
Simulation-Based Simplification of
omega-Automata

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(Dr. rer. nat.)
der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Carsten Fritz

Kiel
2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250312949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Gutachter Prof. Dr. Thomas Wilke

2. Gutachter Prof. Dr. Willem-Paul de Roever

3. Gutachter Prof. Dr. Moshe Y. Vardi

Datum der mündlichen Prüfung 10. Februar 2006

Danksagung

Von den vielen Menschen, die mich bei der Erstellung dieser Dissertation unter-
stützt haben, möchte ich Thomas Wilke besonders hervorheben. Thomas stand
mir stets mit Rat und Hilfe zur Seite und hat mich als Doktorand vorbildlich be-
treut. Als begeisterter, sorgfältiger Forscher und liebenswerter Mensch ist er mir
ein wichtiges Vorbild.

Gerne bedanke ich mich bei der Deutschen Forschungsgemeinschaft (DFG)
für die finanzielle Unterstützung der Forschung, die zu dieser Arbeit geführt hat
(Projektnummer 223228).

Sehr wichtig für meine Arbeit ist auch die gute Atmosphäre am Lehrstuhl für
Theoretische Informatik. Hierfür bedanke mich sehr herzlich bei meinen Kol-
legen Detlef Kähler, Margrit Krause, Ralf Küsters, Brigitte Scheidemann, Erich
Valkema und bei unserem Systemadministrator Thomas Heß (Herzlichen Glück-
wunsch zu den Zwillingen!).

Andreas Niemann und Björn Teegen haben durch Implementierungen für Ex-
perimente zu dieser Arbeit beigetragen. Kousha Etessami, damals Murray Hill,
New Jersey, und David Janin, Bordeaux, haben mir ermöglicht, ihre Arbeitsgrup-
pen zu besuchen.

Mein besonderer Dank gilt meinen Eltern für ihre stetige Liebe und Unter-
stützung.

Kiel, im November 2005
Carsten Fritz

i

Contents

Introduction 1

1 Simulation and Alternating Büchi Automata 5
1.1 Notation and Basic Definitions 6

1.1.1 Games . 6
1.1.2 Alternating Büchi automata 7

1.2 Simulation Relations . 8
1.2.1 Direct, delayed, and fair simulation 8
1.2.2 Simulation implies language containment 12
1.2.3 Positional strategies for simulation games 16

1.3 Composing Simulation Strategies 17
1.3.1 Definition of the join of strategies 18
1.3.2 Fundamental properties of composed strategies 21

1.4 Quotienting Modulo Direct Simulation 24
1.4.1 Minimal and maximal successors 26
1.4.2 Minimax quotienting . 26
1.4.3 Example: Minimax quotient 31

1.5 Quotienting Modulo Delayed Simulation 31
1.5.1 Semi-elective quotienting 32
1.5.2 Q simulates Qse

de . 32
1.5.3 Qse

de simulates Q . 36
1.5.4 Remarks and possible optimizations 37
1.5.5 Example: Semi-elective quotient 39

1.6 From ABA to NBA . 40
1.7 Efficient Algorithms . 45

1.7.1 Modifications for the delayed simulation game 45
1.7.2 Proof of Proposition 1.1, part 1 47
1.7.3 Reduction of the game graphs 48
1.7.4 Computing simulation relations of weak ABA 49

1.8 Conclusion of Chapter 1 . 50

iii

2 Simulation and LTL 53
2.1 Basic Definitions . 55
2.2 From LTL to ε-ABA . 58
2.3 The Simulation Game for ε-ABA 60
2.4 De-Universalization of VWABA 64

2.4.1 Basic concept of optimized de-universalization 64
2.4.2 Local optimization of Büchi automata from very weak ABA 68
2.4.3 Application to the construction of NBA from LTL 70

2.5 Usable Properties of Simulation Relations 71
2.5.1 Deleting transitions using fair simulation 72
2.5.2 Simulation-based NBA-state pruning 77

2.6 Computing the NBA with On-The-Fly Simplifications 81
2.6.1 An algorithm . 82
2.6.2 Example: From LTL to NBA 84
2.6.3 Experiments . 88

2.7 A Comparison of LTL-to-NBA Constructions 93
2.7.1 The GPVW-automaton 93
2.7.2 The adjusted GPVW-automaton 95
2.7.3 Local optimization and syntactical implication 97
2.7.4 Equality to the GPVW-automaton 104
2.7.5 Equality to the DGV-automaton 106
2.7.6 Why do we need next normal form? 107

2.8 Inductive Bottom-Up NBA Construction from LTL 108
2.8.1 The bottom-up construction 109
2.8.2 The bottom-up construction and simulation 112

2.9 Conclusion of Chapter 2 . 116

3 Simulation and Parity Acceptance 117
3.1 Basic Definitions: Alternating Parity Automata and Parity Games 118
3.2 Delayed Simulation for the Parity Condition 120

3.2.1 A formal definition of the simulation game 121
3.2.2 The relation ≤de is a preorder 122

3.3 Properties of Delayed Simulation for the Parity Condition 127
3.3.1 Delayed simulation implies language containment 128
3.3.2 Computing the delayed simulation relation 129
3.3.3 Dualities . 129
3.3.4 Quotienting is a problem 130

3.4 Quotienting with Smaller Relations 132
3.4.1 Smaller delayed simulation relations for APA 132
3.4.2 Quotienting . 134
3.4.3 Example: Quotienting 139

iv

3.5 A Simplification Algorithm for APA 143
3.5.1 The simplification algorithm 143
3.5.2 Usable properties of the delayed simulation relations . . . 144
3.5.3 Example: Simplification algorithm 151

3.6 An Application to the µ-Calculus 154
3.6.1 Modal µ-calculus, APTA, and a translation 155
3.6.2 Simulation relations for APTA 161
3.6.3 Application and example 165

3.7 Conclusion of Chapter 3 . 167

Conclusion and Directions of Future Research 169

Bibliography 175

List of Figures 185

Index 186

v

Introduction

Finite automata on infinite words (ω-automata) were introduced in the early sixties
of the last century, motivated by questions of logic [Büc60, Büc62] and network
theory [Mul63]. They are important from a theoretical point of view, e. g., as a tool
for decision procedures in logic. They are also important in system and program
verification, where ω-automata are used to model non-terminating reactive sys-
tems (for example, operating systems) and their specifications. A prominent ex-
ample for the use of ω-automata in verification is the automata-theoretic approach
to model checking of Vardi and Wolper [VW86], where both the specification and
the system to be checked are translated to or interpreted as ω-automata.

For such applications to be practicable, it is crucial that the considered au-
tomata, especially the automaton representing the specification, are small, but
finding a minimal equivalent ω-automaton for a given automaton is a PSPACE-
hard problem (this is even true for nondeterministic automata on finite words).
Therefore, heuristics are used to minimize the state space of ω-automata. In this
work, we study simulation relations [Mil71] as a tool for minimizing automata.
Simulation relations capture the notion that the moves of one automaton can be
mimicked by the moves of another automaton. That is, they can be used for check-
ing language containment between automata, cf. [DHWT91]. This is of practical
importance if, e. g., one automaton describes a system and another automaton
describes the allowed computations of this system. If the language of the first
automaton is contained in the language of the second automaton, then every com-
putation of the system is an allowed computation and the system is correct w. r. t.
this specification, and a sufficient condition for this to hold is that the second
automaton simulates the first. But simulation relations can also be used for re-
ducing the state space of automata and transition systems before space and time
consuming algorithms are applied to them. For example, if two or more states
mutually simulate each other, it may be possible to merge them into a single state
and to continue the computation on a smaller quotient structure. This is done
by, e. g., Etessami and Holzmann [EH00] and Somenzi and Bloem [SB00] for
nondeterministic Büchi automata in the context of checking linear-time temporal
properties.

1

In previous work, simulation relations have been introduced for ordinary and
alternating transition systems, see, e. g., [Mil89, HRHK95, AHKV98], and simu-
lation relations for nondeterministic Büchi automata are studied in , e. g., [HKR97,
EH00, ESW01]. Different modes of simulation are also introduced and analyzed
in, e. g., [Ete02, BG02] and recently in [JP06].

The focus of this work is on simulation relations for alternating automata.
Alternation, introduced by Chandra, Kozen, and Stockmeyer [CKS81] for Tur-
ing machines and automata on finite words and applied to ω-automata by Muller,
Schupp, and Saoudi [MSS86, MS87], formally describes the idea that a machine
or an automaton splits into several copies in order to do computations in parallel; it
is well-known that alternating automata are exponentially more succinct than non-
deterministic automata. Especially, alternating automata are used to study modal
and temporal logics from an automata-theoretic point of view. New automata-
theoretic methods for verification based on alternating automata have been devel-
oped, see, e. g., [MSS88, Var94, KVW00], so that simulation relations for alter-
nating automata are of practical interest.

Our approach to simulation relations is game-based and follows the ideas
of [HKR97, AHKV98, ESW01]. That is, we define simulation via a game of
two players, the Spoiler and the Duplicator. We say that an automaton simulates
another automaton if the Duplicator, controlling the nondeterministic choices of
the first automaton, has a winning strategy against the Spoiler who controls the
nondeterministic choices of the second automaton.

In Chapter 1, we use this concept to extend the notion of simulation relations to
alternating Büchi automata. We concentrate on three modes of simulation, called
direct [DHWT91], delayed [ESW01], and fair simulation [HKR97]. We show
that our simulation relations for alternating Büchi automata enjoy many of the
properties known of the respective relations for nondeterministic Büchi automata,
namely, they can be used for state space reduction and can be computed as fast as
in the nondeterministic case. Also, we show that the standard construction from
alternating to nondeterministic Büchi automata is compatible with simulation.

In Chapter 2, we apply our simulation relations to the problem of constructing
an equivalent nondeterministic automaton for a formula of propositional linear-
time temporal logic (LTL [Pnu77]). LTL is a popular specification language, and
the step from an LTL formula to an equivalent nondeterministic automaton is im-
portant for verification, so that there are several implementations. These include
an implementation as part of Holzmann’s model checker Spin [Hol], Etessami’s
Temporal Massage Parlor (TMP) [Ete], LTL2BA [Odd] of Gastin and Oddoux,
and Wring [Blo] by Somenzi and Bloem. We make use of the fact that an LTL
formula can be seen as an alternating Büchi automaton, cf. [Var94]. We develop
an algorithm that makes use of simulation-based simplifications on the level of
this alternating automaton (that is, on the formula) as well as during the trans-

2

lation to a nondeterministic automaton, but we avoid a time-consuming compu-
tation of simulation relations for the nondeterministic automaton itself (the size
of this automaton can be exponential in the length of the input formula). We
compare our approach experimentally to other implementations, and we give a
detailed analysis of our concept of translation versus the basic translation concept
of [GPVW95, DGV99] used in the Spin implementation, in TMP, and in Wring.

In Chapter 3, we extend delayed simulation to alternating automata with par-
ity acceptance conditions [Mos84]. Parity acceptance is important for its connec-
tion to the modal µ-calculus of Kozen [Koz83], cf. [EJ91], and, in general, as a
powerful acceptance and winning condition for automata and games, respectively,
cf. [Tho97]. We develop a polynomial-time simplification algorithm for parity au-
tomata based on adapted notions of delayed simulation and give a sketch of how
to apply these ideas to the simplification of formulas of a fragment of the modal
µ-calculus.

Pre-published results Most results of Chapter 1 were published in the journal
article [FW05] which builds on the paper [FW02] and the technical report [FW01].
An earlier version of the simplification algorithm of Chapter 2 was presented
in [Fri03]. Implementations of two versions of this algorithm (both based on
delayed simulation) are accessible via CGI [FTb, FTa]. The analysis of tableau-
based versus ABA-based translation from LTL in Chapter 2 is presented
in [Fri05a] and available as a technical report [Fri05b].

3

Chapter 1

Simulation Relations for Alternating
Büchi Automata

In the first chapter of this thesis, we combine what has been done for alternat-
ing transition systems [AHKV98] and nondeterministic Büchi automata (e. g.,
[DHWT91, ESW01]): We introduce and study simulation relations for alternating
Büchi automata. Our definitions of the various simulation relations for alternating
Büchi automata are game-based and follow the approach of [HKR97, AHKV98,
ESW01]. The main technical difficulty to deal with are the two different types
(existential and universal) of states present in alternating automata. Our defini-
tions of the simulation relations are most general with respect to this distinction
as we allow that a universal state simulates an existential state and vice versa. This
yields smaller automata after quotienting, and, as we prove, does not increase the
complexity of the algorithms.

Treating existential and universal states at the same time makes the situation
complicated. The naive quotient construction, which was also used in [ESW01]
for nondeterministic Büchi automata, does not work with alternating Büchi au-
tomata. For this reason, we introduce new quotients, which we call minimax and
semi-elective quotients, and show that they can replace the naive quotient in the
context of alternating Büchi automata. Minimax quotients with respect to direct
simulation and semi-elective quotients with respect to direct as well as delayed
simulation preserve the recognized languages. For nondeterministic Büchi au-
tomata, the minimax quotient corresponds to direct simulation with edge deletion,
cf. [SB00], while the semi-elective quotient w. r. t. delayed simulation is the same
as the quotient construction of [ESW01]. (Note that a quotient with respect to fair
simulation usually cannot preserve the recognized language [ESW01], even in the
absence of alternation, but see [GBS02] for a different minimization technique
using fair simulation.) We also show that all three types of simulation relations
can be used for checking language containment.

5

6 CHAPTER 1. Simulation and Alternating Büchi Automata

Most of our results, especially the more complicated ones, rely on a specific
construction to compose strategies in simulation games, which is reminiscent of
intruder-in-the-middle attacks known from cryptography. Most of the technical
work goes into analyzing this strategy composition method.

This chapter is organized as follows. In Section 1.1, we review the basic def-
initions on alternating automata and two-player games on graphs, which are our
main tool. We also introduce some basic definitions and notations that are used
throughout this thesis in the first section. In Section 1.2, we present our definitions
of the various simulation relations and prove that simulation implies language con-
tainment. Section 1.3 is the technical core of the chapter and lays the ground for
proving that direct and delayed quotients preserve the language recognized. In
Sections 1.4 and 1.5 the definitions of minimax and semi-elective quotient are
presented and it is shown that these quotients preserve the language recognized.
In Section 1.6, we show that our simulation relations are compatible with the
standard translation of alternating Büchi automata to nondeterministic Büchi au-
tomata. Section 1.7 presents efficient algorithms for computing the simulation
relations introduced, building on the ideas of [ESW01] who improved on the al-
gorithms of [HKR97, HR00] by making use of Jurdziński’s algorithm [Jur00] for
solving parity games.

1.1 Notation and Basic Definitions
In this section, we fix basic notation and definitions. We describe the games which
all our simulation relations for alternating Büchi automata are based on, and we
review the definition of alternating Büchi automata used in this chapter.

The set of natural numbers is denoted ω. As usual, given a set Σ, we denote the
set of finite, finite but nonempty, and infinite sequences over Σ by Σ∗, Σ+, and Σω,
respectively. We set Σ∞ = Σ∗∪Σω. Words over Σ are viewed as functions from an
initial segment of ω or ω itself to Σ, so when w is a word, then w(i) denotes the
letter at its ith position where the first letter is in position 0, and w[i.. j] denotes the
substring extending from position i through position j.

When R is a binary relation, then uR denotes {v | (u,v) ∈ R}; similarly, Rv =
{u | (u,v) ∈ R}. For ternary relations R, we will also write R(u) for {(v,w) |
(u,v,w) ∈ R} and R(u,v) for {w | (u,v,w) ∈ R}. When t is an n-tuple, pri(t) is the
ith component of t (for 1≤ i≤ n).

1.1.1 Games
For our purposes, a game is a tuple

G = (P,P0,P1, pI,Z,W) (1.1)

1.1. Notation and Basic Definitions 7

where P is the set of all positions of G, {P0,P1} is a partition of P into the positions
of Player 0 and Player 1, respectively, where P0 = /0 or P1 = /0 are allowed, pI ∈ P
is the initial position of G, Z ⊆ P×P is the set of moves of G, and W ⊆ Pω is the
winning set of G. The directed graph (P,Z) is called the game graph of G and also
denoted by G (with no danger of confusion).

A play in G is a maximal path through G starting in pI; a partial play is any
path through G starting in pI . A play π = p0 p1 p2 . . . is winning for Player 1 if π
is infinite and π ∈W , or if π is finite and the last position of π belongs to Player 0
(it is her turn, but she cannot move). In all other cases, Player 0 wins the play.

A strategy for Player 0 is a partial function σ : P∗P0 → P satisfying the fol-
lowing condition for every π ∈ P∗ and p ∈ P0. If pZ 6= /0, then σ(πp) ∈ pZ, else
σ(πp) is undefined. A partial play π is conform with σ (σ-conform) if for every i
such that i + 1 < |π| and π(i) ∈ P0, we have π(i + 1) = σ(π[0..i]). The strategy σ
is a winning strategy for Player 0 if every σ-conform play is winning for Player 0.
Player 0 wins G if he has a winning strategy.—For Player 1, the same notions are
defined by exchanging 0 with 1.

Note that if Player 0 plays according to a strategy τ and Player 1 plays accord-
ing to a strategy σ, the resulting play is completely determined. This play is called
the (τ,σ)-conform play.

In general, when σ is a strategy, not all partial plays are σ-conform, which
means strategies need not be total functions. In fact, it is usually enough to require
that a strategy for Player 0 is defined for all σ-conform partial plays π ∈ P∗P0.

1.1.2 Alternating Büchi automata
For our purposes, an alternating Büchi automaton, ABA, for short, is a tuple

Q = (Q,Σ,qI,∆q,Eq,Uq,Fq) (1.2)

where Q is a finite set of states, Σ is a finite alphabet, qI ∈ Q is the initial state,
{Eq,Uq} is a partition of Q in existential and universal states, where Eq = /0 or
Uq = /0 are allowed, ∆q⊆Q×Σ×Q is the transition relation, and Fq⊆Q is the set
of accepting states. Automata will also be named R and S, with their components
named accordingly; we will always assume a common alphabet Σ. We will omit
the superscripts when no confusion can arise.

Acceptance of alternating Büchi automata is best defined via games. For an
alternating Büchi automaton Q as above and an ω-word w ∈ Σω, the word game
G(Q,w) is a game where P = Q×ω is the set of positions with P0 = Uq×ω,
P1 = Eq×ω, pI = (qI,0), Z = {((q, i),(q′, i + 1)) | (q,w(i),q′) ∈ ∆}, and W =
(P∗(Fq×ω))ω.

Following [GH82], in the above game, Player 1 is called Automaton while
Player 0 is called Pathfinder. Acceptance is now defined as follows. The word

8 CHAPTER 1. Simulation and Alternating Büchi Automata

w is accepted by the automaton Q if Automaton wins the game G(Q,w). The
language recognized by Q is

L(Q) = {w ∈ Σω | Automaton wins G(Q,w)} . (1.3)

A nondeterministic, i. e., non-alternating Büchi automaton, is an automaton as
in (1.2) with Uq = /0.

For q ∈Q, we will write Q(q) for the automaton which is obtained from Q by
setting q as the new initial state, i. e., Q(q) = (Q,Σ,q,∆q,Eq,Uq,Fq).

In figures, existential states are shown as diamonds and universal states as
squares; accepting states have double lines, see, e. g., Figure 1.1.

1.2 Simulation Relations for Alternating Büchi Au-
tomata

In this section, we define three types of simulation relations for alternating Büchi
automata, namely direct, delayed, and fair simulation, which are all based on the
same simple game, only the winning condition varies. We show that all these
simulations have the property that if an automaton simulates another automaton
the language recognized by the latter is contained in the language recognized by
the former—we say simulation implies language containment.

1.2.1 Direct, delayed, and fair simulation
Let Q = (Q,Σ,qI,∆q,Eq,Uq,Fq) and S = (S,Σ,sI,∆s,Es,U s,Fs) be alternating
Büchi automata. The basic simulation game G(Q,S) is played by two players,
Spoiler and Duplicator, who play the game in rounds. At the beginning of each
round, a pair (q,s) of states q ∈ Q and s ∈ S is given, and the players play as
follows.

1. Spoiler chooses a letter a ∈ Σ.
2. The next step depends on the modes (existential or universal) of q and s.
— If (q,s)∈ Eq×Es, then Spoiler chooses a transition (q,a,q′)∈ ∆q and after

that Duplicator chooses a transition (s,a,s′) ∈ ∆s.
— If (q,s) ∈Uq×U s, then Spoiler chooses a transition (s,a,s′) ∈ ∆s and after

that Duplicator chooses a transition (q,a,q′) ∈ ∆q.
— If (q,s) ∈ Eq ×U s, then Spoiler chooses transitions (q,a,q′) ∈ ∆q and

(s,a,s′) ∈ ∆s.
— If (q,s) ∈Uq×Es, then Duplicator chooses transitions (q,a,q′) ∈ ∆q and

(s,a,s′) ∈ ∆s.
3. The starting pair for the next round is (q′,s′).

1.2. Simulation Relations 9

Intuitively, Spoiler produces, letter by letter, an ω-word as simultaneous input
for the automata Q and S. Spoiler controls the nondeterministic choices of Q
while Duplicator controls the nondeterministic choices of S. This is reversed at
universal states: A player loses control of “his” automaton, and the adversary gets
to choose a successor state.

The first round begins with the pair (qI,sI). If, at any point during the course
of the game, a player cannot proceed any more, he or she looses (early). When
the players proceed as above and no player looses early, they construct an infinite
sequence (q0,s0)(q1,s1) . . . of pairs of states (with q0 = qI and s0 = sI), and this
sequence determines the winner, depending on the type of simulation relation we
are interested in:

Direct simulation (di): Duplicator wins if for every i with qi ∈ Fq we have
si ∈ Fs.

Delayed simulation (de): Duplicator wins if for every i with qi ∈ Fq there
exists j ≥ i such that s j ∈ Fs.

Fair simulation (f): Duplicator wins if there are only finitely many i with
qi ∈ Fq or infinitely many j with s j ∈ Fs.

In all other cases, Spoiler wins. This completes the description of the games.
The games above can formally be described in the following way, using the

game notion of the previous section. Spoiler takes over the role of Player 0, while
Duplicator takes over the role of Player 1. The positions in the game reflect the
status of a round. We have positions of the form (q,s) for the starting point of a
round, and positions of the form (q,s,a,A,b,A′,b′) which represent the fact that
the round started out in (q,s), Spoiler chose the letter a, player A (Spoiler or
Duplicator) first has to pick a transition in Q if b = 0 or in S if b = 1, and after
that player A′ has to pick a position in Q or S (depending on b′).1 Finally, we have
positions of the form (q,s,a,A′,b′) which represent the fact that Spoiler chose the
letter a, and player A′ still has to pick a transition in Q (b′ = 0) or S (b′ = 1). That
is, in the formal definition of the game, we use

Usp = Q×S×Σ×{sp}×{0,1}×{sp,du}×{0,1} , (1.4)
Udu = Q×S×Σ×{du}×{0,1}×{sp,du}×{0,1} , (1.5)
Vsp = Q×S×Σ×{sp}×{0,1} , (1.6)
Vdu = Q×S×Σ×{du}×{0,1} . (1.7)

Given a game type x ∈ {di,de, f}, the game Gx(Q,S) is defined by

Gx(Q,S) = (P,P0,P1,(qI,sI),Z,W x) (1.8)

1The reader may have observed that in a position of the form (q,s,a,A,b,A′,b′), the last four
components, A, b, A′ and b′, are redundant, as they can be inferred from q and s. But our definition
will facilitate reading the proofs later.

10 CHAPTER 1. Simulation and Alternating Büchi Automata

where

P = (Q×S)∪Usp∪Udu∪Vsp∪Vdu , (1.9)
P0 = (Q×S)∪Usp∪Vsp , (1.10)
P1 = Udu∪Vdu , (1.11)

and the set Z ⊆ P×P contains all moves of the form

((q,s),(q,s,a,sp,0,du,1)) , for q ∈ Eq,s ∈ Es,a ∈ Σ , (1.12)
((q,s),(q,s,a,sp,0,sp,1)) , for q ∈ Eq,s ∈U s,a ∈ Σ , (1.13)
((q,s),(q,s,a,du,0,du,1)) , for q ∈Uq,s ∈ Es,a ∈ Σ , (1.14)
((q,s),(q,s,a,sp,1,du,0)) , for q ∈Uq,s ∈U s,a ∈ Σ , (1.15)
((q,s,a,x,0,y,1),(q′,s,a,y,1)) , for (q,a,q′) ∈ ∆q,x,y ∈ {sp,du} ,

(1.16)

((q,s,a,sp,1,du,0),(q,s′,a,du,0)) , for (s,a,s′) ∈ ∆s , (1.17)
((q,s,a,du,0),(q′,s)) , for (q,a,q′) ∈ ∆q , (1.18)
((q,s,a,x,1),(q,s′)) , for (s,a,s′) ∈ ∆s,x ∈ {sp,du} . (1.19)

Note that not all positions are reachable from the initial position of the game
or from any position in Q×S. These unreachable positions can be removed (cf.
Section 1.7), but if we did this here, this would make the proofs somewhat more
complicated, so we keep them.

The winning condition depends on the type of simulation relation (see above).
To phrase it concisely, we will use the following notation. We will write F̂q for
the set of all positions with an element from Fq in the first component and F̂s for
the set of all positions with an element from Fs in the second component. Also,
we will write F̄q and F̄s for P\ F̂q and P\ F̂s, respectively. Now we can state the
winning conditions formally:

The direct winning condition is W di = ((F̄q∪ F̂s) ∩ (Q×S))ω. (1.20)
Always at the beginning of a round, it must be the case that the first compo-
nent is not accepting or the second component is accepting.

The delayed winning condition is W de = Pω \P∗(F̂q∩ F̄s)(F̄s)ω. (1.21)
It must not be the case that eventually the first component is accepting while
the second component is not accepting and remains not accepting forever.

The fair winning condition is W f = Pω \P∗((F̂q∩ F̄s)(F̄s)∗)ω. (1.22)
It must not be the case that eventually the second component is never ac-
cepting while the first component is accepting infinitely often.

1.2. Simulation Relations 11

For x ∈ {di,de, f}, we define a relation≤x on alternating Büchi automata. We
write

Q≤x S when Duplicator has a winning strategy in Gx(Q,S) (1.23)

and say that S x-simulates Q. For states q of Q, s of S, we write q≤x s to indicate
that S(s) x-simulates Q(q). We write Gx(q,s) instead of Gx(Q(q),S(s)) if Q and
S are obvious from the context.

As an example for a simulation game, consider the automaton Q given in
Figure 1.1, which we view as an automaton over the alphabet {a,b}.

b
q0

q1

q2b

b

b

1

Figure 1.1: Alternating Büchi automaton

We argue that the games Gde(q0,q1), Gde(q1,q0), G f (q0,q1) and G f (q1,q0)
are a win for Duplicator. To see this, consider the strategy σ defined by

σ(P∗(q0,q2,b,du,0)) = (q2,q2) , (1.24)
σ(P∗(q1,y,b,du,0)) = (q2,y) , for y = q1,q2 , (1.25)

σ(P∗(q2,q2,b,du,1)) = (q2,q2) . (1.26)

In a play starting in position (q0,q1), Spoiler has to choose the letter b, or
he loses early, and he has to choose transition (q1,b,q2), i. e., the play reaches
position (q0,q2,b,du,0) after his move. Playing according to σ, Duplicator now
chooses the transition (q0,b,q2), and the next round starts in position (q2,q2).
Now Spoiler always has to choose the letter b and the transition (q2,b,q2), but Du-
plicator (using σ) always chooses the same transition, so the play stays in (q2,q2)
and thus is a win for Duplicator.

If the play starts in (q1,q0), the strategy σ also ensures that a play is either an
early defeat for Spoiler or eventually stays in (q2,q2). That is, states q0 and q1 are
equivalent w. r. t. delayed and fair simulation. Note that q2 ≤x q0 and q2 ≤x q1 for
x ∈ {de, f}; the converse is false.

12 CHAPTER 1. Simulation and Alternating Büchi Automata

Lemma 1.1 (cf. [ESW01]) For every alternating Büchi automaton, the following
relations hold between the three types of simulation relations:

≤di ⊆≤de ⊆≤ f , (1.27)

and these inclusions are strict for certain automata.

Proof. Since W di ⊆W de ⊆W f , the inclusions follow immediately. It is easy to
see that these inclusions are strict for the automata Q and S defined by

Q = ({q0,q1},{a},q0,{(qi,a,q1) | i ∈ {0,1}},{q0,q1}, /0,{q1}) , (1.28)
S = ({s0,s1},{a},s0,{(si,a,s1) | i ∈ {0,1}},{s0,s1}, /0,{s0}) . (1.29)

In fact, we have q1 ≤de q0, but q1 6≤di q0, and s0 ≤ f s1, but s0 6≤de s1. 2

We say that an alternating Büchi automaton as in (1.2) is complete if for every
q∈Q, a∈Σ, there is a state q′ ∈Q such that (q,a,q′)∈∆q. Clearly, if we are given
two alternating Büchi automata Q and S such that Q≤x S for some x∈ {di,de, f},
then, by adding at most two new states and at most |Σ| · (|Q|+ 2) transitions, we
can turn Q and S into equivalent complete automata Q′ and S′ such that Q′ ≤x S′
still holds. Therefore, we henceforth assume that all automata are complete; we
allow incomplete automata only in Section 1.7, where we study algorithms for
computing simulation relations, and in examples, which we want to keep small.

1.2.2 Simulation implies language containment
The first theorem states that all types of simulation imply language containment:

Theorem 1.1 Let x ∈ {di,de, f} and let Q and S be alternating Büchi automata.
If Q≤x S, then L(Q)⊆ L(S).

Before we turn to the proof, we introduce useful conventions and notations
concerning plays of simulation games.
Formally, a play of a simulation game is an infinite sequence T = t0tU

0 tV
0 t1tU

1 tV
1 . . .

where ti ∈ Q×S, tU
i ∈Usp∪Udu and tV

i ∈ Vsp∪Vdu. But the play T is obviously
completely determined by the infinite sequence t0t1 . . . and the sequence of letters
w ∈ Σω in the third component of the elements of the sequence tU

0 tU
1 tU

2 . . . (recall
that each tU

i is of the form (q,s,a,A,b,A′,b′) where a is a letter from Σ). A similar
statement holds true for a partial play ending in a position in Q×S. That is, there
is a natural partial mapping

ξ : (Q×S)∞×Σ∞→ set of partial or complete Gx(Q,S)-plays , (1.30)

1.2. Simulation Relations 13

which maps ((qi,si)i<n,w) (where n ∈ ω∪{ω}) to the corresponding partial play,
provided there is such a play. This is the case if |w|+ 1 = n and, for all i with
i + 1< n, (qi,w(i),qi+1) ∈ ∆q and (si,w(i),si+1) ∈ ∆s.

An element of the domain of ξ will be called a protoplay.

Proof of Theorem 1.1. Let σ be a winning strategy for Duplicator in Gx(Q,S).
Let w ∈ L(Q), and let σq be a winning strategy for Automaton in G(Q,w). We
have to show that Automaton has a winning strategy σs in G(S,w).

We first give an informal description of the way Automaton plays. While play-
ing G(S,w), Automaton (in G(S,w)) simultaneously plays the game Gx(Q,S) and
the game G(Q,w). In the two plays he makes the moves for all players, Spoiler
and Duplicator as well as Automaton and Pathfinder, and uses σ and σq to deter-
mine their moves. In other words, Automaton works as a puppeteer and moves
four puppets at the same time. In this spirit, Automaton and Pathfinder in G(Q,w)
and Spoiler and Duplicator in Gx(Q,S) will be called the automaton puppet, the
pathfinder puppet, the spoiler puppet, and the duplicator puppet, respectively.

Automaton plays in such a way that after each round the state components in
G(Q,w) and G(S,w) agree with the two state components of Gx(Q,S), and the
partial games in Gx(Q,S) and G(Q,w) are conform with σ and σq. Then, clearly,
since σ and σq are winning, in the emerging plays in G(S,w) infinitely many states
will be in Fs, that is, Automaton will win G(S,w).

The above can be achieved when

• in Gx(Q,S), Automaton uses σ to determine the moves of the duplicator
puppet, and,

• in G(Q,w), Automaton uses σq to determine the moves of the automaton
puppet.

This is explained in more detail now.
Suppose that a play of G(S,w) is in a position (s, i) while G(Q,w) is in position

(q, i). Consequently, Gx(Q,S) is in position (q,s). Automaton makes the spoiler
puppet in the game Gx(Q,S) choose the letter w(i). Automaton then proceeds as
follows.

• If s is an existential state of S, then Automaton has to move in G(S,w).
Automaton proceeds according to the mode of q.

– If q is an existential state of Q, then Automaton makes the automaton
puppet in the game G(Q,w) move according to the strategy σq. Au-
tomaton makes the spoiler puppet in Gx(Q,S) mimic this move and
then makes the duplicator puppet in Gx(Q,S) react to this move by

14 CHAPTER 1. Simulation and Alternating Büchi Automata

choosing a successor state s′ of s according to the strategy σ. This state
s′ is the successor state Automaton chooses as his move in G(S,w).

– If q is a universal state of Q, then Automaton makes the duplicator
puppet in game Gx(Q,S) choose successor states q′ of q and s′ of
s, according to σ. The pathfinder puppet mimics the choice of q′ in
G(Q,w) while Automaton moves to s′ in G(S,w).

• If s is a universal state of S, then Pathfinder has to move in G(S,w). Again,
Automaton proceeds according to the mode of q.

– If q is an existential state of Q, then Automaton makes the automaton
puppet in the game G(Q,w) move according to the strategy σq. He
makes the spoiler puppet in Gx(Q,S) mimic the automaton puppet’s
move in G(Q,w) and the Pathfinder’s move in G(S,w).

– If q is a universal state of Q, then Automaton makes the spoiler puppet
mimic the move of Pathfinder in Gx(Q,S). Automaton then makes the
duplicator puppet in game Gx(Q,S) choose a successor state q′ of q,
according to σ. The pathfinder puppet in G(Q,w) mimics this choice.

We now proceed with a formal treatment. In order to define the winning stra-
tegy σs of Automaton in G(S,w), we first need a partial function pr0 mapping par-
tial Gx(Q,S)-protoplays to prefixes of G(Q,w)-plays. For any partial Gx(Q,S)-
protoplay π = ((qi,si)i≤n,w[0..n−1]), we set

pr0(π) = (q0,0) . . .(qn,n) . (1.31)

As another auxiliary function, we define the partial function T by

T : (Q×S×ω)∗→ (Q×S)∗×Σ∗ , (1.32)
(qi,si, i)i≤n 7→ ((qi,si)i≤n,w[0..n−1]) . (1.33)

Simultaneously, we define a partial function

σ̂ : (Q×S×ω)∗→ Q×S×ω , (1.34)

describing the interplay of σq and σ for a given partial Gx(Q,S)-play, and a partial
function

h : (S×ω)∗→ (Q×S×ω)∗ . (1.35)

The function σ̂ will be defined only for sequences ρ = (qi,si, i)i≤n where sn ∈
Es and T (ρ) is a partial Gx(Q,S)-protoplay; the function h assigns such sequences
ρ to prefixes of G(Q,w)-plays.

1.2. Simulation Relations 15

To define the value of the partial function σ̂ for a sequence ρ = (qi,si, i)i≤n
where sn ∈ Es, we first assume that qn ∈ Eq.

We then define

σ̂ : ρ 7→(σ(πpp′),n + 1) , (1.36)

where π is the partial Gx(Q,S)-play ξ(T (ρ)), p = (qn,sn,w(n),sp,0,du,1) is the
next position of the play, and p′ = (pr1(σq(pr0(T (ρ)))),sn,w(n),du,1) is the suc-
cessor position chosen via σq.

For the case that qn ∈Uq, we define

σ̂ : ρ 7→(σ(πpp′),n + 1) , (1.37)

where again π is the partial Gx(Q,S)-play ξ(T (ρ)). The following position now
is p = (qn,sn,w(n),du,0,du,1), and p′ = σ(πp) is the successor position chosen
via σ.

The partial function h is inductively defined as follows. For the initial case,
we set

h : (sI,0) 7→ (qI,sI,0) . (1.38)

Now let s0 = sI and ρ = h((si, i)i≤n), and assume that the last tuple in this
sequence is (qn,sn,n). If qn ∈ Eq, we define

h : (si, i)i≤n+1 7→ ρp , (1.39)

where p = (qn+1,sn+1,n + 1) with qn+1 = pr1(σq(pr0(T (ρ)))).
For the case qn ∈Uq, we have to look at the sub-cases sn ∈ Es and sn ∈U s. If

sn ∈ Es, we define

h : (si, i)i≤n+1 7→ ρp , (1.40)

where p = (pr1(σ̂(ρ)),sn+1,n + 1), while for the sub-case sn ∈U s, we define

h : (si, i)i≤n+1 7→ ρ(qn+1,sn+1,n + 1) , (1.41)

where (qn+1,sn+1) = σ(ξ(T (ρ))pp′) with p = (qn,sn,w(n),sp,1,du,0) and p′ =
(qn,sn+1,w(n),du,0).

With these definitions, we can now define a Duplicator winning strategy σs for
G(S,w) by

σs : (si, i)i≤n 7→ (pr2(σ̂(h((si, i)i≤n+1))),n + 1) , (1.42)

for sn ∈ Es.
With these definitions, it is tedious but routine to check the following.

16 CHAPTER 1. Simulation and Alternating Büchi Automata

1. The function σs is defined for (sI,0) if sI ∈ Es, and if (si, i)i<n is a partial σs-
conform G(S,w)-play such that sn−1 ∈ Es, then σs is defined for (si, i)i<n.

That is, σs is in fact a Duplicator strategy for G(S,w).

2. If (si, i)i<ω is a σs-conform G(S,w)-play, then pr0(ξ(T (h((si, i)i<n)))) is a
partial σq-conform G(Q,w)-play, for all n< ω.

That is, since σq is a winning strategy, in the G(Q,w)-play connected to
(si, i)i<ω via h there are infinitely many occurrences of accepting states.

3. If (si, i)i<ω is a σs-conform G(S,w)-play, then ξ(T (h((si, i)i<n))) is a partial
σ-conform Gx(Q,S)-play, for all n< ω.

From 2 and 3 and since σ also is a winning strategy, we conclude that there
must be infinitely many occurrences of accepting states in (si)i<ω, that is, σs is a
winning strategy. 2

1.2.3 Positional strategies for simulation games
A strategy σ of Player i, i ∈ {0,1}, for a game G = (P,P0,P1, pI,Z,W) as defined
in Subsection 1.1.1 is called positional or memoryless if, for every π,π′ ∈ P∗ and
p ∈ Pi, either σ(πp) = σ(π′p) or both σ(πp) and σ(π′p) are undefined. That is,
a positional strategy σ only depends on the last position of a partial play and can
hence be seen as a partial function Pi→ P.

It is well known that, if G is a so-called reachability game or a parity game and
Player i wins G, then Player i has a positional winning strategy [EJ91, Mos91].
Corollary 1.1 follows immediately.

Corollary 1.1 Let Q and S be two ABA. Spoiler (Duplicator) wins Gdi(Q,S) or
G f (Q,S) if and only if there is a positional winning strategy of Spoiler (Duplica-
tor) for Gdi(Q,S) or G f (Q,S), respectively.

For delayed simulation games, this is only true for Duplicator.

Proposition 1.1 1. For alternating Büchi automata Q and S, Duplicator wins
Gde(Q,S) if and only if there is a positional winning strategy of Duplicator
for Gde(Q,S).

2. There are Büchi automata Q and S such that Spoiler wins Gde(Q,S), but no
positional winning strategy is winning for Spoiler.

We will only proof the second claim of the proposition here; the proof of the
first claim needs some preparation and can be found in Subsection 1.7.2.

1.3. Composing Simulation Strategies 17

qI

q1 q2

a

b

a

a

sI

s1 s2

a

b

a

a

1

Figure 1.2: Spoiler needs memory to win Gde(Q,S)

Proof of Proposition 1.1, part 2. Consider the Büchi automata Q (on the left)
and S (on the right) of Figure 1.2.

We claim that Spoiler wins Gde(Q,S).
First, note that there are only existential states in the two automata. Therefore,

in each round first Spoiler moves in Q and then Duplicator moves in S. Next, note
that the automata are deterministic. Thus, a play is completely determined by
what Spoiler does and, moreover, the moves of Spoiler are completely determined
by the letters he chooses at the beginning of each round. That is, a strategy of
Spoiler can be denoted by an ω-word, for instance, aaabω. It is easy to see that
the set of all winning strategies for Spoiler can be denoted by elements from

(aaa + b)∗aaabω , (1.43)

in particular, Spoiler wins Gde(Q,S). However, the only two positional strategies
for Spoiler which do not result in an early loss are aω and bω, and do not belong
to the above set. That is, there is no positional winning strategy for Spoiler in
Gde(Q,S). 2

1.3 Composing Simulation Strategies
In this section, let x ∈ {di,de, f}. We will introduce the join of two Duplicator
strategies, a concept fundamental for the proofs of the results in Subsection 1.3.2
and Section 1.5. The idea is that two strategies for simulation games starting in
positions (q,r) and (r,s), respectively, can be merged into a joint strategy for a
game starting in (q,s); this joint strategy inherits crucial properties of the two
original strategies (see Lemma 1.2 and Corollary 1.7), and will also be used to
show that the relation ≤x is transitive.

18 CHAPTER 1. Simulation and Alternating Büchi Automata

1.3.1 Definition of the join of strategies

Let q∈Q, r ∈R, s∈ S. Let σ0 be a Duplicator strategy for the basic game G(q,r),
and let σ1 be a Duplicator strategy for the basic game G(r,s).

To describe the join of the strategies σ0 and σ1, denoted σ0 ./ σ1, informally,
we can again use the puppeteering metaphor of the previous section: Duplicator,
playing G(q,s) using σ0 ./ σ1, simultaneously plays G(q,r) and G(r,s), using σ0
and σ1, respectively. His four puppets are Spoiler and Duplicator of these games.
We will call Spoiler and Duplicator of G(q,r) the left spoiler puppet and the left
duplicator puppet, while Spoiler and Duplicator of G(r,s) are the right spoiler
puppet and the right duplicator puppet.

Duplicator (of G(q,s), our puppeteer) plays in such a way that after each round
the first state component of G(q,r) and the second state component of G(r,s) agree
with the first and second state component of G(q,s), respectively, and the second
state component of G(q,r) agrees with the first state component of G(r,s), and the
partial plays in G(q,r) and G(r,s) are conform with σ0 and σ1, respectively.

This can be achieved in the following way. In G(q,r), Duplicator uses σ0 to
determine the moves of the left duplicator puppet, while in G(r,s), he uses σ1
to determine the moves of the right duplicator puppet. The spoiler puppets just
mimic the moves of Spoiler and the duplicator puppets.

We will clarify this interplay by describing the course of two exemplary
rounds.

Consider a position (qi,si) of G(q,s) where the simultaneous plays of G(q,r)
and G(r,s) are in positions (qi,ri) and (ri,si), respectively, such that (qi,ri,si) ∈
Eq×U r×Es. Let Spoiler choose a letter a in the G(q,s)-play.

At first, Duplicator makes the two spoiler puppets choose the same letter a.
Since qi is existential, Spoiler has to choose an a-successor state qi+1 as his

next move in G(q,s). Duplicator makes the left spoiler puppet mimic this move
in G(q,r).

Since ri is universal and si is existential, Duplicator proceeds as follows. He
lets the right duplicator puppet choose a-successors ri+1 of ri and si+1 of si ac-
cording to σ1 in G(r,s). The left spoiler puppet then mimics this and chooses ri+1
as its next move in G(q,r); similarly, Duplicator chooses si+1 in G(q,s).

Now consider a situation where (qi,ri,si) ∈Uq×Er×Es. After mimicking
Spoiler’s choice of a letter a by the two spoiler puppets, Duplicator makes the left
duplicator puppet choose a-successors qi+1 of qi and ri+1 of ri in the G(q,r)-play
according to σ0. The choice of ri+1 is mimicked as its next move by the right
spoiler puppet while the choice of qi+1 is used by Duplicator as his next move in
G(q,s). Duplicator then makes the right duplicator puppet react to the move of
the right spoiler puppet by choosing an a-successor si+1 of si according to σ1 in
the G(r,s)-play. Duplicator copies this choice of the right duplicator puppet as his

1.3. Composing Simulation Strategies 19

next move.
That is, first the spoiler puppets serve to mimic the moves of Spoiler. The

moves of the left and right duplicator puppets are then guided by the two strate-
gies σ0 and σ1, respectively. That is, the left duplicator puppet controls the choice
of ri+1 if ri is existential, and this choice is mimicked by the right spoiler pup-
pet, which in turn allows the right duplicator puppet to react, if necessary. This
situation is reversed if ri is universal.

To define this strategy formally, we also have to keep track of the sequence of
the R-states in the play of G(q,r), which is identical to the sequence of R-states
in the play of G(r,s). We now continue with the formal definitions.

We simultaneously and inductively define the joint strategy σ0 ./ σ1, which is
a Duplicator strategy for G(q,s), and a sequence of R-states (starting with r) for
partial (σ0 ./ σ1)-conform G(q,s)-plays, the so-called intermediate sequence.

The definition (construction) of the joint strategy σ0 ./ σ1 for the prefix of a
play that has lasted for n rounds uses the intermediate sequence of length n+1 for
this prefix, and in turn the (n+1)th (σ0 ./σ1)-conform round defines the (n+2)th
element of the intermediate sequence for the prolonged prefix.

The joint strategy and the intermediate sequence will have the following prop-
erty.

Property 1.1 If ((q j,s j) j<n+1,w) is a partial (σ0 ./ σ1)-conform protoplay and
(r j) j<n+1 is the intermediate sequence for this protoplay, then ((q j,r j) j<n+1,w)
is a partial σ0-conform G(q,r)-protoplay and ((r j,s j) j<n+1,w) is a partial σ1-
conform protoplay.

Initially, for the G(q,s)-protoplay ((q,s),ε) (i.e., for the prefix of the play
where no moves have been played), the intermediate sequence is q. Note that
Property 1.1 holds.

Now assume that for a (σ0 ./ σ1)-conform protoplay T = ((qi,si)i<n+1,w),
the intermediate sequence is given by (ri)i<n+1 (and q0 = q,r0 = r,s0 = s). In
particular, T and (ri)i<n+1 have Property 1.1. Let T 0 = ((qi,ri)i<n+1,w) and T 1 =
((ri,si)i<n+1,w). Recall that the last position of ξ(T) is (qn,sn).

In order to define σ0 ./ σ1 and rn+1 for the round following T , we distinguish
eight cases depending on the modes of qn, rn, and sn.

Case EEE, (qn,rn,sn) ∈ Eq×Er×Es. Assume Spoiler chooses the G(q,s)-
positions tU

n = (qn,sn,a,sp,0,du,1) and tV
n = (qn+1,sn,a,du,1). Let

σ0(ξ(T 0)(qn,rn,a,sp,0,du,1)(qn+1,rn,a,du,1)) = (qn+1,rn+1) , (1.44)

σ1(ξ(T 1)(rn,sn,a,sp,0,du,1)(rn+1,sn,a,du,0)) = (rn+1,sn+1) . (1.45)

We define
σ0 ./ σ1(ξ(T)tU

n tV
n) = (qn+1,sn+1) (1.46)

20 CHAPTER 1. Simulation and Alternating Büchi Automata

and define (ri)i≤n+1 to be the intermediate sequence for the partial protoplay
((qi,si)i≤n+1,wa); note that the two have Property 1.1.

Case EUE, (qn,rn,sn) ∈ Eq×U r×Es. Assume Spoiler chooses the G(q,s)-
positions tU

n = (qn,sn,a,sp,0,du,1) and tV
n = (qn+1,sn,a,du,1). Let

σ1(ξ(T 1)(rn,sn,a,du,0,du,1)) = (rn+1,sn,a,du,1) , (1.47)

σ1(ξ(T 1)(rn,sn,a,du,0,du,1)(rn+1,sn,a,du,1)) = (rn+1,sn+1) . (1.48)

We define
σ0 ./ σ1(ξ(T)tU

n tV
n) = (qn+1,sn+1) (1.49)

and (ri)i≤n+1 as the corresponding intermediate sequence.
Case UEU, (qn,rn,sn) ∈Uq×Er×U s. Assume Spoiler chooses the G(q,s)-

positions tU
n = (qn,sn,a,sp,1,du,0) and tV

n = (qn,sn+1,a,du,0). Let

σ0(ξ(T 0)(qn,rn,a,du,1,du,0)) = (qn+1,rn,a,du,1) , (1.50)

σ0(ξ(T 0)(qn,rn,a,du,1,du,0)(qn+1,rn,a,du,1)) = (qn+1,rn+1) . (1.51)

We define
σ0 ./ σ1(ξ(T)tU

n tV
n) = (qn+1,sn+1) (1.52)

and (ri)i≤n+1 as the corresponding intermediate sequence.
Case UUU, (qn,rn,sn) ∈Uq×U r×U s. Assume Spoiler chooses the G(q,s)-

positions tU
n = (qn,sn,a,sp,1,du,0) and tV

n = (qn,sn+1,a,du,0). Let

σ1(ξ(T 1)(rn,sn,a,sp,1,du,0)(rn,sn+1,a,du,0)) = (rn+1,sn+1) , (1.53)

σ0(ξ(T 0)(qn,rn,a,sp,1,du,0)(qn,rn+1,a,du,0)) = (qn+1,rn+1) . (1.54)

We define
σ0 ./ σ1(ξ(T)tU

n tV
n) = (qn+1,sn+1) (1.55)

and (ri)i≤n+1 as the next intermediate sequence.
Case UEE, (qn,rn,sn) ∈Uq×Er×Es. Assume Spoiler chooses the position

tU
n = (qn,sn,a,du,0,du,1). Let

σ0(ξ(T 0)(qn,rn,a,du,0,du,1)) = (qn+1,rn,a,du,1) , (1.56)

σ0(ξ(T 0)(qn,rn,a,du,0,du,1)(qn+1,rn,a,du,1)) = (qn+1,rn+1) , (1.57)

σ1(ξ(T 1)(rn,sn,a,sp,0,du,1)(rn+1,sn,a,du,1)) = (rn+1,sn+1) . (1.58)

We define

σ0 ./ σ1(ξ(T)tU
n) = (qn+1,sn,a,du,1) , (1.59)

σ0 ./ σ1(ξ(T)tU
n (qn+1,sn,a,du,1)) = (qn+1,sn+1) , (1.60)

1.3. Composing Simulation Strategies 21

and choose (ri)i≤n+1 as the corresponding intermediate sequence.
Case UUE, (qn,rn,sn) ∈ Uq ×U r × Es, and the following Spoiler-chosen

G(q,s)-position is tU
n = (qn,sn,a,du,0,du,1). Let

σ1(ξ(T 1)(rn,sn,a,du,0,du,1)) = (rn+1,sn,a,du,1) , (1.61)

σ1(ξ(T 1)(rn,sn,a,du,0,du,1)(rn+1,sn,a,du,1)) = (rn+1,sn+1) , (1.62)

σ0(ξ(T 0)(qn,rn,a,sp,1,du,0)(qn,rn+1a,du,0)) = (qn+1,rn+1) . (1.63)

We define

σ0 ./ σ1(ξ(T)tU
n) = (qn+1,sn,a,du,1) , (1.64)

σ0 ./ σ1(ξ(T)tU
n (qn+1,sn,a,du,1)) = (qn+1,sn+1) , (1.65)

and choose (ri)i≤n+1 as the corresponding intermediate sequence.
Case EEU, (qn,rn,sn) ∈ Eq × Er ×U s. Assume that Spoiler chooses the

G(q,s)-positions tU
n = (qn,sn,a,sp,0,sp,1) and tV

n = (qn+1,sn,a,sp,1) and tn+1 =
(qn+1,sn+1). Let

σ0(ξ(T 0)(qn,rn,a,sp,0,du,1)(qn+1,rn,a,du,1)) = (qn+1,rn+1) . (1.66)

We define (ri)i≤n+1 as the corresponding intermediate sequence (the strategy σ0 ./
σ1 need not be defined in this case, since Duplicator cannot move in a turn starting
with a Eq×U s-state).

Case EUU, (qn,rn,sn) ∈ Eq ×U r ×U s, and the following Spoiler-chosen
G(q,s)-positions are the three positions defined by tU

n = (qn,sn,a,sp,0,sp,1),
tV
n = (qn+1,sn,a,sp,1) and tn+1 = (qn+1,sn+1). Let

σ1(ξ(T 1)(rn,sn,a,sp,1,du,0)(rn,sn+1,a,du,0)) = (rn+1,sn+1) . (1.67)

We define (ri)i≤n+1 as the next intermediate sequence (again, σ0 ./ σ1 need not
be defined).

This completes the description of σ0 ./ σ1. It will be thoroughly analyzed in
the next subsection.

1.3.2 Fundamental properties of composed strategies and sim-
ulation relations

In this subsection, we will show crucial properties of the simulation relations≤di,
≤de, ≤ f (summarized as ≤x) using the concept of a join of two Duplicator strate-
gies, as defined above.

22 CHAPTER 1. Simulation and Alternating Büchi Automata

We first want to show that ≤x is reflexive and transitive, i. e., a preorder. Re-
flexivity is obvious: whenever in a play a position (q,q) ∈ E×E is reached, Du-
plicator can move in the second component to the state that Spoiler has chosen in
the first component; for (q,q) ∈U ×U , he does the same in the first component
(Duplicator literally duplicates Spoiler’s moves). Using this strategy, Duplicator
wins the game in all three versions.

Transitivity needs some more care. Here, we will need the join of two Dupli-
cator strategies, as defined in Subsection 1.3.1.

Lemma 1.2 (composing winning strategies) Let q ∈ Q, r ∈ R, and s ∈ S such
that q≤x r and r ≤x s. Let σ0 be a Duplicator strategy for Gx(q,r), and let σ1 be
a Duplicator strategy for Gx(r,s).

If σ0 and σ1 are winning strategies, σ0 ./ σ1 is a winning strategy (i.e., q≤x r
and r ≤x s imply q≤x s).

Proof. Let σ0,σ1 be winning strategies, and let T be a (σ0 ./ σ1)-conform play
with intermediate sequence (ri)i<ω. Note that the plays T 0 and T 1 (as defined in
Subsection 1.3.1) are σ0-conform and σ1-conform, respectively.

In the case of direct simulation, since T 0 is σ0-conform, for every i such that
qi ∈ Fq, we have ri ∈ Fr. And since T 1 is σ1-conform, this implies si ∈ Fs, that
is, T is a win for Duplicator.

In the case of delayed simulation, for every i such that qi ∈ Fq, there is a j0 ≥ i
such that r j0 ∈ Fr, since T 0 is σ0-conform. In turn, by the σ1-conformity of T 1,
there is a j1 ≥ j0 such that s j1 ∈ Fs. Hence, T is a win for Duplicator.

Finally, for fair simulation, if there are infinitely many i such that qi ∈ Fq, the
σ0-conformity of T 0 ensures that there are also infinitely many j such that r j ∈ Fr,
and the σ1-conformity of T 1 then ensures that there are infinitely many l such that
sl ∈ Fs. So, again, T is a win for Duplicator. 2

Corollary 1.2 For x ∈ {di,de, f}, ≤x is a preorder, that is, ≤x is reflexive and
transitive.

Being a preorder, ≤x induces an equivalence relation ≡x by virtue of

q≡x s iff q≤x s and s≤x q. (1.68)

By Theorem 1.1, q ≡x s implies L(Q(q)) = L(S(s)). The relations ≡di, ≡de, ≡ f
are called direct, delayed and fair simulation equivalence, respectively.

While the join of two Duplicator winning strategies is again a winning stra-
tegy, the join of two memoryless Duplicator strategies need not be a memoryless
strategy.

1.3. Composing Simulation Strategies 23

Lemma 1.3 There are Büchi automata Q, R, S such that Q ≤x R ≤x S but, for
all Duplicator winning strategies σ0 for Gx(Q,R) and σ1 for Gx(R,S), σ0 ./ σ1
is not a positional strategy, but, of course, a winning strategy.

Proof. We give a simple example of such automata for x ∈ {de, f}; this example
can be modified easily so as to work in the case x = di.

Consider the automata Q, R, S (from left to right) of Figure 1.3.

qI

q1

a
a

rI

r1

r2

a, b

a, b
a

sI

s1

a, b

a
a

1

Figure 1.3: Joint strategies are not positional

The moves of Spoiler and Duplicator in Gx(Q,R), and hence Duplicator’s po-
sitional winning strategy σ0, are fixed by the structure of the automata (if Spoiler
does not want to lose early), i. e., there is only one infinite play of Gx(Q,R). A po-
sitional winning strategy σ1 for Duplicator in Gx(R,S) has to satisfy σ1(r1,sI,a,
du,1) = (r1,sI) and σ1(r2,sI,a,du,1) = (r2,s1).

Consequently, σ0 ./ σ1 maps the partial play π = (qI,sI) (qI,sI,a,sp,0,du,1)
(q1,sI,a,du,1) to (q1,sI), but the partial play π (q1,sI) (q1,sI,a,sp,0,du,1) (q1,
sI,a,du,1) is mapped to (q1,s1), i. e., σ0 ./ σ1 is not positional. 2

Fundamental for the further study of ≤x is the following lemma, which is
similar to [ESW01, Lemma 4.1].

Lemma 1.4 Let Q, S be alternating Büchi automata and let q,s be states of Q
and S, respectively, such that q≤x s. Let a ∈ Σ.

1. If (q,s) ∈ Eq×Es, there is, for every q′ ∈ ∆q(q,a), a state s′ ∈ ∆s(s,a) such
that q′ ≤x s′.

24 CHAPTER 1. Simulation and Alternating Büchi Automata

2. If (q,s) ∈ Eq×U s, for all q′ ∈ ∆q(q,a) and for all s′ ∈ ∆s(s,a) we have
q′ ≤x s′.

3. If (q,s)∈Uq×Es, there are q′ ∈ ∆q(q,a) and s′ ∈ ∆s(s,a) such that q′≤x s′.

4. If (q,s) ∈Uq×U s, there is, for every state s′ ∈ ∆s(s,a), a q′ ∈ ∆q(q,a) such
that q′ ≤x s′.

Proof. First, let (q,s) ∈ Eq×Es. Since q ≤x s, in a play T of Gx(q,s) starting
with T0 = (q,s)(q,s,a,sp,0,du,1)(q′,s,a,du,1), i. e., q′ ∈ ∆(q,a), Duplicator can
use a winning strategy σ. Let (q′,s′) = σ(T0). Since σ is a winning strategy for
Duplicator, there is a winning strategy of Duplicator for Gx(q′,s′), thus q′ ≤x s′.

Similar arguments yield the claims for the other three cases, i. e., the case
(q,s) ∈Uq×U s is symmetric, while the arguments for the other cases are as fol-
lows. Case (q,s) ∈ Eq×U s: If Duplicator cannot move in a round but has a win-
ning strategy at the beginning of that round, he also has a winning strategy at the
beginning of the next round, no matter what Spoiler does. Case (q,s)∈Uq×Es: If
Duplicator has a winning strategy and can choose both transitions, he can choose
the transitions using his winning strategy. Then he has a winning strategy at the
beginning of the next round. 2

In the sequel, we will call a Duplicator strategy σ for a game G(q0,s0) ≤x-
respecting if q≤x s holds true for every position (q,s) reachable in any play where
Duplicator follows σ.

The following is easy to see:

Remark 1.1 A winning strategy of Duplicator for an x-simulation game is ≤x-
respecting.

The converse is false for x ∈ {de, f}, as we will see at the beginning of Sec-
tion 1.5.

1.4 Quotienting Modulo Direct Simulation
In general, when ≡ is an equivalence relation on the state space of an alternating
Büchi automaton Q, we call an alternating Büchi automaton a quotient of Q with
respect to ≡ if it is of the form

(Q/≡,Σ, [qI],∆′,E ′,U ′,F/≡) (1.69)

where [q] = {q′ ∈ Q | q≡ q′} for every q ∈ Q and M/≡= {[q] | q ∈M} for every
M ⊆ Q.

Furthermore, the following natural constraints must be satisfied:

1.4. Quotienting Modulo Direct Simulation 25

1. If ([q],a, [q′]) ∈ ∆′, then there exist q̂≡ q and q̄≡ q′ such that (q̂,a, q̄) ∈ ∆,
that is, ∆′ ⊆ {([q],a, [q′]) | (q,a,q′) ∈ ∆},

2. if [q]⊆ E, then [q] ∈ E ′, and

3. if [q]⊆U , then [q] ∈U ′.

Note that 1–3 are minimal requirements so that the quotient really reflects the
structure of Q and is not just any automaton on the equivalence classes of ≡.

In the following, when the considered equivalence relation is direct or delayed
simulation equivalence, we will, for instance, write Qde instead of Q/≡de and Fdi
instead of F/≡di.

A naive quotient is a quotient where the converse of the first constraint is true,
that is, where transitions are representative-wise.

Direct simulation is particularly easy (compared to delayed or fair simulation),
so one might expect that a naive definition of the quotient automaton modulo di-
rect simulation should be equivalent to the original automaton. Problems arise for
mixed equivalence classes, i. e., classes containing both existential and universal
states. In the naive quotienting, these states can be made neither existential nor
universal.

Consider Figure 1.4, where an alternating Büchi automaton Q over Σ = {a,b}
is shown on the left, and the naive x-quotient is shown on the right. For simplicity
in notation, we denote the states in the quotients by representatives of the actual
equivalence classes, for instance, q0 on the right stands for [q0]. Note that we have
q3 ≤x q1 ≤x q0 ≡x q2, but q3 6≡x q1 and q1 6≡x q0 for x ∈ {di,de, f}.

a, b a

b

a

b

a b

q0 q1 q2

q3

a, b

b

ab

q0

q3

q1

1

Figure 1.4: Naive quotients do not work

The language recognized by the original automaton is (ba + a)ω, while the
naive quotient recognizes Σω. The other possible naive quotient, where the state

26 CHAPTER 1. Simulation and Alternating Büchi Automata

[q0] is declared universal, is not equivalent to the original automaton either: that
naive quotient only accepts the word aω.

We overcome these problems for direct simulation quotienting by using a more
sophisticated transition relation for the quotient automaton, exploiting the simple
structure of direct simulation games.

1.4.1 Minimal and maximal successors
To define quotient automata modulo ≡x (in fact, for x = di and x = de only, since
fair quotienting does not preserve the language, see [ESW01]), we will need the
notion of maximal and minimal successors of states.

Let Q = (Q,Σ,qI,∆,E,U,F) be an alternating Büchi automaton. Let q ∈ Q,
and a ∈ Σ. A state q′ ∈ ∆(q,a) is an x-maximal a-successor of q if and only if
q′′ ≤x q′ holds for every q′′ ∈ ∆(q,a) with q′ ≤x q′′. We define

maxx
a(q) = {q′ ∈ ∆(q,a) | q′ is an x-maximal a-successor of q} . (1.70)

A state q′ ∈ ∆(q,a) is an x-minimal a-successor of q if and only if q′ ≤x q′′ for
every q′′ ∈ ∆(q,a) with q′′ ≤x q′. We define

minx
a(q) = {q′ ∈ ∆(q,a) | q′ is an x-minimal a-successor of q} . (1.71)

We will also write mina and maxa instead of minx
a and maxx

a, respectively, if
the context determines the intended winning mode.

1.4.2 Minimax quotienting
We can now define a quotient that works for direct simulation, as follows. An
x-minimax quotient of Q is a quotient where the transition relation is given by

∆m
x = {([q],a, [q′]) | a ∈ Σ,q ∈ E,q′ ∈maxx

a(q)}
∪{([q],a, [q′]) | a ∈ Σ,q ∈U,q′ ∈minx

a(q)} . (1.72)

In particular, mixed classes can be declared existential or universal arbitrarily.
We now show that the di-minimax quotient and the original automaton recog-

nize the same language.
We first need some additional insights about maximal successors and the as-

sociated strategies.
As a corollary of Lemma 1.4, we find:

Corollary 1.3 Let q ∈ Q,s ∈ S be states of alternating Büchi automata Q and S
such that q≡x s. Let a ∈ Σ.

1.4. Quotienting Modulo Direct Simulation 27

1. If (q,s) ∈ Eq×Es and q′ ∈maxx
a(q), then there is a state s′ ∈maxx

a(s) such
that q′ ≡x s′.

2. If (q,s) ∈Uq×U s and q′ ∈minx
a(q), then there is a state s′ ∈minx

a(s) such
that q′ ≡x s′.

3. If (q,s) ∈ Eq×U s, then all x-maximal a-successors of q and all x-minimal
a-successors of s are x-equivalent.

Proof. For the first part, let (q,s) ∈ Eq×Es and q′ ∈maxa(q). By Lemma 1.4.1,
we find an s′ ∈ ∆(s,a) such that q′ ≤x s′. Let s′′ ∈ ∆s(s,a) such that s′ ≤x s′′.
Applying Lemma 1.4.1 again, there is a q′′ ∈ ∆q(q,a) such that s′′ ≤x q′′, i.e.,
since q′ is an x-maximal a-successor, q′ ≤x s′ ≤x s′′ ≤x q′′ ≤x q′ ≤x s′. Hence s′ is
an x-maximal a-successor of s and satisfies q′ ≡x s′.

The second part is dual to the case (q,s) ∈ Eq×Es.
For the third part, let (q,s) ∈ Eq×U s, q′ ∈ maxx

a(q), s′ ∈ minx
a(s). By Lem-

ma 1.4.2, q′ ≤x s′. By Lemma 1.4.3, there is a state q′′ ∈ ∆q(q,a) and a state
s′′ ∈ ∆s(s,a) such that s′′ ≤x q′′. Lemma 1.4.2 shows q′ ≤x s′′ ≤x q′′ ≤x s′. But
since q′ is an x-maximal a-successor, q′′ ≤x q′ holds; since s′ is an x-minimal a-
successor, s′ ≤x s′′ holds. Hence q′ ≡x s′. So for every r0,r1 ∈minx

a(s)∪maxx
a(q),

we have r0 ≡x r1, using the transitivity of ≡x. 2

This is the reason why mixed classes can be declared existential or universal
in the di-minimax quotient: From Corollary 1.3.3, we can conclude the following.

Remark 1.2 For a mixed class M ∈ Q/≡x and a ∈ Σ,

{[q′] | ∃q(q ∈M∩E ∧q′ ∈maxa(q))}
={[q′] | ∃q(q ∈M∩U ∧q′ ∈mina(q))} , (1.73)

and the size of these sets is 1, i. e., mixed classes are deterministic states of mini-
max quotients.

By Corollary 1.3, we also have

∆m
x = {([q],a, [q′]) | a ∈ Σ,q ∈ E,q′ ∈maxx

a(q)}
∪{([q],a, [q′]) | a ∈ Σ, [q]⊆U,q′ ∈minx

a(q)} . (1.74)

Given an alternating Büchi automaton Q = (Q,Σ,qI,∆,E,U,F), the two rela-
tions ≤di ⊆ Q×Q and ≡di ⊆ Q×Q obviously have the following property.

Remark 1.3 1. For all q,q′ ∈ Q, if q≤di q′ and q ∈ F, then q′ ∈ F.

28 CHAPTER 1. Simulation and Alternating Büchi Automata

2. For all q,q′ ∈ Q, if q≡di q′, then q ∈ F iff q′ ∈ F.

Clearly, if ((qi,si),w) is a protoplay in an x-game which is conform with a
winning strategy for Duplicator, then qi ≤x si holds for every i≥ 0. In the case of
direct simulation, the converse is true as well:

Lemma 1.5 Let q0 ≤di s0. In the game Gdi(q0,s0), every ≤di-respecting strategy
for Duplicator is a winning strategy.

Proof. Let q0 ≤di s0, and let σ be a ≤di-respecting strategy of Duplicator for
Gdi(q0,s0). Let T = ((qi,si)i<ω,w) be a σ-conform Gdi(q0,s0)-protoplay. By as-
sumption, we have qi ≤di si for every i ≥ 0; by Remark 1.3, si ∈ Fs whenever
qi ∈ Fq, for every i ≥ 0. Hence T is a win for Duplicator and σ is a winning
strategy for Duplicator. 2

The≤di-respecting strategies are exactly the winning strategies. Of these win-
ning strategies, some are optimal in the sense that they choose moves to maximal
successors in the second component and to minimal successors in the first com-
ponent.

Let σ be a Duplicator strategy for a game Gx(q0,s0). We call σ a minimax
strategy if, for every σ-conform protoplay T = ((qi,si)i<ω,w) and every i < ω,
if (qi,si) ∈ Uq×S, then qi+1 ∈ minx

w(i)(qi), and if (qi,si) ∈ Q×Es, then si+1 ∈
maxx

w(i)(si).
We note:

Lemma 1.6 Let Q, S be alternating Büchi automata. There is a positional strat-
egy σ of Duplicator such that for all q∈Q, s∈S where q≤x s, σ is a≤x-respecting
minimax strategy for Gx(q,s).

Proof. Using Lemma 1.4, such a strategy can easily be defined. 2

Now it is easy to show:

Theorem 1.2 (minimax quotients) Let Q = (Q,Σ,qI,∆,E,U,F) be an alternat-
ing Büchi automaton and Qm any di-minimax quotient of Q.

1. For all k0,q0 ∈ Q such that k0 ≤di q0, Q(q0) di-simulates Qm([k0]) and
Qm([q0]) di-simulates Q(k0), that is, [k0]≤di q0 and k0 ≤di [q0].

2. Q and Qm di-simulate each other, that is, Q≡di Qm.

3. Q and Qm are equivalent, that is, L(Q) = L(Qm).

1.4. Quotienting Modulo Direct Simulation 29

Proof. Mixed classes are deterministic states by Remark 1.2, so existential choice
is the same as universal branching for these states. Hence, it suffices to consider a
quotient Qm where every mixed class is existential. Also, it is enough to show the
first part, the other parts follow immediately from this.

Let Qm = (Qdi,Σ, [qI],∆m,Em,Um,Fdi) such that ∆m = ∆m
di, Em = {[q] ∈Qdi |

[q]∩E 6= /0} and Um = Qdi \Em. We first show that Q(q0) di-simulates Qm([k0]).
To do so, we define a positional winning strategy σ of Duplicator for Gdi([k0],q0).
First, let σdi be a positional strategy of Duplicator such that σdi is ≤di-respecting
and minimax for all games Gdi(q,q′) where q,q′ ∈Q and q≤di q′. Such a strategy
exists by Lemma 1.6.

Further, for every class [k] ∈ Qdi, let rep([k]) be a fixed representative of that
class, i. e., rep([k]) ∈ [k]. We also require that rep([k]) ∈ E if [k] ∈ Em.

We now define σ as follows. For all k,q ∈ Q, a ∈ Σ, let

σ([k],q,a,du,1) = ([k],pr2(σdi(rep([k]),q,a,du,1))) , (1.75)
σ([k],q,a,du,0,du,1) =

([pr1(σdi(rep([k]),q,a,du,0,du,1))],q,a,du,1) , (1.76)
σ([k],q,a,du,0) = ([pr1(σdi(rep([k]),q,a,du,0))],q) . (1.77)

This function is well-defined because σdi is minimax, i. e., the result of σ really
is a successor position in Gdi(Qm,Q).

We now show that σ is, in fact, a winning strategy. Consider a round starting
in a position ([k],q) /∈ Em×U such that k ≤di q. Since σdi is a ≤di-respecting
minimax strategy, if Duplicator uses σ in this round, then the next round starts in
a position ([k′],q′) such that k′ ≤di q′.

We also consider the case of a round in which Spoiler acts alone, i. e., the round
starts in a position of the form ([k],q) ∈ Em×U such that k ≤di q. The round
continues with the positions ([k],q,a,sp,0,sp,1)([k′],q,a,sp,1)([k′],q′), that is,
there are k̂ ∈ [k]∩E and k̄ ∈ [k′] such that (k̂,a, k̄) ∈ ∆. Now k′ ≤di q′ follows
directly by Lemma 1.4.2.

This shows that σ is a winning strategy of Duplicator for Gdi([k0],q0), since
k ≤di q holds for every position ([k],q) that occurs in a σ-conform play. Note that
if we had a position ([k],q) occurring in such a play with ([k],q) ∈ Fdi× (Q\F),
then we would have k 6≤de q.

That Qm([q]) di-simulates Q(k) can be shown using a symmetrical construc-
tion and reasoning. To prove this, we now define a Duplicator winning strategy σ

30 CHAPTER 1. Simulation and Alternating Büchi Automata

for Gdi(k0, [q0]) as follows. For all k,q ∈ Q, a ∈ Σ, let

σ(k, [q],a,du,1) = (k, [pr2(σdi(k, rep([q]),a,du,1))]) , (1.78)
σ(k, [q],a,du,0,du,1) =

(pr1(σdi(k, rep([q]),a,du,0,du,1)), [q],a,du,1) , (1.79)
σ(k, [q],a,du,0) = (pr1(σdi(k, rep([q]),a,du,0)), [q]) . (1.80)

Again, if a round starts in a position (k, [q]) /∈ E×Um such that k ≤di q and if
Duplicator uses σ in this round, then the next round starts in a position (k′, [q′])
such that k′ ≤di q′. This again follows since σdi is a ≤di-respecting minimax
strategy.

Again, we finally consider the case of a round in which Spoiler acts alone,
i. e., the last position is of the form (k, [q]) ∈ E×Um such that k≤di q. The round
continues with the positions (k, [q],a,sp,0,sp,1)(k′, [q],a,sp,1)(k′, [q′]), that is,
there are q̂ ∈ [q] ⊆U and q̄ ∈ [q′] such that (q̂,a, q̄) ∈ ∆. Now k′ ≤di q′ follows
directly by Lemma 1.4.2.

By an analogous argument as above, it follows that this σ is a Duplicator win-
ning strategy for Gdi(k0, [q0]) 2

The above proof does not require the set of transitions to be minimal—we may
allow more transitions, provided that mixed classes are existential in the quotient
and no transitions induced by universal states to non-minimal successors are con-
sidered for mixed classes. That is, as a corollary of the proof of Theorem 1.2, we
have:

Corollary 1.4 Let Q = (Q,Σ,qI,∆,E,U,F) be an alternating Büchi automaton.
Let Q′ = (Qdi,Σ, [qI],∆′,E ′,U ′,Fdi) be a quotient w. r. t. direct simulation of Q
such that

• ∆m
di ⊆ ∆′,

• [q]∩E 6= /0 implies [q] ∈ E ′, and,

• for every q ∈ U such that [q]∩ E 6= /0, if ([q],a, [q′]) ∈ ∆′ then there are
q̂ ∈ [q]∩E, q̄ ∈ [q′] such that (q̂,a, q̄) ∈ ∆.

Then, Q and Q′ simulate each other.

Theorem 1.2 is false for delayed simulation, as we will see in the next section.

1.5. Quotienting Modulo Delayed Simulation 31

1.4.3 Example: Minimax quotient

As an example, we reconsider the automaton of Figure 1.4. Remember that
q3 ≤di q1 ≤di q0 ≡di q2, but q3 6≡di q1 and q1 6≡di q0 for this automaton. That
is, minb(q0) = {q1}= maxb(q2). Figure 1.5 shows the resulting di-minimax quo-
tient where the state [q0] = [q2] is declared universal.

a, b a

b

a

b

a b

q0 q1 q2

q3

a

b

a

q0

q3

q1

1

Figure 1.5: The automaton of Figure 1.4 (left) and its di-minimax quotient (right)

1.5 Quotienting Modulo Delayed Simulation

If there is a winning strategy for Duplicator in a game Gde(q,s), there is also a
≤de-respecting minimax strategy (cf. Lemma 1.6), but this may not necessarily be
a winning strategy; it is possible that no minimax strategy is winning. Consider
the automaton in Figure 1.6.

a, b a

a
q0 q1

1

Figure 1.6: De-minimax quotients don’t work

For x∈{de, f}, we have q0≥x q1 but not q0≡x q1, i.e., maxa(q0) = {q0}. That
is, for a minimax strategy σ of Duplicator, σ(P∗(q1,q0,a,du,1)) = (q1,q0) holds.

32 CHAPTER 1. Simulation and Alternating Büchi Automata

Hence ((q1,q0)(q1,q0,a,sp,0,du,1)(q1,q0,a,du,1))ω is a σ-conform Gx(q1,q0)-
play, but not a win for Duplicator. Consequently, the language of any minimax
quotient is empty since ∆m

de does not contain a transition from [q0]de to [q1]de.
To circumvent this problem, we define semi-elective quotients.

1.5.1 Semi-elective quotienting
Let Q = (Q,Σ,qI,∆,E,U,F) be an alternating Büchi automaton. In the semi-
elective quotient of Q, denoted Qse

x , the transition relation is given by

∆se
x = {([q],a, [q′]) | (q,a,q′) ∈ ∆,q ∈ E}

∪{([q],a, [q′]) | a ∈ Σ, [q]⊆U,q′ ∈mina(q)}, (1.81)

and every mixed class is declared existential, i. e., Ese
x = {[q] ∈ Qx | [q]∩E 6= /0}.

That is, purely universal classes are treated like in the case of minimax quoti-
enting while purely existential and mixed classes are existential states having all
transitions induced by their existential states.

By Corollary 1.3.3, we have

∆se
x = {([q],a, [q′]) | (q,a,q′) ∈ ∆,q ∈ E}

∪{([q],a, [q′]) | a ∈ Σ,q ∈U,q′ ∈mina(q)} , (1.82)

where again mixed classes are existential states.
We will show that Q and Qse

x simulate each other. For x = di, this follows
immediately from Corollary 1.4, i. e.:

Corollary 1.5 For every alternating Büchi automaton Q, the automata Q and Qse
di

simulate each other, in particular, L(Q) = L(Qse
di).

Note that usually the minimax quotient has less transitions than the semi-
elective quotient. That is, for direct simulation, the minimax quotient is the better
choice, because it is advantageous to also minimize the number of transitions.
This is especially important because states can become unreachable and can thus
be deleted as a result of such a minimization.

The more complicated case, where x = de, is treated in the following subsec-
tions.

1.5.2 Q simulates Qse
de

Although a ≤de-respecting minimax strategy σ of Duplicator is not necessarily
a winning strategy, it is a ≤de-respecting winning strategy for Duplicator in the
basic simulation game G(q,s); the winning condition is assumed to be trivial in

1.5. Quotienting Modulo Delayed Simulation 33

the sense that if no early loss occurs, Duplicator wins. That is, the basic simulation
game is a simulation game in the sense of Subsection 1.2.1 with winning condition
Pω.

We may extend this observation to a basic simulation game G(K0,q0) where
K0 is a state of the quotient automaton Qse

de such that k0 ≤de q0 holds for some
k0 ∈ K0, which we write as K0 vde q0:

Corollary 1.6 For all K0 ∈ Qde and for all q0 ∈ Q such that K0 vde q0, there is a
minimax strategy σ of Duplicator for G(K0,q0) such that, for all Spoiler strategies
τ for G(K0,q0), the (τ,σ)-conform protoplay ((Ki,qi)i<ω,w) satisfies Kivde qi for
every i< ω.

We then say that σ is a vde-respecting minimax strategy.
Proof. Let K0 ∈ Qde, q0 ∈ Q. Let Ti be a prefix of a G(K0,q0)-play such that
the last position of Ti is a P1-position such that Ki vde qi. Again, we make a case
distinction.

In the first case, if (Ki,qi)(Ki,qi,a,sp,0,du,1)(Ki+1,qi,a,du,1) is a suffix of
T (hence Ki ∈ Ese), we find ki ∈ Ki ∩ E and ki+1 ∈ ∆(ki,a)∩Ki+1.

By Lemma 1.4.1, the set {q′ ∈ ∆(qi,a) | ki+1 ≤de q′} is not empty. We choose
a ≤de-maximal element qi+1 of this set (which is an element of maxde

a (qi)) and
define σ(T) = (Ki+1,qi+1). Hence Ki+1 vde qi+1.

In the other cases, the suffixes are of the form (Ki,qi,a,du,0,du,1), of the
form (Ki,qi+1,a,du,0), or of the form (Ki,qi)(Ki,qi,a,du,0,du,1)(Ki+1,qi,a,
du,1) where Ki+1 is chosen such that there is a q′ ∈∆(qi,a) satisfying Ki+1vde q′.
These cases are also treated using Lemma 1.4, i. e., by Lemma 1.4.3 and 1.4.4, we
can find a de-minimal a-successor Ki+1 of Ki and use similar arguments if Dupli-
cator has to move in the first component. Note that the case (Ki,qi) ∈ Ese×U ,
where Duplicator does not move in the following round, can again be treated by
Lemma 1.4.2. 2

Moreover, we can show that the join of such avde-respecting minimax strate-
gy and a Duplicator winning strategy is again vde-respecting.

Corollary 1.7 Let K0 ∈ Qde, q0 ∈ Q such that K0 vde q0, and s0 ∈ S such that
q0≤de s0. Let σ be avde-respecting minimax strategy for Duplicator in G(K0,q0)
and let σde be a Duplicator winning strategy for Gde(q0,s0).

Then σ ./ σde is a vde-respecting strategy for G(K0,s0).

Proof. Let τ be some Spoiler strategy for Gde(K0,s0), and let T = ((t j) j<ω,w)
be the (τ,σ ./ σde)-conform protoplay. Initially, we have K0 vde q0 ≤de s0, hence
K0 vde s0.

34 CHAPTER 1. Simulation and Alternating Büchi Automata

Now let i ∈ ω, and Ti = ((t j) j≤i,w[0..i−1]) be the prefix of T of length i + 1.
Let ti = (Ki,si), and let (q j) j≤i be the intermediate sequence of Ti. Assume Ki vde
qi ≤de si.

We show that Ki+1 vde qi+1 ≤de si+1 holds for the next (Qde× S)-position
ti+1 = (Ki+1,si+1) of T and the next state of the intermediate sequence, distin-
guishing four cases.

In the first case, let Ki ⊆Uq, si ∈U s. Let tU
i = τ(ξ(Ti)) = (Ki,si,a,sp,1,du,0)

and tV
i = τ(ξ(Ti)tU

i) = (Ki,si+1,a,du,0). Let σ ./ σde(ξ(Ti)tU
i tV

i) = (Ki+1,si+1),
and let qi+1 be the next state of the intermediate sequence according to Section 1.3.

If qi ∈ Eq, the definition of σ ./ σde implies Ki+1 ≤de qi+1, since ξ(T 0) is σ-
conform (both Ki+1 and qi+1 are chosen according to σ). And qi+1 ≤de si+1 by
Lemma 1.4, since qi ≤de si and (qi,si) ∈ Eq×U s. Hence Ki+1 ≤de si+1.

If qi ∈Uq, the definition of σ ./ σde also implies Ki+1 ≤de si+1, since ξ(T 1)
is σde-conform (qi+1 is chosen according to σde, hence qi+1 ≤de si+1). Because
ξ(T 1

i+1) is σ-conform (i.e., Ki+1 is chosen according to σ), we have Ki+1 ≤de
qi+1 ≤de si+1.

The other cases are shown analogously, i. e., the case Ki ∩Eq 6= /0, si ∈ Es is
symmetric to Ki ⊆Uq, si ∈U s, and in the cases Ki∩Eq 6= /0, si ∈U s and Ki ⊆Uq,
si ∈ Es, the desired property also results from the definition of σ ./ σde together
with Lemma 1.4. 2

And we can easily verify the following.

Lemma 1.7 Let K0,q0,s0,σ,σde be chosen like in Corollary 1.7.
For every Spoiler strategy τ in Gde(K0,s0), q0 ∈ Fq implies that the (τ,σ ./

σde)-conform play contains a position (K j,s j) ∈ Qde × Fs, i. e., σ ./ σde is a
winning strategy for Duplicator in G(K0,s0) with winning set {u ∈ Pω | ∃i(ui ∈
Qde×Fs)}.

Proof. Let τ be a Spoiler strategy for Gde(K0,s0), and let q0 ∈ Fq. Let T =
((ti)i<ω,w) be the (τ,σ ./ σde)-conform protoplay, and assume that there is no
i ∈ ω such that ti = (Ki,si) ∈ Qde×Fs. Since T is σ ./ σde-conform, the play T 1

(as defined in Section 1.3) is σde-conform. But T 1 is not a win for Duplicator, in
contradiction to σde being a winning strategy for Duplicator. Hence there must be
a position ti = (Ki,si) in T such that si ∈ Fs. 2

We are now ready to show Theorem 1.3, stating that in fact an alternating
Büchi automaton simulates its semi-elective quotient w. r. t. delayed simulation.
The idea of the proof is that, in order to win the respective simulation game,
Duplicator uses the join of a vde-respecting strategy and a winning strategy. But
this joint strategy is only vde-respecting and not necessarily a winning strategy:

1.5. Quotienting Modulo Delayed Simulation 35

The intermediate sequence may miss the accepting representatives of the states of
the quotient automaton, so that Duplicator may stick to a merely vde-respecting
strategy.

As a remedy, we define the Duplicator strategy as a modified join of the two
strategies such that Duplicator is forced to reach for accepting states when neces-
sary.

Theorem 1.3 Let Q be a Büchi automaton, and let k, q be states such that k≤de q.
Q(q) de-simulates Qse

de([k]), i. e., there is a winning strategy for Duplicator in
Gde([k],q).

Proof. To show that there is a winning strategy σ for Duplicator in Gde([k],q),
we fix

1. for every K ∈ Qde, a representative rep(K) ∈ K such that if K∩F 6= /0 then
rep(K) ∈ F ,

2. for every (K,q) ∈ Qde×Q such that K vde q, a vde-respecting minimax
strategy σo

Kq of Duplicator for G(K,q) (by Corollary 1.6, there is such a
strategy), and

3. for every (k,q) ∈ Q×Q such that k ≤de q, a winning strategy σde
kq of Dupli-

cator for Gde(k,q).

For the prefix Tn of a Gde([k],q)-play T , let (ti)i≤n = (Ki,qi)i≤n be the subse-
quence of the (Qde×Q)-positions in Tn. Let

j = min{i≤ n | (Ki,qi) ∈ Fde× (Q\F) ∧∀i′(i≤ i′ ≤ n→ qi′ /∈ F)} , (1.83)

or j = 0 if this set is empty. Let T[j,i] be the suffix of Ti starting with t j, and define

σ(Ti) := σo
K jrep(K j) ./ σde

rep(K j)q j
(T[j,i]) . (1.84)

By Corollary 1.7, σ is vde-respecting. Now if ti = (Ki,qi) is the first (Fde×
(Q \F))-position after the last (Qde×F)-position (or the first (Fde× (Q \F))-
position at all), we have Ki vde qi. The strategy σ is updated to σo

Kirep(Ki)
./

σde
rep(Ki)qi

where rep(Ki) ∈ Ki∩F , and only the suffix starting with (Ki,qi) of the
play is taken into account for the following moves of Duplicator. (Remember that
a joint strategy cannot be assumed to be positional.)

By Lemma 1.7, Duplicator’s use of σ forces the play to reach a position
(K j,q j) in Qde×F (and K j vde q j). Hence every position in Fde× (Q \F) is
followed by a position in Qde×F in a σ-conform play. Thus σ is a winning strat-
egy of Duplicator for Gde([k],q). 2

36 CHAPTER 1. Simulation and Alternating Büchi Automata

1.5.3 Qse
de simulates Q

Theorem 1.3 states that Q(q) de-simulates Qse
de([k]). We also want to show that

Qse
de([q]) de-simulates Q(k). The main idea is quite similar to the previous proof:

we will not join a ≤de-respecting strategy with a winning strategy, but a winning
strategy with a “≡de-respecting” strategy, ensuring that the intermediate sequence
is a path in the sequence of second state components in the plays of Gde(k, [q]).

We start with the following corollary, a direct consequence of the construction
of Qse

de together with Corollary 1.3.

Corollary 1.8 Let q′0 ∈ [q0]. There is a Duplicator strategy σ≡ for Gde(q′0, [q0])
such that, for every Q×Qde-position (q′i, [qi]) of a σ≡-conform play, q′i ∈ [qi]
holds.

We call such a strategy ≡de-respecting.
A ≡de-respecting strategy will replace the ≤de-respecting minimax strategy

of the previous proof. We will show that the join of a winning strategy for
Gde(k0,q0) and a ≡de-respecting strategy for Gde(q0, [q0]) is a winning strategy
for Gde(k0, [q0]).

Theorem 1.4 Let Q be a Büchi automaton with states k0, q0 such that k0 ≤de q0.
The automaton Qse

de([q0]) de-simulates Q(k0), i. e., there is a winning strategy for
Duplicator in Gde(k0, [q0]).

Proof. Let σde be a winning strategy of Duplicator for Gde(k0,q0), and let σ≡ be
a ≡de-respecting Duplicator strategy for Gde(q0, [q0]). We show that σde ./ σ≡ is
a Duplicator winning strategy for Gde(k0, [q0]).

Let τ be a Spoiler strategy for Gde(k0, [q0]). Let T = (ti)i<ω be the (τ,σde ./
σ≡)-conform protoplay with the intermediate sequence (q′i)i<ω.

Since ξ(T 0) is σde-conform, there is, for every i < ω such that pr1(ti) ∈ F , a
j ≥ i such that q′j ∈ F . Since ξ(T 1) is σ≡-conform, we have q′j ∈ pr2(t j), hence
t j ∈ Q×Fde. Consequently, σde ./ σ≡ is a winning strategy. 2

Theorems 1.3 and 1.4 yield:

Theorem 1.5 (semi-elective quotients) For every alternating Büchi automaton
Q, the automata Q and Qse

de de-simulate each other, in particular, L(Q) = L(Qse
de).

1.5. Quotienting Modulo Delayed Simulation 37

1.5.4 Remarks and possible optimizations
In the construction of the quotient automaton, a transition (qu,a,q′) ∈ ∆ with qu ∈
U only results in a transition ([qu]de,a, [q′]de)∈ ∆se

de if q′ ∈mina(qu), even if [qu]de
is not a mixed but a purely universal class. This is not a technical trick to permit
an easier proof, but a necessity, for without this restriction the resulting quotient
automaton would not recognize the language of the original automaton.

Consider the automaton of Figure 1.1 again, and remember that the alphabet
is {a,b}. We have q0 ≡de q1 >de q2. So a quotient construction preserving non-
minimal successors of universal states would result in the automaton given in
Figure 1.7. But the original automaton accepts bω whereas the quotient does not;
in the semi-elective quotient w. r. t. delayed simulation, there is no edge from the
state [q0] to itself.

bq0 q2

b b

1

Figure 1.7: A quotient of the automaton in Figure 1.1

Above we saw that in some cases existential classes need transitions to non-
maximal successors. In certain situations, not all such transitions are really nec-
essary. For example, accepting classes only need maximal transitions:

Remark 1.4 Let Qse′
de be the quotient which is defined just as Qse

de but with the
transition relation given by

∆se′
de = {([q],a, [q′]) | (q,a,q′) ∈ ∆∧q ∈ E ∧ ([q]∩F 6= /0→ q′ ∈maxa(q))}

∪{([q],a, [q′]) | a ∈ Σ, [q]⊆U,q′ ∈mina(q)} . (1.85)

Then Qse′
de de-simulates Q.

Proof. In a delayed simulation game, Duplicator can stick to a ≤de-respecting
minimax strategy until the play reaches an (F× (Q\F))-position, in which case
he may be forced, in order to win, to switch to another strategy until the play
reaches a (Q×F)-position (cf. the proof of Theorem 1.3). That is, we may as-
sume that a Duplicator winning strategy behaves like a ≤de-respecting minimax
strategy at all (Q×F)-positions. Hence, only de-maximal successors are neces-
sary at accepting existential states. 2

38 CHAPTER 1. Simulation and Alternating Büchi Automata

In other words, if an existential state is de-equivalent to an accepting state, its
transitions to non-de-maximal successor states are superfluous.

As a simple example, consider the automaton of Figures 1.4 and 1.5 once
again. The semi-elective quotient of this automaton is shown on the left-hand side
of Figure 1.8, while the quotient defined according to Remark 1.4 is shown on the
right-hand side.

a

b

ab

q0

q3

q1

a

b

a

q0

q3

q1

1

Figure 1.8: The semi-elective and optimized semi-elective quotients of the au-
tomaton of Figures 1.4 and 1.5

State [q3] is disconnected from state [q0] on the right-hand side because state
[q0] is an accepting state.

In the same vein, a (non-accepting) existential state q does not need a transition
(q,a,q′) if there is another transition (q,a,q′′) such that q′′ is accepting and q′ ≤de
q′′.

Remark 1.5 Let Qse′′
de be the quotient which is defined just as Qse′

de of Remark 1.4
but with the transition relation given by

∆se′′
de = ∆se′

de \{([q],a, [q′]) | [q] ∈ Ese
de,

∃([q],a, [q′′]) ∈ ∆se′
de : [q′′] ∈ Fde ∧ [q′]<de [q′′]} . (1.86)

Then Qse′′
de de-simulates Qse′

de and thus also Q.

Thus, a valid strategy for reducing the number of transitions is extending the
set of accepting states without changing the simulation relation. One way how
this can be carried out is explained in what follows. A necessary condition for the
de-equivalence of a state to an accepting state is its de-equivalence to an accepting
copy of itself, as defined below (without proof). By checking this equivalence to
an accepting copy, we can also identify states which are not equivalent to an actual

1.5. Quotienting Modulo Delayed Simulation 39

accepting state in the original automaton, but which can be declared accepting
without changing their status w. r. t. ≤de.

Let Q = (Q,Σ,qI,∆,E,U,F) be an ABA. Let Q′ = {q′ | q ∈ Q} be a disjoint
copy of Q (analogously E ′,U ′ ⊆ Q′), and let ∆′ = {(q′,a,k) | (q,a,k) ∈ ∆}. Let
Q′ = (Q∪Q′,Σ,qI,∆∪∆′,E ∪E ′,U ∪U ′,F ∪Q′).

We define

PFde = {q ∈ Q | q′ ≤de q} . (1.87)

The elements of PFde are called pseudo-accepting states. Note that F ⊆ PFde.
We define

QPF = (Q,Σ,qI,∆,E,U,PFde) . (1.88)

Lemma 1.8 For every alternating Büchi automaton Q = (Q,Σ,qI,∆,E,U,F), we
have Q≡de QPF .

Proof. Obviously, Q≤de QPF . Conversely, let σq be a Duplicator winning strate-
gy for Gde(q′,q) for every q ∈ PFde \F , where q′ ∈ PFde is the copy of q in QPF .
Let σqq̄ be a winning strategy for Gde(q, q̄) for every pair of states (q, q̄) ∈ Q×Q
such that q≤de q̄.

To win the game Gde(QPF ,Q), Duplicator starts with the strategy σ = σqIqI ,
but whenever the play reaches a position (k,q) such that k ∈ PFde \F , q ∈ Q\F ,
Duplicator switches to the strategy σk ./ σ. He then uses this strategy until the
play reaches a position (q, q̄) ∈ Q×F ; this is guaranteed to happen since both σk
and σ are winning strategies, and it is also guaranteed that q≤de q̄ holds. At this
point, Duplicator changes his strategy to σ = σqq̄ and continues with that strategy
until the play reaches a position in (PFde \F)× (Q\F) once again, which again
forces him to switch his strategy as explained above. By Lemma 1.2, this strategy
is winning. 2

In summary, when computing the semi-elective quotient, we may treat pseudo-
accepting states like accepting states for the purpose of deleting transitions accord-
ing to Remarks 1.4 and 1.5.

1.5.5 Example: Semi-elective quotient
As an example of the construction of the semi-elective quotient automaton modulo
delayed simulation, consider Figure 1.9.

For the automaton Q on the left, we have q2 <de q1 ≡de q5 <de q0 ≡de q3 <de
q4. Thus there are four states in the quotient automaton Qse

de on the right. Since
minb(q1) = {q2}, the edge ([q1],b, [q1]) is not in ∆se

de (cf. (1.82)); since mina(q0) =

40 CHAPTER 1. Simulation and Alternating Büchi Automata

q2 q5

a

b

q1 q3

q4

q0

a

a, b

a, b

a b

a, b

a

a, b

a, b a, b

q0

q1

q2

q4

a, b
a

a b

a
a, b

1

Figure 1.9: Automaton and de-semi-elective quotient

minb(q0) = {q1}, there is no edge ([q0],c, [q3]) in ∆se
de with c ∈ {a,b}. And since

mina(q3) = minb(q3) = {q1}, there is no edge ([q3],c, [q4]) in ∆se
de with c ∈ {a,b}.

Consequently, the state [q4] is not reachable in Qse
de and should be removed in a

successive optimization of the quotient automaton.

1.6 From Alternating Büchi Automata to Nondeter-
ministic Büchi Automata

Given an alternating Büchi automaton Q, the standard approach for construct-
ing an equivalent nondeterministic (i. e., non-alternating) Büchi automaton is the
construction of Miyano and Hayashi [MH84].

In this section, we will show that our simulation relations are compatible
with the Miyano–Hayashi construction. That is, if an ABA Q is simulated by
an ABA S, the same holds true for their nondeterministic versions resulting from
the Miyano–Hayashi construction. We conclude that our simulation quotienting
can be applied to the alternating automaton prior to the Miyano–Hayashi con-
struction without changing its status w. r. t. the simulation relation. This is of
practical importance since we can further conclude that our simulation relations
can be used for on-the-fly simplifications during the Miyano–Hayashi construc-
tion. (However, a subsequent simulation quotienting usually will still improve the

1.6. From ABA to NBA 41

result.) Traditionally, simulation quotienting and simulation-based simplifications
are only applied to the nondeterministic automaton.

Figure 1.10 shows these two possible ways from an ABA to a nondeterministic
automaton (NBA).

ABA

ABA

NBA NBA

NBA

/≡

MH

MH

/≡ /≡

1

Figure 1.10: Two ways from alternating BA to nondeterministic BA (the symbol
/≡ stands for quotienting)

From a practical point of view, applying simulation quotienting to the alter-
nating automaton is relatively cheap compared to simulation quotienting for the
nondeterministic automaton (cf. Sect. 1.7), since the Miyano–Hayashi construc-
tion (MH-construction, for short) incurs an exponential growth (see below). For
this reason, a state space reduction of the alternating automaton often results in a
substantial reduction of the size of the nondeterministic automaton. Aside from
these savings in the state space, a smaller intermediate automaton speeds up a
subsequent simulation quotienting.

We will now give a short summary of the MH-construction. The construction
of Miyano and Hayashi for converting an ABA into a nondeterministic automaton
is a subset construction modified for de-universalization instead of determiniza-
tion. The states are pairs (M,N) of subsets of the state set Q. The first component
is used in a similar fashion as in the normal subset construction, that is, if there
is a universal state qu in the first component M with a-successors q′ and q′′, and
(M′,N′) is an a-successor state of (M,N) then {q′,q′′} ⊆ M′. The second com-
ponent is used to keep track of computation branches with an obligation to reach
an accepting state, i. e., N ⊆M and N is disjoint to the set of accepting states F ,
because a state is deleted from N as soon as its computation branch reaches an
accepting state. Especially, (M,N) is accepting if the second component is the
empty set, and if (M′,N′) is a successor state of (M, /0) then N′ = M′ \F .

42 CHAPTER 1. Simulation and Alternating Büchi Automata

Formally, for an alternating Büchi automaton Q = (Q,Σ,qI,∆,E,U,F), the
automaton resulting from the Miyano–Hayashi construction applied to Q (called
the MH-automaton) is

Qnd = (Qnd,Σ,qnd
I ,∆nd,Qnd, /0,Fnd) (1.89)

with

Qnd ⊆ 2Q×2Q , (1.90)

qnd
I = ({qI},{qI | qI /∈ F}) , (1.91)

Fnd = {(M,N) ∈ Qnd | N = /0} . (1.92)

The set of states Qnd contains all pairs (M,N) ∈ 2Q×2Q which are reachable
from qnd

I via ∆nd . We have ((M,N),a,(M′,N′)) ∈ ∆nd if and only if there is a
function f : Q→ Q such that f (q) ∈ ∆(q,a) for all q ∈M∩E,

M′ =
⋃

q∈M∩U

∆(q,a) ∪ { f (q) | q ∈M∩E} , (1.93)

and N′ = M′ \F if N = /0 or

N′ = (
⋃

q∈N∩U

∆(q,a) ∪ { f (q) | q ∈ N∩E})\F (1.94)

if N 6= /0.
Then Qnd is a nondeterministic Büchi automaton such that L(Q) = L(Qnd).

Note that Qnd is an exponential size automaton in the number of states of Q (and
that this is necessarily so in the worst case).

Proposition 1.2 Let Q = (Q,Σ,qI,∆q,Eq,Uq,Fq) and S = (S,Σ,sI,∆s,Es,U s,Fs)
be alternating Büchi automata, and let x∈ {di,de, f}. If Q≤x S, then Qnd ≤x Snd .

Proof. The proof is somewhat similar to the construction of a joint strategy
(Section 1.3) and the proof of Lemma 1.2. Let σ be a Duplicator winning strategy
for Gx(Q,S). We will now simultaneously and inductively construct a Duplicator
strategy σ′ for Gx(Qnd,Snd) and a set of σ-conform Gx(Q,S)-protoplays L. This
set is called the logbook of the partial σ′-conform play.

Remember that, in a Gx(Qnd,Snd)-protoplay ((Pi)i<n,w), the positions Pi are
pairs consisting of a state of Qnd and a state of Snd , and these states in turn are
pairs of subsets of Q and S, respectively. Hence, every such position Pi is of the
form ((Mq

i ,N
q
i),(Ms

i ,N
s
i)) where Nq

i ⊆Mq
i ⊆ Q and Ns

i ⊆Ms
i ⊆ S.

For such a protoplay ((Pi)i<n,w), the logbook Ln−1 will have the following
properties (for every i< n), called the logbook properties.

1.6. From ABA to NBA 43

1. The elements of Ln−1 are σ-conform Gx(Q,S)-protoplays over the word w.

2. For every s ∈Ms
i , there is a q ∈Mq

i such that (q,s) is the (i + 1)th position
of an element of Ln−1, and, conversely,

3. if (q,s) is the (i+1)th position of an element of Ln−1, then q ∈Mq
i , s ∈Ms

i .

Initially, for the protoplay ((({qI},{qI} \ Fq),({sI},{sI} \ Fs)),ε) of length 1,
L0 = {((qI,sI),ε)} is a valid logbook.

Now let Tn = ((Pi)i<n,w) be a partial σ′-conform Gx(Qnd,Snd)-protoplay with
logbook Ln−1, and assume Spoiler chooses in ξ(Tn) the position t ′n = ((Mq

n,N
q
n),

(Ms
n−1,N

s
n−1),a). (Since Qnd and Snd are nondeterministic automata, we may

assume that Spoiler chooses a letter and a state simultaneously, cf. [ESW01].)
To define σ′(ξ(Tn)t ′n), we only have to define the first component of the state

Duplicator chooses, i. e., the set Ms
n, since Ns

n is determined by this choice. For
every protoplay Kn−1 = ((qi,si)i<n,w) ∈ Ln−1, we distinguish the following four
cases. Note that qn−1 ∈Mq

n−1 and sn−1 ∈Ms
n−1 by the logbook property.

• First case: (qn−1,sn−1) ∈ Eq × Es. Then, there is a qn ∈ Mq
n such that

(qn−1,a,qn) ∈ ∆q. Let

σ(ξ(Kn−1)(qn−1,sn−1,a,sp,0,du,1)(qn,sn−1,a,du,1)) = (qn,sn) .
(1.95)

We add sn to Ms
n and Kn = ((qi,si)i<n+1,wa) to the logbook Ln.

• Second case: (qn−1,sn−1) ∈Uq×Es. Then, ∆q(qn−1,a)⊆Mq
n . Let

σ(ξ(Kn−1)(qn−1,sn−1,a,du,0,du,1)) = (qn,sn−1,a,du,1) (1.96)

and

σ(ξ(Kn−1)(qn−1,sn−1,a,du,0,du,1)(qn,sn−1,a,du,1)) = (qn,sn) .
(1.97)

We add sn to Ms
n and Kn = ((qi,si)i<n+1,wa) to the logbook Ln.

• Third case: (qn−1,sn−1) ∈ Eq×U s. Then, there is a qn ∈ Mq
n such that

(qn−1,a,qn) ∈ ∆q, and it must be the case that ∆s(sn−1,a)⊆Ms
n. For every

sn ∈ ∆s(sn−1,a), we add the protoplay ((qi,si)i<n+1,wa) to the logbook Ln.

• Fourth case: (qn−1,sn−1) ∈Uq×U s. Then, ∆q(qn−1,a) ⊆Mq
n , and it must

be the case that ∆s(sn−1,a)⊆Ms
n. For every sn ∈ ∆s(sn−1,a), let

σ(ξ(Kn−1)(qn−1,sn−1,a,sp,1,du,0)(qn−1,sn,a,du,0)) = (qn,sn) ;
(1.98)

we then add the protoplay ((qi,si)i<n+1,wa) to the logbook Ln.

44 CHAPTER 1. Simulation and Alternating Büchi Automata

Finally, we define σ′(ξ(Tn)t ′n) = ((Mq
n,N

q
n),(Ms

n,N
s
n)), where the construction

of Ms
n is determined by t ′n and Ln−1 as defined above (and Ns

n in turn is determined
by (Ms

n)).
It is easy to check that Ln again has the logbook property and that σ′ is a

Duplicator strategy for Gx(Qnd,Snd). We show that σ′ is in fact a winning strategy.
In the case x = de, suppose that Spoiler reaches an accepting state (Mq

m, /0) in the
m-th turn of a Gde(Qnd,Snd)-play π such that Duplicator is in a non-accepting
state (Ms

m,N
s
m), i. e., Ns

m 6= /0. Since Ns
m ⊆Ms

m, by the logbook property there is,
for every s ∈ Ns

m, a q ∈Mq
m such that (q,s) is the current position of a protoplay

in the logbook Lm to π such that, in this protoplay, Duplicator has the obligation
to reach an accepting state in the second component in order to win. Since the
protoplays in the logbook proceed in a σ-conform way, there is a minimal m′ >m
with the following property: For every protoplay P in the logbook Lm′ , if (q,s) is
the m-th position of P and Duplicator has to reach an accepting state in the second
component in order to win P, then there is an l ∈ {m + 1, . . . ,m′} such that the
l-th position of P is of the form (q′,s′) and s′ ∈ Fs. By the above definition of
σ′, this implies that the m′-th Duplicator state in π is of the form (Ms

m′, /0), i. e., an
accepting state.

For x = di and x = f , analogous argumentations can be used. 2

For sets of states A,A′ ⊆ Q of an ABA Q, we say that A′ is a set of x-minimal
representatives of A if (1) A′ ⊆ A and (2) for every q ∈ A \A′, there is a q′ ∈ A′

such that q′ ≤x q but not q≤x q′. For a state (M,N) ∈ 2Q×2Q of Qnd , (M′,N′) is
an x-pruned state for (M,N) if N′ is a set of x-minimal representatives of N and
M′ is the union of N′ and a set of x-minimal representatives of M. (That is, we
have N′ ⊆M′ as well as N ⊆M.)

The following corollary follows immediately from the proof of Propositi-
on 1.2.

Corollary 1.9 (pruning of MH-automata) Let x ∈ {di,de}. Let Q be an ABA,
and let (M0,N0), (M1,N1) be two states of Qnd such that (M1,N1) is an x-pruned
state for (M0,N0). Let Q′nd be the result of replacing every transition ((M,N),a,
(M0,N0)) of Qnd by ((M,N),a,(M1,N1)).

Then Qnd ≡x Q′nd .

That is, non-x-minimal elements of the subsets in the states of Qnd can be
removed, but a state can only be removed from the first component if it is not in
the second component or if it also is not x-minimal w. r. t. the second component.

Corollary 1.10 For every ABA Q and x ∈ {di,de}, ((Qx)nd)x ≡x (Qnd)x holds.

1.7. Efficient Algorithms 45

Proof. We have Qx ≡x Q, so by Proposition 1.2, (Qx)nd ≡x Qnd holds, so
((Qx)nd)x ≡x (Qnd)x follows immediately. 2

That is, the original alternating automaton, the intermediate automata of Fig-
ure 1.10 and the resulting nondeterministic Büchi automaton are all simulation
equivalent.

Moreover, optimizations using Corollary 1.9 can be applied on-the-fly, that is,
after the construction of every single state of the MH-automaton. These on-the-fly
simplifications (for a specialized and optimized variant of the MH-construction)
are discussed in detail in Chapter 2.

But note that the simulation quotients of simulation equivalent (alternating
or nondeterministic) automata need not be isomorphic: Let Qde+ denote the de-
semi-elective quotient of Q optimized using pseudo-accepting states as described
in Subsection 1.5.4. Then, ((Qde+)nd)de+, the result of taking the left-hand way
in Fig. 1.10, is, for certain instances, smaller than (Qnd)de+, the result of the right-
hand way. This is because a state (M,N) of Qnd is pseudo-accepting only if all
elements of N are pseudo-accepting. (Without additional optimizations, the left-
hand quotient will not be smaller than the right-hand quotient.)

1.7 Efficient Algorithms
Efficient algorithms for computing simulation relations of nondeterministic Büchi
automata are given in [ESW01]. We use the same ideas with minor modifications
and adjustments for computing simulation relations of alternating Büchi automata.
This is explained in the first and third subsection, while in the second subsection,
we prove part 1 of Proposition 1.1, which we had postponed earlier. In the fourth
subsection, we focus on weak alternating Büchi automata; we present a specific
algorithm for computing simulation relations for weak alternating Büchi automata
with a lower time complexity.

1.7.1 Modifications for the delayed simulation game
For direct and fair simulation, the winning conditions of the corresponding games
can be phrased as parity or even simpler conditions. This is not true for delayed
simulation. But a simple expansion of the game graph will achieve this, as pointed
out in [ESW01]. The crucial information for the players of a delayed simulation
game is whether the play has already visited a position in F̂q∩ F̄s without having
visited a F̂s-position since or not (cf. Subsection 1.2.1). Following [ESW01], we
encode this information in the positions of the delayed simulation game. This
yields a Büchi game.

46 CHAPTER 1. Simulation and Alternating Büchi Automata

For an alternating automaton Q = (Q,Σ,qI,∆,E,U,F) and k,q ∈ Q, let

G(k,q) = (P,P0,P1,(k,q),Z) (1.99)

be the basic simulation game according to Section 1.2. We define the game

Gde2(k,q) = (Pde,Pde
0 ,Pde

1 ,(k,q,bkq),Zde,W de2) (1.100)

by

Pde = P×{0,1} , (1.101)

Pde
0 = P0×{0,1} , (1.102)

Pde
1 = P1×{0,1} , (1.103)

W de2 = (Pde∗(P×{0}))ω (1.104)

and

Zde = {((p,b),(p′,b)) ∈ Pde×Pde | (p, p′) ∈ Z, p′ /∈ Q×Q} (1.105)

∪{((p,b),(p′,b)) ∈ Pde×Pde | (p, p′) ∈ Z, p′ ∈ (Q\F)× (Q\F)}
(1.106)

∪{((p,b),(p′,0)) ∈ Pde×Pde | (p, p′) ∈ Z, p′ ∈ Q×F} (1.107)

∪{((p,b),(p′,1)) ∈ Pde×Pde | (p, p′) ∈ Z, p′ ∈ F× (Q\F)}. (1.108)

with bkq = 1 if k ∈ F,q /∈ F and else bkq = 0. Observe that the parameters k and
q influence the initial position only. The last component of these states will be
called the winning bit.

Note that the set PFde of pseudo-accepting states (see Subsection 1.5.4) can
be computed together with the simulation relation ≤de without changing the au-
tomaton: A state q belongs to PFde if and only if q ∈ F or (q,q,1) is a winning
position of Duplicator in the above game graph.

We define that k ≤de2 q holds if Duplicator has a winning strategy for Gde2.

Remark 1.6 The game Gde(k,q) is a win for Duplicator if and only if the game
Gde2(k,q) is a win for Duplicator, i. e., ≤de2 =≤de.

So in the remainder it suffices to consider the games Gdi(k,q), Gde2(k,q), and
G f (k,q).

1.7. Efficient Algorithms 47

1.7.2 Proof of Proposition 1.1, part 1
From [EJ91, Mos91], it follows that the winner of a game Gde2(q,s) always has a
positional winning strategy. We can now show that, if Duplicator has a positional
winning strategy for Gde2(q,s), then he also has a positional winning strategy for
Gde(q,s). Together with Remark 1.6, this proofs the first part of Proposition 1.1.

The idea of the proof is that Duplicator, using a positional strategy for
Gde(Q,S), plays with a worst-case assumption: He does not “know” the current
winning bit, but whenever he can win under the assumption that the winning bit
is 1, he does assume that it is 1 indeed.

Let Q = (Q,Σ,qI,∆q,Eq,Uq,Fq) and S = (S,Σ,sI,∆s,Es,U s,Fs) be alternat-
ing Büchi automata such that Duplicator (Player 1) wins

Gde(Q,S) = (Pde,Pde
0 ,Pde

1 ,(qI,sI,bI),Zde,W de2) , (1.109)

where bI = bqIsI .
Let D⊆ Q×S×{0,1} be the set of positions (q,s,b) in Gde2(Q,S) such that

Duplicator has a (positional) winning strategy for a game starting in (q,s,b); in
particular, (qI,sI,bI) ∈ D by Remark 1.6. For every (q,s,b) ∈ D, let σqsb be a
winning strategy for the game starting in (q,s,b).

We now define a game

GD(Q,S) = (Pde,Pde
0 ,Pde

1 ,(qI,sI,bD),ZD,W de2) (1.110)

such that the set of moves ZD equals Zde2, but with the following changes. In ZD,
we replace every move (p,(q,s,0)) by a move (p,(q,s,1)) if s /∈ Fs and (q,s,1)∈
D (in this case, the winning bit of p is 0). We set bD = 1 if bI = 1, or if sI /∈ Fs

and (qI,sI,1) ∈ D, else bD = 0. Note that (qI,sI,bD) ∈ D.
Now Duplicator has a winning strategy for GD(Q,S). In a play of GD(Q,S),

Duplicator starts with the strategy σqIsIbD . Whenever a “new” move (p,(q,s,1))∈
ZD \Zde2 is taken in this play, Duplicator switches his strategy to σqs1 (remember
that (q,s,1) ∈ D by definition of ZD).

This is a winning strategy, because whenever the winning bit switches from 0
to 1, Duplicator effectively plays in Gde2(Q,S). Upon taking a move such that the
winning bit switches from 0 to 1, no “new” transitions can be taken and Duplicator
will not switch his strategy again until the winning bit switches back to 0. And
this is guaranteed to happen since Duplicator uses a winning strategy.

That is, Duplicator wins GD(Q,S), and since GD(Q,S) is a Büchi game, there
is a positional winning strategy σ for Duplicator. Now it easy to see that in a σ-
conform play of GD(Q,S), for every (q,s) ∈ Q× S, at most one of the positions
(q,s,0) and (q,s,1) can be encountered. That is, we can assume that σ is defined
for at most one value of the winning bit, for every pair of states, and every σ-
conform play π can be mapped (by just deleting the winning bit) to a play π′ of

48 CHAPTER 1. Simulation and Alternating Büchi Automata

Gde(Q,S) such that Duplicator is the winner of π′. In other words, a positional
Duplicator winning strategy σ′ : P1→ P for Gde(Q,S) can be defined by

σ′(p) =

σ(p,0), if σ(p,0) is defined,
σ(p,1), if σ(p,1) is defined,
undefined, else,

(1.111)

for all p ∈ P. 2

1.7.3 Reduction of the game graphs

By definition and by Remark 1.6 it is clear that in order to determine whether
k ≤di q, k ≤de q, or k ≤ f q holds it is sufficient to determine the winner in the
game Gdi(k,q), Gde2(k,q), or G f (k,q), respectively. A priori, the size of these
games can be reduced in order to reduce the complexity of determining whether
one state simulates another state. (We can safely ignore the winning bit in the
considerations of this subsection.)

We call a position productive if it is reachable in the game graph from a (Q×
Q)-position. A position p ∈ P is a dead end if no (Q×Q)-position is reachable
from p and p /∈ Q×Q. Note that the game graph of a complete automaton does
not have dead ends.

Remark 1.7 1. A position (k′,q,a,A′,1) is productive only if there is a k ∈ Q
such that (k,a,k′) ∈ ∆ and (k,q) /∈U×U.

2. A position (k,q′,a,A′,0) is productive only if there is a q ∈ U such that
(q,a,q′) ∈ ∆ and k ∈U.

3. A position (k,q,a,A,b,A′,b′) or (k,q,a,A,b) is a dead end if ∆(k,a) = /0
and b = 0, or ∆(q,a) = /0 and b = 1.

That is, in the game graph of an automaton with n states and m transitions,
there are O(n2 + nm) productive states that are not dead ends, and O(n2 + nm)
moves between them. Since we may remove all unproductive positions from the
game graph we may assume that there are at most O(|Q|2 + |Q| · |∆|) positions and
moves in the game graph. Since we also may assume that every state is reachable
from the initial state, we have |∆| ≥ |Q|−1. Note that the size of the alphabet is
not a factor here. So we conclude:

Remark 1.8 It can be assumed that the game graphs of Gdi(k,q), Gde2(k,q), and
G f (k,q) have O(|Q| · |∆|) positions and moves.

1.7. Efficient Algorithms 49

We may now compute the winning sets and thus the relations≤di,≤de and≤ f
in the reduced game graph using the algorithms given in [ESW01]. This yields:

Theorem 1.6 (computing simulation relations) Given an alternating Büchi au-
tomaton Q with n states and m transitions, ≤di can be computed in time O(nm).
The relations ≤de and ≤ f can be computed in time O(n3m) and space O(nm).

The same complexity bounds hold for computing the respective quotients.

1.7.4 Computing simulation relations of weak alternating
Büchi automata

A weak alternating Büchi automaton Q = (Q,Σ,qI,∆,E,U,F) is an alternating
Büchi automaton such that every strongly connected component (SCC for short)
C ⊆ Q of the transition graph satisfies C ⊆ F or C ⊆ Q\F . This strong require-
ment lets us design more efficient algorithms for computing simulation relations
and quotients, similar to what was done in [KVW00] in the context of emptiness
tests for weak alternating automata over one-letter alphabets.

The following is easy to see:

Remark 1.9 If C is an SCC of the game graph of Gx(Q,Q) for x ∈ {di,de2, f},
there are SCCs C0,C1 of the transition graph of Q such that {pr1(p) | p∈C} ⊆C0
and {pr2(p) | p ∈C} ⊆C1.

As a result, if C is an SCC of the game graph of Gde2(Q,Q), precisely one of
the following statements holds:

1. For all positions (p,b) ∈C, pr1(p) ∈ F , pr2(p) ∈ F and b = 0.

2. For all positions (p,b) ∈C, pr1(p) /∈ F , pr2(p) ∈ F and b = 0.

3. For all positions (p,b) ∈C, pr1(p) ∈ F , pr2(p) /∈ F and b = 1.

4. For all positions (p,b) ∈C, pr1(p) /∈ F , pr2(p) /∈ F and b = 0.

5. For all positions (p,b) ∈C, pr1(p) /∈ F , pr2(p) /∈ F and b = 1.

For a game G f (Q,Q) the situation is similar but simpler, because there is no
winning bit.

That is, for an SCC of the game graph of Gde2(Q,Q) or G f (Q,Q) from which
no other SCC is reachable the winning positions can be determined just as in an
ordinary game: Duplicator wins the delayed game starting in any position of C
if and only if the winning bit is 0. For the fair simulation game, types 4 and 5
collapse to a single type of SCC which is a win for Duplicator, and Duplicator

50 CHAPTER 1. Simulation and Alternating Büchi Automata

also wins in SCC types 1 and 2. In all other cases Spoiler wins, except for the
cases where the SCC consists of a single dead end, but these cases are easy to
handle.

Now assume that for an SCC C, the winning positions of all topologically
smaller SCCs have already been computed, i. e., for all positions p ∈C such that
(p, p′) ∈ Z for a p′ /∈C, we already know whether p′ is a winning position either
for Spoiler or for Duplicator. If p ∈ P0 and p′ is a win for Spoiler, p also is
a win for Spoiler; else if p′ is a win for Duplicator, we may simply ignore the
move (p, p′) in the computation of the winning positions of C (symmetrically for
p ∈ P1). That is, the treatment of C reduces to a game of accessibility in a boolean
graph, and can be carried out in linear time, see [And94].

This suggests the following algorithm to compute the winning positions of
Duplicator in Gde2(Q,Q) and G f (Q,Q):

1. Compute the SCCs C0, . . . ,Cn−1 of the game graph (the time expense is
linear in the number of positions and moves [Tar72], that is, the SCCs can
be computed in time O(nm)).

2. Compute a topological sorting Ci0 ≤T Ci1 ≤T . . . ≤T Cin−1 of the SCCs of
the game graph (linear in the number of positions and moves [Knu68]).

3. Compute in the order Cin−1,Cin−2, . . . ,Ci0 the winning positions for the sepa-
rate SCCs. Since these are in fact winning positions of reachability games,
this can be done in time linear in the number of positions and moves,
see [And94].

Using Remark 1.8 and Theorem 1.6, we conclude:

Theorem 1.7 (weak alternating automata) Given a weak alternating Büchi au-
tomaton with n states and m transitions,≤di,≤de and≤ f can be computed in time
O(nm).

The same time bound holds for computing the respective quotients.

1.8 Conclusion of Chapter 1
In Chapter 1, we have adapted direct, delayed, and fair simulation relations to
alternating Büchi automata, introduced new methods for constructing simulation
quotients, and analyzed the complexity of computing these relations and quo-
tients. As a result we can state that even with alternating Büchi automata sim-
ulation relations are an appropriate, efficient means for checking language con-
tainment and state-space reduction. Weak alternating Büchi automata are closely
related to linear temporal logic formulas, so the results open up new directions

1.8. Conclusion of Chapter 1 51

for minimizing temporal formulas and automata constructed from these formulas.
An application to linear temporal logic and associated automata constructions is
discussed in the following chapter.

Chapter 2

Simulation Relations and Büchi
Automata from LTL

Propositional linear-time temporal logic (LTL for short) [Pnu77] is a popular lan-
guage for the specification of system properties. The standard way of model
checking an LTL specification against a system is the automata-theoretic ap-
proach to model checking [VW86]: Translate the negation of the specification
into an equivalent nondeterministic Büchi automaton (which incurs an exponen-
tial blow-up), build the product of this automaton with the system, and check this
product for emptiness—it is empty if and only if the system satisfies the specifi-
cation.

Obviously, the size of the Büchi automaton for the LTL formula is crucial
for the efficiency of the above procedure. But minimizing Büchi automata is
computationally difficult: Even testing universality for nondeterministic finite au-
tomata on finite strings is PSPACE-hard [GJ79]. This implies that approximating
a minimum-size ω-automaton (up to a constant factor) is impossible in polynomial
time unless P = PSPACE. Recent results [GS05] show that even approximation
up to a polylogarithmic factor cannot be done in polynomial time if P 6= PSPACE.

In practice, various heuristics are in use for state-space reduction of the re-
sulting automata. Standard techniques are simplifications of the input formula
using a set of rewrite rules [MP92], and modifications in the transition struc-
ture of the resulting Büchi automaton, cf. [EH00]. Quotienting with respect to
simulation or bisimulation equivalences is a sophisticated example for the latter,
cf. [DHWT91, ESW01, GBS02].

In this chapter, we discuss the approach of computing a simulation relation
before the exponential blow-up (see above) occurs. That is, we compute simu-
lation relations for an intermediate alternating Büchi automaton. The interme-
diate automaton can be interpreted as just another way of writing down the LTL
formula—especially, the alternating automaton is only linear in the length of the

53

54 CHAPTER 2. Simulation and LTL

formula. Consequently, the computation of the relation is fast in comparison to
other simulation-based approaches (in the best case, exponentially faster).

In the other approaches, the crucial step is to actually compute a simulation
quotient; in the procedure presented here, an outright quotienting of the alternating
automaton is not a necessary step of the construction. Instead, we use simulation
relations for on-the-fly simplifications in the computation of the result, thus again
speeding up the process and saving memory resources. The price of this is that
the resulting automaton may still contain simulation equivalent states. Experi-
mental data indicate that this drawback is compensated by the advantage of using
alternating automata in an intermediate stage.

Our construction proceeds in three main steps. First, in Section 2.2, we give
a very direct translation of the LTL formula to an alternating Büchi automaton
in which every state has either a universal or existential modality and in which
we allow transitions labeled with the empty word “ε”. That is, we do not use
alternating automata with transitions described as positive Boolean formulas, as
in, e. g., [Var94]; our definition is better suited for simulation games.

In Section 2.3, we give a variant of the game rules of Chapter 1 that takes
ε-transitions into account, in order to compute simulation relations on the states
of this automaton. The game rules of Arnold and Santocanale [AS03] are quite
similar to the rules we use here.

In the third step, we translate the alternating automaton to a nondeterminis-
tic (i. e., non-alternating) Büchi automaton, called the top-down automaton. In
Section 2.4, we therefore introduce a variant of the method of [MH84] (cf. Sec-
tion 1.6) which is specialized and optimized for the de-universalization of very
weak alternating Büchi automata. Our approach is similar to [GO01] in its ba-
sic concept, but given as a pure translation of usual very weak alternating Büchi
automata to nondeterministic automata without going through generalized Büchi
automata. Also, we do not use acceptance conditions on automata transitions or
co-Büchi acceptance. As in [GO01], the construction of the top-down automaton
allows for a simple rule of identifying and deleting superfluous transitions, called
local optimization. In Section 2.5, we analyze in detail how to use delayed and fair
simulation for on-the-fly simplifications in concert with our de-universalization.
In Section 2.6, we then give a step-by-step algorithm for the construction of an
equivalent NBA for an input LTL formula. Simplifications based on both fair and
delayed simulation are applied after the construction of every single state of the
NBA. We also discuss possible post-processing steps and give two detailed exam-
ples for the results of the algorithm. Also in that section, we report experimental
comparisons of a prototypical implementation [FTb] of an earlier version of our
algorithm (based on delayed simulation only) to the programs LTL2BA [Odd]
and TMP [Ete], using a tool of Tauriainen and Heljanko [TH02]. Our experi-
ments show that the automata produced by our implementation are, on the aver-

2.1. Basic Definitions 55

age, as good (i. e., as small) as the automata of TMP (the automata of LTL2BA are
larger). But with the complexity of the formulas increasing, our program becomes
substantially faster than TMP, while LTL2BA is the fastest of the three programs.

The classical approach to LTL-to-NBA translation is tableau-based, as
in [VW86] and refined in [GPVW95, DGV99]. For our approach and the re-
fined versions of the tableau-based translation, the worst-case size of the resulting
NBA is the same, but it is not clear how the two approaches relate for formu-
las which do not require NBA of worst-case size. To justify our choice of using
a variant of the Miyano–Hayashi construction, we show in Section 2.7 that our
de-universalization approach is, in its basic aspects, equivalent to the traditional
tableau-based approach of automata construction from LTL: With the local op-
timization of Section 2.4, the [GPVW95] algorithm and our top-down approach
yield the same automaton for input formulas in next normal form, provided that
the format of the tableau automaton is adapted in a very straightforward way, sim-
ilar to what is done in [GL02] and also implemented in TMP [Ete]. We further
show that our local optimization covers the improvements based on syntactical
implication introduced in [DGV99]; we conclude that the equality of automata in
the above sense is also true for the results of the [DGV99] algorithm.

Finally, in Section 2.8, we discuss a variant of the optimized de-universa-
lization, called bottom-up de-universalization. The basic idea of this bottom-up
approach is to construct the NBA for an LTL formula inductively via nondetermin-
istic subautomata for the subformulas. While the final result of this construction is
the same as for the top-down approach of Section 2.4, the bottom-up construction
allows to transfer simplifications of the subautomata into simplifications of the
final automaton. For example, some or all of the subautomata may be quotient au-
tomata with respect to delayed simulation equivalence; these simplifications can
then be copied into the final automaton without computing a simulation relation
for it.

2.1 Basic Definitions

We identify a natural number n with the set {0, . . . ,n−1}. We define max /0 = 0,
i. e., the maximum of the empty set is 0. For a sequence (ai)i<ω, Inf((ai)i<ω) is
the set of elements appearing infinitely often in (ai)i<ω, i. e., Inf((ai)i<ω) = {a |
∀i< ω∃ j ≥ i : a = a j}.

We use the notion of alternating and nondeterministic Büchi automata as in
Subsection 1.1.2. We will regard a nondeterministic Büchi automaton (NBA) over
an alphabet Σ as a 5-tuple

Q = (Q,Σ,qI,∆,F) (2.1)

56 CHAPTER 2. Simulation and LTL

where Q is a finite set of states, qI ∈Q is an initial state, ∆⊆Q×Σ×Q a transition
relation, and F ⊆ Q a set of accepting states.

We will also use automata over finite, nonempty sets of propositions. If Q is an
automaton over a set of propositions Σ, then the language of Q is a set of infinite
sequences of subsets of Σ, i. e., an element of (2Σ)ω. And, following [EH00], the
transitions of automata over a set of propositions are labeled by so-called terms
over the set of propositions. A term is the (possibly empty) conjunction of literals,
i. e., positive and negative propositions. That is, the set of terms over Σ is

termΣ = {
∧

p∈M

p∧
∧

q∈N

¬q |M,N ⊆ Σ} . (2.2)

We say that a set M ⊆ Σ satisfies a term t ∈ termΣ (written as M |= t) if

(
∧

a∈M

a∧
∧

b∈Σ\M
¬b)→ t (2.3)

is a tautology. Note that tt ∈ termΣ (empty conjunction), and M |= tt for every
M ⊆ Σ. On the other hand, if t is contradictory, i. e., t ≡ ff, then M 6|= t for all
M ⊆ Σ.

For a set of literals M, we denote the term
∧

l∈M
l as term(M). Conversely, for t ∈

termΣ, lit(t) is the set of literals such that term(lit(t)) = t (modulo commutativity).
Obviously, for non-contradictory terms t, t ′ ∈ termΣ, t→ t ′ is equivalent to lit(t ′)⊆
lit(t).

An NBA Q = (Q,Σ,qI,∆,F) over a set of propositions Σ is defined like an
NBA over an alphabet, with the difference that the transition relation ∆ is a subset
of Q× termΣ×Q.

Such an automaton Q over a set of propositions Σ accepts a word w : ω→ 2Σ

if and only if there is a sequence of states (qi)i<ω of Q such that q0 = qI and for
every i<ω, there is a ti ∈ termΣ such that (qi, ti,qi+1) ∈ ∆ and w(i) |= ti, and there
are infinitely many i < ω such that qi ∈ F . We call such a sequence of states an
accepting run of Q on w; if we do not require that there are infinitely many i< ω
such that qi ∈ F , the sequence is just called a run of Q on w.

Alternating Büchi automata over a set of propositions are defined analogously.
Especially, the set of moves of the word game G(Q,w) for an ABA Q over a set
of propositions is

{((q, i),(q′, i + 1)) | ∃t ∈ termΣ : w(i) |= t and (q, t,q′) ∈ ∆} . (2.4)

LTL formulas over a set of propositions Σ are defined inductively by (1) tt and
a are LTL formulas for every a ∈ Σ, and (2) if ψ and ρ are LTL formulas, then so
are ¬ψ, ψ∨ρ, Xψ and ψ U ρ, in words "next ψ" and "ψ until ρ".

2.1. Basic Definitions 57

LTL formulas are interpreted over infinite sequences of subsets of Σ. For every
such ω-word w : ω→ 2Σ, we define the relation |= as follows.

w |= tt , (2.5)
w |= a iff a ∈ w(0) , (2.6)
w |= ¬ψ iff w 6|= ψ , (2.7)
w |= ψ∨ρ iff w |= ψ or w |= ρ , (2.8)
w |= Xψ iff w[1..] |= ψ , (2.9)
w |= ψ U ρ iff ∃i(w[i..] |= ρ ∧ ∀ j < i(w[j..] |= ψ)) , (2.10)

where w[i..] is defined by w[i..](n) = w(i + n) for every n < ω. As usual, we will
use derived logical operators like ff, ∧, →, and the temporal operators R, F, G
("releases", "finally" or "eventually", "globally" or "always") defined by

ψ R ρ = ¬(¬ψ U ¬ρ), (2.11)
Fψ = tt U ψ, (2.12)
Gψ = ff R ψ. (2.13)

That is, the semantics of these operators is

w 6|= ff , (2.14)
w |= Fψ iff ∃i(w[i..] |= ψ) , (2.15)
w |= ψ R ρ iff ∀i(w[i..] |= ρ ∨ ∃ j < i(w[j..] |= ψ)) , (2.16)
w |= Gψ iff ∀i(w[i..] |= ψ). (2.17)

The language of an LTL formula ϕ is

L(ϕ) = {w ∈ (2Σ)ω | w |= ϕ} . (2.18)

The set of subformulas of an LTL formula ϕ is denoted sub(ϕ). Literals are
regarded as atomic subformulas, i. e., sub((¬a) U (¬b)) = {(¬a) U (¬b),¬a,¬b}.

The length of an LTL formula ϕ, denoted |ϕ|, is the number of symbols, not
counting negations and brackets. That is, the formula ϕ = (¬a) U ((¬a)∧b) has
length 5.

Theorem 2.1 (Expressiveness of LTL) For a language L over a set of proposi-
tions Σ, the following is equivalent.

1. There is an LTL formula ϕ over Σ such that L = L(ϕ).

2. There is a very weak alternating Büchi automaton Q such that L = L(Q).

58 CHAPTER 2. Simulation and LTL

3. There is a starfree ω-regular expression r over Σ such that L = L(r).

4. There is a FO[suc, <]-formula ϕ over Σ such that L = L(ϕ).

See [Kam68, MP71, Tho90, Roh97, LT00] for more details.
An LTL formula ϕ is in negation normal form if every subformula ¬ψ of ϕ is

of the form ¬a for some a ∈ Σ. The formula ϕ is in next normal form if every sub-
formula Xψ is of the form XXψ′, Xa or X¬a for some a ∈ Σ. Using the operators
ff, ∧ and R, we can obviously compute an equivalent negation normal form for
every LTL formula in linear time. Throughout this chapter, we will assume that
LTL formulas are given in negation normal form, if not stated otherwise.

Next normal form can be computed in linear time by using the equivalences

Xtt ≡ tt , (2.19)
Xff ≡ ff , (2.20)

X(ψ∨ρ) ≡ (Xψ)∨ (Xρ) , (2.21)
X(ψ∧ρ) ≡ (Xψ)∧ (Xρ) , (2.22)
X(ψ U ρ) ≡ (Xψ) U (Xρ) , (2.23)
X(ψ R ρ) ≡ (Xψ) R (Xρ) . (2.24)

2.2 From LTL to Alternating Büchi Automata with
ε-Transitions

In this section, we introduce the notion of an alternating Büchi automaton with ε-
transitions, or ε-ABA for short, and we give a straightforward translation of LTL
formulas into equivalent ε-ABA. This is our first step in the translation of LTL to
nondeterministic Büchi automata. In Section 2.3, we introduce a basic simulation
game for ε-ABA, generalizing the games defined in Chapter 1.

An ε-ABA is similar to an ABA over a set of propositions as defined in Sec-
tion 2.1, with the difference that the transition relation ∆ is a subset of Q×(termΣ∪
{ε})×Q. That is, we also allow transitions labeled with the empty word.

We say that an ε-ABA Q is legal if there is no infinite sequence (qi)i<ω of
states of Q such that (qi,ε,qi+1) ∈ ∆ for every i < ω. We will only consider legal
ε-ABA.

We define the language of a legal ε-ABA Q = (Q,Σ,qI,∆,E,U,F) using a
game-theoretic approach as in Section 1.1.2. Given an ω-word w, the word game
G(Q,w) for Q and w is the Büchi game

(P,P0,P1, pI,Z,F ′) (2.25)

where

2.2. From LTL to ε-ABA 59

• P = Q×ω×{0,1} is the set of positions,

• P0 = U×ω×{0,1} is the set of positions of Player 0, the Pathfinder,

• P1 = E×ω×{0,1} is the set of positions of Player 1, the Automaton,

• pI = (qI,0,1) is the initial position,

• Z = {((s, i, j),(s′, i,0)) | (s,ε,s′) ∈ ∆}
∪ {((s, i, j),(s′, i + 1,1)) | ∃t ′ ∈ termΣ : w(i) |= t ′ ∧ (s, t ′,s′) ∈ ∆} is the

set of moves, and

• F ′ = F×ω×{1} is the set of accepting positions.

That is, the word game can be viewed as being played in rounds, and a round
ends if one of the players chooses a transition labeled by a term, in which case
the third component of a position switches from 0 to 1 (for a legal ε-ABA, every
round is finite). The winner is determined by the sequence of the initial states
of the rounds: A main difference from the definition in Chapter 1 is that not all
visited states are taken into account for acceptance. The language L(Q) of an
ε-ABA Q is

L(Q) = {w ∈ (2Σ)ω | Automaton wins G(Q,w)} . (2.26)

The translation from LTL to ε-ABA is straightforward using the well-known
equivalences ψ U ρ≡ ρ∨(ψ∧X(ψ U ρ)) and, dually, ψ R ρ≡ ρ∧(ψ∨X(ψ R ρ)),
see, e. g., [Var94]. That is, for an LTL formula ϕ0, we define the ε-ABA Q(ϕ0) =
(Q,Σ,qI,∆,E,U,F) inductively as follows.

1. The initial state is qI = ϕ0 ∈ Q.

2. If ϕ ∈ Q then

• if ϕ ∈ {tt,ff}, (ϕ, tt,ϕ) ∈ ∆ is a transition of Q(ϕ0),

• if ϕ = a or ϕ =¬a for a∈ Σ, then (ϕ,ϕ, tt),(ϕ, tt,ff)∈∆ and tt,ff ∈Q,
1

• if ϕ = ψ∨ρ or ϕ = ψ∧ρ, then (ϕ,ε,ψ),(ϕ,ε,ρ) ∈ ∆ and ψ,ρ ∈ Q,

• if ϕ = Xψ, then (ϕ, tt,ψ) ∈ ∆ and ψ ∈ Q,

• if ϕ = ψ U ρ, then (ϕ,ε,ρ),(ϕ,ε,ψ∧Xϕ) ∈ ∆ and ρ,ψ∧Xϕ ∈ Q,

• if ϕ = ψ R ρ, then (ϕ,ε,ρ),(ϕ,ε,ψ∨Xϕ) ∈ ∆ and ρ,ψ∨Xϕ ∈ Q,

1For technical reasons, we add ff as a “sink state” to complete the game.

60 CHAPTER 2. Simulation and LTL

• if ϕ = Fψ or ϕ = Gψ, then (ϕ, tt,ϕ),(ϕ,ε,ψ) ∈ ∆ and ψ ∈ Q.

That is, sub(ϕ0) ⊆ Q, and Q may also contain auxiliary formulas, e. g., if
ψ U ρ∈ sub(ϕ0) then ψ∧X(ψ U ρ)∈Q. The number of these auxiliary formulas is
linear in |sub(ϕ0)|. States/formulas of the form ψ∧ρ, ψ R ρ and Gψ are elements
of U (universal states), all other states are existential, i. e., elements of E. The
set F of accepting states contains all states of the form tt, ψ R ρ, Gψ, ψ∨ρ and
X(ψ R ρ).

Note that all nontrivial SCCs of the transition graph of Q(ϕ0) either contain
a formula ψ U ρ or a formula ψ R ρ. In the case of an U-formula, all states in
such an SCC are not accepting, while all states in the SCC are accepting if it
contains an R-formula. That is, with this definition, Q(ϕ0) is a weak alternating
Büchi automaton. This property allows us to faster solve the simulation game
(see Subsection 1.7.4). The structure of Q(ϕ0) is even more special: In every
SCC of the transition graph, there is at most one transition not labeled by ε. For
example, if ψ U ρ is a state in an SCC of Q(ϕ0), then the only transition not
labeled by ε in that SCC is (X(ψ U ρ), tt,ψ U ρ). This allows us to treat ε-ABA
constructed from LTL as very weak alternating Büchi automata for the purpose of
de-universalization, see Section 2.4.

Proposition 2.1 (cf. [Var94]) For all LTL formulas ϕ over Σ, L(ϕ) = L(Q(ϕ)).

2.3 The Simulation Game for ε-ABA
Next, we define a simulation relation on the states of legal ε-ABA. This relation
will be our main tool for on-the-fly simplifications.

As in Section 1.2, our definition of simulation relations for ε-ABA is based on
a basic game for which different winning conditions can be defined.

Let Q = (Q,Σ,qI,∆,E,U,F) be a legal ε-ABA and p0,q0 ∈ Q. The basic
simulation game G(p0,q0) is played in rounds by our two players Spoiler and
Duplicator, who move two pebbles (a red and a green pebble) on the transition
graph of Q. A round ends if a term-labeled transition has been chosen for both
pebbles; before that, arbitrarily many ε-labeled transitions can be chosen. We say
that a pebble is free if no term-labeled transition has been chosen for it in the
current round; else it is locked. At the beginning of a round, let the red pebble be
placed on p and the green pebble on q. Then, the players play as follows.

1. Spoiler chooses a letter α ∈ 2Σ.

2. The progression of the round depends on the modes of p and q, and on the
statuses of the pebbles (free or locked). Initially, both pebbles are free, and

2.3. The Simulation Game for ε-ABA 61

the round ends if both pebbles are locked. A player moves a free pebble on a
state s by choosing a transition (s,y,s′) ∈ ∆ such that y = ε or y ∈ termΣ and
α |= y. The round continues with the pebble on s′. If y ∈ termΣ, the moved
pebble becomes locked for the remainder of the round. The following rules
determine who of the players has to move which pebble.

• If p ∈ E and q ∈U and both pebbles are free, then Spoiler moves one
of the pebbles (he can choose which one).

• If p ∈ E and the red pebble is free, but q ∈ E or the green pebble is
locked, then Spoiler has to move the red pebble.

• Conversely, if p ∈ U or the red pebble is locked, but q ∈ U and the
green pebble is free, then Spoiler has to move the green pebble.

If these cases do not apply, Duplicator has to move a free pebble in a sym-
metric fashion, as follows.

• If p ∈U and q ∈ E and both pebbles are free, then Duplicator chooses
one of the pebbles and moves it.

• If p ∈U and the red pebble is free while the green pebble is locked,
then Duplicator moves the red pebble.

• And if q ∈ E, the green pebble is free, and the red pebble is locked,
then Duplicator moves the green pebble.

If a player has to move a pebble but cannot (because there is no appropriate
transition), he loses early. Or else the sequence (pi,qi)i<ω of the initial positions
of the rounds determines the winner (cf. the rules of the word game in Section 2.2).

While these rules may seem to be intricate and confusing, they in fact result
from the direct transformation of the rules of the word game to a simulation game
with the proviso that, whenever possible, Spoiler is the first of the players to move
a pebble, i. e., Duplicator really has the chance to “duplicate” Spoiler’s moves.
We illustrate the game rules with a short example in Subsection 2.6.2.

For implementation purposes, there is a problem with these rules, however:
If Spoiler can choose an arbitrary element of 2Σ at the beginning of a round, the
size of the game graph obviously is exponential in |Σ|. To reduce the size of the
game, we do not let Spoiler choose an element of 2Σ in step 1 of a round of a
simulation play, but an element of termΣ instead. Also, we restrict the set of terms
from which Spoiler can choose from, based on the position of the red pebble at
the beginning of a round. We therefore introduce the mapping posTerms which
assigns to every LTL formula ϕ over Σ the set of terms posTerms(ϕ) from which

62 CHAPTER 2. Simulation and LTL

Spoiler can choose from if the red pebble is on state ϕ. The function posTerms is
defined inductively as follows.

posTerms(ff) = /0 , (2.27)
posTerms(ϕ) = {ϕ}, if ϕ ∈ {tt,a,¬a | a ∈ Σ} , (2.28)

posTerms(ψ∨ρ) = posTerms(ψ)∪posTerms(ρ) , (2.29)
posTerms(ψ∧ρ) = {t ∧ t ′ | t ∈ posTerms(ψ), t ′ ∈ posTerms(ρ)} , (2.30)

posTerms(Xψ) = {tt} , (2.31)
posTerms(Fψ) = {tt}∪posTerms(ψ) , (2.32)
posTerms(Gψ) = posTerms(ψ) , (2.33)

posTerms(ψ U ρ) = posTerms(ψ)∪posTerms(ρ) , (2.34)
posTerms(ψ R ρ) = posTerms(ρ)

∪{t ∧ t ′ | t ∈ posTerms(ψ), t ′ ∈ posTerms(ρ)} . (2.35)

Step 1 of a round of the simulation game now is

If the red pebble is on state p, then Spoiler chooses a term t ∈ posTerms(p).

In step 2, we now have

A player moves a free pebble on a state s by choosing a transition (s,y,s′) ∈ ∆
such that y = ε or y ∈ termΣ and t→ y.

Spoiler loses early if posTerms(p) = /0 or t ≡ ff for all t ∈ posTerms(p).
Note that this definition does not completely prevent the size of posTerms(ϕ)

to be exponential in the length of ϕ. For example, if ϕ =
∧

i<n
ai U bi, then

posTerms(ϕ) = {
∧

i∈M

ai∧
∧

j∈(n\M)

b j |M ∈ 2n} . (2.36)

That is, |ϕ| ∈O(n) and |posTerms(ϕ)|= 2n. For a formula of the form a0 R (a1 R
(a2 . . . R an−1) . . .), the set of possible terms for Spoiler also is exponential in n.
That is, if n is the length of a formula ϕ and k is its maximal nesting depth of the
operators ∧ and R, then the simulation game graph of Gx(ϕ,ϕ) has 2O(k logn) posi-
tions and moves, while the ε-ABA Q(ϕ) only has O(n) states and O(n) transitions.
(For the two example formulas, the nesting depth k is n−1.)

The formal definition of the game graph is as follows. Let Q = Q(ϕ0) =
(Q,Σ,qI,∆q,Eq,Uq,Fq) and S = Q(ϕ1) = (S,Σ,sI,∆s,Es,U s,Fs) be two legal ε-
ABA constructed for LTL formulas ϕ0, ϕ1. Let x∈{di,de, f}. The game Gx(Q,S)
is defined by

Gx(Q,S) = (P,P0,P1,(qI,sI),Z,W x) , (2.37)

2.3. The Simulation Game for ε-ABA 63

where
P = (Q×S)∪ (Q×S× termΣ×{0,1}2) . (2.38)

Here, a state of the form (q,s, t,b,b′) describes the following situation of a play:
The red pebble is on q, the green pebble is on s, Spoiler has chosen the term t at
the beginning of the round, the red pebble is free if b = 0 (else it is locked), and
the green pebble is free if b′ = 0 or it is locked if b′ = 1. Consequently, a state
belongs to P0, the states where Spoiler has to move, if it is in Q×S or if it of the
form (q,s, t,b,b′) such that one of the following holds.

• q ∈ Eq, s ∈U s, b = b′ = 0

• q ∈ Eq, b = 0, and s ∈ Es or b′ = 1

• s ∈U s, b′ = 0, and q ∈Uq or b = 1

In all other cases, a state belongs to P1.
The set Z ⊆ P×P contains all moves of the form

((q,s),(q,s, t,0,0)) , for t ∈ posTerms(q) , (2.39)
((q,s, t,1,1),(q,s)) , (2.40)
((q,s, t,0,b′),(q′,s, t,0,b′)) , for (q,s) /∈Uq×U s, (q,ε,q′) ∈ ∆q , (2.41)
((q,s, t,0,b′),(q′,s, t,1,b′)) , for (q,s) /∈Uq×U s, (q, t ′,q′) ∈ ∆q,

t→ t ′ , (2.42)
((q,s, t,1,0),(q,s′, t,1,0)) , for (s,ε,s′) ∈ ∆s , (2.43)
((q,s, t,1,0),(q,s′, t,1,1)) , for (s, t ′,s′) ∈ ∆s, t→ t ′ , (2.44)
((q,s, t,0,0),(q,s′, t,0,0)) , for (q,s) /∈ Eq×Es, (s,ε,s′) ∈ ∆s , (2.45)
((q,s, t,0,0),(q,s′, t,0,1)) , for (q,s) /∈ Eq×Es, (s, t ′,s′) ∈ ∆s,

t→ t ′ . (2.46)

We can use the same winning conditions as in Chapter 1: Direct (di), delayed
(de) and fair (f) simulation. (In fact, the definition of the sets W di, W de, and W f

is the same as in Subsection 1.2.1.) Without danger of confusion, we also write
≤di, ≤de and ≤ f for the respective simulation relations for legal ε-ABA. That is,
for x∈ {di,de, f} and legal ε-ABA Q, S, we have Q≤x S if and only if Duplicator
has a winning strategy for the simulation Gx(Q,S) with winning condition x.

It is easy to see that these simulation relations share many properties with
the simulation relations defined in Chapter 1. Namely, for every legal ε-ABA
Q and for all states p,q of Q, if p ≤x q then L(Q(p)) ⊆ L(Q(q)). Also, these
relations are preorders (cf. Theorem 1.1 and Corollary 1.2). To show transitivity
is even more tedious than in Chapter 1: An exhaustive definition of the join of two

64 CHAPTER 2. Simulation and LTL

Duplicator strategies for simulation games of legal ε-ABA, similar to what is done
in Section 1.3, has to distinct 56 cases (23 combinations of modalities combined
with 23−1 combinations of statuses).

Also as in Chapter 1,≤x induces an equivalence relation≡x defined by p≡x q
if and only if p≤x q and q≤x p.

Since the ε-ABA that we construct for LTL formulas are weak (see Sec-
tion 2.2), the simulation games for delayed and fair simulation are in fact reacha-
bility games in an AND/OR-graph and can thus be solved asymptotically as fast
as a direct simulation game, see Theorem 1.7.

2.4 Optimized De-Universalization of Very Weak
Alternating Büchi Automata

The construction of Miyano and Hayashi [MH84] for the de-universalization of
ABA can easily be adapted in a straightforward manner to the de-universalization
of legal ε-ABA, thereby eliminating the ε-labeled transitions (cf. Section 1.6).
However, for an input formula ϕ of length n with k subformulas of the form ψ U ρ
and Fρ, this standard de-universalization of the alternating Büchi automaton for
ϕ yields an automaton with Ω(2n+k) states in the worst case, while the optimized
de-universalization presented in this section yields an automaton of size O(k2n).

The basic concept of our de-universalization is similar to the construction
of [GO01], though we do not use co-Büchi acceptance or acceptance conditions
on automata transitions. Also, our construction avoids going through generalized
Büchi automata.

We first give the basic concept of an optimized de-universalization for very
weak Büchi automata over an alphabet and without ε-transitions. We then show
how to apply this concept to ε-ABA constructed from LTL formulas. In Sec-
tion 2.6, we show how our optimized de-universalization can be used in concert
with on-the-fly simplifications based on the simulations relations computed ac-
cording to Section 2.3.

2.4.1 Basic concept of optimized de-universalization

Let Q = (Q,Σ,qI,∆,E,U,F) be an alternating Büchi automaton over an alphabet
Σ such that there is an injective mapping ν : Q→ω such that (q,a,q′) ∈ ∆ implies
ν(q) ≤ ν(q′) for all q,q′ ∈ Q,a ∈ Σ. In other words, all SCCs of the transition
graph of Q consist of only one state. We say that Q is very weak (cf. [Roh97,
KV97, GO01]).

2.4. De-Universalization of VWABA 65

Let
P = {q ∈ Q | q /∈ F and ∃a ∈ Σ : (q,a,q) ∈ ∆} (2.47)

and k = |P|. That is, P contains those states of Q in which a run on a given word
can “get stuck” without accepting the word. Let z be a bijection P→{1, . . . ,k}.

For Q, we construct an equivalent nondeterministic Büchi automaton as fol-
lows. Let

Qnd = (2Q× (k + 1),Σ,({qI},z(qI)),∆nd,2Q×{0}) , (2.48)

where z(qI) = 0 if qI /∈ P. To define ∆nd , we first define the notion of a successor
set of a set M ∈ 2Q for a ∈ Σ. A set M′ ∈ 2Q is a successor set of M for a if, for
every q∈M∩U , ∆(q,a) is a subset of M′ and, for every q∈M∩E, M′∩∆(q,a) 6=
/0. For M,M′ ∈ 2Q and a∈ Σ, we will write scs(M,a,M′) if M′ is a successor set of
M for a, i. e., scs is a relation over 2Q×Σ×2Q. We will also write, e. g., scs(M,a)
instead of {M′ ∈ 2Q | scs(M,a,M′)}.

Note that every M′ ∈ 2Q is a successor set of /0 for every a ∈ Σ. Further note
that if M = M0 ∪M1 and M′0 and M′1 are successor sets for a of M0 and M1,
respectively, then M′0∪M′1 is a successor set of M for a.

We further define the function next : 2Q× (k + 1)→ k + 1 by

next : (M, i) 7→max{z(p) | p ∈M∩P, z(p)< i} . (2.49)

(Remember that max /0 = 0 in this chapter.)
In the following, we are only interested in states (M, i) ∈ 2Q× (k + 1) with

i = 0 or z−1(i) ∈M. We say that these states are consistent.
The relation ∆nd is the smallest set that contains the following transitions, for

consistent states (M, i) ∈ 2Q× (k + 1).

• Case i = 0. If M′ is a successor set of M for a then

((M,0),a,(M′,max{z(p) | p ∈M′∩P})) ∈ ∆nd . (2.50)

• 1st case i 6= 0. If M′ is a successor set of M\{z−1(i)} for a, N′ is a successor
set of {z−1(i)} for a and z−1(i) /∈ N′ then

((M, i),a,(M′∪N′,next(M′∪N′, i))) ∈ ∆nd . (2.51)

• 2nd case i 6= 0. If M′ is a successor set of M \{z−1(i)} for a, N′ is a succes-
sor set of {z−1(i)} for a and z−1(i) ∈ N′ then

((M, i),a,(M′∪N′, i)) ∈ ∆nd . (2.52)

66 CHAPTER 2. Simulation and LTL

That is, every reachable state is consistent.
Intuitively, if a run π of Qnd on a word w is in a state (M, i), then a play of the

word game of G(Q,w) which is compatible with the nondeterministic choices in
π, can be in any of the states in M. The value i of the counter component indicates
that, in order to get an accepting run, we currently have the obligation to show
that if a play currently is in z−1(i), then it will not stay there forever, because in
that case, Automaton loses the play.

We claim that Q and Qnd are equivalent, i. e.,

Theorem 2.2 Let Q be a very weak alternating Büchi automaton with n states, k
of which belong to its set P. Then L(Q) = L(Qnd), and Qnd has at most (k+1)2n ∈
O(k2n) states.

Note that for a very weak ABA with n states, the usual de-universalization
according to [MH84] results in a nondeterministic automaton with Ω(4n) states in
the worst case.
Proof. Without loss of generality, we assume that Q is complete, i. e., for every
q ∈ Q, a ∈ Σ, there is a q′ ∈ Q such that (q,a,q′) ∈ ∆.

First, let w ∈ L(Q). Since w ∈ L(Q), there is a memoryless Automaton win-
ning strategy σ for the word game G(Q,w). That is, σ is a function E×ω→ Q
such that every sequence of states (qi)i<ω where

1. q0 = qI ,

2. (qi,w(i),qi+1) ∈ ∆ for every i< ω and

3. qi+1 = σ(qi, i) for every i< ω such that qi ∈ E

contains infinitely many elements of F . Since Q is very weak, this is equivalent
to the existence of an n< ω such that qn = qn+1 = · · · ∈ F .

We now inductively construct an accepting run of Qnd on w as follows. The
first state of the run is (M0,m0) = ({qI},z(qI)). If (Mi,mi) is the (i + 1)th state of
the run for an i< ω, let

Mi+1 =
⋃

q∈Mi∩U

∆(q,w(i)) ∪{σ(q, i) | q ∈Mi∩E} (2.53)

and

mi+1 =

next(Mi+1,k + 1) if mi = 0,
mi if mi 6= 0 and z−1(mi) ∈U ∩∆(z−1(mi),w(i)),
mi if mi 6= 0, z−1(mi) ∈ E

and σ(z−1(mi), i) = z−1(mi),
next(Mi+1,mi) else,

(2.54)

2.4. De-Universalization of VWABA 67

and let (Mi+1,mi+1) be the (i + 2)th state of the run. It is easy to see that
(Mi,mi)i<ω is in fact a run of Qnd on w.

Now assume that (Mi,mi)i<ω is not accepting, i. e., there are only finitely many
j < ω s. t. m j = 0. For a transition ((Mi,mi),w(i),(Mi+1,mi+1)) in ∆nd , we have
mi ≥ mi+1 or mi = 0. That is, if (Mi,mi)i<ω is not an accepting run, there is
an n < ω such that 0 6= mn = mn+1 = · · · . By construction of (Mi,mi)i<ω, we
can then find a sequence of states (qi)i<ω such that q0 = qI , (qi,w(i),qi+1) ∈ ∆,
qi+1 = σ(qi,w(i)) if qi ∈ E and ql = z−1(mn) for all l ≥ n. That is, (qi)i<ω is a
σ-conform run of Q on w, but it is not an accepting run since z−1(mn) /∈ F . This
contradicts our choice of σ as a winning strategy. Hence (Mi,mi)i<ω must be an
accepting run and thus w ∈ L(Qnd).

To show L(Qnd)⊆ L(Q), let w ∈ L(Qnd). Let (Mi,mi)i<ω be an accepting run
of Qnd on w. Without loss of generality, we can assume that the run is minimal in
the following sense: For every i< ω,

Mi+1 =
⋃

q∈Mi∩U

∆(q,w(i)) ∪
⋃

q∈Mi∩E

{q′} , (2.55)

where q′ is some state in ∆(q,w(i)), for q ∈Mi∩E. It is easy to see that, if there
is an accepting run of Qnd , there also is a minimal accepting run. We further can
assume that, for all Mi and q ∈ Mi ∩E such that z(q) = mi > 0, the state q′ is
different from q if and only if mi+1 is different from mi.

Under these assumptions, we can find a mapping τ : E×ω→ Q such that, for
every i< ω,

Mi+1 =
⋃

q∈Mi∩U

∆(q,w(i)) ∪{τ(q, i) | q ∈Mi∩E} , (2.56)

and if z(q) = mi > 0, then τ(q, i) 6= q if and only if mi 6= mi+1.
This mapping τ is an Automaton winning strategy for G(Q,w): For every

given Pathfinder strategy ρ, we can inductively define a (ρ,τ)-conform play
(qi)i<ω of G(Q,w). By construction, we have qi ∈ Mi for every i < ω. Since
(Mi,mi)i<ω is an accepting run, there are infinitely many j < ω such that m j = 0.
Hence it is not the case that there is an n < ω such that qn = qn+1 = · · · /∈ F ,
because in that case, we have qn ∈ P and, if also qn ∈ E, τ(qn,w(l)) = qn for all
l ≥ n. And this implies that 0 6= mp = mp+1 = · · · for some p≥ n, in contradiction
to our choice of (Mi,mi)i<ω. That is, the play (qi)i<ω does not get stuck in some
non-accepting state, and consequently, since Q is very weak, it gets stuck in some
accepting state. Hence (qi)i<ω is winning for Automaton, which shows that τ is a
winning strategy for G(Q,w), i. e., w ∈ L(Q). 2

68 CHAPTER 2. Simulation and LTL

2.4.2 Local optimization of Büchi automata from very weak
ABA

We now give a simple rule for the deletion of superfluous transitions in nondeter-
ministic Büchi automata constructed from very weak alternating Büchi automata
as described above. In Section 2.7, we will see that this local optimization of
Büchi automata plays a crucial role in comparing the automata of [GPVW95,
DGV99] to our automaton.

Definition 2.1 (local optimization) Let Q be a very weak alternating Büchi au-
tomaton. For two transitions ((M, i),a,(N, j)) and ((M, i),a,(N′, j′)) of Qnd , we
say that ((M, i),a,(N′, j′)) is a better transition than ((M, i),a,(N, j)) if N′ ⊆ N,
and j′ ≤ j.

The locally optimized automaton Qlo
nd is defined like Qnd , only the set of tran-

sitions is different. The set of transitions of Qlo
nd is

∆lo
nd = ∆nd \{((M, i),a,(N, j)) | ∃((M, i),a,(N′, j′)) ∈ ∆nd :

((M, i),a,(N′, j′)) is better than ((M, i),a,(N, j))} . (2.57)

That is, Qlo
nd only contains “optimal” transitions. We now show, using the fol-

lowing two lemmas, that local optimization is correct in the sense that L(Qlo
nd) =

L(Qnd).

Lemma 2.1 Let Q be a very weak alternating Büchi automaton. Let (M0, i0),
(N0, j0) ∈ 2Q× (k + 1) be two states of Qnd and Qlo

nd , respectively, such that N0 ⊆
M0 and j0 ≤ i0. Let (Ml, il)l<ω be a run of Qnd on a word w ∈ Σω starting from
(M0, i0) such that for n< ω, in = 0 and il 6= 0 for all l < n.

Then there is a run (Nl, jl)l<ω of Qlo
nd on w starting from (N0, j0) such that

there is an m≤ n with jm = 0 and Nl ⊆Ml for all l < ω.

Proof. We construct the run (Nl, jl)l<ω as follows. Assume that we have M0 =
{q1, . . . ,qp}. We find successor sets M1

1, . . . ,M
p
1 of {q1}, . . . ,{qp} for w(0) such

that M1 =
p
⋃

r=1
Mr

1 and, if i0 6= 0 and z(qr) = i0 for some 1≤ r ≤ p, then i0 = i1 if

and only if qr ∈Mr
1. Now assume that N0 = {q1, . . . ,qs}with s≤ p. We then find a

transition ((N0, j0),w(0),(N1, j1)) in Qlo
nd which is at least as good as the transition

from (N0, j0) via w(0) to (
s
⋃

r=1
Mr

1, j′1), where the value j′1 is equal to j0 if j0 = z(qr)

for an qr ∈ N0 and qr ∈Mr
1; else j′1 = next(

s
⋃

r=1
Mr

1, j0), or j′1 = next(
s
⋃

r=1
Mr

1,k +1)

if j0 = 0. We thus have N1 ⊆
s
⋃

r=1
Mr

1 ⊆M1.

2.4. De-Universalization of VWABA 69

We continue this construction for all l < n, i. e., we inductively choose tran-
sitions ((Nl, jl),w(l),(Nl+1, jl+1)) which are at least as good as ((Nl, jl),w(l),

(
s
⋃

r=1
Mr

l+1, j′l+1)). Obviously, this ensures that Nl ⊆Ml for all l < ω.

It remains to show that there is an m≤ n such that jm = 0. This follows directly
for n = 0. For the case n > 0, assume that jl 6= 0 for all l < n (or we are done).
Then, it follows by simple induction that jl ≤ il for all l < n; especially, jn1 ≤ in−1.
Assume that z(qr) = in−1. Since in = 0, we have qr /∈Mr

n for the successor set Mr
n

of {qr} (as a subset of Mn), and z(q) ≥ in−1 for all q ∈ Mn∩P. Consequently,
z(q) ≥ in−1 ≥ jn−1 for all q ∈ Nn∩P ⊆ Mn∩P. That is, if jn−1 < in−1, then
jn = 0. Else if jn−1 = in−1 then (by choice of jn according to the construction)
jn 6= jn−1, which also implies jn = 0. 2

Lemma 2.2 Let Q be a very weak alternating Büchi automaton. Let (M0, i0),
(N0, j0) ∈ 2Q× (k + 1) be two states of Qnd and Qlo

nd , respectively, such that N0 ⊆
M0, but i0 < j0. Let (Ml, il)l<ω be a run of Qnd on a word w ∈ Σω starting from
(M0, i0) such that for n< n′ < ω, in = in′ = 0 and il 6= 0 for all n 6= l < n′.

Then there is a run (Nl, jl)l<ω of Qlo
nd on w starting from (N0, j0) such that

there is an m≤ n′ with jm = 0, and Nl ⊆Ml for all l < ω.

Proof. We construct the run (Nl, jl)l<ω as in the proof of Lemma 2.1. That is, we
have Nl ⊆Ml for all l < ω.

It remains to show that there is an m≤ n′ with jm = 0.
If i0 = 0 (i. e., n = 0), then i1 = next(M1,k + 1). Now if j1 6= 0, then i1 =

next(M1,k + 1) = max{z(p) | p ∈M1∩P} ≥ j1 and i1 6= 0, because N1 ⊆M1 and
thus N1∩P ⊆ M1∩P; also, M1 ∩P is not empty—it contains the state z−1(j1).
The claim now follows by Lemma 2.1.

Else if i0 6= 0 and jl 6= 0 for all l ≤ n, then the situation after n steps, where
in = 0, is equal to the case i0 = 0, i. e., by the same arguments, either jn+1 = 0 or
jm = 0 for an m≤ n′ by Lemma 2.1, because 0 6= in+1 ≥ jn+1. 2

From Lemmas 2.1 and 2.2, it follows immediately that local optimization is
correct.

Theorem 2.3 Let Q be a very weak alternating Büchi automaton. Then L(Qnd) =
L(Qlo

nd).

Proof. It suffices to show L(Qnd)⊆ L(Qlo
nd). For an accepting run (Ml, il)l<ω of

Qnd on a word w ∈ L(Qnd), we construct a run (Nl, jl)l<ω of Qlo
nd on w according

to what is done in the proof of Lemma 2.1. By combining Lemmas 2.1 and 2.2, it
follows that this run is accepting. 2

70 CHAPTER 2. Simulation and LTL

2.4.3 Application to the construction of Büchi automata from
LTL

The above construction can be used in a straightforward manner to construct non-
deterministic Büchi automata from LTL formulas via legal ε-ABA which are
constructed according to Section 2.2. As stated in Section 2.2, these ε-ABA
are not very weak in a proper sense (their transition graphs do have SCCs con-
taining more than one state), but they have the following property: If (q0,ε,q1)
(q1,ε,q2) . . .(qn−2,ε,qn−1) (qn−1, t,qn) is a sequence of transitions in such an au-
tomaton (where (qn−1, t,qn) is the only transition labeled by a term t ∈ termΣ),
then either q0 = qn or q0 is not reachable from qn. That is, since the states of legal
ε-ABA constructed from LTL are formulas, qn is a subformula of q0. In this sense,
these ε-ABA can be regarded as very weak for the purpose of successor sets for
terms (see below for a detailed treatment).

Let Pϕ be the set of U- and F-subformulas in an LTL formula ϕ in negation
normal form over a set of propositions Σ, and let kϕ =

∣

∣Pϕ
∣

∣. Let z be a bijection
Pϕ→{1, . . . ,kϕ}.

We then define a nondeterministic Büchi automaton Qtd(ϕ) with L(Qtd(ϕ)) =
L(ϕ), also called the top-down automaton of ϕ, by

Qtd(ϕ) = (Qϕ,Σ,q
ϕ
I ,∆

td,Fϕ) (2.58)

where

Qϕ = 2sub(ϕ)× (kϕ + 1) , (2.59)

∆td ⊆ Qϕ× termΣ×Qϕ , and (2.60)

Fϕ = 2sub(ϕ)×{0} . (2.61)

In the state set, formulas of the form ϕ0 ∧ ϕ1 are identified with the union
of the conjunctive subformulas, i. e., a state (M, i) with ϕ0∧ϕ1 ∈M is identified
with (M∪{ϕ0,ϕ1}\{ϕ0∧ϕ1}, i). Especially, the formula tt is identified with the
empty conjunction, i. e., ({tt},0) is identified with (/0,0). In this sense, the initial
state of Qtd(ϕ) is qϕ

I = ({ϕ},max{z(ψ) | ψ ∈ {ϕ}∩Pϕ}).
We now define the notion of a successor set of an LTL formula (and thus

of a state of the legal ε-ABA constructed from LTL) for a term t ∈ termΣ. The
transitions in ∆td are then defined as in Section 2.4, Equations (2.50) to (2.52),
where the function next is defined as in Equation (2.49) with P = Pϕ.

The relation scs is the smallest relation that satisfies the following.

• scs(/0, tt) = { /0}

• For singleton sets, we distinguish the following cases.

2.5. Usable Properties of Simulation Relations 71

– The set {ff} does not have successor sets. If ϕ = a or ϕ = ¬a for some
a ∈ Σ, then scs({ϕ},ϕ) = { /0}. (The set {tt} is identified with /0.)

– For all t ∈ termΣ, scs({ψ∨ρ}, t) = scs({ψ}, t)∪ scs({ρ}, t). (The set
{ψ∧ρ} is identified with {ψ,ρ}.)

– scs({Xψ}, tt) = {ψ}
– scs({ψ U ρ}) = {(t,N∪{ψ U ρ}) | (t,N) ∈ scs({ψ})}∪ scs({ρ})

(This also covers the case ϕ′ = Fρ≡ tt U ρ.)

– scs({ψ R ρ}) = {(t ′,N′∪{ψ R ρ}) | (t ′,N′) ∈ scs({ρ})}∪{(t∧ t ′,N∪
N′) | (t,N) ∈ scs({ψ}),(t ′,N′) ∈ scs({ρ})}
(This also covers the case ϕ′ = Gρ≡ ff R ρ.)

• If M ∈ 2sub(ϕ) such that |M| > 1, suppose that M = {ϕ0, . . . ,ϕr−1}. Then
scs(M) = {(

∧

i<r
ti,
⋃

i<r
Ni) | ∀i< r : (ti,Ni) ∈ scs({ϕi})}.

Theorem 2.4 Let ϕ be an LTL formula in negation normal form, and let Q(ϕ)
be the alternating Büchi automaton for ϕ according to Section 2.2. For a fixed
bijection z, Q(ϕ)nd = Qtd(ϕ), and L(ϕ) = L(Qtd(ϕ)).

Proof. The automaton Qtd(ϕ) results from the de-universalization construction
of Subsection 2.4.1 applied to the alternating Büchi automaton for ϕ as defined in
Section 2.2. The claim then directly follows by Theorem 2.2. 2

We can adapt the local optimization of Definition 2.1 to this setting by adding
a condition regarding the term labels of the transitions.

Definition 2.2 (local optimization and LTL) Let ϕ be an LTL formula. For two
transitions ((M, i), t,(N, j)) and ((M, i), t ′,(N′, j′)) of Qtd(ϕ), we say that ((M, i),
t ′,(N′, j′)) is a better transition than ((M, i), t,(N, j)) if t→ t ′, N′ ⊆N, and j′ ≤ j.

The locally optimized automaton Qlo(ϕ) is defined like Qtd(ϕ), only the set of
transitions is different. The set of transitions of Qlo(ϕ) is

∆lo = ∆td \{((M, i), t,(N, j)) | ∃((M, i), t ′,(N′, j′)) ∈ ∆td :
((M, i), t ′,(N′, j′)) is better than ((M, i), t,(N, j))} . (2.62)

2.5 Usable Properties of Simulation Relations
We will use the construction of Section 2.4 for translating an alternating to a non-
deterministic Büchi automaton. During this construction, we apply a set of sim-
plification rules on-the-fly, i. e., after the construction of every single state of the

72 CHAPTER 2. Simulation and LTL

NBA. These simplifications are based on our notion of simulation as introduced
in Sections 2.3 and 1.2. In this section, we therefore show useful properties of
fair and delayed simulation, with a focus on the translation from ε-ABA to NBA
and the special structure of ε-ABA from LTL as “almost” very weak automata (as
detailed in Sections 2.2 and 2.4).

2.5.1 Deleting transitions using fair simulation
In order to make use of fair simulation for simplification purposes, we need more
insights into the properties of this simulation relation. While fair simulation equiv-
alence cannot be used for quotienting [ESW01], we know that fair simulation im-
plies language containment (Theorem 1.1). So, as a starting point, we use the
following Theorem taken from Somenzi and Bloem [SB00] (and adapted to our
notation). Theorem 2.5 states the following, for nondeterministic automata: If
two states p, q are successors of a state r such that the language accepted by every
run starting from r and then going via p is included in the language of some run
from r via q, then the transitions from r to p can be deleted, provided that r is not
reachable from q.

Theorem 2.5 ([SB00]) Let Q = (Q,Σ,qI,∆,F) be a nondeterministic Büchi au-
tomaton. For p,q∈Q, p 6= q, assume that L(Q(p))⊆ L(Q(q)). Let ∆′ be the result
of removing all transitions (r, t, p) from ∆ for which there is a transition (r, t ′,q) ∈
∆ such that t→ t ′ and r is not reachable from q. Let Q′ = (Q,Σ,qI,∆′,F).

Then L(Q) = L(Q′).

If we replace the requirement L(Q(p))⊆ L(Q(q)) in Theorem 2.5 by p≤ f q,
then it follows that Q≡ f Q′, as Lemma 2.3 shows.

Lemma 2.3 Let Q = (Q,Σ,qI,∆,F) be a nondeterministic Büchi automaton. For
p,q∈Q, p 6= q, assume that p≤ f q. Let ∆′ be the result of removing all transitions
(r, t, p) from ∆ for which there is a transition (r, t ′,q) ∈ ∆ such that t→ t ′ and r is
not reachable from q. Let Q′ = (Q,Σ,qI,∆′,F).

Then Q≡ f Q′.

Proof. Obviously, Q′ ≤ f Q.
To show Q ≤ f Q′, we have to show that Duplicator wins G f (Q,Q′). Let

σ0 be a memoryless Duplicator winning strategy for G f (Q,Q′). In order to win
G f (Q,Q′), Duplicator uses σ0 until the play reaches a position (q′,r, t) ∈Q×Q×
termΣ such that σ0(q′,r, t) = (q′, p), but there is no transition (r, t ′, p) ∈ ∆′ such
that t→ t ′ (i. e., such a transition is in ∆, but not in ∆′).

Then, by construction of ∆′, there is a transition (r, t ′′,q)∈ ∆′ such that p≤ f q,
t ′→ t ′′ and r is not reachable from q. We let Duplicator choose such a transition

2.5. Usable Properties of Simulation Relations 73

(we have t→ t ′′) and continue the play at (q′,q). Note that since the play was σ0-
conform so far, we have q′ ≤ f p≤ f q. Duplicator can therefore continue the play
using a winning strategy σ1 for G f (Q(q′),Q(q)). That is, if Duplicator currently
uses the strategy σi and encounters the above situation that σi requires to choose
a transition which is not in ∆′, he instead chooses a successor with the properties
of q and switches to a new strategy σi+1.

Since such a switch of the strategy is necessary at most at the predecessors
r0, . . . ,rn−1 of p and every such state ri cannot be visited again if a switch of the
strategy was necessary at it, Duplicator will finally stick to a winning strategy σm
where m< n. Consequently, Duplicator wins G f (Q,Q′). 2

A variant of Lemma 2.3 can be applied to ε-ABA constructed from LTL ac-
cording to Section 2.2. In these automata, we have to compare ε-labeled transi-
tions starting from the same (existential or universal) state.

Corollary 2.1 (deleting ε-transitions) Let ϕ be an LTL formula in negation nor-
mal form and Q(ϕ) = (Q,Σ,qI,∆,E,U,F) be the legal ε-ABA according to Sec-
tion 2.2. Let ∆′ be the result of removing all transitions (r,ε, p) from ∆ for which
there is a transition (r,ε,q) ∈ ∆ such that r is not reachable from q and

(a) either r ∈ E and p≤ f q,
(b) or r ∈U and q≤ f p.
Let Q′(ϕ) = (Q,Σ,qI,∆′,E,U,F). Then Q(ϕ)≡ f Q′(ϕ).

Also from Lemma 2.3, we can deduce that it is possible to delete a transition
in favor of a newly introduced transition to an equivalent state, provided that a
reachability restraint similar to the above holds. This is also true for alternating
Büchi automata.

Corollary 2.2 Let Q = (Q,Σ,qI,∆,E,U,F) be an alternating Büchi automaton.
For p,q ∈ Q, p 6= q, assume that p ≡ f q and p is not reachable from q. Let
Q′ = Q \ {p} (analogously E ′, U ′, F ′) and q′I = q if qI = p, else q′I = qI . Let ∆′
be the result of replacing all transitions (r, t, p) ∈ ∆ where r 6= p by transitions
(r, t,q). Let Q′ = (Q′,Σ,q′I,∆′,E ′,U ′,F ′).

Then Q≡ f Q′.

Proof. (Sketch) Both in G f (Q,Q′) and in G f (Q,Q′), Duplicator switches his
strategy whenever a pebble uses a new transition; this can happen only finitely
often. 2

That is, while quotienting w. r. t. fair simulation equivalence is not correct,
Corollary 2.2 allows to do a kind of partial quotienting in which a fair equivalence

74 CHAPTER 2. Simulation and LTL

class is represented by only a subset of its elements. For very weak automata,
of course, every f-equivalence class contains at least one state from which all
the other states are not reachable. In this sense, very weak automata allow a
full quotienting w. r. t. fair simulation. We are interested in very weak alternating
automata from LTL, however, and since these automata are a direct translation
of LTL formulas, rewriting the LTL formula is as good as changing its alternating
automaton. That is, Corollaries 2.1 and 2.2 directly translate into simulation-based
modifications of an LTL formula.

Corollary 2.3 (fair simulation rewriting) Let ϕ be an LTL formula in negation
normal form. Let ϕ′ be the result of syntactically replacing

1. every subformula ψ of ϕ by a subformula ρ if ψ≡ f ρ and ψ is not a subfor-
mula of ρ,

2. every subformula ψ∨ρ by ρ if ψ≤ f ρ,

3. every subformula ψ∧ρ by ρ if ρ≤ f ψ,

4. every subformula ψ U ρ by ρ if ψ ∧ X(ψ U ρ) ≤ f ρ or, equivalently, if
ψ U ρ≤ f ρ, and

5. every subformula ψ R ρ by ρ if ρ≤ f ψ∨X(ψ R ρ) or, equivalently, if ρ≤ f
ψ R ρ.

Then ϕ≡ f ϕ′.

Proof. Item 1 is the application of Corollary 2.2. Items 2 to 5 follow with
Corollary 2.1.

For items 4 and 5, note that if ψ≤ f ρ then, clearly, also ψ∧X(ψ U ρ))≤ f ρ,
and if ρ≤ f ψ then ρ≤ f ψ∨X(ψ R ρ)). 2

Another useful observation is that it is possible to delete transitions to non-f-
maximal successors of an NBA-state if this state is accepting or if there also is a
transition to an accepting state which fairly simulates the disconnected successor.
This is similar (but weaker) to what was shown in Remark 1.4.

Lemma 2.4 Let Q = (Q,Σ,qI,∆,F) be a nondeterministic Büchi automaton. Let
∆′ be the result of removing all transitions (q, t,q′) from ∆ for which there is a
transition (q, t ′,q′′) ∈ ∆ such that q′ 6= q′′, q′ ≤ f q′′, t → t ′, and q ∈ F or q′′ ∈ F.
Let Q′ = (Q,Σ,qI,∆′,F).

Then Q≡ f Q′.

2.5. Usable Properties of Simulation Relations 75

Proof. Obviously, Q′≤ f Q. To show Q≤ f Q′, we construct a Duplicator winning
strategy σ for G f (Q,Q′) as follows. Let σ0 be a memoryless Duplicator winning
strategy for G f (Q,Q), i. e., σ0 is a partial function Q×Q× termΣ → Q. Let
D0 be the domain of σ0, and let D′0 ⊆ D0 be those positions (p′,q, t) for which
σ0(p′,q, t) = q′, but (q, t ′,q′) /∈ ∆′ for all terms t ′ such that t→ t ′.

By construction of ∆′, for every such position (p′,q, t), we find a transition
f0(p′,q, t) = (q, t ′,q′′) ∈ ∆′ such that p′ ≤ f q′ ≤ f q′′, t → t ′ and q′′ ∈ F if q /∈ F .
We define σ(p′,q, t) = σ0(p′,q, t) if (p′,q, t) ∈ D0 \D′0, and σ(p′,q, t) = q′′ such
that f0(p′,q, t) = (q, t ′,q′′) if (p′,q, t) ∈ D′0.

Now σ may be undefined at positions (p′,q′′) = σ(p′,q, t) where (p′,q, t)∈D′0
(if σ(p′,q, t) /∈ D0). In the next step of the construction of σ, we choose such
a state (p′,q′′). Since p′ ≤ f q′′, we find a Duplicator winning strategy σ1 for
G f (Q(p′),Q(q′′)). Let D1 be the domain of σ1 without D0, and let D′1 ⊆ D1 be
those positions in D1 where σ1 requires Duplicator to choose a transition which is
not in ∆′.

As above, we find new transitions in ∆′ with the above properties for these po-
sitions. Note that for every position (p′,q, t) ∈ D′1 and the new transition
f1(p′,q, t) = (q, t ′,q′′) for such a position, at least one of q and q′′ is in F . Sim-
ilar to the first step, we define σ(p′,q, t) = σ1(p′,q, t) for (p′,q, t) ∈ D1 \D′1 and
σ(p′,q, t) = (p′,q′′) such that f1(p′,q, t) = (q, t ′,q′′), for (p′,q, t) ∈ D′1.

We continue this construction until the domain of σ is closed, i. e., until σ
is defined on every position reachable in a σ-conform play. Assume that n < ω
strategies σ0, . . . ,σn−1 were used to construct σ.

Then σ is a (memoryless) Duplicator winning strategy for G f (Q,Q′). This is
because every reachable position of the form (p,q) in a σ-conform play satisfies
p≤ f q, and because every Duplicator move in a σ-conform play is a move

• from a position in Di \D′i to a position in D j \D′j such that j ≤ i, or

• from Di \D′i to D′j such that j ≤ i, or

• from D′i to D j,

for i, j < n.
So if moves of the second and third sort occur only finitely often in a σ-

conform play, then the play will eventually stay in some set of positions Di \D′i,
and hence Duplicator will eventually only make σi-conform moves, for some
i< n. Then, since σi is a winning strategy, Duplicator wins.

Or moves of the second and third sort occur infinitely often. Then, by con-
struction of σ and the sets D′i, the Duplicator component is accepting infinitely
often. Hence Duplicator also wins in this case. 2

76 CHAPTER 2. Simulation and LTL

The following observation gives us a sufficient (but not necessary) condition
to check fair simulation on-the-fly during the de-universalization construction of
Section 2.4. Together with Lemma 2.4, this will allow us to identify unnecessary
transitions of a state immediately after the state and its direct successor states are
constructed.

Lemma 2.5 (deduced simulation in the NBA) Let Q = (Q,Σ,qI,∆,E,U,F) be
a very weak alternating Büchi automaton, and let Qnd be the NBA constructed
from Q according to Section 2.4 based on the bijection z : P→ {1, . . . ,k}. Let
(M0, i0),(N0, j0) ∈ 2Q× (k + 1) be two states of Qnd such that for every q ∈ N0
there is a q′ ∈M0 such that q′ ≤ f q.

Then (M0, i0)≤ f (N0, j0).

Proof. To show that Duplicator wins G f ((M0, i0),(N0, j0)), we use a construc-
tion similar to the logbook in the proof of Proposition 1.2: During a play of
G f ((M0, i0),(N0, j0)), we update an assignment of the states in the N-component
to states in the M-component, to a winning strategy and to a protoplay.

Initially, let g0 : N0 → M0 be a function such that g0(q) ≤ f q for every q ∈
N0. For every q ∈ N0, let σq be a memoryless Duplicator winning strategy for
G f (g0(q),q). For technical convenience, we assume that there is a total ordering
on the strategies {σq | q ∈ N0}. Let h be a partial mapping of states in Q to
strategies; initially, h0(q) = σq for every q ∈ N0, that is, h0(q) is a Duplicator
winning strategy for G f (g0(q),q). And the function π maps the elements of the
N-component to protoplays; initially, π0(q) = ((g0(q),q),ε). The function π will
be updated in such a way that hl(q) is a Duplicator winning strategy w. r. t. fair
simulation for the protoplay πl(q), if ((Ml, il),(Nl, jl)) is the starting position of
the (l + 1)th round in a play of G f ((M0, i0),(N0, j0)) and q ∈ Nl .

We now suppose that the (l + 1)th round of a play of G f ((M0, i0),(N0, j0))
starts with the position ((Ml, il),(Nl, jl)), gl maps every state q in Nl to a state
gl(q) ∈ Ml such that gl(q) ≤ f q, and hl maps every q ∈ Nl to a strategy hl(q) ∈
{σq | q ∈ N0} such that hl(q) is a Duplicator winning strategy for πl(q). Assume
that Spoiler chooses the position ((Ml+1, il+1),(Nl, jl), tl).

Then, by the construction in Section 2.4, for every state q ∈ Ml ∩E, there is
a state q′ ∈ Ml+1 such that (q, t,q′) ∈ ∆, tl → t and q′ 6= q if 0 6= il 6= il+1 and
z(q) = il .

For every q∈Nl , we now update πl(q) according to h(q). The basic concept is
similar to the construction in the proof of Proposition 1.2; we there for only detail
the case (gl(q),q) ∈U ×E. Different from the proof of Proposition 1.2, we may
also have to update the strategies.

Let ql ∈ Nl and (gl(ql),ql) ∈U×E. Assume that (q′l+1,ql, tl) = hl(ql)(gl(ql),
ql, tl) and (q′l+1,ql+1) = hl(ql)(q′l+1,ql, tl). (Note that q′l+1 ∈Ml+1.) If hl+1(ql+1)

2.5. Usable Properties of Simulation Relations 77

is undefined or if hl+1(ql+1) is strictly larger w. r. t. the ordering on the strate-
gies than hl(ql), then we let hl+1(ql+1) = hl(ql) and gl+1(ql+1) = q′l+1. We
choose {ql+1} as the successor set of {ql} such that ql+1 ∈ Nl+1. The proto-
play πl+1(ql+1) is πl(ql) with (q′l+1,ql+1) and tl appended. The condition that the
strategy is changed only to a “smaller” strategy ensures that hl+1(ql+1) 6= hl(ql)
for only finitely many l.

That is, for n< ω and qn ∈ Nn, πn(qn) = ((gi(qi),qi)i≤n,(ti)i<n) is a protoplay
such that every position (gi(qi),qi) satisfies gi(qi)≤ f qi, and hn(qn) is a Duplica-
tor winning strategy for G f (gn(qn),qn). Moreover, it is ensured that there is an
m < ω such that hm(qm) = hm+1(qm+1) = · · · , i. e., for all m′ ≥ m, the protoplay
((gi(qi),qi)m≤i≤m′,(ti)m−1≤i<m′) starting from round m is hm(qm)-conform.

Now assume that there are infinitely many positions ((Ml, il),(Nl, jl)) such
that il = 0 in a play of G f ((M0, i0),(N0, j0)). Then it is ensured that the sequence

(min{|{i≤ n | πn(qn) = ((gi(qi),qi)i≤n,(ti)i<n) and gi(qi) ∈ F}| : qn ∈ Nn})n<ω
(2.63)

is unbounded. In other words, in the limit, accepting states are visited infinitely
often in the first component of every protoplay position that we keep book of.

Assume that there were only finitely many positions ((Mm, im),(Nm, jm)) such
that jm = 0. Then there is an m′ such that 0 6= jm′ = jm′+1 = · · · . Let q̄ = z−1(jm′),
i. e., q̄ /∈ F , and q̄ is in the successor set chosen for q̄ from round m′ on. Then the
last position of the protoplay πn(q̄) is (gn(q̄), q̄) for all n ≥ m′, but gn(q̄) ∈ F for
infinitely many n≥m′. But, in contradiction, the protoplays πn(q̄) are conform to
a Duplicator winning strategy from some point on.

Hence the assumption is wrong, i. e., there are also infinitely many positions
((Mm, im),(Nm, jm)) such that jm = 0.

That is, Duplicator wins G f ((M0, i0),(N0, j0)) and (M0, i0)≤ f (N0, j0). 2

2.5.2 Simulation-based NBA-state pruning
Pruning based on fair simulation

From Lemma 2.5 together with Corollary 2.2, we can deduce that from a set M in
an NBA state (M, i), a state can be deleted if it is not ≤ f -minimal in M and if a
reachability criterion is met.

Corollary 2.4 (fair simulation NBA-state pruning) Let Q = (Q,Σ,qI,∆,E,U,
F) be a very weak alternating Büchi automaton, and let Qnd be the NBA con-
structed from Q according to Section 2.4 based on the bijection z : P→{1, . . . ,k}.

Let (M, i) ∈ 2Q× (k +1) be a state of Qnd and let q,q′ ∈M be two states such
that q ≤ f q′. Let N = M \ {q′}. Let i′ = min{z(q) > i | q ∈ N} if z(q′) = i, else

78 CHAPTER 2. Simulation and LTL

i′ = i. Assume that (M, i) is not reachable from (N, i′). Let ∆′nd be the result of
replacing all transitions (r, t,(M, i)) ∈ ∆nd by transitions (r, t,(N, i′)). Let Q′nd =
(Qnd,Σ,qnd

I ,∆
′
nd,Fnd).

Then Qnd ≡ f Q′nd .

Proof. By Lemma 2.5, the states (M, i) and (N, i′) are f-equivalent. Since (M, i)
is not reachable from (N, i′), Qnd ≡ f Q′nd follows by Corollary 2.2. 2

A sufficient local condition ensuring that (M, i) is not reachable from (N, i′) is
that q′ is not reachable in Q from any state in N. A stronger criterion, specifically
for our ε-ABA from LTL, is the following.

Proposition 2.2 (reachability) For an LTL formula ϕ, let (M, i) be a state of
Qtd(ϕ), and let q′ and (N, i′) be defined as in Corollary 2.4.

If it is not the case that both (1) q′ (as an LTL formula) is a proper subformula
of a G-, U- or R-formula ψ ∈ N, and (2a) every state/formula in N is a formula of
the form Fψ, Gψ, ψ U ρ or ψ R ρ or (2b) a subformula of such a formula which
also is in N, then (M, i) is not reachable from (N, i′).

The reachability criterion of Proposition 2.2 can also be used together with
Lemma 2.3 in an on-the-fly fashion. Proposition 2.2 is quite awkward, however.
In the following, we show that the reachability requirement of the simulation-
based NBA-state pruning of Corollary 2.4 can be lifted for delayed and direct
simulation under certain circumstances.

Pruning based on delayed and direct simulation

Since the delayed and direct simulation relations are subsets of the fair simu-
lation relation, we can hope that the reachability criterion necessary in Corol-
lary 2.4 can be weakened or lifted for these simulation relations, perhaps similar
to Corollary 1.9 in Section 1.6. But, to see the basic problem, consider the for-
mula ϕ = G((X2Fa)∧ (X3Fa)). For the ε-ABA Q(ϕ), we have ϕ < f X2Fa <di
XFa <di Fa, cf. Section 2.2. Applying the NBA construction of Section 2.4, the
initial state of the resulting NBA is ({ϕ},0). From this state, the only transi-
tion is a tt-transition to the state ({ϕ,X2Fa,XFa},0). The formula XFa is not
minimal w. r. t. even direct simulation in this state. However, if we delete it, the
resulting state is ({ϕ,X2Fa},0), and from this state, there is a tt-transition to
({ϕ,X2Fa,XFa},0) which again is simplified to ({ϕ,X2Fa},0), that is, the re-
sulting transition is (({ϕ,X2Fa},0), tt,({ϕ,X2Fa},0)). That is, the resulting au-
tomaton would accept every sequence of sets of propositions, not just L(ϕ), so an
unconditional NBA-state pruning is wrong for direct and delayed simulation.

2.5. Usable Properties of Simulation Relations 79

But we can show that pruning can be applied with accepting ABA-states in
the set component of an NBA-state. We show this for ABA over alphabets as in
Subsection 2.4.1; the application to NBA from LTL is straightforward.

Definition 2.3 (pruning with accepting states) Let (M, i) be a state of a non-
deterministic Büchi automaton Qnd = (2Q× (k + 1),Σ,(qI,z(qI)),∆nd,2Q×{0})
constructed from a very weak alternating Büchi automaton Q = (Q,Σ,qI,∆,F)
over an alphabet Σ, cf. Subsection 2.4.1.

For x ∈ {di,de}, the x-pruned state for state (M, i) is the state

({q ∈M | ∀q′ ∈M : (q 6= q′ ≤x q)→ ((q′ /∈ F ∧ q /∈ F) ∨ z(q) = i)}, i) .
(2.64)

That is, we remove an ABA state q from M if there is another state q′ ∈ M
such that q′ ≤x q and at least one of q and q′ is an accepting state and z(q) 6= i. We
then say that q is pruned in favor of q′.

Definition 2.4 (di/de-pruned NBA) Let Qnd and x be as in Definition 2.3.
The x-pruned version Qpr−x

nd of Qnd is inductively defined as follows.
— The initial state of Qpr−x

nd is the x-pruned state for (qI,z(qI)), and
— if (M, i) is a state of Qpr−x

nd such that ((M, i), t,(N, j)) is a transition from
(M, i) according to Subsection 2.4.1 (that is, N is an unpruned successor set of
M) and (N′, j) is the x-pruned state for state (N, j), then ((M, i), t,(N′, j)) is a
transition of Qpr−x

nd and (N′, j) is a state of Qpr−x
nd .

We claim that the {di,de}-pruned versions of a nondeterministic automaton
Qnd are equivalent w. r. t. fair simulation to Qnd .

Lemma 2.6 Let Q = (Q,Σ,qI,∆,F) be a very weak alternating Büchi automaton
over an alphabet Σ, and let Qnd = (2Q× (k + 1),Σ,(qI,z(qI)),∆nd,2Q×{0}) be
the nondeterministic Büchi automaton constructed from Q according to Subsec-
tion 2.4.1. For x ∈ {di,de}, let Qpr−x

nd be the x-pruned version of Qnd according
to Definition 2.4.

Then Qnd ≡ f Qpr−x
nd , and L(Q) = L(Qnd) = L(Qpr−x

nd).

Proof. We will show the claim for x = de only; from this, the claim for x = di
follows immediately.

It is easy to see that Qnd ≤ f Qpr−de
nd : In a play (((M j, i j),(M′j, i

′
j)) j<ω,w) of

G f (Qnd,Q
pr−de
nd), M′j ⊆M j holds for every j<ω, so if (M j, i j) j<ω is an accepting

run of Qnd , then (M′j, i
′
j) j<ω is an accepting run of Qpr−de

nd .

80 CHAPTER 2. Simulation and LTL

To show Qpr−de
nd ≤ f Qnd , we use a variant of the logbook technique of the

proof of Proposition 1.2 in Section 1.6. The situation will be more complicated,
however: In the proof of Proposition 1.2, the logbook contains, for every state
of the simulating alternating automaton which currently is in the set component
of the simulating NBA, an ABA protoplay such that all these protoplays have
the same length and are conform to the same Duplicator strategy. Here, we will
also associate ABA states with ABA protoplays, but these protoplays need not be
conform to the same strategy, nor will they necessarily all have the same length.

For all states q,q′ ∈Q such that q≤de q′, let σ(q,q′) be a positional Duplicator
winning strategy for Gde(q,q′).

We now inductively and synchronously construct a play (((M′j, i
′
j),

(M j, i j)) j<ω,w) of G f (Qpr−de
nd ,Qnd) and a logbook as a partial function L with do-

main Q×ω. In every round j <ω of the play, L maps the elements of M j to a pair
consisting of an element of M′j and a Duplicator winning strategy. That is, for the
sake of simplicity, we do not store a proper protoplay; rather, if L(q, j) = (q′,σ),
then (q′,q) is the position in the jth round of a protoplay with Duplicator strategy
σ. Our definition is as follows.

The first round of the play starts at (((M′0, i
′
0),(M0, i0)),ε), where M′0 = M0 =

{qI} and i′0 = i0 = z(qI). We associate with qI in the first round the strategy
σ(qI,qI) and the state qI , i. e., L(qI,0) = (qI,σ(qI,qI)).

Now assume that the play and the mapping L is constructed up to some round j
and that Spoiler in this play moves from (M′j, i

′
j) to (M′j+1, i

′
j+1) with letter w(j)∈

Σ. Then, M′j+1 and i′j+1 result from M′j and i′j by a combination of successors of
the states in M′j and a pruning step. That is, there is a set M′′j+1 ∈ 2Q such that

M′′j+1 =
⋃

q∈M′j∩U

∆(q,w(j))∪
⋃

q∈M′j∩E

{q′} , (2.65)

such that (1) for a state q∈M′j∩E with z(q) = i′j, q 6= q′ if and only if i′j is different
from i′j+1, and such that (2) (M′j+1, i

′
j+1) is the de-pruned state of (M′′j+1, i

′
j+1).

Assume that f is a function M′j→ 2M′′j+1 that maps every state of M′j to a successor
set such that their combination is M′′j+1, i. e., f (q) = {q′} if q ∈ E and f (q) =
∆(q,w(j)) if q ∈U .

We now choose M j+1 according to the assignments in L(., j). That is, for a
state q ∈ M j, assume that L(q, j) = (q′,σ). By induction hypothesis, q′ ≤de q
and σ is a Duplicator winning strategy for the protoplay in position (q′,q). It
follows that there is a set Mq ∈ scs(q,w(j)) such that for every q̄ ∈ Mq, there
is a q̄′ ∈ f (q′) such that q̄′ ≤de q̄ and σ is a Duplicator winning strategy for the

2.6. Computing the NBA with On-The-Fly Simplifications 81

protoplay in position (q̄′, q̄). We set

M j+1 =
⋃

q∈M j

Mq , (2.66)

and we store L(q̄, j + 1) = (q̄′,σ) in the logbook if q̄′ also is in M′j+1. If not,
that is, if q̄′ is pruned in favor of a state q̂′ ≤de q̄′, we distinguish two cases:
(1) If q̄ is accepting, we start a new protoplay starting in position (q̂′, q̄) with
Duplicator strategy σ(q̂′, q̄), i. e., we store L(q̄, j + 1) = (q̂′,σ(q̂′, q̄)). (2) If q̄ is
not accepting, we store L(q̄, j + 1) = (q̂′,σ(q̂′, q̄′) ./ σ) where the intermediate
sequence of σ(q̂′, q̄′) ./ σ starts at q̄′. Since at least one of the states q̂′ and q̄′ is
accepting, this forces Duplicator to eventually reach an accepting state from q̄.

Consequently, if the sequence of states (M′j, i
′
j) j<ω is an accepting run, the

sequence (M j, i j) j<ω also is an accepting run since the successor sets of the ABA
states in the sets M j are chosen according to strategies such that accepting ABA
states are reached infinitely often from all these ABA states. 2

Compared to the pruning of MH-automaton states of Corollary 1.9 in Sec-
tion 1.6, we see that the optimized construction for very weak alternating automata
comes at a price. Intuitively, in the MH-construction, all relevant non-accepting
states are “kept under special surveillance” in the second components of the states;
in the top-down construction of Section 2.4, this surveillance is on only one non-
accepting state at a time, and only on states in which a run really can get stuck
without accepting. While this is sufficient for very weak ABA to control accep-
tance, it is not sufficient to control simulation-based pruning if the states involved
in a possible pruning step are both non-accepting.

2.6 Computing the Nondeterministic Büchi
Automaton with On-The-Fly Simplifications

We can now combine the considerations of the previous subsections into an al-
gorithm for the construction of an equivalent nondeterministic automaton from
an LTL formula with an on-the-fly use of simulation-based simplifications. The
basic construction of the NBA follows the definitions of Section 2.4, and the de-
layed and fair simulation relations are computed according to Sections 2.2 and 2.3.
These simulations relations are used for simplifications during the construction,
based on the insights of Section 2.5.

Such an algorithm is given in Subsection 2.6.1. In Subsection 2.6.2, we give
examples of the working of this algorithm on two LTL formulas. Subsection 2.6.3
reports comparative experiments of a prototypical implementation of an earlier
version of this algorithm on random LTL formulas.

82 CHAPTER 2. Simulation and LTL

2.6.1 An algorithm
The considerations of the previous subsection suggest the following algorithm
for translating an LTL formula ϕ over a set of propositions Σ to an equivalent
nondeterministic Büchi automaton Qsim

nd (ϕ).

1. Convert ϕ to negation normal form.

2. Compute the fair simulation relation relation≤ f for the automaton Q(ϕ) of
Section 2.2, using the simulation game of Section 2.3.

3. (fair simulation rewriting) Apply Corollary 2.3 for formula rewriting to ϕ.
In the following, we assume that ϕ is the result of these rewritings.

4. Compute the delayed simulation relation≤de for Q(ϕ), i. e., for the alternat-
ing automaton resulting from the simplified formula after formula rewriting,
again using the game of Section 2.3.

5. Choose a bijection z : Pϕ→{1, . . . ,k}.

6. The initial state of Qsim
nd (ϕ) is qϕ

I = ({ϕ},min{z(ψ) |ψ ∈ {ϕ}∩Pϕ}), where
conjunctive formulas are identified with the collection of their conjunctive
subformulas, cf. Subsection 2.4.3.

Apply NBA state pruning according to step (11) of this algorithm to qϕ
I and

add the resulting state as qϕ
I to the auxiliary set of new states, i. e., newStates

= {qϕ
I }.

7. Choose a state (M, i) from newStates, remove it from newStates and add it
to the set Qsim

nd of states of Qsim
nd (ϕ).

8. Compute the transitions starting at (M, i) as described in Subsection 2.4.3,
based on the bijection z. Let T(M,i) ⊆ termΣ× (2Q(ϕ)× (k +1)) be the set of
these transitions.

9. (local optimization) Remove all transitions from T(M,i) which are superflu-
ous according to the local optimization criterion of Definition 2.2.

10. (fair transition elimination) For every two transitions (t,(N, j)),
(t ′,(N′, j′)) ∈ T(M,i), if i = 0 or j′ = 0, and t → t ′, and (N, j) ≤ f (N′, j′)
according to Lemma 2.5, then remove (t,(N, j)) from T(M,i); this is the ap-
plication of Lemma 2.4.

Also, if t→ t ′ and (N, j)≤ f (N′, j′), and (M, i) is not reachable from (N′, j′)
(Proposition 2.2), then remove (t,(N, j)) from T(M,i); this is the application
of Lemma 2.3.

2.6. Computing the NBA with On-The-Fly Simplifications 83

11. (NBA state pruning) For every remaining transition (t,(N, j)) ∈ T(M,i), if
(N, j) /∈ Qsim

nd , we prune (N, j) w. r. t. fair simulation (and adjust j, if neces-
sary) by applying Corollary 2.4, taking care of the reachability criterion of
Proposition 2.2, and w. r. t. delayed simulation according to Definition 2.3.
If this step changes a transition, check if any (further) transition can be
deleted by local optimization now.

12. For all transitions (t,(N, j)) which are now in T(M,i), we add ((M, i), t,
(N, j)) to the set ∆sim

nd of transitions of Qsim
nd (ϕ), and we add (N, j) to new-

States if (N, j) /∈ Qsim
nd .

13. If newStates 6= /0, continue with step 7.

14. The set of accepting states of Qsim
nd (ϕ) is Fsim

nd = {(M, i) ∈ Qsim
nd | i = 0}.

Steps 9 to 11 of this algorithm are optional and independent of each other—it
is possible to skip any of these steps. Alternatively, it is also possible to compute
the transitions at a given state one after the other and apply (some of) steps 9 to 11
after the computation of every single transition to the set of transitions computed
so far. Especially, step 11 can be of use in this approach since it only deals with a
single transition, not with comparing transitions.

Also, the algorithm can be combined with other simplification techniques,
namely with formula rewriting based on syntactical rewrite rules in step 3 (see,
e. g., [EH00]). After the computation of the nondeterministic automaton, further
optimizations, both simulation-based and based on criteria like the SCC structure
of the NBA, can be applied, see, e. g., [EH00, SB00, ESW01, GO01]. Experi-
ments with the program TMP [Ete] indicate that computing delayed or fair sim-
ulation for the NBA can easily become too time consuming. Computing direct
simulation and applying minimax quotienting as described in Section 1.4 can be
a good alternative.

Remember that, by Lemma 2.5, the fair simulation relation for the NBA is
already partly computed. With the complete NBA computed, we can apply Corol-
lary 2.4 to its full extent and also apply Lemma 2.3 to the NBA. The partially
computed fair simulation relation may also serve as a starting point for the fair
simulation minimizations of [GBS02].

We suggest to apply the following post-processing steps.

1. Remove all unproductive states from Qsim
nd (ϕ), i. e., all states from which an

accepting state is not reachable.

2. Compute direct simulation and the minimax quotient w. r. t. direct simu-
lation of Qsim

nd (ϕ), cf. Chapter 1. Continue with this quotient automaton
Qdi

nd(ϕ).

84 CHAPTER 2. Simulation and LTL

3. Since Qdi
nd(ϕ) is direct simulation equivalent to Qsim

nd (ϕ) (Theorem 1.2) and
the direct simulation relation is a subset of the fair simulation relation (Lem-
ma 1.1), we have [q] ≤ f [q′] at least for those states of Qdi

nd(ϕ) for which
there are representatives q̄∈ [q], q̄′ ∈ [q′] such that q̄≤ f q̄′ holds according to
Lemma 2.5, or q̄≤di q̄′ holds, as computed in step 2 of this post-processing.

With all information about reachability at hand, we apply Lemma 2.3 for
deleting transitions in Qdi

nd(ϕ) with this partially computed relation ≤ f .

We thus use all our three modes of simulation—direct, delayed, and fair—
for simulation-based simplification: Computing the direct simulation relation is
comparably fast, so we can compute the direct simulation quotient of the nonde-
terministic automaton in the post-processing. Delayed simulation is useful for the
pruning of NBA states, and fair simulation can be used for pruning, for identifying
superfluous transitions of the NBA and for formula rewriting. Local optimization,
while not based on simulation, is easy to use and worthwhile.

2.6.2 Example: From LTL to NBA

We exemplify the working of the algorithm of Subsection 2.6.1 for two input
formulas.

Example: F((Fb) R (a R (Fb)))

Our first example is the input formula ϕ = F((Fb) R (a R (Fb))) over the set of
propositions Σ = {a,b}. Figure 2.1 shows the ε-ABA Q(ϕ). As in Chapter 1,
existential states are shown as diamonds and universal states as boxes; accepting
states have double lines. Labels “ε” are omitted on the transitions, as is the state
ff.

We first compute the fair simulation relation for Q(ϕ) and find that ϕ ≡ f
(Fb) R (a R (Fb))≡ f a R (Fb)< f Fb < f tt, and Fb is incomparable via fair sim-
ulation to a∨X(a R (Fb)).

To further illustrate the game rules of Section 2.3, we clarify here why the
states a R (Fb) and (Fb) R (a R (Fb)) are fair simulation equivalent: In a simu-
lation game with the red pebble on (Fb) R (a R (Fb)) and the green pebble on
a R (Fb) at the beginning of the first round, Spoiler chooses some term from
posTerms((Fb) R (a R (Fb))) = {tt,a,b,a∧ b} and then moves the green peb-
ble to either a∨X(a R (Fb)) or to Fb. Then, Duplicator can move the red pebble,
and he can now move it via a R (Fb) to the same state on which the green pebble
now is. In fact, since a R (Fb) and (Fb) R (a R (Fb)) are both accepting states of
Q(ϕ), this shows that even (Fb) R (a R (Fb))≤di a R (Fb).

2.6. Computing the NBA with On-The-Fly Simplifications 85

F(Fb R (a R Fb))

a

tt

a

(Fb \/ X(Fb R (a R Fb)))

Fb X(Fb R (a R Fb))

tt

(Fb R (a R Fb))

(a R Fb)

X(a R Fb)

tt

tt

tt

b

b

(a \/ X(a R Fb))

tt

Figure 2.1: ε-ABA for F((Fb) R (a R (Fb)))

86 CHAPTER 2. Simulation and LTL

Conversely, if the red pebble starts on a R (Fb) and the green pebble starts on
(Fb) R (a R (Fb)), Spoiler can also choose a term from {tt,a,b,a∧ b}. He then
has to move the green pebble, and he will lose if he moves it to a R (Fb). If he
moves the green pebble to (Fb)∨X((Fb) R (a R (Fb))), Duplicator can then move
the red pebble to Fb. Depending on whether he has chosen one of the terms b or
a∧b, Spoiler can now end the moves of the red pebble in this round on state Fb or
on state tt, but Duplicator can then move the green pebble to the same state, such
that the round ends with both pebbles on the same state. This shows that we even
have (Fb) R (a R (Fb))≡di a R (Fb).

The following steps are numbered according to the algorithm of
Subsection 2.6.1.

(3) Since ϕ and a R (Fb) are equivalent w. r. t. fair simulation, we continue the
computation with ϕ = a R (Fb).

(4) Computing ≤de, we see that ϕ = a R (Fb) 6≤de Fb, basically because a R
(Fb) is an accepting state and Fb is not.

(5) The bijection z is Fb 7→ 1, so . . .
(6) . . . the initial state of Qsim

nd (ϕ) is ({ϕ},0), which is added to newStates
and . . .

(7) . . . then moved from newStates to Qsim
nd .

(8) The transitions of (M, i) = qI = ({ϕ},0) = ({a R (Fb)},0), i. e., the el-
ements of T(M,i), are (tt,({a R (Fb),Fb},1)), (a,({Fb},1)), (b,({a R (Fb)},0))
and (a∧b,(/0,0)).

(9) No transitions can be deleted from T(M,i) by local optimization.
(10) By Lemma 2.5, we have ({a R (Fb)},0) ≡ f ({a R (Fb),Fb},1) ≤ f

({Fb},1) ≤ f (/0,0). Also, b→ tt and i = 0 in (M, i) = ({a R (Fb)},0). So by
Lemma 2.4, we may remove the transition (b,({a R (Fb)},0)).

(11) While Fb≥ f a R (Fb) in the set {a R (Fb),Fb} of state ({a R (Fb),Fb},1),
we must not delete Fb from this set, because the reachability criterion of Proposi-
tion 2.2 is not met: Fb is a proper subformula of the remaining formula a R (Fb),
and this formula is an R-formula.

(12) We thus add the transitions (qI, t,(N, j)) to ∆sim
nd with (t,(N, j))

∈ {(tt,({a R (Fb),Fb},1)),(a,({Fb},1)),(a∧ b,(/0,0))}. The states ({a R (Fb),
Fb},1), ({Fb},1) and (/0,0) are added to newStates. Since newStates now is not
empty, the algorithm continues with step 7.

In the following loops through steps 7 to 13, no new states are added to new-
States, i. e., the resulting set of states Qsim

nd contains the above states in newStates
and the initial state. The transitions of ({Fb},1) are {(tt,({Fb},1)),(b,(/0,0))}
and the transition of (/0,0) is ((/0,0), tt,(/0,0)).

The state ({a R (Fb),Fb},1) has transitions to the initial state via b, to itself
via tt, to ({Fb},1) via a and to (/0,0) via a∧ b. Note that the transition (b,qI)

2.6. Computing the NBA with On-The-Fly Simplifications 87

must not be deleted in favor of the transition (tt,({a R (Fb),Fb},1)) in step 10,
since ({a R (Fb),Fb},1) is not an accepting state.

The post-processing does not yield any further simplifications.
Figure 2.2 shows the resulting nondeterministic Büchi automaton for F((Fb) R

(a R (Fb)))≡ f a R (Fb).

({a R Fb}, 0)

({Fb}, 1) tt

(ø, 0)

b

a

a /\ b

({a R Fb, Fb}, 1)

tt

tt

a

b

a /\ b

tt

Figure 2.2: NBA for F((Fb) R (a R (Fb)))≡ f a R (Fb)

Example: G(a R ((Fb) U c))

The next example is the formula ϕ = G(a R ((Fb) U c)). Again, the steps are
numbered according to the algorithm of Subsection 2.6.1.

(2) We define ψ = a R ((Fb) U c), i. e., ϕ = Gψ. We have ϕ< f ψ< f (Fb) U c.
Further, b < f Fb, and the subformulas a and c are incomparable to the other sub-
formulas. No two subformulas are f-equivalent, and also (Fb)∧X((Fb) U c) 6≤ f c
and (Fb) U c 6≤ f a∨Xψ.

(3) That is, no formula rewriting is possible.
(4) We have ϕ<de ψ and b<de Fb, but ψ 6≤de (Fb) U c.
(5) We choose the bijection z : Fb 7→ 1,(Fb) U c 7→ 2.

88 CHAPTER 2. Simulation and LTL

(6) The initial state of Qsim
nd (ϕ) is qϕ

I = ({ϕ},0).
(8) There are six transitions to six different states starting at qϕ

I = ({ϕ},0): (i)
(tt,({ϕ,ψ,(Fb) U c,Fb},2)), (ii) (b,({ϕ,ψ,(Fb) U c},2)), (iii) (c,({ϕ,ψ},0)),
(iv) (a,({ϕ,(Fb) U c,Fb},2)), (v) (a∧b,({ϕ,(Fb) U c},2)), (vi) (a∧c,({ϕ},0)).

(9) None of these six transition can be deleted by local optimization.
(10) We have ({ϕ,(Fb) U c,Fb},2)≡ f ({ϕ,ψ,(Fb) U c,Fb},2) by Lemma 2.5,

and a→ tt, and qϕ
I is an accepting state. That is, the transition (iv) can be deleted

according to Lemma 2.4. Similarly, transition (v) can be deleted in favor of tran-
sition (ii) and transition (vi) can be deleted in favor of transition (iii) according to
Lemma 2.4.

(11) Pruning w. r. t. fair simulation (Corollary 2.4) is not possible for the target
states of the remaining three transitions: While ϕ≤ f ψ, the reachability criterion
fails for deleting ψ. But we also have ϕ ≤de ψ, and both ϕ and ψ are accepting
states. That is, we can delete ψ from the set component of the three target states
by pruning w. r. t. delayed simulation. Our transitions starting at qϕ

I are thus (i)
(tt,({ϕ,(Fb) U c,Fb},2)), (ii) (b,({ϕ,(Fb) U c},2)), (iii) (c,({ϕ},0)).

Generally speaking, a formula ϕ0 R ϕ1 can always be pruned in favor of the
formula G(ϕ0 R ϕ1). It follows that pruning w. r. t. delayed simulation effectively
implements the rewrite rule G(ϕ0 R ϕ1) 7→ Gϕ1, i. e., adding this rule to the rules
of Corollary 2.3 does not change the output of the algorithm.

(12) Consequently, the newStates are ({ϕ,(Fb) U c,Fb},2) and ({ϕ,(Fb) U
c},2). The state ({ϕ},0) is the initial state and is already in Qsim

nd .
The further computation yields one more state: There is a transition from

({ϕ,(Fb) U c,Fb},2) to ({ϕ,Fb},1) labeled with c.
The final automaton Qsim

nd (ϕ) is shown in Figure 2.3.

2.6.3 Experiments

The main ideas of the above automata construction from LTL are prototypically
implemented as the program LTL→NBA [FTb]. Different from Subsection 2.6.1,
in LTL→NBA only the delayed simulation relation is computed for the ε-ABA of
an input LTL formula, so that on-the-fly simplifications of the resulting NBA are
based on delayed simulation only, and the translation from ε-ABA is via the con-
struction of [MH84] (cf. Section 1.6). The following tables, taken from [Fri03],
compare this implementation to the LTL-to-NBA translators TMP [Ete] of Etes-
sami and LTL2BA [Odd] of Gastin and Oddoux on random formulas.

Test 1. 1000 formulas and their negations, of length 8 to 10, with at most 3
different propositions and an equal frequency of the operators ∨, ∧, F, G, U, R.

2.6. Computing the NBA with On-The-Fly Simplifications 89

({G(a R (Fb U c))}, 0) c

({G(a R (Fb U c)),
 (Fb U c)}, 2)

b

({Fb, G(a R (Fb U c)),
 (Fb U c)}, 2)

tt

({Fb, G(a R (Fb U c))}, 1)

b

tt

c

b

tt

b /\ c

c

b

tt

Figure 2.3: NBA for G(a R ((Fb) U c))

Test 1 LTL→NBA TMP LTL2BA
Avg. no. of states 3.54 3.59 3.76
Avg. no. of transitions 6.96 6.65 7.75
Total time (sec) 209.1 70.2 12.7

Test 2. 1000 formulas and their negations, of length 10 to 14.
Test 2 LTL→NBA TMP LTL2BA
Avg. no. of states 4.37 4.71 4.93
Avg. no. of transitions 10.07 9.71 12.28
Total time (sec) 425.0 197.1 12.9

Test 3. 1000 formulas and their negations, of length 11 to 15 and with an in-
creased frequency of the operators U and R.

90 CHAPTER 2. Simulation and LTL

Test 3 LTL→NBA TMP LTL2BA
Avg. no. of states 5.06 5.71 5.74
Avg. no. of transitions 12.59 13.83 15.98
Total time (sec) 575.0 14737.12 13.1

Test 4. 1000 formulas and their negations, of length 15, with the same frequency
of the operators U and R as in Test 3.

Test 4 LTL→NBA TMP LTL2BA
Avg. no. of states 5.80 6.55 6.68
Avg. no. of transitions 16.05 16.86 20.63
Total time (sec) 986.6 3001.9 13.4

That is, with the complexity of the formulas increasing, our implementation
LTL→NBA becomes faster than TMP, while the resulting automata are even
somewhat smaller on the average. LTL2BA is extremely fast, but the resulting
automata are considerably larger.

To interpret these results, first note that LTL→NBA is implemented in Py-
thon [Pyt], which is a rather slow interpreted language; we suppose that a C im-
plementation would be at least 10 times faster. The program TMP is written in
SML [MTHM97] while LTL2BA is implemented in C [KR88].

Basically, TMP works as follows. TMP computes a nondeterministic general-
ized Büchi automaton from the input LTL formula using the algorithm
of [DGV99]. As detailed in Section 2.7, this automaton is then adapted to the
format of a nondeterministic Büchi automaton with transition labels as terms, as
in our setting, and then the delayed simulation quotient for this NBA is computed,
cf. [ESW01]. Since the size of these NBA can be exponential in the length of
the input formula, it is not surprising that the average computation time of TMP
increases rapidly for longer formulas and with more (nested) U-operators.

It is surprising, however, that the automata output by TMP are not, on aver-
age, smaller than the output of LTL→NBA, since LTL→NBA does not compute
a simulation quotient for the NBA and hence does not detect all equivalences with
respect to delayed simulation that exist between the states of the output NBA. The
discussion of the [DGV99] algorithm in Section 2.7 shows that this is not due to
using this particular algorithm for the translation of LTL to automata. We conjec-
ture that the main reason for this is a disadvantageous translation of the general-
ized Büchi condition into a simple Büchi condition, based on the following obser-
vation: For the equivalent formulas (GFXa)∨ (c U (c∨b)), (c U (c∨b))∨GFXa
and (GFXa)∨ c∨ b, TMP produced three NBA which are not pairwise isomor-

2TMP spent 13997.3 sec (nearly 4 hrs.) on the formula ¬(((Xb) U (((Ga) R c) U (G¬a))) R
a), resulting in an automaton of 115 states (LTL→NBA: 7.5 sec, 50 states; LTL2BA: 0.04 sec,
83 states). So without this particular formula, the total time drops to 739.8 sec.

2.6. Computing the NBA with On-The-Fly Simplifications 91

phic, while our algorithm does produce isomorphic automata for all three formu-
las, both with simplifications based on delayed simulation and with fair simulation
simplifications. (For the latter, note that the subformula c U (c∨b) is replaced by
c∨b according to item 4 of Corollary 2.3.)

Our automaton for these formulas, shown in Figure 2.4, is isomorphic to the
TMP automaton for (GFXa)∨ c∨b, which only contains one U- or F-operator.

({(GFXa) \/ c \/ b}, 0)

(ø, 0)

c, b

({a, GFXa}, 0)

tt

({FXa, GFXa}, 1)

tttt a

a tt

tt

Figure 2.4: Qsim
nd ((GFXa)∨ c∨b), isomorphic to the TMP automaton for this for-

mula.

Compare this automaton to the TMP automaton for (GFXa)∨ (c U (c∨ b))
shown in Figure 2.5.

It is quite obvious that this automaton is in fact equivalent to the automa-
ton for (GFXa)∨ c∨ b; only the state T2 is superfluous in the automaton for
(GFXa)∨ (c U (c∨ b)). The TMP automaton for (c U (c∨ b))∨GFXa also has
a strongly connected component with three states for the acceptance of the sub-
formula GFXa. Our explanation for this is that, in the TMP implementation,
the equivalent of the counter component, which is necessary when a general-
ized Büchi condition is translated to a simple Büchi condition, is decreased by
at most 1 along every transition. That is, we assume that the TMP automaton for
(GFXa)∨ (c U (c∨ b)) can be considered to be based on the bijection FXa 7→ 2,
c U (c∨b) 7→ 1 such that the state T1 corresponds to ({FXa,GFXa},0), T4 corre-
sponds to ({FXa,GFXa},2) and T2 corresponds to ({a,GFXa},1), i. e., T2 corre-
sponds to an inconsistent state in the sense of Subsection 2.4.1.

92 CHAPTER 2. Simulation and LTL

T3

T1

T4

tt

tt

T2

tt

tt

tt tt

c, b

a

tt

Figure 2.5: TMP automaton for (GFXa)∨ (c U (c∨b)).

In contrast, the experimental results for LTL2BA are as expected: LTL2BA
is extremely fast, but the resulting automata are considerably larger than the au-
tomata resulting from the other programs. It can be assumed that this is because
LTL2BA does not use simulation-based simplifications. The program LTL2BA re-
lies on a small set of simplification rules; these are mainly comparing transitions
to identify removable transitions and merging states with the same transitions and
the same acceptance status. These rules are applied in an on-the-fly fashion to
the very weak alternating Büchi automaton computed for the input LTL formula,
then to a generalized Büchi automaton computed from this ABA and, finally, to
an NBA resulting from the intermediate generalized automaton. See [GO01] for
a detailed description of LTL2BA. While these rules can be applied very fast,
they miss “deeper” connections between automata states which are revealed by a
simulation-based analysis.

In summary, computing a simulation relation at the intermediate level of alter-
nating automata seems to be a viable compromise between time-consuming ap-
proaches like computing a simulation quotient of the resulting NBA (as in TMP)
and fast simplifications based on local criteria only (as in LTL2BA).

2.7. A Comparison of LTL-to-NBA Constructions 93

2.7 A Comparison of LTL-to-NBA Constructions
The classical approach to ABA-to-NBA translation is tableau-based, as in [VW86]
and refined in [GPVW95, DGV99]. It is easy to see that the worst-case size of the
resulting NBA is the same for our approach and for these refined versions of the
tableau-based translation. The exact relation between the automata resulting from
these two approaches is not that obvious, however. This is especially because the
algorithms of [GPVW95, DGV99] translate LTL to generalized Büchi automata
with term labels on the transitions rather than on the states. That is, a comparison
requires a common automaton format and a standard translation to that format in
the first place.

In this section, we first present the automaton resulting from the [GPVW95] al-
gorithm, henceforth called the GPVW-automaton, in Subsection 2.7.1. We then
give a straightforward adaptation of the GPVW-automaton to the format of our
top-down automaton in Subsection 2.7.2; this adaptation is similar to what is
done in [GL02] and implemented in TMP [Ete]. In Subsection 2.7.3, we show
that there is a strong connection between the local optimization of Definition 2.2
and the concept of syntactical implication introduced in [DGV99] and used in an
optimized translation from LTL to a generalized Büchi automaton; this automaton
constructed according to [DGV99] will henceforth be called the DGV-automaton.
Using this careful analysis of local optimization, we show in Subsection 2.7.4
that the GPVW-automaton is the same as our automaton via ABA for all input
formulas in next normal form, provided that both automata are also locally opti-
mized. Since the use of syntactical implication is the main difference between the
GPVW-automaton and the DGV-automaton, we can also show that the same is
true for the DGV-automaton (Subsection 2.7.5). In Subsection 2.7.6, we discuss
why next normal form is crucial for these results.

2.7.1 The GPVW-automaton
The GPVW-automaton differs from our top-down automaton in some basic as-
pects. Let

A(ϕ) = (Qϕ,Σ, I,→,F ,L) (2.67)

be the GPVW-automaton for an LTL formula ϕ. Then A(ϕ) is a generalized Büchi
automaton, i. e., the acceptance condition F is given as

F = {F0, . . . ,Fn−1} ⊆ 2Qϕ (2.68)

such that a run π = (qi)i<ω ∈Qω
ϕ of A(ϕ) is accepting if and only if Inf(π)∩Fi 6= /0

for all i < n. Moreover, I ⊆ Qϕ is a set of initial states rather than a single initial

94 CHAPTER 2. Simulation and LTL

state, and the terms which are used as labels of the transitions in our construction
are labels of the states in the GPVW-automaton while there are no labels on the
transitions. That is, L is a labeling function Qϕ→ termΣ, and a sequence (qi)i<ω ∈
Qω

ϕ is a run of the GPVW-automaton on a word w ∈ (2Σ)ω if and only if q0 ∈ I,
(qi,qi+1) ∈→ and w(i) |= L(qi), for all i< ω.

We therefore apply some simple modifications to the GPVW-automaton:
(1) We introduce a new state as the single initial state, (2) we transfer the labels
of a state to its incoming transitions, and (3) we change the generalized Büchi
acceptance condition to a simple Büchi condition by introducing a counter. Then
we show that this modified GPVW-automaton is equal to our automaton w. r. t. a
local simplification criterion for input formulas in next normal form.

In this section, we give the details of the GPVW-automaton. In Subsec-
tion 2.7.2, we discuss the effects of the above modifications.

In the algorithmic definition of the GPVW-automaton in [GPVW95], a state
of the automaton is described as an object with the fields Name, Incoming, New,
Old, Next and Father. Of these, only Old and Next are necessary to describe a
node while the other fields contain auxiliary data. Both Old and Next are sets
of subformulas of the input formula. Consequently, we will describe a state of
the GPVW-automaton as an element of 2sub(ϕ)×2sub(ϕ), with the first component
representing the Old-field and the second component representing the Next-field.

To define the transition relation of the GPVW-automaton, we first define the
relation ;⊆ 2sub(ϕ) × (2sub(ϕ) × 2sub(ϕ)): We have N ; (M′,N′) if there is a
t ∈ termΣ such that scs(N, t,N′) and M = lit(t)∪N. As in Subsection 2.4.3, we
identify a subset {ψ∧ρ} with {ψ,ρ}.

The GPVW-automaton A(ϕ) is now defined by

→ = {((M,N),(M′,N′)) ∈ (2sub(ϕ))4 | N ; (M′,N′)} , (2.69)

Qϕ = {(M,N) ∈ 2sub(ϕ)×2sub(ϕ) | (/0,{ϕ})→+ (M,N)} ,(2.70)
I = {(M,N) ∈ Qϕ | {ϕ}; (M,N)} , (2.71)

L : (M,N) 7→
∧

α ∈M a literal

α . (2.72)

To define the set F of accepting sets, let z be a bijection of the set Pϕ of F- and
U-formulas in sub(ϕ) to {1, . . . ,kϕ}. We have

F = {F1, . . . ,Fkϕ} , (2.73)

where

Fi = {(M,N) ∈ Qϕ | (ψ U ρ ∈M∧ z(ψ U ρ) = i) =⇒ ρ ∈M} ; (2.74)

here, a formula Fρ is regarded as tt U ρ.
We note:

2.7. A Comparison of LTL-to-NBA Constructions 95

Lemma 2.7 For all (M,N),(M′,N′)∈Qϕ, if (M,N)→ (M′,N′), then N′ ∈ scs(N,
L(M′,N′)) in the sense of Subsection 2.4.3, that is, if there is an i≤ kϕ such that
(N, i) is a state of Qtd(ϕ), then there is a j ≤ kϕ such that ((N, i),
L(M′,N′),(N′, j)) is a transition in Qtd(ϕ).

Conversely, if ((N, i), t,(N′, j)) is a transition in Qtd(ϕ) and there is an M ∈
2sub(ϕ) such that (M,N) ∈ Qϕ, then there is an M′ ∈ 2sub(ϕ) such that (M,N)→
(M′,N′) and L(M′,N′)≡ t.

Proof. Straightforward induction over the the size of N and the structure of LTL
formulas. 2

2.7.2 The adjusted GPVW-automaton
In the first step of the modification, we introduce a single initial state and put the
term labels on the transitions. That is, we define

A(1)(ϕ) = (Q(1)
ϕ ,Σ,qI,∆,F) , (2.75)

where Q(1)
ϕ = Qϕ∪{qI} and qI = (/0,{ϕ}), if ϕ is not a F- or U-formula, else qI =

({ϕ},{ϕ}). If ϕ is a conjunction
∧

i<n
ψi of subformulas of which, say, ψ0, . . . ,ψr−1

are F- or U-formulas, then qI = ({ψi | i< r},{ψi | i< n}).
The transitions in → starting from qI and the assignment of qI to accepting

sets follow from the above definitions. As the new set of transitions, we have

∆ = {(q, t,q′) | q→ q′ and t = L(q′)} . (2.76)

With the terms on the transitions rather than on the states, the only relevant
information encoded in the first component of a state (the Old-field) now is the
state’s assignment to the acceptance sets. That is, we can now change the first
component to a set of integers in the range 1 . . .kϕ such that, for all 1≤ i≤ kϕ and
for all changed states (M,N), i∈M if and only if (M,N)∈ Fi. We therefore define
the auxiliary function

f : 2sub(ϕ) → 2kϕ+1 , (2.77)
M 7→ {0< i≤ kϕ | ∀ψ U ρ ∈M : z(ψ U ρ) = i→ ρ ∈M}, (2.78)

where again a formula Fρ is regarded as tt U ρ.
Our new automaton is

A(2)(ϕ) = (Q(2)
ϕ ,Σ,q(2)

I ,∆(2),F (2)) , (2.79)

96 CHAPTER 2. Simulation and LTL

where

Q(2)
ϕ = {(f (M),N) | (M,N) ∈ Q(1)

ϕ } , (2.80)

q(2)
I = (f (pr1(qI)),pr2(qI)) , (2.81)

and, consequently,

∆(2) = {(f (M),N), t,(f (M′),N′) | ((M,N), t,(M′,N′)) ∈ ∆ , (2.82)

F(2)
i = {(M,N) ∈ Q(2)

ϕ | i ∈M}, for all 1≤ i≤ kϕ. (2.83)

The third step is to change the generalized Büchi condition into a simple Büchi
condition. The standard approach is to introduce a counter in the range 0 . . .kϕ =
|F (2)|; this counter is decreased from i to i− 1 if the current state in the run
belongs to F(2)

i . A more sophisticated approach is to decrease, in this case, the
counter from i to the largest j < i such that the current state does not belong to
F(2)

j , and to change the counter to 0 if there is no such j. In both cases, a run is
accepting if the counter becomes 0 infinitely often.

This sort of counter behavior (with increasing counters, though) and the trans-
lation of term labels to the incoming transitions is also discussed in [GL02].

Another approach is not to use an integer counter but a bit string of length kϕ.
Bit no. i is switched from 0 to 1 if the current state belongs to F(2)

i , and a run is
accepting if the bit string becomes 1kϕ infinitely often. The obvious drawback of
this approach is a possible blow-up of the state space by a factor of 2kϕ , while the
other approaches have a blow-up factor of kϕ + 1 in the worst case.

It is easy to see that the second approach corresponds to our construction
in Section 2.4 while the third approach corresponds to the result of a Miyano–
Hayashi construction applied to the alternating automaton of an LTL formula. As
discussed in Subsection 2.6.3, the first approach seems to be used in the LTL-to-
NBA implementation TMP [Ete].

To compare the GPVW-automaton to our construction of Section 2.4, we will
use the second approach here to turn the generalized Büchi condition of A(2)(ϕ)
into a simple Büchi condition.

We will first define, as an intermediate format, the automaton A(3)(ϕ) where

Q(3)
ϕ = Q(2)

ϕ × (kϕ + 1) , (2.84)

q(3)
I = (q(2)

I ,max{0< l ≤ kϕ | l /∈ pr1(q(2)
I)}) , (2.85)

2.7. A Comparison of LTL-to-NBA Constructions 97

and the transition relation is

∆(3) = {((M,N, i), t,(M′,N′, j)) | ((M,N), t,(M′,N′)) ∈ ∆(2),

if i = 0 then j = max{l ≤ kϕ | l /∈M′}
else if i ∈M′ then j = max{l < i | l /∈M′}

else j = i} . (2.86)

The Büchi acceptance set is

F(3) = {(q,0) | q ∈ Q(2)} . (2.87)

In the next step, we merge any two states if they contain the same counter and
the same set of subformulas. That is, the adjusted automaton Aad(ϕ) has the state
set

Qad
ϕ = {(N, i) | ∃M ∈ 2kϕ+1 : (M,N, i) ∈ Q(3)

ϕ } , (2.88)

and the transitions in ∆ad and the accepting states in Fad are adjusted accordingly.
We note:

Property 2.1 (consistency) For every state (N, i) of Aad(ϕ), if i > 0, then
z−1(i) ∈ N, i. e., the states of Aad(ϕ) are consistent.

Proof. Let (N, i) be a state of Aad(ϕ) such that i > 0. By (2.88), there is an
M ∈ 2kϕ+1 such that (M,N, i) is a reachable state of A(3)(ϕ). By (2.86), i /∈ M,
so there is ψ U ρ ∈M such that z(ψ U ρ) = i and ρ /∈M by (2.78) and (2.80). By
the definition of the relation ; and the basic GPVW-automaton, it follows that
ψ U ρ ∈ N. 2

2.7.3 Local optimization and syntactical implication
At this stage, Aad(ϕ) and Qtd(ϕ) are not the same automaton. Consider the au-
tomata of Figure 2.6 for the input formula ϕ = (a U b)∧Gb.

In the above example, one can observe that, in both automata, the (a∧ b)-
labeled transitions are superfluous in the sense of Definition 2.2, because there is
a better transition (({ϕ},1),b,({Gb},0)).

In the following, let A lo(ϕ) be the locally optimized version of Aad(ϕ). In the
example, we then have A lo(ϕ) = Qlo(ϕ), because the (a∧ b)-labeled transitions
and, consequently, the state qad

1 of Aad(ϕ) are deleted. (Note that the resulting
automata can be further optimized by merging the two remaining states—they are
equivalent w. r. t. delayed simulation equivalence.)

98 CHAPTER 2. Simulation and LTL

({a U b, Gb}, 1)

({a U b, Gb}, 0)

({Gb}, 0)
b

a ∧ b

a ∧ b

b

b

({a U b, Gb}, 1)

({Gb}, 0)

a ∧ b

b

b

1

Figure 2.6: Aad(ϕ) (left) and Qtd(ϕ) (right) for ϕ = (a U b)∧Gb

We claim that our observation for the example is not a coincidence: The mod-
ified and locally optimized GPVW-automaton is the same as the locally optimized
top-down automaton for all LTL formulas in next normal form, provided that the
same bijection z is used for the set of U- and F-subformulas.

In the following, we write, e. g., Qtd
z (ϕ) for the top-down automaton of ϕ based

on a fixed bijection z.
We first turn our attention to the redundancy checks via syntactical implication

of [DGV99]. There is a close connection between local optimization and these
redundancy checks, and the careful analysis of this connection will also lead us
to an important observation about locally optimized automata. We introduce the
notion of syntactical implication following [GL02].

Definition 2.5 (syntactical implication, cf. [DGV99, GL02]) For sets A, B of
LTL formulas over Σ, SI(A,B) is the set of LTL formulas over Σ defined induc-
tively as follows.

1. tt ∈ SI(A,B),

2. ϕ ∈ SI(A,B), if ϕ ∈ A,

3. ϕ ∈ SI(A,B), if one of the following holds:

• ϕ = Xψ and ψ ∈ B, 3 or

• ϕ = ψ∨ρ and (ψ ∈ SI(A,B) or ρ ∈ SI(A,B)), or

• ϕ = ψ∧ρ and {ψ,ρ} ⊆ SI(A,B), or

• ϕ = ψ U ρ and (ψ ∈ SI(A,B) and ϕ ∈ B, or ρ ∈ SI(A,B)), or

3We add this rule for technical convenience. It is not included in the definition of [GL02].

2.7. A Comparison of LTL-to-NBA Constructions 99

• ϕ = ψ R ρ and (ρ ∈ SI(A,B) and ϕ ∈ B, or {ψ,ρ} ⊆ SI(A,B)).

If ϕ ∈ SI(A,B), we say that ϕ is syntactically implied by A and B, or that ϕ is
syntactically redundant w. r. t. A and B.

Obviously, if A′ ⊆ A and B′ ⊆ B, then SI(A′,B′)⊆ SI(A,B).
Syntactical implication is used in [GL02] in the following way4: When com-

puting a transition starting from a set of formulas M, the formulas in M are pro-
cessed one after the other such that a processed formula is removed from M. (If a
subformula ϕ′ of a formula ϕ ∈M has to be processed in order to process ϕ, then
ϕ′ is added to M.)

Now before any formula ϕ taken from M is processed, it is checked whether
ϕ is syntactically redundant w. r. t. the formulas already known to be elements of
the target state of the currently computed transition and w. r. t. the literals which
are known to be part of the term label of this transition. If this is the case, ϕ needs
not be further processed.

This on-the-fly procedure speeds up the automaton construction: Some formu-
las are not processed, which can result in less automaton states, and these states
also may contain less formulas. However, the performance of this redundancy
check obviously depends on the order in which the formulas are taken from M.

To show the connection between syntactical implication and local optimiza-
tion, we first need a connection between syntactical implication and successor
sets.

Lemma 2.8 Let A be a set of literals, let B be a set of LTL formulas, and let ϕ 6≡ ff
be an LTL formula.

(1) If ϕ ∈ SI(A,B), then there are sets A′ ⊆ A, B′ ⊆ B such that B′ ∈ scs({ϕ},
term(A′)).

(2) Conversely, if B ∈ scs({ϕ}, term(A)), then ϕ ∈ SI(A,B).

Proof. By induction over the structure of LTL formulas.
(1) Basic cases: If ϕ = tt, then A′ = B′ = /0 satisfies the claim. If ϕ is a literal,

then ϕ ∈ SI(A,B) because ϕ ∈ A, so the claim holds with A′ = {ϕ}, B = /0.
Composed formulas: If ϕ = Xψ, we have ψ ∈ B, so with A′ = /0 and B′ = {ψ},

we have B′ ∈ scs({ϕ}, term(A′)).
If ϕ = ψ U ρ, we may have ϕ ∈ SI(A,B) because ψ ∈ SI(A,B) and ϕ ∈

B. By induction hypothesis, there are sets Aψ ⊆ A, Bψ ⊆ B such that Bψ ∈
scs({ψ}, term(Aψ)). The claim follows with A′ = Aψ and B′ = Bψ ∪ {ϕ}. If,

4The use is somewhat different in the details in [DGV99] because there are no transition labels
as such in that setting.

100 CHAPTER 2. Simulation and LTL

on the other hand, ρ ∈ SI(A,B), there are Aρ ⊆ A, Bρ ⊆ B such that Bρ ∈ scs({ρ},
term(Aρ)), and the claim follows with A′ = Aρ, B′ = Bρ.

Analogously, if ϕ = ψ R ρ, we either set A′ = Aρ and B′ = Bρ∪{ϕ}, or A′ =
Aψ∪Aρ and B′ = Bψ∪Bρ.

For ϕ = ψ∨ρ and ϕ = ψ∧ρ, the claim follows immediately by the induction
hypothesis.

(2) The basic cases are obvious. For ϕ = ψ U ρ, first assume that B also is a
successor set of {ρ} for term(A). Then, by induction hypothesis, ρ ∈ SI(A,B),
hence also ϕ ∈ SI(A,B). If, on the other hand, B = B′ ∪ {ϕ} such that B′ ∈
scs({ψ}, term(A)), then ψ ∈ SI(A,B′) ⊆ SI(A,B) and, since also ϕ ∈ B, we also
have ϕ ∈ SI(A,B). The proofs are also straightforward if ϕ is a conjunction, a
disjunction or an X- or R-formula. 2

For a deeper analysis of syntactical implication versus local optimization, we
need a terminology that allows us to precisely track the generation of successor
sets from formulas and subformulas. We therefore introduce in the following
Definitions 2.6 to 2.8 a notion of an LTL formula as a tree and a labeling of these
trees by successor sets for the subformulas.

Definition 2.6 (syntax tree) The syntax tree syn(ϕ) of an LTL formula ϕ is the
labeled directed graph (Vϕ,Eϕ,Lϕ) representing the syntactical structure of ϕ.
That is, if ϕ is a literal or ϕ ∈ {tt,ff} then syn(ϕ) = ({v}, /0,{(v,ϕ)}).

For a composed formula ϕ, assume that the syntax trees syn(ψ) = (Vψ,Eψ,Lψ)
and syn(ρ) = (Vρ,Eρ,Lρ) for the subformulas ψ and ρ are already defined such
that Vψ and Vρ are disjoint and v0 ∈Vψ, v1 ∈Vρ such that Lψ(v0) = ψ, Lρ(v1) = ρ.
Let v /∈Vψ∪Vρ be a new node.

For ϕ ∈ {ψ∨ρ,ψ∧ρ,ψ U ρ,ψ R ρ}, we define syn(ϕ) = (Vψ∪Vρ∪{v},Eψ∪
Eρ∪{(v,v0),(v,v1)},Lψ∪Lρ∪{(v,ϕ)}).

For ϕ = Xψ, we define syn(ϕ) = (Vψ∪{v},Eψ∪{(v,v0)},Lψ∪{(v,ϕ)}).

Obviously, syn(ϕ) is a tree. A node v of syn(ϕ) is a leaf if and only if Lϕ(v) is
a literal, tt or ff. A node v is the root of syn(ϕ) if and only if Lϕ(v) = ϕ.

Definition 2.7 (successor labeling) A successor labeling sl of a syntax tree
syn(ϕ) = (V,E,L) is a mapping V → termΣ×2sub(ϕ) which is inductively defined
in analogy to the successor sets.

That is, sl(v) = (L(v), /0) if L(v) is tt or a literal (sl(v) is undefined for L(v) =
ff).

If {(v,v0),(v,v1)} ⊆ E, L(v0) = ψ and L(v1) = ρ, and sl(v0) = (t,N) and
sl(v1) = (t ′,N′) are already defined, then

– if L(v) = ψ∨ρ, then either sl(v) = sl(v0) or sl(v) = sl(v1),

2.7. A Comparison of LTL-to-NBA Constructions 101

– if L(v) = ψ∧ρ, then sl(v) = (t ∧ t ′,N∪N′).
– if L(v) = ψ U ρ, then either sl(v) = (t,N∪{L(v)}) or sl(v) = sl(v1) = (t ′,N′),
– if L(v) = ψ R ρ, then either sl(v) = (t ′,N′∪{L(v)}) or sl(v) = (t∧t ′,N∪N′).
If (v,v0) ∈ E, L(v0) = ψ and L(v) = Xψ, then sl(v) = (tt,{ψ}).
A successor labeling slM of a set M of (disjoint) syntax trees is a mapping

defined for all nodes of the trees in M such that slM restricted to the nodes of a
single tree in M is a successor labeling.

That is, (t,N) ∈ scs({ϕ}) if and only if there is a successor labeling sl of
syn(ϕ) such that for the root vr of syn(ϕ), we have sl(vr) = (t,N). Analogously,
(t,N) ∈ scs(M) if and only if there is a successor labeling sl of M such that for
the roots v0, . . . ,vn−1 of the trees in M, we have sl(vi) = (ti,Ni) for every i < n,
t ≡

∧

i<n
ti and N =

⋃

i<n
Ni. Note that several different successor labelings may all

result in the same term and successor set.

Definition 2.8 (characteristic function) A characteristic function cf of a succes-
sor labeling sl of a syntax tree syn(ϕ) = (V,E,L) is a mapping V → {0,1} such
that cf(v) = 0 if L(v) is a literal, tt, ff or a X- or ∧-formula; if L(v) is ψ∨ ρ,
ψ U ρ or ψ R ρ such that {(v,v0),(v,v1)} ⊆ E and L(v0) = ψ, L(v1) = ρ, and
sl(v0) = (t,N) and sl(v1) = (t ′,N′), then

• if L(v) = ψ∨ρ, then if sl(v) = sl(v0), then cf(v) = 0, else cf(v) = 1;

• if L(v) = ψ U ρ, then if sl(v) = sl(v1), then cf(v) = 0, else cf(v) = 1;

• if L(v) = ψ R ρ, then if sl(v) = (t∧ t ′,N∪N′), then cf(v) = 0, else cf(v) = 1.

A characteristic function of a successor labeling of a set of syntax trees is
defined analogously.

That is, the characteristic function is a kind of roadmap on how to choose
successor sets of subformulas: For a fixed syntax tree syn(ϕ) and a characteristic
function cf for syn(ϕ), there is one and only one successor labeling sl of syn(ϕ)
such that cf is a characteristic function for sl. Consequently, for a set of syntax
trees M, the choice of a characteristic function defined for every node in one of
the trees in M determines a successor labeling for M and thus a term t and a set N
such that N is a successor set of M for t.

Part (1) of the following lemma can be read as follows: We are given a set
of formulas M such that a syntactical redundancy check might detect (given the
right order of processing of the formulas in M) that ϕ ∈ M does not need any
processing. If the result of this is that a transition from M to N is not constructed,
then, for every possible i such that (M, i) is a state in our automaton, a transition
to (N, j) with any possible j is not locally optimal and will be deleted.

102 CHAPTER 2. Simulation and LTL

In this sense, redundancy checks by syntactical implication are covered by
local optimization.

Lemma 2.9 Let ((M, i), t,(N, j)) be a transition of the NBA Qtd
z (ϕ0), for an LTL

formula ϕ0. Let cf be a characteristic function for M such that t and N are the
resulting term and successor set such that also, if sl is the resulting successor
labeling, i 6= 0 and vi is the root of syn(z−1(i)), then z−1(i) ∈ sl(vi) if and only if
i = j.

Let ϕ ∈M, and let (t ′,N′) ∈ scs(M \{ϕ}) be such that t ′ and N′ result from cf
restricted to M \{ϕ}; especially, t→ t ′ and N′ ⊆ N.

1. If ϕ∈ SI(lit(t ′),N′) such that also ϕ /∈N′ if ϕ is an U-formula, then (t ′,N′)∈
scs(M), and there is a transition ((M, i), t ′,(N′, j′)) which is as least as good
as ((M, i), t,(N, j)), i. e., j′ ≤ j.

2. If there is a j′ ≤ j such that ((M, i), t ′,(N′, j′)) is a transition of Qtd
z (ϕ0)

(i. e., ((M, i), t ′,(N′, j′)) is at least as good as ((M, i), t,(N, j))), then ϕ ∈
SI(lit(t ′),N′).

Proof. (1) If ϕ ∈ SI(lit(t ′),N′), then there is a subset N′′ of N′ and a subformula
t ′′ of t ′ such that N′′ ∈ scs({ϕ}, t ′′), by Lemma 2.8(1). That is, (t ′∧ t ′′,N′∪N′′) =
(t ′,N′′) ∈ scs((M \ {ϕ})∪{ϕ}) = scs(M). It follows that ((M, i), t ′,(N′, j′)) is a
transition in Qtd

z (ϕ0) for some j′.
We thus find a characteristic function cf′ (and a resulting successor labeling

sl′) for M which is identical to cf (to sl) on M \{ϕ} and which results in the root
label (t ′′,N′′) for syn(ϕ). That is, cf′ determines the transition ((M, i), t ′,(N′, j′))
such that it is guaranteed that j′≤ j. This is because if z−1(i) is in the sl′-root label
of syn(z−1(i)), then it also is in the sl-root label of the same tree, and if another
U-formula is in some sl′-root label, then it also is in some sl-root label.

(2) This is an obvious application of Lemma 2.8(2). 2

The following is now easy to see.

Proposition 2.3 Lemma 2.9 is also true for transitions of Aad
z (ϕ0), but for the

better transition ((M, i), t ′,(N′, j′)) in part (1), the value of j′ may be different
from the value of j′ for Qtd

z (ϕ0).

Lemma 2.9 is about the connection between the redundancy of a formula in a
state and the outgoing transitions of that state. There is also an important connec-
tion to the incoming transitions, which is especially interesting for redundant U-
and R-formulas.

2.7. A Comparison of LTL-to-NBA Constructions 103

Lemma 2.10 Let ((M, i), t,(N, j)) be a transition of the NBA Qtd
z (ϕ0) or Aad

z (ϕ0),
for an LTL formula ϕ0 in next normal form. Let ϕ ∈ N be an U- or R-formula and
ϕ ∈ SI(lit(t),N \{ϕ}).

Then there is a transition ((M, i), t ′,(N′, j′)) of Qtd
z (ϕ0) or Aad

z (ϕ0), respec-
tively, which is strictly better than ((M, i), t,(N, j)).

Proof. Let M = {ϕ1, . . . ,ϕn}. For 1≤ l≤ n, we find characteristic functions cfl of
successor labelings sll of syn(ϕl) such that the transition ((M, i), t,(N, j)) results
from the combination of the successor labels of the roots of the syntax trees. That
is, if v1, . . . ,vn are the root nodes of syn(ϕ1), . . . ,syn(ϕn) and (tl,Nl) = sll(vl) for
1≤ l ≤ n, then N =

⋃

l<n
Nl and t ≡

∧

l<n
tl . Also, if i 6= 0 and z(ϕl) = i then ϕl ∈ Nl

if and only if i = j.
Assume that ϕ1, . . . ,ϕr are those formulas that contain the formula ϕ as a

subformula such that also ϕ ∈ Nl , for 1 ≤ l ≤ r ≤ n. We now construct new
successor labelings for syn(ϕ1), . . . ,syn(ϕr), as follows. Assume that vϕ is a node
in one of these syntax trees, say, in syn(ϕl), such that Lϕl (vϕ) = ϕ and cfl(vϕ) = 1.
By Lemma 2.8(1), there is a term tϕ and a set Nϕ ⊆ N \{ϕ} such that t → tϕ and
Nϕ ∈ scs({ϕ}, tϕ). Let cfϕ be a characteristic function of a successor labeling slϕ of
syn(ϕ) such that slϕ(v) = (tϕ,Nϕ) for the root v of syn(ϕ). Note that cfϕ(v) = 0.
The new characteristic function cf′l for syn(ϕl) is now defined like cfϕ for the
subtree rooted at vϕ; for the other nodes, it is defined like cfl . Let sl′l be the
successor labeling for cf′l and syn(ϕl), and let (t ′l ,N

′
l) = sll(vl) be the new root

successor label of syn(ϕl).
If we apply these changes to all such nodes vϕ, then ϕ is not an element of any

set N′l , for 1 ≤ l ≤ r. This is because we assume negation normal form: There is
no subformula Xϕ, so the successor labeling ϕ can only be propagated to a root
node if ϕ is in the successor labeling of a node vϕ, and this is excluded by our
choice of cf′.

Instead Nϕ ⊆ N′l , and every formula in N′l belongs to Nl if it does not belong
to Nϕ. Since Nϕ ⊆ N \{ϕ},

N′ =
⋃

1≤l≤r

N′l ∪
⋃

r<m≤n
Nm (2.89)

also is a subset of N \{ϕ}. Similarly, every literal in lit(t ′l) is in lit(tl) or in lit(tϕ),
and these two sets are subsets of lit(t), i. e., t→ t ′l and

t ′ =
∧

1≤l≤r

t ′l ∧
∧

r<m≤n
tk (2.90)

also is implied by t.

104 CHAPTER 2. Simulation and LTL

By construction, N′ is a successor set of M for t ′. That is, by Lemma 2.7, there
is a transition ((M, i), t ′,(N′, j′)) in both Qtd

z (ϕ) and Aad
z (ϕ). For Qtd

z (ϕ), we have
j′ ≤ j because N′ contains less U-formulas.

We also have j′ ≤ j for Aad
z (ϕ). This is because for sets of subformulas N0

and N1 such that M ; (N0,N) and M ; (N1,N′), the U-formulas in N1 are also in
N0, and if a formula ψ U ρ is in N0∩N1 such that also ρ ∈ N0, then also ρ ∈ N1.

Consequently, ((M, i), t ′,(N′, j′)) is a strictly better transition than
((M, i), t,(N, j)). 2

We can extract the following corollary from the proof of Lemma 2.10.

Corollary 2.5 Let ϕ be an LTL formula in next normal form. Let ((M, i), t,(N, j))
be a transition of Qtd

z (ϕ) or Aad
z (ϕ).

If there is a formula ψ U ρ ∈ N (where Fρ is regarded as tt U ρ) such that
Nρ ⊆ N for a successor set Nρ of {ρ} by a term t ′ such that t → t ′, then this
transition is not a transition in Qlo

z (ϕ) or A lo
z (ϕ), because it is removed during

the local optimization.

2.7.4 Equality of locally optimized top-down automaton and
GPVW-automaton

From Corollary 2.5, it follows that for a transition ((M, i), t,(N, j)) of an opti-
mized automaton with formulas in next normal form, the value j is determined by
i and N only.

Corollary 2.6 Let ϕ be an LTL formula in next normal form. Let ((M, i), t,(N, j))
be a transition of Qlo

z (ϕ) or A lo
z (ϕ).

If there is a formula ψ U ρ ∈ N such that z(ψ U ρ)≤ i, then i≥ j ≥ z(ψ U ρ),
else j = 0.

More precisely, j = max{z(ψ U ρ)≤ i | ψ U ρ ∈ N}.

Proof. Let first ((M, i), t,(N, j)) be a transition of Qlo
z (ϕ), and let ψ U ρ ∈N such

that z(ψ U ρ) ≤ i. Assume that j < z(ψ U ρ). It follows that there is a term t ′

and a set Nρ such that Nρ is a successor set of {ψ U ρ} for t ′, Nρ ⊆ N and t ′ is a
subformula of t, i. e., t → t ′. This contradicts Corollary 2.5, hence j ≥ z(ψ U ρ).
If, on the other hand, there is no formula ψ U ρ ∈ N such that z(ψ U ρ) ≤ i, then
clearly j = 0 by construction of Qlo

z (ϕ).
Now let ((M, i), t,(N, j)) be a transition of A lo

z (ϕ) such that again ψ U ρ ∈ N
and z(ψ U ρ) ≤ i. Assume that j < z(ψ U ρ). We then find a set M′ ∈ 2sub(ϕ)

such that M ; (M′,N) and ρ ∈M′, which implies that a successor set of {ρ} is
a subset of N. So this is again the situation of Corollary 2.5 where the transition

2.7. A Comparison of LTL-to-NBA Constructions 105

((M, i), t,(N, j)) is deleted during the local optimization. Hence j ≥ z(ψ U ρ). If
there is no formula ψ U ρ ∈ N such that z(ψ U ρ) ≤ i, then there is also no such
U-formula in M′ for every M′ ∈ 2sub(ϕ) such that M ; (M′,N); consequently,
j = 0.

The precise value of j then follows by the consistency of automata states. 2

With these considerations, we can now prove the following crucial lemma.

Lemma 2.11 Let ϕ be an LTL formula in next normal form, and let (M, i) be a
state of both Qlo

z (ϕ) and A lo
z (ϕ).

Then ((M, i), t,(N, j)) is a transition of A lo
z (ϕ) if and only if it is a transition

of Qlo
z (ϕ).

Proof. First let ((M, i), t,(N, j)) be a transition of A lo
z (ϕ). That is, there is no

(strictly) better transition in Aad
z (ϕ) than ((M, i), t,(N, j)). By Lemma 2.7, there

is a transition ((M, i), t,(N, ĵ)) in Qtd
z (ϕ) for some ĵ.

Assume that there is a transition in Qtd
z (ϕ) which is strictly better than ((M, i),

t,(N, j)), and let ((M, i), t ′,(N′, j′)) be a best transition with this property, i. e.,
((M, i), t ′,(N′, j′)) also is a transition in Qlo

z (ϕ). Then again by Lemma 2.7, there
is a transition ((M, i), t ′,(N′, j′′)) in Aad

z (ϕ) such that t→ t ′ and N′ ⊆ N.
The value of j′′ is either max{z(ψ U ρ) | ψ U ρ ∈ N′,z(ψ U ρ) ≤ i if i 6= 0},

which implies that j′′ ≤ j. Consequently, ((M, i), t ′,(N′, j′′)) is at least as good
as ((M, i), t,(N, j)). Since there is no strictly better transition in Aad

z (ϕ) than
((M, i), t,(N, j)), we have t ′ ≡ t, N′ = N and j′′ = j. Since we assume that
((M, i), t ′,(N′, j′)) is strictly better than ((M, i), t,(N, j)), we have j 6= 0 and either
j′ < j. But since N = N′ and ((M, i), t ′,(N′, j′)) is a transition in Qlo

z (ϕ), it must
be the case that j = j′ by Corollary 2.6. Contradiction.

Or j′′ is not a function of i and N′. In this case, the transition ((M, i), t ′,
(N′, j′′)) is not a transition of A lo

z (ϕ) (Corollary 2.6), so there is an even better
transition ((M, i), t ′′,(N′′, j̄)) in Aad

z (ϕ) such that t → t ′→ t ′′ and N′′ ⊆ N′ ⊆ N,
where j̄ = max{z(ψ U ρ) | ψ U ρ ∈ N′′,z(ψ U ρ)≤ i if i 6= 0}. This again contra-
dicts the choice of ((M, i), t,(N, j)).

Hence there is no better transition in Qtd
z (ϕ) than ((M, i), t,(N, j)). Since

((M, i), t,(N, ĵ)) is a transition of Qtd
z (ϕ), we have ĵ ≥ j. If ((M, i), t,(N, ĵ))

is a transition of Qlo
z (ϕ), then ĵ = j by Corollary 2.6, and we are done. Else

there is a transition ((M, i), t̄,(N̄, j̄)) in Qtd
z (ϕ) and in Qlo

z (ϕ) which is better than
((M, i), t,(N, ĵ)) but at most as good as ((M, i), t,(N, j)). Following Corollary 2.6,
we then have t̄ = t, N̄ = N, and j̄ = j.

The other direction is completely similar (exchange Aad
z (ϕ) and Qtd

z (ϕ) as
well as A lo

z (ϕ) and Qlo
z (ϕ)). 2

106 CHAPTER 2. Simulation and LTL

It now follows directly that A lo
z (ϕ) and Qlo

z (ϕ) are the same automaton for
LTL formulas ϕ in next normal form.

Theorem 2.6 (equality to GPVW-automaton) Let ϕ be an LTL formula in next
normal form over a set of propositions Σ. Let Pϕ be the set of U- and F-subformu-
las of ϕ, and let z be a bijection Pϕ→{1, . . . ,

∣

∣Pϕ
∣

∣}.
Then A lo

z (ϕ) = Qlo
z (ϕ).

Proof. By definition, A lo
z (ϕ) and Qlo

z (ϕ) have the same initial state.
By Lemma 2.11, it then follows inductively that we have exactly the same

states and transitions in both A lo
z (ϕ) and Qlo

z (ϕ). In consequence, also the set of
accepting states is the same. 2

2.7.5 Equality to the DGV-automaton
Ignoring redundancy and contradiction checks, the difference between the
GPVW-automaton and the DGV-automaton can be described as follows.

• For the DGV-automaton, we have M ; (M′,N′) if there is a t ∈ termΣ such
that scs(M, t,N′) and M′ = lit(t).

• The acceptance sets in the generalized Büchi condition are Fi = {(M,N) ∈
Qϕ | (z(ψ U ρ) = i∧ψ U ρ∈ SI(M,N)) =⇒ ρ∈ SI(M,N)}, for 1≤ i≤ kϕ.

All other definitions and the adjustments are as for the GPVW-automaton. We
write Bad(ϕ) for the adjusted DGV-automaton for an input formula ϕ, or Bad

z (ϕ)
to stress that the adjustment is based on the bijection z.

We assume that, in the construction of the automaton Bad(ϕ), redundancy
and contradiction checks were not performed. By Lemma 2.9, the locally opti-
mized version B lo(ϕ) corresponds to the DGV-automaton for which the redun-
dancy checks progressed in an optimal way, i. e., all possible redundancies were
detected. The effect of the contradiction check of [DGV99], also using syntacti-
cal implication, can be covered by the assumption that all automata are reduced to
their productive states, where a state q is productive if it is reachable from the ini-
tial state and there is an accepting run (on an arbitrary word) starting from q, i. e.,
a strongly connected component of the transition graph containing an accepting
state is reachable from q.

For an arbitrary input formula ϕ, Bad(ϕ) can be different from both Aad(ϕ)
and Qtd(ϕ) (see Subsection 2.7.6). Nevertheless, the locally optimized DGV-auto-
maton B lo(ϕ) for an input formula ϕ in next normal form is equal to the locally
optimized top-down and GPVW-automata.

2.7. A Comparison of LTL-to-NBA Constructions 107

Theorem 2.7 (equality to DGV-automaton) Let ϕ be an LTL formula in next
normal form over a set of propositions Σ. Let Pϕ be the set of U- and F-subformu-
las of ϕ, and let z be a bijection Pϕ→{1, . . . ,

∣

∣Pϕ
∣

∣}.
Then A lo

z (ϕ) = B lo
z (ϕ) = Qlo

z (ϕ).

Proof. By definition, the transition structure of Bad
z (ϕ) is based on the same

successor set structure as for the top-down automaton. Therefore, it is easy to
see that Lemmas 2.9 and 2.10 are also true for Bad

z (ϕ). The condition “ψ U ρ ∈
SI(M,N)” from the above definition of the acceptance sets translates to “ψ U ρ ∈
N and ψ ∈ SI(M,N)” by the definition of syntactical implication.

Now if the input formula ϕ is in next normal form, then ψ U ρ ∈ N implies
ψ ∈ SI(M,N). This is because, in this case, ψ U ρ ∈ N implies Nψ ⊆ N for a
set Nψ and a term t ′ such that Nψ ∈ scs({ψ}, t ′) and lit(t ′) ⊆M. By Lemma 2.8,
ψ ∈ SI(lit(t ′),Nψ) ⊆ SI(M,N). Also by Lemma 2.8, ρ ∈ SI(M,N) implies that
there are sets M′ ⊆M, Nρ ⊆ N such that Nρ ∈ scs({ρ}, term(M′)).

That is, for ϕ in next normal form, the acceptance sets are Fi = {(M,N)∈Qϕ |
(z(ψ U ρ) = i∧ψ U ρ ∈ N) =⇒ ∃M′ ⊆ M,Nρ ⊆ N : Nρ ∈ scs({ρ}, term(M′))},
for 1≤ i≤ kϕ. But having both ψ U ρ ∈ N and Nρ ⊆ N is exactly the situation of
Corollary 2.5. Consequently, for the locally optimized automaton, the requirement
for the ith acceptance set reduces to “z(ψ U ρ) = i→ ψ U ρ /∈ N”.

That is, we have exactly the situation of Corollary 2.6: In a transition ((M, i), t,
(N, j)) of B lo

z (ϕ), the value j depends on (the U-formulas in) N and i only.
The rest of the argumentation now is as in Subsection 2.7.4. 2

2.7.6 Why do we need next normal form?

To see the problem for formulas that are not in next normal form, consider the
automata A lo(ϕ) and Qlo(ϕ) for the formula ϕ = GX(a U b) in Figure 2.7.

The problem here is that A(ϕ) has the states ({ϕ,X(a U b),a U b,b},{ϕ,a U
b}) and ({ϕ,X(a U b),a U b,a},{ϕ,a U b}), which have self-transitions and tran-
sitions to each other. The former state is in F1, since while a U b is in its first
component, b is also in its first component; the latter state is not in F1. Conse-
quently, A lo(ϕ) has a similar structure in which a b-transition always leads to the
accepting state ({ϕ,a U b},0).

But in Qlo(ϕ), we have the transition (({ϕ,a U b},0),b,({ϕ,a U b},1)), be-
cause the counter is set from 0 to the highest possible value 1.

For ϕ = GX(a U b), A lo(ϕ) and B lo(ϕ) are the same automaton. This is not
the case for the formula ϕ = a∧X(a U b). For this formula, A(ϕ) has a tran-
sition (({X(a U b),a},{a U b}),({a U b,a},{a U b})) where the state ({X(a U

108 CHAPTER 2. Simulation and LTL

({φ}, 0)

({φ, a U b}, 0)

({φ, a U b}, 1)

tt

b

a
b

a

({φ}, 0)

({φ, a U b}, 1)

({φ, a U b}, 0)

tt
a

b a, b

1

Figure 2.7: A lo(ϕ) (left) and Qlo(ϕ) (right) for ϕ = GX(a U b)

b),a},{a U b}) is the initial state and is in F1, but the state ({a U b,a},{a U b}) is
not in F1. This translates in A lo(ϕ) to a transition (({a U b},0),a,({a U b},1)).

But in B(ϕ), there is only one state ({a},{a U b}) instead, which is initial
and not in F1 since a U b ∈ SI({a},{a U b}), but b /∈ SI({a},{a U b}). As a
consequence, ({a U b},0) is not a state in B lo(ϕ); only ({a U b},1) is. Note that,
in this example, Qlo(ϕ) = B lo(ϕ).

In summary, locally suboptimal transitions and U-formulas “popping up” out
of the scope of a X-operator interoperate with the acceptance / the counter behav-
ior of the three automata in three different ways, but for optimal transitions and
formulas in next normal form, the counter behavior turns out to be the same in all
three cases.

2.8 Inductive Bottom-Up NBA Construction from
LTL

It is also possible to construct an NBA from an LTL formula in a bottom-up way,
by defining nondeterministic automata inductively over the structure of the for-
mula. For a given LTL formula, the inductive construction described below and
the top-down approach of Section 2.4 yield the same nondeterministic automaton
(up to the order induced on the states in Pϕ by the bijection z). The main advantage
of the bottom-up construction is the possibility to make use of simplifications of
automata for subformulas. For example, the size of Qtd(ψ U ρ) may be quadratic
in the size of both Qtd(ψ) and Qtd(ρ). It may be too time-consuming to substan-

2.8. Inductive Bottom-Up NBA Construction from LTL 109

tially simplify Qtd(ψ U ρ), but it may be possible to simplify Qtd(ψ) and Qtd(ρ);
we describe how to make use of these simplifications in the construction of an
automaton for ψ U ρ.

We will first give an inductive construction and then discuss the advantages
and disadvantages of the two approaches.

2.8.1 The bottom-up construction
We inductively define, for every LTL formula in negation normal form ϕ over a set
of propositions Σ, an equivalent nondeterministic Büchi automaton (the bottom-up
automaton of ϕ)

Qbu(ϕ) = (Qϕ,Σ,q
ϕ
I ,∆

bu,Fϕ) (2.91)

where the components Qϕ, qϕ
I and Fϕ are defined as in Subsection 2.4.3.

Again, let Pϕ be the set of U- and F-subformulas in ϕ and kϕ =
∣

∣Pϕ
∣

∣.
The transition structure of the defined automata will similar to the structure

of the automata defined in Subsection 2.4.3, that is, for a fixed bijection z : Pϕ→
{1, . . . ,kϕ}, every transition of the automaton Qbu(ϕ) defined here is also a transi-
tion of the automaton Qtd(ϕ) constructed via the top-down approach and vice
versa. This underlying bijection zϕ will be defined inductively together with
Qbu(ϕ).

The construction is as follows.
Atomic formulas: If ϕ is an atomic formula tt, ff, a or ¬a with a ∈ Σ, we have

Qbu(ϕ) = Qtd(ϕ). The mapping zϕ is empty.
In the following, we assume that

Qbu(ψ) = (2sub(ψ)× (kψ + 1),Σ,qψ
I ,∆ψ,2sub(ϕ)×{0}) (2.92)

and

Qbu(ρ) = (2sub(ρ)× (kρ + 1),Σ,qρ
I ,∆ρ,2sub(ρ)×{0}) (2.93)

and the bijections zψ : Pψ→ {1, . . . ,kψ} and zρ : Pρ→ {1, . . . ,kρ} are already de-
fined.

We then define the nondeterministic automaton

Qbu(ϕ) = (2sub(ϕ)× (kϕ + 1),Σ,qϕ
I ,∆

bu,2sub(ϕ)×{0}) (2.94)

and the mapping zϕ : Pϕ→{1, . . . ,kϕ}.
Initial states, initial transitions and zϕ:

• For ϕ = Xψ, we have qϕ
I = ({ϕ},0) and (qϕ

I , tt,qψ
I) ∈ ∆bu.

We set zϕ = zψ.

110 CHAPTER 2. Simulation and LTL

• For ϕ = ψ∨ρ, we have qϕ
I = ({ϕ},0) and

– (qϕ
I , t,(Nψ, jψ)) ∈ ∆bu for every transition (qψ

I , t,(Nψ, jψ)) ∈ ∆ψ,

– (qψ
I , t,(Nρ,0)) ∈ ∆bu for every transition (qρ

I , t,(Nρ,0)) ∈ ∆ρ,

– (qψ
I , t,(Nρ, jρ + kψ)) ∈ ∆bu for every transition (qρ

I , t,(Nρ, jρ)) ∈ ∆ρ
such that jρ > 0.

We define zϕ : Pϕ→{1, . . . ,kϕ = kψ + kρ} by

– zϕ(p) = zψ(p) for p ∈ Pψ,

– zϕ(p) = zρ(p)+ kψ for p ∈ Pρ.

• For ϕ = ψ∧ρ, assume that the initial states of Qbu(ψ) and Qbu(ρ) are qψ
I =

(Iψ, iψ) and qρ
I = (Iρ, iρ), respectively. The initial state of Qbu(ϕ) is qϕ

I =
(Iψ∪ Iρ, iϕ), where

– iϕ = 0 if iψ = iρ = 0,

– iϕ = iψ if iψ 6= 0,

– iϕ = iρ + kψ if iψ = 0 and iρ 6= 0.

The initial transitions are covered by the set of all transitions below.

The mapping zϕ is the same as for the case ψ∨ρ.

• For ϕ = ψ U ρ, the initial state of Qbu(ϕ) is qϕ
I = ({ϕ},kϕ), with kϕ =

kψ + kρ + 1.

For all transitions (qψ
I , tψ,(Nψ, jψ)) ∈ ∆ψ, (qρ

I , tρ,(Nρ, jρ)) ∈ ∆ρ, we have as
initial transitions

– (qϕ
I , t,({ϕ}∪Nψ,kϕ)) ∈ ∆bu,

– (qϕ
I , t,(Nρ,0)) ∈ ∆bu if jρ = 0,

– (qϕ
I , t,(Nρ, jρ + kψ)) ∈ ∆bu if jρ 6= 0.

The bijection zϕ : Pϕ→{1, . . . ,kϕ} is defined by

– zϕ(ϕ) = kϕ,

– zϕ(p) = zψ(p) for p ∈ Pψ,

– zϕ(p) = zρ(p)+ kψ for p ∈ Pρ.

• For ϕ = ψ R ρ, the initial state of Qbu(ϕ) is qϕ
I = ({ϕ},0).

For all transitions (qψ
I , tψ,(Nψ, jψ)) ∈ ∆ψ, (qρ

I , tρ,(Nρ, jρ)) ∈ ∆ρ, we have as
initial transitions

2.8. Inductive Bottom-Up NBA Construction from LTL 111

– (qϕ
I , tρ,({ϕ}∪Nρ, jρ)) ∈ ∆bu,

– (qϕ
I , tψ∧ tρ,(Nψ∪Nρ, jψ)) ∈ ∆bu if jψ 6= 0,

– (qϕ
I , tψ∧ tρ,(Nψ∪Nρ, jρ + kψ)) ∈ ∆bu if jψ = 0 and jρ 6= 0,

– (qϕ
I , tψ∧ tρ,(Nψ∪Nρ,0)) ∈ ∆bu if jψ = jρ = 0.

The mapping zϕ is the same as for the case ψ∨ρ.

Other transitions: Let (M, i) be some state of Qbu(ϕ) other than the initial
state.

Let Mψ = M∩2sub(ψ), Mρ = M∩2sub(ρ) and Mϕ = M \ (Mψ∪Mρ), i. e., either
Mϕ = /0 or Mϕ = {ϕ}. (For simplicity in notation, we assume that ((/0,0), tt,
(/0,0)) ∈ ∆bu∩∆ψ∩∆ρ). Then there is a transition ((M, i), tϕ∧ tψ∧ tρ,(Nϕ∪Nψ∪
Nρ, j)) if the terms tϕ, tψ and tρ, the sets Nϕ, Nψ and Nρ and the integer j satisfy
the following.

• ((Mϕ,max{z(ψ) | ψ ∈Mϕ∩Pϕ}), tϕ,(Nϕ, jϕ)) ∈ ∆bu

• If i = kψ +kρ +1 then ((Mψ,0), tψ,(Nψ, jψ))∈ ∆ψ and ((Mρ,0), tρ,(Nρ, jρ))
∈ ∆ρ.

• If 0 ≤ i ≤ kψ then ((Mψ, i), tψ,(Nψ, jψ)) ∈ ∆ψ and ((Mρ,0), tρ,(Nρ, jρ)) ∈
∆ρ.

• If kψ < i ≤ kψ + kρ then ((Mψ,0), tψ,(Nψ, jψ)) ∈ ∆ψ and ((Mρ, i− kψ), tρ,
(Nρ, jρ)) ∈ ∆ρ.

• j′ρ = jρ + kψ if jρ 6= 0, else j′ρ = 0.

• j = max{0< l ≤ i | l ∈ { jϕ, jψ, j′ρ}}

Theorem 2.8 Let ϕ be an LTL formula in negation normal form. Then

L(ϕ) = L(Qbu(ϕ)) . (2.95)

Proof. (Sketch) By induction over the structure of LTL formulas, it can be easily
shown that Qbu(ϕ) is the same as Qtd(ϕ). 2

112 CHAPTER 2. Simulation and LTL

2.8.2 The bottom-up construction and simulation-based sim-
plifications

While the inductive bottom-up construction seems to be technically more dif-
ficult than the top-down approach, it offers an interesting possibility for NBA
construction with simplifications: Given a formula in negation normal form, e. g.,
ϕ = ψ U ρ, it is possible to first construct the nondeterministic automata Q(ψ) and
Q(ρ), simplify these sub-automata, and merge the two simplified automata into
an automaton for ϕ using the above construction. This is especially interesting if
a global simplification of Q(ϕ) is too expensive.

This outlined construction is simple (or even trivial) for formulas ϕ of the
form ψ∨ρ, ψ∧ρ, Xψ and Fψ. This is because, in these cases, in constructing the
automaton for ϕ from the sub-automata, it is not necessary to merge two states of
the same sub-automaton into a new state.

The situation is different if ϕ is of the form Gρ, ψ U ρ or ψ R ρ: In these
cases, it is necessary to merge two states of the same sub-automaton into a new
state. Now if the sub-automaton is a simplified automaton S(ψ) such that its states
do not relate to elements of 2sub(ψ)× (kψ + 1), then we have to apply a Miyano–
Hayashi construction and create new states which are subsets of the state set of the
simplified sub-automaton (i. e., the size of the resulting automaton may be doubly
exponential in the length of the formula).

To avoid this, it is necessary to identify the states of simplified automata for
sub-formulas with states (or classes of states) of the original automata. In order to
make best use of the simplifications in S(ψ), it must be possible to switch between
the states of S(ψ) and elements of 2sub(ψ)× (kψ + 1) during the construction.

The formal treatment is as follows. For an LTL formula ψ, let

Q(ψ) = (Qψ,Σ,q
ψ
I ,∆ψ,Fψ) (2.96)

be a nondeterministic Büchi automaton for L(ψ) constructed according to the
bottom-up or top-down approach detailed above. We may assume that Qψ only
contains states that are reachable from qψ

I via ∆ψ. That is,

Qψ ⊆ 2sub(ψ)× (kψ + 1) . (2.97)

Note that, for every state (M, i) ∈ Qψ, the language of the automaton with initial
state (M, i), in symbols L(Q(M, i)), is determined by the elements of M, that is,

∀(M, i) ∈Qψ : L(Q(M, i)) =
⋂

α∈M

L(α) , (2.98)

where
⋂

α∈ /0
L(α) = (2Σ)ω.

2.8. Inductive Bottom-Up NBA Construction from LTL 113

The accepting states are

Fψ = Qψ∩ (2sub(ψ)×{0}) . (2.99)

We may assume that simplifications preserving equations (2.97) to (2.99), were
already applied to Q(ψ). This is true for the simplifications of the algorithm of
Subsection 2.6.1, excluding quotienting w. r. t. direct simulation.

We further assume that the simplified automaton

S(ψ) = (Sψ,Σ, [q
ψ
I],∆S

ψ,F
S
ψ) (2.100)

is a quotient automaton of Q(ψ) w. r. t. an appropriate simulation relation ≡. For
example, ≡ may be direct or delayed simulation equivalence.

That is, we have Sψ ⊆ 2Qψ , and we have

for all s, s′ ∈ Sψ, s∩ s′ = /0 , (2.101)
for all s ∈ Sψ and for all q ∈ s, S(s) ≡ Q(q) , (2.102)

and also

∆S
ψ ⊆ {([q], t, [q′] | (q, t,q′) ∈ ∆ψ} and (2.103)

FS
ψ = {s ∈ Sψ | s∩Fψ 6= /0} . (2.104)

We now choose, for every such state s ⊆ 2sub(ψ)× (kψ + 1), a representative
rep(s) = (Ms, is) ∈ s such that

• is = min{i | ∃M : (M, i) ∈ s} (note that s is an accepting state if and only if
this is the case), and

• Ms is an inclusion-minimal element of {M | (M, is) ∈ s}.

We further define a partial mapping cls : Qψ→ Sψ such that cls(q) = s if and
only if q ∈ s, and such that cls(q) is undefined if there is no such s (remember that
the elements of S are pairwise disjoint). We thus have cls(rep(s)) = s for every
s ∈ S, and rep(cls(q))≡ q for every q ∈Q such that cls(q) is defined.

We can now identify the states in Sψ with their representatives, i. e., we con-
tinue the construction with the representative automaton

Srep(ψ) = (Srep
ψ ,Σ, rep([qψ

I]),∆rep
ψ ,F rep

ψ) , (2.105)

where

Srep
ψ = {rep(s) | s ∈ Sψ} , (2.106)

∆rep
ψ = {(rep(s), t, rep(s′)) | (s, t,s′) ∈ ∆S

ψ} , (2.107)

F rep
ψ = {rep(s) ∈ Srep

ψ | s ∈ FS
ψ} . (2.108)

114 CHAPTER 2. Simulation and LTL

Obviously, Srep(ψ) ≡ S(ψ) ≡ Q(ψ). A crucial property of the representative
automaton and the reason for the constraints in the choice of the representatives is
that sequences of states of the representative automaton are similar to runs of the
bottom-up automaton w. r. t. the counter behavior:

Proposition 2.4 Let (M j, i j) j<ω be a run of a representative automaton Srep(ψ)
as defined above. Then, for every j < ω, i j ≥ i j+1 or i j = 0.

The basic idea of this automaton construction is to use the states in Srep
ψ and the

transitions in ∆rep
ψ as much as possible. We exemplify this for the Until operator;

the generalization to other operators is straightforward.
Let ϕ = ψ U ρ, and assume that the automata Q(ψ) and Q(ρ) (together with

the mappings zψ and zρ) and their simplified versions S(ψ) and S(ρ) as well as
the representative automata Srep(ψ) and Srep(ρ) are already computed.

We now want to construct the nondeterministic Büchi automaton QS(ϕ) which
makes use of the simplifications in S(ψ) and S(ρ). As with Qbu(ϕ), the states QS

ϕ
of QS(ϕ) are elements of 2sub(ϕ)× (kϕ + 1), the initial state is ({ϕ},kϕ), and the
set of accepting states is QS

ϕ∩ (2sub(ϕ)×{0}).
The set of transitions ∆S

ϕ of QS(ϕ) results from ∆bu by applying the following
modifications. For simplicity in notation, we define the function

offsetψ : 2sub(ρ)× (kρ + 1)→ 2sub(ϕ)× (kϕ + 1) (2.109)

by setting

offsetψ(M, i) =
{

(M, i + kψ), if i 6= 0 ,
(M,0), if i = 0 .

(2.110)

1. For the initial state ({ϕ},kϕ), delete all transitions starting from ({ϕ},kϕ)
in ∆bu. Instead, let

(({ϕ},kϕ), t,({ϕ}∪Nψ,kϕ)) ∈ ∆S
ϕ (2.111)

for every transition (rep([qψ
I]), t,(Nψ, j)) ∈ ∆rep

ψ , and

(({ϕ},kϕ), t,offsetψ(Nρ, j)) ∈ ∆S
ϕ (2.112)

for every transition (rep([qρ
I]), t,(Nρ, j)) ∈ ∆rep

ρ .

2. Now let (M, i) be a state such that M ∈ 2sub(ψ).

(a) If cls(M, i) is defined, delete all transitions starting from (M, i). In-
stead, let

((M, i), t,(N, j)) ∈ ∆S
ϕ (2.113)

for every transition (rep(cls(M, i)), t,(N, j)) ∈ ∆rep
ψ .

2.8. Inductive Bottom-Up NBA Construction from LTL 115

(b) If cls(M, i) is undefined, replace every transition ((M, i), t,(N, j)) ∈
∆bu such that cls(N, j) is defined by a transition

((M, i), t, rep(cls(N, j))) ∈ ∆S
ϕ . (2.114)

3. Analogously replace transitions ((M, i), t,(N, j)) such that M ∈ 2sub(ρ), and
cls(offset−1

ψ (M, i)) is defined (as in (2a)) or cls(offset−1
ψ (N, j)) is defined

(as in (2b)).

4. If (M, i) is a state such that M ∈ 2sub(ψ)∪sub(ρ), delete all transitions starting
from (M, i). Let M = Mψ∪Mρ with Mψ ∈ 2sub(ψ) and Mρ ∈ 2sub(ρ).

(a) First assume that i ≤ kψ. If ((Mψ, i), t,(Nψ, j)) is a transition in ∆S
ϕ

(case (2)) and ((Mρ,0), t ′,(Nρ, j′)) ∈ ∆S
ϕ (case (3)), then

((M, i), t ∧ t ′,(Nψ∪Nρ, j)) ∈ ∆S
ϕ . (2.115)

(b) Now assume that kψ < i≤ kψ +kρ. If ((Mψ,0), t,(Nψ, j)) is a transition
in ∆S

ϕ (case (2)) and ((Mρ, i), t ′,(Nρ, j′)) ∈ ∆S
ϕ where j′ > 0 (case (3)),

then

((M, i), t ∧ t ′,(Nψ∪Nρ, j′)) ∈ ∆S
ϕ ; (2.116)

if j′ = 0, then

((M, i), t ∧ t ′,(Nψ∪Nρ, j)) ∈ ∆S
ϕ . (2.117)

5. Now assume that M = M′∪{ϕ} for some M′ ∈ 2sub(ψ)∪sub(ρ). Let ı̂ = 0 if
i = kϕ, else ı̂ = i.

For all (t,(N, j)) ∈ ∆S
ϕ(({ϕ},kϕ)) (by case (1)) and (t ′,(N′, j′)) ∈

∆S
ϕ((M′, ı̂)) (by case (4)), let

j̄ =

max{min{i, j}, j′} if j > 0 and j′ > 0,
j if j > 0 and j′ = 0,
j′ if j = 0.

(2.118)

Now let Lψ = (N ∪N′)∩ sub(ψ) and Lρ = (N ∪N′)∩ sub(ρ). Let lψ = j̄ if
0< j̄ ≤ kψ, else lψ = 0, and let lρ = j̄− kψ if kψ < j̄ ≤ kψ + kρ, else lρ = 0.

That is, we separate the state (N ∪N′, j̄) into the two states (Lψ, lψ) and
(Lρ, lρ), which are states of Q(ψ) and Q(ρ), respectively. We now look
for representatives for these two states, i. e., if cls(Lψ, lψ) is defined, we

116 CHAPTER 2. Simulation and LTL

set (Nψ, jψ) = rep(cls(Lψ, lψ)), else (Nψ, jψ) = (Lψ, lψ). We analogously
define (Nρ, jρ).

We then define

ĵ =

j̄ if j̄ = 0 or j̄ = kϕ,
lψ if 0< j̄ ≤ kψ and lψ > 0,
offsetψ(lρ) else,

(2.119)

and we have

((M, i), t ∧ t ′,(Nψ∪Nρ∪{ϕ}, ĵ)) ∈ ∆S
ϕ , (2.120)

if ϕ ∈ N, or

((M, i), t ∧ t ′,(Nψ∪Nρ, ĵ)) ∈ ∆S
ϕ , (2.121)

if ϕ /∈ N.

It is not difficult (but tedious) to derive the construction for Gρ and ψ R ρ from
this description. The correctness of this construction, i. e., that L(QS(ϕ)) = L(ϕ),
follows from the correctness of the bottom-up construction and of the simplified
automata.

2.9 Conclusion of Chapter 2
We have extended simulation relations for alternating Büchi automata to relations
for comparing LTL formulas. We have developed an algorithm for the translation
of LTL formulas to equivalent nondeterministic Büchi automata; this algorithm
uses simulation relations for the simplification of the input LTL formula as well
as for an on-the-fly simplification of the resulting automaton. Experimental data
indicates that our approach is a good compromise between consumption of com-
puting resources and quality of result. We show by a detailed analysis that our
basic concept of translating LTL via alternating automata to nondeterministic au-
tomata (simulation-based simplifications left aside) is not inferior to the tableau-
based translation of LTL to automata.

Chapter 3

Simulation Relations and the Parity
Acceptance Condition

We have seen in Chapter 1 how to define (in a game-based approach) simula-
tion relations and simulation-based quotienting for alternating Büchi automata.
In this chapter, we expand these considerations to the parity acceptance mode of
ω-automata. In a parity automaton [Mos84, EJ91], the acceptance condition is
given as a function mapping every state to a priority, i. e., a natural number. A
run of a parity automaton is accepting if the minimal priority visited infinitely of-
ten is even. (Some authors favor the definition that the maximal priority must be
even.) Obviously, the parity acceptance condition can be seen as a generalization
of the Büchi acceptance condition: A Büchi acceptance condition is a parity con-
dition with priorities 0 and 1 only. (It is well-known that the class of languages
recognizable by parity automata is the same as the class recognizable by Büchi
automata.) From this point of view, many considerations in this chapter can be
seen as enhancements of the ideas of Chapter 1.

A lot of scientific attention has been spent on parity games. A parity game is a
two-player-one-pebble game on a finite board for which the winning condition is
given as a parity condition, i. e., one of the players wins a play of the parity game
if the smallest priority of the positions visited infinitely often during the play is
even, and the other player wins if it is odd. The problem of deciding the winner
of a parity game is intriguing: It is known to be in UP ∩ co-UP [Jur98], that is,
it can be solved by a so-called unambigious Turing machine in polynomial time,
cf. [Pap94]; the best known algorithms for solving parity games work in time ex-
ponential in the number of priorities occurring in the input parity game [Jur00].
The problem is also important, because the model checking problem and the satis-
fiability problem for the modal µ-calculus [Koz83] can be reduced to the problem
of deciding the winner of a parity game, see, e. g., the survey [Wil01] and the
book [GTW02]. Also note that Etessami et al. [ESW01] reduce the problem of

117

118 CHAPTER 3. Simulation and Parity Acceptance

computing the fair simulation relation for a Büchi automaton to the problem of
deciding the winner of a parity game with priorities 0, 1, and 2 only; we discuss
the application of the resulting algorithm in Section 1.7.

In this chapter, we discuss delayed simulation for parity games and, more gen-
eral, alternating parity automata. We introduce a delayed simulation relation for
alternating parity automata in Section 3.2. We show in Section 3.3 that this re-
lation can be computed in polynomial time and can be used to compare parity
games w. r. t. the win of one of the players and parity automata w. r. t. language in-
clusion. In Section 3.4, we introduce two dual restricted versions of this relation
and show that these restricted relations can be used for state space reduction by
merging of equivalent states (quotienting) and deletion of transitions. From this,
we develop in Section 3.5 a simulation-based simplification algorithm for alter-
nating parity automata. In Section 3.6, we a give a sketch of how to apply these
insights to the simplification of formulas of a fragment of the modal µ-calculus,
via a translation to alternating parity tree automata. We do not discuss direct or
fair simulation for parity automata. Following the basic concepts developed in
this chapter, defining direct simulation is relatively straightforward; Janin [Jan01]
introduces synchronous and asynchronous direct simulation for simplifying parity
games. A notion of fair simulation for parity automata seems to be impractical.

3.1 Basic Definitions: Alternating Parity Automata
and Parity Games

An alternating parity automaton (APA, for short) Q is a tuple

(Q,Σ,qI,∆,E,U,Ω) (3.1)

where Q is a finite, non-empty set of states, Σ, as usual, is an alphabet with typical
elements a, b, c . . . , qI ∈ Q is the initial state, ∆ ⊆ Q×Σ×Q is the transition
relation, {U,E} is a partition of Q, where U = /0 or E = /0 is allowed, and Ω : Q→
ω is the priority function. That is, an alternating parity automaton has the same
structure as the alternating Büchi automaton defined in Subsection 1.1.2, only the
acceptance condition is different. Without loss of generality, we assume in this
chapter that ∆ is complete, i. e., for every q ∈ Q, a ∈ Σ, there is a q′ ∈ Q such that
(q,a,q′) ∈ ∆.

As in the case of alternating Büchi automata, the language L(Q) of an APA Q
can be defined via a word game, as in Subsection 1.1.2. For technical convenience,
we will introduce a slight modification: For an ω-word w, let suf(w) = {w[n..] |
n < ω} be the set of suffixes of w. Note that suf(w) is finite if and only if w is
eventually periodic, i. e., if w = uvω for some words u,v ∈ Σ+. The word game of

3.1. Basic Definitions: Alternating Parity Automata and Parity Games 119

an APA Q and an ω-word w is the game

G(Q,w) = (P,P0,P1, pI,Z,W) , (3.2)

where P = Q×suf(w) is the set of positions, P0 = U×suf(w) and P1 = E×suf(w)
are the sets of positions of Player 0 (Pathfinder) and Player 1 (Automaton), re-
spectively, pI = (qI,w) is the initial position and Z = {((q,w[i..]),(q′,w[i+1..])) |
(q,w(i),q′) ∈ ∆} is the set of moves. The winning set is

W = {(qn,w[n..])n<ω ∈ Pω |min{Ω(q) | q ∈ Inf((qn)n<ω)} ≡ 0 mod 2} , (3.3)

that is, Automaton wins a play of G(Q,w) if the smallest priority of the states
visited infinitely often during the play is even. We call this acceptance mode
parity acceptance.

As usual, a word w is accepted by Q if Automaton wins the game G(Q,w),
i. e., if he has a winning strategy for G(Q,w), and the language of Q is

L(Q) = {w ∈ Σω | Automaton wins the game G(Q,w)} . (3.4)

Note that an alternating Büchi automaton (Q,Σ,qI,∆,U,E,F) can thus be re-
garded as an alternating parity automaton (Q,Σ,qI,∆,E,U,Ω) with Ω(q) = 0 if
q ∈ F , else Ω(q) = 1.

We will use the term parity game for an APA Q such that |Σ| = 1. There is a
natural isomorphism between a parity game and its word game: If |Σ| = 1, then
|Σω| = 1 and |suf(w)| = 1 for w ∈ Σω. We will identify the two and say Player 1
wins the parity game Q if L(Q) 6= /0.

We will use the following ordering of natural numbers (also used in, e. g.,
[JV00]): The reward order ≤Ω⊆ ω×ω is defined by m≤Ω n if and only if

• m is even and n is odd, or

• m and n are even and m≤ n, or

• m and n are odd and n≤ m

for all m,n ∈ ω. That is, 0 <Ω 2 <Ω 4 <Ω . . . <Ω 5 <Ω 3 <Ω 1. We will also
phrase n <Ω m as n is better than m, while terms like minimum and smaller than
will always be used w. r. t. the standard order ≤.

We say that an APA is normalized if, for every SCC of its transition graph,
the set of priorities occurring in that SCC is of the form {0, . . . ,n} or {1, . . . ,n}
for some n < ω. It is easy to see that there is a normalized APA for every APA
such that the two accept the same language and have the same transition structure.
A normalized APA can be computed from a given APA as follows: An APA is
not normalized if and only if there is an SCC in its transition graph such that
Ω(q) = m ≥ 2 for a state q in the SCC, but there is no q′ in the SCC such that
Ω(q′) = m−1. Then change the priority of q to m−2. Repeat this until the APA
is normalized.

120 CHAPTER 3. Simulation and Parity Acceptance

3.2 A Delayed Simulation Relation for the Parity
Condition

In this section, we introduce a delayed simulation relation for alternating parity
automata, based on the basic game of Section 1.2. The winning condition will
be more complicated as in Chapter 1, yet still allow to compute the winner in
polynomial time.

Recall the winning condition of the delayed simulation game of
Subsection 1.2.1: A play (qn,sn)n<ω of a delayed simulation game Gde(Q,S)
is a win for Duplicator if for every n with qn ∈ Fq there is an m ≥ n such that
sm ∈ Fs. An alternating Büchi automaton can be regarded as an alternating parity
automaton with two priorities, priority 0 for accepting states and priority 1 for
non-accepting states. In this spirit, we may assume that, whenever pn is accepting
(priority 0) but qn is not (priority 1), the smaller of the two values is stored as a
flag to indicate that Spoiler will win the play unless there is an m> n such that qm
has priority 0, i. e., a priority that is less than or equal to the flag value and even,
in which case the flag (or priority memory) is erased.

In other words, whenever at the end of a round the priority of the pebble in the
simulated automaton is better than the simulating pebble’s priority, we store the
smaller of the two priorities in a priority memory. This value serves as a threshold
for the priorities encountered by the two pebbles: It is lowered if the simulated
pebble’s priority is even and below the threshold, or if the simulating pebble’s
priority is odd and below. It is erased if the simulated pebble’s priority is odd and
below or equal to the threshold, or if the simulating pebble’s priority is even and
below or equal to the threshold.

Assume that the priorities of qn and sn at the end of round n are i and j,
respectively, and that the priority memory value of the former round is kn−1. We
assume that the memory takes on the special value

√
when erased.

The updated memory value kn at the end of round n is then computed as fol-
lows:

– If i <Ω j and kn−1 =
√

, then kn is the minimum of i and j. If i <Ω j, but
kn−1 6=

√
, the priority memory takes on this new value only if it is smaller than

kn−1.
– If j ≤Ω i and kn−1 =

√
, the new flag is again

√
.

– The flag value is erased (switches from kn−1 6=
√

to kn =
√

) if j ≤Ω i, j is
even and j ≤ kn−1.

– It is also erased if j ≤Ω i, i is odd and i≤ kn−1.
– In all other cases, we have kn = kn−1.
Note that if the alternating parity automaton only has two priorities 0 and 1,

i. e., if it is an alternating Büchi automaton, then these are just the rules for the

3.2. Delayed Simulation for the Parity Condition 121

delayed simulation game for ABA. In this case, the only possible memory values
are 0 and

√
, in analogy to the notion of a winning bit in Chapter 1.

3.2.1 A formal definition of the simulation game
In this subsection, we formally define the delayed simulation relation for the parity
condition outlined above, again using the game-based approach of Sections 1.2
and 2.3.

Let Q = (Q,Σ,qI,∆q,Eq,Uq,Ωq) and S = (S,Σ,sI,∆s,Es,U s,Ωs) be alternat-
ing parity automata.

The delayed simulation game Gde(qI,sI) = (P,P0,P1, pI,Z) is defined as fol-
lows:

• The basic positions are PB = Q×S×(Ωq(Q)∪Ωs(S)∪{
√
}). The positions

P of Gde(qI,sI) are PB ∪ PB×Σ×{sp,du}×{0,1} ∪ PB×Σ×({sp,du}×
{0,1})2. The PB-part represents the basic situation of a play (i. e., the posi-
tions of the simulated and simulating pebble) and the priority memory, and
other control components are used to determine who of the players must
move which pebble along which transitions. To this end, we define the
function c : Q×S→ ({sp,du}×{0,1})2 mapping every pair of positions
to the appropriate control components. That is,

– c(q,s) = (sp,0,du,1) if (q,s) ∈ Eq×Es,

– c(q,s) = (sp,0,sp,1) if (q,s) ∈ Eq×U s,

– c(q,s) = (du,0,du,1) if (q,s) ∈Uq×Es,

– c(q,s) = (sp,1,du,0) if (q,s) ∈Uq×U s.

For convenience, we extend the domain of c to PB by defining c((q,s,k)) =
c(q,s).

• If Ωq(qI) <Ω Ωs(sI), then pI = (qI,sI,min{Ωq(qI),Ωs(sI)}), else pI =
(qI,sI,

√
).

• The set P0 ⊆ P are those positions where Spoiler must move. It contains
all positions with sp as fifth component and the positions in PB. As usual,
Duplicator’s positions P1 are P\P0.

• To define the set of moves, we first define the function

pm: ω2× (ω∪{
√
})→ ω∪{

√
} (3.5)

as follows:

122 CHAPTER 3. Simulation and Parity Acceptance

1. pm(i, j,
√

) = min{i, j} if i<Ω j,

2. pm(i, j,
√

) =
√

if j ≤Ω i,

3. pm(i, j,k) = min{i, j,k} if i<Ω j,

4. pm(i, j,k) =
√

if j ≤Ω i, i is odd and i≤ k, and j is odd or k < j,

5. pm(i, j,k) =
√

if j ≤Ω i, j is even and j ≤ k, and i is even or k <
i; we want the cases 4 and 5 to be disjoint for the considerations of
Section 3.4,

6. pm(i, j,k) =
√

if i is odd, j is even, and both i≤ k and j ≤ k,

7. else pm(i, j,k) = k. Note that in this case, both i and j must be strictly
larger than k.1

We extend this function to PB by defining pm(q,s,k) = pm(Ωq(q),Ωs(s),k)

The set of moves Z ⊆ P×P then contains the following pairs:

– ((q,s,k),(q,s,k,a,c(q,s))), for all a ∈ Σ,

– ((q,s,k,a,c(q,s)),(q′,s,k,a,pr3,4(c(q,s)), for pr2(c(q,s)) = 0 and
(q,a,q′) ∈ ∆q,

– ((q,s,k,a,c(q,s)),(q,s′,k,a,pr3,4(c(q,s)), for pr2(c(q,s)) = 1 and
(s,a,s′) ∈ ∆s,

– ((q,s,k,a,x,0),(q′,s,pm(q′,s,k))), for x∈{sp,du} and (q,a,q′)∈∆q,

– ((q,s,k,a,x,1),(q,s′,pm(q,s′,k))), for x ∈ {sp,du} and (s,a,s′) ∈ ∆s,

A play π = (pi)i<ω of the delayed simulation game is a win for Duplicator
iff there are infinitely many i < ω such that pr3(pi) =

√
. That is, the delayed

simulation game has a Büchi winning condition and can thus be solved using
the approach of [ESW01], see also Section 1.7, and see Subsection 3.3.2 for the
details here.

As usual, if Duplicator wins Gde(Q,S), we write Q ≤de S and say “S de-
simulates Q”.

3.2.2 The relation ≤de is a preorder
Obviously, ≤de is reflexive. The proof of the transitivity is quite involved; it is
given in this subsection.

The following proposition follows directly from the definition of the simula-
tion game.

1This implies that, equivalently, we can delete case (3) and rewrite case (7) as else pm(i, j,k) =
min{i, j,k}.

3.2. Delayed Simulation for the Parity Condition 123

Proposition 3.1 Let π = (qi,si,ki)i<ω be a play of a delayed simulation game for
alternating parity automata Gde(q0,s0). Let 0≤ n<m≤ω be such that kn−1 =

√

if n> 0, and km =
√

if m< ω. For all i such that n≤ i< m, let ki 6=
√

.
Then, (ki)n≤i<m is a monotonic decreasing sequence.

The following lemma states an important property of plays of simulation
games for APA.

Lemma 3.1 Let π, n and m be defined like in Proposition 3.1.
Then,

1. for every i such that n≤ i< m,

ki = min{Ω(p) | p ∈ {ql,sl | n≤ l ≤ i}} . (3.6)

If m< ω, then

2. Ω(qm) is odd and

Ω(qm) = min{Ω(p) | p ∈ {qi,si | n≤ i≤ m}} , (3.7)

or

3. Ω(sm) is even and

Ω(sm) = min{Ω(p) | p ∈ {qi,si | n≤ i≤ m}} . (3.8)

Proof. Note that ki = pm(qi,si,ki−1), for n< i≤m, and kn = min{Ω(qn),Ω(sn)}.
If we assume that m < ω, it follows directly by the definition of the simu-

lation game that Ω(qm) is odd or Ω(sm) is even: By construction, km =
√

=
pm(qm,sm,km−1) with km−1 6=

√
, so one of the cases 4 or 5 in the definition of pm

applies if n> 0.
We will first show inductively that ki = min{Ω(p) | p ∈ {ql,sl | n ≤ l ≤ i}},

for every n ≤ i < m. This is true by definition for i = n. Now let n < i < m,
and assume that ki−1 = min{Ω(p) | p ∈ {ql,sl | n≤ l < i}}. Since ki 6=

√
, either

ki = min{Ω(qi),Ω(si),ki−1} (if Ω(qi)<Ω Ω(si)) and we are done.
Or ki = ki−1 (case 7 in the definition of pm). In this case, ki−1 < Ω(qi) and

ki−1 <Ω(si). Hence again ki = min{Ω(qi),Ω(si),ki−1}.
This shows claim (1). The other two claims of the lemma now follow from

claim (1) because km =
√

= pm(qm,sm,km−1) by application of one of the cases 4
or 5 in the definition of pm. 2

The following is a direct consequence of Lemma 3.1.

124 CHAPTER 3. Simulation and Parity Acceptance

Corollary 3.1 Let π, n and m be defined like in Proposition 3.1. Let m< ω.

1. If Ω(qm) is odd and Ω(qm) = min{Ω(p) | p ∈ {qi,si | n ≤ i ≤ m}} then
Ω(qm)<Ω(qi) for all n≤ i< m.

2. If Ω(sm) is even and Ω(sm) = min{Ω(p) | p ∈ {qi,si | n ≤ i ≤ m}} then
Ω(sm)<Ω(si) for all n≤ i< m.

Proof. To proof the first claim, suppose that Ω(qm) = Ω(qi) for an i such that
n≤ i < m (from Lemma 3.1, we know that Ω(qm)≤Ω(qi)). Since Ω(qm)≤ ki−1
by the above lemma and Ω(qm) is odd, we have Ω(qi) <Ω Ω(si) (else ki =

√
by

the definition of the game; the same conclusion is valid for i = n = 0). That is,
Ω(si) is odd and Ω(si) < Ω(qi) = Ω(qm), in contradiction to the minimality of
Ω(qm) according to Lemma 3.1 (2).

The proof of the second claim is symmetrical. 2

Given two delayed simulation games for APA Gde(Q,R) and Gde(R,S), the
join of two Duplicator strategies σ0, σ1 for Gde(Q,R) and Gde(R,S), respectively,
can be defined in a straightforward manner, similar to what is done in Section 1.3.

Using this notion, we will use Proposition 3.1, Corollary 3.1 and Lemma 3.1
to proof the following main theorem of this section, Theorem 3.1.

Theorem 3.1 Let Q, R, S be alternating parity automata such that Q≤de R and
R ≤de S. Let σ0 and σ1 be Duplicator winning strategies for Gde(Q,R) and
Gde(R,S), respectively.

Then, σ0 ./ σ1 is a Duplicator winning strategy for Gde(Q,S).

Proof. Let T = ((qi,si,ki)i<ω,w) be a (σ0 ./ σ1)-conform protoplay of Gde(Q,S)
with intermediate sequence (ri)i<ω (cf. Section 1.3). Note that the protoplays
T ′ = ((qi,ri,k′i)i<ω,w) and T ′′ = ((ri,si,k′′i)i<ω,w) are σ0- and σ1-conform, re-
spectively.

We have to show that, whenever there is an n such that kn 6=
√

, there is an
m> n such that km =

√
.

We therefore introduce a progress measure fT : ω→ ω such that fT (i) = −1
if and only if ki =

√
, and else fT (i)≥ 0. We call a round i of T initial if and only

if ki 6=
√

and either i = 0 or ki−1 =
√

. We show that, for every initial round n,
there is a finite sequence n = n0,n1, . . . ,nl of rounds such that fT (ni) > fT (ni+1)
(for i < l) and fT (nl) = −1. As a necessary invariant, we will also show that at
least one of k′i and k′′i is less than or equal to ki, for i< l. We will call a turn active
if and only if it satisfies this invariant.

Our progress measure is

fT (i) = if ki 6=
√

then ki · (max(R)+ 1)+ Ωr(ri) else −1 , (3.9)

3.2. Delayed Simulation for the Parity Condition 125

where max(R) = max{Ωr(r) | r ∈ R} is the maximal priority occurring in R.
For ease of notation, in the following we identify game positions with their

priorities. Especially, we will extend the reward order ≤Ω and the normal order-
ing of integers ≤ to game positions and simply write, e. g., q0 ≤Ω s0 instead of
Ωq(q0)≤Ω Ωs(s0).

To start our argumentation, we will at first show that initial rounds are active.
Assume that round n of T is an initial round. Hence qn <Ω sn, i. e., either (1)
rn ≤Ω qn <Ω sn, or (2) qn <Ω rn <Ω sn, or (3) qn <Ω sn ≤Ω rn. Note that in a <Ω-
ordered chain n0 <Ω n1 <Ω . . . <Ω ni, either n0 or n1 are the minimal elements
w. r. t. <. Hence in case (1), either rn is minimal (and k′′n ≤ kn by Lemma 3.1(1))
or sn is minimal (and again k′′n ≤ kn). Similar considerations show that the initial
round is also active in cases (2) and (3).

We now assume that n < ω is an active round such that fT (n) 6= −1, i. e.,
kn 6=

√
. We will show that there is an active round m > n such that fT (m) =−1,

or m is active and fT (m) < fT (n). It follows that there is an active round m′ > n
such that fT (m′) =−1, i. e., km′ =

√
, and this proves the theorem.

We distinguish several cases.

1. kn = 0, i. e., fT (n) ≤ z. Since n is an active round, at least one of k′n, k′′n is
less than or equal to kn, i. e., equal to 0 in this case. Assume that k′n = 0.
Since T ′ is σ0-conform, there is an m ≥ n such that Ωr(rm) = 0. Thus
km =

√
, or k′′m = 0 (Start your argumentation here if not k′n but k′′n is equal

to 0; substitute n for m.) and there is an l >m such that Ωs(sl) = 0 since T ′′

is σ1-conform. Consequently, kl =
√

.

For the other cases, we assume that n is an active round and kn > 0. We distinct
two main cases: (2) k′′n ≤ kn and (3) k′n ≤ kn. If both k′′n and k′n are not equal to

√
,

we choose case (2) if k′′n ≤ k′n, else case (3). Each main case is divided into several
subcases based on the comparison of qn, rn and sn w. r. t. ≤Ω.

2. kn 6=
√
6= k′′n and k′′n ≤ kn. In this case, there is a minimal m > n such that

k′′m =
√

and sm ≤Ω rm. We assume that there is no n < i ≤ m such that
ki =
√

(in that case, we are done, of course).

(a) First, let qm <Ω sm ≤Ω rm, and assume that case 3 of Lemma 3.1 and
case 2 of Corollary 3.1 apply to sm in T ′′. (In the following, we will
simply write, e. g., sm has triggered k′′m =

√
to describe this case.)

Let l = max{i | qi = min{q j | n ≤ j ≤ m}}. We have sm < si for all
n ≤ i < m, and qm < sm since qm <Ω sm and sm is even. Hence km =
ql < sm ≤ k′′n ≤ kn, i. e., fT (m)< fT (n). And k′m ≤ ql = km since ql <
sm ≤ ri for all n ≤ i ≤ m, i. e., round m is active. (We have tacitly
used Lemma 3.1(1) at several points of our argumentation. We will
continue doing so.)

126 CHAPTER 3. Simulation and Parity Acceptance

(b) Again, let qm <Ω sm ≤Ω rm, but assume that rm has triggered k′′ =
√

.
That is, rm < rn (hence fT (m)< fT (n)). By Lemma 3.1, k′m ≤ rm ≤ si
for all n≤ i≤ m and also k′m ≤ rm ≤ k′′n ≤ kn. That is, if km < k′m ≤ kn
then there is an l such that n< l ≤ m and ql = km < k′m ≤ pm ≤ pi for
all n ≤ i ≤ m. But Ωq(ql) must be even (else kl =

√
), hence k′i 6=

√

for l ≤ i ≤ m and consequently k′m ≤ ql (contradiction). We conclude
that k′m ≤ km, i. e., round m is active.

(c) Now let sm ≤Ω qm ≤Ω rm, and assume that sm has triggered k′′ =
√

.
Since we assume that ki 6=

√
for n< i≤m, we know that km < sm and

km < qm. Especially, km < kn since sm < k′′n ≤ kn, and hence fT (m)<
fT (n). By Lemma 3.1, we know that km < sm≤ si for n≤ i≤m. Hence
km = ql for an l such that n < l ≤ m. As in case 2a, we conclude that
k′m ≤ ql = km.

(d) Let sm ≤Ω qm ≤Ω rm, and assume that rm has triggered k′′ =
√

. Since
km ≤ kn and rm < rn, we have fT (m)< fT (n). As above, we can con-
clude that km < sm and km < qm. We know that rm ≤ k′′n ≤ kn and
rm ≤ si for all n ≤ i ≤ m, i. e., if km < rm then there is an l such that
n < l ≤ m and ql = km < rm is even. Hence k′m ≤ km (cf. case 2a).
Or km ≥ rm, and then k′m ≤ rm ≤ km follows, because k′m =

√
implies

Ωq(qm) = Ωr(rm) ≤ km, and Ωr(rm) is odd and rm ≤ sm. And this
implies km =

√
.

(e) The case that sm ≤Ω rm <Ω qm and that sm has triggered k′′ =
√

is
completely similar to case 2c.

(f) Finally, we turn to the case sm ≤Ω rm <Ω qm where rm has triggered
k′′ =

√
. Since sm <Ω qm but km 6=

√
, we have km < sm and km < qm.

Now Ωr(rm) is odd and rm <Ω qm, hence Ωq(qm) is odd and qm <
rm, and also rm ≤ si for n ≤ i ≤ m and rm < k′n ≤ kn. That is, using
Lemma 3.1, it is not possible that km = sl for n≤ l ≤m. Hence km = ql
for an l such that n≤ l ≤m, and ql is even and ql < qm. Consequently,
k′m ≤ ql = km < kn, i. e., round m is active and fT (m)< fT (n).
This concludes our first subcase distinction.

3. The second main case is kn 6=
√
6= k′n and k′n ≤ kn. In this case, there is a

minimal m> n such that k′m =
√

and rm ≤Ω qm. Again assume that there is
no n< i≤ m such that ki =

√
.

(a) The first subcase is sm <Ω rm ≤Ω qm, where rm has triggered k′m =
√

.
Note that, in this main case, rm has triggered k′m =

√
implies that

Ωr(rm) is even. This case is similar to case 2f if we swap k′ with k′′,
q with s and odd with even. That is, we have km < qm, km < sm, we

3.3. Properties of Delayed Simulation for the Parity Condition 127

conclude that sm < rm and rm ≤ qi for n≤ i≤m, we then have km = sl
for an l such that n≤ l ≤m and arrive at k′′m ≤ sl = km < rm < k′n ≤ kn.

(b) Now let sm <Ω rm ≤Ω qm, but assume that qm has triggered k′m =
√

.
This case is similar to case 2e if you swap k′ with k′′ and q with s.

(c) Let rm ≤Ω sm ≤Ω qm and assume that rm has triggered k′m =
√

. This
case is similar to case 2d if you swap k′ with k′′, q with s and odd with
even.

(d) Again, let rm ≤Ω sm ≤Ω qm, but assume that qm has triggered k′m =
√

.
This case is similar to case 2c if you swap k′ with k′′ and q with s.

(e) We now assume that rm ≤Ω qm <Ω sm and that rm has triggered k′m =√
. This case is similar to case 2b if you swap k′ with k′′, q with s and

odd with even.

(f) Finally, we have rm ≤Ω qm <Ω sm where qm has triggered k′m =
√

.
This case is similar to case 2a if you swap k′ with k′′, q with s and odd
with even.

As stated above, it follows that ≤de is transitive. 2

Since the relation ≤de also is reflexive, it is a preorder.

Corollary 3.2 The relation ≤de is a preorder.

3.3 Properties of Delayed Simulation for the Parity
Condition

In this section, we show that the delayed simulation preorder defined in Sec-
tion 3.2 implies language containment in the sense that if an APA Q is simulated
by an APA S, i. e., Q ≤de S, then the language accepted by Q is a subset of the
language accepted by S.

We further show that the delayed simulation relation for APA can be efficiently
computed (Subsection 3.3.2), and that the relation is compatible with the dualiza-
tion of parity automata (Subsection 3.3.3). But, in Subsection 3.3.4, we see that
our version of delayed simulation seems to be ill-suited for automata minimization
via quotienting, as can be done for alternating Büchi automata (cf. Section 1.5).

In Section 3.4, we discuss a way to alleviate this problem.

128 CHAPTER 3. Simulation and Parity Acceptance

3.3.1 Delayed simulation implies language containment

As in the case of delayed simulation for alternating Büchi automata, delayed sim-
ulation for alternating parity automata implies language containment between the
simulated and the simulating automaton. The basic idea of the proof is similar
to the proof of Theorem 1.1, so we concentrate on the special aspects of parity
acceptance.

Theorem 3.2 Let Q, S be alternating parity automata over an alphabet Σ such
that Q≤de S. Then, L(Q)⊆ L(S).

Proof. The basic idea is the same as in the proof of Theorem 1.1. We fix a word
w ∈ L(Q). Given an arbitrary strategy τ1 of Pathfinder for G(S,w), we choose an
Automaton winning strategy σ0 for G(Q,w) and a Duplicator winning strategy σ
for the simulation game Gde(Q,S).

We then look at the simulation game where Spoiler moves the Q-pebble ac-
cording to σ0 and the S-pebble according to τ1.

Duplicator uses σ, and we have to show that the projection of the simulation
game to the S-pebble is a win for Automaton in the word game G(S,w); see
Subsection 1.2.2 for the technical details.

Now let π be a protoplay of this simulation game, that is, π = ((qi,si)i<ω,w)∈
(Q×S)ω×Σω.

Since the projection of π to the word game π0 = ((qi)i<ω,w) of Q is a win
for Automaton (π0 is σ0-conform), finally every odd priority that the Q-pebble
encounters is succeeded by a smaller even priority. That is, there is a j < ω such
that for all k ≥ j, if Ω(qk) is odd, there is an l > k such that Ω(ql) < Ω(qk) and
Ω(ql) is even.

Now suppose that min(Inf((si)i<ω)) is odd. That is, there are infinitely many
k′ > j such that Ω(sk′) is odd and there is no l′ > k′ such that both Ω(sl′) is even
and Ω(sl′)<Ω(sk′).

Given such a k′, either Ω(qk′)<Ω Ω(sk′). Then, for the priority memory to be
erased, there must be an l > k′ such that Ω(ql) ≤ Ω(sk′), Ω(ql) is odd and there
is no k′ < l′ < l such that Ω(ql′)<Ω(ql) is even. But then there is an m > l such
that Ω(qm) < Ω(ql) ≤ Ω(sk′) is even (especially, Ω(qm) <Ω Ω(sk′)), and there is
no m′ > m such that Ω(qm′) is both odd and less than Ω(qm). Hence the play is a
loss for Duplicator (contradiction).

Or Ω(sk′) ≤Ω Ω(qk′), that is, Ω(qk′) is odd and Ω(qk′) ≤ Ω(sk′). But then
there is an l > k′ such that Ω(ql)< Ω(qk′)≤ Ω(sk′) is even, i. e., by choice of k′,
Ω(ql)<Ω Ω(sl)≤Ω Ω(sk′). We can then argue as in the first case. 2

3.3. Properties of Delayed Simulation for the Parity Condition 129

3.3.2 Computing the delayed simulation relation
As pointed out in Subsection 3.2.1, the delayed simulation game for alternating
parity automata is a finite game with a Büchi winning condition. That is, the
simulation game can be solved as described in Section 1.7, cf. [ESW01]. The
running time of this algorithm is O(m′n1), where m′ is the number of edges of the
game graph and n1 is the number of rejecting positions, i. e., positions to which
priority 1 is assigned according to [ESW01].

For an alternating parity automaton with n states, m transitions and l priorities,
the simulation game graph has O(mnl) nodes and edges, and we may assume that
the rejecting nodes are the nodes of the form Q×Q×ω, of which there are O(ln2).
We thus have the following result

Theorem 3.3 (computing delayed simulation for APA) The relation≤de for an
alternating parity automaton with n states, m transitions and l priorities can be
computed in time O(n3l2m) and space O(mnl).

That is, compared to the computation of ≤de for alternating Büchi automata
(Theorem 1.6), we have an additional factor of l2 in the asymptotic time con-
sumption and an additional factor of l in the asymptotic space consumption for
computing ≤de for alternating parity automata.

3.3.3 Dualities
For an alternating parity automaton Q = (Q,Σ,qI,∆,E,U,Ω), we define the dual
automaton Q̄ = (Q,Σ,qI,∆, Ē,Ū ,Ω̄), where Ω̄ : Q→ω, q 7→Ω(q)+1, Ē = Q\E
and Ū = Q\U . That is, Ē =U and Ū = E, the two sets are swapped. The language
accepted by Q̄ is the complement of the language accepted by Q, see [MS87,
Löd98]. Dualization is compatible with our simulation relation in the following
way.

Lemma 3.2 For all alternating parity automata Q and S, Q ≤de S is equivalent
to S̄≤de Q̄.

Proof. Let Q ≤de S and let σ be a memoryless Duplicator winning strategy for
Gde(Q,S). We define the Duplicator strategy σ̄ for Gde(S̄,Q̄) as follows, where√
−1 =

√
=
√

+ 1.

• For a position (s,q′,k,a,du,0) with s ∈ Ēs, assume that σ(q′,s,k− 1,a,
du,1) = (q′,s′,k′−1). We define σ̄(s,q′,k,a,du,0) = (s′,q′,k′).

• For a position (s′,q,k,a,du,1) with q ∈ Ūq, assume that σ(q,s′,k− 1,a,
du,0) = (q′,s′,k′−1). We define σ̄(s′,q,k,a,du,1) = (s′,q′,k′).

130 CHAPTER 3. Simulation and Parity Acceptance

• For a position (s,q,k,a,du,0,du,1) with (s,q) ∈ Ēs × Ūq, assume that
σ(q,s,k − 1,a,du,0,du,1) = (q′,s,k − 1,a,du,1) and σ(q′,s,k − 1,a,
du,1) = (q′,s′,k′−1). We define σ̄(s,q,k,a,du,0,du,1) = (s′,q,k,a,du,1)
and σ̄(s′,q,k,a,du,1) = (s′,q′,k′).

We claim that σ̄ is a winning strategy. To see this, note that n <Ω m if and
only if m + 1 <Ω n + 1. Using induction and a case distinction over the modes of
(qi,si), it is easy to see that ((qi,si,ki)i<ω,w) is a σ-conform protoplay if and only
if ((si,qi,ki + 1)i<ω,w) is σ̄-conform. It follows that σ̄ is a Duplicator winning
strategy for Gde(S̄,Q̄). 2

3.3.4 Quotienting is a problem

Unfortunately, the full delayed simulation relation for parity automata poses dif-
ficulties for quotienting. It seems hard to find a working definition of the full
quotient of alternating parity automata w. r. t. our delayed simulation, because a
merging of equivalent states may result in an automaton which is not delayed sim-
ulation equivalent to the original automaton, and it may even change the language
of an automaton.

Consider the automaton in Figure 3.1 on the left-hand side. As usual, existen-
tial states are shown as diamonds and universal states are shown as boxes. The
labels of the states are of the form “state name: priority”. We have qI ≡de q1 <de
q2 <de q3, so the resulting quotient automaton is shown on the right-hand side.

qI : 2

q1 : 2

q2 : 1 q3 : 3

a

a
a

a

a

a

[qI] : 2

[q2] : 1 [q3] : 3

a

a
a

a

a

1

Figure 3.1: A parity game and its (non-equivalent) naive delayed simulation quo-
tient

3.3. Properties of Delayed Simulation for the Parity Condition 131

The language of the automaton is empty, while a naive quotient automaton ac-
cepts the word aω. Note that the automaton is normalized, |Σ|= 1 (the automaton
is a parity game as defined in Section 3.1), all states have the same modality, only
states in the same SCC are merged and there are only three different priorities.

In the in the example of Figure 3.1, one gets a quotient automaton simulation-
equivalent to the original automaton if the transition ([qI],a, [qI]) is deleted. This
might suggest to use a minimax or semi-elective approach as in Chapter 1. This
would in fact help in the example of Figure 3.1, but remember that, in the semi-
elective quotient, transitions originating from existential (diamond) states must
not be removed. Removing non-maximal transitions from diamond states may
change the language of an automaton even if only transitions in a single SCC are
removed. Consider Figure 3.2. Here we have qI >de q1 >de q2, and the language
changes from aω to /0 if the transition from qI to q1 is removed.

qI : 1

q1 : 0 q2 : 2

a

a
a

a

a

1

Figure 3.2: Removing non-maximal transitions changes the language

The considerations of Subsection 1.5.4 about pseudo-accepting states in the
context of Büchi automata might suggest an approach in which existential states
only have maximal transitions provided that their priority is even. This would be
correct for the automata of Figures 3.1 and 3.2. But consider the automaton of
Figure 3.3.

There, we have q2 ≤de qI and q2 ≤de q1 while qI and q1 are incomparable, that
is, maxa(q1) = maxb(q1) = qI and the priority of q1 is even. But removing the
transitions (q1,a/b,q2) obviously changes the language of the automaton.

132 CHAPTER 3. Simulation and Parity Acceptance

qI : 1

q1 : 2 q2 : 0

a

a, b, c a, b

a, b

1

Figure 3.3: Non-maximal transitions of existential states with even priority must
not be removed

3.4 Quotienting with Smaller Relations
In Subsection 3.3.4, we have seen that our delayed simulation relation makes it
difficult to merge equivalent automata states. As a remedy, we here present two
simulation relations that do allow this kind of quotienting in such a way that the
quotient automaton is simulation equivalent to the original automaton. These re-
lations are strictly smaller than the full delayed simulation relation and hence less
states are identified as equivalent. This will be partly compensated by the possi-
bility to combine the quotienting with respect to both new relations.

3.4.1 Smaller delayed simulation relations for alternating pa-
rity automata

The relations ≤l
de,≤

r
de⊆≤de are defined by the the same simulation game as ≤de,

with the following changes: The memory update function pm in the definition of
≤de of Subsection 3.2.1 is replaced by the functions pml and pmr, respectively.
The difference between pm and pmr is that case 4 in the definition of pm yields
an pmr-result of k, that is,

pmr(i, j,k) = k, if j ≤Ω i, i is odd and i≤ k, and j is odd or k < j , (3.10)

while pmr(i, j,k) is equal to pm(i, j,k) in all the other cases of the definition of
pm. Symmetrically, case 5 yields a pml-result of k while pml is equal to pm in the
other cases, that is,

pml(i, j,k) = k, if j ≤Ω i, j is even and j ≤ k, and i is even or k < i . (3.11)

The respective simulation games are denoted Gr−de(Q,S) and Gl−de(Q,S),
for automata Q and S.

3.4. Quotienting with Smaller Relations 133

That is, in the case of ≤r
de, once the value of the priority memory is not

√
,

it will change back to the value
√

again only if this is triggered by a small even
priority in the simulating automaton, while small odd priorities in the simulated
automaton are ignored. In the case of ≤l

de, only a small odd priority in the sim-
ulated automaton can trigger a switch to the memory value

√
while small even

priorities are ignored.
We call ≤r

de the right-hand delayed simulation relation, using the intuition
that the simulating automaton (the automaton on the right-hand side of ≤r

de) has
to trigger a switch to the memory value

√
. Analogously, ≤l

de is the left-hand
delayed simulation relation.

It follows immediately that left-hand and right-hand delayed simulation are
subsets of the full delayed simulation, and it is easy to see that they are proper
subsets, see also Subsection 3.4.3. Computing these relations is as asymptotically
time- and space-consuming as computing the full delayed simulation relation.

Again, note the analogy to delayed simulation for Büchi automata: If a parity
automaton Q is a Büchi automaton (priorities 0 and 1 only), then the right-hand
delayed simulation relation for Q is the same as the delayed simulation relation
for Q as a Büchi automaton and as the full delayed simulation relation for Q as
a parity automaton. Dually, the left-hand delayed simulation relation is a natu-
ral notion for delayed simulation for alternating co-Büchi automata, i. e., parity
automata with priorities 1 and 2 only.

In analogy to Lemma 3.2, ≤r
de and ≤l

de are connected via dualization.

Remark 3.1 For alternating parity automata Q and S, Q ≤l
de S is equivalent to

S̄≤r
de Q̄.

That is, in order to compute ≤l
de for an automaton Q, we may dualize Q and

compute ≤r
de for Q̄. The relation ≤l

de for Q is the inverse relation of the relation
≤r

de for Q̄ (and vice versa).
It is not entirely obvious that these relations are preorders. Especially, Lem-

ma 3.1 does not hold if ≤r
de or ≤l

de are inserted for ≤de, because certain priorities
encountered during a play do not influence the priority memory. But Lemma 3.1 is
a cornerstone of the proof of Theorem 3.1, showing the transitivity of the delayed
simulation relation for alternating parity automata. Nevertheless, we can modify
Lemma 3.1 and then show that the right-hand and left-hand simulation relations
are preorders.

Corollary 3.3 The relations ≤r
de and ≤l

de are preorders.

Proof. Obviously, the two relations are reflexive. Note that we can equivalently
restate the cases 1 and 3 in the definition of the function pm in Subsection 3.2.1 as

134 CHAPTER 3. Simulation and Parity Acceptance

1. If i<Ω j then

(a) if i is odd then pm(i, j,
√

) = j,

(b) if i is even then pm(i, j,
√

) = i.

3. If i<Ω j then

(a) if i is odd then pm(i, j,k) = min{ j,k},
(b) if i is even then pm(i, j,k) = min{i,k}.

This is because if i <Ω j and i is odd then i > j, hence min{i, j} = j, and sym-
metrically for an even i.

Based on this description, we can replace equation (3.6) in Lemma 3.1 by

ki = min{Ω(p) | p ∈ {ql | n≤ l ≤ i,Ω(ql) even}∪{sl | n≤ l ≤ i}} , (3.12)

and equation (3.8) in Lemma 3.1 by

Ω(sm) = min{Ω(p) | p ∈ {qi | n≤ i≤ m,Ω(qi) even}∪{si | n≤ i≤ m}} .
(3.13)

In the case of ≤r
de, it is easy to check that only a restricted version of Lem-

ma 3.1 holds true, where equation (3.12) holds for every n ≤ i < m and equation
(3.13) holds for m<ω: For a play π = (qi,si,ki)i<ω of a right-hand delayed simu-
lation game Gr−de(q0,s0) and 0≤ n<m≤ω such that kn−1 =

√
if n> 0, km =

√

if m < ω, and ki 6=
√

for all i in {n,n + 1, . . . ,m−1}, (3.12) and (3.13) hold, but
an analog of part 2 of Lemma 3.1 does not hold for right-hand simulation games.

But these restricted versions are then sufficient to show the transitivity of ≤r
de

with the same proof technique as for Theorem 3.1—note that only the subcases 2a,
2c, 2e, 3a, 3c and 3e apply to ≤r

de.
The proof of Theorem 3.1 for≤l

de is completely symmetrical, that is, a restric-
tion of Lemma 3.1 with modified versions of Lemma 3.1(1) and 3.1(2) is true for
≤l

de and can then be used to show transitivity in the style of the proof of Theo-
rem 3.1. 2

3.4.2 Quotienting
The quotient automaton of an APA Q w. r. t. ≡r

de, denoted Qse
r−de is an enhance-

ment of the semi-elective quotient automaton of Section 1.5. We have to remove
transitions starting from universal states that might enable Spoiler to win the game
Gr−de(Q,Q≡r−de) by not allowing the pebble of the simulating automaton to reach

3.4. Quotienting with Smaller Relations 135

a state with a small even priority although Duplicator can enforce to reach the
respective state in Gr−de(Q,Q). Dually, we have to remove transitions start-
ing from existential states in Q≡l−de to prevent Spoiler from winning the game
Gl−de(Q≡l−de,Q) by avoiding a small odd priority which is unavoidable in Q.

That is, while the definition of the semi-elective quotient of an alternating
Büchi automaton w. r. t. delayed simulation in Chapter 1 is asymmetric in the con-
text of Büchi acceptance, we can now perceive a symmetry in that definition if we
regard Büchi acceptance as a special case of parity acceptance.

For an alternating parity automaton Q = (Q,Σ,qI,∆,E,U,Ω), we define the
right-semi-elective quotient automaton

Qse
r−de = (Qr,Σ, [qI]r,∆r,Er,U r,Ω) , (3.14)

where

Qr = Q/≡r
de= {[q]r | q ∈ Q} , (3.15)

∆r = {([q]r,a, [q′]r) | (q,a,q′) ∈ ∆,q ∈ E}
∪{([q]r,a, [q′]r) | [q]r ⊆U,q′ ∈minr−de

a (q)} , (3.16)
U r = {[q]r ∈ Qr | [q]r ⊆U} , (3.17)
Er = {[q]r ∈ Qr | [q]r∩E 6= /0} . (3.18)

The notations minx
a(q) and maxx

a(q) are introduced in Subsection 1.4.1.
For the priority function of the quotient automaton, we extend the domain of

Ω to subsets of Q: Ω(M) = min{Ω(m) | m ∈M} for M ⊆ Q.
Symmetrically, there is also the left-semi-elective quotient automaton

Qse
l−de = (Ql,Σ, [qI]l,∆l,E l,U l,Ω) , (3.19)

where

Ql = Q/≡l
de= {[q]l | q ∈ Q} , (3.20)

∆l = {([q]l,a, [q′]l) | (q,a,q′) ∈ ∆,q ∈U}
∪{([q]l,a, [q′]l) | [q]l ⊆ E,q′ ∈maxl−de

a (q)} , (3.21)
U l = {[q]l ∈ Ql | [q]l ∩U 6= /0} , (3.22)
E l = {[q]l ∈ Ql | [q]l ⊆ E} . (3.23)

Again, the duality principle holds: The dual automaton of Qse
l−de is the same

as Q̄se
r−de and, conversely, the dual automaton of Qse

r−de is the same as Q̄se
l−de.

136 CHAPTER 3. Simulation and Parity Acceptance

Q simulates Qse
r−de

To show that Q r-de-simulates Qse
r−de, we can use the proof technique of Sec-

tion 1.5 mutatis mutandis, namely, with another rule of updating the joint strategy,
cf. the proof of Theorem 1.3.

In the proof, we use the analogs of Corollaries 1.6 and 1.7 for ≤r
de; the proofs

of these corollaries for ≤r
de are the same as the proofs in Section 1.5.2.

Theorem 3.4 Let Q = (Q,Σ,qI,∆,E,U,Ω) be an alternating parity automaton,
and let p0, q0 be states such that p0≤r

de q0. Then Q(q0) r-de-simulates Qse
r−de(p0),

i. e., there is a Duplicator winning strategy for Gr−de([p0]r,q0).

Proof. We fix,

1. for every K ∈ Qr
de, a representative rep(K) ∈ K such that Ω(rep(K)) =

Ω(K),

2. for every (K, p) ∈ Qr
de×Q such that K vr

de p, a vr
de-respecting minimax

strategy σo
K,p of Duplicator for G(K, p), and

3. for every (p,q) ∈ Q×Q such that p ≤r
de q, a Duplicator winning strategy

σde
p,q for Gr−de(p,q).

Let Tn = (ti)i≤n = (Ki,qi, li)i≤n be the prefix of a Gr−de([p0]r,q0)-play T (with
(Ki,qi, li) ∈ Qr×Q× (ω∪{

√
})). Let

j′ = min{i≤ n | li 6=
√
∧ ∀i′(i≤ i′ ≤ n→ li′ 6=

√
)} , (3.24)

or j′ = 0 if this set is empty, and let

j = max{i | j′ ≤ i≤ n ∧ Ω(Ki) = li < li−1 ∧ li <Ω Ω(qi)} , (3.25)

or j = j′ if this set is empty.
Let T[j,n] be the suffix of Tn starting with ([K j,q j, l j), and define

σ(Tn) = σo
K j,rep(K j) ./ σde

rep(K j),q j
(T[j,n]) . (3.26)

Note that σ is ≤r
de-respecting.

Now if (Ki,qi, li) is
(1) the first (Qr×Q×ω)-position after the last (Qr×Q×{

√
})-position, or

(2) the first (Qr×Q×ω)-position at all, or
(3) the last position where the priority memory value li has decreased because

Ω(Ki) is even and Ω(Ki)< li−1, and Ω(Ki)<Ω Ω(qi),

3.4. Quotienting with Smaller Relations 137

we have rep(Ki)≤r
de qi. The strategy σ is updated to σo

rep(Ki),rep(Ki)
./ σde

rep(Ki),qi

where only the suffix starting with (Ki,qi, li) is taken into account for the following
moves of Duplicator.

Then there is either an m > i such that lm < li and lm′ = li for all i ≤ m′ < m,
in which case σ is updated again (and this can happen consecutively only finitely
often—we use here that the priority memory is monotonically decreasing between
two memory values of

√
, see Proposition 3.1). Or, since σde

rep(Ki),qi
is winning,

there is a k > i such that Ω(qk) ≤ lk−1 = li and Ω(qk) is even (hence Ω(qk) ≤Ω
li = Ω(Kk), and still Kk vr

de qk by construction of σ). Hence lk =
√

.
That is, every position in Qr×Q×ω is followed by a position in Qr×Q×{

√
}

in a σ-conform play. Thus σ is a Duplicator winning strategy in Gr−de([p0]r,q0).
2

Qse
r−de simulates Q

To show that Qse
r−de r-de-simulates Q, first note that, by construction of Qse

r−de, the
analog of Corollary 1.8 holds for ≤r

de.

Corollary 3.4 (cf. Corollary 1.8) Let q′I ∈ [qI]r. There is a Duplicator strategy
σ≡r for Gde(q′I, [qI]r) such that, for every Q×Qr-position (q′i, [qi]r) of a σ≡r -con-
form play, q′i ∈ [qi]r holds, that is, σ≡r is ≡r

de-respecting.

We can then proof that Qse
r−de r-de-simulates Q. The style of this proof is

mainly similar to the proofs of Theorem 3.4 above and of Theorem 1.3; the proof
of Theorem 1.4 is simpler because of the restrictions of Büchi acceptance as com-
pared to parity acceptance.

Theorem 3.5 Let Q be a parity automaton with positions p0, q0 such that p0 ≤de
q0. The automaton Qse

r−de([q0]r) r-de-simulates Q(p0), that is, there is a winning
strategy for Duplicator in Gr−de(p0, [q0]r).

Proof. For every (p,q) ∈ Q×Q such that p ≤r
de q, let σp,q be a Duplicator

winning strategy for Gr−de(p,q).
We fix, for every K ∈ Qr, a representative rep(K) ∈ K such that Ω(rep(K)) =

Ω(K). For every K ∈ Qr, let σ≡K be a ≡r
de-respecting Duplicator strategy for

Gr−de(rep(K),K), and let K0 = [q0]r.
Here, we define for the prefix of a play Tn = (pi,Ki, li)i≤n of length n + 1, the

values j′ and j as follows. Let

j′ = min{i≤ n | li 6=
√
∧ ∀i′(i≤ i′ ≤ n→ li′ 6=

√
)} , (3.27)

138 CHAPTER 3. Simulation and Parity Acceptance

or j′ = 0 if this set is empty, and let

j = max{i | j′ ≤ i≤ n ∧ Ω(Ki) = li < li−1} , (3.28)

or j = j′ if this set is empty. Let T[j,n] be the suffix of Tn starting with
(p j,K j, l j), and define

σ(Tn) = σp j,rep(K j) ./ σ≡K j
(T[j,n]) . (3.29)

The argumentation then continues very similar to the proof of Theorem 3.4:
The strategy σ is ≤r

de-respecting. If (pi,Ki, li) is
(1) the first (Q×Qr×ω)-position after the last (Q×Qr×{

√
})-position, or

(2) the first (Q×Qr×ω)-position at all, or
(3) the last position where the priority memory value li has decreased because

Ω(Ki) is odd and Ω(Ki)< li−1, and Ω(pi)<Ω Ω(Ki),
we have pi ≤r

de rep(Ki). The strategy σ is updated to σpi,rep(Ki) ./ σ≡Ki
where

only the suffix starting with (pi,Ki, li) is taken into account for the following
moves of Duplicator. Assume that (km)m≥i is the intermediate sequence for the
play with strategy σpi,rep(Ki) ./ σ≡Ki

, that is, ki = rep(Ki), but ki+1 may be different
from rep(Ki+1), but km ∈ Km for all m≥ i, of course, since σ≡Ki

is ≡r
de-respecting,

and, consequently, Ω(km)≥Ω(Km).
Then there is either an m> i such that lm < li and lm′ = li for all i≤m′ <m, in

which case σ is updated again (again, we use Proposition 3.1). Or, since σpi,rep(Ki)
is winning, there is an m> i such that Ω(km)≤ lm−1 = li and Ω(km) is even. Since
Ω(Km) ≤ Ω(km), either Ω(Km) is even and thus lm =

√
. Or Ω(Km) is odd and

lm < li, and we update σ as above.
It is thus ensured that every position in Q×Qr×ω is followed by a position

in Q×Qr×{
√
} in a σ-conform play. Thus σ is a Duplicator winning strategy in

Gr−de(p0, [q0]r). 2

Equivalence of Q and Qse
l−de

The proofs for the respective claims for left-hand delayed simulation are “mirror-
symmetric” to the above proofs in the following sense. To show that Qse

l−de ≤
l
de

Q, we derive the following corollary from the definition of Qse
l−de, a “mirrored”

version of Corollary 3.4.

Corollary 3.5 Let q′I ∈ [qI]l . There is a Duplicator strategy σ≡l for Gde([qI]l,q′I)
such that, for every Ql ×Q-position ([qi]l,q′i) of a σ≡l -conform play, q′i ∈ [qi]l

holds, that is, σ≡l is ≡l
de-respecting.

3.4. Quotienting with Smaller Relations 139

We then can use the updatable join of a≡l
de-respecting strategy and a winning

strategy to show that Q l-de-simulates Qse
l−de (as opposed to above, where the join

of a winning strategy and a≡r
de-respecting strategy is used to show Q≤r

de Qse
r−de).

To show, conversely, that Q ≤l
de Qse

l−de, we can use the updatable join of a
winning strategy and a vl

de-respecting minimax strategy (while above and, in a
sense, also in Section 1.5, we use the join of a vr

de-respecting minimax strategy
and a winning strategy to show Qse

r−de ≤
r
de Q).

In summary, we have the following theorem.

Theorem 3.6 (left- and right-semi-elective quotients) For every alternating
parity automaton Q, the automata Q and Qse

l−de l-de-simulate each other, and the
automata Q and Qse

r−de r-de-simulate each other. In particular, L(Q) =
L(Qse

l−de) = L(Qse
r−de).

3.4.3 Example: Quotienting

In this subsection, we give an example for quotienting w. r. t. left-hand and right-
hand delayed simulation. Our example is the parity game H2,2 shown in Fig-
ure 3.4. (In the figures of parity games in this subsection, we omit transition la-
bels and do not mark an initial position.) It is taken from Jurdziński [Jur00]. The
game H2,2 belongs to a family of parity games Hi, j for which Jurdziński’s lifting
algorithm for deciding the winner of a parity game shows a worst-case behavior.
Note that Pathfinder wins H2,2 on the positions q0i, 0 ≤ i ≤ 4, while Automaton
wins on all the other positions.

There are eight equivalence classes w. r. t. ≡r
de of H2,2, of which three contain

more than one element: We have q00 ≡r
de q02 ≡r

de q04 and q01 ≡r
de q03, and further

q13 ≡r
de q14. In detail, q13 and q14 r-de-simulate every state, and we have q10 ≤r

de
q12, q20 ≤r

de q21 and [q00]r ≤r
de q11.

Since q11 and q13 simulate the elements of [q00]r but not vice versa, the transi-
tions (q01,q11) and (q03,q13) are deleted in the quotient: q01 and q03 are universal
states, and q11 is not in minr−de(q01) and q13 is not in minr−de(q03). The resulting
quotient game is shown in Figure 3.5.

A subsequent quotienting w. r. t. ≡l
de results in the game of Figure 3.6. The

states [q00] and [q01] of Figure 3.5 are equivalent w. r. t.≡l
de. And maxl−de([q13]) =

{[q13]}, which is why the transitions ([q13], [q01]) and ([q13], [q12]) do not appear
in Figure 3.6.

In the above example, it does not really matter in which order the quotienting
w. r. t. the two equivalence relations is applied. We have first done a quotienting
w. r. t. ≡r

de and then w. r. t. ≡l
de. The other way around, we get virtually the same

quotient, only state [q13] of Figure 3.6 is a box state in that order of quotienting.

140 CHAPTER 3. Simulation and Parity Acceptance

q00 : 4 q01 : 3 q02 : 4 q03 : 3 q04 : 4

q10 : 2 q11 : 2 q12 : 2 q13 : 2 q14 : 2

q20 : 1 q21 : 1

1

Figure 3.4: Quotienting example: H2,2 of [Jur00]

[q01] : 3 [q00] : 4

[q10] : 2 [q11] : 2 [q12] : 2 [q13] : 2

[q20] : 1 [q21] : 1

1

Figure 3.5: The right-semi-elective quotient of H2,2

3.4. Quotienting with Smaller Relations 141

[q01] : 3

[q10] : 2 [q11] : 2 [q12] : 2 [q13] : 2

[q20] : 1 [q21] : 1

1

Figure 3.6: The left-semi-elective quotient of the right-semi-elective quotient of
H2,2

142 CHAPTER 3. Simulation and Parity Acceptance

Moreover, all positions which are equivalent w. r. t.≡de are merged in the quotient
game of Figure 3.6.

But these nice properties do not hold for all parity automata or, at least, for
all parity games. It is possible that, for states q, s, we have q ≤de s, but neither
q ≤l

de s nor q ≤r
de s. And it is possible that both q ≤r

de s and s ≤l
de q hold, but

neither q≤l
de s nor s≤r

de q. Consider the parity game in Figure 3.7.

qI : 3 q1 : 0 q2 : 3 q3 : 3

sI : 1 s1 : 0 s2 : 5 s3 : 3

1

Figure 3.7: Mutually strictly larger

There, we have qI <
r
de sI but not sI <

r
de qI , and sI <

l
de qI but not qI <

l
de sI . We

now integrate qI and sI into a single parity game as shown in Figure 3.8. (The dots
in Figure 3.8 replace the two diamond positions p2 and p3 with priority 5.)

In this game, we have p1 <
r
de p0 and p2 <

l
de s1, but p2 6≤r

de q1. The positions
p1 and p2 are incomparable w. r. t. ≤l

de.

That is, in the quotient w. r. t.≡r
de, the transition from pI to p0 is deleted. In the

quotient w. r. t.≡l
de, however, the transition from p0 to sI is deleted. Consequently,

p1 <
r
de p0 no longer holds in this quotient, and the transition from pI to p0 is not

deleted in a consecutive quotienting w. r. t.≡r
de. This shows that the quotient game

w. r. t. both ≡r
de and ≡l

de depends on the order in which the two quotientings are
applied.

With a little modification, this example also demonstrates that it is not possible
to mend the situation by normalizing the game: Merge the states q3, s3 and p5 to
a single box state and connect it via two states with priorities 2 and 4 to pI . The
resulting game is normalized, but the relations between p0, p1, p2, q1 and s1 still
hold.

3.5. A Simplification Algorithm for APA 143

pI : 5

p1 : 5 p0 : 5

p4 : 5

p5 : 3

qI sI

···

1

Figure 3.8: Quotienting modulo ≡l
de destroys a ≤r

de-relation

3.5 A Simulation-Based Simplification Algorithm
for Alternating Parity Automata

In this section, we present some observations that will allow us to use both the
full delayed simulation relation and the left-hand and right-hand versions for the
efficient simplification of alternating parity automata.

That is, we give an algorithm for the simplification of alternating parity au-
tomata and show that it is correct in the sense that the input automaton and the
resulting simplified automaton accept the same language, and the simplified au-
tomaton is not larger than the input automaton.

3.5.1 The simplification algorithm
INPUT An alternating parity automaton Q.

Simplification Algorithm

1. Normalize Q.

2. Compute the relation ≤de for Q.

(a) Assign the same priority to de-equivalent states, namely, the minimum
of the priorities of the states in that equivalence class. [Lemma 3.3]

144 CHAPTER 3. Simulation and Parity Acceptance

(b) Change transitions to topologically maximal representatives for every
class. [Lemma 3.4]

(c) Apply 0-1-minimaxing. [Lemma 3.5]

(d) Apply reachability minimaxing. [Lemma 3.6]

3. Let Q′ be the modified automaton computed so far. Compute ≤r
de and ≤l

de
for Q′.

(a) Delete transitions according to ≤r
de and ≤l

de as described in Lem-
ma 3.7.

(b) Merge states according to ≤r
de and ≤l

de as described in Lemma 3.8.

4. Let Q′′ be the automaton computed from Q in steps 1 to 3b. If Q′′ has less
states or transitions than the input automaton Q, continue with step 1 with
Q′′ as Q, else return Q′′ as the simplified automaton.

That is, there is a working cycle of alternating normalizations (step 1) and
simulation-based simplifications (steps 2 and 3). This is because, on the one hand,
normalization may change the simulation relations between automata states and,
on the other hand, the simulation-based simplifications may change the priorities
of states and result in deleting transitions, such that a new normalization may
again change the automaton.

It is easy to see that normalization changes the simulation relation. As a very
simple example, consider two states q,q′ with outgoing transitions (q,a,q) and
(q′,a,q′) only, such that Ω(q) = 0 and Ω(q′) = 2. Then, q′ does not de-simulate
q, but, in a normalized automaton, the priority of q′ is 0, so q and q′ are equivalent
after normalization.

For the correctness of the algorithm, we will show that the normalized au-
tomaton after step (1) of the algorithm is equivalent w. r. t. ≡de to the simplified
automaton after step (3b). This is sufficient since we know that de-equivalence
implies language equivalence and normalization does not change the accepted
language.

3.5.2 Usable properties of the delayed simulation relations
The homogenized automaton

We first show that we can assign the same priority to two de-equivalent states,
namely, the minimum of all priorities in the de-equivalence class. This is can
be seen as an extension of the concept of pseudo-accepting states (Lemma 1.8 in
Subsection 1.5.4).

3.5. A Simplification Algorithm for APA 145

Lemma 3.3 (homogenized automaton) Let Q = (Q,Σ,qI,∆,E,U,Ω) be a nor-
malized APA. We define

Q2a = (Q,Σ,qI,∆,E,U,Ω′) (3.30)

by

Ω′(q) = min{Ω(q′) | q′ ≡de q} , (3.31)

for all q ∈ Q.
Then, Q2a ≡de Q. We call Q2a the homogenized automaton of Q.

Proof. We can basically follow the proof scheme of Theorems 1.3, 3.4, and 3.5.
That is, we get a winning strategy as the join of two strategies (here, of two win-
ning strategies) which is updated at certain points of the simulation game.

Therefore, let σq,q′ be a Duplicator winning strategy for Gde(q,q′), for every
pair of states q,q′ ∈ Q such that q ≤de q′. For every state q ∈ Q, let rep(q) be a
state in Q such that rep(q) ≡de q and Ω(rep(q)) = Ω′(rep(q)). We assume that
rep(q) = q if Ω(q) = Ω′(q).

To show that Q ≤de Q2a, we start a play of the game Gde(Q,Q2a) with the
Duplicator strategy σqI ,qI ./ σqI ,qI , that is, Duplicator chooses his moves in Q2a as
if Q2a was the same as Q.

We update this strategy if, during a play, the priority memory decreases or
changes from

√
to a natural number at a position (q j,q′j,k j), i. e., in round n, the

last update was in round

j = max{i≤ n | ((ki−1 =
√
∧ ki 6=

√
)∨ (ki−1 > ki))

∧∀i′(i≤ i′ ≤ n→ ki′ 6=
√
} , (3.32)

or j = 0 if this set is empty.
A strategy update at position (q j,q′j,k j) means that Duplicator continues the

play with the strategy σq,rep(q′) ./ σrep(q′),q′ and only takes the positions starting
from round j into account for his further moves.

As in previous proofs, it follows that, whenever the priority memory is dif-
ferent from

√
, the strategy will eventually switch again (and this can happen

consecutively only finitely often, because the priority memory can decrease only
finitely often without taking on the value

√
) or become

√
, that is, Duplicator wins

Gde(Q,Q2a).
The proof for Q2a ≤de Q is completely symmetrical. 2

146 CHAPTER 3. Simulation and Parity Acceptance

The shortcut automaton

As in Section 2.5, we can choose, for every equivalence class C, a topologically
maximal representative rC of C and replace every transition (p,a,q) such that
q ∈ C but rC 6≤R q by a transition (p,a,rC). That is, the following lemma is the
translation of Corollary 2.2 to this setting; also, the proof is the same as for Corol-
lary 2.2.

Lemma 3.4 (shortcut automaton) Let Q = (Q,Σ,qI,∆,E,U,Ω) be a normal-
ized and homogenized APA, see above. Let C0 ≤C1 ≤ . . . ≤T C be a topological
sorting of the SCCs C0, . . . ,Cn of the directed graph AG = (Q,{(q,q′) | ∃a ∈ Σ :
(q,a,q′) ∈ ∆}).

For every de-equivalence class D, let rep(D)∈D be a representative such that
if rep(D) ∈Ci then D∩C j = /0, for all j > i.

Let≤R be the reachability preorder on AG, i. e., for all q,q′ ∈Q, q≤R q′ if and
only if there is a path in AG from q to q′.

We define
Q2b = (Q,Σ, rep([qI]de),∆′,E,U,Ω) (3.33)

by

∆′ = ∆\{(q,a,q′) ∈ ∆ | rep([q′]de) 6≤R q′}
∪ {(q,a, rep(D)) | D ∈ Q/≡de,

∃q′ ∈ D : (q,a,q′) ∈ ∆, rep(D) 6≤R q′} . (3.34)

Then, Q2b ≡de Q. We call Q2b the shortcut automaton of Q.

The 0-1-minimax automaton

It is easy to see that, in analogy to Remark 1.4, existential states of minimal even
priority only need maximal successors w. r. t. ≤de. Dually, universal states with
minimal odd priority only need minimal successors. With the same reasoning,
it follows that if there is are two transitions (q,a,q′),(q,a,q′′) such that q ∈ E,
Ω(q′) = 0 and q′′ ≤de q′, then the transition (q,a,q′′) can be deleted, in analogy to
Remark 1.5. Dually, a transition (q,a,q′′) from a universal state q can be deleted
in favor of a transition (q,a,q′) such that q′ ≤de q′′ and Ω(q′) = 1.

Lemma 3.5 (0-1-minimaxing) Let Q = (Q,Σ,qI,∆,E,U,Ω) be a normalized,
homogenized and shortcut APA as defined above. Let Q2c be defined like Q, but

3.5. A Simplification Algorithm for APA 147

with ∆′ instead of ∆, where

∆′ = ∆ \ {(q,a,q′) | q ∈ E,Ω(q) = 0,q′ /∈maxde
a (q)}

\ {(q,a,q′) | q ∈U,Ω(q) = 1,q′ /∈minde
a (q)}

\ {(q,a,q′′) | q ∈ E,∃(q,a,q′) ∈ ∆ : q′ 6= q′′∧q′′ ≤de q′∧ Ω(q′) = 0}
\ {(q,a,q′′) | q ∈U,∃(q,a,q′) ∈ ∆ : q′ 6= q′′∧q′ ≤de q′′∧Ω(q′) = 1} .

(3.35)

Then, Q≡de Q2c. We call this step 0-1-minimaxing.

The reachability minimax automaton

The next lemma is an adaptation of Lemma 2.3, with the same proof.

Lemma 3.6 (reachability minimaxing) Let Q = (Q,Σ,qI,∆,E,U,Ω) be an al-
ternating parity automaton simplified like Q2c in Lemma 3.5. Let≤R be the reach-
ability preorder of Lemma 3.4.

Let Q2d = (Q,Σ,qI,∆′,E,U,Ω) defined by

∆′ = ∆ \ {(q,a,q′) | q ∈ E,∃p ∈ ∆(q,a) : q′ ≤de p and p 6≤R q}
\ {(q,a,q′) | q ∈U,∃p ∈ ∆(q,a) : p≤de q′ and p 6≤R q} . (3.36)

Then, Q≡de Q2d . We call this step reachability minimaxing.

We call the automaton to which the simplifications of steps (1) to (2d) have
been applied the de-simplified automaton (of Q).

Note that the de-simplified automaton has the following property: Every two
de-equivalent states belong to the same strongly connected component of the au-
tomaton’s transition graph and have the same priority.

The rl-edge-reduced automaton

We can delete transitions in an alternating parity automaton based on right-hand
and left-hand delayed simulation.

Lemma 3.7 (rl-edge-reduced automaton) Let Q = (Q,Σ,qI,∆,E,U,Ω) be an
alternating parity automaton, and let R be the de-simplified automaton of Q. Let
Qrl be defined like R, but with ∆rl instead of ∆, where

∆rl = ∆ \ {(q,a,q′) | q ∈ E,∃p ∈ ∆(q,a) : q′ <l
de p}

\ {(q,a,q′) | q ∈U,∃p ∈ ∆(q,a) : p<r
de q′} . (3.37)

Then, Q≡de R≡de Qrl .
We call Qrl the rl-edge-reduced automaton of Q.

148 CHAPTER 3. Simulation and Parity Acceptance

Proof. Using the proofs in Subsection 3.4.2, it is easy to show that an automaton
Qr with transition relation

∆r = ∆\{(q,a,q′) | q ∈U,∃p ∈ ∆(q,a) : p<r
de q′} (3.38)

is equivalent w. r. t. ≡r
de (and hence w. r. t. ≡de) to Q. Similarly, an automaton Ql

with transitions

∆rl = ∆\{(q,a,q′) | q ∈ E,∃p ∈ ∆(q,a) : q′ <l
de p} (3.39)

is equivalent w. r. t. ≡l
de and ≡de to Q.

Now Qrl evolves from Qr by removing only transitions starting at existential
states. Consequently, Qrl ≤de Qr ≡de Q. But Qrl also evolves from Ql by remov-
ing only transitions from universal states. Hence Qrl ≥de Ql ≡de Q ≡de Qr ≥de
Qrl .

More precisely, this argumentation shows that Qrl ≤r
de Q≤l

de Qrl . 2

Simultaneous quotienting w. r. t. left-hand and right-hand delayed simulation

Although quotienting w. r. t. ≤l
de may change the relation ≤r

de and vice versa, it is
possible to apply a simultaneous quotienting w. r. t. both relations. The resulting
automaton may not be equivalent to the original automaton w. r. t. both ≡l

de and
≡r

de, but it will be equivalent w. r. t. ≡de.
We start with the following corollary which is basically similar to Corol-

lary 1.3, but we also exploit the deletion of transitions according to Lemma 3.7.

Corollary 3.6 Let Q = (Q,Σ,qI,∆,E,U,Ω) be a de-simplified alternating parity
automaton, and let Qrl = (Q,Σ,qI,∆rl,E,U,Ω) be the rl-edge-reduced automaton
of Q. Let p,q ∈ Q such that p ≡r

de q or p ≡l
de q in Q, i. e., w. r. t. the transition

relation ∆. Let a ∈ Σ.
If {p,q}⊆E or {p,q}⊆U then for every p′ ∈∆rl(p,a) there is a q′ ∈∆rl(q,a)

such that p′ ≡de q′.
Else for every p′ ∈ ∆rl(p,a) and for every q′ ∈ ∆rl(q,a), we have p′ ≡de q′.

We now define a partition of the state set of an alternating parity automaton
into equivalence classes; these equivalence classes will serve as states of the si-
multaneous quotient.

Let Q be an alternating parity automaton as above, and let Q′ be the de-
simplified automaton of Q. Let ≤r

de, ≡r
de, ≤l

de and ≡l
de denote the simulation

preorders and equivalences of Section 3.4 with respect to Q′. Let Qrl be the rl-
edge-reduced automaton of Q (and Q′) as defined in Lemma 3.7.

3.5. A Simplification Algorithm for APA 149

Let R = {R0, . . . ,Rn} be the set of r-de-equivalence classes of Q, i. e., R is the
partition of Q according to ≡r

de. Let L = {L0, . . . ,Lm} be the partition according
to ≡l

de.
Starting from these partitions, we define a partition RL of Q as follows.

1. If there are an Ri ∈ R and an L j ∈ L such that Ri ⊆ L j, delete Ri from R.
Conversely, if L j ⊂ Ri, delete L j from L.

2. If step 1 cannot be applied any further: If there are Ri ∈ R, L j ∈ L such that
Ri∩L j 6= /0, let Ri = Ri \ (L j∩E) and L j = L j \ (Ri∩U).

If step 2 cannot be applied any further, the partition RL is R∪L.
Let ≡rl be the equivalence relation on Q×Q such that RL is its set of equiva-

lence classes. Obviously, q≡rl q′ implies q≡de q′.

Lemma 3.8 (simultaneous quotienting) Let Q, Qrl , ≤r
de, ≡r

de, ≤l
de and ≡l

de be
defined like above. Especially, Qrl is de-equivalent to Q but need not be r-de-
equivalent or l-de-equivalent to Q.

Let RL be the partitioning of Q as defined above, and let ≡rl be the induced
equivalence relation. Let R and L be the two sets of sets of states from above such
that RL = R∪L.

Define Qde = (Qrl,Σ, [qI]rl,∆rl
de,E

rl,U rl,Ωde), where

Qrl = {[q]rl | q ∈ Q}= {{q′ ∈ Q | q′ ≡rl q} | q ∈ Q} , (3.40)
∆rl

de = {([p]rl,a, [q]rl) | a ∈ Σ,
∃p′ ∈ [p]rl,q′ ∈ [q]rl : (p′,a,q′) ∈ ∆} , (3.41)

Erl = {[q]rl ∈ L | [q]rl ⊆ E}
∪ {[q]rl ∈ R | [q]rl ∩E 6= /0} , (3.42)

U rl = {[q]rl ∈ L | [q]rl ∩U 6= /0}
∪ {[q]rl ∈ R | [q]rl ⊆U} , (3.43)

Ωde([q]rl) = Ω(q) .2 (3.44)

Then, Qde ≡de Q.

Proof. We first introduce the following notation: We say that an automaton
Q′ = (Q′,Σ,q′I,∆′,E ′,U ′,Ω′) results from an automaton Q = (Q,Σ,qI,∆,E,U,Ω)
by E-merging states M ⊆ Q if

2In the definition of Ωde, we use the facts that all states in an rl-equivalence class are de-
equivalent, and that we work on de-simplified automata. Hence all states in an rl-class have the
same priority.

150 CHAPTER 3. Simulation and Parity Acceptance

Q′ = Q\M∪{M} , (3.45)
U ′ = U \M , (3.46)
E ′ = E \M∪{M} , (3.47)
if qI /∈M then q′I = qI else q′I = M , (3.48)
∆′ = ∆ ∩ Q′×Σ×Q′

∪{(M,a,M) | ∃q,q′ ∈M : (q,a,q′) ∈ ∆}
∪{(q,a,M) | q ∈ Q\M,∃q′ ∈M : (q,a,q′) ∈ ∆}
∪{(M,a,q) | q ∈ Q\M,∃q′ ∈M : (q,a,q′) ∈ ∆} , (3.49)

Ω′(q) = Ω(q) for q ∈ Q\M , (3.50)
Ω′(M) = min{Ω(q) | q ∈M} . (3.51)

If the states are U-merged instead, the definition is the same, only the new
state M belongs to U ′ in this case, i. e., equations (3.46) and (3.47) are replaced
by the following for U-merging.

U ′ = U \M∪{M} , (3.52)
E ′ = E \M . (3.53)

That is, Qde results from Qrl by

1. U-merging every set in L that contains a universal state, and

2. U-merging every set in R that contains only universal states, and

3. E-merging every set in R that contains an existential state, and

4. E-merging every set in L that contains only existential states.

We write, e. g., Qrl[1] for the automaton that results from Qrl by applying
the merging 1, and, e. g., Qrl[234] for the automaton resulting from applying the
mergings 2, 3, and 4 to Qrl . Especially, we have Qde = Qrl[1234] = Qrl[3241],
i. e., the order inside the brackets is not important; we will use the order inside the
brackets in which we have applied the mergings.

Now after mergings of sort 3 and 4, the resulting automaton Qrl[34] still de-
simulates Qrl because we only introduce new paths at existential states and merge
some universal states into existential states. Conversely, it is clear that Qrl de-
simulates Qrl[12].

Consequently, to show that Q≡de Qde, we proceed as follows. We show that
Qrl[43]≤r

de Qrl; then it follows that Qrl[43] is de-equivalent to Qrl . We then show

3.5. A Simplification Algorithm for APA 151

that Qrl ≤l
de Qrl[4321]; it follows that Qrl and Qrl[4321] are de-equivalent. Since

Qrl ≡de Q by Lemma 3.7 and Qrl[4321] = Qde, we then have Q≡de Qde.
Now to show that Qrl[43]≤r

de Qrl , we proceed in two steps: We first show that
Qrl[4]≤r

de Qrl and then use this result to show that Qrl[43]≤r
de Qrl .

To first show that Qrl[4] ≤r
de Qrl , we can use as the Duplicator strategy in

Gr−de(Qrl[4],Qrl) the join of a ≡de-respecting Duplicator strategy σ≡ for
Gde(Qrl[4],Qrl) and a Duplicator winning strategy σr for Gr−de(Qrl,Qrl). From
Corollary 3.6, it follows directly that there is a ≡de-respecting strategy for
Gde(Qrl[4],Qrl). Note that if Duplicator uses a ≡de-respecting strategy in
Gde(Qrl[4],Qrl), the two pebbles in that game always end their turns on states
with the same priority, so there is no need for an updatable strategy as in the
proofs of Subsection 3.4.2 and Section 1.5.

In the next step, we add mergings of sort 3. We can now use the well-known
proof scheme with a joint and updatable strategy to show that still Qrl[43]≤r

de Qrl

holds: We join a vr
de-respecting Duplicator strategy for Gr−de(Qrl[43],Qrl[4])

and a Duplicator winning strategy for Gr−de(Qrl[4],Qrl), and we update this
strategy whenever the priority of the state in the simulated automaton triggers
a decrease of the priority memory of Gr−de(Qrl[43],Qrl). That is, this proof is
similar to the proof of Theorem 3.4 that Q r-de-simulates Qse

r−de. We thus have
Qrl[43]≡de Qrl .

We can now first show that Qrl ≤l
de Qrl[432] and then show that Qrl ≤l

de
Qrl[4321]. The proofs are completely symmetric, i. e., to show Qrl ≤l

de Qrl[432],
we join a Duplicator winning strategy for Gl−de(Qrl,Qrl[43]) with a ≡de-respec-
ting strategy for Gl−de(Qrl[43],Qrl[432]). To show Qrl ≤l

de Qrl[4321], we use
the updatable join of a Duplicator winning strategy for Gl−de(Qrl,Qrl[432]) and a
vl

de-respecting strategy for Gl−de(Qrl[432],Qrl[4321]), i. e., the proof for this last
step is similar to the proof that Q≤l

de Qse
l−de.

We then have Q≡de Qrl ≡de Qrl[4321] = Qde. 2

3.5.3 Example: Simplification algorithm
As an example for the application of the simplification algorithm, we reconsider
the parity game H2,2 of Figure 3.4 in Subsection 3.4.3. The following numeration
refers to the steps of the simplification algorithm in Subsection 3.5.1.

(1) H2,2 is normalized.
(2) The relation≤de for H2,2 is q0i≡de q0 j ≤de q11≤de q13≡de q14 for i, j< 5,

q10 ≤de q12 ≤de q21 ≤de q13 and q20 ≤de q21.
(2a) In the homogenized automaton H2a

2,2, the priority of the states q0i is 3
(i< 5); q13 and q14 already have the same priority.

152 CHAPTER 3. Simulation and Parity Acceptance

(2b) The transition graph of H2a
2,2 is strongly connected, so the shortcut au-

tomaton H2b
2,2 is the same as H2a

2,2.
(2c) We have q21 and q13 as successors of q12, which is a universal state. The

priority of q21 is 1, and q21 ≤de q13. That is, we can delete the transition (q12,q13)
in H2c

2,2.

(2d) The transition graph of H2c
2,2 still is strongly connected, so no transitions

can be deleted by reachability minimaxing in H2d
2,2.

(3) Let H ′2,2 = H2d
2,2. The relation ≤l

de for H ′2,2 is the same as ≤de for H2,2, and
≤r

de differs from ≤l
de in that q12 6≤r

de q21.
(3a) According to ≤l

de, we delete the transitions (q11,q10), (q13,q12) and
(q13,q03). According to ≤r

de, we delete the transitions (q01,q11) and (q03,q13).
(3b) The set L of l-de-equivalence classes is

{{q10},{q20},{q11},{q12},{q21},{q13,q14},{q0i | i< 5}} ; (3.54)

this is the same as the set R of r-de-equivalence classes. According to the partition
rules, we set R = /0, and L also is our partition RL. According to Lemma 3.8,
{q13,q14} is merged into a universal state [q13], and {q0i | i < 5} is merged into a
universal state [q00].

The intermediate result is shown in Figure 3.9.
(4) We continue with this result as the new input of step (1) and call it Q.
(1) This parity game Q is not strongly connected; there are six SCCs in the

transition graph. In the normalized version, priorities 2 are changed to 0, and
priority 3 to 1.

(2) The relation≤de for the normalized Q now is very simple: The states [q10],
[q20], [q11], [q12], [q21] and [q13] are all de-equivalent and strictly simulate [q00].

(2a) These de-equivalent states are assigned priority 0.
(2b) In the shortcut automaton, the transitions from [q10], [q20] and [q12] as

well as the transition ([q11], [q12]) are replaced by transitions to [q13].
(2c) 0-1-minimaxing then deletes the transition ([q11], [q00]).
(3) The de-equivalent states are also all r-de-equivalent and are thus merged

into a single existential state with priority 0 and only a self transition (the relation
≤l

de is strictly smaller). The state [q00] remains a single state with priority 1 and
only a self transition.

That is, after two cycles of the simplification algorithm, H2,2 is simplified to
two states, and it is obvious that Player 1 wins at states {qi j | (i = 1∧ j < 5)∨ (i =
2∧ j < 2)} while Player 0 wins at states {q0i | i< 5}.

3.5. A Simplification Algorithm for APA 153

[q00] : 3

[q10] : 2 [q11] : 2 [q12] : 2 [q13] : 2

[q20] : 1 [q21] : 1

1

Figure 3.9: The intermediate result of the simplification algorithm applied to H2,2

154 CHAPTER 3. Simulation and Parity Acceptance

3.6 An Application to the µ-Calculus
It is possible to use our simulation-based simplifications for alternating parity au-
tomata for the simplification of parity games, in the hope that first simplifying and
then solving a parity game is faster than solving the unsimplified parity game. But
experiments with an implementation indicate that solving a given parity game us-
ing Jurdziński’s lifting algorithm [Jur00] directly is faster than first simplifying the
parity game using our approach and then solving it using Jurdziński’s algorithm.

In this section, we outline the application of simulation-based simplifications
to the modal µ-calculus [Koz83]. The modal µ-calculus is closely connected to
alternating parity tree automata [Niw97], that is, for a modal µ-calculus formula,
there is an equivalent alternating parity tree automaton (APTA, for short) such that
the size of this automaton is linear in the length of the µ-calculus formula, and
some simulation-based simplifications of the automaton can be seen as simplifi-
cations of the equivalent formula. So the connection between modal µ-calculus
and alternating parity tree automata resembles the connection between LTL and
alternating Büchi (word) automata analyzed in Chapter 2.

There are several new technical difficulties in the application to APTA from
modal µ-calculus. First, runs of APTA are defined on Kripke structures, not on
words. A Kripke structure is a (not necessarily finite) directed graph together with
an interpretation of propositions in each vertex of the graph. For our purposes
of defining a simulation relation via a simulation game for APTA, however, we
can abstract from the structure of the automaton input as a graph: We assume that
player Spoiler in the simulation game on APTA chooses a graph vertex given as
an interpretation of the propositions at the beginning of every round of a play of
the simulation game, such that a play only follows a single path through a graph
where this input graph is not fixed a priori, just as the input word of play of a
simulation game for word automata is not fixed from the start.

Another difficulty lies in the combination of the acceptance condition and the
occurrence of unlabeled or ε-transitions in APTA from µ-calculus. In Chapter 2,
alternating Büchi automata from LTL are constructed in such a way that only the
acceptance status of the state reached at the end of each simulation game round is
relevant. For APTA from µ-calculus, at least the priorities of states corresponding
to fixed point formulas are relevant, but it cannot be ensured that such a relevant
state is visited by a pebble only at the end of a game round. To ensure this prop-
erty, we restrict ourselves to a subclass of µ-calculus formulas, which we call the
strictly guarded formulas. This is class is introduced in Subsection 3.6.1. As
discussed below, we can embed formulas of the logic CTL (Computation Tree
Logic) [EH85] in the class of strictly guarded µ-calculus formulas.

In the definition of modal µ-calculus, APTA and the translation of µ-calculus
formulas to APTA, we basically follow the definitions in the survey of

3.6. An Application to the µ-Calculus 155

Wilke [Wil01]. We will point out differences of our definitions to [Wil01], and
we keep our usual convention that, e. g., Q is the set of states and Σ is the set of
propositions. We do not provide theorems and proofs in this section, but outline
the definition of a delayed simulation relation and simulation-based simplification
steps for an example formula.

We first define the syntax of modal µ-calculus, APTA, and the translation from
µ-calculus formulas to APTA. We only give an informal definition of APTA ac-
ceptance here, and we define the semantics of µ-calculus formulas only by way
of defining an equivalent APTA for a µ-calculus formula; see [Wil01] for detailed
definitions.

We then define a delayed simulation game and a delayed simulation relation
for APTA constructed from µ-calculus and illustrate possible simplifications based
on this relation for an example automaton and formula.

3.6.1 The modal µ-calculus, APTA, and a translation from µ-
calculus to APTA

Syntax of modal µ-calculus

According to [Wil01], modal µ-calculus is modal logic augmented by least and
greatest fixed points operators. The set Lµ of µ-calculus formulas is defined in-
ductively as follows, for a fixed set of propositions Σ. The propositions play a
double role both as propositional variables and as propositional constants (in LTL
formulas, all propositions are propositional constants in this sense).

• The formulas tt and ff are in Lµ.

• The literals a and ¬a are in Lµ, for every a ∈ Σ.

• For all ψ,ρ ∈ Lµ, ψ∨ρ and ψ∧ρ are formulas in Lµ.

• If ψ ∈ Lµ, then 2ψ and 3ψ are formulas in Lµ. The operators 2 and 3 are
called next modalities.

• If Z ∈ Σ and ψ∈ Lµ such that Z occurs in ψ at most as a positive literal, then
µZψ and νZψ are formulas in Lµ. The operators µ and ν are the fixed point
operators or fixed point quantifiers. Formulas of the form µZψ and νZψ are
called fixed point formulas.

A formula in Lµ is in normal form if every proposition Z is only quantified at
most once (i. e., it is in the scope of at most one fixed point operator µZ or νZ) and,
if it is quantified, then all occurrences of Z are in the scope of this quantification.
If a proposition is quantified in a formula, we say that it is bound, else it is free.

156 CHAPTER 3. Simulation and Parity Acceptance

If a proposition Z is bound in a formula ϕ in normal form, then ϕZ is the unique
fixed point subformula of ϕ such that ϕZ = µZψ or ϕZ = νZψ and Z occurs in ψ. A
formula is guarded if every quantified proposition Z also is in the scope of a next
modality, and this next modality itself is in the scope of the fixed point quantifier to
which Z is bound. For a given µ-calculus formula, an equivalent guarded formula
in normal form can be computed in linear time [KVW00, Wil01].

As stated in the introduction, we impose here an even stronger requirement,
namely, that every bound proposition occurs in a subformula 2Z or 3Z only, i. e.,
a next modality has to directly precede every bound proposition. If this is the
case for a µ-calculus formula, we say that it is strictly guarded. Note that this is
a real restriction on the structure of the formulas—an equivalent strictly guarded
formula cannot be computed in linear time for an arbitrary formula.

But we can express CTL formulas as strictly guarded µ-calculus formulas in
normal form, by using the following standard translation of the temporal CTL
operators:

AXψ≡2[ψ]Lµ EXψ≡3[ψ]Lµ , (3.55)

AFϕ≡ µZ([ϕ]Lµ ∨2Z) EFψ≡ µZ([ϕ]Lµ ∨3Z) , (3.56)

AGϕ≡ νZ([ϕ]Lµ ∧2Z) EGψ≡ νZ([ϕ]Lµ ∧3Z) , (3.57)

A[ψUρ]≡ µZ([ρ]Lµ ∨ ([ψ]Lµ ∧2Z)) E[ψUρ]≡ µZ([ρ]Lµ ∨ ([ψ]Lµ ∧3Z)) ,

(3.58)

A[ψRρ]≡ νZ([ρ]Lµ ∧ ([ψ]Lµ ∨2Z)) E[ψRρ]≡ νZ([ρ]Lµ ∧ ([ψ]Lµ ∨3Z)) ,

(3.59)

where [ψ]Lµ denotes the CTL formula ψ as a formula in Lµ and Z does not occur
in [ψ]Lµ and [ρ]Lµ . See, e. g., [Eme90] for more details on CTL.

In the following, we only consider strictly guarded formulas in normal form.

Alternating parity tree automata (APTA)

An alternating parity tree automaton is a tuple

Q = (Q,qI,δ,Ω) (3.60)

where Q is a finite set of states, qI is the initial state of Q, δ is a transition function,
and Ω is a priority function Q→ ω.

The transition function δ maps every state to a transition condition over Q,
where a transition condition is defined by:

• tt and ff are transition conditions over Q, called final transitions,

3.6. An Application to the µ-Calculus 157

• for all a∈Σ, a and¬a are transitions conditions over Q, called propositional
transitions,

• for all q ∈ Q, q is a transition condition over Q, called simple transition,

• for all q ∈ Q, 2q and 3q are transition conditions over Q, called next tran-
sitions,

• for all q,q′ ∈ Q, q∧q′ and q∨q′ are transition conditions over Q. A transi-
tion condition q∧q′ is called a universal transition and a transition q∨q′ is
called an existential transition.

A state q ∈ Q is a universal state if δ(q) = q′∧q′′ for some q′,q′′ ∈ Q, else it
is an existential state.

The input of an APTA is a pointed Kripke structure. A pointed Kripke struc-
ture over a set of propositions Σ is given as

K = (W,A,κ,w) (3.61)

where (W,A) is a directed graph, κ is a function Σ→ 2W , and w ∈W . The set W
is called the universe of K, and its elements are called worlds. Both the universe
and the accessibility relation A ⊆W ×W may be infinite. The function κ is an
interpretation assigning to every proposition the set of worlds where it holds true.
The world w is the distinguished world of K; the computation of an APTA on a
pointed Kripke structure starts at the distinguished world.

The following paragraph, quoted from [Wil01] with remarks and changes in
brackets, gives an informal description of a computation (or run) of an APTA on
a pointed Kripke structure.

Alternating [parity] tree automata are finite-state devices designed to
accept or reject pointed Kripke structures. The computation of an
alternating [parity] tree automaton on a pointed Kripke structure pro-
ceeds in rounds. At the beginning of every round there are several
copies of the alternating [parity] tree automaton in different worlds
of the Kripke structure, each of them in its own state; some worlds
might be occupied by many copies, others might not accommodate a
single one. During a round, each copy splits up in several new copies,
which are sent to neighbored worlds and change their states, all this
done according to the transition function. Initially, there is only one
copy of the alternating tree automaton; it resides in the distinguished
world of the pointed Kripke structure and starts in the initial state of
the alternating [parity] tree automaton. To determine acceptance or
rejectance of a computation of an alternating [parity] tree automaton

158 CHAPTER 3. Simulation and Parity Acceptance

on a pointed Kripke structure the entire computation tree is inspected;
acceptance is then defined via path conditions for the infinite branches
of the computation tree. Namely, every state [is] assigned a prior-
ity and an infinite branch of the computation will be accepting if the
[minimum] priority occurring infinitely often is even; a computation
tree will be accepting if each of its infinite branches is accepting.

That each copy splits up in several new copies, which are sent to neighbored
worlds and change their states, all this done according to the transition function
means

• if a copy (a computation branch) takes a final transition, it stops, and it
accepts if the transition condition is tt and it rejects if it is ff.

• It also stops taking a propositional transition. If it stops on a world w taking
a propositional transition a, then it accepts if and only if w ∈ κ(a); if the
propositional transition is ¬a, it accepts if and only if w /∈ κ(a).

• If a copy takes a simple transition q with q∈Q, then it only changes its state
to q, but it stays on the same world.

• If a copy takes a universal transition q∧ q′, then it also stays on the same
world, but it splits up in two new copies, one in state q and one in state q′.

• If a copy takes an existential transition q∧ q′, there is a nondeterministic
choice whether the computation continues in state q or in state q′; the current
world stays the same.

• A copy of the APTA changes the current world of the input Kripke structure
only via next transitions.

– By taking a next transition 3q in a world w, the automaton nonde-
terministically chooses a successor world w′ such that (w,w′) ∈ A and
continues the computation branch on the world w′ in state q. The com-
putation branch ends and rejects if there is no such successor world.

– By taking a next transition 2q in a world w, the computation branches
into as many copies as there are worlds w′ such that (w,w′) ∈ A, and
one such copy in state q is sent to every such world w′. If there are no
successor worlds of w, then, by taking a transition 2q, the respective
copy stops and accepts.

Existential and universal transitions and next transitions can also be consid-
ered in terms of word games—or “Kripke structure games”, more precisely. That

3.6. An Application to the µ-Calculus 159

is, we may assume that there are two players Pathfinder and Automaton such that
Pathfinder chooses one successor state for universal transitions and one succes-
sor world for transitions 2q while Automaton chooses the successor states for
existential transitions and for transitions 3q.

The translation from Lµ to APTA

For a guarded formula ϕ ∈ Lµ in normal form, we define an equivalent APTA

Q(ϕ) = (Q,qI,δ,Ω) (3.62)

as follows.

• The set of states Q contains, for every subformula ψ of ϕ, a state denoted
〈ψ〉.

• The initial state is qI = 〈ϕ〉.

• The transition function δ is defined by

– δ(〈tt〉) = tt and δ(〈ff〉) = ff,

– for a ∈ Σ, δ(〈a〉) = a if a is free in ϕ, and δ(〈a〉) = 〈ϕa〉 if a is bound
in ϕ,

– for a ∈ Σ, δ(〈¬a〉) = ¬a,

– δ(〈ψ∧ρ〉) = 〈ψ〉∧ 〈ρ〉 and δ(〈ψ∨ρ〉) = 〈ψ〉∨ 〈ρ〉,
– δ(〈2ψ〉) = 2〈ψ〉 and δ(〈3ψ〉) = 3〈ψ〉,
– δ(〈µZψ〉) = 〈ψ〉 and δ(〈νZψ〉) = 〈ψ〉.

That is, in the APTA Q(ϕ) for a strictly guarded formula ϕ in normal form,
a state 〈z〉 with z a bound proposition is reachable only via a next transition
δ(〈2z〉) = 2〈z〉 or δ(〈3z〉) = 3〈z〉.

Different from Wilke [Wil01], we will, as in the previous sections, use the
convention that the Automaton player wins a game if the smallest priority visited
infinitely often is even. We define the priority function Ω via the transition graph
of Q(ϕ) and the alternation depth of ϕ as follows. The transition graph of Q(ϕ)
is the directed graph G(ϕ) = (Q,Eδ) with (q,q′) ∈ Eδ if and only if q′ occurs in
δ(q); especially, states 〈tt〉, 〈ff〉, 〈¬a〉, and 〈a〉 for free a do not have outgoing
edges. Following [Wil01], we define the alternation depth α(ϕ) of a formula ϕ as
follows.

• If no proposition is bound in ϕ, then α(ϕ) = 0.

160 CHAPTER 3. Simulation and Parity Acceptance

• If ϕ is a fixed point formula ηZψ with η ∈ {µ,ν} such that Z is free in ψ
and ψ is without fixed point operators, then α(ϕ) = 1.

• Else suppose that α(ψ) has already been computed for every proper sub-
formula ψ of ϕ, and let m = max{α(ψ) | ψ a proper subformula of ϕ}. If
ϕ = ηZψ is a fixed point formula and there is a fixed point formula η′Y ρ
such that α(η′Y ρ) = m and 〈η′Y ρ〉 is in the SCC of 〈ϕ〉 in G(ϕ) and η 6= η′,
then α(ϕ) = m + 1, else α(ϕ) = m.

We then define Ω : Q→ω via an auxiliary function Ω′. For a state 〈µZψ〉 such
that α(µZψ)> 0, Ω′(〈µZψ〉) = 2dα(µZψ)/2e−1, and for a state 〈νZψ〉 such that
α(νZψ)> 0, Ω′(〈νZψ〉) = 2bα(νZψ)/2c.

Let m be the maximal value of Ω′ for a state of Q(ϕ). We define Ω as follows.

1. If ψ is a fixed point subformula of ϕ and m is even, then Ω(〈ψ〉) = m−
Ω′(〈ψ〉).

2. If ψ is a fixed point subformula of ϕ and m is odd, then Ω(〈ψ〉) = m−
Ω′(〈ψ〉)+ 1.

3. If Z is a bound proposition, then Ω(〈Z〉) = Ω(ϕZ).

4. If ψ = ◦1 . . .◦n Z with ◦i ∈ {2,3} for all 1≤ i≤ n and Z a bound proposi-
tion, then Ω(〈ψ〉) = Ω(〈Z〉).

5. If Ω(〈ψ〉) is not defined after steps 1 to 4, then if Ω is defined for some state
of the SCC of 〈ψ〉 in G(ϕ), then Ω(〈ψ〉) is the maximal priority already
assigned to a state in this SCC.

6. If Ω(〈ψ〉) is not defined after steps 1 to 5, then 〈ψ〉 is a trivial SCC in G(ϕ),
and Ω(〈ψ〉) is the maximal priority assigned to a state so far, or Ω(〈ψ〉) = 0,
if no priority has been assigned in steps 1 to 5.

Note that Ω′ is the priority function as defined in [Wil01]. Steps 5 and 6 are in
analogy to the remarks in [Wil01, Subsection 2.2.5], while we add steps 3 and 4
for technical reasons.

As an example of computing the alternation depth and the priorities, consider
the formula

ϕ = µZ(ϕ1∨3Z) , (3.63)

where

ϕ1 = νY (ϕ2∧3Y) , (3.64)
ϕ2 = µX(a∨ (ϕ3∧3X)) , and (3.65)
ϕ3 = µW ((a∨b)∨ (3W ∨3Z)) . (3.66)

3.6. An Application to the µ-Calculus 161

The alternation depth of ϕ3 is 1, so the alternation depth of ϕ2 is also 1, since
〈ϕ3〉 is not in the same SCC of G(ϕ2) as 〈ϕ2〉. Similarly, the alternation depth of
ϕ1 is 1. The alternation depth of ϕ is 2, because ϕ1 is in the same SCC of G(ϕ) as
ϕ1 (notice the proposition Z in ϕ3), and ϕ is a least fixed point formula while ϕ1
is a greatest fixed point formula.

Consequently, we have Ω′(〈ϕ3〉) = Ω′(〈ϕ2〉) = 1, Ω′(〈ϕ1〉) = 0, and Ω′(〈ϕ〉) =
1. So the maximal value w. r. t. Ω′ is 1, and thus Ω(〈ϕ3〉) = Ω(〈ϕ2〉) = Ω(〈ϕ〉) = 1
and Ω(〈ϕ1〉) = 2. The priority of, e. g., 〈ϕ2∧3Y 〉 is 2 because this state is in the
SCC of 〈ϕ1〉, and the priority of 〈3X〉 is 1 because the priority of 〈X〉 is 1, which
in turn follows from the priority of ϕ2. It follows that every priority in Q(ϕ) is
either 1 or 2.

3.6.2 Simulation relations for APTA from strictly guarded Lµ-
formulas in normal form

We now define a basic delayed simulation game and, using this game, a de-
layed simulation relation for alternating parity tree automata constructed from
µ-calculus formulas as defined above.

The basic ideas are:

• As for the other simulation games in this work, there are two players, Spoi-
ler and Duplicator, who move two pebbles, a red one and a green one, on
the transition graphs of two automata (often, the two automata are one and
the same, but the pebbles start at different states).

• A play can be interpreted as a run of the two automata along the same path
of a Kripke structure. This path is not fixed but is the result of a sequence of
choices of Spoiler, just as Spoiler constructs a sequence of letters or terms in
the other simulation games. That is, at the beginning of each round, Spoiler
chooses a term over the propositional constants, similar to what is done in
Section 2.3.

• Universal and existential transitions as well as simple transitions are treated
like ε-labeled transitions in Section 2.3.

• A play ends early if, at the end of a round, at least one of the players has
chosen a final transition or a propositional transition, that is, if a pebble has
to be moved on a state without an outgoing edge in the transition graph.

• Since we assume that the two automata follow the same path, a play also
ends early if both pebbles are moved along a next transition at the end of a
round, but with different modalities. In this case, Spoiler wins immediately.

162 CHAPTER 3. Simulation and Parity Acceptance

We justify this as follows: If the red pebble (the pebble in the automaton
to be simulated) moves along a transition 2q while the green pebble moves
along a transition 3q′, we can assume that the path of the two automata has
reached a world without a successor world, and in this case, the simulated
automaton accepts immediately while the simulating automaton rejects im-
mediately. If, on the other hand, the red pebble moves along a transition 3q
while the green pebble moves along a transition 2q′, then the paths of the
two automata might deviate such that, consequently, Spoiler can present two
different terms at the beginning of each round, one for the red pebble and
one for the green pebble. We assume that Spoiler could use this possibility
to win the game, so we stop at this point and declare Spoiler the winner.
(This is a simplification, of course, since the simulated automaton might
accept every Kripke structure starting from the current state of the green
pebble, but since this simplification can only lead to a smaller relation, this
is not a problem.)

For a detailed definition of the simulation game, we first define the function
posTerms, as in Section 2.3. The function posTerms here is a mapping from the
guarded µ-calculus formulas in normal form to termΣ and is defined inductively
as follows.

posTerms(ff) = /0 , (3.67)
posTerms(ϕ) = {ϕ}, for ϕ ∈ {tt,a,¬a | a ∈ Σ} , (3.68)

posTerms(ψ∨ρ) = posTerms(ψ)∪posTerms(ρ) , (3.69)
posTerms(ψ∧ρ) = {t ∧ t ′ | t ∈ posTerms(ψ), t ′ ∈ posTerms(ρ)} , (3.70)

posTerms(◦ψ) = {tt}, for ◦ ∈ {2,3} , (3.71)
posTerms(ηZϕ) = posTerms(ϕ)[tt/Z], for η ∈ {µ,ν}, i. e., (3.72)

Z is substituted by tt in the terms in posTerms(ϕ); this is equivalent to removing
every occurrence of Z from these terms.

Now let Q(ϕ) = (Q,qI,δ,Ω) be an alternating parity tree automaton con-
structed from a strictly guarded µ-calculus formula in normal form as described
above. A round of the basic simulation game proceeds very similar to what is
described in Section 2.3, that is, we assume that, at the beginning of a round, the
red pebble (the pebble to be simulated) is placed on 〈ψ〉 ∈Q and the green pebble
(the simulating pebble) on 〈ρ〉 ∈Q. Then, the players Spoiler and Duplicator play
as follows.

1. Spoiler chooses a term t ∈ posTerms(ψ).

Spoiler loses early if posTerms(ψ) = /0 or t ≡ ff for all t ∈ posTerms(ψ).

3.6. An Application to the µ-Calculus 163

2. The progression of the round depends on whether the pebbles are placed on
an existential or on a universal state, and on the statuses of the pebbles (free
or locked). Initially, both pebbles are free, and the round ends when both
pebbles are locked. A player moves a free pebble on a state q depending on
the transition condition δ(q), i. e.,

(a) if δ(q) is a final or propositional transition, then the pebble becomes
locked,

(b) if δ(q) = q′ is a simple transition, then the round continues with the
still free pebble on q′,

(c) if δ(q) = 2q′ or δ(q) = 3q′ is a next transition, the round continues
with the now locked pebble on q′,

(d) if δ(q) = q′∨ q′′ or δ(q) = q′∧ q′′, then the round continues with the
still free pebble on q′ or q′′, depending on the choice of the player who
has to move the pebble.

The following rules determine who of the players has to move which pebble.

• If 〈ψ〉 is existential and 〈ρ〉 is universal (that is, ρ is of the form ρ′∧ρ′′)
and both pebbles are free, then Spoiler moves one of the pebbles (he
can choose which one).

• If 〈ψ〉 is existential and the red pebble is free, but 〈ρ〉 is existential or
the green pebble is locked, then Spoiler has to move the red pebble.

• Conversely, if 〈ψ〉 is universal or the red pebble is locked, but 〈ρ〉 is
universal and the green pebble is free, then Spoiler has to move the
green pebble.

If these cases do not apply, Duplicator has to move a free pebble in a sym-
metric fashion, as follows.

• If 〈ψ〉 is universal and 〈ρ〉 is existential and both pebbles are free, then
Duplicator chooses one of the pebbles and moves it.

• If 〈ψ〉 is universal and the red pebble is free while the green pebble is
locked, then Duplicator moves the red pebble.

• And if 〈ρ〉 is existential, the green pebble is free, and the red pebble is
locked, then Duplicator moves the green pebble.

3. At the end of a round, both pebbles are locked. Since the automata in ques-
tion are constructed from guarded formulas, it is ensured that every round
is finite, i. e., the resulting automata are legal in the sense of Section 2.2.

164 CHAPTER 3. Simulation and Parity Acceptance

The play of the simulation game ends early at the end of a round if one of
the following holds.

(a) At least one of the pebbles has taken a propositional or final transition
in step 2a.

(b) One of the pebbles has ended its round by taking a transition 3q while
the other pebble has taken a transition 2q in step 2c.

If the play does not end early, then the play continues with the next round
in step 1.

If the play ends early, the winner is determined as follows.

• As stated above, Duplicator wins if Spoiler cannot choose a term different
from ff in step 1.

• If the green pebble has taken a propositional or final transition in step 2a,
then Duplicator wins if

– the green pebble has taken a transition tt or a propositional transition
t ′ ∈ {a,¬a | a ∈ Σ} such that t→ t ′, or

– if both the red and the green pebble have taken a transition ff or a
transition t ′ ∈ {a,¬a | a ∈ Σ} such that t 6→ t ′.

• If the red pebble has taken a propositional or final transition in step 2a but
the green pebble has not, then Duplicator wins if the red pebble has taken a
transition ff or a transition t ′ ∈ {a,¬a | a ∈ Σ} such that t 6→ t ′.

• In all other cases, Spoiler wins; especially, Spoiler wins if the play ends
early in the above case 3b.

In order to get a delayed simulation game, we add a priority memory, and we
update this priority memory according to the priorities of the pebbles using the
function pm of Subsection 3.2.1, or the functions pmr and pml of Subsection 3.4.1
for right-hand and left-hand simulation, respectively. We have to consider that,
basically, all visited priorities are significant for acceptance of an APTA. However,
our APTA from µ-calculus formulas are constructed in such a way that only the
priority of states 〈Z〉 with δ(〈Z〉) = 〈ϕZ〉 are significant. Since we only consider
strictly guarded formulas in normal form, such a state can be visited at most once
during a round of the simulation game by each of the pebbles, and if it is visited
by a pebble, then the round ends with this pebble on the visited state 〈Z〉. It
is therefore sufficient to only consider the priorities of the states reached by the
pebbles at the end of each round for the priority memory.

3.6. An Application to the µ-Calculus 165

That is, at the beginning of the first round with the red pebble on 〈ψ〉 and the
green pebble on state 〈ρ〉, the initial value of the priority memory is pm(〈ψ〉,〈ρ〉,√

). If a round ends with the red pebble on 〈ψ′〉, the green pebble on 〈ρ′〉 and the
priority memory value k ∈ ω∪{

√
}, then the priority memory is set to pm(〈ψ′〉,

〈ρ′〉,k). For right-hand and left-hand delayed simulation, we use pmr or pml ,
respectively, instead of pm. As usual, Duplicator wins an infinite play of the
delayed simulation game if the priority memory value is

√
infinitely often. We

write 〈ψ〉 ≤de 〈ρ〉 (or 〈ψ〉 ≤l
de 〈ρ〉 or 〈ψ〉 ≤r

de 〈ρ〉) if Duplicator has a winning
strategy for the simulation game starting with the red pebble on 〈ψ〉 and the green
pebble on 〈ρ〉.

In a formal definition of the game graph, a position needs the components
known from the definition of the simulation game for ε-ABA in Section 2.3:
Aside from encoding the current states of the two pebbles and the term chosen
by Spoiler in the current round, we need two bits to store whether each pebble is
free or locked. Here, we also need a priority memory, of course, and we need an
additional bit to store whether the pebble which was locked first has taken a next
transition 2q or a next transition 3q.

3.6.3 Application and example
As an example, we reconsider the formula ϕ = µZ(ϕ1∨3Z) of equation (3.63).
Most interesting, in a first approach, is the comparison between the two alterna-
tives of existential and universal transitions. Computing ≤de as well as ≤r

de and
≤l

de for Q(ϕ), we see that

• both 〈3Z〉 ≤r
de 〈ϕ1〉 and 〈3Z〉 ≤l

de 〈ϕ1〉 hold, but 〈ϕ1〉 6≤de 〈3Z〉,

• 〈3Y 〉 ≤l
de 〈ϕ2〉, but 〈3Y 〉 6≤r

de 〈ϕ2〉 and also 〈ϕ2〉 6≤de 〈3Y 〉,

• both 〈3X〉 ≤r
de 〈ϕ3〉 and 〈3X〉 ≤l

de 〈ϕ3〉 hold, but 〈ϕ3〉 6≤de 〈3X〉,

• and 〈3W 〉 is also strictly larger than 〈3Z〉 w. r. t. all our three modes of
delayed simulation.

To see that, e. g., 〈3Z〉 ≤de 〈3W 〉, consider the simulation game starting with
the red pebble on 〈3Z〉 and the green pebble on 〈3W 〉. Both states have priority 1,
so the initial value of the priority memory is

√
. Both pebbles must take the

only possible next transition in the first round (and both these transitions are 3-
transitions), so the next round starts with the red pebble on 〈Z〉 and the green
pebble on 〈W 〉, and both these states have priority 1. The possible terms for
Spoiler to choose are tt, a, and b, but if he chooses a or b, then Duplicator will
move the green pebble to 〈a〉 or 〈b〉, respectively, take a propositional transition

166 CHAPTER 3. Simulation and Parity Acceptance

in accordance with the chosen term and win early. Hence we assume that Spoiler
chooses the term tt. Spoiler may now move the red pebble via 〈ϕ1∨3Z〉 back to
〈Z〉, but then Duplicator will move the green pebble to the same state via the states
〈(a∨b)∨ (3W ∨3Z)〉 and 〈3W ∨3Z〉, and Spoiler loses. But if Spoiler moves
the red pebble to 〈ϕ2∧3Y 〉, then Duplicator will move it to 〈3Y 〉 and then, in
order not to lose early by moving the red pebble to 〈a〉 via 〈a∨ (ϕ3∧3X)〉, the
red pebble will reach the state 〈ϕ3∧3X〉, and Duplicator can move it to 〈ϕ3〉.
Duplicator has not moved the green pebble in this round so far, it is still on 〈W 〉,
and it is now obvious that Duplicator will win regardless of what Spoiler does:
Duplicator can now play in such a way that the two pebbles end the round on the
same state, and since the priority memory is still

√
, this is sufficient for Duplicator

to win.
The first rule that we may use now to simplify Q(ϕ) is similar to the rl-edge-

reduction of Lemma 3.7: We may change an existential transition δ(q) = q′∨q′′

into a simple transition δ(q) = q′′ if q′<l
de q′′, and, symmetrically, we may change

a universal transition δ(q) = q′∧q′′ into a simple transition δ(q) = q′′ if q′′ <r
de q′.

That is, we may change the transition condition δ(〈ϕ1∨3Z〉) = 〈ϕ1〉 ∨ 〈3Z〉 to
δ(〈ϕ1∨3Z〉) = 〈ϕ1〉, and this is similar to replacing the subformula ϕ1 ∨3Z
in ϕ by ϕ1. Similarly, we can replace the subformula 3W ∨3Z in ϕ3 by the
formula 3W , and the formula ϕ3 ∧3X by 3X . Note that we must not apply a
similar replacement for the subformula ϕ2∧3Y , because we only have left-hand
simulation for the successor states there.

The simplified formula now is

ϕ′ = µZϕ′1 (3.73)

with

ϕ′1 = νY (ϕ′2∧3Y) , and (3.74)
ϕ′2 = µX(a∨3X) . (3.75)

Obviously, the fixed point operator µZ can be removed because there is no
proposition bound to it, so we have

ϕ≡ νY (µX(a∨3X)∧3Y) , (3.76)

that is, ϕ is equivalent to the CTL formula EGEFa.
Aside from deleting states based on ≤l

de and ≤r
de as described above, APTA

from strictly guarded µ-calculus formulas in normal form can be homogenized
based on delayed simulation equivalence (similar to Lemma 3.3), we can intro-
duce shortcuts (similar to Lemma 3.4) and we can do a reachability minimaxing
of the APTA (similar to Lemma 3.6).

3.7. Conclusion of Chapter 3 167

3.7 Conclusion of Chapter 3
We have adapted delayed simulation to alternating automata with a parity accep-
tance condition, in the form of a general delayed simulation relation and of two
restricted dual versions of this relation. We have introduced quotient automata
for these restricted relations, and we have integrated the three notions of delayed
simulation for parity acceptance into an incremental simplification algorithm for
alternating parity automata and parity games. We can state that delayed simulation
is an efficient tool for the comparison and simplification of alternating automata
with parity acceptance, but our experiments indicate that using it for simplifying
parity games is of limited practical use only. We have outlined an application to
formulas of the modal µ-calculus and to alternating parity tree automata.

Conclusion and Directions of Future
Research

Simulation Relations for Alternating Büchi Automata

Alternating automata as well as simulation relations have a natural and very intu-
itive connection to infinite two-player games. The run of an alternating automaton
on an ω-word can be described, both on an intuitive and on a formal level, as an
infinite game between two players Automaton and Pathfinder: Automaton wants
the word to be accepted, and Pathfinder wants the word to be rejected. Similarly,
the notion of simulation of one automaton by another automaton can be defined
via a game of a Duplicator player who wants to demonstrate this relationship by
showing that one automaton can duplicate the runs of the other automaton, and a
Spoiler player who wants to spoil this demonstration.

In Chapter 1, we use this game-based approach to extend the notions of direct,
delayed, and fair simulation to alternating Büchi automata. In the case of non-
deterministic Büchi automata, these relations are preorders and imply language
containment. We show that this is also the case for alternating Büchi automata.
Especially, to show transitivity is nontrivial; we therefore introduce the notion
of a join of two Duplicator strategies which formally describes the idea that two
strategies can be combined, with a synchronizing man-in-the-middle, to a single
strategy. In many proofs, we make use of the fact that such a joint strategy inherits
properties of the two strategies; especially, the join of two winning strategies is
again a winning strategy.

For nondeterministic Büchi automata, it is known that direct and delayed sim-
ulation allow to merge simulation-equivalent states into a single state—the quo-
tient automaton w. r. t. these simulation equivalences accepts the same language
as the original automaton. We show that similar quotient automata (the minimax
quotient and the semi-elective quotient) can be defined for alternating Büchi au-
tomata such that the quotient automaton is simulation-equivalent to the original
automaton (and thus accepts the same language). The main problem in defining
these quotient automata is the treatment of universal states and the case where

169

a universal state is simulation-equivalent to an existential state. We also discuss
the extent to which delayed simulation allows to identify transitions that can be
removed from the quotient automaton.

Alternating Büchi automata can be translated to equivalent nondeterministic
Büchi automata of exponential size, using the method of Miyano and Hayashi.
We show that our notions of simulation are compatible with this translation in the
sense that if an alternating automaton simulates another automaton, then so do
their nondeterministic versions. This opens up the possibility of simulation-based
on-the-fly simplifications during the construction of a nondeterministic automa-
ton; we analyze this in detail for the case of alternating automata from LTL in
Chapter 2.

We show that computing the simulation relations is not more difficult for al-
ternating automata than for nondeterministic automata—we can use the known
algorithms with the same asymptotic space and time consumption. We show that
for the case of weak alternating automata, which are of special interest for the
application to LTL, delayed and fair simulation can be computed as fast as direct
simulation.

Simulation Relations and Büchi Automata from LTL
New considerations and insights are necessary for the application of the results
of Chapter 1 to the automata construction from LTL. In Chapter 2, we develop a
framework for simulation relations as relations on the set of LTL formulas over
a set of propositions. We use the well-known fact that an LTL formula can be
viewed as an alternating automaton, but we have to adjust both these automata
and our notion of simulation games in order to get a useful notion of simulation
relations for LTL.

Alternating automata from LTL are very weak. We show that this property
allows us to optimize the de-universalization construction for alternating automata
such that the resulting nondeterministic automata have at most (n + 1)2n states
instead of the worst-case Ω(4n) of nondeterministic automata resulting from the
Miyano–Hayashi construction. This optimized de-universalization can be applied
to LTL formulas directly, without using alternating automata explicitly, and allows
local optimization as a simple criterion for identifying and deleting superfluous
transitions.

In order to use simulation relations in an on-the-fly fashion during the de-
universalization, we further analyze these relations in the special setting of a trans-
lation from LTL to nondeterministic automata. We show that both the fair and the
delayed simulation relation introduced for alternating automata from LTL can be
used for simplifications in the nondeterministic automaton. The main results here

170

are a set of rules for LTL formula rewriting based on fair simulation (in lieu of
simulation-based quotienting of the alternating automaton), criteria for deleting
transitions based on fair simulation, and rules for NBA state pruning based on
both fair and delayed simulation.

We combine these rules and the de-universalization construction into a sim-
ple algorithm for the construction of a nondeterministic automaton from an LTL
formula with on-the-fly simplifications. We discuss appropriate post-processing
steps and the interaction of our algorithm with other approaches, give two detailed
examples and report experimental data for an earlier version of the algorithm.

We compare our optimized de-universalization to tableau-based approaches.
This comparison is complicated by the fact that the usual tableau-based algorithms
result in state-labeled generalized Büchi automata. Using a straightforward trans-
lation of these automata into our format, it turns out that the results of the two
approaches are the same for input formulas in next normal form, if the local opti-
mization is applied to the automata resulting from both approaches. In order to get
this result, we also show that local optimization covers the syntactical implication
of Daniele et al.

We introduce a bottom-up variant of our automata construction from LTL.
While the resulting automata are not different from the top-down de-universali-
zation, we show that this approach offers the possibility to copy simulation-based
simplifications (especially quotienting w. r. t. a simulation relation) of automata
for subformulas into simplifications of the automaton for the overall formula. It is
thus possible to decompose a (large) formula into smaller subformulas, compute
quotient automata for these subformulas and then assemble the quotient automata
into an automaton for the overall formula. This can be seen as a sort of partial
quotienting: The simplifications of the subautomata become simplifications of
the overall automaton, without the need of a costly computation of a quotient
automaton for the whole input formula.

Simulation Relations and the Parity Acceptance Con-
dition

The notion of delayed simulation relations can be extended to alternating automata
with a parity acceptance condition. We first define, via infinite games and using
the new notion of a priority memory, a relation on the state space of alternating
parity automata. We show that this relation has the basic properties of other simu-
lation relations in this work: It is a preorder, it implies language containment, and
it can be computed in polynomial time. This relation models delayed simulation
for parity acceptance in the following sense: Whenever in a play of the simu-

171

lation game the priority of the current state of the automaton to be simulated is
better than the current priority of the simulating automaton, we store the smaller
of the two priorities as an obligation for the Duplicator player. This obligation
has to be fulfilled at some point in the future, by the simulating automaton or by
the simulated automaton. Thus, the priority memory is similar to the winning bit
introduced for delayed simulation of Büchi automata in Chapter 1.

This general delayed simulation relation, which allows to erase the priority
memory based on the moves in both automata, poses problems for merging equiv-
alent states and for deleting transitions. We therefore introduce two restricted ver-
sions of the general relation, called left-hand and right-hand delayed simulation,
following the idea that the states encountered either in the simulating or in the
simulated automaton only must fulfill the obligation of the parity memory. This
allows us to define two dual notions of quotients for alternating parity automata,
and this also rounds out the picture of Chapter 1: The semi-elective quotient for
alternating Büchi automata, where existential and universal states must be han-
dled in an asymmetric fashion, now is generalized as the quotient w. r. t. right-
hand delayed simulation, and its dual counterpart is the quotient w. r. t. left-hand
simulation.

By extending ideas of the previous chapters to the case of parity acceptance,
we develop a simulation-based simplification algorithm for alternating parity au-
tomata. This algorithm makes use of the two restricted left-hand and right-hand
simulations as well as the general delayed simulation relation. We show that the
latter can be used for, e. g., homogenizing the priorities of a parity automaton,
which is an adaptation of the concept of pseudo-accepting states of Chapter 1. We
combine the use of simulation relations with normalizing the parity automaton to
an incremental simplification algorithm.

Solving parity games (that is, deciding the winner) is important for model
checking of fixed point logics. Experiments indicate that simplifying parity games
using our approach before solving them is not faster than solving them outright
in practice. But alternating parity automata on tree-like structures are a natural
representation of µ-calculus formulas, and branching-time logics like CTL can be
seen as fragments of the modal µ-calculus. We give a sketch of how to apply our
concepts of simulation-based simplifications to alternating parity tree automata
constructed from a fragment of the modal µ-calculus; this fragment contains CTL.

Directions of Ongoing and Further Research
An active direction of research is the adaptation of useful notions of simulation to
different acceptance modes of ω-automata. Juvekar and Piterman [JP06] extend
fair and delayed simulation to generalized (nondeterministic) Büchi automata.

172

Since these generalized Büchi automata occur as the result of a tableau-based
translation of LTL to automata [GPVW95, DGV99], it may be interesting to com-
bine our on-the-fly simplifications and analysis of LTL-to-automata translations
in Chapter 2 with the approach of [JP06]. Active research also explores the com-
bination of delayed simulation with other notions of simulation and simplification
techniques, see, e. g., [CC04].

Kesten et al. [KPP05] use fair simulation to check trace containment between
reactive systems modeled as Streett automata. Klein [Kle05] analyzes the sim-
plification of deterministic ω-automat with Rabin and Streett acceptance [Rab72,
Str82] using bisimulation among other techniques (for deterministic automata,
bisimulation is the same as direct simulation equivalence). Deterministic Rabin
automata result from determinizing nondeterministic Büchi automata using the
method of Safra [Saf88] while Streett acceptance is dual to Rabin acceptance.
Since Safra’s construction is essentially a sophisticated version of the subset con-
struction, Etessami’s concept of k-pebble simulation [Ete02] may be useful for
further research in this field. Future research may also analyze whether it is useful
and practicable to extend the concepts of [Ete02, KPP05, JP06] to alternation.

For ω-automata with empty-word transitions, we have defined simulation re-
lations via games such that the two players synchronize their moves at the end
of each round. While this is appropriate for automata constructed from LTL, it
poses problems for automata from µ-calculus formulas, such that we resorted to
a fragment of the modal µ-calculus. Future research seems necessary to better
handle empty transitions. In this context, an analysis of asynchronous simulation
as in [Jan01] seems necessary.

173

Bibliography

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi. Alternating refinement relations. In D. Sangiorgi and
R. de Simone, editors, CONCUR ’98: Concurrency Theory, 9th In-
ternat. Conf., Nice, France, volume 1466 of LNCS, pages 163–178.
Springer, Berlin, 1998.

[And94] Henrik R. Andersen. Model checking and boolean graphs. Theoret-
ical Computer Science, 126(1):3–30, 1994.

[AS03] André Arnold and Luigi Santocanale. Ambigious classes in the
games µ-calculus hierarchy. In A. D. Gordon, editor, Foundations
of Software Science and Computational Structures, 6th Int. Conf.
(FoSSaCS 2003), Warsaw, Poland, volume 2620 of Lecture Notes
in Computer Science, pages 70–86. Springer-Verlag, 2003.

[BG02] Doron Bustan and Orna Grumberg. Applicability of fair simulation.
In J.-P. Katoen and P. Stevens, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 8th Int. Conf. (TACAS 2002),
Grenoble, France, volume 2280 of Lecture Notes in Computer Sci-
ence, pages 401–414. Springer, Berlin, 2002.

[Blo] Roderick Bloem. Wring: an LTL to Buechi translator. URL: http:
//vlsi.colorado.edu/˜rbloem/wring.html.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite automata.
Zeitschrift für mathematische Logik und Grundlagen der Mathe-
matik, 6:66–92, 1960.

[Büc62] J. Richard Büchi. On a decision method in restricted second-order
arithmetic. In E. Nagel, P. Suppes, and A. Tarski, editors, Logic,
Methodology, and Philosophy of Science: Proc. of the 1960 Interna-
tional Congress, pages 1–11, Stanford, Calif., 1962. Stanford Uni-
versity Press.

175

[CC04] Jean-Marc Champarnaud and Fabien Coulon. Büchi automata re-
duction by means of left and right trace inclusion preorders. In Proc.
Journées Montoise d’Informatique Théorique (JM 2004), 2004.

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alter-
nation. Journal of the ACM, 28(1):114–133, 1981.

[DGV99] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved
automata generation for linear time temporal logic. In N. Halbwachs
and D. Peled, editors, Computer Aided Verification, 11th Internat.
Conf., CAV ’99, Trento, Italy, volume 1633 of Lecture Notes in Com-
puter Science, pages 249–260. Springer, Berlin, 1999.

[DHWT91] David L. Dill, Alan J. Hu, and Howard Wong-Toi. Checking for lan-
guage inclusion using simulation preorders. In K. Guldstrand Larsen
and A. Skou, editors, Computer Aided Verification, 3rd Internat.
Workshop, CAV ’91, Aalborg, Denmark, volume 575 of Lecture
Notes in Computer Science, pages 255–265. Springer, Berlin, 1991.

[EH85] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time. Journal of
Computer and System Sciences, 30(1):1–24, 1985.

[EH00] Kousha Etessami and Gerard Holzmann. Optimizing Büchi au-
tomata. In C. Palamidessi, editor, 11th Int. Conf. on Concurrency
Theory (CONCUR 2000), University Park, PA, USA, volume 1877
of Lecture Notes in Computer Science, pages 153–167. Springer,
Berlin, 2000.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus
and determinacy (extended abstract). In Proc. 32nd Ann. Symp.
on Foundations of Computer Science (FoCS ’91), San Juan, Puerto
Rico, pages 368–377. IEEE Computer Society Press, 1991.

[Eme90] E. Allen Emerson. Temporal and modal logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B: For-
mal Methods and Semantics, pages 995–1072. Elsevier Publishing,
Amsterdam, 1990.

[ESW01] Kousha Etessami, Rebecca Schuller, and Thomas Wilke. Fair sim-
ulation relations, parity games, and state space reduction for Büchi
automata. In F. Orejas, P. G. Spirakis, and J. van Leeuwen, edi-
tors, Automata, Languages and Programming, 28th Internat. Coll.,

176

ICALP 2001, Crete, Greece, volume 2076 of Lecture Notes in Com-
puter Science, pages 694–707. Springer, Berlin, 2001.

[Ete] Kousha Etessami. Temporal massage parlor. URL: http://
www1.bell-labs.com/project/TMP/.

[Ete02] Kousha Etessami. A hierarchy of polynomial-time computable simu-
lations for automata. In L. Brim, P. Janar, M. Ketínský, and A. Kuera,
editors, Concurrency Theory: 13th Internat. Conf., Brno, Czech Re-
public (CONCUR 2002), volume 2421 of LNCS, pages 131–144.
Springer, Berlin, 2002.

[Fri03] Carsten Fritz. Constructing Büchi automata from linear temporal
logic using simulation relations for alternating Büchi automata. In
O. H. Ibarra and Z. Dang, editors, Implementation and Application of
Automata, 8th Internat. Conf., CIAA 2003, Santa Barbara, CA, USA,
volume 2759 of Lecture Notes in Computer Science, pages 35–48.
Springer, Berlin, 2003.

[Fri05a] Carsten Fritz. Concepts of automata construction from LTL. In
G. Sutcliffe and A. Voronkov, editors, 12th Int. Conf. on Logic for
Programming, Artifical Intelligence, and Reasoning (LPAR 2005),
Montego Bay, Jamaica, volume 3835 of Lecture Notes in Artificial
Intelligence, pages 728–742. Springer, Berlin, 2005.

[Fri05b] Carsten Fritz. Concepts of automata construction from LTL.
Technical report, Institut für Informatik und Praktische Math-
ematik, Christian-Albrechts-Universität zu Kiel, 2005. URL:
http://www.ti.informatik.uni-kiel.de/˜fritz/
AutFromLTL-TR.pdf.

[FTa] Carsten Fritz and Björn Teegen. LTL → NBA (improved ver-
sion). URL: http://www.ti.informatik.uni-kiel.
de/˜fritz/ABA-Simulation/ltl.cgi.

[FTb] Carsten Fritz and Björn Teegen. LTL→NBA. URL:
http://www.ti.informatik.uni-kiel.de/˜teegen/
ABA-Simulation/ltl.cgi.

[FW01] Carsten Fritz and Thomas Wilke. Simulation relations for alter-
nating Büchi automata. Technical Report 2019, Institut für Infor-
matik und Praktische Mathematik, Christian-Albrechts-Universität
zu Kiel, Nov. 2001. Available at http://www.informatik.
uni-kiel.de/reports/2001/2019.html.

177

[FW02] Carsten Fritz and Thomas Wilke. State space reductions for alter-
nating Büchi automata: Quotienting by simulation equivalences. In
M. Agrawal and A. Seth, editors, 22nd Conf. on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS
2002), Kanpur, India, volume 2556 of Lecture Notes in Computer
Science, pages 157–168. Springer, Berlin, 2002.

[FW05] Carsten Fritz and Thomas Wilke. Simulation relations for alternating
Büchi automata. Theoretical Computer Science, 338(1–3):275–314,
2005.

[GBS02] Sankar Gurumurthy, Roderick Bloem, and Fabio Somenzi. Fair sim-
ulation minimization. In E. Brinksma and K. Guldstrand Larsen, ed-
itors, Computer Aided Verification, 14th Internat. Conf., CAV 2002,
Copenhagen, Denmark, volume 2404 of LNCS, pages 610–623.
Springer, Berlin, 2002.

[GH82] Yuri Gurevich and Leo Harrington. Trees, automata, and games. In
14th ACM Symp. on the Theory of Computing, San Francisco, CA,
USA, pages 60–65. ACM Press, 1982.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H. Freeman and
Co., San Francisco, 1979.

[GL02] Dimitra Giannakopoulou and Flavio Lerda. From states to transi-
tions: Improving translation of LTL formulae to Büchi automata. In
D. Peled and M. Y. Vardi, editors, Proc. of 22nd IFIP Int. Conf. on
Formal Techniques for Networked and Distributed Systems (FORTE
2002), Houston, TX, USA, volume 2529 of LNCS, pages 308–326.
Springer, 2002.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata transla-
tion. In G. Berry, H. Comon, and A. Finkel, editors, Computer Aided
Verification, 13th Internat. Conf., CAV 2001, Paris, France, volume
2102 of LNCS, pages 53–65. Springer, Berlin, 2001.

[GPVW95] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Proc.
15th Workshop on Protocol Specification, Testing, and Verification,
Warsaw, Poland, pages 3–18. Chapman & Hall, London, 1995.

[GS05] Gregor Gramlich and Georg Schnitger. Minimizing NFA’s and reg-
ular expressions. In V. Diekert and B. Durand, editors, 22nd Symp.

178

on Theoretical Aspects of Computer Science, STACS 2005, Stuttgart,
Germany, volume 3404 of Lecture Notes in Computer Science, pages
399–411. Springer, Berlin, 2005.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Au-
tomata, Logics, and Infinite Games, volume 2500 of Lecture Notes
in Computer Science. Springer-Verlag, 2002.

[HKR97] Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani.
Fair simulation. In CONCUR ’97: Concurrency Theory, 8th Inter-
nat. Conf., Warsaw, Poland, volume 1243 of LNCS, pages 273–287.
Springer, Berlin, 1997.

[Hol] Gerard J. Holzmann. The SPIN homepage. URL:
http://netlib.bell-labs.com/netlib/spin/
whatispin.html.

[HR00] Thomas A. Henzinger and Sriram K. Rajamani. Fair bisimulation.
In S. Graf and M. Schwartzbach, editors, Tools and Algorithms for
Construction and Analysis of Systems, 6th Internat. Conf., TACAS
2000, Berlin, Germany, volume 1785 of Lecture Notes in Computer
Science, pages 299–314. Springer, Berlin, 2000.

[HRHK95] Monika Henzinger Rauch, Thomas A. Henzinger, and Peter W.
Kopke. Computing simulations on finite and infinite graphs. In 36th
Ann. Symp. on Foundations of Computer Science (FOCS ’95), Mil-
waukee, WI, USA, pages 453–462. IEEE Computer Society Press,
1995.

[Jan01] David Janin. Simplifying parity games with synchronous and asyn-
chronous simulation relations. Unpublished note, 2001.

[JP06] Sudeep Juvekar and Nir Piterman. Minimizing generalized Büchi
automata. Submitted for publication, 2006.

[Jur98] Marcin Jurdziński. Deciding the winner in parity games is in
UP ∩ co-UP. Information Processing Letters, 68(3):119–124,
November 1998.

[Jur00] Marcin Jurdziński. Small progress measures for solving parity
games. In H. Reichel and S. Tison, editors, STACS 2000, 17th Ann.
Symp. on Theoretical Aspects of Computer Science, Lille, France,
volume 1770 of Lecture Notes in Computer Science, pages 290–301.
Springer, Berlin, 2000.

179

[JV00] Marcin Jurdziński and Jens Vöge. A discrete improvement algorithm
for solving parity games. Technical Report 2, Aachener Informatik-
Berichte, RWTH Aachen, 2000.

[Kam68] Johan A. W. Kamp. Tense Logic and the Theory of Linear Order.
PhD thesis, University of California, Los Angeles, Calif., 1968.

[Kle05] Joachim Klein. Linear time logic and deterministic omega-
automata. Diploma thesis, Institut für Informatik, Rheinische
Friedrich-Wilhelms-Universität Bonn, 2005.

[Knu68] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art
of Computer Programming. Addison-Wesley, 1968. Second edition
1973.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27:333–354, 1983.

[KPP05] Yonit Kesten, Nir Piterman, and Amir Pnueli. Bridging the gap be-
tween fair simulation and trace inclusion. Information and Compu-
tation, 200(1):35–61, 2005.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall, 2nd edition edition, 1988.

[KV97] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are
not that weak. In 5th Israeli Symposium on the Theory of Comput-
ing Systems (ISTCS ’97), pages 147–158, Ramat-Gan, Israel, 1997.
IEEE.

[KVW00] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. Journal of the
ACM, 47(2):312–360, 2000.

[LT00] Christof Löding and Wolfgang Thomas. Alternating automata and
logics over infinite words. In Proc. of the IFIP Int. Conf. on Theo-
retical Computer Science (IFIP TCS2000), volume 1872 of Lecture
Notes in Computer Science, pages 521–535. Springer, 2000.

[Löd98] Christof Löding. Methods for the transformation of omega-
automata: Complexity and connection to second order logic.
Diploma thesis, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, 1998.

180

[MH84] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on
ω-words. Theoretical Computer Science, 32:321–330, 1984.

[Mil71] Robin Milner. An algebraic definition of simulation between pro-
grams. In D. C. Cooper, editor, Proc. 2nd Internat. Joint Conf. on
Artificial Intelligence, London, UK, pages 481–489. William Kauf-
mann, 1971.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, En-
glewood Cliffs, NJ, USA, 1989.

[Mos84] Andrzej W. Mostowski. Regular expressions for infinite trees and a
standard form of automata. In Computation Theory, volume 208 of
Lecture Notes in Computer Science, pages 157–168. Springer, 1984.

[Mos91] Andrzej W. Mostowski. Hierarchies of weak automata and weak
monadic formulas. Theoretical Computer Science, 83(2):323–335,
June 1991.

[MP71] Robert McNaughton and Seymour Papert. Counter-Free Automata.
MIT Press, Cambridge, Mass., 1971.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer, Berlin, New York, 1992.

[MS87] David E. Muller and Paul E. Schupp. Alternating automata on infi-
nite trees. Theoretical Computer Science, 54(2-3):267–276, October
1987.

[MSS86] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating
automata, the weak monadic theory of the tree and its complexity.
In Proc. 13th Int. Coll. on Automata, Languages, and Programming
(ICALP ‘86), volume 226 of Lecture Notes in Computer Science,
1986.

[MSS88] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Weak al-
ternating automata give a simple explanation of why most temporal
and dynamic logics are decidable in exponential time. In 3rd IEEE
Ann. Symp. on Logic in Computer Science, Edinburgh, Scotland, UK,
pages 422–427, 1988.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). The MIT Press, May 1997.

181

[Mul63] David E. Muller. Infinite sequences and finite machines. In Proc. 4th
Ann. IEEE Symp. on Switching Circuit Theory and Logical Design,
pages 3–16, 1963.

[Niw97] Damian Niwiński. Fixed point characterization of infinite behavior
of finite-state systems. Theoretical Computer Science, 189:1–69,
1997.

[Odd] Denis Oddoux. LTL2BA. URL: http://www.liafa.
jussieu.fr/˜oddoux/ltl2ba/.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Sym-
posium on Foundations of Computer Science, pages 46–57, Provi-
dence, RI, 1977. IEEE Computer Society.

[Pyt] Python Software Foundation. Python programming language.
http://www.python.org.

[Rab72] Michael O. Rabin. Automata on infinite objects and Church’s prob-
lem, volume 13 of Regional Conf. Series in Mathematics. American
Mathematical Society, 1972.

[Roh97] Scott Rohde. Alternating Automata and the Temporal Logic of Ordi-
nals. PhD thesis, Department of Mathematics, University of Illinois
at Urbana-Champaign, 1997.

[Saf88] Shmuel Safra. On the complexity of ω-automata. In 29th Annual
Symposium on Foundations of Computer Science, pages 319–327,
White Plains, New York, 1988. IEEE Computer Society.

[SB00] Fabio Somenzi and Roderick Bloem. Efficient Büchi automata from
LTL formulae. In E. A. Emerson and A. P. Sistla, editors, Com-
puter Aided Verification, 12th Internat. Conf., CAV 2000, Chicago,
IL, USA, volume 1855 of LNCS, pages 248–263. Springer, Berlin,
2000.

[Str82] Robert S. Streett. Propositional dynamic logic of looping and con-
verse is elementary decidable. Information and Control, 54(1–
2):121–141, 1982.

[Tar72] Robert E. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160, 1972.

182

[TH02] Heikki Tauriainen and Keijo Heljanko. Testing LTL formula trans-
lation into Büchi automata. International Journal on Software Tools
for Technology Transfer, 4(1):57–70, 2002.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B: For-
mal Methods and Semantics, pages 134–191. Elsevier, Amsterdam,
1990.

[Tho97] Wolfgang Thomas. Languages, automata and logic. In A. Salomaa
and G. Rozenberg, editors, Handbook of Formal Languages, volume
3: Beyond Words, pages 389–455. Springer-Verlag, Berlin, 1997.

[Var94] Moshe Y. Vardi. Nontraditional applications of automata theory. In
M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects of Com-
puter Software, Internat. Conf. TACS ’94, Sendai, Japan, volume
789 of Lecture Notes in Computer Science, pages 575–597. Springer,
Berlin, 1994.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach
to automatic program verification. In D. Kozen, editor, 1st Ann.
IEEE Symp. on Logic in Computer Science (LiCS’86), pages 332–
344, Cambridge, Mass., USA, 16–18 June 1986. IEEE Computer
Society.

[Wil01] Thomas Wilke. Alternating tree automata, parity games, and modal
µ-calculus. Bulletin of the Belgian Mathematical Society, 8:359–
391, 2001.

183

List of Figures

1.1 Alternating Büchi automaton . 11
1.2 Spoiler needs memory to win Gde(Q,S) 17
1.3 Joint strategies are not positional 23
1.4 Naive quotients do not work . 25
1.5 The automaton of Figure 1.4 and its di-minimax quotient 31
1.6 De-minimax quotients don’t work 31
1.7 A quotient of the automaton in Figure 1.1 37
1.8 Optimized semi-elective quotient for Figures 1.4 and 1.5 38
1.9 Automaton and de-semi-elective quotient 40
1.10 Two ways from alternating BA to nondeterministic BA 41

2.1 ε-ABA for F((Fb) R (a R (Fb))) 85
2.2 NBA for F((Fb) R (a R (Fb)))≡ f a R (Fb) 87
2.3 NBA for G(a R ((Fb) U c)) . 89
2.4 Qsim

nd ((GFXa)∨ c∨b), isomorphic to the TMP automaton 91
2.5 TMP automaton for (GFXa)∨ (c U (c∨b)). 92
2.6 Aad(ϕ) (left) and Qtd(ϕ) (right) for ϕ = (a U b)∧Gb 98
2.7 A lo(ϕ) (left) and Qlo(ϕ) (right) for ϕ = GX(a U b) 108

3.1 A parity game and its naive delayed simulation quotient 130
3.2 Removing non-maximal transitions changes the language 131
3.3 Don’t remove transitions of existential states with even priority . . 132
3.4 Quotienting example: H2,2 of [Jur00] 140
3.5 The right-semi-elective quotient of H2,2 140
3.6 Left-semi-elective quotient of right-semi-elective quotient 141
3.7 Mutually strictly larger . 142
3.8 Quotienting modulo ≡l

de destroys a ≤r
de-relation 143

3.9 Intermediate result of simplification algorithm applied to H2,2 . . . 153

185

Index

ABA, see automaton, alternating Büchi
acceptance

Büchi, 7
co-Büchi, 64
parity, 119

accessibility relation, 157
alphabet, 7
alternation depth, 159
APTA, see automaton, alternating par-

ity tree
automaton

alternating Büchi, 7
with ε-transitions, see ε-ABA

alternating parity, 118
alternating parity tree, 156
bottom-up, 109
complete, 66
DGV-, 93
dual, 129
generalized Büchi, 64, 93
GPVW-, 93
homogenized, 145
locally optimized, 68, 71
MH-, 42
nondeterministic Büchi, 8, 40, 55

pruned, 79
representative, 113
rl-edge-reduced, 147
shortcut, 146
top-down, 70
very weak alternating Büchi, 57,

60, 64
weak alternating Büchi, 49, 60

Automaton (player), 7, 59, 119

better transition, see transition, better
boolean graph, 50

C, 90
characteristic function, 101
completeness (of an automaton), 12,

48
computation tree logic, see CTL
conform (with a strategy), 7
counter component, 66
CTL, 156

de-universalization
optimized, 64

dead end, 48
Duplicator, 8, 60

ε-ABA, 58
equivalence class

mixed, 25
equivalence relation, 64
eventually periodic, 118

fixed point
formula, 155
operator, 155
quantifier, 155

game, 6
basic simulation, 8, 60
delayed simulation, 121
of accessibility, 50
parity, 16, 119

186

reachability, 16, 64
word, 7, 58

game graph, 7, 62
guarded formula, 156

strictly, 156

interpretation, 157

join, 18

Kripke structure
pointed, 157

language
containment, 12
of an automaton, 8
of an LTL formula, 57

legal, 58
length

of an LTL formula, 57
linear-time temporal logic, see LTL
literal, 56
local optimization, 68, 71, 82
logbook, 42, 79
LTL, 56
LTL2BA, 88
LTL→NBA, 88

MH-automaton, 42
MH-construction, see Miyano–Hayashi

construction
Miyano–Hayashi construction, 40, 64,

96
modal µ-calculus, 155
move, 7

natural numbers, 6
NBA, see automaton, nondeterminis-

tic Büchi
negation normal form, 58
next modality, 155
next normal form, 58
normal form, 155

normalization, 119

on-the-fly simplification, 40

parity
winning condition, 45

Pathfinder, 7, 59, 119
pebble, 60

free, 60
locked, 60

play, 7
partial, 7

position, 7
initial, 7
productive, 48
unreachable, 10

preorder, 22, 63, 122
priority function, 118
priority memory, 120
progress measure, 124
propositions

set of, 56
protoplay, 13
pruning

NBA-state, 77, 79, 82
of MH-automata, 44

puppet, 13, 18
puppeteer, 13
puppeteering, 18
Python, 90

quotient, 24, 130
left-semi-elective, 135
minimax, 26, 83
naive, 25
right-semi-elective, 135
semi-elective, 32

quotienting
partial, 73
simultaneous, 148

reachability criterion, 78

187

relation
equivalence, 22
simulation, 8
transition, 7

respecting (strategy), 24
reward order, 119
rewriting

fair simulation, 74, 82
run, 56

minimal, 67

SCC, see strongly connected compo-
nent

sequence, 6
intermediate, 19

simulation
delayed, 8, 63, 120

left-hand, 133
right-hand, 133

direct, 8, 63
equivalence, 22
fair, 8, 63
relation, 8

SML, 90
Spoiler, 8, 60
starfree ω-regular expression, 58
state

accepting, 7
consistent, 65
deterministic, 27
existential, 7, 60
initial, 7
pruned, 79
pseudo-accepting, 39, 46
set of an automaton, 7
universal, 7, 60
unproductive, 83

strategy, 7
joint, 19
memoryless, 16
minimax, 28

positional, 16, 23, 47
winning, 7, 22

strongly connected component, 49, 60,
119

subformulas
set of, 57

successor
maximal (of a state), 26
minimal (of a state), 26

successor labeling, 100
successor set, 65, 70
syntactical implication, 98
syntax tree, 100

term, 56
TMP, 83, 88
topological sorting, 50
transition

better, 68, 71
optimal, 68

universe, 157

winning bit, 46
winning condition

delayed, 10
direct, 10
fair, 10

winning set, 7
word, 6

empty, 58
world, 157

distinguished, 157

188

