
Reliability Information in Channel Decoding

Practical Aspects and

Information Theoretical Bounds

Ingmar Land

Dissertation

Kiel 2005

Christian-Albrechts-University of Kiel
Faculty of Engineering

Information and Coding Theory Lab

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250313056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reliability Information in Channel Decoding

Practical Aspects and
Information Theoretical Bounds

Dissertation

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

vorgelegt von

Ingmar Land

Kiel 2005

Tag der Einreichung: 7. September 2004
Tag der Disputation: 13. Dezember 2004

Berichterstatter: Prof. Dr.-Ing. Peter Adam Höher
Prof. Dr.-Ing. Johannes Huber
Prof. Dr.-Ing. Joachim Hagenauer

Preface

This thesis was written during my time as a research and teaching assistant at the Infor-
mation and Coding Theory Lab, Faculty of Engineering, University of Kiel, Germany.

I wish to express my most sincere gratitude to my advisor Prof. Dr. Peter Adam
Höher. I would like to thank him for all the inspiring discussions we had; for giving me
scientific freedom which allowed me to develop my own ideas; and for introducing me to
the scientific community. His scientific mind and his enthusiasm are reflected in this work.

I would like to thank Prof. Dr. Johannes Huber and Prof. Dr. Joachim Hagenauer for
evaluating this work, for their comments on this thesis, and for their support.

I also would like to thank Prof. Dr. Ulrich Sorger, Prof. Dr. Johannes Huber, Dr.
Simon Hüttinger, and Dr. Jossy Sayir for all the fruitful and stimulating discussions on
information theory and coding, iterative decoding, and information combining.

Finally, I would like to thank all colleagues at the Information and Coding Theory
Lab and at the Institute for Circuits and System Theory, University of Kiel, Germany,
for the pleasant and inspiring working atmosphere, for all the discussions we had, and for
the help with scientific, technical, and non-technical problems.

Ingmar Land

Kiel, May 2005

vi

Abstract

This thesis addresses the use of reliability information in channel decoding and covers
practical aspects as well as information-theoretical bounds. The considered transmission
systems comprise linear binary channel encoders, symmetric memoryless communication
channels, and non-iterative or iterative symbol-by-symbol soft-output channel decoders.

The notions of accurate and mismatched reliability values are introduced, and the
measurement and improvement of the quality of reliability values are discussed. A crite-
rion based on the Kullback-Leibler distance is proposed to assess the difference between
accurate and mismatched reliability values. The concepts are applied to iterative decoders
for parallel concatenated codes.

Accurate reliability values may be exploited to estimate transmission quality param-
eters, such as the bit error probability or the symbol-wise mutual information between
encoder input and decoder output. The proposed method is unbiased and does not re-
quire knowledge of the transmitted data. A general framework for this kind of estimation
is introduced, and the advantage of the proposed method over the conventional method
is shown analytically by comparing the estimation variances. The proposed method may
be used for a “blind” estimation at the receiver side or to speed up the estimation in
simulations.

Symbol-by-symbol soft-output decoding may be interpreted as processing of mutual
information. Assuming accurate reliability values at the input and at the output of a
decoder, its decoding behavior may be characterized by information transfer functions,
such as information processing characteristics (IPCs) or extrinsic information transfer
(EXIT) functions. Bounds on information transfer functions are derived using the concept
of bounding combined information, which is formed by combining single values of mutual
information with respect to code constraints. These bounds are valid for all binary-
input symmetric memoryless channels, and thus no Gaussian assumption is required, as
in the original EXIT chart method. Single parity-check codes, repetition codes, and the
accumulator are addressed. Based on such bounds, decoding thresholds for low-density
parity-check codes are analytically determined.

Keywords: Linear binary codes, parallel concatenated codes (PCCs), serially concate-
nated codes (SCCs), low-density parity-check codes (LDPCCs), symbol-by-symbol soft-
output decoding, iterative decoding, reliability information, parameter estimation, infor-
mation processing characteristics (IPC), extrinsic information transfer (EXIT) functions,
EXIT charts, information combining, bounds on information combining.

viii

Contents

1 Introduction 1

2 Channel Models 5
2.1 Symmetric Channels . 6
2.2 Decomposition into BSCs . 12
2.3 Characterizing Parameters . 15
2.4 Summary . 22

3 Channel Coding Schemes 23
3.1 Linear Binary Encoders . 24
3.2 Decoding Model . 28

3.2.1 Transmission Model . 28
3.2.2 Symbol-by-Symbol Soft-Output Decoding 31

3.3 Information Transfer Functions . 39
3.4 Soft-Output Decoding Principles . 43

3.4.1 LogAPP Decoding . 45
3.4.2 MaxLogAPP Decoding . 49
3.4.3 Optimality of MaxLogAPP Decoding 52

3.5 Concatenated Codes . 53
3.5.1 Parallel Concatenated Codes . 54
3.5.2 Serially Concatenated Codes . 62

3.6 Low-Density Parity-Check Codes . 69
3.7 Summary . 80

4 Reliability Information 81
4.1 Reliability Values . 81
4.2 Measurement of Reliability Values . 85
4.3 Measurement of Reliability Mismatch . 86
4.4 Correction of Reliability Mismatch . 92
4.5 Application to Iterative Decoding . 97
4.6 Summary . 102

5 Parameter Estimation 105
5.1 General Estimation Setup . 106

5.1.1 Description of the Two Methods . 106

x CONTENTS

5.1.2 Comparison of the Two Methods 107
5.1.3 Relation to Decomposition into Subchannels 109

5.2 Estimation of the Bit Error Rate . 109
5.3 Estimation of the Mutual Information . 115
5.4 Further Applications . 117
5.5 Summary . 118

6 Information Combining 119
6.1 Decoding Model and Notation . 120
6.2 Bounds on Mutual Information . 123

6.2.1 Single Parity Check Codes . 123
6.2.2 Repetition Codes . 129
6.2.3 Complete Information . 133
6.2.4 Impact of Information Profiles . 134

6.3 Bounds on Information Transfer Functions 135
6.3.1 Single Parity Check Codes . 136
6.3.2 Repetition Codes . 141
6.3.3 Accumulator . 143

6.4 Application to LDPC Codes . 149
6.4.1 EXIT Charts . 149
6.4.2 Bounds on Decoding Thresholds . 151

6.5 Summary . 153

7 Conclusions 155

A Acronyms 159

B Notation 161

C Log-Likelihood Ratios 167
C.1 Definitions and Properties . 167
C.2 Operators . 169

D Information Theory 173
D.1 Entropy . 173
D.2 Mutual Information . 174

D.2.1 Single Channels . 174
D.2.2 Serially Concatenated BSCs . 175
D.2.3 Parallel Concatenated BSCs . 176

D.3 Kullback-Leibler Distance . 177

E Convexity Lemma 179

Bibliography 183

Chapter 1

Introduction

Modern communication systems aim at reliable transmission of digital data. This data
may represent text, voice, images, as well as computer files or programs. Despite noisy
communication channels, the data can be transmitted almost error-free by applying chan-
nel coding, as Shannon showed in his 1948 landmark article “A Mathematical Theory of
Communication” [Sha48]. The transmitter adds redundancy to the data before trans-
mission, and the receiver exploits this redundancy to recover the transmitted data from
the received sequence; i.e., the transmitter performs channel encoding and the receiver
performs channel decoding.

A block diagram for a typical system model is depicted in Fig. 1.1. (The inner structure
of the channel decoder is explained below.) The source models the generation of the digital
data, which may include source encoding and encryption, and the destination accepts the
outputs of the channel decoder, and may perform decryption and source decoding.

Decoder 2

Constituent Constituent

Decoder 1

Channel Decoder

Source

Destination

Channel

Communication

Channel Encoder

Figure 1.1: Model of a digital transmission system.

While the computational complexity of channel encoding is relatively low, the com-
putational complexity of channel decoding is rather high, in particular, when powerful
channel codes are employed. For some classes of channel codes, however, the decoding
operation may be performed by two (or more) low-complexity constituent decoders that
exchange decoding results in an iterative fashion, as depicted in Fig. 1.1. Examples of
such codes are parallel concatenated codes, serially concatenated codes, and low-density
parity-check codes.

Channel decoders may be distinguished with respect to the kind of outputs they gener-
ate. Hard-output decoders deliver estimates of the transmitted data, whereas soft-output

2 CHAPTER 1. INTRODUCTION

decoders additionally deliver information about the reliability of these estimates; this in-
formation is called reliability information. An important class of soft-output decoders
are symbol-by-symbol soft-output decoders, which compute an estimate and reliability
information for each transmitted data symbol. Such decoders are particularly suited to
be used as constituent decoders of iterative decoders.

The reliability information delivered by a soft-output decoder may not be accurate, for
example, when sub-optimal decoding algorithms are applied. Such mismatched reliability
information usually decreases the performance of iterative decoders, since each constituent
decoder assumes that the reliability information at its input is accurate when computing
the soft-outputs. Thus, the question arises: how may the quality of reliability information
be quantified and measured, and how may it be improved.

The performance of a transmission system is typically assessed by two parameters:
(i) the probability that the estimated data symbols are erroneous and (ii) the mutual
information between encoder input and decoder output. These transmission quality pa-
rameters may be estimated by the receiver without knowledge of the transmitted data
when the soft-output decoder delivers accurate reliability information. In a similar way,
the estimation of these parameters in simulations may be improved or speeded up by
exploiting reliability information. The question is: how may the reliability information
be exploited.

A soft-output decoder may be interpreted as a processor for mutual information, as
both the input values and the output values carry information about the transmitted
data. Following this interpretation and assuming accurate reliability information at the
input and at the output of the decoder, the decoding behavior may be characterized by
the mapping from mutual information associated with the decoder inputs to mutual in-
formation associated with the decoder outputs. These mappings depend on the stochastic
structure of the communication channel, and therefore an interesting question is how these
maps can be bounded when only the value of the input mutual information is given.

This thesis addresses the three questions raised above for transmission systems with
binary channel codes and symbol-by-symbol soft-output decoders:

• How can the quality of reliability information be measured, and how can mismatched
reliability information be improved or corrected?

• How can accurate reliability information be exploited for the estimation of transmis-
sion quality parameters, such as error probability or end-to-end mutual information?

• What are the bounds on the information processing behavior of soft-output decoders
when assuming accurate reliability information at the inputs and at the outputs?

Both practical and theoretical aspects are discussed using methods from information
theory and coding theory.

Organization of the Thesis

This thesis aims at the presentation of principles and concepts rather than an optimization
of transmission systems. The main contributions are given in the form of definitions and

3

theorems to make them easily accessible and to provide for generality. The concepts
and results are motivated and interpreted in the surrounding text, and they are further
clarified and illustrated by examples.

The discussion of reliability information in channel decoding involves all parts of the
transmission model. Therefore this thesis is not organized in the typical-order way, where
the known fundamentals are presented in the first chapter and the new contributions
in the following chapters, but in logical order. To make clear the separation between
“known” and “new”, each chapter starts with an overview of the new contributions.
Known fundamentals on channel models and coding schemes are included in Chapter 2
and Chapter 3; the questions on reliability information, which have been raised above,
are discussed in Chapter 4, Chapter 5, and Chapter 6. The notation, some properties of
log-likelihood ratios, and some basic notions from information theory are provided in the
appendices.

The contents of the individual chapters are outlined in the following. Further details
are provided in the introduction and the summary of each chapter.

Chapter 2 addresses models for symmetric memoryless channels with discrete input
alphabets and discrete or continuous output alphabets; the focus is on channels with
binary input alphabets. Properties following from the symmetry of the channels are
derived and discussed. The concepts presented in this chapter play a fundamental role
throughout this thesis.

Chapter 3 deals with coding schemes. Linear binary channel codes and a general model
for symbol-by-symbol soft-output decoding are recapitulated. Furthermore, parallel and
serially concatenated codes and low-density parity-check codes are presented in a unified
way. This chapter mainly summarizes known results on iteratively decodable codes.

The quality of reliability information is discussed in Chapter 4. For measuring and
improving the reliability information, a criterion based on the Kullback-Leibler distance
is introduced. This concept is applied to improve the iterative decoding of a parallel
concatenated code.

A framework for estimating transmission quality parameters based on reliability infor-
mation is introduced in Chapter 5. The presented new method requires no knowledge of
the transmitted data. Furthermore, it is unbiased and has a smaller estimation variance
than the conventional method. The general framework is specified to the estimation of
the bit error probability and of the symbol-wise mutual information.

Chapter 6 addresses information theoretical bounds on the use of reliability infor-
mation by channel decoders. Bounds on information combining are presented for single
parity-check codes and for repetition codes. These results are applied to bound informa-
tion transfer functions (information processing characteristics and extrinsic information
transfer characteristics) for these codes and for the accumulator. Furthermore, they are
used to analyze decoding thresholds of low-density parity-check codes.

The main results are summarized and conclusions are drawn in Chapter 7. Here,
possible extensions and applications of the presented work are also discussed.

Parts of this thesis have been published in [LHS00,LH00a,HLS00,LH01,LC02,LH03,
LHHH03,LHG04,LHH04b,LSH04,TL04,LHH04a,LHHH05a,LHHH05b].

4 CHAPTER 1. INTRODUCTION

Chapter 2

Channel Models

The class of discrete-input symmetric memoryless channels (DISMCs) comprises a large
number of channel models which are often employed to analyze the performance of digital
communication systems. Among these channel models are the binary symmetric channel,
the binary erasure channel, the binary erasure channel, and the additive white Gaussian
noise (AWGN) channel with binary antipodal signaling, called binary-input AWGN chan-
nel for short. For many coding schemes, the superchannel between encoder input and
decoder output can also be modeled as a binary-input symmetric channel. In some cases,
this superchannel can even be regarded as memoryless; e.g., when interleaving is applied
before encoding and de-interleaving after decoding.

This chapter addresses properties of memoryless channels that have discrete input
alphabets and discrete or continuous output alphabets. The focus is on binary-input
channels. In addition to this, all channels are assumed to be discrete in time and to have
no feedback from the output to the input. The classes of channels considered and the
acronyms employed are listed in Table 2.1.

The new contributions are as follows:

(a) Subchannel indicators are introduced, which decompose channels into subchannels.

(b) Binary-input symmetric memoryless channels (BISMCs) are shown to be decom-
posable into binary symmetric subchannels (BSCs).

(c) Error probability profiles and mutual information profiles are introduced to charac-
terize BISMCs with respect to their statistical properties.

Using subchannel indicators, the notion of symmetry, well-known for channels with dis-
crete output alphabets, is extended to channels that have continuous output alphabets.
The decomposition into binary symmetric channels plays a central role throughout this
thesis, as it simplifies many derivations and provides insightful interpretations. A binary
symmetric channel is completely defined by only one statistical parameter, such as the
crossover probability, the magnitude of the log-likelihood ratio (called reliability value),
or the mutual information. Accordingly, a BISMC is completely characterized by the
distribution of this parameter with respect to the subchannels.

6 CHAPTER 2. CHANNEL MODELS

The definitions and theorems given in this chapter are formulated in a rather general
way, so that a large number of cases is covered. As generality and legibility are sometimes
inversely proportional, many examples are provided to clarify the underlying concepts.

Channel class Acronym
Discrete-input memoryless channel DIMC

Discrete memoryless channel DMC
Discrete-input symmetric memoryless channel DISMC
Binary-input symmetric memoryless channel BISMC

Table 2.1: Classes of channels and their acronyms. (While a DMC is defined to have
both a discrete input alphabet and discrete output alphabet, the other channels may
have discrete or continuous output alphabets.)

2.1 Symmetric Channels

A memoryless channel is a probabilistic mapping from an input alphabet X to an output
alphabet Y. The mapping is described by a conditional probability distribution pY |X(y|x)
of the channel output y ∈ Y given the channel input x ∈ X. This conditional probability
distribution is a function of y with parameter x; it denotes a probability mass function if
the output alphabet is discrete, and a probability density function if the output alphabet
is continuous. As a memoryless channel describes the transition from a random variable
X ∈ X to a random variable Y ∈ Y, we denote it symbolically by X → Y and refer
to pY |X(y|x) as its transition distribution. The notation (X,Y, pY |X(y|x)) is adopted to
define a memoryless channel. (Channels with memory are not addressed in this thesis;
information about such channels may be found in [Gal68,CT91].)

In this thesis, we assume that the channel inputs are real values, X ⊆ R, and that the
channel outputs are either real values, Y ⊆ R, or vectors of real values, Y ⊆ RL with L ∈
N+. Furthermore, we restrict ourselves to channels with discrete input alphabets X; the
output alphabets Y may be discrete or continuous. The binary alphabet B := {−1,+1},
corresponding to the signaling commonly used for binary phase shift keying (BPSK), is
of special interest. If both the input and the output alphabet are discrete, the channel
is called a discrete memoryless channel (DMC). For a DMC, the transition distribution
may be written in form of a probability matrix [pY |X(y|x)]|X|×|Y| (each row corresponding
to one input value and each column corresponding to one output value), denoted as the
transition matrix.

An important concept in information theory is the notion of symmetric channels
[Gal68, CT91, Joh92]. As indicated by the name, the transition distribution of such a
channel fulfills a certain symmetry condition, and the mutual information is maximized
for a “symmetric” input distribution. In precise terms, a symmetric channel achieves
channel capacity (cf. Appendix D) for independent and uniformly distributed (i.u.d.) in-
put values [CT91]. For a DMC, the symmetry condition is usually defined via properties
of its transition matrix. The following definition is consistent with [Gal68,CT91,Joh92].

2.1. SYMMETRIC CHANNELS 7

Definition 2.1 (Symmetric Discrete Memoryless Channel)
A discrete memoryless channel is called symmetric if the output alphabet can be parti-
tioned into subsets in such a way that for each subset, the matrix of transition probabilities
(each row corresponding to one input value and each column corresponding to one output
value of the subset) has the property that each row is a permutation of each other row
and each column is a permutation of each other column. A discrete memoryless channel
is called strongly symmetric if this permutation property holds for the transition matrix
(without partitioning into subsets).

The notation introduced and the definition are illustrated by a few examples.

Example 2.1

A binary symmetric channel (BSC) X → Y , (X, Y, pY |X(y|x)), with crossover prob-
ability ε is defined by a binary input alphabet X = {x1, x2}, a binary output alpha-
bet Y = {y1, y2}, and the transition matrix

[
pY |X(y1|x1) pY |X(y2|x1)

pY |X(y1|x2) pY |X(y2|x2)

]

=

[
1− ε ε

ε 1− ε

]

.

The BSC with X = Y = B is illustrated in Fig. 2.1.

Since in the transition matrix, the first row is a permutation of the second row
and the first column is a permutation of the second column, the BSC is strongly
symmetric according to Definition 2.1. 3

+1 +1

X Y

1 − ε

1 − ε

ε

ε

−1 −1

Figure 2.1: Binary symmetric channel (BSC).

Example 2.2

A binary erasure channel (BEC) X → Y , (X, Y, pY |X(y|x)), with erasure probabil-
ity δ is defined by a binary input alphabet X = {x1, x2}, a ternary output alpha-
bet Y = {y1, y2, y3}, and the transition matrix

[
pY |X(y1|x1) pY |X(y2|x1) pY |X(y3|x1)

pY |X(y1|x2) pY |X(y2|x2) pY |X(y3|x2)

]

=

[
1− δ δ 0

0 δ 1− δ

]

.

The output value y2 is called erasure (in the literature often denoted by ∆). The
BEC with X = B and Y = {−1, 0, +1} is shown in Fig. 2.2.

When partitioning the output alphabet into the subsets Y0 = {y2} and Y1 =
{y1, y3}, we obtain the corresponding submatrices

[
pY |X(y2|x1)

pY |X(y2|x2)

]

=

[
δ
δ

]

,

[
pY |X(y1|x1) pY |X(y3|x1)

pY |X(y1|x2) pY |X(y3|x2)

]

=

[
1− δ 0

0 1− δ

]

.

8 CHAPTER 2. CHANNEL MODELS

+1 +1

X Y0
δ

δ

1 − δ

1 − δ
−1 −1

Figure 2.2: Binary erasure channel (BEC).

As these matrices fulfill the required conditions, the BEC is symmetric according
to Definition 2.1. 3

Example 2.3

A symmetric DMC with vector-valued outputs may be constructed as follows. Con-
sider two independent BSCs X1 → Y1 and X2 → Y2 of which the inputs are coupled
such that X1 = X2. Let X := X1 = X2 denote their common input and let
Y := [Y1, Y2] denote the vector of channel outputs. Then, the channel X → Y is
obviously a DMC with binary input alphabet and vector-valued output alphabet.

This channel can easily be shown to be a symmetric channel according to Defini-
tion 2.1. Due to the similarity to parallel concatenated codes [BM96b], we say that
the two BSCs are parallel concatenated, and we call X → Y a parallel concatenated

channel. 3

The concept of symmetric DMCs is now extended to channels with continuous (pos-
sibly vector-valued) output alphabets. We call these channels discrete-input memoryless
channels (DIMCs). First we introduce the notion of subchannels, and then we define
symmetric channels via strongly symmetric subchannels.

Definition 2.2 (Subchannel Indicator)
A random variable is called a subchannel indicator of a discrete-input memoryless channel
if it is a function of the channel output and statistically independent of the channel input.

A subchannel indicator allows to split the probabilistic mapping from channel input
to channel output into two subsequent steps. For illustration, consider a DIMC X → Y ,
(X,Y, pY |X(y|x)). Assume that A ∈ A is a subchannel indicator for this channel, and let
pA(a) denote the distribution of A, i.e., the probability mass function for discrete A or the
probability density function for continuous A. Let further f : Y→ A denote the function
mapping Y to A. Notice that A induces a partition of the output alphabet Y into the
subsets

Y(a) = {y ∈ Y : f(y) = a}, (2.1)

a ∈ A.
In the first step, the value of the subchannel indicator, say A = a, is drawn, inde-

pendently from the channel input (cf. Definition 2.2). Since a subchannel indicator is a
function of the channel output, the value a determines the set of possible output values,

2.1. SYMMETRIC CHANNELS 9

Y(a). (In the case of a DMC, this corresponds to a set of column vectors of the transition
matrix.) In the second step, the channel output is drawn from this subset.

The mathematical justification of this interpretation is given by the following equation
chain:

pY |X(y|x) = pY,A|X(y, a|x)
= pA|X(a|x) · pY |X,A(y|x, a)
= pA(a) · pY |X,A(y|x, a).

In the first line, we have used the fact that A is a function of Y , and in the last line, we
have used the fact that A is independent from X. Accordingly, the transition distribution
of the channel X → Y is factorized into the distribution of A, pA(a), and the conditional
transition distribution pY |X,A(y|x, a) depending on the value a. This motivates to in-
terpret the channel defined by pY |X,A(y|x, a) as a subchannel, symbolically denoted by
X → Y |A = a.

Definition 2.3 (Decomposition of DIMCs)
Let X → Y , (X,Y, pY |X(y|x)), denote a discrete-input memoryless channel. Let further
A ∈ A denote a subchannel indicator of this channel, and let Y(a), a ∈ A, denote the
partition of Y induced by A (cf. Equ. (2.1)).

(a) For each a ∈ A, the channel X → Y |A = a, (X,Y(a), pY |X,A(y|x, a)), is called a
subchannel of X → Y .

(b) The set of subchannels X → Y |A = a, a ∈ A, is called a decomposition of X → Y
induced by A.

(c) A channel is called a minimal channel if it cannot be further decomposed. A de-
composition is called a maximal decomposition if all subchannels are minimal.

For convenience, we use the abbreviation “subchannel A = a” to refer to the subchan-
nel X → Y |A = a. Based on the above definition, it is straight forward to give a general
definition of a symmetric channel.

Definition 2.4 (Symmetric Discrete-Input Memoryless Channel)
A discrete-input memoryless channel (with discrete or continuous output alphabet) is
called symmetric if it can be decomposed into strongly symmetric discrete memoryless
channels.

As for symmetric DMCs, the capacity of symmetric DIMCs is achieved for i.u.d. inputs.
As a discrete-input symmetric memoryless channel (DISMC) (discrete or continuous

output alphabet) is a generalization of a DMC (discrete input and discrete output alpha-
bet), the definition of symmetry for DIMCs (Definition 2.4) must imply the definition of
symmetry for DMCs (Definition 2.1). The following example illustrates the fact that the
two definitions are consistent. Furthermore, the definitions introduced are recapitulated.

10 CHAPTER 2. CHANNEL MODELS

Example 2.4

Consider the BEC X → Y , (X, Y, pY |X(y|x)), with erasure probability δ. Let X = B

and Y = {−1, 0, +1}, as depicted in Fig. 2.2. In Example 2.2, it was shown that
this channel is symmetric according to Definition 2.1. Here, we show that it is also
symmetric according to Definition 2.4 (as it should be). First, we guess a function on
the output alphabet, which leads to a subchannel indicator for the BEC. Then, we
determine the induced decomposition into subchannels and check if the subchannels
are strongly symmetric.

Let the function f : Y → A = {0, 1} be defined as f(y) := abs(y). The random
variable A = f(Y), A ∈ A, can easily be seen to be a subchannel indicator of the
BEC (cf. Definition 2.2). On the one hand, A is a function of Y by definition; on
the other hand, A is independent of X, because pA|X(a|x) = pA(a), as can easily
be seen. The corresponding partition of the output alphabet Y is given by the two
subsets Y(0) = {0} and Y(1) = {−1, +1} (cf. Equ. (2.1)).

Now, consider the decomposition of the BEC induced by A (cf. Definition 2.3). For
A = 0 and A = 1, we have the subchannels X → Y |A = 0, (X, Y(0), pY |X,A(y|x, 0)),
and X → Y |A = 1, (X, Y(1), pY |X,A(y|x, 1)), with the transition matrices

[
pY |X,A(0|+ 1, 0)

pY |X,A(0| − 1, 0)

]

=

[
1
1

]

,

[
pY |X,A(−1|+ 1, 1) pY |X,A(+1|+ 1, 1)

pY |X,A(−1| − 1, 1) pY |X,A(+1| − 1, 1)

]

=

[
1 0
0 1

]

,

respectively. Since the two subchannels are strongly symmetric, the BEC is sym-
metric according to Definition 2.4. The two subchannels are depicted in Fig. 2.3.

3

+1

X Y0

−1
1

1

1

1

(a) A = 0

+1 +1

X Y

−1 −1

1

1

(b) A = 1

Figure 2.3: Subchannels of the binary erasure channel (BEC), which is shown in Fig. 2.2.

When comparing Example 2.4 to Example 2.2, we see that the decomposition of a
DISMC into strongly symmetric subchannels, required by Definition 2.4, corresponds
exactly to the grouping of output values, required by Definition 2.1. Thus, it can easily
be seen that Definition 2.4 generalizes Definition 2.1.

With this generalization, we intended to obtain a definition of symmetry that is also
applicable for channels with continuous output alphabets. In order to show that the given
definition is reasonable, we consider the AWGN channel with binary input alphabet.

2.1. SYMMETRIC CHANNELS 11

Example 2.5

The AWGN channel with BPSK mapping X → Y , (X, Y, pY |X(y|x)), is defined by
X = B, Y = R, and

Y = X + N

with

pN (n) =
1

√

2πσ2
N

exp
(

− n2

2σ2
N

)

, (2.2)

n ∈ R, denoting the probability density function of the Gaussian noise1 N . Usually,
we define σ2

N = Es/(2N0), where Es denotes the signal energy per channel input
symbol and N0 denotes the single-sided noise power density. We refer to this channel
as binary-input AWGN channel (BI-AWGNC).

The BI-AWGNC is shown in Fig. 2.4 in two different ways: Fig. 2.4(a) is the usual
representation, whereas Fig. 2.4(b), which is more of an illustration, is more appro-
priate for our purposes and follows the representation of the BSC and the BEC.
Since the output alphabet is continuous, the values of Y are depicted as the axis of
real values, and since transitions to all values of Y are possible, the transitions are
symbolically depicted as curved arrows. The transition distribution is shown on the
right-hand side.

To show that this channel is symmetric, we may apply the subchannel indicator
A ∈ A defined by A = abs(Y). The corresponding partition of the output alphabet
is given by the subsets Y(0) = {0} and Y(a) = {−a, +a}, a ∈ R+. Notice that
the number of subsets is infinite. As an example, the subset Y(5) = {−5, +5} is
marked in the figure. The subchannels resulting from decomposition induced by A
are similar to the subchannels in the previous example. The subchannel A = 0
has only one possible output element; thus, it is trivially strongly symmetric. The
subchannels A = a for a ∈ R+ can easily be seen to be BSCs (see subchannel A = 5
in Fig. 2.4(b)); thus, these subchannels are also strongly symmetric. (Notice that
pA(a) is the probability density function of the subchannel indicators and thus of the
subchannels.) As we have a decomposition into strongly symmetric subchannels,
the binary-input AWGN channel is symmetric according to Definition 2.4. 3

From Example 2.5, one is tempted to suggest that the condition of symmetry in
Definition 2.4 may be equivalent to the much simpler condition:

pY |X(y|x) = pY |X(−y| − x) for x ∈ X and y ∈ Y. (2.3)

Since A := sgn(Y) is a subchannel indicator in this case, the condition (2.3) is sufficient
for symmetric according to Definition 2.4. However, it is not necessary, as shown by
the following simple example. Consider two DIMCs X → Y and X → Y ′, related by
Y ′ = Y + 1; let X → Y be symmetric. Then, X → Y ′ is symmetric by Definition 2.4 (as
it should be), but it is not symmetric according to (2.3). However, we conjecture that each
DISMC can be transformed such that (2.3) is fulfilled by applying a bijective mapping
to the channel inputs and to the channel outputs. For DISMCs with binary-inputs, this

1The letter N is used to denote the code word length and to denote the random variable for the
channel noise. The meaning becomes clear from the context.

12 CHAPTER 2. CHANNEL MODELS

YX

N

+

(a)

pY |X(y| + 1)

pY |X(y| − 1)

y

+1

X

−1

Y

+5

0

−5

(b)

Figure 2.4: Binary-input AWGN channel (BI-AWGNC).

transformation may be performed by mapping the channel inputs to B and the channel
outputs to their corresponding conditional log-likelihood ratios (LLRs). This is addressed
in Lemma 2.2. (The lemma is provided in the following section, as the decomposition into
BSCs, introduced therein, allows for a simple proof.)

To conclude the discussion of discrete-input symmetric memoryless channels
(DISMCs), we remark that any subchannel of a DISMC is again a DISMC. In the re-
maining part of this chapter, we focus on DISMCs with binary input alphabets.

2.2 Decomposition into BSCs

The maximal decomposition of a binary-input symmetric memoryless channel (BISMC)
is of special interest, because each resulting subchannel is a binary symmetric channel
(BSC) or can be interpreted as an equivalent BSC. In this section, we discuss such a
decomposition.

A BEC with erasure probability 1 and a BSC with crossover probability 1/2 cannot
be used for information transmission, because their capacities are zero. As a BISMC with
only one output value corresponds to a BEC with erasure probability 1, we may introduce
the following definition without loss of generality.

Definition 2.5
A BEC with erasure probability 1 is called equivalent to a BSC with crossover probabil-
ity 1/2.

In Example 2.4 and Example 2.5, we considered the decomposition of a BEC and of a
binary-input AWGN channel into strongly symmetric subchannels. In both examples, the
subchannels turned out to be either BSCs or channels having only one possible output
value (Y = 0). Therefore, all subchannels are BSCs. In the sequel, we generalize this
observation.

2.2. DECOMPOSITION INTO BSCS 13

Lemma 2.1
A minimal subchannel of a binary-input symmetric memoryless channel has an output
alphabet with either one or two elements.

Proof. Let X → Y denote a BISMC with output alphabet Y. We show by contradiction
that there are no minimal subchannels X → Y |A = a with output alphabet Y(a) such
that Y(a) contains three or more elements.

Assume that Y(a) contains more than two elements, say n, and let [pY |X,A(y|x, a)] ∈
[0, 1]2×n denote the transition matrix of subchannel A = a. Since the subchannel is
strongly symmetric, each column of the transition matrix is a permutation of each other
column. Without loss of generality, assume that we have n1-times column [p1, p2]

T and
n2-times column [p2, p1]

T, where n1 + n2 = n. As the entries of each row add up to one,
∑

y∈Y(a)

pY |X,A(y|x1, a) = 1

for x ∈ X, and we have for the first and the second row

n1p1 + n2p2 = 1,

n1p2 + n2p1 = 1,

respectively. Combining these two equations, we obtain

n1p1 + n2p2 = n1p2 + n2p1

⇔ n1(p1 − p2) = n2(p1 − p2)

⇔ (n1 − n2)(p1 − p2) = 0.

Thus, either n1 = n2 or p1 = p2.
For n1 = n2, the columns of the transition matrix can be grouped into pairs

[
p1 p2

p2 p1

]

,

and the subchannel X → Y |A = a can be further decomposed such that each new sub-
channel corresponds to one of these pairs. For p1 = p2, all columns are identical, and
the subchannel X → Y |A = a can be further decomposed such that each new subchannel
corresponds to one column. In either case, the subchannel X → Y |A = a can be further
decomposed, and thus, it is not minimal, in contradiction to the assumption. QED

Theorem 2.1 (Decomposition of a BISMC into BSCs)
Every binary-input symmetric memoryless channel can be decomposed into subchannels
that are binary symmetric channels.

Proof. Let X → Y denote a BISMC with output alphabet Y, and consider a maximal
decomposition into strongly symmetric subchannels X → Y |A = a with output alpha-
bets Y(a), a ∈ A. Due to the maximal decomposition, all subchannels are minimal.
Thus, all sets Y(a) contain either one or two elements, according to Lemma 2.1. If Y(a)
contains one element, the corresponding subchannel is equivalent to a BSC with crossover
probability 1/2. If Y(a) contains two elements, the corresponding subchannel is a strongly
symmetric DMC with binary inputs and binary outputs, and thus a BSC. QED

14 CHAPTER 2. CHANNEL MODELS

In imprecise terms, the theorem states that for each channel output value, we have
one of the following two cases: (a) the two channel input values are equally probable
(corresponding to a subchannel with one output value); (b) there is another channel
output value for which the probabilities for the two channel inputs are reversed (as is the
case for a BSC).

The following examples illustrate the theorem.

Example 2.6

Consider the BEC X → Y with input alphabet X = B, output alphabet Y =
{−1, 0, +1}, and erasure probability δ, as discussed in Example 2.2 and depicted in
Fig. 2.2. Using the same subchannel indicator A ∈ A = {0, 1} as in Example 2.2,
we have the subchannel X → Y |A = 0 with one output element and the subchannel
X → Y |A = 1 with two output elements. The subchannel corresponding to A = 0
is equivalent to a BSC with crossover probability 1/2; we may define its output
alphabet as Y′(0) = {0, 0′}. The subchannel corresponding to A = 1 is already a
BSC. This decomposition into BSCs is shown in Fig. 2.5. 3

+1

X Y

−1

0

0′

1/2

1/2

1/2
1/2

(a) A = 0

+1 +1

X Y

−1 −1

1

1

(b) A = 1

Figure 2.5: Decomposition of the binary erasure channel (BEC), shown in Fig. 2.2, into
binary symmetric subchannels.

Example 2.7

Consider the binary-input AWGN channel X → Y with X = B, Y = R, and
pY |X(y|x) = pN (y − x) with pN (n) denoting the Gaussian distribution of the noise,
given in (2.2). As shown in Example 2.5, A := abs(Y) is a subchannel indicator.
For A > 0, the subchannels are BSCs. For A = 0, the subchannel has only one
output element and is equivalent to a BSC with crossover probability 1/2. Thus,
we have a decomposition into BSCs. 3

Theorem 2.1 is applied in the following lemma, which addresses a question on the
symmetry condition (2.3) raised in the previous section. (Notice the definition of LLRs
in Appendix C.)

Lemma 2.2
Consider a binary-input symmetric memoryless channel X → Y with input alphabet B

and output alphabet Y. Consider further the mapping from the channel outputs Y to
the log-likelihood ratios Z ∈ R defined by z := L(X|Y = y) for i.u.d. channel inputs X.

2.3. CHARACTERIZING PARAMETERS 15

Then, the channel X → Z is a binary-input symmetric memoryless channel that fulfills
the symmetry condition

pZ|X(z|x) = pZ|X(−z| − x)
for all x ∈ B and z ∈ R.

Proof. The channel X → Y is assumed to be symmetric, and thus, there is a subchannel
indicator that decomposes it into BSCs. Let this subchannel indicator be denoted by A.
Consider a subchannel X → Y |A = a, and let the LLRs corresponding to the two channel
outputs be denoted by z1 and z2. Since the subchannel is a BSC, we have z1 = −z2 and
thus

pZ|X,A(z|x, a) = pZ|X,A(−z| − x, a)
for all x ∈ B and z ∈ {z1, z2}. This consideration holds for every subchannel, and therefore

pZ|X(z|x) = pZ|X(−z| − x)

for all x ∈ B and z ∈ R. This condition is sufficient for the symmetry of the channel
X → Z, and so we have proved the lemma. QED

The concept of decomposing a BISMC into BSCs using an appropriate subchannel
indicator is employed in many derivations in this thesis. In the following section, it
provides a means for an abstract statistical characterization of a BISMC.

2.3 Characterizing Parameters

Two important statistical parameters of a BISMC are the error probability and the mutual
information for independent and uniformly distributed (i.u.d.) input values. A more
detailed statistical characterization is provided by the error probability profile and the
mutual information profile, which are introduced in this section.

For the definition of the error probability, we have to consider the estimation of the
channel inputs on the basis of the channel outputs. Consider a BISMC X → Y defined by
(B,Y, pY |X(y|x)). (The channel outputs may be vector-valued.) A function2 dec : Y→ X

is called an estimator for the channel input, and x̂ := dec(y) is the estimate of the channel
input. Two optimal estimators are the maximum-likelihood estimator and the maximum
a-posteriori estimator. The maximum-likelihood (ML) estimator is defined by the rule:

decML(y) :=

+1 for pY |X(y|+1) > pY |X(y|−1),

−1 for pY |X(y|+1) < pY |X(y|−1),

randomly chosen from B for pY |X(y|+1) = pY |X(y|−1).

Similarly, the maximum a-posteriori (MAP) estimator is defined by the rule:

decMAP(y) :=

+1 for pX|Y (+1|y) > pX|Y (−1|y),
−1 for pX|Y (+1|y) < pX|Y (−1|y),
randomly chosen from B for pX|Y (+1|y) = pX|Y (−1|y).

2The expression dec stands for detector or decoder.

16 CHAPTER 2. CHANNEL MODELS

The two estimators are equivalent for i.u.d. inputs: Applying Bayes’ rule,

pX|Y (x|y) =
pX(x)

pY (y)
· pY |X(y|x),

the two criteria can be seen to be identical, since the fraction pX(x)/pY (y) is constant
with respect to x.

The error probability of a BISMC X → Y is defined as the probability that, for i.u.d.
channel inputs, the channel input X differs from its ML or MAP estimate:

Pe := Pr(X 6= decML(Y)) = Pr(X 6= decMAP(Y)). (2.4)

The definition of the error probability of BISMCs via i.u.d. inputs is motivated by two
facts. First, the probability Pr(X 6= decML(Y)) does not depend on the input distribution.
Second, the probability Pr(X 6= decMAP(Y)) is maximal for i.u.d. inputs. Thus, the error
probability of a BISMC may alternatively, but less obviously, be defined as the largest
error probability for MAP estimation, maximized over all input distributions. (Notice
the similarity to the alternative definition of the mutual information of a BISMC, stated
below.)

The error probability does not reflect the fact that there may be channel outputs that
lead to the same input estimate, but with different probabilities, or in imprecise terms,
that there may be channel outputs with different reliabilities. A statistical parameter
which takes this into account is the mutual information. The mutual information of
a BISMC X → Y is defined as the mutual information between channel input X and
channel output Y for i.u.d. inputs:

I := I(X;Y)
∣
∣
∣
pX(x)=1/2

. (2.5)

As in the case of the error probability, the definition via i.u.d. inputs may be motivated
as follows. Since for a symmetric channel, the capacity is achieved for i.u.d. inputs, the
value I, defined above, is equal to the capacity of the BISMC. Thus, the mutual informa-
tion of a BISMC may alternatively be defined as the largest mutual information between
channel input and channel output, maximized over all input distributions. (Notice the
similarity to the alternative definition of the error probability of a BISMC, stated above.)

The error probability, the mutual information, and their relation are illustrated in two
examples. Let

h(ρ) := −ρ ld ρ− (1− ρ) ld(1− ρ),
ρ ∈ [0, 1], denote the binary entropy function, and let h−1(ι), ι ∈ [0, 1], denote the inverse
of h(ρ) for ρ ∈ [0, 1/2] (cf. Appendix D).

Example 2.8

For the BSC with crossover probability ε, see Example 2.1, the error probability is
(trivially) given by Pe = ε, and the mutual information is given by

I = 1− h(ε). (2.6)

Thus, we have the relations I = 1− h(Pe) and Pe = h−1(1− I). 3

2.3. CHARACTERIZING PARAMETERS 17

Example 2.9

For the BEC with erasure probability δ, see Example 2.2, the error probability is
given by Pe = δ/2, and the mutual information is given by

I = 1− δ. (2.7)

Thus, we have the relations I = 1− Pe/2 and Pe = (1− I)/2. 3

The error probability and the mutual information of a BISMC are closely related.
Given one of the two parameters, an upper and a lower bound for the other parameter
can be given [HH03]. This is addressed at the end of this section.

A BISMC can be decomposed into subchannels that are BSCs, according to The-
orem 2.1, and the statistical properties of a BSC are completely defined by only one
statistical parameter. Combining these two facts, we may characterize a BISMC by the
distribution of a statistical parameter with respect to the subchannels. In the sequel, we
investigate this concept and start with statistical parameters of a BSC. If not otherwise
stated, we assume i.u.d. channel inputs.

A BSC X → Y , (X,Y, pY |X(y|x)), is usually specified by the crossover probability

ε := Pr(X 6= decML(Y));

for formal reasons we define it via the error probability. Equivalently, we may use the
mutual information resulting from i.u.d. inputs,

j := I(X;Y).

As a third statistical parameter, we consider the reliability value3 defined as the magnitude
of the log-likelihood ratio (see Appendix C) for i.u.d. channel inputs:

λ := |L(X|Y = y)|. (2.8)

(Notice that for i.u.d. channel inputs, |L(Y = y|X)| = |L(X|Y = y)|.) Reliability values
are discussed in detail in Chapter 4. The channel parameters ε, j, and λ are, of course,
functions of the transition probabilities pY |X(y|x), and there are one-to-one mappings
between the parameters:

ε = h−1(1− j) =
1

1 + exp(λ)
,

j = 1− h(ε) = 1− h
(1

1 + exp(λ)

)

,

λ = ln
1− ε
ε

= ln
1− h−1(1− j)
h−1(1− j) . (2.9)

Remark 2.1

For a BSC, the reliability value λ is proportional to the negative derivative of the
mutual information j with respect to the crossover probability ε; to be precise,
dj/dε = −λ/ ln 2.

3In [HOP96], the value λ/y is called the reliability value of the channel, assuming that the transition
distribution fulfills the symmetry condition pY |X(y|x) = pY |X(−y| − x).

18 CHAPTER 2. CHANNEL MODELS

Consider now a BISMC X → Y , (X,Y, pY |X(y|x)), with a subchannel indicator A ∈ A

inducing a maximal decomposition, i.e., a decomposition into BSCs. Since each subchan-
nel A = a is a BSC, we may assign a crossover probability, a mutual information value,
and an reliability value to each subchannel. For this purpose, we define the following
functions (assuming i.u.d. inputs):

fE : A → E

a 7→ Pr(X 6= decML(Y)|A = a),

fJ : A → J

a 7→ I(X;Y |A = a),

fΛ : A → L

a 7→ |L(X|Y = y, A = a)|. (2.10)

As the subchannel indicator A is a random variable, we may also regard the function
values as random variables.

Definition 2.6 (Indicators and Profiles for BISMCs)
Let X → Y denote a BISMC, and let A ∈ A denote a subchannel indicator that induces
a maximal decomposition (i.e., a decomposition into BSCs). Using the functions defined
in (2.10), the random variables

E := fE(A) ∈ E,

J := fJ(A) ∈ J,

Λ := fΛ(A) ∈ L

are called error probability indicator, mutual information indicator, and reliability value
indicator, respectively. Their distributions pE(ε), pJ(j), and pΛ(λ), denoting the proba-
bility mass function for discrete A and the probability density function for continuous A,
are called error probability profile, mutual information profile, and reliability value profile,
respectively.

These profiles represent an abstract statistical characterization of a BISMC: neither
the input alphabet nor the output alphabet is relevant, and subchannels (BSCs) that have
the same error probability (mutual information, reliability value) are not distinguished.
For decoding, only the probability or probability density pY |X(y|x) associated with a
channel output y is important, but not the value of the channel output itself. Thus, the
profiles defined above completely represent the statistical properties of a BISMC with
respect to the capability of information transmission. Due to the one-to-one mappings
between the three parameters given in (2.9), the three profiles provide equivalent statistical
characterizations of a BISMC.

Example 2.10

Consider a binary symmetric erasure channel (BSEC) X → Y with input alpha-
bet B, output alphabet Y = {−1, 0, +1}, crossover probability ρ, and erasure prob-
ability δ. This channel is defined by the transition probabilities

pY |X(y|x) =

1− ρ− δ for y = x,

δ for y = 0,

ρ for y 6= x,

2.3. CHARACTERIZING PARAMETERS 19

x ∈ X. This BSEC is depicted in Fig. 2.6.

A maximal decomposition of the BSEC is induced by the subchannel indicator
A := abs(Y), A ∈ A = {0, 1}. The subchannel X → Y |A = 0 has the output
alphabet Y(0) = {0} and may be converted into an equivalent BSC that has
crossover probability fE(0) = 1/2, see Definition 2.5; the probability for this sub-
channel is pA(0) = δ. The subchannel X → Y |A = 1 has the output alphabet
Y(1) = {−1, +1} and is a BSC with crossover probability fE(1) = ρ/(1 − δ); the
probability for this subchannel is pA(1) = 1− δ.

The (discrete) profiles of the BSEC are given as follows.

• Error probability profile:

pE(ε) =

1− δ for ε =
ρ

1− δ
,

δ for ε =
1

2
.

• Mutual information profile:

pJ(j) =

1− δ for j = 1− h
(ρ

1− δ

)

,

δ for j = 0.

• Reliability value profile:

pΛ(λ) =

1− δ for λ = ln
1− ρ− δ

ρ
,

δ for λ = 0.

3

+1 +1

−1

Y0X

−1

δ

δ

1 − ρ − δ

ρ

ρ

1 − ρ − δ

Figure 2.6: Binary symmetric erasure channel (BSEC).

Example 2.11

Consider the binary-input AWGN channel X → Y from Example 2.5: X ∈ B,
Y = X + N ∈ R; the noise N is Gaussian distributed according to (2.2) and
has variance σ2

N = Es/(2N0). As shown in Example 2.7, the subchannel indicator
A := abs(Y) induces a decomposition into BSCs.

20 CHAPTER 2. CHANNEL MODELS

Since L(X|Y = y) = 2/σ2
N · y [HOP96], the reliability value indicator Λ and the

subchannel indicator A are related as

Λ =
2

σ2
N

·A.

Based on this relation, the error probability indicator E and the mutual information
indicator J can be computed using (2.10). 3

The following theorem relates the error probabilities and the mutual information val-
ues of the subchannels to error probability and the mutual information of the BISMC,
respectively. The proof of the theorem makes use of the concept of subchannel indicators.

Theorem 2.2 (Expectation of Indicators)
For a BISMC, the error probability Pe is the expected value of the error probability
indicator E , and the mutual information I is the expected value of the mutual information
indicator J :

Pe = E{E} and I = E{J}.
Proof. Let A denote a subchannel indicator inducing a decomposition of the BISMC
into BSCs. We assume that A is continuous, so that pA(a) denotes the probability density
function. (For discrete A, the integrals have to be replaced by sums.)

For proving the first part, we write the following chain of equalities:

Pe
(a)
= Pr(X 6= decML(Y))

=

∫

a∈A

Pr(X 6= decML(Y), A = a) da

=

∫

a∈A

pA(a) Pr(X 6= decML(Y)|A = a)
︸ ︷︷ ︸

fE(a)

da

(b)
= E

{
fE(A)

}

(c)
= E

{
E
}
.

The applied relations are (a) the definition of the error probability according to (2.4),
(b) the definition of function fE according to (2.10), and (c) the the error probability
indicator E according to Definition 2.6.

For proving the second part, we apply the chain rule for mutual information:

I
(a)
= I(X;Y)

(b)
= I(X;Y,A)

(c)
= I(X;Y |A) + I(X;A).

We have used (a) the definition of I according to (2.5), and (b) the fact that A is a
function of Y . As A is defined to be independent from X, we have I(X;A) = 0. Using
the definition of the mutual information indicator J , see Definition 2.6 and (2.10), we
may write

I(X;Y |A) =

∫

a∈A

pA(a) I(X;Y |A = a)
︸ ︷︷ ︸

fJ (a)

da = E{fJ(A)} = E{J},

which completes the proof. QED

2.3. CHARACTERIZING PARAMETERS 21

Whereas the expectations of the error probability indicator and of the mutual infor-
mation indicator have well-defined meanings, namely the error probability and the mutual
information of the BISMC, the expectation of the reliability value indicator has no obvious
meaning.

As mentioned above, the error probability and the mutual information of a BISMC
are closely related. To be precise, given one of the two values, bounds for the other one
can be given, as stated and proven in [HR70, HH03]. Here, we use another method of
proof using the concept of error probability indicators and mutual information indicators.

Theorem 2.3 (Relation between Error Probability and Mutual Information)
For a BISMC with error probability Pe and mutual information I, the following two
inequalities hold:

h−1(1− I) ≤ Pe ≤ 1
2
(1− I),

1− h(Pe) ≤ I ≤ 1− 2Pe.

Proof. First part: Using Theorem 2.2 and the conversion from mutual information to
error probability according to (2.9), we obtain

Pe = E{E} = E{h−1(1− J)}.

Now, we exploit two properties of the inverse of the binary entropy function, h−1. First,
the function h−1 is convex-∪; thus we can apply Jensen’s inequality [CT91] and obtain

E{h−1(1− J)} ≥ h−1
(
E{1− J}

)
= h−1(1− I).

Second, the function h−1 is lower-bounded as h−1(ι) ≤ 1
2
ι; using this bound, we obtain

E{h−1(1− J)} ≤ E{1
2
(1− J)} = 1

2
(1− I).

Second part: Inverting the left-hand relation of the first part, h−1(1 − I) ≤ Pe, gives
1 − h(Pe) ≤ I. (Notice that the binary entropy function is monotonically increasing for
arguments in [0, 1

2
].) Inverting the right-hand relation of the first part, Pe ≤ 1

2
(1 − I),

gives I ≤ 1− 2Pe. QED

Alternatively, we may start the proof with

I = E{J} = E{1− h(E)}

and exploit the convexity of 1 − h(.) in a similar way as above. The bounds hold with
equality when the channel is a BSC or a BEC (cf. Example 2.8 and Example 2.9).

Mutual information profiles are applied in Chapter 6 to proof bounds on combining
of mutual information values. In particular, this concept provides an elegant method
to explain the bounds on information combining for single parity check codes and for
repetition codes (cf. Section 6.2.4).

22 CHAPTER 2. CHANNEL MODELS

2.4 Summary

In this chapter, we have discussed the symmetry of memoryless channels with discrete
input alphabet and discrete or continuous output alphabet. The notion of a subchannel in-
dicator has been introduced, and a definition of a subchannel has been given. As has been
shown, every binary-input symmetric memoryless channel (BISMC) can be decomposed
into subchannels that are binary symmetric channels (BSCs). Based on this property, we
have defined the error probability indicator E , the reliability value indicator Λ, and the
mutual information indicator J . The distributions of these random variables, denoted
as error probability profile, reliability value profile, and mutual information profile, re-
spectively, completely characterize the statistical properties of a BISMC with respect to
its capability of information transmission. A first application of these concepts has been
the proof for the relation between the error probability and the mutual information of a
BISMC. In Chapter 4, Chapter 5, and Chapter 6, these concepts are used to prove and
interpret theorems.

Chapter 3

Channel Coding Schemes

The ingredients of a powerful coding scheme are an encoder generating a code with good
distance properties and a decoder with reasonable complexity. Especially for very noisy
communication channels, where maximum-likelihood (ML) decoding or near ML decoding
is necessary for good performance, these two aspects are often contradictory. For example,
algebraic codes have very good distance properties, but ML decoding is too complex; on
the other hand, convolutional codes having moderate memory lengths can efficiently be
ML decoded, but their distance properties are poor1.

Special code constructions allow for iterative decoding schemes that achieve near ML
decoding. These kinds of coding schemes are addressed in this chapter. Typically, such a
code includes a small number of low-weight codewords, and the complexity of the decoder
grows linearly with the code length. This trade-off between distance properties of the
code and complexity of the decoder leads to powerful coding schemes for communication
channels with low to medium transmission quality. In particular, these coding schemes
may be constructed in such a way that the capacity of the communication channel is
achieved as the code length tends to infinity.

The codes are built up by combining relatively simple constituent codes. This may
be explicit in the special structure of the encoder, as in parallel and serially concatenated
codes, or implicit by a special structure of the parity-check matrix of the code, as in low-
density parity check codes. The decoders consist of several constituent decoders. Each
constituent decoder takes into account only a subset of all code constraints. By exchanging
information about info symbols2 or code symbols between the constituent decoders in an
iterative fashion, the overall decoder tries to find a solution fulfilling all constraints – this
solution approximates the ML info word or the ML code word.

In this chapter, first some properties of binary linear encoders are given, and the
notion of a systematically extended code is explained. Then a general model for symbol-
by-symbol soft-output decoding is introduced; this model may be used for coding schemes
with noniterative or iterative decoding structures. Based on this decoding model, two
optimal decoding principles are reviewed: LogAPP decoding and MaxLogAPP decoding3.

1Notice that convolutional codes are good with respect to the decoding delay [JZ99].
2Throughout this thesis, the term “info symbol” is prefered to the term “information symbol” to avoid

any confusion with the term “mutual information” or the general term “information”.
3Both decoding principles can equivalently be formulated with probabilities. The first one is then

24 CHAPTER 3. CHANNEL CODING SCHEMES

Using these encoder and decoder descriptions, three types of iteratively decodable
codes are addressed: parallel concatenated codes, serially concatenated codes, and low-
density parity-check codes. For each code, the encoder and the iterative decoder are
described, the generator matrix and parity-check matrices are given, and the relation
between the parity-check matrix and the iterative decoding scheme is discussed.

This chapter mainly deals with fundamentals of symbol-by-symbol soft-output decod-
ing, concatenated codes, and iterative decoding, presented in a unified way. Besides that,
there are also new contributions:

(a) Systematic extensions of codes are utilized to incorporate information about info
symbols (often called a-priori information) in decoding algorithms.

(b) Requirements for pre-decoding soft-values, necessary for optimal operation of de-
coding algorithms, are made explicit.

(c) Generator matrices and parity-check matrices for parallel and serially concatenated
codes are given, using only generator matrices and parity-check matrices of the
constituent codes.

(d) Iterative decoders operate on a code embedding the actual code, but not on the
code itself. This prerequisite for iterative decoding is discussed in detail using the
structures of the parity-check matrices.

(e) The structures of iteratively decodable codes may be utilized to find iterative de-
coders for other codes. This possible application is discussed.

In the following section, we start with some properties of linear codes.

3.1 Linear Binary Encoders

In this thesis, we consider only binary codes. The binary symbols are represented in
either binary field F2 := {0, 1} or B := {−1,+1}. The representation over B is more
suited to describe the transmission, whereas the representation over F2 is more suited
to describe encoding and code properties. For F2, addition and multiplication are those
operations in the modulo-two arithmetic; for B, addition and multiplication are defined
via the equivalent operations in F2, using the one-to-one mapping4

bpsk : F2 → B

0 7→ +1

1 7→ −1.

(3.1)

The inverse mapping is denoted by bpsk−1. By convention, we write symbols and words
over B as a and a, and the corresponding symbols and words over F2 as ă and ă. Symbols
a ∈ B and ă ∈ F2 are related by

ă = bpsk−1(a),

commonly called APP decoding.
4This mapping is commonly used for binary phase shift keying (BPSK).

3.1. LINEAR BINARY ENCODERS 25

and words a = [a0, · · · , aL−1] ∈ BL and ă = [ă0, . . . , ăL−1] ∈ FL
2 are related by

ăi = bpsk−1(ai),

i = 0, 1, . . . , L− 1.
A linear binary encoder for a linear binary (N,K) code is a linear mapping

enc : B
K → B

N

u 7→ x

from info words5 u ∈ BK of length K to code words x ∈ BN of length N . As index sets
for the components of the info word and the code word, we use

K := {0, 1, . . . , K − 1}, N := {0, 1, . . . , N − 1};

accordingly, the info word and the code word are given as

u = [u0, . . . , uK−1], x = [x0, . . . , xN−1].

The set of code words x defined by enc is called the linear binary code

C := {x ∈ B
N : x = enc(u),u ∈ B

K}.

The code rate (and also the encoder rate) is given by R = K/N .
A code C ′ is called an equivalent code of code C if the order of the symbols in code

words x′ ∈ C ′ are simply rearrangements of the order in the code words x ∈ C. As
there is a one-to-one correspondence between x ∈ BN and x̆ ∈ FN

2 (cf. above), we do
not distinguish between the set of code words over F2 and the set of code words over B,
whenever this is possible without causing ambiguity, and denote both as code C. Thus,
we have by convention

x ∈ C ⇔ x̆ ∈ C
for x ∈ BN and the corresponding x̆ ∈ FN

2 .
The encoding may be defined by means of a matrix G ∈ F

K×N
2 of rank K, called

generator matrix :
x̆ = ŭG. (3.2)

Thus, we have
C = {x̆ ∈ F

N
2 : x̆ = ŭG, ŭ ∈ F

K
2 }. (3.3)

A matrix H ∈ F
M×N
2 of rank (N −K) is called a parity-check matrix of code C if

x̆HT = 0 for all x̆ ∈ C, (3.4)

where HT denotes the transposed matrix of H . Notice that M ≥ N−K. The conditions
given by (3.4) are called code constraints of C. From (3.4), we immediately have the
relation

GHT = 0

5In this thesis, the term “info word” is used instead of “information word” to clearly distinguish it
from “mutual information”, which is often abbreviated by “information”.

26 CHAPTER 3. CHANNEL CODING SCHEMES

between the generator matrix and a parity-check matrix of a code. Equivalently to (3.3),
we have

C = {x̆ ∈ F
N
2 : x̆HT = 0}. (3.5)

For decoding, not only knowledge of the code, but also knowledge of the encoding is
required. An implicit description of both is given by the generator matrix. For an explicit
description, we may extend each code word by the corresponding info word.

Definition 3.1 (Systematically Extended Code)
Let C denote a binary linear (N,K) code defined by a generator matrix G. The system-
atically extended code

Csyxt := {x̆syxt ∈ F
K+N
2 : x̆syxt = [ŭ x̆], x̆ = ŭG, ŭ ∈ F

K
2 } (3.6)

of code C is the (N + K,K) code obtained by extending each code word of C by the
corresponding info word.

As Csyxt implies the encoding of C according to G, it enables an elegant description
of the decoding operation of C. Of special interest are the following subsets of Csyxt: For
b ∈ F2, we define

Csyxt(ŭk = b) := {[ŭ x̆] ∈ Csyxt : ŭk = b},
Csyxt(x̆n = b) := {[ŭ x̆] ∈ Csyxt : x̆n = b}, (3.7)

k ∈ K, n ∈ N . Each subset comprises all code words that have the same symbol
in a certain position. These subsets are employed for defining LogAPP decoding and
MaxLogAPP decoding (cf. Section 3.4).

In the sequel, some relations between the generator and the check matrix for the
(original) code C and its systematically extended code Csyxt are discussed. The generator
matrix of Csyxt is given by

Gsyxt :=
[
I G

]
∈ F

K×(K+N)
2 , (3.8)

where I denotes the identity matrix, and a parity-check matrix is given by6

H syxt :=
[
GT I

]
∈ F

N×(K+N)
2 . (3.9)

Notice that the encoding of C according to G is included in the parity-check matrix of
the systematically extended code, but not in that of the original code.

A parity-check matrix of code Csyxt, which explicitly contains H , can be derived as
follows. Let A ∈ F

K×N
2 denote a matrix fulfilling

GAT = I, (3.10)

such that matrix AT is an inverse7 of the generator matrix G. Multiplying (3.2) by AT

from the right-hand side, we obtain

x̆A = ŭGAT = ŭ. (3.11)

6The general rule is: G = [I P]⇒H = [−P T I]. See [MS88].
7The inverse of a generator matrix always exists, but it is not unique.

3.1. LINEAR BINARY ENCODERS 27

When writing the constraints given by (3.4) and (3.11) in matrix notation as

[ŭ x̆]

[
I A

0 H

]T

= 0 for all x̆syxt = [ŭ x̆] ∈ Csyxt,

we can easily identify

H syxt,A :=

[
I A

0 H

]

∈ F
N×(K+N)
2 (3.12)

to be a parity-check matrix for the systematically extended code Csyxt, that has the desired
property. As this matrix has rank N , no rows are redundant.

Example 3.1

Consider the repetition code of length N = 3 (K = 1), denoted by R3, with
generator matrix G and parity-check matrix H:

G =
[
1 1 1

]
, H =

[
1 1 0
0 1 1

]

.

For the systematically extended code, the generator matrix Gsyxt and the parity-
check matrix Hsyxt, according to (3.8) and (3.9), are given by

Gsyxt =
[
I G

]
=

[
1 1 1 1

]
, Hsyxt =

[
GT I

]
=

1 1 0 0
1 0 1 0
1 0 0 1

 .

The systematically extended code over B is given by

R3,syxt = {[+1, +1, +1, +1], [−1,−1,−1,−1]}.

In each code word, the first symbol is the info symbol, and the remaining part is
the code word of the original repetition code R3. 3

Example 3.2

Consider the single parity check code of length N = 3 (K = 2), denoted by S3, with
generator matrix G and parity-check matrix H:

G =

[
1 1 0
0 1 1

]

, H =
[
1 1 1

]
.

For the systematically extended code S3,syxt, the generator matrix Gsyxt and the
parity-check matrix H syxt, according to (3.8) and (3.9), are given by

Gsyxt =
[
I G

]
=

[
1 0 1 1 0
0 1 0 1 1

]

, Hsyxt =
[
GT I

]
=

1 0 1 0 0
1 1 0 1 0
0 1 0 0 1

 .

An inverse generator matrix, according to (3.10), is given by

A =

[
1 0 0
0 0 1

]

.

28 CHAPTER 3. CHANNEL CODING SCHEMES

According to (3.12), a parity-check matrix for the systematically extended
code S3,syxt, that explicitly contains H, is obtained as

Hsyxt,A =

[
I A

0 H

]

=

1 0 1 0 0
0 1 0 0 1
0 0 1 1 1

 .

The systematically extended code over B is given by

Csyxt = {[+1, +1, +1, +1, +1], [−1, +1,−1,−1, +1],

[+1,−1, +1,−1,−1], [−1,−1,−1, +1,−1]}.

In each code word, the first two symbols represent the info word, and the remaining
part is the code word of the original single parity check code S3. 3

A linear binary code can compactly be represented in a trellis [Wol78,McE96,Var98,
LKFF98, JZ99]. To include also the encoding rule, i.e., the mapping between info words
and code words, one may simply use the trellis of the corresponding systematically ex-
tended code. The complexity of the resulting trellis can usually be decreased when the
systematic symbols are not placed before the original code words (as in Definition 3.1),
but “spread” over the whole code word. (Notice that this code is an equivalent code
of the systematically extended code.) In case of a convolutional code, the encoder pro-
vides already the structure for a “natural” construction of the code trellis [JZ99]. Further
information can be found in the literature.

3.2 Decoding Model

Decoding relies on the knowledge of the underlying transmission system or, more generally,
on the assumption of a particular transmission model. The latter is especially the case for
constituent decoders of iterative decoding schemes. In the sequel, a framework for symbol-
by-symbol soft-output decoding is introduced. This framework, depicted in Fig. 3.1,
includes the assumed transmission model, comprising a linear channel encoder, binary-
input symmetric memoryless channels (BISMCs) (cf. Chapter 2), and a general symbol-
by-symbol soft-output decoder. Two special and very important soft-output decoding
principles, LogAPP decoding8 and MaxLogAPP decoding, are addressed in Section 3.4.

In the sequel, “symbol-by-symbol soft-output decoding” may be abbreviated with
“soft-output decoding” when possible without causing ambiguity.

3.2.1 Transmission Model

The soft-output decoder assumes the following transmission model: A binary symmetric
source (BSS) generates independent and uniformly distributed (i.u.d.) info symbols from

8LogAPP decoding, which uses LLRs as inputs and outputs, is equivalent to APP decoding, which
uses probabilities as inputs and outputs. This thesis focuses on LogAPP decoding.

3.2. DECODING MODEL 29

Channel 2

Channel 1

BSS Encoder

LLR

LLR Decoder
Output
Soft-

S-by-S

x y
x

y
u

u zx

zu vu

wu

wx

vx

û

x̂

Figure 3.1: General decoding model, including a symbol-by-symbol soft-output decoder.

the alphabet B. The binary linear encoder maps each info word u onto a code word x

from code C, where

u = [u0, . . . , uK−1], x = [x0, . . . , xN−1].

Notice that [ux] is a code word of the systematically extended code Csyxt, i.e.,

[ux] ∈ Csyxt. (3.13)

The info symbols and the code symbols are transmitted over independent symmetric
memoryless channels, called info-symbol channel (Channel 1) and code-symbol channel
(Channel 2). The channel outputs, yu and yx, are converted to channel log-likelihood
ratios9 (LLRs), zu and zx. (Channel LLRs are defined below.)

Based on these assumptions, the symbol-by-symbol soft-output decoder takes the chan-
nel LLRs for info and code symbols as pre-decoding soft-values, and it computes post-
decoding soft-values for info symbols or code symbols. These may be complete post-
decoding values, denoted by vu and vx, or extrinsic post-decoding values, denoted by
wu and wx. (The difference between “complete” and “extrinsic” is addressed below.)
For computing the post-decoding values, the soft-output decoder only takes into account
that [ux] ∈ Csyxt. (Symbol-by-symbol soft-output decoding is discussed in detail in Sec-
tion 3.2.2.) Finally, the post-decoding soft-values may be hard-decided to the estimated
info word û or the estimated code word x̂.

Notice that we employ the following notation: Channel outputs are denoted by y,
channel LLRs are denoted by z, complete post-decoding values are denoted by v, and
extrinsic post-decoding values are denoted by w. The indices indicate whether the soft-
values are for info symbols, index “u”, or code symbols, index “x”. The index sets for the
words of symbols and soft-values are

K := {0, 1, . . . , K − 1}, N := {0, 1, . . . , N − 1}.

The index set K is used for the info word and all corresponding words of soft-values, i.e.,
for u, yu, zu, vu, wu, û. The index set N is used for the code word and all corresponding
words of soft-values, i.e., for x, yx, zx, vx, wx, x̂.

The given model is very general. It may be applied to coding schemes with noniterative
decoders as well as to coding schemes with iterative decoders. For coding schemes with

9Details about log-likelihood ratios are given in Appendix C.

30 CHAPTER 3. CHANNEL CODING SCHEMES

noniterative decoders, the code-symbol channel is a communication channel, and the info-
symbol channel is only a dummy channel, over which no information can be transmitted
(corresponding to infinite noise); the info-symbol channel may also be used to model the
availability of a-priori information about info symbols. For coding schemes with iterative
decoders, the soft-output decoder represents a constituent decoder, and accordingly, the
encoder represents a (possibly virtual10) encoder for a constituent code. The info-symbol
and the code-symbol channel may be communication channels or virtual channels within
an iterative decoder. Such virtual channels are often referred to as extrinsic channels
or a-priori channels in the literature on iterative decoding; in this thesis, we call them
“a-priori channels”, because the decoder interprets the channel outputs as a-priori values.

The info symbol channel U → Yu (Channel 1 in Fig. 3.1), and the code symbol channel
X → Yx (Channel 2 in Fig. 3.1) are assumed to be BISMCs. The channel output corre-
sponding to info symbol uk is denoted by yu,k, and the channel output corresponding to
code symbol xn is denoted by yx,n. The words of channel outputs corresponding to the
info word u and the code word x are written as

yu = [yu,0, yu,1, . . . , yu,K−1], yx = [yx,0, yx,1, . . . , yx,N−1],

respectively.
As the channels are memoryless, each channel output corresponds to exactly one info

or code symbol. The LLR for a symbol given only the direct observation of this symbol
is called channel LLR. Accordingly, the channel LLR for info symbols uk and the channel
LLR for code symbols xn are defined as

zu,k := L(Uk|Yu,k = yu,k) = ln
Pr(Uk = +1|Yu,k = yu,k)

Pr(Uk = −1|Yu,k = yu,k)
,

zx,n := L(Xn|Yx,n = yx,n) = ln
Pr(Xn = +1|Yx,n = yx,n)

Pr(Xn = −1|Yx,n = yx,n)
,

respectively, k = 0, 1, . . . , K − 1 and n = 0, 1, . . . , N − 1. The words of channel LLRs
corresponding to the info word u and the code word x are written as

zu = [zu,0, zu,1, . . . , zu,K−1], zx = [zx,0, zx,1, . . . , zx,N−1],

respectively.
The computation of channel LLRs (LLR in Fig. 3.1) can be interpreted as a conversion

of channel outputs into LLRs. Notice that the backward and the forward LLR are equal,
i.e.,

L(Uk|Yu,k = yu,k) = L(Yu,k = yu,k|Uk),

L(Xn|Yx,n = yx,n) = L(Yx,n = yx,n|Xn),

because (i) the info symbols are equiprobably distributed by definition, and (ii) the code
symbols are equiprobably distributed due to the linear encoding of equiprobably dis-
tributed info symbols. When possible without causing ambiguity, we use the shorthand
notation L(U |y) for L(U |Y = y).

10This is the case for LDPC codes.

3.2. DECODING MODEL 31

Example 3.3

The channel LLR can easily be computed for the following three channels:

• BI-AWGNC (B,R, pY |X(y|x)) with noise variance σ2
N :

L(X|yx) =
2

σ2
N

yx.

• BSC (B, B, pY |X(y|x)) with crossover probability ε:

L(X|yx) = ln
1− ε

ε
yx.

• BEC (B, {−1, 0, +1}, pY |X(y|x)) with erasure probability δ:

L(X|yx) =

+∞ for yx = +1,

0 for yx = 0,

−∞ for yx = −1.

(The indices are omitted for convenience.) 3

The superchannel between the info symbols and their channel LLRs, U → Zu, and
the superchannel between the code symbols and their channel LLRs, X → Zx, are also
BISMCs, as can easily be seen.

3.2.2 Symbol-by-Symbol Soft-Output Decoding

Decoding in the conventional sense is the inversion of the mapping from the info word or
the code word to the received word. The result of this kind of decoding is an estimate of
the transmitted info or code word; therefore it is called hard-output decoding. As opposed
to this, soft-output decoding provides not only estimates for the most probable info or
code word but also some kind of reliability information. (Notice that both hard-output
decoding and soft-output decoding may be based on hard or soft inputs.)

The kind of reliability information depends on the applied decoding scheme. Important
and frequently used schemes are the following:

• A bounded minimum distance decoder [Fri94,Bos98,LC83] outputs either (i) a code
word estimate or (ii) a decoding failure. Correspondingly, we have the following
reliability information: (i) the estimated code word is equal to the transmitted code
word; (ii) all code words are equally probable. In addition to this, the number of
corrected symbol errors may be used.

• A list decoder [Has87,SS94,NS95] generates a list of code words, ordered with respect
to their probabilities. Correspondingly, the higher the position of a code word in
the list, the higher is the reliability when deciding for this code word.

32 CHAPTER 3. CHANNEL CODING SCHEMES

• A symbol-by-symbol soft-output decoder provides reliability information about each
info symbol or each code symbol. The optimality of the soft-outputs depends on
what they are used for by the following processing stage. For example, they may be
used to estimate the info or code symbols such that the symbol or the word error
rate is minimized; they may also be used as soft-inputs by a subsequent decoding
stage, as in iterative decoding. (Notice that these three examples lead to three
different optimality criteria.) Algorithms for this kind of decoding are the BCJR
algorithm, the LogAPP algorithm, the MaxLogAPP algorithm, and the soft-output
Viterbi algorithm; details are provided in Section 3.4.

In the sequel, we restrict ourselves to symbol-by-symbol soft-output decoding. For con-
venience, we may refer to this kind of decoding by simply “soft-output decoding”, when
possible without causing ambiguity.

A general symbol-by-symbol soft-output decoder takes one soft-value for each info and
each code symbol, and it computes one (new) soft-value for each info symbol or for each
code symbol (cf. Fig. 3.1). These computations are based on the code structure. The
input values of the decoder are called pre-decoding soft-values, and the output values are
called post-decoding soft-values. Both kinds of soft-values are assumed to be real-valued.

In literature on iterative decoding, pre-decoding values are commonly called channel
values if they come from a communication channel, and they are called a-priori values if
they come from other constituent decoders. Constant a-priori values may also be used to
model a-priori distributions of info symbols. The pre-decoding values for info symbol uk

and code symbol xn are denoted by zu,k and zx,n, respectively. The words of pre-decoding
values (pre-decoding words) corresponding to the info word u and the code word x are
denoted by

zu = [zu,0, zu,1, . . . , zu,K−1], zx = [zx,0, zx,1, . . . , zx,N−1].

The soft-output decoder may compute general post-decoding values or extrinsic post-
decoding values; the latter are of special importance in the context of iterative decoding.
The post-decoding values for info symbol uk and code symbol xn are denoted by vu,k

and vx,n, respectively. The words of post-decoding values (post-decoding words) corre-
sponding to the info word u and the code word x are denoted by

vu = [vu,0, vu,1, . . . , vu,K−1], vx = [vx,0, vx,1, . . . , vx,N−1].

In a similar way, extrinsic post-decoding values for info symbol uk and code symbol xn

are denoted by wu,k and wx,n, respectively. The words of extrinsic post-decoding values
(extrinsic post-decoding words) corresponding to the info word u and the code word x

are denoted by

wu = [wu,0, wu,1, . . . , wu,K−1], wx = [wx,0, wx,1, . . . , wx,N−1].

While a general post-decoding value may depend on all pre-decoding values, an extrinsic
post-decoding value is required to fulfill the following condition:

Definition 3.2 (Extrinsic Value)
A post-decoding value (soft or hard) for an info or a code symbol is called extrinsic if it
is independent from the corresponding pre-decoding value for this symbol.

3.2. DECODING MODEL 33

Thus, wu,k is independent from zu,k, and wx,n is independent from zx,n. For conve-
nience, we call an extrinsic post-decoding value also simply an extrinsic value. When
we want to emphasize that a post-decoding value is not extrinsic, we call it a complete
post-decoding value or a nonextrinsic post-decoding value.

Soft-output decoding is a mapping from pre-decoding values for info and code symbols
to post-decoding values for info or code symbols, called soft-output decoding function. An
implementation of a soft-output decoding function, e.g., by means of a certain algorithm,
is called a soft-output decoder. We define the following two decoding functions.

Definition 3.3 (Symbol-by-Symbol Soft-Output Decoding)
An info-symbol soft-output decoding function is a mapping

decinfo : RK ×RN → RK

[zu, zx] 7→ vu

from pre-decoding values to post-decoding values for info symbols. Correspondingly, a
code-symbol soft-output decoding function is a mapping

deccode : RK ×RN → RN

[zu, zx] 7→ vx

from pre-decoding values to post-decoding values for code symbols.

For both decoding functions, the first argument is the word of pre-decoding values for
info symbols, zu, and the second argument is the word of pre-decoding values for code
symbols, zx.

In the context of iterative decoding, computation of extrinsic post-decoding values,
called extrinsic soft-output decoding, is of special interest. Similarly to the general case,
we define the following two decoding functions.

Definition 3.4 (Extrinsic Symbol-by-Symbol Soft-Output Decoding)
A soft-output decoding function is called an extrinsic soft-output decoding function if the
function values are extrinsic post-decoding values. An info-symbol extrinsic soft-output
decoding function is a mapping

decext
info : RK ×RN → RK

[zu, zx] 7→ wu

from pre-decoding values to extrinsic post-decoding values for info symbols. Correspond-
ingly, a code-symbol extrinsic soft-output decoding function is a mapping

decext
code : RK ×RN → RN

[zu, zx] 7→ wx

from pre-decoding values to extrinsic post-decoding values for code symbols.

34 CHAPTER 3. CHANNEL CODING SCHEMES

Complete and extrinsic soft-output decoding are based on both the code C and the
encoding, i.e., the mapping from info words to code words. Equivalently, we may say that
soft-output decoding takes into account the code constraints given by the systematically
extended code Csyxt. For emphasizing the underlying code constraints, we introduce the
following symbolic notation for the above decoding functions:

vu = decinfo(zu, zx ‖ Csyxt),
vx = deccode(zu, zx ‖ Csyxt),
wu = decext

info(zu, zx ‖ Csyxt),
wx = decext

code(zu, zx ‖ Csyxt)

The term “‖ Csyxt” may be read “based on code Csyxt”. If no pre-decoding values for info
symbols are available, the original code is sufficient to determine post-decoding values for
code symbols. Therefore, if zu = 0, we may write the code-symbol soft-output decoding
functions shortly as

deccode(zx ‖ C) := deccode(0, zx ‖ Csyxt),
decext

code(zx ‖ C) := decext
code(0, zx ‖ Csyxt).

As our focus is on soft outputs, we will omit the term “soft-output” when talking
about decoding, decoding functions, and decoders, if possible without causing ambiguity.

In this thesis, we assume that the decoders have a symbol-wise symmetry.

Definition 3.5 (Symbol-wise Symmetric Soft-Output Decoder)
Assume a transmission system comprising a binary symmetric source, a binary linear
channel encoder, binary-input symmetric memoryless channels, and a symbol-by-symbol
soft-output decoder. Then, an info-symbol decoder is called symbol-wise symmetric if

pVu,k|Uk
(vu|u) = pVu,k|Uk

(−vu| − u)

for all k ∈ K, u ∈ B, vu ∈ R, and a code-symbol decoder is called symbol-wise symmetric
if

pVx,n|Xn
(vx|x) = pVx,n|Xn

(−vx| − x)
for all n ∈ N , x ∈ B, vx ∈ R. Similarly, an info-symbol extrinsic decoder is called
symbol-wise symmetric if

pWu,k|Uk
(wu|u) = pWu,k|Uk

(−wu| − u)

for all k ∈ K, u ∈ B, wu ∈ R, and an code-symbol extrinsic decoder is called symbol-wise
symmetric if

pWx,n|Xn
(wx|x) = pWx,n|Xn

(−wx| − x)
for all n ∈ N , x ∈ B, wx ∈ R.

When symbol-wise symmetric decoders are employed, the superchannel between an
info symbol or a code symbol and the corresponding post-decoding value, Uk → Vu,k or

3.2. DECODING MODEL 35

Xn → Vx,n, is a binary-input symmetric memoryless channel. Similarly, when symbol-
wise extrinsic decoders are employed, the superchannel between an info symbol or a code
symbol and the corresponding extrinsic post-decoding value, Uk → Wu,k or Xn → Wx,n,
is a binary-input symmetric memoryless channel. Notice that each symbol position cor-
responds to one (separate) channel.

In some cases, it is useful to abstract from the symbol positions and consider simply the
superchannel U → Vu (similarly for code symbols and extrinsic decoders). Even though
this superchannel is no longer memoryless, it may be interpreted as memoryless if only
symbol-wise statistical properties are of interest, like the average symbol error probability
or the average symbol-wise mutual information. This is exploited in Chapter 4 and
Chapter 5.

Though commonly used decoders can assumed to be symbol-wise symmetric, gen-
eral conditions for this property are of interest. The following lemma deals with such
conditions.

First, we introduce some notation. Consider an info-symbol soft-output decoder for a
systematically extended code Csyxt computing the post-decoding soft-value

vu,k = decinfo,k(z ‖ Csyxt)

for the info symbol Uk, where we use the abbreviation z := [zu, zx]. The set of words z

leading to vu,k = v is called the soft-value decoding region for vu,k = v, and it is denoted
by

D(vu,k = v) := {z ∈ RK+N : vu,k = v},
k ∈ K, v ∈ R. For code-symbol soft-output decoders, the definition is similar. Notice that
the notation for soft-value decoding regions is similar to that for code cosets, introduced
in (3.7).

Now consider the two cosets Csyxt(uk = +1) and Csyxt(uk = −1) of code Csyxt, defined
in (3.7). Writing the element-wise multiplication of two vectors a, b ∈ Rn as

a⊗ b := [a1b1, a2b2, . . . , an, bn],

we have the following relation between the two cosets:

Csyxt(uk = +1) = Csyxt(uk = −1)⊗ x′
syxt (3.14)

for all x′
syxt ∈ Csyxt(uk = −1) and all k ∈ K. This holds in a similar way for cosets with

respect to code symbols.
Using this notation, we can now state the condition for symbol-wise symmetry.

Lemma 3.1 (Condition for Symbol-Wise Symmetric Decoders)
An info-symbol soft-output decoder for a systematically extended code Csyxt is symbol-wise
symmetric if and only if the soft-value decoding regions fulfill the condition

D(vu,k = v) = D(vu,k = −v)⊗ x′
syxt

for all x′
syxt ∈ Csyxt(uk = −1), v ∈ R, and k ∈ K. This holds in a similar way for

code-symbol soft-output decoders.

36 CHAPTER 3. CHANNEL CODING SCHEMES

Proof. According to the definition of symbol-wise symmetry, we have to show that

pVu,k|Uk
(v|+ 1) = pVu,k|Uk

(−v| − 1) (3.15)

for all v ∈ R and k ∈ K if and only if the above condition on the soft-value decoding
regions is fulfilled. To simplify the notation, we assume that the symbol alphabets of zu,k

and zxn
are discrete. For continuous symbol alphabets, the sums with respect to zu,k and

zxn
may simply be replaced by integrals in the following derivations. For convenience, we

may use the abbreviation z := [zu, zx]. We start with the symmetry of the channels, and
then we exploit the linearity of the code.

By definition, the channels U → Yu and X → Yx are BISMCs and their outputs are
LLRs. Therefore, we have

pZu|U(z|u) = pZu|U(−z| − u), pZx|X(z|x) = pZx|X(−z| − x)

for z ∈ R and u, x ∈ B by Lemma 2.2. Due to this symmetry, the conditional probability
of z has the property

pZ|Xsyxt
(z|xsyxt) = pZ|Xsyxt

(z ⊗ xsyxt|1), (3.16)

where 1 denotes the all-one vector.
The left-hand side of (3.15) can be expressed as

pVu,k|Uk
(v|+ 1) = 2−K+1 ·

∑

z∈D(vu,k=v)

∑

xsyxt∈Csyxt(uk=+1)

pZ|Xsyxt
(z|xsyxt)

= 2−K+1 ·
∑

z∈D(vu,k=v)

∑

xsyxt∈Csyxt(uk=+1)

pZ|Xsyxt
(z ⊗ xsyxt|1),

(3.17)

where we have applied (3.16) in the second line. Similarly, the right-hand side of (3.15)
can be expressed as

pVu,k|Uk
(−v| − 1) = 2−K+1 ·

∑

z∈D(vu,k=−v)

∑

xsyxt∈Csyxt(uk=−1)

pZ|Xsyxt
(z ⊗ xsyxt|1).

(3.18)

Now, we apply variable substitutions in (3.18), using an arbitrary but fixed x′
syxt ∈

Csyxt(uk = −1). We substitute z by z ⊗ x′
syxt and xsyxt by xsyxt ⊗ x′

syxt; this does not
change the argument of the probability in (3.18), because

(z ⊗ x′
syxt)⊗ (xsyxt ⊗ x′

syxt) = z ⊗ xsyxt.

In the sums, we replace D(vu,k = −v) by D(vu,k = v) ⊗ x′
syxt and Csyxt(uk = −1) by

Csyxt(uk = −1)⊗ x′
syxt. Notice that

Csyxt(uk = −1)⊗ x′
syxt = Csyxt(uk = +1), (3.19)

3.2. DECODING MODEL 37

as shown in (3.14). Doing so, (3.18) can be written as

pVu,k|Uk
(−v| − 1) = 2−K+1 ·

∑

z∈D(vu,k=−v)⊗x′

syxt

∑

xsyxt∈Csyxt(uk=+1)

pZ|Xsyxt
(z ⊗ xsyxt|1).

(3.20)

When comparing (3.17) and (3.20), it can easily be seen that (3.15) is fulfilled for all
channels U → Yu and X → Yx if and only if

D(vu,k = v) = D(vu,k = −v)⊗ x′
syxt.

QED

The LogAPP decoder and the MaxLogAPP decoder, which are addressed in Sec-
tion 3.4, can easily be seen to fulfill these conditions. Therefore, they are symbol-wise sym-
metric, as also observed in [RU01a,AK02]. Since a Viterbi decoder gives the same decoding
results as a MaxLogAPP decoder with subsequent hard-decisions (cf. Section 3.4.2), it is
also symbol-wise symmetric. We conjecture that also iterative decoders with symbol-wise
constituent decoders are symbol-wise symmetric11.

Useful and reasonable decoding requires that pre-decoding values can be correctly
interpreted by the decoder. For example, the real-valued output of an AWGN channel
and the binary output of a BSC have completely different meanings. Furthermore, pos-
sible statistical dependencies between pre-decoding values have to be taken into account.
These observations motivate to use “standardized” pre-decoding values, so that a decoder
can interpret them correctly without the need of having knowledge about the statistical
properties of their “source”. For that purpose, we introduce standardized pre-decoding
values that fulfill the following two conditions:

(a) The pre-decoding values are LLRs:

zu,k = L(Uk|zu,k), zx,n = L(Xn|zx,n), (3.21)

for k = 0, 1, . . . , K − 1 and n = 0, 1, . . . , N − 1.

(b) The pre-decoding values are conditionally independent:

p(zu, zx|u,x) =
K−1∏

k=0

p(zu,k|uk) ·
N−1∏

n=0

p(zx,n|xn) (3.22)

for all [u x] ∈ Csyxt.
In the following, we refer to such values as pre-decoding values that are conditionally
independent LLRs.

Due to this “standardization”, a pre-decoding value that is equal to 0 means that no
information about the corresponding symbol is available. Accordingly, if info symbols
are assumed to be i.u.d. and only code symbols are transmitted, this can be taken into
account by setting zu = 0. Condition 3.21 is illustrated by the following example:

11Reduced-state equalizers and decision-feedback equalizers are conjectured to be also symbol-wise
symmetric.

38 CHAPTER 3. CHANNEL CODING SCHEMES

Example 3.4

Consider a symbol X and a noisy observation y of this symbol. Let p denote the
probability for X = +1 given y, and let z denote the conditional LLR for X given y:

p := Pr(X = +1|Y = y),

z := L(X|Y = y) = ln
Pr(X = +1|Y = y)

Pr(X = −1|Y = y)
= ln

p

1− p
.

The probabilities for X given p are obviously

Pr(X = +1|P = p) = p,

Pr(X = −1|P = p) = 1− p.

Therefore, the conditional LLR is given by

L(X|P = p) = ln
Pr(X = +1|P = p)

Pr(X = −1|P = p)
= ln

p

1− p
= z.

Finally, as there is a one-to-one relation between z and p, we have

L(X|Z = z) = L(X|P = p) = z.

In general, this holds if and only if z is an a-posteriori LLR. 3

Assuming that the pre-decoding values are conditionally independent LLRs does not
significantly restrict generality for two reasons. First, if a decoder can interpret soft-
values correctly, then equivalently, the soft-values can be converted to LLRs before being
passed to the decoder. Second, if a decoder can exploit statistical dependencies between
soft-values, then equivalently, the soft-values can be converted to independent soft-values
before being passed to the decoder12. The concept of these “standardized” pre-decoding
values rather enables a clear structure for a decoder that is built up by several processing
units, such as an iterative decoder built up by constituent decoders. Only the unit deliv-
ering soft-values has to know the statistical properties associated with these soft-values,
but not the unit accepting these soft-values. Thus, each unit is “responsible” only for “its
own” statistics.

Remark 3.1

Besides LLRs, other measures may equivalently be used as “standardized” pre-
decoding values, e.g., the probability that a symbol is equal to +1. In this case, the
superchannels between info or code symbols and the corresponding post-decoding
values are still symmetric channels in the sense of Definition 2.4. However, the
representation of the symmetry is less straight-forward.

Estimates for the info and the code symbols are obtained by applying hard decisions
to the post-decoding soft-values13: If a post-decoding value is equal to zero, the symbol
estimate is randomly chosen from B; otherwise, the estimate is determined as

ûk := sgn(vu,k),

x̂n := sgn(vx,n),

12This is similar to employing a sample-whitened matched filter for the equalization of an intersymbol-
interference channel, as proposed in [And73].

13Estimating symbols based on extrinsic values is possible, but in many cases not reasonable.

3.3. INFORMATION TRANSFER FUNCTIONS 39

k = 0, 1, . . . , K − 1 and n = 0, 1, . . . , N − 1. The estimated info word and the estimated
code word are denoted by

û = [û0, û1, . . . , ûK−1],

x̂ = [x̂0, x̂1, . . . , x̂N−1],

respectively.
The probability of a word error is

Pw := Pr(Û 6= U) = Pr(X̂ 6= X).

The error probability of info words and that of code words are identical as there is a
one-to-one relation between info words and code words. The probability of an info symbol
error is given by

Pr(Û 6= U) =
1

K

∑

k∈K

Pr(Ûk 6= Uk).

The probability of a code symbol error is given by

Pr(X̂ 6= X) =
1

N

∑

n∈N

Pr(X̂n 6= Xn).

In general, the error probability of info symbols and that of code symbols are different.

3.3 Information Transfer Functions

A soft-input soft-output decoder may be interpreted as a non-linear filter for soft-values
[HH89a, HH89b, LYHH93, LHS00, LH01]. For characterizing the input-output behavior,
the general decoding model from the previous section (Fig. 3.1) may be employed. The
inputs may be the pre-decoding values for info or code symbols, and the outputs may be
the complete or extrinsic post-decoding values for info or code symbols.

A complete description of the input-output behavior is given by the joint conditional
probability distributions of the inputs and the outputs, given the corresponding info
or code symbol. For simplification, both the input and the output distribution may
be described by a single statistical parameter, sometimes denoted as noise parameter.
Typically used parameters are the mean value, the variance, the ratio of squared mean
and variance (corresponding to a signal-to-noise ratio) [HH89b,EGH01,CRU01,TtBH02],
entropy or mutual information [Hoe95, tB99a, HHJF01, TtBH02]. (Notice that entropy
and mutual information are equivalent, as the info symbols are assumed to be i.u.d. in
the decoding model.)

Characterizing decoders via the average symbol-wise mutual information, averaged
with respect to the symbol positions, was originally introduced for constituent decoders
of iterative decoders [tBSY98, tB99b, tB99a]. The extrinsic information transfer (EXIT)
characteristic of a constituent decoder describes the processing of mutual information
associated with the inputs, called a-priori information, to mutual information associated
with the extrinsic outputs, called extrinsic information. The chart depicting the EXIT

40 CHAPTER 3. CHANNEL CODING SCHEMES

characteristics of all constituent decoders is called EXIT chart. In a similar way, the
overall coding scheme can be characterized [HHJF01,HHFJ02,Hue04]. The information
processing characteristic (IPC) of a coding scheme describes the processing of mutual
information of the communication channel, called channel information, to mutual infor-
mation between encoder input and (possibly soft) decoder output, called overall mutual
information.

In general, a decoder may be characterized by the mapping of pre-decoding mutual
information to post-decoding mutual information, called information transfer function.
Such functions, agreeing with EXIT characteristics and IPCs, are defined in the sequel.
We start with the characterizations of the input and the output distributions via the
values of mutual information (cf. Fig. 3.1). For convenience, we may abbreviate “mutual
information” by “information”.

Definition 3.6
The values of info-symbol and the code-symbol pre-decoding information, also called a-
priori information, are defined as

Iapri,U :=
1

K

∑

k∈K

I(Uk;Zu,k), Iapri,X :=
1

N

∑

n∈N

I(Xn;Zx,n).

The values of info-symbol and the code-symbol complete post-decoding information, for
short complete information, are defined as

Icmp,U :=
1

K

∑

k∈K

I(Uk;Vu,k), Icmp,X :=
1

N

∑

n∈N

I(Xn;Vx,n).

The values of info-symbol and the code-symbol extrinsic post-decoding information, for
short extrinsic information values, are defined as

Iext,U :=
1

K

∑

k∈K

I(Uk;Wu,k), Iext,X :=
1

N

∑

n∈N

I(Xn;Wx,n).

The word-wise complete information per info symbol, for short word-wise complete infor-
mation, is defined as

Iwcmp,U :=
1

K
I(U ; Zu,Zx)

Notice that K = |K| and N = |N | are the lengths of the info and the code word,
respectively. The terms “a-priori information” and “extrinsic information” are commonly
used in the context of EXIT functions, whereas “pre-decoding information” and “post-
decoding information” emphasize the association to pre-decoding and post-decoding soft-
values.

The symbol-wise mutual information values are values of average symbol-wise mutual
information, and they are labeled with the corresponding info or code symbol. On the
other hand, the word-wise complete information is the overall mutual information between

3.3. INFORMATION TRANSFER FUNCTIONS 41

the info word and all observations, and it is labeled with “w” meaning “word-wise”. Notice
that this is the maximal value of mutual information between encoder inputs and channel
outputs.

Using these values of mutual information, extrinsic soft-output decoders may be char-
acterized by the following functions:

Definition 3.7 (EXIT Functions)
Assume the decoding model from Section 3.2 with arbitrary but fixed models for the
info-symbol and the code-symbol channel. The function

itfext,U : [0, 1] → [0, 1]

Iapri,U 7→ Iext,U

with parameter Iapri,X is called info-symbol extrinsic information transfer (EXIT) function.
The function

itfext,X : [0, 1] → [0, 1]

Iapri,X 7→ Iext,X

with parameter Iapri,U is called code-symbol extrinsic information transfer (EXIT) func-
tion.

The term “EXIT function” was introduced in [AKtB02, AKtB03] and is a synonym
for “EXIT characteristic”. However, it makes clear that a function is addressed. EXIT
functions describe a property of the underlying extrinsic soft-output decoding functions,
and they depend on the applied models of the info-symbol and the code-symbol channel.

Example 3.5

Consider a systematic single parity check code with info word length K = 3 and
BECs as channel models. The systematic symbols are regarded as info symbols
and only the parity symbol is regarded as code symbol; thus we have the code
word length N = 1. According to the decoding model from Section 3.2, the info
symbols u0, u1, u2 are transmitted over the info-symbol channel U → Zu, yielding
the channel LLRs zu,0, zu,1, zu,2; the code symbol x0 (identical to the parity symbol)
is transmitted over the code-symbol channel X → Zx, yielding the channel LLR zx,0.

Extrinsic soft-values for the info symbols are computed using the info-symbol ex-
trinsic soft-output decoding functions (cf. Definition 3.4)

wu,0 := L(U0|zu,1, zu,2, zx,0),

wu,1 := L(U1|zu,0, zu,2, zx,0),

wu,2 := L(U2|zu,0, zu,1, zx,0).

(This corresponds to LogAPP decoding, which is explained in Section 3.4.1.)

The info-symbol EXIT function can easily be computed by inspecting the erasure
probabilities (cf. Section 6.3), and it can analytically be expressed as

Iext,U = itfext,U (Iapri,U ; Iapri,X) = (Iapri,U)K−1 · Iapri,X ,

where K − 1 = N − 2 = 2. This function is depicted in Fig. 3.2. 3

42 CHAPTER 3. CHANNEL CODING SCHEMES

PSfrag replacements

Iapri,U

I e
x
t,

U

Iapri,X = 0
Iapri,X = 0.2
Iapri,X = 0.4
Iapri,X = 0.6
Iapri,X = 0.8
Iapri,X = 1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 3.2: Info-symbol EXIT functions for the single parity check code from Example 3.5;
the info word length is K = 3. The info-symbol channel and the code-symbol channel are
BECs. (Mutual information is given in bit/use.)

Similarly to extrinsic soft-output decoders, general soft-output decoders may be char-
acterized. We assume that only code symbols are transmitted and that the info-symbol
channel does not exist14.

Definition 3.8 (CIT Functions)
Assume the decoding model from Section 3.2 with arbitrary but fixed model for the code-
symbol channel and no a-priori information on info symbols, i.e., Iapri,U = 0. The function

itfcmp : [0, 1] → [0, 1]

Iapri,X 7→ Icmp,U

is called the complete information transfer (CIT) function. The function

itfwcmp : [0, 1] → [0, 1]

Iapri,X 7→ Iwcmp,U

is called the word-wise complete information transfer (CIT) function.

The term “CIT function” is a generalization of “EXIT function”, and it is a synonym
for “information processing characteristic”. However, it makes clear that actually a func-
tion is addressed. Theoretical results and applications can be found in [Hue04]. Similar

14A generalization is possible and straight-forward.

3.4. SOFT-OUTPUT DECODING PRINCIPLES 43

to EXIT functions, CIT functions describe a property of the underlying coding scheme,
and they depend on the applied models for the code-symbol channel.

An upper bound for the CIT function is derived in [HHFJ02, Hue04]: For a coding
scheme of rate R and a communication channel with mutual information Ich, the complete
information per info symbol is upper-bounded as

IW,cmp ≤ min
{ 1

R
Ich, 1

}

.

A coding scheme is called an ideal coding scheme if it attains this bound and leads to the
minimal error probability. The ideal coding scheme may be used as a reference to assess
the performance of real coding schemes (cf. Section 6.3).

Example 3.6

Consider a systematically encoded single parity check code of length N and BECs
as channel models. The info symbols are identical to the systematic symbols, and
thus we have info word length K = N − 1. According to the decoding model from
Section 3.2, the info symbols u0, u1, . . . , uK−1 are transmitted over the info-symbol
channel U → Zu, yielding the channel LLRs zu,0, zu,1, . . . , zu,K−1; the code symbols
x0, x1, . . . , xN−1 are transmitted over the code-symbol channel X → Zx, yielding
the channel LLRs zx,0, zx,1, . . . , zx,N−1.

For CIT functions according to Definition 3.8, no info-symbol channel is assumed
and therefore we set zu,k = 0 for all k = 0, 1, . . . , K − 1.

Complete post-decoding soft-values for the info symbols are computed using the
info-symbol soft-output decoding functions (cf. Definition 3.3)

vu,k := L(Uk|zx,0, zx,1, . . . , zx,N−1),

k = 0, 1, . . . , K − 1. (This corresponds to LogAPP decoding, which is explained in
Section 3.4.1.) The info-symbol channel LLRs are omitted, because they are equal
to zero and thus do not effect the decoding result.

The CIT function can easily be computed by inspecting the erasure probabilities
(cf. Section 6.3), and it can analytically be expressed as

Icmp,U = itfcmp(Iapri,X) = 1− (1− Iapri,X) · (1− (Iapri,X)N−1).

This function is depicted in Fig. 3.3. 3

Information transfer functions generally depend on the applied models for the info-
symbol and the code-symbol channel, though they abstract from the channel models as
they plot only values of mutual information. Bounds on information transfer functions
that are valid for all BISMCs and that depend only on the mutual information of the
info-symbol and the code-symbol channel are derived in Chapter 6.

3.4 Soft-Output Decoding Principles

Two basic principles for symbol-by-symbol soft-output decoding of linear codes are
LogAPP decoding and MaxLogAPP decoding. Both decoding principles are optimum in

44 CHAPTER 3. CHANNEL CODING SCHEMES

PSfrag replacements

Iapri,X

I c
m

p
,U

N = 2
N = 3
N = 6

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 3.3: Complete information transfer (CIT) functions for the single parity check
codes from Example 3.6 (solid lines) and CIT functions for ideal coding schemes (dash-
dotted lines); several code word lengths N . The code-symbol channel is a BEC. (Mutual
information is given in bit/use.)

some sense: LogAPP decoding leads to minimum bit error probability, and MaxLogAPP
decoding leads to minimum word error probability. On the other hand, MaxLogAPP de-
coding may also be interpreted as an approximation of LogAPP decoding. Before defining
the two decoding principles, some practical aspects are outlined.

For implementing LogAPP and MaxLogAPP decoding, various algorithms are pro-
posed in literature. The computations are commonly performed using either probabilities
or logarithmic probabilities. Calculations in the probability domain and calculations in
the logarithmic probability domain (also called logarithmic domain or simply log-domain)
are equivalent, only the applied operations differ [Hub02]; for practical implementations,
the logarithmic domain shows numerical advantages [RHV97]. Typically, each algorithm
shows a trade-off between required memory size and computational complexity. The fol-
lowing three algorithms represent the “main” types. Each may be used to implement
LogAPP or MaxLogAPP decoding by choosing the appropriate operators. Two algo-
rithms are trellis-based, and one algorithm is graph-based.

1. The first trellis-based algorithm is the two-way algorithm, also known as forward-
backward algorithm [BCJR74, RHV97, JZ99, PM03]. The post-decoding values
are computed by means of a forward recursion, a backward recursion, and a fi-
nal combination. Typically, the memory requirement is relatively high. In the
case of high-rate codes, decoding on the trellis of the dual code may be advanta-

3.4. SOFT-OUTPUT DECODING PRINCIPLES 45

geous [BD76,HR76,BDG79,HOP96].

2. The second trellis-based algorithm is the one-way algorithm [Bat87,HH89b,LVS95,
JZ99], also called soft-output Viterbi algorithm (SOVA) [HH89b]. The computations
are similar to that of a Viterbi algorithm [Vit67, For73], where after each step,
update operations for preliminary post-decoding values are performed. Typically,
the memory requirement is relatively low.

3. The third algorithm is the message passing algorithm, which operates on a cycle-
free graph of the code (or of the systematically extended code). Variations are the
belief propagation algorithm, the sum-product algorithm and the min-sum algorithm
[WLK95,KFL01,Loe04]. Typically, the memory requirement is in between that of
the two-way and the one-way algorithm.

The equivalence of a two-way and a one-way algorithm for MaxLogAPP decoding is
explicitly proved in [FBLH98].

In the sequel, we focus on the underlying decoding principles; for implementational
aspects, we refer the reader to the literature. Furthermore, we restrict ourselves to binary
codes.

To describe LogAPP and MaxLogAPP decoding, we employ the following notation.
Let a denote a vector with index set I := {0, 1, . . . , L− 1}. Then a\i denotes this vector
without element ai, and a0→ i denotes15 this vector with element ai replaced by 0:

a = [a0, . . . , aL−1],

a\i = [a0, . . . , ai−1, ai+1, . . . , aL−1],

a0→ i = [a0, . . . , ai−1, 0, ai+1, . . . , aL−1]

(cf. Appendix B). Furthermore, let

max?

i∈I
ai := ln

∑

i∈I

exp(ai) (3.23)

for ai ∈ R, i ∈ I (cf. Appendix C).

3.4.1 LogAPP Decoding

A LogAPP decoder16 computes a-posteriori LLRs for info and/or code symbols, provided
that the pre-decoding values for info and code symbols are conditionally independent
LLRs (cf. (3.21) and (3.22)). As both the inputs and the outputs are LLRs, a LogAPP
decoder may be regarded as a filter for LLRs [LH00b,LHS00]

15The notation a0→ i indicates symbolically that the element at position i is replaced by a zero, i.e.,
“0→ ai”.

16 The abbreviation “LogAPP” stands for “logarithmic a-posteriori probability”. Some authors use
“LogMAP” and “LogAPP” equivalently. As the “M” in LogMAP stands for “maximum”, this nomen-
clature makes sense only if the hard decision is part of the decoder, which often is not the case. As we
are interested in soft-output decoding, we use the term LogAPP. (cf. Footnote 18.)

46 CHAPTER 3. CHANNEL CODING SCHEMES

A-posteriori LLRs for info symbols and a-posteriori LLRs for code symbols are defined
as

L(Uk|zu, zx) := ln
Pr(Uk = +1|Zu = zu,Zx = zx)

Pr(Uk = −1|Zu = zu,Zx = zx)
, (3.24)

L(Xn|zu, zx) := ln
Pr(Xn = +1|Zu = zu,Zx = zx)

Pr(Xn = −1|Zu = zu,Zx = zx)
, (3.25)

respectively. Extrinsic LLRs for info symbols and extrinsic LLRs for code symbols are
defined as

L(Uk|zu,\k, zx) := ln
Pr(Uk = +1|Zu,\k = zu,\k,Zx = zx)

Pr(Uk = −1|Zu,\k = zu,\k,Zx = zx)
, (3.26)

L(Xn|zu, zx,\n) := ln
Pr(Xn = +1|Zu = zu,Zx,\n = zx,\n)

Pr(Xn = −1|Zu = zu,Zx,\n = zx,\n)
, (3.27)

respectively. As can be seen above, the extrinsic LLR for a symbol is equal to the a-
posteriori LLR for this symbol excluding the channel LLR for this symbol in the condition.
Hence, an extrinsic LLR represents a special a-posteriori LLR. As an LLR with value 0
means “no information”, we have the equalities

L(Uk|zu,\k, zx) = L(Uk|zu,0→ k, zx),

L(Xn|zu, zx,\n) = L(Xn|zu, zx,0→n).

This relation is used for defining extrinsic LogAPP decoding using LogAPP decoding.
The following decoding functions compute a-posteriori LLRs and extrinsic LLRs when

the pre-decoding values are conditionally independent LLRs (cf. (3.21) and (3.22)). Notice
that LogAPP decoding complies with soft-output decoding according to Definition 3.3,
and extrinsic LogAPP decoding complies with extrinsic soft-output decoding according
to Definition 3.4.

Definition 3.9 (LogAPP Decoding)
Let Csyxt denote the systematically extended code of a binary linear code C. An info-symbol
LogAPP decoder and a code-symbol LogAPP decoder are mappings

logappinfo : RK ×RN → RK

[zu, zx] 7→ vu,

logappcode : RK ×RN → RN

[zu, zx] 7→ vx,

respectively, realizing the LogAPP decoding functions17

logappinfo,k(zu, zx) := max?

[u x]∈
Csyxt(uk=+1)

(
1
2
zuu

T + 1
2
zxx

T
)

− max?

[u x]∈
Csyxt(uk=−1)

(
1
2
zuu

T + 1
2
zxx

T
)

,

logappcode,n(zu, zx) := max?

[u x]∈
Csyxt(xn=+1)

(
1
2
zuu

T + 1
2
zxx

T
)

− max?

[u x]∈
Csyxt(xn=−1)

(
1
2
zuu

T + 1
2
zxx

T
)

,

17The description via vector products follows [Sor02]. The notation for subsets of codes, Csyxt(uk = ±1),
is defined in Section 3.1.

3.4. SOFT-OUTPUT DECODING PRINCIPLES 47

k = 0, 1, . . . , K − 1, n = 0, 1, . . . , N − 1. An extrinsic info-symbol LogAPP decoder and
an extrinsic code-symbol LogAPP decoder are mappings

logappext
info : RK ×RN → RK

[zu, zx] 7→ wu,

logappext
code : RK ×RN → RN

[zu, zx] 7→ wx,

respectively, realizing the extrinsic LogAPP decoding functions

logappext
info,k(zu, zx) := logappinfo,k(zu,0→ k, zx),

logappext
code,n(zu, zx) := logappcode,n(zu, zx,0→n),

k = 0, 1, . . . , K − 1, n = 0, 1, . . . , N − 1.

As required by extrinsic decoding functions (cf. Definition 3.4), wu,k does not depend on
zu,k, and wx,n does not depend on zx,n.

An important fact is worth pointing out: LogAPP decoding yields LLRs, i.e.,

vu,k = logappinfo,k(zu, zx) = L(Uk|zu, zx),

vx,n = logappcode,n(zu, zx) = L(Xn|zu, zx)

and

wu,k = logappext
info,k(zu, zx) = L(Uk|zu,\k, zx),

wx,n = logappext
code,n(zu, zx) = L(Xn|zu, zx,\n),

only if the word of pre-decoding values, [zu, zx], consists of conditionally independent
LLRs (cf. (3.21) and (3.22)). Otherwise, the pre-decoding values are not correctly inter-
preted by the decoder, and the decoding results cannot be guaranteed to be LLRs. This
is relevant especially in the context of iterative decoding, where the pre-decoding values
are only “approximately” conditionally independent LLRs (cf. Section 4.5).

One advantage of using LLRs is a simple relation between a-posteriori LLRs, vu,k and
vx,n, extrinsic LLRs, wu,k and wx,n, and channel LLRs (which may also be interpreted as
a-priori LLRs, as discussed above), zu,k and zx,n:

vu,k = wu,k + zu,k,

vx,n = wx,n + zx,n,
(3.28)

k = 0, 1, . . . , K − 1, n = 0, 1, . . . , N − 1, [HOP96,RHV97].

Example 3.7

Consider the repetition code of length N = 3 (K = 1) from Example 3.1. Let the
channel LLRs by given as zu,0 = 0 (no information about info symbols available at
the decoder) and zx,0, zx,1, zx,2 ∈ R. For the systematically extended code R3,syxt,
the two subsets with respect to the info symbol U0 are given by

R3,syxt(u0 = +1) = {[+1, +1, +1, +1]},
R3,syxt(u0 = −1) = {[−1,−1,−1,−1]},

48 CHAPTER 3. CHANNEL CODING SCHEMES

each containing only one code word. Thus, the LogAPP decoding function for info
symbol U0 is given by

vu,0 = logappinfo,0(0, zx)

= 1
2(+zx,0 + zx,1 + zx,2)− 1

2(−zx,0 − zx,1 − zx,2)

= zx,0 + zx,1 + zx,2.

3

Example 3.8

Consider the (nonsystematically encoded) single parity check code of length N = 3
(K = 2) from Example 3.2. Let the channel LLRs by given as zu = [zu,0, zu,1] = 0

(no information about info symbols) and zx,0, zx,1, zx,2 ∈ R. For the systematically
extended code S3,syxt, the two subsets with respect to info symbol U1 are given by

S3,syxt(u1 = +1) = {[+1, +1, +1, +1, +1], [−1, +1,−1,−1, +1]},
S3,syxt(u1 = −1) = {[+1,−1, +1,−1,−1], [−1,−1,−1, +1,−1]},

each containing two code words. Thus, the LogAPP decoding function for info
symbol U1 is given by

vu,1 = logappinfo,1(0, zx)

= max?
{

1
2(+zx,0 + zx,1 + zx,2),

1
2(−zx,0 − zx,1 + zx,2)

}

− max?
{

1
2(+zx,0 − zx,1 − zx,2),

1
2(−zx,0 + zx,1 − zx,2)

}

.

3

Example 3.9

Consider again the single parity check code of length N = 3 (K = 2) from Ex-
ample 3.2. Let the channel LLRs (again) be given as zu = [zu,0, zu,1] = 0 (no
information about info symbols) and zx,0, zx,1, zx,2 ∈ R. When we want to decode
to code symbols and have no information about info symbols, it is sufficient to
consider the (original) code

S3 = {[+1, +1, +1], [−1, +1,−1], [+1,−1,−1], [−1,−1, +1]}.

The two subsets with respect to code symbol X0 are

S3(x0 = +1) = {[+1, +1, +1], [+1,−1,−1]},
S3(x0 = −1) = {[−1, +1,−1], [−1,−1, +1]}.

The extrinsic LogAPP decoding function for code symbol X0 is given by

vx,0 = logappext
code,0(0, zx) = logappcode,0(0, zx,0→ 0)

= max?
{

1
2(+zx,1 + zx,2),

1
2(−zx,1 − zx,2)

}

− max?
{

1
2(+zx,1 − zx,2),

1
2(−zx,1 + zx,2)

}

.

3.4. SOFT-OUTPUT DECODING PRINCIPLES 49

For computing an extrinsic LLR when all code symbols are coupled by only one
parity-check equation, the operator ¢ was introduced in [HOP96] (cf. Appendix C).
Using this operator, we may equivalently write

vx,0 = logappext
code,0(0, zx)

= zx,1 ¢ zx,2 := 2 tanh−1
(

tanh
(zx,1

2

)
· tanh

(zx,2

2

))

.

3

A-posteriori LLRs are sufficient statistics, i.e., they “carry” all available information
about the corresponding symbols. Hence, LogAPP decoding is optimal with respect to
two aspects:

(a) hard decisions of the post-decoding values minimize the symbol error probability;

(b) the mutual information between a symbol and its corresponding post-decoding value
is maximal.

Furthermore, as the soft-outputs are LLRs, they may be used as “useful” pre-decoding
values by a subsequent processing stage, when neglecting the statistical dependencies
(these may be reduced by interleaving); i.e., they can be correctly interpreted. This
property of being interpretable does not immediately follow from (a) and (b). For example,
when multiplying the post-decoding values by 100, the resulting values are still sufficient
statistics, and (a) and (b) are still fulfilled, but they are definitely not LLRs. The two
properties of being optimal and interpretable are utilized in Chapter 5 for estimating
transmission quality parameters.

3.4.2 MaxLogAPP Decoding

The LogAPP decoding functions according to Definition 3.9 contain the max? function,
defined in (3.23). Replacing the max? functions by a simple maximum function leads to
MaxLogAPP decoding18. As taking the maximum represents both an upper bound and
a close approximation of the max? function (cf. Appendix C),

max?

i∈I
ai ' max

i∈I
ai, (3.29)

MaxLogAPP decoding may be interpreted as an approximation of LogAPP decoding. On
the other hand, MaxLogAPP decoding is optimal with respect to word-wise decoding,
and it may thus also be seen independently from LogAPP decoding. This less known
interpretation is discussed at the end of this section.

Similar to the case of LogAPP decoding, MaxLogAPP decoding complies with soft-
output decoding according to Definition 3.3, and extrinsic MaxLogAPP decoding complies
with extrinsic soft-output decoding according to Definition 3.4.

18 The “Max” in “MaxLogAPP” refers to the maximum function replacing the max? function. Some
authors use MaxLogAPP and MaxLogMAP equivalently. However, similarly to the use of “LogMAP”
and “LogAPP” (cf. Footnote 16), MaxLogMAP should only be used if hard decisions are included.

50 CHAPTER 3. CHANNEL CODING SCHEMES

Definition 3.10 (MaxLogAPP Decoder)
Let Csyxt denote the systematically extended code of a binary linear code C. An info-symbol
MaxLogAPP decoder and a code-symbol MaxLogAPP decoder are mappings

maxlogappinfo : RK ×RN → RK

[zu, zx] 7→ vu,

maxlogappcode : RK ×RN → RN

[zu, zx] 7→ vx,

respectively, realizing the MaxLogAPP decoding functions

maxlogappinfo,k(zu, zx) := max
[u x]∈

Csyxt(uk=+1)

(
1
2
zuu

T + 1
2
zxx

T
)

− max
[u x]∈

Csyxt(uk=−1)

(
1
2
zuu

T + 1
2
zxx

T
)

,

maxlogappcode,n(zu, zx) := max
[u x]∈

Csyxt(xn=+1)

(
1
2
zuu

T + 1
2
zxx

T
)

− max
[u x]∈

Csyxt(xn=−1)

(
1
2
zuu

T + 1
2
zxx

T
)

,

k = 0, 1, . . . , K − 1, n = 0, 1, . . . , N − 1. An extrinsic info-symbol MaxLogAPP decoder
and an extrinsic code-symbol MaxLogAPP decoder are mappings

maxlogappext
info : RK ×RN → RK

[zu, zx] 7→ wu,

maxlogappext
code : RK ×RN → RN

[zu, zx] 7→ wx,

respectively, realizing the extrinsic MaxLogAPP decoding functions

maxlogappext
info,k(zu, zx) := maxlogappinfo,k(zu,0→ k, zx),

maxlogappext
code,n(zu, zx) := maxlogappcode,n(zu, zx,0→n),

k = 0, 1, . . . , K − 1, n = 0, 1, . . . , N − 1.

As required by extrinsic decoding functions (cf. Definition 3.4), wu,k does not depend on
zu,k, and wx,n does not depend on zx,n.

Assume that the pre-decoding values are conditionally independent LLRs (cf. (3.21)
and (3.22)). On the one hand, MaxLogAPP decoding approximates LogAPP decoding,
i.e.,

vu,k = maxlogappinfo,k(zu, zx) ≈ logappinfo,k(zu, zx) = L(Uk|zu, zx),

vx,n = maxlogappcode,n(zu, zx) ≈ logappcode,n(zu, zx) = L(Xn|zu, zx),

because of the approximation of the max? function by a maximization, as mentioned
above. On the other hand, the post-decoding value for info symbols and code symbols

3.4. SOFT-OUTPUT DECODING PRINCIPLES 51

may be written as

vu,k = maxlogappinfo,k(zu, zx) = ln

max
[u x]∈Csyxt(uk=+1)

Pr([u x]|zu, zx)

max
[u x]∈Csyxt(uk=−1)

Pr([u x]|zu, zx)
, (3.30)

vx,n = maxlogappcode,n(zu, zx) = ln

max
[u x]∈Csyxt(xn=+1)

Pr([ux]|zu, zx)

max
[u x]∈Csyxt(xn=−1)

Pr([ux]|zu, zx)
. (3.31)

Thus, the post-decoding value for a symbol gives the difference between the logarithmic
probabilities of two code words, namely the most likely code word with this symbol
being +1 and the most likely code word with this symbol being −1. Similarly, the extrinsic
post-decoding values for info symbols and code symbols may be written as

wu,k = maxlogappext
info,k(zu, zx) = ln

max
[u x]∈Csyxt(uk=+1)

Pr([ux]|zu,\k, zx)

max
[u x]∈Csyxt(uk=−1)

Pr([ux]|zu,\k, zx)
, (3.32)

wx,n = maxlogappext
code,n(zu, zx) = ln

max
[u x]∈Csyxt(xn=+1)

Pr([u x]|zu, zx,\n)

max
[u x]∈Csyxt(xn=−1)

Pr([u x]|zu, zx,\n)
. (3.33)

For MaxLogAPP decoding, the relation between post-decoding values, vu,k and vx,n,
extrinsic post-decoding values, wu,k and wx,n, and pre-decoding values (channel LLRs,
which may be interpreted as a-priori LLRs, as discussed above), zu,k, zx,n is the same as
that for LogAPP decoding given in (3.28):

vu,k = wu,k + zu,k,

vx,n = wx,n + zx,n,
(3.34)

k = 0, 1, . . . , K − 1 and n = 0, 1, . . . , N − 1.

Example 3.10

Consider the repetition code of length N = 3 (K = 1) from Example 3.1 and
Example 3.7. As the subsets of Csyxt contain only one code word, max? is iden-
tical to maximization, and accordingly, the LogAPP decoding function and the
MaxLogAPP decoding function for this code are identical:

vu,0 = maxlogappinfo,0(0, zx)

= zx,0 + zx,1 + zx,2.

3

Example 3.11

Consider the single parity check code of length N = 3 (K = 2) from Example 3.9.
The extrinsic MaxLogAPP decoding function for code symbol X0 is given by

vx,0 = maxlogappcode,0(0, zx) = maxlogappcode,0(0, zx,0→ 0)

= max
{

1
2(+zx,1 + zx,2),

1
2(−zx,1 − zx,2)

}

−max
{

1
2(+zx,1 − zx,2),

1
2(−zx,1 + zx,2)

}

.

52 CHAPTER 3. CHANNEL CODING SCHEMES

As all code symbols are coupled by a single parity-check equation, the extrinsic post-
decoding values may also be computed using an approximation for the operator ¢
[HOP96], denoted by19 ō (cf. Appendix C):

vx,0 = maxlogappext
code,0(0, zx)

= zx,1 ō zx,2 := sgn(zx,1) · sgn(zx,2) ·min
{
|zx,1|, |zx,2|

}
.

3

3.4.3 Optimality of MaxLogAPP Decoding

The post-decoding values may be used to obtain estimates for the info symbols or the
code symbols, as described at the end of Section 3.2.2. LogAPP decoding is optimal with
respect to the symbol error rate, and MaxLogAPP decoding is optimal with respect to
the word error rate. As this property of MaxLogAPP decoding is less known, it is proved
in the following.

Let [u•x•] ∈ Csyxt denote the most likely code word of the systematically extended
code Csyxt, i.e., the code word such that

Pr([u• x•]|zu, zx) ≥ Pr([u x]|zu, zx) for all [ux] ∈ Csyxt,

or equivalently,

1
2
zuu

•T + 1
2
zxx

•T ≥ 1
2
zuu

T + 1
2
zxx

T for all [ux] ∈ Csyxt.

Consider now (3.30). Let ûk denote the hard decision based on the post-decoding
value vu,k. Let further [u+ x+] denote the code word maximizing the numerator, and let
[u− x−] denote the code word maximizing the denominator; notice that u+

k = +1 and
u−k = −1. One of these two code words is the (overall) most likely code word [u• x•], and
so we may distinguish two cases:

[u+ x+] = [u• x•] ⇒ vu,k ≥ 0,

[u− x−] = [u• x•] ⇒ vu,k ≤ 0;

the value of vu,k results from (3.30). If vu,k 6= 0, then in either case, ûk = u•k. If
vu,k = 0, then [u+ x+] and [u− x−] are equiprobable, and u•k may arbitrarily be chosen;
accordingly, ûk = −1 and ûk = +1 are equivalent. As these considerations hold for
all uk and, similarly, for all xk, we have the result: the word [û x̂] estimated from the
post-decoding values of an MaxLogAPP decoder is the most likely code word. Thus
MaxLogAPP decoding with subsequent hard decisions minimizes the word error rate
(similarly to Viterbi decoding [Vit67,For73]).

An interesting property of MaxLogAPP decoding is its independence of the signal-to-
noise ratio (SNR), when the communication channel is an BI-AWGNC [WHW00]. To be
precise, only the hard-decisions are independent from the SNR, but not the soft-values.
This property follows from two facts: (a) In the case of an BI-AWGNC, the channel LLR

19The S-shaped vertical line refers to the approximation.

3.5. CONCATENATED CODES 53

depends linearly from the SNR of the channel, see Example 3.3. (b) MaxLogAPP decod-
ing involves only maximizations over linear sums of channel LLRs, see Definition 3.10.
Therefore, the post-decoding soft-values are also linearly dependent from the channel
SNR. As the channel SNR is a positive value, the signs of the post-decoding soft-values
are independent from the channel SNR, and thus so are the hard-decisions.

3.5 Concatenated Codes

Powerful codes that can be decoded with comparatively low complexity may be con-
structed by code concatenation. Examples of such concatenated codes are product codes
[Eli54], generalized concatenated codes [ZSB99], or serially concatenated codes [For66].
This section deals with codes formed by concatenating convolutional codes or block codes,
called constituent codes in this context, separated by interleavers. These codes are iter-
atively decoded using only symbol-by-symbol soft-output decoders for the constituent
codes. Coding schemes using these kinds of codes and employing iterative decoders show
high coding gains, in particular at low signal-to-noise ratios. Properly designed, they
allow performance close to the Shannon limit.

The principles of this code construction and of the corresponding iterative decoder
were introduced in [LHH92,LYHH93,BGT93,BG96]; product codes (which may be seen
as serially concatenated codes) were addressed in [LYHH93], and parallel concatenated
codes were addressed in [BGT93]. Due to the iterative decoder structure, these concate-
nated codes are also called turbo codes20, and the iterative decoders are also called turbo
decoders [BGT93]. In the sequel, we refer to these kinds of codes simply as concatenated
codes.

Three special ingredients of coding schemes comprising concatenated codes and iter-
ative decoders are responsible for the extraordinary performance:

• Recursive convolutional encoders are employed as constituent encoders [BGT93].

• Soft-input soft-output decoders are used to decode the constituent codes [LYHH93,
BGT93].

• Extrinsic soft-values21 are exchanged between the constituent decoders [LYHH93,
BGT93].

The resulting codes show relatively good distance properties, and the iterative decoders
enable near optimum decoding with relatively low decoding complexity.

These coding schemes are distinguished according to the kind of concatenation, which
may be parallel, serial, or hybrid, and according to the number of concatenated codes.
Parallel and serially concatenated codes comprising two constituent codes are addressed in
the following two sections. Hybrid concatenated coding schemes are discussed in [DP97].
Information on multiple concatenated codes may be found in [BDMP98a,Hue04,Brä04].
First information theoretic results about whether concatenated codes can be capacity
achieving are given in [Say03].

20Some authors use the term “turbo codes” only for parallel concatenated codes.
21This exchange of extrinsic soft-values is called “partial factor MAP filtering” in [LYHH93].

54 CHAPTER 3. CHANNEL CODING SCHEMES

3.5.1 Parallel Concatenated Codes

Parallel concatenated codes (PCCs) were introduced in [BGT93,BG96]. We refer to the
overall encoder as PCC encoder and to the overall (iterative) decoder as PCC decoder.

The original PCC, as introduced in [BGT93], is a systematic code, i.e., the PCC code
word contains all info symbols. Replacing some systematic symbols by parity symbols
leads to partially systematic PCCs, introduced in [LH00a]. Partially systematic PCCs
have two special properties: (a) the number of low-weight code words decreases with the
number of systematic symbols; thus, the error probability is smaller at high SNR; (b)
the iterative decoder converges at lower signal-to-noise ratios if not too many systematic
symbols are replaced; thus, the error probability is also smaller at low SNR. Hence,
properly designed coding schemes with partially systematic PCCs outperform those with
systematic PCCs. A concept similar to that of partially systematic PCCs, called code
doping, was proposed in [tB00a, tB01b] for triggering the decoding convergence for codes
of very long lengths.

In the sequel, we restrict ourselves to the basic encoding and decoding principles.
Further information about design of PCCs, regarding constituent codes and interleavers,
as well as analysis of the corresponding iterative decoders can be found in [BM96b,BM96a,
RHV97,HW99,VY00, tB01c,Bre02,BMD03].

Encoder

The encoder for a PCC is depicted in Fig. 3.4. It comprises two binary linear encoders
(ENC1 and ENC2), an interleaver (π), and a parallel-to-serial converter (P/S). The two
encoders are referred to as Encoder 1 and Encoder 2, and they are called constituent
encoders; the overall encoder is called PCC encoder.

ENC1

ENC2π

/
P x

x
(1)

x
(2) S

u = u
(1)

u
(2)

Figure 3.4: PCC encoder.

The PCC encoder maps an info word u to a code word x as follows: On the one hand,
the info word u(1) = u is encoded by Encoder 1 to the code word x(1). On the other hand,
the info word is interleaved22 to u(2) = permπ u, according to a permutation function π,
and is then encoded by Encoder 2 to the code word x(2). The overall code word, called
PCC word, is given by x = [x(1) x(2)]. The info and code words are represented over B.

The code generated by Encoder 1 is denoted by C1; it has info word length K, code
word length N1, and rate R1 := K/N1. Similarly, the code generated by Encoder 2 is

22For notation, see Appendix B.

3.5. CONCATENATED CODES 55

denoted by C2; it has (the same) info word length K, code word length N2, and rate
R2 := K/N2. The codes C1 and C2 are referred to as constituent codes. The code formed
by parallel concatenation of the constituent codes, i.e., the set of code words x, is called
the parallel concatenated code (PCC), and it is denoted by CPCC; it has info word lengthK,
code word length N = N1 +N2, and code rate

R :=
K

N
=

R1R2

R1 +R2

.

Notice that CPCC is a subcode of C1 × C2
As the constituent encoders and the PCC encoder are linear encoders, they can be

described using generator matrices. For writing info and code words over F2, we use the
notation introduced in Section 3.1 (for b ∈ B, b̆ = bpsk−1(b) ∈ F2).

Let the generator matrices for C1 and C2 be denoted by

G1 ∈ F
K×N1
2 , G2 ∈ F

K×N2
2 ,

respectively. Typically, the constituent encoders are chosen such that G1 and G2 have
a low trellis complexity (see e.g. [LV95, LKFF98, Var98]), to allow for low-complexity
decoding. The interleaving is described by a permutation matrix (cf. Appendix B)

P ∈ F
K×K
2

corresponding to the permutation function π such that

permπ ŭ = ŭP .

Using the generator matrices and the permutation matrix, the encoding of the constituent
codes may be written as

ŭ(1) = ŭ, ŭ(2) = ŭP ,

x̆(1) = ŭ(1)G1 = ŭG1, x̆(2) = ŭ(2)G2 = ŭPG2.

As

x̆ = [x̆(1) x̆(2)],

the generator matrix for the PCC encoder is given by

G :=
[
G1 PG2

]
∈ F

K×N
2 , (3.35)

and the overall encoding can be written as

x̆ = ŭG.

56 CHAPTER 3. CHANNEL CODING SCHEMES

DEC1

DEC2
π
−1
π

z
x
(1)

w
(1)

u
(1)

w
(2)

u
(1)

w
(2)

u
(2)

w
(1)

u
(2)

S
/
P

zx

ûv
(1)

u
(1) = vu

z
x
(2)

Figure 3.5: PCC decoder.

Iterative Decoder

An iterative decoder for a PCC is depicted in Fig. 3.5. It comprises a serial-to-parallel
converter (S/P), two decoders (DEC1 and DEC2), an interleaver (π), and a deinterleaver
(π−1). The two decoders, referred to as Decoder 1 and Decoder 2, correspond to the
two constituent encoders, and they are called constituent decoders. Commonly, extrinsic
LogAPP or extrinsic MaxLogAPP decoders are employed as constituent decoders. The
overall decoder is called PCC decoder.

The channel LLR word zx, corresponding to the PCC word x, is separated into zx(1)

and zx(2) corresponding to the constituent code words x(1) and x(2), respectively; these are
given to the corresponding constituent decoders Decoder 1 and Decoder 2. For iterative
decoding, the two constituent decoders exchange extrinsic values for info symbols, w

(1)

u(2) =

permπ w
(1)

u(1) and w
(2)

u(2) = permπ w
(2)

u(1) . After the last iteration, Decoder 1 computes the

word of complete post-decoding values v
(1)

u(1) corresponding to u(1). This represents the

overall post-decoding word vu = v
(1)

u(1) , corresponding to u, computed by the PCC decoder.
A subsequent hard decision gives the estimated info word û. Notice the notation for soft-
values: the subindex indicates which info or code word the soft-values correspond to, and
the superindex indicates by which decoder the soft-values were computed. The decoding
process is discussed in more detail in the sequel.

Each iteration of the decoding process consists of two steps, called half-iterations.
Decoder 1 operates in the first half-iteration, and Decoder 2 operates in the second half-
iteration.

Decoder 1: The soft-values available to Decoder 1 are zx(1) and

w
(2)

u(1) := perm−1
π w

(2)

u(2) . (3.36)

In the first iteration, w
(2)

u(2) is set to the all-zero word, and in the other iterations, it
is the decoding result of Decoder 2 from the previous half-iteration.

The transmission model assumed by Decoder 1 is as follows (cf. Section 3.2): Info
word u(1) was encoded by Encoder 1 to code word x(1), so that [u(1) x(1)] ∈ C1,syxt.

3.5. CONCATENATED CODES 57

The words u(1) and x(1) were transmitted over BISMCs and the resulting words of
channel LLRs are w

(2)

u(1) and zx(1) , respectively.

Using the pre-decoding words w
(2)

u(1) and zx(1) , and taking into account the code
constraints due to C1,syxt, Decoder 1 computes extrinsic values for its info symbols:

w
(1)

u(1) := decext
info(w

(2)

u(1) , zx(1) ‖ C1,syxt). (3.37)

Decoder 2: The soft-values available to Decoder 2 are zx(2) and

w
(1)

u(2) := permπ w
(1)

u(1) . (3.38)

The word w
(1)

u(1) is the decoding result of Decoder 1 from the previous half-iteration.

The transmission model assumed by Decoder 2 is as follows (cf. Section 3.2): Info
word u(2) was encoded by Encoder 2 to code word x(2), so that [u(2) x(2)] ∈ C2,syxt.
The words u(2) and x(2) were transmitted over BISMCs and the resulting words of
channel LLRs are w

(1)

u(2) and zx(2) , respectively.

Using the pre-decoding words w
(1)

u(2) and zx(2) , and taking into account the code
constraints due to C2,syxt, Decoder 2 computes extrinsic values for its info symbols:

w
(2)

u(2) := decext
info(w

(1)

u(2) , zx(2) ‖ C2,syxt). (3.39)

The iterative decoding scheme is constituted by (3.36), (3.37), (3.38), and (3.39).
After the last iteration, Decoder 1 computes complete post-decoding values for its info

symbols, using the same assumptions as given above:

v
(1)

u(1) := decinfo(w
(2)

u(1) , zx(1) ‖ C1,syxt). (3.40)

These values represent the final post-decoding values of the PCC decoder, i.e.,

vu := v
(1)

u(1) .

Alternatively, Decoder 2 may be used in an analogous way to generate the final post-
decoding values of the PCC decoder.

The iterative decoder typically converges quickly. In some cases, however, it converges
only slowly, or it does not converge at all. (Some aspects regarding optimality are dis-
cussed in the next section.) Thus, the decoding performance can be improved for a given
average number of iterations by terminating the iteration as soon as convergence or non-
convergence is detected. For that purpose, various stopping criteria have been proposed
in literature [Rob94,HOP96,NS97,Hám98,SLF99,WWE00,MDP00,LH01]. All stopping
criteria follow the same principle: After each half or each full iteration, a function of
the extrinsic values is computed; the iteration is terminated either if the function value
reaches a certain threshold, or if the difference between two subsequent function values
(from one iteration to the next) reaches a certain threshold. For simulation, a genie cri-
terion may be employed: The iteration is terminated as soon as the estimated info word
is equal to the transmitted info word. The resulting word error rate represents a lower
bound on word error rates achievable with real stopping criteria.

58 CHAPTER 3. CHANNEL CODING SCHEMES

EXIT Chart

The behavior of the iterative decoder may be visualized using the EXIT chart method
[tB01c]. Presuming very large code lengths, the EXIT chart method allows for an analysis
of the iterative decoder and a very accurate prediction of the decoding threshold, which is
the parameter of the worst channel (for a given channel model) such that quasi error-free
transmission can be assured. For an AWGN channel, the decoding threshold is typically
given in terms of signal-to-noise threshold, and for a BSC, the decoding threshold is
typically given in terms of the crossover probability. As for a given channel model, there
is a one-to-one correspondence between the channel parameter and the channel capacity,
the decoding threshold may equivalently be given in terms of the channel capacity. This
representation is preferred in this thesis.

The EXIT chart for a PCC depicts the info-symbol EXIT functions for the two con-
stituent decoders (cf. Section 3.3). For the computation or the EXIT functions, the
a-priori channels are typically modeled as AWGN channels. The values of symbol-wise
mutual information associated to the inputs and to the outputs of the two constituent
decoders are

I
(1)
ext := I(U (1);W

(1)

u(1)) = I(U (2);W
(1)

u(2)) =: I
(2)
apri,

I
(2)
ext := I(U (2);W

(2)

u(2)) = I(U (1);W
(2)

u(1)) =: I
(1)
apri;

the equalities hold because interleaving does not change mutual information.
Regarding these equalities, the EXIT functions for Decoder 1 and Decoder 2 are given

as

itf(1) : I
(2)
ext 7→ I

(1)
ext , (3.41)

itf(2) : I
(1)
ext 7→ I

(2)
ext ; (3.42)

the mutual information of the communication channel, Ich := I(X;ZX), is used as para-
meter. The iterative decoder can converge only if the two EXIT functions do not have
an intersection. For details about the EXIT chart method for PCCs, we refer the reader
to [tB01c].

The EXIT chart method is illustrated for a low-density parity-check code in Exam-
ple 3.15.

Optimality of the Decoder

The use of LogAPP decoders as constituent decoders is often considered as optimal in
literature. Employing LogAPP decoding in (3.36), (3.37), (3.38), and (3.39), the iterative
decoder is given by the following set of equations:

w
(2)

u(1) := perm−1
π w

(2)

u(2) , (3.43a)

w
(1)

u(1) := logappext
info(w

(2)

u(1) , zx(1) ‖ C1,syxt), (3.43b)

w
(1)

u(2) := permπ w
(1)

u(1) , (3.43c)

w
(2)

u(2) := logappext
info(w

(1)

u(2) , zx(2) ‖ C2,syxt). (3.43d)

3.5. CONCATENATED CODES 59

The words zx(1) and zx(2) are assumed to be pre-decoding words consisting of condition-
ally independent LLRs (cf. (3.21) and (3.22)). The optimality of the resulting iterative
decoding scheme is discussed in the sequel.

First, we address the role of LogAPP decoders during iterative decoding. We start with
the very first iteration, where w

(2)

u(1) = 0. Since the pre-decoding word [w
(2)

u(1) z
(1)
x] consists

of conditionally independent LLRs, the extrinsic word w
(1)

u(1) computed by Decoder 1,
(3.43b), consists of LLRs; but for obvious reasons, these LLRs are not conditionally

independent. Due to interleaving, (3.43c), the local dependencies in w
(1)

u(2) are smaller

than that in w
(1)

u(1) , but they are not removed. The extrinsic word w
(2)

u(2) computed by
Decoder 2 in the second half-iteration, (3.43d), contains values that are neither LLRs

nor independent. Therefore, the deinterleaved word w
(2)

u(1) does not have these properties
either. In all following decoding steps, the outputs of Decoder 1 and Decoder 2 will not
be LLRs.

We see from this discussion that only the decoding step in the first half-iteration is
optimal in the sense of LogAPP decoding, whereas the others are not. Hence, though
LogAPP decoding is optimal with respect to minimum symbol error probability and
maximal symbol-wise mutual information for single decoders (cf. Section 3.4.1), it is not
optimal with respect to these criteria when used for constituent decoders within a PCC
decoders. Nevertheless, it may be optimum in some other sense. A possible improvement,
namely the “correction” of the extrinsic values to LLRs, is investigated in Section 4.5.

Not only the behavior of LogAPP decodes during iterative decoding is of interest,
but also the solution of the set of LogAPP decoding equations given in (3.43). Let w

(1)∗

u(1)

and w
(2)∗

u(1) denote two extrinsic words that fulfill (3.43) simultaneously; for convenience,

we define w∗ := [w
(1)∗

u(1) w
(2)∗

u(1)]. The vector w∗ represents a solution, i.e., a fixed point
of (3.43). The info word corresponding to this fixed point is denoted by û∗. On the other
hand, consider an overall LogAPP decoder for the PCC:

v•
u := logappinfo(0, [zx(1) zx(2)] ‖ CPCC,syxt).

The info word corresponding to this optimal solution is denoted by û•.
A fundamental question is the relation between a fixed-point solution and an optimal

solution, i.e., the relation between û∗ and û•. Since the iterative decoder achieves very low
error rates, the two solutions are identical in most cases. On the other hand, a remarkable
result could be proved for parallel concatenated single parity check codes [FB03]: A
fixed point always exists and it is unique, so that the iterative decoder always converges
to this fixed point. Simulations showed that the error rates for iterative decoding and
those for optimal decoding are different, so that we can conclude: the estimated info
word corresponding to the fixed point and that corresponding to the optimal solution are
not always the same. Therefore, using LogAPP decoders as constituent decoders is not
optimal even if the solution is determined in a single step, corresponding to a fixed point,
rather than iteratively.

This gives rise to two questions: (1) When employing LogAPP decoding functions,
what does a fixed point mean? (2) Are there decoding functions such that a fixed point
corresponds to the optimal solution? Whereas the first question is still open, the latter

60 CHAPTER 3. CHANNEL CODING SCHEMES

question is addressed in [Sor02]. Constituent decoders are constructed such that the itera-
tive decoder converges to the optimal solution whenever it converges at all. Thus, it can be
proved that the most likely info word is found when noise on the communication channel
is low. A similar proof does not exist for iterative decoders employing LogAPP decoders.
Further information about fixed points and convergence of the iterative decoding process
can be found in [Moq02, IEE01].

Code Structure and Parity-Check Matrices

The iterative decoder does not operate on the PCC CPCC, but on a code that results from
extending the original code CPCC with its info symbols. This code is called embedding
code23 of CPCC, and it is denoted by CPCC,emb. Using the generator and parity-check
matrices of the constituent codes, we derive parity-check matrices of CPCC and CPCC,emb.
The structures of these parity-check matrices are then related to the structures of the
iterative decoder.

For the constituent codes C1 and C2, let

G1 ∈ F
K×N1
2 , G2 ∈ F

K×N2
2

denote the generator matrices, and let

H1 ∈ F
(N1−K)×N1

2 , H2 ∈ F
(N2−K)×N2

2

denote parity-check matrices, respectively. For simplicity, K < N1 and K < N2 is as-
sumed 24. Similarly to (3.10), let inverse generator matrices AT

1 and AT
2 for C1 and C2 be

defined as

A1 ∈ F
K×N1
2 : G1A

T
1 = I,

A2 ∈ F
K×N2
2 : G2A

T
2 = I,

respectively.
The embedding code CPCC,emb employed for iterative decoding of CPCC is the system-

atically extended code of CPCC (cf. Section 3.1), i.e., the code words of CPCC,emb comprise
the info word and the PCC word:

xemb := [ux] = [ux(1) x(2)].

Thus, the generator matrix for CPCC,emb is given by

Gemb :=
[
I G

]
=
[
I G1 PG2

]
∈ F

K×(K+N1+N2)
2 . (3.44)

Since Gemb is a systematic generator matrix, a parity-check matrix for CPCC,emb can be
determined straight-forward as

Hemb :=
[
GT I

]
=

[
GT

1 I 0
GT

2 P T 0 I

]

∈ F
(N1+N2)×(K+N1+N2)
2 . (3.45)

23In the case of PCCs (but only there), the embedding code is equal to the systematically extended
code.

24A generalization is straight-forward.

3.5. CONCATENATED CODES 61

Regarding (PG2)(PA2)
T = I and (3.12), we obtain a second parity-check matrix for

CPCC,emb:

Hemb,A :=

I A1 0
0 H1 0
I 0 PA2

0 0 H2

∈ F

(N1+N2)×(K+N1+N2)
2 . (3.46)

Notice that all rows of Hemb,A are linearly independent.
Starting with matrix Hemb,A, a parity-check matrix for CPCC can be derived as follows.

First, we add in Hemb,A the first row (of matrices) to the third row (of matrices):

I A1 0
0 H1 0
0 A1 PA2

0 0 H2

;

the resulting matrix still has full rank. When splitting the check equation25

[
ŭ x̆

]

I A1 0
0 H1 0
0 A1 PA2

0 0 H2

T

= 0

into two parts, as

[
ŭ x̆

] [
I A1 0

]T
= 0 and

[
ŭ x̆

]

0 H1 0
0 A1 PA2

0 0 H2

T

= 0,

we see immediately that

HA :=

H1 0
A1 PA2

0 H2

 ∈ F
(N1+N2−K)×(N1+N2)
2 (3.47)

represents a parity-check matrix for CPCC. Notice that HA comprises only the parity-
check matrices and inverse generator matrices of the constituent codes, which is indicated
by index A.

The structures of the parity-check matrices are directly related to the structure of the
iterative decoder. Consider first the parity check matrix for the embedding code, given
in (3.45):

Hemb =

[
GT

1 I 0
GT

2 P T 0 I

]
←− Decoder 1
←− Decoder 2

The parity-check constraints defined by the upper part are taken into account by De-
coder 1, and those defined by the lower part are taken into account by Decoder 2. These

25Notice the notation for binary symbols in F2 and in B, as introduced in Section 3.1.

62 CHAPTER 3. CHANNEL CODING SCHEMES

two sets of parity-check constraints are coupled only via the info symbol positions, namely
the first K columns. Similarly, the two constituent decoders are coupled by exchanging
information about these info symbols.

Conversely, these relations may be exploited to find an iterative decoding structure
for a given binary linear code. First, the parity check matrix of the given code has to be
converted into the form of Hemb, given in (3.45). Such a conversion is always possible (if
necessary, using an equivalent code), and it is generally not unique. Then, the matrices
corresponding to G1, G2, and P can be determined. The problem is that the matrices
corresponding to G1 and G2 are required to have low trellis complexity such that soft-
output decoding is feasible. If this is the case, we can interpret the given code as a PCC
and decode it using the iterative decoding structure of this PCC. A first approach of this
kind was proposed in [Ung03] for decoding of Reed-Solomon codes over extensions fields
of F2.

A more general approach may be based on the parity-check matrix for the PCC, given
in (3.47). If a given binary linear code has a parity-check matrix that has a structure
similar to HA, we may again determine matrices G1, G2, and P such that this code can
be interpreted as a PCC. If G1 and G2 show low trellis complexity, the iterative decoding
structure of the corresponding PCC can be applied for decoding. As “matching” a parity-
check matrix of a given code to the structure of H emb gives fewer degrees of freedom than
“matching” it to the structure of HA, the latter method may be applicable to a larger
class of codes than the former.

Besides finding iterative decoders for linear binary codes, the derived parity-check
matrices for the PCC and its embedding code may also be used for code analysis or code
design.

3.5.2 Serially Concatenated Codes

Motivated by the extraordinary performance of parallel concatenated codes, as considered
in the previous section, serially concatenated codes (SCCs) that are constructed in a
similar way were investigated in [BDMP98b]. In some special cases, PCCs and SCCs and
the corresponding iterative decoders are even (almost) equivalent, as shown in [HtBH01].
We refer to the overall encoder as SCC encoder and to the overall (iterative) decoder as
SCC decoder.

In the sequel, we restrict ourselves to the basic encoding and decoding princi-
ples. Further information about analysis and design of SCCs, regarding constituent
codes and interleavers, and the corresponding iterative decoders may be found in
[BDMP98a,BDMP98b,HW99,VY00, tB00b, tB01a].

Encoder

The encoder for a serially concatenated code (SCC) comprises two binary linear encoders
(ENC1 and ENC2), and an interleaver (π), as shown in Fig. 3.6. The two encoders are
referred to as Encoder 1 and Encoder 2, and they are called constituent encoders; the
overall encoder is called SCC encoder.

3.5. CONCATENATED CODES 63

ENC2πENC1

x
(1)

u
(2)

x
(2)

= xu = u
(1)

Figure 3.6: SCC encoder.

The SCC encoder maps an info word u to a code word x as follows: The info word
u(1) = u is encoded by Encoder 1 to the code word x(1). This code word is interleaved26,
according to a permutation function π, to u(2) = permπ x(1) and then encoded by En-
coder 2 to the code word x(2). This represents the overall code word x = x(2), called SCC
word. The info and code words are represented over B.

The code generated by Encoder 1 is denoted by C1, and it is also called the outer
code; it has info word length K, code word length N1, and rate R1 := K/N1. Similarly,
the code generated by Encoder 2 is denoted by C2, and it is also called the inner code; it
has info word length N1, code word length N2, and rate R2 := N1/N2. The codes C1 and
C2 are referred to as constituent codes. The code formed by serial concatenation of the
constituent codes, i.e., the set of code words x, is called the serially concatenated code
(SCC), and it is denoted by CSCC; it has info word length K, code word length N = N2,
and code rate

R :=
K

N
= R1R2.

Notice that CSCC is a subcode of C2.
As the constituent encoders and the SCC encoder are linear encoders, they can be

described using generator matrices. For writing info and code words over F2, we use the
notation introduced in Section 3.1 (for b ∈ B, b̆ = bpsk−1(b) ∈ F2).

Let the generator matrices for C1 and C2 be denoted by

G1 ∈ F
K×N1
2 , G2 ∈ F

N1×N2
2 ,

respectively. Typically, the constituent encoders are chosen such that G1 and G2 have
a low trellis complexity27 to provide for low decoding complexity. The interleaving is
described by a permutation matrix (cf. Appendix B)

P ∈ F
N1×N1
2

corresponding to the permutation function π such that

permπ x̆(1) = x̆(1)P .

Using the generator matrices and the permutation matrix, we have for the constituent
encodings

ŭ(1) = ŭ, ŭ(2) = x̆(1)P ,

x̆(1) = ŭ(1)G1 = ŭG1, x̆(2) = ŭ(2)G2 = x̆(1)PG2.

26For notation, see Appendix B.
27Regarding trellises and their complexity, see [LV95,LKFF98,Var98].

64 CHAPTER 3. CHANNEL CODING SCHEMES

As
x̆ = x̆(2),

the generator matrix for the SCC encoder is given by

G := G1PG2 ∈ F
K×N2
2 , (3.48)

and the overall encoding can be written as

x̆ = ŭG.

Iterative Decoder

An iterative decoder for an SCC is depicted in Fig. 3.7. It comprises two decoders (DEC1
and DEC2), an interleaver (π), and a deinterleaver (π−1). The two decoders, referred to as
Decoder 1 and Decoder 2, correspond to the two constituent encoders, and they are called
constituent decoders. Commonly, extrinsic LogAPP or extrinsic MaxLogAPP decoders
are employed as constituent decoders. The overall decoder is called SCC decoder.

DEC2
π
−1
π

DEC1

w
(2)

u
(2)

zx = z
x
(2)

w
(1)

u
(2) w

(1)

x
(1)

w
(2)

x
(1)

ûv
(1)

u
(1) = vu

Figure 3.7: SCC decoder.

The channel LLR word zx corresponding to the SCC code word x is equal to the word
of channel LLRs zx(2) corresponding to code word x(2), as x = x(2), i.e., zx(2) = zx; the
word zx(2) is given to Decoder 2. For iterative decoding, the two constituent decoders

exchange extrinsic values, w
(2)

x(1) = perm−1
π w

(2)

u(2) and w
(1)

u(2) = permπ w
(1)

x(1) . After the last

iteration, Decoder 1 computes complete post-decoding values v
(1)

u(1) corresponding to u(1).

This represents the overall post-decoding word vu = v
(1)

u(1) , corresponding to u, computed
by the SCC decoder. A subsequent hard decision gives the estimated info word û. Notice
the notation for soft-values: the subindex indicates which info or code word the soft-
values correspond to, and the superindex indicates by which decoder the soft-values were
computed. The decoding process is now discussed in more detail.

Each iteration of the decoding process consists of two steps, called half-iterations.
Decoder 2 operates in the first half-iteration, and Decoder 1 operates in the second half-
iteration.

Decoder 2: The soft-values available to Decoder 2 are zx(2) and

w
(1)

u(2) := permπ w
(1)

x(1) . (3.49)

3.5. CONCATENATED CODES 65

In the first iteration, w
(1)

u(1) is set to the all-zero word, and in the other iterations, it
is the decoding result of Decoder 1 from the previous half-iteration.

The transmission model assumed by Decoder 2 is as follows (cf. Section 3.2): Info
word u(2) was encoded by Encoder 2 to code word x(2), so that [u(2) x(2)] ∈ C2,syxt.
The words u(2) and x(2) were transmitted over BISMCs, and the resulting words of
channel LLRs are w

(1)

u(2) and zx(2) , respectively.

Using the pre-decoding words w
(1)

u(2) and zx(2) and taking into account the code
constraints due to C2,syxt, Decoder 2 computes extrinsic values for its info symbols:

w
(2)

u(2) := decext
info(w

(1)

u(2) , zx(2) ‖ C2,syxt). (3.50)

Decoder 1: The soft-values available to Decoder 1 are

w
(2)

x(1) := perm−1
π w

(2)

u(2) . (3.51)

The word w
(2)

u(2) is the decoding result of Decoder 2 from the previous half-iteration.
Notice that no soft-values for info symbols are available.

The transmission model assumed by Decoder 1 is as follows (cf. Section 3.2): Info
word u(1) was encoded by Encoder 1 to code word x(1), so that x(1) ∈ C1 and
[u(1) x(1)] ∈ C1,syxt. Only the code word x(1) was transmitted over a BISMC, and

the resulting word of channel LLRs is w
(2)

x(1) . As no info word u(1) is transmitted,
we set zu(1) = 0.

Using the pre-decoding word w
(2)

x(1) and taking into account the code constraints due
to C1, Decoder 1 computes extrinsic values for its code symbols:

w
(1)

x(1) := decext
code(w

(2)

x(1) ‖ C1). (3.52)

The iterative decoding scheme is constituted by (3.49), (3.50), (3.51), and (3.52).
After the last iteration, Decoder 1 computes complete post-decoding values for its info

symbols, using the same assumptions as given above:

v
(1)

u(1) := decinfo(0,w
(2)

x(1) ‖ C1,syxt). (3.53)

These values represent the final post-decoding values of the PCC decoder, i.e.,

vu := v
(1)

u(1) .

Notice that for this decoding operation, C1,syxt is taken into account.
Similarly to the PCC decoder, stopping criteria may be employed for detection of

convergence or nonconvergence in order to improve the decoding performance for a given
average number of iterations. In general, all stopping criteria for PCC decoders may be
applied for SCCs in an appropriately adapted way. An additional stopping criterion is the
following [PAT04]: After each (full or half) iteration, the complete post-decoding values
corresponding to x(1) are computed and hard decided to x̂(1). The iteration is terminated

66 CHAPTER 3. CHANNEL CODING SCHEMES

as soon as x̂(1) ∈ C1. This stopping criterion is similar to that commonly used for LDPC
codes (see Section 3.6).

Serially concatenated codes may be constructed such that they operate close to the
channel capacity. For example, using repetition codes as outer codes and high rate convo-
lutional codes as inner codes leads to this property [tB00b,HtBH01]. A special class are
repeat-accumulate codes: repetition codes are used as outer codes and an accumulator,
i.e., a recursive rate-1 memory-1 convolutional encoder, is used as inner code; when slightly
modified, even these simple codes may achieve the channel capacity [DJM98,tBK03]. The
codes are called systematic repeat-accumulate codes if also the systematic symbols of the
repetition codes are transmitted over the communication channel.

EXIT Chart

The EXIT chart for the serially concatenated code depicts the code-symbol EXIT function
for Decoder 1 and the info-symbol EXIT function for Decoder 2 (cf. Section 3.3). For
the computation of the EXIT functions, the a-priori channels are typically modeled as
AWGN channels.

The values of symbol-wise mutual information associated to the inputs and to the
outputs of the two constituent decoders are

I
(1)
ext := I(X(1);W

(1)

x(1)) = I(U (2);W
(1)

u(2)) =: I
(2)
apri,

I
(2)
ext := I(U (2);W

(2)

u(2)) = I(X(1);W
(2)

x(1)) =: I
(1)
apri;

the equalities hold because interleaving does not change mutual information.

Regarding these equalities, the EXIT function for Decoder 1 is given as

itf(1) : I
(2)
ext 7→ I

(1)
ext , (3.54)

where the pre-decoding information about the info symbols U (1) is assumed to be zero;
the EXIT function for Decoder 2 is given as

itf(2) : I
(1)
ext 7→ I

(2)
ext , (3.55)

where the mutual information of the communication channel, Ich := I(X(2);Zx(2)), is used
as parameter. The iterative decoder can converge only if the two EXIT functions do not
have an intersection. For details about the EXIT chart method for SCCs, we refer the
reader to [tB01a].

The EXIT chart method is illustrated for a low-density parity-check code in Exam-
ple 3.15.

Optimality of the Decoder

Similar to the case of PCCs, the use of LogAPP decoders as constituent decoders is often
considered as optimal in literature. Employing LogAPP decoding in (3.49), (3.50), (3.51),

3.5. CONCATENATED CODES 67

and (3.52), the iterative decoder is given by the following set of equations:

w
(1)

u(2) := permπ w
(1)

x(1) , (3.56a)

w
(2)

u(2) := decext
info(w

(1)

u(2) , zx(2) ‖ C2,syxt), (3.56b)

w
(2)

x(1) := perm−1
π w

(2)

u(2) , (3.56c)

w
(1)

x(1) := decext
code(w

(2)

x(1) ‖ C1). (3.56d)

The pre-decoding word zx(2) is assumed to consist of conditionally independent LLRs (cf.
(3.21) and (3.22))

The considerations on the optimality of the PCC decoder apply in a similar way to the
SCC decoder. An additional problem arises from the fact that Decoder 1 decodes to code
symbols, (3.56d). Since code symbols depend on each other due to the code structure,

so do also the corresponding post-decoding values. Therefore, the values of w
(1)

x(1) are
definitely not conditionally independent from each other. Notice that this basic problem
occurs for every soft-output decoder, independently of the applied decoding principle (like
LogAPP or MaxLogAPP).

Hence, similar to the PCC case, though LogAPP decoding is optimal with respect
to minimum symbol error probability and maximal symbol-wise mutual information (cf.
Section 3.4.1) for single decoders, it is not optimal with respect to these criteria when
used for constituent decoders of iterative decoders for SCCs.

Code Structure and Parity-Check Matrices

The iterative decoder does not operate on the SCC CSCC, but on a code that results from
extending the original code CSCC with the code symbols of the first constituent code.
This code is called the embedding code of CSCC, and it is denoted by CSCC,emb. Using the
generator and the parity-check matrices of the constituent codes, we derive parity-check
matrices of CSCC and CSCC,emb. The structures of these parity-check matrices are then
related to the structures of the iterative decoders.

For the constituent codes C1 and C2, let

G1 ∈ F
K×N1
2 , G2 ∈ F

N1×N2
2

denote the generator matrices, and let

H1 ∈ F
(N1−K)×N1

2 , H2 ∈ F
(N2−N1)×N2

2

denote parity-check matrices, respectively. Similarly to (3.12), let inverse generator ma-
trices AT

1 and AT
2 for C1 and C2 be defined as

A1 ∈ F
K×N1
2 : G1A

T
1 = I,

A2 ∈ F
N1×N2
2 : G2A

T
2 = I,

respectively.

68 CHAPTER 3. CHANNEL CODING SCHEMES

The embedding code CSCC,emb employed for iterative decoding of CSCC is formed by the
code words of the first constituent code and the SCC words:

xemb := [x(1) x].

Thus, the generator matrix for Cemb is given by

Gemb :=
[
G1 G1PG2

]
∈ F

K×(N1+N2)
2 . (3.57)

Regarding (PG2)(PA2)
T = I and (3.12), we may write the parity-check equations

for C1 and C2,syxt as

x̆(1)HT
1 = 0,

[

x̆(1) x̆
]
[
I PA2

0 H2

]T

= 0,

or simply as a single equation:

[

x̆(1) x̆
]

H1 0
I PA2

0 H2

T

= 0. (3.58)

It can easily be seen that

Hemb,A :=

H1 0
I PA2

0 H2

 ∈ F
(N1−K+N2)×(N1+N2)
2 (3.59)

is a parity-check matrix for CSCC,emb. Notice that Hemb,A contains no redundant rows.
Starting with Hemb,A, we derive a parity-check matrix for CSCC. First, we apply the

following row operations:

H1 0
I PA2

0 H2

(a)−→

I PA2

H1 0
0 H2

(b)−→

I PA2

0 H1PA2

0 H2

 ;

(a) the first and the second row are exchanged; (b) the first row is left-multiplied by H 1,
and then it is added to the second row. The resulting matrix has full rank, and thus the
parity-check equation (3.58) can equivalently be written as

[

x̆(1) x̆
]

I PA2

0 H1PA2

0 H2

T

= 0.

When removing the parts corresponding to code word x̆(1), we obtain

x̆

[
H1PA2

H2

]T

= 0.

3.6. LOW-DENSITY PARITY-CHECK CODES 69

Thus, we have found a parity-check matrix for CSCC:

HA :=

[
H1PA2

H2

]

∈ F
(N2−K)×N2

2 . (3.60)

Notice that HA comprises only the parity-check matrices and the inverse generator matrix
of the second constituent code, which is indicated by index A.

The structures of the parity-check matrices are directly related to the structure of the
iterative decoder. Consider first the parity check matrix for the embedding code, given
in (3.59):

Hemb,A =

H1 0
I PA2

0 H2

}
←− Decoder 1

}

←− Decoder 2

The parity-check constraints defined by the first row are taken into account by Decoder 1,
and those defined by the second and the third row are taken into account by Decoder 2.
These two sets of parity check constraints are coupled only via the positions corresponding
to the code symbols of C1, namely the first N1 columns. Similarly, the two constituent
decoders are coupled by exchanging information about these code symbols. Notice that
the info symbols are not used for the iteration, only for the final decision.

Similar to the case of PCCs, these relations may be exploited to derive an iterative
decoder for a given binary linear code. The parity check matrix of the given code has to
be “matched” to Hemb of the embedding code or to HA of the SCC. Again, the problem is
to find fitting matrices G1, G2, P , where G1 and G2 have to show low trellis complexity.

Besides finding iterative decoders for linear binary codes, the derived parity-check
matrices for the SCC and its embedding code may also be used for code analysis or code
design.

3.6 Low-Density Parity-Check Codes

Low-density parity-check codes (LDPCCs) are defined by parity-check matrices that con-
tain only few ones and thus have “low density”. The parity-check constraints may be
graphically represented by a graph28, called factor graph. LDPCCs are iteratively de-
coded using message passing, also called belief propagation, on this graph. Due to the
sparseness of the parity-check matrix, this iterative decoding algorithm is near optimum.

Regular LDPCCs were introduced by Gallager [Gal62,Gal63] and later rediscovered
and generalized to irregular LDPCCs in [MN97,Mac99]. The iterative decoding algorithm
also goes back to Gallager; it was reinvented and generalized in [WLK95, Wib96] to
iterative decoding on graphs. A general framework for this kind of decoding algorithms
is given in [Tan81, KFL01, For01, For03, Loe04]. Coding schemes comprising irregular
LDPCCs and iterative decoders can achieve channel capacity [RU01a,RSU01,CRU01].

In the sequel, we restrict ourselves to regular LDPCCs and revise the basic encoding
and decoding principles. Further information may be found in the literature given above.
Whereas PCCs and SCCs are defined by their encoder structures, LDPCCs are defined

28The code constraints of any linear code can be represented in a factor graph.

70 CHAPTER 3. CHANNEL CODING SCHEMES

by their parity-check matrices. Accordingly, we start with the parity-check matrices and
the factor graphs.

Code Structure, Parity-Check Matrices, and Factor Graph

Consider a parity-check matrix

H =
[
Hm,n

]

m∈M
n∈N

∈ F
M×N
2 (3.61)

that contains only a small number of ones, i.e., a matrix with “low density”; the column
and row index sets of H are denoted by

M := {0, 1, . . . ,M − 1}, N := {0, 1, . . . , N − 1}.

(Notice that the indices start with 0.) The index set N is also used for LDPCC words x.
A regular (dv, dc) LDPCC of length N is defined by a low-density parity-check matrix H

that has dv ones in each column and dc ones in each row29:

CLDPCC := {x̆ ∈ F
N
2 : x̆HT = 0}. (3.62)

The value dv is called variable node degree, and the value dc is called check node degree.
The design rate Rd is the code rate which can be “expected” from the size of H :

Rd :=
N −M
N

= 1− dv

dc

.

The design rate follows from Mdc = Ndv, which is equal to the number of ones in H .
As H may contain redundant rows, the actual code rate R is lower-bounded by the design
rate:

R ≥ Rd = 1− dv

dc

.

As the code rate must be larger than zero, we have the condition dv < dc for the variable
node degree and the check node degree.

Example 3.12

The parity-check matrix

H =

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

defines an LDPCC with dv = 2 and dc = 3. (Due to the small size, matrix H shows
no low-density, of course.) The design rate is Rd = 1 − 2/3 = 1/3. As only three
rows of H are linearly independent (the last row is the sum of the first three rows),
the actual code rate is R = 1/2. 3

29In parity-check matrices of irregular LDPCCs, the number of ones per row and the number of ones
per column is not constant.

3.6. LOW-DENSITY PARITY-CHECK CODES 71

The parity-check equation

x̆HT = 0

can be represented in a bipartite graph of variable nodes, check nodes, and edges between
variable nodes and check nodes. This graph is called factor graph [KFL01,Loe04], and it
is addressed in the sequel.

To start with, we write the rows of the parity-check matrix H as

Hm :=
[
Hm,0, Hm,1, . . . , Hm,N−1

]
,

m ∈M, such that

H =

H0
...

HM−1.

The parity-check equation corresponding to the m-th row,

x̆ HT
m = 0,

is called check equation m. For each code symbol xn, we define a variable node n, n ∈ N ,
and for each check equation m, we define a check node m, m ∈ M. Hence, the set of
variable nodes and the set of check nodes can be identified with N andM, respectively.
(Due to the one-to-one correspondence, we do not distinguish between nodes and indices.)

A variable node n and a check node m are connected by an edge (m,n) if code sym-
bol xn participates in check equation m. As this is the case if the parity-check matrix H

has a one in the corresponding position, i.e., if Hm,n = 1, the set of edges is given by

E := {(m,n) ∈M×N : Hm,n = 1}.

The factor graph of H is the graph defined by the triplet (M,N , E), and it represents
graphically the parity check equations, and thus the code constraints30. More information
about factor graphs, including a formal and more general definition, can be found in
[Tan81,WLK95,KFL01,Loe04].

Example 3.13

We continue Example 3.12. The parity-check equation x̆HT = 0 can be written as

x̆0 ⊕ x̆1 ⊕ x̆3 = 0 (m = 0)

x̆0 ⊕ x̆2 ⊕ x̆4 = 0 (m = 1)

x̆1 ⊕ x̆2 ⊕ x̆5 = 0 (m = 2)

x̆3 ⊕ x̆4 ⊕ x̆5 = 0 (m = 3).

The number of each check equation is given in parentheses. Notice that dc = 3
code symbols participate in each parity-check equation, and that each code symbol
participates in dv = 2 parity-check equations. The factor graph of H, representing
this system of equations, is given in Fig. 3.8. 3

72 CHAPTER 3. CHANNEL CODING SCHEMES

1 2 3 4 50n =

1 2 30m =

x3 x4 x5x0 x1 x2

+ + + +

Figure 3.8: Factor graph for the LDPCC from Example 3.12 and Example 3.13.

The iterative decoder for the LDPCC CLDPCC operates on a code that results from
extending the original code CLDPCC; this is similar to decoding of PCCs and SCCs (see
previous section). This code is called embedding code of CLDPCC, and it is denoted by
CLDPCC,emb. The embedding code is defined via code constraints of repetition codes and of
single parity-check codes, and it is addressed in the sequel.

For each code symbol xn participating in check equation m, m ∈ M, we define a
replica x′m,n ∈ B representing a code symbol of the embedding code. Notice that sym-
bol x′m,n corresponds to edge (m,n) of the factor graph and thus, to the one in H at
position (m,n). As the factor graph has N ′ := |E| edges, the number of additional (new)
symbols x′m,n is also N ′. Due to the definition, the code symbols x′m,n are required to
fulfill two kinds of constraints.

The first kind of constraints is related to the variable nodes of the factor graph and
can be described using repetition codes. For each variable node n, n ∈ N , we define the
set of check nodes connected to that variable node as

Mn := {m ∈M : Hm,n = 1}.

Notice thatMn ⊂M and |Mn| = dv. Furthermore, we associate a code word

x(v,n) := [x
(v,n)
0 , . . . , x

(v,n)
dv−1] :=

[
x′m,n

]

m∈Mn
(3.63)

with each variable node n, comprising all symbols x′m,n associated with edges of this
variable node. (The index v indicates the association with a variable node.) As those
symbols are equal to xn by definition, we can express the given constraints as

x(v,n) ∈ Rdv
, [xn x(v,n)] ∈ Rdv,syxt, (3.64)

where Rdv
denotes the repetition code of length dv, and Rdv,syxt denotes its systematically

extended code. Writing the concatenation of all variable-node code words as

x(v) := [x(v,0) . . . x(v,N−1)], (3.65)

30In literature, the factor graph is often associated with the code defined by a parity-check matrix. In
fact, it is associated with a particular parity-check matrix of the code.

3.6. LOW-DENSITY PARITY-CHECK CODES 73

we can express the code word of the embedding code as

xemb := [x x(v)]. (3.66)

Combining (3.64) and (3.65), the constraints related to the variable nodes are given by

x(v) ∈ RN
dv
, [x x(v)] ∈ (RN

dv
)syxt; (3.67)

(RN
dv

)syxt denotes the systematically extended code of RN
dv

, where the systematic symbols
are gathered in the first positions of the code word.

The second kind of constraints are related to the check nodes of the factor graph and
can be described using single parity check codes. For each check node m, m ∈ M, we
define the set of variable nodes connected to that check node as

Nm := {n ∈ N : Hm,n = 1}.
Notice that Nm ⊂ N and |Nm| = dc. Furthermore, we associate a code word

x(c,m) := [x
(c,m)
0 , . . . , x

(c,m)
dc−1] :=

[
x′m,n

]

n∈Nm
(3.68)

with each check node m, comprising all symbols x′m,n associated with edges of this check
node. (The index c indicates the association with a check node.) As those symbols fulfill
a parity check equation by definition, we can express the given constraints as

x(c,m) ∈ Sdc
, (3.69)

where Sdc
denotes the single parity check code of length dc. The concatenation of all

check-node code words is written as

x(c) := [x(c,0) . . . x(c,M−1)]. (3.70)

Combining (3.69) and (3.70), the constraints related to the check nodes are given by

x(c) ∈ SM
dc
. (3.71)

The code words x(v) and x(c) contain the same symbols, only in a different ordering.
For conversion, we define31 a permutation function π such that

x(c) = permπ x(v). (3.72)

Thus, x(c) may be interpreted as an interleaved version of x(v).
Summarizing the above considerations, we define the embedding code of CLDPCC as

Cemb :=
{
[x x(v)] ∈ B

N+N ′

: x(c) = permπ x(v);

[x x(v)] ∈ (RN
dv

)syxt,x
(c) ∈ SM

dc

}
. (3.73)

The repetition code of length dv, Rdv
, and the single parity check code of length dc, Sdc

,
are called constituent codes. It can easily be seen that

x ∈ CLDPCC ⇔ [x x(v)] ∈ Cemb.

This relation is exploited for decoding.

31For notation, see Appendix B.

74 CHAPTER 3. CHANNEL CODING SCHEMES

Example 3.14

We continue Example 3.13. As each element Hm,n corresponds to one code sym-
bol x′

m,n of the embedding code, these symbols may be determined, symbolically,
by replacing the ones in H:

x′
0,0 x′

0,1 x′
0,3

x′
1,0 x′

1,2 x′
1,4

x′
2,1 x′

2,2 x′
2,5

x′
3,3 x′

3,4 x′
3,5

.

The code words associated with variable nodes (corresponding to the “columns” in
the matrix given above) are

x(v,0) = [x′
0,0, x

′
1,0], x(v,1) = [x′

0,1, x
′
2,1], x(v,2) = [x′

1,2, x
′
2,2],

x(v,3) = [x′
0,3, x

′
3,3], x(v,4) = [x′

1,4, x
′
3,4], x(v,5) = [x′

2,5, x
′
3,5],

and the code words associated with check nodes (corresponding to the “rows” in
the matrix given above) are

x(c,0) = [x′
0,0, x

′
0,1, x

′
0,3], x(c,1) = [x′

1,0, x
′
1,2, x

′
1,4],

x(c,2) = [x′
2,1, x

′
2,2, x

′
2,5], x(c,3) = [x′

3,3, x
′
3,4, x

′
3,5].

The constituent codes of the embedding code Cemb are the repetition code of length
dv = 2, R2, and the single parity check code of length dc = 3, S3. The code
constraints of the embedding code are given by

[x0 x(v,0)], [x1 x(v,1)], [x2 x(v,2)], [x3 x(v,3)], [x4 x(v,4)], [x5 x(v,5)] ∈ R2,syxt

(each “column” preceeded by the corresponding symbol xn, regarded as info symbol,
is a code word of the systematically extended repetition code) and

x(c,0), x(c,1), x(c,2), x(c,3) ∈ S3

(each “row” is a code word of the single parity check code).

The code constraints are depicted in Fig. 3.9. 3

Encoder

LDPCCs are typically, but not necessarily, systematically encoded. For finding a generator
matrix, the parity-check matrix H may be converted into the form [B I] by applying row
operations and (if necessary) column permutations; I denotes the identity matrix, and
B is any matrix over F2. A systematic generator matrix of the code (or of an equivalent
code if columns were permuted) is then given by

G =
[
I BT

]
∈ F

K×N
2 ,

such that the encoding can be written as

x̆ = ŭG.

We refer to the encoder as LDPCC encoder.
Since the parity-check matrix generally has no special structure, the encoding com-

plexity is not linear in the code length. Further information about encoding of LDPCCs
can be found in [RU01b].

3.6. LOW-DENSITY PARITY-CHECK CODES 75

· · ·

· · ·

m = · · ·

0n = · · ·

0

5

3

x
(c,0)
1 x

(c,3)
0 x

(c,3)
2

x0

= =

+ +

π

x
(c,0)
0 x

(c,0)
2 x

(c,3)
1

x
(v,0)
0 x

(v,0)
1 x

(v,5)
0 x

(v,5)
1

x5

Figure 3.9: Graphical representation of the embedding code from Example 3.14 corre-
sponding to the LDPCC. (The factor graph of the original LDPCC is depicted in Fig. 3.8).

Iterative Decoder

Iterative decoding of LDPCCs is usually described by belief propagation (also called
message passing) on the factor graph. In the sequel, the iterative decoding algorithm is
presented from a slightly different point of view, based on the embedding code defined
above. Although the actual decoding operations are the same, the relation to iterative
decoding of PCCs and SCCs becomes clearer.

The iterative decoder for an LDPCC is depicted in Fig. 3.10. It comprises two decoders
(DEC1 and DEC2), an interleaver (π), a deinterleaver (π−1), and an inverse LDPCC
encoder (ENC−1). The two decoders, referred to as Decoder 1 and Decoder 2, correspond
to the two types of (virtual) codes, namely the repetition codes and the single parity check
codes, and they are called constituent decoders. Commonly, extrinsic LogAPP or extrinsic
MaxLogAPP decoders are employed as constituent decoders. Using LogAPP decoders
corresponds to the sum-prod algorithm, and using MaxLogAPP decoders corresponds to
the min-sum algorithm. The overall decoder is called LDPCC decoder. Notice the reverse
similarity of the decoder to the SCC decoder.

The channel LLR word zx corresponding to the LDPCC word x is given to De-
coder 1. For iterative decoding, Decoder 1 and Decoder 2 exchange extrinsic val-
ues w

(1)

x(c) = permπ w
(1)

x(v) and w
(2)

x(v) = perm−1
π w

(2)

x(c) corresponding to the code words

x(c) = permπ x(v). Decoder 1 operates on code word x(v) and takes into account only
the constraints due to the repetition codes; Decoder 2 operates on code word x(c) and
takes into account only the constraints due to the single parity check codes. After the
last iteration, Decoder 1 computes the word of complete post-decoding values vx, corre-
sponding to the LDPCC word x. A hard-decision gives the estimated LDPCC word x̂.

76 CHAPTER 3. CHANNEL CODING SCHEMES

DEC1 ENC
−1

π
−1
π

DEC2

vx ûx̂
w

(1)

x
(v)

w
(2)

x
(v)w

(2)

x
(c)

zx

w
(1)

x
(c)

Figure 3.10: LDPCC decoder.

By inverting the LDPCC encoding, the estimated info word û is obtained. Notice the
notation for soft-values: the subindex indicates which info or code word the soft-values
correspond to, and the superindex indicates by which decoder the soft-values were com-
puted. The decoding process is discussed in more detail in the sequel.

Each iteration of the decoding process consists of two steps, called half-iterations.
Decoder 1 operates in the first half-iteration, and Decoder 2 operations in the second
half-iteration.

Decoder 1: The soft-values available to Decoder 1 are zx and

w
(2)

x(v) := perm−1
π w

(2)

x(c) (3.74)

In the first iteration, w
(2)

x(c) is set to the all-zero word, and in the other iterations, it is
the decoding result of Decoder 2 from the previous half-iteration. Following (3.65),
we use the division

w
(2)

x(v) = [w
(2)

x(v,0) . . . w
(2)

x(v,N−1)].

The transmission model assumed by Decoder 1 is as follows for all n ∈ N : Symbol xn

(of x) was encoded by a repetition encoder to code word x(v,n), so that [xn x(v,n)] ∈
Rdv,syxt. The symbol xn and the word x(v,n) were transmitted over BISMCs, and the

resulting words of channel LLRs are zx,n and w
(2)

x(v,n) , respectively.

Using the pre-decoding words zx,n and w
(2)

x(v,n) and taking into account the code
constraints due to Rdv,syxt, Decoder 1 computes extrinsic values for its code symbols:

w
(1)

x(v,n) := decext
code(zx,n,w

(2)

x(v,n) ‖Rdv,syxt), (3.75)

for all n ∈ N . Notice that the N decoding operations are independent. Follow-
ing (3.65), the overall output word is formed as

w
(1)

x(v) = [w
(1)

x(v,0) . . . w
(1)

x(v,N−1)].

Decoder 2: The soft-values available to Decoder 2 are

w
(1)

x(c) := permπ w
(1)

x(v) . (3.76)

3.6. LOW-DENSITY PARITY-CHECK CODES 77

The word w
(1)

x(v) is the decoding result of Decoder 1 from the previous half-iteration.
Notice that no soft-values for (local) info symbols32 are available. Following (3.70),
we use the division

w
(1)

x(c) = [w
(1)

x(c,0) . . . w
(1)

x(c,M−1)].

The transmission model assumed by Decoder 2 is as follows for all m ∈ M: A
(virtual) info word u(c,m) was encoded by a single parity check encoder to code
word x(c,m), so that [u(c,m) x(c,m)] ∈ Sdc,syxt. Only the code word x(c,m) was trans-

mitted over an BISMC, and the resulting word of channel LLRs is w
(1)

x(c,m) . As the

info word u(c,m) was not transmitted, we set the corresponding word of channel
LLRs to zu(c,m) = 0.

Using the pre-decoding word w
(1)

x(c,m) and taking into account the code constraints
due to Sdc

, Decoder 2 computes extrinsic values for its code symbols:

w
(2)

x(c,m) := decext
code(w

(1)

x(c,m) ‖ Sdc
), (3.77)

for all m ∈ M. Notice that the M decoding operations are independent. Follow-
ing (3.70), the output word is formed as

w
(2)

x(c) = [w
(2)

x(c,0) . . . w
(2)

x(c,M−1)].

The iterative decoding scheme is constituted by (3.74), (3.75), (3.76), and (3.77).
After each iteration, Decoder 1 computes complete post-decoding values for its (local)

info symbols xn, using the same assumptions as given above:

vx,n := decinfo(zx,n,w
(2)

x(v,n) ‖Rdv,syxt), (3.78)

for all n ∈ N . Notice again that the N decoding operations are independent. The
complete post-decoding word is then formed as

vx := [vx,0, vx,1, . . . , vx,N−1]

and hard decided to the estimated code word x̂. If x̂ ∈ CLDPCC, the iteration is terminated,
and the estimated info word û corresponding to x̂ is determined. This stopping criterion
makes obvious that iterative decoding aims at finding the most likely code word, and thus
performs sequences (word) estimation rather than symbol-by-symbol estimation.

The decoding operations are particularly simple due to the simple constituent codes,
namely repetition codes and single parity check codes (cf. examples in Section 3.4): When
employing LogAPP decoding, (3.75) and (3.77) result as33

w
(1)

x(v,n),i
= logappext

code,i(zx,n,w
(2)

x(v,n) ‖Rdv,syxt) = zx,n +
dv−1∑

l=0
l 6=i

w
(2)

x(v,n),l
,

w
(2)

x(c,m),i
= logappext

code,i(w
(1)

x(c,m) ‖ Sdc
) =

dc−1∑

¢
l=0
l 6=i

w
(1)

x(c,m),l
.

32Info symbols of the constituent code Sdc
.

33The operator ¢ is defined in Appendix C.2.

78 CHAPTER 3. CHANNEL CODING SCHEMES

This is equivalent to the sum-prod algorithm. When employing MaxLogAPP decoding,
(3.75) and (3.77) result as34

w
(1)

x(v,n),i
= maxlogappext

code,i(zx,n,w
(2)

x(v,n) ‖Rdv,syxt) = zx,n +
dv−1∑

l=0
l 6=i

w
(2)

x(v,n),l
,

w
(2)

x(c,m),i
= maxlogappext

code,i(w
(1)

x(c,m) ‖ Sdc
) =

dc−1∑
ō

l=0
l 6=i

w
(1)

x(c,m),l
.

This is equivalent to the min-sum algorithm. For both LogAPP decoding and
MaxLogAPP decoding, (3.78) results as

vx,n = maxlogappinfo(zx,n,w
(2)

x(v,n) ‖Rdv,syxt) = zx,n +
dv−1∑

l=0

w
(2)

x(v,n),l
.

EXIT Chart

The EXIT chart for the LDPC code depicts the code-symbol EXIT functions for the two
constituent decoders (cf. Section 3.3). For the computation of the EXIT functions, the
a-priori channels are typically modeled as AWGN channels.

The values of symbol-wise mutual information associated to the inputs and to the
outputs of the two constituent decoders are

I
(v)
ext := I(X(v);W

(1)

x(v)) = I(X(c);W
(1)

x(c)) =: I
(c)
apri,

I
(c)
ext := I(X(c);W

(2)

x(c)) = I(X(v);W
(2)

x(v)) =: I
(v)
apri;

the equalities hold because interleaving does not change mutual information.

Regarding these equalities, the EXIT function for Decoder 1 (variable-node decoder)
is given as

itf(v) : I
(c)
ext 7→ I

(v)
ext , (3.79)

where the mutual information of the communication channel, Ich := I(X;ZX), is used as
parameter; the EXIT function for Decoder 2 (check-node decoder) is given as

itf(c) : I
(v)
ext 7→ I

(c)
ext . (3.80)

The iterative decoder can converge only if the two EXIT functions do not have an inter-
section.

For details about the EXIT chart method for LDPCCs, we refer the reader to
[AKtB04].

34The operator ō is defined in Appendix C.2.

3.6. LOW-DENSITY PARITY-CHECK CODES 79

Example 3.15

Consider an LDPCC with variable node degree dv = 3 and check node degree
dc = 4, and the transmission over a BEC. The EXIT charts for two values of channel
information, Ich = 0.36 and Ich = 0.45, are depicted in Fig. 3.11. In addition to
the EXIT functions, the figures show the decoding trajectories, which illustrate
the evolution of the extrinsic mutual information during iterative decoding. The
decoding trajectory gets stuck for the lower value of channel information, and it
approaches the upper right corner for the larger value of channel information. The
latter case corresponds to error-free decoding. The decoding threshold is between
Ich = 0.36 and Ich = 0.45, and it corresponds to the case where the two EXIT
functions touch each other such that the decoding trajectory can slip through. 3

PSfrag replacements

I
(c)
ext = I

(v)
apri (check to variable)

I
(v

)
e
x
t
=
I

(c
)

a
p
ri

(v
ar

ia
b
le

to
ch

ec
k
)

itf(c)
itf(v)

trajectory
0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

PSfrag replacements

I
(c)
ext = I

(v)
apri (check to variable)

I
(v

)
e
x
t
=
I

(c
)

a
p
ri

(v
ar

ia
b
le

to
ch

ec
k
)

itf(c)
itf(v)

trajectory
0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 3.11: EXIT charts, Example 3.15. For each Ich = 0.36 (left figure) and Ich = 0.45
(right figure), the EXIT function for the variable-node decoder itf (v), the EXIT function
for the check-node decoder itf(c), and a decoding trajectory are depicted.

Optimality of the Decoder

The considerations on the optimality of the PCC and the SCC decoder apply to the
LDPCC decoder in a similar way. As opposed to the SCC decoder, both constituent
decoders, namely the one for the repetition codes and the one for the single parity check
codes, decode to “local” code symbols. Thus, the computed extrinsic values are never
independent, in contradiction to the assumptions. Due to the low density of the parity-
check matrix, the pre-decoding values remain independent for the first few iterations, but
after a certain number of iterations, they do depend on each other (otherwise, not all code
constraints would have been taken into account).

Hence, using LogAPP decoders for the constituent codes may be optimal for each
individual decoding operation, but it is not clear if it is also optimal for the iterative
decoding process.

80 CHAPTER 3. CHANNEL CODING SCHEMES

3.7 Summary

This chapter began with some properties of linear binary codes and have defined the
corresponding systematically extended codes. Based on these, a general decoding model
has been introduced. As a basic property, the superchannels from encoder input to de-
coder output are symmetric if linear channel encoders, symmetric channels, and sym-
metric symbol-by-symbol soft-output decoders are employed. LogAPP decoding and
MaxLogAPP decoding have been given as examples for symmetric soft-output decoding
principles.

Three iteratively decodable channel codes have been discussed: parallel concatenated
codes, serially concatenated codes, and low-density parity-check codes. For each type
of code, the encoder, the iterative decoder, and code structures in terms of parity-check
matrices have been considered. The iterative decoders are based on constituent decoders,
each of which takes into account only subsets of the overall code constraints. During
iterative decoding, the constituent decoders exchange information about symbols: In the
case of PCCs, information about info symbols; in the case of SCCs, information about
symbols of the outer code; and in the case of LDPCCs, information about symbols of
the embedding code. These are three rather different principles of information exchange
between constituent decoders.

Information exchange between constituent decoders would not be possible if an it-
erative decoder operated directly on the actual code. For PCCs, SCCs, and LDPCCs,
the notion of embedding codes have been introduced. The constituent decoders have
been shown to exchange information via the symbols of the embedding code that are not
symbols of the original code. For PCCs and SCCs, the parity-check matrices have been
determined, and their structures have been related to the decoding schemes. For both
PCCs and SCCs, only the concatenation of two constituent codes has been considered;
but the concept may easily be extended in a straight-forward way. The derived structures
of parity-check matrices for PCCs and SCCs may give hints as to how to find embedding
codes and the corresponding iterative decoders for other linear binary codes.

Chapter 4

Reliability Information

A symbol-by-symbol soft-output decoder computes post-decoding soft-values for each info
or code symbol. Thus, it provides not only estimates of the symbols, but also information
about the reliability of these estimates; this is called reliability information. This relia-
bility information may be accurate, as in the case of a LogAPP decoder, but it may also
be mismatched, as in the case of a MaxLogAPP decoder (cf. Section 3.4).

Several aspects of reliability information are discussed in this chapter. We start with
a definition of reliability values associated to soft-values (cf. Chapter 2). Then, a general
framework is presented for assessing the quality of soft-values and for improving their
quality by means of memoryless post-processing. The average Kullback-Leibler distance
is proposed as a criterion suitable for measuring the difference between the magnitudes
of the soft-values, corresponding to the interpreted reliability, and the reliability values,
corresponding to the true reliabilities. As an application, decoding of parallel concate-
nated codes (PCC) is considered. The performance is improved by improving the extrinsic
soft-values of the LogAPP or MaxLogAPP constituent decoders.

The new contributions are as follows:

(a) A general framework for assessing and improving the quality of soft-values is pro-
posed.

(b) The Kullback-Leibler distance is introduced for measuring the quality of soft-values.

(c) The PCC decoder with LogAPP constituent decoders is improved1 regarding the
speed of convergence by correcting the extrinsic soft-values with respect to a criterion
based on the Kullback-Leibler distance.

In addition to this, the meanings of “reliability information” and “reliability value” are
discussed and clarified.

4.1 Reliability Values

In this section, we start with a suitable transmission model. Based on this model, the
terms “reliability information” and “reliability value” are discussed and some properties

1Even though the improvement is small, it shows the suboptimality of the PCC decoder.

82 CHAPTER 4. RELIABILITY INFORMATION

are stated.
The general model is depicted in Fig. 4.1. Binary info symbols2 U ∈ B that are

independent and uniformly distributed are transmitted over a binary-input symmetric
memoryless channel (BISMC) U → V . The channel outputs V ∈ R are required to be
“LLR-like”; i.e., when estimating the transmitted info symbol u on basis of a soft-value v,
the error probability is assumed to be large for small magnitudes of v, and it is assumed
to be small for large magnitudes of v. A precise definition of “LLR-like” is given below.
The channel output V is considered as an observation and the corresponding a-posteriori
LLR L ∈ R, is computed. For a given channel output v, we define

l := L(U |V = v) = ln
Pr(U = +1|V = v)

Pr(U = −1|V = v)
. (4.1)

Notice that the actual transition probabilities of the channel U → V have to be known
for this computation. In practice, the distributions may be approximated by histograms
determined by simulation.

BISMC LLR

U V L

Figure 4.1: Transmission model for assessing reliability values.

The following definition specifies the intuitive explanation of “LLR-like” given above:

Definition 4.1 (LLR-like Soft-Values)
Assume a BISMC U → V . The soft-value V is called LLR-like if L(U |V = v) is mono-
tonically increasing in v.

This property has two implications: first, the channel U → L is a BISMC, and second,
the sign of v is the ML (and MAP) estimate for U . Thus, if a soft-value is LLR-like,
the soft-value and the corresponding LLR differ only in their absolute values, and this
difference is “well-behaved” in some sense. If a soft-value is LLR-like but no LLR, we
may call it mismatched LLR in the sequel3.

This model is very general and includes in particular the following three scenarios:

1. A symbol is transmitted over an AWGN channel and the channel output is converted
to an LLR assuming a wrong SNR. The channel U → V models the channel between
the symbol and the mismatched LLR. (See also Example 4.1.)

2. Assume a transmission system with linear channel encoding and MaxLogAPP de-
coding. Then, the channel U → V models the channel between an info symbol and
its mismatched a-posteriori LLR.

2The considerations hold similarly for code symbols.
3Since the term “mismatched LLR” provides an intuitive feeling of the correct meaning, we use it in

spite it is self-contradictory.

4.1. RELIABILITY VALUES 83

3. Assume a transmission system with linear channel encoding and iterative decoding.
Then, the channel U → V models the channel between an info or a code symbol
and its mismatched extrinsic LLR.

Notice that possible dependencies between info or code symbols and possible dependen-
cies between soft-values are explicitly not taken into account, as we investigate only the
symbol-wise reliability of soft-values.

Example 4.1

Consider the conversion of the output y of a binary-input AWGN channel with input
x ∈ B into the corresponding LLR v := L(X|y). (This corresponds to the first of
the above scenarios.) The conversion is given by

v =
2

σ2
N

y,

as shown in Example 3.3, and it requires knowledge of the noise variance σ2
N . When

a wrong noise variance is applied, e.g., due to a wrong SNR estimation, the resulting
soft-value v is not an LLR. However, it is LLR-like according to Definition 4.1, as
can easily be seen. 3

The LLR device in the model has no effect if the channel output v is already an LLR.
This intuitive conjecture is proved in the following lemma.

Lemma 4.1
Assume that v = L(U |Y = y) for observations4 y ∈ Y. Then, L(U |V = v) = L(U |Y = y),
or equivalently,

L(U |V = v) = v.

Proof. As v = L(U |Y = y), we have

pU |Y (u|y) =
1

1 + e−uv
(4.2)

for u ∈ B and v ∈ V (cf. Appendix C). Consider now the conditional probabilities
of U = u:

pU |V (u|v) (a)
=

∫

y∈Y

pU |Y (u|y)pY |V (y|v)dy

(b)
=

∫

y∈Y

1

1 + e−uv
pY |V (y|v)dy

(c)
=

1

1 + e−uv

∫

y∈Y

pY |V (y|v)dy

=
1

1 + e−uv
= pU |Y (u|y).

We have used the following relations: (a) The three random variables U , Y , and V form
the Markov chain

U → Y → V
4The observations may be scalars or vectors.

84 CHAPTER 4. RELIABILITY INFORMATION

due to their definitions. (b) Identity (4.2). (c) If y leads to v, the values of the first factor
(in the second line) are identical; otherwise, the second factor (in the second line) is equal
to zero. Finally, as pU |V (u|v) = pU |Y (u|y), we also have L(U |Y = y) = L(U |V = v).

QED

Due to the property given in Lemma 4.1, the function L(U |.) is idempotent5.

Remark 4.1

Lemma 4.1 can easily be generalized to include nonbinary symbols U or soft-values
that are not LLR-like: the equality pU |V (u|v) = pU |Y (u|y) holds if v is a sufficient
statistic of y for U . The proof follows the same lines. As this thesis is restricted to
binary symbols and LLR-like soft-values, Lemma 4.1 is sufficient.

The soft-value v may be separated into its sign and its magnitude. Since we assumed
symmetry, the sign represents the estimated symbol (also called hard decision), and the
magnitude represents the reliability of this estimate:

û := sgn(v),

a := abs(v).

The values û and a are regarded as realizations of the random variables Û and A. Notice
that A is a subchannel indicator for the channel U → V , and that A induces a decom-
position into BSCs (cf. Chapter 2). At first view, it seems to be natural to denote a
as “reliability”. However, “reliability” implies that the soft-value can be correctly inter-
preted (cf. Section 3.2). In the general case, a reliability value of a symbol U may be
defined as a value from which the a-posteriori probabilities of all symbol values can be
computed. As in this thesis, soft-values are basically required to be LLRs, we define the
reliability of a soft-value as follows.

Definition 4.2 (Reliability of a Soft-Value)
A soft-value v ∈ R for a binary symbol U ∈ B is called reliable if it is equal to the
corresponding LLR, i.e., if v = L(U |V = v). The absolute value of the LLR,

λ := |L(U |V = v)|,

is called reliability value.

Due to the assumed symmetry, the reliability value may equivalently be defined using
the magnitude of the soft-value:

λ := |L(U |A = a)|.

Similarly to Lemma 4.1, we have the following property.

Lemma 4.2
Assume that a = |L(U |Y = y)| for observations6 y ∈ Y. Then we have

|L(U |A = a)| = |L(U |Y = y)| = a.

5 A function f is called idempotent if f(f(x)) = f(x).
6The observations may be scalars or vectors.

4.2. MEASUREMENT OF RELIABILITY VALUES 85

The proof follows immediately from Lemma 4.1 and symmetry arguments. Due to this
property, the function |L(U |.)| is idempotent as well (cf. Footnote 5).

Example 4.2

Consider an AWGN channel with input symbols +1 and −1 and noise power σ2
n.

Let y denote the channel output, and let a denote its absolute value, a := |y|. Then,
the mapping from a to the reliability value λ is given by λ(a) = 2

σ2
n
a. 3

As introduced in Section 2.8, the reliability value may be seen as a random variable Λ
with realizations λ. Furthermore, the reliability value Λ = λ represents the reliability of
the subchannel corresponding to A = a.

Remark 4.2

Reliability is basically not a property of the soft-value itself. It is rather a question
whether a soft-value represents what it is supposed to represent or in other words,
whether the processing unit accepting the soft-value interprets it in the correct way.
As all soft-values in this thesis are interpreted as LLRs, the above definition is
sufficient.

Definition 4.2 immediately poses two questions about mismatched (non-reliable) LLRs.
First, how can the degree of mismatch be measured? And second, how can the degree of
mismatch be reduced? These questions are addressed in Section 4.3 and Section 4.4.

4.2 Measurement of Reliability Values

For a given channel U → V , e.g., between the input of a convolutional encoder and the
output of the corresponding LogAPP decoder, the reliability values λ(a) may be deter-
mined by simulation. Notice that V is assumed to be LLR-like and thus real-valued. The
following steps may be used:

(a) The channel output alphabet is quantized into a finite number of equidistant inter-
vals, where one interval is symmetric around zero. The centers of these intervals are
denoted by vQ, and the set of centers is denoted by VQ. Thus, the actual BISMC
U → V is approximated by the BISMC U → VQ, where VQ ∈ VQ.

(b) The histograms hVQ|U(vQ|+1) and hVQ|U(vQ|−1) are determined by simulation. Tak-
ing into account the symmetry hVQ|U(vQ|+1) = hVQ|U(−vQ|−1), the measurement
of only one of the two histograms is sufficient.

(c) As L(U) = 0 is assumed, the LLR of the quantized channel output is given by

lQ := L(U |VQ = vQ) = L(VQ = vQ|U) ≈ ln
hVQ|U(vQ|+1)

hVQ|U(vQ|−1)
.

(d) Let aQ := |vQ| and λQ := |lQ|. Then the reliability value of the quantized channel
output is given by the two equivalent expressions

λQ =

∣
∣
∣
∣
ln
hVQ|U(+aQ|+1)

hVQ|U(+aQ|−1)

∣
∣
∣
∣
=

∣
∣
∣
∣
ln
hVQ|U(+aQ|+1)

hVQ|U(−aQ|+1)

∣
∣
∣
∣
.

86 CHAPTER 4. RELIABILITY INFORMATION

Finally, we may approximate λ ≈ λQ and l ≈ lQ. (Notice that the two approximations
are equivalent.) These approximations are unbiased, and the precision depends only on
the precision of the histogram measurement.

As hVQ|U(vQ|+1) results from measurements, it may be the case that hVQ|U(aQ|+1) = 0
or hVQ|U(−aQ|+1) = 0 for certain soft-value magnitudes aQ. (This holds similarly for
hVQ|U(vQ|−1).) In either case no reasonable reliability value λQ can be computed, and
the measurements for the soft-values vQ = +aQ and vQ = −aQ can be discarded.

4.3 Measurement of Reliability Mismatch

The quality of a soft-value depends on the difference between the soft-value and its cor-
responding LLR, as soft-values are supposed to be LLRs. If this difference is zero, the
soft-value is called reliable according Definition 4.2. If this difference is unequal to zero,
the soft-value is called a mismatched soft-value (or a mismatched LLR). In this case, we
speak of reliability mismatch, as the reliability claimed by the soft-value, its magnitude,
differs from the actual reliability value, the absolute value of the LLR: the smaller the
value of the reliability mismatch, the better the quality of the soft-value. The converse
of the mismatch may be called the reliability of reliability values. To avoid confusion,
“reliability” will only be used in the sense “reliability value” in the sequel. A major task
in this context is to find a suitable and appropriate measure of reliability mismatch.

The reliability mismatch of a soft-value V may be visualized by plotting the LLR
l = L(U |V = v) versus the soft-value v, as proposed in [HR90,Hoe97]. Since we assume
symmetry, it is sufficient to consider the absolute values, and we may equivalently plot
the reliability value λ := |l| versus the soft-value magnitude a := |v|. This plot may be
interpreted using the concept of decomposing a BISMC into BSCs (cf. Section 2.2). As
A is a subchannel indicator for the channel U → V , this plot shows the reliability value
Λ = λ of each subchannel A = a.

Example 4.3

Consider a terminated convolutional code encoded by the generator polynomials
g1(D) = 1 + D + D3 and g2(D) = 1 + D + D2 + D3 with info word length
K = 1000 and code word length N = 2006. The code symbols are transmitted over
an AWGN channel with SNR Eb/N0 = −2 dB, 0 dB, +2 dB. The decoder performs
MaxLogAPP decoding. As MaxLogAPP decoding only approximates LogAPP de-
coding (cf. Section 3.4), the post-decoding values for the info symbols are only
approximate LLRs. The reliability values are measured using the approach from
Section 4.2.

The reliability values λQ are plotted versus the soft-value magnitudes aQ in Fig. 4.2.
(Additionally, the probability distributions of the soft-value magnitudes are pro-
vided in Fig. 4.3.) Notice that LogAPP decoding results in the 45-degree line,
which corresponds to λQ = aQ and may be regarded as the ideal curve. The mea-
sured curves (for MaxLogAPP decoding) are all below this ideal curve. Thus, the
soft-values pretend to be more reliable than they actually are, and MaxLogAPP
decoding may be said to be too optimistic [PR96].

4.3. MEASUREMENT OF RELIABILITY MISMATCH 87

As the measured curves are different from the ideal curve, the soft-values are not

reliable in the sense of Definition 4.2. However, the “visual distance” becomes
smaller for increasing SNR. (This is not surprising, because MaxLogAPP decoding
approaches LogAPP decoding for increasing SNR.) Therefore, the soft-values at
higher SNR may be regarded as “more reliable” (in some sense) than the soft-
values at lower SNR. In other words: The soft-values exhibit a better quality when
the SNR is larger. 3

PSfrag replacements

aQ

λ
Q

Eb/N0 = −2 dB

Eb/N0 = 0 dB

Eb/N0 = +2 dB

0
0

5

5

10

10

15

15

Figure 4.2: Reliability values λQ versus soft-value magnitudes aQ. Convolutional code
with MaxLogAPP decoding from Example 4.3; several signal-to-noise ratios.

The discussion of Fig. 4.2 in Example 4.3 motivates to introduce a measure for the
reliability mismatch. Doing so, the difference between the soft-value magnitude a and its
reliability value λ can be determined not only qualitatively, as done in Example 4.3, but
also quantitatively. To measure the reliability mismatch, we have to find an appropriate
distance between soft-values and their corresponding LLRs.

The following two distance measures are proposed in the literature. The first measure
(ABS) compares the average absolute values of L and V [CF02]:

dABS(L, V) :=
∣
∣
∣E{|L|} − E{|V |}

∣
∣
∣. (4.3)

The second measure (DIF) averages over the absolute difference between L and V
[vDJK03]:

dDIF(L, V) := E
{

|L− V |
}

. (4.4)

88 CHAPTER 4. RELIABILITY INFORMATION

PSfrag replacements

aQ

p A
Q
(a

Q
)

Eb/N0 = −2 dB

Eb/N0 = 0 dB

Eb/N0 = +2 dB

0.05

0.1

0.15

0.2

0
0 5 10 15

Figure 4.3: Probability mass function pAQ
(aQ) of soft-value magnitudes aQ. Convolutional

code with MaxLogAPP decoding from Example 4.3; several signal-to-noise ratios.

These two approaches show certain disadvantages. In the former measure, large absolute
values are more emphasized than small absolute values, although small absolute values
are more critical. The latter measure corresponds to a mean error without taking into
account the meaning of the soft-values.

As the quality of soft-values is in some sense related to the associated mutual infor-
mation (MI), the difference between the mutual information associated to V and that
associated to L,

dMI(L, V) :=
∣
∣I(U ;L)− I(U ;V)

∣
∣, (4.5)

seems to be a suitable measure of reliability mismatch, at a first glance. However, this
is not the case, as can easily be shown. The three random variables involved form the
Markov chain U → V → L, and L is a sufficient statistic of V . Therefore, we have
I(U ;L) = I(U ;V), and thus dMI(L, V) = 0. Since this follows directly from the definition
of L, this distance measure is not useful.

Due to the given disadvantages, these three distance measures are not further investi-
gated. Instead, the average Kullback-Leibler distance is proposed as a distance measure.
Its use follows from the true meaning of LLRs in a straight-forward way. We start with a
single subchannel and then extend the results by taking the expectation with respect to
the subchannels.

Consider the subchannel U → V |A = a with reliability value Λ = λ. Assume that
the soft-value is v and that the corresponding LLR is l. Then, we have two probability
distributions of the symbol U . On the one hand, we have the probability distribution pU ||V

4.3. MEASUREMENT OF RELIABILITY MISMATCH 89

that results from the assumption that the soft-value v is an LLR:

pU ||V (+1||v) :=
1

1 + e−v
,

pU ||V (−1||v) :=
1

1 + e+v
.

(4.6)

This distribution is called the interpreted distribution, as it results from the interpretation
of the soft-value as an LLR. On the other hand, we have the distribution pU ||L that results
from the assumption that the LLR l is an LLR (which is true, of course):

pU ||L(+1||l) :=
1

1 + e−l
,

pU ||L(−1||l) :=
1

1 + e+l
.

(4.7)

This distribution is called the actual distribution (for obvious reasons). We use the special
notation “||” to emphasize the difference to conditional probabilities; it may be read
“. . . based on LLR. . . ”. In fact, pU ||V and pU ||L are functions mapping a real-value,
namely the soft-value v or the LLR l, to a probability distribution of a binary random
variable, namely the symbol U . Notice that

pU ||V (u||v) 6= pU |V (u|v)

due to the wrong interpretation of the soft-value, whereas

pU ||L(u||l) = pU |L(u|l) = pU |V (u|v)

due to the definition of l; pU |V (u|v) and pU |L(u|l) denote the conditional distributions of U
given V = v and L = l, respectively.

The distance between the soft-value v and the LLR l is thus in fact a distance be-
tween the two underlying probability distributions pU ||V (u||v) and pU ||L(u||l). A commonly
applied distance measure for probability distributions is the Kullback-Leibler distance
(KLD) (cf. Appendix D). Accordingly, we may define the distance between v and l as the
Kullback-Leibler distance between pU ||V (u||v) and pU ||L(u||l):

dKLD(l, v) := D
(

pU ||L(u||l)
∥
∥
∥pU ||V (u||v)

)

(4.8)

=
∑

u∈B

pU ||L(u||l) ld
pU ||L(u||l)
pU ||V (u||v) .

The Kullback-Leibler distance has two important properties: (i) it is nonnegative, and
(ii) it is zero precisely if the two distributions are identical (cf. Appendix D).

Example 4.4

Assume the soft-value v = 0.8 has the associated LLR l ≈ 1.4. The interpreted
distribution of U is given according to (4.6):

pU ||V (+1||0.8) ≈ 0.7, pU ||V (−1||0.8) ≈ 0.3.

90 CHAPTER 4. RELIABILITY INFORMATION

Correspondingly, the actual distribution of U is given according to (4.7):

pU ||L(+1||1.4) ≈ 0.8, pU ||L(−1||1.4) ≈ 0.2.

(The values are only approximated for clarity.) The distance between l = 1.4 and
v = 0.8 is the Kullback-Leibler distance

dKLD(1.4, 0.8) = D
(

[0.8 0.2]
∥
∥
∥[0.7 0.3]

)

≈ 0.8 ln
0.8

0.7
+ 0.2 ln

0.2

0.3
≈ 0.032.

3

Based on this distance between two values v and l, we may define the average distance
between the random variables V and L as the corresponding expectation. As l is a
function of v, averaging over v is sufficient. The above considerations are summarized in
the following definition.

Definition 4.3 (KLD Reliability Mismatch)
Consider a binary symbol U , a soft-value V for this symbol, and the corresponding LLR L.
The probability distributions of U resulting from V and L are denoted by pU ||V (u||v) and
pU ||L(u||l) according to (4.6) and (4.7), respectively. The Kullback-Leibler distance (KLD)
distance between two realizations v and l is defined as the Kullback-Leibler distance
between pU ||V (u||v) and pU ||L(u||l):

dKLD(l, v) := D
(

pU ||L(u||l)
∥
∥
∥pU ||V (u||v)

)

(cf. Equ. (4.8)). The Kullback-Leibler distance between the soft-value V and the LLR L
is defined as the average Kullback-Leibler distance

dKLD(L, V) := E
v∈R

{

dKLD(l, v)
}

.

The value dKLD(L, V) is called the KLD reliability mismatch.

The KLD reliability mismatch is nonnegative, and it is equal to zero precisely if V = L,
i.e., if the soft-value is reliable. This follows immediately from the two properties of the
Kullback-Leibler distance mentioned above. Due to symmetry, we have the identities

dKLD(l, v) = dKLD(λ, a),

dKLD(L, V) = dKLD(Λ, A),

with A = |V | and Λ = |L|. Therefore, we may equivalently speak of the reliability
mismatch between Λ and A.

The two measures of reliability mismatch that are based on the difference of the mean
values and on the average differences, as given in (4.3) and (4.4), are ad-hoc approaches
and do not have particular meanings. As opposed to that, the measure based on the KLD
has a strong background from probability theory and follows immediately when taking
into account that each LLR actually parameterizes a probability distribution of a binary
symbol.

4.3. MEASUREMENT OF RELIABILITY MISMATCH 91

Example 4.5

We continue Example 4.3. The Kullback-Leibler distances dKLD(λQ, aQ) are plotted
versus the values aQ in Fig. 4.4. The average Kullback-Leibler distance between ΛQ

and AQ can be computed as

dKLD(ΛQ, AQ) =
∑

aQ

pAQ
(aQ) dKLD(λQ, aQ);

summation over aQ is sufficient, as λQ is a function of aQ. The probability distri-
bution of AQ is depicted in Fig. 4.3. The KLD reliability mismatch for each SNR
results as

Eb/N0 −2 dB 0 dB +2 dB

dKLD(ΛQ, AQ) 5.7 · 10−2 1.1 · 10−2 3.3 · 10−4

When doing the same simulations with LogAPP decoding, the measured KLD re-
liability mismatch results to about 10−5. As the theoretical reliability mismatch is
equal to zero, this value is only due to the finite precision of the histogram mea-
surements. 3

PSfrag replacements

aQ

d
K

L
D
(λ

Q
,a

Q
)

Eb/N0 = −2 dB

Eb/N0 = 0 dB

Eb/N0 = +2 dB

0.05

0.1

0.15

0
0 5 10 15

Figure 4.4: Kullback-Leibler distances dKLD(λQ, aQ). Convolutional code with
MaxLogAPP decoding from Example 4.5; several signal-to-noise ratios.

92 CHAPTER 4. RELIABILITY INFORMATION

4.4 Correction of Reliability Mismatch

Mismatched soft-values may be corrected by memoryless7 post-processing. Ideally, the
soft-values should be reliable after applying such a mapping, i.e., they should be equal to
the corresponding LLRs. As this may not be feasible in practice, the soft-values after the
mapping are at least required to be closer to the true LLRs than the soft-values before
the mapping; i.e., the reliability mismatch after the mapping should be smaller than that
before the mapping. A general framework for improving or even correcting soft-values is
discussed in this section.

BISMC
LLR

Correction
LLR

U V V
•

L
•

Figure 4.5: Model for reducing the reliability mismatch, and thus for improving reliability
values.

Model for Correcting Soft-Values

The model for reducing the reliability mismatch is shown in Fig. 4.5. It extends the one
shown in Fig. 4.2 by a correction function (LLR Correction).

An equiprobable binary symbol U ∈ B is transmitted over a BISMC U → V including
the actual channel and an approximate conversion to LLRs. This LLR-like output is the
soft-value V ∈ R. A function f (LLR Correction) maps this soft-value to an improved
(or corrected) soft-value V • ∈ R:

f : R → R

v 7→ v• = f(v).

This correction function f is required to be monotonically increasing and to fulfill the
symmetry condition f(−v) = −f(v). Finally, the improved soft-value is converted to the
corresponding true LLR

l• := L(U |V • = v•).

We write l• to distinguish this LLR from l := L(U |V = v). The magnitudes of the
soft-values and the LLRs are written as

a := |v|, a• := |v•|,
λ := |l|, λ• := |l•|.

Since we have a• = f(a) due to symmetry, we may equivalently define f only for nonneg-
ative values and use

v• = sgn(v) · f(|v|)
= sgn(v) · f(a).

7Mappings with memory are not considered, as such mappings would be closer to decoding rather
than to post-processing, and are therefore not within the scope of this section.

4.4. CORRECTION OF RELIABILITY MISMATCH 93

This notation explicitly shows that f changes only the magnitudes of v, but not the signs.

Ideal Correction Function

The ideal correction function maps the soft-value to its LLR,

fLLR(v) = L(U |V = v),

so that the soft-value magnitude is equal to the reliability value:

a• = fLLR(a) = λ.

Since U is uniformly distributed, we have

L(U |V = v) = L(V = v|U) = ln
pV |U(v|+ 1)

pV |U (v| − 1)
.

The ideal correction function can thus be used only if the conditional distributions
pV |U(v|u) are precisely known, i.e., if they can be determined by analysis or by simu-
lation with sufficient precision. These conditional distributions are known for the outputs
of the approximated boxplus operator [vDJK03,LS04]; for more complicated cases, they
are assumed to be rather involved. A simulation with sufficient precision is usually not
feasible: as soft-values with large magnitudes and erroneous sign (sgn(v) 6= u) occur only
very rarely, the conditional distributions cannot be determined with sufficient precision.
On the other hand, a good approximation of the ideal correction function may already
yield a gain in performance. Such correction functions are addressed in the following
section.

Parameterized Correction Function

A general approach for finding a good correction function is as follows:

1. A suitable parameterized function is chosen as the correction function.

2. The parameters of this function are optimized such that the reliability mismatch
after applying this function is minimized.

The degrees of freedom are the parameterized function and the measure of reliability
mismatch. As such measures have already been discussed in the previous section, we
focus on the functions here.

We start with a function f of a that depends on a vector of parameters α =
[α0, α1, . . . , αM−1]:

a• = f(a; α).

This function is required to be monotonically increasing (cf. above), and its shape should
be similar to the curve it is matched to, i.e., to the ideal correction function fLLR. As
fLLR is usually not available (otherwise we would directly use it, of course), we employ an
estimated function f̂LLR found by measurements (cf. Section 4.2).

94 CHAPTER 4. RELIABILITY INFORMATION

When the post-decoding soft-values of MaxLogAPP decoders or of LogAPP decoders
within iterative decoders8 are to be processed, the following parameterized correction
functions may be suitable:

f1(a;α0) := α0 · a,
f2(a;α0, α1) := min{α0 · a, α1},

f3(a;α0, α1, α2) := min{α0 · a, α1 · a+ α2},
f4(a;α0, α1, α2) := min?{α0 · a, α1 · a+ α2},

(4.9)

where α0, α1, α2 ≥ 0 such that the functions fulfill the requirements. (The function
min? is defined in Appendix C). Examples of these functions are depicted in Figure 4.6.
Function f1 adapts the magnitudes a in a uniform way by scaling. Function f2 does the
same and additionally clips a, so that the reliability values are limited by α1. Function f3

scales the magnitudes in a nonuniform way, i.e., there are two linear regions, as opposed
to f1. Finally, function f4 is very similar to f3 but shows a smooth transition between
the two linear regions.

PSfrag replacements

a (before correction)

a
•

(a
ft

er
co

rr
ec

ti
on

)

f1

f2

f3

f4

0
0

5

5

10

10

15

15

20

20 25 30

Figure 4.6: Examples for the parameterized correction functions given in (4.9): a• =
fi(a; α), i = 1, 2, 3, 4.

There is an obvious trade-off: correction functions with many parameters can better
approximate the ideal correction function; on the other hand, the more parameters have
to be determined, the more difficult is the optimization of each individual parameter. In

8LogAPP decoding within iterative decoders does not produce LLRs, as discussed in Section 3.5.

4.4. CORRECTION OF RELIABILITY MISMATCH 95

the following examples, we concentrate on the correction function f1, as this function has
shown to be sufficient. In general, however, the appropriate correction function has to be
determined individually for each application.

The parameters of the chosen correction function may now be determined such that
the reliability mismatch becomes minimal. In the sequel, we focus on the KLD reliability
mismatch, given in Definition 4.3. The optimization criterion for the parameter vector α

of a function f(a; α) is thus

dKLD(V •, L•)
α−−−→ min . (4.10)

Notice that L• is the LLR for U conditioned on V •, as defined in the model, and not the
LLR conditioned on V .

Remark 4.3

In practice, the parameters α of a correction function f(v; α) may be optimized
in a rather straight-forward way. Some subtle details are discussed in the sequel.
The considerations are based on the method and notation introduced in Section 4.2.
Starting with a BISMC U → V , the LLR-like output V ∈ R has been quantized
to VQ ∈ VQ, and the histograms hVQ|U (vQ|+1) and hVQ|U (vQ|−1) have been deter-
mined by simulation.

As only quantized values vQ ∈ VQ are available, the corresponding values of func-
tion f(v; α) are also quantized:

v•Q := f(vQ; α) ∈ V
•
Q := f(VQ; α).

The histograms corresponding to v•Q are given by

hV •

Q
|U (v•Q|+1) =

∑

vQ:v•

Q

hVQ|U (vQ|+1),

hV •

Q
|U (v•Q|−1) =

∑

vQ:v•

Q

hVQ|U (vQ|−1),

where summation is done over all vQ with f(vQ; α) = v•Q. Thus, we may compute

l•Q := L(U |V •
Q = v•Q) = L(V •

Q = v•Q|U) ≈ ln
hV •

Q
|U (v•Q|+1)

hV •

Q
|U (v•Q|−1)

.

If the correction function is strictly monotonically increasing, there is a one-to-one
mapping between vQ and v•Q, and we have

L(U |V •
Q = v•Q) = L(U |VQ = vQ),

which simplifies the optimization of the parameters. The functions f1, f3, and f4

given in (4.9) are strictly monotonically increasing if α0 6= 0 and α1 6= 0.

The following example illustrates the concept for correcting soft-values and thus re-
ducing the reliability mismatch.

96 CHAPTER 4. RELIABILITY INFORMATION

Example 4.6

We continue Example 4.5 and consider only the case Eb/N0 = 0 dB. For correcting
the soft-values, we apply function f1,

a•Q := f1(aQ; α0) = α0 · aQ,

and optimize the parameter α0 numerically. In Fig. 4.7, the KLD reliability mis-
match dKLD(Λ•

Q, A•
Q) is plotted versus the parameter α0. The minimum KLD reli-

ability mismatch is about 8.2 · 10−5, and it is obtained for α0 ≈ 0.771.

The reliability values before and after correction with the optimized function f1 are
shown in Fig. 4.8. The “visual” distance between the corrected curve and the ideal
(45-degree) curve is small for small values and larger for large values. Obviously,
the “difference” for small values provides the major contribution to the Kullback-
Leibler reliability mismatch, as desired (cf. comment on other measures of reliability
mismatch). Notice that large values a•

Q are above the ideal curve; i.e., the corrected
soft-values with large magnitude are too pessimistic. 3

PSfrag replacements

α0

d
K

L
D
(Λ

• Q
,A

• Q
)

0
0

0.1

0.2

0.3

0.4

0.5

0.5

0.6

0.7

1 1.5 2

Figure 4.7: Average KLD reliability mismatch dKLD(Λ•
Q, A

•
Q) versus parameter α0 of the

correction function. Convolutional code with MaxLogAPP decoding from Example 4.6.

The previous examples have shown that MaxLogAPP decoding is suboptimal in the
sense that the soft-outputs are not reliable, but they are very close to the LLRs. Ac-
cordingly, a small correction is sufficient. However, larger corrections may be required
when other decoding schemes are employed. One important example is iterative decod-
ing, where the pre-decoding soft-values delivered to the constituent decoders are usually
not conditionally independent LLRs9 after a few iterations. This issue is addressed in the
following section.

9Cf. (3.21) and (3.22).

4.5. APPLICATION TO ITERATIVE DECODING 97

PSfrag replacements

aQ, a
•
Q

λ
Q
,λ

• Q

before corr.

after corr.

ideal

0
0

5

5

10

10

15

15

Figure 4.8: Reliability values before correction, λQ versus aQ, and after correction, λ•
Q

versus a•Q. Convolutional code with MaxLogAPP decoding from Example 4.6.

4.5 Application to Iterative Decoding

The parallel concatenated code10 (PCC) and the corresponding iterative decoder, denoted
as PCC decoder, have been explained in Section 3.5.1. The theoretical analysis of the
decoding scheme has shown that the extrinsic soft-values that are passed on are not
conditionally independent LLRs11 after the first half-iteration. Thus, starting from the
first full-iteration, the extrinsic soft-values are not LLRs, even if LogAPP decoding is
applied by the constituent decoders.

A correction function, as discussed in the previous section, may be applied to improve
the extrinsic soft-values, so that the reliability mismatch is reduced. Using a carefully
chosen correction function, the iterative decoder converges faster or even achieves a lower
error rate. This section gives some examples illustrating this concept.

The PCC decoder including the correction functions is depicted in Fig. 4.9 (cf.
Fig. 3.5). The correction function f (1) maps the extrinsic values computed by Decoder 1,

w
(1)

u(1) , to the values w
•(1)

u(1) ; the correction function f (2) maps the extrinsic values computed

by Decoder 2, w
(2)

u(1) , to the values w
•(2)

u(1) . As this mapping is memoryless, interleaving
has no effect, and we may omit the subindices. The resulting models are depicted in
Fig. 4.10, and they follow the model from Fig. 4.5. Notice that the channels between info
symbols U and extrinsic values W (1) and W (2) are modeled as BISMCs (cf. Definition 3.5

10The presented concept may be applied to a serially concatenated code (SCC) in a similar way.
11Cf. (3.21) and (3.22).

98 CHAPTER 4. RELIABILITY INFORMATION

and comments thereafter). Similarly to the previous sections, we define

l(1) := L(U |W (1) = w(1)), w•(1) := f (1)(w(1)), l•(1) := L(U |W •(1) = w•(1)),

l(2) := L(U |W (2) = w(2)), w•(2) := f (2)(w(2)), l•(2) := L(U |W •(2) = w•(2)).

The soft-value magnitudes and the reliability values are denoted by

a(1) := |w(1)|, λ(1) := |l(1)|, a•(1) := |w•(1)|, λ•(1) := |l•(1)|,
a(2) := |w(2)|, λ(2) := |l(2)|, a•(2) := |w•(2)|, λ•(2) := |l•(2)|.

DEC1

DEC2
π−1
π

f (2)f (1)

z
x
(1)

w
(1)

u
(1)

w
•(2)

u
(1)

w
(2)

u
(2)

S
/
P

zx

ûv
(1)

u
(1) = vu

z
x
(2)

w
(1)

u
(2) w

•(1)

u
(1)

w
(2)

u
(1)

Figure 4.9: PCC decoder with soft-values passed through correction functions f (1)

and f (2).

BISMC
LLR

Correction
LLR

BISMC
LLR

Correction
LLR

U L
•(1)

W
(1)

W
•(1)

U L
•(2)

W
(2)

W
•(2)

Figure 4.10: Models for improving reliability values for Decoder 1 (upper part) and De-
coder 2 (lower part).

As mentioned above, the extrinsic soft-values after the first full-iteration are no LLRs.
This may be shown by plotting the reliability values versus the soft-value magnitudes for
each iteration and for each constituent decoder.

Example 4.7

Consider a PCC of info word length K = 250, code word length N = 506, and
thus code rate R = 250/506 = 0.49 ≈ 1/2. We use the constituent codes and the

4.5. APPLICATION TO ITERATIVE DECODING 99

interleaver specified in the UMTS standard [3GP00]. The two constituent encoders
are terminated recursive systematic convolutional (RSC) encoders of rate 1/2 and
memory length 3, defined by the generator function

[

1
1 + D + D3

1 + D2 + D3

]

.

The first and the second constituent code are punctured according to the puncturing
matrices

[
1 1
1 0

]

,

[
0 0
0 1

]

,

respectively, to obtain the desired code rate. This puncturing scheme corresponds
to the one presented in [BGT93] and results in a systematic PCC.

The code is used for transmission over an AWGN channel with SNR Eb/N0 = 2 dB.
The iterative decoder employs LogAPP decoders or MaxLogAPP decoders for the
constituent decoders, and performs 10 iterations.

For each constituent decoder and for each iteration, the reliability values are mea-
sured using the method from Section 4.2. The results for LogAPP decoding and
MaxLogAPP decoding are depicted in Fig. 4.11(a) and Fig. 4.11(b), respectively.
Only the first few iterations for Decoder 1 are shown; the reliability values remain
about the same afterwards, and those for Decoder 2 are similar. For both decod-
ing algorithms, the soft-value magnitudes are different from the reliability values,
and thus the soft-values are not reliable. As expected, the difference is larger when
MaxLogAPP decoding is applied. 3

The extrinsic soft-values may be corrected using correction functions, as presented in
the previous section. As a result, an improved performance of the iterative decoder can
be expected because each constituent decoder bases its computations on the assumption
that the soft-values at its input are in fact LLRs. Improved performance means that the
iterative decoder converges faster or that the bit error rate becomes smaller. In the sequel,
first the general concept is described and then an example is given for illustration.

The decoding result of each constituent decoder depends on the previous decoding
result of the other constituent decoder. Therefore, the optimal parameters of the correc-
tion functions may depend on the iteration. To enable this distinction, we denote the
correction function applied to the extrinsic values computed by Decoder 1 in the first
half-iteration of iteration i by f (1)[i]; correspondingly, we denote the correction function
applied to the extrinsic values computed by Decoder 2 in the second half-iteration of it-
eration i by f (2)[i]. These correction functions have to be successively optimized for each
half-iteration. The first four steps are as follows:

1. Determine the reliability values for the extrinsic values computed by Decoder 1 in
the first half-iteration of iteration 1. Optimize the correction function f (1)[1].

2. Applying f (1)[1], determine the reliability values for the extrinsic values computed
by Decoder 2 in the second half-iteration of iteration 1. Optimize the correction
function f (2)[1].

100 CHAPTER 4. RELIABILITY INFORMATION

PSfrag replacements

aQ

λ
Q

Iteration 1

Iteration 2

Iteration 3

Iteration 4

0
0

5

5

10

10

15

15

20

20

(a) LogAPP decoding.

PSfrag replacements

aQ

λ
Q

Iteration 1

Iteration 2

Iteration 3

Iteration 4

0
0

5

5

10

10

15

15

20

20

(b) MaxLogAPP decoding.

Figure 4.11: Reliability values λQ versus soft-value magnitudes aQ, constituent decoder 1.
PCC with LogAPP and MaxLogAPP decoding from Example 4.7.

4.5. APPLICATION TO ITERATIVE DECODING 101

3. Applying f (1)[1] and f (2)[1], determine the reliability values for the extrinsic values
computed by Decoder 1 in the first half-iteration of iteration 2. Optimize the cor-
rection function f (1)[2].

4. Applying f (1)[1], f (2)[1], and f (1)[2], determine the reliability values for the extrinsic
values computed by Decoder 2 in the second half-iteration of iteration 2. Optimize
the correction function f (2)[2].

The procedure has to be continued up to the maximum number of iterations to be used.

Example 4.8

We continue Example 4.7. To provide for low computational complexity, we choose
correction function f1 from (4.9), i.e.,

f (d)[i](w) = α(d)[i] · w,

where d = 1, 2 denotes the constituent decoder and i denotes the iteration. The
optimal parameters α(d)[i] are successively determined as described above, where
the KLD reliability mismatch, and the two measures given in (4.3) (ABS), (4.4)
(DIF) are used as optimization criteria. This is done for both LogAPP decoding
and MaxLogAPP decoding using 10 iterations.

Table 4.1 lists the parameters optimized with respect to the KLD reliability mis-
match and those optimize with respect to the criteria are given in (4.3) and (4.4).
The value 1 corresponds to no correction; values less than 1 indicate that the soft-
values before correction are too optimistic. The values for MaxLogAPP decoding
are smaller than that for LogAPP decoding. This is not surprising, as MaxLogAPP
decoding may be seen as an approximation of LogAPP decoding, and thus, the
resulting soft-values can be expected to have “poorer” quality.

The decisive criterion whether the correction of the soft-values has been successful
is the resulting error rate. In Fig. 4.12, the bit error rate (BER) is plotted ver-
sus the iterations for LogAPP and MaxLogAPP decoding, each without correction
function and with correction functions optimized with respect to the three criteria.
MaxLogAPP decoding is improved for all three criteria. (A similar result was also
reported in [vDJK03].) The best performance is achieved when the parameters are
optimized according to the KLD reliability mismatch; the other two criteria lead
to slightly worse results. LogAPP decoding is only improved if the parameter opti-
mization is performed on basis of the KLD reliability mismatch: the decoder shows
a faster convergence; the gain with respect to the number of iterations is between
one and three iterations. The other two criteria lead to a bit error rate which is
even larger than that without correcting the extrinsic values. 3

The previous example has given evidence to what was conjectured by theory in Sec-
tion 3.5.1: iterative decoding with LogAPP constituent decoders is not optimal. Obvi-
ously, an improvement is possible, even though the achievable gain may be small. The
PCC decoder proposed in [Sor02] may close the gap to optimal decoding.

102 CHAPTER 4. RELIABILITY INFORMATION

−4

−3

−2

−1

PSfrag replacements

Iteration

B
it

E
rr

or
R

at
e

LogAPP - ORG

MaxLogAPP - ORG

LogAPP - KLD

MaxLogAPP - KLD

LogAPP - DIF

MaxLogAPP - DIF

LogAPP - ABS

MaxLogAPP - ABS

2 4 6 8

10

10

10

10
10

Figure 4.12: Bit error rates versus number of iterations, Example 4.8. PCC with LogAPP
and MaxLogAPP decoding, each without (ORG) and with use of correction functions f1.
The correction functions are optimized with respect to the measures of reliability mis-
match given in (4.3) (ABS), (4.4) (DIF), and Definition 4.3 (KLD). The values of the
optimized parameters are listed in Table 4.1.

4.6 Summary

In this chapter, the notion of reliability information, or to be precise, of reliability values
has been discussed. The reliability of soft-values may be measured by simulation and
visualized by plotting the LLR versus the soft-value, or equivalently, the reliability value
versus the soft-value magnitude. For measuring the difference between soft-values and
their LLRs (or equivalently, between soft-value magnitudes and reliability values), the
reliability mismatch based on the Kullback-Leibler distance has been introduced. The
reliability mismatch may be reduced by post-processing the soft-values using a param-
eterized correction function. The function parameters can be optimized in such a way
that the reliability mismatch after correction becomes minimal. Finally, this concept has
been applied to the iterative decoder of a parallel concatenated code. Performance gains
in terms of error rates can be achieved for both LogAPP and MaxLogAPP constituent
decoders. In particular, the use of LogAPP constituent decoders has been shown by an
example to be suboptimal.

4.6. SUMMARY 103

Iteration ORG KLD DIF ABS

i α(1)[i] α(2)[i] α(1)[i] α(2)[i] α(1)[i] α(2)[i] α(1)[i] α(2)[i]

1 1 1 0.990 0.986 0.991 0.992 0.992 0.992
2 1 1 0.961 0.925 0.945 0.931 0.933 0.902
3 1 1 0.871 0.894 0.771 0.653 0.756 0.746
4 1 1 0.812 0.888 0.784 0.718 0.746 0.723
5 1 1 0.783 0.889 0.637 0.754 0.652 0.714
6 1 1 0.766 0.894 0.599 0.725 0.611 0.732
7 1 1 0.750 0.890 0.651 0.624 0.609 0.728
8 1 1 0.740 0.895 0.668 0.696 0.632 0.707
9 1 1 0.738 0.893 0.655 0.735 0.630 0.690
10 1 1 0.732 0.888 0.601 0.706 0.645 0.698

(a) LogAPP decoding.

Iteration ORG KLD DIF ABS

i α(1)[i] α(2)[i] α(1)[i] α(2)[i] α(1)[i] α(2)[i] α(1)[i] α(2)[i]

1 1 1 0.864 0.797 0.870 0.839 0.871 0.831
2 1 1 0.874 0.801 0.867 0.857 0.871 0.863
3 1 1 0.806 0.767 0.747 0.784 0.715 0.804
4 1 1 0.761 0.763 0.690 0.744 0.639 0.747
5 1 1 0.739 0.763 0.594 0.687 0.647 0.652
6 1 1 0.721 0.765 0.703 0.671 0.638 0.741
7 1 1 0.710 0.771 0.585 0.691 0.602 0.694
8 1 1 0.708 0.775 0.631 0.705 0.613 0.689
9 1 1 0.703 0.786 0.597 0.742 0.603 0.723
10 1 1 0.699 0.779 0.625 0.658 0.585 0.733

(b) MaxLogAPP decoding.

Table 4.1: Optimal parameters for the correction functions when LogAPP or MaxLogAPP
decoding is applied; Example 4.8. (ORG corresponds to the case where no correction
function is applied.)

104 CHAPTER 4. RELIABILITY INFORMATION

Chapter 5

Parameter Estimation

A binary-data transmission system that includes a symbol-by-symbol soft-output decoder
is typically assessed by two quality parameters: the error probability of the binary symbols
and the symbol-wise mutual information between encoder input and decoder output. The
first parameter only takes into account the hard outputs of the decoder, i.e., the estimates
for the transmitted symbols, whereas the second parameter also takes into account the
soft-values, and thus the reliability information. When the soft-outputs of the decoder are
reliable according to the definition in Chapter 4, i.e., when they are log-likelihood ratios,
the estimation of these two parameters can be simplified and improved, as compared to
conventional methods. To be precise, knowledge of the transmitted data is not necessary
and the estimation variance becomes smaller.

In this chapter, the conventional estimation and the estimation based on reliable soft-
outputs is compared by means of their estimation variances. This is done for the symbol
error probability, to which special focus has been given, and the symbol-wise mutual
information. The investigations are restricted to binary data and to symbol-by-symbol
soft-output decoders that compute log-likelihood ratios. The new contributions are as
follows:

(a) A general framework for estimating the quality of transmission parameters based
on reliable post-decoding soft-values is established.

(b) The estimation based on soft-values is related to the concept of decomposing a
channel into subchannels1.

(c) For the estimation of the symbol error probability and of the symbol-wise mutual in-
formation, the conventional method and the new method are compared analytically
with respect to their estimation variances.

The presented principle of parameter estimation can easily be generalized; this is
discussed at the end of this chapter.

1See Chapter 2.

106 CHAPTER 5. PARAMETER ESTIMATION

5.1 General Estimation Setup

In this section, the transmission model and the framework for estimation based on soft-
values is described. The main idea is to use an expected value conditioned on the soft-
value. The precise mathematical description is given below.

The model for estimating symbol-wise transmission quality parameters based on reli-
able post-decoding soft-values is depicted in Figure 5.1. Binary info symbols U ∈ B that
are independent and uniformly distributed are transmitted over a binary-input symmetric
memoryless channel (BISMC) U → L. The channel outputs L ∈ R are assumed to be
reliable according to Definition 4.2, i.e.,

L(U |L = l) = l.

The BISMC U → L models the transmission chain from encoder input to decoder output.
Notice that the magnitude of the soft-value,

Λ := abs(L),

is a subchannel indicator for the channel U → L, and therefore the subchannels
U → L|Λ = λ are binary symmetric channels (BSCs) (cf. Chapter 2).

The given model includes coded transmission over memoryless channels, which is the
main focus of this thesis, but also transmission over intersymbol-interference channels, etc.
These channels are not memoryless; but as only symbol-wise transmission parameters, like
the symbol error probability or the symbol-wise mutual information, are to be estimated,
this channel can be modeled as a memoryless channel. The most important presumption
is that the decoder (equalizer, detector, etc.) produces reliable post-decoding soft-values
for the info symbols, i.e., the soft-values l are assumed to be LLRs.

abs(L)

fH(L,U)

fS(Λ)

BISMC
L

Λ

ZH

ZS

U

Figure 5.1: Model for estimating symbol-wise parameters.

5.1.1 Description of the Two Methods

The conventional method for parameter estimation is called Method H, and the new
method based on reliable soft-values is called2 Method S. In both methods, one estimation

2The samples used in Method S are “softer” than the “hard” samples used in Method H. This is the
origin of the names of the two methods.

5.1. GENERAL ESTIMATION SETUP 107

sample is determined for each transmitted info symbol U . These two samples are random
variables, and they are denoted by ZH for Method H, called the hard sample, and ZS for
Method S, called the soft sample.

Method H A hard sample zH for the parameter to be estimated is determined by a
function fH of the transmitted info symbol u and the soft-value l,

zH := fH(l, u). (5.1)

(The function fH should be chosen such that the estimation is unbiased.) The mean
value of M hard samples is the parameter estimate

z
(M)
H :=

1

M

M−1∑

i=0

zH,i, (5.2)

called hard estimate.

Method S A soft sample zS for the parameter to be estimated is determined by a func-
tion fS of the reliability value λ := abs(l),

zS := fS(λ), (5.3)

where the function fS is defined as the expectation of function fH conditioned on
the reliability value λ,

fS(λ) := E
{
fH(l, u)

∣
∣Λ = λ

}
. (5.4)

The mean value of M soft samples is the parameter estimate

z
(M)
S :=

1

M

M−1∑

i=0

zS,i, (5.5)

called soft estimate.

Due to the definition of function fS, the soft sample is the conditional expectation
of the hard sample,

zS = E{ZH |Λ = λ}.

(The definitions of the functions fH and fS for the estimation of the symbol error
probability and for the symbol-wise mutual information are given in Section 5.2 and
Section 5.3, respectively.)

5.1.2 Comparison of the Two Methods

All random processes are assumed to be ergodic. Therefore, we have

lim
M→∞

z
(M)
H = E{ZH},

lim
M→∞

z
(M)
S = E{ZS}.

108 CHAPTER 5. PARAMETER ESTIMATION

Using the definition of the soft sample from (5.4), we immediately see that the two samples
have the same mean value,

µ := E{ZS} = E
{
E{ZH |Λ = λ}

}
= E{ZH} (5.6)

and so the soft estimate Z
(M)
S tends to the same value as the hard estimate Z

(M)
H for

M → ∞. Consequently, any conventional method (called Method H) may be improved
using the new method (Method S).

The variance of the hard sample is denoted by σ2
ZH

, and the variance of the soft sample
is denoted by σ2

ZS
. Since the estimates are mean values of M samples, the variances of

the estimates and of the samples are related as

σ2

Z
(M)
H

=
1

M
σ2

ZH
, σ2

Z
(M)
S

=
1

M
σ2

ZS
.

Therefore the variances of the hard and the soft sample are criteria for the quality of the
hard and the soft estimate, respectively. In the sequel, the variances of the hard and the
soft sample are used to compare Method H and Method S.

The variances of the hard and the soft sample can be written as

σ2
ZH

= E{Z2
H} − µ2,

σ2
ZS

= E{Z2
S} − µ2. (5.7)

Using the definition of the soft sample and Jensen’s inequality, we obtain

Z2
S = (E{ZH |Λ = λ})2 ≤ E{Z2

H |Λ = λ}

and thus
E{Z2

S} ≤ E{Z2
H}; (5.8)

equality holds for constant ZH . Combining (5.7) and (5.8), we obtain a general relation
between the variances of the hard and the soft sample.

Theorem 5.1 (Estimation of Parameter)
Consider the estimation of a parameter, using Method H based on the hard sample ZH

and Method S based on the soft sample ZS. The sample variances are related as

σ2
ZH
≥ σ2

ZS
.

Equality holds if ZH is constant, i.e., if σ2
ZH

= σ2
ZS

= 0.

Theorem 5.1 proofs that Method S is superior to Method H with respect to the es-
timation variance. Notice that this relation follows simply from the fact that the soft
sample is defined as the conditional expectation of the hard sample.

For comparing the two methods for the estimation of a particular parameter, the hard
sample has to be defined in a proper way, and the two estimation variances have to be
related. In the following two sections, this is done for the symbol error rate and for
the symbol-wise mutual information. Notice the relation between Theorem 2.2 and the
estimation of these two parameters using Method S.

5.2. ESTIMATION OF THE BIT ERROR RATE 109

5.1.3 Relation to Decomposition into Subchannels

The estimation of a parameter using Method S is closely related to the concept of decom-
posing a channel into subchannels (cf. Chapter 2). The BISMC U → L is decomposed
into subchannels by the reliability value Λ, as can easily be seen. Thus, Λ is a subchannel
indicator for this channel.

Consider now the soft sample. It is defined as the expectation of the hard sample
conditioned on the reliability value λ,

zS = E{ZH |Λ = λ}.

In other words, the soft sample is the expectation of the hard sample conditioned on the
subchannel defined by λ. Following this interpretation, the soft sample zS represents the
parameter, which is to be estimated, for the subchannel U → L|Λ = λ.

Notice that the parameter conditioned on the subchannel has to be computed on basis
of the subchannel indicator Λ = λ. This is only possible if the soft-value L is reliable
according to Definition 4.2, as assumed in the given model.

Further relations between Method S and subchannels are explained in the following
two sections.

5.2 Estimation of the Bit Error Rate

The basic method for estimating the error rate of binary symbols, called bit error rate
(BER) in the sequel, based on soft-values was first published in [Loe94], and was then
independently re-invented and further investigated in [HLS00]. The estimation variances
of the conventional method and the new method were analyzed in [LH03]. In the sequel,
the results from [LH03] are embedded in the framework given in the previous section.

The soft-value l is assumed to be an LLR, and so the estimate û ∈ B for the transmitted
info symbol u ∈ B that minimizes the BER is given by the decision

û :=

+1 if sgn(l) > 0,

−1 if sgn(l) < 0,

randomly chosen from B if sgn(l) = 0.

This decision is erroneous if u 6= û.

The BER is formally defined as

Pb := Pr(U 6= Û).

The conventional method for estimating the BER is to count the number of errors and
divide this value by the number of transmitted info symbols. The following formal de-
scription of this method, called Method H, enables a straight-forward analysis of the
estimation variance, and in particular, the extension and comparison to Method S.

110 CHAPTER 5. PARAMETER ESTIMATION

Hard and Soft BER Sample

The hard BER sample zH indicates whether an error occurred or not. It is defined as

zH :=

0 if u = sgn(l),

1 if u = − sgn(l),

randomly chosen from {0, 1} if sgn(l) = 0.

(5.9)

Notice that zH ∈ {0, 1}. The hard BER sample zH is a function of both the transmitted
info symbol u and the soft-value l, as given in (5.1), where only the sign of the soft-value
is used. Since it may also be written as

zH = Pr(U 6= Û |U = u, Û = û), (5.10)

we obtain
E{ZH} = E

{
Pr(U 6= Û |U = u, Û = û)

}
= Pr(U 6= Û),

and the estimation is unbiased3.
The soft BER sample is defined as

zS := E{ZH |Λ = λ} = Pr(U 6= Û |Λ = λ), (5.11)

according to (5.4); the last expression follows from substituting (5.10). The soft BER
sample indicates the probability that the symbol estimate û is wrong conditioned on the
reliability value λ. Using the conversion from LLRs to probabilities given in Appendix C,
the soft BER sample can be computed [HLS00] as

zS =
1

1 + eλ
, (5.12)

which agrees with (5.4). Notice that zS ∈ [0, 1
2
], whereas zH ∈ {0, 1}. The soft BER

sample relies only on the magnitude of the soft-value; knowledge of the transmitted info
symbol is not necessary.

Notice that the soft BER sample zS is identical to the crossover probability of the
subchannel U → L|Λ = λ; so the random variable ZH is identical to the error probabil-
ity indicator E , as defined in Chapter 2. Therefore, estimation based on the reliability
value λ may be seen as an application of the concept of decomposing a channel into binary
symmetric subchannels (cf. Theorem 2.2).

The mean values of the hard and the soft BER sample are equal, as shown in the
previous section,

µ := E{ZH} = E{ZS} = Pb,

and they are equal to the bit error rate Pb.
The comparison of the variances of the hard and the soft BER sample is based on

their probability distributions. The hard BER sample is distributed as

pZH
(zH) =

{

1− µ for zH = 0,

µ for zH = 1.
(5.13)

3Which is not surprising.

5.2. ESTIMATION OF THE BIT ERROR RATE 111

Given a soft BER sample zS, the conditional distribution of the hard BER sample can be
written as

pZH |ZS
(zH |zS) =

{

1− zS for zH = 0,

zS for zH = 1.
(5.14)

Regarding the distribution pZS
(zS) of the soft BER sample, only the mean value µ of ZS

can assumed to be known; other statements that are independent of the actual distribution
cannot be made.

Statistical Dependence

The hard and the soft BER sample are not statistically independent. For measuring this
statistical dependence, we compute the mutual information between the two samples.

Let h(p) = −p ld p − (1 − p) ld(1 − p) ∈ [0, 1], p ∈ [0, 1], denote the binary entropy
function (cf. Appendix C). Then we have

I(ZH ;ZS) = H(ZH)−H(ZH |ZS)

= H(ZH)− E
zS

{H(ZH |ZS = zS)}
= h(µ)− E{h(ZS)}.

In the last line, we have applied (5.14) and

H(ZH |ZS=zS) = h
(
pZH |ZS

(1|zS)
)

= h(zS).

The binary entropy function can be bounded as h(zS) ≥ 2zS, and so we obtain

I(ZH ;ZS) ≤ h(µ)− 2µ. (5.15)

Therefore, the hard BER sample ZH and the soft BER sample ZS become statistically
independent when the BER approaches 0 or 1/2, and mutual information between ZH

and ZS is upper-bounded by h(µ)−2µ. Notice that these are general statements depending
only on the mean value µ = Pb.

Comparison

The variance of the hard BER sample ZH can be written as

σ2
ZH

= E{Z2
H} − µ2 = E{ZH} − µ2 = µ(1− µ), (5.16)

where the identity Z2
H = ZH is applied. (Notice that ZH ∈ {0, 1}.) The variance of the

soft BER sample ZS can be written as

σ2
ZS

= E{Z2
S} − µ2; (5.17)

further simplification is not possible. Two lower bounds on the ratio of these variances
are derived in the sequel.

112 CHAPTER 5. PARAMETER ESTIMATION

From ZS ∈ [0, 1
2
], it follows that Z2

S ≤ 1
2
ZS, and thus

E{Z2
S} ≤ 1

2
E{ZS}. (5.18)

This inequality is the starting point for the two bounds. Equality holds for ZS = 1
2

and
for ZS = 0, which corresponds to Pb = 1

2
and Pb = 0, respectively. In each case, ZS is

constant, and thus its variance is zero.
For deriving the first bound, we write the left hand side of (5.18) as

E{Z2
S} = σ2

ZS
+ µ2

and the right hand side as

1
2
E{ZS} = 1

2
E{ZH} = 1

2
E{Z2

H} = 1
2
(σ2

ZH
+ µ2).

Substituting these two equalities into (5.18) yields

σ2
ZS

+ µ2 ≤ 1
2
(σ2

ZH
+ µ2)

⇔ σ2
ZS
≤ 1

2
σ2

ZH
− 1

2
µ2

⇒ σ2
ZS
≤ 1

2
σ2

ZH
; (5.19)

equality holds in the last line if and only if µ = Pb = 0. Thus, we have the first bound.

Theorem 5.2 (Estimation of Bit Error Rate)
Consider the estimation of the bit error rate (BER), using Method H based on the hard
BER samples ZH defined in (5.9) and Method S based on the soft BER samples ZS defined
in (5.11). The ratio of the variances is lower-bounded as

σ2
ZH

σ2
ZS

≥ 2.

For deriving the second bound, we write the left hand side of (5.18) as before, and we
substitute E{ZS} = µ on the right hand side. Thus, we obtain

σ2
ZS

+ µ2 ≤ µ

2

⇔ σ2
ZS
≤ µ(1− 2µ)

2
.

Using this inequality and (5.16), the ratio of the variances can be written as

σ2
ZH

σ2
ZS

≥ 2µ(1− µ)

µ(1− 2µ)
=

2− 2µ

1− 2µ
,

and we have the second bound.

Theorem 5.3 (Estimation of Bit Error Rate)
Consider the estimation of the bit error rate (BER), using Method H based on the hard
BER samples ZH defined in (5.9) and Method S based on the soft BER samples ZS defined
in (5.11). With Pb denoting the BER, the ratio of the variances is lower-bounded as

σ2
ZH

σ2
ZS

≥ 2− 2Pb

1− 2Pb

. (5.20)

5.2. ESTIMATION OF THE BIT ERROR RATE 113

This bound is tighter than the first bound for large BERs, and it becomes equal to the
first bound when the BER tends to zero.

Example 5.1

Independent and uniformly distributed info symbols are encoded by a convolutional
encoder of rate 1/2 and memory length m; the code symbols are transmitted over a
binary-input AWGN channel. The ratio of variances σ2

ZH
/σ2

ZS
found by simulation

(solid lines) and the lower bounds according to Theorem 5.3 (dashed lines) are
plotted versus the SNR in Figure 5.2. For low SNR, both the actual ratio σ2

ZH
/σ2

ZS

and the bound are increasing. For higher SNR, the bound tends to 2, which is equal
to the bound from Theorem 5.2, and the simulated value tends to about 4. Thus,
the actual advantage of Method S is even larger than predicted by Theorem 5.2 and
Theorem 5.3. 3PSfrag replacements

Eb/N0 [dB]

σ
2 Z

H
/σ

2 Z
S

m = 2
m = 3
m = 4
m = 5

−2 −1
0

0

1

1

2

2 3

4

4 5

6

8

10

12

14

16

Figure 5.2: Ratio of variances σ2
ZH
/σ2

ZS
determined by simulation (solid lines) and lower

bound according to Theorem 5.3 (dashed lines) versus Eb/N0; convolutional codes of
rate 1/2 and several memory lengths m, Example 5.1.

The variances of the hard and the soft BER sample show the following behavior when
the BER tends to zero or 1

2
. For Pb → 0, we have ZH → 0 and ZS → 0, and thus σ2

ZH
→ 0

and σ2
ZS
→ 0. The ratio of the variances depends on how quickly the two variances tend

to zero.
For Pb → 1

2
, we have for the hard BER sample pZH

(0) → 1
2

and pZH
(1) → 1

2
, and

thus the maximal variance σ2
ZH
→ 1

4
, according to (5.16). The soft BER sample becomes

constant, ZS → 1
2
, and thus σ2

ZS
→ 0. Consequently, the ratio σ2

ZH
/σ2

ZS
tends to infinity.

114 CHAPTER 5. PARAMETER ESTIMATION

Theorem 5.2 and Theorem 5.3 prove that the hard BER sample has always a larger
variance than the soft BER sample, even for the extreme cases Pb = 0 and Pb = 1

2
.

Thus, Method S is always better than Method H with respect to the estimation variance.
Defining the precision of an estimate Z based on M samples as the relative standard
deviation,

σ
(M)
Z

µ
=

√

σ2
Z/M

µ
,

the advantage of Method S can be formulated in the following two equivalent ways:

(a) For achieving a required precision of the BER estimate, Method S needs less than
half the number of samples.

(b) Given a fixed number of samples, the precision achieved by Method S is larger by a
factor of a least

√
2.

Optimal Linear Combination

Method H uses only the sign of the soft-value and Method S uses only the magnitude of
the soft-value. This gives rise to the question whether the two methods can be combined
to obtain a BER estimate that is even better than the soft BER estimate. In the sequel,
the optimal linear combination of the hard and the soft BER sample is considered.

The combined BER sample is defined as

z := αzH + (1− α)zS (5.21)

with weighting factor α ∈ [0, 1]. Due to its definition, the combined BER Z is unbiased,
i.e., E{Z} = µ = Pb. The weighting factor is now determined such that the variance of Z
becomes minimal.

The variance of Z can be written as

σ2
Z = E{(Z − µ)2}

= E{(αZH + (1− α)ZS − µ)2}
= E{(α(ZH − µ) + (1− α)(ZS − µ))2}
= α2σ2

ZH
+ (1− α)2σ2

ZS
+ 2α(1− α)σ2

ZHZS
, (5.22)

where
σ2

ZHZS
:= E

{
(ZH − µ)(ZS − µ)

}

denotes the covariance of ZH and ZS. Applying (5.14), the conditional expectation of ZH

can be evaluated as

E{ZH |ZS = zS} =
∑

zH∈{0,1}

pZH |ZS
(zH |zS) · zh = zs.

Thus, the covariance can be expressed as

σ2
ZHZS

= E
{
(ZH − µ)(ZS − µ)

}
= E{ZHZS} − µ2

= E
{
ZS · E{ZH |ZS}

}
− µ2

= E{Z2
S} − µ2

= σ2
ZS
.

5.3. ESTIMATION OF THE MUTUAL INFORMATION 115

Substituting this equality into (5.22), the variance of Z can be written as

σ2
Z = α2σ2

ZH
+ (1− α)2σ2

ZS
+ 2α(1− α)σ2

ZS

= α2σ2
ZH

+ (1− α2)σ2
ZS
. (5.23)

Note that this expression contains only the variances of the hard and the soft BER sample
and the weighting factor α.

The extremum is found by evaluating

d

dα
σ2

Z = 2ασ2
ZH
− 2ασ2

ZS

!
= 0.

The single solution is α = 0, because σ2
ZH

> σ2
ZS

according to Theorem 5.2. For the same
reason, the second derivative is strictly positive,

d2

dα2
σ2

Z = 2σ2
ZH
− 2σ2

ZS
> 0,

and α = 0 minimizes the variance of Z.
Thus we have the final result: the optimal linear combination of the hard and the soft

BER sample (optimal with respect to minimal estimation variance) consists only of the
soft BER sample. In other words: Method S cannot be improved by linearly combining
it with Method H.

5.3 Estimation of the Mutual Information

The symbol-wise mutual information between info symbols and soft-values may be esti-
mated in a similar way as the bit error probability [LHG04]. This mutual information
(MI) is defined as

I(U ;L) = E
{
I(U = u;L = l)

}
= E

{

ld
pU |L(u|l)
pU(u)

}

.

The conventional method4, called Method H, uses both the transmitted info symbol u
and the soft-value l provided by the decoder. On the other hand, I(U ;L) may also be
estimated using only the reliability value λ; this method is called Method S. Notice that
the soft-value is assumed to be an LLR.

Hard and Soft MI Sample

The hard sample for estimating the mutual information, for short, the hard MI sample zH ,
is defined as

zH := I(U = u;L = l) = ld
pU |L(u|l)
pU(u)

. (5.24)

4Alternatively, the probability density functions pL|U (l|u) may be determined by histogram measure-
ments; applying Bayes’ rule, the distribution pU |L(u|l) and thus I(U ;L) may be computed. However,
when the soft-values l are LLRs, the histogram measurement is obviously not necessary.

116 CHAPTER 5. PARAMETER ESTIMATION

As the soft-value l is an LLR, it can be used to express the probability density func-
tion pU |L(u|l) (cf. Appendix C). Applying this and pU(u) = 1

2
, the hard MI sample can

be computed as

zH = ld
2

1 + e−lu
. (5.25)

Notice that zH ∈ (−∞, 1]. The hard MI sample is a function of both the transmitted info
symbol u and the soft-value l, as given in (5.1). It is obvious that

E{ZH} = I(U ;L),

and so this estimation is unbiased5.
The soft MI sample is defined as

zS := E
{
I(U = u;L = l)

∣
∣Λ = λ

}
= I(U ;L|Λ = λ), (5.26)

according to (5.4). The condition Λ = λ defines a subchannel, and the crossover proba-
bility of this subchannel is given by

ε =
1

1 + eλ
.

Therefore, the soft MI sample can be computed as

zS = I(U ;L|Λ = λ) = 1− h(ε)
=

1

1 + eλ
ld

2

1 + eλ
+

1

1 + e−λ
ld

2

1 + e−λ
, (5.27)

where h denotes the binary entropy function (cf. Appendix C) [LHG04]. Notice that zS

is only a function of the reliability value λ, as required by (5.4). As opposed to the hard
MI sample, the domain of the soft MI sample is limited: zS ∈ [0, 1].

Notice that the soft MI sample zS is identical to the subchannel mutual information
of the subchannel U → L|Λ = λ; so the random variable ZS is identical to the mutual
information indicator J , as defined in Chapter 2. Therefore, estimation based on the
reliability value λ may be seen as an application of the concept of decomposing a channel
into binary symmetric subchannels (cf. Theorem 2.2).

The mean values of the hard and the soft MI sample are equal, as shown in the previous
section,

µ := E{ZH} = E{ZS} = I(U ;L),

and they are equal to the symbol-wise mutual information I(U ;L).

Comparison

The variances of the hard and the soft MI sample can be written as

σ2
ZH

= E{Z2
H} − µ2,

σ2
ZS

= E{Z2
S} − µ2. (5.28)

5Which is again not surprising.

5.4. FURTHER APPLICATIONS 117

Using the definition of the soft MI sample and Jensen’s inequality, we obtain

Z2
S = (E{ZH |Λ = λ})2 ≤ E{Z2

H |Λ = λ}

and thus
E{Z2

S} ≤ E{Z2
H}, (5.29)

where equality holds for constant ZH . Notice that this is the case if and only if I(U ;L) = 0.
Combining (5.28) and (5.29), we find the relation between the variances of the hard

and the soft MI sample.

Theorem 5.4 (Estimation of Mutual Information)
Consider the estimation of the symbol-wise mutual information (MI) between info sym-
bols U and reliable soft-values L (soft-values that are LLRs), using Method H based on
the hard MI samples ZH defined in (5.24) and Method S based on the soft MI samples ZS

defined in (5.26). The variances are related as

σ2
ZH
≥ σ2

ZS
.

Equality holds if I(U ;L) = 0.

Theorem 5.4 proves that Method S is superior to Method H with respect to the
estimation variance. The ratio of the two variances depends on the probability density
function pL|U(l|u). Thus, the advantage of using Method S, i.e., the gain due to the
decreased estimation variance, depends on the system under consideration.

A direct application is the computation of information transfer functions, like informa-
tion processing characteristics and extrinsic information transfer characteristics (cf. Sec-
tion 3.3). Method S allows to do this in a simple, efficient, and convenient way [LHG04].

5.4 Further Applications

This thesis focuses on the transmission of independent and uniformly distributed binary
data. Thus, the error rate of the binary info symbols and the symbol-wise mutual informa-
tion between the info symbols and the post-decoding soft-values are the most interesting
criteria for the transmission quality.

Consider now a more general system: redundant source signals are quantized and the
quantization indices are transmitted (coded or uncoded) over a communication channel; a
symbol-by-symbol soft-output decoder computes soft-values for each quantization index,
and based on these soft-values, the source signals are reconstructed. Relevant quality
parameters are then the error probability of the quantization indices and the SNR of the
reconstructed source signals. Both parameters can be estimated using Method H and
Method S, and the two methods can be compared similarly to the estimation of the BER
and the mutual information. Details can be found in [TL04].

This shows that the presented methods are quite general and may be applied to esti-
mate other parameters in a similar way. The only prerequisite are reliable post-decoding
soft-values, e.g., a-posteriori LLRs or a-posteriori probabilities.

118 CHAPTER 5. PARAMETER ESTIMATION

5.5 Summary

In this chapter, the estimation of transmission quality parameters based on reliable post-
decoding soft-values has been discussed. Two basic methods have been distinguished:
Method H and Method S. Method H corresponds to the conventional method; “hard”
samples are determined using the transmitted info symbol and the corresponding soft-
value, and the estimate is the mean of the hard samples. In contrast, Method S is
based on “soft” samples that are the expectations of the hard samples conditioned on
the reliability values; i.e., each soft sample is only a function of a reliability value. The
estimate is again the mean of the soft samples.

For the estimation of the symbol error probability and the estimation of the symbol-
wise mutual information, the relationship between the variances of the hard and the
soft samples has been determined analytically. In both cases, Method S outperforms
Method H with respect to the estimation variance. Finally, possible generalizations of
this estimation principle have been discussed.

Chapter 6

Information Combining

Channel decoding is based on combining information. Each noisy observation of a code
symbol carries information about this code symbol as well as information about other
code symbols due to the code constraints. A channel decoder collects and combines this
information, e.g., to compute post-decoding soft-values that carry the overall information
available on info or code symbols. A decoder may thus be interpreted as an information
processor and may be characterized by information transfer functions (cf. Section 3.3).
The information available after decoding can be used completely by subsequent process-
ing stages only if the decoder computes reliable1 soft-values (cf. Chapter 4). Therefore,
information transfer functions characterize the capability of a decoder to process mu-
tual information, assuming that all available reliability information is fully exploited (cf.
Section 3.3).

This chapter addresses the combining of information by decoders from an infor-
mation theory point of view: information combining is used in the sense of combin-
ing values of mutual information. The term “information combining” was coined in
[HHJF01, HHFJ02, Hue04], where this concept was applied to analyze and design con-
catenated coding schemes.

The combined mutual information depends not only on the values of mutual informa-
tion that are combined, but also on the channel models. However, when the channels are
assumed to have certain properties, bounds on the combined mutual information can be
determined. This concept of bounding combined information was first introduced for the
case of two binary-input symmetric memoryless channels (BISMCs) with the same input
in [LHHH03].

In this chapter, this concept is extended to the case of multiple BISMCs with an
equality or a parity-check constraint on their inputs. Using these results, information
transfer functions for repetition codes, single parity check codes, and the accumulator
are bounded. Furthermore, these bounds are applied to determine decoding thresholds
for low-density parity-check codes using the EXIT chart method. A similar method
was developed in [SSSZ03,SSSZ05] motivated by [LHHH03]. The bounds on information
combining provide new insights into the information processing capabilities of decoders
and into the convergence behavior of iterative decoders, both from an information theory

1See Definition 4.2.

120 CHAPTER 6. INFORMATION COMBINING

point of view.
The new contributions are as follows:

(a) The concept of bounding combined information is introduced. The derivations of
the bounds are based on the decomposition of channels into subchannels2.

(b) Bounds on the extrinsic information for single parity check codes, on the extrinsic
and the complete information for repetition codes, and bounds on the complete
information based on intrinsic and extrinsic information are derived.

(c) The concept of information profiles is applied to explain the bounds on information
combining.

(d) Bounds on information transfer functions for single parity check codes, repetition
codes, and the accumulator are presented.

(e) The bounds on EXIT functions are applied in the EXIT chart method to determine
bounds on the decoding threshold for low-density parity-check codes. These bounds
hold for all communication channels that are BISMCs; in particular, the Gaussian
assumption, commonly used in the EXIT chart method, is not required.

Parts of this work have been published in [LSH04,LHH04b,LHHH05a,LHHH05b]. Moti-
vated by [LHHH03], similar results were independently derived in [SSSZ03,SSSZ05].

The derivations in this chapter rely on the concept of decomposing BISMCs into binary
symmetric subchannels, as presented in Chapter 2. Furthermore, the decoding model, the
information transfer functions, and the descriptions of concatenated codes and low-density
parity-check codes, provided in Chapter 3, are employed.

6.1 Decoding Model and Notation

The processing of mutual information is analyzed based on the notation and the decoding
model introduced in Section 3.1 and Section 3.2. (Notice especially the notation for binary
symbols: a ∈ B⇔ ă ∈ F2.) In the following section, this decoding model is expanded to
include more general cases.

Decoding Model

Consider a systematic binary linear code C of length N with equiprobable code words x =
[x0, x1, . . . , xN−1] ∈ BN . The code symbols are transmitted over independent BISMCs,
denoted by Xi → Yi, with the mutual information I(Xi;Yi), i = 0, 1, . . . , N − 1. The
word comprising all received values is denoted by y = [y0, y1, . . . , yN−1] ∈ RN . A symbol-
by-symbol soft-output decoder computes complete post-decoding values vi and extrinsic
post-decoding values wi for the code symbols:

vi := L(Xi|Y = y),

wi := L(Xi|Y \i = y\i),

2See Chapter 2.

6.1. DECODING MODEL AND NOTATION 121

i = 0, 1, . . . , N − 1.
From an information theory point of view, we haveN parallel channels that are coupled

by constraints on their inputs. These constraints are given by the code constraints of
code C, as the channel inputs are the code symbols. The parallel channels and the input
constraints are depicted in Fig. 6.1.

C

X0

X1

XN−1

Y0

Y1

YN−1

Figure 6.1: Parallel channels with inputs subject to the code constraints of a code C.

All channels are assumed to be BISMCs (cf. Chapter 2). In this chapter, two special
BISMCs are of importance, namely the binary symmetric channel (BSC) and the binary
erasure channel (BEC). We use the following representations3:

BSC Channel X → Y with inputs X ∈ B and outputs Y ∈ B. The crossover probability
is given by ε = Pr(Y 6= x|X = x) ≤ 1

2
for x ∈ B. (This channel is depicted in

Fig. 2.1.)

BEC Channel X → Y with inputs X ∈ B and outputs Y ∈ {−1, 0,+1}, where Y = 0
represents the erasure. The erasure probability is given by δ = Pr(Y = 0|X = x)
for x ∈ B. (This channel is depicted in Fig. 2.2.)

The decoding model given here and the decoding model given in Section 3.2 differ
in one important aspect: In the decoding model from Section 3.2, all info symbols are
transmitted over the same (info-symbol) channel and all code symbols are transmitted over
the same (code-symbol) channel. As opposed to that, in the decoding model described
above, each code symbol has “its own” channel. Thus, the channels and their mutual
information values may be different for each code symbol. Consequently, info and code
symbols need not be strictly distinguished, and the use of systematic code symbols is
sufficient. The results based on this extended decoding model are thus more general.

Values of Mutual Information

Since vi are a-posteriori LLRs and wi are extrinsic a-posteriori LLRs, both soft-values are
sufficient statistics of the channel outputs, and we have

I(Xi;Vi) = I(Xi; Y),

I(Xi;Wi) = I(Xi; Y \i)

3The derivations are valid for any input alphabet and any output alphabet.

122 CHAPTER 6. INFORMATION COMBINING

for i = 0, 1, . . . , N −1. Thus, the mutual information between a code symbol and its soft-
value may equivalently be written as the mutual information between this code symbol
and the corresponding channel outputs. Correspondingly, the information processing by
the given soft-output decoder can be analyzed without an explicit decoding operation; for
this reason, the soft-output decoder is omitted in Fig. 6.1.

Three kinds of mutual information values may be associated with each code symbol Xi

[HH02]: the intrinsic information, the extrinsic information and the complete information.

Intrinsic Information The intrinsic information on code symbol Xi,

Iint,i := I(Xi;Yi), (6.1)

is defined as the mutual information between Xi and its noisy observation Yi. The
intrinsic information is equal to the mutual information of the channel over which
the code symbol is transmitted.

Extrinsic Information The extrinsic information on code symbol Xi,

Iext,i := I(Xi; Y \i), (6.2)

is defined as the mutual information between Xi and the noisy observations of all
other code symbols, Y \i. This kind of mutual information follows the definition
of extrinsic probabilities or extrinsic log-likelihood ratios used in iterative decoding
[BG96,HOP96].

Complete Information The complete information on code symbol Xi,

Icmp,i := I(Xi; Y), (6.3)

is defined as the mutual information between Xi and the observations of all code
symbols, Y . The complete information may be formed by combining the intrinsic
information and the extrinsic information [HH02], where the combining operator
depends on the channel models (cf. Section 6.2.2).

Notice that the intrinsic, the extrinsic, and the complete information are values of
mutual information. For convenience, we abbreviate “the mutual information between
code symbol Xi and observations ...” by “the intrinsic (extrinsic, complete) information
on code symbol Xi”, whenever this is possible without causing ambiguity.

Average Symbol-Wise Information The average symbol-wise extrinsic and the av-
erage symbol-wise complete information, averaged over info or code symbols, are
denoted by

Iext :=
1

|I|
∑

i∈I

Iext,i, (6.4)

Icmp :=
1

|I|
∑

i∈I

Icmp,i, (6.5)

respectively, where I denotes the index set of the info or code symbols. This complies
with Definition 3.6, where the labeling of the mutual information values with “U”
or “X” is omitted for brevity; the meanings become clear from the context.

6.2. BOUNDS ON MUTUAL INFORMATION 123

6.2 Bounds on Mutual Information

Code symbols are subject to code constraints. Therefore, the extrinsic information on a
particular code symbol is a combination of the values of intrinsic information on the other
code symbols. Similarly, the complete information on a code symbol is a combination of
the intrinsic information and the extrinsic information on this code symbol.

The extrinsic information and the complete information can be computed precisely
when the channel models are given. This is done to determine information transfer func-
tions (cf. Section 3.3). On the other hand, if only the intrinsic information on each code
symbol is known, and not the underlying channel model, bounds on the extrinsic and on
the complete information can still be determined.

This section deals with bounds on the extrinsic information for single parity check
codes, with bounds on the complete and the extrinsic information for repetition codes,
and with bounds on the combining of intrinsic and extrinsic information. The main results
are stated in Theorem 6.1, Theorem 6.2, Theorem 6.3, and Theorem 6.4. These theorems
generalize the work presented in [LHHH03,LHHH05a,LHH04b] and have been published
in part in [LHHH05b]. The proofs are based on the concept of decomposing a BISMC
into BSCs and the concept of information profiles of channels (cf. Chapter 2).

Motivated by [HH03,LHHH03], results similar to those presented in this thesis were in-
dependently derived in [SSSZ03,SSSZ05]: a more general notion of information combining
is introduced (though results are presented only for optimal combining) and the extremes
of information combining are determined with respect to each individual channel; the
proofs are based on Mrs. Gerber’s Lemma [WZ73] and its extension in [CSS89].

6.2.1 Single Parity Check Codes

Consider a single parity check (SPC) code of length N , which is defined by the constraint

X̆0 ⊕ X̆1 ⊕ · · · ⊕ X̆N−1 = 0 (6.6)

on the code symbols X̆i ∈ F2. The code constraint and the transmission channels Xi → Yi

are shown in Fig. 6.2 for N = 4. In the following derivation, we consider only the
extrinsic information on code symbol X0. Due to the symmetric structure of the code,
the expressions for the other code symbols are similar.

X1

X2

X3

Y1

Y2

Y3

X0 Y0

Figure 6.2: Single parity check code of length N = 4.

124 CHAPTER 6. INFORMATION COMBINING

We discuss first the two cases where all channels are BECs and where all channels
are BSCs. The BEC case turns out to be a simple combinatorial problem, whereas the
BSC case is more involved. These cases are then shown to lead to the minimal and to the
maximal extrinsic information.

Binary Erasure Channels

When the channels are all BECs, the value of code symbol X0 can be recovered with
certainty if no erasure has occurred, i.e., if Yi 6= 0 for all i = 1, 2, . . . , N − 1. (An erasure
corresponds to Yi = 0.) This happens with probability (1 − δ1)(1 − δ2) · · · (1 − δN−1). If
we have one or more erasures, no extrinsic information on code symbol X0 is available.
Using (2.7) and the above probability, it can easily be seen that

IBEC
ext,0 = Iint,1Iint,2 · · · Iint,N−1. (6.7)

Binary Symmetric Channels

For the case where the channels are all BSCs, the following function is introduced.

Definition 6.1 (Binary Information Function for Serial Concatenation)
Let I1, I2, . . . , In ∈ [0, 1], n ≥ 1. We define the binary information function for serial
concatenation for n = 1 as

f ser
1 (I1) := I1,

for n = 2 as
f ser

2 (I1, I2) := 1− h
(
(1− ε1)ε2 + ε1(1− ε2)

)
,

where ε1 := h−1(1− I1) and ε2 := h−1(1− I2), and for n > 2 as

f ser
n (I1, I2, . . . , In) := f ser

2

(
I1, f

ser
n−1(I2, I3, . . . , In)

)
.

(Including the case n = 1 allows to write the following formulas in a more compact form.)
The function f ser

n (.) describes the mutual information of the channel formed by a serial
concatenation of n independent BSCs, where the inputs of the first channel are assumed
to be independent and uniformly distributed. With I1, I2, . . . , In denoting the mutual
information values of the BSCs, the mutual information between the input of the first
BSC and the output of the last BSC is given by f ser

n (I1, I2, . . . , In). Further details are
provided in Appendix D. The function defined above is now used to express the extrinsic
information.

Using the chain rule of mutual information [CT91], the extrinsic information on code
symbol X0 can be written as

I(X0; Y [1,N−1]) = I(X0; Y [1,N−2]) + I(X0;YN−1|Y [1,N−2]). (6.8)

The first term is equal to zero, i.e., I(X0; Y [1,N−2]) = 0, asX0 and Y [1,N−2] are independent
if neither XN−1 nor YN−1 are known.

6.2. BOUNDS ON MUTUAL INFORMATION 125

To determine the second term, we use the representation of the code symbols and the
channel outputs over F2, written as X̆i and Y̆i. Changing the symbol alphabet does not
change the mutual information, i.e.,

I(X0;YN−1|Y [1,N−2]) = I(X̆0; Y̆N−1|Y̆ [1,N−2]). (6.9)

Let binary random variables Zi ∈ F2, i = 0, 1, . . . , N − 1, be defined as

Z0 := X̆0,

Z1 := Z0 ⊕ X̆1,

Z2 := Z1 ⊕ X̆2,

. . .

ZN−2 := ZN−3 ⊕ X̆N−2,

ZN−2 = X̆N−1,

ZN−1 := Y̆N−1.

The penultimate line is not a definition, but an equality which results from the previ-
ous definitions and the parity check equation (6.6); it is only included for the sake of
completeness. Due to their definitions, all Zi are uniformly distributed and

I(X̆0; Y̆N−1|Y̆ [1,N−2]) = I(Z0;ZN−1|Y̆ [1,N−2]). (6.10)

For the time being, assume Y̆ [1,N−2] = y̆[1,N−2], where y̆[1,N−2] ∈ F
N−2
2 denotes an

arbitrary but fixed realization of Y̆ [1,N−2]. Then, the random variables Zi form a Markov
chain,

Z0 → Z1 → Z2 → · · · → ZN−3 → ZN−2 → ZN−1,

where each pair Zi → Zi+1, i = 0, 1, . . . , N − 2, can be interpreted as a BSC. The mutual
information of each BSC is as follows:

• Z0 → Z1: The code symbol X̆1 represents the error symbol of this BSC. The
crossover probability of the channel X̆1 → Y̆1 and that of the channel Y̆1 → X̆1

are equal due to the uniform distribution of X̆1. Thus, we have for the crossover
probability ε1 of the channel Z0 → Z1:

ε1 ∈
{
pX̆1|Y̆1

(1|y̆′) : y̆′ ∈ F2

}
=
{
h−1(1− Iint,1), 1− h−1(1− Iint,1)

}
.

The mutual information of this channel is given by I(Z0;Z1) = 1 − h(ε1) = Iint,1,
which is independent of y̆1.

• Zi → Zi+1, i = 1, 2, . . . , N − 3: Similar to Z0 → Z1, the mutual information is given
by I(Zi;Zi+1) = Iint,i+1.

• ZN−2 → ZN−1: This channel is identical to the channel X̆N−1 → Y̆N−1, and thus its
mutual information is given by I(ZN−2;ZN−1) = Iint,N−1.

126 CHAPTER 6. INFORMATION COMBINING

Notice that the mutual information of each BSC is independent of y̆[1,N−2].
As we have a serial concatenation of BSCs with known values of mutual informa-

tion, we can apply the binary information function for serial concatenation according to
Definition 6.1:

I(Z0;ZN−1|Y̆ [1,N−2] = y̆[1,N−2]) = f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1).

This mutual information is independent of y̆[1,N−2], and so the expected value with respect
to y̆[1,N−2] is simply given as

I(Z0;ZN−1|Y̆ [1,N−2]) = E
{

f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1)

}

= f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1). (6.11)

Using (6.11) in (6.10), we obtain

I(X̆0; Y̆N−1|Y̆ [1,N−2]) = f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1).

After substituting this result into (6.8), we obtain the extrinsic information on code
symbol X0 for the case where all channels are BSCs:

IBSC
ext,0 = f ser

N−1(Iint,1, Iint,2, . . . , Iint,N−1). (6.12)

General Binary-Input Symmetric Memoryless Channels

The two cases where either the channels are all BECs or all BSCs represent bounds on
the extrinsic information for a code symbol, when only the values of intrinsic information
for code symbols are known, and not the underlying channel models. This is proved by
the following theorem.

Theorem 6.1 (Extrinsic Information for Single Parity Check Codes)
Let X0, X1, . . . , XN−1 ∈ B denote the code symbols of a single parity check code of
length N . Let Xi → Yi, i = 1, 2, . . . , N − 1, denote N − 1 independent BISMCs having
mutual information I(Xi;Yi). Let the intrinsic information on code symbol Xi be de-
fined by Iint,i := I(Xi;Yi), i = 1, 2, . . . , N − 1, and let the extrinsic information on code
symbol X0 by defined by Iext,0 := I(X0; Y \0). Then, the following tight bounds hold:

Iext,0 ≥ Iint,1Iint,2 · · · Iint,N−1,

Iext,0 ≤ f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1).

The lower bound is achieved if the channels are all BECs, and the upper bound is achieved
if the channels are all BSCs.

To prove this theorem, we use the following lemma.

Lemma 6.1
The binary information function for serial concatenation (Definition 6.1) has the following
two properties:

6.2. BOUNDS ON MUTUAL INFORMATION 127

(a) f ser
n (I1, I2, . . . , In) is convex-∩ in each Ii, i = 1, 2, . . . , n;

(b) f ser
n (I1, I2, . . . , In) is lower-bounded by the product of its arguments:

f ser
n (I1, I2, . . . , In) ≥ I1I2 · · · In.

Proof. The two properties are proved for n = 2, i.e., for f ser
2 (I1, I2). The general case

follows by induction.
First, we define the function

g(ι) := 1− f ser
2

(
1− ι, 1− h(ρ)

)

= h
(
[1− 2ρ]h−1(ι) + ρ

)

for ι ∈ [0, 1] with parameter ρ ∈ [0, 1
2
]. (The range of ρ is chosen such that h−1(h(ρ)) = ρ.)

As ι = 1− I1 and h(ρ) = 1− I2, ι and h(ρ) correspond to entropies, and ρ corresponds to
a probability.

(a): The function f ser
2 (I1, I2) is symmetric in I1 and I2, and so it is sufficient to consider

it as a function of I1 with constant parameter I2. Then, f ser
2 (I1, I2) is convex-∩ in I1 for

constant I2 if and only if g(ι) is convex-∪ in ι for constant ρ. For illustration, the function
g(ι) is plotted versus ι for several values of ρ in Fig. 6.3. The plot indicates that g(ι) is
convex-∪ for all ρ. A formal proof is provided in Appendix E.

PSfrag replacements

ι

g
(ι

)

ρ = 0.5
ρ = 0.3
ρ = 0.2
ρ = 0.1
ρ = 0.05
ρ = 0

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.3: Function g(ι) for several values of parameter ρ (cf. Lemma 6.1).

(b): For the time being, let I2 be constant. Then, the (one-dimensional) bound on
f ser

2 holds if and only if

h
(
[1− 2ρ]h−1(ι) + ρ

)
≤
(
1− h(ρ)

)
ι+ h(ρ)

128 CHAPTER 6. INFORMATION COMBINING

for ι ∈ [0, 1] and ρ ∈ [0, 1
2
]. For ι = 0 and ι = 1, the left hand side is equal to the right

hand side. Regarding this and the fact that g(ι) is convex-∪, the right hand side represents
the secant of g(ι) for ι ∈ [0, 1], and thus the inequality holds. These considerations are
independent of ρ, and thus statement (b) holds for all I2. QED

Lemma 6.1 is now used to prove Theorem 6.1:
Proof. All channels are assumed to be BISMCs. Therefore we may define a subchannel
indicator Ai and a (mutual) information indicator Ji for each channel Xi → Yi (cf. Chap-
ter 2). Notice that the expectation of the mutual information indicator is equal to the
intrinsic information, E{Ji} = I(Xi;Yi) = Iint,i.

The extrinsic information does not change if it is written conditioned on the subchannel
indicators A\0,

Iext,0 = I(X0; Y \0) = I(X0; Y \0,A\0)

= I(X0; A\0) + I(X0; Y \0|A\0)

= I(X0; Y \0|A\0),

since A\0 is independent of X0 by definition. (Notice that A\0 = A[1,N−1] and Y \0 =
Y [1,N−1].) For a given realization a[1,N−1] of subchannel indicators, we have the case
where the channels are all BSCs, and we can apply the function f ser

N−1(. . .) according to
Definition 6.1:

I(X0; Y [1,N−1]|A[1,N−1] = a[1,N−1]) = f ser
N−1(j1, j2, . . . , jN−1).

Notice that ji = I(Xi;Yi|Ai = ai) is the mutual information corresponding to the sub-
channel Ai = ai of channel Xi → Yi. Taking the expectation, we can write the extrinsic
information as

Iext,0 = I(X0; Y [1,N−1]|A[1,N−1])

= E
{

f ser
N−1(J1, J2, . . . , JN−1)

}

. (6.13)

Now, the two properties of the function f ser
N−1(. . .) given in Lemma 6.1 are exploited.

Using Lemma 6.1(b) in (6.13), we obtain

E
{

f ser
N−1(J1, J2, . . . , JN−1)

}

≥ E
{

J1J2 · · · JN−1

}

= Iint,1Iint,2 · · · Iint,N−1,

where E{Ji} = Iint,i is used. On the other hand, due to Lemma 6.1(a), Jensen’s inequality
[CT91] can be applied in (6.13), and we obtain

E
{

f ser
N−1(J1, J2, . . . , JN−1)

}

≤

≤ f ser
N−1

(

E{J1},E{J2}, . . . ,E{JN−1})
)

= f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1).

Thus, we have proved the two bounds.
According to (6.7) and (6.12), the lower bound and the upper bound are actually

achieved when the channels are all BECs or all BSCs, respectively. QED

6.2. BOUNDS ON MUTUAL INFORMATION 129

Remark 6.1

When not only the mutual information but also the information profiles of the
individual channels are given, the precise extrinsic information can be computed by
simply evaluating (6.13).

6.2.2 Repetition Codes

Consider a repetition code of length N , which is defined by the constraint

X0 = X1 = · · · = XN−1 (6.14)

on the code symbols Xi. The code constraints and the transmission channels Xi → Yi

are shown in Fig. 6.4 for N = 4. In the following derivation, we consider only the
complete information on code symbol X0. Due to the symmetric structure of the code,
the expressions for the other code symbols are similar.

X1

X2

X3

Y1

Y2

Y3

X0 Y0

Figure 6.4: Repetition code of length N = 4.

Similarly to the case of single parity check codes, we discuss first the two cases where
all channels are BECs and where all channels are BSCs. Both the BEC case and the BSC
case turn out to be a simple combinatorial problems. These cases are then shown to lead
to the maximal and to the minimal complete information.

Binary Erasure Channels

If the channels are all BECs, the value of code symbol X0 can be recovered with certainty
provided that not all channel outputs are erasures. (An erasure corresponds to Yi = 0.)
Otherwise, no extrinsic information on code symbol X0 is available. Using (2.7) and the
probabilities of these events, it can easily be seen that

IBEC
cmp,0 = 1− (1− Iint,0)(1− Iint,1) · · · (1− Iint,N−1). (6.15)

Binary Symmetric Channels

For the case where the channels are all BSCs, we introduce the following function.

130 CHAPTER 6. INFORMATION COMBINING

Definition 6.2 (Binary Information Function for Parallel Concatenation)
Let I1, I2, . . . , In ∈ [0, 1], n ≥ 1. Let further r = [r1, r2, . . . , rn] ∈ Bn. We define the
binary information function for parallel concatenation as

fpar
n (I1, I2, . . . , In) := −

∑

r∈Bn

ψ(r) ldψ(r)−
n∑

i=1

(1− Ii)

with

ψ(r) :=
1

2

(n∏

i=1

ϕi(ri) +
n∏

i=1

(
1− ϕi(ri)

))

and

ϕi(ri) :=

{

εi for ri = +1,

1− εi for ri = −1,

where εi := h−1(1− Ii) for i = 1, 2, . . . , n.

(Similar to Definition 6.1, we have included the case n = 1, so that the following formulas
can be written in a more compact form.)

This function describes the mutual information of a channel formed by a parallel
concatenation of n independent BSCs, i.e., BSCs having the same inputs. These inputs
are assumed to be independent and uniformly distributed (i.u.d.). With I1, I2, . . . , In
denoting the mutual information values of the BSCs, the mutual information between
the (common) input and the vector of all channel outputs is given by f par

n (I1, I2, . . . , In).
Appendix D provides further details.

The complete information on code symbolX0 corresponds exactly to the interpretation
of function f par

N . Thus, the complete information on code symbol X0 can be written as

IBSC
cmp,0 = fpar

N (Iint,0, Iint,1, . . . , Iint,N−1). (6.16)

General Binary-Input Symmetric Memoryless Channels

The two cases considered above represent bounds on the complete information on a code
symbol when only the intrinsic information on code symbols is known, and not the un-
derlying channel models. This is stated in the following theorem.

Theorem 6.2 (Complete Information for Repetition Codes)
Let X0, X1, . . . , XN−1 ∈ B denote the code symbols of a repetition code of length N .
Let Xi → Yi, i = 1, 2, . . . , N − 1, denote N − 1 independent BISMCs having mutual
information I(Xi;Yi). Let the intrinsic information on code symbol Xi be defined by
Iint,i := I(Xi;Yi), i = 1, 2, . . . , N−1, and let the complete information on code symbol X0

by defined by Icmp,0 := I(X0; Y [0,N−1]). Then, the following tight bounds hold:

Icmp,0 ≥ fpar
N (Iint,0, Iint,1, . . . , Iint,N−1),

Icmp,0 ≤ 1− (1− Iint,0)(1− Iint,1) · · · (1− Iint,N−1).

The lower bound is achieved if the channels are all BSCs, and the upper bound is achieved
if the channels are all BECs.

6.2. BOUNDS ON MUTUAL INFORMATION 131

Note that BSCs achieve the lower bound for repetition codes, but the upper bound for
single parity check codes; the reverse holds for BECs.

To prove this theorem, we use the following lemma.

Lemma 6.2
The binary information function for parallel concatenation (Definition 6.2) has the fol-
lowing two properties:

(a) f par
n (I1, I2, . . . , In) is convex-∪ in each Ii, i = 1, 2, . . . , n;

(b) fpar
n (I1, I2, . . . , In) is upper-bounded as

fpar
n (I1, I2, . . . , In) ≤ 1− (1− I1)(1− I2) · · · (1− In).

Proof. Consider first the case n = 2. The binary information function for parallel
concatenation and that for serial concatenation are related as

fpar
2 (I1, I2) = I1 + I2 − f ser

2 (I1, I2), (6.17)

as can easily be shown4. Then, Lemma 6.1 immediately gives the proof.

Consider now the case n > 2. In the sequel, we exploit the meaning of function f par
n

(see above and Appendix D): for n BSCs X → Yi with Ii := I(X;Yi), i = 1, 2, . . . , n, and
the same i.u.d. inputs X, the complete information of the parallel concatenated channel
X → Y [1,n] is given by

I(X; Y [1,n]) = fpar
n (I1, I2, . . . , In).

Furthermore, we make use of the superchannel X → Y [2,n]. This chanel is a BISMC,
because all individual channels are BSCs, and so we may define a mutual information
indicator J ′ for this channel. Notice that E{J ′} = I(X; Y [2,n]).

(a): Using this superchannel, the mutual information of the parallel concatenated
channel and thus function f par

n can be written as

I(X; Y [1,n]) = fpar
n (I1, I2, . . . , In) = E

{

fpar
2 (I1, J

′)
}

. (6.18)

As the functions f par
2 (I1, J

′) are convex-∪ in I1 for any J ′ (see above) and f par
n (I1, I2, . . . , In)

is a weighted sum of such functions, f par
n (I1, I2, . . . , In) must be convex-∪ in I1. This holds

for I2, I3, . . . , In in an analogous way, and we have (a).

(b): We start with (6.18) and use the upper bound of f par
2 :

I(X; Y [1,n]) = E
{

fpar
2 (I1, J

′)
}

≤

≤ E
{

1− (1− I1)(1− J ′)
}

= 1− (1− I1)(1− E{J ′}).

4This relations holds only for n = 2.

132 CHAPTER 6. INFORMATION COMBINING

The mutual information of the superchannel, E{J ′} = I(X; Y [2,n]) may now be upper
bounded in the same way, using the new superchannel X → Y [3,n] with mutual informa-
tion indicator J ′′:

I(X; Y [2,n]) = E
{

fpar
2 (I2, J

′′)
}

≤

≤ E
{

1− (1− I2)(1− J ′′)
}

= 1− (1− I2)(1− E{J ′′}).

Proceeding recursively, we obtain

fpar
n (I1, I2, . . . , In) ≤ 1− (1− I1)(1− E{J ′}) ≤

≤ 1− (1− I1)(1− I2)(1− E{J ′′}) ≤ · · · ≤
≤ 1− (1− I1)(1− I2) · · · (1− In),

and we have (b). QED

These two properties are now exploited to prove Theorem 6.2. Notice that the same
methods are applied as in the proof of Theorem 6.1.
Proof. All channels are assumed to be BISMCs. Therefore we may define a subchannel
indicator Ai and a (mutual) information indicator Ji for each channel Xi → Yi (cf. Chap-
ter 2). Notice that the expectation of the mutual information indicator is equal to the
intrinsic information, E{Ji} = I(Xi;Yi) = Iint,i. We use the abbreviations Y = Y [0,N−1]

and A = A[0,N−1].
The complete information does not change if it is written conditioned on the subchan-

nel indicators A,

Icmp,0 = I(X0; Y) = I(X0; Y ,A)

= I(X0; A) + I(X0; Y |A)

= I(X0; Y |A),

since A is independent of X0 by definition. For a given realization a of subchannel
indicators, we have the case where the channels are all BSCs, and we can apply the
function f par

N (. . .) according to Definition 6.2:

I(X0; Y [0,N−1]|A[0,N−1] = a[0,N−1]) = fpar
N (j0, j1, . . . , jN−1).

Notice that ji = I(Xi;Yi|Ai = ai) is the mutual information corresponding to the sub-
channel Ai = ai of channel Xi → Yi. Taking the expectation, we can write the complete
information as

Icmp,0 = I(X0; Y [0,N−1]|A[0,N−1])

= E
{

fpar
N (J0, J1, . . . , JN−1)

}

. (6.19)

Now, the two properties of the function f par
N (. . .) given in Lemma 6.2 are exploited.

Using Lemma 6.2(b) in (6.19), we obtain

E
{

fpar
N (J0, J1, . . . , JN−1)

}

≤ E
{

1− (1− J0)(1− J1) · · · (1− JN−1)
}

=

= 1− (1− Iint,0)(1− Iint,1) · · · (1− Iint,N−1),

6.2. BOUNDS ON MUTUAL INFORMATION 133

where E{Ji} = Iint,i has been used. On the other hand, Lemma 6.2(a) and Jensen’s
inequality [CT91] can be applied in (6.19), and we obtain

E
{

fpar
N (J0, J1, . . . , JN−1)

}

≥

≥ fpar
N

(

E{J0},E{J1}, . . . ,E{JN−1})
)

= fpar
N (Iint,0, Iint,1, . . . , Iint,N−1).

Thus, we have the two bounds.
According to (6.15) and (6.16), the upper bound and the lower bound are actually

achieved when the channels are all BECs or all BSCs, respectively. QED

In the case of a repetition code, the extrinsic information on a code symbol can easily
be determined via the complete information. Assume a repetition code of length N ,
where the code symbols are transmitted over channels Xi → Yi, i = 0, 2, . . . , N − 1.
The extrinsic information on code symbol X0, Iext,0 = I(X0,Y [1,N−1]), is identical to the
complete information on code symbol X1, Icmp,1 = I(X1,Y [1,N−1]) for the case where the
channel X0 → Y0 is discarded. Therefore, Theorem 6.2 can directly be applied to bound
the extrinsic information.

Theorem 6.3 (Extrinsic Information for Repetition Codes)
Let X0, X1, . . . , XN−1 ∈ B denote the code symbols of a repetition code of length N .
Let Xi → Yi, i = 1, 2, . . . , N − 1, denote N − 1 independent BISMCs having mutual
information I(Xi;Yi). Let the intrinsic information on code symbol Xi be defined by
Iint,i := I(Xi;Yi), i = 1, 2, . . . , N − 1, and let the extrinsic information on code symbol X0

by defined by Iext,0 := I(X0; Y \0). Then, the following tight bounds hold:

Iext,0 ≥ fpar
N−1(Iint,1, Iint,2, . . . , Iint,N−1),

Iext,0 ≤ 1− (1− Iint,1)(1− Iint,2) · · · (1− Iint,N−1).

The lower bound is achieved if the channels are all BSCs, and the upper bound is achieved
if the channels are all BECs.

Remark 6.2

When not only the mutual information but also the information profiles of the
individual channels are given, the precise complete information can be computed
by simply evaluating (6.19). Similarly, the precise extrinsic information can be
computed.

6.2.3 Complete Information

The complete information on a code symbol comprises the intrinsic and the extrinsic
information [HH02]. Bounds on combining these two values of mutual information are
addressed in this section.

The formation of complete information on a code symbol based on the intrinsic and
the extrinsic information corresponds to the case where this code symbol is transmitted
over two parallel independent channels. This is the most basic scenario for information
combining. In [HH02,Hub02,HH03], it was considered for the first time, and the complete

134 CHAPTER 6. INFORMATION COMBINING

information was computed for specific channel models. The bounds on information com-
bining were presented in [LHHH03]. Since this scenario corresponds to a repetition code of
length 2, the bounds on the complete information follow immediately from Theorem 6.2.

Theorem 6.4 (Complete Information)
Let X0, X1, . . . , XN−1 ∈ B denote the code symbols of a linear code of length N . Let
Xi → Yi, i = 1, 2, . . . , N − 1, denote N − 1 independent BISMCs. Let the intrinsic infor-
mation on code symbol X0 be defined by Iint,0 := I(X0;Y0), let the extrinsic information
on code symbol X0 be defined by Iext,0 := I(X0; Y \0), and let the complete information
on code symbol X0 be defined by Icmp,0 := I(X0; Y). Then, the following bounds hold:

Icmp,0 ≥ fpar
2 (Iint,0, Iext,0),

Icmp,0 ≤ 1− (1− Iint,0)(1− Iext,0).

The lower bound is achieved if the intrinsic channel X0 → Y0 and the extrinsic channel
X0 → Y \0 are BSCs. The upper bound is achieved if the intrinsic and the extrinsic
channel are BECs.

Remark 6.3

When not only the mutual information but also the information profiles of the
intrinsic and the extrinsic channel are given, the precise complete information can
be computed by simply evaluating (6.19) for the case N = 2, where the two channels
correspond to the intrinsic and the extrinsic channel.

6.2.4 Impact of Information Profiles

In the previous sections, the BSC and the BEC were shown to lead to the extremes of the
combined information. This behavior can be explained using the concept of information
profiles, introduced in Chapter 2.

The information profile of a BISMC X → Y is the distribution of the mutual infor-
mation of its binary symmetric subchannels. Let A denote the subchannel indicator of
this channel, and let J denote the mutual information indicator of this channel. Then the
information profile is the probability density function pJ(j).

For a given mutual information of the channel,

I := E{J} = I(X;Y),

the variance of J ,
σ2

J := E{(J − I)2},
is minimal if the channel is a BSC, and it is maximal if the channel is a BEC. To be
precise, we have

σ2
J,BSC = 0

in the case of the BSC, and we have

σ2
J,BEC = δ · (0− I)2 + (1− δ) · (1− I)2

= (1− I)I2 + I(1− I)2

= I(1− I)

6.3. BOUNDS ON INFORMATION TRANSFER FUNCTIONS 135

in the case of the BEC, where δ = 1− I denotes the erasure probability.
The combined information values for single parity check codes and for repetition codes

can be written as the expectations of functions f ser
N and fpar

N , according to (6.13) and (6.19).
These expectations are evaluated with respect to the information profiles of the involved
channels. The two functions are convex and monotonically increasing in each argument;
the first property is proved in Lemma 6.1 and Lemma 6.2, and the second property can
easily be shown. Determining the information profiles that lead to the maximum and the
minimum of the expected values, as done in Theorem 6.1, Theorem 6.2, Theorem 6.3, and
Theorem 6.4, corresponds to the following problem:

Given a random variable J having mean value I and a convex and monotonically
increasing function f(j), determine the distributions (corresponding to the information
profiles) that lead to the minimum and to the maximum of E{f(J)}, respectively. These
optima are obviously attained by the distributions having the minimum and the maximum
variance, as the function f is convex and monotonically increasing.

Since the BSC and the BEC correspond to the information profiles with the minimal
and the maximal variance, they result in the extremes of the combined information for
repetition codes and for single parity check codes [Hub04]. (Whether the BEC or the
BSC leads to the minimum or maximum depends on whether the function is convex-∪
or convex-∩.) Thus, the concept of information profiles provides an elegant method to
explain the bounds on information combining.

6.3 Bounds on Information Transfer Functions

Information transfer functions are defined in Section 3.3; they include extrinsic infor-
mation transfer (EXIT) functions and complete information transfer (CIT) functions.
Information transfer functions depend on the models applied for the info-symbol channel
and the code-symbol channel. Using the bounds on information combining from the pre-
vious section, we derive now bounds on information transfer functions that are valid for
all BISMCs. We discuss single parity check codes, repetition codes, and the accumulator,
which is the recursive rate-1 memory-1 convolutional encoder.

We first specialize the decoding model from Section 6.1, used for deriving the bounds on
information combining, such that it corresponds to the decoding model from Section 3.2,
on which the definitions of the information transfer functions are based:

The channels over which the code symbols are transmitted are assumed to be either the
communication channel or the a-priori channel. The communication channel models the
physical transmission channel; its mutual information is called the channel information,
and it is denoted by Ich. The a-priori channel is the virtual channel between a code symbol
and a soft-value provided by another constituent decoder; its mutual information is called
the a-priori information, and it is denoted by Iapri. The observation Yi of a code symbol Xi

is thus either a channel soft-value or an a-priori soft-value. Correspondingly, the intrinsic
information on Xi is either the channel information Ich or the a-priori information Iapri.
Notice that both the channel information and the a-priori information are values of mutual
information.

The following kinds of information transfer functions are considered in the sequel:

136 CHAPTER 6. INFORMATION COMBINING

CIT functions (only channel information) All code symbols are transmitted over
the communication channel. The corresponding CIT functions itf cmp and itfwcmp

are given in Definition 3.8. (The code-symbol pre-decoding information is equal
to Ich; the info word length is equal to K.)

EXIT functions for code symbols (only a-priori information) All code symbols
are transmitted over the a-priori channel. This corresponds to the outer decoder of
a serially concatenated coding scheme and to the check-node decoder of an LDPC
code. The code-symbol EXIT functions itfext,X are given in Definition 3.7. (The
info-symbol pre-decoding information is equal to zero, and the code-symbol pre-
decoding information is equal to Iapri; the code word length is equal to N .)

EXIT functions for code symbols (a-priori and channel information) The sys-
tematic code symbols are treated as info symbols, and they are transmitted over
the communication channel; the nonsystematic code symbols are treated as actual
code symbols, and they are transmitted over the a-priori channel. This corresponds
to the variable-node decoder of an LDPC code. The code-symbol EXIT functions
itfext,X are given in Definition 3.7. (The info-symbol pre-decoding information is
equal to Ich, the code-symbol pre-decoding information is equal to Iapri, and the
code word length is equal to N −K.)

EXIT functions for info symbols (a-priori and channel information) The sys-
tematic code symbols are treated as info symbols, and they are transmitted over the
a-priori channel; the nonsystematic code symbols are treated as actual code sym-
bols, and they are transmitted over the communication channel. This corresponds to
the inner decoder of a serially concatenated coding scheme. The info-symbol EXIT
functions itfext,U are given in Definition 3.7. (The info-symbol pre-decoding infor-
mation is equal to Iapri, the code-symbol pre-decoding information is equal to Ich,
and the info word length is equal to K.)

6.3.1 Single Parity Check Codes

Consider a single parity check code of length N as defined in Section 6.2.1. In the sequel,
we determine bounds on the EXIT functions and bounds on the CIT functions.

Bounds on EXIT Functions

Assume first that a-priori information is available for all code symbols and there is no
channel information for any code symbol, i.e., Iint,i = Iapri for i = 0, 1, . . . , N − 1. This
corresponds to the decoding operation for a check node in the iterative decoder for a
low-density parity-check code (cf. Section 3.6). It also applies when a single parity check
code is used as an outer code in a serially concatenated coding scheme (cf. Section 3.5.2).

The extrinsic information on code symbol X0 can be bounded according to Theo-
rem 6.1. Since the average extrinsic information is equal to the extrinsic information on

6.3. BOUNDS ON INFORMATION TRANSFER FUNCTIONS 137

code symbol X0, we have the bounds

Iext ≥ (Iapri)
N−1,

Iext ≤ f ser
N−1(Iapri, Iapri, . . . , Iapri). (6.20)

These bounds are depicted in Fig. 6.5.

PSfrag replacements

I e
x
t

Iapri

N = 2
N = 4
N = 8
N = 16

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.5: Bounds on EXIT functions for single parity check codes of several code
lengths N . Upper bounds (solid lines) correspond to BSCs and lower bounds (dashed
lines) correspond to BECs. (Mutual information is given in bit/use.)

Assume now that channel information on code symbol XN−1 and a-priori information
on all other code symbols is available, i.e., Iint,i = Iapri for i = 0, 1, . . . , N−2 and Iint,N−1 =
Ich. This is the case when single parity check codes are used as inner codes in serially
concatenated coding schemes, and only the parity symbol XN−1 is transmitted over the
communication channel; but also when single parity check codes are used in repeat-
accumulate codes as proposed in [tBK03].

Using Theorem 6.1, we obtain the bounds

Iext ≥ Ich · (Iapri)N−2,

Iext ≤ f ser
N−1(Ich, Iapri, . . . , Iapri). (6.21)

These bounds are depicted in Fig. 6.6. Obviously, the extrinsic information cannot be-
come larger than the channel information, even if the a-priori information is equal to 1.
Therefore, these codes are unattractive as inner codes of a serially concatenated coding
scheme, because iterative decoding can never achieve mutual information of 1, and thus
the symbol estimates can never become error-free.

138 CHAPTER 6. INFORMATION COMBINING

PSfrag replacements

I e
x
t

Iapri

Ich = 0
Ich = 0.2
Ich = 0.4
Ich = 0.6
Ich = 0.8
Ich = 1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.6: Bounds on EXIT functions for single parity check codes of length N = 4 for
several values of channel information Ich. Upper bounds (solid lines) correspond to BSCs
and lower bounds (dashed lines) correspond to BECs. (Mutual information is given in
bit/use.)

Bounds on CIT Functions

For the CIT function, we assume that channel information is available for all code symbols,
i.e., Iint,i = Ich for i = 0, 1, . . . , N − 1. The complete information on code symbol X0 is
a combination of the intrinsic information Iint,0 = Ich and the extrinsic information Iext,0,
and it can be bounded according to Theorem 6.4. The extrinsic information on code
symbol X0 is bounded as

IN−1
ch ≤ Iext,0 ≤ f ser

N−1(Ich, . . . , Ich),

according to Theorem 6.1. Using the lower bound on the extrinsic information in the
lower bound on the complete information, we obtain

Icmp,0 ≥ fpar
2 (Ich, I

N−1
ch). (6.22)

Similarly, using the upper bound on the extrinsic information in the upper bound on the
complete information, we obtain

Icmp,0 ≤ 1− (1− Ich)
(
1− f ser

N−1(Ich, Ich, . . . , Ich)
)
. (6.23)

The complete information is the same for each systematic symbol. Therefore, bounds

6.3. BOUNDS ON INFORMATION TRANSFER FUNCTIONS 139

on the (symbol-wise) complete information are given by

Icmp ≥ fpar
2 (Ich, I

N−1
ch),

Icmp ≤ 1− (1− Ich)(1− f ser
N−1(Ich, Ich, . . . , Ich)), (6.24)

and we have bounds on the CIT functions. These bounds are plotted in Fig. 6.7. For
each code length N , a large gap between the upper bound and the bound given by the
ideal coding scheme (cf. Section 3.3) can be observed.

In contrast to the bounds on the extrinsic information, these bounds on the com-
plete information are not tight, because contradictory assumptions on the model for the
communication channel are used in the derivation. Consider first the lower bound. The
extrinsic information is minimal if the channels are BECs, i.e., if the communication chan-
nel is a BEC. On the other hand, the lower bound on the combination of the extrinsic and
the intrinsic information holds with equality if both channels are BSCs, i.e., if the com-
munication channel is a BSC. Due to this contradiction, the lower bound on the complete
information cannot be tight.

Consider now the upper bound on the complete information. The extrinsic information
is maximal if the channels are BSC, i.e., if the communication channel is a BSC. On
the other hand, the upper bound on the combination of the extrinsic and the intrinsic
information holds with equality if both channels are BECs, i.e., if the communication
channel is a BEC. Again, we have a contradiction and the upper bound on the complete
information cannot be tight.

The word-wise complete information may be written as follows by applying the chain
rule for mutual information [CT91]:

Iwcmp = I(X; Y)

= I(X0; Y) + I(X1; Y |X0) + I(X2; Y |X [0,1]) +

+I(X3; Y |X [0,2]) + · · ·+ I(XN−2; Y |X [0,N−3])

= I(X0; Y) + I(X1; Y [1,N−1]|X0) + I(X2; Y [2,N−1]|X [0,1]) +

+I(X3; Y [3,N−1]|X [0,2]) + · · ·+ I(XN−2; Y [N−2,N−1]|X [0,N−3]). (6.25)

In the latter expression, observations for given code symbols are omitted, because they
do not contribute to the mutual information. Notice that

I(XN−1;YN−1|X [0,N−2]) = 0,

as XN−1 can be computed using X [0,N−2] due to the parity-check constraint.

The first term in this sum is identical to the complete information on code symbol X0,
Icmp,0. The second term corresponds to the complete information on a code symbol for a
single parity check code of length N−1, because the code symbolX0 is known. Proceeding
in a similar way, it can be seen that the term I(Xi; Y [i,N−1]|X [0,i−1]) corresponds to the
complete information on a code symbol for a single parity check code of length N − i,
i = 0, 1, . . . , N − 2. Thus, we can use the bounds given in (6.22) and (6.23).

140 CHAPTER 6. INFORMATION COMBINING

PSfrag replacements

I c
m

p

Ich

N = 2
N = 3
N = 6

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.7: Bounds on CIT functions for single parity check codes of several code
lengths N . Upper bounds: solid lines; lower bounds: dashed lines; ideal coding scheme:
dash-dotted lines. (Mutual information is given in bit/use.)

When applying these bounds in (6.25), we obtain bounds on the word-wise CIT func-
tion:

Iwcmp ≥
1

K

N−2∑

i=0

fpar
2 (Ich, I

N−1−i
ch),

Iwcmp ≤
1

K

N−2∑

i=0

(

1− (1− Ich)(1− f ser
N−1−i(Ich, . . . , Ich)

)

=

= 1− (1− Ich)
(

1− 1

K

N−2∑

i=0

f ser
N−1−i(Ich, . . . , Ich)

)

. (6.26)

Note that K = N − 1 for single parity check codes.
These bounds are plotted in Fig. 6.8. When comparing these results to those in

Fig. 6.7, we see that the gap to the bound given by the ideal coding scheme is now
relatively small as long as the channel information is smaller than about half the code
rate. On the other hand, the upper bound (solid line) is slightly above the IPC of the ideal
coding scheme. This means that this bound is not tight, as predicted above by theory.

The complete information for blocks of info symbols may be bounded using the same
method as above. Basically, only the sum in (6.26) has to be truncated in an appropriate
way.

6.3. BOUNDS ON INFORMATION TRANSFER FUNCTIONS 141

PSfrag replacements

I w
c
m

p

Ich

N = 3
N = 6

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.8: Bounds on word-wise CIT functions for single parity check codes of several
code lengths N . Upper bounds: solid lines; lower bounds: dashed lines; ideal coding
scheme: dash-dotted lines. (Mutual information is given in bit/use.)

6.3.2 Repetition Codes

Consider a repetition code of length N as defined in Section 6.2.2. In the sequel, we
determine bounds on the EXIT functions and bounds on the CIT functions.

Bounds on EXIT Functions

Assume first that a-priori information is available for all code symbols and there is no
channel information for any code symbol, i.e., Iint,i = Iapri for i = 0, 1, . . . , N − 1. This
is the case when repetition codes are used as outer codes in serially concatenated coding
schemes, like in repeat-accumulate codes or DRS codes (cf. Section 3.5.2).

The extrinsic information on code symbol X0 can be bounded according to Theo-
rem 6.3. Since the average extrinsic information is equal to the extrinsic information on
code symbol X0, we have the bounds

Iext ≥ fpar
N−1(Iapri, Iapri, . . . , Iapri),

Iext ≤ 1− (1− Iapri)N−1. (6.27)

These bounds are depicted in Fig. 6.9 for several code lengths.
Assume now that the channel information on code symbol XN−1 and a-priori infor-

mation for all other code symbols are available, i.e., Iint,i = Iapri for i = 0, 1, . . . , N − 2
and Iint,N−1 = Ich. This corresponds to the decoding operation for a variable node in the

142 CHAPTER 6. INFORMATION COMBINING

PSfrag replacements

I e
x
t

Iapri

N = 2
N = 4
N = 8
N = 16

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.9: Bounds on EXIT functions for repetition codes of several code lengths N . Up-
per bounds (solid lines) correspond to BECs and lower bounds (dashed lines) correspond
to BSCs. (Mutual information is given in bit/use.)

iterative decoder for a low-density parity-check code (cf. Section 3.6). It is also the case
for repetition codes used in systematic repeat accumulate codes (cf. Section 3.5.2).

Using Theorem 6.3, we obtain the bounds

Iext ≥ fpar
N−1(Ich, Iapri, . . . , Iapri),

Iext ≤ 1− (1− Ich)(1− Iapri)N−2. (6.28)

These bounds are depicted in Fig. 6.10. In contrast to the curves for the single parity
check codes in Fig. 6.6, these curves start with Iext = Ich (at Iapri = 0) and end with
Iext = 1 (at Iapri = 1) for increasing a-priori information. The latter property makes these
codes particularly suitable for iterative decoding.

Bounds on CIT Functions

For the CIT function, we assume that channel information is available for all code symbols,
i.e., Iint,i = Ich for i = 0, 1, . . . , N − 1. It is sufficient to discuss the complete information
on code symbol X0, as it is identical to both the symbol-wise complete information Icmp

and the word-wise complete information Iwcmp.
Applying Theorem 6.3, we obtain the bounds on the complete information:

Icmp ≥ fpar
N (Ich, . . . , Ich),

Icmp ≤ 1− (1− Ich)N .

6.3. BOUNDS ON INFORMATION TRANSFER FUNCTIONS 143

PSfrag replacements
I e

x
t

Iapri

Ich = 0
Ich = 0.2
Ich = 0.4
Ich = 0.6
Ich = 0.8
Ich = 1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.10: Bounds on EXIT functions for repetition codes of length N = 4 for several
values of channel information Ich. Upper bounds (solid lines) correspond to BECs and
lower bounds (dashed lines) correspond to BSCs. (Mutual information is given in bit/use.)

Due to Iwcmp = Icmp, the same bounds hold for the word-wise complete information.
These bounds are plotted in Fig. 6.11. Similarly to the bounds for the single parity

check code in Fig. 6.7, we observe a large gap between the upper bound and the IPC of
the ideal coding scheme, unless the channel information is very small or very large.

6.3.3 Accumulator

The accumulator is the recursive convolutional encoder with rate R = 1 and memory
length m = 1, defined by the generator function

g(D) =
1

1 +D
.

It is used, e.g., as the inner code of repeat-accumulate codes (cf. Section 3.5.2).
In the sequel, bounds on its EXIT function are determined. First, the decoding model

is adapted to the given problem and the factor graph of the accumulator is introduced.
Then, the bounds of information combining are applied on the factor graph in a recursive
way. This method was partially presented in [LSH04].

The derivation of the bounds for the accumulator is more involved than for the single
parity check codes and the repetition codes. However, the technique applied may have
the potential to be extendable to other convolutional codes. Furthermore, an extension

144 CHAPTER 6. INFORMATION COMBINING

PSfrag replacements

I c
m

p

Ich

N = 1
N = 2
N = 4
N = 8

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.11: Bounds on CIT functions for repetition codes of several code word lengths N .
Upper bounds (solid lines) correspond to BECs and lower bounds (dashed lines) corre-
spond to BSCs; ideal coding schemes (dash-dotted lines). (Mutual information is given
in bit/use.)

to other block codes may be possible, as all block codes can be represented in a trellis
and can thus be interpreted as irregular convolutional codes.

Decoding Model

Following the decoding model from Section 3.2, the info word and the code word are
denoted by u = [u0, u1, . . . , uK−1] and x = [x0, x1, . . . , xK−1]. Their length K is assumed
to be very large, i.e., K →∞. The info word u is transmitted over the a-priori channel;
the received word is denoted by yu = [yu,0, yu,1, . . . , yu,K−1]. Similarly, the code word x

is transmitted over the communication channel; the received word is denoted by yx =
[yx,0, yx,1, . . . , yx,K−1].

Therefore, a-priori information is available for all info symbols and channel information
is available for all code symbols:

I(Uk;Yu,k) = Iapri,

I(Xk;Yx,k) = Ich

for k = 0, 1, . . . , K − 1. The extrinsic information on info symbol Uk is defined as

Iext,k := I(Uk; Y xY u,\k).

6.3. BOUNDS ON INFORMATION TRANSFER FUNCTIONS 145

Due to the regular code structure and the assumption of infinite length, the average
extrinsic information Iext tends to the extrinsic information on info symbols in the middle
of the info word when the info word length approaches infinity, i.e.,

Iext → Iext,K/2 (6.29)

for K → ∞. Therefore, the average extrinsic information can be bounded by bounding
the extrinsic information on an info symbol Uk in the middle of the info word, based on
the a-priori information and the channel information. If not stated otherwise, we assume
0¿ k ¿ K and K →∞, or for simplicity, k ≈ K/2 and K →∞.

Factor Graph

The analysis of the accumulator is based on its factor graph (cf. Section 3.6). According
to the generator function g(D) = 1/(1 +D), the info symbols and the code symbols are
coupled by the parity check equation

ŭk ⊕ x̆k−1 = x̆k, (6.30)

k = 0, 1, . . . , K − 1, where x̆−1 := 0. This relation gives the factor graph shown in
Fig. 6.12. Notice the similarity to Fig. 6.1, Fig. 6.2, and Fig. 6.4.

Uk

Yu,k

Xk

Yx,k

Yu,k−1

Uk−1

Xk−1

Yx,k−1

Xk−2

Yx,k−2

Yu,k+1

Uk+1

Xk+1

Yx,k+1

Figure 6.12: Factor graph of the accumulator.

Derivation of Bounds

Bounds on the extrinsic information for the accumulator that are only based on the
channel information and on the a-priori information are given in the following theorem.

Theorem 6.5 (Bounds on Extrinsic Information for Accumulator)
Consider an accumulator, where the channel information Ich is available for all code
symbols and a-priori information Iapri is available for all info symbols. The extrinsic

146 CHAPTER 6. INFORMATION COMBINING

information Iext on info symbols is bounded as

Imin · Imin ≤ Iext ≤ f ser
2 (Imax, Imax),

where Imin is the minimum value and Imax is the maximum value I ∈ [0, 1] fulfilling
simultaneously

I ≥ fpar
2 (Ich, Iapri · I)

and
I ≤ 1− (1− Ich)

(
1− f ser

2 (Iapri, I)
)
.

For proving these bounds, Theorem 6.1 and Theorem 6.3 are applied in a nested way,
and a stationarity condition is employed.

To start with, we write (6.30) as

ŭk = x̆k−1 ⊕ x̆k.

Accordingly, the extrinsic information on info symbol Uk,

Iext,k := I(Uk; Y xY u,\k),

can be expressed using

Iα,k−1 := I(Xk−1; Y x,[0,k−1]Y u,[0,k−1]), (6.31)

Iβ,k := I(Xk; Y x,[k,K−1]Y u,[k+1,K−1]), (6.32)

which can easily be seen from Fig. 6.12. As the first term corresponds to the forward recur-
sion and the second term to the backward recursion in the BCJR algorithm [BCJR74], we
label them with “α” and “β”, respectively. Using Theorem 6.1, the extrinsic information
can then be bounded as

Iα,k−1 · Iβ,k ≤ Iext,k ≤ f ser
2 (Iα,k−1, Iβ,k). (6.33)

Consider first the mutual information corresponding to the forward recursion, Iα,k−1.
This information on code symbol Xk−1 can be separated into the intrinsic information
based on a direct observation, I(Xk−1;Yx,k−1), and the (left-)extrinsic information based
on indirect observations,

Iαext,k−1 := I(Xk−1; Y x,[0,k−2]Y u,[0,k−1]).

This term is called left-extrinsic, because it denotes extrinsic information based only on
observations left to Xk−1 in the factor graph. Regarding that I(Xk−1;Yx,k−1) = Ich and
applying Theorem 6.3, we obtain

Iα,k−1 ≥ fpar
2 (Ich, , Iαext,k−1) (6.34)

Iα,k−1 ≤ 1− (1− Ich)(1− Iαext,k−1). (6.35)

Due to the parity check equation

x̆k−1 = ŭk−1 ⊕ x̆k−2

6.3. BOUNDS ON INFORMATION TRANSFER FUNCTIONS 147

following from (6.30), the term Iαext,k−1 can be expressed using the intrinsic information
on info symbol Uk−1, I(Uk−1;Yu,k−1) = Iapri, and the information on code symbol Xk−2,

I(Xk−2; Y x,[0,k−2]Y u,[0,k−2]) = Iα,k−2;

the last identity can easily be deducted from (6.31). When applying Theorem 6.1, we
obtain

Iapri · Iα,k−2 ≤ Iαext,k−1 ≤ f ser
2 (Iapri, Iα,k−2).

Substituting the lower bound into (6.34) and the upper bound into (6.35), we obtain
bounds for the forward recursion:

Iα,k−1 ≥ fpar
2 (Ich, Iapri · Iα,k−2) (6.36)

Iα,k−1 ≤ 1− (1− Ich)
(
1− f ser

2 (Iapri, Iα,k−2)
)
. (6.37)

Since the factor graph has a regular structure, we have Iα,k−2 → Iα,k−1 for k → K/2
and K →∞. (We are interested in the extrinsic information “in the middle” of the factor
graph.) Let

Iα := lim
K→∞

Iα,K/2 (6.38)

denote the stationary value of Iα,k. When assuming stationarity in (6.36) and (6.37), we
obtain

Iα ≥ fpar
2 (Ich, Iapri · Iα), (6.39)

Iα ≤ 1− (1− Ich)
(
1− f ser

2 (Iapri, Iα)
)
. (6.40)

These two relations are necessary conditions for possible stationary values Iα. Thus, we
have the following lemma.

Lemma 6.3 (Forward Recursion)
Let Iα,k be defined according to (6.31), and let Iα be defined as the stationary value of Iα,k

according to (6.38). Bounds on Iα are given by the minimum and the maximum value
of Iα ∈ [0, 1], fulfilling simultaneously (6.39) and (6.40).

Consider now the mutual information corresponding to the backward recursion, Iβ,k.
Since the factor graph is symmetric with respect to k, it can easily be seen that the
analysis for the backward recursion is identical to the one for the forward recursion. Let

Iβ := lim
K→∞

Iβ,K/2 (6.41)

denote the stationary value. The necessary conditions for possible stationary values Iβ are
the same as for Iα, i.e., they are given in (6.39) and (6.40). Thus, we have the following
lemma.

Lemma 6.4 (Backward Recursion)
Let Iβ,k be defined according to (6.32), and let Iβ be defined as the stationary value of Iβ,k

according to (6.41). Bounds on Iβ are given by the minimum and the maximum value
of Iα ∈ [0, 1], fulfilling simultaneously (6.39) and (6.40).

148 CHAPTER 6. INFORMATION COMBINING

The bounds on Iα and on Iβ according to Lemma 6.3 and Lemma 6.4 can now be
used to bound the extrinsic information Iext,K/2. Using the minimum values for Iα and Iβ
in the lower bound in (6.33), we obtain a lower bound on the extrinsic information. On
the other hand, using the maximum values of Iα and Iβ in the upper bound in (6.33), we
obtain an upper bound on the extrinsic information. Considering that the two minimum
values are equal and that the two maximum values are equal, as discussed above, and
taking into account (6.29), we have the proof of Theorem 6.5.

Illustration

The bounds on the extrinsic information according to Theorem 6.5 depend only on the
channel information and on the a-priori information. Accordingly, they represent bounds
on the EXIT functions of the accumulator. The corresponding EXIT chart is depicted in
Fig. 6.13.

PSfrag replacements

Iapri

I e
x
t

upper bound
BEC
lower bound

Ich = 0.9

Ich = 0.6

Ich = 0.3
0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.13: Bounds on the EXIT functions of the accumulator and exact EXIT functions
for BECs; several values of channel information Ich. (Mutual information is given in
bit/use.

It can be seen that the bounds are close to each other only for small and for large
a-priori information. This can be explained as follows. For the derivation of the bounds,
we applied Theorem 6.1 and Theorem 6.3 in a nested way. The lower bound for repetition
codes is achieved if both channels are BSCs, and the lower bound for single parity check
codes is achieved if both channels are BECs. Thus, if the two lower bounds are applied in
a nested way, the assumptions contradict each other and the resulting lower bound may

6.4. APPLICATION TO LDPC CODES 149

be too pessimistic. Similarly, this holds for a nested upper bound, and thus the upper
bound may be too optimistic. Therefore, the bounds given in Theorem 6.5 are not tight
and may have a potential for improvement.

The extrinsic information can be computed exactly when both the communication
channel and the a-priori channel are BECs. We simply have to use the expression corre-
sponding to the case of BECs each time Theorem 6.1 and Theorem 6.3 are applied in the
derivations. Doing so, we obtain the condition for the stationary value,

IBEC
α = Ich + Iapri · IBEC

α − Ich · Iapri · IBEC
α , (6.42)

corresponding to (6.39) and (6.40). After solving for Iα and applying Theorem 6.1, we
obtain

IBEC
ext =

(
IBEC
α

)2
=
(Ich

1− (1− Ich)Iapri

)2

. (6.43)

This result is also reported in [tBK03] (see also the references therein).
These EXIT functions are plotted in Fig. 6.13. When the channel information Ich is

small, the BEC curves are close to the lower bounds for small Iapri, and they are close to
the upper bounds for large Iapri. Therefore, the case where channels are all BECs may
not be an extreme case for the accumulator, as opposed to single parity check codes and
repetition codes.

6.4 Application to LDPC Codes

The bounds on information combining may be used to analyze the iterative decoder of
low-density parity-check codes (LDPCCs). We consider first the EXIT charts comprising
the bounds on the EXIT functions for variable nodes and check nodes. Then, analytical
bounds on decoding thresholds are derived.

6.4.1 EXIT Charts

EXIT functions were originally introduced to analyze the behavior of an iterative decoder
comprising two or more constituent decoders by means of the EXIT chart method5 [tB01c,
tB01a]. This method was shown to predict quite accurately the decoding threshold of
iterative decoders using only the EXIT functions of the constituent decoders.

EXIT functions depend on the model for the a-priori channel and the communication
channel. This has two implications:

(a) The predicted decoding threshold is accurate only if the model for the a-priori
channel is correct. Although the often used AWGN channel provides a good ap-
proximation of the actual a-priori channel, it is still an approximation. Thus, the
predicted decoding thresholds cannot be proved to be accurate.

(b) The decoding threshold depends on the model for the communication channel.

5The EXIT chart method is explained for parallel concatenated codes, serially concatenated codes,
and LDPCCs in Chapter 3.

150 CHAPTER 6. INFORMATION COMBINING

The EXIT functions for specific channel models may be replaced in the EXIT chart
method by bounds on EXIT functions that are valid for all BISMCs. This way, bounds
on the true decoding threshold can be obtained, and these bounds are valid for all models
of communication channels that are BISMCs. In the sequel, this method is applied to
regular LDPCCs6. The bounds on the corresponding EXIT functions have been derived in
Section 6.3.1 and Section 6.3.2. This work was partially published in [LHH04a]. Similar
results were independently found in [SSSZ03, SSSZ05], where irregular LDPCCs were
addressed as well.

Consider a regular LDPCC with variable node degree dv and check node degree dc.
The code symbols are transmitted over a communication channel that is a BISMC and
has mutual information Ich, called channel information. The iterative decoder operates on
the factor graph of the parity check matrix of the code, and LogAPP decoding is applied
in the constituent decoders.

The decoding operation in a variable node is equivalent to extrinsic soft-output decod-
ing of a repetition code of length dv + 1, where the decoder has channel information Ich
about one code symbol and a-priori information I

(v)
apri about the other code symbols; the

extrinsic information is denoted by I
(v)
ext . (The a-priori information and the extrinsic in-

formation for the variable node are labeled with “v”.) Accordingly, we can give bounds
on the EXIT functions using (6.28):

I
(v)
ext ≥ fpar

dv
(Ich, I

(v)
apri, . . . , I

(v)
apri), (6.44)

I
(v)
ext ≤ 1− (1− Ich)(1− I(v)

apri)
dv−1. (6.45)

The lower bound corresponds to BSCs, and the upper bound corresponds to BECs.
Similarly, the decoding operation in a check node is equivalent to extrinsic soft-output

decoding of a single parity check code of length dc, where the decoder has a-priori infor-
mation I

(c)
apri about all code symbols; the extrinsic information is denoted by I

(c)
ext . (The

a-priori information and the extrinsic information for the check node are labeled with “c”.)
Thus, we can give bounds on the EXIT functions using (6.20):

I
(c)
ext ≥ (I

(c)
apri)

dc−1, (6.46)

I
(c)
ext ≤ f ser

dc−1(I
(c)
apri, I

(c)
apri, . . . , I

(c)
apri). (6.47)

The lower bound corresponds to BECs, and the upper bound corresponds to BSCs.
Due to the iterative decoder structure, the extrinsic information of the check nodes is

equal to the a-priori information of the variable nodes in the following decoding step, and
vice versa:

I
(v)
ext = I

(c)
apri, I

(c)
ext = I

(v)
apri. (6.48)

Thus, iterative decoding proceeds in between the two EXIT functions (cf. Section 3.6).

Example 6.1

Consider a regular LDPC code with variable node degree dv = 3 and check node
degree dc = 4, having design rate Rd = 1/4. The EXIT chart of this code is depicted

6LDPCCs, factor graphs, and the iterative decoding algorithm are explained in Section 3.6.

6.4. APPLICATION TO LDPC CODES 151

in Fig. 6.14 for two values of channel information Ich. The EXIT function for the
check node is flipped; therefore the upper curve corresponds to the lower bound on
the EXIT function, and vice versa. 3

PSfrag replacements

I
(c)
ext = I

(v)
apri (check to variable)

I
(v

)
e
x
t
=
I

(c
)

a
p
ri

(v
ar

ia
b
le

to
ch

ec
k
)

chk node
var node, Ich = 0.27
var node, Ich = 0.40

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 6.14: EXIT chart for an LDPC code with variable node degree dv = 3 and check
node degree dc = 4 for channel information Ich = 0.27 and Ich = 0.40; bounds on the
EXIT functions for variable nodes and check nodes are depicted; Example 6.1. (Mutual
information is given in bit/use.)

6.4.2 Bounds on Decoding Thresholds

The bounds on the EXIT functions for variable nodes and check nodes can be used to
determine the smallest channel information that is necessary for convergence, and the
smallest channel information that is sufficient for convergence. Thus, a necessary and a
sufficient condition for convergence are obtained, and these conditions are given in terms
of the mutual information (or capacity) of the communication channel. These bounds
on the convergence threshold are valid for all a-priori channels and all communication
channels that are BISMCs.

Example 6.2

We continue Example 6.1. For Ich = 0.27, the upper bound on the check node
EXIT function and the upper bound on the variable node EXIT function intersect.
Therefore, the decoder cannot converge for any model of the a-priori and the com-
munication channel if Ich < 0.27, and we have a lower bound on the convergence
threshold.

152 CHAPTER 6. INFORMATION COMBINING

For Ich = 0.40, the lower bound on the check node EXIT function and the lower
bound on the variable node EXIT function do not intersect. Accordingly, the de-
coder will converge for any model of the a-priori and the communication channel if
Ich > 0.40, and we have an upper bound on the convergence threshold. 3

The following theorem is based on this concept and gives a lower and an upper bound
on the decoding threshold, and thus a necessary and a sufficient condition for convergence,
respectively. We consider LDPCCs of infinite code length, N → ∞, as usually assumed
in the EXIT chart method; the codes are iteratively decoded on their factor graphs using
LogAPP decoding in the variable and the check node decoders.

Theorem 6.6 (Bounds on Convergence Threshold for LDPC Codes)
Consider a binary LDPC code with variable node degree dv and check node degree dc. The
communication channel is assumed to be an arbitrary BISMC with mutual information
(capacity) Ich. Let Ich,low be defined as the maximum value Ich ∈ [0, 1] such that there is
an I ∈ [0, 1] fulfilling

I = 1− (1− Ich)
(
1− f ser

dc−1(I, I, . . . , I)
)dv−1

.

Let further Ich,upp be defined as the maximum value Ich ∈ [0, 1] such that there is an
I ∈ [0, 1] fulfilling

I = fpar
dv−1(Ich, I

dc−1, . . . , Idc−1).

The iterative decoder can converge only if Ich > Ich,low (necessary condition), and it
converges for sure if Ich > Ich,upp (sufficient condition).

The first equality corresponds to an intersection of the upper bounds on the EXIT
functions, and the second equality corresponds to an intersection of the lower bounds
on the EXIT functions. These intersections of EXIT functions are the basis for proving
Theorem 6.6:
Proof. Consider first the case that the upper bounds on the EXIT functions have an
intersection. The upper bounds are given by (6.45) and (6.47); regarding (6.48), they
may be written as

I
(v)
ext = 1− (1− Ich)(1− I(c)

ext)
dv−1,

I
(c)
ext = f ser

dc−1(I
(v)
ext , I

(v)
ext , . . . , I

(v)
ext).

An intersection of the EXIT functions corresponds to a fixed point of these two equations.
Substituting the second equation into the first one and using I := I

(v)
ext , we obtain the fixed

point condition

I = 1− (1− Ich)
(
1− f ser

dc−1(I, I, . . . , I)
)dv−1

,

where the fixed point is defined by I ∈ [0, 1]. When a fixed point exists for a given channel
information Ich, the upper bounds on the EXIT functions intersect and convergence of the
iterative decoder is impossible. Therefore, the channel information has to be larger than
the maximum value Ich for which a fixed point exists, such that convergence is possible.
This proves the first part of the theorem.

6.5. SUMMARY 153

Consider now the case that the lower bounds on the EXIT functions have an inter-
section. The lower bounds are given by (6.44) and (6.46); regarding (6.48), they may be
written as

I
(v)
ext = fpar

dv−1(Ich, I
(c)
ext , . . . , I

(c)
ext),

I
(c)
ext = (I

(v)
ext)

dc−1.

An intersection of the EXIT functions corresponds to a fixed point of these two equations.
Substituting the second equation into the first one and using I := I

(v)
ext , we obtain the fixed

point condition
I = fpar

dv−1(Ich, I
dc−1, . . . , Idc−1),

where the fixed point is defined by I ∈ [0, 1]. When a fixed point exists for a given channel
information Ich, the lower bounds on the EXIT functions intersect and convergence of the
iterative decoder cannot be guaranteed (but may be possible). Therefore, the channel
information has to be larger than the maximum value Ich for which a fixed point exists,
such that convergence can be guaranteed. This proves the second part of the theorem.

QED

Theorem 6.6 may be used to compute the upper and the lower bound on the decoding
threshold numerically. The results are usually more precise than those determined graphi-
cally using the conventional EXIT chart method. Notice that the lower bound corresponds
to a communication channel that is a BSC, and that the upper bound corresponds to a
communication channel that is a BEC.

Example 6.3

We continue Example 6.2. The numerical solutions for the decoding threshold are
Ich,low = 0.278 and Ich,upp = 0.398. 3

The necessary condition of convergence may be used to state whether a code can
achieve capacity. If the design rate is smaller than the lower bound on the channel
information that is necessary for convergence, the code cannot achieve the capacity of
any communication channel that is a BISMC.

Example 6.4

We continue Example 6.3. The design rate of the code is Rd = 1/4, and the lower
bound on the decoding threshold is Ich,low = 0.278. Since Rd < Ich,low, the given
code is not capacity achieving for any communication channel that is a BISMC. 3

In a similar way as for LDPCCs, bounds on the decoding thresholds of repeat-
accumulate codes may be determined using the bounds on the EXIT functions of rep-
etition codes and of the accumulator.

6.5 Summary

When channels are coupled by code constraints on their inputs, the mutual information
between one channel input and a vector of channel outputs may be represented by a com-
bination of the mutual information values of the individual channels. For binary-input

154 CHAPTER 6. INFORMATION COMBINING

symmetric memoryless channels (BISMCs), the combined information has been bounded
for equality constraints and for parity-check constraints on their inputs. To prove these
bounds, the concept of decomposing BISMCs into binary symmetric subchannels has
been applied. Several applications of these bounds on information combining have been
presented. EXIT functions for repetition codes, single parity check codes, and the accu-
mulator have been bounded. The bounds for single parity check codes and for repetition
codes are tight, whereas the bounds derived for the accumulator may be improved. Fur-
thermore, bounds on the decoding thresholds for low-density parity-check codes have been
determined. These bounds are given in terms of the mutual information of the commu-
nication channel, and they represent necessary conditions and sufficient conditions for
convergence of the iterative decoder, respectively. In particular, these bounds are valid
for all BISMCs, and they do not rely on the assumption of Gaussian distributed extrinsic
soft-values, as in the original EXIT chart method.

The presented concepts to bound combined information are rather general. Extensions
may lead to similar bounds for other block or convolutional codes, giving further insights
into the convergence behavior of iterative decoders.

Chapter 7

Conclusions

Various aspects of reliability information in channel decoding have been studied in this
thesis, including practical aspects and information theoretical bounds. The transmission
systems under consideration comprise linear binary channel encoders, symmetric memory-
less communication channels, and non-iterative or iterative symbol-by-symbol soft-output
decoders.

The investigations began with properties of symmetric memoryless channels, a general
model for symbol-by-symbol soft-output decoding, and a unified view of coding schemes
with iterative decoders. Based on these fundamentals, the quality of reliability infor-
mation has been addressed, and true reliability information has been exploited for esti-
mating transmission quality parameters. Furthermore, soft-output decoders have been
interpreted as processors for mutual information, assuming true reliability information
at the input and at the output of the decoders. Bounds on the decoding behavior have
been derived by means of methods from information theory, using bounds on information
combining.

The following sections summarize the key concepts and results presented in this thesis,
and discuss further applications and possible extensions.

Summary

Every binary-input symmetric memoryless channel (BISMC) can be decomposed into
subchannels that are binary symmetric channels (BSCs). Correspondingly, a BISMC can
be characterized by the distribution of the subchannel error probabilities, the subchannel
reliability values, or the subchannel mutual information values, where independent and
uniformly distributed channel inputs are assumed. These distributions have been called
the error probability profile, the reliability value profile, and the mutual information profile
of the particular BISMC. The decomposition into BSCs and the three profiles have been
applied throughout this thesis to prove properties and to interpret results.

A general model for symbol-by-symbol soft-output decoding has been introduced. This
model assumes that both the info symbols and the code symbols are transmitted over
BISMCs and that the noisy observations are converted to log-likelihood ratios (LLRs)
before being passed to the decoder. Based on these assumptions, the decoder computes
soft-values for info symbols or code symbols. The superchannel between the encoder input

156 CHAPTER 7. CONCLUSIONS

and the decoder output may be modeled as a BISMC, when the memory introduced by
the code and the decoder is not of interest. This decoding model has been specified to
LogAPP decoding and to MaxLogAPP decoding, and it has been applied to non-iterative
decoders and to constituent decoders of iterative decoders.

The encoders and the decoders for parallel concatenated codes, serially concatenated
codes and low-density parity-check codes have been reviewed in a unified way. In partic-
ular, the structures of the parity check matrices have been related to the structures of
the iterative decoders. For parallel and serially concatenated codes, parity check matrices
have been derived using only the generator matrices, the inverse generator matrices, and
parity check matrices of the constituent codes.

Each soft-value for an info symbol or a code symbol has been associated with the
conditional log-likelihood ratio (LLR) for this symbol given the soft-value. The magnitude
of this LLR has been called the reliability value of the soft-value. Following this approach,
the quality of reliability information has been associated with the difference between
soft-value magnitudes and the corresponding reliability values. This difference has been
denoted as reliability mismatch, since the closer the magnitude of a soft-value is to the
reliability value, the more reliable is this soft-value. Motivated by the fact that an LLR
parameterizes the probability distribution of a binary symbol, a new measure for the
reliability mismatch based on the Kullback-Leibler distance has been introduced.

A general framework has been presented for reducing the reliability mismatch by
memoryless post-processing of the soft-values, and thus for improving the reliability infor-
mation. This post-processing is based on a parameterized function, where the parameters
are determined such that the reliability mismatch is minimized. This concept has been
applied to MaxLogAPP decoding and to iterative decoding of parallel concatenated codes.

Reliability information can be exploited for estimating transmission quality parame-
ters, like the bit error probability or the symbol-wise mutual information, provided that
the soft-values are a-posteriori LLRs, i.e., that there is no reliability mismatch. This
estimation method is unbiased. Furthermore, it is only based on the magnitudes of the
a-posteriori LLRs and therefore requires no knowledge of the transmitted info or code
symbols. A general framework for this kind of estimation has been introduced, and it has
been specifically applied to the estimation of the bit error probability and to the estimation
of the symbol-wise mutual information between info or code symbols and the soft-values
at the decoder output. The estimation variance of the proposed method has been shown
to be smaller than the estimation variance of the conventional method. This method may
be applied in a practical receiver, since it requires no knowledge of the transmitted data.
Due to the smaller estimation variance, this method may also advantageously be applied
in simulations to improve or speed up the estimation of such a parameter.

Channel decoding has been interpreted as combining and processing of mutual infor-
mation. Following this interpretation, a decoder may be characterized by an information
transfer function, which is the mapping from a mutual information value associated with
the decoder inputs to a mutual information value associated with the decoder outputs.
Information transfer functions describe the information processing capability of a decoder
for the case that there is no reliability mismatch at the decoder input and at the decoder
output, i.e., for the case that all soft-values are LLRs. Two kinds of information transfer

157

functions have been addressed, namely information processing characteristics (IPCs) and
extrinsic information transfer (EXIT) functions.

The concept of bounding combined information has been introduced, and bounds on
information combining have been derived for single parity check codes and for repetition
codes. Based on this concept, information transfer functions for single parity check codes,
for repetition codes, and for the accumulator have been bounded. These bounds are
valid for all BISMCs, as opposed to conventional information transfer functions, which
depend on the channel model. Finally, decoding thresholds of regular low-density parity-
check codes have been bounded, using an approach based on the conventional EXIT chart
method and bounds on information transfer functions; the communication channel has
been assumed to be any arbitrary BISMC. As opposed to the conventional EXIT chart
method, these bounds on the decoding thresholds do not rely on a particular model for
the communication channel, and the virtual a-priori channel need not be modeled by an
AWGN channel.

Further Applications and Extensions

The considerations in this thesis have been restricted to binary channel codes and mem-
oryless channels. The application and extension to soft-output equalizers, soft-output
demappers, and nonbinary codes is addressed in the following.

The concepts regarding the measurement and the improvement of soft-values may di-
rectly be applied to soft-output equalizers or soft-output demappers. This holds similarly
for the estimation of transmission quality parameters, provided that the soft-values at the
output of the equalizer or the demapper are log-likelihood ratios.

An extension to nonbinary symbols would certainly be of great interest, regarding
channel coding, equalization and demapping. A reliability mismatch could also be de-
fined based on the Kullback-Leibler distance, whereas the correction of soft-values by
memoryless post-processing seems to be more involved. The estimation of transmission
quality parameters, however, may immediately be extended to the nonbinary case.

The bounds on information combining could be extended in two ways. On the one
hand, binary codes that are less simple than single parity check codes and repetition
codes could be considered. On the other hand, nonbinary single parity check codes and
repetition codes could be investigated. Other interesting issues are tighter bounds on
information transfer functions for the accumulator and extensions to other convolutional
codes.

This thesis has focused on binary channel codes and memoryless channels, but the
presented principles and concepts show the potential to be extended in many directions,
as outlined above. Such extensions may give further insights into the use of reliability
information in channel decoding.

158 CHAPTER 7. CONCLUSIONS

Appendix A

Acronyms

APP a-posteriori probability
AWGN additive white Gaussian noise
BEC binary erasure channel
BER bit error rate (error rate of binary symbols)
BI-AWGNC binary-input AWGN channel
BISMC binary-input symmetric memoryless channel
BPSK binary phase-shift keying
BSC binary symmetric channel
BSEC binary symmetric erasure channel
CIT complete (mutual) information transfer (. . . function)
DIMC discrete-input memoryless channel
DISMC discrete-input symmetric memoryless channel
DMC discrete memoryless channel
EXIT extrinsic (mutual) information transfer (. . . function)
IPC (mutual) information processing characteristic
KLD Kullback-Leibler distance
LDPC low-density parity-check
LDPCC low-density parity-check code
LLR log-likelihood ratio
LogAPP logarithmic a-posteriori probability (. . . decoder)
MAP maximum a-posteriori
MaxLogAPP maximum logarithmic a-posteriori probability (. . . decoder)
MI mutual information
ML maximum likelihood
PCC parallel concatenated code
SCC serially concatenated code
SER symbol error rate
SNR signal-to-noise ratio

i.i.d. independent and identically distributed
i.u.d. independent and uniformly distributed

160 APPENDIX A. ACRONYMS

Appendix B

Notation

Constants and Number Sets

e Euler number
0 all-zero vector or all-zero matrix1

1 all-one vector or all-one matrix

B set of binary elements −1 and +1
F2 set of binary elements 0 and 1
N set of natural numbers including 0
N+ set of natural numbers without 0
Q set of rational numbers
R set of real numbers
R+ set of positive real numbers without 0
R+

0 set of positive real numbers including 0

Functions and Operators

(.)T transpose of a matrix
abs(.) absolute value (magnitude) of real value
f ser(.) binary information function for serial concatenation of BSCs
fpar(.) binary information function for parallel concatenation of BSCs
dec(.) (soft-output) decoding function
logapp(.) LogAPP decoding function
maxlogapp(.) MaxLogAPP decoding function
D(.‖.) Kullback-Leibler distance
enc(.) encoding function
E{.} expected value
L(.) log-likelihood ratio
h(.) binary entropy function

1The meaning becomes clear from the context.

162 APPENDIX B. NOTATION

h−1(.) inverse of binary entropy function
H(.) entropy
itf(.) information transfer function
I(.; .) mutual information
ld(.) logarithm dualis (base 2)
ln(.) natural logarithm (base e)
p(.) probability mass function for discrete random variables and probabil-

ity density function for continuous random variables
Pr(.) probability of event
permπ permutation operator (see below)
sgn(.) sign of real value

Permutation Function and Permutation Operator

A permutation function π on an index set I = {0, 1, . . . , L − 1} is defined as a bijective
map

π : I → I.
Let a denote a (row) vector with indices from I,

a = [ai]i∈I = [a0, . . . , aL−1].

The permutation operator for a given permutation function π is defined as

permπ[a0, . . . , aL−1] = [aπ(0), . . . , aπ(L−1)].

Using this notation, the permuted vector (also called interleaved vector)

aπ := [aπ(0), . . . , aπ(L−1)],

may shortly be written as

aπ = permπ a.

Alternatively, the permutation of vector a may be expressed using a permutation
matrix

P ∈ RL×L.

Such a permutation matrix has exactly one 1 in each row and each column, and all other
entries are 0. The permutation matrix corresponding to a permutation function π is
defined such that

aP = permπ a.

Example B.1

Consider the two vectors

a = [a0, a1, a2] := [10, 20, 30],
b = [b0, b1, b2] := [20, 30, 10]

163

with the index set I = {0, 1, 2}. The permutation function π defined as

0 7→ π(0) = 1,

1 7→ π(1) = 2,

2 7→ π(2) = 0

leads to
b = permπ a.

Similarly, the permutation matrix

P :=

0 0 1
1 0 0
0 1 0

leads to
b = aP .

Thus, both the permutation function and the permutation matrix may be used to
describe the permutation from a to b. 3

Conventions

Random Variables

Random variables are denoted by uppercase letters and realizations by the corresponding
lowercase letters. The sets/alphabets are denoted by the corresponding set letters. For
example, a random variable X with alphabet X may have a realization x.

Vectors

A (row) vector a with element indices from an index set I = {0, 1, . . . , L− 1} is written
as

a = [ai]i∈I := [a0, . . . , aL−1].

The subvector of a with elements ai, i ∈ {k, k + 1, . . . , l − 1, l}, is written as

a[k,l] := [ak, ak+1, . . . , al−1, al].

The vector with all elements of a excluding element ak is written as

a\k := [a0, . . . , ak−1, ak+1, aL−1].

The vector with all elements of a, but element ak replaced by 0 is written as

a0→ k := [a0, . . . , ak−1, 0, ak+1, aL−1].

The vector c formed by concatenation of two vectors a and b is written in either way

c = [a b] = [ab] = [a|b].

As opposed to this, [a, b] denotes the vector of the two elements a and b, where each
element is a vector itself.

164 APPENDIX B. NOTATION

Binary Symbols

Binary symbols are represented in F2 := {0, 1} or B := {−1,+1}. Symbols over B are
written as a, and symbols over F2 are written as ă. For conversion, we define

a = +1 ⇔ ă = 0,

a = −1 ⇔ ă = 1.

Use of Fonts

X (scalar) random variable
X vector-valued random variable
X alphabet of random variable X
x scalar or realization of random variable X
x vector or realization of random variable X

x̂ estimate of x
x̃ hypothesis for x
A matrix

Convexity

A function f : R→ R is called convex-∩ over D ⊆ R if the function satisfies

θ · f(α) + (1− θ) · f(β) ≤ f
(
α + (1− θ)β

)

for all α, β ∈ D and θ ∈ [0, 1]. If the inequality is reversed for all such α, β, θ, the
function f is called convex-∪ [Gal68].

The use of “convex-∩” and “convex-∪” is supported by the following quotation:

In the mathematical literature, a convex-∩ function is usually called con-
cave and a convex-∪ function convex. That notation is avoided here since
most people find the distinction very difficult to keep straight. In a recent poll
among ten people who thought they knew the distinction, eight got convex
and concave confused. [Gal68, p. 84, footnote]

Lists of Variables

Variables and Sets Related to Channels

X, x ∈ X channel input
Y, y ∈ Y channel output
A, a ∈ A subchannel indicator
E , ε ∈ E error probability indicator

165

J, j ∈ J mutual information indicator
Λ, λ ∈ L reliability value indicator

ε crossover probability of a BSC
δ erasure probability of a BEC

Variables Related to Coding

u info symbol (data symbol, information symbol2)
x code symbol
z pre-decoding soft-value
v post-decoding soft-value
w extrinsic post-decoding soft-value
v• improved (or corrected) post-decoding soft-value
w• improved (or corrected) extrinsic post-decoding soft-value
l (a-posteriori or extrinsic) LLR
2u,i soft-value for info symbol Ui

2x,i soft-value for code symbol Xi

a magnitude of soft-value
a• magnitude of improved (or corrected) soft-value
λ reliability value (= magnitude of LLR)

K info word length
N code word length
R code rate (K/N)

C code
Csyxt systematically extended code of code C
RN binary repetition code of length N
SN binary single parity check code of length N

G generator matrix
A transposed inverse of generator matrix (GAT = I)
H parity check matrix (GHT = 0)
P permutation matrix
I identity matrix

Variables Related to Mutual Information

Iint,i intrinsic information on an info or code symbol
Iext,i extrinsic information on an info or code symbol
Icmp,i complete information on an info or code symbol

2The term “info symbol” is prefered in this thesis to avoid confusion with “mutual information”.

166 APPENDIX B. NOTATION

Iext average symbol-wise extrinsic information
Icmp average symbol-wise complete information
Iwcmp word-wise complete information per info symbol
Ich channel information (mutual information of communication channel)
Iapri a-priori information (mutual information of (virtual) a-priori channel)

Other Variables

Eb signal energy per information bit
N0 single-sided noise power density
µ mean value
σ standard deviation
σ2 variance

Appendix C

Log-Likelihood Ratios

Log-likelihood ratios (LLRs) are often used instead of probabilities when binary random
variables (symbols) are considered. Some definitions, relations, properties, and operators
are summarized in the sequel. Further information may be found in [HOP96]; the relation
to probabilities is described in detail in [Hub02].

C.1 Definitions and Properties

Consider a binary random variable X ∈ B and a real-valued random variable Y , which
depend on each other. These random variables may be interpreted as a code symbol and
its noisy observation.

Definitions

Three kinds of probability distributions may be associated with X for a given realization y
of Y : the a-priori probabilities pX(x), the a-posteriori probabilities pX|Y (x|y), and the
likelihoods pY |X(y|x), x ∈ B. The corresponding logarithmic ratios are the a-priori LLR

L(X) := ln
pX(+1)

pX(−1)
,

the a-posteriori LLR

L(X|Y = y) := ln
pX|Y (+1|y)
pX|Y (−1|y) ,

and the LLR

L(Y = y|X) := ln
pY |X(y|+ 1)

pY |X(y| − 1)
.

Although only the last value is actually a logarithmic ratio of likelihoods, also the first
and the second value are usually called log-likelihood ratios.

168 APPENDIX C. LOG-LIKELIHOOD RATIOS

Conversions

The definitions of LLRs may be interpreted as conversions of probability distributions
of X into real values. For a-priori LLRs and for a-posteriori LLRs, these mappings can
be inverted. For the a-priori LLR l := L(X), we obtain the a-priori probabilities

pX(+1) =
1

1 + e−l
, pX(−1) =

1

1 + e+l
.

Similarly, for the a-posteriori LLR l := L(X|Y = y), we obtain the a-posteriori probabil-
ities

pX|Y (+1|y) =
1

1 + e−l
, pX|Y (−1|y) =

1

1 + e+l
.

As opposed to that, the LLR l := L(Y = y|X) provides not sufficient information to
compute the likelihoods pY |X(y|+ 1) and pY |X(y| − 1). Only the ratio between these two
likelihoods can be determined.

Relations and Exponential Symmetry

Bayes’s rule for probabilities,

pX,Y (x, y) = pX(x) · pX|Y (x|y),

transforms into the logarithmic domain as

L(X) + L(Y = y|X) = ln
pX(+1) · pY |X(y|+ 1)

pX(−1) · pY |X(y| − 1)

= ln
pX,Y (+1, y)

pX,Y (−1, y)

= ln
pX|Y (+1|y) · pY (y)

pX|Y (−1|y) · pY (y)

= L(X|Y = y).

This equation is sometimes called chain rule for LLRs. Notice that L(Y = y|X) =
L(X|Y = y) if L(X) = 0, i.e., if X is uniformly distributed.

The probability distribution of the LLR L(Y = y|X) shows an exponential symmetry
[HLS00], also reported in [BD76,BES82,RU01a]. Let this LLR be regarded as a random
variable L with realizations

l := L(Y = y|X).

Let further pL|X(l|x) denote its conditional probability density function. Since L is a
sufficient statistic of Y , we have

L(L = l|U) = L(Y = y|U),

and thus

l = ln
pL|X(l|+ 1)

pL|X(l| − 1)
.

C.2. OPERATORS 169

It follows immediately

pL|X(l| − 1) = e−l · pL|X(l|+ 1). (C.1)

Using the rules for converting LLRs to probabilities, we obtain the following symmetry:

pL|X(l|x) =
1

1 + e−lu
= pL|X(−l| − x); (C.2)

the second equality follows because the expression in the middle depends only on the sign
of lu. Combining (C.1) and (C.2), we obtain the exponential symmetry of the conditional
probability density function of L:

pL|X(−l|+ 1) = e−l · pL|X(l|+ 1). (C.3)

Combining this exponential symmetry with the symmetry from (C.2), we obtain

pL|X(−l|+ 1) = e−l · pL|X(−l| − 1). (C.4)

Notice that these exponential symmetry properties hold for the a-posteriori LLR if and
only if the a-priori LLR is equal to zero.

C.2 Operators

Two operators are particularly useful for calculations with LLRs: the (ordinary) plus and
the boxplus [BES82,HOP96]. Furthermore, the max? (maxstar) operator and the min?

(minstar) operator for logarithmic probabilities are often used for writing the LogAPP
decoding principle or the LogAPP algorithm [BCJR74, RHV97]. These operators are
shortly revised in the sequel. Furthermore, each operator is written as the combination
of an approximate operator and a corrections term. These combinations may be used for
low-complexity implementations.

Plus

Consider first a binary symbol X ∈ B that is transmitted N times over a BISMC; the
channel outputs are denoted by Y0, Y1, . . . , YN−1. Then the overall LLR is given by

L(y0, y1, . . . , yN−1|X) = L(y0|X) + L(y1|X) + · · ·+ L(yN−1|X).

If X is uniformly distributed, we also have

L(X|y0, y1, . . . , yN−1) = L(X|y0) + L(X|y1) + · · ·+ L(X|yN−1).

Both equations result immediately from the definition of the LLRs. Thus, independent
LLRs for the same symbol may be combined by ordinary addition.

This operation may be employed for LogAPP (and equivalently MaxLogAPP) decod-
ing of repetition codes, cf. Section 3.4.

170 APPENDIX C. LOG-LIKELIHOOD RATIOS

Boxplus

Consider now three binary symbols X0, X1, X2 ∈ B that fulfill the parity check equation

X̆0 ⊕ X̆1 ⊕ X̆2 = 0.

(Notice the one-to-one correspondence between Xi ∈ B and X̆i ∈ F2 defined in Sec-
tion 3.1.) Assume thatX1 andX2 are transmitted over two independent BISMCs, yielding
the channel outputs Y1 and Y2, respectively.

The likelihood for X0 based on the two channel outputs and the two individual likeli-
hoods for X1 and X2 are related as

pY1,Y2|X0(y1, y2|+ 1) =

= c(y1, y2) ·
(

pY1|X1(y1|+ 1)pY2|X2(y2|+ 1) + pY1|X1(y1| − 1)pY2|X2(y2| − 1)
)

,

where c(y1, y2) denotes a normalization factor that depends only on y1 and y2 but not on
the values of X1 and X2. Using LLRs, this expression may be written as

L(y1, y2|X0) = L(y1|X1)¢ L(y2|X2),

using the binary boxplus operator defined as

l1 ¢ l2 := ln
1 + el1el2

el1 + el2
= 2 tanh−1

(

tanh
l1
2
· tanh

l2
2

)

for l1, l2 ∈ R. Notice that the normalization factor c(y1, y2) cancels out when LLRs are
used.

To reduce the computational complexity, the boxplus operator may be approximated:

l1 ¢ l2 ≈ l1 ō l2 := sgn(l1) · sgn(l2) ·min
{
|l1|, |l2|

}
.

The precise and the approximate boxplus operator are related as1

l1 ¢ l2 = sgn(l1) · sgn(l2) ·
(

min
{
|l1|, |l2|

}
− ln

1 + e−
∣
∣|l1|−|l2|

∣
∣

1 + e−
∣
∣|l1|+|l2|

∣
∣

︸ ︷︷ ︸

additive correction term

)

= (l1 ō l2) ·
(

1− 1

min
{
|l1|, |l2|

} ln
1 + e−

∣
∣|l1|−|l2|

∣
∣

1 + e−
∣
∣|l1|+|l2|

∣
∣

)

︸ ︷︷ ︸

multiplicative correction term

.

The “additive correction term” may be seen as an additive correction of the absolute
value, whereas the “multiplicative correction” represents a multiplicative correction of

1Whereas this description via “approximation plus correction term” is well-known for the max? op-
erator, no reference could be found for the boxplus operator.

C.2. OPERATORS 171

the overall value. Both correction terms depend only on the absolute value of the sum
and the absolute value of the difference of |l1| and |l2|. The above relation allows for a
low-complexity implementation of the precise operator, as the additive correction term
may be stored in a (two-dimensional) look-up table.

The additive correction term ranges within the interval [0, ln 2]. For a given l1, the
term is minimal if l2 = 0, and it is maximal if |l1| = |l2|; the overall maximum ln 2 is
achieved if |l1| = |l2| → ∞. Notice that the absolute value of the approximate result is
always greater than or equal to the absolute value of the correct result.

The boxplus operator inherits associativity from the binary addition. Consider
N binary symbols X0, X1, . . . , XN−1 ∈ B fulfilling a parity check equation, and let
Y1, Y2, . . . , YN−1 denote the noisy observations of X1, X2, . . . , XN−1, respectively. Then,

L(y1, y2, . . . , yN−1|X0) = L(y1|X1)¢ L(y2|X2)¢ · · ·¢ L(yN−1|XN−1),

where the expression may be evaluated recursively in arbitrary order. For example, for
three LLRs l1, l2, l3 ∈ R, we have

l1 ¢ l2 ¢ l3 =
(
l1 ¢ l2

)
¢ l3 = l1 ¢

(
l2 ¢ l3

)
.

This holds for the approximated boxplus operator in the same way. The above expressions
also hold for a-posteriori LLRs if the a-priori LLRs are equal to zero.

The correct and the approximate boxplus operator are employed for LogAPP and
MaxLogAPP decoding of single parity check codes, respectively (cf. Section 3.4).

Maxstar

For implementation issues, logarithmic probabilities are sometimes preferred to (plain)
probabilities. (Notice that LLRs may be interpreted as unnormalized logarithmic proba-
bilities.) The two basic operations on probabilities are multiplication and addition. Their
counterparts in the log-domain are discussed in the sequel.

Let p, p1, p2 ∈ [0, 1] denote probabilities, and let l, l1, l2 ∈ R denote their counterparts
in the log-domain:

l := ln p, l1 := ln p1, l2 := ln p2.

Multiplication of probabilities transforms in convenient addition of log-probabilities,
whereas addition of probabilities transforms in a more involved expression for log-
probabilities, denoted by max?:

p = p1 · p2 −→ l = l1 + l2,

p = p1 + p2 −→ l = max?{l1, l2} := ln
(
el
1 + el

2

)
.

The name “maxstar” derives from the fact that this operation may be split into a
maximization and a correction term:

ln
(
el
1 + el

2

)
= max{l1, l2}+ ln

(
1 + e−|l1−l2|

)

︸ ︷︷ ︸

correction term

.

172 APPENDIX C. LOG-LIKELIHOOD RATIOS

The correction term depends only on the absolute value of the difference between l1 and
l2 and ranges within the interval [0, ln 2]. It is maximum if l1 = l2 and it tends to zero if
the difference between l1 and l2 approaches infinity. Notice that the approximate result
is always less than or equal to the correct result, as opposed to the boxplus operation.

For an efficient implementation, the correction term may be stored in a look-up table.
When omitting the correction term, we obtain the approximation

max?{l1, l2} ≈ max{l1, l2},

which is often applied in practice due to its smaller computational complexity.
The operations max? and max are associative, i.e., they may be evaluated recursively

in arbitrary order. For example, for three values l1, l2, l3 ∈ R−
0 , we have

max?{l1, l2, l3} = max?
{

max?{l1, l2}, l3
}

= max?
{

l1, max?{l2, l3}
}

.

This holds for max in the same way, as can easily be seen.
The max? operator and its approximation by max are employed in the LogAPP and

the MaxLogAPP decoding principle, respectively (cf. Section 3.4).

Minstar

Similarly to the max? operator, the min? operator is defined as

min?{l1, l2} := − ln
(
e−l1 + e−l2

)

for l1, l2 ∈ R, [EPG94]. The two operators are related as

min?{l1, l2} = − max?{−l1,−l2}.

Therefore, the properties of the min? operator can easily be determined from the corre-
sponding properties of the max? operator.

Appendix D

Information Theory

Mutual information, entropy, and Kullback-Leibler distance are basic notions in informa-
tion theory. These are shortly summarized in this chapter. Further details may be found
in [Gal68,CT91,Joh92,Mac03].

D.1 Entropy

Consider a discrete random variable X with probability mass function pX(x). The entropy
of X is defined as the expectation

H(X) := E
{
− ld pX(X)

}
,

with ld z := log2 z. Notice that pX(x) is a function of x. The uppercase X in the argument
indicates that the expectation is evaluated with respect to X. For a continuous random
variable X ′ with probability density function pX′(x′), the expected value

Hdiff(X
′) := E

{
− ld pX′(X ′)

}

is called the differential entropy1.

The binary entropy function is defined as

h(p) := −p ld p− (1− p) ld(1− p) ∈ [0, 1],

p ∈ [0, 1]. It is invertible for p ∈ [0, 1
2
], and this inverse function is denoted by h−1(η) ∈

[0, 1
2
], η ∈ [0, 1]. The entropy of a binary random variable X with probability distribution

[p, 1− p] is thus given by

H(X) = h(p) = h(1− p).
Conversely, for η := H(X), we obtain

h−1(η) = min{p, 1− p}.
1Although it should be called integral entropy [Hub04].

174 APPENDIX D. INFORMATION THEORY

Consider an additional random variable Y . Let pX|Y (x|y) denote the conditional
probability mass function if X is discrete, and the conditional probability density function
if X is continuous. The conditional entropy of X given Y is defined as the expectation

H(X|Y) := E
{
− ld pX|Y (X|Y)

}
.

As above, the uppercase letters X and Y in the argument indicate that the expectation
is evaluated with respect to both X and Y .

D.2 Mutual Information

In this section, we address first the mutual information of single channels. The channels
formed by serial or parallel concatenation of multiple binary symmetric channels (BSCs)
are of particular interest in Chapter 6. The mutual information of such channels are
addressed in the second and the third part of this section.

D.2.1 Single Channels

Consider two random variables X and Y . Let pX,Y (x, y) denote the joint distribution, i.e.,
the joint probability mass function or the joint probability density function, depending
on whether X and Y are discrete or continuous. The marginal distributions are given by

pX(x) = E
{
pX,Y (x, Y)

}
, pY (y) = E

{
pX,Y (X, y)

}
.

The conditional distributions may be computed using Bayes’ rule:

pX|Y (X|Y) =
pX,Y (x, y)

pY (y)
, pY |X(y|x) =

pX,Y (x, y)

pX(x)
.

The mutual information between X and Y is defined as

I(X;Y) := E

{

ld
pX,Y (X,Y)

pX(X)pY (Y)

}

.

As can be seen, the mutual information is symmetric in X and Y . It can also be computed
using either expression:

I(X;Y) = E

{

ld
pX|Y (X|Y)

pX(X)

}

= E

{

ld
pY |X(Y |X)

pY (Y)

}

.

Mutual information and entropy are related as

I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X).

The capacity C of a channel X → Y is defined as the maximal mutual information
subject to the input distribution, i.e.,

C := max
pX

I(X;Y).

D.2. MUTUAL INFORMATION 175

The capacity of symmetric channels is achieved for equiprobable input symbols.
Consider an additional random variable A. The conditional mutual information be-

tween X and Y given A is defined as

I(X;Y |A) := E

{

ld
pX|Y,A(X|Y,A)

pX|A(X|A)

}

,

where pX|Y,A(x|y, a) and pX|A(x|a) denote probability mass functions for discrete X and
probability density functions for continuous X. Using the definitions of unconditional and
conditional mutual information, we obtain the chain rule of mutual information

I(X,A;Y) = I(A;Y) + I(X;Y |A).

Notice that I(X,A;Y) denotes the mutual information between the vector-valued random
variable [X,A] and the random variable Y . In fact, this is a short-hand notation of
I([X,A];Y).

D.2.2 Serially Concatenated BSCs

Consider N binary symmetric channels (BSCs) Xi → Yi, Xi, Yi ∈ B, i = 0, 1, . . . , N − 1,
which are serially concatenated such that Yi = Xi+1 for i = 0, 1, . . . , N − 2:

X0 → Y0 = X1 → Y1 = X2 → · · · → YN−2 = XN−1 → YN−1.

The input of the first channel is assumed to be uniformly distributed. The mutual infor-
mation of each individual channel is denoted by Ii := I(Xi;Yi), i = 0, 1, . . . , N − 1. The
end-to-end mutual information between the input of the first and the output of the last
channel is denoted by I := I(X0;YN−1).

It is now shown that the end-to-end mutual information is given by the binary infor-
mation function for serial concatenation according to Definition 6.1, i.e.,

I = f ser
N (I0, I1, . . . , IN−1). (D.1)

As the serially concatenated channel X0 → YN−1 is symmetric, the mutual information I
is equal to the channel capacity.

We start with the case N = 2. It can easily be seen that the serially concatenated
channel X0 → Y1 is also a BSC. Let ε01 denote its crossover probability. We have an
error on this channel if an error occurs either on the first or on the second channel.
With ε0 = h−1(1− I0) and ε1 = h−1(1− I1) denoting the crossover probabilities of the two
individual channels, we can compute the crossover probability of the serially concatenated
channel as2

ε01 = (1− ε0)ε1 + ε0(1− ε1).
Thus, its mutual information is given by

I(X0;Y1) = 1− h(ε01)
= 1− h

(

(1− ε0)ε1 + ε0(1− ε1)
)

,

and we have the proof of (D.1) for N = 2.
The general case follows by induction.

2This operation is called convolution of the two probabilities ε0 and ε1 in [WZ73,CSS89].

176 APPENDIX D. INFORMATION THEORY

D.2.3 Parallel Concatenated BSCs

Consider N binary symmetric channels (BSCs) X → Yi, X,Yi ∈ B, i = 0, 1, . . . , N − 1,
that have the same input X. Following the accepted practice for parallel concatenated
codes, see [BM96b], we call these channels parallel concatenated. The input X is as-
sumed to be uniformly distributed. The mutual information of each channel is denoted
by Ii := I(X;Yi), i = 0, 1, . . . , N − 1. The vector of channel outputs is written as
Y := [Y0, Y1, . . . , YN−1]. The overall mutual information between the input and the vec-
tor of channel outputs is denoted by I := I(X; Y).

It is now shown that the overall mutual information is given by the binary information
function for parallel concatenation according to Definition 6.2, i.e.,

I = fpar
N (I0, I1, . . . , IN−1). (D.2)

As the parallel concatenated channel X → Y is symmetric, the mutual information I is
equal to the channel capacity.

To start with, we write the overall mutual information as

I = I(X; Y) = H(Y)−H(Y |X). (D.3)

The first term can be computed using the joint probabilities of the channel outputs,

H(Y) = E
{
− ld pY (y)

}

= −
∑

y∈Bn

pY (y) · ld pY (y)

with

pY (y) =
∑

x∈B

pX,Y (x,y)

=
∑

x∈B

pX(x) · pY |X(y|x)

=
∑

x∈B

pX(x) ·
N−1∏

i=0

pYi|X(yi|x).

In the last line, we have used the conditional independence of the channel outputs for a
given channel input. Notice that pX(x) = 1

2
due to the uniform input distribution. The

transition probabilities of each channel can be expressed using its mutual information:

pYi|X(yi|x) ∈ {εi, 1− εi}
with

εi := h−1(1− Ii),
i = 0, 1, . . . , N − 1. Thus, the joint probability of a vector of channel outputs y can be
obtained according to

pY (y) =
1

2

(N−1∏

i=0

ϕi(yi) +
N−1∏

i=0

(
1− ϕi(yi)

))

,

D.3. KULLBACK-LEIBLER DISTANCE 177

with

ϕi(yi) :=

{

εi for yi = +1,

1− εi for yi = −1.

The second term in (D.3) can be written as

H(Y |X) =
N−1∑

i=0

H(Yi|X) =
N−1∑

i=0

(1− Ii),

where the conditional independence of the channel outputs for a given channel input has
again been used.

By substituting the above equations into (D.3), we obtain the proof of (D.2).

D.3 Kullback-Leibler Distance

The Kullback-Leibler distance3 may be used to measure the difference between two prob-
ability distributions for the same random variable. It is also called relative entropy or
cross entropy4. Notice that it is not a true distance in the mathematical sense, because
it is not symmetric.

The Kullback-Leibler distance has successfully been applied in probabilistic optimiza-
tion problems, e.g., in the well-known expectation-maximization algorithm [Moo96,FH94].
Furthermore, the LogAPP decoding principle can be shown to minimize the Kullback-
Leibler distance between the probability distribution before decoding and that after decod-
ing (after taking into account the code constraints). This was observed for word-decoding
in [Moh93,MG98] and for symbol-by-symbol decoding in [Sor02].

Consider a discrete random variable X with alphabet X and two probability distri-
butions pX(x) and qX(x). The Kullback-Leibler distance between pX and qX is defined
as

D(pX‖qX) :=
∑

x∈X

pX(x) · ld pX(x)

qX(x)
.

If X is continuous, the sum has to be replaced by an integral. The Kullback-Leibler
distance may be interpreted as an expected value. Then, the distribution pX is the actual
distribution, because it is used to evaluate the expectation. The distribution qX may be
seen as a model distribution that is compared to the actual distribution.

The Kullback-Leibler distance is nonnegative, and it is equal to zero precisely if the
two distributions are identical:

D(pX‖qX) ≥ 0 for all pX , qX ,

D(pX‖qX) = 0 precisely if pX ≡ qX .

These properties are very important, and they are often exploited for solving optimization
problems, e.g., in the expectation-maximization algorithm [Moo96].

3The Kullback-Leibler distance is not a mathematical distance.
4The name “cross entropy” is rather misleading, as in fact not an entropy but a difference of entropies

is addressed.

178 APPENDIX D. INFORMATION THEORY

The Kullback-Leibler distance is used in Chapter 4 for measuring the quality of soft-
values.

Appendix E

Convexity Lemma

The proof of Lemma 6.1 is based on the convexity of function g(x). The proof of convexity
is given in the following lemma. Alternatively, Mrs. Gerber’s Lemma [WZ73] may be
used [SS03].

Lemma E.1
The function

g(x) = h
(
[1− 2a]h−1(x) + a

)
,

x ∈ [0, 1], a ∈ [0, 1
2
], is convex-∪.

Proof. The function is convex-∪ if the second derivative of g(x) with respect to x is
non-negative, i.e., if

d2g(x)

dx2
≥ 0 (E.1)

for x ∈ [0, 1] and a ∈ [0, 1
2
].

First, this function is parameterized. Let x = h(t), t ∈ [0, 1
2
], and let y = g(x). Then

we have
y = g

(
(h(t)

)
= h([1− 2a]t+ a). (E.2)

The derivatives of x with respect to t are given as

dx

dt
= h′(t) = ld

1− t
t
≥ 0, (E.3)

d2x

dt2
= h′′(t) = − ld e

t(1− t) ≤ 0, (E.4)

d3x

dt3
= h′′′(t) =

1− 2t

t2(1− t)2
· ld e. (E.5)

For the first and the second derivative, also the co-domains are stated. Similarly, the
derivatives of y with respect to t are given as

dy

dt
= [1− 2a] · h′([1− 2a]t+ a) ≥ 0, (E.6)

d2x

dt2
= [1− 2a]2 · h′′([1− 2a]t+ a) ≤ 0. (E.7)

180 APPENDIX E. CONVEXITY LEMMA

Again, also the co-domains are stated.
Consider now the relations between the derivatives with respect to x and the deriva-

tives with respect to t. The first derivative can be written as

dy

dt
=
dy

dx
· dx
dt
,

and thus it follows that
dy

dx
=
dy/dt

dx/dt
. (E.8)

The second derivative can be written as

d2y

dt2
=

d

dt

(dy

dx

)

· dx
dt

+
dy

dx
· d
dt

(dx

dt

)

=
d2y

dx2
· dx
dt
· dx
dt

+
dy

dx
· d

2x

dt2
,

and thus it follows that

d2y

dx2
=

d2y

dt2
− dy

dx
· d

2x

dt2
(dx

dt

)2
.

Since (dx/dt)2 ≥ 0, we have

d2y

dx2
≥ 0 ⇔ d2y

dt2
− dy

dx
· d

2x

dt2
≥ 0

⇔ d2y

dt2
≥ dy

dx
· d

2x

dt2
=
dy/dt

dx/dt
· d

2x

dt2

⇔ d2y/dt2

dy/dt
≥ d2x/dt2

dx/dt
, (E.9)

where (E.8) was applied in the second line, and dy/dt ≥ 0 was used in the third line.
Using the expressions for the derivatives, (E.3), (E.4), (E.6), (E.7), in (E.9) yields

[1− 2a]2 · h′′([1− 2a]t+ a)

[1− 2a] · h′([1− 2a]t+ a)
≥ h′′(t)

h′(t)
. (E.10)

Let

b(t) :=
h′′(t)

h′(t)
(E.11)

and
c(a) := [1− 2a] · b([1− 2a]t+ a).

Then (E.10) can be written as
c(a) ≥ c(0)

for a ∈ [0, 1
2
]. This relation holds if the first derivative of c(a) with respect to a is non-

negative.

181

Thus, we can give the following sufficient condition for (E.1):

dc(a)

da
≥ 0 (E.12)

for a ∈ [0, 1
2
] and t ∈ [0, 1

2
]. This derivative can be computed as

dc(a)

da
=

d

da

(

[1− 2a] · b([1− 2a]t+ a)
)

= −2 · b([1− 2a]t+ a) + [1− 2a] · b′([1− 2a]t+ a) · (1− 2t)

= −2 · b([1− 2a]t+ a) +
(

1− 2([1− 2a]t+ a)
)

· b′([1− 2a]t+ a).

After substituting s := [1− 2a]t+ a, (E.12) holds if and only if

−2 · b(s) + (1− 2s) · b′(s) ≥ 0 (E.13)

for s ∈ [t, 1
2
] and t ∈ [0, 1

2
], and thus for s ∈ [0, 1

2
]. In (E.13), we firstly apply (E.11) and

b′(t) =
db(t)

dt
=
h′′′(t) · h′(t)−

(
h′′(t)

)2

(
h′(t)

)2

and then we apply the expressions for h(x) and its derivatives, (E.3), (E.4), (E.5). This
gives the following equivalent relations:

(1− 2s) · b′(s) ≥ 2 · b(s)

(1− 2s) · h
′′′(s) · h′(t)−

(
h′′(s)

)2

(
h′(s)

)2 ≥ 2 · h
′′(s)

h′(s)

(1− 2s) ·
[

h′′′(s) · h′(t)−
(
h′′(s)

)2
]

≥ 2 · h′′(s) · h′(s)

(1− 2s) ·
[1− 2s

s2(1− s)2
· ld 1− s

s
− ld e

s2(1− s)2

]

≥ 2 · −1

s(1− s) · ld
1− s
s

(1− 2s)2 · ld 1− s
s
− (1− 2s) · ld e ≥ −2s(1− s) · ld 1− s

s
[

(1− 2s)2 + 2s(1− s)
]

ld
1− s
s

≥ (1− 2s) · ld e

ln
1− s
s

≥ 1− 2s

1− 2s+ 2s2
. (E.14)

We substitute now u := (1 − s)/s. From s ∈ [0, 1
2
], it follows that u ∈ [1,∞). Using

s = 1/(1 + u) in (E.14), the left hand side results as lnu, and the right hand side results
as

1− 2 1
1+u

1− 2 1
1+u

+ 2(1
1+u

)2
=

(1 + u)2 − 2(1 + u)

(1 + u)2 − 2(1 + u) + 2
=
u2 − 1

u2 + 1
.

Thus, (E.1) holds if

lnu ≥ u2 − 1

u2 + 1

182 APPENDIX E. CONVEXITY LEMMA

for u ∈ [1,∞). Since equality holds for u = 1, it is sufficient to show that

d

du
lnu ≥ d

du

(u2 − 1

u2 + 1

)

. (E.15)

The left hand side results as 1/u, and the right hand side results as

d

du

(u2 − 1

u2 + 1

)

=
2u(u2 + 1)− (u2 − 1)2u

(u2 + 1)2
=

4u

(u2 + 1)2
.

Therefore (E.15) can equivalently be written as

1

u
≥ 4u

(u2 + 1)2

⇔ (u2 + 1)2 ≥ 4u2

⇔ (u2 − 1)2 ≥ 0.

To sum up, a sufficient condition for (E.1) is

(u2 − 1)2 ≥ 0

for u ∈ [1,∞). Since this is the case, we have the proof. QED

Bibliography

[3GP00] “3rd Generation Partnership Project, Technical Specification Group Ra-
dio Access Network, Multiplexing and Channel Coding, 3GPP TS 25.212,
V3.4.0,” Sept. 2000.

[AK02] A. Abedi and A. K. Khandani, “Some properties of bit decoding algorithms
over a generalized channel model,” in Proc. Conf. Inform. Sciences and Sys-
tems (CISS), Princeton University, Princeton, NJ, USA, Mar. 2002.

[AKtB02] A. Ashikhmin, G. Kramer, and S. ten Brink, “Code rate and the area under
extrinsic information transfer curves,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), Lausanne, Switzerland, June 2002, p. 115.

[AKtB03] ——, “Extrinsic information transfer functions, information functions, sup-
port weights, and duality,” in Proc. Int. Symp. on Turbo Codes & Rel. Topics,
Brest, France, Sept. 2003, pp. 223–226.

[AKtB04] ——, “Extrinsic information transfer functions: model and erasure channel
properties,” IEEE Trans. Inform. Theory, 2004.

[And73] I. N. Andersen, “Sample-whitened matched filters,” IEEE Trans. Inform.
Theory, vol. IT-19, no. 5, pp. 653–660, Sept. 1973.

[Bat87] G. Battail, “Pondération des symboles décodés par l’algorithme de Viterbi,”
Ann. Télécommun., vol. 42, pp. 31–38, Jan. 1987.

[BCJR74] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, pp.
284–287, Mar. 1974.

[BD76] G. Battail and M. C. Decouvelaere, “Décodage par répliques,” Ann.
Télécommun., vol. 31, no. 11-12, pp. 387–404, 1976.

[BDG79] G. Battail, M. C. Decouvelaere, and P. Godlewski, “Replication decoding,”
IEEE Trans. Inform. Theory, vol. 25, no. 3, pp. 332–345, May 1979.

[BDMP98a] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Analysis, design,
and iterative decoding of double serially concatenated codes with inter-
leavers,” IEEE J. Select. Areas Commun., vol. 16, no. 2, pp. 231–244, Feb.
1998.

184 BIBLIOGRAPHY

[BDMP98b] ——, “Serial concatenation of interleaved codes: Performance analysis, de-
sign, and iterative decoding,” IEEE Trans. Inform. Theory, vol. 44, no. 3,
pp. 909–926, May 1998.

[BES82] G. Battail and A. H. M. El-Sherbini, “Coding for radio channels,” Ann.
Télécommun., vol. 37, pp. 75–96, 1982.

[BG96] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261–
1271, Oct. 1996.

[BGT93] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo codes,” Proc. IEEE Int. Conf. Com-
mun. (ICC), pp. 1064–1070, May 1993.

[BM96a] S. Benedetto and G. Montorsi, “Design of parallel concatenated convolu-
tional codes,” IEEE Trans. Commun., vol. 44, no. 5, pp. 591–600, May
1996.

[BM96b] ——, “Unveiling turbo codes: Some results on parallel concatenated coding
schemes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 409–428, Mar.
1996.

[BMD03] S. Benedetto, G. Montorsi, and D. Divsalar, “Concatenated convolutional
codes with interleavers,” IEEE Commun. Mag., vol. 41, no. 8, pp. 102 – 109,
Aug. 2003.

[Bos98] M. Bossert, Kanalcodierung. B. G. Teubner, 1998.

[Brä04] F. Brännström, “Convergence analysis and design of multiple concatenated
codes,” Ph.D. dissertation, Chalmers University of Technology, Göteborg,
Sweden, 2004.

[Bre02] M. Breiling, “Analysis and design of turbo code interleavers,” Ph.D. disser-
tation, University Erlangen-Nürnberg, Germany, 2002.

[CF02] J. Chen and M. P. Fossorier, “Near optimum universal belief propagation
based decoding of low-density parity check codes,” IEEE Trans. Commun.,
vol. 50, no. 3, pp. 406–414, Mar. 2002.

[CRU01] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product
decoding of low-density parity-check codes using a Gaussian approximation,”
IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 657–670, Feb. 2001.

[CSS89] N. Chayat and S. Shamai (Shitz), “Expansion of an entropy property for
binary input memoryless symmetric channels,” IEEE Trans. Inform. Theory,
vol. 35, no. 5, pp. 1077–1079, Sept. 1989.

BIBLIOGRAPHY 185

[CT91] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, 1991.

[DJM98] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for ’turbo-like’
codes,” in Proc. Allerton Conf. on Communications, Control, and Comput-
ing, Allerton House, Monticello, Illinois, USA, Sept. 1998, pp. 201–210.

[DP97] D. Divsalar and F. Pollara, “Hybrid concatenated codes and iterative decod-
ing,” TDA Progress Report, Tech. Rep. 42-130, 1997.

[EGH01] H. El Gamal and J. Hammons, A.R., “Analyzing the turbo decoder using
the Gaussian approximation,” IEEE Trans. Inform. Theory, vol. 47, no. 2,
pp. 671 –686, Feb. 2001.

[Eli54] P. Elias, “Error-free coding,” IRE Trans. Inform. Theory, vol. 4, no. 4, pp.
29 –37, Sept. 1954.

[EPG94] J. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol de-
tectors with parallel structures for ISI channels,” IEEE Trans. Commun.,
vol. 42, no. 2/3/4, pp. 1661–1671, Feb./Mar./Apr. 1994.

[FB03] M. Ferrari and S. Bellini, “Existence and uniqueness of the solution for turbo
decoding of parallel concatenated single parity check codes,” IEEE Trans.
Inform. Theory, vol. 49, no. 3, pp. 722–726, Mar. 2003.

[FBLH98] M. P. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, “On the equivalence
between SOVA and Max-Log-MAP decodings,” Electron. Letters, vol. 2,
no. 5, pp. 137–139, May 1998.

[FH94] J. Fessler and A. Hero, “Space-alternating generalized expectation-
maximization algorithm,” IEEE Trans. Signal Processing, vol. 42, no. 10,
pp. 2664–2677, Oct. 1994.

[For66] G. D. Forney, Jr., “Concatenated codes,” Ph.D. dissertation, Cambridge,
MA, USA, 1966.

[For73] ——, “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3, pp. 268–278, Mar.
1973.

[For01] ——, “Codes on graphs: Normal realizations,” IEEE Trans. Inform. Theory,
vol. 47, no. 2, pp. 520–548, Feb. 2001.

[For03] ——, “Codes on graphs: Constraint complexity of cycle-free realizations of
linear codes,” IEEE Trans. Inform. Theory, vol. 49, no. 7, pp. 1597–1610,
July 2003.

[Fri94] B. Friedrichs, Kanalcodierung. Springer-Verlag, 1994.

[Gal62] R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inform. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

186 BIBLIOGRAPHY

[Gal63] R. G. Gallager, “Low density parity check codes,” Ph.D. dissertation, Cam-
bridge, MA, USA, 1963.

[Gal68] ——, Information Theory and Reliable Communication. John Wiley &
Sons, 1968.

[Hám98] J. Hámorský, “Parallel und seriell verkettete Codes für iterative Decodierung
und Entzerrung,” Ph.D. dissertation, University Erlangen-Nürnberg, Ger-
many, 1998.

[Has87] T. Hashimoto, “A list-type reduced-constraint generalization of the Viterbi
algorithm,” IEEE Trans. Inform. Theory, vol. IT-33, no. 6, pp. 866–876,
Nov. 1987.

[HH89a] J. Hagenauer and P. Hoeher, “Concatenated Viterbi-decoding,” in Proc. 4th
Joint Swedish-Soviet Intern. Workshop on Inform. Theory, Gotland, Sweden,
Aug./Sept. 1989, pp. 29–33.

[HH89b] ——, “A Viterbi alorithm with soft-decision outputs and its applications,”
in Proc. IEEE Globecom Conf., Texas, USA, Nov. 1989, pp. 1680–1686.

[HH02] S. Huettinger and J. Huber, “Extrinsic and intrinsic information in system-
atic coding,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Lausanne,
Switzerland, June 2002, p. 116.

[HH03] ——, “Performance estimation for concatenated coding schemes,” in Proc.
IEEE Inform. Theory Workshop, Paris, France, Mar./Apr. 2003, pp. 123–
126.

[HHFJ02] S. Huettinger, J. Huber, R. Fischer, and R. Johannesson, “Soft-output-
decoding: Some aspects from information theory,” in Proc. Int. ITG Conf.
on Source and Channel Coding, Berlin, Germany, Jan. 2002, pp. 81–90.

[HHJF01] S. Huettinger, J. Huber, R. Johannesson, and R. Fischer, “Information pro-
cessing in soft-output decoding,” in Proc. Allerton Conf. on Communica-
tions, Control, and Computing, Monticello, Illinois, USA, Oct. 2001.

[HLS00] P. Hoeher, I. Land, and U. Sorger, “Log-likelihood values and Monte Carlo
simulation - some fundamental results,” in Proc. Int. Symp. on Turbo Codes
& Rel. Topics, Brest, France, Sept. 2000, pp. 43–46.

[Hoe95] P. Hoeher, “Optimal subblock-by-subblock detection,” IEEE Trans. Com-
mun., vol. 43, no. 2/3/4, pp. 714–717, Feb./Mar./Apr. 1995.

[Hoe97] ——, “New iterative (”turbo”) decoding algorithms,” in Proc. Int. Symp. on
Turbo Codes & Rel. Topics, Brest, France, Sept. 1997, pp. 63–70.

[HOP96] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp.
429–445, Mar. 1996.

BIBLIOGRAPHY 187

[HR70] M. Hellman and J. Raviv, “Probability of error, equivocation, and the Cher-
noff bound,” IEEE Trans. Inform. Theory, vol. 16, no. 4, pp. 368–372, July
1970.

[HR76] C. R. Hartmann and L. D. Rudolph, “An optimum symbol-by-symbol de-
coding rule for linear codes,” IEEE Trans. Inform. Theory, vol. 22, no. 5,
pp. 514–517, Sept. 1976.

[HR90] J. B. Huber and A. Rueppel, “Zuverlässigkeitsschätzung für die Ausgangs-
symbole von Trellis-Decoder,” Archiv für Elektronik und Übertragungstechnik
(AEÜ), vol. 44, pp. 8–21, Jan. 1990.

[HtBH01] S. Huettinger, S. ten Brink, and J. Huber, “Turbo-code representation of
RA-codes and DRS-codes for reduced decoding complexity,” in Proc. Conf.
Inform. Sciences and Systems (CISS), The Johns Hopkins University, Bal-
timore, MD, USA, Mar. 2001, pp. 118–123.

[Hub02] J. Huber, “Grundlagen der Wahrscheinlichkeitsrechnung für iterative De-
codierverfahren,” e&i: Elektrotechnik und Informationstechnik, vol. 119,
no. 11, pp. 386–394, Nov. 2002.

[Hub04] ——, personal communication, July 2004.

[Hue04] S. Huettinger, “Analysis and design of power-efficient coding schemes,”
Ph.D. dissertation, University Erlangen-Nürnberg, Germany, 2004.

[HW99] C. Heegard and S. B. Wicker, Turbo Coding. Kluwer Academic Publishers,
1999.

[IEE01] IEEE Trans. Inform. Theory, vol. 47, Feb. 2001.

[Joh92] R. Johannesson, Informationstheorie - Grundlage der (Tele-) Kommunika-
tion. Addison-Wesley, 1992.

[JZ99] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Cod-
ing. IEEE Press, 1999.

[KFL01] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 498
–519, Feb. 2001.

[LC83] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and
Applications. Prentice-Hall, 1983.

[LC02] I. Land and S. Chaoui, “Comparison of convolutional coupled codes and
partially systematic turbo codes for medium code lengths,” in Proc. Int.
ITG Conf. on Source and Channel Coding, Berlin, Germany, Jan. 2002, pp.
99–104.

188 BIBLIOGRAPHY

[LH00a] I. Land and P. Hoeher, “Partially systematic rate 1/2 turbo codes,” in Proc.
Int. Symp. on Turbo Codes & Rel. Topics, Brest, France, Sept. 2000, pp.
287–290.

[LH00b] I. Land and P. A. Hoeher, “Improving the reliability by iterative decoding,”
in Proc. Winter School on Coding and Information Theory, Reisensburg Cas-
tle, Günzburg, Germany, Feb. 2000.

[LH01] I. Land and P. Hoeher, “Using the mean reliability as a design and stopping
criterion for turbo codes,” in Proc. IEEE Inform. Theory Workshop, Cairns,
Australia, Sept. 2001, pp. 27–29.

[LH03] I. Land and P. A. Hoeher, “New results on Monte Carlo bit error simulation
based on the a posteriori log-likelihood ratio,” in Proc. Int. Symp. on Turbo
Codes & Rel. Topics, Brest, France, Sept. 2003, pp. 531–534.

[LHG04] I. Land, P. A. Hoeher, and S. Gligorević, “Computation of symbol-wise mu-
tual information in transmission systems with LogAPP decoders and appli-
cation to EXIT charts,” in Proc. Int. ITG Conf. on Source and Channel
Coding, Erlangen, Germany, Jan. 2004, pp. 195–202.

[LHH92] J. H. Lodge, P. Hoeher, and J. Hagenauer, “The decoding of multidimen-
sional codes using separable MAP ”filters”,” in Proc. Queens University
Biennial Symp. on Communications, Queens University, Kingston, Ontario,
Canada, May 1992, pp. 343–346.

[LHH04a] I. Land, P. A. Hoeher, and J. Huber, “Analytical derivation of EXIT charts
for simple block codes and for LDPC codes using information combining,” in
Proc. European Signal Processing Conference (EUSIPCO), Vienna, Austria,
Sept. 2004.

[LHH04b] ——, “Bounds on information combining for parity-check equations,” in
Proc. Int. Zurich Seminar on Communications (IZS), Zurich, Switzerland,
Feb. 2004, pp. 68–71.

[LHHH03] I. Land, S. Huettinger, P. A. Hoeher, and J. Huber, “Bounds on informa-
tion combining,” in Proc. Int. Symp. on Turbo Codes & Rel. Topics, Brest,
France, Sept. 2003, pp. 39–42.

[LHHH05a] ——, “Bounds on information combining,” IEEE Trans. Inform. Theory,
vol. 51, no. 2, pp. 612–619, Feb. 2005.

[LHHH05b] ——, “Bounds on mutual information for simple codes using information
combining,” Ann. Télécommun., vol. 60, no. 1/2, pp. 184–214, Jan./Feb.
2005.

[LHS00] I. Land, P. Hoeher, and U. Sorger, “On the interpretation of the APP algo-
rithm as an LLR filter,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT),
Sorrento, Italy, June 2000, p. 415.

BIBLIOGRAPHY 189

[LKFF98] S. Lin, T. Kasami, T. Fujiwara, and M. Fossorier, Trellises and Trellis-Based
Decoding Algorithms for Linear Block Codes. Kluwer Academic Publishers,
1998.

[Loe94] H. A. Loeliger, “A posteriori probabilities and performance evaluation of
trellis codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Trondheim,
Norway, June 1994, p. 335.

[Loe04] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Processing
Mag., vol. 21, no. 1, pp. 28–41, Jan. 2004.

[LS04] G. Lechner and J. Sayir, “Improved sum-min decoding of LDPC codes,” in
Proc. IEEE Int. Symp. Inform. Theory and Its Applications (ISITA), Parma,
Italy, Oct. 2004.

[LSH04] I. Land, J. Sayir, and P. A. Hoeher, “Bounds on information combining for
the accumulator of repeat-accumulate codes without Gaussian assumption,”
in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Chicago, USA, June/July
2004, p. 443.

[LV95] A. Lafourcade and A. Vardy, “Lower bounds on trellis complexity of block
codes,” IEEE Trans. Inform. Theory, vol. 41, no. 6, pp. 1938–1954, Nov.
1995.

[LVS95] Y. Li, B. Vucetic, and Y. Sato, “Optimum soft-output detection for channels
with intersymbol interference,” IEEE Trans. Inform. Theory, vol. 41, no. 3,
pp. 704–713, May 1995.

[LYHH93] J. Lodge, R. Young, P. Hoeher, and J. Hagenauer, “Separable MAP “filters”
for the decoding of product and concatenated codes,” in Proc. IEEE Int.
Conf. Commun. (ICC), Geneva, Switzerland, May 1993, pp. 1740–1745.

[Mac99] D. J. MacKay, “Good error-correcting codes based on very sparse matrices,”
IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[Mac03] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge University Press, 2003.

[McE96] R. J. McEliece, “On the BCJR trellis for linear block codes,” IEEE Trans.
Inform. Theory, vol. 42, no. 4, pp. 1072–1092, July 1996.

[MDP00] A. Matache, S. Dolinar, and F. Pollara, “Stopping rules for turbo decoders,”
TMO Progress Report, Tech. Rep. 42-142, Aug. 2000.

[MG98] M. Moher and T. A. Gulliver, “Cross-entropy and iterative decoding,” IEEE
Trans. Inform. Theory, vol. 44, no. 7, pp. 3097–3104, Nov. 1998.

[MN97] D. J. MacKay and R. Neal, “Near Shannon limit performance of low density
parity check codes,” Electron. Letters, vol. 33, no. 6, pp. 457–458, Mar. 1997.

190 BIBLIOGRAPHY

[Moh93] M. Moher, “Decoding via cross-entropy minimization,” in Proc. IEEE Globe-
com Conf., Houston, Texas, USA, Dec. 1993, pp. 809–813.

[Moo96] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal Pro-
cessing Mag., vol. 13, no. 6, pp. 47–60, Nov. 1996.

[Moq02] P. Moqvist, “Serially concatenated continuous phase modulation,” Ph.D.
dissertation, Chalmers University of Technology, Göteborg, Sweden, 2002.

[MS88] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. North-Holland, 1988.

[NS95] C. Nill and C.-E. W. Sundberg, “List and soft symbol output Viterbi algo-
rithms: Extensions and comparisons,” IEEE Trans. Commun., vol. 43, no.
2/3/4, pp. 277–287, Feb./Mar./Apr. 1995.

[NS97] K. R. Narayanan and G. L. Stüber, “A novel ARQ technique using the turbo
coding principle,” IEEE Commun. Lett., vol. 1, no. 2, pp. 49–51, Mar. 1997.

[PAT04] E. Papagiannis, M. A. Ambroze, and M. Tomlinson, “Approaching the ML
performance with iterative decoding,” in Proc. Int. Zurich Seminar on Com-
munications (IZS), Zurich, Switzerland, Feb. 2004, pp. 220–223.

[PM03] J. Park and J. Moon, “Alternative structure for computing APPs of the
Markov source,” IEEE Trans. Inform. Theory, vol. 49, no. 4, pp. 1027–1029,
Apr. 2003.

[PR96] L. Papke and P. Robertson, “Improved decoding with the SOVA in a paral-
lel concatenated (turbo-code) scheme,” in Proc. IEEE Int. Conf. Commun.
(ICC), Dallas, USA, June 1996, pp. 102–106.

[RHV97] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal max-
imum a posteriori algorithms suitable for turbo decoding,” Europ. Trans.
Telecommun., vol. 8, no. 2, pp. 119–125, Mar./Apr. 1997.

[Rob94] P. Robertson, “Illuminating the structure of code and decoder of parallel
concatenated recursive systmatic (turbo) codes,” in Proc. IEEE Globecom
Conf., San Francisco, Dec. 1994, pp. 1298–1303.

[RSU01] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[RU01a] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inform. Theory,
vol. 47, no. 2, pp. 599–618, Feb. 2001.

[RU01b] ——, “Efficient encoding of low-density parity-check codes,” IEEE Trans.
Inform. Theory, vol. 47, no. 2, pp. 638–656, Feb. 2001.

BIBLIOGRAPHY 191

[Say03] J. Sayir, “Why turbo codes cannot achieve capacity,” in Proc. Int. Symp. on
Turbo Codes & Rel. Topics, Brest, France, Sept. 2003.

[Sha48] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 623–656, July and Oct. 1948.

[SLF99] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two simple stopping criteria for
turbo decoding,” IEEE Trans. Commun., vol. 47, no. 8, pp. 1117–120, Aug.
1999.

[Sor02] U. Sorger, “Information transmission,” Habilitationsschrift, TU Darmstadt,
Germany, 2002. [Online]. Available: http://www.tu-darmstadt.de/fb/et/
uet/nesi/uli/

[SS94] N. Seshadri and C.-E. W. Sundberg, “List Viterbi algorithm with ap-
plications,” IEEE Trans. Commun., vol. 42, no. 2/3/4, pp. 313–323,
Feb./Mar./Apr. 1994.

[SS03] S. Shamai (Shitz), personal communication, Sept. 2003.

[SSSZ03] I. Sutskover, S. Shamai (Shitz), and J. Ziv, “Extremes of information combin-
ing,” in Proc. Allerton Conf. on Communications, Control, and Computing,
Monticello, Illinois, USA, Oct. 2003.

[SSSZ05] ——, “Extremes of information combining,” IEEE Trans. Inform. Theory,
vol. 51, no. 4, pp. 1313–1325, Apr. 2005.

[Tan81] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inform. Theory, vol. 27, no. 5, pp. 533 –547, Sept. 1981.

[tB99a] S. ten Brink, “Convergence of iterative decoding,” Electron. Letters, vol. 35,
no. 13, pp. 1117–1119, June 1999.

[tB99b] ——, “Convergence of iterative decoding,” Electron. Letters, vol. 35, no. 10,
pp. 806–808, May 1999.

[tB00a] ——, “Iterative decoding trajectories of parallel concatenated codes,” in
Proc. Int. ITG Conf. on Source and Channel Coding, Munich, Germany,
Jan. 2000, pp. 75–80.

[tB00b] ——, “Rate one-half code for approaching the Shannon limit by 0.1 dB,”
Electron. Letters, vol. 36, no. 15, pp. 1293–1294, July 2000.

[tB01a] ——, “Code characteristic matching for iterative decoding of serially con-
catenated codes,” Ann. Télécommun., vol. 56, no. 7-8, pp. 394–408, 2001.

[tB01b] ——, “Code doping for triggering iterative decoding convergence,” in Proc.
IEEE Int. Symp. Inform. Theory (ISIT), Washington, DC, USA, June 2001,
p. 235.

192 BIBLIOGRAPHY

[tB01c] ——, “Convergence behavior of iteratively decoded parallel concatenated
codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737, Oct. 2001.

[tBK03] S. ten Brink and G. Kramer, “Design of repeat-accumulate codes for iterative
detection and decoding,” IEEE Trans. Signal Processing, vol. 51, no. 11, pp.
2764–2772, Nov. 2003.

[tBSY98] S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative demapping for QPSK
modulation,” Electron. Letters, vol. 34, no. 15, pp. 1459–1460, July 1998.

[TL04] R. Thobaben and I. Land, “Blind quality estimation for corrupted source
signals based on a-posteriori probabilities,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), Chicago, USA, June/July 2004, p. 304.

[TtBH02] M. Tuechler, S. ten Brink, and J. Hagenauer, “Measures for tracing conver-
gence of iterative decoding algorithms,” in Proc. Int. ITG Conf. on Source
and Channel Coding, Berlin, Germany, Jan. 2002, pp. 53–60.

[Ung03] G. Ungerboeck, “Iterative soft decoding of Reed-Solomon codes,” in Proc.
Int. Symp. on Turbo Codes & Rel. Topics, Sept. 2003.

[Var98] A. Vardy, “Trellis structure of codes,” in Handbook of Coding Theory,
V. Pless and W. Huffman, Eds. Amsterdam: Elsevier, 1998, pp. 1981–
2117.

[vDJK03] M. van Dijk, A. J. Janssen, and A. G. Koppelaar, “Correcting systematic
mismatches in computed log-likelihood ratios,” Europ. Trans. Telecommun.,
vol. 14, pp. 227–244, 2003.

[Vit67] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13,
no. 2, pp. 260–269, Apr. 1967.

[VY00] B. Vucetic and J. Yuan, Turbo Codes - Principles and Applications. Kluwer
Academic Publishers, 2000.

[WHW00] A. Worm, P. Hoeher, and N. Wehn, “Turbo-decoding without SNR estima-
tion,” IEEE Commun. Lett., vol. 4, no. 6, pp. 193–196, June 2000.

[Wib96] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Linkoping University, Sweden, 1996.

[WLK95] N. Wiberg, H.-A. Loeliger, and R. Koetter, “Codes and iterative decoding
on general graphs,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Sept.
1995, p. 468.

[Wol78] J. K. Wolf, “Efficient maximum likelihood decoding of linear block codes
using a trellis,” IEEE Trans. Inform. Theory, vol. 24, no. 1, pp. 76–80, Jan.
1978.

BIBLIOGRAPHY 193

[WWE00] Y. Wu, B. D. Woerner, and W. J. Ebel, “A simple stopping criterion for
turbo decoding,” IEEE Commun. Lett., vol. 4, no. 8, pp. 258–260, Aug.
2000.

[WZ73] A. D. Wyner and J. Ziv, “A theorem on the entropy of certain binary se-
quences and applications: Part I,” IEEE Trans. Inform. Theory, vol. 19,
no. 6, pp. 769–772, Nov. 1973.

[ZSB99] V. Zyablov, S. Shavgulidze, and M. Bossert, “An introduction to generalized
concatenated codes,” Europ. Trans. Telecommun., vol. 10, no. 6, pp. 609–
622, Nov./Dec. 1999.

