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1. Introduction 
 

The present study investigated the role of c-Jun-N-terminal kinases (JNKs) in cell death and 

in differentiation. In PC12 cells, 6-hydroxy-dopamine (6-OHDA) induced death was 

attenuated by the JNK-inhibitor SP600125 and transfection of dominant negative JNK2. The 

JNK2, but not JNK1 isoform, translocated to the nucleus and the mitochondria after 6-OHDA 

treatment where it exerted its apoptotic functions. Besides PC12 cells, the function of JNKs 

was also investigated in primary hippocampal and cortical neurons, where JNKs have both 

apoptotic and physiological functions. 

 

1.1 Mitogen-activated protein kinases (MAPKs) 

 

Mitogen-activated protein kinases (MAPKs) are important mediators for intracellular 

signalling. MAPK cascades are evolutionarily conserved in all eukaryotic cells and play a key 

role in the regulation of gene expression as well as cytoplasmic activities [1]. To date four 

major types of MAPK pathways have been defined in mammalian cells. These include the (i) 

extracellular signal-regulated kinase 1 and 2 (ERK1/2) cascade which preferentially regulates 

cell growth and differentiation, (ii,iii) the c-Jun N-terminal kinase (JNK) and p38 MAPK 

cascades, which function mainly in stress responses like inflammation and apoptosis, and 

finally (iv) the  ERK5 cascade, which is activated by environmental stress and osmotic shock, 

but not by vasoactive peptides or inflammatory cytokines [1-3]. All MAP kinases are 

serine/threonine kinases that are activated in response to their phosphorylation on invariant 

threonine (Thr) and tyrosine (Tyr) residues within a Thr-X-Tyr motif (where X is any amino 

acid). This phosphorylation is catalysed by MAPK kinases (MAP2Ks, MEKs, MKKs), which 

in turn, are activated by MAPK kinase kinases (MAP3Ks) via serine/threonine 

phosphorylation. MAP3Ks receive signals from cell surface receptors through a variety of 

intermediates, including other protein kinases and small GTP binding proteins (reviewed by 

[3-6]) (Fig. 1.1). Importantly activation of MAPKs leads to phosphorylation of other kinases 

or transcription factors that activate a variety of response genes [3]. 

 

Among the four types of MAPK pathways, the present thesis focused at the c-Jun N-terminal 

kinase (JNK) pathway. 
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1.2. The organization of c-Jun N-terminal kinases (JNKs) 

 

Ten isoforms of JNK are expressed in human adult brain. These ten isoforms are encoded by 

three genes: jnk1, jnk2 and jnk3. The jnk3 gene is preferentially expressed in the heart, 

pancreas, brain and testis, while jnk1 and jnk2 are expressed in many tissues [7-10]. 

Alternative splicing of the genes yields four JNK1 isoforms, four JNK2 isoforms and two 

JNK3 isoforms. The protein products of JNK isoforms have molecular weights of 46 kDa and 

55 kDa. The 55 kDa JNK isoforms contain a C-terminal extension, the result of alternative 

splicing, which distinguishes them from 46 kDa isoforms. No apparent functional differences 

have been ascribed to these isoforms. An additional alternative splicing exists in the kinase 

domains of JNK1 and JNK2 but not in JNK3. JNK1 and JNK2 have significant functional 

differences particularly in regard to substrate binding [7]. 

 

The JNK pathway is one of the known cellular signalling pathways that respond to much 

diverse stimuli. JNK is activated by mitogenic signals such as epidermal growth factor, 

lymphocyte activation signals and oncogenic Ras, pro-inflammatory cytokines such as TNF-α 

and IL-1, lipopolysaccharide, osmotic stress, shear stress and protein synthesis inhibitors. 

JNK is also activated by apoptotic stimuli such as growth factor withdrawal, ischemia, 

ceramides, UV light, oxidative stress and DNA damaging agents [3, 7, 10-12]. 

 

The JNKs are phosphorylated and activated by MAP2Ks, MKK4 and MKK7, which 

phosphorylate JNK1 and JNK2 on their Thr 183 and Tyr 185 residues and JNK3 on Thr 221 

and Tyr 223 residues. These kinases in turn are activated by MAP3Ks, of which several 

examples have been identified such as, MEKK1-4, ASK1, TAK1, MLKs or the GTP-binding 

proteins of the Rho family, Rac and cdc42 [3, 6, 13]. JNK activities can be down-regulated by 

protein phosphatases, including M3/6 and MKP-1. These phosphatases display selectivity 

toward JNK family members [14, 15]. An additional level of control of the JNK signalling 

pathway is provided by JNK-interacting proteins (JIPs). These are scaffold proteins that 

mediate the signal transduction through MLK, MKK and JNK pathways. The JIPs can 

antagonize the JNK actions by recruiting the MAPK phosphatase MKP7 with subsequent 

dephosphorylation and inactivation of JNKs [16] or by retention of JNKs in the cytoplasm 

[17].  
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Many substrates are phosphorylated by the JNKs including the transcription factors c-Jun, 

ATF2, Elk-1, NFAT, as well as tumour suppressor p53 and a cell death domain protein, 

MADD. Additionally, cytoplasmic targets such as the neurofilament heavy unit, Bcl-2 and tau 

serve as JNK substrates [6, 18, 19].  
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Fig. 1.1. The organization of the p38 and JNK system of MAP kinases 
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1.3. JNKs as mediators of neurodegeneration 

 

Numerous experimental data suggest a pro-degenerative or apoptotic function for the JNKs 

[20-22]. JNKs trigger neuropathological events, e.g. after trophic support withdrawal in 

sympathetic neurons [23-25] or cerebellar neurons [26, 27], delayed ischemic cell death [28, 

29], excitotoxicity [30] or in models for Alzheimer’s disease [31] and Parkinson’s disease 

[32-36]. 

 

1.3.1 Mitochondria-induced death 

 

Mitochondrial dysfunctions are central to the pathogenesis of neurodegenerative diseases such 

as Alzheimer’s, Parkinson’s or Huntington’s diseases [37], and are important for neuronal 

excitotoxicity [38]. JNKs translocate and associate with the mitochondria [39] where they 

inactivate anti-apoptotic and promote pro-apoptotic proteins of the Bcl-2 family such as Bcl-

2, Bcl-xL, Bad, Bim or Dp5 [40-44]. Moreover JNKs release inhibitors of anti-apoptotic 

proteins, such as Smac/Diablo from the mitochondria [45]. In fibroblasts, UV irradiation 

provoked apoptosis, caspase-3 activation and cytochrome c release from mitochondria due to 

JNK presence, whereas in jnk1-/- jnk2-/- fibroblasts, UV irradiation did not cause cytochrome 

c release and caspase-3 activation [46]. When the constitutively active form of apoptosis 

signal-regulated kinase 1 (ASK1, JNK activating kinase) was transiently expressed in vitro, it 

induced apoptotic cell death [47] and cytochrome c was released from mitochondria [48]. 

These results demonstrate that JNKs are involved in the mitochondrial apoptotic pathways. 

However, it remains to be elucidated which JNK isoform(s) mediate(s) the mitochondrial 

pathology. 

 

1.3.2. Induction of death genes 

 

Besides mitochondrial apoptotic pathways, JNKs activate transcription factors in the nucleus, 

such as c-Jun, ATF-2 or Elk-1. In the nervous system, JNKs are involved in the transcription 

of pro-apoptotic target genes coding for Fas-ligand, TNFα or Bim [41, 49]. The activation of 

transcription factors might be exerted by JNK2 and JNK3 which rapidly translocate into the 

nucleus whereas the basal constitutive presence of activated JNK1 in the nucleus is not 

effective in phosphorylation of transcription factor such as c-Jun [26, 27, 50]. 
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JNK3 deficient mice (JNK3 -/-), but not JNK1 -/- and JNK2 -/-, and mutation of the serine 

residues 63 and 73 into non-phosphorylable alanins (c-JunAA mutant) show increased 

resistance to kainic acid induced seizures and to death of hippocampal neurones [30, 51]. 

JNK3 mutant mice also show a severe defect in phosphorylation of c-Jun and the 

transcriptional activity of the AP-1 transcription factor complex [30]. Moreover, in culture, 

functional inhibition of c-Jun by microinjection of antibodies or dominant negative c-Jun 

protects neonatal sympathetic neurons from NGF withdrawal-mediated neuronal cell death 

[52, 53]. These results suggest that JNK and c-Jun transduce the cell death signal at least 

partially through transcription-dependent machinery in neurons. 

 

1.3.3. Degeneration of dopaminergic neurons  

 

JNKs are also essential mediators of neurodegeneration provoked by oxidative and/or radical 

stressors e.g. MPTP or 6-OHDA, which are hallmarks of Parkinson’s disease. MPTP induced 

neuronal damage is accompanied by activation of JNKs and MKK4 in the substantia nigra 

compacta [54]. Importantly, MPTP-induced cell death and JNK activation in dopaminergic 

neurons can be effectively reduced in rats by administration of the MLK-antagonist and 

indirect JNK-inhibitor, CEP-1347 [36] and in mice by administration of specific JNK-

inhibitor SP600125 [55]. Furthermore, expression of the JNK-binding domain of JIP-1 or of a 

dominant-negative MKK4 attenuated both, the dopaminergic neuronal death and the 

activation of JNK and c-Jun following MPTP exposure [56]. However, all JNK isoforms do 

not contribute equally to stress-induced dopaminergic cell death. Deletion of jnk2/jnk3, but 

not jnk1, genes suppressed MPTP-induced phosphorylation of c-Jun and attenuated MPTP-

induced dopaminergic cell death in vivo [34]. Similarly, our group showed that JNK3 ko and 

c-JunAA mutation conferred cell-specific protection of dopaminergic neurons whereas JNK1 

ko enhanced the damage following ischemia [57]. 
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1.4. Physiological functions of JNKs 

 

Expression and activation of JNK and c-Jun in the mammalian adult brain in the absence of 

any harmful stimulus or in neuronal cell cultures during differentiation suggest important 

physiological/protective roles for JNK and c-Jun (reviewed by [21]). To understand the 

physiological functions of JNKs in the nervous system, their roles in development, 

neuroplasticity and neurorepair has to be explained. 

 

JNKs are imperative for the physiological normal development of the nervous system. Thus, 

double knock out of JNK1 + JNK2 results in embryonic lethality due to failed closure of the 

neuronal tube [58]. Moreover, JNK1-/- JNK2 -/+ or JNK1 -/+ JNK2 -/- mice display distinct 

malformations in the brain [59]. The activities of JNKs and MKK4/7 in the forebrain rise after 

birth, indicating a role of JNKs in postnatal maturation [26]. Importantly, JNK1 is required for 

the maintenance of neuronal microtubules, and JNK1-/- mice display anatomical 

malformations and neurodegeneration such as disrupted formation of the anterior tract 

commissure which becomes evident within the first weeks after birth [60]. The truncated 

JNK3 (trJNK3, i.e. the terminal 273 amino acids) as the only identified genetic alteration 

occurs in children with early severe neurological symptoms such as drug-resistant seizures, 

cognitive deficits and neuronal degeneration (Kalscheuer and Ropers, oral communication). 

In addition, deficiency of the JNK target c-Jun resulted in a severe proliferation defect in 

fibroblasts and /or in hepatoblasts of c-Jun knockout mice [61, 62]. Thus, at least in cultured 

fibroblasts and hepatoblasts, c-Jun acts as a positive regulator of cell growth. Moreover, mice 

lacking c-Jun survive only to embryonic day 12 and die due to massive hemorrhage in the 

liver, suggesting physiological roles of the JNK/c-Jun axis (reviewed by [63]). 

 

Besides the embryonic development, JNKs exert important functions on the re-arrangements 

of neuronal cytoskeleton such as differentiation, neuronal plasticity and neuroregeneration. 

JNKs can phosphorylate actin, tau, neurofilament, MAP-1 or MAP-2, and thereby alter the 

cytoskeletal functions [60, 64, 65]. The functional deletion of JNK1, but not JNK2, provokes 

a progressive loss of microtubules in axons and dendrites [60]. JNKs have also essential 

functions for the differentiation of neurons. MKK7 and JNK activity increase during 

neuritogenesis in primary cerebellar granule neurons [26] and inhibition of JNKs dramatically 

reduced axonal outgrowth in explanted or dissociated ganglia [66]. Similarly, c-Jun and JNKs 

may also contribute to NGF induced neurite outgrowth in PC12 cells [67]. 
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In addition to cytoskeletal functions and differentiation JNKs play important roles in 

neuroregeneration and neuroprotection. JNK activation is sustained in dorsal root ganglia 

after axotomy in regenerating neurons and returns to basal levels after the regeneration 

process has been completed [68, 69]. JNKs and their nuclear substrate c-Jun are considered 

important mediators of the regenerative cell body response [54, 70, 71]. Besides 

neuroregenerative effects, JNKs may promote cell survival. Immature thymocytes and 

peripheral mature T cells deficient in jnkk1 (sek1/mkk4) were highly susceptible to Fas/CD95- 

and CD3-mediated apoptosis suggesting that JNKK1 may play an anti-apoptotic role in T 

cells [72]. Biochemical analysis also revealed that activation of JNKs may be involved in 

suppression of apoptosis in B lymphocytes through phosphorylation and inactivation of the 

pro-apoptotic molecule Bad [73]. 

 

1.5. Inhibition of JNKs as a therapeutic strategy 

 

JNKs play an integral role in neuronal death and this pathway might be operative in several 

diseases of the central nervous system. Neuroprotection by inhibition of JNKs may offer an 

attractive strategy for prevention of the neuronal death. However, the potentially relevant 

physiological functions of the JNKs might limit the use of antagonists as a novel strategy for 

therapy. For example, given the important role of JNK1 in the maintenance of neuronal 

microtubules or plasticity [60], it is important to avoid complete JNK inhibition. Due to the 

high similarity of JNK isoforms, the possibility of developing isoform-specific inhibitors is 

difficult. Moreover, inhibition of all or one JNK isoform(s) is not restricted to neurons, but 

may also affect other cells which contribute to brain integrity such as microglia [74]. 

 

The indirect JNK-inhibitor CEP-1347 originally called KT7515 [75] (3,9 bis 

[(ethylthio)methyl]-K252a), which primarily acts as a MLK inhibitor, has already entered 

phase II-III trials for treatment of Parkinson’s disease (www.parkinson-study-group.org). The 

mixed JNK-p38 inhibitor CNI-1493 which is currently applied in the inflammatory Cohn’s 

disease [76], attenuates neuroinflammation in the rat nervous system following neuropathic 

pain [77]. SP600125 (anthrax [1,9-cd] pyrazol-6(2H)-one), another direct JNK-inhibitor, also 

displays an effective anti-inflammatory potential in rheumatoid arthritis in rats [78] and in 

primary rat microglia [74]. This anti-inflammatory activity will enlarge the operative range of 

JNK-inhibitors in the nervous system providing further protection e.g. against Alzheimer’s 

and Parkinson’s disease [79]. 
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In addition,  jnk1-/- mice have been shown to be significantly protected from obesity-induced 

insulin resistance ([80], reviewed by [81]) suggesting that JNK is a potential therapeutic target 

for obesity and type-2 diabetes. The JNK-inhibitor SP600125 reduces bronchoalveolar 

accumulation of eosinophiles and lymphocytes in animals subjected to repeated allergen 

exposure, and reduces serum immunoglobulin E levels, indicating its possible use in treatment 

of asthma [82]. Finally, JNK pathway may provide tumour suppression in mice and human 

[83-85]. 

 

Because of the cross-talk within MAPK signalling cascade, as well as its cell-type and 

response-specific modulation, it is difficult to predict the potential adverse effects that might 

arise from the inhibition of the pathway. Numerous experiments are needed to achieve 

specific therapeutic outcomes without substantial side-effects. 
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Fig. 1.2. Chemical inhibitors of the JNK pathway 
A. CEP-1347, originally called KT7515 (or 3,9 bis [(ethylthio)methyl]-K252a), was identified in a 
medicinal chemistry approach directed to retain the desirable properties of the naturally occurring 
compound K252a whilst minimising any undesirable effects. B. SP600125, (anthrax [1,9-cd] pyrazol-
6(2H)-one], was defined by screening of a proprietary diversity library. SP600125, acted as a 
reversible ATP-competitive inhibitor of equal potency towards three JNK gene products, JNK1, JNK2 
and JNK3. 
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1.5. Scientific aims of the present study 

 

The present thesis studied neurodegenerative and physiological functions of JNK isoforms in 

PC12 cells and in primary neurons. For degeneration, 6-OHDA was used as inductor of 

neuronal death and experimental model for the degeneration of dopaminergic neurons 

underlying Parkinson’s disease. This study investigated the following questions: 

 

1. How does 6-OHDA affect the cell survival, the activation of JNK and the activation of 

its nuclear transcription factor c-Jun? 

 

2. Does the specific JNK-inhibitor SP600125, protect PC12 cells from 6-OHDA-induced 

death? 

 

3. Which JNK isoform(s) is/are important for the 6-OHDA-induced death in PC12 cells? 

 

4. Does 6-OHDA change the association of JNK with mitochondria? 

Which JNK isoform(s) do(es) mediate the mitochondrial-triggered death following    

6-OHDA including cytochrome c release and caspase-3 activation? 

 

5. Which upstream kinases are involved in the pro-degenerative role of JNK at the 

mitochondria? 

 

6. The JNK/c-Jun axis plays an important role in neuronal excitotoxicity. Primary 

hippocampal and cortical neurons were analyzed for the excitotoxicity of glutamate 

and 6-OHDA, respectively. Do JNKs mediate the excitotoxicity-induced death in 

primary neurons? 

 

7. Does inhibition of JNKs also interfere with the neurite outgrowth in primary neurons, 

as basic and relevant function for the neuronal differentiation and development of the 

nervous system?  
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2. Material and methods 
 

2.1. Materials 

 

Unless otherwise indicated, all solutions and dilutions were prepared in double-distilled water 

(DDW). All chemicals were pro analysis (p.a.). Apart from antibodies Table 2.1 gives all 

materials used in this study. 

 

Table 2.1. Materials 

Material Manufacturer / Supplier 

ABC kit Alexis; Grünberg, Germany 

Acrylamide / bis-acrylamide solution 29:1 Bio-Rad; München, Germany 

Agarose SeaKem LE Biozym; Oldendorf, Germany 

6-Aminocaproic acid Merck-Schuchardt; Hohenbrunn, Germany 

Ammonium persulphate (APS) Merck; Darmstadt, Germany 

Albumin, bovine fraction Sigma ;München, Germany 

Boric acid Merck; Darmstadt, Germany 

Bovine serum albumin (BSA) Boehringer; Mannheim, Germany 

Bromophenol blue Merck; Darmstadt , Germany 

B-27 Supplement Invitrogen/Gibco; Karlsruhe, Germany 

Calcium chloride Merck; Darmstadt, Germany 

Cell culture plates (3.5 cm) Sarstedt; Nümbrecht, Germany 

Cell culture plates (10 cm, 6 wells, 24 wells) Nunc; Karlsruhe, Germany 

Chamber slides Nunc; Karlsruhe, Germany 

Cover glasses Nunc; Karlsruhe, Germany 

Cryotubes (2 ml) Greiner; Frickenhausen, Germany 

Cytosine-ß-D-arabinofuranoside Sigma; München, Germany 

Cytotoxicity detection kit (LDH) Roche; Mannheim, Germany 

DAB tablets Sigma; München, Germany 

Dimethylsulfoxide (DMSO) Merck; Darmstadt, Germany 

DNAse Sigma; München, Germany 

dNTP set (10 mM solutions) Invitrogen/Gibco; Karlsruhe, Germany 

DTT 0.1 M Invitrogen/Gibco; Karlsruhe, Germany 

Dye Reagent Biorad; München, Germany 
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ECL Plus Amersham Biosciences; Freiburg, Germany 

EDTA Merck; Darmstadt, Germany 

EGTA Merck; Darmstadt, Germany 

Ethanol p. a. Merck; Darmstadt, Germany 

Ethanol, technical (denatured) Bundesmonopol für Branntwein (BfB); 
Offenbach, Germany 

Ethidium bromide solution (10 mg/ml) Invitrogen; Karlsruhe, Germany 

Fetal calf serum (FCS) Bio Whittaker; Vervriers, Belgium 

Filter paper Whatman; Maidstone, UK 

Filter unit 0.22 µm, syringe-driven Qualilab; Bruchsal, Germany 

Formaldehyde Merck; Darmstadt, Germany 

Gentamycin Invitrogen/Gibco; Karlsruhe, Germany 

G 418, sulphate (solution) Stratagene; Amsterdam, The Netherlands 

Glucose Merck; Darmstadt, Germany 

Glutamate Sigma; München, Germany 

Glutamax Invitrogen/Gibco; Karlsruhe, Germany 

Glycerol Merck; Darmstadt, Germany 

Glycine Merck; Darmstadt, Germany 

Hank’s balanced salts Sigma; München, Germany 

HEPES Merck; Darmstadt, Germany 

Hoechst 33258 Sigma; München, Germany 

Horse serum Invitrogen/Gibco; Karlsruhe, German 

Hyperfilm ECL Amersham Biosciences; Freiburg, Germany 

Immobilon P 1500 Millipore; Eschborn, Germany 

Insulin Sigma; München, Germany 

Kaiser’s glycerol gelatine Merck; Darmstadt, Germany 

Light antifade kit Molecular probes; Oregon, USA  

Magnesium chloride (PCR) Invitrogen/Gibco; Karlsruhe, Germany 

Magnesium chloride Merck; Darmstadt, Germany 

Magnesium sulphate Sigma; München, Germany 

2-Mercaptoethanol Sigma; München, Germany 

Methanol Merck; Darmstadt, Germany 

Microtiter plates, 96-well, round bottom, lid Nunc; Karlsruhe, Germany 

Minimum essential medium (MEM)  Sigma; München, Germany 

NGF (2.5 S) Alomone labs; Jerusalem, Israel 
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Non-fat dry milk Uelzena; Uelzen, Germany 

Nonidet P-40 Fluka Chemie; Buchs, Switzerland 

Oligo(dT)-Primer Invitrogen/Gibco; Karlsruhe, Germany 

Paraformaldehyde Merck; Darmstadt, Germany 

PBS (w/o Ca2+ and Mg2+) Invitrogen/Gibco; Karlsruhe, Germany 

PCR buffer (10 x) Invitrogen/Gibco; Karlsruhe, Germany 

pEGFP-C3 Clontech; Heidelberg, Germany 

Penicillin/Streptomycin solution (10,000 IU / 
10,000 µg/ml) 

Invitrogen/Gibco; Karlsruhe, Germany 

pGEMT Easy Promega; Mannheim, Germany 

Phosphatase Inhibitor Cocktail II Sigma; München, Germany 

Pipettes (serological, sterile; 5 / 10 / 25 ml) Sarstedt; Nümbrecht, Germany 

Pipette tips (10 / 200 / 1,000 µl) Sarstedt; Nümbrecht, Germany 

PMSF Sigma; München, Germany 

Poly-l-Lysine Sigma; München, Germany 

Ponceau S Sigma; München, Germany 

Potassium chloride Merck; Darmstadt, Germany 

Potassium dihydrogen phosphate Merck; Darmstadt, Germany 

Potassium disulphate Merck; Darmstadt, Germany 

Protease Inhibitor (Complete) Roche; Mannheim, Germany 

Protein marker, prestained, broad range New England Biolabs; Frankfurt, Germany 

Total RNA isolation kit NucleoSpin; Germany 

RNAse H Invitrogen/Gibco; Karlsruhe, Germany 

RPMI-1640 medium Invitrogen/Gibco; Karlsruhe, Germany 

SDS-PAGE standards, prestained, broad 
range 

Bio-Rad; München, Germany 

Sodium bicarbonate Sigma; München, Germany 

Sodium carbonate Sigma; München, Germany 

Sodium chloride Merck; Darmstadt, Germany 

Sodium dodecyl sulphate Merck; Darmstadt, Germany 

Sodium hydrogen carbonate Sigma; München, Germany 

di-Sodium hydrogen phosphate Merck; Darmstadt, Germany 

Sodium hydroxide Merck; Darmstadt, Germany 

SP600125 Alexis; Grünberg, Germany 

SuperScript Invitrogen/Gibco; Karlsruhe, Germany 
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Sucrose Sigma; München, Germany 

TEMED Carl Roth; Karlsruhe, Germany 

TdT enzyme Roche; Mannheim, Germany 

Thermanox coverslips Nunc; Karlsruhe, Germany 

TransFast  Promega; Mannheim, Germany 

Transferrin Calbiochem; Schwalbach, Germany 

Tris Merck; Darmstadt, Germany 

Triton X-100 Merck; Darmstadt, Germany 

Trypan blue solution, cell culture tested Sigma; München, Germany 

Trypsin Sigma; München, Germany 

Trypsin inhibitor Sigma; München, Germany 

Tubes (0.5 / 1.5 / 2.0 ml) Sarstedt; Nümbrecht, Germany 

Tubes for PCR  Sarstedt; Nümbrecht, Germany 

Tubes, sterile (15 / 50ml) Sarstedt; Nümbrecht, Germany 

Tween-20 Calbiochem; Schwalbach, Germany 

Ultrapure water Biochrom; Berlin, Germany 

6-hydroxy-dopamine Sigma; München, Germany 

 

2.2. Laboratory Equipment 

Table 2.2. Equipments 

Equipment Manufacturer / Supplier 

Agarose gel electrophoresis Bio-Rad; München, Germany 

AnalySIS software  Soft Imaging System; Münster, Germany 

Autoclave DS 202 Webeco; Bad Schwartau, Germany 

Centrifuge; Biofuge fresco, Labofuge GL, 
Megafuge 1.0 R 

Heraeus; Hanau, Germany 

Centrifuge; Mikrofuge Neolab; Heidelberg, Germany 

Cell incubator Heraeus; Osterode, Germany 

DMR microscope Leica; Solms, Germany 

Electrophoresis power supply Invitrogen/Gibco; Karlsruhe, Germany 

Film processor AGFA; Mortsel, Belgium 

Fluorescence microscope Leica; Solms, Germany 

Hemocytomer twin chamber Omnilab; Hamburg, Germany 

Heating block  (Thermomixer 543) Eppendorf; Hamburg, Germany 
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Incubator (Innova 4000) New Brunswick Scientific; Amsterdam, The 
Netherlands 

LeicaQwin software Leica; Solms, Germany 

Microplate reader 680 Bio-Rad; München, Germany 

MiniProtean II Vertical PAGE chamber Bio-Rad; München, Germany 

Olympus CK 2 microscope Olympus; Hamburg, Germany 

pH meter WTW; Weilheim, Germany 

Rotator (Polymax 2040) Heidolph; Kehlheim, Germany 

Semi-dry transfer unit (Pegasus) Phase; Lübeck, Germany 

Sonicator (Sonopuls GM 70) Bandelin; Berlin, Germany 

Spectrophotometer (U-2000) Hitachi; Wiesbaden, Germany 

Thermocycler (Personal Cycler) Biometra; Göttingen, Germany 

UV light (Image Master VDS) Bio-Rad; München, Germany 

Water bath Heraeus; Osterode, Germany 

 

2.3. Culture, staining and stimulation of PC12 cells 

 

2.3.1. Standard cell culture 

 

Medium 

RPMI-1640 medium 

Horse serum (HS, inactivated at 56° C for 30 min)  10% 

Fetal calf serum (FCS, inactivated at 56° C for 30 min) 5% 

Penicillin/Streptomycin     1% 

 

The rat PC12 pheochromocytoma cell line derives from a transplantable rat 

pheochromocytoma [86]. PC12 cells were purchased from the American Type Culture 

Collection (Manassas, VA, USA). The cells were grown in medium described above. The 

penicillin/streptomycin solution, horse serum and FCS were stored at –20° C, and the RPMI-

1640 medium was stored in a cooling chamber (4° C). The cells were cultured in 10 cm or 20 

cm plates according to the experiments. Twenty cm plates were used for mitochondrial 

extractions and 10 cm plates were used for the other experiments. Ten cm plates were filled 

with 7 ml medium and 20 cm plates were filled with 14 ml medium. The cells were fed every 

2-3 days. 
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PC12 cells, like many other adherent cells, need a structured substrate for growing. Therefore, 

all plates used for cultivation and experiments were coated with collagen (0.1 mg/ml in PBS). 

The bottom of the cell culture plates was covered with a thin layer of collagen solution, placed 

in the incubator for 1 h and then washed with PBS to remove collagen that had not adhered to 

the plate. Air-dried plates were stored under sterile conditions. 

 

2.3.2. Passaging of PC 12cells 

 

Passage-EDTA 

PBS   1x 

EDTA   0.5 mM 

Store at 4°C. 

 

Since PC12 cells grow adherent, they were treated with passage EDTA before passaging to 

reduce cell-substrate adhesion. 

 

Passaging of PC12 cells was maintained according to the following procedure: 

1. The cells were washed with PBS (37° C). 

2. The cells were rinsed with 2 ml passage-EDTA (37° C) and placed for 2 min in the 

incubator (37° C, 5% CO2). 

3. 5 ml of medium was added (37° C). 

4. The cells were scraped off the cell culture plate and transferred into a 15 ml tube. 

5. The cells were centrifuged for 10 min; (1000 xg; r.t.). 

6. The pellets were first resuspended with 2 ml of medium and then resuspended with 5 

ml of medium. 

7. The cells were aliquoted into new cell culture plates according to the diameter of the 

cell culture plate and the density. 

 

2.3.3. Freezing and thawing of PC12 cells 

 

Freezing medium 

RPMI-1640 supplemented with HS, FCS and pen/strep. (see 2.3.1) 80% 

FCS          10% 

DMSO          10% 
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PC12 cells were stored in aliquots at -80°C. When the cells had been passaged 20 times, the 

cells were discarded and a stock aliquot was quickly thawed in a 37° C water bath. The cell 

solution was transferred to a 10 cm plate with medium. Since DMSO is toxic for the cells, the 

medium had to be changed within the first 24 hours. After that, the cells were fed every 2-3 

days, passaged and used for the experiments. 

 

For production of PC12 stock aliquots, cells were harvested and pelleted as described in 

section 2.3.2 and resuspended in 1 ml freezing medium. The cell solution was aliquoted in 2 

ml cryotubes and incubated 10 min at r.t., transferred to ice for 35 min, incubated at -20° C 

for 45 min and finally stored at -80° C. 

 

2.3.4. Differentiation of PC12 cells 

 

(-) Serum Medium 

RPMI-1640 medium 

FCS    0.5% 

Penicillin/streptomycin 1% 

 

In response to NGF, growth arrest is induced and PC12 cells differentiate into neuron-like 

cells with formation and elongation of neurites. 

 

PC12 cells were passaged as described (See 2.3.2) and cultured in growth medium. After 24 

h, the cells were fed for 72 h with [-] serum medium to synchronize the cell cycle activity of 

the cells. After 72 h, the medium was changed and the cells were incubated with 50 ng/ml of 

NGF. The differentiating cells were fed with fresh medium containing NGF every 2–3 days. 

After 7 days of NGF treatment the cells were used for the experiments. 

 

2.3.5. Stimulation of PC12 cells 

 

In this study 6-OHDA was used for oxidative stress. 6-OHDA (10, 25, 50, 100 µM) was 

freshly prepared from 10 mM stock solution which was prepared in ascorbic acid solution to 

prevent oxidation. The cells were incubated with the JNK-inhibitor SP600125 (1, 2 µM) 30 

min before addition of 6-OHDA. After the respective incubation periods, RNA or proteins 

were extracted.  
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2.3.6. Trypan blue viability staining 

 

Various manipulations of cells, including passaging, freezing and stimulations may provoke 

cell death. To determine the number of surviving cells in a given population, exclusion of the 

dye trypan blue was used. Healthy cells are able to exclude this dye for a certain time, but 

trypan blue will quickly diffuse into the cells which have lost their membrane integrity. 

Protocol: 

1. The cells were washed with PBS (37° C). 

2. The cells were rinsed with 2 ml passage EDTA (37° C) and placed for 2 min in the 

incubator (37° C, 5% CO2). 

3. 5 ml of medium was added (37° C). 

4. The cells were scraped off the cell culture plate and transferred into a 15 ml tube. 

5. The cells were centrifuged for 10 min; (1000 xg; r.t.). 

6. After centrifugation, the pellet was thoroughly resuspended in an appropriate amount 

of PBS.  

7. Twenty µl of the cell suspension were mixed with 20 µl of trypan blue solution and 

transferred to a hemocytometer twin chamber. Living cells in the 16 squares of both 

chambers were counted, and the percentage of viable cells was determined. 

 

2.3.7. Transfection 

 

Transfection is a process in which the gene of interest is introduced to eukaryotic cells by 

biochemical or physical methods. The choice of a particular expression vector and the 

transfection methods depend on the objectives of the study. In this study, an enhanced green 

fluorescent protein (EGFP)-tagged vector was used so that transfected cells could easily be 

identified due to their green fluorescence. To deliver the nucleic acids into PC12 cells, a 

mixture of synthetic cationic lipids and neutral lipids (TransFast liposomes) was used. The 

surface of these liposomes is positively charged and attracted electrostatically to the 

negatively charged DNA. So the liposome complex neutralizes the negative charge of the 

DNA, allowing an association of the complex with the negatively charged cell membrane. 

The entry into the cell may occur by endocytosis or fusion of the plasma membrane. The 

neutral lipids disrupt endosomes and the DNA is set free into the cytoplasm. The exact 

mechanism by which the DNA enters the nucleus is still unclear. 
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In this study, stable cell clones were established. PC12 cells were plated in 6-well plates and 

cultivated until they were 90% confluent. Plasmid DNA (3.75 µg) was dissolved in 988.75 µl 

of medium (without antibiotics and serum) in a 1.5 ml tube. Subsequently, 11.25 µl of 

TransFast Reagent (suspended at least 24 h before transfection) was added and the mixture 

was vortexed briefly. The DNA/TransFast reagent mixture was incubated at r.t. for 10–15 

min. After removing the growth medium from the cells, the transfection mixture (1 ml) was 

added to each well and the plates were returned to the incubator for 1-4 h. Subsequently, 1 ml 

of medium (without antibiotics, but supplemented with 10% horse serum and 5% FCS) was 

added to each well. After 24 h, the transfection medium was replaced by growth medium and 

after another 24 h, the antibiotic G 418 (500 µg/ml) was added to select the transfected cells. 

The selection of cell clones that stably expressed the desired protein usually took 4–6 weeks. 

Several clones were tested for expression of the respective plasmid and the clones expressing 

the highest amounts of the recombinant protein were used for experiments. 

 

For activation, JNKs are phosphorylated on Thr183 and Tyr185 in the conserved Thr-X-Tyr 

MAPK activation motif. In this study both phosphorylation sites of JNK1 and JNK2 were 

mutated to inhibit phosphorylation and thereby activation of recombinant protein. So, PC12 

cells were transfected with these mutated JNK1 and JNK2 (dominant-negative JNK1 and 

JNK2). PC12 cells were also transfected with JNK3-EGFP to characterize the functional 

potential of JNK3 in 6-OHDA-induced toxicity. 

 

2.4. Denaturing protein extraction and protein quantification 

2.4.1. Harvest of cells 

1. The medium of the cells was discarded and the cells were washed with PBS. 

2. PC12 cells were rinsed again with 800 µl PBS and scraped off the plates. 

3. The cell suspension was transferred into a 1.5 ml tube and centrifuged. 

4. The supernatant was removed and the pellets were used for protein extraction. 

 

2.4.2. Denaturing extraction of whole cell proteins 

 

Denaturing lysis buffer (DLB-buffer) 

Tris     10 mM 

SDS     1% 

Phosphatase inhibitor Cocktail II 1% 
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Denatured protein extracts were prepared using a Tris-buffered sodium dodecyl sulphate 

(SDS) lysis buffer (denaturing lysis buffer). 

1. The cell pellet in a 1.5 ml tube (see 2.4.1) was resuspended in 50–300 µl of lysis 

buffer (depending on the size of the pellet).  

2. The cell solution was incubated for 5 min at 95° C in a heating block.  

3. The samples were sonicated twice for 5 s to disrupt the cells by cresting vibrations 

which cause mechanical shearing of the cell wall.  

4. Insoluble material was removed by centrifugation (15 min; 13,000 ×g; 4° C).  

5. The supernatant was transferred into a new 1.5 ml tube and stored at -80° C. 

 

2.4.3. Denaturing extraction of nuclear proteins 

 

Lysis buffer without Nonidet    Lysis buffer with Nonidet 

HEPES  10 mM    HEPES  10 mM  

KCl   10 mM    KCl   10 mM 

MgCl2   1.5 mM   MgCl2   1.5 mM 

       Nonidet  0.1% v/v 

 

To analyse nuclear proteins or the translocation of cytoplasmic proteins to the nucleus, 

cytoplasmic and nuclear proteins were extracted separately.  

1. PC12 cells were harvested (see 2.4.1.) and washed in lysis buffer without Nonidet. 

2. The cell pellets were resuspended in lysis buffer supplemented with Nonidet 

depending on the size of the pellet (80-250 µl) and placed on ice for 10 min.  

3. The cell solution was centrifuged for 5 min (11,700 ×g; 4° C).  

4. The supernatants, containing the cytoplasmic proteins, were transferred into a 1.5 ml 

tube. And 10% SDS solution was added to a final concentration of 1% SDS.  

5. Pellets were resuspended in denaturing lysis buffer to extract nuclear proteins (see 

2.4.2.).  

6. Cytoplasmic and nuclear extracts were boiled for 5 min at 95° C. 

7. Nuclear extracts were sonicated twice for 5 s as described (see 2.4.2.) and centrifuged 

(15 min; 13,000 xg; 4° C). 

8. Cytoplasmic and nuclear extracts were stored at -80° C. 
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2.4.4. Preparation of mitochondrial extracts 

 

Sucrose buffer 

HEPES   20 mM   DTT    1 mM 

KCl    10 mM   EGTA    1 mM 

MgCl2    1.5 mM   Sucrose   250 mM 

PMSF    0.1 mM   EDTA    1 mM 

Complete protease inhibitor 

 

For preparation of mitochondrial extracts, all steps were conducted at 4° C. 

1. Cells plated on 20 cm cell culture plates were washed twice with PBS and harvested. 

2. Cells were centrifuged for 6 min (1000 xg; 4° C). 

3. The pellets were resuspended in 4 ml of PBS and the living cells were counted with 

trypan blue (see 2.3.6.). 

4. Cells were centrifuged again; the pellets were resuspended in sucrose buffer (for 5x106 

cells 100 µl sucrose buffer) and transferred into 1.5 ml tubes. The cell solution was 

stored for 1 h on ice. 

5. After 1 h the cells were lysed by aspiration through a 27 gauge syringe (25-30 times).  

6. The lysates were centrifuged for 5 min (750 xg; 4° C). 

7. The supernatants were collected into a sterile 1.5 ml tube and centrifuged for 15 min 

(10,000 xg; 4°C). 

9. The supernatants containing the cytoplasmic proteins were transferred into a sterile 1.5 

ml tube and SDS from a 10% stock solution was added to a final concentration of 1% 

SDS. 

10. The pellets containing mitochondrial extracts were washed twice in sucrose buffer and 

lysed in DLB-Buffer (see 2.4.2). 

11. Cytoplasmic and mitochondrial extracts were boiled for 5 min at 95° C. 

12. Mitochondrial extracts were sonicated twice for 5 s as described (see 2.4.2.) and 

centrifuged (15 min; 13,000 xg; 4° C) to remove insoluble materials. 

13. Cytoplasmic and mitochondrial extracts were stored at -80° C. 
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2.4.5. Determination of protein concentrations 

 

Protein concentrations were determined using Dye Reagent, a variant of Bradford’s 

colorimetric assay. To prepare working solution, the Dye Reagent stock solution was diluted 

1:5 with DDW. 

 

To determine protein concentrations, bovine serum albumin BSA was used as protein 

standard. Serial dilution of a 1.2 mg/ml BSA stock solution in autoclaved DDW (0.1 to 0.6 

mg/ml) was produced. Samples were diluted 1:30 or 1:50 in autoclaved DDW. Twenty µl of 

sample, standard and DDW (as blank) were pipetted into the disposable plastic cuvettes. One 

ml of the working solution described above was added to each cuvette. All cuvettes were 

vortexed to start the reaction and incubated at r.t. for 10 min. The absorbance at 595 nm (A595) 

was measured using a spectrophotometer. The concentration of proteins was calculated as: 

 

  [absorbance of sample] x [concentration of standard] 

______________________________________________   x dilution factor 

  [absorbance of standard] 

 

 

2.5. Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

 (SDS-PAGE) and Western blot 

 

2.5.1. SDS-PAGE 

 

Resolving Buffer    Stacking Buffer 

Tris, pH 8.8  1.5 M   Tris, pH 6.8  0.5 M 

SDS   0.4%   SDS   0.4% 

Store at 4° C      Store at 4° C 

 

Acrylamide/bis-acrylamide solution  Electrophorese Buffer (10x) 

Acrylamide  30%   Tris, pH 8.3  0.25 M 

Bis-acrylamide 0.8%   Glycine  1.92 M 

Stored at 4° C in the dark   SDS   1%  

      Stored at r.t.  
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Sample Buffer (5x) 

Tris, pH 6.8  312.5 mM 

SDS   10% 

ß-Mercaptoethanol 10% 

Glycerol  50% 

Stored at 4° C.  

 

Sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE) is a low-cost, 

reproducible and rapid method for quantifying, comparing and characterizing proteins. This 

method separates proteins based on their molecular weights. SDS binds along the polypeptide 

chain and the length of the reduced SDS-protein complex is proportional to its molecular 

weight. 

 

Polyacrylamide gels were prepared by co-polymerization of acrylamide monomers with the 

cross-linker bis-acrylamide. The reaction was catalyzed by ammonium persulphate (APS) and 

initiated by N,N,N’,N’-tetramethylethylenediamine (TEMED). For better resolution, a short 

stacking gel was set on top of the main resolving gel. Differences in composition between 

these two gels resulted in concentration of the protein samples into narrow bands in the 

stacking gel and separation of the bands according to their size in the resolving gel. Table 2.3 

and 2.4 provides the composition of stacking and resolving gels. For preparation of the 

resolving gel different percentages of acrylamide were used, depending on the molecular 

weight of protein to be analyzed. A 15% resolving gel was used to detect cytochrome c, 

caspase-8, cleaved caspase-3 and caspase-3 proteins, whereas a 10% resolving gel was used 

for PARP-1 protein. The remaining proteins were analyzed in a 12% resolving gel. (Table 

2.5.). 

Table 2.3. Composition of separating gels for SDS-PAGE 

Target protein size < 30 kDa 30-60 kDa 60–100 kDa 

Components 15% gel 12% gel 10% gel 

Acrylamide 6.7 ml 4 ml 3.3 ml 

4 × resolving buffer 2.3 ml 2.5 ml 2.5 ml 

Autoclaved DDW 2.3 ml 3.4 ml 4.1 ml 

TEMED 10 µl 10 µl 10 µl 

10% APS 100 µl 100 µl 100 µl 
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Table 2.4. Composition of the 3% stacking gel for SDS-PAGE 

Component Quantity 

Acrylamide 0.6 ml 

4 × stacking buffer 1.5 ml 

Autoclaved DDW 3.9 ml 

TEMED 6 µl 

10% APS 60 µl 

 

Preparation of polyacrylamide gels 

 

Glass plates from a MiniProtean II Vertical PAGE chamber were cleaned with 70% ethanol, 

clamped together and placed in a vertical position on the bench top. A mark on the glass plate 

1 cm below the teeth of the comb was placed to determine the level of resolving gel which 

had to be poured. Resolving gel monomer solution combining all reagents containing TEMED 

and APS was prepared. The solution was pipetted between the gel plates to the mark. The 

solution was carefully introduced to minimize possibility of air bubbles trapped within the 

gel. When the appropriate resolving gel solution was added, the gel was over-layed with 

DDW to keep the gel surface flat and allowed to polymerize for 10-30 min at r.t. After 

polymerization, a distinct interface appeared between the separating gel and DDW which has 

to be removed. 

 

Subsequently, the stacking gel (Table 2.4) was prepared and pipetted on top of the 

polymerized resolving gel until the solution reached top of front plate. Immediately, a 15-well 

comb was inserted into the gel plates. It is important to be sure that bubbles were not trapped 

on the ends of teeth. The stacking gel was allowed to polymerize within 30 min at r.t. 

 

After the stacking gel had polymerized the comb was removed carefully and the gel plates 

were placed into electrophoresis chamber. The chamber was filled with 1x electrophoresis 

buffer and the wells were cleaned from residual gel particles. 

 

Preparation of protein samples 

 

Protein samples, used for Western blot were diluted with autoclaved DDW in order to obtain 

20 µg of total protein in a volume of 8 µl. Two µl of 5 × SDS sample buffer were added, and 
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the samples were heated to 95° C for 5 min and loaded onto the gel. To estimate the 

molecular weights of bands detected by Western blotting, broad range prestained protein 

marker was used. 

 

Electrophoresis 

 

The samples and the protein marker were carefully loaded into the cleaned wells and run 

through the stacking and resolving gels at a constant current of 30 mA. Usually, gels were run 

for 30 min after the tracking dye had passed the end of the gel. Finally, gels were removed 

from the gel plates, the stacking gel was discarded, and the resolving gel was used for 

Western blotting (see 2.5.2). 

 

2.5.2. Western blot 

 

TBS (10x)    TTBS    Blocking Solution  

Tris  200 mM  TBS  1x  4% non fat dry milk 

NaCl  1.37 mM  Tween-20 1 ml/ l  in TTBS 

Store at 4° C    Store at 4° C   Store at 4° C 

 

Anode Buffer I   Anode Buffer II 

Tris  30 mM   Tris  300 mM 

Methanol 20%   Methanol 20%  

 

Cathode Buffer 

Tris   25 mM 

Methanol  20% 

6-aminocaproic acid 40 mM 

Store at r.t. 

 

In Western blotting experiments proteins are transferred from a SDS-PAGE gel to a synthetic 

membrane and then the proteins are detected. Once the proteins have been transferred from 

the polyacrylamide gel to the synthetic membrane, specific proteins were detected by specific 

antibodies. Prior to addition of antibodies, the membrane is coated with blocking solution e.g. 

non-fat milk or a BSA solution. Blocking the membrane is very important so that antibodies 
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do not bind non-specifically to the membrane. The primary IgG (e.g. produced in mice) 

antibody recognizes the protein of interest while the secondary antibody recognizes the Fc 

portion of the first antibody. This secondary antibody is coupled to an enzyme, e.g. a 

horseradish peroxidase (HRP), which converts a chemiluminescence substrate. 

 

Blotting 

 

After the proteins were separated by SDS-PAGE, they were transferred to a polyvinylidene 

difluoride (PVDF) membrane by semi-dry blotting using an electroblotter. Three different 

transfer buffers were used (anode buffer I and II, cathode buffer). The PVDF membrane 

which was cut to the size of gel (9 x 6 cm) was activated in 100% methanol for 3 min. 

Subsequently, the membrane was rinsed in DDW for 2 min and equilibrated in anode buffer I 

until use. For each gel, 15 pieces of blotting paper were cut to the size of the gel (9 × 6 cm). 

Six pieces of them were pre-soaked in anode buffer II and placed on a glass plate. Three 

pieces of blotting paper were pre-soaked in anode buffer I and placed over the anode buffer 

II-soaked filter paper. The equilibrated membrane was then placed over the filter paper and 

the gel was placed in close contact with membrane after pre-soaked in cathode buffer. The 

‘sandwich’ was completed by stacking remaining 6 pieces of filter paper pre-soaked in 

cathode buffer. Finally, the blotting ‘sandwich’ was turned around and placed into the semi-

dry transfer unit in which the bottom is the cathode. 

 

Proteins were transferred to the PVDF membrane using a constant current of 0.8 mA/cm2 for 

1 h (protein size 30–80 kDa) or 1.5 h (> 80 kDa). After transferring the protein to the 

membrane, the membrane was washed for 20 min in 1 x TTBS buffer and blocked with 

blocking solution for 60 min. Subsequently, the membrane was incubated with the first 

antibody at 4° C overnight. 

 

On the next day, the primary antibody solution was discarded and the unbound antibody was 

removed by washing the membranes once for 15 min and twice for 5 min each with TTBS. 

Usually the membrane was incubated with a dilution of 1:4000 goat-anti-rabbit secondary 

antibody or with a dilution of 1:3000 goat-anti-mouse secondary antibody for 30 min at r.t. 

After discarding the secondary antibody solution, the membrane was washed once for 15 min 

and three times for 5 min each with TTBS. 
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Table 2.5. Primary and secondary antibodies for Western blots 

Antibody Dilution and Buffer Second 

antibody 

Manufacturer 

Caspase-3 1:1000 in blocking solution α-rabbit Santa Cruz 

Caspase-8 1:500 in blocking solution α-rabbit Santa Cruz 

Cleaved caspase-3 1:1000 in blocking solution α-rabbit CST 

Cytochrome c 1:5000 in blocking solution α-mouse BD 

Grp-75 1:5000 in TTBS α-mouse Stressgen 

JNK1 1:1000 in TTBS α-mouse Pharmingen 

JNK2 1:1000 in blocking solution α-mouse Santa Cruz 

JNK3 1:1000 in TTBS α-rabbit Alexis 

JIP-1 1:1000 in blocking solution α-rabbit Santa Cruz 

MKK4  1:500 in TTBS α-rabbit Santa Cruz 

MKK7  1:1000 in blocking solution α-rabbit Santa Cruz 

MKP 7 1:2000 in TTBS α-rabbit generous gift from 

Dr. A. Whitmarsh 

phospho-c-Jun 1:1000 in TTBS α-rabbit CST 

phospho-JNK 1:2500 in blocking solution α-rabbit Promega 

phospho-MKK4 1:500 in TTBS α-rabbit Santa Cruz 

PARP-1 1:2000 in TTBS α-mouse Alexis 

total JNK 1:1000 in TTBS α-rabbit CST 

ß-Actin 1:5000 in TTBS α-mouse Sigma 

 

ECL-Reaction 
 

After the last washing step, the membrane was placed with the protein side up on a glass 

plate. For a 6 × 9 cm (standard sized) membrane, 1 ml of ECL Plus HRP substrate was 

prepared immediately prior to use by mixing 0.975 ml of ECL Plus Reagent A with 25 µl of 

ECL Plus Reagent B. The membrane was carefully covered with the HRP substrate solution 

and incubated for 3 min. Subsequently, all the HRP substrate was allowed to drip off the 

membrane and the membrane was placed inside the plastic pocket of a film cassette. The 

chemiluminescence on the membranes was detected by exposing the membranes to Hyperfilm 

ECL films in a darkroom. Films were developed and fixed by a film processor. 
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2.5.3. Stripping of Western blot membranes 

 

Stripping solution 

Tris   62.5 mM 

SDS   2% 

ß-Mercaptoethanol 100 mM 

Store at 4° C. 

 

After Western blotting and detection of the protein, the membrane can be used to detect 

another protein. For stripping, the membrane was incubated for 30 min at 50° C and 25 rpm in 

an incubator. After stripping, the membrane was washed twice for 10 min each with TTBS 

and blocked with blocking solution for 1h. Subsequently, the membrane was incubated with 

primary antibody. 

 

2.5.4. Ponceau S staining of Western blot membranes 

 

Ponceau S is the only staining method which is completely compatible with all procedures of 

immunological probing, because the stain is transient and can be washed away so that it does 

not interfere with subsequent detection of antigens. After the ECL reaction, membranes were 

washed twice with TTBS and then stained with Ponceau S for 20 min. The staining solution 

was re-used several times. Stained membranes were washed twice with DDW for 5 min each 

before air-drying. 

 

2.6. Isolation of RNA 

 

2.6.1 RNA extraction 

 

During RNA extraction it is very important not to have any contamination with RNAse. So all 

of the equipments used were autoclaved and the working place was cleaned with 70% ethanol. 

For the isolation of total RNA extraction NucleoSpin® RNA II isolation kit was used. The 

cells were harvested as described in section 2.4.1. The pellet was re-suspended in lysis buffer 

(350 µl RA1 buffer with 3.5 µl ß-mercaptoethanol per sample). The cell solution was applied 

to a NucleoSpin® Filter unit (violet) and centrifuged for 1 min (11,000 xg; r.t.). The filter unit 

was discarded, 350 µl ethanol (70%) was added to the homogenized lysate and mixed. The 
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lysate was loaded to the NucleoSpin® RNA II column and centrifuged for 30 s (8,000 xg; 

r.t.). The column was placed in a new collection tube, 350 µl MDB (Membrane Desalting 

Buffer) was added and centrifuged for 1 min (11,000 xg; r.t.) to dry the membrane. 

Subsequently, 95 µl DNAse reaction mixture (10 µl DNAse I + 90 µl DNAse reaction buffer) 

was added directly onto the center of the membrane and incubated at r.t. for 15 min. To 

inactivate DNAse, 200 µl RA2 buffer was added to each column and centrifuged for 30 s 

(8,000xg; r.t.). After washing the pellet twice with RA3 buffer, the column was placed into a 

nuclease-free 1.5 ml tube and RNA was eluted in 60 µl RNAse-free water. A 5 µl aliquot of 

the RNA solution was removed for quantification and quality validation. The remaining RNA 

was stored at -80° C. 

 

2.6.2. RNA quantification and quality control 

 

RNA concentration was determined by measuring the absorbance at 260 nm (A260) in a 

spectrophotometer. RNA samples were diluted 1:200 in RNAse-free water and pipetted into 

quartz cuvettes. Absorbance of RNAse-free water was measured as blank. An absorbance of 1 

unit at 260 nm corresponds to 40 µg/ml of RNA in water. RNA concentration could be 

determined as; 

CRNA  = A260 x dilution factor x 40 

 

To detect protein contaminants, the absorbance at 280 nm was also measured. The ratio of the 

absorbance at 260 nm and 280 nm (A260/A280) gives us the purity of RNA. A ratio of 1.6–2.0 

indicates pure RNA (in water). 

 

2.7. Polymerase chain reaction (PCR) 

 

2.7.1. Reverse transcription polymerase chain reaction (RT-PCR) 

 

Reverse transcription polymerase chain reaction (RT-PCR) is a method which combines 

complementary DNA (cDNA) synthesis from RNA templates with using a RNA-dependent 

DNA polymerase (the reverse transcriptase, RT). The RT can start from oligo (dT) primers 

binding to the polyadenylated tail of the mRNAs. In this study reverse transcription is carried 

out with the SuperScript First-Strand Synthesis System for RT-PCR. 
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For the reverse transcription, 5 µg of RNA were diluted in a volume of 11 µl DEPC-DDW. 

One µl of the oligo(dT) solution was added to each sample and incubated in a thermocycler at 

70° C for 10 min to denaturate the samples. Subsequently the temperature was decreased to 4° 

C and during this time the RT master mix was prepared on ice. 

 

Table 2.6. Composition of RT the master mix 

Component Quantity  

10 x PCR Buffer 2 µl 

MgCl2 (25 mM) 2 µl 

dNTP mix (10 mM) 1 µl 

DTT (0.1 mM) 2 µl 

 

Seven µl of the RT master mix was added to the each sample and incubated at 42° C for 5 min 

for annealing of the primer. Subsequently, 1 µl SuperScript II RT was added to each sample 

and incubated at 42° C for 50 min and followed by 70° C for 15 min to denaturate RNA-

cDNA hybrids. To stop the reaction 1 µl RNAse H was added to each sample and incubated at 

37° C for 20 min. cDNA samples were used immediately for PCR or stored at -20° C. 

 

2.7.2. PCR 

 

The purpose of a PCR (polymerized chain reaction) is to make a huge number of copies of a 

gene. There are three basic steps in PCR. First, the target genetic material must be denatured, 

i.e. the strands of its helix must be unwound and separated by heating to 90-96° C. The 

second step is hybridization or annealing, in which the primers bind to their complementary 

bases on the single-stranded DNA. Annealing temperature chosen for a PCR depends directly 

on length and composition of the primers and calculated using the following formula: 

 

TM = 4 x (number of G + C) + 2 x (number of A + T). 

 

The third step is DNA synthesis by a polymerase. Starting from the primer, the polymerase 

can read a template strand and match it with complementary nucleotides very quickly. This 

results in two new helixes in place of the first, each composed of one of the original strands 

plus its newly assembled complementary strand. Repeating these cycles results in generating 

millions of copies of DNA strands. 
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The cDNA produced in the RT reaction was amplified in a total volume of 50 µl in a 

thermocycler. Two µl of cDNA sample were pipetted into single PCR tubes and placed on 

ice. The PCR master mix was prepared on ice and 48 µl of master mix was added to each 

sample. 

 

Table 2.7. The master mix for PCR 

Component Quantity (for 48 µl per sample) 

10 x PCR Buffer 5 µl 

MgCl2 (50 mM) 2 µl 

dNTP mix (10 mM) 1 µl 

Forward primer (10 µM) 1 µl 

Reverse primer (10 µM) 1 µl 

Taq DNA polymerase 0.25 µl 

Autoclaved DDW 37.5 µl 

 

After addition of the PCR master mix, samples were placed in a thermocycler and the PCR 

program was started. 

 

PCR-Program 

1. 94°C, 5 min 

2. 94°C, 1 min 

3. 53°C, 1 min (annealing temperature)  25x 

4. 72°C, 30 s 

5. 72°C, 10 min 

6. 4°C,  ∞ 

 

In this study primers for Bim and for the house-keeping-gen H2.Az were used. All primers 

were designed using the software Primer 3 Software Distribution (Whitehead 

Institute/Howard Hughes Medical Institute; Boston, MA, USA). The specificity of the primer 

pairs was verified by comparative alignment using the BLAST database 

(http://www.ncbi.nlm.nih.gov/BLAST/) at the National Center for Biotechnology Information 

(NCBI; Bethesda, MD, USA).  
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Table 2.8. Primer pairs and reaction conditions for PCR amplications 

Gene Primers Product 

(bp) 

Annealing 

temp. (°C) 

Number 

of cycles 

 

Bim 

fw: CAACACAAACCCCAAGTCCT 

rv: TCTTCCGCCTCTCGGTAAT 

 

   182 

 

    55 

 

   25 

 

H2A.z 

fw: CGTATTCATCGACACCTGAAA  

rv: CTGTTGTCCTTTCTTCCCAAT 

 

  282 

 

    55 

 

   25 

 

After the PCR, the products were aliquoted and stored at –20° C. An aliquot of the sample 

was used to visualize by agarose gel electrophoresis. 

 

2.7.3. Detection and analysis of the reaction product 

 

10x TBE-Buffer (Tris-boric acid-EDTA buffer)  10x Loading Buffer 

Tris  9 M      Bromophenol blue 0.25% 

Boric acid 9 M      Glycerol  30% 

EDTA  0.2 M      

Store at r.t.       Store at 4° C. 

 

Agarose 

Agarose (dissolved in TBE buffer) x % 

Ethidium bromide   5 µg/ml 

Prepared freshly. 

 

The PCR product should be a fragment or fragments of defined DNA lengths. The simplest 

way to check for the presence of these fragments is to load a sample taken from the reaction 

product, along with appropriate molecular-weight markers onto an agarose gel. One % or 

1.5% agarose gels were prepared with 1x Tris-buffer boric acid-EDTA. The 1x TBE buffer 

was set up by diluting 10x TBE buffer with DDW. The required amount of agarose was 

dissolved in 1x TBE buffer by heating in a microwave oven. 5 µl/100 ml of a 10 mg/ml 

ethidium bromide stock solution was added to warm agarose solution and mixed well. For 

agarose gel electrophorese a horizontal gel system was used. The agarose solution with 

ethidium bromide was pipetted to this gel system and allowed to polymerize for 20-30 min. 
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When the gel had polymerized, it was transferred to an electrophorese chamber filled with 1x 

TBE buffer. Twenty µl of DNA sample were mixed with 5 µl 10 x Loading buffer in 1.5 ml 

tubes. At the same time 1 µl DNA-Ladder was mixed with 5 µl 10 x Loading buffer and with 

19 µl TBE buffer, resulting in a total volume of 25 µl. The DNA-Ladder and the samples 

were loaded into wells and the gel was run at 80 mV for ca. 60 min. Bands were visualized 

with 312 nm UV light. 

 

2.8. Culture, staining and stimulation of primary cells 

 

2.8.1 Solutions for primary cultures 

Hanks Solution      Dissection Solution 

Pulver media   w/o Mg2+ and Ca2+  Hanks solution   

NaHCO3  35 mg/ml   Albumin  3 mg/ml 

HEPES  10 mM    MgSO4  1.4 mg/ml 

D-Glucose  6 mg/ml 

Gentamycin  5 µg/ml 

 

Digestion Solution     Culture Media  

NaCl   8 mg/ml   MEM 

KCl   0.37 mg/ml   D-glucose  5mg/ml 

Na2HPO4  0.99 mg/ml   Transferrin  0.1 mg/ml  

HEPES  5.95 mg/ml   Insulin   25 µg/ml 

NaHCO3  0.35 mg/ml    Glutamax  2 mM 

       Gentamycin  5 µg/ml 

 

1st day culture media     3rd day culture media 

Culture media      Culture media 

FCS / HS  10%    FCS / HS  5% 

B 27 supplement 2% 

AraC   5 µM  

All of the solutions are at pH 7.4 and stored at 4° C 
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2.8.2. Coating of the plates 

 

For providing cell attachment and growth, 4-well plates and culture dishes (35 mm) have to 

be coated. Cover glasses or plastic cover slips were placed in 4-well plates in the LFU. Plastic 

culture dishes and 4-well plates were coated with poly-l-Lysine, dissolved in ultrapure water 

(100 µg/ml). To coat the culture dishes or 4-well plates, the bottom of the slides was covered 

with a thin layer of poly-l-Lysine, and placed in the incubator overnight. The next day, slides 

were washed two times with DDW. Subsequently, 1st day culture medium was added to the 

plates and placed in the incubator until use. Cover glasses used in this study were not sterile. 

So they were autoclaved before use and stored under sterile conditions. 

 

2.8.3. Culturing of primary rat neurons 

 

Hippocampal or cortical cultures were obtained from the newborn rats (up to 24 h postnatal). 

All the culturing procedure was performed on ice. Rat puppies were decapitated and the 

brains were dissected under sterile conditions. Brains were transferred into petri-dishes which 

contain ice-cold dissection solution. Cortex and hippocampus were dissected and cleaned 

from blood vessels and meninges. Subsequently, they were transferred into different petri-

dishes and cut into 1 mm3 pieces and finally transferred into 15 ml tubes. After washing 4 

times with 3 ml dissection solution and treating with 5 ml Hanks solution, hippocampal and 

cortical slices were warmed for 1 min in digestion solution, mixed with trypsin (3.3 mg/ml), 

DNAse (0.83 mg/ml), and treated with the same solution for 5 min at r.t. The hippocampal 

and cortical slices were then incubated in dissection solution with 0.6 mg/ml trypsin inhibitor 

to inhibit trypsin activity for 5 and 3 min, respectively, and finally with fetal calf serum (200 

µl/ml in dissection solution) for 10 min. Hippocampal and cortical slices were washed 4 times 

with dissection solution and homogenized in dissection solution, mixed with 0.4 mg/ml 

DNAse, with three different diameters of fire polished Pasteur pipettes. Five ml of dissection 

solution were added and the cells were centrifuged (15 min; 800 xg; 4° C). To determine the 

number of surviving cells in cell suspension, cells were counted with trypan blue (see 2.2.5.). 

Subsequently, cells were plated on 4 well plates or 35 mm plastic culture dishes containing 1st 

day culture media (Culture Media, 10% FCS). After two days half of the culture media was 

replaced with 3rd day media and every 2nd –3rd day half of the media was replaced with fresh 

culture medium. 
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This culturing procedure results in a mixed neuronal culture containing 70-80% neurons. The 

remaining cells were identified as astrocytes. 

 

2.8.4. Culturing of primary murine neurons 

 

Cortical cultures from newborn mice (up to 24 h) were obtained as described above (see 

2.8.3). However, instead of 10% FCS, 10% horse serum was used for culturing and feeding of 

the primary murine neurons. 

 

2.8.5. Incubation with inhibitors and other substances 

 

Five days old hippocampal cultures were treated with 250 µM glutamate freshly made from a 

5 mM stock solution, for 4 or 24 h in the culture medium without serum and B27 supplement. 

Five days old cortical cells were treated with 25 µM, 50 µM, and 100 µM 6-OHDA freshly 

made from 100 mM stock solution in ascorbic acid solution to prevent oxidation. The JNK-

inhibitor SP600125 (2 µM) was given to the both cultures 30 min before the addition of 

glutamate or 6-OHDA. 

 

2.9. Immunocytochemistry 

 

Immunocytochemistry bases on the use of a primary antibody directed against the cellular 

target(s) and a secondary antibody which is directed against the primary antibody and labelled 

with an enzyme. The most commonly used enzymes are peroxidase and alkaline phosphatase. 

Peroxidase activity is most frequently detected using 3,3’-Diaminobenzidine (DAB) as the 

electron acceptor with hydrogen peroxide serving as the substrate. The reaction product is 

observed as a brown precipitate at the site of the enzyme activity. To enhance the signal, the 

secondary antibody is biotinylated and in consequence bound by avidin coupled to a complex 

containing the enzyme (avidin-biotin-complex coupled with a peroxidase for the substrate 

reaction, i.e. the ABC complex). The immunocytochemical procedure involves fixation, 

permeabilization, blocking sites that are prone to unspecific interactions, labelling with the 

primary and secondary antibodies, incubation with the ABC complex and finally the substrate 

reaction. 
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Staining was performed using the following protocol: 

1. The cells were incubated with pre-warmed para-formaldehyde (4% in PBS, 37° C) at 

r.t. for 30 min. 

2. The fixed cells were permeabilized with Triton X-100 (0.2% in PBS) at r.t. for 2 min. 

3. The cells were blocked in 5% normal goat serum, diluted in PBS. 

4. The cells were washed in 1% normal goat serum, diluted in PBS, two times for 3 min 

each. 

5. The cells were incubated with primary antibody (overnight at 4° C). 

6. The cells were washed in PBS, three times for 3 min each. 

7. The cells were incubated with secondary antibody for 1 h (37° C). 

8. The cells were washed in PBS, three times for 3 min each. 

9. The cells were incubated with ABC complex for 1 h. (37° C). 

 

ABC solution: Vectastain® Elite ABC Reagent (Vector). Two drops of reagent A were 

added to 5 ml of PBS. After the addition of two drops of reagent B the solution was mixed 

immediately. The solution was ready to use after 30 min. 

 

10. The cells were washed in PBS, two times for 3 min each. 

11. The cells were incubated in DAB solution until staining was optimal as determined by 

light microscopic examination (5-10 min at r.t.). 

 

DAB Reagent: 3,3`-diaminobenzidine tablet sets (Sigma). When dissolved in 5 ml DDW 

each Sigma Fast DAB tablet sets contains O9292 DAB: 0.7 mg/ml; U1380 Urea Hydrogen 

Peroxide: 0.2 mg/ml and Tris buffer 0.06 M.  

 

12.  The cells were washed in DDW two times each for 5 min. 

 

The stained cells were mountained and analyzed using a DMR microscope with a camera 

system and the software LeicaQwin. 
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2.9.1. Double staining 

 

The cells were fixed, permeabilized, incubated with the primary and the secondary antibody 

as described above. After incubation with ABC solution and DAB reagent, the cells were 

incubated with another primary antibody overnight at 4° C. After that, the cells were 

incubated with secondary antibody against the second primary antibody. After ABC 

incubation, the cells were stained with Vector® SG substrate kit which gives a blue-grey 

signal. The stained cells were analyzed as described above. 

 

Vector® SG substrate kit: Three drops of chromogen were added to 5 ml of PBS. After the 

addition of three drops of hydrogen peroxide, the solution was mixed immediately. 

 

2.9.2. Immunofluorescence staining 

 

The cells were fixed, permeabilized and incubated with the primary antibody as described 

above. The next day after removing the unbound antibody, the cells were incubated with a 

fluorescein (FITC)-conjugated secondary antibody against the primary antibody. The cells 

were mountained with an anti-fade kit and visualized under fluorescence microscope using a 

camera system and a software program. 

 

Table 2.9. Primary and secondary antibodies for immunocytochemistry and 

immunofluorescence 

First 

Antibody 

Manufacturer Second antibody for 

immunocytochemistry 

Second antibody for 

immunofluorescence 

GFAP Santa Cruz Biotinylated anti-rabbit IgG FITC-conjugated anti-rabbit IgG 

JNK1 Pharmingen Biotinylated anti-mouse IgG FITC-conjugated anti-mouse IgG 

JNK2 Santa Cruz Biotinylated anti-mouse IgG FITC-conjugated anti-mouse IgG 

MAP-2 Chemicon Biotinylated anti-mouse IgG FITC-conjugated anti-mouse IgG 

p-c-Jun CST Biotinylated anti-rabbit IgG FITC-conjugated anti-rabbit IgG 

p-JNK Promega Biotinylated anti-rabbit IgG FITC-conjugated anti-rabbit IgG 

 

 

 

 



Materials and methods 

 43

2.10. LDH Assay 

 

Lactate dehydrogenase (LDH) is a stable cytoplasmic enzyme that is present in all cells. An 

increase in the amount of cell death or plasma membrane damaged cells results in an increase 

of the LDH enzyme activation in the culture supernatant which directly correlates to the 

amount of formazan formed during a limited time period. Therefore, the amount of colour 

formed in the assay is proportional to the number of lysed cells. 

 

For the experiments a kit from Roche was used and the experiments were performed 

according to manufacturer’s instruction. The culture supernatant is collected in a 1.5 ml tube 

and centrifuged (2000 xg; 10 min; 15-20° C). Subsequently, a 96-well tissue culture plate was 

filled with 100 µl supernatants. To determine LDH activity in the supernatants 100 µl reaction 

mixture was added to each well and incubated 30 min at 15-25° C. During this incubation 

period the 96-well plates was protected from light. Finally, the absorbance of the samples was 

measured at 490 nm using an ELISA reader. 

 

Reaction Mixture: The reaction mixture should be prepared freshly. For 100 tests 250 µl of 

solution I was mixed with 11.25 ml of solution II before use. 

 

2.11. Staining of the cells with Hoechst Dye 

 

For evaluation of apoptotic cells Hoechst 33258 (Sigma) was used. Hoechst 33258 binds all 

DNA and stains nuclear material allowing the visualization of apoptotic nuclei. For the 

staining, untreated and stimulated cells were fixed with 4% paraformaldehyde for 30 min at 

r.t. and permeabilized with 0.2% Triton X-100 in PBS. After washing the cells in PBS three 

times, the cells were incubated with Hoechst 33258 for 15 min at r.t. (5 µg/ml in PBS). 

 

The stained cells were analyzed using a fluorescence microscope with a camera system and 

the software Analysis. 
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2.12. Statistical analysis  

 

Unless otherwise indicated, all experiments were carried out independently 3-6 times. 

Statistical analysis was performed with GraphPrism software (www.graphpad.com) using 

one-way analysis of variance with repeated measures. Means were compared using the post-

hoc Bonferroni test, and significance was defined for p ≤ 0.05. Data were expressed as mean 

± standard deviation. 
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3. Results 
 

3.1. Function of JNK isoforms following 6-hydroxydopamine-(6-OHDA-) induced 

oxidative stress  

 

The first aim of this study was to investigate the specific actions of JNK isoforms in oxidative 

stress that is connected with mitochondrial dysfunction in PC12 cells. 

 

3.1.1. 6-OHDA-induced cell death in PC12 cells 

 

To examine the 6-OHDA-induced toxicity, PC12 cells were treated with different 

concentrations of 6-OHDA for 24 h. Cell death was detected by trypan blue exclusion assays. 

Twenty-five µM, 50 µM and 100 µM 6-OHDA induced significant cell death in PC12 cells 

(Fig. 3.1). 

 

 

 

100

20

0

40
60

80

su
rv

iv
al

( %
)

co + 25+ 10 + 50 + 100 µM 6-OHDA

++
+

++
+

++
+

100

20

0

40
60

80

su
rv

iv
al

( %
)

co + 25+ 10 + 50 + 100 µM 6-OHDA

++
+

++
+

++
+

100

20

0

40
60

80

su
rv

iv
al

( %
)

co + 25+ 10 + 50 + 100 µM 6-OHDA

++
+

++
+

++
+

 
Fig. 3.1. Cell death in response to 6-OHDA 
The diagram shows the survival of cells in response to 6-OHDA after 24 h. Cell death was determined 
by trypan blue exclusion assay. n = 4, +++ gives the significance compared with controls for p ≤ 
0.001. 
 

3.1.2. Activation of JNK and c-Jun 

 

6-OHDA dose-dependently induced a distinct phosphorylation of JNKs in the cytoplasm and 

the nucleus. Concomitantly, the N-terminal phosphorylation of c-Jun dose-dependently 

increased in the nucleus (Fig. 3.2 A and B). 6-OHDA induced JNK activation after 4 h in the 

cytoplasm and the nucleus. According to this time course the majority of experiments were 
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performed at the time point of maximal JNK activity, i.e. 4 h after 6-OHDA stimulation (Fig. 

3.2 A). The distribution of JNK isoforms changed depending on the concentration of 6-

OHDA. JNK1 and JNK2 did not change in the cytoplasm following 6-OHDA, while the 

amount of JNK2 increased in the nucleus between 10 µM and 50 µM 6-OHDA. JNK1 levels 

did not change in the nucleus after different concentrations of 6-OHDA (Fig. 3.2 B). Thus, the 

augmentation in total phospho-JNK in the nucleus paralleled the increase of JNK2. 
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Fig. 3.2. Phosphorylation of JNKs and c-Jun in response to 6-OHDA 
A. JNKs were dose dependently phosphorylated in the cytoplasm and the nucleus 4 h after 6-OHDA 
treatment as compared to control groups (co). B. JNKs were phosphorylated in the nucleus and the 
cytoplasm after 4 h of 6-OHDA stimulation, but only JNK2 was translocated to the nucleus in 
response to 6-OHDA. Neither the expression of JNK1 nor JNK2 displayed any changes in the 
cytoplasm. n = 4. 
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3.1.3. Protection by SP600125 and dnJNK2 

 

To investigate the role of JNKs in the 6-OHDA-induced cell death, the direct and specific 

JNK-inhibitor SP600125 was used. As analyzed in trypan blue exclusion assay, addition of 25 

µM 6-OHDA caused substantial cell death after 24 h. The pre-incubation with 1 µM or 2 µM 

SP600125 rescued 51% and 68% of the otherwise dying PC12 cells (Fig. 3.3). 
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Fig. 3.3. Protection of PC12 cells by the direct JNK-inhibitor SP600125  
Pre-incubation with 1 µM or 2 µM SP600125 (30 min) significantly protected PC12 cells from 6-
OHDA-induced cell death. n = 4. Controls = 100%. +++ (p ≤ 0.001) and ++ (p ≤ 0.01) refer to 6-
OHDA vs. controls, *** (p ≤ 0.001) indicates significant differences between 6-OHDA vs. SP600125 
and 6-OHDA. 
 

The inhibition of JNKs, however, does not provide a permanent protection. Forty-seven and 

seventy-four hours after 25 µM 6-OHDA (without change of the medium), the survival rates 

did not differ significantly between the SP600125-treated cells and controls (Fig. 3.4 B). This 

fading protection of JNK inhibition suggests a switch from an early JNK-dependent to a late 

JNK-independent pathway to cell death. However, SP600125 did not protect against 50 µM 

6-OHDA-induced cell death at any time point (Fig. 3.4 C). The time window for SP600125- 

mediated protection is smaller than 4 h, since JNK inhibition was still effective when applied 

2 h but not 4 h after 6-OHDA (Fig. 3.4 A). Thus, the protective time window of SP600125 

can be correlated with the onset of JNK and c-Jun activation beginning between 2 h and 4 h 

post-stimulus. 
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Fig. 3.4. Protection of PC12 cells from 6-OHDA-induced death is time dependent  
A. Survival of PC12 cells (Trypan blue exclusion assay) 24 h following 25 µM 6-OHDA and 2 µM 
SP600125 either 30 min prior or 2 h and 4 h after the onset of 6-OHDA treatment. SP600125 
conferred its protection when applied 30 min prior or up to 2 h after stimulation with 6-OHDA. B. 
SP600125 was not protective after 48 h and 72 h. C. SP600125 had no protective effects against 50 
µM 6-OHDA at any time point. 
n = 4. Controls = 100%. +++ (p ≤ 0.001) and ++ (p ≤ 0.01) refer to 6-OHDA vs. controls, *** (p ≤ 
0.001) indicates significant differences between 6-OHDA vs. SP600125 and 6-OHDA. 
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The translocation of JNK2 into the nucleus, which paralleled the increase of JNK activity, 

raised the question if JNK2 is responsible for 6-OHDA-mediated death rather than the more 

´physiological` or even ´protective` JNK1 [60, 87]. For this purpose, PC12 cells were stably 

transfected with EGFP-tagged dnJNK1 (dominant-negative) and dnJNK2 (see 2.3.7). 

DnJNK2, but not dnJNK1, protected PC12 cells from cell death induced by 25 µM 6-OHDA 

(Fig. 3.5 A). Similar to SP600125, dnJNK2 was not protective after 48 h and 72 h (data not 

shown). It did not protect against 50 µM 6-OHDA-induced cell death (Fig. 3.5 A). 

Interestingly, pre-incubation of dnJNK2 with SP600125 did not protect cells from 25 µM 6-

OHDA-induced cell death. Moreover, with SP600125 treatment, the protection of dnJNK2 

was lost (Fig. 3.5 B). 
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Fig. 3.5. Protection of PC12 cells from 6-OHDA-induced death is dose dependent 
A.Trypan blue exclusion assays 24 h after stimulation showed that JNK-inhibition – either by pre-
treatment with 2 µM SP600125 (30 min) or transfection with dnJNK2 – significantly reduced cell 
death in response to 25 µM 6-OHDA whereas dnJNK1 had no protective effects. Cell death triggered 
by 50 µM 6-OHDA, however, could not be prevented by JNK-inhibition. B. Pre-incubation of 
dnJNK2 with SP600125 did not protect the cells from death induced by 25 µM 6-OHDA. 
n = 4. +++ (p ≤ 0.001) indicates significant differences between 6-OHDA vs. JNK inhibition. co, 
unstimulated. 
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Fig. 3.6. Effects of dnJNK2 on the activation and localization of JNKs 
 A. After stimulation with 25 µM and 50 µM 6-OHDA JNKs are activated in nucleus and cytoplasm. 
Only transfection with dnJNK2 reduced JNK activity. B. Twenty-five µM 6-OHDA increased the 
translocation of JNK2 into the nucleus in vector controls. Translocation of endogenous JNK2 into the 
nucleus was inhibited by transfection of dnJNK2. C. Pre-incubation of PC12 cells with SP600125 
inhibited the translocation of JNK2, but not JNK1 into the nucleus.  
n = 4. co, unstimulated. 
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Transfection of dnJNK2 interfered with the activation of JNKs. Importantly, dnJNK2 reduced 

the pool of phosphorylated total JNK in the nucleus after stimulation with 6-OHDA to a much 

higher extent than in the cytoplasm, while dnJNK1 had not such effect (Fig 3.6 A). In contrast 

to wild type cells, transfection with dnJNK2 strongly reduced the 6-OHDA-induced 

translocation of endogenous JNK2 to the nucleus (Fig. 3.6 B). The construct itself was almost 

completely excluded from the nucleus since it was barely detectable in nuclear preparations, 

but clearly visible in the cytoplasm (Fig.3.6 B). Similar to dnJNK2, SP600125 inhibited the 

translocation of JNK2, but not JNK1 to the nucleus (Fig. 3.6 C). 

 

3.1.4. Translocation of JNK2, but not JNK1 to the mitochondria 

 

Translocation of JNK2 into the nucleus after 6-OHDA treatment raised the question whether 

JNK2 also translocates to the mitochondria, the central target organelles of 6-OHDA-

mediated pathology. One and 2 h after 6-OHDA treatment, the amount of JNK2 present at the 

mitochondria increased and reached its maximal level at 4 h (Fig. 3.7 A). Dominant-negative 

JNK2 could not be detected at the mitochondria, as it was seen in the nucleus. Moreover, 

dnJNK2 did not interfere with the increase of endogenous JNK2 at the mitochondria 

following 25 µM 6-OHDA (Fig. 3.7 A) or with the mitochondrial pool of JNK1 (Fig. 3.7 B). 

 

In contrast to JNK2, a substantial amount of JNK1 was present at the mitochondria of 

untreated PC12 cells and this pool did not change following 6-OHDA treatment. Interestingly, 

translocation of dnJNK1 to the mitochondria after addition of 6-OHDA was observed (Fig. 

3.7 B). Similar to nucleus, inhibition of JNK with SP600125 prevented the translocation of 

JNK2 to the mitochondria, but had no effect on the constitutive presence of JNK1 (Fig. 3.7 

C). Consequently, the pool of activated JNK at the mitochondria was determined. Under basal 

conditions, hardly any phosphorylated JNK could be detected at the mitochondria. After 

stimulation with 25 µM 6-OHDA, the amount of phosphorylated JNK increased at the 

mitochondria within 4 h and returned to basal levels until 48 h after stimulation (Fig. 3.7 D). 
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Fig. 3.7. Translocation of JNKs into the mitochondria 
A. JNK2 translocated to the mitochondria after 6-OHDA treatment under all experimental conditions. 
The EGFP-tagged dnJNK2 was not present at the mitochondria. B. In contrast to increasing levels of 
JNK2, JNK1 levels did not change after addition of 6-OHDA at the mitochondria. C. Pre-incubation 
of PC12 cells with SP600125 inhibited the translocation of JNK2, but not JNK1, into the 
mitochondria. D. Levels of phosphorylated JNK (p-JNK) were increased in mitochondrial preparations 
between 4 h and 24 h after 6-OHDA stimulation while total JNK protein (tJNK) did not change. n = 4. 
co, unstimulated. wt, wild type  
 

3.1.5. Upstream kinases and scaffolds of JNKs at the mitochondria 

 

A substantial amount of MKK4 was detected at the mitochondria from untreated cells. 

Stimulation of the cells with 25 µM 6-OHDA activated the mitochondrial MKK4 pool within 

1 h and its activation reached its maximal levels between 2 h and 4 h. Transfection of the cells 

with dnJNK2 abrogated the phosphorylation, but not the presence of MKK4, while 

transfected dnJNK1 had no effect (Fig. 3.8 A). Additionally the JNK-inhibitor SP600125 

prevented the phosphorylation of MKK4 at the mitochondria (Fig. 3.8 B). In contrast to 

MKK4, MKK7 was not detected at the mitochondria, while it was detectable in cytoplasmic 

extracts (Fig. 3.8 C). The JNK scaffold protein JIP-1 was present in mitochondrial 
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preparations and its expression did not change after stimulation with 6-OHDA (Fig. 3.8 C) 

underlining the specificity and selectivity of the observed localization and activation of JNK 

signalosome components. The presence of only weakly phosphorylated JNK at the 

mitochondria suggests the presence of mitochondrial phosphatases which de-activate JNKs. 

Therefore, MAP kinase phosphates 7 (MKP7) which was recently identified as a major and 

JNK-specific phosphatase was investigated [88]. Indeed, MKP7 was detectable at the 

mitochondria and in the cytoplasm and its expression did not change after 6-OHDA (Fig. 3.8 

C). 
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Fig. 3.8. Upstream kinases and the scaffolds of JNKs at the mitochondria 
A. In mitochondrial preparations, MKK4 protein was detected in all cells which was phosphorylated in 
response to 25 µM 6-OHDA. However, dnJNK2 inhibited this phosphorylation. B. Similar to dnJNK2, 
pre-incubation with SP600125 blocked MKK4 phosphorylation. C. MKK7 was not present at the 
mitochondria, while JIP-1 and MKP7 were present at the mitochondria.  
n = 4. co, unstimulated. 
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3.1.6. Cytochrome c release, caspase-3 activation and regulation of bim  

 

Twenty-five µM 6-OHDA caused a strong depletion of mitochondrial cytochrome c which 

was inhibited by pre-incubation with 2 µM SP600125 in wild type and vector controls. 

Similar to SP600125, transfection of the cells with dnJNK2 reduced cytochrome c release in 

response to 25 µM 6-OHDA. However, dnJNK1 had no effect on cytochrome c release (Fig. 

3.9). 
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Fig. 3.9. Release of cytochrome c 
Twenty-five µM 6-OHDA induced cytochrome c release from mitochondria. Pre-incubation with 
SP600125 inhibited the release of cytochrome c. DnJNK2 had similar effects as SP600125 while 
dnJNK1 had no effect. co, unstimulated. wt, wild type. 
 

 

To investigate the function of JNK2 in apoptosis induced by 6-OHDA, caspase-3, PARP-1 

and caspase-8 cleavage was examined. 6-OHDA induced caspase-3 and PARP-1 cleavage, 

which was inhibited by incubation with SP600125 (Fig. 3.10 A) or transfection with dnJNK2 

(Fig. 3.10 B). As expected dnJNK1 had no effect on caspase-3 or PARP-1 cleavage (Fig. 3.10 

C). Caspase-8 cleavage was not seen either in wild type or in dnJNK2 cells (Fig. 3.10 A and 

B), indicating the importance of the mitochondrial pathway in 6-OHDA-induced apoptosis. 

 

 

 

 

 

 

 



Results 
 

 55

 

cleaved
caspase-3

caspase-3

caspase-8

A

cleaved
PARP-1

β-actin

co 2525 50
+--

vector
co 2525 50

+--

dnJNK2
2525 50

dnJNK1
co

+--
µM 6-OHDA
2 µM SP600125

B C

cleaved
caspase-3

caspase-3

caspase-8

A

cleaved
PARP-1

β-actin

co 2525 50
+--

vector
co 2525 50

+--

dnJNK2
2525 50

dnJNK1
co

+--
µM 6-OHDA
2 µM SP600125

B C

 
 
Fig. 3.10. Activation of apoptotic mediators 
A. Twelve hours after 6-OHDA stimulation caspase-3 and PARP-1 cleavage was seen in vector 
controls. This activation was attenuated by SP600125 B. The cleavage was blocked by dnJNK2, C. 
but not with dnJNK1. Caspase-8 cleavage was not detected under any conditions, although a strong 
expression was detected. co, unstimulated. 
 

 
Finally, in order to investigate bim regulation in response to 6-OHDA-induced apoptosis, bim 

mRNA levels were analyzed by semi-quantitative RT-PCR. Eighteen and 24 h after 25 µM 6-

OHDA stimulation, bim did not increase beyond/over basal level. However, dnJNK2 

markedly reduced bim mRNA after 18 h and 24 h 6-OHDA stimulation (Fig. 3.11). 
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Fig. 3.11. Regulation of bim 
Bim expression was not induced within 24 h. DnJNK2 reduced bim expression between 18 h and 24 h. 
h2a.z, histone 2A as control to normalize bim measurement. co, control. 
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3.1.7. The effect of JNK3 on 6-OHDA-induced toxicity 

 

PC12 cells only express JNK1 and JNK2 [22, 89] and this property renders PC12 cells a well-

defined cell culture system for the analysis of a single transfected JNK3 isoform. Therefore, 

PC12 cells were transfected with JNK3-EGFP and the functional potential of JNK3 in 6-

OHDA-induced toxicity was characterized. 

 

To examine if JNK3 had any influence on 6-OHDA-induced cell death, JNK3-transfected 

PC12 cells were stimulated with 25 µM and 50 µM 6-OHDA for 24 h. There was no increase 

in cell death of JNK3-transfected cells after treatment with 6-OHDA compared to wild type 

and vector-transfected cells (Fig. 3.12). 
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Fig. 3.12. Survival of wild type, vector-transfected and JNK3-transfected cells after stimulation 
with 6-OHDA 
In response to 6-OHDA survival of PC12 cells was reduced as compared to controls. The survival of 
JNK3-transfected cells was not significantly different from wild type or vector-transfected cells. n = 6.  
 

As shown in section 3.1.2, 6-OHDA induced a dose-dependent phosphorylation of total JNK 

in wild type and vector-transfected cells. Following JNK3 transfection, 6-OHDA caused a 

similar activation of JNK3 in cytoplasmic extracts. Interestingly, JNK3 was not activated in 

nuclear extracts while JNK1 and JNK2 were activated. However, JNK3 was present in the 

nucleus in untreated and 6-OHDA-stimulated cells (Fig. 3.13 A). Similar to wild type cells, 6-

OHDA induced translocation of JNK2, but not JNK1, into the nucleus in JNK3-transfected 

PC12 cells. Transfection with JNK3 did not enhance c-Jun phosphorylation compared to wild 

type after 6-OHDA stimulation (Fig. 3.13 B). 
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Fig. 3.13: Activation of JNK3 in response to 6-OHDA. 
A. Transfected JNK3 was activated after 6-OHDA treatment in the cytoplasm. JNK3 was not activated 
in the nucleus although it was translocated to the nucleus. B. Both wild type JNK1/2 and transfected 
JNK3 were activated in response to 6-OHDA in whole cell extracts, but transfection with JNK3 did 
not enhance c-Jun phosphorylation compared to wild type after 6-OHDA stimulation. 
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3.1.8. Differentiation protects PC12 cells against 6-OHDA-induced death 

 

When treated with NGF, PC12 cells differentiate into neuron like cells [86]. To investigate 

the influence of 6-OHDA on differentiated PC12 cells, they were treated with 50 ng/ml NGF 

for 7 days and stimulated with different concentrations of 6-OHDA for 24 h. In contrast to 

naïve PC12 cells, differentiated PC12 cells were resistant to 6-OHDA-toxicity. Twenty-five 

µM and 50 µM 6-OHDA did not provoke cell death in differentiated PC12 cells (Fig. 3.14 A). 

Interestingly, in contrast to its protective effects in naive cells, the specific JNK-inhibitor 

SP600125 induced cell death either in unstimulated (controls) or stimulated differentiated 

PC12 cells (Fig. 3.14 B). 
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Fig. 3.14. 6-OHDA did not induce cell death in differentiated PC12 cells 
A. PC12 cell were treated with 50 ng/ml NGF and stimulated with different concentrations of 6-
OHDA. Only 100 µM 6-OHDA induced significant cell death. B. Stimulation of differentiated PC12 
cells with 2 µM SP600125 induced cell death either in controls or in 6-OHDA-stimulated cells.  
 +++ gives the significance of changes compared with controls for p ≤ 0.001. co, unstimulated. n = 3.  
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3.2. JNKs and death of primary neuronal cells 
 

The aim of the second part of this study was to investigate the role of JNKs in the death of 

primary neurons. Two kinds of primary neuronal cultures, hippocampal and cortical cells, 

were grown from newborn rats and mice. 

 

3.2.1. Characterization of hippocampal and cortical neurons  

 

The hippocampal and cortical neurons were cultured for six days. The culture condition 

resulted in a mixed cell population with less than 20% astroglia cells and more than 80% 

neurons. Neurons were identified with the neuronal marker MAP-2 (microtubule associated 

protein 2) staining. In undifferentiated neurons MAP-2 is present in the axons, dendrites and 

the cell body. With subsequent development, MAP-2 vanishes from the axons, but remains in 

the dendrites and the cell body [90]. Astrocytes were identified with the astrocyte marker 

GFAP (glial fibrillary acidic protein) staining. Double staining of the cell cultures with MAP-

2 and GFAP showed the interaction between astrocytes and neurons (Fig.3.15). 

 

 

MAP-2+GFAPMAP-2+GFAP

 
Fig. 3.15. Double staining of the cells with MAP-2 and GFAP 
Arrows indicate neurons (blue) and arrowheads indicate astrocytes (brown). Magnification 200X. 

 

The following figures display hippocampal and cortical neurons and astrocytes in the culture. 

Immunofluorescence staining showed the typical characteristics of astrocytic and neuronal 

nuclei which are bigger in astrocytes and smaller in neurons. Nuclei were stained with 

Hoechst dye (Fig. 3.16). 
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Fig. 3.16. Hippocampal and cortical neurons in the culture 
A. Hippocampal and cortical neurons in the culture. Nuclei were stained with Hoechst dye (blue) and 
neurons were stained with MAP-2 (red). B. Astrocytes were stained with GFAP (red). Arrow indicates 
astrocytes in the culture and arrowheads indicate nuclei of hippocampal neurons. Magnification 200X. 
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3.2.2. Glutamate-induced death of primary hippocampal neurons 

 

L-glutamic acid is the principal excitatory neurotransmitter in the mammalian central nervous 

system and plays a crucial role in plasticity and toxicity of certain neuronal cells [91]. To 

examine whether JNKs are involved in the glutamate-induced excitotoxicity of neuronal cells, 

primary hippocampal cells from newborn rats (up to 24 hours) were isolated. 

 

Five days after plating the cells (DIV 5), the mixed neuronal cultures were stimulated with 

glutamate for 24 h and then stained with MAP-2. The density of neurons in untreated cells 

was counted and set as 100%. The neurons lost their MAP-2 immunoreactivity (IR) and the 

number significantly decreased to 66% after glutamate treatment. To investigate the role of 

JNKs on glutamate-induced cell death, mixed hippocampal cultures were pre-incubated with 

SP600125, the specific JNK- inhibitor, 30 min before glutamate treatment which rescued 56% 

of the otherwise dying neurons. This suggests that JNK pathway could be involved in 

glutamate-induced neuronal death (Fig. 3.17). 
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Fig. 3.17. Protection of hippocampal neurons by SP600125 against glutamate 
Glutamate caused significant cell death in neurons as compared to unstimulated controls (co) after 24 
h stimulation. Loss of neurons was indicated by the decrease of MAP-2 immunoreactivity. Pre-
incubation of mixed hippocampal cultures with 2 µM SP600125 significantly protected neurons from 
glutamate toxicity. Controls were defined as 100%. +++ gives the significance of changes compared 
with controls for p ≤ 0.01.  *** gives the significance of changes by SP600125 compared with 250 µM 
glutamate-treated cells for p ≤ 0.05.  n = 6. 
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As described above, only 66% neurons were alive after 24 h glutamate exposure. However, 

these surviving neurons exhibited morphological signs of severe cell stress such as short 

dendrites and vacuolated cytoplasm in comparison with untreated cultures (Fig. 3.18). 

 

 

 

 

 

 

 

 

 

 

Fig. 3.18. Morphology of degenerating neurons 
A. Untreated hippocampal neurons with intact continuous neurites and round smooth cell bodies. B. 
24 h after glutamate-treatment, neuronal morphology with short dendrites and vacuolated cytoplasm 
was seen (arrow). Magnification 200X. 
 
 

To determine whether glutamate induces apoptosis in hippocampal neurons, neurons were 

stained with the DNA dye Hoechst 33258 to visualize nuclear morphology. In the absence of 

glutamate, the cultured neurons exhibited normal cellular morphology with evenly stained 

nuclei (Fig. 3.19 A). Glutamate caused morphological changes that are characteristic for 

apoptosis, including fragmentation and condensation of nuclei (Fig. 3.19 B). However, it had 

no effect on astrocytes. 

 

Caspase is considered to play an essential role in the execution stage of apoptosis [92]. 

Activation of caspase-3 requires cleavage of its inactive form (32 kDa) into active p17 and 

p12 subunits [93]. To investigate the influence of glutamate on caspase-3 activation, Western 

blot analysis was performed using a cleaved-caspase-3 specific antibody that recognizes the 

p17 subunit of activated caspase-3. After determining cleaved-caspase-3, blot membranes 

were stripped and rehybrized with antibody against caspase-3 to normalize for protein 

contents. Glutamate stimulation induced caspase-3 activation which was inhibited after pre-

incubation with JNK-inhibitor SP600125 (Fig. 3.19 C). 
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Fig. 3.19. Death of hippocampal neurons induced by glutamate is apoptotic 
Hoechst staining visualizes nuclear morphology. A. Untreated cells. B. Cells treated with 250 µM 
glutamate for 12 h. Arrowheads indicate healthy cells with uniformly stained nuclei. Arrows mark 
neurons with apoptotic morphology including condensed or fragmented nuclei.  Magnification 200X. 
C. Glutamate induced caspase-3 activation in mixed hippocampal cultures. Pre-incubation with 
SP600125 (30 min) inhibited the activation of caspase-3. Western immunoblot probed with antibodies 
to cleaved caspase-3 (top) and caspase-3 (bottom). n = 2. 
 

Regulation of JNK activity in glutamate treated neurons 

 

JNK pathways are essential for apoptosis [58]. To examine the role of the JNK pathways in 

glutamate toxicity, the cells were treated with 250 µM glutamate for 4 h. 

Immunocytochemistry was performed using a specific anti-phospho-JNK and anti-phospho-c-

Jun antibody. In untreated cells, phosphorylated-JNK was concentrated in the nucleus and the 

varicosities of the neurons and astrocytes. After glutamate treatment the phosphorylated-JNK 

immunoreactivity faded out in the varicosities and the nucleus of the neurons while the JNK 

activity persisted in astrocytes (Fig. 3.20 A and B). However, in untreated cells, 

A 
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phoshporylated-c-Jun was hardly seen, but it increased slightly after glutamate treatment. 

(Fig. 3.20 C and D). 

 

For Western blot experiments nuclear extracts were obtained as described in methods. Equal 

amounts of protein (10 µg) extracts were separated by SDS-PAGE, and detected by anti-p-

JNK and anti-p-c-Jun antibodies. A basal JNK activity was seen in the untreated primary cell 

nucleus while this activation was suppressed after glutamate treatment which was also seen by 

staining of the cells with a specific anti-p-JNK antibody. In untreated cells, c-Jun had little or 

no activity which was increased in the nuclear extracts of primary neurons following 4 h 

glutamate stimulation. Pre-incubation of the neurons with 2 µM SP600125 reduced this 

activation (Fig. 3.20 E). 
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Fig. 3.20. Regulation of JNKs after glutamate treatment 
A. Phosphorylated-JNK was concentrated in the nucleus and the varicosities of the neurons and the 
nucleus of astrocytes. B. Phosphorylated-JNK immunoreactivity faded out in varicosities and the 
nucleus of neurons but persisted in astrocytes in cultures stimulated with 250 µM glutamate for 4 h. C. 
Phospho-c-Jun could not be detected in untreated cells. D. Glutamate stimulation increased c-Jun 
phosphorylation. Magnification 200X. E. Equal amounts of protein (10 µg) from mixed hippocampal 
neuron extracts were electrophoresed and immunoblotted with anti-p-JNK and anti-p-c-Jun antibodies. 
JNK had a basal activity in untreated primary cell nucleus while this activation was attenuated after 
glutamate treatment. However c-Jun had a weak basal activation which was increased in the nucleus of 
primary neurons after glutamate stimulation. Pre-incubation of the neurons with 2 µM SP600125 
reduced this activation. 
n = 2. co, unstimulated. 

 

B.
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3.2.3. 6-OHDA-induced death of primary cortical cells 

 

6-OHDA induced a substantial death in PC12 cells. To investigate the effects of this 

substance on primary neuronal cells, cortical neurons were prepared from newborn rats as 

hippocampal cells. Five days after (DIV 5) plating the cells, cortical cells were stimulated 

with different concentrations of 6-OHDA (25 µM, 50 µM, 100 µM) for 24 h and cell death 

was analysed by measurement of LDH activity. After 24 hours of stimulation 25 µM 6-

OHDA weakly increased the LDH release but the difference was not significant compared to 

untreated cells. Fifty and 100 µM 6-OHDA induced significant cell death after 24 hours of 

stimulation (Fig. 3.21). 
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Fig. 3.21. 6-OHDA-induced death 
Neuronal death induced by different concentrations of 6-OHDA in mixed cortical neuronal culture was 
analysed 24 h later by measurement of LDH released. Untreated cells (co) were set as 1.0.  *** gives 
the significance of changes compared with the controls for p ≤ 0.001. n = 6. 
 

To determine whether 6-OHDA induces apoptosis in cortical neurons, neurons were stained 

with the DNA dye Hoechst 33258 to visualize nuclear morphology. In the absence of 6-

OHDA the cultured neurons exhibited normal cellular morphology with evenly stained nuclei 

which were scored as healthy, viable neurons. 6-OHDA caused morphological changes 

characteristic of apoptosis, including fragmentation and condensation of nuclei. However, 

13% apoptotic nuclei were also seen in untreated neurons, indicating dissociation and 

cultivation may cause DNA fragmentation in neurons (Fig. 3.22). 
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Fig. 3.22. Nuclear pyknotic morphology in mixed cortical neuronal cultures treated with 6-
OHDA for 24 h 
Neurons 5 days in vitro (DIV 5) were stimulated with 6-OHDA for 24 h and stained with Hoechst 
33258 to show nuclear pyknotic morphology. A. Untreated (control) cultures. B. Cultures exposed to 
50 µM 6-OHDA for 24 hours. Note the typical apoptotic morphology in neurons (nuclear 
condensation). Arrows indicate neurons with normal morphology whereas arrowheads indicate 
apoptotic neurons.  Magnification 200X. C. The proportion of apoptotic nuclei is shown. In untreated 
cultures 13% of cells have apoptotic nuclei. * gives the significance of change compared with controls 
for p ≤ 0.05. + gives the significance of change compared with controls for p ≤ 0.001. n = 5. 
 

 

Regulation of JNKs after 6-OHDA treatment 

 

Glutamate altered the distribution of JNK activity in hippocampal neurons. Does this also 

hold true for cortical neurons following 6-OHDA? Western blot experiments demonstrated a 

distinct basal JNK activity in the cytoplasm and nucleus of untreated cortical neurons. Similar 

to hippocampal neurons, JNK activity of cortical neurons was reduced in the nucleus 
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following 6-OHDA while it did not change in the cytoplasm. Which JNK isoforms are 

responsible for this attenuation of nuclear JNK activity? Western blotting demonstrated the 

translocation of JNK2 into the nucleus of cortical neurons between 1 h and 2 h following 6-

OHDA and the parallel decrease between 2 h and 4 h in the cytoplasm, whereas the JNK1-IR 

faded out in the nuclei. At the same time, 6-OHDA induced the activation of c-Jun and the 

maximal phosphorylation at 2 h coincided with the maximal presence of JNK2 and the 

decrease of JNK1 (Fig. 3.23).  
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Fig. 3.23. JNKs after 6-OHDA treatment 
Western blot experiments against phospho-JNK, phospho-c-Jun, JNK1 and JNK2 after 50 µM 6-
OHDA in nuclear and cytoplasmic extracts. In the nucleus, 6-OHDA induced a distinct 
phosphorylation of c-Jun whereas the pool of the upstream JNK kinases decreased. Analysis of the 
individual JNK isoforms demonstrated that JNK1 slightly declined and JNK2 clearly increased in the 
nucleus. In parallel, JNK2 weakly faded out in the cytoplasm, whereas JNK1 did not change. 
 

SP600125 protects cortical neurons from 6-OHDA-induced death 

 

Previous studies demonstrate that JNKs play an important role in neuronal apoptosis. To 

investigate the role of JNKs in 6-OHDA-induced cortical cell death, the specific JNK-

inhibitor SP600125 was used. Pre-incubation of cortical neurons with the JNK inhibitor 

SP600125 significantly decreased LDH release and diminished the proportion of apoptotic 

nuclei by 40% (Fig. 3.24 A-B).  

 



Results 
 

 69

Finally, the influence of 6-OHDA and SP600125 on caspase-3 activation was also 

investigated. The cortical neuronal cultures were pre-incubated with 2µM SP600125 (30 min) 

and stimulated with 50 µM 6-OHDA. Western blot analysis was performed using a cleaved-

caspase-3 specific antibody that recognizes the p17 subunit of activated caspase-3 as 

hippocampal neuronal cultures. Caspase-3 was activated after 12 h of 6-OHDA treatment and 

this activation was attenuated with SP600125 (Fig. 3.24 C). 
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Fig. 3.24. Protection of cortical neuronal cells from 6-OHDA-induced death 
A. Pre-incubation with 2 µM SP600125, protected neurons from 50 µM 6-OHDA-induced death. 
Neuronal death was analysed by LDH measurement. n = 6. B. JNK-inhibitor SP600125 diminished 6-
OHDA-induced apoptotic nuclei. Apoptotic nuclei were visualized by Hoechst 33258 test. n = 5. C. 6-
OHDA induced caspase-3 activation following 50 µM 6-OHDA treatment for 12 hours in mixed 
cortical neuronal cultures. The JNK-inhibitor SP600125 inhibited the activation of caspase-3. Western 
blots probed with antibodies against cleaved caspase-3 (top) and caspase-3 (bottom). n = 3. 
** (p ≤ 0.01) indicates significant difference between 6-OHDA vs. SP600125 and 6-OHDA 
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Effects of JNK isoforms on 6-OHDA-induced apoptosis 

 

JNKs play an important role in 6-OHDA-induced cell death in primary cortical neurons. To 

examine which JNK isoform is responsible from this cell death, primary neurons from JNK1 

and JNK3 ko mice were used. Cell death was measured with LDH assay. Analysis showed 

that 25 and 50 µM 6-OHDA induced death in mouse cortical cells, however there was no 

significant difference between cortical neurons of wt, JNK3 ko and JNK1 ko mice, suggesting 

all JNK isoforms are involved in 6-OHDA-induced neuronal death, however, experiments 

with JNK2 ko have to be performed (Fig. 3.25). 
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Fig.3.25 Effect of JNK isoforms on 6-OHDA-induced cell death 
LDH assay showed that there was no significant change between wt, JNK3 ko and JNK1 ko isoforms 
after 25 and 50 µM 6-OHDA treatment. 
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3.3. Function of JNKs in differentiation of primary hippocampal and cortical neurons 

 

Besides their apoptotic functions, JNKs are important for differentiation of neurons and the 

development of the brain [26]. The aim of the third part of this study was to investigate the 

physiological role of JNKs in neuronal differentiation as visualised by neurite extention. 

 

3.3.1. Effects of the JNK-inhibitor SP600125 on neurite elongation 

 

JNKs are essential for the formation and elongation of neurites in PC12 cells [57, 94, 95]. 

Does this also hold true for primary neurons in which it has been demonstrated a most 

effective execution of apoptosis by JNK?  Hippocampal and cortical cultures were exposed to 

2 µM SP600125 at the 2nd, 3rd or 5th day in vitro (DIV) i.e. following explantation. At DIV 6, 

the cultures were stained with MAP-2 antibody, the lengths of neurites were measured and 

classified in 4 groups (<40, <80, <120 and >120 µm). The inhibition of JNK between DIV 2 

and DIV 3 effectively prevented the neurite elongation in primary hippocampal neurons as 

shown by MAP-2 immunocytochemistry (Fig. 3.26 A-B). Measurement of the neurite length 

demonstrated a significant shift from long to short neurites with 89% and 57% of <40 µm 

neurites when SP600125 was applied within the first 48 h or 72 h respectively. (Fig. 3.26 C).  

To examine If JNK inhibitor SP600125 has some effect on neuronal survival, the 

hippocampal cultures were stimulated with 2 and 10 µM SP600125 at the 2nd day and the cells 

were stained with the DNA dye Hoechst 33258 to visualize nuclear morphology at the 6th day. 

Analysis showed that 2 µM SP600125 had not any effect on neuronal survival and JNK 

inhibition has a specific effect on neuritogenesis. However, 10 µM SP600125 raised the 

apoptotic nuclei slightly, indicating that higher concentrations of SP600125 may have toxic 

effects (Fig.3.26 D). 

 

 In contrast to rat hippocampal neurons, JNK inhibition by SP600125 did not significantly 

affect neurite elongation in cortical neurons apart from an increased proportion of short 

neurites after application at DIV3 (Fig. 3.27). 
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Fig. 3.26. Effects of JNK-inhibitor, SP600125 on neurite elongation in hippocampal neurons 
Hippocampal rat neurons were exposed to 2 µM SP600125 at 2nd, 3rd or 5th day in vitro (DIV). At DIV 
6, cultures were stained with MAP-2 antibody. A. Untreated cultures and B. cultures exposed to 
SP600125 at DIV 2 with dramatically abrogated neurites. Magnification 200X.  
C. The distribution of the neurite length (µm) after SP600125 incubation revealed that SP600125 
significantly attenuated the neurite elongation. D. The hippocampal cultures were stimulated with 2 
and 10µM SP600125 at the 2nd day and the cells were stained with the DNA dye Hoechst 33258 to 
visualize nuclear morphology at the 6th day. 2µM SP600125 had not any effect on neuronal survival. 
*, ** give the significant changes compared with the controls for p ≤ 0.01 and p ≤ 0.001, respectively 
(each n=3). co = unstimulated control after cultivation for 6 days. 
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Fig. 3.27. Effects of JNK-inhibitor, SP600125 on neurite elongation in hippocampal neurons 
The effect of the JNK inhibitor SP600125 on neurite elongation of rat cortical neurons was analysed 
by MAP-2 immunocytochemistry. Cultures were exposed to 2 µM SP600125 at 2nd, 3rd or 5th day 
(DIV2, 3, 6) (each n=3). At DIV 6, cultures were fixed and the neurite lengths were measured. 
SP600125 did not affect neurite elongation in neonatal rat cortical cultures.  
 
  
3.3.2. Time course of JNK and c-Jun activation during differentiation 

From the very beginning of regrowth, JNKs are mandatory for the elongation of neurites. 

Does the time course of JNK and c-Jun activation parallel this function? Whole cell extracts 

from mixed rat hippocampal cultures at DIV 2, DIV 3 and DIV 6 were screened by Western 

blotting. The pool of activated JNKs substantially and continuously raised with a maximum at 

DIV 6. Furthermore, the use of individual JNK antisera demonstrated that all three JNK1, 2 

and 3 isoforms moderately increased. In contrast to the increase in JNK activity, the pool of 

phosphorylated c-Jun declined from its maximal level at DIV 2 and faded out at DIV 6 (Fig. 

3.28 A). Thus, the increase of activated JNKs is not automatically indicative for the 

phosphorylation of their nuclear high affinity substrate c-Jun. 

 

JNKs are not mandatory for the neurite elongation of cortical neurons following explantation 

from neonatal rat brain. Is this lack of efficacy reflected by the absence of activated JNKs 

and/or c-Jun? Whole cell extracts from cortical cultures were lysed at DIV 2, DIV 3 and DIV 

6 and screened for total JNK, phosphorylated JNK and phosporylated c-Jun by Western 

blotting. Unexpectedly, the pattern of JNK activation resembled that of hippocampal neurons 
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with a moderate increase in total JNK and a substantial increase in phosphorylated JNK. The 

time course of phosphorylated c-Jun, however, revealed some difference. In contrast to its 

distinct presence after 3 and 6 days in hippocampal neurons (Fig.3.28 A), phosphorylated c-

Jun was completely absent during this observation period (Fig. 3. 28 B). Again, the activation 

of the upstream JNK kinases in whole cell extracts does not automatically indicate the 

phosphorylation of their high affinity substrates such as the nuclear c-Jun. 
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Fig. 3.28. Regulation of JNKs during differentiation 
Time course of activated JNKs and c-Jun during the differentiation of hippocampal and cortical 
neurons.  A. Whole cell extracts from cell cultures at 2, 3 or 6 days in culture were prepared for 
Western blotting for phospho-c-Jun, phospho-JNK, total JNK, JNK1, JNK2 and JNK3. The activated 
phospho-c-Jun declined during the observation period whereas the pool of activated upstream JNK 
kinases was strongly enhanced. This increase was carried by all three JNK isoforms, but in particular 
by JNK1 and JNK2. B. As in neonatal hippocampal neurons, the activation of c-Jun activation 
decreased and in parallel the activation of JNK increased during the differentiation of cortical neurons. 
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4. Discussion 
 

The aims of the present study were to determine the physiological and pathological roles of 

JNK in PC12 cells and in primary neurons by characterizing its activity and expression as 

well as the phosphorylation of its substrate c-Jun. Moreover, I determined the effect of its 

inhibition on cell survival and on neurite outgrowth. Finally, isoform-specific functions of 

JNKs in the mitochondrial apoptosis pathway in PC12 cells were elucidated. 

 

4.1. The cell culture system 

 

In this study, PC12 cells, primary hippocampal and cortical neurons were used for the 

determination of the role of JNKs in physiological or pathological conditions. 

 

The PC12 cell line was cloned in 1976 from a transplantable rat pheochromocytoma [86]. In 

general, PC12 cells exhibit many of the phenotypical properties associated with 

pheochromocytoma cells and their non-neoplastic counterparts, adrenal chromaffine cells. 

Additionally, PC12 cells respond to NGF and, in its presence undergo a dramatic change in 

phenotype wherein they acquire many properties of sympathetic neurons [86]. Importantly for 

this thesis, PC12 cells have fairly well been characterized with regard to their biochemical 

properties. They express only JNK1 and JNK2 isoforms, but not JNK3 isoform [89, 96]. 

These qualities render PC12 cells a well-defined cell culture system for the analysis of the 

pathological role of individual JNK isoforms at the mitochondria and the mode of JNK-

induced release of cytochrome c. 

 

However, some different properties between proliferating and differentiated permanent 

neuronal cells raise the need for the use of primary neuronal cells in this study. Therefore, 

primary hippocampal and cortical cultures were also used. The hippocampus is a source of 

neurons with well-characterized properties typically for central nervous system neurons in 

general [97] and suitable for dissociated cell culture. 

 

Immunocytochemical analysis showed that hippocampal and cortical cultures revealed after 

six day in culture the characteristic properties of the corresponding neurons. Staining with the 

neuronal marker MAP-2 (microtubule associated protein-2) and the astrocyte marker GFAP 

(glial fibrillary acidic protein) identified more than 80% of the cells as neurons in the culture. 
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Very few cells being neither positive for MAP-2 nor for GFAP, were other non-neuronal cells 

such as fibroblasts and endothelial cells. Proliferation of these cells and astrocytes were 

inhibited with cytosine arabinoside (AraC). 

 

In undifferentiated hippocampal or cortical neurons MAP-2 is present in the axons, dendrites 

and the cell body. With subsequent development, MAP-2 vanishes from axons, but remains in 

dendrites and the cell body [90], and this was also characteristic for the development of 

hippocampal neurons in vitro [98]. 

 

4.2. Role of JNK isoforms following 6-OHDA-induced oxidative stress in PC12 cells 

 

The results of the present thesis show that the neurotoxin 6-OHDA, a generator of reactive 

oxygen species (ROS) and activator of mitochondrial stress [99], kills a high proportion of 

PC12 cells within 24 h. JNK2, but not JNK1, was translocated to the nucleus and to the 

mitochondria upon 6-OHDA challenge and mediates 6-OHDA-induced apoptosis. Inhibition 

of JNK activity by SP600125 or transfection with the dominant-negative JNK2 (dnJNK2), but 

not dominant-negative JNK1 (dnJNK1), substantially attenuated 6-OHDA-induced cell death, 

release of cytochrome c and caspase-3 activation. Surprisingly, transfection of PC12 cells 

with EGFP-JNK3 did not enhance cell death induced by 6-OHDA. Interestingly, JNK3 was 

not activated in nuclear extracts while JNK1 and JNK2 were activated. However, JNK3 was 

present in the nucleus of untreated and 6-OHDA-stimulated cells. In contrast to naïve PC12 

cells, 25 and 50 µM 6-OHDA did not induce any cell death in NGF-differentiated PC12 cells, 

and the JNK-inhibitor SP600125 even induced the death of non-stimulated differentiated 

PC12. 

 

4.2.1. JNKs are mediators of 6-OHDA-induced cell death in PC12 cells 

 

The neurotoxin 6-OHDA is a widely used experimental stimulus for the degeneration of 

(dopaminergic) neurons in vivo and in vitro. It mediates cell death via several different 

mechanisms. It is a strong producer of oxidative stress with all its deleterious consequences 

for the cell, e.g. impairing intracellular redox potential regulation, lipid peroxidation, DNA 

strand break (reviewed by [100, 101]). Independent of ROS formation, 6-OHDA interacts 

with and inhibits the complex-I in isolated brain mitochondria [102-104] but the relevance of 

complex-I inhibition for cell death has not yet been proven [105]. Closely related to the 
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mitochondrial pathology is the 6-OHDA-mediated cytochrome c release with subsequent 

activation of caspase-9 and caspase-3, PARP-1 cleavage and DNA fragmentation [106-108] 

(reviewed by [101, 109]). Moreover, protection against 6-OHDA toxicity by NO is mediated 

by the inhibition of cytochrome c release [110]. Beyond generation of ROS and mitochondrial 

dysfunction, 6-OHDA is a strong activator of JNKs [106], but the mode of JNK activation by 

6-OHDA remains to be elucidated. 

 

JNK-mediated neuronal death occurs in response to various stimuli, e.g. growth factor 

withdrawal [111], excitotoxicity [30] or neurotoxins such as MPTP [54, 56]. 6-OHDA caused 

cell death in PC12 cells. Inhibition of JNK activity by 2 µM SP600125 rescued 68% of the 

otherwise dying neurons, and a similar protective effect was reached by dnJNK2, but not by 

dnJNK1. The rescue by dnJNK2 demonstrates that one individual JNK isoform rather than the 

total pool of JNKs is responsible for cell death as already shown for JNK3 [30, 57] and JNK2 

[112]. However, inhibition of JNKs only provided a transient protection against 25 µM 6-

OHDA since SP600125 and dnJNK2 were no longer protective after 48 h and 72 h. These 

data were confirmed by recent findings that the inactivation of JNK3 and the N-terminal 

phosphorylation domains of c-Jun conferred significant but only transient protection against 

6-OHDA-mediated degeneration of dopaminergic neurons in adult mice [57]. Transient 

protection against 6-OHDA was also reported after inhibition of caspases [102]. The pathway 

of cell death induced by 6-OHDA is highly dependent on the concentration of 6-OHDA used. 

At 50 µM 6-OHDA, JNK inhibition either by SP600125 or by transfection with dnJNK2 was 

no longer able to protect the cells at any time point, indicating a shift in the cellular death 

pathway(s). Recently, the role of JNKs for 6-OHDA-mediated death was examined with 

regard to cell death caused by ER stress [107] in response to 40-100 µM 6-OHDA. At higher 

concentrations, 6-OHDA induces a different, i.e. accelerated (necrotic) cell death [113] which 

confirms the findings of the present study. The overload of mitochondrial calcium during 

excitotoxicity can result in spill-over of calcium to the ER with subsequent ER stress-

mediated death [45, 114]. 

 

JNK was activated in response to 6-OHDA within 2 h and reached its maximal levels at 4 h in 

the cytoplasm, nucleus and at the mitochondria. This activation was accompanied by a 

translocation of JNK2 into the nucleus and to the mitochondria, whereas the constitutive 

presence of JNK1 did not change in these compartments. The differential translocation of 

JNK isoforms is a critical element for the understanding of isoform-specific JNK actions. For 
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instance, the nuclear translocation of activated JNK2 and JNK3, but not JNK1, is essential for 

the c-Jun/AP-1 mediated transcription [27]. It is also conceivable that JNK2 translocation into 

the nucleus leading to an increased nuclear JNK activity and the subsequent c-Jun 

phosphorylation enhances the expression of Fas-ligand, which in turn facilitates apoptosis 

[113]. Transfection of PC12 cells with dnJNK2 reduced the pool of phosphorylated JNK in 

the nucleus after stimulation with 6-OHDA and strongly reduced the 6-OHDA-induced 

translocation of endogenous JNK2 to the nucleus while dnJNK1 had not such effect. 

Similarly, JNK-inhibitor SP600125 attenuated the translocation of JNK2, but not JNK1 into 

the nucleus following 6-OHDA treatment. These findings suggest that JNK2 is the active JNK 

isoform which mediates the neurodegenerative effects of 6-OHDA. However, the additional 

JNK inhibition via SP600125 in dominant negative JNK2 cells completely abolished the 

protection obtained by either dominant negative JNK2 or SP600125. This suggests the 

physiological role of JNK1 for the survival of PC12. Indeed, even an anti-apoptotic function 

of JNK1 in non-neuronal cells has been suggested, further complicating the different aspects 

of JNK signalling [87]. 

 

4.2.2. The JNK signalosome at the mitochondria 

 

The specific mitochondrial translocation of JNK2, but not JNK1, raises the question which 

signalling pathways control the JNK translocation to and/or the JNK activation at the 

mitochondria. Phosphorylation of JNKs is a prerequisite for translocation. On the other hand, 

the presence of non-phosphorylated JNK1 and JNK2 in untreated cells argues against 

phosphorylation as an absolute precondition for translocation. Similarly, the inhibition of 

MKK4 phosphorylation by dnJNK2 or SP600125 did not reduce the amount of MKK4 at the 

mitochondria indicating that translocation and phosphorylation can be separate events. The 

unexpected inhibitory effect of dnJNK2 on MKK4 phosphorylation is a novel observation 

which warrants further investigation. However, SP600125 may have some ability to inhibit 

upstream kinases in the JNK pathway [115]. It is well conceivable, and supported by the 

findings so far, that a constitutive pool of MKK4 is present at the mitochondria, part of which 

is activated or replaced with activated MKK4 from the cytoplasmic environment upon 6-

OHDA stimulation. Overexpression of dnJNK2 or treatment with SP600125 could shift the 

equilibrium between active and inactive MKK4 by recruiting an excessive amount of active 

MKK4 from the mitochondria-associated pool after 6-OHDA stimulation, which may result in 
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the observed suppression of the mitochondrial phospho-MKK4 signal in dnJNK2-transfected 

or SP600125 treated cells. 

It was shown that MKK4 and JIP-1 are localized at the mitochondria, whereas MKK7 was not 

detectable in the mitochondrial fraction. This suggests a specific JNK pathway for 

mitochondrial pathology. MKK4 was previously found in mitochondrial fractions from 

cardiomyocytes [116], whereas the presence of JIP-1 and the absence of MKK7 are 

completely novel observations. The absence of MKK7 in mitochondrial homogenates is also 

conceivable with the findings, that the MKK7/JNK pathway is responsible for neuritogenesis 

and neurite regrowth after injury [26, 50]. Furthermore, the co-localization of activated JNK 

with the JNK-binding protein Sab [39] points to specific mitochondrial components of the 

JNK pathway. Sab strongly associated with the smaller JNK splice variants [39], which is in 

agreement with the present finding that activated JNK was almost exclusively found in the 46 

kD band. 

 

4.2.3. JNK2 controls the release of cytochrome c, expression of Bim and activation of 

apoptotic proteins 

 

Cytochrome c released from the mitochondrial transition pore is indispensable for the 

generation of the apoptosome with the subsequent activation of downstream caspases 

(reviewed by [117]). Therefore, the control of cytochrome c release is central to anti-apoptotic 

and apoptotic cellular pathways (reviewed by [118]). JNKs can activate pro-apoptotic 

mediators of the transition pore such as Bax, BAD, BIM, BID or Dp5 [40-42, 46, 118] and 

de-activate anti-apoptotic proteins such as Bcl-2 [39, 43, 118]. Moreover, JNKs mobilize 

Smac/Diablo [45] which is released from mitochondria and inhibits anti-apoptotic proteins in 

the cytoplasm. The release of cytochrome c is tightly linked to the presence and activation of 

JNKs [40, 111], and the JNK-mediated cytochrome c release can involve the nuclear 

activation of c-Jun [25] with the subsequent expression of the pro-apoptotic BH3-only protein 

BIM [25, 46]. 

 

JNK inhibition prevented ischemia-induced mitochondrial translocation of Bax and Bim, 

release of cytochrome c and Smac, and activation of caspase-9 and caspase-3 [119-121]. 

However, the issue of the JNK isoform(s) responsible for cytochrome c release in neuronal 

cells has not been clarified. It was shown in this study that dnJNK2, but not dnJNK1, 

antagonises 6-OHDA-induced cell death, cytochrome c release, caspase-3 and PARP-1 
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activation to a similar, or even stronger, extent as the JNK-inhibitor SP600125. The 

translocation of JNK2 to the nucleus and mitochondria supports the notion that the assembly 

of a selective JNK2 signalosome propagates the mitochondrial pathology (Fig. 4.1). A central 

role of JNK2, but not JNK1, for cellular degeneration was also seen in fibroblasts where 

JNK2 mediates tumor necrosis factor-α-induced cell death via caspase and cathepsine 

signalling [56, 122] and the role of JNK2/3 for neuronal stress in primary cerebellar granule 

neurons was examined [27]. Recently, it was shown that in various cell types including 

fibroblasts, erythroblasts and hepotocytes, JNK2 deficiency leads to increased cellular 

proliferation [123]. However, the role of JNK2 is controversially discussed. JNK2 has been 

implicated in tumor growth and cell proliferation [124, 125], and in response to neurotrophic 

factors [50, 126]. Importantly, SP600125, which prevents the stress-induced alterations in the 

membrane potential [87], blocks the mitochondrial translocation of JNK2, but not JNK1. This 

finding suggests that the intracellular distribution of JNK2 depends on its activation and, by a 

positive feedback mechanism, on activated upstream kinases [127]. It remains to be clarified 

whether the apparently moderate mobility of JNK1 might be due to the absence of this 

feedback loop. 

 

The induction of apoptosis and the activation of caspase-3 by 6-OHDA has been examined in 

several studies [128, 129]. Especially in PC12 cells, it has been shown that 25 µM 6-OHDA 

caused apoptosis, whereas the application of 50 µM 6-OHDA caused necrotic cell death [107, 

130]. Activation of mitochondria independent caspase-8 after addition of 6-OHDA was not 

detected despite a strong expression and this underlines the importance of the mitochondrial 

pathway. In fact, the 6-OHDA-induced activation of caspase-8 seems to be a cell type-specific 

event since it has only been described to occur in MN9β cells and mesencephalic neurons 

[131]. The crucial involvement of JNKs in the mitochondrial stress pathway after stimulation 

with 6-OHDA and its effect on the activation of caspase-3 and the cleavage of PARP-1 has 

not been examined before. However, it is known that JNKs play a role in mitochondrial 

signalling in the context of oxidative stress, where JNK inhibition reduced caspase-9 activity 

[31]. 

 

In addition to the phosphorylation of mitochondria-associated substrates, nuclear JNK2 joins 

the nuclear pool of activated JNKs and subsequently contributes to the transcription of c-

Jun/AP-1 controlled target genes such as BIM [25, 41].On the other hand, SP600125 or 

dnJNK2 distinctly reduce nuclear levels of activated JNKs. Dominant-negative JNK2 
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interfered with the transcription of bim at a delay between 18 h and 24 h, but not between 4 h 

and 12 h. The role of the constitutively present JNK1 for mitochondrial functions remains to 

be defined. JNK1 was recently found in the anti-apoptotic XIAP-TAK1-cascade [87], but the 

link to mitochondria-associated protection is speculative. Moreover, the clear distinction 

between anti-apoptotic JNK1 and apoptotic JNK2 is not a general principle since JNK1 can 

also confer apoptosis by Bcl-2 phosphorylation in immune cells [132]. 
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Fig. 4.1. Effects of 6-OHDA on JNK isoforms at the mitochondria 
The JNK2, but not the JNK1 isoform, mediates the death of PC12 following 25 µM 6-hydoxy-
dopamine. Following translocation to the mitochondria, JNK2 mediates cytochrome c release, 
activation of caspase-3 and PARP-1. 
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4.2.4. The effect of JNK3 on 6-OHDA-induced cell death 
 

From all JNK isoforms, JNK3 in particular has been associated with apoptosis in pathological 

contents, and due to its defined expression, predominantly in neuronal degeneration. Deletion 

of the mouse JNK3 gene caused resistance to excitotoxic glutamate receptor agonist kainic 

acid with reduction in seizure activity and apoptosis of hippocampal neurons [30] as well as 

the resistance to 6-OHDA and nerve fiber injury [57]. JNK3 is likely to contribute to ischemic 

death in prenatal and adult rats [133, 134]. In cortical and cerebellar neurons JNKs hold a 

central role in apoptosis caused by UV irradiation, growth factor withdrawal, ß-amyloid and 

sodium arsenide [135-138], however, it has a minor role in cell death following DNA damage 

[139]. Phosphorylation of c-Jun and activation of JNK3 is important in cell death induced by 

Jnk3 gene [30]. 

 

In the present study, PC12 cells which normally only express JNK1 and JNK2, were 

additionally transfected with JNK3. In these cells 6-OHDA did not enhance cell death and it 

did not increase c-Jun phosphorylation compared with vector transfected cells. JNKs realize 

their degenerative effects at least partially in the nucleus and at the mitochondria. However, 

after transfection with JNK3, 6-OHDA caused a similar activation of JNK3 in cytoplasmic 

extracts, but not in the nuclear and mitochondrial ectracts which could explain the absence of 

enhanced cell death in JNK3 transfected cells. Absence of JNK3 activation in the nucleus did 

not induce influence increase in c-Jun activation indicating that there is a correlation between 

JNK3 activation and c-Jun phosphorylation and also JNK3-mediated degeneration. It was 

recently shown that JNK3-deficiency reduced the increase of c-Jun phosphorylation and 

apoptosis after stressful stimulus [30, 137]. The findings in this study suggest that JNK3 is not 

involved in 6-OHDA-induced death, at least in PC12 cells. The missing apoptotic action of 

JNK3 in PC12 cells not necessarily means that JNK3 is without any function in PC12 cells. It 

was shown that transfected JNK3 significantly enhanced NGF-induced neurite outgrowth in 

PC12 cells [67]. 

 

4.2.5. Differentiation protects PC12 cells against 6-OHDA-induced death 

 

When treated with NGF, PC12 cells differentiate into neuron like cells [86]. In contrast to 

naïve PC12 cells, differentiated PC12 cells did not die following 25 µM and 50 µM 6-OHDA. 

It was recently shown that NGF prevented PC12 cells from MPTP induced cell death by 

suppressing caspase-3 activity [140] and protected PC12 cells against 6-OHDA-induced 
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oxidative stress [141], indicating that NGF has protective effect against excitotoxic stimulus. 

However 6-OHDA induced death also in differentiated PC12 cells at higher concentrations 

such as 100 µM  [142] which is in line with this study. 

 

Inhibition of JNKs with SP600125 induced cell death in either unstimulated or stimulated 

differentiated PC12 cells suggesting that JNKs have different functions in differentiated PC12 

cells than in naïve cells. JNKs may have functions in cytoskeletal regulation. Indeed, JNKs 

are relevant for both, the integrity and/or function of the cytoskeleton and the reception of 

signal emanating from the cytoskeleton. Several cytoskeletal components are JNK substrates 

such as neurofilaments and microtubule-associated proteins (MAPs). MAP-2 and MAP-1B 

polypeptides are hypophosphorylated in Jnk1-/- brains, and this compromised the ability to 

bind microtubules and promote their assembly. These results suggest that JNK1 is required 

for maintaining the cytoskeletal integrity of neuronal cells and is a critical regulator of MAP 

activity and microtubule assembly [60]. In cultured neurons from the intermediate zone, 

activated JNK was detected along microtubules in the neurite processes. Application of a 

JNK-inhibitor caused irregular morphology and increased stable microtubules in processes, 

and decreased phosphorylation of microtubule associated protein 1B, raising a possibility of 

the involvement of JNK in controlling tubulin dynamics in migrating neurons [143]. 

Additionally, it is known that JNKs have also anti-apoptotic functions [87]. It appears that the 

JNK pathways function in a cell-type and stimulus dependent manner, i.e. their different 

components and compositions can play opposite roles e.g. in apoptosis or in differentiation. 

 

4.3. Role of JNKs in degeneration of neurons 

 

4.3.1. Glutamate induced cell death in hippocampal neurons 

 

L-Glutamic acid (glutamate) is the principal excitatory neurotransmitter in the mammalian 

central nervous system. Glutamate does not only mediate excitatory neurotransmission, but is 

also involved in other phenomena such as neuronal plasticity and cell death [91, 144]. Cell 

death induced by glutamate is believed to be involved in neuronal loss associated with both 

acute (e.g. stroke) and chronic (e.g. Alzheimer’s disease) neurodegenerative insults [32, 145]. 

 

In this study, glutamate induced loss of MAP-2 immunoreactivity about 34% in neurons 

confirming previous results [30, 146-149]. Staining of the cells with the DNA dye Hoechst 
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33258 showed that glutamate caused morphological changes characteristic to apoptosis, 

including fragmentation and condensation of nuclei [150, 151]. The absence of any 

morphological changes in astrocytes suggested that glutamate had not any effect on astrocytes 

in concentration which is toxic for neurons. 

 

Caspase is considered to play important roles in the execution stage of apoptosis [92]. 

Activation of caspase-3 requires cleavage of its inactive form (32 kDa) into active p17 and 

p12 subunits [93]. In this study caspase-3 activation is involved in cell death in hippocampal 

mixed neuronal cultures which is in line with the other findings [146, 147, 152, 153]. 

However, activation of caspases following glutamate treatment is still controversially 

discussed even in the same type of neurons [153-155]. Postnatal hippocampal cultures consist 

almost exclusively of neurons and astroglia as seen in this study. Since caspase-3 activation is 

performed with Western blot experiments, this activation may include both neurons and 

astrocytes. However, the absence of any morphological changes in astrocytes following 

glutamate treatment suggests that the caspase-3 activation in response to glutamate is a 

specific neuronal reaction. 

 

JNK-mediated neuronal death occurs in response to various stimuli, e.g. growth factor 

withdrawal [111], excitotoxicity [30] or neurotoxins such as MPTP [54, 56]. Inhibition of 

JNK with SP600125 reduced the MAP-2 loss following glutamate treatment, indicating role 

of JNKs in glutamate induced-death. Inhibition of caspase-3 activation following SP600125 

treatment also demonstrates the JNK-mediated death. However, the involvement of JNKs in 

glutamate-induced toxicity is controversially discussed. In cerebellar granule neurons 

glutamate-induced apoptosis is independent of JNKs [149, 155] and inhibition of JNKs had 

not protective effect [155], whereas JNKs are involved in glutamate-induced toxicity in 

cortical neurons [156], in striatal neurons [157] and in hippocampal neurons [30]. The basis 

for this discrepancy is unclear, but presumably reflects differences in the intensity of stimuli 

and the sensitivity of the cells to glutamate-toxicity. 

 

The presence of high basal JNK activity in hippocampal neurons is in agreement with reports 

of high basal JNK activity in the brain [158]. Basal JNK activity was primarily present in the 

cell bodies, processes and the nucleus. After glutamate stimulation, the level of activated JNK 

dramatically declined from nuclei whereas a proportion of c-Jun was phosphorylated. A 

similar ‘paradox’ was reported in embryonic cerebellar neurons [26] and neonatal microglia 
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[50].  It was recently shown that neuronal stress selectively activates JNK2/3 in the presence 

of constitutive JNK1 activity and this JNK2/3 activity selectively targets c-Jun, which can be 

separated from constitutive JNK1 activity [27]. Nuclear JNK activity mediated the apoptotic 

actions of JNKs [159]. However this does not mean that c-Jun is a mere apoptotic mediator 

[reviewed by [160]]. Subsequently, the phosphorylation of c-Jun cannot simply be used as a 

marker for the nuclear activities of either the total nuclear JNK pool or the presence of 

individual JNK isoforms. 

  

4.3.2. 6-OHDA- induced death in cortical neurons 

 

The neurotoxin 6-OHDA is a widely used experimental stimulus for the death of 

(dopaminergic) neurons in vivo and in vitro. It mediates cell death via several different 

mechanisms as described above (see 4.2). 

 

6-OHDA-induced death in cortical neurons resembles that of PC12 cells. It was recently 

shown that 6-OHDA caused death in cortical neurons [107, 161]. Cell death was measured by 

LDH release in the culture. Since cortical cultures include around 15% astrocytes, cell death 

could also occur in astrocytes. However, staining of the cells with DNA dye Hoechst 33258 

showed that only neurons displayed morphological changes characteristic to apoptosis, 

including fragmentation and condensation of nuclei [150, 151] following 6-OHDA treatment. 

Indeed cortical neurons were found to be more sensitive to oxidative stress than astrocytes 

[162]. 

 

The induction of apoptosis and the activation of caspase-3 by 6-OHDA has been examined in 

several studies [108, 128, 129, 163, 164]. In cortical neurons, activation of caspase-3 

following 6-OHDA was shown before [161, 165] and the results are is in line with those of. 

 

JNK-mediated neuronal death occurs in response to MPTP or 6-OHDA [54-56]. Inhibition of 

JNK with SP600125 attenuated death following 6-OHDA treatment in cortical neurons. 

Inhibition of caspase-3 activation following SP600125 treatment also demonstrates the 

involvement of JNKs in 6-OHDA-mediated death.  

 

Similar as hippocampal neurons, cortical neurons contain high basal JNK activity either in 

nuclear or in cytoplasmic extracts. Under basal conditions JNK1 was present in the nucleus, 
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whereas JNK2 was absent in the nucleus. It was already shown that JNK1 is responsible for 

the high level of basal JNK activity in the brain [27, 58]. The presence of JNK1, but not JNK2 

in the nucleus, could explain the absence of c-Jun activation under basal conditions since 

JNK2 has a higher affinity for c-Jun than JNK1 [7, 8]. 6-OHDA reduces total JNK activity in 

the nucleus whereas it slightly induced c-Jun phosphorylation within 1 h. The presence of 

basal JNK1, the enzyme responsible for the basal nuclear JNK phosphorylation, decreased in 

the nucleus following 6-OHDA whereas JNK2 translocated into the nucleus and activated c-

Jun. The presence of a distinct pool of activated JNK in the nucleus suggests that specific 

compartments of JNK serve different functions in neurons e.g. activation of JNK3, but not 

JNK1 or JNK2, in cortical neurons [136] and activation of JNK2/3 in the presence of 

constitutive JNK1 activity in cereballar granule neurons [27] following stress. 

 

It is generally considered that JNK1 has more physiological and anti-apoptotic roles [60, 87, 

166] whereas degenerative apoptotic actions are attributed to JNK2 or JNK3 [30, 118]. 

However 6-OHDA-induced death in cortical neurons in this study, from wildtype, JNK1 ko 

and JNK3 ko mice were not significantly different suggesting the two isoforms meditate 6-

OHDA-induced death not differently. However, further investigations with neurons from 

JNK2 ko mice are required to decide which JNK isoform is important in 6-OHDA-induced 

death in cortical neurons. 

 

4.4. The role of JNKs in neurite outgrowth 

 

The family of JNKs has also been implicated in neuronal differentiation and 

neurodegeneration [29, 34, 57, 58], reviewed by [160, 167]. Several studies have shown an 

enhanced JNK activation in response to NGF [168, 169] or a decrease in neurite outgrowth 

following inhibition of JNKs or their upstream kinases [170-172]. Inhibition of total JNK 

activity by SP600125 almost completely blocked neurite outgrowth and elongation following 

NGF [94]. JNK inhibition by SP600125 and (D)-JNKI1 dramatically reduced axonal 

outgrowth in explanted or dissociated ganglia [66]. In primary cultures of dopaminergic 

neurons, inhibition of JNKs suppressed the total extent of neurites, the primary neurite length 

and the number of neurites per cell [173]. Similarly, inhibition of JNKs by SP600125 

prevented neurite elongation in primary hippocampal neurons in this study. Interestingly, 

inhibition of JNK by SP600125 did not influence outgrowth of cortical neurons. Some time 

ago, inhibition of JNK activity by SP600125 was reported to increase neurite outgrowth in 
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embryonic cerebellar neurons [26]. Thus, JNK exerts different roles in neurite outgrowth ex 

vivo depending on the neuronal phenotype and/or the stage of differentiation. In consequence, 

the function of JNKs has to be defined for each individual type of neurons and conditions. 

 

During differentiation of hippocampal neurons, total levels of JNK continuously increased up 

to 6 days, the end of the observation period mainly by elevation of JNK1 and JNK2. In 

contrast, a very high activation of c-Jun was seen during the early state of differentiation (on 

DIV 2), however, this activation was reduced at DIV 3.  The relatively increased activation of 

total JNK and the reduced c-Jun activation during differentiation are in agreement with the 

result of an other study [26]. Increased activation of JNK occurred downstream of activation 

of MKK7, suggesting an involvement of MKK7/JNK pathway during differentiation rather 

than MKK4/JNK pathway [26].  It was shown in PC12 cells that JNK2, but not JNK1, was 

activated above basal levels during NGF-induced neurite regrowth after injury. Transfection 

of PC12 cells with dnJNK2 reduced neurite outgrowth [94] and also reduced neurite regrowth 

after injury [174]. Otherwise, treatment of SH-SY5Y cells with retinoic acid induced a strong 

activation of JNK1 and transfection of dominant-negative SEK-1 (an upstream kinase of 

JNK1) into the same cells, inhibited retinoic acid induced neurite outgrowth [175] indicating 

that the effect of JNK isoforms on neurite outgrowth may be cell dependent. 

 

What is the difference between the growth-activities of JNKs in the SP600125-sensitive 

neonatal hippocampal neurons and SP600125-insensitive cortical neurons? In both cell types, 

the explantation induced a similar strong and ongoing JNK activation and a moderate increase 

in total JNK. Thus, the mere activation of JNKs in whole cell extracts is not indicative for its 

contribution to regrowth. However, the pool of activated c-Jun transcription factor was 

distinctly smaller in the SP600125-insensitive cortical neurons as compared with the 

SP600125-sensitive hippocampal neurons. This minor pool of activated c-Jun might underline 

the independence of JNK since c-Jun is imperative for the regeneration of axons in vivo [70] 

and can be linked to outgrowth of axons, dendrites and neurites [57, 69, 176-178]. 
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4.5. Conclusions 

 

The function of JNK in apoptosis is complex, since JNKs mediate differentiation and 

apoptosis. It is clear that JNK or at least one of the isoforms activation can contribute to 

apoptosis induced by certain death insults. A role for JNK in the cell survival signal has also 

been predicted. The diversity of the roles of JNK in the regulation of cell fate most likely 

depends on the initiate signalling cascade and/or the protein pattern expressed by JNK. 

 

The present thesis has provided evidence that JNK2, but not JNK1, is a central mediator of 

cytochrome c release following 6-OHDA-induced death of PC12 cells. JNK2 translocates to 

the nucleus and the mitochondria where it acts downstream of MKK4. Thus, the difference in 

activation and translocation of JNK isoforms suggest the existence of separate apoptotic 

signalosomes. Moreover, this study shows that JNKs are important mediators of neuronal 

death following excitotoxic stimulus in primary neurons. This thesis also demonstrates that 

JNKs have physiological roles besides degenerative roles, and they are important for the 

differentiation of the neurons. 

 

These findings have considerable implications for therapeutic strategies targeting JNK 

signalling in neurodegenerative diseases. Inhibition of JNK may decrease apoptosis which is 

contributed to neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases, 

however, it could also inhibit the cell-cycle arrest, so might limit the use of antagonists as a 

novel strategy for the therapeutic benefit. 
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5. Summary: Functions of JNK stresskinases in neuronal apoptosis and 

differentiation 
 

The c-Jun N-terminal kinases (JNKs), a subfamily of the mitogen-activated protein kinases 

(MAPKs), are considered as essential signalling molecules for neurodegeneration in the 

mammalian brain. However, they also have physiological functions such as in development, 

differentiation, proliferation and neuroregeneration. The aims of the present study were to 

determine the physiological and pathological roles of JNK isoforms in PC12 cells and in 

primary neurons. 

 

6-Hydroxy-dopamine (6-OHDA) causes death of dopaminergic neurons by mitochondrial 

dysfunction with JNKs as central mediators. The first aim of this study was to analyze the 

contribution of different JNK isoforms to 6-OHDA-induced death of PC12 cells. 6-OHDA 

enhanced total JNK activity in the cytoplasm, nucleus and at the mitochondria. Inhibition of 

JNKs by SP600125 or transfection with dominant negative JNK2 (dnJNK2) substantially 

attenuated 6-OHDA-induced cell death, whereas transfection with dominant negative JNK1 

(dnJNK1) had no protective effect. Following 6-OHDA, JNK2 translocated to the nucleus and 

to the mitochondria, while JNK1 was constitutively present in the nucleus and at the 

mitochondria. JNK inhibition by SP600125 or transfection with dnJNK2 reduced the pool of 

active JNKs in the nucleus, the release of cytochrome c, as well as the cleavage of caspase-3 

and its substrate PARP-1. However, transfection with dnJNK1 had no effect on the release of 

cytochrome c or cleavage of caspase-3 and PARP-1. JNK3 is considered as a stress-specific 

kinase and is not endogenously expressed in PC12 cells. Surprisingly, transfected JNK3 did 

not enhance cell death induced by 6-OHDA. Interestingly, JNK3 which was present in 

nucleus was not activated in nuclear extracts while JNK1 and JNK2 were activated. These 

results suggest that from all JNK isoforms, JNK2 in particular is associated with 6-OHDA-

induced death in PC12 cells. In contrast to naïve PC12 cells, 25 µM and 50 µM 6-OHDA did 

not induce any cell death in NGF-differentiated PC12 cells. However, inhibition of JNKs with 

SP600125 induced death either in unstimulated or stimulated differentiated PC12 cells 

suggesting that JNKs have different functions in differentiated PC12 cells than in naïve cells. 

 

To consider specific neuronal conditions, it was necessary to study with primary neurons. 

Therefore, the second aim of this study was to determine and compare the role of JNKs in 

primary hippocampal and cortical neurons following excitotoxic stimulus. Glutamate and     
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6-OHDA induced death and caspase-3 activation in primary hippocampal and cortical 

neurons, respectively. Inhibition of JNKs with SP600125 rescued these otherwise dying cells 

and inhibited caspase-3 activation indicating JNK-mediated death. Western blotting and 

immunocytochemical experiments revealed that there was a high basal JNK activity in 

primary hippocampal and cortical neurons which is in contrast with PC12 cells. Following 

glutamate and 6-OHDA this basal JNK activation declined from nucleus in hippocampal 

neurons and cortical neurons, respectively. However, stimulus induced c-Jun phosphorylation 

in these cells. 

 

Besides neurodegenerative and pro-apoptotic functions, the family of JNKs has also been 

implicated in neuronal differentiation and development. The analysis of the role of JNKs in 

neuronal differentiation represented the third aim of this study. Hippocampal and cortical 

cultures were exposed to JNK-inhibitor, SP600125, at the 2nd, 3rd and 5th day in vitro. 

Inhibition of JNKs by SP600125 prevented neurite elongation in primary hippocampal 

neurons in this study, whereas cortical neurons were not affected. Increased activation of total 

JNK during differentiation of hippocampal neurons indicated the importance of JNKs in 

neuronal development. 

 

Summarizing, these results provide evidence that JNKs have apoptotic effects after an 

excitotoxic stimulus but in parallel to their apoptotic effects they have also physiological 

functions on neurite formation and elongation in vitro during neuronal differentiation. 
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6. Zusammenfassung: Funktionen von c-Jun N-terminalen Stresskinasen in 

der neuronalen Apoptose und Differenzierung 
 

Die c-Jun N-terminalen Kinasen (JNK), eine Familie der Mitogen-aktivierten Protein Kinasen 

(MAPK), sind nicht nur wichtige Signalmoleküle der Neurodegeneration im Säugergehirn, 

sondern sie besitzen auch bedeutende Funktionen in der Entwicklung, Differenzierung und 

Neuroregeneration. Das Ziel der vorliegenden Arbeit war es, physiologische und 

pathologische Funktionen der JNK in PC12-Zellen und primären Neuronen in verschiedenen 

experimentellen Bedingungen zu klären. 

 

6-Hydroxydopamin (6-OHDA) verursacht Zelltod von dopaminergen Neuronen durch 

mitochondriale Dysfunktion, bei der JNK zentrale Signalmoleküle sind. Die erste Zielsetzung 

der vorliegenden Arbeit war es, den spezifischen Beitrag der JNK Isoformen beim 6-OHDA-

induzierten Zelltod zu analysieren. 6-OHDA verstärkte die Gesamtaktivität der JNKs im 

Cytoplasma, im Kern und an den Mitochondrien. Der Einsatz der JNK-Hemmstoffe 

SP600125 oder die Transfektion mit dominant-negativem JNK2 (dnJNK2) verringerte 

signifikant den Zelltod, während die Transfektion mit dominant-negativem JNK1 (dnJNK1) 

keinen protektiven Effekt hatte. Nach der Gabe von 6-OHDA verschob JNK2 sowohl in den 

Kern als auch an die Mitochondrien, JNK1 hingegen war in beiden Kompartimenten 

konstitutiv präsent. Die Hemmung der JNKs durch SP600125 oder die Transfektion mit 

dnJNK2 reduzierte außerdem die Menge an phosphorylierten nukleären JNKs, die Freisetzung 

von Cytochrom c und die Spaltung von Caspase-3 sowie PARP-1. Die Transfektion mit 

dnJNK1 jedoch hatte keinen Einfluss auf die untersuchten Apoptosemarker. Die generell mit 

Zellstress assoziierte Isoform JNK3, die nicht endogen in PC12-Zellen exprimiert wird, 

verstärkte überraschenderweise nicht den 6-OHDA-induzierten Zelltod in diesen Zellen nach 

Transfektion. Interessanterweise, wurde JNK3 aber in den Kernfraktionen nicht aktiviert, 

während JNK1 und JNK2 aktiviert wurden. Diese Ergebnisse weisen darauf hin, dass 

insbesondere JNK2 den Zelltod nach 6-OHDA vermittelt. Im Gegensatz zu naiven PC12-

Zellen, konnten unterschiedliche Dosierungen 6-OHDA (25 µM, 50 µM) keinen Zelltod in 

NGF-differenzierten PC12-Zellen hervorrufen. Allerdings verursachte die JNK-Hemmung 

mit SP600125 Zelltod in stimulierten und unstimulierten Zellen, was vermuten lässt, dass die 

JNKs in differenzierten Zellen andere, eher physiologische Funktionen haben als in naiven 

Zellen. 
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Um die spezifische neuronale Bedingung zu beacten, war es notwendig, für die weiteren 

Analysen primäre neuronale Zellen aus dem Hippocampus und dem Kortex zu verwenden. 

Das zweite Ziel dieser Arbeit war es, die Rolle von JNKs nach exzitotoxischer Stimulation in 

primären Neuronen zu untersuchen. Dabei riefen Glutamat und 6-OHDA gleichermaßen 

Zelltod und eine Aktivierung von Caspase-3 hervor. JNK-Hemmmung durch SP600125 hatte 

einen protektiven Effekt und verhinderte die Aktivierung von Caspase-3. Insgesamt zeigten 

sowohl Western blots als auch immunozytochemische Färbungen eine hohe Basalaktivierung 

der JNKs in hippocampalen und kortikalen Neuronen im Vergleich zu PC12-Zellen. Die 

Stimulation reduzierte die nukleäre Basalaktivität der JNK in hippocampalen und kortikalen 

Zellen. Allerdings führten beide Stimuli zu einer Phosphorylierung von c-Jun in 

hippocampalen und kortikalen Zellen. 

 

Neben neurodegenerativem und pro-apoptotischem Potential besitzen die JNKs durchaus eine 

Bedeutung für die neuronale Differenzierung und Entwicklung. Die Analyse der JNK-

Funktionen in der Differenzierung von Neuronen war das dritte Ziel dieser Arbeit. Dabei 

konnte in hippocampalen Neuronen eine steigende JNK-Aktivierung im Laufe der 

Kultivierung festgestellt werden. Wurden hippocampale und kortikale Zellen mit dem JNK-

Hemmstoff SP600125 am zweiten, dritten und fünften Tag ihrer Kultivierung behandelt, 

verhinderte die inhibierte JNK-Aktivität das Auswachsen der Neuriten von primären 

hippocampalen Zellen, während kortikale Neurone sich normal differenzierten. 

 

Zusammenfassend zeigen diese Ergebnisse, dass individuelle JNK Isoformen im Rahmen von 

Exzitotoxizität pro-apoptotische Signale vermitteln, jedoch auch physiologische Funktionen 

bei der Neuritogenese in einen Teil der Neuronen wahrnehmen. 
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8. Appendix 
 

8.1. Abbreviations and symbols 

 

A adenine 

ABC avidin-biotin-complex 

AP-1 activator protein-1 

ApoER2 apolipoprotein E receptor-2 

APS ammonium persulphate 

AraC cytosine arabinoside (arabinofuranosylcytosine) 

ASK1 apoptosis signal-regulating kinase-1 

ATF-2 activating transcription factor-2 

ATP adenosine triphosphate 

Aß Beta-amyloid 

A260, A280, A595 absorbance at 260 nm, 280 nm or 595 nm, respectively 

A260/A280 ratio between the absorbance values at 260 and 280 nm 

α anti- (e.g. α-rabbit = anti-rabbit antibody) 

Bcl-2 B cell lymphoma-2 

Bax Bcl associated x protein 

Bad BAD, Bcl2/Bcl-xl-antagonist, causing cell death 

Bak Bcl-2 homologous antagonist/ killer 

Bid BH3 interacting death domain agonist 

Bim Bcl-2 Interacting Mediator of Cell Death 

bp base pairs 

BSA bovine serum albumin (albumin fraction V) 

cAMP cyclic adenosine monophospate 

caspase cysteine aspartate-specific protease 

cDNA complementary DNA 

cdc42 cell division cycle 42 

CD 95 APO-1, Fas 

CEP 
11004/1347 

Cephalon compound  

c-Fos v-fos FBJ murine osteosarcoma viral oncogene homologue 

c-Jun v-jun avian sarcoma virus 17 oncogene homologue 

cm centimeter 
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c-Myc v-myc avian myelocytomatosis viral oncogene homologue  

CNS central nervous system 

CREB cyclic adenosine monophospate response element binding protein 

d day(s) 

DAB diamino-benzidine 

DDW double-distilled water 

DEPC diethyl pyrocarbonate 

DEPC-DDW diethyl pyrocarbonate-treated double-distilled water 

Diablo direct IAP binding protein with low pI 

DLB denaturing lysis buffer 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic acid 

DNAse deoxyribonuclease 

dNTP 2’-deoxynucleoside-5’-triphosphate 

Dp5 neuronal death protein 5 

DIV day in vitro 

dn dominant negative  

dT 2’-deoxythymidine-5’-triphosphate 

DTT dithiothreitol 

ECL enhanced chemiluminescence 

ECM extracellular matrix 

EDTA ethylenediaminetetraacetic acid 

EGTA Ethylene-bis(oxyethylenenitrilo)tetraacetic acid 

EGF epidermal growth factor  

EGFP enhanced green fluorescent protein 

Elk-1 Ets-like gene-1 

ERK extracellular signal-regulated kinase 

Fas fibroblast associated antigen 

FCS fetal calf serum 

Fig. Figure 

FITC Fluorescein-isothiocyanat 

g gram(s) 

×g relative centrifugal force (RCF) 

G guanine 

GAP-43 growth-associated protein-43 
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GFAP glial fibrially acidic protein 

grp-75 glucose regulated protein 75 

G protein guanosine triphosphate binding protein 

GTP guanosine triphosphate 

GTPase guanosine triphosphatase 

h hour(s) 

HEPES N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid 

HRP horseradish peroxidase 

H2A.z histone 2A variant z 

HS horse serum 

ICE interleukin-1β converting enzyme (caspase-1) 

Ig immunoglobulin (e.g. IgG) 

IKAP inhibitor of NF-κB kinase complex-associated protein 

IL interleukin (e.g. IL-1) 

imPT mitochondrial inner-membrane permeability transition 

IR immunoreactivity 

IU international unit(s) 

J Joule 

JDP Jun-dimerizing partners 

JIP c-Jun N-terminal kinase-interacting protein 

JNK c-Jun N-terminal kinase 

JNKK c-Jun N-terminal kinase kinase 

JSAP1 Jun N-terminal protein kinase / stress-activated protein kinase-associated 
protein-1 

kb kilobase 

kDa kilodalton 

ko knock out 

l liter(s) 

LDH lactate dehydrogenase 

LFU laminar flow unit 

M molar (mol/L) 

mA milliamper  

MADD MAP kinase activating death domain protein 

MAP microtubule-associated protein 

MAP mitogen-activated protein 
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MAPK mitogen-activated protein kinase 

MAPKAPK mitogen-activated protein kinase-activated protein kinase  

MAP2K mitogen-activated protein kinase kinase 

MAP3K mitogen-activated protein kinase kinase kinase 

MEF2C myocyte enhancer factor-2C 

MEK mitogen-activated protein / extracellular signal-regulated kinase kinase 

MEKK 

 

mitogen-activated protein / extracellular signal-regulated kinase kinase 
kinase 

MEM minimum essential medium  

mg milligram(s) 

min minute(s) 

MKK mitogen-activated protein kinase kinase 

MKP mitogen-activated protein kinase phosphatase (e.g. MKP-1) 

ml milliliter(s) 

MLK mixed-lineage kinase 

mm millimeter 

mM millimolar (mmol/L) 

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

mRNA messenger RNA 

mV millivolt(s) 

µg microgram(s) 

µl microliter(s) 

µm micrometer(s) 

µM micromolar (µmol/L) 

n number of independent experiments per experimental series 

NFAT nuclear factor of activated T cells 

ng nanogram(s) 

NGF nerve growth factor 

nm nanometer(s) 

N-terminal aminoterminal 

p. a. pro analysis 

PAGE polyacrylamide gel electrophoresis 

PARP-1 poly(ADP-ribose) polymerase-1 

PBS phosphate-buffered saline 

PBST PBS with Triton X-100 
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PCR polymerase chain reaction 

PD Parkinson’s disease 

pH potentia hydrogenii (hydrogen ion concentration) 

PI3-K phosphoinositide-3-kinase 

PKC protein kinase C 

PMSF phenyl-methyl sulfonyl fluoride 

PNS peripheral nervous system 

Pro proline 

PVDF polyvinylidene difluoride 

p75NTR p75 (75 kDa) neurotrophin (NGF) receptor 

Rac Ras-related C3 botulinum toxin substrate 

Raf v-raf murine sarcoma 3611 viral oncogene homologue 

Ras rat sarcoma viral oncogene homologue 

RCF relative centrifugal force (×g) 

rmax maximum radius (centrifuge parameter) 

RNA ribonucleic acid 

RNAse ribonuclease 

rpm rotations per minute (centrifuge parameter) 

RPMI-1640 Roswell Park Memorial Institute culture medium 1640 

r.t. room temperature (ca. 20°C) 

RT reverse transcription / reverse transcriptase 

RT-PCR reverse transcription polymerase chain reaction 

s second(s) 

SAPK stress-activated protein kinase 

SB 203580 SmithKline Beecham 203580 

SDS sodium dodecyl sulphate 

SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEK JNK kinase 

Ser serine 

Smac second mitochondria-derived activator of caspase 

SP600125 anthra(1,9-cd)pyrazol-6(2H)-one 

STAT signal transducer and activator of transcription 

T thymine 

TAK1 transforming growth factor-β-activated kinase-1 

Taq Thermus aquaticus 
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TBE tris-boric acid-EDTA buffer 

TBS tris-buffered saline 

TBST TBS with Tween-20 

TEMED N,N,N’,N’-tetramethylethylenediamine 

Thr threonine 

TM melting / annealing temperature of primers 

TNFα tumour necrosis factor alpha 

Tpl-2 tumour progression locus-2 

Tris tris-(hydroxymethyl)-aminomethane 

TrkA tyrosine receptor kinase A (NGF receptor) 

Tyr tyrosine 

U unit (of enzyme activity) 

UV ultraviolet (light) 

v/v volume per volume 

w/o without 

w/v weight per volume 

XIAP X-linked inhibitor of apoptosis 

6-OHDA 6-hydroxydopamine 
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8.2. Index of figures 
 

Figure  Page

Fig. 1.1 The organization of the p38 and JNK system of MAP kinases 8 

Fig. 1.2. Chemical inhibitors of the JNK pathway 14 

Fig. 3.1. Cell death in response to 6-OHDA 45 

Fig. 3.2. Phosphorylation of JNKs and c-Jun in response to 6-OHDA 46 

Fig. 3.3. Protection of PC12 cells by the direct JNK-inhibitor SP600125 47 

Fig. 3.4. Protection of PC12 cells from 6-OHDA-induced cell death is time 
dependent 

48 

Fig. 3.5. Protection of PC12 cells from 6-OHDA-induced cell death is dose 
dependent 

49 

Fig. 3.6. Effects of dnJNK2 on the activation and localization of JNKs 50 

Fig. 3.7. Translocation of JNKs into the mitochondria 52 

Fig. 3.8. Upstream kinases and the scaffolds of JNKs at the mitochondria 53 

Fig. 3.9. Release of cytochrome c 54 

Fig. 3.10. Activation of apoptotic mediators 55 

Fig. 3.11. Regulation of bim 55 

Fig. 3.12. Survival of wild type, vector-transfected and JNK3-transfected cells 
after stimulation with 6-OHDA 

56 

Fig. 3.13. Activation of JNK3 in response to 6-OHDA 57 

Fig. 3.14. 6-OHDA did not induce cell death in differentiated PC12 cells 58 

Fig. 3.15. Double staining of the cells with MAP-2 and GFAP 59 

Fig. 3.16. Hippocampal and cortical neurons in the culture 60 

Fig. 3.17. Protection of hippocampal neurons by SP600125 against glutamate 61 

Fig. 3.18. Morphology of degenerating neurons 62 

Fig. 3.19. Death of hippocampal neurons induced by glutamate is apoptotic 63 

Fig. 3.20. Regulation of JNKs after glutamate treatment 65 

Fig. 3.21. 6-OHDA-induced death 66 

Fig. 3.22. Nuclear pyknotic morphology in mixed cortical neuronal cultures 
treated with 6-OHDA for 24 h 

67 

Fig. 3.23. JNKs after 6-OHDA treatment 68 

Fig. 3.24. Protection of cortical neuronal cells from 6-OHDA-induced cell 
death 

70 

Fig. 3.25. Effect of JNK isoforms on 6-OHDA-induced cell death 71 
 

Fig. 3.26. Effects of JNK-inhibitor, SP600125 on neurite elongation in  
hippocampal cells 

73 
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Fig. 3.27. 
 
 

Effects of JNK-inhibitor, SP600125 on neurite elongation in  
cortical cells 
 

74 

Fig. 3.28. Regulation of JNKs during differentiation 75 

Fig. 4.1. Effects of 6-OHDA on JNK isoforms at the mitochondria 82 
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