force
transitions.

A.2. The Condition/Event System Framework 119

Definition A.4 (Discrete condition/event system) A discrete condi-
tion/event system (DCES) D = (U ,V ,X ,Y ,Z , f , g , h, x0) consists of an
input condition alphabet U , an input event alphabet V , an output condition
alphabet Y , an output event alphabet Z , and

• a finite set X of states,

• a state transition function f : X ×U ×V → 2X \ {∅},

• a condition output function g : X ×U → Y ,

• an event output function h : X ×X ×V → Z , and

• an initial state x0 ∈ X .

We give a short intuitive description of how DCESs work. The formal se-
mantics can be found in Definition A.7. The function f is used to determine
the next state of the transition system. As parameters f has the current
state and the current condition and event input symbols. A nonempty set of
states is computed by f , and one of these is nondeterministically chosen as
the next state. The condition output symbol is generated by g from the cur-
rent state and input condition symbol. The function h produces the event
output symbol; parameters are the current state, the next state (which was
chosen from the set of possible ones), and the current event input symbol.
Note that g and h allow no nondeterministic choice; this is possible in f
only.

Now we introduce two properties which lead to an interesting subclass
of DCESs, the well-behaved DCESs.

Definition A.5 (Well-behaved DCES) Let D be a DCES as in Defini-
tion A.4. D is called well-behaved, if it satisfies

• stuttering: x ∈ f (x , u,0), and

• output triggering: h(x , x ,0) = 0,

for all x ∈ X and u ∈ U .

Stuttering describes that the system is always able to stay in the same
state as long as no proper input event occurs. This ensures that changes in
the input condition cannot force any transitions. Output triggering means
that the system does not generate a proper output event if it stays in the
same state and no proper input event occurs. This prevents the system
from generating infinitely many proper events in finite time, since in a finite
time interval only finitely many state changes are allowed (this is required
in Definition A.6 below).

The operative nature of DCESs, well-behavedness, and its semantics (de-
fined below) ensure the properties mentioned above (causality, time-change

120 Appendix A. Condition/Event Systems

invariance, spontaneity), which avoid the “strange behaviors”. In the fol-
lowing, we will therefore use well-behaved DCESs only, without explicitly
mentioning it. However, when constructing a DCES by giving explicit defi-
nitions for f , g , and h, we do have to show that the DCES is well-behaved.

To define the semantics for DCESs, we define runs of DCESs. Intuitively,
a run is a function mapping points in time to the state of the DCES’s
transition system at that time. A run r always starts at the initial state.
At all moments t ∈ R≥0, the value of the condition output signal sY (t) is
computed by g using as parameters the current state r(t) and the current
value of the condition input signal sU (t). At each point in time t ∈ R>0, a
set of states is generated by f using the last state r(t−), the input condition
symbol sU (t−) just before time t , and the current input event symbol sV (t).
One of these states is nondeterministically chosen as the new state r(t). The
value of the event output signal sZ (t) is computed by h using the last state
r(t−), the current state r(t) and the current value of the event input signal
sV (t).

Note that nothing is said about the event output symbol at time 0, since
the definition of event signal implies sZ (0) = 0.

The usage of sU (t−) as parameter for f emphasizes that conditions can-
not force transitions; if the condition input signal changes just at time t ,
still the old value will be used. So this change can only influence transitions
after time t , but not the transition at time t .

Definition A.6 (Run of a DCES) Let D be a DCES as in Definition A.4.
We call a right-continuous and finite-variable function r : R≥0 → X run of D
over s ∈ Beh(U ,V ,Y ,Z), if and only the following conditions are satisfied
by r :

1. r(t) ∈ f (r(t−), sU (t−), sV (t)) for all t ∈ R>0,

2. sY (t) = g(r(t), sU (t)) for all t ∈ R≥0,

3. sZ (t) = h(r(t−), r(t), sV (t)) for all t ∈ R>0, and

4. r(0) = x0.

Now we can assign a semantics to DCESs. The semantics of a DCES D
is a CES SD with a behavior relation containing all the behaviors matching
to possible runs of D.

Definition A.7 (Semantics of a DCES) Let D be a DCES as in Defini-
tion A.4. The semantics of D is given by the CES SD = (U ,V ,Y ,Z , SD)
with s ∈ SD if and only if there exists a run r of D over s, for all s ∈
Beh(U ,V ,Y ,Z).

A.3. The Parallel Interconnection 121

There is one crucial question which arises immediately after having de-
fined the semantic relation between CESs and DCESs: Can every condi-
tion/event system be described by a discrete condition/event system? Or,
speaking formally, can we find for every CES S a DCES D such that SD = S?
The answer is obviously no, as shown in the following example.

Example A.8 We define a simple CES which has only trivial inputs and
outputs except for the event output. The only proper output event is
a “ping” which can be observed at every time point t ∈ N \ {0}, i.e.,
the time difference between two “pings” is exactly one time unit. Let
S = (U ,V ,Y ,Z , S) be the CES with the trivial condition alphabets2 U =
Y = {0}, event alphabets V = {0}, Z = {0,ping}, and, for all s ∈
Beh(U ,V ,Y ,Z),

s ∈ S if and only if sZ (t) =
{

ping, if t ∈ N \ {0}
0 , otherwise

.

Note that the trivial alphabets allow only one possibility for sU , sV , and
sY .

This CES cannot be modeled as a DCES, since DCESs have no means to
do quantitative timing. In other words, one can build a DCES that outputs
a “ping” from time to time, but there is no way to measure time, so the
time difference between two “pings” cannot be forced to be exactly one time
unit.

A.3 The Parallel Interconnection

The cascade and feedback connections presented in [SK91] for the composi-
tion of CESs and DCESs have the disadvantage that the syntactic require-
ments for the systems are very strong, as we must have pairs of matching
input and output components, even if in some directions we do not have
any information to be passed. Furthermore, these two connection opera-
tors, even when used iteratively and in combination, are not general enough
to express any conceivable connection between several systems.

This shows that we need a different, more flexible way to describe con-
nections between condition/event systems. The solution we present is the
parallel interconnection, which describes an almost arbitrary connection of
CESs, and, by defining the parallel interconnection operator, we are able
to consider arbitrary connections among DCESs (there are some sensible
syntactic restrictions, though).

Connections are described by assigning names to the input and output
components of all systems. Components which share the same name are

2In our examples, we use {0} as a trivial condition alphabet. This is quite arbitrary;
one can use any singleton U ⊆ D .

122 Appendix A. Condition/Event Systems

considered to be connected. An intuitive semantics for a system of CESs
connected in such a way is obvious: for every name occurring in the system,
one signal has to be provided. If a name is the name of an output component
of a CES, this CES provides the signal for that name, and this signal is
used for all input components with that name. If a name is used for input
components only, the signal for that name must be an external input signal
for the system. The output signals of the system are the output signals of
all CESs. This parallel interconnection of CESs will be given formally in
Definition A.18.

The notion of names makes new definitions for syntax and semantics
of CESs and DCESs necessary, but the flexibility we gain for constructing
interconnected systems is worth the effort.

A.3.1 Adding Component Names to C/E Systems

In the previous sections, we described a condition/event system’s inputs and
outputs by Cartesian products of condition or event alphabets. We accessed
single components by projecting elements of these products on a certain
index. To make dealing with many components easier and to provide a
natural way of connecting systems, we change the definition of CESs in the
following way: All input and output components of a CES are identified by
names. Each name is associated with one condition or event alphabet. Each
alphabet may be associated with more than one name. Components with
the same names are considered to be connected later on.

The following definitions put these considerations on a formal basis.
From now on, let N be a global set of identifiers, called names. We as-
sociate with each name N ∈ N either a condition or an event alphabet,
denoted by α(N). We call N condition name (respectively event name), if
α(N) is a condition alphabet (respectively event alphabet).

Previously we used Cartesian products of alphabets like U1 × U2 if a
CES or DCES needed to have two independent alphabets in one of its sig-
nals. With the new notion of names, we simply use a set of names for such
purposes, like for the case above the set Ū = {U1,U2} with α(U1) = U1 and
α(U2) = U2. We use symbols like U, V, Y, Z for names, and symbols like Ū,
V̄, Ȳ, Z̄ for sets of names.

For describing the current value of a system’s component named with
the set Ā, we introduce the notion of an evaluation, which is a function
mapping the names of Ā to the condition or event symbols in the alphabets
associated with the names in Ā.

Definition A.9 (Evaluation) For a set Ā ⊆ N of names, we define

ΣĀ = [Ā
type−→

⋃
N∈Ā

α(N)]

A.3. The Parallel Interconnection 123

as the set of all type-respecting functions ϕ mapping names to conditions or
events, where type-respecting in this case means ϕ(N) ∈ α(N) for all N ∈ Ā.
Such a function ϕ is called evaluation of Ā.

Note that there is only one evaluation for the empty set of names, and
this is the function ∅ having an empty domain, so we have Σ∅ = {∅}. If
ϕ(N) = 0α(N) for all N ∈ Ā, we use the symbol 0Ā (or simply 0) for ϕ. For
N ∈ N , we define ΣN as a shortcut for Σ{N}. Furthermore, we define some
operations on evaluations.

Definition A.10 (Operations on evaluations) For evaluations ϕ and ψ,
we define the following operations:

• union: If ϕ and ψ coincide on the intersection of their domains, ϕ∪ψ
denotes their union.

• restriction: For Ā ⊆ dom(ϕ), the restriction of ϕ on Ā is denoted by
ϕ|Ā. For the sake of convenient notation, we allow Ā = ∅, resulting in
ϕ|Ā = ∅. For N ∈ N , ϕ|N is an abbreviation for ϕ|{N}.

These operations are extended in the obvious way to named signals and
named behaviors, which are defined below.

We use the evaluations introduced above to define named condition/event
systems, which operate on named condition/event signals.

Definition A.11 (Named condition/event signal) Let Ū ⊆ N be a fi-
nite set of condition names. A function sŪ : R≥0 → ΣŪ is called named
condition signal over Ū, if it is right-continuous and finite-variable. The set
of all named condition signals over Ū is denoted by C (Ū).

Let V̄ ⊆ N be a finite set of event names. A function sV̄ : R≥0 → ΣV̄

is called named event signal over V̄, if sV̄(0) = 0 and in every bounded
subinterval I of R≥0 there are only finitely many points t ∈ I with sV̄(t) 6= 0.
The set of all named event signals over V̄ is denoted by E (V̄).

For the signal over an empty set of names we use the symbol ∅, denoting
the function s∅ : R≥0 → Σ∅ with constant value ∅.

Now we are ready to define named condition/event systems. We ensure
that each name in N is used at most once in one system, since we do not
want a system to become connected to itself (feedback can still be expressed
by introducing a second system copying its inputs to its outputs).

Definition A.12 (Named condition/event system) Let Ū and Ȳ be fi-
nite sets of condition names, and let V̄ and Z̄ be finite sets of event names.
Let all four sets be pairwise disjoint. The quintuple S = (Ū, V̄, Ȳ, Z̄, S) is
called named condition/event system, where S : C (Ū)×E (V̄) → 2C (Ȳ)×E(Z̄)\
{∅} is the system behavior function. We also use the symbol S for the system

124 Appendix A. Condition/Event Systems

behavior relation R ⊆ Beh(Ū, V̄, Ȳ, Z̄) = C (Ū) × E (V̄) × C (Ȳ) × E (Z̄) with
(sŪ, sV̄, sȲ, sZ̄) ∈ R if and only if (sȲ, sZ̄) ∈ S(sŪ, sV̄).

Sometimes, SS is used to denote the behavior function/relation of the
named CES S. For the sake of brevity, we will use the symbols sŪ, sV̄, sȲ,
and sZ̄ to denote the four projections of a given s ∈ Beh(Ū, V̄, Ȳ, Z̄) on its
components.

Now we give the definition of named discrete condition/event systems.
Note that besides the introduction of names, we now also have a set of initial
states instead of only one initial state.

Definition A.13 (Named DCES, well-behaved) A named discrete con-
dition/event system D = (Ū, V̄,X , Ȳ, Z̄, f , g , h,X0) consists of a finite set Ū
of condition input names, a finite set V̄ of event input names, a finite set Ȳ
of condition output names, a finite set Z̄ of event output names,

• a finite set X of states,

• a state transition function f : X × ΣŪ × ΣV̄ → 2X \ {∅},

• a condition output function g : X × ΣŪ → ΣȲ,

• an event output function h : X ×X × ΣV̄ → ΣZ̄, and

• a nonempty set X0 ⊆ X of initial states,

where Ū, V̄, Ȳ, and Z̄ are pairwise disjoint. The named DCES D is called
well-behaved, if it satisfies

• stuttering: x ∈ f (x , u,0) and

• output triggering: h(x , x ,0) = 0,

for all x ∈ X and u ∈ ΣŪ.

In the following we will use well-behaved named DCESs only. To define
the semantics for a named DCES, we define runs of named DCESs. Notice
that in contrast to Definition A.6, we have r(0) ∈ X0 as start of the run.

Definition A.14 (Run of a named DCES) Let D be given as in Defini-
tion A.13. We call a right-continuous and finite-variable function r : R≥0 →
X run of D over s ∈ Beh(Ū, V̄, Ȳ, Z̄), if and only if

1. r(t) ∈ f (r(t−), sŪ(t−), sV̄(t)) for all t ∈ R>0,

2. sȲ(t) = g(r(t), sŪ(t)) for all t ∈ R≥0,

3. sZ̄(t) = h(r(t−), r(t), sV̄(t)) for all t ∈ R>0, and

A.3. The Parallel Interconnection 125

4. r(0) ∈ X0.

Now we can assign a semantics to named DCESs. Like in Definition A.7,
it is given via the notion of runs.

Definition A.15 (Semantics of a named DCES) Let D be given as in
Definition A.13. The semantics of D is given by the named CES SD =
(Ū, V̄, Ȳ, Z̄, SD) with s ∈ SD if and only if there exists a run r of D over s,
for all s ∈ Beh(Ū, V̄, Ȳ, Z̄).

A.3.2 Graphical Descriptions of Discrete C/E Systems

The definition of a DCES through its four name sets, the state sets X
and X0, and the functions f , g , and h, as in Definition A.13 is precise but
hard to read. We already know block diagrams as a means of displaying a
system’s inputs and outputs. In addition, we show next how the remaining
components of a DCES can be described by a transition diagram.

We illustrate the specification of a DCES by graphical means using the
following system which will also be used as an example in Section B.1.5:

Switch = ({Request}, {Update}, {x0, x1}, {Status}, {Change},
f , g , h, {x0})

with the alphabets α(Request) = {start, stop} and α(Status) = {off, on},
and α(Update) = α(Change) = {0, 1}, and for all x , x ′ ∈ {x0, x1}, u ∈
ΣRequest, and v ∈ ΣUpdate,

f (x , u, v) =

{x1}, if x = x0 ∧ u(Request) = start ∧ v(Update) = 1
{x0}, if x = x1 ∧ u(Request) = stop ∧ v(Update) = 1
{x} , otherwise

,

g(x , u) =
{
{(Status, off)}, if x = x0

{(Status, on)} , if x = x1
, and

h(x , x ′, v) =
{
{(Change, 1)}, if x ′ 6= x
{(Change,0)}, otherwise

.

The block diagram of the DCES Switch defines the input and output
name sets as well as the respective alphabets. The transition diagram shown
in Figure A.6 defines the remaining components of Switch.

Each circle in the transition diagram represents one state of the DCES,
in our case, x0 and x1. Each circle marked with a small arrow (x0) is an
initial state. Since g does not depend on the input condition and has only
one component, this output condition (off or on) is displayed in the middle
of the circle representing the respective state.

Finally, the functions f and g are defined through the transitions in the
transition diagram. An edge from a state x to a state x ′ denotes that there

126 Appendix A. Condition/Event Systems

Switch

-Request

{start, stop}

-Update

{0, 1}

-Status

{off, on}

-Change

{0, 1}

Figure A.5: Block diagram of Switch

&%
'$

x0

off

@@R

� �
?

Request : start,
Update : 1

/Change : 1

&%
'$

x1

on

� �6

Request : stop,
Update : 1

/Change : 1

Figure A.6: The transition system of Switch

are u, v such that x ′ ∈ f (x , u, v). The possible values for u and v are
described by the labeling of that edge. In our example, the transition from
x0 to x1 describes the first line in the definition of f , and the transition from
x1 to x0 the second line. Everything after the slash (/) is used to indicate
the event output evaluation generated by h during that transition.

Note that the parts of u and v not fixed in the labeling may have any
value.

If for some x , u, and v there is no edge leaving state x having a labeling
describing u and v , we assume f (x , u, v) = {x}, i.e., there is no state change
in state x for the input evaluations u and v . Furthermore, we assume
x ∈ f (x , u,0) for any x and u to obtain stuttering. And if there is no edge
from state x to x ′ describing the event output evaluation of some name N for
some event input evaluation v , we assume h(x , x ′, v)(N) = 0, i.e., there is no
proper event generated. With these default values, stuttering and output
triggering can be checked easily.

A.3.3 The Parallel Interconnection of C/E Systems

Having introduced component names for single condition/event systems, we
are now interested in connecting some systems. As mentioned before, all
components sharing the same name will be connected to each other.

Figure A.7 shows an example with three systems (we do not distinguish
between conditions and events in this example). The component names of
S1, S2, and S3 completely determine the connections between them. All

A.3. The Parallel Interconnection 127

S1

- A

- BB

-C S2C

-A A

-D D

S3

- B

- EE

-F F

- C

Figure A.7: Example of a parallel interconnection

S
- B

- E

-A
-D
-C
-F

Figure A.8: The composition of the system in Figure A.7

outputs of the single systems will become outputs of the composed system,
in this case A, D, C, and F. The inputs of the composed system are all inputs
of the single systems for which there exist no output of the same name. This
results in the input names B and E. Figure A.8 shows a block diagram of
the composed system.

Remark A.16 In control theory, there is at least one more possibility to
describe connections between systems: One can use a function that describes
for each component of a system how this component is connected to other
systems. Such functions have some advantages. For example, one can use
one name for two different components even if they are not connected. This
supports the reuse of modules from a library of systems without having to
rename the components.

Though we do not use this method, it is clear that both methods are
equally expressive and can be transformed into each other.

In Definition A.12, we assured that a name is used at most once within
one system. For a set of systems to be connected to each other, we also have
to ensure that in the whole set of systems all output components must have
different names, since outputs must not be connected to each other. This

128 Appendix A. Condition/Event Systems

requirement is formalized in the following definition.

Definition A.17 (Consistent set of named CESs) For i ∈ {1, . . . ,n},
let Si = (Ūi , V̄i , Ȳi , Z̄i , Si) be a named C/E system. The set {S1, . . . ,Sn} is
called consistent, if(

Ȳi ∪ Z̄i

)
∩
(
Ȳj ∪ Z̄j

)
= ∅

holds for all i , j ∈ {1, . . . ,n} with i 6= j .

The parallel interconnection of C/E systems can now be defined. This
is only a descriptive definition; we do not reason about the existence of a
parallel interconnection for any given set of C/E systems.

Definition A.18 (Parallel interconnection) For i ∈ {1, . . . ,n}, let Si =
(Ūi , V̄i , Ȳi , Z̄i , Si) be a named C/E system. Let {S1, . . . ,Sn} be consistent.
A named C/E system S = (Ū, V̄, Ȳ, Z̄, S) is called parallel interconnection
of S1, . . . ,Sn , if the following conditions hold:

1. The names of the components of S are those of the components of the
single systems, except the inputs for which there exists an output with
the same name:

Ū =
(⋃n

i=1 Ūi

)
\
(⋃n

i=1 Ȳi

)
, Ȳ =

⋃n
i=1 Ȳi ,

V̄ =
(⋃n

i=1 V̄i

)
\
(⋃n

i=1 Z̄i

)
, Z̄ =

⋃n
i=1 Z̄i .

2. For any (sŪ, sV̄, sȲ, sZ̄) ∈ Beh(Ū, V̄, Ȳ, Z̄), we have (sŪ, sV̄, sȲ, sZ̄) ∈ S
if and only if there exist (sŪi

, sV̄i
, sȲi

, sZ̄i
) ∈ Si , for all i ∈ {1, . . . ,n},

such that the following two conditions are satisfied:

(a) Connected components of the single systems share the same sig-
nals: For all i , j ∈ {1, . . . ,n} we have

sŪi |Ūi∩Ȳj
= sȲj |Ūi∩Ȳj

, and

sV̄i |V̄i∩Z̄j
= sZ̄j |V̄i∩Z̄j

.

(b) The signals of the single systems match those of S: For all i ∈
{1, . . . ,n} we have

sŪi |Ūi∩Ū
= sŪ|Ūi∩Ū

, sȲi
= sȲ|Ȳi

, and
sV̄i |V̄i∩V̄

= sV̄|V̄i∩V̄
, sZ̄i

= sZ̄|Z̄i
.

A.3.4 The Parallel Interconnection of Discrete C/E Systems

In Definition A.17, we had to ensure that in a set of named CESs which
are connected to each other, all output names are different. For discrete
systems, this is done analogously in the following definition.

A.3. The Parallel Interconnection 129

Definition A.19 (Consistent set of named DCESs) Given a set of
named DCESs Di with component name sets Ūi , V̄i , Ȳi , and Z̄i , for i ∈
{1, . . . ,n}, the set {D1, . . . ,Dn} is called consistent, if(

Ȳi ∪ Z̄i

)
∩
(
Ȳj ∪ Z̄j

)
= ∅

holds for all i , j ∈ {1, . . . ,n} with i 6= j .

For the remainder of this section, let n ∈ N \ {0}, and, for all i ∈
{1, . . . ,n}, let Di = (Ūi , V̄i ,Xi , Ȳi , Z̄i , fi , gi , hi ,X0,i) be a named DCES.

The following definition introduces a classification of component names
which distinguishes external and internal names.

Definition A.20 (Component name sets) We define some sets of input
and output component names of D1, . . . ,Dn :

Cin =
(⋃n

i=1 Ūi

)
\
(⋃n

i=1 Ȳi

)
, Ein =

(⋃n
i=1 V̄i

)
\
(⋃n

i=1 Z̄i

)
,

Cio =
(⋃n

i=1 Ūi

)
∩
(⋃n

i=1 Ȳi

)
, Eio =

(⋃n
i=1 V̄i

)
∩
(⋃n

i=1 Z̄i

)
,

Cout =
⋃n

i=1 Ȳi , Eout =
⋃n

i=1 Z̄i .

The set Cin contains all condition input component names for which
there exists no output component of that name. These are the names of
the condition signals which are not produced within the system; thus, these
signals are external and have to be provided by the environment of the
compound system. The set Cio contains all condition component names for
which there exist input and output components of that name. These are
the names for the internal condition signals which are exchanged by the
systems. The set Cout contains all output condition component names (it
is a superset of Cio). The sets Ein, Eio, and Eout have analog meanings for
events. Using the notation of Definition A.18, we have Cin = Ū, Ein = V̄,
Cout = Ȳ, and Eout = Z̄.

Looking at the example in Figures A.7 and A.8, this definition leads to
Cin = {B,E}, Cio = {A,C}, and Cout = {A,C,D,F} (provided we only have
conditions).

We use a unique solution property to ensure that there exists a discrete
system with the same semantics as a parallel interconnection of the single
systems’ semantics.

Theorem A.21 Let {D1, . . . ,Dn} be consistent. A named DCES D can be
effectively constructed such that SD is a parallel interconnection of SD1 , . . . ,
SDn , if the following unique solution property holds for D1, . . . ,Dn :

• For all x1 ∈ X1, . . . , xn ∈ Xn , u ∈ Σin
C , there exists a unique y ∈ ΣCio

such that for all i ∈ {1, . . . ,n}, we have

gi

(
xi , (u ∪ y)|Ūi

)
|Ȳi∩Cio = y |Ȳi∩Cio .

130 Appendix A. Condition/Event Systems

• For all x1, x ′1 ∈ X1, . . . , xn , x ′n ∈ Xn , v ∈ Σin
E , there exists a unique

z ∈ ΣEio such that for all i ∈ {1, . . . ,n}, we have

hi

(
xi , x ′i , (v ∪ z)|V̄i

)
|Z̄i∩Eio = z |Z̄i∩Eio .

Before we prove this theorem, we take a look at the possible number of
solutions for the evaluations y ∈ Cio and z ∈ Eio.

Example A.22 Reconsider the system in Figure A.1. We define the DCESs
D1 and D2 formally, this time in a parameterized version (cf. Figure A.9).

D1

a 7→ a1

b 7→ b1

-
Y1

U1

D2

a 7→ a2

b 7→ b2

�

U2

Y2

Figure A.9: Mutually connected DCESs

For i ∈ {1, 2}, let Di = ({Ui}, ∅, {x}, {Yi}, ∅, fi , gi , hi , {x}) be a named
DCES with α(Ui) = α(Yi) = {a,b}, and

• fi(x , u, ∅) = {x} for all u ∈ ΣUi ,

• gi(x , u)(Yi) =
{
ai , if u(Ui) = a
bi , if u(Ui) = b

, and

• hi(x , x , ∅) = ∅.

We have only one state x and empty sets of event names, so the functions fi
and hi are constant, and well-definedness is trivially fulfilled.3 We character-
ize the connections between D1 and D2 by demanding U1 = Y2 6= Y1 = U2.

Since D1 and D2 do not have any event names in common (there are
no event names and alphabets at all), we have Eio = ∅, and the second
condition of unique solution property is trivially fulfilled; the solution is
always z = ∅ ∈ ΣEio . Since there are no external condition inputs, we have
Cin = ∅, and the first condition reduces to finding a unique y ∈ Σ{U1,U2}
such that

g1(x , y |U1
) = y |U2

and g2(x , y |U2
) = y |U1

.

Now consider the following three setups:

1. a1 = a, b1 = b, and a2 = b, b2 = a.

2. a1 = a, b1 = a, and a2 = a, b2 = a.
3For output triggering, note that 0∅ = ∅ (the evaluation with the empty domain).

A.3. The Parallel Interconnection 131

3. a1 = a, b1 = b, and a2 = a, b2 = b.

For each of the three cases, we take a look at the solutions for the two
equations above.

Case 1 has no solutions for y , since the two equations of the unique
solution property are contradictory. No DCES D can be given such that
SD is a parallel interconnection of SD1 and SD2 . We have the existence
of an algebraic loop; this is the case discussed in the introduction using
Figure A.1.

Case 2 has the unique solution y = {U1 7→ a,U2 7→ a}, and, if Theo-
rem A.21 is sound, a DCES for the overall system can be effectively con-
structed, see upcoming Example A.24.

In case 3 we have two solutions: y = {U1 7→ a,U2 7→ a} and y = {U1 7→
b,U2 7→ b}. Theorem A.21 does not cover this case, and we do not consider
multiple solutions here. See [Luk99b] for discussions on multiple solutions.

The previous example could have been formulated using events instead
of conditions. But this is a bit more complex, since well-behavedness (out-
put triggering, to be precise) would force us to use at least two states in
each DCES, or, if we have only one state, to use an external trigger event.
Otherwise, we would not be able to generate any proper output event.

Now we prove Theorem A.21.
Proof. Let D1, . . . ,Dn be consistent, let the unique solution property hold,
and let G(x1, . . . , xn , u) ∈ ΣCio , respectively, H (x1, . . . , xn , x ′1, . . . , x

′
n , v) ∈

ΣEio be the unique solution y , respectively, z , for x1, x ′1 ∈ X1, . . . , xn , x ′n ∈ Xn ,
u ∈ Σin

C , and v ∈ Σin
E .

We construct a named DCES D such that SD is a parallel interconnection
of SD1 , . . . ,SDn . Let D = (Ū, V̄,X , Ȳ, Z̄, f , g , h,X0) be the named DCES
with component names Ū = Cin, V̄ = Ein, Ȳ = Cout, Z̄ = Eout, states
X = X1× . . .×Xn , X0 = X0,1× . . .×X0,n , and, for all x = (x1, . . . , xn) ∈ X ,
x ′ = (x ′1, . . . , x

′
n) ∈ X , u ∈ ΣŪ, v ∈ ΣV̄,

• x ′ ∈ f (x , u, v) if and only if for all i ∈ {1, . . . ,n}:
x ′i ∈ fi(xi , (u ∪G(x , u))|Ūi

, (v ∪H (x , x ′, v))|V̄i
),

• g(x , u) = cupn
i=1gi(xi , (u ∪G(x , u))|Ūi

), and

• h(x , x ′, v) = cupn
i=1hi(xi , x ′i , (v ∪H (x , x ′, v))|V̄i

).

Condition 1 of Definition A.18 holds obviously by Definition A.20. For
proving condition 2, let (sŪ, sV̄, sȲ, sZ̄) ∈ Beh(Ū, V̄, Ȳ, Z̄). We have

(sŪ, sV̄, sȲ, sZ̄) ∈ SD

132 Appendix A. Condition/Event Systems

if and only if (by Definition A.15)

∃r : R≥0 → X (right-continuous, finite-variable) :
1. ∀t ∈ R>0 : r(t) ∈ f (r(t−), sŪ(t−), sV̄(t))
2. ∀t ∈ R≥0 : sȲ(t) = g(r(t), sŪ(t))
3. ∀t ∈ R>0 : sZ̄(t) = h(r(t−), r(t), sV̄(t))
4. r(0) ∈ X0

if and only if (by construction of f , g , h, and X0 of the named DCES D)

∃r : R≥0 → X (right-continuous, finite-variable) :
∀i ∈ {1, . . . ,n} :
1. ∀t ∈ R>0 : r(t)i ∈ fi

(
r(t−)i , (sŪ(t−) ∪G(r(t−), sŪ(t−)))|Ūi

,

(sV̄(t) ∪H (r(t−), r(t), sV̄(t)))|V̄i

)
2. ∀t ∈ R≥0 : sȲ(t)|Ȳi

= gi

(
r(t)i , (sŪ(t) ∪G(r(t), sŪ(t)))|Ūi

)
3. ∀t ∈ R>0 : sZ̄(t)|Z̄i

= hi

(
r(t−)i , r(t)i ,
(sV̄(t) ∪H (r(t−), r(t), sV̄(t)))|V̄i

)
4. r(0)i ∈ X0,i

if and only if (we split the run r into the runs r1, . . . , rn (we abbreviate
r1(·), . . . , rn(·) by r̄(·) in the parameters of G and H), and move the signal
restrictions into the arguments of the unions)

∃ri : R≥0 → Xi , for i ∈ {1, . . . ,n} (right-continuous, finite-variable) :
∀i ∈ {1, . . . ,n} :
1. ∀t ∈ R>0 :

ri(t) ∈ fi
(
ri(t−), (sŪ(t−)|Ūi∩Ū

∪G(r̄(t−), sŪ(t−))|Ūi∩Cio),

(sV̄(t)|V̄i∩V̄
∪H (r̄(t−), r̄(t), sV̄(t))|V̄i∩Eio)

)
2. ∀t ∈ R≥0 : sȲ(t)|Ȳi

= gi

(
ri(t), (sŪ(t)|Ūi∩Ū

∪G(r̄(t), sŪ(t))|Ūi∩Cio)
)

3. ∀t ∈ R>0 : sZ̄(t)|Z̄i
= hi

(
ri(t−), ri(t),
(sV̄(t)|V̄i∩V̄

∪H (r̄(t−), r̄(t), sV̄(t))|V̄i∩Eio)
)

4. ri(0) ∈ X0,i

if and only if (by Definition A.15, and by the fact that the unique solutions
G and H determine for all systems the signal components with names in Cio

and Eio)

∃(sŪi
, sV̄i

, sȲi
, sZ̄i

) ∈ SDi (for all i ∈ {1, . . . ,n}) :
(a) ∀i , j ∈ {1, . . . ,n} :

sŪi |Ūi∩Ȳj
= sȲj |Ūi∩Ȳj

,

sV̄i |V̄i∩Z̄j
= sZ̄j |V̄i∩Z̄j

.

(b) ∀i ∈ {1, . . . ,n} :
sŪi |Ūi∩Ū

= sŪ|Ūi∩Ū
, sȲi

= sȲ|Ȳi
,

sV̄i |V̄i∩V̄
= sV̄|V̄i∩V̄

, sZ̄i
= sZ̄|Z̄i

.

A.3. The Parallel Interconnection 133

Thus, SD is a parallel interconnection of SD1 , . . . ,SDn .
The construction in this proof is the basis for our parallel interconnection

operator for DCESs.

Definition A.23 (Discrete parallel interconnection) Let {D1, . . . ,Dn}
be consistent, and let the unique solution property of Theorem A.21 hold.
The named DCES D gained from the construction above is called the dis-
crete parallel interconnection of D1, . . . ,Dn , denoted by D1‖ . . . ‖Dn .

In the following example, two small DCESs are composed using the par-
allel interconnection operator.

Example A.24 Consider again the DCES D1 and D2 of Example A.22.
We take a look at case 2, where a1 = a, b1 = a, and a2 = a, b2 = a. As
stated already, the unique solution property of Theorem A.21 holds, and the
solutions are G(x , ∅) = {U1 7→ a,U2 7→ a} and H (x , x , ∅) = ∅. So we can
define

D = D1‖D2,

and by Definition A.23 above and the construction in the proof of Theo-
rem A.21, we get the DCES D = (∅, ∅, {(x , x)}, Ȳ, ∅, f , g , h, {(x , x)}) with
Ȳ = {U1,U2}, α(U1) = α(U2) = {a,b}, and

• f ((x , x), ∅, ∅) = {(x , x)},

• g((x , x), ∅) = {U1 7→ a,U2 7→ a}, and

• h((x , x), (x , x), ∅) = ∅.

Thus, D has one state, no inputs, and two condition output components
named U1 and U2; both deliver constantly the condition symbol a.

There is only one run of D; so by Definition A.15, we have as formal
semantics of D the CES SD = (∅, ∅, Ȳ, ∅, SD) with

SD = {((∅, ∅, sȲ, ∅) | sȲ(t) = {U1 7→ a,U2 7→ a} for all t ∈ R≥0}.

134 Appendix A. Condition/Event Systems

Appendix B

Verification of Discrete
Condition/Event Systems

This appendix shows how to use the model checker SMV [McM93, McM00]
to verify discrete condition/event systems. A set of DCESs is translated into
an SMV input file describing the parallel interconnection of these DCESs.
Then the SMV model checker is used to verify properties of this system
which are described as a CTL formula [CE82].

B.1 Transforming a System of DCESs into the
SMV framework

Given a set of discrete condition/event systems, we transform each DCES
into an SMV module. While communication between condition/event sys-
tems is achieved by using condition and event signals, SMV modules com-
municate via shared variables. Therefore, we introduce a variable for each
event output occurring in one of the systems. This variable is local to and
written by the module of the system generating the respective event, and it
can be read by the modules of other systems having this event as input.

Conditions are handled differently. Since a condition output symbol only
depends on a system’s current state and its current condition input symbols,
we do not need to introduce a variable, but use SMV’s DEFINE declaration
to describe the mapping of the state and the input symbols to the output
symbol in a direct way. As an advantage of this construction, no variable
is needed to store the condition output symbol, which can significantly de-
crease memory and time consumption during the model checking process.
The DEFINE declaration will be given in the module of the system generating
the respective condition, and the modules of systems having this condition
as input can access it.

135

136 Appendix B. Verification of Discrete Condition/Event Systems

B.1.1 Conversion of Identifiers

The syntax of SMV only allows letters (a, . . . , z, A, . . . , Z), digits (0, . . . ,
9), the hyphen (-), and the underscore symbol (_) in its identifiers, so some
conversion might be necessary when transforming a DCES into SMV code.
In the following we implicitly assume that such a conversion is performed
when needed. This will be the case if a non-typewriter font face appears
in the SMV code shown.

B.1.2 Translating a DCES into an SMV Module

Let D = (Ū, V̄,X , Ȳ, Z̄, f , g , h,X0) be a named DCES with

Ū = {U1, . . . ,UnU }, V̄ = {V1, . . . ,VnV },X = {x1, . . . , xn},
Ȳ = {Y1, . . . ,YnY }, Z̄ = {Z1, . . . ,ZnZ },X0 = {x0,1, . . . , x0,m},

and some identifier Name assigned to the system.
First we generate the module header. The name of the module is com-

posed by appending _module to Name. The parameters of the module are
all input names of D.

MODULE Name_module(U1, . . . ,UnU ,V1, . . . ,VnV)

If there are no parameters, i.e., Ū = V̄ = ∅, we have to omit the parentheses.
We need one local variable state to store the control state of the system:

VAR
state: {x1, . . . ,xn};

For each of the output event names ofD we introduce one variable storing
the symbol of that component:

VAR
Z1: {symbols(Z1)};
...
ZnZ : {symbols(ZnZ)};

Here symbols(N) denotes a comma separated list of the symbols in α(N).
If N is an event name (here this is always the case), this list includes 0,
denoting the null symbol 0. If there are no output events (Z̄ = ∅), we omit
this VAR declaration.

The variable state is initialized non-deterministically with one of the
initial states:

INIT
state in {x0,1, . . . ,x0,m}

All output event variables are initialized with the null symbol:

INIT
Z1 = 0 & . . . & ZnZ = 0

B.1. Transforming a System of DCESs into the SMV framework 137

If there are no event outputs (Z̄ = ∅), we omit this INIT declaration.
For each condition output name Yi , i ∈ {1, . . . ,nY }, we examine g to

generate a DEFINE declaration computing the condition output symbol:

DEFINE
Y1 :=

case state=x0: . . . ;
...
state=xn: . . . ;

esac;
...
YnY :=

case state=x0: . . . ;
...
state=xn: . . . ;

esac;

The “. . . ” above must be replaced by SMV expressions (consisting of further
case . . . esac constructs reading the values of the variables U1, . . . ,UnU)
computing the respective condition output symbol for Yi .

If for some i ∈ {1, . . . ,nY } and j ∈ {1, . . . ,n} the condition output
symbol for Yi at state xj does not depend on the condition inputs (or there
are no condition inputs at all, i.e., Ū = ∅), then g(xj , ·)(Yi) is constant, and
we can simply replace the “. . . ” above by this constant. Figure B.5 on
page 143 illustrates this. If there are no condition outputs (Ȳ = ∅), we omit
this DEFINE declaration.

Finally, we have to implement the transition function f and the event
output function h. We make use of SMV’s TRANS declaration which describes
a transition relation between the current variable assignments and the vari-
able assignments after one transition step. A transition step in SMV models
a transition of the DCES in the following way: The variable assignments
before the step model the control state and the condition input symbols at
time t−, and the variable assignments after the step describe the control
state and the events at time t .

Thus, we can access the control state at time t− by using state, a
condition input symbol at time t− by using its name Ui , and for time t , we
access the state by using next(state) and an event with name N by using
next(N). Figure B.1 shows the resulting TRANS declaration.

The inner block from “(U1 = u1” to “) |” has to be written for all
u1 ∈ α(U1), . . . , unU ∈ α(UnU), v1 ∈ α(V1), . . . , vnV ∈ α(VnV), and
x ′1 ∈ f (x1, {U1 7→ u1, . . . ,UnU 7→ uNU

}, {V1 7→ v1, . . . ,VnV 7→ vNV
}). Analo-

gously this has to be done for the states x2, . . . , xn .

138 Appendix B. Verification of Discrete Condition/Event Systems

TRANS
(state = x1) &
((U1 = u1 &

...
UnU = unU &
next(V1) = v1 &
...
next(VnV) = vNV

&
next(state) = x ′1 &
next(Z1) = h(x1, x ′1, {V1 7→ v1, . . . ,VnV 7→ vNV

})(Z1) &
...
next(ZnZ) = h(x1, x ′1, {V1 7→ v1, . . . ,VnV 7→ vNV

})(ZnZ) &
) |
...

) |
...
(state = xn) &
(
...
)

Figure B.1: The TRANS declaration representing the functions f and h

&%
'$

x1

?

U1 : on,
V1 : set

/Z1 : alarm

&%
'$

x2

TRANS
...
(state = x_1) &
(

...
(U_1 = on &
next(V_1) = set &
next(state) = x_2 &
next(Z_1) = alarm

) |
...

Figure B.2: A DCES transition and its SMV representation

B.1. Transforming a System of DCESs into the SMV framework 139

Example B.1 Figure B.2 shows a transition of a DCES and the resulting
piece of SMV code.

B.1.3 Combining the SMV Modules

Now all modules have to be composed into one interconnected system. We
connect the modules in same way as the parallel interconnection in Sec-
tion A.3 does: If a module M generates the output for a name N, all other
modules having N as an input read the local variable N of M to obtain their
input value.

If there are inputs for which there exists no matching output in the
system, these inputs are considered to be external, i.e., their values must be
provided by some environment. In SMV we define global variables for these
external inputs; by default these can take on any value of their respective
domains. This leads to a “chaotic” behavior of the environment, which is
a typical test situation for open systems. Alternatively, we can use some
additional SMV code to control these variables if we want to model a more
restrictive behavior of the environment.

We do not have to introduce global variables for outputs, since these are
stored in the modules’ local variables. If we need to access them for model
checking purposes, they can be read directly in a CTL formula (cf. Exam-
ple B.2 on page 142).

Let Di = (Ūi , V̄i ,Xi , Ȳi , Z̄i , fi , gi , hi ,X0,i) be a named DCES, identified
as Namei , for i ∈ {1, . . . ,n}. Like in Definition A.20 we define the external
inputs to our system:

Cin =

(
n⋃

i=1

Ūi

)
\

(
n⋃

i=1

Ȳi

)
and Ein =

(
n⋃

i=1

V̄i

)
\

(
n⋃

i=1

Z̄i

)
.

We number the elements of these sets like this:

Cin = {Cin
1 , . . . ,C

in
l } and Ein = {Ein

1 , . . . ,E
in
m}.

The SMV program starts with the main module.

MODULE main

Now we define the variables of this module. These variables are the
global variables for the other modules.

We introduce a global variable for each element of Cin and Ein:

VAR
Cin

1 : {symbols(Cin
1)};

...
Cin

l : {symbols(Cin
l)};

Ein
1 : {symbols(Ein

1)};
...
Ein

m: {symbols(Ein
m)};

140 Appendix B. Verification of Discrete Condition/Event Systems

If there are no external inputs (Cin = Ein = ∅), we omit this VAR declaration.
Since conditions are not given as variables but only as DEFINE declara-

tions, we have to introduce the condition symbols we want use in our system
to SMV’s syntax checker. Therefore, we define a dummy variable that lists
all these symbols:

VAR
conditionsymbols: {symbols(

⋃n
i=1 Ūi ∪ Ȳi)};

If there are no conditions in the system, we omit this VAR declaration.
Now we instantiate all the DCESs as modules. This is the place where

the outputs of one module can be connected to the inputs of other modules.
We define a helpful function

Prod(N) =
{

N, if N ∈ Cin ∪ Ein

Namei.N, if N ∈ Ȳi ∪ Z̄i for an i ∈ {1, . . . ,n} ,

which, given a name N, either delivers this name itself if N is an external
input, or composes the identifier of the DCES producing the signal named
N, a dot, and N. Thus, Prod is an SMV expression pointing either to the
global variable we defined for that component, or giving us access to the
local variable of the module containing the output symbol we are looking
for.

Now we can instantiate all the modules, and let Prod do the work of
making the right connections:

VAR
Name1: Name1_module(Prod(U1

1), . . . ,Prod(U1
n1
U
),

Prod(V1
1), . . . ,Prod(V1

n1
V

));
...
Namen: Namen_module(Prod(Un

1), . . . ,Prod(Un
n1
U
),

Prod(Vn
1), . . . ,Prod(Vn

nn
V

));

with Ūi = {Ui
1, . . . ,U

i
n i
U
} and V̄i = {Vi

1, . . . ,V
i
n i
V
}, for i ∈ {1, . . . ,n}. If Di

has no inputs (Ūi = V̄i = ∅), its module has no parameters, and we have to
omit the parentheses as well.

The last thing we have to do is to initialize the external input events
with the null event:

INIT
Ein

1 = 0 & . . . & Ein
m = 0

If there are no external input events (Ein = ∅), we omit this INIT declaration.
This completes the transformation of a set of DCESs into an SMV in-

put file. One or more SPEC declarations can now be used to provide the
SMV model checker with some properties of the system we want to check.
Section B.2 discusses this is detail.

B.1. Transforming a System of DCESs into the SMV framework 141

B.1.4 Well-Definedness

The transformation of a set of DCESs into SMV code can be regarded as
an implementation of the parallel interconnection introduced in Section A.3.
However, the parallel interconnection is only well-defined if the set of DCESs
is consistent (Definition A.19), and if the unique solution property (Theo-
rem A.21) or a multiple solution property holds.

Consistency can be checked easily by inspecting the systems’ output
names. The unique/multiple solution property, which must be fulfilled to
avoid algebraic loops in the system, is much more difficult to check. Some
algebraic loops can be detected by SMV. Since we implement conditions and
events differently in SMV, we look at them separately when checking the
unique/multiple solution property.

Condition outputs are given as DEFINE declarations, and SMV allows
no circular definitions there. Since algebraic loops are always based on a
circular definition, all algebraic loops using condition signals are detected
by SMV, and the input file will be rejected with a “recursively defined” error
message. Even if there is a circular definition without an algebraic loop, like
in the cases 2 and 3 of Example A.22, SMV will reject the input file. This
is no severe restriction, since in most systems the condition output does not
depend on the condition input, but is only an abstraction of the system’s
control state. In this case there are no condition-based algebraic loops.

Event outputs are given within the TRANS declaration. If there is an
algebraic loop based on events, the transition relation generated by SMV is
not total, i.e., for some inputs and some control states of the modules, there
is no successor state, and a deadlock occurs. SMV detects such a deadlock
state only if this state is unavoidable, i.e., it is eventually reached no matter
how nondeterministic choices (including external inputs) are made. For
example, if an external input event Update : 1 causes an algebraic loop, and
Update is not fixed by some SMV construct, SMV does not generate the
Update : 1 event, and the deadlock state remains undetected. To be on the
safe side, checking the unique or multiple solution property (beforehand or
using SMV) is recommended.

B.1.5 A Complete Example

We illustrate the translation of a DCES into SMV code using the DCES
Switch already used in Section A.3.2.

The functionality of Switch, defined by Figure B.4, is as follows: The
system is either in the control state x0 or x1, and this information is passed to
the environment by the condition output symbol Status : off or Status : on.
Initially, Switch is at state x0. If the environment wants to change the
state of Switch to x1, it sets the condition Request : start and sends the
event Update : 1, which immediately triggers the state change in Switch.

142 Appendix B. Verification of Discrete Condition/Event Systems

Switch

-Request

{start, stop}

-Update

{0, 1}

-Status

{off, on}

-Change

{0, 1}

Figure B.3: Block diagram of Switch

&%
'$

x0

off

@@R

� �
?

Request : start,
Update : 1

/Change : 1

&%
'$

x1

on

� �6

Request : stop,
Update : 1

/Change : 1

Figure B.4: The transition system of Switch

Analogously, Request : stop and Update : 1 will force the state transition
back to x0. Note that changing Request without sending Update : 1 does not
change the state.

Whenever the state of Switch changes, the event Change : 1 is generated.
So if Update : 1 is sent twice without a change of Request in between, there
is at most one Update : 1 event.

We apply the transformation to SMV on the DCES Switch. This leads
to the code shown in Figure B.5.

Obviously the expression representing the transition relation can be writ-
ten in a more compact way.

B.2 Verification with SMV

SMV accepts CTL formulae [CE82] for checking system properties. The
syntax used by SMV is given in [McM00]. Safety and liveness properties
can be checked, and the evaluation of formulae can be restricted to fair
paths using a second formula to describe all paths which are considered to
be fair.

Example B.2 We want to verify that whenever the DCES Switch generates
the Change : 1 event, an Update : 1 event must occur simultaneously. To
verify this, we add the following lines to the module main of the SMV input

B.2. Verification with SMV 143

MODULE main

VAR Request: {start,stop};

Update: {0,1};

VAR conditionsymbols: {off,on,start,stop};

VAR Switch: Switch_module(Request,Update);

INIT Update=0

MODULE Switch_module(Request,Update)

VAR state: {x_0,x_1};

VAR Change: {0,1};

INIT state in {x_0}

DEFINE Status := case

state=x_0: off;

state=x_1: on;

esac;

INIT Change=0

TRANS

(state=x_0) &

((Request=start & next(Update)=0 & next(state)=x_0 & next(Change)=0) |

(Request=stop & next(Update)=0 & next(state)=x_0 & next(Change)=0) |

(Request=start & next(Update)=1 & next(state)=x_1 & next(Change)=1) |

(Request=stop & next(Update)=1 & next(state)=x_0 & next(Change)=0)

) |

(state=x_1) &

((Request=start & next(Update)=0 & next(state)=x_1 & next(Change)=0) |

(Request=stop & next(Update)=0 & next(state)=x_1 & next(Change)=0) |

(Request=start & next(Update)=1 & next(state)=x_1 & next(Change)=0) |

(Request=stop & next(Update)=1 & next(state)=x_0 & next(Change)=1)

)

Figure B.5: The SMV code for the DCES Switch

file:

SPEC
AG (Switch.Change=1 -> Update=1)

The output of SMV is:

-- specification AG (Switch.Change = 1 -> Update = 1) is true

144 Appendix B. Verification of Discrete Condition/Event Systems

Alternatively, we can put the lines above into the module Switch_module,
but since Change is a local variable there, we have to write Change=1 instead
of Switch.Change=1.

Now we try to prove that whenever an an Update : 1 event occurs, a
Change : 1 event is generated:

SPEC
AG (Update=1 -> Switch.Change=1)

The output of SMV is:

-- specification AG (Update = 1 -> Switch.Change = 1) is false
-- as demonstrated by the following execution sequence
state 1.1:
Request = stop
Update = 0
conditionsymbols = stop
Switch.Status = off
Switch.state = x_0
Switch.Change = 0

state 1.2:
Update = 1

The execution sequence shows that if we are at state x0, the input condition
is Request : stop, and the event Update : 1 occurs, no Change : 1 event is
generated, which is a counterexample to our given specification.

Bibliography

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs,
Thomas A. Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo
Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science,
138(1):3–34, 1995.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and
Pei-Hsin Ho. Hybrid automata: An algorithmic approach to
the specification and verification of hybrid systems. In Hybrid
Systems, volume 736 of Lecture Notes in Computer Science,
pages 209–229. Springer-Verlag, 1993.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, April 1994.

[Bau00] Nanette Bauer. A demonstration plant for the control and
scheduling of multi-product batch operations. Available at
http://www-verimag.imag.fr/VHS/CS7/cs7descr.ps, 2000.

[Bau03] Nanette Bauer. Formale Analyse von Sequential Function
Charts. PhD thesis, Lehrstuhl für Anlagensteuerungstechnik,
Universität Dortmund, 2003.

[BG90] Albert Benveniste and Paul Le Guernic. Hybrid dynamical
systems theory and the Signal language. IEEE Transactions
on Automatic Control, 35(5):535–546, May 1990.

[BG92] Gérard Berry and Georges Gonthier. The Esterel synchronous
programming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87–152, November
1992.

[BGL+00] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César
Muñoz, Sam Owre, Harald Rueß, John Rushby, Vlad Rusu,
Hassen Säıdi, N. Shankar, Eli Singerman, and Ashish Tiwari.
An overview of SAL. In C. Michael Holloway, editor, LFM

145

146 Bibliography

2000: Fifth NASA Langley Formal Methods Workshop, pages
187–196, Hampton, VA, USA, June 2000. NASA Langley Re-
search Center.

[BHL02] Nanette Bauer, Ralf Huuck, and Ben Lukoschus. A stopwatch
semantics for hybrid controllers. In b ’02: The XV. IFAC
World Congress, Barcelona, Spain, July 21–26, 2002, 2002.

[BHLL00a] Sébastien Bornot, Ralf Huuck, Yassine Lakhnech, and Ben
Lukoschus. An abstract model for sequential function charts.
In René Boel and Geert Stremersch, editors, Discrete Event
Systems: Analysis and Control, Proceedings of WODES 2000:
5th Workshop on Discrete Event Systems, Ghent, Belgium,
August 21–23, 2000, The Kluwer International Series in Engi-
neering and Computer Science, pages 255–264, Boston, Dor-
drecht, London, 2000. Kluwer Academic Publishers.

[BHLL00b] Sébastien Bornot, Ralf Huuck, Yassine Lakhnech, and Ben
Lukoschus. Verification of sequential function charts using
SMV. In Hamid R. Arabnia, editor, PDPTA 2000: Inter-
national Conference on Parallel and Distributed Processing
Techniques and Applications, Monte Carlo Resort, Las Vegas,
Nevada, USA, June 26–29, 2000, volume V, pages 2987–2993.
CSREA Press, June 2000.

[BHLL04] Nanette Bauer, Ralf Huuck, Sven Lohmann, and Ben
Lukoschus. Sequential Function Charts: Die Notwendigkeit
formaler Analyse. atp – Automatisierungstechnische Praxis,
2004. Accepted for publication.

[BKSL00] Nanette Bauer, Stefan Kowalewski, Guido Sand, and Thomas
Löhl. A case study: Multi product batch plant for the
demonstration of control and scheduling problems. In Sebas-
tian Engell, Stefan Kowalewski, and Janan Zaytoon, editors,
ADPM 2000: The 4th International Conference on Automa-
tion of Mixed Processes: Hybrid Dynamic Systems, Dortmund,
Germany, September 18–19, 2000, Berichte aus der Automa-
tisierungstechnik, pages 383–388, Aachen, Germany, 2000.
Universität Dortmund, Lehrstuhl Anlagensteuerungstechnik,
Shaker Verlag.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthe-
sis of synchronization skeletons for branching time temporal
logic. In Dexter Kozen, editor, Logics of Programs Workshop,
IBM Watson Research Center, Yorktown Heights, New York,

Bibliography 147

May 1981, volume 131 of Lecture Notes in Computer Science,
pages 52–71. Springer-Verlag, 1982.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model Checking. MIT Press, January 2000.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John
Plaice. Lustre: a declarative language for programming syn-
chronous systems. In 14th ACM Symposium on Principles of
Programming Languages, München, January 1987.

[DA92] René David and Hassane Alla. Petri Nets and Grafcet: Tools
for Modelling Discrete Event Systems. Prentice Hall, June
1992.

[Dij00] Edsger W. Dijkstra. The end of computing science? Commu-
nications of the ACM, 44(3):92, 2000.

[dRdBH+01] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann,
Jozef Hooman, Yassine Lakhnech, Mannes Poel, and Job
Zwiers. Concurrency Verification: Introduction to Composi-
tional and Noncompositional Methods. Number 54 in Cam-
bridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, UK, November 2001.

[EKKP95] Sebastian Engell, Stefan Kowalewski, Bruce Krogh, and Jörg
Preußig. Condition/event systems: A powerful paradigm for
timed and untimed discrete models of technical systems. In
Felix Breitenecker and Irmgard Husinsky, editors, EUROSIM
’95, Vienna, Austria, September 11–15, 1995, pages 421–426.
Elsevier, 1995.

[FMS01] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in
the key scheduling algorithm of RC4. In 8th Workshop on Se-
lected Areas in Cryptography, number 2259 in Lecture Notes in
Computer Science, pages 1–24. Springer-Verlag, August 2001.

[Fre23] Gottlob Frege. Logische Untersuchungen. Dritter Teil: Gedan-
kengefüge. Beiträge zur Philosophie des Deutschen Idealismus,
3(1):36–51, 1923. English translation in [Fre77].

[Fre77] Gottlob Frege. Compound thoughts. In P. Geach and N. Black,
editors, Logical Investigations. Blackwells, Oxford, 1977.

[FSE+01] Goran F. Frehse, Olaf Stursberg, Sebastian Engell, Ralf Hu-
uck, and Ben Lukoschus. Verification of hybrid controlled
processing systems based on decomposition and deduction.

148 Bibliography

In ISIC 2001: 2001 IEEE International Symposium on In-
telligent Control, Mexico City, Mexico, September 5–7, 2001,
pages 150–155. IEEE Control Systems Society, IEEE Press,
2001.

[FSE+02] Goran Frehse, Olaf Stursberg, Sebastian Engell, Ralf Huuck,
and Ben Lukoschus. Modular analysis of discrete controllers
for distributed hybrid systems. In b ’02: The XV. IFAC World
Congress, Barcelona, Spain, July 21–26, 2002, 2002.

[GGB87] Thierry Gauthier, Paul Le Guernic, and Löic Besnard. Signal,
a delarative language for synchronous programming of real-
time systems. In Proc. 3rd Conf. on Functional Programming
Languages and Computer Architectures, volume 274. Springer-
Verlag, 1987.

[Hal93] Nicolas Halbwachs. Synchronous Programming of Reactive
Systems. Kluwer Academic Publishers, 1993.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HyTech: a model checker for hybrid systems. International
Journal on Software Tools for Technology Transfer, 1:110–122,
1997.

[HLFE02] Ralf Huuck, Ben Lukoschus, Goran Frehse, and Sebastian
Engell. Compositional verification of continuous-discrete sys-
tems. In S. Engell, G. Frehse, and E. Schnieder, editors, Mod-
elling, Analysis and Design of Hybrid Systems, volume 279
of Lecture Notes in Control and Information Sciences, pages
225–244. Springer-Verlag, 2002.

[HLL01] Ralf Huuck, Ben Lukoschus, and Yassine Lakhnech. Verifying
untimed and timed aspects of the experimental batch plant.
European Journal of Control, 7(4):400–415, September 2001.
Special Issue: Verification of Hybrid Systems – Results of a
European Union Esprit Project.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-
Hall International, 1985.

[Huu03] Ralf Huuck. Software Verification for Programmable Logic
Controllers. PhD thesis, Christian-Albrechts-Universität
zu Kiel, Germany, April 2003. http://e-diss.uni-kiel.de/
diss 726/.

[IEC92] International Electrotechnical Commission, Technical Com-
mittee No. 848. IEC 60848: Preparation of function charts
for control systems, 1992.

Bibliography 149

[IEC98] International Electrotechnical Commission, Technical Com-
mittee No. 65. Programmable Controllers – Programming Lan-
guages, IEC 61131-3, second edition, November 1998. Com-
mittee draft.

[Int94] Pentium r© processors: Statistical analysis of floating point
flaw. Intel white paper, Intel Corporation, November 1994.

[Jon83] Cliff B. Jones. Tentative steps towards a development method
for interfering programs. ACM Transactions on Programming
Languages and Systems, 5(4):596–619, 1983.

[Kow98] Stefan Kowalewski. Description of VHS case study 1 “experi-
mental batch plant”, July 1998. Draft.

[KS98] Stefan Kowalewski and Olaf Stursberg. The batch evapora-
tor: A benchmark example for safety analysis of processing
systems under logic control. In WODES ’98: 4th Interna-
tional Workshop on Discrete Event Systems, Cagliari, Italy,
August 26–28, 1998, pages 307–307, London, 1998. IEE, IEE
Publishing.

[Lam94] Leslie Lamport. LATEX: A Document Preparation System.
Addison-Wesley Publishing Company, second edition, 1994.

[Lev95] Nancy G. Leveson. Safeware: System Safety and Computers.
Addison-Wesley, 1995.

[LL+96] Jacques-Louis Lions, Lennart Lübeck, et al. Ariane 5: Flight
501 failure – report by the inquiry board. Press Release 33-
1996, European Space Agency, Paris, July 1996.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in
a nutshell. International Journal on Software Tools for Tech-
nology Transfer, 1(1–2):134–152, October 1997.

[LSVW99] Nancy Lynch, Roberto Segala, Frits W. Vaandrager, and H.B.
Weinberg. Hybrid I/O automata. Technical Report CSI-
R9907, Computing Science Institute, University of Nijmegen,
April 1999.

[LT93] Nancy G. Leveson and Clark S. Turner. An invenstigation of
the Therac-25 accidents. IEEE Computer, 26(7):18–41, July
1993.

[Luk99a] Ben Lukoschus. An abstract model of VHS case study 1 (ex-
perimental batch plant). Technical Report TR-ST-99-2, Chair
of Software Technology, Institute of Computer Science and

150 Bibliography

Applied Mathematics, Christian-Albrechts-University of Kiel,
May 1999.

[Luk99b] Ben Lukoschus. Composition and verification of condition/
event systems. Technical Report TR-ST-99-1, Chair of Soft-
ware Technology, Institute of Computer Science and Applied
Mathematics, Christian-Albrechts-University of Kiel, May
1999.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of pro-
cesses. IEEE Transactions on Software Engineering, 7(7):417–
426, 1981.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publisher, 1993.

[McM00] Kenneth L. McMillan. The SMV system. Carnegie Mellon
University, November 2000. Manual for SMV version 2.5.4.

[Moo65] Gordon E. Moore. Cramming more components onto inte-
grated circuits. Electronics, 38(8), April 1965.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A
prototype verification system. In Deepak Kapur, editor, 11th
International Conference on Automated Deduction (CADE),
volume 607 of Lecture Notes in Artificial Intelligence, pages
748–752, Saratoga, NY, June 1992. Springer-Verlag.

[OY93] Alfredo Olivero and Sergio Yovine. KRONOS: A Tool for Veri-
fying Real-Time Systems. User’s Guide and Reference Manual.
Verimag, Grenoble, France, 1993.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings
of the 18th Symposium on Foundations of Computer Science,
pages 46–57, 1977.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and ver-
ification of concurrent systems in CESAR. In M. Dezani-
Ciancaglini and U. Montanari, editors, Proceedings of the 5th
International Symposium on Programming, Turin, April 6–8,
1982, pages 337–350. Springer-Verlag, 1982.

[SIR01] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. Us-
ing the Fluhrer, Mantin, and Shamir attack to break WEP.
Technical Report TD-4ZCPZZ, AT&T Labs, August 2001.

[SK91] Ramavarapu S. Sreenivas and Bruce H. Krogh. On condi-
tion/event systems with discrete state realizations. In Discrete

Bibliography 151

Event Dynamic Systems: Theory and Applications 1, pages
209–236. Kluwer Academic Publishers, Boston, USA, 1991.

[VHS] Verification of Hybrid Systems – European ESPRIT long-term
research project 26270. http://www-verimag.imag.fr/VHS/.

[WS04] Guy Webster and Donald Savage. Mars exploration rover mis-
sion status. JPL/NASA News Release 2004-052, February
2004.

[ZdBdR84] Job Zwiers, Arie de Bruin, and Willem-Paul de Roever. A
proof system for partial correctness of dynamic networks of
processes (extended abstract). In Edmund Clarke and Dexter
Kozen, editors, Logic of Programs Workshop, Carnegie Mellon
University, Pittsburgh, PA, June 6–8, 1983, volume 164 of
Lecture Notes in Computer Science, pages 513–527. Springer-
Verlag, 1984.

[Zwi89] Job Zwiers. Compositionality and Partial Correctness, volume
321 of Lecture Notes in Computer Science. Springer-Verlag,
1989.

	List of Figures
	List of Tables
	1 Introduction
	1.1 The Subject of the Thesis
	1.2 Programmable Logic Controllers
	1.3 Formal Verification
	1.3.1 Challenges in Formal Verification
	1.3.2 The State Explosion Problem
	1.3.3 Optimizing the Model

	1.4 Case Studies
	1.5 Technical Contributions of the Thesis
	1.5.1 Analysis and Definition of PLC Software Semantics
	1.5.2 Automatic Generation of SMV Code
	1.5.3 Modeling of Hardware Components
	1.5.4 Compositional Verification
	1.5.5 Communicating Linear Hybrid Automata

	1.6 Structure of the Thesis
	1.7 Bibliographic Notes
	1.8 Acknowledgments

	2 Programmable Logic Controllers
	2.1 What is a PLC?
	2.2 Fields of Applications
	2.3 Programming PLCs
	2.3.1 The IEC 61131-3 Standard

	2.4 PLC Semantics
	2.4.1 SFC Syntax
	2.4.2 Operational SFC Semantics

	2.5 Verification of SFC Programs

	3 Case Studies
	3.1 The Experimental Batch Plant
	3.2 The Multi-Product Batch Plant

	4 Modular Verification
	4.1 Introduction
	4.2 The Modular Verification Approach
	4.3 Example
	4.3.1 Properties

	4.4 Plant Model
	4.4.1 Physical Devices
	4.4.2 Control Programs

	4.5 Transformation to SMV
	4.6 Verification
	4.6.1 Example
	4.6.2 Verification Results

	4.7 Discussion

	5 Compositional Verification
	5.1 Introduction
	5.2 The Compositional Verification Approach
	5.2.1 Decomposition
	5.2.2 Abstraction and Modeling
	5.2.3 Local Verification
	5.2.4 Deduction

	5.3 Example
	5.3.1 Desired Properties

	5.4 Plant Model
	5.4.1 Plant Hardware
	5.4.2 Plant Software

	5.5 Compositional Verification
	5.5.1 Establishing Local Specifications
	5.5.2 Desired Properties
	5.5.3 Plant Specifications
	5.5.4 Deduction
	5.5.5 Temporal Induction

	5.6 Algorithmic Verification
	5.7 Discussion

	6 Hybrid Systems
	6.1 Introduction
	6.2 Communicating Linear Hybrid Automata
	6.2.1 Variables
	6.2.2 Syntax
	6.2.3 Computation Semantics
	6.2.4 Parallel Composition
	6.2.5 Trace Semantics

	6.3 Propositional Linear Temporal Logic
	6.3.1 Syntax
	6.3.2 Semantics
	6.3.3 PLTL for CLHA

	6.4 Example
	6.4.1 CLHA Model
	6.4.2 Verification With HyTech

	7 Conclusions
	7.1 Summary
	7.2 Lessons Learned
	7.2.1 Programmable Logic Controllers
	7.2.2 Abstraction and Modeling
	7.2.3 Modular Verification
	7.2.4 Compositional Verification

	7.3 Future Work

	A Condition/Event Systems
	A.1 Introduction
	A.1.1 Notational Conventions

	A.2 The Condition/Event System Framework
	A.2.1 Conditions, Events, and Signals
	A.2.2 Condition/Event Systems
	A.2.3 Discrete Condition/Event Systems

	A.3 The Parallel Interconnection
	A.3.1 Adding Component Names to C/E Systems
	A.3.2 Graphical Descriptions of Discrete C/E Systems
	A.3.3 The Parallel Interconnection of C/E Systems
	A.3.4 The Parallel Interconnection of Discrete C/E Systems

	B Verification of Discrete Condition/Event Systems
	B.1 Transforming a System of DCESs into the SMV framework
	B.1.1 Conversion of Identifiers
	B.1.2 Translating a DCES into an SMV Module
	B.1.3 Combining the SMV Modules
	B.1.4 Well-Definedness
	B.1.5 A Complete Example

	B.2 Verification with SMV

	Bibliography

