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Abstract

This thesis deals with approximation algorithms for problems in mathematical

programming, combinatorial optimization, and their applications.

We first study the Convex Min-Max Resource-Sharing problem (the Pack-

ing problem as the linear case) with M nonnegative convex constraints on a convex

set B, which is a class of convex programming. In general block solvers are required

for solving the problems. Based on a Lagrangian decomposition method via a loga-

rithmic potential reduction, we generalize the algorithm by Grigoriadis et al. to the

case with only weak approximate block solvers (i.e. with only constant, logarith-

mic or even worse approximation ratios). In this way we present an approximation

algorithm for the Convex Min-Max Resource-Sharing problem that needs at

most O(M(ln M+ε−2 ln ε−1)) calls to the block solver for any given relative accuracy

ε ∈ (0, 1). It is the first bound independent of the data and the approximation ratio

of the block solver for this general Convex Min-Max Resource-Sharing prob-

lem. In the case of small ratios we propose an improved approximation algorithm

with at most O(M(ln M + ε−2)) calls to the block solver.

As an application of the Convex Min-Max Resource-Sharing problem, we

study the Multicast Congestion problem in communication networks. We are

given a graph G = (V,E) to represent a communication network where |V | = n

and |E| = m, and a set of multicast requests S1, . . . , Sk ⊆ V . A feasible solution

to the Multicast Congestion problem in communication networks is a set of k

trees T1, . . . , Tk where Ti connects the vertices in Si. The goal of the Multicast

Congestion problem is to find a solution of k trees minimizing the maximum

edge congestion (the number of times an edge is used). We develop a randomized

asymptotic approximation algorithm for the Multicast Congestion problem in

communication networks based on our approximation algorithm for the Convex
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Min-Max Resource-Sharing problem. We show that our algorithm is able to

overcome the difficulties of an exponential number of variables and a weak block

solver for the Steiner tree problem. For any given relative accuracy ε ∈ (0, 1) our

approximation algorithm delivers a solution with a constant factor times the optimal

value with an additive term in O(m(ln m + ε−2 ln ε−1)(kβ + m ln ln(mε−1))) time,

where β is the complexity of the approximate solver for the Steiner tree problem.

We study the Minimum Range Assignment problem in static ad-hoc net-

works with general structure as another application of the Convex Min-Max

Resource-Sharing problem, where the transmission distances can violate the

triangle inequality. We consider two versions of the Minimum Range Assign-

ment problem, where the communication graph has to fulfill either the h-strong

connectivity condition (Min-Range(h-SC)) or the h-broadcast condition (Min-

Range(h-B)). Both homogeneous and non-homogeneous cases are studied. By

approximating arbitrary edge-weighted graphs by paths, we present probabilistic

O(log n)-approximation algorithms for Min-Range(h-SC) and Min-Range(h-B).

The result for Min-Range(h-B) matches the lower bound by Rossi for the case that

the triangle inequality holds for transmission distances (which is a special case of our

model). Furthermore, we show that if the network fulfils certain property and the

distance power gradient α is sufficiently small, the approximation ratio is improved

to O((log log n)α). In addition, the results are generalized to the mobile ad-hoc

networks (dynamical networks).

We also study the problem of Scheduling Malleable Tasks with Prece-

dence Constraints. We are given m identical processors and n tasks. For each

task the processing time is a discrete function of the number of processors allotted to

it. In addition, the tasks must be processed according to the precedence constraints.

The goal is to minimize the makespan (maximum completion time) of the resulting

schedule. The best previous approximation algorithm (that works in two phases) by

Lepére et al. has a ratio 3+
√

5 ≈ 5.236. In the first phase a time-cost tradeoff prob-

lem is solved approximately. With a binary search procedure, each task is allotted a



vii

number of processors. In the second phase a variant of the list scheduling algorithm

is used. In phase one a rounding parameter ρ = 1/2 and in phase two an allotment

parameter µ = (3m − √5m2 − 4m)/2 is employed, respectively. In the first phase

of our algorithm, we formulate a linear program to solve the allotment problem and

avoid the binary search procedure. We study the rounding technique carefully and

shift the rounding parameter ρ in the second phase. Then we develop a min-max

nonlinear program, whose objective value is an upper bound of the approximation

ratio of our algorithm. By exploring the structure of the nonlinear program, we set

ρ = 0.43, and vary the value of µ accordingly to obtain an improved approximation

algorithm with a ratio at most 100/43+100(
√

4349−7)/2451 ≈ 4.730598. We show

that our settings of ρ and µ are very close to the asymptotic best choices.

Finally, Based on an interesting model for malleable tasks with continuous

processor allotments by Prasanna et al., we define two natural assumptions for

malleable tasks: the processing time of any malleable task is non-increasing in the

number of processors allotted, and the speedup in concave in the number of proces-

sors. We show that under these assumptions the work function of any malleable task

is non-decreasing in the number of processors and is convex in the processing time.

Furthermore, we propose a two-phase approximation algorithm for the Schedul-

ing Malleable Tasks with Precedence Constraints. In the first phase we

solve a linear program to obtain a fractional allotment for all tasks. By rounding the

fractional solution with a new technique, each malleable task is assigned a number

of processors. In the second phase the variant of the list scheduling algorithm is also

employed. In the phases we also use a new rounding parameter ρ and an allotment

parameter µ, respectively. By choosing ρ = 0.26 and corresponding µ, we show (via

a min-max nonlinear program) that the approximation ratio of our algorithm is at

most 100/63 + 100(
√

6469 + 13)/5481 ≈ 3.291919. We also show that our result is

very close to the best asymptotic one.
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Chapter 1

Introduction

A lot of exact and/or approximation algorithms have been proposed for problems

either polynomial time solvable (P) or non-deterministic polynomial time solvable

(NP). In general for the optimization problems in P , main interests are paid for

design of fast algorithms to obtain the optimal solutions with less running times.

However, with the increasing demands of large data input, exact algorithms can not

always serve due to the limited capacity of current computer systems. Therefore

another trend is to find fast approximation algorithms for this class of problems

without much loss of quality of solution.

Besides requirements for exact algorithms for optimization problems in NP in

few fields (e.g., bioinformatics), this class of problems attracts more attention for

developing approximation algorithms. Denote by A an approximation algorithm for

a problem P . For any instance I of the problem P , we denote by OPT (I) the

optimal solution and by ALG(I) the solution delivered by the algorithm A. The

quality of the algorithm A is measured by the performance ratio or approximation

ratio r. In the worst-case analysis, for a minimization problem where the goal is to

minimize the objective function, the approximation ratio r is defined as follows:

r = sup
I

ALG(I)

OPT (I)
.

For a maximization problem where the goal is to maximize the objective function,

the approximation ratio r has the following definition:

r = sup
I

OPT (I)

ALG(I)
.

1
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The development of approximation algorithms for optimization problems in NP
follows two directions. One direction is to design approximation algorithms with

better ratios in order to match or approach the lower bound of the approximation

ratio for the problems. The other direction is to design fast approximation algo-

rithms running in less time without too bad approximation ratios. The effort in the

first direction has more meaning in theoretical aspect as the approximation algo-

rithms with improved ratio guarantee that the solution developed by the algorithms

can not be too bad. Since most results are based on worst-case analysis, the ratios of

the approximation algorithms in average case are not clear though there have been

some steps in this topic. In practice it can happen that an algorithm with better

approximation ratio has worse performance for most instances. Thus regardless of

improvement of approximation ratio, some effort is paid to reduce the overall run-

ning time of the approximation algorithms. Both directions fit certain requirement

in accordance with the applications.

In this thesis, we shall first discuss approximation algorithms for a type of linear

program or convex program. In a convex program, we are given a set of convex

constraints and a convex objective function with variables defined over a convex set.

The goal is to minimize the objective function. Convex programming, together with

its linear case where the objective function is linear, are among the central problems

in mathematical programming. They have been widely applied in many areas such

as computer science, communications, operational research, industrial engineering,

finance and so on. Then we shall show how to apply our algorithms in communica-

tion networks to reduce the edge congestion of data flow, which is a crucial issue for

the real case of large demands by clients whit limited network hardware resources.

Another application studied in this thesis is the problem to reduce energy consump-

tion of mobile devices in wireless communication networks to extend the lifetime of

the topological structure of the networks for keeping communication quality. Finally,

we will study a kind of scheduling problem in NP . A scheduling problem is usually

characterized by processors (machines), jobs (tasks) and the objective function. The

processors can be identical, related or unrelated. In addition, in computer science

the structure of the parallel processors can be PRAM, line, mesh, hypercube and so

on. The jobs can have due dates such that they must be executed by the due dates.

In the online model (where not all information of input is given at the beginning),
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jobs can have release times such that their information is unknown before the re-

lease times. There are also many models of parallel jobs such as preemptive jobs and

malleable jobs. Due to the data flow the jobs can also have precedence constraints

such that one job can not be executed unless all of its predecessors are completed.

If the objective functions are makespan (the maximum completion time) or sum of

weighted completion time (average completion time as a special case), then the goal

of the problems are usually to minimize the objective functions. If the objective

function is overall throughput, then the goal of the scheduling problem is usually

a maximization one. Details of the models and algorithms for scheduling problems

can be found in [82].

For linear programming, the simplex method discovered by Dantzig [27] has been

widely applied in practice. It works very efficiently in many applications and has

been used to establish some softwares and libraries. However, simplex method is

shown to have a running time exponential in input size (the number of variables

or the number of constraints). The first polynomial time algorithm for the linear

programming is the ellipsoid method developed by Khachiyan [72]. Then the el-

lipsoid method is applied to combinatorial optimization [49, 68]. Unfortunately,

the running time of the ellipsoid method is very large, though polynomial in input

size. Another polynomial time algorithm for linear programming and convex pro-

gramming was proposed by Karmarkar [66], which is faster both theoretically and

practically compared with ellipsoid method.

The polynomial running times of both ellipsoid method and Karmarkar’s method

show that linear programming and convex programming could be in P . However,

the running times are quite large. Thus, as mentioned before, when the input size

is large, the running time can exceed the capacity of current computer systems.

Therefore to solve such kind of problems (which are common in real applications),

we need to consider the tradeoff between accuracy and speed. The strategy is to

design some fast but approximation algorithms for linear programming or convex

programming. The idea is similar to the approximation algorithms for problems in

NP . We use the approximation ratio defined as before for measuring the quality of

the algorithms.

In this thesis, we consider the following Convex Min-Max Resource-Sharing



Chapter 1. Introduction 4

problem, which is a special case of linear or convex program:

min λ

s.t. fm(x) ≤ λ, m = 1, . . . , M ;

x ∈ B,

where f : B → IRM
+ is a vector of M continuous convex functions defined on a non-

empty convex compact set B ⊆ IRN .Without loss of generality we assume λ∗ > 0.

Otherwise we can solve a system of equations f(x) = 0 to obtain the optimal so-

lution. The functions fm, m ∈ {1, . . . , M}, are called the coupling constraints. We

use the Lagrangian decomposition or Lagrangian relaxation method to design ap-

proximation algorithms for the Convex Min-Max Resource-Sharing problem.

Assume that we are given a weak c(1 + O(ε))-approximate block solver for a given

relative accuracy ε ∈ (0, 1) which is used to approximately solve the block problem

and called as a subroutine, our algorithm can find a c(1 + ε)-approximate solution

for the Convex Min-Max Resource-Sharing problem, where c ≥ 1 is the ap-

proximation ratio. The coordination complexity (bound on the number of iterations)

is O(M(ln M +ε−2 ln ε−1)), which is the first result independent of data and approx-

imation ratio while only polynomial in M and ε−1 with only weak block solvers. For

a special case of small c, we propose a fast approximation algorithm running within

only O(M(ln M + ε−2)) iterations.

As applications of the Convex Min-Max Resource-Sharing problem, we

consider two important problems in communication networks. First we study the

Multicast Congestion problem in communication networks. Given a commu-

nication network represented by an undirected graph G = (V,E) with multicast

requests S1, . . . , Sk ⊆ V , we shall find for each request Si a trees in G connecting all

vertices in Si such that the maximum number of times an edge in E is used in all the

k trees is minimized. The Multicast Congestion problem in communication net-

works is in NP and we develop a randomized asymptotic approximation algorithm

with an improved running time. The strategy is to formulate the Multicast Con-

gestion problem as an integer linear program in the form of the Packing problem.

Then we can apply our algorithm for the Convex Min-Max Resource-Sharing

problem and the Packing problem to solve the linear programming relaxation. Here
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the approximate block solver has a ratio c is greater than 1. The other problem is

the Minimum Range Assignment problem in ad-hoc networks. The ad-hoc net-

work is a type of wireless communication network without infrastructure backbone

in which the messages are delivered via intermedia stations. The network topology

can vary due to the mobility of stations. A crucial problem in ad-hoc networks

is the energy consumption. Higher communication quality leads to more energy

consumption while increase of the lifetime of the network requires low energy con-

sumption. Therefore an optimization problem, the Minimum Range Assignment

problem, arises with such a tradeoff. In general the Minimum Range Assignment

problem is in NP . Furthermore, most existing approximation algorithms are only

for networks on one dimensional Euclidean spaces. We propose the first general

model of the Minimum Range Assignment problem in ad-hoc networks. In our

model the network is represented by an arbitrary undirected graph with n stations

where the triangle inequality can be violated. In addition, the number of hops is

bounded to keep the communication quality. All previous models are special cases

of ours. Furthermore, we develop a probabilistic O(log n)-approximation algorithm

for the Minimum Range Assignment problem. To determine the probability dis-

tribution a linear program of the form of the Packing problem is designed. The

corresponding block problem has only O(log n)-approximate solvers. Our algorithm

for the Convex Min-Max Resource-Sharing problem and the Packing prob-

lem is employed to obtain a data independent running time. It is worth noting that

the lower bound for one class of the Minimum Range Assignment problem is

also O(log n).

We also study the problem of Scheduling Malleable Tasks with Prece-

dence Constraints, which is a scheduling problem in NP . We are given m

identical processors and n parallel jobs. Each job can be executed on any number of

available processors. The processing time of each job is a discrete function depend-

ing on the number of processors allotted to it. The processing time function and the

processor number fulfil certain monotonous assumption. Furthermore, precedence

constraints exist among the jobs such that the jobs can not be scheduled at arbitrary

time slots. The previous best algorithm [81] gives a 5.236-approximation algorithm

where a two-phase strategy is applied. In the first phase each job is allotted a num-
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ber of processors by solving a discrete time-cost tradeoff problem. In the second

phase a new allotment is generated and a variant of the list scheduling algorithm is

employed and a feasible schedule is delivered with a makespan at most 5.236 times

the makespan of the optimal schedule. In this thesis we propose improved approx-

imation algorithms based on the algorithm in [81]. The first algorithm we design

has an approximation ratio of 5.162. Then we analyze the rounding phase carefully

and obtain the second approximation algorithm with a ratio of 4.7306. At last for

a special case of the processing time function we develop a 3.2919-approximation

algorithm. These algorithms are the best known for the problem of Scheduling

Malleable Tasks with Precedence Constraints.

The thesis is organized as follows: In Chapter 2 we study the Convex Min-Max

Resource-Sharing problem and its approximation algorithms. Applications of

the Convex Min-Max Resource-Sharing problem are shown in Chapter 3, in-

cluding the Multicast Congestion problem in communication networks and the

Minimum Range Assignment problem in ad-hoc networks. Finally, in Chapter 4

we develop approximation algorithms for the problem of Scheduling Malleable

Tasks with Precedence Constraints. Parts of this thesis are published or

will be published in [60, 61, 114, 110, 115, 62, 63, 19].



Chapter 2

Approximation Algorithms for the

Min-Max Resource Sharing

Problem

In this chapter we present approximation algorithms based on Lagrangian decom-

position via a logarithmic potential reduction to solve a general packing or min-max

resource sharing problem with M nonnegative convex constraints over a convex set

B. We generalize a method by Grigoriadis et al to the case with weak approximate

block solvers (i.e. with only constant, logarithmic or even worse approximation ra-

tios). We show that the algorithm needs at most O(M(ln M + ε−2 ln ε−1)) calls to

the block solver for a given relative accuracy ε ∈ (0, 1), a bound independent of

the data and the approximation ratio of the block solver. For small approximation

ratios the algorithm needs at most O(M(ln M + ε−2)) calls to the block solver.

2.1 Introduction

We consider the following general Convex Min-Max Resource-Sharing prob-

lem:

(P ) λ∗ = min{λ|f(x) ≤ λe, x ∈ B},

where f : B → IRM
+ is a vector of M continuous convex functions defined on a

nonempty convex compact set B ⊆ IRN , and e is the vector of all ones. Without

loss of generality we assume λ∗ > 0. Otherwise we can solve the system of equations

f(x) = 0 to obtain the optimal solution. The functions fm, m ∈ {1, . . . , M}, are

the coupling constraints. In addition, we denote by λ(x) = maxm∈{1,...,M} fm(x) for

7
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any fixed x ∈ B. Therefore the problem can be reformulated as follows: To find an

x∗ ∈ B such that

(P ′) λ∗ = λ(x∗) = min{λ(x), x ∈ B}.

If the coupling constraints fm(x), m ∈ {1, . . . , M}, are linear functions, the Con-

vex Min-Max Resource-Sharing problem is reduced to the Packing problem

[45, 46, 89, 109]. The linear functions fm(x), m ∈ {1, . . . , M}, are the packing

constraints.

There are many applications of the Convex Min-Max Resource-Sharing

problem or the Packing problem. Typical examples include scheduling on unre-

lated machines, job shop scheduling, network embeddings, Held-Karp bound for

TSP, minimum-cost multicommodity flows, maximum concurrent flow, bin cover-

ing, spreading metrics, approximation of metric spaces, graph partitioning, multi-

cast congestion in communication networks, and range assignment in static ad-hoc

networks [5, 16, 32, 42, 47, 56, 59, 78, 89, 110, 114].

Theoretically the optimal solution of a convex or linear program with the form of

(P ) could be obtained by polynomial time algorithms. However, the running times

are still large, which can be impractical in many applications. Furthermore, in some

algorithms the optimal solution is not required and an approximate solution suffices

(e.g. [71]). In addition, in some applications the size of (P ) can be exponential in

the size of input (e.g. [5, 61, 110]). Thus the demand of approximation but fast

algorithms for the Convex Min-Max Resource-Sharing problem (P ) arises.

Grigoriadis and Khachiyan [45, 46] proposed algorithms to compute an ε-approximate

solution to the Convex Min-Max Resource-Sharing problem (P ); i.e. for a

given accuracy ε > 0,

(Pε) compute x ∈ B such that f(x) ≤ (1 + ε)λ∗e.

The approaches are based on the following Lagrangian duality relation:

λ∗ = min
x∈B

max
p∈P

pT f(x) = max
p∈P

min
x∈B

pT f(x),

where P = {p ∈ IRM |∑M
m=1 pm = 1, pm ≥ 0} is the set of price vectors. For any

fixed x ∈ B, we can choose the price vector p as follows: We set pk = 1 and all



2.1. Introduction 9

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	


 


 


�
�

�
�



� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

�
�
�
�

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

�
�
�
�� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
�
�
�

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � ��

�
�

�
�
�

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

B

x

x

x

x

x

x
x

x

x*

^

^

^

0

1

2

N−1

N

Figure 2.1: Lagrangian decomposition method.

of other components pm = 0 for m 6= k, where fk(x) = λ(x). In this way when

x = x∗ we obtain the optimal value λ∗ and the first equation of the duality relation

holds. In addition, we can exchange the order of p and x by the duality relation

to obtain the second equation. Denoting by Λ(p) = minx∈B pT f(x), we have that

Λ(p) ≤ λ∗ ≤ λ(x) for any pair x and p. Furthermore a pair x ∈ B and p ∈ P is

optimal, if and only if λ(x) = Λ(p). The corresponding ε-approximate dual problem

has the following form:

(Dε) compute p ∈ P such that Λ(p) ≥ (1− ε)λ∗.

The Lagrangian or price-directive decomposition method is an iterative strategy

that solves the primal problem (Pε) and its dual problem (Dε) by computing a

sequence of pairs x and p to approximate the optimal pair x∗ and p(f(x∗)) from

above and below respectively (Figure 2.1). One such Lagrangian decomposition

step (that is called also a coordination step) consists of the following three substeps:

Step 1 (Computation of the price vector) Using the current x ∈ B the coordinator

computes a price vector p = p(f(x)) ∈ P corresponding to the coupling constraints.
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Step 2 (Block optimization) The coordinator calls a block solver as an oracle to

compute an (approximate) solution x̂ ∈ B to the block problem for the computed

price vector p.

Step 3 (New iterate) The coordinator makes a move from x to (1−τ)x+τ x̂ with

an appropriate step length τ ∈ (0, 1]. The new iterate is a convex combination of

the previous solution x and solution x̂ delivered by the block solver.

Grigoriadis and Khachiyan [46] proved that the approximate primal problem

(Pε) and the approximate dual problem (Dε) can be solved within O(M(ln M +

ε−2 ln ε−1)) iterations. In each iteration the algorithm calls to a t-approximate block

solver that solves the block problem for a given tolerance t = O(ε):

ABS(p, t) compute x̂ = x̂(p) ∈ B

such that pT f(x̂) ≤ (1 + t) min{pT f(y)|y ∈ B}.

Their methods use either an exponential or a standard logarithmic potential func-

tion [45, 46] and is based on a ternary search procedure that repeatedly scales the

functions f(x). Villavicencio and Grigoriadis [109] proposed a modified logarithmic

potential function to avoid the scaling phases of f(x) and to simplify the analysis.

The number of iterations used in [109] is also bounded by O(M(ln M + ε−2 ln ε−1)).

Furthermore, Grigoriadis et al [48] studied a Concave Max-Min Resource-

Sharing problem (the Covering problem in the linear case), that is orthogonal

to the Convex Min-Max Resource-Sharing problem studied here and defined

later. They showed that the bound on the number of iterations or block optimization

steps is only O(M(ln M + ε−2)) for the Concave Max-Min Resource-Sharing

problem. Therefore it is natural to conjecture that one can improve the number of

iterations for the Convex Min-Max Resource-Sharing problem. In fact we

reduce the number of iterations for the Convex Min-Max Resource-Sharing

problem (Pε) and the dual problem (Dε) to O(M(ln M + ε−2)).

On the other hand, in general the block problem may be hard to approximate

[5, 16, 32, 110]. This means that the assumption to have a block solver with accuracy

t = O(ε) is too strict. Therefore we consider in this paper the case that we have

only a weak approximate block solver. A (t, c)-approximate block solver is defined
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as follows:

ABS(p, t, c) compute x̂ = x̂(p) ∈ B

such that pT f(x̂) ≤ c(1 + t) min{pT f(y)|y ∈ B},

where c ≥ 1 is the approximation ratio of the weak approximate block solver. The

goal is now to solve the following approximate primal problem (using the weak block

solver):

(Pε,c) compute x ∈ B such that f(x) ≤ c(1 + ε)λ∗e.

The corresponding approximate dual problem has the form:

(Dε,c) compute p ∈ P such that Λ(p) ≥ 1

c
(1− ε)λ∗.

In this chapter, we will present an approximation algorithm that for any accuracy

ε ∈ (0, 1) solves the problem (Pε,c) in at most

N = O(M(ln M + ε−2 ln ε−1))

iterations or coordination steps. Each step requires a call to the weak block solver

ABS(p, O(ε), c) and an overhead of O(M ln ln(Mε−1)) arithmetic operations. Fur-

thermore for small ratio c such that ln c = O(ε) we improve the number of iterations

to O(M(ln M + ε−2)).

2.1.1 Previous work and related results

Plotkin, Shmoys and Tardos [89] considered the feasibility variants of the Packing

problem as follows: to find a point x ∈ B such that f(x) = Ax ≤ (1+ε)b where A is

the coefficient matrix with M rows and b is an M -dimensional vector. The problem

was solved by Lagrangian decomposition using exponential potential reductions, and

the numbers of iterations (calls to the corresponding block solver) in the algorithm

is O(ε−2ρ ln(Mε−1)), where ρ = maxm∈{1,...,M} maxx∈B aT
mx/bm is the width of B. In

their algorithm, the infeasibilities are penalized and approximate feasible solutions

to the system of linear inequalities are found. However, here the width ρ is data
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dependent and the bound is only pseudo polynomial in the size of input. With

similar technique, Young [111] studied also the Packing problem. He proposed

an algorithm that uses O(ρ′(λ∗)−1ε−2 ln M) calls to the block solver, where ρ′ =

max1≤m≤M maxx∈B aT
mx/bm − min1≤m≤M minx∈B aT

mx/bm similar to the width and

λ∗ is the optimal value of the Packing problem.

Based on a combinatorial idea of “variable-size increments” for the multicom-

modity flow problem, Garg and Könemann [42] proposed a (1 + ε)-approximation

algorithm to solve the Packing problem within O(Mε−2 ln M) iterations which is

independent of the width. They also use an exponential length function to capture

congestion on an edge. Their running time for the maximum multicommodity flow

problem was improved by Fleischer [34] with an idea of “round robin increments”.

In fact this idea was used in [108] to generate a fast algorithm for the Packing

problem (Pε) that the set B is the product of K nonempty disjoint convex compact

sets. The number of iteration is at most O(K(ln M)(ε−2 + ln min{K, M})). The

similar idea was also applied in [65] for the maximum concurrent flow problem.

As for the case of weak approximate block solver, there are also a few results. For

the Packing problem, the algorithm in [111] can also be applied when only a weak

block solve is available. The number of iterations is also at most O(ρ′(λ∗)−1ε−2 ln M).

Furthermore, Charikar et al [16] noticed that the result in [89] for the packing

problem can be extended also to the case with weak block solvers with the same

number O(ε−2ρ ln(Mε−1)) of iterations. However, there was no results before for the

Convex Min-Max Resource-Sharing problem with only weak block solvers.

It is worth noting that our algorithm is the first one for this problem and the

coordination complexity is independent of data ρ, ρ′, λ∗ and approximation ratio c.

It is the first of this kind. In [115] the possibility to slightly improve the running

time for a special case was discussed.

A class of problem which is orthogonal to the Convex Min-Max Resource-

Sharing problem is the Concave Max-Min Resource-Sharing problem (called

the Covering problem for linear constraints) is as follows:

(C) λ∗ = max{λ|f(x) ≥ λe, x ∈ B},

where f : B → IRM
+ is a vector of M continuous concave functions defined on a
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nonempty convex compact set B ⊆ IRN . As mentioned before, Grigoriadis et al

[48] proposed an algorithm for the approximate Concave Max-Min Resource-

Sharing problem running in O(M(ln M + ε−2)) iterations. Plotkin et al [89] also

studied the feasibility variant of Covering problem: to find a point x ∈ B such

that f(x) = Ax ≤ (1 + ε)b where A is the coefficient matrix with M rows and b is

an M -dimensional vector. Their algorithm needs O(M + ρ ln2 M + ε−2ρ ln(Mε−1))

iterations, where ρ = maxm∈{1,...,M} maxx∈B aT
mx/bm is the width of B similar with

the case of Packing problem. As argued before, their algorithm may only lead

to pseudo polynomial time approximation algorithms. Jansen and Porkolab [58]

studied the Concave Max-Min Resource-Sharing problem with only weak

approximate block solvers and showed that at most O(M(ln M + ε−2 + ε−3 ln c)

coordination steps are necessary. Unfortunately, this bound depends also on c,

the approximation ratio of the block solver. Recently, Jansen [54] improved the

coordination complexity to also O(M(ln M + ε−2 ln ε−1)), which matches the bound

of the algorithm in [60] for the Convex Min-Max Resource-Sharing problem

and is independent of data.

Another form of the Covering problem is as follows:

λ∗ = min{cT x|Ax ≥ b, 0 ≤ x ≤ u},

where c, u ∈ IRM
+ , b ∈ IRN

+ and A ∈ IRN×M
+ have non-negative entries. For the

approximate problem Fleischer [35] proposed an algorithm with at most a number

of O(Mε−2 ln(MC)) iterations, where C = maxm∈{1,...,M} cmum/ minm:cmum>0 cmum.

The bound has been improved by Garg et al [41] to O(Mε−2 ln M +min{N, ln ln C}).
However, both results are only for the case of t-approximate block solver and the

bounds are data dependent.

Besides, the mixed problem with both packing and covering constraints was

proposed by Young [112]. His approximation algorithm can find a point x ∈ B ⊆ IRN
+

such that the packing and covering constraints are violated at most by factors of

1 + ε and 1 − ε, respectively. The number of iterations is at most O(Mdε−2 ln M)

where d is the maximum number of constraints any variable appears in, which is

bounded by M . Jansen also studied the mixed packing and covering problem and
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improved the bound to O(Mε−2 ln(Mε−1)) [55]. This is the first result independent

of data for the mixed problem.

A detailed survey of the Largrangian based algorithms for convex programming

can be found in [73].

2.1.2 Main idea

Our algorithm is based on ideas in [46, 48, 109]. We use the modified logarithmic

potential function proposed in [109]. Our algorithm is based on the scaling phase

strategy such that the relative error tolerance σs in s-th scaling phase approaches

the given relative tolerance ε gradually when s increases. The oracle ABS(p, t, c)

is called once in each iteration. We found that the stopping rules proposed in

[46, 109] are too strict, and that the bound on the number of iterations could be

O(Mc2(ln(Mc) + ε−3 ln c)) by directly applying the method in [46], or O(M(ln M +

ε−2 + ε−3 ln c)) by the method in [109]. This shows that with only the existing

methods the bounds independent of data are not possible. Therefore we analyzed a

combination of two stopping rules in order to obtain a running time independent of

c. In fact our result is the first one independent of the width ρ (or ρ′), the optimal

value λ∗ and the approximation ratio c. For certain c small enough, we use an upper

bound for the difference of the potential function values φt(x)− φt(x
′) for arbitrary

two iterates x, x′ ∈ B within one scaling phase similar to [48]. This enables us to

show that the original method in [109] (with a slightly modified stopping rule) uses

only O(M(ln M + ε−2)) coordination steps for c with ln c = O(ε).

2.2 Modified logarithmic potential function

In order to solve the packing problem (P ), we use the Lagrangian decomposition

method that is based on a special potential function. Similar to the approaches in

[45, 46, 109], we use the idea of potential function to relax the coupling constraints.

We are able to show that the approximation of minimum value of potential func-

tion corresponds to an approximation of λ∗. Thus the original Convex Min-Max

Resource-Sharing problem can be replaced by finding a good approximate mini-

mum point of the (smooth) potential function. The modified Karmarkar’s potential
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function is defined as follows:

Φt(θ, x) = ln θ − t

M

M∑

m=1

ln(θ − fm(x)), (2.1)

where θ ∈ IR+ and x ∈ B are variables and t ∈ (0, 1) is a fixed tolerance parameter

(that is used in the approximate block solver ABS(p, t, c)). In our algorithm, we

shall set values of t from O(1) initially down to O(ε) at last, where ε is the desired

relative accuracy for the solution. The function Φt is well-defined for λ(x) < θ < ∞
where λ(x) = max{f1(x), . . . , fM(x)} and has the barrier property: Φt(θ, x) → ∞
for θ → λ(x) and θ →∞.

We define the reduced potential function as the minimum of Φt(θ, x) over all

θ ∈ (λ(x),∞) for a fixed x ∈ B, i.e.

φt(x) = Φt(θ(x), x) = min
λ(x)<θ<∞

Φt(θ, x). (2.2)

Lemma 2.1 For any fixed x ∈ B, the minimizer θ(x) of Φt(θ, x) is the unique root

to the following equation:

t

M

M∑

m=1

θ

θ − fm(x)
= 1. (2.3)

Proof: For a fixed x ∈ B, the potential function Φt(θ, x) ∈ C1 is well defined in

θ ∈ (λ(x),∞). Due to the barrier property, there must exist a minimum in the

interval (λ(x),∞). Its first order partial derivative with respect to θ is:

(Φt(θ, x))′θ =
1

θ
− t

M

M∑

m=1

1

θ − fm(x)
.

Then the minimizer θ(x) is the root of equation (Φt(θ, x))′θ = 0, i.e. equation (2.3).

Furthermore, the function

g(θ) =
t

M

M∑

m=1

θ

θ − fm(x)
= t +

t

M

M∑

m=1

fm(x)

θ − fm(x)

is strictly decreasing as θ − fm(x) > 0. Therefore the root θ(x) is unique in the

interval (λ(x),∞) and the lemma is proved.
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2.2.1 Technical inequalities

In order to analyze the properties of potential functions and our algorithms described

in Section 2.3, we need some technical lemmas. First for functions with continuous

derivatives we have the following lemma:

Lemma 2.2 For two functions f(x), g(x) ∈ C1,

1. if f ′(x) ≥ g′(x) for any x ∈ (a, b] and f(b) = g(b), then f(x) ≤ g(x) for all

x ∈ (a, b], where a can tend to −∞;

2. if f ′(x) ≥ g′(x) for any x ∈ [b, c) and f(b) = g(b), then f(x) ≥ g(x) for all

x ∈ [b, c), where c can tend to ∞.

Proof: We consider the first claim. Define a new function h(x) = f(x)− g(x). Its

first order derivative h′(x) = f ′(x)− g′(x) is nonnegative. For any x ∈ (a, b), there

exists a ξ ∈ [x, b) such that

h(x)− h(b)

x− b
= h′(ξ).

Since h(b) = f(b)− g(b) = 0, and h′(ξ) ≥ 0, we have

f(x)− g(x)

x− b
≥ 0.

Because x ∈ (a, b), x − b is negative. Therefore we have f(x) ≤ g(x) and the first

claim is proved.

For the second claim, we define also a function h(x) = f(x) − g(x). Similarly,

for any x ∈ (b, c), there exists a ξ ∈ (b, c) such that

f(x)− g(x)

x− b
=

h(x)− h(b)

x− b
= h′(ξ) ≥ 0.

Because x ≥ b, f(x) ≥ g(x) in this case. Then the lemma is proved.

Now we are able to show the following inequalities based on the above properties:

Lemma 2.3 The logarithmic function fulfils following inequalities:
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1. For any x > 0, ln x ≤ x− 1;

2. For any x ≥ −1/2, ln(1 + x) ≥ x− x2.

Proof: Denote by f(x) = ln x and g(x) = x− 1. Then f ′(x) = 1/x and g′(x) = 1.

It is obvious that f(1) = g(1) = 0. For any x ∈ (0, 1], f ′(x) ≥ 1 = g′(x). According

to Lemma 2.2, ln x = f(x) ≤ g(x) = x− 1 for all x ∈ (0, 1]. On the other hand, for

any x ∈ [1,∞), f ′(x) ≤ 1 = g′(x). Again, according to the second claim of Lemma

2.2, ln x = f(x) ≤ g(x) = x− 1 for all x ∈ [1,∞). Therefore for any x ∈ (0,∞) we

have ln x ≤ x− 1 and the first inequality of the lemma is proved.

Now consider the second inequality. Denote by f(x) = ln(1+x) and g(x) = x−x2.

Note that f(0) = g(0). Then f ′(x) = 1/(1+x) and g′(x) = 1−2x. Solving equation

1/(1 + x) = 1 − 2x gives two roots x1 = −1/2 and x2 = 0. Thus f ′(x) ≥ g′(x) for

x ∈ [0,∞) while f ′(x) ≤ g′(x) for x ∈ [−1/2, 0]. With the similar argument and

Lemma 2.2, ln(1 + x) ≥ x− x2 for any x ≥ −1/2. This completes the proof.

2.2.2 Bounds on the minimizer θ(x) and the reduced poten-

tial function φt(x)

We will show the bounds on θ(x) and φt(x) in the following two lemmas by the

definition of θ(x) similar to those in [109] and [48].

Lemma 2.4 λ(x)/(1− t/M) ≤ θ(x) ≤ λ(x)/(1− t) for any x ∈ B.

Proof: Using equation (2.3) and the fact that fm(x) ≤ λ(x) for all m we obtain the

following relations:

1 =
t

M

M∑

m=1

θ(x)

θ(x)− fm(x)
≤ t

M

M∑

m=1

θ(x)

θ(x)− λ(x)
=

tθ(x)

θ(x)− λ(x)
,

which implies the right inequality in the Lemma since t < 1. The left inequality is

also based on (2.3) as

t

M

θ(x)

θ(x)− fm(x)
≤ 1, m = 1, . . . , M,

and in particular for that m for which fm(x) = λ(x).
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Lemma 2.5 (1− t) ln λ(x) ≤ φt(x) ≤ (1− t) ln λ(x)+ t ln(exp(1)/t) for any x ∈ B.

Proof: By the definition (2.1), ln θ(x) = φt(x) +
t

M

M∑

m=1

ln(θ(x) − fm(x)). Since

fm(x) ≥ 0 for all m,

ln θ(x) ≤ φt(x) +
t

M

M∑

m=1

ln θ(x) = φt(x) + t ln θ(x).

This gives (1 − t) ln θ(x) ≤ φt(x) as t < 1 and proves the left inequality in the

Lemma (using λ(x) ≤ θ(x) from Lemma 2.4). To show the right inequality of the

Lemma, we take logarithms of both sides of (2.3) and obtain:

ln t + ln

(
1

M

M∑

m=1

θ(x)

θ(x)− fm(x)

)
= 0.

Using the concavity of ln(·) this implies:

ln t +
1

M

M∑

m=1

ln

(
θ(x)

θ(x)− fm(x)

)
≤ 0.

Then we multiply by t and add ln θ(x) to both sides. This gives

φt(x) = ln θ(x)− t

M

M∑

m=1

ln(θ(x)− fm(x)) ≤ (1− t) ln θ(x)− t ln t,

which becomes

φt(x) ≤ (1− t) ln λ(x)− (1− t) ln(1− t)− t ln t,

by the right inequality of Lemma 2.4. Finally we have ln z ≤ z − 1 for all z > 0

according to Lemma 2.3. Then it can be proved that − ln(1 − t) ≤ t/(1 − t) using

z = 1/(1 − t) > 0. Substituting this into the above inequality provides the upper

bound of φt(x).

Lemmas 2.4 and 2.5 show (for certain sufficiently small values of t) that the

minimum θ(x) approximates λ(x) and that the reduced potential function φt(x)

approximates ln λ(x) closely. This gives us the possibility to solve the approximation

problem (Pε,c) by minimizing the smooth function φt(x) over x ∈ B based on these

two lemmas.
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2.2.3 Price vector function

The price vector p(x) ∈ IRM
+ is defined as follows similar to [109]:

pm(x) =
t

M

θ(x)

θ(x)− fm(x)
, m = 1, . . . ,M. (2.4)

In view of the definition above, the following lemma holds:

Lemma 2.6 The price vector p(x) in (2.4) is in the set P , and p(x)T f(x) =

θ(x)(1− t) for any x ∈ B.

Proof: Since θ(x) ≥ fm(x) for all m = 1, . . . , M , all pm(x) are nonnegative. Ac-

cording to equation (2.3), for any x ∈ B,
∑M

m=1 pm(x) = 1. Therefore p(x) ∈ P .

Using equation (2.3) and definition (2.4)

p(x)T f(x) =
t

M

M∑

m=1

θ(x)fm(x)

θ(x)− fm(x)

=
tθ(x)

M

M∑

m=1

(
θ(x)

θ(x)− fm(x)
− 1

)

= θ(x)(1− t).

With the definition (2.4), we can just simply compute the price vector p from

(2.4), which is easier to obtain compared with other methods (e.g. using the expo-

nential potential function).

Furthermore, by Lemma 2.6, for t small enough, the dual value pT f(x) is only

slightly less than θ(x), the minimum of the potential function. This shows that the

dual value pT f(x) is also an approximation of λ(x). Therefore the primal problem

can also be solved by obtaining approximate dual value and in fact that is what we

need to construct our algorithm and the base of stopping rules.

2.3 The approximation algorithm

The minimum dual value Λ(p) can be approximated by the dual value pT f(x̂), where

x̂ is the block solution computed by the (t, c)-approximate block solver for the given
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price vector p. Furthermore, to establish the stopping rules of each scaling phase in

the approximation algorithm, the value of the duality gap should be estimated in

each iteration. For our first stopping rule we use the following parameter ν:

ν = ν(x, x̂) =
pT f(x)− pT f(x̂)

pT f(x) + pT f(x̂)
. (2.5)

If ν = O(ε), then the duality gap is also quite small. But for larger ν close to 1,

the gap can be extremely large (see also Subsection 2.3.1). Therefore, we define a

second parameter ws. Let σs be the relative error tolerance of the s-th scaling phase.

Then the parameter ws is given by:

ws =





1 + σ1

(1 + σ1/3)M
, for the first scaling phase;

1 + σs

1 + 2σs

, otherwise.

(2.6)

Let xs be the solution of sth scaling phase. Then the two stopping rules used in the

s-th scaling phase are:

Rule 1 : ν ≤ σs/6;

Rule 2 : λ(x) ≤ ws λ(xs−1).
(2.7)

Grigoriadis et al [48, 109] used either only the first stopping rule or the rule

pT f(x)−pT f(x̂) ≤ σsθ(x)/2 that is similar to the first rule. In the case of only weak

block solvers available, such stopping rules are not sufficient to obtain a bound on

the number of iterations independent of the ratio c. It may happen that the block

solver is called more times than what necessary. Therefore we have introduced the

second stopping rule to make sure that the scaling phase stops as soon as the solution

meets the requirement of the phase. On the other hand the first stopping rule is

needed to have always a constant bound on decrement in the potential function (see

Subsection 2.3.1).

The algorithm works now as follows. First we apply the scaling phase strategy.

In each scaling phase the relative error tolerance σs is set. Then based on the known

pair of x and p, a solution x̂ is delivered by the approximate block solver. Afterwards

an appropriate convex combination of the old solution x and the block solution x̂
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Figure 2.2: Flowchart of Algorithm L.

is computed as the new solution. The iteration stops when the solution satisfies

any one of the two stopping rules. After one scaling phase, the error tolerance σs

is halved and the next scaling phase starts until the error tolerance σs ≤ ε (Figure

2.2). The solution generated in the last scaling phase solves the primal problem

(Pε,c) (see also Subsection 2.3.1).

In our algorithm we set t = σs/6 for the error tolerance in the block solver

ABS(p, t, c). To run the algorithm, we need an initial solution x0 ∈ B in advance.

Here we use as x0 the solution of the block solver ABS(e/M, σ0/6, c) where the price

vector e/M is the vector of all 1/M ’s and the initial error tolerance σ0 = 1.

(2.3).

We set the step length τ as:

τ =
tθν

2M(pT f + pT f̂)
. (2.8)

We note that the step length τ can be computed also by a line search to minimize

the potential value φt. The algorithm and the analysis remains valid if we use such
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Algorithm L(f, B, ε, c):

initialize: s := 0, σ0 := 1, t := σ0/6, p := e/M , x0 := ABS(p, t, c);

finished scaling := false;

while not(finished scaling) do {scaling phase}
s := s + 1, x := xs−1, σs := σs−1/2, t := σs/6;

finished coordination := false;

compute ws from (2.6);

while not(finished coordination) do {coordination step}
compute θ(x) from (2.3) and p = p(x) ∈ P from (2.4);

x̂ := ABS(p, t, c);

compute ν = ν(x, x̂) from (2.5);

if (Stopping Rule 1 or 2) then

xs := x, finished coordination := true;

else

x := (1− τ)x + τ x̂ for an appropriate step length τ ∈ (0, 1];

end

end

if (σs ≤ ε) then finished scaling := true;

end

Table 2.1: Algorithm L for the Convex Min-Max Resource-Sharing problem.

a line search to compute τ (see the similar analysis in [45]).

2.3.1 Analysis of the algorithm L
In this section we verify the convergence of algorithm L by proving that the algo-

rithm stops in each scaling phase after a finite number of iterations. Furthermore we

show that the vector x computed in the final phase solves the primal problem (Pε,c).

From now on for convenience we denote θ = θ(x), θ′ = θ(x′), f = f(x), f ′ = f(x′)

and f̂ = f(x̂). Before proving the correctness of the approximation algorithm we

have the following bound for the initial solution x0.

Lemma 2.7 If x0 is the solution of ABS(e/M, t, c) with t = 1/6, then λ(x0) ≤
(7/6)cMλ∗.
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Proof: Since x0 is the solution of the block solver ABS(e/M, t, c) we have

M∑

m=1

fm(x0)/M = eT f(x0)/M ≤ (1 + t)cΛ(e/M) = (7/6)cΛ(e/M).

Using the fact λ∗ = maxp∈P Λ(p), the right side of the inequality above is bounded

by (7/6)cλ∗. Therefore fm(x0) ≤ (7/6)cMλ∗ for each m = 1, . . . , M . This implies

λ(x0) = max1≤m≤M fm(x0) ≤ (7/6)cMλ∗.

Lemma 2.8 If algorithm L stops, then the computed x ∈ B solves (Pε,c).

Proof: We shall consider both stopping rules. If the first stopping rule is satisfied,

then using the definition of ν and ν ≤ t we have

(1− t)pT f ≤ (1 + t)pT f̂ .

According to Lemma 2.6, the inequality above, and the value pT f(x̂) of the solution

x̂ computed by the block solver ABS(p, t, c), we have

θ =
pT f

1− t
≤ 1 + t

(1− t)2
pT f̂ ≤ c

(
1 + t

1− t

)2

Λ(p).

Using the fact that Λ(p) ≤ λ∗ and t = σs/6, we obtain θ ≤ c(1 + σs)λ
∗. Then by

Lemma 2.4, fm(xs) ≤ λ(xs) ≤ θ(xs) ≤ c(1 + σs)λ
∗.

If the second stopping rule is satisfied, then we consider two further cases. If the

rule is satisfied in the first phase s = 1, then according to the value of w in formula

(2.6),

λ(x1) ≤ 1 + σ1

(1 + σ1/3)M
λ(x0).

Since x0 is the solution of ABS(e/M, t, c) we have λ(x0) ≤ c(1 + σ0/6)Mλ∗. This

implies that λ(x1) ≤ c(1 + σ1)λ
∗.

Now let us assume (by induction) that λ(xs−1) ≤ c(1+σs−1)λ
∗ after s−1st scaling

phase. Then if the second stopping rule is satisfied in phase s, then according to

the definition of w and σs = σs−1/2, we have
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λ(xs) ≤ (1 + σs)

(1 + 2σs)
λ(xs−1) ≤ (1 + σs)cλ

∗.

Therefore in both cases we have λ(xs) ≤ (1 + σs)cλ
∗ for any s > 0. Since σ ≤ ε

when the algorithm L halts, the solution x = xs computed in the last phase solves

(Pε,c).

In the next lemma we show that the reduced potential function φt decreases

boundedly by a constant factor in each coordination step. This enables us later to

prove an upper bound for the number of iterations.

Lemma 2.9 For any two consecutive iterates x, x′ ∈ B within a scaling phase of

algorithm L,

φt(x
′) ≤ φt(x)− tν2

4M
.

Proof: Due to the convexity of the function fm and the definition of the price vector

pm in (2.4), we get

θ − f ′m ≥ θ − (1− τ)fm − τ f̂m

= (θ − fm)

(
1 + τ

fm − f̂m

θ − fm

)
(2.9)

= (θ − fm)
(
1 +

τM

tθ
pm(fm − f̂m)

)
.

By the non-negativity of fm and the definition of τ in (2.8),

∣∣∣∣
τM

tθ
pm(fm − f̂m)

∣∣∣∣ ≤
τM

tθ
pm(fm + f̂m) ≤ τM

tθ
(pT f + pT f̂) =

ν

2
≤ 1

2
,

where the fact that ν ≤ 1 is used. Since θ − fm is positive by Lemma 2.4 we have

f ′m < θ for m = 1, . . . M , i.e., λ(x′) < θ. From the definition φt(y) = Φt(θ(y), f(y)),

φt(x
′) = Φt(θ

′, f ′) = min
ξ≥λ(x′)

Φt(ξ, f
′) ≤ Φt(θ, f

′) = ln θ − t

M

M∑

m=1

ln(θ − f ′m), (2.10)
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for the particular point x′ ∈ B. By substituting (2.9) in (2.10) and using the

definition (2.1) of the potential function,

φt(x
′) ≤ ln θ − t

M

M∑

m=1

ln(θ − fm)− t

M

M∑

m=1

ln

(
1 + τ

fm − f̂m

θ − fm

)

= φt(x)− t

M

M∑

m=1

ln

(
1 + τ

fm − f̂m

θ − fm

)
, (2.11)

where the last term is well defined. Now we use the second inequality in Lemma

2.3:

ln

(
1 + τ

fm − f̂m

θ − fm

)
= ln

(
1 +

Mτ

tθ
pm(fm − f̂m)

)

≥ Mτ

tθ
pm(fm − f̂m)−

(
Mτ

tθ
pm(fm − f̂m)

)2

,

for all m = 1, . . . ,M . Hence, (2.11) becomes:

φt(x
′) ≤ φt(x)− τ

pT (f − f̂)

θ
+

Mτ 2

tθ2

M∑

m=1

(pm(fm − f̂m))2

≤ φt(x)− τν

θ
(pT f + pT f̂) +

Mτ 2

tθ2
(pT f + pT f̂)2

= φt(x)− τν

θ
(pT f + pT f̂) +

τν

2θ
(pT f + pT f̂)

= φt(x)− τν

2θ
(pT f + pT f̂)

= φt(x)− tν2

4M
,

where the definitions of ν and τ are employed.

Now we are ready to estimate the complexity of algorithm L.

Theorem 2.1 For a given relative accuracy ε ∈ (0, 1], algorithm L finishes with a

solution x that satisfies λ(x) ≤ c(1 + ε)λ∗ and performs a total of

N = O(M(ln M + ε−2 ln ε−1))

coordination steps.
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Proof: If algorithm L finishes after a finite number of iterations with a solution x,

then using Lemma 2.8 λ(x) ≤ c(1+ ε)λ∗. First we calculate a bound on the number

Ns of coordination steps performed in sth scaling phase. Afterwards we obtain a

bound for all scaling phases. This shows also that algorithm L halts and proves the

theorem.

Let x, x′ denote the initial and final iterates of sth scaling phase. In addition let

x̄ be the solution after N s = Ns − 1 iterations in the same scaling phase. During

the phase from x to x̄ we have ν > t; otherwise the phase would finish earlier.

Furthermore (by the same reason) the objective value λ(x̄) > wλ(x). Then Lemma

2.9 provides

φt(x)− φt(x̄) ≥ N s
tν2

4M
≥ N s

t3

4M
.

By the left and right inequality of Lemma 2.5 we have (1 − t) ln λ(x̄) ≤ φt(x̄) and

φt(x) ≤ (1− t) ln λ(x) + t ln(exp(1)/t), respectively. Hence,

N s
t3

4M
≤ (1− t) ln

λ(x)

λ(x̄)
+ t ln

exp(1)

t
.

This gives directly a bound for Ns,

Ns = N s + 1 ≤ 4Mt−3

(
(1− t) ln

λ(x)

λ(x̄)
+ t ln

exp(1)

t

)
+ 1.

Next we shall bound the term λ(x)/λ(x̄). For the first scaling phase we have λ(x̄) >

1+σ1

(1+σ1/3)M
λ(x). In this case

λ(x)

λ(x̄)
≤ (1 + σ1/3)M

1 + σ1

<
2M

1 + σ1

.

Since σ1 = 1/2 and t = 1/12 during the first scaling phase, there are only O(M ln M)

coordination steps in the first phase. For the other scaling phases, we have λ(x̄) >

1+σs

1+2σs
λ(x). Therefore,

λ(x)

λ(x̄)
≤ 1 + 2σs

1 + σs

= 1 +
σs

1 + σs

.
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Then according to the elementary inequality ln(1 + u) ≤ u for any u ≥ 0,

ln
λ(x)

λ(x̄)
≤ ln(1 +

σs

1 + σs

) ≤ σs

1 + σs

< σs.

Substituting this in the bound for Ns above and using t = σs/6, we have the expres-

sion

Ns = O(Mσ−2
s ln σ−1

s ).

Finally, the total number of coordination steps N is obtained by summing the

Ns over all scaling phases:

N = O(M(ln M +
∑
s

σ−2
s ln σ−1

s )).

Since σs+1 = σs/2 in the (s + 1)st scaling phases, the sum above is further bounded

by

∑
s

σ−2
s ln σ−1

s = O(
dlog ε−1e∑

q=0

22q ln(2q))

= O(log ε−1
dlog ε−1e∑

q=0

22q)

= O(ε−2 log ε−1),

which provides the claimed bound.

2.3.2 Faster algorithm for small approximation ratio c

In this section we analyze the case that the approximation ratio c of the block solver

is small enough, i.e., ln c = O(ε). In this case we can propose another algorithm L′.
In the algorithm L′, we only use the parameter ν in (2.5) to design the stopping

rule. Then the stopping rule is as follows:

ν ≤ σs/6. (2.12)

This stopping rule is similar to that in [109]. By this means the algorithm L′ is as

in Table 2.2. Here the step length τ is set same as in (2.8).
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Algorithm L′(f, B, ε, c):

initialize: s := 0, σ0 := 1, t := σ0/6, p := e/M , x0 := ABS(p, t, c);

finished scaling := false;

while not(finished scaling) do {scaling phase}
s := s + 1, x := xs−1, σs := σs−1/2, t := σs/6;

finished coordination := false;

compute ws from (2.6);

while not(finished coordination) do {coordination step}
compute θ(x) from (2.3) and p = p(x) ∈ P from (2.4);

x̂ := ABS(p, t, c);

compute ν = ν(x, x̂) from (2.5);

if (Stopping Rule (2.12)) then

xs := x, finished coordination := true;

else

x := (1− τ)x + τ x̂ for an appropriate step length τ ∈ (0, 1];

end

end

if (σs ≤ ε) then finished scaling := true;

end

Table 2.2: Algorithm L′ for the Convex Min-Max Resource-Sharing problem
with small ratio.

2.3.3 Analysis of the algorithm L′

First as for the correctness we have the following lemma:

Lemma 2.10 If algorithm L′ stops, then the computed pair x ∈ B and p ∈ P solves

(Pε,c) and (Dε,c).

The proof is very similar to the first part of that of Lemma 2.8, with only the first

stopping rule employed. Furthermore we prove an upper bound on the difference

of the reduced potential function for any two arbitrary points x and x′ in B. The

proof is similar to one in [48] for the general covering problem.

Lemma 2.11 For any two iterates x, x′ ∈ B within a scaling phase with λ(x) > 0

and λ(x′) > 0,
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φt(x)− φt(x
′) ≤ (1− t) ln

pT f

pT f ′
≤ (1− t) ln

pT f

Λ(p)
,

where p = p(x) is defined by (2.4).

Proof: Denote Λ = Λ(p) = minx∈B pT f(x). Using the definition of price vector

p = p(x) in (2.4) and Lemma 2.6,

φt(x)− φt(x
′) = ln

θ

θ′
− t

M

M∑

m=1

ln(
θ − fm

θ′ − f ′m
)

= ln
θ

θ′
+

t

M

M∑

m=1

ln(
θ′ − f ′m
θ − fm

)

= ln
θ

θ′
+

t

M

M∑

m=1

ln(
M

tθ
pm(θ′ − f ′m))

= ln
θ

θ′
+ t ln

M

tθ
+

t

M

M∑

m=1

ln(pm(θ′ − f ′m))

≤ ln
θ

θ′
+ t ln

M

tθ
+ t ln(

1

M
pT (θ′e− f ′))

= ln
θ

θ′
+ t ln

1

tθ
+ t ln(θ′ − pT f ′)

≤ max
ξ>Λ

{ln θ

ξ
+ t ln

1

tθ
+ t ln(ξ − pT f ′)}

= (1− t) ln
(1− t)θ

pT f ′

= (1− t) ln
pT f

pT f ′

≤ (1− t) ln
pT f

Λ(p)
,

where the concavity of ln(·) is used to obtain the first inequality above.

For the complexity of the algorithm L′ we have the following theorem.

Theorem 2.2 In the case of ln c = O(ε), algorithm L′ performs a total of
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N = O(M(ln M + ε−2))

coordination steps.

Proof: We still consider here the cases of the first and the other scaling phase

separately. Let us use the notation in Theorem 2.1. For each scaling phase (similar

to the proof of Theorem 2.1) we have

φt(x)− φt(x
′) ≥ Ns

t3

4M
.

Then according to Lemma 2.5 we have (1 − t) ln λ∗ ≤ (1 − t) ln λ(x′) ≤ φt(x
′) and

φt(x) ≤ (1− t) ln λ(x) + t ln(exp(1)/t). Substituting them into the above inequality

we get

Ns
t3

4M
≤ (1− t) ln

λ(x)

λ∗
+ t ln

exp(1)

t
.

Now consider the first scaling phase. Since λ(x) ≤ 2cMλ∗ and t = 1/12, the number

of iterations for the first phase is N1 = O(M ln(cM)) = O(M(ln c + ln M)). Then

the assumption ln c = O(ε) yields N1 = O(M ln M). For the other scaling phases

(using Lemma 2.11) we have

φt(x)− φt(x
′) ≤ (1− t) ln

pT f

Λ(p)

where p is the price vector corresponding to x. In the (s− 1)st scaling phase t′ = 2t

and the stopping rule was satisfied for x, i.e., ν(x, x̂) ≤ t′ = 2t. By the definition of

ν we have (1− ν)pT f = (1 + ν)pT f̂ . Since x̂ is the solution to the block problem, it

follows that pT f̂ ≤ (1 + 2t)cΛ(p). By ν ≤ 2t and t ≤ 1/12,

pT f

Λ(p)
≤ (1 + ν)

(1− ν)
(1 + 2t)c ≤ 1 + 2t

1− 2t
(1 + 2t)c ≤ (1 + 10t)c.

Combining both inequalities and using the inequality ln(1 + u) ≤ u,
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φt(x)− φt(x
′) ≤ (1− t)(ln(1 + 10t) + ln c) ≤ 10t + ln c.

Now we combine this inequality with the upper bound for Ns and get:

Ns ≤ 4M

t3
(10t + ln c).

Using the assumption that ln c = O(ε), t = σs/6 and ε ≤ 2σs for each scaling

phase we obtain Ns = O(Mσ−2
s + Mεσ−3

s ) = O(Mσ−2
s ). In addition, we have

∑
s

σ−2
s = O(

dlog ε−1e∑

q=0

22q) = O(ε−2).

Then summing Ns over all scaling phase, the total number N of coordination

steps (similar to the proof of Theorem 2.1) is bounded by O(M(ln M + ε−2)).

2.4 Further analyses

We have already proposed an algorithm L for solving the primal problem (Pε,c)

in at most O(M(ln M + ε−2 ln ε−1))) iterations. In addition, we also addressed a

faster algorithm L′ for both primal problem and dual problem for a special case that

ln c ≤ O(ε). In this section, we will study more details of the algorithms and show

the bound on the number of iterations by using our algorithms to solve the dual

problem. In addition, we also study the influence of numerical error such that the

solutions delivered by our algorithms fulfil the desired accuracy requirement.

2.4.1 Analysis of the dual problem

In this subsection we will consider the dual problem. As we mentioned before, in

the general case we can obtain the solution to the primal problem in O(M(ln M +

ε−2 ln ε−1)) iterations. Now we analyze the dual value of the solution of our algo-

rithms. For the general case the following theorem holds:

Theorem 2.3 The number of iterations to solve the dual problem (Dε,c) by L′ is at

most
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O(M(ln M + ε−2)), if ln c ≤ O(ε + ε3 ln M)orc ≥ 12M/ε;

O(Mε−2 ln M), if O(ε + ε3 ln M) ≤ ln c ≤ O(ε ln M);

O(Mε−3 ln M), if O(ε ln M) ≤ ln c ≤ O(ln M);

O(Mε−3 ln(Mε−1)), if O(M) ≤ c ≤ 12M/ε.

Proof: According to the proof of Theorem 2.2, for general c ≥ 1, to solve both the

primal problem and the dual problem, the number of iterations in the first phase

s = 1 is at most N1 = O(M(ln M + ln c)). Furthermore, the number of iterations in

the s-th phase is bounded by Ns = O(M(σ−2
s + σ−3

s ln c)). Since

∑
s

σ−2
s = O(

dlog ε−1e∑

q=0

22q) = O(ε−2),

∑
s

σ−3
s = O(

dlog ε−1e∑

q=0

23q) = O(ε−3).

Thus the total number of iterations to solve both problems is

N = O(M(ln M +
∑
s

(σ−2
s + σ−3

s ln c))) = O(M(ln M + ε−2 + ε−3 ln c)). (2.13)

We need to consider various cases depending on the relations between c, M and

ε.

In the case ln c ≤ O(ε + ε3 ln M), as showed in (2.13), algorithm L′ can solve

both problems in O(M(ln M + ε−2)) iterations.

In the case O(ε + ε3 ln M) ≤ ln c ≤ O(ε ln M), substituting the bound on ln c to

(2.13) gives the upper bound O(Mε−2 ln M) on the number of iterations of algorithm

L′ to obtain the dual solution.

In the case O(ε ln M) ≤ ln c ≤ O(ln M), in O(Mε−3 ln M) iterations the dual

solution can be attained with the same approach.

In the case O(M) ≤ c ≤ 12M/ε, the number of iterations can be bounded by

O(Mε−3 ln(Mε−1)).

In the case c ≥ 12M/ε, the pair x and p obtained by any of our algorithms is also

the solution to both the primal and the dual problem, and the number of iteration
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is also O(M(ln M + ε−2)). To prove this, using the definition of price vector and the

bounds for θ(x),

pm(x) =
t

M

θ(x)

θ(x)− fm(x)
≥ t

M

λ(x)

1− t/M
λ(x)

1− t
− fm(x)

≥ t

M

1− t

1− t/M
≥ t

M
(1− t).

Hence, if the algorithm stops (i. e. ε/12 ≤ t ≤ ε/6), then pm(x) ≥ ε(1− ε)/(12M).

This implies

Λ(p) = min
x

pT f(x) ≥ min
x

ε

12M
(1− ε)

M∑

m=1

fm(x)

≥ ε

12M
(1− ε) min

x
λ(x) ≥ 1

c
(1− ε)λ∗.

The analysis shows that the solution to the dual problem is easier to obtain than

that to the primal problem for large c.

Therefore, the overall bound for the number of iterations to obtain the solution

to the dual problem is O(Mε−3 ln(Mε−1)).

2.4.2 Analysis of accuracy

In the analysis above we assumed that the price vector p ∈ P can be computed

exactly from (2.4). However, in practice this is not true. The reason is that to

compute the price vector, the value of θ(x) is needed in (2.4). However, θ(x) is the

root of (2.3), which only can be computed approximately by numerical methods in

general. Thus we need to study the influence of the numerical error to the accuracy

of the delivered solution by our algorithms. The goal is to control the numerical

error so that the solution of our algorithms is still a c(1 + O(ε))-approximation of

the optimal solution. A similar argument below how to resolve this problem can be

found in [45, 46, 48, 109].

Theorem 2.4 Solving the equation (2.3) with an absolute error of O(ε2/M) can

obtain a c(1 + O(ε))-approximate solution to the primal problem.
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Proof: Suppose p̃ is an approximation of the exact value of p with the relative

accuracy δ ∈ (0, 1/2). Then (1 − δ)p ≤ p̃ ≤ (1 + δ)p. For this fixed p, let z =

arg minx∈B pT f(x), i.e. pT f(z) = minx∈B pT f(x) = Λ(p) (z is a vector corresponding

to the minimum dual value Λ(p)). Then

Λ(p̃) = min
x∈B

p̃T f(x) ≤ p̃T f(z) ≤ (1 + δ)pT f(z) = (1 + δ)Λ(p).

Let x̂ be the solution delivered by ABS(p̃, t, c). Then we get the following bound:

pT f(x̂) ≤ p̃T f(x̂)

1− δ
≤ c(1 + t)Λ(p̃)

1− δ

≤ 1 + δ

1− δ
c(1 + t)Λ(p) ≤ c (1 + t)(1 + 4δ)Λ(p)

for any δ ≤ 1/2. In other words, the solution x̂ from ABS(p̃, t, c) has a relative

accuracy of O(t+δ) = O(σ) → O(ε) to the exact price vector p for δ = O(t) → O(ε).

This means that we just need to compute every pm to the relative accuracy of

δ = O(ε) in (2.4).

Next we calculate the error bound for θ in solving (2.3) such that p̃ can achieve

the required accuracy. It can be verified that θ(sf) = sθ(f) and p(sf) = p(f)

for any positive scalar s. In this way, it is possible that the vector f is pre-scaled

locally just for the computation of θ(f) so that λ(f) = 1. According to Lemma

2.4, θ(f) ∈ [M/(M − t), 1/(1 − t)] and therefore |θ(f) − 1| = O(t). Let θ̃(f) be

the approximation of θ to compute p̃. Our goal is to calculate the absolute error

bound ∆ between θ̃(f) and θ(f) such that the approximate price vector p̃ has the

relative accuracy δ. From (2.4), p̃m = tθ̃(f)/(M(θ̃(f)− fm)). Thus according to the

definition of relative error of pm we have the follows:

∣∣∣∣∣
p̃m − pm

pm

∣∣∣∣∣ =

∣∣∣∣∣
θ̃(f)

θ(f)

θ(f)− fm

θ̃(f)− fm

− 1

∣∣∣∣∣ = O(t). (2.14)

According to the definition of ∆, |θ̃(f) − θ(f)| ≤ ∆. Substituting this into (2.14)

we need the following two upper bounds:
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θ(f) + ∆

θ(f)

θ(f)− fm

θ(f)−∆− fm

− 1 = O(t);

1− θ(f)−∆

θ(f)

θ(f)− fm

θ(f) + ∆− fm

= O(t).

Let us consider the first expression. It can be written as

(2θ(f)− fm)∆

θ(f)(θ(f)−∆− fm)
= O(t).

Since 2θ(f) − fm ≤ 2θ(f) = 2 + O(t), θ(f) − ∆ − fm ≥ M/(M − t) − 1 − ∆ =

O(t/M)−∆ and θ(f) ≥ 1, we need that

(2 + O(t))∆/(O(t/M)−∆) = O(t).

Therefore a sufficient condition to the first bound is: ∆ = O(t2/M) → O(ε2/M).

The second upper bound can be simplified as

(2θ(f)− fm)∆

θ(f)(θ(f) + ∆− fm)
= O(t).

With the same bounds for the 2θ(f)− fm and θ(f), together with θ(f) + ∆− fm =

O(t/M)+∆, we have the same inequality (2+O(t))∆/(O(t/M)−∆) = O(t). Thus

the sufficient condition for the second bound is also ∆ = O(t2/M) → O(ε2/M). The

proof is completed.

To compute the value of θ(f) ∈ [M/(M− t), 1/(1− t)] approximately, we can use

binary search. Since the length of the interval is O(t) → O(ε), O(ln(Mε−1)) steps

are necessary to achieve the accuracy. This requires O(ln(Mε−1)) computations

of the sum
∑M

m=1 1/(θ(f) − fm) per coordination step of algorithm L. Therefore

O(M ln(Mε−1)) arithmetic operations per iteration or O(ln M ln(Mε−1)) on a par-

allel machine with M/ ln M processors are necessary. On the other hand, one can

also use Newton’s method to compute the root θ(f) approximately. Since Newton’s

method is quadratically convergent [12], O(M ln ln(Mε−1)) operations are necessary

or O(ln M ln ln(Mε−1)) on a parallel machine. In this way the sequential running

time of each coordination step is roughly linear in M .



2.5. Improvement for slow block solvers 36

2.5 Improvement for slow block solvers

We notice that the running time of the whole algorithm depends not only on the

coordination complexity (the number of iterations) but also the running time of the

block solver. Therefore we need also consider the case that a good block solver

is unavailable. A possible case is that the block problem has only an algorithm

with a running time depending on input value power to a function of ε−1 required,

for instance, O(n1/ε). In this case, to reduce the overall running time of our algo-

rithm, one useful approach is to design a c(1 + ε)-approximation algorithm for the

min-max resource sharing problem with an approximate block solver ABS(p, t′, c),

where t′ ≥ t. In Section 2.3 we have already addressed a c(1 + ε)-approximation

algorithm L with a c(1 + ε/6)-approximate block solver. In this section we will

develop some c(1 + ε)-approximation algorithms F for the original min-max re-

source sharing problem with only an approximate block solver ABS(p, ε1/6, c),

where ε1 = (43−√1849− 1176ε)/12 ≥ 49ε/43 > ε for any positive ε. The number

of iterations is then bounded by O(M(ln M +ε−4 ln ε−1)). This bound is further im-

proved to O(M(ln M + ε−2 ln ε−1)) in another algorithm F ′ with an ABS(p, ε4/6, c)

for a ε2 ∈ (ε, ε1).

2.5.1 Fast approximation algorithm F for (Pε,c)

In this section, based on the algorithm L, we will propose a fast approximation algo-

rithm F only for (Pε,c) with ABS(p, ε3/6, c), where ε3 = (43−√1849− 1176ε)/12 ≥
49ε/43.

The algorithm works similarly to L. The scaling phase strategy is employed, too.

In each scaling phase a relative error tolerance σs is set. Lagrangian decomposition

method is applied same as before. We have two stopping rules here and the iterative

procedure in one scaling phase stops if any one of them is fulfilled. Then the error

tolerance σs is halved and the new scaling phase starts in the same way as described

above, until the error tolerance σs ≤ ε. The solution xs delivered in the last scaling

phase solves (Pε,c).

We also estimate the duality gap to construct the stop rule. For our first stopping
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rule a parameter ν is defined as follows (same as [109] and Section 2.3):

ν = ν(x, x̂) =
pT f(x)− pT f(x̂)

pT f(x) + pT f(x̂)
. (2.15)

If ν = O(ε), then the duality gap is small. However, in the case that ν is large and

close to 1, the gap may be extremely large (See Section 2.3). To obtain a better

bound on the number of iterations, we define another parameter to connect the

function value with the solution of previous scaling phase. Let σs be the relative

error tolerance of the s-th scaling phase. Then similar to Algorithm L, the parameter

ws is defined as follows:

ws =





1 + σ1

(1 + σ0/6)M
, for the first scaling phase;

1 + σs

1 + 2σs

, otherwise.

(2.16)

Let xs be the solution of s-th scaling phase. Then the two stopping rules used in

the s-th scaling phase are:

Rule 1 : ν ≤ σ′2s /36;

Rule 2 : λ(x) ≤ ws λ(xs−1),
(2.17)

where σ′ = kεσ and the parameter kε = (55+
√

1849− 1176ε)/98 < 1. The stopping

rules here are similar to those in L. But the latter are just for the case of solving

the problem with an ABS(p, ε/6, c).

We set t = σ′s/6 for the error tolerance in the block solver ABS(p, t, c) in our

algorithm. We apply the solution of the block solver ABS(e/M, 1/6, c) as initial

solution x0, where the price vector e/M is still the vector of all 1/M ’s and the initial

error tolerance σ0 = 1.

Similar to [109] and Algorithm L, the step length is set as

τ =
tθ(x)ν

2M(p(x)T f(x) + p(x)T f(x̂))
. (2.18)
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Algorithm F(f, B, ε, c):

initialize: s := 0, σ1 = σ0 := 1, σ′1 = σ′0 := kεσ0, t := σ′0/6, p := e/M ;

x0 := ABS(p, t, c), finished scaling := false;

while not(finished scaling) do {scaling phase}
s := s + 1, x := xs−1 and finished coordination := false;

compute ws from (2.16);

while not(finished coordination) do {coordination step}
compute θ(x) from (2.3) and p = p(x) ∈ P from (2.4);

x̂ := ABS(p, t, c);

compute ν = ν(x, x̂) from (2.15);

if (Stopping Rule 1 or 2) then

xs := x and finished coordination := true;

else

x := (1− τ)x + τ x̂ for an appropriate step length τ ∈ (0, 1];

end

end

σs+1 := σs/2, σ′s+1 := kεσs+1 and t := σ′s+1/6;

if (σs+1 ≤ ε/2) then finished scaling := true;

end

Table 2.3: Algorithm F for the Convex Min-Max Resource-Sharing problem.

2.5.2 Analysis of the algorithm F
We are going to analyze the algorithm F is this section. We will show the correctness,

i.e., to prove that the solution xs of the last scaling phase is a solution to (Pε,c). Then

we will prove that the bound on the number of iterations such that the algorithm

stops is polynomial only in M and ε. From now on we denote θ = θ(x), θ′ = θ(x′),

f = f(x), f ′ = f(x′) and f̂ = f(x̂). First we can obtain the following bound on the

function value of the initial solution x0, similar to that in [109] and Section 2.3:

Lemma 2.12 If x0 is the solution of ABS(e/M, t, c) with t = 1/6, then λ(x0) ≤
(7/6)cMλ∗.

Now we will prove the correctness of F by showing that at the end of the s-th

scaling phase the solution satisfies λ(x) ≤ c(1+σs)λ
∗ and at the end (Pε,c) is solved.
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Theorem 2.5 If algorithm F stops, then for any ε ∈ (0, 1] the computed solution

x ∈ B fulfils (Pε,c) with ABS(p, ε3/6, c), where ε3 = (43−√1849− 1176ε)/12.

Proof: We will consider both stopping rules, and try to get bounds on λ(x) in each

scaling phase. If the first stopping rule is satisfied, then by the definition of ν we

have

(1− t2)pT f ≤ (1 + t2)pT f̂ .

Thus Lemma 2.6, the above inequality, and the definition of block solver ABS(p, t, c)

yield

θ =
pT f

1− t
≤

(
1 + t2

1− t2
· 1− t

1 + t

)
1 + t

(1− t)2
pT f̂

≤
(

1 + t2

1− t2
· 1− t

1 + t

)
c

(
1 + t

1− t

)2

Λ(p).

We observe that the first factor is strictly less than 1 for any t > 0. In fact we have

the following bound on it:

1 + t2

1− t2
· 1− t

1 + t
= 1− 2t

1 + 2t + t2
≤ 1− 2t

(1 + 1/6)2

= 1− 72

49
t = 1− 12

49
σ′s.

The inequality comes from the largest t = 1/6 in the first scaling phase. In addition,

using the fact that t = σ′s/6 for each scaling phase, we have

(
1 + t

1− t

)2

≤ 1 + σ′s.

This bound is almost tight with considering the value of t = σ′s/6. Together with

the fact Λ(p) ≤ λ∗, we obtain θ ≤ (1 − 12σ′s/49)c(1 + σ′s)λ
∗. Then by Lemma 2.4,

fm(xs) ≤ λ(xs) ≤ θ(xs) ≤ (1− 12σ′s/49)c(1 + σ′s)λ
∗ ≤ c(1 + σs)λ

∗.

If the second stopping rule is satisfied, then we consider two further cases. If the

rule is satisfied in the first phase s = 1, then according to the value of ws in formula

(2.16),
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λ(x1) ≤ 1 + σ1

(1 + σ0/6)M
λ(x0).

Since x0 is the solution of ABS(e/M, 1/6, c) we have λ(x0) ≤ c(1+σ0/6)Mλ∗. This

implies that λ(x1) ≤ c(1 + σ1)λ
∗.

Now assume (by induction) that λ(xs−1) ≤ c(1 + σs−1)λ
∗ after (s− 1)-st scaling

phase. If the second stopping rule is satisfied in (s− 1)-st phase, then according to

the definition of ws and the relation σs = σs−1/2, we have

λ(xs) ≤ (1 + σs)

(1 + 2σs)
λ(xs−1) ≤ c(1 + σs)λ

∗.

Therefore in both cases we have λ(xs) ≤ c(1 + σs)λ
∗ for any s and the solution

x = xs computed in the last phase solves (Pε,c).

The remaining task is to find the bound on the number of iterations of the

algorithm F to attain the solution. In order to do so, in the next lemma we show

that the decrease of the reduced potential function φt in each iteration is lower-

bounded by a parameter depending only on t, ν and M . This helps us to prove an

upper bound on the number of iterations.

Lemma 2.13 For any two consecutive iterates x, x′ ∈ B within a scaling phase of

algorithm F ,

φt(x
′) ≤ φt(x)− tν2

4M
.

From the above bound we are able to obtain the bound on the number of itera-

tions of algorithm F .

Theorem 2.6 For a given relative accuracy tolerance ε ∈ (0, 1], algorithm F deliv-

ers a solution x satisfying λ(x) ≤ c(1+ε)λ∗ with ABS(p, ε3/6, c) in N = O(M(ln M+

ε−4 ln ε−1)) coordination steps.

The proof is similar to that of Theorem 2.6 but a little different technique for

the stopping rules.
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Remark: The running time here is worse than that of Algorithm L. However, a

block solver ABS(p, ε/6, c) is required in Algorithm L while here we only need a

ABS(p, ε3/6, c).

Similar to the special case of small c (ln c = O(ε)) discussed in Section 2.3.2, we

here can also design a faster algorithm F̄ with only the first stopping rule. It can

be proved that F̄ can solve both primal and dual problems with a better bound on

the number of iterations. Therefore we have the following result:

Corollary 2.1 If c ≤ 1/kε, the algorithm F̄ can generate a pair x and p solving both

(Pε) and (Dε) with only the weak approximate block solver ABS(p, ε3/6, c) within

O(M(ln M + ε−4)) iterations.

Here for the numerical errors we have the same argument as in Section 2.3.

2.5.3 Better running time

The number of iterations of the algorithm for primal problem in L is bounded by

O(M(ln M + ε−2 ln ε)), which is better than the bound in Theorem 2.6. Here we

also get such an algorithm with this technique.

We can develop an algorithm F ′ by slight modification of the stopping rules.

Suppose r ∈ (0, 1) is a constant. Here a function h(r) is defined as:

h(r) =





2r(1− r)

3(1 + r)2
, if r ≥ 3

4
;

6(1− r)

7(6− r)
, otherwise.

(2.19)

In addition, we define a parameter by kr,ε = 1− h(r)ε4, where

ε4 =
(1− h(r))−

√
(1− h(r))2 − 4h(r)ε

2h(r)
>

ε

1− h(r)
.

Define σ′s = kr,εσs. Then the stopping rules of F ′ are as follows:

Rule 1 : ν ≤ rσ′s/6;

Rule 2 : λ(x) ≤ ws λ(xs−1),
(2.20)
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Lemma 2.12 is still valid for algorithm F ′. Similar to that for F , we have the

following theorem:

Theorem 2.7 If algorithm F ′ stops, then for any ε ∈ (0, 1] the solution x delivered

satisfies (Pε,c) with ABS(p, ε4/6, c).

As for the running time, we have also the same bound on increase of reduced

potential function for F ′ as in Lemma 2.13. To find the bound on number of

iterations of algorithm F ′, we can just apply the similar argument to the proof

of Theorem 2.6. Since here r is a constant in (0, 1), we have the following theorem:

Theorem 2.8 For a given relative accuracy ε ∈ (0, 1], the number of coordination

steps of algorithm F ′ is bounded by N = O(M(ln M + ε−2 ln ε−1)).

This bound exactly matches the bound of Algorithm L. But here we just need

a weaker block solver.

Remark: We find that if we design the first stopping rule as ν ≤ v for any v < t,

we can always have a ε′ > ε for ABS(p, ε′/6, c) called in algorithm. A reasonable

choice, v = tq for larger q, can generate a larger ε′. Unfortunately this kind of

improvement is very limited and the running time increases considerable for the

bound on the number of iterations is O(M(ln M + ε−2q ln ε−1)).



Chapter 3

Applications for the Min-Max

Resource Sharing Problem

In this chapter, as applications of the Convex Min-Max Resource-Sharing

problem, we shall study the Multicast Congestion problem in communication

networks and the Minimum Range Assignment problem in ad-hoc networks.

We formulate both problems to certain linear programs with the form of Packing

problem. Then we can apply the Algorithm L in Section 2.3 for these problems.

We show also the block problems have only weak solvers with approximation c > 1.

With these applications we are able to demonstrate how to find the block problem

for a given problem such that the Algorithm L can be used.

3.1 The Multicast Congestion problem in com-

munication networks

We are given a graph G = (V, E) to represent a communication network where |V | =
n and |E| = m and a set of multicast requests S1, . . . , Sk ⊆ V . A feasible solution

to the Multicast Congestion problem in communication networks is a set of k

trees T1, . . . , Tk where Ti connects the vertices in Si. The goal of the Multicast

Congestion problem is to find a solution of k trees minimizing the maximum edge

congestion (the number of times an edge is used). In this section we present a

randomized asymptotic approximation algorithm for the Multicast Congestion

problem in communication networks based on the Algorithm L in Section 2.3 and the

algorithm in [5]. We show that our algorithm is able to overcome the difficulties of an

exponential number of variables and a weak block solver for the Steiner tree problem.

43
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For any given error tolerance ε ∈ (0, 1) our approximation algorithm delivers a

solution with a constant ratio in O(m(ln m + ε−2 ln ε−1)(kβ + m ln ln(mε−1))) time,

where β is the running time of the approximate solver for the Steiner tree problem.

3.1.1 The problem and known results

We consider the Multicast Congestion problem in communication networks.

Let an undirected graph G = (V, E) represent a communication network with n

vertices and m edges. Each vertex of G represents a processor which is able to

receive, duplicate or deliver packets of data. A multicast request is a subset S of

vertices (called terminals), which are connected such that they can receive copies of

the same data packet from the source simultaneously. In order to fulfill a request,

one subtree of G spanning S is generated, called a S-tree. In the Multicast

Congestion problem in communication networks we are given G and a set of

multicast requests S1, S2, . . . , Sk ⊆ V . A feasible solution is a set of k trees

T1, . . . , Tk, where each tree Ti connects the terminals Si for the i-th multicast request,

called Si-tree. The congestion of an edge in a solution is the number of Si-trees which

use the edge. The goal of the Multicast Congestion problem in communication

networks is to find a solution of Si-trees minimizing the maximum edge congestion.

A simple example to reduce the maximum edge congestion in a communica-

tion network with requests is illustrated in Figure 3.1 and 3.2. In this exam-

ple we are given a graph with a vertex set V = {1, . . . , 6}. The edge set is

E = {(1, 2), (2, 3), (3, 4), (1, 5), (4, 6), (5, 6), (2, 5), (3, 6)}. There are two requests

S1 = {1, 4, 5, 6} and S2 = {3, 5}. In Figure 3.1 two trees T1 = {(1, 5), (5, 6), (4, 6)}
and T2 = {(3, 6), (5, 6)} are generated to connect S1 and S2. The maximum edge

congestion is 2 and it occurs on edge (5, 6). In Figure 3.2 we still use the same tree

T1 as in Figure 3.1 for the request S1. However, we generate T2 = {(2, 3), (2, 5)}.
Therefore the maximum edge congestion is reduced to 1 (this is also the optimal

solution).

The Multicast Congestion problem in communication networks is a gener-

alization of the standard routing problem of finding integral paths with minimum

congestion where each request consists of only two terminals. It is in fact a general-

ization of the problem of finding edge disjoint paths. This problem is NP-hard [67]
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Figure 3.1: An example to reduce maximum edge congestion (high congestion).

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �� � � � � � � � � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �� � � � � � �� � � � � � �1 2 3 4

5 6

Figure 3.2: An example to reduce maximum edge congestion (low congestion).

and hence the Multicast Congestion problem is also NP-hard.

A related problem is the Steiner tree problem, a classical problem in graph theory.

Given a graph G = (V,E), a set S ⊆ V of terminals and a length function (cost)

on the edges, a Steiner tree T is a subtree spanning all vertices in S. The vertices

of T may be in V \ S. The goal of the Steiner tree problem in graphs is to find a

minimum Steiner tree, i.e., a Steiner tree with minimal total edge length. Compared

with the Multicast Congestion problem, in the Steiner tree problem, there is

only a single multicast with a slightly different objective function. Furthermore,

we will show that in our algorithm, the Steiner tree problem is exactly the block

problem of the Multicast Congestion problem and our algorithm depends on

the approximate solver of it. Unfortunately, this problem is also proved NP-hard

[67]. We review the results of approximation algorithms and inapproximibility for

the Steiner tree problem briefly in the Subsection 3.1.2. Details of the Steiner tree

problem can be found in [38, 95, 30].

Since the Multicast Congestion problem is NP-hard, interests turn to the
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approximation algorithms. In [100] a routing problem in the design of a certain

class of VLSI circuits was studied as a special case of the Multicast Congestion

problem. The goal is to reduce the edge congestion of a two-dimensional rectilinear

lattice with a specific finite set of trees. Solving the relaxation of the integer linear

program and applying randomized rounding yield a randomized algorithm where

the congestion is bounded by OPT + O(
√
OPT ln(n2/ε)) with probability 1 − ε

when OPT is sufficiently large, where OPT is the optimal value.

Vempala and Vöcking [107] proposed an approximation algorithm for the Mul-

ticast Congestion problem based on the idea of randomized rounding of the

solution to the linear relaxation of their integer linear program, which is related to

the dual program of our method. However, the linear program in their model has

an exponential number of constraints. Thus they had to apply a separation oracle

to solve it, which increases the complexity. Afterwards they decomposed the frac-

tional solution for each multicast into a set of paths instead of trees in [100]. Within

a number of O(ln n) iterations of the rounding procedure, an O(ln n)-approximate

solution can be delivered in time O(n6α2 +n7α) where α involves the number k and

some other logarithmic factors.

Carr and Vempala [15] proposed a randomized asymptotic algorithm for the

Multicast Congestion problem with a constant approximation ratio. They

analyzed the solution to the linear programming relaxation by the ellipsoid method,

and showed that it is a convex combination of Si-trees. By picking a tree with

probability equal to its convex multiplier, one can obtain a solution with congestion

bounded by 2 exp(1)c ·OPT +O(ln n) with probability at least 1−1/n, where c > 1

is the approximation ratio of the solver for the Steiner tree problem applied as an

oracle. The algorithm needs Õ(n7) time including k as a multiplication factor.

Baltz and Srivastav [4] studied the problem and proposed a formulation based

on the ideas of Klein et al [75] to solve the concurrent multicommodity flow problem

with uniform capacities. The integer linear program has an exponential number of

variables. Then they constructed a combinatorial LP-algorithm to obtain a polyno-

mial number of Si-trees for each multicast Si, in order to avoid the ellipsoid method

or the separation algorithm. Furthermore a randomized rounding technique was

applied. The solution of their algorithm is bounded by
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r =





(1 + ε)c · OPT + (1 + ε)(exp(1)− 1)
√

c · OPT ln m, if c · OPT ≥ ln m,

(1 + ε)c · OPT +
(1 + ε) exp(1) ln m

1 + ln(
ln m

c · OPT )
, otherwise.

(3.1)

For the case c · OPT ≥ ln m the bound is in fact (1 + ε) exp(1)c · OPT and oth-

erwise it is (1 + ε)c · OPT + O(ln m). The running time is O(βnk3 ln3(mε−1)ε−9 ·
min{ln m, ln k}) where β is the time to approximately solve the Steiner tree problem.

With a 2-approximate solver of the Steiner tree problem, the total running time of

the algorithm is Õ(n(m + n ln n)) for constant k and ε, which is an improvement

compared to [15, 107].

Here we present a randomized asymptotic approximation algorithm for the Mul-

ticast Congestion problem in communication networks. Based on the idea in

[4] an integer linear program is constructed. Then we apply the approximation al-

gorithm for the Convex Min-Max Resource-Sharing problem in Section 2.3

to solve the linear programming relaxation. Finally randomized rounding is used

to obtain a feasible solution to the original integer linear program. We show that

the block problem to solve the linear programming relaxation is the Steiner tree

problem. The approximation ratio hence is the same as that in [4] or [15] if their

rounding techniques are applied respectively. However, we improve the running time

to O(m(ln m+ ε−2 ln ε−1)(kβ +m ln ln(mε−1))), which is better for the case of large

k or small ε−1.

Recently Baltz and Srivastav [5] proposed three approximation algorithms for

the Multicast Congestion problem in communication networks based on algo-

rithms for Convex Min-Max Resource-Sharing problem and the multicom-

modity flow problem by [42, 89, 98]. The fastest one has an improved running time

of O(k(m + β)ε−2 ln k ln m). They also did some implementation to explore the be-

haviour of the algorithms with typical instances. They found that the algorithm in

[42] is very impractical. In addition, they also presented a heuristic which can find

near-optimal solution within a few iterations.
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Main ideas. The bottleneck of the problem is to solve the linear programming

relaxation with an exponential number of variables. The Algorithm L in Section

2.3 has a coordination complexity O(m(ln m+ε−2 ln ε−1)) depending only on m and

ε−1. Thus we apply it for the Multicast Congestion problem. In addition, we

prove that the block problem is the Steiner tree problem. Since the block problem is

proved hard to be approximated, only a weak block solver can be employed with an

approximation ratio c > 1. However, the Algorithm L can solve this kind of problems

within a data-independent number of iteration (calls to the weak block solver). Thus

we are able to find an approximate solution with the same approximation ratio as

the solver of the Steiner tree problem but with a running time polynomial in only

m, n and ε−1.

Related results. The algorithms in [89] can also be applied to solve the linear

packing problem with an approximate block solver. In fact Charikar et al [16]

noticed that the algorithm in [89] can also be generalized to the case of a weak

block solver. If their method is applied to solve the linear programming relaxation,

it can be estimated that the width ρ here is bounded by O(k). However, as their

algorithm is for the decision version of the problem, an approximate solution to the

optimization problem is obtained by the binary search. So a number of ln(kε−1)

steps are necessary. Hence the overall running time is O(ε−2k2β ln(mε−1) ln(kε−1).

Thus our result is better for the case of large k. In addition, the algorithm in [111]

can also be used to solve the packing problem with weak block solver. If it is applied

here, a similar analysis shows that the overall running time to solve the multicast

congestion problem is O(k2ε−2β ln m).

3.1.2 The Steiner tree problem

The Steiner tree problem (definition in Subsection 3.1.1) is the block problem of the

Multicast Congestion problem and our algorithm depends on the solver for the

Steiner tree problem (see also Subsection 3.1.3). However, the following conclusion

holds [67]:
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Proposition 3.1 The Steiner tree problem in graphs is NP-hard, even for un-

weighted graphs.

In this way, much interest has turned to approximation algorithms for the Steiner

tree problem.

A natural way is to use a minimum spanning tree instead of a minimum Steiner

tree. It is worth noting that if the leaves of the minimum spanning tree are same

as the terminals of the minimum Steiner tree, then the two trees are identical. In

addition, it is well-known that there exist polynomial-time algorithms for the mini-

mum spanning tree problem. This approach was attributed to Moore (cf [43]) and

has been rediscovered many times. To solve the minimum spanning tree problem,

the algorithms in [76] and [96] based on the greedy idea can be applied. The for-

mer starts with a forest, all trees in which are connected gradually to form a single

tree at last. The latter begins with arbitrary vertex spanning to all vertices by a

labeling and spanning procedure. The complexity is O(m + n ln n) where m = |E|
and n = |V |. In this way, an approximation algorithms for the Steiner tree problem

can be obtained with an approximation ratio c = 2 and the running time of the

algorithm is O(m + n ln n) [85, 36].

In 1990, Zelikovsky [113] studied the case of 3-Steiner trees. A full Steiner tree

is a Steiner tree where all terminals are leaves. Then a general Steiner tree can be

decomposed into a certain number of full components which are connected on the

non-terminal vertices in the tree. A 3-Steiner tree is a Steiner tree where each full

component has at most 3 terminals. With the analysis of this concept and a greedy

algorithm, Zelikovsky proposed an 11/6-approximation algorithm, which is the first

one with approximation ratio less than 2. The running time of the algorithm is

O(mn + s4) where s = |S| is the number of terminals.

The idea was generalized to a k-Steiner tree and a 1.734-approximation algorithm

was proposed for large k [9]. Afterwards several other approximation algorithms for

the Steiner tree problem are based on Zelikovsky’s idea. Prömel and Steger [94]

addressed a randomized 5/3-approximation algorithm instead of the simple greedy

idea. Later another concept, loss, was introduced in the analysis, which can be

used to measure the length required in the connection of a full component. Thus

a 1.644-approximation algorithm was constructed [69] and improved to 1.598 [51]
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soon.

Almost all above algorithms choose certain full components and keep them for

the overall solution. However, it is possible that some later but better full com-

ponents disagree with a previously accepted one (two components disagree if they

share at least two terminals). Noting this shortage, Robins and Zelikovsky [102]

designed the best known approximation algorithm for the Steiner tree problem by

the improvement of updating of accepted full components to achieve the maximal

ratio of gain to loss. The approximation ratio is 1 + (ln 3)/2 ≈ 1.550.

The details of the development of approximation algorithms for the Steiner tree

problem can be found in the surveys [38, 95, 30].

On the other hand, negative results have also been proved for the approximation

algorithms. According to the PCP-theory with the reduction of the problem Node-

Cover-B to the Steiner tree problem in graphs, the following result holds [3, 10]:

Proposition 3.2 There exists a constant c̄ > 1 such that no polynomial-time ap-

proximation algorithm for the Steiner tree problem in graphs has approximation ratio

less than c̄ unless P=NP.

Thus another interesting topic is to find the lower bound on the approximation ratio

c̄. The previous best lower bound was 136/135 ≈ 1.0074 due to Thimm [105] by

an inapproximability bound for Max-E3-Lin-2. The idea is to design a reduction

to linear equations modulo 2 with three variables per equation. Recently Chleb́ık

and Chleb́ıková [18] improved the lower bound to 96/95 ≈ 1.0105, which is the best

known negative result.

In Subsection 3.1.3 the relation between the Multicast Congestion problem

in communication networks and the Steiner tree problem is shown. The hardness

of the Steiner tree problem leads to the hardness of the Multicast Congestion

problem. Then the approximation ratio of our algorithm is same as the ratio of the

approximate solver for the Multicast Congestion problem.

3.1.3 Approximation algorithm for the Multicast Conges-

tion problem in communication networks

In this subsection we develop a randomized polynomial time approximation algo-

rithm for the Multicast Congestion problem based on the algorithms in [5].
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Given an undirected graph G = (V, E), where |V | = n and |E| = m, and subsets

S1, . . . , Sk ⊆ V , we will find a set of subtrees, each spanning a subset, to minimize

the maximum edge congestion. According to the idea in [75] of the concurrent

multicommodity flow problem with uniform capacities, an integer linear program

can be formulated for the Multicast Congestion problem.

Let Ti be the set of all Si-trees for i ∈ {1, . . . , k}. Here the cardinality of Ti may

be exponentially large. Define by xi(T ) a variable indicating whether the tree T ∈ Ti

is chosen in solution for the multicast request Si. The an integer linear program for

the minimum multicast congestion problem is

min λ

s.t.
∑

T∈Ti
xi(T ) = 1, for all i ∈ {1, . . . , k};

∑k
i=1

∑
T∈Ti & e∈T xi(T ) ≤ λ, for all e ∈ E;

xi(T ) ∈ {0, 1}, for all i and all T ∈ Ti.

(3.2)

Here λ is the maximum congestion over all edges. The first set of constraints means

that there is one and only one tree in Ti is selected for the request Si. The second

set of constraints means that on every edge the congestion is not more than λ. As

the usual technique, we shall consider the linear programming relaxation of (3.2) to

obtain a fractional solution, where xi(T ) ∈ [0, 1].

The difficulty to solve the linear programming relaxation of (3.2) is the exponen-

tial number of variables xi(T ). In fact this is the bottleneck of solving the Multi-

cast Congestion problem in communication networks. However, we find that the

linear programming relaxation of (3.2) is in fact a Packing problem mentioned in

Chapter 2, which is the linear case of the Convex Min-Max Resource-Sharing

problem. Thus we can use the Algorithm L in Section 2.3. Here the packing con-

straints are

fe(x) =
k∑

i=1

∑

T∈Ti & e∈T

xi(T ) ≤ λ.

From the linear programming relaxation of (3.2) we are able to decompose the

domain of variables B = B1 × . . .×Bk where k is the number of multicast requests

(subsets) Si and the block Bi is as follows:
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Bi = {(xi(T ))|T ∈ Ti,
∑

T∈Ti

xi(T ) = 1, xi(T ) ≥ 0}, for i = 1, . . . , k, (3.3)

where (xi(T )) represents the vector whose components are xi(T ) for all T ∈ Ti. The

number of components of vector (xi(T )) can be exponentially large.

We now consider the block problem, which is to minimize the value of pT f(x)

for a given price vector p. According to the block structure of the set B, the

optimization of pT f(x) over x ∈ B = B1× . . .×Bk can be conducted independently

over all blocks Bi. In addition, each block Bi is a simplex according to (3.3). Since

all constraints are linear in variables, the optimal value of the objective function

over such a simplex is achieved at one of the vertices.

For a given p ∈ P , the block problem is as follows:

min
x∈B

pT f(x) = min
x∈B

∑

e∈E


pe ·

k∑

i=1

∑

T∈Ti&e∈T

xi(T )




= min
x∈B

∑

e∈E

k∑

i=1

∑

T∈Ti&e∈T

pexi(T )

= min
x∈B

k∑

i=1

∑

e∈E

∑

T∈Ti&e∈T

pexi(T ) (3.4)

=
k∑

i=1

min
x∈B

∑

e∈E

∑

T∈Ti&e∈T

pexi(T )

=
k∑

i=1

min
x∈B

∑

T∈Ti

∑

e∈T

pexi(T )

=
k∑

i=1

min
T∈Ti

∑

e∈T

pe.

The last equality holds as in each block Bi, i = 1, . . . , k, the variable xi(T ) is in a

|Ti| dimensional simplex and we can choose a tree T ∈ Ti which has the minimal

value of the sum of price vectors on its edges
∑

e∈T pe and set the corresponding

xi(T ) = 1 (and other components are zeros) to achieve the minimum. Here pe is the

price vector component of e ∈ E which can be calculated in advance in Algorithm



3.1. The Multicast Congestion problem in communication networks 53

L by (2.4) according to the previous value of xi(T ). Now the goal of the block

problem is to find, for each i = 1, . . . , k, a tree T ∈ Ti that minimizes
∑

e∈T pe.

Since Ti contains all trees connecting vertices in Si, regarding the price vector as the

weight functions defined on edge set E, the block problem is for each i = 1, . . . , k,

to find a tree connecting Si (allowing vertices in V \ S) such that the sum of edge

weight of the tree is minimized. Therefore for each i = 1, . . . , k, we have a Steiner

tree problem (as reviewed in Subsection 3.1.2) with terminal set Si, and the weights

assigned on edges are given by the price vector p.

However, as we showed in the Subsection 3.1.2, there exists a constant c̄ > 1

such that there is no polynomial time algorithm to solve the Steiner tree problem

with an approximation ratio less than c̄. So we are only able to find approximate

solvers for the Steiner tree problem with ratios c > 1, i.e., weak block solvers for

the Multicast Congestion problem in communication networks. Thus if the

algorithms for the Packing problemin [42, 46, 109] are applied here, the running

times are data dependent. To avoid this, we here use the Algorithm L in Section

2.3 to solve the Multicast Congestion problem with an approximate solver for

the Steiner tree problem.

In addition, in the overall running time we need to consider the numerical over-

head to compute the approximate value of p according to (2.4) and (2.3). As stud-

ied in Subsection 2.4.2, in each iteration we need O(M ln(Mε−1)) time by bisection

method or O(M ln ln(Mε−1)) time by the Newton’s method. Since in each itera-

tion we need to call the approximate solver for the Steiner tree problem k times

for all blocks B1, . . . , Bk, the overall running time is O(m(ln m + ε−2 ln ε−1)(kβ +

m ln ln(mε−1))), where β is the running time of the approximate solver for the Steiner

tree problem.

After the linear programming relaxation of 3.2 is approximately solved by Al-

gorithm L, we use the same rounding technique as in [4, 99] or in [15]. Hence we

immediately have the following theorem:

Theorem 3.1 For OPT ≥ Ω(ln m) (i.e. OPT ≥ ln(mc−1)) there exists an asymp-

totic polynomial time algorithm for the multicast congestion problem in multicast

communication network via solving the Steiner tree problem with a constant approx-

imation ratio c > 1.
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3.2 The Minimum Range Assignment problem in

ad-hoc networks

In this section we study the Minimum Range Assignment problem in static ad-

hoc networks with arbitrary structure, where the transmission distances can violate

triangle inequality. We consider two versions of the Minimum Range Assign-

ment problem, where the communication graph has to fulfill either the h-strong

connectivity condition (Min-Range(h-SC)) or the h-broadcast condition (Min-

Range(h-B)). Both homogeneous and non-homogeneous cases are studied. By

approximating arbitrary edge-weighted graphs by paths, we present probabilistic

O(log n)-approximation algorithms for Min-Range(h-SC) and Min-Range(h-B),

which improves the previous best ratios O(log n log log n) and O(n2 log n log log n),

respectively [110]. The result for Min-Range(h-B) matches the lower bound [103]

for the case that triangle inequality for transmission distance holds (which is a special

case of our model). Furthermore, we show that if the network fulfils certain property

and the distance power gradient α is sufficiently small, the approximation ratio is

improved to O((log log n)α). Finally we discuss applications of our algorithms in

mobile ad-hoc networks.

3.2.1 Introduction

Nowadays wireless communication network plays an important role in the daily life

due to the significant drop in the prices of equipments and the progress in new tech-

nology. In traditional wired communication networks signals are transmitted among

nodes through fixed cables. However, in some critical environment, the wired back-

bone networks are impossible or too hard to establish. Thus the demand of wireless

communication networks arises. In wireless communication networks there is no in-

frastructure backbone and for each device the radio signal transmission is conducted

in a finite range around it. The locations of devices and the ranges can be adjusted

dynamically in order to fulfil certain communication quality requirement and to

extend the lifetime of the networks. In general the wireless devices are portable

with only limited power resources (e.g., batteries). High quality of communication

usually consume more energy and reduce the network lifetime, and vice verse [13].
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Hence, a crucial issue of wireless communication networks is to minimize the energy

consumption as well as keeping required communication quality.

Among the new generation’s model of wireless communication networks, the ad-

hoc wireless network based on multi-hop plays a very promising role [77]. Typical

applications of the ad-hoc networks include emergency disaster, battlefield, and

monitoring remote geographical region. The multi-hop ad-hoc networks are able to

reduce the power consumption and to vary the power used for transmission such

that the interference problem can be avoided. Since in the ad-hoc networks the

power consumption is increasing in the transmission range (the coverage range) for

the same device under the same environmental condition, it is important to study

the range control to minimize the overall energy consumption without resulting in

too bad communication quality. The Range Assignment problem is a key subject

of energy control in ad-hoc networks, which has been extensively studied in wireless

network theory [2, 14, 20, 21, 24, 74].

The (static) Range Assignment problem on d-dimensional Euclidean spaces

(d ≥ 1) is defined as follows. We are given a set S of stations (radio transmit-

ter/receivers) on d-dimensional Euclidean spaces and the distances between all pairs

are known according to their coordinates. The stations can communicate with each

other by sending/receiving radio signals. We assume that each station is equipped

with omnidirectional antennas such that its transmission range is characterized by

the radius that its signals can reach. The message communication happens via

multi-hop transmission, i.e., a message is delivered from the source to the destina-

tion through some intermediate stations and each station in this transmission chain

other than the source station is in the coverage range of its predecessor. A range

assignment for a set of station S is a function r : S → IR+, which indicates the

radii that stations can cover. For a station v ∈ S associated with a range r(v) in

a network-wise range assignment, its energy consumption (power consumption) is

cost(r(v)) = c(v)(r(v))α, where c(v) is a parameter depending on the individual

device.The distance-power gradient α is a positive real number, usually in the in-

terval [1, 6] in practice. When c(v) is a constant for all v ∈ S, we call the model

homogeneous, otherwise it is non-homogeneous [2]. It is worth noting that the non-

homogeneous model can be asymmetric, as the energy consumption for a device on
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u to cover v may differ from the energy consumption of another device to conduct

the same transmission. The overall energy consumption of a range assignment r is

defined as cost(r) =
∑

v∈S cost(r(v)) =
∑

v∈S c(v)(r(v))α.

A range assignment r yields a directed communication graph Gr = (S, Er), such

that for each pair of stations u and v there exists a directed edge (u, v) ∈ Er if and

only if v is at an (Euclidean) distance at most r(u) from u. For the purpose of a

variety of communication requirements, the communication graph Gr must fulfil one

of following two properties Πh for any fixed h, h ∈ {1, . . . , n − 1}, where n is the

number of stations:

• h-strong connectivity: from every station to any other station, Gr must contain

a directed path of at most h hops (edges),

• h-broadcast: Gr must contain a directed source spanning tree rooted at a source

station with depth at most h.

The goal of the Minimum Range Assignment problem (shortly, Min-Range)

is to find a range assignment r for a given S such that Gr fulfils a given property Πh

and the overall energy consumption cost(r) is minimized. We use notations Min-

Range(h-SC) (respectively, Min-Range(h-B)) for the corresponding Minimum

Range Assignment problems, when Πh is the property of h-strong connectivity

(respectively, h-broadcast). The detailed description of the problem can be also

found in [103].

Known results. It is obvious that when α > 1 the objective function is nonlin-

ear. Therefore many traditional techniques such as linear programming can not be

employed here, which makes the problem hard. Previously attention was mainly

paid to the Minimum Range Assignment problems defined on one dimensional

(Euclidean) spaces, which is equivalent to the case that a set S of stations are placed

along a line (or a path). Polynomial time algorithms by dynamic programming were

addressed for both homogeneous and non-homogeneous cases for Min-Range(h-

B) on one dimensional (Euclidean) spaces in [74, 23, 2]. In the homogeneous case

the Min-Range(h-SC) problem is polynomial time solvable for h = 2 (respec-

tively, h = n− 1) within a running time O(n3) (respectively, O(n4)) as presented in
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[21] (respectively [74]). However, for any other h it is still open whether the Min-

Range(h-SC) problem on one dimensional spaces can be solved in polynomial time.

Clementi et al. [21] proposed a 2-approximation algorithm for any h ∈ {2, . . . , n−1}
for the homogeneous case with a complexity O(hn3). Furthermore, the algorithm

can be extended to the non-homogeneous case.

There are only few results on d-dimensional Euclidean spaces for d ≥ 2 (see

[22, 103]). In case of h = n − 1, algorithms based on the minimum spanning tree

technique can deliver a solution with a constant approximation ratio for the Min-

Range(h-B) problem [20], where the constant ratio depends on the dimension d and

the distance-power gradient α. For the Min-Range(h-SC) problem and h = n−1, a

2-approximation algorithm was addressed in [74]. Recently, Calinescu et al. [14] de-

veloped an O(logα n)-approximation algorithm for the Min-Range(h-B) problem

on d dimensional Euclidean spaces. They also presented (O(log n), O(log n)) bicrite-

ria approximation algorithms for both Min-Range(h-B) and Min-Range(h-SC)

problems. For any fixed h, denote by OPT the optimal overall cost of the input in-

stance. Then their algorithms can deliver a range assignment for the given instance

such that the number of hops is bounded by O(h log n) and the total cost is at most

O(log n)OPT .

In [24] the Min-Range(h-SC) problem was proved in Av-APX for any fixed

h ≥ 1 and the problem is APX -hard on d-dimensional Euclidean spaces for d ≥ 3.

In [110] the Minimum Range Assignment problem on general metric spaces was

studied. Approximation algorithms with ratios O(min{log n log log n, (log n)α}) and

O(n2 min{log n log log n, (log n)α}) were proposed for Min-Range(h-B) and Min-

Range(h-SC), respectively. This was the first work to explore Minimum Range

Assignment problem on general spaces. In their model, the triangle inequality is

still required for the transmission distance.

Our contributions. In this paper, we first propose a new model of the Mini-

mum Range Assignment problem. We show that our model is a generalization

of previous models and is realistic. We notice that the transmission cost for the

same device is not homogeneous on space, i.e., the costs from different locations

to cover the same distance can be different, due to environmental factors. In this



3.2. The Minimum Range Assignment problem in ad-hoc networks 58

case it is invalid to measure the cost by Euclidean distance. Thus we consider the

problem with a station set S on a space with transmission distance (see Subsub-

section 3.2.2.1) instead of the original Euclidean distance. In such an instance, the

transmission distance can even violate the triangle inequality, and no previous study

remains valid in this case. Our main ideas are as follows. For a given instance of

the Minimum Range Assignment problem, in the first step we reduce it to an

instance with only a simple network structure (e.g., a path in our study) and with

bounded distortion of distance between all pairs of stations. Then in the second step

we use some existing algorithms for the reduced instance. By this strategy we are

able to obtain an algorithm with an approximation ratio bounded by the product of

the ratios of both two steps. In this paper, based on the above idea, we first present

a probabilistic algorithm to approximate any edge-weighted graph by a collection

of paths, such that for any pair of nodes the expected distortion of shortest path

distance is at most O(log n), where n is the number of nodes in the graph. The

paths in the collection and the corresponding probability distribution are given by

solving a packing problem defined in Chapter 2 and [46, 89, 109], and a solver of the

Minimum Linear Arrangement problem [97] is employed as an oracle. With

this algorithm we are able to approximate the general static ad-hoc networks to

paths and run known algorithms in [2, 21, 23, 74] for the Minimum Range As-

signment problem on one dimensional Euclidean spaces (lines, which correspond

paths). Therefore this strategy leads to probabilistic O(log n)-approximation algo-

rithms for the Minimum Range Assignment problem (both Min-Range(h-B)

and Min-Range(h-SC)) for general static ad-hoc networks. The ratio for the Min-

Range(h-B) problem reaches the lower bound for networks that triangle inequality

is valid for transmission distance [103]. It is worth noting that the case in [103] is

only a special case of our model as here we allow violation of the triangle inequality.

In addition, the large factor O(n2) in the approximation ratio of the algorithm for

the Min-Range(h-SC) problem in [110] is removed. The ratios for both problems

are the same, which also implies that the Min-Range(h-SC) problem is not harder

than the Min-Range(h-B) problem. Furthermore, if the input graph of station set

fulfils certain property, we show that the approximation ratio can be further reduced

to O((log log n)α). Finally, we study the Minimum Range Assignment problem
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in mobile ad-hoc networks, where the locations of the mobile stations can change

and the topology of the network can vary. Based on the DSDV protocol [88] we are

able to generalize our algorithms to the mobile model.

3.2.2 Preliminaries

We introduce our model and some notations in this section.

3.2.2.1 Our model

In most of previous works for the Minimum Range Assignment problem

either h is set as n− 1 [74, 20], or the station set is on one dimensional (Euclidean)

spaces [74, 21, 23, 2]. For studies of Minimum Range Assignment problem

on multidimensional spaces, the transmission cost is measured by the (Euclidean)

geometric distance [74, 20, 14]. Even in [110], the triangle inequality must hold for

the transmission cost.
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Figure 3.3: Example of difference between the transmission distance and the geo-
metric distance.

The one dimensional model has already been widely studied as a good approx-

imation of the real instances. However, demands on models on multidimensional

spaces are gradually increasing, as they can be more precise tools to characterize

the real ad-hoc networks. Furthermore, from the engineering point of view, the

model with fixed h = n − 1 is not practical and hard to control by current pro-

tocols [17]. In that model, for any signal transmission, the number of hops used

can be uncontrolled. In wireless communication, uncontrolled hops can lead to high

probability of errors in coding/decoding, large latency, etc. Thus the quality of

communication is significantly reduced. Finally, an important issue is the measure-

ment of the transmission cost in the ad-hoc networks. In almost all of previous

works the transmission cost is assumed to be characterized by the (Euclidean) geo-

metric distance. We notice that due to environmental condition, that assumption



3.2. The Minimum Range Assignment problem in ad-hoc networks 60

is not always true. For instance (Figure 3.3), three stations are along a line, and

dE(a, b) = dE(b, c), where dE is the Euclidean geometric distance. However, there

are some barriers (forests, buildings) between a and b, while there is nothing between

b and c. In such an instance, it costs more energy to send signals from b to a than

from b to c, though the geometric distances between above two pairs of stations are

the same. Thus the geometric distance is not sufficient to measure the real energy

cost in transmission though it is a good approximation. In [103, 110] the model of

Minimum Range Assignment problem on metric spaces was suggested where the

transmission cost is not represented by the geometric distance. We further notice

that on metric spaces the triangle inequality is assumed valid, and this assumption

could be violated in real wireless communication networks. For instance (See Figure

3.4), three stations are on a plane. There is a solid barrier (e.g. mountains, large

buildings) between stations a and b, while there is no such solid barrier between sta-

tion pairs a, c and b, c. In this example dE(a, b) ≤ dE(a, c) and dE(a, b) ≤ dE(b, c).

However, it costs much more to launch a signal transmission between a and b due to

the solid barrier. Therefore the energy cost for direct transmission between a and b

can be greater than the sum of costs of transmissions between a, c and b, c. Thus

the triangle inequality does not hold. When the transmission cost between a and b

is unbounded (which does happen in real world), it is impossible to build an ad-hoc

network for this instance with only h = 1 hop and bounded overall energy cost.
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Figure 3.4: Example that the triangle inequality is violated.

In this paper, we propose a new model of the Minimum Range Assignment

problem in ad-hoc communication networks. In this model, h can be any arbitrary

integer number in {1, . . . , n− 1}. Furthermore, the stations are on arbitrary spaces,

and the transmission cost between each pair can be arbitrary. We propose a con-

cept transmission distance, which is a scalable quantity. Given a station set S and
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a distance power gradient α, we can measure the minimum energy cost cost(u, v)

of directly sending signals from any station u ∈ S to any other v ∈ S \ {u} with a

standard wireless device c(u) = 1. The transmission distance between the station

pair (u, v) is defined as d(u, v) = (cost(u, v))−α. In our model, an instance of Min-

imum Range Assignment problem (G(S,E, lG), α, Πh), we are given a complete

edge weighted graph G, a distance power gradient α ≥ 1 and a required property

Πh of the communication graph (either h-strong connectivity or h-broadcast), for

h ∈ {1, . . . , n− 1}. In the weighted graph G, the vertex set S is the station set and

the weight l(u, v) of any edge (u, v) is the transmission distance (which can violate

the triangle inequality) between the two endpoints u and v. The edge weight can

be infinity if the transmission cost between the corresponding two endpoints is un-

bounded. Same as previous models, the goal is to find a network-wide arrangement

r such that the property Πh holds in the resulting communication graph and the

overall energy cost cost(r) is minimized.

We also notice that this model of the Minimum Range Assignment problem

generalize previous models. If the edge weights fulfil the triangle inequality, then our

model is reduced to the model on metric space. If the edge weights are Euclidean

geometric distances, then it is reduced to classical model on Euclidean spaces. Other

restricted models can be naturally reduced from our model.

3.2.2.2 Notations and definitions

We introduce some notations and definitions related to our algorithms in this

subsection. Without loss of generality, we only consider connected graphs. Given

a graph, we need to embed it in a simpler graph such that the distance between

each pair of vertices are approximately preserved. This technique can be employed

to solve some hard problems on arbitrary graphs, as an arbitrary graph may have a

very complicated structure. We will propose the idea of probabilistic approximation

of weighted graphs by a collection of simpler graphs (e.g. paths). This is a general-

ization of the concept of probabilistic approximation of metric spaces addressed in

[6], because edge weights can violate triangle inequality.

Given two graphs G1 = (V, E1, l1) and G2 = (V,E2, l2) with the same node set

V , G1 dominates G2 if and only if dG1(u, v) ≥ dG2(u, v) for all pair u, v ∈ V ,
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where dGi
(u, v) is the shortest path distance between node pair u and v in Gi.

G1 is also called a non-contracting embedding of G2. The distortion is defined as

maxu,v∈V dG1(u,v)/dG2(u,v).

Suppose that H is a collection of graphs that have the same node set V as

another graph G. Assuming that each graph in H dominates G, H is defined to

ρ-probabilistically approximate G if there is a probability distribution µ over H such

that for each pair of nodes in V the expected distance between them in a graph

H ∈ H chosen according to µ is at most ρ times the distance between the pair in

G, i.e., E[dH(u, v)] ≤ ρdG(u, v).

In this paper, we will develop an algorithm to O(log n)-probabilistically approxi-

mate any graph by a collection of paths (See Section 3.2.3). Based on this algorithm,

we are able to generalize the existing algorithms for the Minimum Range Assign-

ment problems in ad-hoc networks on lines (paths) to arbitrary networks. In order

to generate the collection of paths and the probability distribution over it, a packing

problem has to be solved (See Chapter 2).

3.2.2.3 Algorithms for approximating metrics

In [6], Bartal proposed the concept of probabilistic approximation of metric

spaces by a set of simpler metric spaces. A polynomial time algorithm to O(log2 n)-

probabilistically approximate any metric space on |V | = n nodes by a class of tree

metrics was addressed in [6]. The approximation ratio was improved to O(log n log log n)

in [7]. However, the numbers of the tree metric spaces are exponentially large in both

algorithms. Charikar et al. [16] developed a polynomial time algorithm to construct

a probability distribution on a set of O(n log n) trees metrics for any given metric

space induced by a (weighted) graph G on n nodes, such that the expected distor-

tion of each edge is not more than O(log n log log n). Recently, Fakcharoenphol et al.

[33] improved the bound on distortion to O(log n) by using some special technique

based on the triangle inequality. They also showed that this bound is tight. For the

deterministic version of the problem, Matoušek [84] shows that any metric can be

embedded into the real line with a distortion O(n). This result is existentially tight

as the n-cycle can not be embedded into a line with distortion o(n) [50, 97]. For

this problem, Dhamdhere et al. [28] considered a variant to minimize the average
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distortion which is defined as the sum of distances over all pairs in the line divided

by the sum of those distances in original metric space. For the general metric space

they proposed a constant factor approximation algorithm and when the given metric

is a tree, a quasi PTAS was addressed.

To generate the tree metrics and decide the probability distribution µ, a linear

program with exponential number of variables has to be solved. Indeed this linear

program is a packing problem and can be solved approximately by the approximation

algorithm L in Section 2.3 or some other existing fast algorithms [16]. All the

algorithms are based on iterative strategy. In each iteration a tree metric is generated

and the probabilities on the tree metrics are assigned once, till the algorithms halt.

3.2.3 Approximate a graph by a collection of paths

We will study the problem of probabilistically embedding graphs in paths and de-

velop a probabilistic approximation algorithm. For any given graph, our algorithm

will deliver a collection of paths and a probability distribution over it such that

the expected distortion is bounded by O(log n). This algorithm will be employed

for approximately solving the Minimum Range Assignment problem in static

ad-hoc networks in Section 3.2.4. We believe that it is of independent interests.

Given an edge-weighted graph G(V, E, l), where |V | = n, |E| = m, and a weight

function l : E → IR+
0 is defined on its edge set. The weight function l can violate

the triangle inequality. Without loss of generality, we assume that the diameter

of G is bounded by one. Otherwise a simple scaling method can be employed

with a running time bounded by O(n2). Let P = {P1, . . . , PN} be a collection of

paths, each connecting all nodes in V . Each path in P dominates the graph G, i.e.,

dPi
(u, v) ≥ dG(u, v) for any pair u, v ∈ V and i ∈ {1, . . . , N}. Here the distance

functions dPi
and dG are shortest path distance in the path Pi and the graph G,

respectively. In addition, we assign to every path Pi ∈ P a real number xi ∈ [0, 1],

which represents the probability distribution µ over the path collection P , and the

sum of xi is 1. Denoting by λ the distortion of each edge and lG(e) the edge length

of e ∈ E. The following linear program is to find the probability distribution µ that

minimizes the expected edge distortion in P ∈ P :
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min λ

s.t.
∑N

i=1 dPi
(e)xi ≤ λlG(e), for every edge e ∈ E;

∑N
i=1 xi = 1;

xi ≥ 0.

(3.5)

Here the first set of constraints indicates that the expected distortion of every edge

e ∈ E in all paths in P is bounded by λ. The other constraints are directly from the

definition of probability distribution. Notice that in (3.5) the number of variables

(i.e., the number of paths in P) can be exponentially large. Thus most traditional

algorithms for linear programs are not applicable for it.

We then turn to approximation algorithms for (3.5). We notice that it can

be formulated as a packing problem described in Chapter 2 and the packing con-

straints fe(x) =
∑N

i=1 dPi
(e)xi/lG(e) are nonnegative linear functions, and the set

B = {x = (x1, . . . , xN)T |∑N
i=1 xi = 1, xi ≥ 0} is indeed a simplex. We will apply the

approximation algorithms L in 2.3 to solve this packing problem.

In order to develop an algorithm for (3.5), we need to consider the block problem

in advance, which is related to the dual problem and the structure of the set B. As

showed in Chapter 2, given a price vector y ∈ Y = {(y1, . . . , ym)|∑e∈E ye = 1, ye ≥
0}, the block problem is to find an x̂ ∈ B such that yT f(x̂) = minx∈B yT f(x).

With the formulation of the packing constraints in (3.5), the block problem can be

simplified as follows:

min
x∈B

yT f(x) = min
x∈B

∑

e∈E

(
ye ·

N∑

i=1

dPi
(e)

lG(e)
xi

)

= min
x∈B

N∑

i=1

(
xi ·

∑

e∈E

ye
dPi

(e)

lG(e)

)

= min
Pi∈P

∑

e∈E

ye

lG(e)
dPi

(e).

The last equality holds because we can choose one path Pi which satisfies that Pi =

arg minPk∈P
∑

e∈E yedPk
(e)/lG(e) (which means that Pi has the minimum value of
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∑
e∈E yedPi

(e)/lG(e)) and set its corresponding probability xi = 1 (and the probabil-

ities of other paths are set as 0) to achieve the optimum. Denote by w(e) = ye/lG(e)

the weight associated to edge e. Therefore the goal of the block problem is to find a

path P connecting all nodes in G such that the value
∑

e∈E w(e)dP (e) is minimized

with the given weight function w, for all edge e ∈ E.

The block problem actually is equivalent to the Minimum Linear Arrange-

ment problem (MLA). The problem is defined as follows: Given a graph G(V, E)

and nonnegative edge weights w(e) for all e ∈ E, where |V | = n and |E| = m. The

goal is to find a linear arrangement of the nodes σ : V → {1, . . . , n} that minimizes

the sum of the weighted edge lengths |σ(u)− σ(v)|, over all (u, v) ∈ E. If we define

the overall cost as follows

c =
∑

(u,v)∈E

w(u, v)|σ(u)− σ(v)|,

then the goal of the Minimum Linear Arrangement problem is to minimize the

total cost c. Then we can place all vertices u ∈ V on a path P (i.e., a one dimensional

Euclidean space) and the coordinates are their arrangements σ(u). It is obvious that

the weight in the Minimum Linear Arrangement problem corresponds to the

weight function in our block problem and the length |σ(u) − σ(v)| corresponds to

the distance in the path dP (u, v). Therefore we can directly apply the algorithms

for the Minimum Linear Arrangement problem to solve our block problem to

generate a path.

However, the Minimum Linear Arrangement problem is NP-hard [40]. The

best known algorithm for the Minimum Linear Arrangement problem is pro-

posed by Rao and Richa [101] and the approximation ratio is O(log n). Using it we

are able to construct an O(log n)-approximation algorithm for the linear program

(3.5) with the same ratio. In the algorithm iterative method is applied. An initial

solution is set at the beginning. Then the algorithm runs the iterative procedure.

In each iteration a pair of solutions to the linear program (3.5) and its dual problem

is computed based on previous iterate. The duality gap is then decreasing. In one

iteration there are following steps: First with a known solution, a price vector y

related to the dual value is calculated to determine the direction of moving of the
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iterate. Then an MLA solver is called to generate an approximate block solution

according to y and error tolerance ε, i.e., a path delivered by the MLA solver with

respect to the weight w(e) = ye/lG(e) for any e ∈ E. Finally a new solution is

obtained as a linear combination of the known solution and block solution with an

appropriate step length. When certain stopping rules are satisfied (which indicates

that the duality gap is already small enough to fulfil the required accuracy), the

iterative procedure terminates and the solution returned by the last iteration is the

desired approximate solution (see Chapter 2).

Algorithm AG(G(V, E, lG),P , x, ε):

initialization: i = 1, σ = 1, w(e) = 1/m, P1 = MLA(G(V, E), w), P = {P1};
x1 = 1, fe = dP1(e)/lG(e), λ′ = maxe∈E fe, κ = (1+σ)/((1+σ/6)M);

while σ > ε do /*scaling*/

finished=false;

while not(finished) do /*coordination*/

solve
σ

6m

∑

e∈E

θ

θ − fe

= 1 for θ;

w(e) =
σ

6m

θ

θ − fe

for all e ∈ E;

Pi+1 = MLA(G(V, E), w);

P = P ∪ {Pi+1};
f̂e = dPi+1

(e)/lG(e) for all e ∈ E;

ν =

∑
e∈E w(e)(fe − f̂e)∑
e∈E w(e)(fe + f̂e)

;

τ =
σθν

12m(
∑

e∈E w(e)(fe + f̂e))
;

xk = (1− τ)xk for k = 1, . . . , i;
xi+1 = τ ;

fe = (1− τ)fe + τ f̂e for all e ∈ E;

λ = maxe∈E fe;

if ν ≤ σ/6 or λ ≤ κλ′ then finished=true;
i = i + 1;

enddo
σ = σ/2;

κ = (1 + σ)/(1 + 2σ);

λ′ = λ;
enddo

Table 3.1: Approximation Algorithm AG to probabilistically approximate arbitrary
edge weighted graph.
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Suppose that we have an approximate solver MLA(G(V,E), w) for the Minimum

Linear Arrangement problem for a given graph G = (V,E) and a weight edge

weight function w. For any given ε ∈ (0, 1) the approximation algorithmAG in Table

3.1 can deliver a collection P of paths and a probability distribution µ represented

by the vector x, such that for each edge e ∈ E, the expected distortion over all paths

in P is at most c(1 + ε), where c is the approximation ratio of the MLA solver.

We notice that in each iteration there is at most one new path generated. Thus

the number of paths generated in the algorithm is bounded by the number of itera-

tion, which is O(m log m) (see Chapter 2). This shows that in P there are at most

O(m log m) paths associated with non-zero probability. It is obvious that all paths

in P dominate the original graph. In addition, in each iteration of L in Section 2.3,

a numerical overhead of O(m log log m) is required. Therefore we have the following

theorem for probabilistic approximating a graph by polynomial number of paths:

Theorem 3.2 Given a graph G = (V,E, l), where |V | = n, |E| = m, and an edge

weight function l : E → IR+
0 , there exists an algorithm that generates a collection P

of O(m log m) paths and a probability distribution µ over the collection P, such that

for any edge e ∈ E, the expected distortion of e in P is bounded by O(log n). The

running time of the algorithm is O(m log m(β + m log log m)) time, where β is the

running time of the Minimum Linear Arrangement solver.

Here, the resulting set P is a collection of unit chains corresponding to the set

{1, . . . , n}. The algorithm for the packing problem in [16], which is a generalization

of that in [89], can also been applied here for the case of a weak block solver. The

number of iteration of their algorithm is bounded by O(ρ log m log ρ), where ρ =

maxe∈E maxx∈B
∑N

i=1 xidPi
(e)/lG(e) = maxPi∈P maxe∈E dPi

(e)/lG(e) in this problem,

which can be unbounded.

3.2.4 Approximation algorithms for the range assignment

problem in static ad-hoc networks

We apply the algorithm to approximate an arbitrary graph by a collection of paths

to develop an approximation algorithm for the Minimum Range Assignment
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Algorithm RA(G(S,E, lG), α, Πh):

1. Construct a complete graph MG for the given network G, such that for any
pair u, v ∈ S, the weight of the edge (u, v) in MG is lMG

(u, v) = (lG(u, v))α.

2. Run Algorithm AG(MG(S, EMG
, lMG

),P , x, ε) in Section 3.2.3 to generate
a collection P of paths with a probability distribution µ over it; the gener-
ated paths can be represented in one-dimensional (Euclidean) lines such that
neighbours are in (Euclidean) distance one.

3. Run algorithms for the Minimum Range Assignment problems (Min-
Range(h-SC) and Min-Range(h-B)) for static ad-hoc networks on one di-
mensional (Euclidean) spaces for the reduced instances (P (SP , EP , 1), 1, Πh),
for any P ∈ P chosen according to the probability distribution µ.

Table 3.2: Approximation Algorithm RA for the Minimum Range Assignment
problem.

problem in static ad-hoc networks, for both Min-Range(h-B) and Min-Range(h-

SC) even in case that transmission distances violate triangle inequality.

For any fixed h, let (G(S, E, lG), α, Πh) be an instance for the Minimum Range

Assignment problem problem (Min-Range(h-SC) or Min-Range(h-B)) in sta-

tic ad-hoc network with arbitrary structure, where S is the station set, lG is the

transmission distance in the complete graph G, α is the distance-power gradient,

and Πh is the property of the communication graph (h-strong connectivity or h-

broadcast). Our approximation algorithm is in Table 3.2.

Hence, we obtain the following theorem for the approximation algorithm RA:

Theorem 3.3 There exists a probabilistic O(log n)-approximation algorithm for Min-

Range(h-SC) and Min-Range(h-B) in general static ad-hoc networks running

in at most O(n2 log n(β + n2 log log n) + hn4) time, where β is the running time of

the Minimum Linear Arrangement solver.

Proof: We first show the approximation ratio of the algorithm RA. In the last

step, a given instance (P (SP , EP , 1), 1, Πh) is defined on one dimensional (Euclidean)

space. Therefore, the algorithms in [2, 23, 74] deliver the optimal solution for the

Min-Range(h-B) problem and a 2-approximate solution for the Min-Range(h-

SC) problem can be generated by the algorithm in [21]. Besides, in the second

step, according to the analysis in Section 3.2.3, the expected distortion of any edge



3.2. The Minimum Range Assignment problem in ad-hoc networks 69

in P is at most O(log n). Therefore combining the second and the third steps

of Algorithm RA, we are able to obtain an O(log n)-approximate solution for an

instance (MG, 1, Πh) of the Minimum Range Assignment problem for the network

defined on MG and α = 1. We notice that after the first step, in the resulting

complete graph MG, the cost for station u to directly cover v is costMG
(u, v) =

c(u)lMG
(u, v) = c(u)(dG(u, v))α = costG(u, v). Therefore the solution of Algorithm

RA has an overall cost with an expected factor of at most O(log n) times of the

optimal overall cost of the original instance (G(S,E, lG), α, Πh) of the Minimum

Range Assignment problem.

To solve the packing problem in the second step, the running time is bounded by

O(n2 log n(β +n2 log log n)) time is needed, where β is the running time of the MLA

solver. In the first step to construct the complete graph MG runs in O(n2) time. And

the running time of the dynamic programming for the range assignment problem on

one dimensional spaces in the last step is O(hn3) time for the Min-Range(h-SC)

problem and O(hn4) time for the Min-Range(h-B) problem, because the paths in

P are in fact unit chains [21, 2]. The proof is complete.

However, here we can not directly approximate the original graph G by paths.

Otherwise the approximation ratio will be O(logα n) because the cost is costG(u, v) =

c(u)(dG(u, v))α.

Remark: It is worth noting that the approximation ratio of Algorithm RA for

the Min-Range(h-B) problem is O(log n), while the lower bound for the Min-

Range(h-B) problem on metric spaces, where triangle inequality holds, is also

O(log n) [103]. In addition, in [110] the approximation ratio of the algorithms for

the Min-Range(h-B) problem is O(log n log log n) while for the Min-Range(h-

SC) problem the ratio is as large as (n2 log n log log n). Here we have successfully

removed the large factor O(n2) and for both problems the ratios are the same.

3.2.5 Improved approximation ratio for a special case

We show in this section that the approximation ratio O(log n) can be further im-

proved if the distance-power gradient α and the weighted graph which represents
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Algorithm RA′(G(S, E, lG), α, Πh, Ω):

1. Run Algorithm AG(G(S, E, lG),P , x, ε) in Section 3.2.3 to generate a collec-
tion P of paths with a probability distribution µ over it;

2. Run algorithms for the Minimum Range Assignment problems (Min-
Range(h-SC) and Min-Range(h-B)) for static ad-hoc networks on one di-
mensional (Euclidean) spaces for the reduced instances (P (SP , EP , 1), 1, Πh),
for any P ∈ P chosen according to the probability distribution.

Table 3.3: Approximation Algorithm RA for the Minimum Range Assignment
problem in a special case.

the ad-hoc network fulfils certain property.

Let H and G be graphs. A graph H is a minor of a graph G if H can be

obtained from G by deleting and contracting some edges of G. Denote by Kr,r

the r × r complete bipartite graph. A typical example of a graph with no Kr,r-

minors (r ≥ 3) is a planar graph. We define a property Ω as follows: An instance

(G(S, E, l), α, Πh, Ω) of the Minimum Range Assignment problem in general ad-

hoc networks has the property Ω if and only if

A. the graph G does not contain Kr,r-minors for any r ≥ 3;

B. α ≤ O(log log n/ log log log n).

For any instance (G(S, E, lG), α, Πh, Ω) of the Minimum Range Assignment

problem we have the two-step algorithm in Table 3.3.

Then we have the following theorem:

Theorem 3.4 There exists a probabilistic O((log log n)α)-approximation algorithm

for Min-Range(h-SC) and Min-Range(h-B) in general static ad-hoc networks

when property Ω holds.

Proof: In the first step, we still need to apply the packing problem and its algo-

rithm used in Section 3.2.3. And an MLA solver is called to solve the block prob-

lem. If the graph does not contain Kr,r-minors, r ≥ 3, there exists an O(log log n)-

approximation algorithm for the Minimum Linear Arrangement problem [101].

Therefore for each edge in G, the expected distortion in the paths is bounded by
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O(log log n). Notice that here we do not construct the graph MG but directly ap-

proximate the original graph G by paths. With the similar arguments as in Section

3.2.4, the approximation ratio for the range assignment problem is O((log log n)α).

However we have the following bound on the approximation ratio when the property

Ω holds:

(log log n)α ≤ (log log n)log log n/ log log log n

= (log log n)O(loglog log n log n)

= = O(log n).

In this way the approximation ratio claimed in the theorem is proved.

Remark: We claim that indeed the instances with property Ω are not rare. It is

obvious that for a fixed value of α (which is usually in the interval [1, 6] in practice),

a large station set S can result in the second assumption of the property Ω. In fact,

an instance on a planar graph with α = 2, a set of n = 16 stations are sufficient for

the property Ω. We believe that many real applications belong to this category.

3.2.6 Mobile ad-hoc networks

In general, a mobile ad-hoc network consists of mobile nodes that are connected

via wireless links. The nodes are free to move randomly. Because of the mobility

of these nodes, the network topologies can change frequently and even invalidate

existing routes. More details and challenges in mobile ad-hoc networks are referred

to [17].

Routing protocols have attracted much attention in order that the mobile ad-

hoc networks can work well. Proactive routing protocols and reactive on-demand

routing protocols are two typically categories [8] in this field. The main characteristic

of proactive protocols is the constant maintaining of a route by each node to all other

network nodes. The route creation and maintenance are performed through both

periodic and event-driven. Reactive routing protocols discover a route between two

nodes only when it is needed.
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DSDV [88] (Destination-Sequence Distance-Vector) is a proactive routing pro-

tocol. Each node maintains a routing table that contains routing information of

all the reachable destination nodes, such as the number of hops and the next-hop

to destination. To keep the routing table up to date, nodes in the network peri-

odically broadcast routing table updates or use triggered route updates when the

topology changes. Therefore in each period (time step) the structure information of

the network is available for all nodes.

By the DSDV protocol, it needs to compute a temporary ad-hoc networks based

on the routing table. Thus, DSDV is the base to study a static ad-hoc networks and

apply the results in static networks to the mobile one. Actually, the research of static

ad-hoc networks is significant for the proactive protocols. Here we can also generalize

our algorithms to the model of mobile ad-hoc networks (dynamical model) according

to the DSDV protocol. Assuming that the time for radio signals to reach any node

in the network is no more than the time step for updating the routing table, our

algorithmRA orRA′ lead to a O(min{log n, (log log n)α})-approximation algorithm

for any instance of the Minimum Range Assignment problems in general mobile

ad-hoc networks.



Chapter 4

Scheduling Malleable Tasks with

Precedence Constraints

In this chapter we study the problem of Scheduling Malleable Tasks with

Precedence Constraints. The best previous approximation algorithm (that

works in two phases) by Lepére et al [81] has a ratio 3 +
√

5 ≈ 5.236. In the

first phase a discrete time-cost tradeoff problem is solved approximately, and in the

second phase a variant of the list scheduling algorithm is used. In phase one a

rounding parameter ρ = 1/2 and in phase two an allotment parameter µ = (3m −
√

5m2 − 4m)/2 are employed, respectively. We study the influence of the rounding

parameter ρ to the second phase. With setting ρ 6= 1/2 we are able to obtain a

better approximation algorithm with a ratio of (3 +
√

5)/2 +
√

2(
√

5 + 1) ≈ 5.162.

Furthermore, we study the linear programming relaxation and rounding technique

in the first phase more carefully. As a result we develop an improved approximation

algorithm with a ratio of 100/43 + 100(
√

4349 − 7)/2451 ≈ 4.730598. In addition,

in a new realistic model of the malleable tasks, instead of solving the discrete time-

cost tradeoff problem, we solve a piecewise linear program and use a new rounding

technique. Thus we obtain an improved approximation algorithm with a ratio of

100/63 + 100(
√

6469 + 13)/5481 ≈ 3.291919.

4.1 Introduction

In recent development of information technology, traditional super-computers have

been gradually replaced by systems with large number of standard units. All units

73
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have certain similar structure with processing ability [26]. To manage these re-

sources efficient algorithms are needed. Unfortunately classical scheduling algo-

rithms usually are not able to play this role, mostly due to the large influence of

communications between units. There have been many models for this problem

[25, 31, 52, 64, 91, 106]. Among them scheduling malleable tasks is an important

and practical one, which was proposed in [106]. In this model, the processing time of

a malleable task depends on the number of processors allotted to it. The influence

of communications between processors allotted to the same task, synchronization

and scheduling overhead is included in the processing time. The communication

between malleable tasks is usually tiny and neglected.

In this chapter, we study the problem of Scheduling Malleable Tasks with

Precedence Constraints. We assume that the malleable tasks are linked by

precedence constraints, which are determined in advance by the data flow between

tasks. Let G = (V, E) be a directed graph, where V = {1, . . . , n} represents the

set of malleable tasks, and E ⊆ V × V represents the set of precedence constraints

among the tasks. If there is an arc (i, j) ∈ E, then task Jj can not be processed

before the completion of processing of task Ji. The task Ji is called a predecessor

of Jj, while Jj a successor of Ji. We denote by Γ−(j) and by Γ+(j) the set of the

predecessors and the successors of Jj, respectively. In addition, the n precedence

constrained malleable tasks can be processed on m given identical processors. Each

task Jj can be processed on any integer number l ∈ {1, . . . , m} of processors, and

the corresponding integer processing time is pj(l). The goal of the problem is to find

a feasible schedule minimizing the makespan Cmax (maximum completion time).

According to the usual behaviour of parallel tasks in practice, Blayo et al. [11]

showed that the following monotonous penalty assumptions are realistic:

Assumption 4.1 The processing time pj(l) of a malleable task Jj is non-increasing

in the number l of the processors allotted to it, i.e.,

pj(l) ≤ pj(l
′), for l ≥ l′; (4.1)

Assumption 4.2 The work Wj(l) = wj(pj(l)) = lpj(l) of a malleable task J is

non-decreasing in the number l of the processors allotted to it, i.e.,
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Wj(l) ≤ Wj(l
′), for l ≤ l′. (4.2)

Assumption 4.1 indicates that more processing power is available with more

processors allotted such that the malleable task can run faster. Furthermore, As-

sumption 4.2 implies that the increase of processors allotted leads to increasing

amount of communication, synchronization and scheduling overhead.

Prasanna et al. [91, 92, 93] proposed another model of the malleable tasks. In

their model, for each malleable task, the processing time is non-decreasing in the

number of processors allotted. In addition, a speedup function sj(l) for a malleable

task Jj that is defined as the processing time pj(1) on one processor divided by the

processing time pj(l) on l processors is concave in l. Their model has already been

applied to the very massively parallel MIT Alewife machine [1, 90]. However, their

model allows non-integral numbers of processors. We proposed a discrete model

based on two natural assumptions for processing time of malleable tasks. The first

assumption is exactly Assumption 4.1 and the second assumption is as follows:

Assumption 4.3 The speedup function sj(l) = pj(1)/pj(l) of a malleable task Jj is

concave in the number l of the processors allotted to it, i.e., for any 0 ≤ l′′ ≤ l ≤
l′ ≤ m,

pj(1)

pj(l)
= sj(l) ≥ 1

l′ − l′′
[(l−l′′)sj(l

′)−(l−l′)sj(l
′′)] =

pj(1)

l′ − l′′

[
l − l′′

pj(l′)
− l − l′

pj(l′′)

]
. (4.3)

Here we assume that pj(0) = ∞ as any task Jj can not be executed if there is

no processor available. Assumption 4.3 also implies that the increase of processors

allotted leads to increasing amount of communication, synchronization and schedul-

ing overhead, such that the speedup effect can not be linear. A typical example is

that the processing time p(l) = p(1)l−dj , where l is the number of processors and

0 < dj < 1 (similar to the continuous case in [91, 92, 93]). We can show that under

Assumption 4.3 the work function fulfils Assumption 4.2 and is convex in processing

time (see Section 4.5).

In a schedule each task Jj has two associated values: the starting time τj and

the number of processors lj allotted to task Jj. A task Jj is called active during the
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time interval from its starting time τj to its completion time Cj = τj + pj(lj). A

schedule is feasible if at any time t, the number of active processors does not exceed

the total number of processors

∑

j:t∈[τj ,Cj ]

lj ≤ m

and if the precedence constraints

τi + pi(li) ≤ τj,

are fulfilled for all i ∈ Γ−(j).

Related Works: The problem of scheduling independent malleable tasks (without

precedence constraints) is strongly NP-hard even for only 5 processors [29]. The

previous best known algorithm for the problem of scheduling independent malleable

tasks has an approximation ratio 2 [39, 83]. This was improved to
√

3+ε by Mounié

et al. [86], and further to 3/2+ ε [87]. For the case of fixed m, Jansen and Porkolab

proposed a PTAS [57]. If p(l) ≤ 1, for arbitrary m an AFPTAS was addressed by

Jansen [53].

Du and Leung [29] showed that Scheduling Malleable Tasks with Prece-

dence Constraints is strongly NP-hard for m = 3. Furthermore, there is no

polynomial time algorithm with approximation ratio less than 4/3, unless P=NP [79].

If the precedence graph is a tree, a (4+ε)-approximation algorithm was developed in

[80]. The idea of the two-phase algorithms was proposed initially in [80] and further

used in [81] to obtain the best previous known approximation algorithm for general

precedence constraints with a ratio 3 +
√

5 ≈ 5.236. In [81] the ratio was improved

to (3 +
√

5)/2 ≈ 2.618 when the precedence graph is a tree. More details on the

problem of scheduling independent or precedence constrained malleable tasks can

be found in [31].

Our Contribution: We develop improved approximation algorithms for the prob-

lem of Scheduling Malleable Tasks with Precedence Constraints. Our

first and second algorithms are for the model under Assumption 4.1 and 4.1, while

the third algorithm is for the model under Assumption 4.1 and 4.3.
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Our first algorithm is based on the two-phase approximation algorithm in [80, 81]

for the model under Assumption 4.1 and 4.2. In the first phase, an allotment problem

for malleable tasks is solved. The goal is to find an allotment α : V → {1, . . . , m}
indicating the numbers of processors to execute the tasks such that the maximum of

the overall critical path length and the average work (the total work divided by m)

is minimized. The problem can be formulated as a bicriteria version of the time-cost

tradeoff problem, which can be solved by the approximation algorithm in [104]. In

the second phase a variant of the list scheduling algorithm is employed and a feasible

schedule is generated. In the first and the second phase of the algorithm in [81], a

rounding parameter ρ = 1/2 and an allotment parameter µ are used, respectively.

We first borrow the idea of the algorithm in [104] to develop a linear program for the

allotment problem and avoid the binary search procedure. Besides, we do not fix the

rounding parameter ρ = 1/2 (as suggested in [81]) but introduce it as an unspecific

parameter to the second phase. As a result we obtain a min-max nonlinear integer

program where the objective value is an upper bound of the approximation ratio.

Solving it we obtain ρ = 1/[1+
√

m/(m− µ)] and µ = (3m−√5m2 − 4m)/2, which

yield an approximation ratio of (3 +
√

5)/2 +
√

2(
√

5 + 1) ≈ 5.162.

Furthermore, we we carefully study the rounding technique. We notice that a

certain amount of work is not involved in the rounding procedure. By counting this

term carefully, we obtain some new bounds depending on ρ for the total work of the

rounded solution. Together with the rounding parameter µ employed in the second

phase, we develop another min-max nonlinear program, whose optimal objective

value is an upper bound on the approximation ratio by choosing appropriate values

of ρ and µ. Next we analyze the nonlinear program to obtain an optimum values for

the parameters ρ and µ. Using ρ = 0.43 and µ = (93m −√4349m2 − 4300m)/100

we obtain an improved approximation algorithm with a ratio at most 100/43 +

100(
√

4349 − 7)/2451 ≈ 4.730598. In addition, we show that asymptotically the

best ratio is 4.730577 when m →∞. This indicates that our choice is very close to

the best possibility.

Finally, we study our new model under Assumption 4.1 and 4.3. We show that

in this model, the work function is non-decreasing in the number of processors and
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is convex in the processing time. The first property is indeed the Assumption 4.2

on work function in the old model in [81]. Then we develop a new approximation

algorithm for this new model. Our algorithm is also a two-phase algorithm. In the

first phase we we do not apply the strategy of reducing the allotment problem to the

discrete time-cost tradeoff problem. We just construct a piecewise linear work func-

tion according to the discrete values of works and processing times. With respect

to the precedence constraints we are able to develop a piecewise linear program.

Furthermore, since the work function is convex in the processing time, we are able

to formulate the piecewise linear program as a linear program. We include also some

additional constraints to avoid the binary search. Next we apply a new rounding

technique for the (fractional) optimal solution to the linear program. The rounded

solution yields a feasible solution of the allotment problem with a good approxima-

tion ratio depending on our rounding parameter ρ ∈ [0, 1]. In the second phase the

variant of the list scheduling algorithm is employed to generate a new allotment and

to schedule all tasks according to the precedence constraints. By studying the struc-

ture of the resulting schedule, we show that the approximation ratio is bounded by

the optimal objective value of a min-max nonlinear program. Exploiting the solution

to the min-max nonlinear program, we prove that the approximation ratio of our

algorithm is not more than 100/63 + 100(
√

6469 + 13)/5481 ≈ 3.291919. This ratio

is much better than all previous results. We also study the asymptotic behaviour of

the solution to the min-max nonlinear program and show that the asymptotic best

ratio is 3.291913.

4.1.1 Discrete time-cost tradeoff problem

In [104] the discrete time-cost tradeoff problem is studied. An instance of the discrete

time-cost tradeoff problem is a project given by a finite set J of activities with

a partial order (J,≺) on the set of activities. All activities have to be executed in

accordance with the precedence constraints given by the partial order. Each activity

Jj ∈ J has a set of feasible durations {dj1 , . . . , djk(j)
} sorted in a non-decreasing order,

and has a non-increasing non-negative cost function cj : IR+ → IR+∪∞, where cj(xj)

is the amount paid to run Jj with duration xj.

There are three related optimization problems in this class to minimize either



4.1. Introduction 79

time or cost for the project by fixing the other parameter, or to find approximate

values of both. The budget problem is for a given budget B ≥ 0 to find a solution x

satisfying c(x) ≤ B, where c(x) is the total cost of the solution, such that the project

length (the makespan of the corresponding scheduling problem with unbounded

number of processors) is minimized. The second problem is the deadline problem:

for a given project duration L ≥ 0, to find a solution x satisfying Cmax(x) ≤ L, where

Cmax(x) is the makespan of the solution x, such that the total cost is minimized.

The bicriteria problem is, given a budget B and a deadline L, to find a solution x

such that t(x) ≤ κL and c(x) ≤ λB for given parameters κ, λ ≥ 1.

Skutella [104] presented approximation algorithms for above problems, in par-

ticular, an algorithm for the bicriteria problem such that c(x) < B/(1 − ρ) and

t(x) ≤ L/ρ for a fixed ρ ∈ (0, 1). The algorithm is outlined as follows:

The budget problem can be described as the following integer linear program:

min L

s.t. Cj ≤ L, for all j;

Ci + xj ≤ Cj, for all i ∈ Γ−(j) and all j;

c(x) =
∑n

j=1 cj(xj) ≤ B;

xj ∈ {dj1 , . . . , djk(j)
}, for all j.

(4.4)

Here Cj is the completion time of activity Jj, cj(xj) the cost of the duration xj and

djp the p-th feasible duration of activity Jj. The first set of constraints shows that

completion times of any tasks are bounded by the project length. The second set is

related to the precedence constraints. In addition, the third set of constraint means

that the total cost should be bounded by the budget B.

To solve it, first a “reduced” cost function ĉ is set such that for any duration

djl
, ĉj(djl

) = cj(djl
)− cj(djk(j)

). Since djk(j)
is the maximum duration for activity Jj,

cj(djk(j)
) is the minimum over all durations for activity Jj and the “reduced” cost ĉ

is also positive. The amount of P =
∑n

j=1 cj(djk(j)
) is called “fixed” cost. Therefore

we just turn to consider the following integer linear program equivalent to (4.4):
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min L

s.t. Cj ≤ L, for all j;

Ci + xj ≤ Cj, for all i ∈ Γ−(j) and all j;

ĉ(x) + P =
∑n

j=1 ĉj(xj) + P ≤ B;

xj ∈ {dj1 , . . . , djk(j)
}, for all j.

(4.5)

In the second step, the “reduced” instance is transformed to a two-duration

instance such that each given “virtual” activity has only at most two feasible du-

rations. For any activity Jj, we introduce the first “virtual” activity Jj1 as follows:

Jj1 has only two fixed feasible durations sj(1) = tj(1) = dj1 , and the correspond-

ing “virtual” costs are c̄j(sj(1)) = c̄j(tj(1)) = 0. Then for each 1 < i ≤ k(j) a

“virtual” activity Jji
is introduced. Each “virtual” activity Jji

has a duration xji

chosen from only two feasible “virtual” durations sj(i) = 0 and tj(i) = dji
, and the

corresponding “virtual” costs are c̄ji
(sj(i)) = ĉj(dji−1

)− ĉj(dji
) and c̄ji

(tj(i)) = 0. It

is easy to verify that for each activity Jj, the sum of corresponding “virtual” costs

equals to the “reduced” cost. Thus the activity Jj can be modelled as k(j) number

of parallel “virtual” activities, which are represented by parallel edges in the edge

diagram. Then there is a canonical mapping of feasible durations xj for activity

Jj to tuples of feasible durations xj1 , . . . , xjk(j)
for “virtual” activities Jj1 , . . . , Jjk(j)

such that the duration of the activity Jj is the maximum over all durations of the

corresponding “virtual” activities and the cost of Jj is the sum of the costs of the

“virtual” activities, i.e., xj = max{xj1 , . . . , xjk(j)
} and ĉj(xj) =

∑k(j)
i=1 c̄ji

(xji
). More-

over, this mapping is bijective if we restrict ourselves without loss of generality to

tuples of durations xj1 , . . . , xjk(j)
satisfying xji

= tj(i) if tj(i) ≤ max{xj1 , . . . , xjk(j)
}.

In this way we have obtained a two-duration instance such that each activity has at

most two feasible durations, and the solution of this instance can be transformed to

a solution to the “reduced” instance (4.5).

Finally, we consider the linear relaxation of the two-duration instance, where for

each “virtual”activity Jji
, the “virtual” cost function is linear and non-increasing

within the interval [sj(i), tj(i)] as follows:
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c̄ji
(y) =





∞, if y < sj(i);

tj(i)− y

tj(i)− sj(i)
c̄ji

(sj(i)) +
y − sj(i)

tj(i)− sj(i)
c̄ji

(tj(i)), if sj(i) ≤ y ≤ tj(i);

c̄ji
(tj(i)) = 0, if y ≥ tj(i).

(4.6)

The linear relaxation can be solved by algorithms in [70, 37]. Therefore in this way

we are able to find a fractional solution of the linear relaxation of the two-duration

instance. The corresponding linear relaxation of (4.5) is as follows:

min L

s.t. Cj ≤ L, for all j;

Ci + xj ≤ Cj, for all j s.t. Γ−(j) 6= ∅ and all i ∈ Γ−(j);

xj ≤ Cj, for all j s.t. Γ−(j) = ∅;
xj ≤ djk(j)

, for all j;

xji
≤ xj, for all j and i = 1, . . . , k(j);

0 ≤ xji
, for all j and i = 2, . . . , k(j);

xji
≤ dji

, for all j and i = 2, . . . , k(j);

xj1 = dj1 , for all j;

c̄ji
(xji

) = [cj(dji−1
)− cj(dji

)]
dji
− xji

dji

, for all j and i = 2, . . . , k(j);

c̄j1(xj1) = 0, for all j;

ĉj(xj) =
∑k(j)

i=1 c̄ji
(xji

), for all j;
∑n

j=1 ĉj(xj) + P ≤ B.

(4.7)

To obtain a feasible (integer) solution of (4.5), we need to take some rounding

technique. For a given ρ ∈ (0, 1), if for a “virtual” activity Jji
the fractional solution

xji
∈ [0, ρdjk(j)

), we round it to xji
= 0. Otherwise if xji

∈ [ρdjk(j)
, djk(j)

] we round it

to xji
= djk(j)

. Then the following proposition holds [104]:

Proposition 4.1 For a given deadline L (or budget B − P ) and a fixed rounding

parameter ρ ∈ (0, 1), there exists an algorithm that computes a realization x for

(4.5) such that ĉ(x) ≤ (B−P )/(1−ρ) and Cmax ≤ L/ρ, where B−P is the optimal
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cost for the linear relaxation of (4.5) with a deadline L (respectively T is the optimal

project length for the linear relaxation of (4.5) with a budget B − P ).

Proof: We consider two cases. In the first case the solution xji
∈ [0, ρdjk(j)

) and

it is rounded to x̄ji
= 0. In this case the duration does not increase but the cost

increases. We substitute sj(i) = 0, tj(i) = djk(j)
and cji

(tj(i)) = 0 to (4.6), which

leads to c̄ji
(xji

) = (djk(j)
− xji

)cji
(0)/djk(j)

. Since xji
≤ ρdjk(j)

, we immediately have

that cji
(x̄ji

)/c̄ji
(xji

) = cji
(0)/c̄ji

(xji
) ≤ 1/(1 − ρ). In the second case the solution

xji
∈ [ρdjk(j)

, djk(j)
] and it is rounded to x̄ji

= djk(j)
. The cost does not increase while

the duration increases in this case. It is obvious that x̄ji
/xji

= djk(j)
/xji

≤ 1/ρ. With

the approach to convert a solution of the two-duration instance to a solution of the

“reduced” instance (4.5), we conclude that the rounded solution can increase the

overall project length by a factor at most 1/ρ and increase the overall cost without

“fixed” cost by a factor at most 1/(1− ρ). The proposition is proved.

4.2 Structure of approximation algorithms

Our algorithms are based on the two-phase approximation algorithm in [81]. In

their algorithm, in the first phase a (2, 2)-approximate solution to the bicriteria

version of the discrete time-cost tradeoff problem with a guessed budget B and

ρ = 1/2 was computed. Intuitively the choice ρ = 1/2 is a good strategy, since

it leads to a (2, 2)-approximate solution for both objective functions (the critical

path length and average work of the solution). But our analysis shows that it is

better not to keep this balance. In fact, we keep ρ as an unspecified parameter in

the second phase in order to enlarge the set of feasible solution and to find a better

solution. Furthermore, the discrete time-cost tradeoff problem is equivalent to the

scheduling problem with an unbounded number of processors and a bounded total

work. However, in the solution of the algorithm in [104] the case of small critical

path length with large total work can happen as there is no bound on the number

of processors available. Thus a binary search procedure is conducted in [81] to find

a fractional solution such that the maximum of the overall critical path length and

the average work is minimized.
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We present three algorithms. Algorithm I and II are for the model under As-

sumption 4.1 and 4.2, while Algorithm III is for the model under Assumption 4.3.

All of our three algorithms are of similar structure. The difference lies on the ap-

proaches applied in the first phase and the values of two parameters used in our

algorithms. Here we outline our algorithms as follows:

Given any instance of the problem of Scheduling Malleable Tasks with

Precedence Constraints, we compute a real number ρ ∈ (0, 1) and an integer

µ ∈ {1, . . . , b(m + 1)/2c}. Here ρ is the rounding parameter which is used for the

rounding stage in the first phase and µ is the allotment parameter which is the upper

bound on the number of processors allotted to each task in the final schedule. They

are used in the two phases of our algorithms, respectively. The choices of the values

of above parameters either depend on the given number m of processors or are fixed

in the algorithms. See Section 4.3, 4.4 and 4.5 for details.

In the first phase of our algorithms, we solve an allotment problem for the mal-

leable tasks with precedence constraints. For any given malleable task Jj, we need

to decide a number l′j of processors allotted to it such that the maximum of over-

all critical path length and average work is minimized. To reach the goal, in our

Algorithm I and II we borrow the idea of approximation algorithms for discrete

time-cost tradeoff problem in [104]. In order to avoid the case of very small critical

path length and very large total work, we include two additional constraints to the

linear programming relaxation for the two-duration instances (4.7). In this case the

binary search procedure is avoided. Then the rounding parameter ρ is used to obtain

a feasible solution from a fractional solution to (4.4). Different from our Algorithm

I and II, in our Algorithm III for our new model, we do not use the idea of solving

the discrete time-cost tradeoff problem. Instead, we directly solve a piecewise linear

program with a convex constraint function. Due to properties of the malleable tasks

in this model, we are able to transform the piecewise linear program to a linear

program. Then we round the fractional solution to the linear program according to

a new rounding technique with a different rounding parameter ρ. Finally we obtain

a feasible allotment α′.

In the second phase, with the computed allotment α′ and the pre-computed

allotment parameter µ, the algorithm generates a new allotment α and runs a variant
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LIST (J,m, α′, µ)

initialization: allot lj = min{l′j, µ} processors to task Jj, for j ∈ {1, . . . , n};
SCHEDULED = ∅;
if SCHEDULED 6= J then

READY = {Jj|Γ−(j) ⊆ SCHEDULED};
compute the earliest possible starting time under α for all tasks in READY ;

schedule the task Jj ∈ READY with the smallest earliest starting time;

SCHEDULED = SCHEDULED ∪ {Jj};
end

Table 4.1: Algorithm LIST

of the list scheduling algorithm in Table 4.1 (as proposed in [44, 81]).

4.3 Approximation algorithm I

In the first phase of our Algorithm I, as indicated in Section 4.2, we use the idea

of the approximation algorithm for the discrete time-cost tradeoff problem in [104]

to obtain a feasible solution to the allotment problem. For a given instance with n

malleable tasks, each task Jj is associated with a processing time function pj(l) and

work function Wj(l) = lpj(l) for l ∈ {1, . . . ,m} number of processors allotted. We

also denote by w(·) the work function in processing time, i.e., wj(pj(l)) = Wj(l).

Thus for task Jj we define its corresponding cost as its work function in processing

time, i.e., cj(djl
) = wj(pj(m + 1− l)) = Wj(m + 1− l) = (m + 1− l)pj(m + 1− l),

for l = 1, . . . ,m. Since cj(djm) = Wj(1) is the minimum work for task Jj, it is

obvious that the “fixed” cost P =
∑n

j=1 Wj(1) =
∑n

j=1 pj(1), and the corresponding

“reduced” work function is ŵj(djl
) = ĉj(djl

) = Wj(m + 1 − l) − Wj(1) for l =

1, . . . ,m − 1. In the way described in Subsection 4.1.1 or [104], we can formulate

the two-duration instance, and also its linear relaxation. Denote by w̄(·) = c̄(·).
For a “virtual” activity Jji

in the two-duration instance, its durations are sj(i) = 0,

tj(i) = dji
= pj(m + 1− i), and the corresponding “virtual” works are w̄ji

(sj(i)) =

c̄ji
(sj(i)) = ĉj(dji−1

)− ĉj(dji
) = ŵj(dji−1

)− ŵj(dji
) = ŵj(pj(m− i + 2))− ŵj(pj(m−

i + 1)) = wj(pj(m− i + 2))− wj(pj(m− i + 1)) = Wj(m− i + 2)−Wj(m− i + 1),
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w̄ji
(tj(i)) = c̄ji

(tj(i)) = 0. By substituting them to (4.6), the continuous “virtual”

work function in the fractional processing time of the task in the two-duration

instance is as follows:

w̄ji
(xji

) =





pj(m− i + 1)− xji

pj(m− i + 1)
[Wj(m− i + 2)

−Wj(m− i + 1)], for all j and i = 2, . . . ,m;

0, for all j and i = 1.

(4.8)

Furthermore, we apply two additional constraints to bound the total work in

order to avoid the binary search procedure in [81]. In any schedule, any critical

path length should be bounded by the makespan. In addition, the makespan is an

upper bound on the average work (total work divided by m). Denote by xj the

fractional duration of task Jj in the allotment problem. The corresponding linear

program is as follows:
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min C

s.t. Cj ≤ L, for all j;

Ci + xj ≤ Cj, for all j s.t. Γ−(j) 6= ∅ and all i ∈ Γ−(j);

xj ≤ Cj, for all j s.t. Γ−(j) = ∅;
xj ≤ pj(1), for all j;

xji
≤ xj, for all j and i = 1, . . . , m;

0 ≤ xji
, for all j and i = 2, . . . , m;

xji
≤ pj(m− i + 1), for all j and i = 2, . . . , m;

xj1 = pj(m), for all j;

w̄ji
(xji

) = [(m− i + 2)pj(m− i + 2)− (m

−i + 1)pj(m− i + 1)]
pj(m− i + 1)− xji

pj(m− i + 1)
, for all j and i = 2, . . . , m;

w̄j1(xj1) = 0, for all j;

ŵj(xj) =
∑m

i=1 w̄ji
(xji

), for all j;
∑n

j=1 ŵj(xj) + P ≤ W ;

P =
∑n

j=1 pj(1);

L ≤ C;

W/m ≤ C.

(4.9)

Solving (4.9) we are able to obtain a (fractional) optimal solution x∗j for each

task Jj. Then we apply the rounding technique in [104] for the fractional solution

to (4.9). With the rounded solution of the processing time in {pj(m), . . . , pj(1)}
we are able to identify an l′j such that pj(l

′
j) equals to the rounded solution. Then

we develop an allotment α′ for all jobs where each job Jj is allotted a number l′j
processors.

In our Algorithm I, for a given processor number m, the allotment parameter µ

is determined as follows:

µ = µ∗ =

⌈
3m−√5m2 − 4m

2

⌉
or

⌊
3m−√5m2 − 4m

2

⌋
. (4.10)

We compute and keep both above integers. With the computed allotment parameter

µ, the rounding parameter ρ can be determined as follows:
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ρ = ρ∗ =
1

1 +

√
m

m− µ∗

. (4.11)

In practice, we should use both two values of µ to compute the two corresponding

values of ρ and then approximation ratio r (which is defined later). Then we compare

the two calculated r’s and choose the smaller one, which is the overall approximation

ratio. Then we fix the corresponding values of µ and ρ as the parameters used in

the initialization step of our Algorithm I.

We are going to analyze the performance of Algorithm I. Denote by L, W , Cmax

and L′, W ′, C ′
max the critical path lengths, the total works and the makespans of

the final schedule delivered by our algorithm and the schedule corresponding to

the allotment α′ generated in the first phase, respectively. Furthermore, we denote

by C∗
max the optimal objective value of (4.9), and L∗, W ∗ the (fractional) optimal

critical path length and the (fractional) optimal total work in (4.9). It is worth

noting that here W ∗ = P +
∑n

j=1 ŵj(x
∗
j) and W ′ =

∑n
j=1 l′jpj(l

′
j). According to

Proposition 4.1, in the rounding strategy in [104], the critical path length and the

“reduced” cost increase by at most 1/ρ and 1/(1 − ρ), respectively, i.e., L′ ≤ L∗/ρ

and (W ′ − P ) ≤ (W ∗ − P )/(1− ρ). Denote by OPT the overall optimal makespan

(over all feasible schedules with integral number of processors allotted to all tasks).

It is obvious that

max{L∗,W ∗/m} ≤ C∗
max ≤ OPT. (4.12)

We have the following bound on the total work W :

Lemma 4.1 W ≤ m

1− ρ
C∗

max.

Proof: In the first phase, according to Proposition 4.1 in [104], we have W ′ − P ≤
(W ∗ − P )/(1− ρ). Thus

W ′ ≤ W ∗

1− ρ
− ρP

1− ρ
≤ W ∗

1− ρ
.
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Figure 4.1: An example of the “heavy” path.

In the second phase, for each task Jj, the number of processors allotted to it lj ≤ l′j.

According to Assumption 4.2, the work is non-increasing, i.e., Wj(l
′
j) ≥ Wj(lj).

Together with (4.12), we immediately obtain

W ≤ W ′ ≤ m

1− ρ
C∗

max.

The time interval [0, Cmax] consists of three types of time slots. In the first type

of time slots, at most µ− 1 processors are busy. In the second type of time slots, at

least µ while at most m−µ processors are busy. In the third type at least m−µ+1

processors are busy. Denote the sets of the three types time slots by T1, T2 and T3,

and |Ti| the overall lengths for i ∈ {1, 2, 3}. In the case that µ = (m + 1)/2 for m

odd, T2 = ∅. In other cases all three types of time slots may exist. Same as in [81]

we have following two lemmas:

Lemma 4.2 |T1|+ µ

m
|T2| ≤ L′.

Proof: The main idea is to construct a “heavy” directed path P in the transitive

closure of the graph G = (V,E). The last task in the path P is any multiprocessor

task Jj1 that completes at time Cmax (the makespan of the final schedule). After

we have defined the last i ≥ 1 tasks Jji
→ Jji−1

→ · · · → Jj2 → Jj1 on the path P ,

we can determine the next task Jji+1
as follows: Consider the latest time slot t in
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T1 ∪ T2 that is before the starting time of task Jji
in the final schedule. Let V ′ be

the set of task Jji
and its predecessor tasks that start after time t in the schedule.

Since during time slot t at most m − µ processors are busy, and since at most µ

processors are allotted to any task in V ′, all the tasks in V ′ can not be ready for

execution during the time slot t. Therefore for every task in V ′ some predecessor

is being executed during the time slot t. Then we select any predecessor of task

Jji
that is running during slot t as the next task Jji+1

on the path P . This search

procedure stops when P contains a task that starts before any time slot in T1 ∪ T2.

An example of the “heavy” path is illustrated in Figure 4.1.

Consider a task Jj on the resulting path P . If in the allotment α of the second

phase the task Jj is allotted lj < µ processors, then α′ and α both allot the same

number of processors to Jj. In this case the processing times of Jj in α′ and α

are identical. In the final schedule such a task is processed during any time slot in

T1 ∪ T2. If in α exact lj = µ number of processors are allotted to task Jj, then in

α′ there may be l′j processors allotted to Jj for µ ≤ l′j ≤ m. With Assumption 4.2,

the work µ · pj(µ) in α is not more than the work l′jpj(l
′
j) in α′. Therefore pj(l

′
j)

is at least µ/l′j ≥ µ/m times the processing time pj(µ) in allotment α. In the final

schedule such a task can be processed during any time slot in T2 but not in T1.

With the construction of the direct path P , it covers all time slots in T1 ∪ T2 in

the final schedule. In the schedule after the first phase, the tasks processed in T1 in

the final schedule contribute a total length of at least |T1| to L′(P). In addition, the

tasks processed in T2 contribute a total length of at least |T2|µ/m to L′(P). Since

L′(P) is not more than the length L′ of the critical path in α′, we have obtained the

claimed inequality.

Lemma 4.3 (m− µ + 1)Cmax ≤ W + (m− µ)|T1|+ (m− 2µ + 1)|T2|.

Proof: According to the definitions, all time slots in T1, T2 and T3 in the final

schedule cover the whole interval [0, Cmax]. Therefore

Cmax = |T1|+ |T2|+ |T3|. (4.13)

In addition, as during the time slots of the first (respectively the second and the

third) type at least one (respectively µ and m− µ + 1) processors are busy, a lower
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bound on the total work in the final schedule is:

W ≥ |T1|+ µ|T2|+ (m− µ + 1)|T3|. (4.14)

Multiplying (4.13) by m−µ+1 and subtracting (4.14) from it the proof is completed.

Define the normalized overall length of i-th type of time slots by xi = |Ti|/C∗
max

for i = 1, 2, 3. The following lemma holds:

Lemma 4.4 The Algorithm I has an approximation ratio

r ≤
m

1− ρ
+ (m− µ)x1 + (m− 2µ + 1)x2

m− µ + 1
.

Proof: From Lemma 4.3 and Lemma 4.1 we have

(m− µ + 1)Cmax ≤ m

1− ρ
C∗

max + (m− µ)|T1|+ (m− 2µ + 1)|T2|.

Recall the definition of approximation ratio and (4.12),

r = sup
Cmax

OPT
≤ sup

Cmax

C∗
max

.

From definitions of xi, we can immediately obtain the claimed bound on r since

m− µ + 1 > 0.

Lemma 4.5 The normalized time slot lengths are bounded by x1 +
µ

m
x2 ≤ 1

ρ
.

Proof: According to Proposition 4.1 and (4.12), L′ ≤ L∗/ρ ≤ C∗
max/ρ. Together

with Lemma 4.2 we have

|T1|+ µ

m
|T2| ≤ C∗

max

ρ
.

Dividing both sides by C∗
max yields the lemma together with the definitions of xi.
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Lemma 4.6 The approximation ratio r of Algorithm I is bounded by the optimal

value of the following min-max nonlinear program:

minµ,ρ maxx1,x2

m/(1− ρ) + (m− µ)x1 + (m− 2µ + 1)x2

m− µ + 1

s.t. x1 +
µ

m
x2 ≤ 1

ρ
;

x1, x2 ≥ 0;

ρ ∈ (0, 1);

µ ∈
{
1, . . . ,

⌊
m + 1

2

⌋}
.

(4.15)

Proof: The positive variables x1 and x2 can be any feasible real numbers bounded

by Lemma 4.5 because in the final schedule the total lengths of time slots in T1 and

T2 can be any possible values constrained by Lemma 4.2. Then in Lemma 4.4 the

approximation ratio r should be chosen as the maximum over all feasible x1 and x2.

On the other hand, we can select appropriate µ and ρ to minimize the ratio r. Hence,

by combining them together with the other constraints for the variables according

to their definitions, the approximation ratio is the objective value of (4.15).

We observe that here (4.15) is linear in x1 and x2 but nonlinear in µ and ρ. Be-

sides, µ is an integer. So (4.15) is a mixed nonlinear integer program. Now we shall

solve (4.15) to obtain the approximation ratio r depending on the number of ma-

chines m. Recall that the notation Cd means the class of all d-th order continuously

differentiable functions. We first need the following lemma:

Lemma 4.7 For two functions f : IR → IR and g : IR → IR defined on [a, b] and

f(x), g(x) ∈ C1, if one of the following two properties holds:

Ω1: f ′(x) · g′(x) < 0 for all x ∈ [a, b];

Ω2: f ′(x) = 0 and g′(x) 6= 0 for all x ∈ [a, b],

and the equation f(x) = g(x) has a solution in interval [a, b], then the root x0 is

unique and it minimizes the function h(x) = max{f(x), g(x)}.

Proof: First we study the case of property Ω1. Without loss of generality we assume

that f ′(x) < 0 and g′(x) > 0 holds for all x ∈ [a, b]. Their signs can not change in
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the interval [a, b]. Otherwise f(x) = 0 occurs at certain point x = y ∈ [a, b]. Then

f(x) is strictly decreasing and g(x) is strictly increasing. If there are two distinct

roots x1 and x2 in [a, b] to equation f(x) = g(x), we have f(x1) − g(x1) = 0 and

f(x2) − g(x2) = 0. Assuming x1 < x2, there must be an x′ ∈ (x1, x2) such that

f ′(x′) − g′(x′) = 0, i.e., f ′(x′) = g′(x′). This is a contradiction to f ′(x) < 0 and

g′(x) > 0. Thus the root is unique. Denote by x0 the root, i.e., f(x0) = g(x0).

We are going to prove that h(x0) = minx max{f(x), g(x)}. For any x ∈ [a, x0),

it holds that f(x) > f(x0) = g(x0) > g(x). Thus h(x) = max{f(x), g(x)} =

f(x) > f(x0) = h(x0) for all x ∈ [a, x0). Similarly we can prove for any x ∈ (x0, b],

h(x) = g(x) > g(x0) = h(x0). Therefore h(x) is minimized at x0. An example is

illustrated in Figure 4.2.

Then we study the case of property Ω2. Because g(x) ∈ C1 and g′(x) 6= 0, g′(x)

is either positive or negative. Without loss of generality we assume that g′(x) > 0.

Again, if there are two distinct roots x1 and x2 in [a, b] to equation f(x) = g(x),

we have f(x1) − g(x1) = 0 and f(x2) − g(x2) = 0. Assuming x1 < x2, there must

be an x′ ∈ (x1, x2) such that f ′(x′) − g′(x′) = 0, i.e., g′(x′) = f ′(x′) = 0. This is a

contradiction to g′(x) > 0. Denote by x0 the unique root, i.e., f(x0) = g(x0). For

any x ∈ [a, x0), it holds that f(x) = f(x0) = g(x0) > g(x) as f(x) is a constant.

Thus h(x) = max{f(x), g(x)} = f(x) = f(x0) = h(x0). Similarly we can prove for

any x ∈ (x0, b], h(x) = g(x) > g(x0) = h(x0). Therefore h(x) is minimized at x0 and

the minimum value is f(x). Here h(x0) is not the unique minimum. An example is

illustrated in Figure 4.3.

Furthermore, we need the following propositions:

Proposition 4.2 The roots of a quadratic equation ax2 + bx + c = 0 (a 6= 0) are

x1,2 =
−b∓√b2 − 4ac

2a
.

Proposition 4.3 Suppose that x1 is the largest real root to the equation f(x) =
∑n

i=1 aix
i = 0 (an 6= 0). If an > 0, then f(x) > 0 for x ∈ (x1,∞). If an < 0, then

f(x) < 0 for x ∈ (x1,∞).
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a b x

g(x)

f(x)

Figure 4.2: An example of functions with property Ω1 in Lemma 4.7.

a b

g(x)

x

f(x)

Figure 4.3: An example of functions with property Ω2 in Lemma 4.7.

Examples of the polynomials with the properties in Proposition 4.3 are illustrated

in Figure 4.4. Now we are able to prove the following theorem:

Theorem 4.1 For each m ∈ IN and m ≥ 3, the linear relaxation of the min-max

nonlinear program (4.15) has an optimum objective value

OPT ≤ 1 +

√
5m2 − 4m + m

2m
+

√
5m− 4 +

√
m

m− 1

√√
5m2 − 4m−m− 2

2
;

corresponding to µ∗ and ρ∗ defined in (4.10) and (4.11), respectively.

Proof: First we observe that the constraints on x1 and x2 in (4.15) form a triangle,

and the extreme points are E1 : (x1, x2) = (1/ρ, 0), E2 : (x1, x2) = (0,m/(ρµ)) and
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x1
x

f(x)

x

f(x)

x
1

an > 0 an < 0

Figure 4.4: Examples of polynomials in Proposition 4.3.

E3 : (x1, x2) = (0, 0). Since the min-max nonlinear program (4.15) is linear in x1

and x2, for a fixed pair of µ and ρ, the maximum value exists at one of the extreme

points. It is obvious that at extreme point E3 the maximum objective value can not

be attained. Therefore we consider only E1 and E2. Denote by A(µ, ρ) and B(µ, ρ)

the objective values at the two extreme points E1 and E2, respectively. Then they

can be calculated as

A(µ, ρ) =
m− µ(1− ρ)

ρ(1− ρ)(m− µ + 1)
=

1

ρ
+

mρ− (1− ρ)

ρ(1− ρ)(m− µ + 1)
;

B(µ, ρ) =
m(m− 2µ + 1−mρ− ρ + 3ρµ)

ρ(1− ρ)(m− µ + 1)µ
.

If ρ > 1/(m + 1), then mρ− (1− ρ) > 0. Therefore
mρ− (1− ρ)

ρ(1− ρ)(m− µ + 1)
is also

positive and A(µ, ρ) is strictly increasing in µ. In addition, consider the first order

partial derivative of B(µ, ρ) with respect to µ:

B′(µ, ρ)µ =
m

ρ(1− ρ)µ2(m− µ + 1)2
[(−2 + 3ρ)(m− µ + 1)µ

−(m− 2µ + 1−mρ− ρ + 3ρµ)(m− 2µ + 1)]

=
−(2− 3ρ)µ2 + 2(m + 1)(1− ρ)µ− (m + 1)2(1− ρ)

µ2(m− µ + 1)2
· m

ρ(1− ρ)
.

If ρ = 2/3, then 2− 3ρ = 0 and the quadratic term of the numerator of B′(µ, ρ)µ is
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0. Solving equation B′(µ, ρ)µ = 0 we have the only root µ = (m+1)/2. It means for

any µ ∈ (1, (m + 1)/2] the numerator is non-positive according to Proposition 4.3,

i.e., B′(µ, ρ)µ ≤ 0. We now consider the case that ρ 6= 2/3. The quadratic equation

B′(µ, ρ)µ = 0 for the variable µ has following roots according to Proposition 4.2:

µ =
−2(m + 1)(1− ρ)±

√
4(m + 1)2(1− ρ)2 − 4(2− 3ρ)(m + 1)2(1− ρ)

−2(2− 3ρ)

=
(m + 1)(1− ρ)

2− 3ρ

(
1∓

√
2ρ− 1

1− ρ

)
.

If ρ < 1/2, then
2ρ− 1

1− ρ
< 0. Then there is no real root to the equation B′(µ, ρ)µ = 0

due to properties of quadratic equations. Thus in this case B′(µ, ρ)µ < 0, i.e., B(µ, ρ)

is strictly decreasing in µ.

Now we study the following three cases according to the value of ρ.

CASE 1: ρ ∈ [1/(m + 1), 1/2). Since we need to choose the minimum value of

the maximum between A(µ, ρ) and B(µ, ρ) for all feasible µ, according to Lemma 4.7,

only if A(µ, ρ) = B(µ, ρ) can the minimum value be achieved. Equation A(µ, ρ) =

B(µ, ρ) is as follows:

m− µ(1− ρ)

ρ(1− ρ)(m− µ + 1)
=

m(m− 2µ + 1−mρ− ρ + 3ρµ)

ρ(1− ρ)(m− µ + 1)µ
.

After simplification (with elimination of a positive common factor 1−ρ) the equation

is:

µ2 − 3mµ + m(m + 1) = 0.

Solving it with Proposition 4.2 yields

µ =
3m∓

√
9m2 − 4m(m + 1)

2
=

3m∓√5m2 − 4m

2
.

Since
3m +

√
5m2 − 4m

2
≥ 3m

2
>

m + 1

2
, which violates the constraint that µ ≤

m + 1

2
, the only feasible solution to the equation A(µ, ρ) = B(µ, ρ) is
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µ∗ =
3m−√5m2 − 4m

2
. (4.16)

Here the solution µ∗ is not related to ρ. Because µ∗ must be an integer, we have

(4.10).

To find the optimum ρ∗, substitute µ∗ to B(µ, ρ) to obtain function B(ρ) of ρ.

Since µ∗ in (4.16) does not depend on ρ, we can calculate the partial derivative of

B(ρ) with respect to ρ as follows:

B′(ρ)ρ =
m

(m− µ∗ + 1)µ∗
· 1

ρ2(1− ρ)2
[(−m− 1 + 3µ∗)ρ(1− ρ)

−(m− 2µ∗ + 1−mρ− ρ + 3µ∗ρ)(1− 2ρ)]

=
m

µ∗
−(m− 3µ∗ + 1)ρ2 + 2(m− 2µ∗ + 1)ρ− (m− 2µ∗ + 1)

(m− µ∗ + 1)ρ2(1− ρ)2
.

When m + 1− 3µ∗ = 0, there is only one root ρ∗ = 1/2 to the equation B′(ρ)ρ = 0.

Otherwise solving the quadratic equation B′(ρ)ρ = 0, one can get

ρ =
−2(m− 2µ∗ + 1)∓

√
4(m− 2µ∗ + 1)2 − 4(m− 3µ∗ + 1)(m− 2µ∗ + 1)

−2(m− 3µ∗ + 1)

=
m + 1− 2µ∗ ∓

√
µ∗(m + 1− 2µ∗)

m + 1− 3µ∗
.

Because
m + 1− 2µ∗ +

√
µ∗(m + 1− 2µ∗)

m + 1− 3µ∗
≥ m + 1− 2µ∗

m + 1− 3µ∗
≥ 1, this solution vio-

lates the constraint that ρ <
1

2
. Thus we have

ρ∗ =
m + 1− 2µ∗ −

√
µ∗(m + 1− 2µ∗)

m + 1− 3µ∗
, (4.17)

as in (4.11).

In order to show that ρ∗ ≤ 1/2 with our assumption, we need that

ρ∗ =
m + 1− 2µ∗

m + 1− 2µ∗ +
√

µ∗(m + 1− 2µ∗)
≤ 1

2
,
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which is equivalent to

m + 1− 2µ∗ ≤
√

µ∗(m + 1− 2µ∗).

Taking the square of both sides we have m+1 ≤ 3µ∗. Since µ∗ = (3m−√5m2 − 4m)/2,

substituting it to the inequality yields

7m− 2 ≥ 3
√

5m2 − 4m.

Taking the square of both side again we obtain that 4(m + 1)2 ≥ 0, which is always

true. Therefore we have shown that the ρ∗ in (4.11) is less than 1/2. Now we are

going to prove that 1/(m + 1) < ρ∗. Similar as before, this inequality is equivalent

to

1

m + 1
<

1

1 +

√
µ∗

m + 1− 2µ∗

= ρ∗.

With simplification it becomes m2(m+1−2µ∗) > µ∗, i.e., m2(m+1) > (2m2 +1)µ∗.

So it is required that

µ∗ =
3m−√5m2 − 4m

2
<

m2(m + 1)

2m2 + 1
.

It can then be simplified as

4m3 − 2m2 + 3m < (2m2 + 1)
√

5m2 − 4m.

Take the square of both sides and simplify it. Then we have the following inequality:

m5 − 2m3 −m2 −m− 1 > 0.

It is true because we observe that it always holds for m ≥ 2 as

m5 − 2m3 −m2 −m− 1 = m(m2 − 1)2 − (m + 1)2 = (m + 1)2[m(m− 1)2 − 1],

and the right hand side is always positive for m ≥ 2. Therefore we conclude that ρ∗

in (4.17) lies in the assumed domain [1/(m + 1), 1/2).
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Another approach to obtain the optimum ρ∗ is to substitute µ∗ to A(µ, ρ) to

obtain a function A(ρ) of ρ and with similar analysis as above. Again, as µ∗ is

independent of ρ, the first order partial derivative of A(ρ) with respect to ρ is:

A′(ρ)ρ =
µ∗ρ(1− ρ)− (m− µ∗(1− ρ))(1− 2ρ)

ρ2(1− ρ)2(m− µ∗ + 1)

=
µ∗ρ2 + 2(m− µ∗)ρ− (m− µ∗)

ρ2(1− ρ)2(m− µ∗ + 1)
.

Solving the quadratic equation A′(ρ)ρ = 0 we obtain the following roots by Propo-

sition 4.2:

ρ =
−2(m− µ∗)∓

√
4(m− µ∗)2 + 4µ∗(m− µ∗)

2µ∗

=
−(m− µ∗)∓

√
m(m− µ∗)

µ∗
.

Because
−(m− µ∗)−

√
m(m− µ∗)

µ∗
< 0, this root violate the constraint that ρ > 0.

Thus we have

ρ∗ =
−(m− µ∗) +

√
m(m− µ∗)

µ∗

=
m− µ∗

m− µ∗ +
√

m(m− µ∗)
(4.18)

=
1

1 +

√
m

m− µ∗

.

Since µ∗ > 0, we have

√
m

m− µ∗
> 1. Therefore ρ∗ =

1

1 +
√

m/(m− µ∗)
≤ 1

2

in (4.18). In addition, because m ≥ µ∗ + 1 and m > 1, we have m(m − µ∗) > 1,

i.e. 1/(m − µ∗) < m. Multiplying both sides by m and taking square root of both
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sides leads to
√

m/(m− µ∗) < m. So
1

m + 1
<

1

1 +
√

m/(m− µ∗)
= ρ∗. The ρ∗ in

(4.18) is in the assumed domain ρ ∈ (1/(m + 1), 1/2). In fact one can prove that ρ∗

in (4.17) and (4.18) are equivalent with the µ∗ in (4.16).

However, the optimum µ∗ in (4.16) can be fractional while it is required that µ

is an integer. Thus we can take the integer µ∗ by rounded it to the integer below or

above the fractional one in (4.16). Then we obtain (4.10). Now we need to consider

the upper bound of the optimal objective value of (4.15) with rounded µ∗. It is worth

noting that the optimum ρ∗ is a function of µ∗. Thus we can regard A(µ∗, ρ∗) and

B(µ∗, ρ∗) as functions of µ∗, i.e., A(µ∗, ρ∗(µ∗)) and B(µ∗, ρ∗(µ∗)), or simply A(µ)

and B(µ). Now we need to examine the behaviour of functions A(µ) and B(µ).

The function A(µ) is as follows:

A(µ) = A(µ, ρ∗(µ)) =

m− µ

√
m/(m− µ)

1 +
√

m/(m− µ)
√

m/(m− µ)

(1 +
√

m/(m− µ))2
(m− µ + 1)

=
(1 +

√
m/(m− µ))(m +

√
m(m− µ))

√
m/(m− µ)(m− µ + 1)

=
(
√

m +
√

m− µ)2

m− µ + 1

= 1 +
m− 1

m− µ + 1
+

2
√

m(m− µ)

m− µ + 1
.

It is obvious that (m−1)/(m−µ+1) is increasing in µ. We now check the following

derivative with respect to µ:

( √
m− µ

m− µ + 1

)′

µ

=

− m− µ + 1

2(
√

m− µ)
+
√

m− µ

(m− µ + 1)2

=

√
m− µ− 1√

m− µ

2(m− µ + 1)2
.
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Since µ ≤ (m + 1)/2, we have
√

m− µ ≥
√

(m− 1)/2. Therefore

√
m− µ− 1√

m− µ
≥

√
m− 1

2
−

√
2

m− 1
.

If m ≥ 3, then (m + 1)(m− 3) ≥ 0. So (m− 1)2 ≥ 4, i.e., (m− 1)/2 ≥ 2/(m− 1).

Therefore
√

(m− 1)/2 ≥
√

2/(m− 1) and [
√

m− µ/(m− µ + 1)]′µ ≥ 0. In this way

we conclude that A(µ) is increasing in µ.

We substitute (4.17) to B(µ∗, ρ∗(µ∗)) to obtain B(µ) as follows:

B(µ) = B(µ, ρ∗(µ)) =
m

√
µ(m− 2µ + 1)

√
µ/(m− 2µ + 1)

(1 +
√

µ/(m− 2µ + 1))2
(m− µ + 1)µ

=
[(m− µ + 1)/(m− 2µ + 1) + 2

√
µ/(m− 2µ + 1)]m

√
µ(m− 2µ + 1)

√
µ/(m− 2µ + 1)µ(m− µ + 1)

=
m

µ
+

2m√
µ(m− 2µ + 1)

.

Then we examine its first order derivative with respect to µ, i.e.,

B′(µ)µ =


m

µ
+

2m√
µ(m− 2µ + 1)



′

µ

= −m

µ2
− m(m− 4µ + 1)

((m− 2µ + 1)µ)3/2
.

Since the denominators of both terms are positive, the equation B′(µ)µ = 0 is

equivalent to

(m− 2µ + 1)3/2 = −(m− 4µ + 1)
√

µ.

Taking square of both sides with simplification one has

(m+1)3−7µ(m+1)2+20µ2(m+1)−24µ3 = (m+1−3µ)[(m+1)2−4(m+1)µ+8µ2] = 0.
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It is obvious that second factor (m+1)2−4(m+1)µ+8µ2 = (m+1−2µ)2 +4µ2 > 0

for any feasible m and µ. Therefor the only real root to the equation B′(µ)µ = 0 is

µ = (m + 1)/3. However, we can show that the special case that µ = (m + 1)/3 can

not happen for any m ≥ 19 as follows. The quadratic equation m2 − 19m + 16 = 0

has two roots

m1 = (19 +
√

297)/2 ≈ 18.1168, m2 = (19−
√

297)/2 ≈ 0.8832.

Thus for any m ≥ 19, m2 − 19m + 16 > 0, i.e., 49m2 − 112m + 64 > 45m2 − 36m.

Since both sides are positive for m ≥ 2, we can take the square roots of them and

obtain 7m− 8 > 3
√

5m2 − 4m, i.e., 9m− 3
√

5m2 − 4m > 2m + 8. So we have

3m−√5m2 − 4m

2
− 1 >

m + 1

3
.

Notice here µ is in fact the optimal over all integers in {1, . . . , b(m + 1)/2c}. Since

µ is an integer chosen according to (4.10), µ ≥ (3m−√5m2 − 4m)/2−1. Therefore

for any m ≥ 19, µ > (m + 1)/3 and the equation B′(µ)µ = 0 has no root. We will

also show later for all 3 ≤ m ≤ 18, µ > (m + 1)/3 by listing the values. Thus for

any m ≥ 3, it holds that B′(µ)µ < 0, i.e., B(µ) is decreasing in µ.

We now consider the optimal value of (4.15) with the integer value of µ∗ in (4.10)

and the corresponding ρ∗ in (4.11). We still denote by ρ∗(µ∗) the function of µ∗ in

(4.11). In addition, we denote by µ∗ the fractional value of optimal µ in (4.16) and

its rounded values as bµ∗c and dµ∗e. According to the arguments above, we know

that for m ≥ 3, A(µ∗, ρ∗(µ∗)) is increasing in µ∗ and B(µ∗, ρ∗(µ∗)) is decreasing in

µ∗. Thus A(dµ∗e, ρ∗(dµ∗e)) ≥ B(dµ∗e, ρ∗(dµ∗e)) and we have:

OPT = min{max{A(bµ∗c, ρ∗(bµ∗c)), B(bµ∗c, ρ∗(bµ∗c))},
max{A(dµ∗e, ρ∗(dµ∗e)), B(dµ∗e, ρ∗(dµ∗e))}}

≤ max{A(dµ∗e, ρ∗(dµ∗e)), B(dµ∗e, ρ∗(dµ∗e))}
= A(dµ∗e, ρ∗(dµ∗e))
≤ A(µ∗ + 1, ρ∗(µ∗ + 1))
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=

m− (µ∗ − 1)

√
m/(m− µ∗ − 1)

1 +
√

m/(m− µ∗ − 1)
√

m/(m− µ∗ − 1)

(1 +
√

m/(m− µ∗ − 1))2
(m− µ∗)

=
(1 +

√
m/(m− µ∗ − 1))(m + (m− µ∗ − 1)

√
m/(m− µ∗ − 1))

√
m/(m− µ∗ − 1)(m− µ∗)

=
(
√

m +
√

m− µ∗ − 1)(m +
√

m(m− µ∗ − 1))√
m(m− µ∗)

=
(
√

m +
√

m− µ∗ − 1)2

m− µ∗

= 1 +
m− 1

m− µ∗
+

2
√

m(m− µ∗ − 1)

m− µ∗

= 1 +

√
5m2 − 4m + m

2m
+

√
5m− 4 +

√
m

m− 1

√√
5m2 − 4m−m− 2

2
.

This gives the bound claimed in the theorem and the analysis for CASE 1 is

completed.

CASE 2: ρ ∈ (0, 1/(m + 1)]. In this case mρ − (1 − ρ) < 0. Therefore

mρ− (1− ρ)

ρ(1− ρ)(m− µ + 1)
is negative and A(µ, ρ) is decreasing in µ. Since B(µ, ρ) is

decreasing in µ for ρ < 1/2, we have that both A(µ, ρ) and B(µ, ρ) are decreasing

in this interval. Thus we can fix µ∗ = (m + 1)/2 to reach the minimum of objective

function. Substitute µ∗ to A(µ, ρ) and B(µ, ρ) we have:

A(ρ) =
m− m + 1

2
(1− ρ)

ρ(1− ρ)(m + 1− m + 1

2
)

=
m− 1 + ρ(m + 1)

ρ(1− ρ)(m + 1)
;

B(ρ) =
m(m− (m + 1) + 1−mρ− ρ + 3ρ · m + 1

2
)

ρ(1− ρ)(m− m + 1

2
+ 1)

m + 1

2

=
2m

(1− ρ)(m + 1)
.

Since ρ < 1, m− 1 + ρ(m + 1) > 2mρ. Thus A(ρ) > B(ρ) when µ = (m + 1)/2 (See
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B( ρ )

1 ρ

Figure 4.5: Functions A(ρ) and B(ρ) in CASE 2.

Figure 4.5). We are going to minimize A(ρ) for ρ ∈ (0, 1/(m + 1)]. The first order

partial derivative of A(ρ) with respect to ρ is

A′(ρ)ρ =

[
m− 1

m + 1

1

ρ
+

2m

m + 1

1

1− ρ

]′

ρ

= −m− 1

m + 1

1

ρ2
+

2m

m + 1

1

(1− ρ)2

=
2mρ2 − (m− 1)(1− ρ)2

(m + 1)ρ2(1− ρ)2

=
(m + 1)ρ2 + 2(m− 1)ρ− (m− 1)

(m + 1)ρ2(1− ρ)2
.

It is clear that the denominator is positive. We now examine the equation A′(ρ)ρ = 0.

It is equivalent to

(m + 1)ρ2 + 2(m− 1)ρ− (m− 1) = 0.

According to Proposition 4.2, the roots are as follows:

ρ =
−2(m− 1)∓

√
4(m− 1)2 + 4(m2 − 1)

2(m + 1)
=

1−m∓
√

2m(m + 1)

m + 1
.

It is obvious that for m ≥ 1,
1−m−

√
2m(m + 1)

m + 1
< 0 is infeasible. Since 2m2 +

2m > m2, we have
√

2m2 + 2m > m, i.e., 1 − m +
√

2m2 + 2m > 1. So the root
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Figure 4.6: Functions A(µ, ρ) and B(µ, ρ) in CASE 3.2.1.

1−m +
√

2m(m + 1)

m + 1
>

1

m + 1
is also infeasible. Thus when ρ ∈ (0, 1/(m + 1),

A′(ρ)ρ < 0, i.e., A(ρ) is decreasing in ρ. Then we fix ρ∗ = 1/(m + 1) to obtain the

optimal objective value:

OPT = A(ρ)|ρ=1/(m+1) =
m− 1 + 1

m/(m + 1)
= m + 1.

However, we show now that the optimal objective value in this case is not better

than the bound on the optimal value for the case ρ ∈ [1/(m + 1), 1/2) claimed in

the theorem for m ≥ 3. Denote by BOUND the bound in the theorem (also for the

case ρ ∈ [1/(m + 1), 1/2)). It is obvious that

BOUND ≤ 1 +

√
5 + 1

2
+

√
5 + 1

m− 1
m

√√
5− 1

2
.

Therefore if the right hand side of the above inequality is not greater than m + 1

our claim holds. It is equivalent to

m2 −

1 +

√
5 + 1

2
+ (
√

5 + 1)

√√
5− 1

2


 m +

√
5 + 1

2
≈ m2 − 5.162m + 1.618 ≥ 0.

It has two real roots m3 ≈ 4.8268 and m4 = 0.3352, which shows when m ≥ 5 >

m3, the inequality BOUND ≤ m + 1 holds. It can be calculated that if m = 3,
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Figure 4.7: Functions A(µ, ρ) and B(µ, ρ) in one case of CASE 3.2.2.

BOUND = 3.9976 ≤ m+1 = 4, and if m = 4, BOUND = 4.5 ≤ m+1 = 5. Hence

we conclude that for any m ≥ 3, the optimal value of (4.15) can not be attained for

ρ ≤ 1/(m + 1). This completes the analysis for CASE 2.

CASE 3: ρ ≥ 1/2. Here we have (2ρ − 1)/(1 − ρ) > 0. Therefore there exist

roots for the quadratic equation B′(µ, ρ)µ = 0. Remember that in this case A(µ, ρ)

is increasing in µ. Since ρ 6= 2/3, we need to consider the following two cases:

• CASE 3.1: ρ ∈ [1/2, 2/3);

• CASE 3.2: ρ ∈ (2/3, 1).

In CASE 3.1, 3ρ < 2, i.e. 2ρ − 1 < 1 − ρ. Therefore
√

(2ρ− 1)/(1− ρ) < 1.

Then the following two roots by Proposition 4.2:

µ1 =
(m + 1)(1− ρ)

2− 3ρ

(
1−

√
2ρ− 1

1− ρ

)
,

µ2 =
(m + 1)(1− ρ)

2− 3ρ

(
1 +

√
2ρ− 1

1− ρ

)

are positive as 2−3ρ > 0. In addition, since (3ρ−2)2 > 0, we have ρ2 > −4+12ρ−
8ρ2 = 4(1 − ρ)(2ρ − 1). As both sides are positive, we take the square root and it

becomes ρ > 2
√

(1− ρ)(2ρ− 1). Then 2− 2ρ− 2(1− ρ)
√

(2ρ− 1)/(1− ρ) > 2− 3ρ.
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Figure 4.8: Functions A(µ, ρ) and B(µ, ρ) in one case of CASE 3.2.2.

Thus µ2 ≥ µ1 > (m + 1)/2. Both roots violate the constraint µ ≤ (m + 1)/2.

Furthermore, B′(µ, ρ)µ is negative. So B(µ, ρ) is decreasing in µ. Then we can solve

the equation A(µ, ρ) = B(µ, ρ) to obtain the same optimum µ∗ as in (4.16) and

also the same optimum ρ∗ in (4.17) or (4.18). However, the optimum ρ∗ < 1/2,

which violates the assumption of CASE 3.1. So in this case the bound on the

approximation ratio is not better than that of the case that ρ ∈ [1/(m + 1), 1/2).

In CASE 3.2, with the similar analysis in CASE 3.1,
√

(2ρ− 1)/(1− ρ) > 1.

Since 2 − 3ρ < 0, we have µ2 < 0 and µ1 > 0. Because (3ρ − 2)2 > 0, ρ2 >

−4+12ρ−8ρ2 = 4(1−ρ)(2ρ−1). As both sides are positive, we take the square root

and it becomes ρ > 2
√

(1− ρ)(2ρ− 1). Then 2
√

(1− ρ)(2ρ− 1)− 2 + 2ρ < 3ρ− 2,

which indicates µ1 < (m + 1)/2 and thus feasible. So B′(µ, ρ)µ < 0 when µ ∈ [1, µ1]

and B′(µ, ρ)µ > 0 when µ ∈ (µ1, (m + 1)/2]. It means that B(µ, ρ) is decreasing in

µ for µ ∈ [1, µ1] while it is increasing in µ for µ ∈ (µ1, (m + 1)/2]. Since A(µ, ρ)

is increasing in µ for all µ when ρ ≥ 1/(m + 1), there are four possibilities for the

relations between A(µ, ρ) and B(µ, ρ):

• CASE 3.2.1: A(µ, ρ) < B(µ, ρ) for all feasible µ;

• CASE 3.2.2: Equation A(µ, ρ) = B(µ, ρ) has one root for all feasible µ;

• CASE 3.2.3: Equation A(µ, ρ) = B(µ, ρ) has two roots for all feasible µ;



4.3. Approximation algorithm I 107

0 (m+1)/2

µ ρ, )

µ , ρ)

µµ1 µ*

B(

A(

Figure 4.9: Functions A(µ, ρ) and B(µ, ρ) in one case of CASE 3.2.2.

0
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Figure 4.10: Functions A(µ, ρ) and B(µ, ρ) in CASE 3.2.3.

• CASE 3.2.4: A(µ, ρ) > B(µ, ρ) for all feasible µ.

In CASE 3.2.1, equation A(µ, ρ) = B(µ, ρ) has no root and when µ = (m+1)/2,

A(µ, ρ) < B(µ, ρ) (See Figure 4.6). In CASE 3.2.2, when µ = 1, A(µ, ρ) < B(µ, ρ)

and when µ = (m + 1)/2, A(µ, ρ) > B(µ, ρ), or vice versa (See Figure 4.7, 4.8

and 4.9). In CASE 3.2.3, when µ = 1 and µ = (m + 1)/2, A(µ, ρ) < B(µ, ρ),

and equation A(µ, ρ) = B(µ, ρ) has two roots for µ ∈ [1, (m + 1)/2] (See Figure

4.10). In CASE 3.2.4, equation A(µ, ρ) = B(µ, ρ) has no root and when µ = 1,

A(µ, ρ) > B(µ, ρ) (See Figure 4.11). Now we examine the existence of roots to the

equation A(µ, ρ) = B(µ, ρ). It is
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Figure 4.11: Functions A(µ, ρ) and B(µ, ρ) in CASE 3.2.4.

µ2 − 3mµ + m(m + 1) = 0.

Same as the previous analysis, there exists only one feasible root of equation A(µ, ρ) =

B(µ, ρ)

µ∗ =
3m−√5m2 − 4m

2
,

and the other root is not feasible (not in the interval [0, (m + 1)/2]). So neither

CASE 3.2.1, CASE 3.2.3 nor CASE 3.2.4 is feasible. We now consider CASE

3.2.2. In Figure 4.7, the optimal value of (4.15) exists at the point µ = µ∗. However,

in Figure 4.8 and 4.9, the optimal value exists at the point µ = µ1. Here we just

need to search for an upper bound of the optimal value. Therefore in this case we

still count the objective value at the point µ = µ∗ as the upper bound. Thus we

have finished the analysis for CASE 3.2.

Then the analysis for CASE 3 is complete and the theorem is proved.

It can be observed that our fractional µ∗ in (4.16) is exactly the same as that in

[81]. As µ∗ must be chosen as an integer, our optimal value of µ∗ only differs from

that in [81] by at most one.

For our algorithm for Scheduling Malleable Tasks with Precedence

Constraints, the approximation ratio obeys the following corollary:
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Corollary 4.1 For each m ∈ IN and m ≥ 2, Algorithm I has an approximation

ratio

r ≤





4, if m = 2;

1 +

√
5m2 − 4m + m

2m

+

√
5m− 4 +

√
m

m− 1

√√
5m2 − 4m−m− 2

2
,

otherwise.
(4.19)

Proof: The conclusion comes directly from Lemma 4.4 and Theorem 4.1. If m = 2,

then µ∗ must be set as 1 and the condition that µ > (m + 1)/3 does not hold. In

this case the objective values of (4.15) on the two extreme points are

A(1, ρ) =
1 + ρ

2ρ(1− ρ)
,

B(1, ρ) =
1

ρ(1− ρ)
.

Because ρ < 1, it holds that (1+ρ)/2 < 1. Thus A(1, ρ) < B(1, ρ) for any ρ ∈ (0, 1).

Therefore the optimal value is bounded by B(1, ρ). We can choose an optimal ρ∗ to

minimize B(1, ρ). Because ρ(1 − ρ) = 1/4 − (ρ − 1/2)2 ≤ 1/4, only if ρ = 1/2 can

B(1, ρ) attain the minimum. Therefore when m = 2 we set ρ∗ = 1/2 and µ∗ = 1,

and the approximation ratio r ≤ B(1, 1/2) = 4.

The values of ratio r for m from 2 to 33 are listed in Table 4.2, which is to

compare with the result in [81] listed in Table 4.3. To compute the values, we need

to substitute the values of µ∗ in (4.10) to (4.11) to obtain the corresponding values

of ρ∗. Then we substitute the two groups of µ∗ and ρ∗ to the formulae A(µ, ρ) and

B(µ, ρ). For each group of parameters, we find the maximum between A(µ, ρ) and

B(µ, ρ). Then the minimum of these two maximums is the approximation ratio r.

This gives an improvement of almost all m (except for m = 2). With sophisticated

analysis of the formula (4.19), the following corollary holds:

Corollary 4.2 For all m ∈ IN and m ≥ 2, the approximation ratio

r ≤ 3 +
√

5

2
+

√
2(
√

5 + 1).
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m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m)

2 1 0.500 4.0000 18 8 0.427 4.9848

3 2 0.366 3.7321 19 8 0.432 4.9095

4 2 0.414 3.8856 20 8 0.436 4.9333

5 3 0.387 4.4415 21 9 0.431 4.9807

6 3 0.366 4.4151 22 9 0.435 4.9159

7 3 0.431 4.6263 23 10 0.429 5.0417

8 4 0.414 4.6627 24 10 0.433 4.9774

9 4 0.427 4.5694 25 10 0.436 4.9206

10 5 0.464 4.9744 26 11 0.432 5.0311

11 5 0.425 4.7497 27 11 0.435 4.9747

12 5 0.433 4.7240 28 11 0.438 5.0279

13 6 0.423 4.8848 29 12 0.434 5.0226

14 6 0.431 4.7962 30 12 0.436 4.9724

15 6 0.436 4.9495 31 13 0.432 5.0655

16 7 0.429 4.9000 32 13 0.435 5.0158

17 7 0.434 4.8252 33 13 0.437 5.0040

Table 4.2: Bounds on approximation ratios for Algorithm I.

m µ(m) r(m) m µ(m) r(m) m µ(m) r(m) m µ(m) r(m)

2 1 4.0000 10 4 5.0000 18 8 5.0908 26 10 5.1250

3 2 4.0000 11 5 4.8570 19 8 5.0000 27 11 5.0588

4 2 4.0000 12 5 4.8000 20 8 5.0000 28 11 5.0908

5 3 4.6667 13 6 5.0000 21 9 5.0768 29 12 5.1111

6 3 4.5000 14 6 4.8889 22 9 5.0000 30 12 5.0526

7 3 4.6667 15 6 5.0000 23 9 5.1111 31 13 5.1578

8 4 4.8000 16 7 5.0000 24 10 5.0667 32 13 5.1000

9 4 4.6667 17 7 4.9091 25 10 5.0000 33 13 5.0768

Table 4.3: Bounds on approximation ratios for the algorithm in [81].
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Furthermore, when m →∞, the upper bound in Corollary 4.1 tends to

3 +
√

5

2
+

√
2(
√

5 + 1) ≈ 5.162.

Proof: We still denote by BOUND the bound claimed in Theorem 4.1, i.e.,

BOUND = 1 +

√
5m2 − 4m + m

2m
+

√
5m− 4 +

√
m

m− 1

√√
5m2 − 4m−m− 2

2
.

It is obvious that

√
5m2 − 4m + m

2m
≤
√

5 + 1

2
.

Now we examine the last term in BOUND. Suppose

√
5m− 4 +

√
m

m− 1

√√
5m2 − 4m−m− 2

2
≤ (

√
5 + 1)

√√
5− 1

2
. (4.20)

Since both sides are positive, we take square of them and obtain the following

inequality:

(3m− 2 +
√

5m2 − 4m)(
√

5m2 − 4m−m− 2) ≤ 2(
√

5 + 1)(m− 1)2,

i.e.,

(m− 2)
√

5m2 − 4m ≤
√

5m2 − 2(
√

5− 1)m + (
√

5− 1).

Again, we take the square of both sides as they are positive. After simplification we

obtain:

(2 + 2
√

5)m3 − (1 + 5
√

5)m2 + 4(
√

5− 1)m + 3−
√

5 ≥ 0.

If m ≥ 1 + 5
√

5

2 + 2
√

5
≈ 1.8820, then (2 + 2

√
5)m3 − (1 + 5

√
5)m2 ≥ 0. Furthermore,

4(
√

5−1)m+3−√5 are always positive. Thus (4.20) holds. We then conclude that

r ≤ BOUND ≤ 1 +

√
5 + 1

2
+ (
√

5 + 1)

√√
5− 1

2
=

3 +
√

5

2
+

√
2(
√

5 + 1).
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In addition, it is easy to verify when m →∞, the upper bound in Corollary 4.1

m +
√

5m2 − 4m + 2
√

2m(
√

5m2 − 4m−m)√
5m2 − 4m−m + 2

=
1 +

√
5− 4/m + 2

√
2(

√
5− 4/m− 1)

√
5− 4/m− 1 + 2/m

→ 1 +
√

5 + 2
√

2(
√

5− 1)√
5− 1

=
3 +

√
5

2
+

√
2(
√

5 + 1)

≈ 5.162.

4.4 Approximation algorithm II

In the first phase of Algorithm I, to solve the allotment problem the algorithm for

the budget problem in [104] is applied. We observe that in the first step of the

algorithm the “fixed” cost P is removed such that in the remaining step of the

algorithm for each task Jj the “reduced” cost ĉj(djk(j)) = 0. The “reduced” cost for

each duration dk is defined as ĉj(dk) = cj(dk)− cj(djk(j)
), where djk(j)

is the maximal

feasible duration of task Jj. It is worth noting that in the algorithm in [104] the

rounding technique is only conducted for the linear relaxation of the two-duration

instance with the “virtual” cost. Therefore the amount of the “fixed” cost does not

change during the rounding procedure.

In this section, we carefully study the increase of the work in the algorithm in

[104] by dividing the total work corresponding the integer solution to the discrete

time-cost tradeoff problem (4.4) into rounded and non-rounded parts. Because the

non-rounded part does not increase, we are able to develop an improved approxima-

tion algorithm. In our Algorithm II, the structure is essentially same as Algorithm

I. However, the values of the rounding parameter ρ and the allotment parameter µ

are different from those in Section 4.3 for Algorithm I (see Subsection 4.4.2).
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First we have the following bound on the sum of the “fixed” cost:

Lemma 4.8 |T1|+ |T2|+ |T3| ≤ P .

Proof: Let us consider a “naive” schedule with a makespan exactly P =
∑n

j=1 pj(1).

The “naive” schedule is constructed in the way that all tasks are scheduled on the

same processor. In this “naive” schedule for each task the processing time is pj(1)

and obviously its makespan is equal to or larger than the makespan of any other

feasible schedule. Thus the lemma is proved.

Furthermore, we can show the following relation between the total work W in

the final solution and the fractional work W ∗ corresponding the optimal solution to

(4.9):

Lemma 4.9 W ≤ 1

1− ρ
W ∗ − ρ

1− ρ
P .

Proof: For each task Jj, the number l of processors allotted in α is not more than

the number l′ of processors allotted in α′. According to Assumption 4.2, its work

does not increase. Therefore W ≤ W ′. The total work W ∗ of the optimal solution

to (4.9) is the sum of the “fixed” cost and the remaining unrounded part, i.e.,

W ∗ = P +
∑n

j=1 ŵj(x
∗
j). According to Proposition 4.1, (W ′−P ) ≤ (W ∗−P )/(1−ρ).

Therefore we have that

W ≤ W ′ ≤ W ∗ − P

1− ρ
+ P =

1

1− ρ
W ∗ − ρ

1− ρ
P.

We define a piecewise work function wj(x) in fractional processing time xj

for task Jj based on (4.8) as follows: For xj ∈ [pj(m), pj(1)], if l = min{k|k ∈
{1, . . . , m}, pj(k) = xj}, then wj(xj) = lpj(l). If xj ∈ (pj(l + 1), pj(l)) and l =

1, . . . ,m− 1, then

wj(xj) =





lpj(l), if xj = pj(l), l = 1, . . . ,m;

pj(l)pj(l + 1)

pj(l)− pj(l + 1)

−(l + 1)pj(l + 1)− lpj(l)

pj(l)− pj(l + 1)
xj, if xj ∈ (pj(l + 1), pj(l)) and l = 1, . . . , m− 1.

(4.21)
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In allotments α and α′, a task Jj is allotted lj and l′j processors, and their process-

ing times are pj(lj) and pj(l
′
j), respectively. In the optimal (fractional) solution to

(4.9), each task Jj has a fractional processing time x∗j . We define the fractional

number of processors allotted as follows:

l∗j = wj(x
∗
j)/x

∗
j . (4.22)

According to this definition, l∗j has the following property:

Lemma 4.10 For any malleable task Jj, if pj(l + 1) ≤ x∗j ≤ pj(l) for some l ∈
{1, . . . , m− 1}, then l ≤ l∗j ≤ l + 1.

Proof: Suppose that pj(l + 1) ≤ x∗j ≤ pj(l), according to (4.21), we can calculate

the value of l∗j as follows:

l∗j =
w(x∗j)

x∗j
=

(l + 1)pj(l + 1)− lpj(l)

pj(l + 1)− pj(l)
− pj(l)pj(l + 1)

pj(l + 1)− pj(l)

1

x∗j

= l +
pj(l + 1)

pj(l)− pj(l + 1)

[
pj(l)

x∗j
− 1

]
.

(4.23)

Since pj(l) ≥ x∗j , we have pj(l)/x
∗
j ≥ 1 and l∗j ≥ l. From pj(l + 1) ≤ x∗j , by

multiplying both sides by pj(l) and subtracting x∗jpj(l + 1) from both sides, we

obtain that [pj(l)− x∗j ]pj(l + 1) ≤ x∗j [pj(l)− pj(l + 1)], i.e.,

pj(l + 1)

pj(l)− pj(l + 1)

[
pj(l)

x∗j
− 1

]
≤ 1.

Thus l∗j ≤ l + 1 and the lemma is proved.

Lemma 4.10 shows that l∗j is well defined. We notice that l∗j is just a notation and

we only have knowledge that the real fractional number of processors corresponding

to x∗j should be in the interval [l, l + 1] if pj(l + 1) ≤ x∗j ≤ pj(l). The notation l∗j

here fulfils this property and is convenient for our following analysis.

Same as in [81] or Section 4.3, in the final schedule, the time interval [0, Cmax]

consists of three types of time slots. In the first type of time slots, at most µ − 1

processors are busy. In the second type of time slots, at least µ while at most m−µ
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Figure 4.12: Change of processing time in the first subcase in Lemma 4.11.

processors are busy. In the third type at least m−µ+1 processors are busy. Denote

the sets of the three types time slots by T1, T2 and T3, and |Ti| the overall lengths

for i ∈ {1, 2, 3}. In the case that µ = (m + 1)/2 for m odd, T2 = ∅. In other cases

all three types of time slots may exist. Then we have the following bound on |T1|
and |T2|:

Lemma 4.11 ρ|T1|+ min{µ/m, ρ}|T2| ≤ C∗
max.

Proof: We also construct a “heavy” path P in the same way as in Lemma 4.2.

Now we examine the stretch of processing time for all jobs in P in the rounding

procedure of the first phase and in the new allotment α of the second phase.

For any job Jj in T1 ∩ P , the processing time of the fractional solution to (4.9)

increases by at most a factor 1/ρ. The processing time does not change in the

second phase as in α′ the job Jj is only allotted a number l′j ≤ µ of processors

such that it can be in the time slot of T1. Therefore for such kind of jobs we have

pj(lj) = pj(l
′
j) ≤ x∗j/ρ.

For any job Jj in T2 ∩ P , there are two cases. In the first case, in α′ a job Jj

is allotted l′j ≤ µ processors. This is same as the case before and we also have

pj(lj) ≤ x∗j/ρ. In the second case, in α′ a job Jj is allotted l′j > µ processors, and

lj = µ. Then there are two subcases according to the solution to the linear program.

In the first subcase, in the fractional solution to (4.9) there are l∗j ≥ µ processors
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Figure 4.13: Change of processing time in the second subcase in Lemma 4.11.

allotted. Since µ is an integer, we have l∗j ≥ bl∗jc ≥ µ ≥ lj. Then ljpj(lj) =

Wj(lj) ≤ Wj(µ) ≤ Wj(bl∗jc) ≤ wj(x
∗
j) = l∗jx

∗
j ≤ Wj(dl∗je) due to Assumption 4.2

and (4.22). Because l∗j ≤ m, and wj(x
∗
j) = x∗j l

∗
j ≥ pj(lj)lj = Wj(lj), it holds

that pj(lj) ≤ x∗j l
∗
j/lj ≤ x∗jm/µ. (See Figure 4.12). In the second subcase, in the

fractional solution there are l∗j < µ processors allotted to Jj. Then in the rounding

procedure in the first phase the processing time must be rounded down from x∗j to

pj(l
′
j) as only in this way the assumption that l′j > µ of this case can be satisfied.

Then in the second phase, Jj is allotted µ processors and from Assumption 4.2

pj(lj)lj ≤ pj(l
′
j)l

′
j. Since there are at most m processors allotted to Jj in α′, we

have pj(lj) ≤ pj(l
′
j)l

′
j/lj ≤ pj(l

′
j)m/µ ≤ x∗jm/µ. Therefore for any job Jj in T2 ∩ P ,

pj(lj) ≤ x∗j max{1/ρ,m/µ} (See Figure 4.13).

Same as the argument in Lemma 4.2, the path P covers all time slots in the

final schedule. In addition, in the schedule resulted from the fractional solution to

the linear program, the jobs processed in T1 in the final schedule contribute a total

length of at least ρ|T1| to L∗(P). In addition, the tasks processed in T2 contribute

a total length of at least |T2|min{ρ, µ/m} to L∗(P). Since L∗(P) is not more than

the length C∗
max of the critical path in α∗, we have obtained the claimed inequality.

We here use the same normalization technique and notations in Section 4.3, and

denote by xp = P/C∗
max. Then the following lemma holds:
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Lemma 4.12 The optimal approximation ratio r of our Algorithm II is bounded by

the optimal objective value of the following min-max nonlinear program:

minµ,ρ maxx1,x2,x3,xp x1 + x2 + x3

s.t. x1 + x2 + x3 ≤ xp;

x1 + µx2 + (m− µ + 1)x3 ≤ 1

1− ρ
m− ρ

1− ρ
xp;

ρx1 + min{µ/m, ρ}x2 ≤ 1;

x1, x2, x3, xp ≥ 0;

ρ ∈ (0, 1);

µ ∈
{
1, . . . ,

⌊
m + 1

2

⌋}
.

(4.24)

Proof: First, by multiplying both sides of the inequality in the Lemma 4.8 by the

factor 1/C∗
max, it holds that x1 + x2 + x3 ≤ xp. Furthermore, since in time slots T1,

T2 and T3, there are at least 1, µ and m − µ + 1 processors are busy, respectively,

the total work W ≥ |T1|+µ|T2|+(m−µ+1)|T3|. According to (4.12), we have that

W ∗ ≤ mC∗
max. Together with the definitions of the normalized notations, Lemma

4.9 leads to x1 + µx2 + (m− µ + 1)x3 ≤ 1

1− ρ
m− ρ

1− ρ
xp. Then the Lemma 4.11

leads to the third constraint ρx1 + min{µ/m, ρ}x2 ≤ 1. All other constraints are

based on the definitions of ρ and µ. Since the total makespan Cmax = |T1|+|T2|+|T3|
according to (4.13), the approximation ratio

r = sup
Cmax

OPT
≤ sup

Cmax

C∗
max

= max
x1,x2,x3

x1 + x2 + x3,

which is our objective function and our goal is to minimize the approximation ratio

over all feasible µ and ρ. Thus the lemma is proved.

We then can simplify the min-max nonlinear program (4.24) as follows:

Lemma 4.13 The min-max nonlinear program (4.24) is equivalent to the following

nonlinear program:
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minµ,ρ maxx1,x2

x1(m− µ)(1− ρ) + x2(1− ρ)(m− 2µ + 1) + m

(m− µ)(1− ρ) + 1

s.t. ρx1 + min
{
ρ,

µ

m

}
x2 ≤ 1;

x1 + x2(µ(1− ρ) + ρ) ≤ m;

x1, x2 ≥ 0;

ρ ∈ (0, 1);

µ ∈
{
1, . . . ,

⌊
m + 1

2

⌋}
.

(4.25)

Proof: Substituting the first constraint x1 + x2 + x3 ≤ xp in (4.24) to the second

constraint with simplification, we have

x1 + x2(µ(1− ρ) + ρ) + x3((m− µ)(1− ρ) + 1) ≤ m. (4.26)

We then have eliminated the additional variable xp. Since (4.24) is linear in xi, to

find the optimum we can set

x3 = [m− x1 − x2(µ(1− ρ) + ρ)]/[(m− µ)(1− ρ) + 1] ≥ 0

because for a fixed pair of x1 and x2 we want to maximize x3, so do for the objective

function. Then constraint (4.26) can be removed and the objective function is

replaced by

x1 + x2 + x3 =
x1(m− µ)(1− ρ) + x2(1− ρ)(m− 2µ + 1) + m

(m− µ)(1− ρ) + 1
.

However, an additive constraint

x1 + x2(µ(1− ρ) + ρ) ≤ m

is needed to guarantee that x3 ≥ 0, i.e., |T1|+ |T2| ≤ Cmax. By these means the new

min-max nonlinear program (4.25) can be obtained.

In the following we will solve the min-max nonlinear program (4.25) to get the

approximation ratio of Algorithm II.
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4.4.1 Analysis of the min-max nonlinear program (4.25)

In order to solve (4.25), we need to consider two cases that either ρ < µ/m or

ρ ≥ µ/m to simplify the first constraint. Furthermore, there are also relations

between the first and the second constraints. Therefore we need to solve (4.25) by

case study.

4.4.1.1 Solve (4.25) for the case ρ ≤ µ/m

In this case, we need to solve the following min-max nonlinear program:

minµ,ρ maxx1,x2

x1(m− µ)(1− ρ) + x2(1− ρ)(m− 2µ + 1) + m

(m− µ)(1− ρ) + 1
s.t. ρx1 + ρx2 ≤ 1;

x1 + x2(µ(1− ρ) + ρ) ≤ m;

x1, x2 ≥ 0;

ρ ∈ (0, µ/m);

µ ∈
{
1, . . . ,

⌊
m + 1

2

⌋}
.

(4.27)

Define by C1 the first constraint ρx1 + ρx2 ≤ 1, by C2 the second constraint

x1 + x2(µ(1− ρ) + ρ) ≤ m, and by C3 the third constraint x1, x2 ≥ 0. Same as the

analysis in Section 4.3, for a fixed pair ρ and µ, we need to search for the maximum

objective value over all x1 and x2 constrained by C1, C2 and C3. From C1 and C3

the three extreme points are E1 : (x1, x2) = (1/ρ, 0), E2 : (x1, x2) = (0, 1/ρ) and

E5 : (x1, x2) = (0, 0). From C2 and C3 the three extreme points are E3 : (x1, x2) =

(m, 0), E4 : (0,m/(µ(1 − ρ) + ρ)) and E5 : (x1, x2) = (0, 0). Therefore we need to

study several cases with different relations between ρ and µ.

Solving equation
1

ρ
=

m

µ(1− ρ) + ρ
for ρ yields a unique solution ρ =

µ

m + µ− 1
.

Since µ ≥ 1, (m − 1)µ ≥ m − 1, i.e., m + µ − 1 ≤ mµ. Thus
1

m
≤ µ

m + µ− 1
. So

there are following three cases:

• CASE 1: ρ ∈
(

µ

m + µ− 1
,

µ

m

]
;
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Figure 4.14: Polytope of CASE 1.

• CASE 2: ρ ∈
(

1

m
,

µ

m + µ− 1

]
;

• CASE 3: ρ ∈
(
0,

1

m

]
.

We now consider CASE 1. In this case, ρ > 1/m so 1/ρ < m. In addition,

ρ > µ/(m + µ − 1) so 1/ρ < m/(µ(1 − ρ) + ρ). Therefore the polytope defined by

E1, E2 and E5 is inside the polytope defined by E3, E4 and E5 as in Figure 4.14. So

the constraint C2 can be removed. It is obvious that the maximum value can not

be attained on the extreme point E5. Similar to Section 4.3, we denote by A(µ, ρ)

and B(µ, ρ) the objective values at the two extreme points E1 and E2, respectively.

By simple calculation we have:

A(µ, ρ) =
(m− µ)(1− ρ) + ρm

ρ(m− µ)(1− ρ) + ρ
;

B(µ, ρ) =
(m− 2µ + 1)(1− ρ) + ρm

ρ(m− µ)(1− ρ) + ρ
.

Since µ ≥ 1, m − µ ≥ m − 2µ + 1. Then we have A(µ, ρ) ≥ B(µ, ρ). The problem

is now to minimize A(µ, ρ) over all feasible µ and ρ as follows:



4.4. Approximation algorithm II 121

minµ,ρ A(µ, ρ) =
(m− µ)(1− ρ) + ρm

ρ(m− µ)(1− ρ) + ρ

s.t. ρ ∈
(

µ

m + µ− 1
,

µ

m

)
;

µ ∈
{
1, . . . ,

⌊
m + 1

2

⌋}
.

The first order partial derivative of A(µ, ρ) with respect to µ is:

A′(µ, ρ)µ =
−(1− ρ)[(m− µ)(1− ρ) + 1] + (1− ρ)[(m− µ)(1− ρ) + ρm]

ρ[(m− µ)(1− ρ) + 1]2

=
(1− ρ)(ρm− 1)

ρ[(m− µ)(1− ρ) + 1]2
.

The only root to equation A′(µ, ρ)µ = 0 is ρ = 1/m as ρ ≤ µ/m < 1. However,

it is infeasible in CASE 1 as it is required that ρ > 1/m. Therefore we have

A′(µ, ρ)µ > 0, i.e., A(µ, ρ) is increasing in µ. As we are going to minimize A(µ, ρ),

we can set µ∗ = 1. Then the value of A(ρ) is as follows:

A(ρ) =
(m− 1)(1− ρ) + ρm

ρ(m− 1)(1− ρ) + ρ
.

We notice that in CASE 1, µ/(m+µ− 1) = 1/m, and also µ/m = 1/m. Therefore

it is fixed that ρ∗ = 1/m. Then the optimal approximation ratio is

r = A(ρ)|ρ=1/m =
(m− 1)(1− 1/m) + 1

(m− 1)(1− 1/m)/m + 1/m
= m.

It shows that the bound on the approximation ratio r would be m if we choose the

parameters proposed above in CASE 1. However, in our algorithm we will not

choose the parameters in this way as other choice gives a better bound on the ratio.

Now we turn to CASE 3. Since ρ ≤ 1/m ≤ µ/(m+µ−1), 1/ρ ≥ m/(µ(1−ρ)+ρ).

In addition, 1/ρ ≥ m. These show that the polytope defined by E1, E2 and E5 covers

the polytope defined by E3, E4 and E5 as in Figure 4.15. Hence the constraint C1

can be removed. We can skip the extreme point E5 as it does not corresponds to the
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Figure 4.15: Polytope of CASE 3.

maximum objective value. We denote by A(µ, ρ) and B(µ, ρ) the objective values

at the two extreme points E3 and E4, respectively. Therefore:

A(µ, ρ) =
m(m− µ)(1− ρ) + m

(m− µ)(1− ρ) + 1
= m;

B(µ, ρ) =

m(1− ρ)(m− 2µ + 1)

µ(1− ρ) + ρ
+ m

(m− µ)(1− ρ) + 1
.

Since µ ≥ 1, we have

µ(1− ρ) + ρ ≥ 1− ρ + ρ = 1,

and

m− 2µ + 1 ≤ m− µ ≤ (m− µ)[µ(1− ρ) + ρ].

Therefore

(1− ρ)(m− 2µ + 1)

µ(1− ρ) + ρ
+ 1 ≤ (m− µ)(1− ρ) + 1.

Then we are able to conclude that

B(µ, ρ) =

m(1− ρ)(m− 2µ + 1)

µ(1− ρ) + ρ
+ m

(m− µ)(1− ρ) + 1
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≤ m[(m− µ)(1− ρ) + 1]

(m− µ)(1− ρ) + 1
= m = A(µ, ρ).

Therefore in CASE 3 for any feasible ρ and µ > 1 the objective value (the upper

bound on approximation ratio r) is always m. Furthermore, we need to consider

the case µ = 1. In this case, it holds that B(µ, ρ) = m = A(µ, ρ). Therefore the

approximation ratio of CASE 3 is bounded by m.

We then study CASE 2. In this case
1

m
≤ ρ ≤ µ

m + µ− 1
. So 1/ρ ≤ m and

1

ρ
≥ m

µ(1− ρ) + ρ
. Therefore the straight lines (E1, E2) and (E3, E4) intersect at a

point M : (x1M , x2M) (See Figure 4.16). Since the slopes of the two straight lines

(E1, E2) and (E3, E4) are −1 and
−1

µ(1− ρ) + ρ
, the coordinates x1M and x2M of the

intersection point M can be calculated by the following system of equations:





x2M − 1

ρ
= −1 · x1M ;

x2M − m

µ(1− ρ) + ρ
= − 1

µ(1− ρ) + ρ
· x1M .

If µ > 1, then the solutions to the above system is

x1M =
(1− ρ)µ− ρ(m− 1)

ρ(1− ρ)(µ− 1)
,
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x2M =
ρm− 1

ρ(1− ρ)(µ− 1)
.

We now examine the feasibility of M . It is clear that ρ(1 − ρ)(µ − 1) > 0 for

µ > 1. Since 1/m ≤ ρ, ρm ≥ 1. So x2M ≥ 0. Because ρ ≤ µ

m + µ− 1
, we have

(1 − ρ)µ − ρ(m − 1) = µ − ρ(m + µ − 1) ≥ 0. Thus x1M ≥ 0 and M is feasible.

Therefore the polytope defined by the constraints has four extreme points E2, E3,

E5 and M . Same as before, we can skip the analysis for E5. Denote by A(µ, ρ),

B(µ, ρ) and D(µ, ρ) the objective values at E2, E3 and M , respectively. We have

A(µ, ρ) =
(m− µ)(1− ρ) + ρm

ρ(m− µ)(1− ρ) + ρ
;

B(µ, ρ) =

m(1− ρ)(m− 2µ + 1)

µ(1− ρ) + ρ
+ m

(m− µ)(1− ρ) + 1
;

D(µ, ρ) =
1

(m− µ)(1− ρ) + 1

{
(1− ρ)µ− ρ(m− 1)

ρ(1− ρ)(µ− 1)
(m− µ)(1− ρ)

+
ρm− 1

ρ(1− ρ)(µ− 1)
(1− ρ)(m− 2µ + 1) + m

}

=
mµ− µ2 + ρµ2 + ρm− ρµ− ρmµ−m + 2µ− 1

ρ(µ− 1)[(m− µ)(1− ρ) + 1]

=
m− ρm + 1− µ + ρµ

ρ[(m− µ)(1− ρ) + 1]
=

1

ρ
.

Since in this case ρm ≥ 1,
(m− µ)(1− ρ) + ρm

(m− µ)(1− ρ) + 1
≥ 1, and then A(µ, ρ) ≥ 1/ρ =

D(µ, ρ). Therefore we do not need to consider the extreme point M any more. As

showed in the analysis of CASE 1, A(µ, ρ) is increasing in µ, we can set µ∗ = 1 to

attain the minimum of A(µ, ρ), and in this case ρ∗ = 1/m. Therefore when µ∗ = 1

and ρ∗ = 1/m, A(µ, ρ) is minimized and the minimum value is m. This shows

that in this case A(µ, ρ) ≥ m. In addition, according to the analysis of CASE 3,

B(µ, ρ) ≤ m holds for all feasible µ and ρ. Because A(µ, ρ) ≥ m and B(µ, ρ) ≤ m,

in this case A(µ, ρ) ≥ B(µ, ρ) holds and the minimum value of A(µ, ρ) is the bound

on the approximation ratio, which means r ≤ m.
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In addition, we still need to study the case that µ = 1 in CASE 2. Now since

µ/(m + µ − 1) = 1/m, ρ = 1/m is fixed. Thus E1 coincides E3 while E2 coincides

E4, i.e., the straight lines (E1, E2) and (E3, E4) coincide. Therefore at any point

on the straight lines the value of the objective function is always m. Hence the

approximation ratio is still upper bounded by m.

Combining all three cases, we have the following lemma as the optimal objective

value of (4.27) is the approximation ratio of Algorithm II:

Lemma 4.14 In the case that ρ ≤ µ/m, Algorithm II has an approximation ratio

r ≤ m.

4.4.1.2 Solve (4.25) for the case ρ > µ/m

In this case, we will solve the following min-max nonlinear program:

minµ,ρ maxx1,x2

x1(m− µ)(1− ρ) + x2(1− ρ)(m− 2µ + 1) + m

(m− µ)(1− ρ) + 1

s.t. ρx1 + µx2/m ≤ 1;

x1 + x2(µ(1− ρ) + ρ) ≤ m;

x1, x2 ≥ 0;

ρ ∈ (µ/m, 1);

µ ∈
{
1, . . . ,

⌊
m + 1

2

⌋}
.

(4.28)

Denote by C1 the first constraint ρx1 + µx2/m ≤ 1, by C2 the second constraint

x1 + x2(µ(1 − ρ) + ρ) ≤ m, and by C3 the third constraint x1, x2 ≥ 0 in (4.28).

With a fixed pair ρ and µ we will search for the maximum objective value over all

x1 and x2 constrained by C1, C2 and C3. From C1 and C3 the three extreme points

are E1 : (x1, x2) = (1/ρ, 0), E2 : (x1, x2) = (0,m/µ) and E5 : (x1, x2) = (0, 0).

From C2 and C3 the three extreme points are E3 : (x1, x2) = (m, 0), E4 : (x1, x2) =

(0,m/(µ(1− ρ) + ρ)) and E5 : (x1, x2) = (0, 0).

Since ρ > 0 and µ ≥ 1, ρ ≤ µρ, i.e., µ(1−ρ)+ρ ≤ µ. So m/µ ≤ m/(µ(1−ρ)+ρ).

Therefore E2 is in the polytope defined by E3, E4 and E5. Furthermore, since in

this case ρ ≥ µ/m ≥ 1/m, so 1/ρ ≤ m. Thus the extreme point E1 is also in the

polytope defined by E3, E4 and E5. This shows that the polytope defined by E3, E4
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and E5 completely covers the polytope defined by E1, E2 and E5 (See Figure 4.14).

Hence the constraint C2 can be removed, and we just need to consider the following

min-max nonlinear program:

minµ,ρ maxx1,x2

x1(m− µ)(1− ρ) + x2(1− ρ)(m− 2µ + 1) + m

(m− µ)(1− ρ) + 1

s.t. ρx1 + µx2/m ≤ 1;

x1, x2 ≥ 0;

ρ ∈ (µ/m, 1);

µ ∈
{
1, . . . ,

⌊
m + 1

2

⌋}
.

(4.29)

The next step is to solve (4.29). Similar as before, we can skip the extreme point

E5 and denote by A(µ, ρ) and B(µ, ρ) the objective values at extreme points E1 and

E2, respectively. Simple calculation yields:

A(µ, ρ) =
(m− µ)(1− ρ) + ρm

ρ(1− ρ)(m− µ) + ρ
=

1

ρ
+

ρm− 1

ρ(1− ρ)(m− µ) + ρ
;

B(µ, ρ) =
(1− ρ)m(m− 2µ + 1) + mµ

µ(1− ρ)(m− µ) + µ
.

As ρm > µ ≥ 1, it is obvious that A(µ, ρ) is increasing in µ. Now we consider

B(µ, ρ). Its partial derivative with respect to µ is:

B′(µ, ρ)µ =
1

[µ(1− ρ)(m− µ) + µ]2
{[−2(1− ρ)m + m][µ(1− ρ)(m− µ) + µ]

−[(1− ρ)m(m− 2µ + 1) + mµ][(1− ρ)(m− 2µ) + 1]}

=
m(1− ρ)

[(1− ρ)µ(m− µ) + µ]2
{(2ρ− 1)µ2

+2(1− ρ)(m + 1)µ− (m + 1)[(1− ρ)m + 1]}.

If ρ = 1/2, then

B′(µ, ρ)µ|ρ=1/2 =
2m

[µ(m− µ) + 2µ]2

[
(m + 1)µ− (m + 1)

(
m

2
+ 1

)]
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=
m(m + 1)(2µ−m− 2)

[µ(m− µ) + 2µ]2
.

Because µ ≤ (m + 1)/2 < m/2 + 1, B′(µ, ρ)µ < 0, and B(µ, ρ) is decreasing in µ.

Otherwise (ρ 6= 1/2), we need to check the existence of roots to equation B′(µ, ρ)µ =

0. Since ρ < 1 < m/(m−1) for m ≥ 2, ρ(m−1) < m, or ρ(m+1) > 2ρm−m, which

yields ρ2(m+1)2−ρ(2ρ−1)m(m+1) > 0. So there exist two roots to B′(µ, ρ)µ = 0.

Solving equation B′(µ, ρ)µ = 0, we get the following solutions by Proposition 4.2:

µ1,2 =
1

2(2ρ− 1)
[−2(1− ρ)(m + 1)

∓
√

4(1− ρ)2(m + 1)2 − 4(2ρ− 1)(m + 1)[(1− ρ)m + 1]
]

=
(1− ρ)(m + 1)∓

√
ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1)

1− 2ρ

We have now two cases as follows:

• CASE 1: ρ ∈ (µ/m, 1/2);

• CASE 2: ρ ∈ (1/2, 1).

We now consider CASE 1. In this case 1− 2ρ > 0, so µ1 < µ2. It is clear that

(1− 2ρ)m + 1 + 2ρ > 0,

i.e.,

(1 + 2ρ)(m + 1) > 4ρm.

Multiply both sides by the positive factor (1− 2ρ)(m + 1),

(1− 4ρ2)(m + 1)2 > 4ρ(1− 2ρ)m(m + 1).

Thus it holds that

(m + 1)2 > 4ρ2(m + 1)2 + 4ρ(1− 2ρ)m(m + 1).

Taking the square root of both sides yields
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m + 1 > 2
√

ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1).

Then we have

(2− 2ρ)(m + 1)− 2
√

ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1) > (1− 2ρ)(m + 1).

Since 1− 2ρ > 0,

µ1 =
(1− ρ)(m + 1)−

√
ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1)

1− 2ρ
>

m + 1

2
.

In addition, µ2 > µ1 > (m + 1)/2, too. The values of µ1,2 violate the constraint

that µ ≤ (m + 1)/2. Therefore in the feasible domain of µ there is no root to

equation B′(µ, ρ)µ = 0. As 2ρ − 1 < 0, according to Proposition 4.3, B′(µ, ρ)µ < 0

for µ ≤ (m + 1)/2. Hence we conclude that B(µ, ρ) is decreasing in µ in CASE 1.

In CASE 2, 1− 2ρ < 0, so µ2 < 0 is infeasible. We consider the other root

µ1 =

√
ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1)− (1− ρ)(m + 1)

2ρ− 1

Since ρ ∈ (0, 1),

(1− ρ)m + ρ ≥ 0.

Multiplying both sides with a negative factor 1−2ρ results in the following inequality:

(1− 3ρ + 2ρ2)m ≤ 2ρ2 − ρ,

i.e.,

ρm− 2ρ2m + ρ ≥ m− 2ρm + 2ρ− 2ρ2.

Multiply both sides by m and add ρ2m2 + ρ2 to both sides:

ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1) ≥ (1− ρ)2m2 + 2(1− ρ)ρm + ρ2 = [(1− ρ)m + ρ]2.

Take the square root of both sides:
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√
ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1) ≥ (1− ρ)m + ρ.

Subtracting both side by (1 − ρ)(m + 1) and dividing both sides by the positive

factor 2ρ− 1 we obtain:

µ1 =

√
ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1)− (1− ρ)(m + 1)

2ρ− 1
≥ 1.

In order to check whether µ1 satisfies the constraint that µ ≤ (m + 1)/2, we need

to consider the following two subcases:

• CASE 2.1: ρ ∈ (1/2, 1/2 + 1/(m− 1));

• CASE 2.2: ρ ∈ [1/2 + 1/(m− 1), 1).

We first consider CASE 2.1. From the assumption ρ < 1/2 + 1/(m − 1) we

have 2(m− 1)ρ < m + 1, or 2(m + 1)ρ + m + 1 > 4mρ. Multiplying both sides by a

positive factor (2ρ− 1)(m + 1) yields

(4ρ2 − 1)(m + 1)2 > 4ρ(2ρ− 1)m(m + 1),

i.e.,

4[ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1)] > (m + 1)2.

Take the square root of both sides:

2
√

ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1) > m + 1 = (2ρ− 1)(m + 1) + 2(1− ρ)(m + 1).

Subtracting both sides by 2(1 − ρ)(m + 1) and dividing both sides by a positive

factor 2(2ρ− 1) leads to:

µ1 =

√
ρ2(m + 1)2 + ρ(1− 2ρ)m(m + 1)− (1− ρ)(m + 1)

2ρ− 1
>

m + 1

2
.

Therefore in CASE 2.1 two roots to the equation B′(µ, ρ)µ = 0 are µ1 > (m+1)/2

and µ2 < 0. In addition, the coefficient of the term of µ2 in B′(µ, ρ)µ = 0 is
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2ρ − 1 > 0. So for any feasible 1 ≤ µ ≤ (m + 1)/2, B′(µ, ρ)µ < 0 according to

Proposition 4.3, and B(µ, ρ) is decreasing in µ.

In CASE 2.2, with the similar argument as the analysis in CASE 2.1, µ1 ≤
(m+1)/2 is feasible. Therefore in this case B(µ, ρ) is decreasing in µ when µ ∈ [1, µ1]

and is increasing in µ when µ ∈ (µ1, (m + 1)/2] according to Proposition 4.3. Since

A(µ, ρ) is increasing in µ, there are four possibilities of the relations between A(µ, ρ)

and B(µ, ρ):

• CASE 2.2.1: A(µ, ρ) < B(µ, ρ) for all feasible µ;

• CASE 2.2.2: Equation A(µ, ρ) = B(µ, ρ) has one root for all feasible µ;

• CASE 2.2.3: Equation A(µ, ρ) = B(µ, ρ) has two roots for all feasible µ;

• CASE 2.2.4: A(µ, ρ) > B(µ, ρ) for all feasible µ.

In CASE 2.2.1, equation A(µ, ρ) = B(µ, ρ) has no root and for µ = (m + 1)/2,

A(µ, ρ) < B(µ, ρ) (See Figure 4.6). In CASE 2.2.2, for µ = 1, A(µ, ρ) < B(µ, ρ)

and for µ = (m+1)/2, A(µ, ρ) > B(µ, ρ), or vice versa (See Figure 4.7, 4.8 and 4.9).

In CASE 2.2.3, for µ = 1 and µ = (m + 1)/2, A(µ, ρ) < B(µ, ρ), and equation

A(µ, ρ) = B(µ, ρ) has two roots (See Figure 4.10). In CASE 2.2.4, equation

A(µ, ρ) = B(µ, ρ) has no root and for µ = 1, A(µ, ρ) > B(µ, ρ) (See Figure 4.11).

Now we examine the existence of roots to the equation A(µ, ρ) = B(µ, ρ). It is

µ2 − (1 + 2ρ)mµ + m2ρ + mρ = 0.

Since in our assumption mρ > µ ≥ 1, we have 4ρ(mρ − 1) + m > 0, i.e., (1 +

4ρ2)m2 − 4ρm > 0. Solving equation A(µ, ρ) = B(µ, ρ) by Proposition 4.2 we have

µ =
(1 + 2ρ)m∓

√
(1 + 2ρ)2m2 − 4(m2ρ + mρ)

2

=
(1 + 2ρ)m∓

√
(1 + 4ρ2)m2 − 4ρm

2
.

Again, from mρ > 1 we have
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(1 + 2ρ)m +
√

(1 + 4ρ2)m2 − 4ρm

2
>

(1 + 2ρ)m

2
≥ m + 2

2
>

m + 1

2
,

which violates the constraint of µ. Now we examine the feasibility of another root.

Since mρ > 1 and m ≥ 1, (m − 1)(ρm − 1) ≥ 0, i.e., 1 + ρm2 − m − ρm ≥ 0.

Multiplying both sides by 4 and adding m2 + 4ρ2m2 to both sides yields m2 +

4ρ2m2 + 4 + 4ρm2 − 4m − 8ρm ≥ m2 + 4ρ2m2 − 4ρm. Taking the square root of

both sides we have m + 2ρm− 2 ≥
√

(1 + 4ρ2)m2 − 4ρm, which is equivalent to

(1 + 2ρ)m−
√

(1 + 4ρ2)m2 − 4ρm

2
≥ 1.

In addition, since m ≥ 1, we have m2 ≥ 1. Adding 4ρm(ρm − 1) to both sides

results in (2ρm− 1)2 ≤ (1+4ρ2)m2− 4ρm. Since in our assumption ρm− 1 > 0, by

taking square root of both sides we obtain that (2ρm− 1) ≤
√

(1 + 4ρ2)m2 − 4ρm,

which is equivalent to

(1 + 2ρ)m−
√

(1 + 4ρ2)m2 − 4ρm

2
≤ m + 1

2
.

Hence, in our CASE 2.2, there does always exist one and only one feasible root

µ∗ =
(1 + 2ρ)m−

√
(1 + 4ρ2)m2 − 4ρm

2
. (4.30)

to the equation A(µ, ρ) = B(µ, ρ). So neither CASE 2.2.1, CASE 2.2.3 nor

CASE 2.2.4 is feasible. We now consider CASE 2.2.2. In Figure 4.7, the optimal

value of (4.15) exists at the point µ = µ∗. However, in Figure 4.8 and 4.9, the

optimal value exists at the point µ = µ1. Here we just need to search for an upper

bound of the optimal value. Therefore in this case we still count the objective value

at the point µ = µ∗ as the upper bound. Thus we have finished the analysis for

CASE 2.2.

Now we return to analyze CASE 1 and CASE 2.1. In both cases A(µ, ρ) is

increasing in µ while B(µ, ρ) is decreasing. According to Lemma 4.7, to obtain
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the minimum of the objective value of (4.29), we need to solve equation A(µ, ρ) =

B(µ, ρ). With the same argument as the analysis for CASE 2.2 we obtain the same

root µ∗ as in (4.30). We need to check the feasibility of this root. It is obvious that we

can use the same technique for CASE 2.2 to prove that µ∗ ≥ 1 and µ∗ ≤ (m+1)/2

for both CASE 1 and CASE 2.1. Hence we have the following Lemma:

Lemma 4.15 For a fixed ρ ∈ (µ/m, 1), the optimal objective value of (4.29) is

bounded by the optimal objective value for µ∗ in (4.30).

In this way, we just need to substitute µ∗ in (4.30) to either A(µ, ρ) or B(µ, ρ),

and minimize it over all ρ ≥ µ∗/m to obtain the approximation ratio of our Algo-

rithm II, same as the analysis for Algorithm I. We leave the analysis of approximation

ratio and of setting of parameters to the Subsection 4.4.2.

4.4.2 Approximation ratio of Algorithm II

According to the analysis in Subsubsection 4.4.1.1, when ρ ≤ µ/m, by setting µ∗ = 1

and ρ∗ = 1/m we are able to obtain the optimal value of (4.25), i.e., the approxi-

mation ratio of Algorithm II. The ratio is m based on Lemma 4.14.

Now we investigate the case ρ > µ/m based on Subsubsection 4.4.1.2. Unfortu-

nately, we will show in Subsection 4.4.3 that we are not able to use the technique in

Section 4.3 to obtain the optimal value of (4.29) over ρ. However, we are able to use

a specific value of ρ to obtain an improved approximation ratio, and we later show

that it is asymptotically very close to the optimal choice. Thus in this case we fix

the value of ρ as follows:

ρ̂∗ = 0.43. (4.31)

By substituting it to (4.30) we set

µ̂∗ =
93m−√4349m2 − 4300m

100
. (4.32)

We need to examine if ρ̂∗ and µ̂∗ in (4.31) and (4.32) satisfy the assumption that

ρ̂∗ ≥ µ̂∗/m. Since m ≥ 3 > 4300/1849, 2500 < 4349 − 4300/m. Because both
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sides are positive for m ≥ 3, taking the square root we have 50 <
√

4349− 4300/m.

Therefore ρ̂∗ = 43/100 > (93−
√

4349− 4300/m)/100 = µ̂∗/m.

Lemma 4.16 In the case that ρ > µ/m and m ≥ 3, Algorithm II has an approxi-

mation ratio r is bounded by

100

43
+

100

43

(43m− 100)(57
√

4349m2 − 4300m− 399m− 4300)

139707m2 − 174021m− 184900
.

Proof: It worth noting that the µ̂∗ in (4.32) can be a fractional number. Therefore

we need to consider dµ̂∗e and bµ̂∗c. Since we should minimize the objective function

over µ, the approximation ratio with integer value of µ is bounded as follows:

r ≤ min{max{A(dµ̂∗e, ρ̂∗), B(dµ̂∗e, ρ̂∗)}, max{A(bµ̂∗c, ρ̂∗), B(bµ̂∗c, ρ̂∗)}}.

According to the analysis in Subsubsection 4.4.1.2, here A(µ, ρ) is increasing in µ

and B(µ, ρ) is decreasing in µ for a fixed ρ as we are in CASE 1. Thus the bound

on approximation ratio is

r ≤ min{A(dµ̂∗e, ρ̂∗), B(bµ̂∗c, ρ̂∗)}

Furthermore, dµ̂∗e ≥ µ̂∗− 1 and bµ̂∗c ≤ µ̂∗+1. Again, because A(µ, ρ) is increasing

and B(µ, ρ) is decreasing, we have

A(dµ̂∗e, ρ̂∗) ≤ A(µ̂∗ + 1, ρ̂∗);

B(bµ̂∗c, ρ̂∗) ≤ B(µ̂∗ − 1, ρ̂∗).

Thus we have the following bound on the ratio r:

r ≤ min{A(dµ̂∗e, ρ̂∗), B(bµ̂∗c, ρ̂∗)}
≤ min{A(µ̂∗ + 1, ρ̂∗), B(µ̂∗ − 1, ρ̂∗)}
≤ A(µ̂∗ + 1, ρ̂∗).

Therefore here we shall find an upper bound on A(µ̂∗+1, ρ̂∗), which is also an upper

bound on the approximation ratio r. Substituting µ̂∗ in (4.32) and ρ̂∗ in (4.31) in

A(µ̂∗ + 1, ρ̂∗) gives:
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r ≤ A(µ̂∗ + 1, ρ̂∗) =
1

ρ̂∗
+

1

ρ̂∗
ρ̂∗m− 1

(1− ρ̂∗)(m− µ̂∗ − 1) + 1

=
100

43
+

100

43

43m

100
− 1

(
1− 43

100

) (
m− 93m−√4349m2 − 4300m

100
− 1

)
+ 1

=
100

43
+

100

43

(43m− 100)(57
√

4349m2 − 4300m− 399m− 4300)

139707m2 − 174021m− 184900
.

This is the claimed bound in the theorem.

Combine Lemma 4.14 and Lemma 4.16 we have the following theorem of the

approximation ratio of Algorithm II:

Theorem 4.2 There exists an algorithm for the problem of Scheduling Mal-

leable Tasks with Precedence Constraints with an approximation ratio

r ≤





2, if m = 2;

100

43
+

100

43

(43m− 100)(57
√

4349m2 − 4300m− 399m− 4300)

139707m2 − 174021m− 184900
otherwise.

Proof: We need to compare the minimum objective values in both cases ρ ≤ µ/m

and ρ > µ/m. Thus we need to compare the ratio m in Lemma 4.14 and the value

in Lemma 4.16. Suppose that

m ≥ 100

43
+

100

43

(43m− 100)(57
√

4349m2 − 4300m− 399m− 4300)

139707m2 − 174021m− 184900

By moving the right hand side to the left hand side and simplification, we obtain

(43m− 100)(139707m2 − 134121m + 245100− 5700
√

4349m2 − 4300m)

139707m2 − 174021m− 184900
≥ 0.

(4.33)

Denote by NUM the numerator, and by DEN the denominator, of the left hand side

of the above inequality, respectively. Solving equation NUM = 0 (which is equiva-

lent to 43m−100 = 0 or 139707m2−134121m+245100−5700
√

4349m2 − 4300m =

0) we obtain the following five roots:
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m1 =
100

43
≈ 2.32558;

m2 =
1

114
(71 +

√
22241) ≈ 1.93100;

m3 =
1

86
(29 +

√
18041) ≈ 1.89903;

m4 =
1

114
(71−

√
22241) ≈ −0.685387;

m5 =
1

86
(29−

√
18041) ≈ −1.22461.

Solving equation DEN = 0 the roots are exactly m2 and m4 above. Thus both

DEN and NUM are positive in the interval (m1,∞) according to Proposition 4.3.

If m ≥ 3, then the inequality holds. In this case we compute ρ̂∗ and µ̂∗ by (4.31)

and (4.32) (with rounding to integer) to obtain the approximation ratio bounded in

Lemma 4.16. If m = 2, then the case ρ > µ/m is not valid if we set ρ̂∗ = 0.43. In this

case we should use the strategy for the case ρ ≤ µ/m and we set ρ∗ = 1/m = 1/2

and µ∗ = 1 to obtain an approximation ratio 2. The theorem is proved.

Similarly, we have the following corollary for the upper bound of approximation

ratio:

Corollary 4.3 For all m ∈ IN and m ≥ 2, the approximation ratio

r ≤ 100

43
+

100(
√

4349− 7)

2451
.

Furthermore, when m →∞, the upper bound in Theorem 4.2 tends to

100

43
+

100(
√

4349− 7)

2451
≈ 4.730598.

Proof: It is obvious that when m = 2, the approximation ratio r = 2 fulfils the

inequality. We now consider the case that m ≥ 3.

Now we need to prove that
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100

43
+

100

43

(43m− 100)(57
√

4349m2 − 4300m− 399m− 4300)

139707m2 − 174021m− 184900

≤ 100

43
+

100(
√

4349− 7)

2451
,

which is equivalent to

(43m− 100)(57
√

4349m2 − 4300m− 399m− 4300)

139707m2 − 174021m− 184900
≤
√

4349− 7

57
.

Moving all terms on the left hand side to the right hand side and simplification gives

1

57(139707m2 − 174021m− 184900)
[(
√

4349− 7)(139707m2 − 174021m− 184900)

−57(43m− 100)(57
√

4349m2 − 4300m− 399m− 4300)] ≥ 0.

Denote by DEN the denominator and by NUM the numerator of the left hand

side of above inequality. The equation DEN = 0 has two roots m2 and m4 as in

Theorem 4.2. This shows that according to Proposition 4.3, if m ≥ 2, then the

denominator DEN > 0. So if NUM ≥ 0, the bound can be proved. The inequality

NUM ≥ 0 is equivalent to

139707
√

4349m2 + (9483147− 174021
√

4349)m− (23215700 + 184900
√

4349)

≥ 3249(43m− 100)
√

4349m2 − 4300m. (4.34)

Denote by LHS the left hand side of above inequality, the equation LHS = 0 has

the following two roots by Proposition 4.2:

m6 =
1

4902


3053− 166371√

4349
−

√
206525885182 + 2977239074

√
4349

4349




≈ −1.85526;

m7 =
1

4902


3053− 166371√

4349
+

√
206525885182 + 2977239074

√
4349

4349




≈ 2.07157.



4.4. Approximation algorithm II 137

Thus if m ≥ 3, then LHS ≥ 0 according to Proposition 4.3. So we can take

the square of both side of the inequality (4.34). After simplification the inequality

becomes:

(267271455786894 + 2649724035858
√

4349)m3

−(852494422797882 + 9787325047974
√

4349)m2

+(293463299648400 + 4573170898800
√

4349)m

+(687652381980000 + 8585165860000
√

4349) ≥ 0.

It is easy to verify that when

m ≥ (852494422797882 + 9787325047974
√

4349)

/(267271455786894 + 2649724035858
√

4349)

≈ 3.3889,

it holds that

(267271455786894 + 2649724035858
√

4349)m

−(852494422797882 + 9787325047974
√

4349) ≥ 0,

and the inequality (4.34) holds. Thus we just need to check the case when m = 3.

Substitute m = 3 to the left hand side of the inequality (4.34) we have

LHS = 1100800(1010103363 + 5233741
√

4349) > 0.

Thus for all m ≥ 3 the inequality (4.34) holds and the bound claimed in the corollary

is proved.

When m →∞, the upper bound in Theorem 4.2 is

100

43
+

100

43
· (43m− 100)(57

√
4349m2 − 4300m− 399m− 10000)

139707m2 − 174021m− 184900

=
100

43
+

100

43
· (43− 100/m)(57

√
4349− 4300/m− 399− 10000/m)

139707− 174021/m− 184900/m2
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m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m)

2 1 0.500 2.0000 18 6 0.430 4.3249

3 2 0.430 2.7551 19 6 0.430 4.3083

4 2 0.430 3.1080 20 6 0.430 4.2938

5 2 0.430 3.3125 21 6 0.430 4.2880

6 2 0.430 3.4458 22 7 0.430 4.3857

7 3 0.430 3.7507 23 7 0.430 4.3685

8 3 0.430 3.7995 24 7 0.430 4.3531

9 3 0.430 3.8356 25 7 0.430 4.3897

10 3 0.430 3.9078 26 8 0.430 4.4281

11 4 0.430 4.0639 27 8 0.430 4.4113

12 4 0.430 4.0656 28 8 0.430 4.3961

13 4 0.430 4.0669 29 8 0.430 4.4663

14 4 0.430 4.1739 30 9 0.430 4.4593

15 5 0.430 4.2173 31 9 0.430 4.4433

16 5 0.430 4.2065 32 9 0.430 4.4287

17 5 0.430 4.1973 33 10 0.430 4.4995

Table 4.4: Bounds on approximation ratios for Algorithm II.

→ 100

43
+

100

43
· 43(57

√
4349− 399)

139707

=
100

43
+

100(
√

4349− 7)

2451
≈ 4.730598.

This completes the proof.

We here give the list of values of approximation ratios for our Algorithm II for

m = 2, . . . , 33 in Table 4.4. The method to compute the values is similar to that for

the Algorithm I, while here the value of ρ is fixed (See Appendix for codes).

4.4.3 Asymptotic behaviour of approximation ratio

In Algorithm II we set ρ̂∗ = 0.43. However, the approximation ratio r can be

improved by choosing the value of ρ∗ depending on m, like that in Algorithm I. In

this subsection we are going to study it.
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Since µ∗ in (4.30) is the minimizer of the objective function in (4.29). By sub-

stituting µ∗ to A(µ, ρ) or B(µ, ρ) we can obtain two functions A(ρ) or B(ρ). Since

our goal is to find the minimum value of A(µ, ρ) or B(µ, ρ) over all ρ, we need to

solve the equation A′(ρ)ρ = 0 or B′(ρ)ρ = 0. Because A(ρ) = B(ρ), we just need

to consider one of them, say, A(ρ). The first order partial derivative of A(ρ) with

respect to ρ is

A′(ρ)ρ = − 1

ρ2
+

1

ρ2[(1− ρ)(m− µ∗) + 1]2
{mρ[(1− ρ)(m− µ∗) + 1]

−(ρm− 1){[(1− ρ)(m− µ∗) + 1] + ρ[−(m− µ∗)− (1− ρ)(µ∗)′ρ]}
}

= − 1

ρ2
+

(1− ρ)(m− µ∗) + 1 + ρ(ρm− 1)[(m− µ∗) + (1− ρ)(µ∗)′ρ]

ρ2[(1− ρ)(m− µ∗) + 1]2
.

Combine the two terms together and the denominator is positive. So the equation

A′(ρ)ρ = 0 can be simplified as follows:

−(1−ρ)2(µ∗)2+(2m−4ρm+ρ2m+1))µ∗+ρ(1−ρ)(ρm−1)(µ∗)′ρ+(−1+2ρ)m2−m = 0.

Here

µ∗ =
m(1 + 2ρ)

2
−
√

∆

2
;

(µ∗)2 =
(
2ρ2 + ρ +

1

2

)
m2 − ρm− (1 + 2ρ)m

√
∆

2
;

(µ∗)′ρ = m− m(2mρ− 1)√
∆

,

and ∆ = (1 + 4ρ2)m2 − 4ρm. Substitute them to the equation and we obtain the

following equation:

A1∆ + A2

√
∆ + A3 = 0,

where the coefficients are as follows:
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A1 = mρ3 − 2mρ2 + 2mρ− m

2
− 1

2
;

A2 = −2m2ρ4 + (3m2 + m)ρ3 + (−3m2 −m)ρ2 + (2m2 + m)ρ− m2

2
− m

2
;

A3 = 2m3ρ4 + (−2m3 − 3m2)ρ3 + (3m2 + m)ρ2 −mρ.

To remove the square root, we can simplify the equation to an equivalent equation

(A1∆ + A3)
2 − A2

2∆ = 0.

After simplification, it can be written as the following form:

f(ρ) = m2(m− 1)ρ2
6∑

i=0

ciρ
i = 0, (4.35)

where the coefficients are as follows:

c0 = −1 + m2;

c1 = −2(1 + m2);

c2 = −1 + 15m + 3m2 −m3;

c3 = 2m(−7− 8m + m2);

c4 = 16m(1 + m);

c5 = −4m(1 + 5m);

c6 = 4m2(1 + m).

Besides the two trivial double roots ρ = 0 to (4.35), we obtain an equation with a

polynomial of the highest order of 6. Unfortunately in general there are no analytic

roots for polynomial with order higher than 4. So we are not able to solve (4.35) to

obtain the optimal ρ∗ depending on m like in Section 4.3.

In fact we can estimate the asymptotic behaviour of the approximation ratio.

When m →∞, equation (4.35) is:

0 = 1−m2 + 2(1 + m2)ρ + (1− 15m− 3m2 + m3)ρ2 + 2m(7 + 8m−m2)ρ3
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−16m(1 + m)ρ4 + 4m(1 + 5m)ρ5 − 4m2(1 + m)ρ6

=
[

1

m3
− 1

m
+ 2

(
1

m3
+

1

m

)
ρ +

(
1

m3
− 15

m2
− 3

m
+ 1

)
ρ2 + 2

(
7

m2
+

8

m
− 1

)
ρ3

−16
(

1

m2
+

1

m

)
ρ4 + 4

(
1

m2
+

5

m

)
ρ5 − 4

(
1

m
+ 1

)
ρ6

]
m3

→ m3(−4ρ4 − 2ρ + 1)ρ2.

Thus we just need to consider the equation −4ρ4 − 2ρ + 1 = 0. Solving it we have

the following roots:

ρ1 =
1

2

√√√√(9 +
√

273)1/3

2 · 32/3
− 2

(3(9 +
√

273))1/3

−1

2

[−(9 +
√

273)1/3

2 · 32/3
+

2

(3(9 +
√

273))1/3

− 1√√√√(9 +
√

273)1/3

2 · 32/3
− 2

(3(9 +
√

273))1/3




1/2

≈ −0.917543;

ρ2 =
1

2

√√√√(9 +
√

273)1/3

2 · 32/3
− 2

(3(9 +
√

273))1/3

+
1

2

[−(9 +
√

273)1/3

2 · 32/3
+

2

(3(9 +
√

273))1/3

− 1√√√√(9 +
√

273)1/3

2 · 32/3
− 2

(3(9 +
√

273))1/3




1/2

≈ −0.243276− 0.75697i;

ρ3 = −1

2

√√√√(9 +
√

273)1/3

2 · 32/3
− 2

(3(9 +
√

273))1/3
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−1

2

[−(9 +
√

273)1/3

2 · 32/3
+

2

(3(9 +
√

273))1/3

− 1√√√√(9 +
√

273)1/3

2 · 32/3
− 2

(3(9 +
√

273))1/3




1/2

≈ −0.243276 + 0.75697i;

ρ4 = −1

2

√√√√(9 +
√

273)1/3

2 · 32/3
− 2

(3(9 +
√

273))1/3

+
1

2

[−(9 +
√

273)1/3

2 · 32/3
+

2

(3(9 +
√

273))1/3

− 1√√√√(9 +
√

273)1/3

2 · 32/3
− 2

(3(9 +
√

273))1/3




1/2

≈ 0.430991.

The only feasible root here in the interval ρ ∈ (0, 1) is ρ∗ = 0.430991. Substitut-

ing it to (4.30) the optimal µ∗ → 0.270875m. With these data, from either A(µ, ρ)

or B(µ, ρ) one have that

r → 4.730577.

In Algorithm II we fix ρ̂∗ = 0.43 just because it is close to the asymptotic op-

timum ρ∗. The ratio of Algorithm II could be further improved by fix ρ̂∗ to a

better approximation to ρ∗. In this way we conjecture that there exists a 4.730577-

approximation algorithm for the problem of Scheduling Malleable Tasks

with Precedence Constraints. However, the analysis is complicated and Al-

gorithm II has already a ratio 4.730598 very close to this asymptotic ratio.

We can also use numerical method to solve the min-max nonlinear program

(4.29). We can construct a grid of ρ in the interval (0, 1), and µ in [1, b(m + 1)/2c].
The grid size for ρ is δρ and for µ is 1 as µ is an integer. We can compute the

values of A(µ, ρ) and B(µ, ρ) on each grid point, and search for the minimum over
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m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m)

2 1 0.500 2.0000 18 5 0.401 4.2579

3 2 0.618 2.6180 19 6 0.484 4.2630

4 2 0.581 2.9610 20 6 0.467 4.2520

5 2 0.562 3.1717 21 6 0.429 4.2837

6 2 0.445 3.4139 22 7 0.480 4.3466

7 3 0.523 3.6617 23 7 0.481 4.3276

8 3 0.519 3.7104 24 7 0.451 4.3257

9 3 0.500 3.7500 25 7 0.420 4.3581

10 3 0.420 3.8867 26 8 0.477 4.3918

11 4 0.500 4.0000 27 8 0.469 4.3747

12 4 0.500 4.0000 28 8 0.440 4.3822

13 4 0.462 4.0198 29 8 0.414 4.4139

14 4 0.408 4.1196 30 9 0.475 4.4250

15 5 0.490 4.1653 31 9 0.456 4.4142

16 5 0.491 4.1526 32 9 0.431 4.4268

17 5 0.441 4.1787 33 9 0.409 4.4571

Table 4.5: Numerical results of min-max nonlinear program (4.29).

all grid points to decide the optimal objective values depending on m (See Appendix

for codes). The results by setting δρ = 0.0001 and m = 2, . . . , 33 are in Table 4.5.

Compared the results in Table 4.4 we can see that the solutions of our Algorithm II

are already very close to the optimum.

4.5 Approximation algorithm III for the new model

In this section, we propose an approximation algorithm for the problem of Schedul-

ing Malleable Tasks with Precedence Constraints in our new model un-

der Assumption 4.1 and 4.3. We will show some nice properties of the work function

in this model. In our Algorithm III, we do not use the idea of the discrete time-cost

tradeoff problem in the first phase for solving the allotment problem. Instead, we

formulate the allotment problem as a piecewise integer linear program. Then we
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solve the linear programming relaxation and apply a new parameterized rounding

technique. Similar to Algorithm I and II, the rounding parameter is also introduced

to the second phase to formulate a min-max nonlinear program and to obtain the

optimal approximation ratio.

First we show that the work function is increasing in the number of processors:

Theorem 4.3 For any malleable task Jj and m identical processors, if Assumption

4.3 for the processing time pj(l) of Jj holds for all l = 0, . . . , m, then the work

function Wj(l) = lpj(l) for task Jj is non-decreasing in l, i.e., Wj(l
′) ≥ Wj(l), for

any integers 1 ≤ l ≤ l′ ≤ m.

Proof: We prove the theorem by induction. First, from the Assumption 4.3, we

have that

1

pj(1)
≥ 1

2

[
1

pj(2)
+

1

pj(0)

]
.

Because pj(0) = ∞, it holds that

1

pj(1)
≥ 1

2pj(2)
,

i.e., 2pj(2) ≥ pj(1). Now we assume that it holds that Wj(1) = pj(1) ≤ . . . ≤
Wj(l− 1) = (l− 1)pj(l− 1) ≤ Wj(l) = lpj(l). Again, from Assumption 4.3, we have

1

pj(l)
≥ 1

2

[
1

pj(l + 1)
+

1

pj(l − 1)

]
≥ 1

2

[
1

pj(l + 1)
+

l − 1

lpj(l)

]
,

i.e.,

l + 1

lpj(l)
≥ 1

pj(l + 1)
,

which is equivalent to lpj(l) ≤ (l + 1)pj(l + 1). Then we conclude that for any

l = 1, . . . , m − 1, Wj(l) = lpj(l) ≤ (l + 1)pj(l + 1) = Wj(l + 1), which leads to a

non-decreasing series Wj(1), . . . , Wj(m), and the proof is complete.

Theorem 4.3 in fact is Assumption 4.2 on work functions. Now the Assumption

4.2 in the previous model is only a sequel of our Assumption 4.3. Furthermore, if
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Figure 4.17: Speedup function sj(l).

we regard the work functions as functions in the corresponding processing time, i.e.,

wj(pj(l)) = Wj(l), the following theorem shows that Assumption 4.1 and 4.3 leads

to a nice property of the work functions:

Theorem 4.4 If Assumption 4.1 and 4.3 hold for any malleable task Jj for any

l = 1, . . . ,m, then the work function wj(pj(l)) is convex in the processing time pj(l).

Proof: According to Assumption 4.3, the speedup function sj(l) is concave in the

number l of processors. Therefore in the diagram of the speed function sj(l) versus

l (See Figure 4.17), sj(l) ≥ s̄j(l), where s̄j(l) is the vertical coordinate of the inter-

section point of the straight line connecting points (l′′, sj(l
′′)) and (l′, sj(l

′)) and the

vertical straight line passing through point (l, sj(l)), where 1 ≤ l′′ ≤ l ≤ l′ ≤ m.

Then we obtain the following inequality by (4.3) and by calculating the value of

s̄j(l):

pj(1)

pj(l)
= sj(l) ≥ s̄j(l) =

pj(1)

l′ − l′′

[
l − l′′

pj(l′)
− l − l′

pj(l′′)

]
. (4.36)

We now consider the diagram of the work function wj(pj(l)) versus processing time

pj(l) (Figure 4.18). The straight line connecting points (pj(l
′′), wj(pj(l

′′))) and

(pj(l
′), wj(pj(l

′))) and the vertical straight line passing through point (pj(l), wj(pj(l)))

intersect at one point which has the vertical coordinate w̄j(pj(l)) as follows:
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Figure 4.18: Work function wj(pj(l)).

w̄j(pj(l)) = wj(pj(l
′′)) +

pj(l)− pj(l
′′)

pj(l′)− pj(l′′)
[wj(pj(l

′))− wj(pj(l
′′))]

= l′′pj(l
′′) +

pj(l)− pj(l
′′)

pj(l′)− pj(l′′)
[l′pj(l

′)− l′′pj(l
′′)]

=
1

pj(l′)− pj(l′′)
{pj(l)[l

′pj(l
′)− l′′pj(l

′′)]− (l′ − l′′)pj(l
′)pj(l

′′)}.

(4.37)

From (4.36) we have that

l

pj(l′′)
− l

pj(l′)
≥ l′

pj(l′′)
− l′′

pj(l′)
− l′ − l′′

pj(l)
.

Multiplying both sides by the positive factor pj(l)pj(l
′)pj(l

′′) yields

lpj(l)[pj(l
′)− pj(l

′′)] ≥ pj(l)[l
′pj(l

′)− l′′pj(l
′′)]− (l′ − l′′)pj(l

′)pj(l
′′).

By multiplying both sides by the negative factor 1/[pj(l
′)−pj(l

′′)] due to Assumption

4.1, together with (4.37), we immediately obtain that wj(pj(l)) = lpj(l) ≤ w̄j(pj(l)),

which show that the work function Wj(l) = wj(pj(l)) is convex in processing time

pj(l).

Denote by xj the (fractional) processing time of task Jj. For the discrete work

function wj(pj(l)) = Wj(l) = lpj(l) in processing time, we define a continuous

piecewise linear work function wj(xj) as follows:
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wj(xj) =





wj(pj(l)), if x = pj(l), l = 1, . . . , m;

wj(pj(l + 1))− wj(pj(l))

pj(l + 1)− pj(l)
xj if x ∈ (pj(l + 1), pj(l)),

+
wj(pj(l))pj(l + 1)− wj(pj(l + 1))pj(l)

pj(l + 1)− pj(l)
, and l = 1, . . . , m− 1.

(4.38)

In addition, in any schedule, we know that the makespan (maximum completion

time) is an upper bound of the critical path length L and the total work W divided

by m, i.e., max{L,W/m} ≤ Cmax. In the first phase of our algorithm, we solve the

following piecewise linear program:

min C

s.t. Ci + xj ≤ Cj, for all i ∈ Γ−(j) and all j;

Cj ≤ L, for all j;

L ≤ C;

W/m =
∑n

j=1 wj(xj)/m ≤ C;

xj ∈ [pj(m), pj(1)], for all j.

(4.39)

In (4.39) the first set of constraints come from the precedence constraints, while the

second set of constraints indicate that all tasks finish by the critical path length L.

The goal is to minimize the makespan C.

We notice that the functions wj(xj) are piecewise linear and it is a crucial issue

whether (refplp) is polynomial time solvable. According to Theorem 4.4, the discrete

work function wj(pj(l)) is convex in processing time pj(l). Therefore the continuous

work function wj(xj) is also convex in the fractional processing time xj. Since wj(xj)

is piecewise linear, it can be written as follows:

wj(xj) = maxl∈{1,...,m−1}

{
wj(pj(l + 1))− wj(pj(l))

pj(l + 1)− pj(l)
xj

+
wj(pj(l))pj(l + 1)− wj(pj(l + 1))pj(l)

pj(l + 1)− pj(l)

}

= maxl∈{1,...,m−1}

{
(l + 1)pj(l + 1)− lpj(l)

pj(l + 1)− pj(l)
xj − pj(l)pj(l + 1)

pj(l + 1)− pj(l)

}
,

(4.40)
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for any xj ∈ [pj(m), pj(1)]. Thus we are able to modify the piecewise linear program

(4.39) to following linear program:

min C

s.t. Ci + xj ≤ Cj, for all i ∈ Γ−(j) and all j;

Cj ≤ L, for all j;

(l + 1)pj(l + 1)− lpj(l)

pj(l + 1)− pj(l)
xj − pj(l)pj(l + 1)

pj(l + 1)− pj(l)
≤ wj, for l = 1, . . . ,m− 1 and all j;

L ≤ C;

W/m =
∑n

j=1 wj/m ≤ C;

xj ∈ [pj(m), pj(1)], for all j.

(4.41)

The size of (4.41) is polynomial in m and n. Thus it is polynomial time solvable.

An example E of this model is that the processing time is a function p(l) = l−d

for 0 < d < 1. In this case the fractional work function is defined as follows: For all

l = {1, . . . , m},

w(x) =





lp(l) = l−d+1 = p(l)1−1/d = x1−1/d, when x = p(l);

(l + 1)1−d − l1−d

(l + 1)−d − l−d
x

+
l1−d(l + 1)−d − (l + 1)1−dl−d

(l + 1)−d − l−d
,

when x ∈ (pj(l + 1), pj(l)).

(4.42)

When d = 1/2, the example is illustrated in Figure 4.19 and 4.20.

For task Jj, denote by x∗j the corresponding optimal solution to (4.41). Suppose

that x∗j ∈ (pj(l + 1), pj(l)). In the interval [pj(l + 1), pj(l)], we define a critical point

lc such that lc = l + 1− ρ for ρ ∈ [0, 1]. The processing time pj(lc) is given by

pj(lc) = pj(l + 1− ρ) = ρpj(l) + (1− ρ)pj(l + 1)

and its work is

wj(pj(lc)) = (1− ρ)wj(pj(l + 1)) + ρwj(pj(l)) = (1− ρ)(l + 1)pj(l + 1) + ρlpj(l).

In our Algorithm III we take the following rounding technique for the fractional

solution to the linear programming relaxation of (4.41): If x∗j ≥ pj(lc) it will be
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Figure 4.19: An example of our new model (processing time versus number of proces-
sors).
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Figure 4.20: An example of our new model (work versus processoring time).

rounded up to pj(l) (i.e., ρ = 1), and otherwise down to pj(l +1) (i.e., ρ = 0). Then

we develop an allotment α′ for all jobs.

In the second phase of Algorithm III, we generate a new allotment α for all jobs

based on the value of µ, and then apply the variant of list scheduling algorithm in

Section 4.2 to obtain the final schedule.

Same as before, we denote by L, W , Cmax and L′, W ′, C ′
max the critical path

lengths, the total works and the makespans of the final schedule delivered by our

algorithm and the schedule corresponding to the allotment α′ generated in the first

phase, respectively. Furthermore, we denote by C∗
max the optimal objective value of
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(4.41), and L∗, W ∗ the (fractional) optimal critical path length and the (fractional)

optimal total work in (4.41). Denote by OPT the overall optimal makespan (over

all feasible schedules with integral number of processors allotted to all tasks). (4.12)

still holds in this case. In allotments α and α′, a task Jj is allotted lj and l′j

processors, and their processing times are pj(lj) and pj(l
′
j), respectively. In the

optimal (fractional) solution to (4.41), each task Jj has a fractional processing time

x∗j . We also define the fractional number of processors allotted as follows:

l∗j = wj(x
∗
j)/x

∗
j , (4.43)

and Lemma 4.10 hold here.

In the first phase, for each job the increases of processing time and work after

rounding are bounded by the following lemma:

Lemma 4.17 For any job Jj, in the allotment α′ its processing time

pj(l
′
j) ≤

2

1 + ρ
x∗j ,

and the its work

Wj(l
′
j) = wj(pj(l

′
j)) = l′jpj(l

′
j) ≤

2

1 + ρ
l∗jx

∗
j =

2

2− ρ
wj(x

∗
j),

where x∗j is the optimal solution to the linear programming relaxation of (4.41). l∗j

and wj(x
∗
j) are number of processors and work of Jj corresponding to the solution

x∗j .

Proof: Suppose x∗j ∈ (pj(k +1), pj(k)). In the domain [pj(k +1), pj(k)], the critical

point kc = k + 1− ρ. Its processing time is pj(kc) = pj(k + 1− ρ) = ρpj(k) + (1−
ρ)pj(k+1) and its work is wj(pj(kc)) = (k+1−ρ)pj(k+1−ρ) = (k+1−ρ)(ρpj(k)+

(1− ρ)pj(k + 1)). We consider the following two cases.

In the first case, x∗j ≥ pj(kc). In the rounding the processing time is rounded up

to pj(k), and the number of processors is reduced to l′j = k. Therefore the work is

also reduced due to Assumption 4.1. However, the increase of the processing time

is
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pj(l
′
j)

x∗j
≤ pj(k)

pj(kc)

=
pj(k)

ρpj(k) + (1− ρ)pj(k + 1)

≤ pj(k)

ρpj(k) + (1− ρ)kpk(k)/(k + 1)

=
k + 1

k + ρ
.

The second inequality holds also from Theorem 4.3, kpj(k) ≤ (k + 1)pj(k + 1). In

the second case, x∗j < pj(kc). In the rounding the processing time is rounded down

to pj(k + 1)), and the number of processors is increased to l′j = k + 1. Since more

processors are allotted, according to Theorem 4.3 the work increases by the following

factor:

wj(pj(l
′
j))

wj(x∗j)
≤ (k + 1)pj(k + 1)

wj(pj(kc))

=
(k + 1)pj(k + 1)

(1− ρ)(k + 1)pj(k + 1) + ρkpj(k))

≤ (k + 1)pj(k + 1)

(1− ρ)(k + 1)pj(k + 1) + ρkpj(k + 1))

=
k + 1

k + 1− ρ
.

Since k is an integer, the above two factors can be further bounded by (k +

1)/(k + 1− ρ) ≤ 2/(2− ρ) and (k + 1)/(1 + ρ) ≤ 2/(1 + ρ). This means that after

the first phase, for each task Jj, the processing time increases by at most a factor

of 2/(1 + ρ) and the work increases by at most 2/(2− ρ).

In the final schedule, the time interval [0, Cmax] also consists of three types of

time slots T1, T2 and T3, same as Section 4.3. Thus the following lemma holds:

Lemma 4.18
1 + ρ

2
|T1|+ min

{
µ

m
,
1 + ρ

2

}
|T2| ≤ C∗

max.
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Proof: We also construct a “heavy” path P in the same way as in Lemma 4.2.

Now we examine the stretch of processing time for all jobs in P in the rounding

procedure of the first phase and in the new allotment α of the second phase.

For any job Jj in T1 ∩ P , the processing time of the fractional solution to the

linear program in the first phase increases by at most a factor 2/(1 + ρ). The

processing time does not change in the second phase as in α′ the job Jj is only

allotted a number l′j ≤ µ of processors such that it can be in the time slot of T1.

Therefore for such kind of jobs we have pj(lj) = pj(l
′
j) ≤ 2x∗j/(1 + ρ).

For any job Jj in T2 ∩ P , there are two cases. In the first case, in α′ a job Jj

is allotted l′j ≤ µ processors. This is same as the case before and we also have

pj(lj) ≤ 2x∗j/(1 + ρ). In the second case, in α′ a job Jj is allotted l′j > µ processors,

and lj = µ. Then there are two subcases according to the solution to the linear

program. In the first subcase, in the fractional solution to (4.41) there are l∗j ≥ µ

processors allotted. Since µ is an integer, we have l∗j ≥ bl∗jc ≥ µ ≥ lj. Then

ljpj(lj) = Wj(lj) ≤ Wj(µ) ≤ Wj(bl∗jc) ≤ wj(x
∗
j) = l∗jx

∗
j ≤ Wj(dl∗je) due to Theorem

4.3 and (4.22). Because l∗j ≤ m, and wj(x
∗
j) = x∗j l

∗
j ≥ pj(lj)lj = Wj(lj), it holds that

pj(lj) ≤ x∗j l
∗
j/lj ≤ x∗jm/µ. In the second subcase, in the fractional solution there are

l∗j < µ processors allotted to Jj. Then in the rounding procedure in the first phase

the processing time must be rounded down from x∗j to pj(l
′
j) as only in this way the

assumption that l′j > µ of this case can be satisfied. Then in the second phase, Jj

is allotted µ processors and from Theorem 4.3 pj(lj)lj ≤ pj(l
′
j)l

′
j. Since there are at

most m processors allotted to Jj in α′, we have pj(lj) ≤ pj(l
′
j)l

′
j/lj ≤ pj(l

′
j)m/µ ≤

x∗jm/µ. Therefore for any job Jj in T2 ∩ P , pj(lj) ≤ x∗j max{2/(1 + ρ),m/µ}.
Same as the argument in Lemma 4.2, the path P covers all time slots in the

final schedule. In addition, in the schedule resulted from the fractional solution to

the linear program, the jobs processed in T1 in the final schedule contribute a total

length of at least ρ|T1| to L∗(P). In addition, the tasks processed in T2 contribute

a total length of at least |T2|min{(1 + ρ)/2, µ/m} to L∗(P). Since L∗(P) is not

more than the length C∗
max of the critical path in α∗, we have obtained the claimed

inequality.
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The makespan of the resulting schedule is bounded by the following lemma:

Lemma 4.19 (m− µ + 1)Cmax ≤ 2mC∗
max

2− ρ
+ (m− µ)|T1|+ (m− 2µ + 1)|T2|.

Proof: Since in the second phase, for any job Jj, the allotted number of processors lj

is not more than l′j, the number of processors in the first phase. Therefore according

to Theorem 4.3 the total work is non-increasing, i.e., W ′ ≥ W . According to Lemma

4.17, in the rounding procedure of the first phase, the total work only increases

by at most a factor of 2/(2 − ρ) from the total work of the optimum solution of

(4.41). In this case we have that W ′ ≤ 2W ∗/(2 − ρ). Furthermore, from (4.12),

W ≤ 2W ∗/(2 − ρ) ≤ 2mC∗
max/(2 − ρ). Substituting it to the bound on Cmax in

Lemma 4.3 we obtain the claimed inequality.

We take the same notations of normalized total length of time slots xi = |Ti|/C∗
max,

i = 1, 2, 3. Similar to Section 4.3 and Section 4.4, the following lemma holds:

Lemma 4.20 The optimal approximation ratio of Algorithm III is bounded by the

optimal objective value of the following min-max nonlinear program

minµ,ρ maxx1,x2

2m

2− ρ
+ (m− µ)x1 + (m− 2µ + 1)x2

m− µ + 1

s.t.
1 + ρ

2
x1 + min

{
µ

m
,
1 + ρ

2

}
x2 ≤ 1;

x1, x2 ≥ 0;

ρ ∈ [0, 1];

µ ∈
{
1, . . . ,

⌊
m + 1

2

⌋}
.

(4.44)

Proof: Divide the inequalities in Lemma 4.18 and Lemma 4.19 by C∗
max, together

with the definitions of xi and approximation ratio,

r = sup
Cmax

OPT
≤ sup

Cmax

C∗
max

= max
x1,x2

2m(2− ρ) + (m− µ)x1 + (m− 2µ + 1)x2

m− µ + 1
.
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On the other hand, we can select appropriate µ and ρ to minimize the ratio r. Hence,

by combining them together with the other constraints for the variables according

to their definitions, the approximation ratio is bounded by the objective value of

(4.44).

In the following we will solve the min-max nonlinear program (4.44) to get the

optimal approximation ratio of Algorithm III.

4.5.1 Analysis of the min-max nonlinear program (4.44)

In order to solve (4.44), we need to consider two cases that either ρ ≤ 2µ/m− 1 or

ρ > 2µ/m− 1 to simplify the first constraint.

4.5.1.1 Solve (4.44) for the case ρ ≤ 2µ/m− 1

In this case, to guarantee that ρ > 0 it is required that

m/2 ≤ µ ≤ (m + 1)/2. (4.45)

In addition, as (1 + ρ)/2 ≤ µ/m ≤ (m + 1)/2m, it holds that

ρ ≤ 1/m. (4.46)

Thus we need to solve the following min-max nonlinear program:

minµ,ρ maxx1,x2

2m

2− ρ
+ (m− µ)x1 + (m− 2µ + 1)x2

m− µ + 1

s.t.
1 + ρ

2
x1 +

1 + ρ

2
x2 ≤ 1;

x1, x2 ≥ 0;

ρ ∈ [0, 1/m];

µ ∈
{⌈

m

2

⌉
,
⌊
m + 1

2

⌋}
.

(4.47)

We observe that the constraints on x1 and x2 in (4.47) forms a triangle, and the

extreme points are E1 : (x1, x2) = (2/(1 + ρ), 0), E2 : (x1, x2) = (0, 2/(1 + ρ)), and

E3 : (x1, x2) = (0, 0). Since (4.47) is linear in x1 and x2, for a fixed pair of ρ and µ,

the maximum value of the objective function exists at one of the extreme points. It

is clear that the objective function can not attain the maximum value at E3. So we
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just consider E1 and E2. Denote by A(µ, ρ) and B(µ, ρ) the objective values at the

extreme points E1 and E2, respectively. Then we have:

A(µ, ρ) =

2m

2− ρ
+

2(m− µ)

1 + ρ
m− µ + 1

;

B(µ, ρ) =

2m

2− ρ
+

2(m− 2µ + 1)

1 + ρ
m− µ + 1

.

Since µ ≥ 1, m − µ ≥ m − 2µ + 1 and A(µ, ρ) ≥ B(µ, ρ). Thus we just need to

consider the problem of minimizing A(µ, ρ) over all feasible ρ and µ, i.e.,

minµ,ρ A(µ, ρ) =
2(3− (2− ρ)µ)

(1 + ρ)(2− ρ)(m− µ + 1)

s.t. ρ ∈ [0, 1/m];

µ ∈
{⌈

m

2

⌉
,
⌊
m + 1

2

⌋}
.

The first order partial derivative of A(µ, ρ) with respect to µ is:

A′(µ, ρ)µ =
2

(1 + ρ)(2− ρ)
· −(2− ρ)(m− µ + 1) + m(1 + ρ) + (2− ρ)(m− µ)

(m− µ + 1)2

=
2

(1 + ρ)(2− ρ)
· m− 2 + (m + 1)ρ

(m− µ + 1)2
.

Because m ≥ 2 and ρ > 0, the denominator is nonnegative. Therefore we have

A′(µ, ρ)µ ≥ 0. Thus we can choose a minimum feasible µ to minimize A(µ, ρ). Since

in this case (1 + ρ)/2 ≤ µ/m, we can set µ∗ = m(1 + ρ)/2 and substitute it to

A(µ, ρ). In this case we obtain a function A(ρ) depending on ρ

A(ρ) =
2

(1 + ρ)(2− ρ)
· m(1 + ρ) + (2− ρ)(1− ρ)m/2

(1− ρ)m/2 + 1

=
2m(ρ2 − ρ + 4)

(2− ρ)(1 + ρ)(m + 2−mρ)
.
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Now the problem is to minimize the above A(ρ) over all ρ ∈ [0, 1/m]. The first

order partial derivative of A(ρ) with respect to ρ is:

A′(ρ)ρ =
2m(−12 + 2m + (20m + 24)ρ− 15mρ2 + 2mρ3 −mρ4)

(2− ρ)2(1 + ρ)2(m + 2−mρ)2
.

We shall examine if A′(ρ)ρ is positive or not. It is obvious that the denominator is

positive since ρ ≤ 1/m. Denote by Q(ρ) = −12 + 2m + (20m + 24)ρ − 15mρ2 +

2mρ3−mρ4. We now examine Q(ρ). The first order partial derivative of Q(ρ) with

respect to ρ is:

Q(ρ)′ρ = 24 + 20m− 30mρ + 6mρ2 − 4mρ3.

Solving equation Q(ρ)′ρ = 0, we obtain the following roots

ρ1 =
1

2
− 3 3

√
9m

2(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

+
3
√

3(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

2m
;

ρ2 =
1

2
+

3 3
√

9(1 + i
√

3)m

4(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

−
3
√

3(1− i
√

3)(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

2m
;

ρ3 =
1

2
+

3 3
√

9(1− i
√

3)m

4(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

−
3
√

3(1 + i
√

3)(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

2m
.

The only real root is ρ1. Since

3 3
√

9m

2(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

3
√

3(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

2m

=
3 3
√

3m2

(8m2 + 2m3 + m2
√

64 + 32m + 85m2)2/3
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≤ 3 3
√

3m2

(2 +
√

85)2/3m2

=
3 3
√

3

(2 +
√

85)2/3

≈ 0.8633 < 1,

we have

3 3
√

9m

2(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

<
3
√

3(8m2 + 2m3 + m2
√

64 + 32m + 85m2)1/3

2m
.

Thus it holds that ρ1 > 1/2. Since m ≥ 2, we obtain that if ρ ∈ [0, 1/m], then

Q(ρ)′ρ > 0 because of Proposition 4.3, i.e., Q(ρ) is increasing in ρ. Therefore we just

need to check the value of Q(ρ) at the end points 0 and 1/m.

max
ρ∈[0,1/m]

Q(ρ) = Q(ρ)|ρ=1/m = −12 + 2m + (20m + 24)/m

−15m/m2 + 2m/m3 −m/m4

= 8 + 2m + 9/m + 2/m2 − 1/m3

≥ 8 + 2m + 9/m + 1/m2 > 0

min
ρ∈[0,1/m]

Q(ρ) = Q(ρ)|ρ=0 = 2m− 12.

Hence, when m ≥ 6, Q(ρ) is always nonnegative for all ρ ∈ [0, 1/m], and when

m < 6, Q(ρ) can be negative in some subset of the interval [0, 1/m]. We need to

consider the following two cases:

• CASE 1: m ≥ 6;

• CASE 2: m < 6.

In CASE 1, A′(ρ)ρ is nonnegative. So A(ρ) is nondecreasing in ρ. To obtain

the minimum value of A(ρ) we should set ρ = 0. So
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min
ρ∈[0,1/m]

A(ρ) = A(ρ)|ρ=0 =
2m · 4

2 · 1 · (m + 2)
=

4m

m + 2
.

Therefore in this case the approximation ratio is r = 4m/(m + 2) by setting ρ∗ = 0

and µ∗ = m/2.

In CASE 2, the minimum value of A(ρ) is at neither the point ρ = 0 nor ρ =

1/m, but a point ρ̄ ∈ (0, 1/m). Thus we shall check all possibilities for m = 2, 3, 4, 5.

We here use Proposition 4.2 for solving quadratic equations for these cases.

When m = 2, µ ∈ [m/2, (m + 1)/2] = [1, 3/2], so we choose µ∗ = 1. So

A(ρ) =
4/(2− ρ) + 2(2− 1)/(1 + ρ)

2− 1 + 1
=

4 + ρ

2 + ρ− ρ2
,

and its first order partial derivative with respect to ρ is

A′(ρ)ρ =
ρ2 + 8ρ− 2

(2 + ρ− ρ2)2
.

Solving equation A′(ρ)ρ = 0, we obtain ρ = −4∓ 3
√

2. Since ρ ∈ [0, 1/m] = [0, 1/2],

we obtain that the optimal ρ∗ = 3
√

2− 4. The approximation ratio

r ≤ A(ρ)|ρ=3
√

2−4 = 1 + 2
√

2/3 ≈ 1.942809.

When m = 3, µ ∈ [m/2, (m + 1)/2] = [3/2, 2], so we choose µ∗ = 2. So

A(ρ) =
6/(2− ρ) + 2(3− 2)/(1 + ρ)

3− 2 + 1
=

5 + 2ρ

2 + ρ− ρ2
,

and its first order partial derivative with respect to ρ is

A′(ρ)ρ =
2ρ2 + 10ρ− 1

(2 + ρ− ρ2)2
.

Solving equation A′(ρ)ρ = 0, we obtain ρ = (−5 ∓ 3
√

3)/2. Since ρ ∈ [0, 1/m] =

[0, 1/3], we obtain that the optimal ρ∗ = (3
√

3− 5)/2. The approximation ratio

r ≤ A(ρ)|ρ=(3
√

3−5)/2 = 2(2 +
√

3)/3 ≈ 2.488034.
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When m = 4, µ ∈ [m/2, (m + 1)/2] = [2, 5/2], so we choose µ∗ = 2. So

A(ρ) =
8/(2− ρ) + 2(4− 2)/(1 + ρ)

4− 2 + 1
=

4

3

4 + ρ

2 + ρ− ρ2
.

Same as in the case of m = 2, we obtain the optimal ρ∗ = 3
√

2 − 4 ∈ [0, 1/m] =

[0, 1/4]. The approximation ratio

r ≤ A(ρ)|ρ=3
√

2−4 = 4(1 + 2
√

2/3)/3 ≈ 2.590412.

When m = 5, µ ∈ [m/2, (m + 1)/2] = [5/2, 3], so we choose µ∗ = 3. So

A(ρ) =
10/(2− ρ) + 2(5− 3)/(1 + ρ)

5− 3 + 1
=

6 + 2ρ

2 + ρ− ρ2
,

and its first order partial derivative with respect to ρ is

A′(ρ)ρ =
2(ρ2 + 6ρ− 1)

(2 + ρ− ρ2)2
.

Solving equation A′(ρ)ρ = 0, we obtain ρ = −3∓√10. Since ρ ∈ [0, 1/m] = [0, 1/5],

we obtain that the optimal ρ∗ =
√

10− 3. The approximation ratio

r ≤ A(ρ)|ρ=
√

10−3 = 2(7 + 2
√

10)/9 ≈ 2.961012.

Combine all above cases we have the following lemma:

Lemma 4.21 In the case that ρ ≤ 2µ/m− 1, the approximation ratio of Algorithm

III is

r ≤





1 + 2
√

2/3, if m = 2;

2(2 +
√

3)/3, if m = 3;

4(1 + 2
√

2/3)/3, if m = 4;

2(7 + 2
√

10)/9, if m = 5;

4m/(m + 2), otherwise.

4.5.1.2 Solve (4.44) for the case ρ > 2µ/m− 1
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In this case we need to solve the following min-max nonlinear program:

minµ,ρ maxx1,x2

2m

2− ρ
+ (m− µ)x1 + (m− 2µ + 1)x2

m− µ + 1

s.t.
1 + ρ

2
x1 +

µ

m
x2 ≤ 1;

x1, x2 ≥ 0;

ρ ∈
(
max

{
2µ

m
− 1, 0

}
, 1

]
;

µ ∈
{
1, . . . ,

⌊
m + 1

2

⌋}
.

(4.48)

We notice that the constraints on x1 and x2 in (4.48) forms a triangle, and the

extreme points are E1 : (x1, x2) = (2/(1 + ρ), 0), E2 : (x1, x2) = (0,m/µ)), and

E3 : (x1, x2) = (0, 0). Since (4.48) is linear in x1 and x2, for a fixed pair of ρ and µ,

the maximum value of th eobjective function exists at one of the extreme points. It

is clear that the objective function can not attain the maximum value at E3. So we

just consider E1 and E2. Denote by A(µ, ρ) and B(µ, ρ) the objective values at the

E1 and E2, respectively. Then we have:

A(µ, ρ) =
2(1 + ρ)m + 2(2− ρ)(m− µ)

(1 + ρ)(2− ρ)(m− µ + 1)
;

B(µ, ρ) =
2mµ + (2− ρ)m(m− 2µ + 1)

µ(2− ρ)(m− µ + 1)
.

The first order partial derivative of A(µ, ρ) with respect to µ is

A′(µ, ρ)µ =
2[−(2− ρ)(m− µ + 1) + (1 + ρ)m + (2− ρ)(m− µ)]

(1 + ρ)(2− ρ)(m− µ + 1)2

=
2((1 + ρ)m− (2− ρ))

(1 + ρ)(2− ρ)(m− µ + 1)2
.

It is obvious that the denominator is always positive. The numerator is nonnegative

when (1 + ρ)m − (2 − ρ) ≥ 0, i.e., ρ ≥ (2 −m)/(m + 1). This inequality is always

true as ρ ≥ 0 and m ≥ 2. Thus A′(ρ)µ is always nonnegative. So for any m ≥ 2,

A(µ, ρ) is increasing in µ.
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Furthermore, the first order partial derivative of B(µ, ρ) with respect to µ is

B′(µ, ρ)µ =
1

(2− ρ)µ2(m− µ + 1)2
{[2m− 2(2− ρ)m]µ(m− µ + 1)

−[2mµ + (2− ρ)m(m− 2µ + 1)](m− 2µ + 1)}

=
−2(1− ρ)mµ2 + 2(2− ρ)m(m + 1)µ− (2− ρ)m(m + 1)2

(2− ρ)µ2(m− µ + 1)2
.

When ρ = 1,

B′(µ, ρ)µ =
m(m + 1)[2µ− (m + 1)]

µ2(m− µ + 1)2
≤ 0

as µ ≤ (m + 1)/2. So B(µ, ρ) is decreasing in µ. Now we consider the case that

ρ < 1. Solving the quadratic equation B′(µ, ρ)µ = 0 by Proposition 4.2, we obtain

the following roots:

µ =
−2(2− ρ)m(m + 1)∓

√
4(2− ρ)2m2(m + 1)2 − 8(1− ρ)m(2− ρ)m(m + 1)2

−4(1− ρ)m

=
2− ρ±

√
ρ(2− ρ)

1− ρ
· m + 1

2
.

Since ρ < 1, (ρ − 1)2 = ρ2 − 2ρ + 1 > 0. So 1 > ρ(2 − ρ). Because both sides are

positive, we can take the square roots of both sides to obtain 1 >
√

ρ(2− ρ). Thus

2− ρ−
√

ρ(2− ρ) > 1− ρ. So we obtain that

2− ρ +
√

ρ(2− ρ)

1− ρ
>

2− ρ−
√

ρ(2− ρ)

1− ρ
> 1.

Therefore the roots of the equation B′(µ, ρ)µ = 0 violate the constraint µ ≤ (m +

1)/2. So there is no feasible root for this equation. Since in the numerator of

B′(µ, ρ)µ the coefficient of the term of µ2 is negative, we have B′(µ, ρ)µ < 0 for all

feasible pair ρ and µ from Proposition 4.3. According to Lemma 4.7, if we find a

solution to the equation A(µ, ρ) = B(µ, ρ), the value is the approximation ratio.

The equation A(µ, ρ) = B(µ, ρ) is as follows:
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2(1 + ρ)m + 2(2− ρ)(m− µ)

(1 + ρ)(2− ρ)(m− µ + 1)
=

2mµ + (2− ρ)m(m− 2µ + 1)

µ(2− ρ)(m− µ + 1)
.

After simplification (with elimination of positive common factors (2− ρ)(m−µ+1)

and 2− ρ), the equation is equivalent to

2µ2 − (4 + 2ρ)mµ + (1 + ρ)m(m + 1) = 0.

According to Proposition 4.2, the roots to this equation are

µ =
(4 + 2ρ)m±

√
(4 + 2ρ)2m2 − 8(1 + ρ)m(m + 1)

4

=
(2 + ρ)m±

√
(ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m

2
.

Since m ≥ 1, (ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m ≥ ρ2m2. So

(2 + ρ)m +
√

(ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m

2
≥ 2m + 2ρm

2
>

m + 1

2
,

which violates the constraint that µ ≤ (m + 1)/2. So the only root to the equation

A(µ, ρ) = B(µ, ρ) is

µ∗ =
(2 + ρ)m−

√
(ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m

2
. (4.49)

Similar to the analysis of Subsubsection 4.4.1.2, we have the following lemma:

Lemma 4.22 For a fixed ρ > 2µ/m − 1, the optimal objective value of (4.48) is

bounded by the optimal objective value for µ∗ in (4.49).

4.5.2 Approximation ratio of Algorithm III

According to the analysis in Subsubsection 4.5.1.1, when ρ ≤ 2µ/m − 1, if m ≥ 6,

we just need to set ρ∗ = 0 and µ∗ = dm/2e to obtain the optimal value of (4.44),

i.e., the approximation ratio of Algorithm III. For the special cases of m = 2, 3, 4, 5,
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optimal ρ∗ and µ∗ can be chosen according to Subsubsection 4.5.1.1. The ratio is

listed in Lemma 4.21.

Now we investigate the case ρ > 2µ/m − 1 based on Subsubsection 4.5.1.2.

Unfortunately, we will show in Subsection 4.5.3 that we are not able to use the

technique in Section 4.3 to obtain the optimal value of (4.29) over ρ. Thus, similar

to Section 4.4, in this case we still can fix the value of ρ to obtain an improved

approximation ratio. We also show that it is asymptotically the optimal choice.

The value of ρ is set as follows:

ρ̂∗ = 0.26. (4.50)

By substituting it to (4.49) we set

µ̂∗ =
113m−√6469m2 − 6300m

100
. (4.51)

We need to examine if ρ̂∗ and µ̂∗ in (4.50) and (4.51) satisfy the assumption that

ρ̂∗ ≥ 2µ̂∗/m− 1. Since m ≥ 2 > 6300/3969, 2500 < 6469− 6300/m. Because both

sides are positive, taking the square root we have 50 <
√

6369− 6300/m. Therefore

ρ̂∗ = 13/50 > (63−
√

6369− 6300/m)/50 = 2µ̂∗/m− 1.

Lemma 4.23 In the case that ρ ≥ 2µ/m− 1, Algorithm III has an approximation

ratio r upper bounded by

100

63
+

100

345303

(63m− 87)(
√

6469m2 − 6300m + 13m)

m2 −m
.

Proof: It worth noting that the µ̂∗ in (4.51) can be a fractional number. Therefore

we need to consider dµ̂∗e and bµ̂∗c. Since we should minimize the objective function

over µ, the approximation ratio with integer value of µ is bounded as follows:

r ≤ min{max{A(dµ̂∗e, ρ̂∗), B(dµ̂∗e, ρ̂∗)}, max{A(bµ̂∗c, ρ̂∗), B(bµ̂∗c, ρ̂∗)}}.

According to the analysis in Subsubsection 4.5.1.2, here A(µ, ρ) is increasing in µ

and B(µ, ρ) is decreasing in µ for a fixed ρ. Thus the bound on approximation ratio

is
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r ≤ min{A(dµ̂∗e, ρ̂∗), B(bµ̂∗c, ρ̂∗)}

Furthermore, dµ̂∗e ≤ µ̂∗+1 and bµ̂∗c ≥ µ̂∗− 1. Again, because A(µ, ρ) is increasing

and B(µ, ρ) is decreasing, we have

A(dµ̂∗e, ρ̂∗) ≤ A(µ̂∗ + 1, ρ̂∗);

B(bµ̂∗c, ρ̂∗) ≤ B(µ̂∗ − 1, ρ̂∗).

Thus we have the following bound on the ratio r:

r ≤ min{A(dµ̂∗e, ρ̂∗), B(bµ̂∗c, ρ̂∗)}
≤ min{A(µ̂∗ + 1, ρ̂∗), B(µ̂∗ − 1, ρ̂∗)}
≤ A(µ̂∗ + 1, ρ̂∗).

Therefore here we shall find an upper bound on A(µ̂∗+1, ρ̂∗), which is also an upper

bound on the approximation ratio r. Substituting µ̂∗ in (4.51) and ρ̂∗ in (4.50) in

A(µ̂∗ + 1, ρ̂∗) gives:

r ≤ A(µ̂∗ + 1, ρ̂∗) =
2

1 + ρ̂∗
+

2

1 + ρ̂∗
(1 + ρ̂∗)m− (2− ρ̂∗)

(2− ρ̂∗)(m− µ̂∗)

=
100

63
+

100

63

63m− 87

87

(√
6469m2 − 6300m− 13m

100

)
+ 1

=
100

63
+

100

345303

(63m− 87)(
√

6469m2 − 6300m + 13m)

m2 −m
.

This is the claimed bound in the theorem.

Combine Lemma 4.21 and Lemma 4.23 we have the following theorem of the

approximation ratio of Algorithm III:

Theorem 4.5 If the work functions Wj(x) are convex with respect to processing

times for j = 1, . . . , n, then there exists an algorithm for the problem of Schedul-

ing Malleable Tasks with Precedence Constraints with an approximation

ratio
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r ≤





1 + 2
√

2/3, if m = 2;

2(2 +
√

3)/3, if m = 3;

4(1 + 2
√

2/3)/3, if m = 4;

2(7 + 2
√

10)/9, if m = 5;

100

63
+

100

345303

(63m− 87)(
√

6469m2 − 6300m + 13m)

m2 −m
, otherwise.

Proof: We need to compare the minimum objective values in both cases ρ ≤
2µ/m− 1 and ρ > 2µ/m− 1. Thus for m ≥ 6 we need to compare 4m/(m + 2) and

the value in Lemma 4.23. Suppose that

4m

m + 2
≥ 100

63
+

100

5481

(63m− 87)(
√

6469m2 − 6300m + 13m− 100)

63m2 − 37m− 100
.

By moving the right hand side to the left hand side and simplification, we obtain

62601m3 − 112501m2 + 142700m− 25(63m2 + 13m− 58)
√

6469m2 − 6300m

(m + 2)(m2 −m)
≥ 0.

Denote by NUM the numerator, and by DEN the denominator, of the left hand

side of the above inequality, respectively. It is obvious that DEN > 0 for any m ≥ 2.

Now we consider NUM . Solving equation NUM = 0 numerically we obtain the

following roots:

m1 = 1.35285;

m2,3 = 2.27502∓ 1.68612i;

m4,5 = −0.230259∓ 0.779709i.

It means that when m ≥ 2 > m1, both NUM and DEN are positive according to

Proposition 4.3. Therefore for any integer m ≥ 6 the ρ̂∗ and µ̂∗ should be taken

by (4.50) and (4.51) to obtain the approximation ratio bounded in Lemma 4.23.

Then we need to compare the ratios according to Lemma 4.21 and Lemma 4.23 for

m = 2, 3, 4, 5. When m = 2, by Lemma 4.23, r ≤ 2.384810, which is greater than

the bound in Lemma 4.21. So we should take ρ∗ = 3
√

2 − 4 and µ∗ = 1, with an
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approximation ratio r ≤ 1 + 2
√

2/3. When m = 3, by Lemma 4.23, r ≤ 2.755556,

which is greater than the bound in Lemma 4.21. So we should take ρ∗ = (3
√

3−5)/2

and µ∗ = 2, with an approximation ratio r ≤ 2(2 =
√

3)/3. When m = 4, by Lemma

4.23, r ≤ 2.908646, which is greater than the bound in Lemma 4.21. So we should

take ρ∗ = 3
√

2 − 4 and µ∗ = 2, with an approximation ratio r ≤ 4(1 + 2
√

2)/3.

When m = 4, by Lemma 4.23, r ≤ 2.993280, which is greater than the bound in

Lemma 4.21. So we should take ρ∗ =
√

10 − 3 and µ∗ = 3, with an approximation

ratio r ≤ 2(7 + 2
√

10)/9. The theorem is proved.

Then the following corollary holds for the upper bound on the approximation

ratios:

Corollary 4.4 For all m ∈ IN and m ≥ 2, the approximation ratio

r ≤ 100

63
+

100(
√

6469 + 13)

5481
.

Furthermore, when m →∞, the upper bound in Theorem 4.5 tends to

100

63
+

100(
√

6469 + 13)

5481
≈ 3.291919.

Proof: It is obvious that when m ≤ 6, the approximation ratios fulfils the inequality.

We now consider the case that m ≥ 6.

Similarly to the proof of Corollary 4.2, we need to show that

100

63
+

100

5481

(63m− 87)(
√

6469m2 − 6300m + 13m− 100)

m2 −m
≤ 100

63
+

100(
√

6469 + 13)

5481
,

which is equivalent to

63m− 87

63

√
6469m2 − 6300m + 13m

m2 −m
≤
√

6469 + 13.

Since m2 −m > 0 for all m ≥ 2, we can multiply both sides by 63(m2 −m). Then

simplification gives

(21m− 29)
√

6469m2 − 6300m ≤ 21
√

6469m2 − 21
√

6469m + 104m.
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When m ≥ 2, 21m − 29 > 0 and m2 −m > 0, so both sides are positive. We can

take square of both sides and obtain the following inequality:

(2475942 + 2184
√

6469)m2 + (315337− 2184
√

6469)m− 2649150 ≥ 0. (4.52)

It is easy to verify that 2475942+2184
√

6469 ≈ 2651601.325 > 2649150 and 315337−
2184

√
6469 ≈ 139677.675 > 0. Therefore for any m ≥ 1 the inequality (4.52) holds.

So the inequality in the corollary is proved.

When m →∞, the upper bound in Theorem 4.5

100

63
+

100

5481

(63m− 87)(
√

6469m2 − 6300m + 13m− 100)

63m2 − 37m− 100

=
100

63
+

100

5481

(63− 87/m)(
√

6469− 6300/m + 13− 100/m)

63− 37/m− 100/m2

→ 100

63
+

100

5481

63(
√

6469 + 13)

63

=
100

63
+

100(
√

6469 + 13)

5481
≈ 3.291919.

We here give the list of values of approximation ratios for our Algorithm III for

m = 2, . . . , 33 in Table 4.6 (See Appendix for codes). Here it is worth noting that

we still take ρ̂∗ = 0.26 for m = 5, as the bound in Lemma 4.23 is only an upper

bound on the objective value of (4.44) with ρ = ρ̂∗ = 0.26. In fact with the rounded

value of bµ̂∗c or dµ̂∗e the objective values are lower than the bound in Lemma 4.23

as listed above.

4.5.3 Asymptotic behaviour of approximation ratio for con-

vex work functions

In Algorithm III we set ρ̂∗ = 0.26. However, the approximation ratio r can be

improved by choosing the value of ρ∗ depending on m, like that in Algorithm I and

in Subsection 4.4.3. In this subsection we are going to study it.

Recall that µ∗ in (4.49) is the minimizer of the objective function in (4.44). By

substituting µ∗ to A(µ, ρ) or B(µ, ρ) we can obtain two functions A(ρ) or B(ρ).
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m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m)

2 1 0.243 1.9428 18 7 0.260 3.1792

3 2 0.098 2.4880 19 7 0.260 3.1451

4 2 0.243 2.5904 20 7 0.260 3.1160

5 2 0.260 2.6868 21 8 0.260 3.1981

6 3 0.260 2.9146 22 8 0.260 3.1673

7 3 0.260 2.8790 23 8 0.260 3.1404

8 3 0.260 2.8659 24 8 0.260 3.2110

9 4 0.260 3.0469 25 9 0.260 3.1843

10 4 0.260 3.0026 26 9 0.260 3.1594

11 4 0.260 2.9693 27 9 0.260 3.2123

12 5 0.260 3.1130 28 10 0.260 3.1976

13 5 0.260 3.0712 29 10 0.260 3.1746

14 5 0.260 3.0378 30 10 0.260 3.2135

15 6 0.260 3.1527 31 11 0.260 3.2085

16 6 0.260 3.1149 32 11 0.260 3.1870

17 6 0.260 3.0834 33 11 0.260 3.2144

Table 4.6: Bounds on approximation ratios for Algorithm III.

Since our goal is to find the minimum value of A(ρ) or B(ρ) over all ρ, we need to

solve the equation A′(ρ)ρ = 0 or B′(ρ)ρ = 0. Because A(ρ) = B(ρ), we just need

to consider one of them, say, A(ρ). The first order partial derivative of A(ρ) with

respect to ρ is

A′(ρ)ρ =

[
2m

(2− ρ)(m− µ∗ + 1)
+

2

1 + ρ
− 2

(1 + ρ)(m− µ∗ + 1)

]′

ρ

=
2m((m− µ∗ + 1) + (2− ρ)(µ∗)′ρ)

(2− ρ)2(m− µ∗ + 1)2
− 2

(1 + ρ)2

+
2((m− µ∗ + 1)− (1 + ρ)(µ∗)′ρ)

(1 + ρ)2(m− µ∗ + 1)2

Combine the two terms together and the denominator is positive. So the equation
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A′(ρ)ρ = 0 can be simplified as follows:

−(2− ρ)2(µ∗)2 + [(ρ2 − 10ρ + 7)m + (2− ρ)2]µ∗

+(1 + ρ)(2− ρ)[(1 + ρ)m− (2− ρ)](µ∗)′ρ + 3(2ρ− 1)m(m + 1) = 0.

Here

µ∗ =
m(2 + ρ)

2
−
√

∆

2
;

(µ∗)2 =
(ρ2 + 3ρ + 3)m2 − (ρ + 1)m

2
− (2 + ρ)m

√
∆

2
;

(µ∗)′ρ =
m

2
− (ρ + 1)m2 −m

2
√

∆
,

and ∆ = (ρ2 + 2ρ + 2)m2 − 2(1 + ρ)m. Substituting them to the equation and we

obtain the following equation:

A1∆ + A2

√
∆ + A3 = 0,

where the coefficients are as follows (with elimination of a common factor 1/2):

A1 = mρ3 + (−3m− 1)ρ2 + (6m + 4)ρ + (m− 4);

A2 = m[−mρ4 + (m + 1)ρ3 + (−3m− 2)ρ2 + (2m + 8)ρ + (−2m + 2)];

A3 = m[(m2 + m)ρ4 + (m2 − 3m− 1)ρ3 + (−3m2 − 3m + 3)ρ2

+(−5m2 + 7m)ρ + (−2m2 + 6m− 4)].

To remove the square root, we can simplify the equation to an equivalent equation

(A1∆ + A3)
2 − A2

2∆ = 0.

After simplification, it can be written as the following form:

m2(1 + m)(1 + ρ)2
6∑

i=0

ciρ
i = 0, (4.53)

where the coefficients are as follows:
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c0 = −8(m− 1)2(m− 2);

c1 = 8(m− 1)(m− 2)(3m− 2);

c2 = 21m3 − 59m2 + 16m + 24;

c3 = 2(m + 1)(7m2 − 7m− 4);

c4 = 3m3 − 7m2 + 15m + 1;

c5 = 2m(3m2 − 4m− 1);

c6 = m2(m + 1).

Then with eliminating the common factor (ρ+1)2 we are able to obtain an equation

with highest order of 6. Unfortunately in general there are no analytic roots for

polynomial with order higher than 4. So we are not able to solve (4.53) to obtain

the optimal ρ∗ depending on m like in Section 4.3.

In fact we can estimate the asymptotic behaviour of the approximation ratio.

When m →∞, equation (4.53) is:

0 = −8(m− 1)2(m− 2 + 8(m− 1)(m− 2)(3m− 2)ρ

+(21m3 − 59m2 + 16m + 24)ρ2 + 2(m + 1)(7m2 − 7m− 4)ρ3

+(3m3 − 7m2 + 15m + 1)ρ4 + 2m(3m2 − 4m− 1)ρ5 + m2(m + 1)ρ6

= m3

[
−8

(
1− 1

m

)2 (
1− 2

m

)
+ 8

(
1− 1

m

) (
1− 2

m

) (
3− 2

m

)
ρ

+
(
21− 59

m
+

16

m2
+

24

m3

)
ρ2 + 2

(
1 +

1

m

) (
7− 7

m
− 4

m2

)
ρ3

+
(
3− 7

m
+

15

m2
+

1

m3

)
ρ4 + 2

(
3− 4

m
− 1

m2

)
ρ5 +

(
1 +

1

m

)
ρ6

]

→ m3(ρ6 + 6ρ5 + 3ρ4 + 14ρ3 + 21ρ2 + 24ρ− 8).

Thus we just need to consider the equation ρ6 + 6ρ5 + 3ρ4 + 14ρ3 + 21ρ2 + 24ρ− 8.

Solving it by numerical methods, we have the following roots:

ρ1 = −5.8353;
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m µ(m) ρ(m) r(m) m µ(m) ρ(m) r(m)

2 1 0.243 1.9428 18 6 0.143 3.1065

3 2 0.098 2.4880 19 7 0.328 3.1384

4 2 0.243 2.5904 20 7 0.300 3.1092

5 2 0.200 2.6389 21 7 0.167 3.1273

6 3 0.243 2.9142 22 8 0.331 3.1600

7 3 0.292 2.8777 23 8 0.304 3.1330

8 3 0.250 2.8571 24 8 0.185 3.1441

9 3 0.000 3.0000 25 9 0.333 3.1765

10 4 0.310 2.9992 26 9 0.308 3.1515

11 4 0.273 2.9671 27 9 0.200 3.1579

12 4 0.067 3.0460 28 10 0.335 3.1895

13 5 0.318 3.0664 29 10 0.310 3.1663

14 5 0.286 3.0333 30 10 0.212 3.1695

15 5 0.111 3.0802 31 10 0.129 3.1972

16 6 0.325 3.1090 32 11 0.312 3.1785

17 6 0.294 3.0776 33 11 0.222 3.1794

Table 4.7: Numerical results of min-max nonlinear program (4.48).

ρ2,3 = −0.949632± 0.89448i;

ρ4 = 0.261917;

ρ5,6 = 0.72544± 1.60027i.

The only feasible root here in the interval ρ ∈ (0, 1) is ρ∗ = 0.261917. Substituting

it to (4.49) the optimal µ∗ → 0.325907m. With these data, from either A or B one

have that

r → 3.291913.

In Algorithm III we fix ρ̂∗ = 0.26 just because it is close to the asymptotic optimal

ρ∗. The ratio of Algorithm III could be further improved by fix ρ̂∗ to a better approx-

imation to ρ∗. In this way we conjecture that there exists a 3.291913-approximation

algorithm for the problem of Scheduling Malleable Tasks with Precedence
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Constraints However, the analysis is complicated and Algorithm III has already

a ratio 3.291919 very close to this asymptotic ratio.

We can also use numerical method to solve the min-max nonlinear program

(4.48). We can construct a grid of ρ in the interval [0, 1], and µ in [1, b(m + 1)/2c].
The grid size for ρ is δρ and for µ is 1 as µ is an integer. We can compute the

values of A(µ, ρ) and B(µ, ρ) on each grid point, and search for the minimum over

all grid points to decide the optimal objective values depending on m (See Appendix

for codes). The results by setting δρ = 0.0001 and m = 2, . . . , 33 are in Table 4.7.

Compared the results in Table 4.6 we can see that the solutions of our Algorithm

III are already very close to the optimum.
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Appendix: Fortran Codes of the

Numerical Computation

In this appendix we give the source codes in Fortran language to compute the values

in Table 4.4, 4.5, 4.6 and 4.7. One can easily change the values of parameters to

test our results for other corresponding cases.

The code for Table 4.4 is as follows:

PROGRAM MAIN

PARAMETER(MM=33,RHO=0.43)

OPEN(4,FILE=’bound_II.dat’)

DO 10 M=2, MM

XMU=0.5*((1.0+2.0*RHO)*M-SQRT((1.0+4.0*RHO*RHO)*M*M-4.0*RHO*M))

MUL=INT(XMU)

MUR=MUL+1

AL=(1.0+(RHO*M-1.0)/((1.0-RHO)*(1.0*M-MUL)+1.0))/RHO

BNL=(1.0-RHO)*M*(M-2.0*MUL+1.0)+1.0*M*MUL

BDL=MUL*((1.0-RHO)*(M-MUL)+1.0)

BL=BNL/BDL

AR=(1.0+(RHO*M-1.0)/((1.0-RHO)*(1.0*M-MUR)+1.0))/RHO

BNR=(1.0-RHO)*M*(M-2.0*MUR+1.0)+1.0*M*MUR

BDR=MUR*((1.0-RHO)*(M-MUR)+1.0)

BR=BNR/BDR

OBJL=MAX(AL,BL)

OBJR=MAX(AR,BR)

IF(OBJL.LE.OBJR) THEN

MU=MUL

R=OBJL

ELSE

MU=MUR
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R=OBJR

ENDIF

WRITE(4,100) M, RHO, MU, R

10 CONTINUE

100 FORMAT(1X, I2, 2X, F10.6, 2X, I2, F12.7)

CLOSE(4)

END

The code for Table 4.5 is as follows:

PROGRAM MAIN

PARAMETER(MM=33,NRHO=10000)

OPEN(4,FILE=’numerical_II.dat’)

DRHO=1.0/NRHO

DO 10 M=1, MM

MUM=INT(M+1/2)

R=100000

DO 20 MU=1,MUM

DO 30 N=1,NRHO-1

RHO=N*DRHO

A=(1.0+(RHO*M-1.0)/((1.0-RHO)*(M-MU)+1.0))/RHO

BN=(1.0-RHO)*M*(M-2.0*MU+1.0)+1.0*M*MU

BD=MU*((1.0-RHO)*(M-MU)+1.0)

B=BN/BD

OBJ=MAX(A,B)

IF(OBJ.LT.R) THEN

RHOOPT=RHO

MUOPT=MU

R=OBJ

ENDIF

30 CONTINUE

20 CONTINUE

WRITE(4,100) M, RHOOPT, MUOPT, R

10 CONTINUE

100 FORMAT(1X, I2, 2X, F10.6, 2X, I2, F12.7)

CLOSE(4)

END
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The code for Table 4.6 is as follows:

PROGRAM MAIN

PARAMETER(MM=33,RHO=0.26)

OPEN(4,FILE=’bound_III.dat’)

DO 10 M=1, MM

XMU=0.5*((2.0+RHO)*M-SQRT((RHO*RHO+2*RHO+2)*M*M-2*(1.0+RHO)*M))

MUL=INT(XMU)

MUR=MUL+1

ANL=(1.0+RHO)*M+(2.0-RHO)*(1.0*M-MUL)

ADL=(1.0+RHO)*(2.0-RHO)*(M-MUL+1.0)

AL=2.0*ANL/ADL

BNL=2.0*M*MUL+(2.0-RHO)*M*(M-2.0*MUL+1.0)

BDL=MUL*(2.0-RHO)*(M-MUL+1.0)

BL=BNL/BDL

ANR=(1.0+RHO)*M+(2.0-RHO)*(1.0*M-MUR)

ADR=(1.0+RHO)*(2.0-RHO)*(M-MUR+1.0)

AR=2.0*ANR/ADR

BNR=2.0*M*MUR+(2.0-RHO)*M*(M-2.0*MUR+1.0)

BDR=MUR*(2.0-RHO)*(M-MUR+1.0)

BR=BNR/BDR

OBJL=MAX(AL,BL)

OBJR=MAX(AR,BR)

IF(OBJL.LE.OBJR) THEN

MU=MUL

R=OBJL

ELSE

MU=MUR

R=OBJR

ENDIF

WRITE(4,100) M, RHO, MU, R

10 CONTINUE

100 FORMAT(1X, I2, 2X, F10.6, 2X, I2, F12.7)

CLOSE(4)

END

Finally, the code for Table 4.7 is as follows:
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PROGRAM MAIN

PARAMETER(MM=33,NRHO=10000)

OPEN(4,FILE=’numerical_III.dat’)

DRHO=1.0/NRHO

DO 10 M=1, MM

MUM=INT(M+1/2)

R=100000

DO 20 MU=1,MUM

DO 30 N=0,NRHO

RHO=N*DRHO

AN=(1.0+RHO)*M+(2.0-RHO)*(M-MU)

AD=(1.0+RHO)*(2.0-RHO)*(M-MU+1.0)

A=2.0*AN/AD

BN=2.0*M*MU+(2.0-RHO)*M*(M-2.0*MU+1.0)

BD=MU*(2.0-RHO)*(M-MU+1.0)

B=BN/BD

OBJ=MAX(A,B)

IF(OBJ.LT.R) THEN

RHOOPT=RHO

MUOPT=MU

R=OBJ

ENDIF

30 CONTINUE

20 CONTINUE

WRITE(4,100) M, RHOOPT, MUOPT, R

10 CONTINUE

100 FORMAT(1X, I2, 2X, F10.6, 2X, I2, F12.7)

CLOSE(4)

END
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