
Removing Cycles

in Esterel Programs

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Jan Lukoschus

Kiel
2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/250312757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Gutachter Reinhard von Hanxleden

2. Gutachter Stephen A. Edwards

Datum der mündlichen Prüfung 20. Juli 2006

Abstract

Programming embedded and real-time systems demands different methodologies and
programming languages than conventional applications focused mostly on generic com-
putations. Restrictions on reaction times and deterministic behavior that are hard to
implement in common programming languages like C or Java, motivate to use special-
ized programming languages. Esterel is such a specialized programming language. It
natively supports exceptions, suspension, abortion, and concurrency. Communication
between threads and the environment is performed by signals.

The execution is divided into temporal steps, called instants, which conceptually take
no time. Communication with the environment takes place at the start of each instant
for input signals and at the end for output signals. From this execution model follows
that interface signals can either be set or not set in an instant. This is extended to
the handling of internal signals, and if a signal is set in the course of an instant, it is
considered set from the beginning of that instant. Therefore any tests on the signal status
must be scheduled after all possible settings of that signal. Programming languages
which are based on such a handling of signals are called synchronous languages. The
formalization of such a schedule is the constructive derivation of signal states, which
leads to a deterministic behavior even in the context of multiple parallel threads.

Synchronous programs may contain cyclic signal interdependencies. This prohibits a
static scheduling, which limits the choice of available compilation techniques for such
programs. This thesis proposes an algorithm which, given a constructive synchronous
program, performs a semantics-preserving source-level code transformation that removes
cyclic signal dependencies. This makes it possible to compile originally cyclic programs
using for example the existing efficient compilers that implement event-driven simulators.

The transformation is divided into two major parts: detection of cycles and iterative
resolving of the cycles. This thesis provides details of both parts and suggests possi-
ble further optimizations. The detection of cycles is based on the derivation of signal
dependencies in the Esterel program. Cycles are defined as cyclic paths in the set of
signal dependencies. Esterel compilers differ in some details in what they consider cyclic.
Here the v5 compiler is taken as a reference for cyclic dependencies. Nevertheless the
current implementation makes conservative assumptions on signal dependencies to cover
the cycles found by other Esterel compilers as well.

The transformation itself is independent of the Esterel compiler actually used; it replaces

iii

iv

a cycle signal by a signal expression involving no other cycle signals. This expression
is computed by deriving the context state expressions for the cycle signal and by the
iterative replacement of other cycle signals by their respective state expressions. The
resulting expression may contain a dependency from the signal to itself, however the
constructiveness of the source program rules out any influence of the signal on itself,
and therefore the signal can be removed from the expression by replacing it with an
arbitrary, constant truth value.

The transformation algorithm is implemented as an additional module to the Columbia
Esterel Compiler for validation of the correctness of the transformation, quantification
of the cost in code size growth, and evaluation of different transformation variants. As
to be expected, some of the techniques that are restricted to acyclic programs produce
faster and/or smaller code than is achieved by the compilers that can handle cyclic codes
as well. Furthermore, experiments showed that the code transformation proposed here
can even improve code quality produced by compilers that can already handle cyclic
programs, such as the net-list approach employed by the v5 compiler. It also turns out
that the compilation itself can be sped up by transforming cyclic programs into acyclic
ones first.

To make the transformation algorithm more efficient, an addition to the Esterel language
is suggested making the internal state signals of the runtime system visible to the Esterel
level. This extension would eliminate the need to introduce synthetic state signals as
part of the transformation.

As a byproduct of the transformation method proposed here, the analysis on construc-
tiveness itself can be improved by using parts of the transformation algorithm.

Contents

Contents v

List of Figures ix

1 Introduction 1

1.1 Contribution of this Thesis . 1

1.2 Related Work . 2

1.3 Overview . 5

1.4 Acknowledgments . 6

2 The Esterel Language 7

2.1 Programming Reactive Systems . 8

2.2 Basic Structure of Esterel . 10

2.3 Overview of Esterel Statements . 12

2.3.1 Kernel Statements . 12

2.3.2 Derived Statements . 16

2.4 Reactivity, Determinism, Constructiveness 19

2.4.1 Logical Behavioral Semantics . 19

2.4.2 Constructive Behavioral Semantics 23

2.4.3 Constructive Circuit Semantics 25

3 Cyclic Dependencies 29

3.1 Non-Constructive Cycles . 29

3.2 Constructive Cycles . 31

3.3 Variants of Cyclic Dependencies . 34

3.4 Finding Cyclic Dependencies . 37

v

vi CONTENTS

3.4.1 Algorithm to Identify Signal Dependencies 41

3.4.2 Searching for Cycles in Signal Dependencies 48

4 Program Transformation 51

4.1 The Base Transformation Algorithm . 51

4.1.1 Cost of the Transformation Algorithm 63

4.2 Computing the Replacement Expressions 64

4.2.1 Relation to the Circuit Transformation 67

4.3 Extending Esterel to Handle suspend/abort 68

4.4 Example Transformations . 70

4.4.1 Transforming PAUSE CYC . 70

4.4.2 Transforming the Token Ring Arbiter 72

4.4.3 Transforming Cycles Over Parallel Termination 77

4.4.4 Multiple pause Statements . 78

4.4.5 Suspend . 78

4.5 Proposals for Constructiveness Analysis 80

4.5.1 Substitution of Fixpoint Iteration 82

4.5.2 Temporal Induction . 83

5 Cycles on Valued Signals 87

5.1 Introduction to Valued Signals in Esterel 87

5.2 Signal Dependencies on Valued Signals 88

5.3 Replacement Expressions for Valued Signals 90

5.4 Cycles on Pure Signals Broken by Valued Signals 91

5.5 Cycles on Internal Valued Signals . 91

5.6 Preprocessing of Cyclic Valued input Signals 98

5.7 Transforming mejia.strl from Estbench . 101

6 Optimizations 105

6.1 Replacement Expression for present . 105

6.2 Termination of Parallel Statements . 107

6.3 Interaction of Parallel Termination with Exceptions 107

6.4 Substitution of suspend and abort . 108

CONTENTS vii

6.5 Signal Renamings for Locally Defined Signals 109

6.6 Replacing State Signal Tests by Constants 109

6.7 Eliminating Emission of State Signals . 110

6.8 Absence of External Tests of Cycle Breaking Signal 110

6.9 Simplification of External Tests . 111

6.10 Compiler-Specific Signal Dependencies 111

6.11 Lifting of Locally Defined Signals . 111

7 Experimental Results 113

7.1 Synthesizing Software . 113

7.2 Synthesizing Hardware . 116

8 Assessment 119

8.1 Scope of the Cycle Identification . 119

8.2 Scope of the Transformation Algorithm 120

8.3 Transformation of Non-Constructive Programs 120

8.4 Accessing the Program State . 122

9 Conclusions and Future Work 125

A Example Transformations 127

A.1 present, pause . 128

A.2 Termination of parallel Threads . 130

A.3 Implementing the Token Ring Arbiter in Lustre 132

Bibliography 133

viii CONTENTS

List of Figures

2.1 Finite state machine implementation of the ABRO specification. 10

3.1 Invalid cyclic Esterel programs . 30

3.2 Resolving a cycle . 32

3.3 Circuit representation of the program PAUSE CYC 33

3.4 False cyclic dependencies . 33

3.5 Token Ring Arbiter with three stations 35

3.6 Ambiguous cyclic dependencies . 36

3.7 Equations to determine signal dependencies, first part 38

3.8 Equations to determine signal dependencies, second part 39

3.9 Simplified equations for signal dependencies 40

3.10 Dependencies introduces by exception handling 46

3.11 Signal dependency extending outside the scope of a local signal 47

3.12 Finding (cyclic) signal dependencies . 48

3.13 Algorithm to find a shortest cycle in signal dependencies 49

4.1 Notation summary. 52

4.2 Transformation algorithm, for pure signals. 53

4.3 Preserving the priorities between cascaded abort statements 56

4.4 Making the termination state of parallel threads visible to expressions . . 57

4.5 Program with potentially non-terminating iterative signal replacement . . 59

4.6 Replacing the signal test for A by its emission context. 64

4.7 Equations to determine replacement expressions for signals 65

4.8 Circuit translation of the present statement 67

4.9 Failed resolving of a cyclic dependency involving two suspend statements 68

ix

x LIST OF FIGURES

4.10 Equations for replacement expressions in context of suspend/abort 71

4.11 Transformed non-cyclic Token Ring Arbiter 73

4.12 Treatment of cyclic dependencies crossing parallel termination 75

4.13 Continuation of Figure 4.12 . 76

4.14 Example requiring state signals which cannot be eliminated 79

4.15 Resolving a cycle in a cyclic program with suspend 80

4.16 Continuation of Figure 4.15 . 81

4.17 Algorithm to decide on the constructiveness of an Esterel program 84

5.1 Signal dependencies of emissions and tests on valued signals 89

5.2 Replacement expressions for valued signals 89

5.3 Example for emissions on valued signals 90

5.4 Cycle on pure signals broken by a valued signal 92

5.5 Esterel program with a cycle on internal valued signals 93

5.6 Acyclic transformation of the cyclic Esterel program in Figure 5.5. . . . 94

5.7 Optimized version of the transformation in Figure 5.6. 95

5.8 Esterel program with a cycle on valued input signals 99

5.9 Application of the transformation on a cutdown version of mejia.strl . . . 102

5.10 Acyclic transformation of the program in Figure 5.9. 103

6.1 Cyclic dependency resolved without iterative replacement 106

6.2 Resolving a cyclic dependency involving present and abort statements . . 107

Chapter 1

Introduction

One of the strengths of synchronous languages [1] is their deterministic semantics in the
presence of concurrency. It is possible to write a synchronous program that contains
cyclic interdependencies among concurrent threads. Depending on the nature of this
cycle, the program may still be valid; however, translating such a cyclic program poses
challenges to the compiler. Therefore, not all approaches that have been proposed
for compiling synchronous programs are applicable to cyclic programs. Hence, cyclic
programs are currently only translatable by techniques that are relatively inefficient
with respect to execution time, code size, or both. This thesis proposes a technique for
transforming valid, cyclic synchronous programs into equivalent acyclic programs, at the
source-code level, thus extending the range of efficient compilation schemes that can be
applied to these programs.

The focus of this thesis is on the synchronous language Esterel [7]; however, the concepts
introduced here should be applicable to other synchronous languages as well, such as
Lustre [20].

1.1 Contribution of this Thesis

The main contribution of this thesis is a method to specify and implement resolving of
constructive cyclic dependencies as an Esterel source code transformation.

The proposed transformation makes use of the property of constructiveness to resolve
cycles; however, unlike the approaches suggested earlier by Edwards [15, 16], it works on
the source code level. Hence this makes it possible to compile originally cyclic programs
using for example the existing efficient compilers that implement event-driven simulators.
Furthermore, experimental results indicate that this transformation can also improve the
code resulting from the techniques that can already handle cyclic programs, such as the
net-list approach employed by the v5 compiler. It also turns out that the compilation
itself can be sped up by transforming cyclic programs into acyclic ones first.

1

2 CHAPTER 1. INTRODUCTION

The basic transformation is defined on the basic kernel statements of Esterel to make
the resulting programs compatible to existing Esterel compilers. Nevertheless certain
aspects of the transformation would be considerably more efficient if internal state en-
coding registers of the compiled program would be accessible on the Esterel level. This
improvement would require changes to Esterel compilers. These changes would aid fur-
ther developments of the transformation algorithm as it would make it possible to access
the state of pause statements embedded in non-kernel statements.

The transformation algorithm is worked out in detail for Esterel kernel statements and
pure signals. Extensions to support valued signals are laid out by application on some
representative examples. Cycles involving variables are not addressed here. Handling
cyclic dependencies on valued signals needs to consider additional dependencies con-
tained in value expressions, multiple emissions on the same signal coordinated by a
combination function, and the inheritance of the value from previous instants if no cur-
rent emission is executed for that signal.

As a byproduct of the transformation method proposed here, the analysis on construc-
tiveness itself can be improved by using parts of the transformation algorithm. Classic
constructiveness analysis consists of state space exploration by three-valued fixpoint it-
eration to derive reachable signal states from the initial state. If the fixpoint iteration
converges without any unknown signal values left for all reachable states, then the pro-
gram is considered constructive. The approach presented here tries to eliminate the need
for a three-valued fixpoint iteration on all reachable signal states. The fixpoint iteration
is used only in a preprocessing step to derive expressions for all signals describing their
constructiveness with regard to the current signal state. The main benefit of the pro-
posal presented here lies in the much simpler evaluation of a binary expression instead
of a fixpoint iteration on three-valued signals for all program states.

1.2 Related Work

A number of different approaches for compiling Esterel programs into either software or
hardware have been proposed and implemented. Historically the first Esterel compilers
were based on automata as execution models.

The v2 compiler by Berry and Cosserat [6] used a LISP program to perform program
transformations according to the operational semantics of Esterel. This literal imple-
mentation of the Esterel semantics proved to be much too slow and resource hungry to
be of much practical use in embedded systems.

Gonthier [7] developed the v3 compiler, which avoids costly textual transformations at
runtime. The Esterel program is compiled by transforming it into an IC graph (inter-
mediate code graph). This graph is used to extract an automaton code which can be
interpreted efficiently at runtime. The drawback of this approach is a possible code size
explosion for the compiled program, because the automaton synthesis is based on the
exploration of all program states.

1.2. RELATED WORK 3

The next generation of the Esterel compiler at Berry’s group implemented a different
strategy. While working on controller specifications in Esterel for programmable hard-
ware, a scheme was developed to translate a subset of Esterel into logic gates [2]. This
translation avoided the state space explosion by implementing concurrent activities in
parallel logic gates. The ideas to synthesize hardware from Esterel got generalized into
software synthesis by simulation of netlists of logic gates. This compilation strategy was
the basis for the v4 compiler, and it resulted in a problem which is addressed in this the-
sis: cyclic dependencies. The automata synthesis explores all reachable program states,
thereby abstracting away any internal dependencies of the program. Therefore cyclic
dependencies pose no problem for the automata synthesis. The netlists fully reflect all
dependencies of the program, and for a static schedule no cyclic dependencies must be
contained in the program.

In the field of logic circuits these cyclic dependencies are known as feedbacks of outputs
to the inputs in non-combinational circuits. Not all feedback loops result in unstable
logic circuits, there exists the class of cyclic combinational circuits. Malik [28] describes
a method to transform these cyclic circuits into acyclic ones. It is based on an iterative
algorithm to compute the outputs of cyclic circuits with ternary simulation. Effectively
the simulation run is serialized into an unfolding of the cycle path until the remaining
inputs have no influence on the outputs. These inputs are replaced by constants, making
the circuit acyclic.

Shiple et al. [36] developed Malik’s work further by applying optimizations and incor-
porating cycles including registers into the algorithm. An implementation into the v4
Esterel compiler lead to the v5 Esterel compiler, which is able to compile constructive
cyclic Esterel programs into compact netlist code. However, this software simulation of
circuits tends to be rather slow, as it simulates the entire circuit during each instant,
irrespective of which parts of the circuit are currently active.

A third approach to synthesize software is to generate an event-driven simulator, which
breaks the simulated circuit into a number of small functions that are conditionally
executed [12, 14, 9]. These compilers tend to produce code that is compact and yet
almost as fast as automata-based code. The drawback of these techniques is that so far,
they rely on the existence of a static schedule and hence are limited to acyclic programs.
One approach to overcome this limitation, which is described by Edwards [15], is to
unroll the strongly connected components (cycles) of circuits. Esterel’s constructive
semantics guarantees that all unknown inputs to these strongly connected regions can
be set to arbitrary, known values without changing the meaning of the program.

The basic synthesis approaches for Esterel are software synthesis for execution on a gen-
eral purpose processor and hardware synthesis. A middle way is the use of a specialized
processor to execute suitably tokenized Esterel programs. Such a processor is called
Reactive Processor because of the reactive nature of the executed Esterel programs.
One implementation of this approach is the Kiel Esterel Processor (KEP) [25, 24]. It
supports a subset of the Esterel language natively including valued signals (integer),
exceptions, and suspension/abortion. Parallel blocks are supported by interleaving the

4 CHAPTER 1. INTRODUCTION

parallel statements in a static way. To produce this interleaving schedule a preproces-
sor is used [23]. It analyses the dependencies between the different threads and orders
the parallel Esterel statement blocks into a sequential list of statements for the KEP.
Therefore to make such a sequential list of statements feasible, the input programs must
generally be free of cyclic dependencies. The transformation presented in this thesis can
be used to fulfill this condition for cyclic constructive programs.

The compilation of Esterel cannot only be complicated by cyclic dependencies, but also
by signal reincarnation, also known as schizophrenia [3]. An efficient cure for schizophre-
nia in Esterel has been proposed by Tardieu [37]. It is based on source code transfor-
mation and therefore suited to be sequentially applied to Esterel programs together
with other transformations. The work on schizophrenia is related to this thesis, because
the transformation presented here applies only to input programs which are free of any
schizophrenia problems.

Another kind of source code transformation is addressed by Tardieu and Edwards [38]
in elimination of dead code in programs of an extended Esterel version called Esterel*.
The search for signal dependencies in this work does recognize dead code, too. But
such unreachable code is not removed here, it is just not considered the source of signal
dependencies.

Potop-Butucaru presents in his thesis [31] a new representation model (GRC) for Esterel.
It is used to optimize the generation of efficient sequential code from Esterel programs.
This scheme is restricted to programs without cyclic dependencies, too. On discovering
subtle differences in rejecting programs as cyclic compared to the transformation of
Esterel programs into circuits, he proposes a refinement of the GRC scheme to be able
to accept the same class of non-cyclic programs as the circuit transformation.

The opposite direction with regard to cycles is taken by Riedel [33, 32]. He proposes an
algorithm to deliberately introducing cyclic dependencies in combinational circuits to
reduce the circuit size. In benchmarks he shows that the reduction can be a significant.
This result is taken as a strong argument to support cyclic combinational circuits in
future circuit synthesis tools.

The Esterel source code transformation to resolve constructive cyclic dependencies pre-
sented in this thesis has already been partly published [26, 27]. This work presents
significant progress in the following fields: the identification of cyclic dependencies,
treatment of multiple cycles, replacement expressions in context of parallel termination
and hierarchic trap blocks, extensions to the algorithms to cover valued signals, and
alternative uses for replacement expressions in constructiveness analysis.

1.3. OVERVIEW 5

1.3 Overview

The remainder of this thesis is organized as follows.

Chapter 2 introduces the syntax of Esterel and the basics of constructiveness and code
synthesis.

Chapter 3 lays out dependency relationships between signals in Esterel and how cycles
in these dependencies can result in non-constructiveness. An algorithm is provided to
decide if an Esterel program contains cyclic dependencies and which signals are part of
that cycle.

Chapter 4 introduces a transformation algorithm to resolve cyclic dependencies on pure
signals, which do not carry a value. Additionally some extensions of the transformation
algorithm for constructiveness analysis are presented.

Possible extensions to handle valued signals are addressed in Chapter 5. It involves
additional variants on signal dependencies and necessary refinements in renaming valued
input signals.

The algorithm in its pure form does not contain any optimizations, therefore the trans-
formed programs will contain redundant structures. Chapter 6 lists approaches on opti-
mizing transformed programs in a post-processing way.

Chapter 7 provides experimental results on applications of different Esterel compilers on
cyclic and transformed non-cyclic programs.

Chapter 8 discusses aspects of the coverage of the transformation algorithm.

The conclusions of this thesis are presented in Chapter 9, along with possible future
work.

6 CHAPTER 1. INTRODUCTION

1.4 Acknowledgments

This thesis would not have been possible without the support of many people. I would
like to thank them here.

At first I thank my doctoral advisor Professor Reinhard von Hanxleden for providing me
a pleasant research environment, for many ideas, discussions, suggestions, and invaluable
support for this work.

I thank Professor Stephen Edwards for helpful hints on problems and for providing his
Esterel compiler as a solid foundation to build upon.

Professor Klaus Schneider noted an alternative application to be helpful for construc-
tiveness analysis.

Further thanks go to Xin Li for conducting the hardware synthesis experiments.

Claus Traulsen had been very helpful with fruitful discussions and proof reading of this
work.

Hauke Fuhrmann prepared the SCADE/Lustre implementation of the Token Ring Ar-
biter example.

Our secretaries Gerti Rosenfeld and Gesa Walsdorf along with the computer admin-
istration staff Corinna Dort, Peter Pichol, and Willi Burmeister provided dependable
support on administrative and technical tasks.

Finally, I thank my parents Waltraud and Peter for their continuous support.

Chapter 2

The Esterel Language

Computer systems are not entities without any outside connections. They almost always
accept input data from an environment and produce output data handed back to the
environment. However, systems vary in a great degree in the tightness of integration
with the environment. One can differentiate three basic types of systems [4]:

• Transformational systems read input data at startup, perform some computations,
and deliver output data at termination. Examples: Batch processing, simulations,
compilers.

• Interactive systems run continuously waiting for input data, perform computa-
tions and produce output data. Examples: Databases, word processors, operating
systems.

• Reactive systems are tightly integrated into a physical environment and receive
input data from sensors and produce output values for actuators.

They typically implement control algorithms to manage the physical system they
are embedded in and have to obey constraints on the answer time dictated by the
environment. Optimizations typically try to minimize the worst case answer time,
hardware cost, and/or electric power demands. Examples: Engine controllers,
traffic control, plant automation.

These three systems differ in further properties:

The computational results of transformational systems typically depend only on their
input values, no internal state is kept at termination. Interactive and reactive systems
manage an internal state, on which the computations depend.

Performance considerations differ for these systems, too. Transformational and interac-
tive systems are usually optimized for the delivery of results in a minimum of time in the
average case. This is in contrast to reactive systems, where the implemented control al-
gorithms must not be analyzed for the average but for the worst case. The implemented

7

8 CHAPTER 2. THE ESTEREL LANGUAGE

algorithms on reactive systems have to obey maximum answer times which are derived
from the demands of the environment. Being considerably faster than those demands
is not of much use. Further optimization targets for reactive systems are hardware cost
and/or electric power demands which are not of such a high priority for transformational
and interactive systems.

The degree of synchronization of concurrent activities in transformational and interac-
tive systems is typically limited to few communication points a runtime. The scheduling
is not necessarily fixed and changes dynamically depending mostly on the computa-
tional needs of each process. Reactive systems typically consist of several concurrent
threads which are tightly coupled in exchanging state information. The execution order
is therefore mostly limited by these communication dependencies.

Since each system has its own demands on optimizations, different programming lan-
guages are differently specialized for use in each domain. This thesis is concerned with
reactive systems, therefore the following part will give a short introduction on program-
ming principles of reactive systems.

2.1 Programming Reactive Systems

The purpose of reactive systems is the interaction of a computer system with its environ-
ment to control some kind of physical process. Basically two kinds of information flows
are need to interact with the the environment: Input signals sense the current state of
the environment, Output signals perform certain actions in the environment. To ensure
adequately continuous reactions on changes in the environment, the input and output
signals are typically handled in a control loop:

1. Read input values

2. Compute reaction

3. Write output values

4. Repeat.

The frequency of repetition is determined by the physical process in the environment
the system is embedded in. Most reactive systems are considered real-time systems with
additional requirements of guaranteed bounds on the reaction time between changes on
the input values and output reactions.

The computation of the reaction function itself depends generally not only on the inputs
alone, an internal state of the system is commonly used, too. This naturally leads to
the programming model of Moore/Mealy finite state machines [21].

The main drawback of state machines lies in its limitation to fairly small models:

2.1. PROGRAMMING REACTIVE SYSTEMS 9

• The specification of the transition function becomes quite complex for big systems.

• There are no provisions for grouping subsystems into modules.

• An efficient solution for parallel activity is missing.

• Local variables for internal signaling are not available.

Some of these issues can be dealt with by using development tools which provide a
way to graphically specify the state machine. State machines are usually visualized
by graphical nodes representing the states S and edges between nodes representing the
transition function δ. The input Σ and output Γ signals are contained in labels at
transitions as conditions and actions. Grouping some states into a hierarchy of some
kind provides modularization of components. All these features are easily translated
back into the original flat state machine.

The remaining desirable features — parallelism and internal signals — poses some struc-
tural problems. A state machine does provide only one point of control: The execution of
the transition function δ. Multiple points of control in multiple threads can be mapped
to a single δ function by computing the cross product of reachable state spaces between
all parallel threads. The drawback of this method is a potentially exponential growth
of states and transition rules in the target state machine. This growth (called state
explosion) can make it infeasible to implement even moderately sized programs.

The remaining problem is how to implement communication between the parallel threads.
Internal signals similar to the input/output signals may be seen as an obvious solution.
These signals can be implemented by adding them as additional input signals which are
driven internally and not by the environment. When adding these internal signals, the
order of setting and testing these signals must be clarified. For conventional input and
output signals connected to the environment the order is defined: In each execution run
the input signals are read from the environment first, then state/signal computations
are performed, and the output signals are fed back to the environment last. The setting
of internal signals is not defined in such a simple way since the value of internal signals
is determined as part of the computation step.

Huizing and Gerth [22] formulated three desirable aspects on treating signals in parallel
activities:

Responsiveness: The System reacts with conceptually no delay on external or inter-
nal events. This abstracts the temporal characteristics of the system from the
logical behavior by assuming instantaneous reactions from input events. The ac-
tual specification of the reaction delay is deferred to later stages of the system
implementation.

Modularity: The interface to the environment and distinct modules of the system are of
the same nature. The input/output behavior of the entire system can be expressed
as a composition of the input/output behavior of each module. This enables the

10 CHAPTER 2. THE ESTEREL LANGUAGE

R/∅

R/∅

R/∅

R/∅A ∧ B ∧ R/∅

A ∧ R/{O}B ∧ R/{O}

A

AB

B

A ∧ B ∧ R/∅ A ∧ B ∧ R/∅

A ∧ B ∧ R/{O}

S0

Figure 2.1: Finite state machine implementation of the ABRO specification.

composition of a complex system from separately developed subsystems without
detailed insight into the internal structure of each subsystem.

Causality: All actions in the system can be derived from input events in a causal
chain without any non-determinism. Actions executed under a condition must
not invalidate that condition. This property ensures deterministic behavior of the
system.

As Huizing and Gerth proved [22] these properties cannot be unified into a single se-
mantics of a reactive system. Nevertheless Esterel aims to fulfill all three properties. It
does so by explicitly rejecting those programs where fulfilling all three properties leads
to ambiguous behavior. Responsiveness and modularity are fulfilled by the way I/O and
internal events are treated. Causality is ensured by rejecting all programs which are
not constructive. This is done at the compilation stage to avoid run time errors which
are not acceptable in a reactive system which may be even safety critical.

The details of constructiveness are laid out in the following sections.

2.2 Basic Structure of Esterel

Esterel is an imperative textual language intended to implement reactive control pro-
grams. The main advantages of Esterel over plain finite state machines are support
for:

2.2. BASIC STRUCTURE OF ESTEREL 11

• Hierarchy,

• Parallel activities, and

• Exception handling.

These points greatly aid in developing big programs. The canonic example to motivate
the usefulness of these features is the ABRO Example. It is taken from Berry’s Esterel
language primer [4]. Its specification is as follows:

Emit an output O as soon as two inputs A and B have occurred.
Reset this behavior each time the input R occurs.

What this specification misses is how the conflict of the occurrence of A and B at the
same time with R is resolved. The actual implementations assigns R priority over A and
B. Therefore A or B must have no effect if R occurs at the same time.

The ABRO specification translates into a state machine which is depicted in Figure 2.1.
The complexity of the FSM results from the parallel activity of waiting for two different
signals A and B. The arrival of each signal combination is preserved by distinct states.
The transitions between states explicitly have to cover all combinations of input signals
making the program hard to read and error prone when constructed manually.

The extension of the specification to the arrival of three input signals A, B and C will
double the number of states to eight with more than twenty transitions between states.
Such an exponential growth of complexity is known as a state explosion.

The Esterel implementation of ABRO (again taken from [4]) is much simpler as the plain
FSM:

module ABRO:

input A, B, R;
output O;

loop
[await A || await B];
emit O

each R

end module

The outer “loop...each R” structure restarts its inner part whenever signal R is sent.
This repetition implements the “Reset this behavior each time the input R occurs” part
of the specification of ABRO. The first activity inside the loop consists of two await
statements which are executed in parallel. The parallelism is indicated by the II bars.
Each await statement stops its execution until the indicated signal occurs. If both signals
A and B occurred then the entire parallel construction terminates and the following emit

12 CHAPTER 2. THE ESTEREL LANGUAGE

statement sets the output signal O. Now the execution halts until the signal R is received
and the loop restarts.

The benefit of Esterel over a plain FSM lies in the much simpler structure of the program,
which follows the Write Things Once (WTO) principle [4]. The reset signal R is only
tested at one point, the loop...each condition. In the FSM implementation R is contained
in all transition labels. Furthermore the waiting on the input signals A and B does
involve just one await statement for each signal. Additional signals could be added by
just inserting “II await C”, “II await D”. No state explosion happens here.

2.3 Overview of Esterel Statements

The following section will give a short introduction into the statements and control
structures of Esterel and can be skipped by readers familiar with Esterel. The level of
detail will suffice to be able to follow this thesis without previous knowledge of Esterel.
For a more detailed introduction refer to the informal introduction to Esterel [4], the
description of Esterel semantics [3], or the manual of the v5 compiler [8].

An Esterel program is made up of two main parts: The interface declaration and the
body. In the interface the names of interface signals are listed and their respective data
direction defined by either input or output:

module MAIN:

input A, B, R;
output O;

p

end module

The body p of the program consists of a hierarchical layer of control and signal handling
statements. The set of Esterel statements is divided into the small set of basic kernel
statements and the much larger set of derived statements. All derived statements can
be expressed by means of kernel statements.

2.3.1 Kernel Statements

Besides the input and output signals, internal signals can be defined by the signal block:

signal S in
p

end

Here the signal S is defined in the block p. Access to S outside of p is not possible. If
multiple signals with the same name are nested, then the innermost definition in the

2.3. OVERVIEW OF ESTEREL STATEMENTS 13

current context is visible.

The execution of an Esterel program is divided into discrete temporal instants. An Es-
terel program communicates through signals that are either present or absent throughout
each instant; this property is also referred to as the synchrony hypothesis. If a signal S
is emitted in one instant, it is considered present from the beginning of that instant on.
If a signal is not emitted in one instant, it is considered absent.

In each instant all threads of the programs execute their tasks until they encounter
a pause statement. At that point all threads are synchronized and a new instant is
started. The signal emissions in the previous instant have no direct influence on the
signal statuses of the new instant. Nevertheless the program state (i. e., which pause
statements got executed) is preserved, which is typically implemented by state registers.

The only way to set a signal’s presence state with a kernel statement is via the emit
statement:

emit S

If a signal S is emitted, then it is considered present for the current instant. Multiple
emissions on the same signal in one instant are permitted but only the first one has any
effect.

There exists no statement to unset the presence state of a signal, because this would
contradict a previously executed emit statement. A signal can only implicitly be set to
absent by not executing any emit statements on it.

Multiple statements can be concatenated with the with the “;” operator:

emit S;
emit T

Both emit statements are executed sequentially in the same instant.

The most basic control structure of Esterel is the present statement:

present S then
p

else
q

end

It evaluates a signal expression S and executes one of two branches with code blocks p
or q. The signal expression S may be comprised of signal names and boolean operators.
If one of the then or else branches contains no code, then it can be omitted, e. g.,

present S else
q

end

The pause statement halts the execution in the current instant and resumes in the next
instant:

14 CHAPTER 2. THE ESTEREL LANGUAGE

emit S;
pause;
emit T

Signal S is emitted in the first instant and signal T in the following instant.

Repetitive behavior can be implemented by use of the loop structure:

loop
p

end

The body p is immediately restarted whenever p terminates. It follows that p must
execute at least one pause statement to limit the amount of work being done in an instant
to a finite amount. Esterel compilers check for this property, therefore the execution of
at least one pause statement must be detectable statically.

A key feature of Esterel is its capability to execute parallel threads in a deterministic
way:

p
||

q

The code blocks p and q are started concurrently. The entire parallel terminates when
all parallel threads are terminated.

The parallel operator “ ||” has a lower priority than the sequence operator “ ;”. If a
parallel block needs to be prepended or appended by another statement block, then
squared brackets can be used to group these blocks:

emit A;
[

p
||

q
];
emit B

Here an emission on A is executed first in a single thread, then the control flow splits
into the two parallel blocks p and q. If p and q have both terminated, then B is emitted
again in a single thread. The syntactical order of parallel threads (p first, q second) has
no meaning, all threads have the same execution priority.

As mentioned above, the loop statement does not terminate, it repeats its body infinitely.
This is not universally useful, some systems need the repetition of some behavior for
a certain time and eventually stop that behavior and start another. Such a limited
repetition is not supported by the loop statement alone. In Esterel such a behavior can
be implemented with exception handling by the trap statement:

2.3. OVERVIEW OF ESTEREL STATEMENTS 15

trap T in
p

end

The trap statement consists of the definition of a trap signal (here T) and a body (p) as
a scope of that signal. The body may contain an exit T statement to activate (“throw”)
the exception signal T. The control flow does not continue after the exit statement but
after the entire trap statement.

As an example, the following code block implements waiting for the arrival of a signal S:

trap T in
loop

pause;
present S then

exit T
end

end
end

The activation of the trap is called weak because other parallel threads inside the trap
body continue execution until they reach a pause statement or terminate anyway:

trap T in
exit T

||
emit A;
pause

end;
emit B

In this example, the first thread inside the trap body throws the exception. But never-
theless the emission of signal A is executed in the second thread. When executing the
second thread ceases for the instant at the pause statement, then the entire trap body
is terminated and B is emitted. As a result signals A and B are emitted in the same
instant.

Nested traps have a defined meaning in Esterel, too. If multiple trap signals are activated
in a trap hierarchy, then the outermost defined trap signal takes priority:

trap T1 in
trap T2 in

exit T1
||

exit T2;
end;
emit A

end;
emit B

Here the conflict between T1 and T2 is won by T1 as the outermost trap signal. As a

16 CHAPTER 2. THE ESTEREL LANGUAGE

consequence the signal A is not emitted, only B.

The handling of exceptions in Esterel is fully integrated into the synchronous behav-
ior without any non-determinism. This applies also for exceptions in the presence of
concurrent activities.

Another type of control flow available in Esterel is a temporal delay of execution by a
suspend statement:

suspend
p

when S

The execution of code block p is suspended for all those instants when the signal expres-
sion S is evaluated to true. An exception is the first instant when entering p, in that
instant S is not evaluated and no suspension takes place.

It appears that the suspend statement is rarely used directly in an application program.
It is mostly part of the expansion of derived statements into kernel statements.

The last command in this list of kernel statements is the nothing command:

nothing

It does nothing indeed and has no effect while being executed. This command is un-
needed in a strict sense, but it simplifies reasoning on program transformations. Empty
statement blocks are not permitted in Esterel. Therefore it is much easier to define the
deletion of a code block by substitution with nothing than to ensure the validity of a
cascade of block structures.

2.3.2 Derived Statements

The following section does not contain a complete list of all Esterel commands that are
not part of the kernel. Only those commands are explained that are frequently used in
the remainder of this thesis. All these command are listed along with their expansion
into kernel statements. These expansions are mostly based on other derived statements
which are defined before.

A very simple derived command is halt. It is meant to stop execution of a thread.
The implementation in kernel statements involves just an (infinite) loop around a pause
statement:

halt ;
loop

pause
end

Exceptions via the kernel trap statement are a means of self termination of code blocks
by explicitly executing an exit statement. The block containing that exit statement is
terminated and the execution continues on an upper level. In some programs the need

2.3. OVERVIEW OF ESTEREL STATEMENTS 17

arises to terminate an active code block when a signal external to the current block is
set. This functionality is supported by the non-kernel abort statement:

abort
p

when S
;

trap T in
suspend

p
when S;
exit T

||
loop

pause;
present S then

exit T
end

end
end

The code block p is terminated whenever the signal expression S is evaluated to true.
This termination is different from the trap termination method. trap implements a
weak termination method by executing the body until the end of the instant before
handing control over to the outside level. In contrast to that abort implements a strong
termination control. The abort condition is tested at the beginning of the instant. If
the condition applies then the control does not start in the body of the abort for that
instant but at the end of the abort statement.

A weak termination method is available for abort by adding the attribute weak:

weak abort
p

when S
;

trap T in
p ;
exit T

||
loop

pause;
present S then

exit T
end

end
end

An additional constraint exists for the evaluation of the abort condition: In the first
instant on entering the abort statement the condition is not evaluated. Therefore the
body p is executed even if the condition applies. The condition is started to be evaluated
when at least one pause statement got executed in the body.

The probably most used derived command is the await command:

await S ;
abort

halt
when S

Its purpose is to stop the execution at the current execution point until a signal expres-

18 CHAPTER 2. THE ESTEREL LANGUAGE

sion S evaluates to true. The signal state in the first instant is ignored, this command
waits at least for one instant.

The statements suspend, abort, and await have the delayed execution in the first instant
in common. In some program contexts this behavior is not wanted. For this case the
attribute immediate can be applied to the respective signal condition. The use of that
attribute has slightly different expansions into kernel statements as a consequence:

suspend
p

when immediate S
;

suspend
present S then pause end;
p

when S

abort
p

when immediate S
;

trap T in
suspend

p
when immediate S;
exit T

||
loop

present S then exit T end;
pause

end
end

await immediate S ;
abort

halt
when immediate S

These expansion rules are quite compact in size, but contain references to other non-
kernel statements which must be expanded in turn. The end result in kernel statements
will be quite voluminous, while a direct translation into kernel statements would be more
space efficient. For example applying the former rules to await immediate S:

await immediate S

;

abort
halt

when immediate S

;

trap T in
suspend

loop
pause

end
when immediate S;
exit T

||
loop

present S then
exit T

end;
pause

end
end

;

trap T in
suspend

loop
present S then pause end;
pause

end
when S;
exit T

||
loop

present S then
exit T

end;
pause

end
end

2.4. REACTIVITY, DETERMINISM, CONSTRUCTIVENESS 19

A much more efficient expansion with the same functionality is:

await immediate S ;

trap T in
loop

present S then
exit T

end;
pause

end
end

2.4 Reactivity, Determinism, Constructiveness

Syntactical soundness is not sufficient for a valid Esterel program. As mentioned in
Section 2.1 (page 9) on Responsiveness/Modularity/Causality, those programs are re-
jected which are not able to fulfill all three criterions. Responsiveness and modularity
are fulfilled by design of the reaction characteristics of the signal signal interface of Es-
terel. Therefore causality is the critical point which decides on the validity of an Esterel
program.

The following three sections will give a short overview on the main three semantics used
to describe the meaning of an Esterel program. Full details can be found in Berry’s draft
book [3] on the semantics of Esterel.

The first one — the logical behavioral semantics — is the historically oldest of the three.
It differs from the other two because it is not based on causality but on reactivity/deter-
minism, which leads to a bigger set of accepted Esterel programs. The second (construc-
tive behavioral) and third (constructive circuit) semantics are considered equivalent in
their set of accepted programs.

2.4.1 Logical Behavioral Semantics

This section follows Chapter 6 of Berry’s book on the Esterel semantics [3] without
reproducing every detail given in that book.

Despite being refined by the constructive semantics, the logical semantics is useful be-
cause it formally defines the behavior of Esterel statements. A set of derivation rules
is given for the kernel statements of Esterel in the form of textual transformation rules
based on the Structural Operational Semantics [30].

The reaction of a program P in an instant is written as the transition:

P
O−→
I

P ′

The transition takes place under control of the set of input signals I and produces the
output signals O. The execution state of the program is reflected in the rewriting of P
into P ′.

20 CHAPTER 2. THE ESTEREL LANGUAGE

The reaction of the program in an instant is expressed by means of a hierarchy of
reactions of single statements and sub-blocks. These individual reactions are written in
the following form:

condition

p
E′,k−−→
E

p′

This derivation describes the transition of statement p into p′. E denotes the current
signal environment and E ′ the signals emitted as part of the transition. It must be taken
into account that the synchronous coherence property of Esterel implies E ′ ⊂ E. The
signal state in E is stored as an element s+ for a currently present signal s and s− for
the absent case.

The termination of sub-blocks is controlled by numerical completion codes (symbolized
here by k): A 0 means normal sequential execution of statements, 1 denotes the encounter
of a pause statement, and 2 and following are reserved for trap signals with ascending
priority. The processing of a reaction in an instant concludes therefore always with a
completion code of 1.

To be able to complete this transition, the condition must hold. This condition may
be comprised of other transitions or expressions on signals and completion codes. The
actual derivation of p into p′ is formulated as a recursive hierarchy of rule applications
inside further sub-conditions. For some kernel commands the condition may be empty.

To be able to write the derivation rules in a compact form, an abbreviated syntax of
Esterel is introduced called the Esterel Process Calculus Syntax or shorter the terse
Syntax:

nothing 0
pause 1
emit S !S
present S then p else q end S?p, q
suspend p when S S ⊃ p
p;q p; q
loop p end p∗
p II q p|q
trap T in p end {p} using ↑ p and ↓ p
exit T k with k ≥ 2
signal S in p end p\S
[p] (p)

Most statements have a direct equivalence in the terse syntax, but some exceptions
apply: Empty then or else branches are always explicitly included by adding nothing.

The trap signals are anonymized into completion codes starting from 2. To preserve the
relationship between trap environments and exit statements, auxiliary operators ↑ and ↓
are introduced. ↑p increases the completion codes of all exit statements inside p by one.
It is used as an intermediate operator to describe the translation into the terse syntax,
it is not part of the final program. The ↓ k operator is added to completion codes of

2.4. REACTIVITY, DETERMINISM, CONSTRUCTIVENESS 21

trap environments to select the matching trap. If a completion passes a ↓ k operator it
is decremented. If the result equals two then the current trap environment is selected.

Applying this terse syntax to a short example yields:

trap T in
loop

present A then
emit B

else
exit T

end
pause

end
end

; {(A?!B, 2; 1)∗}

The following behavioral rules define the semantics of the kernel statements of Esterel.
They are not all listed here, just some to give a basic insight into their architecture.

k
∅,k−→
E

0

(compl)

This rule handles the termination of statements. The completion code k represents 0
for the instantaneously terminating nothing statement, 1 represents the pause statement,
and 2 and higher numbers represent trap signals.

!s
{s+},0−−−→

E
0

(emit)

The emission of a signal s is returned as a new element s+ in the environment. This
command has no condition limiting its execution.

s+ ∈ E p
E′,k−−→
E

p′

s?p, q
E′,k−−→
E

p′

(present+)

s− ∈ E q
E′,k−−→
E

q′

s?p, q
E′,k−−→
E

q′

(present-)

The present command is covered by two rules, which are selected depending on the tested
signal s. If s is present (i. e., s+ ∈ E) then the left rule (present+) applies, otherwise the
right one (present-). The execution of the sub-blocks p and q is added to the condition
to derive p′ and q′ respectively.

Behavioral rules for the remaining Esterel statements can be found in Berry’s book on
the Esterel semantics [3].

Using the former behavioral rules the logical correctness of an Esterel program P with
regard to a set of inputs I can be defined by arguing on the existence of derivations

P
O−→
I

P ′ leading to some program P ′ and a set of output signal states O:

22 CHAPTER 2. THE ESTEREL LANGUAGE

• P is reactive w.r.t. I if at least one derivation P
O−→
I

P ′ exists.

• P is deterministic w.r.t. I if at most one derivation P
O−→
I

P ′ exists.

• P is logically correct w.r.t. I if it is reactive and deterministic w.r.t. I.
That is there exists exactly one derivation for P and I.

• P is logically correct if it is logically correct for all possible input sets I.

It must be noted that the application of derivation rules to a program P covers only
the very first temporal instant of the program execution. After that first instant P is
transformed into P ′ for the next instant. Derivations obtained for P do generally not
apply to P ′, each instant must be treated individually.

The derivation rules correctly reflect the behavior of the Esterel statements and the
concept of logical correctness is useful in rejecting invalid Esterel programs.

present A then
emit A

end

This program is reactive but not deterministic, because it has two different solutions: A
absent and present. Therefore this program is not logically correct. This is reflected by
the following derivations:

A− ∈ E 0
∅, 0−−→
E

0

A?!A,0
∅, 0−−−−−−−−→

E = {A−}
0

(A absent)

A+ ∈ E !A
{A+}, 0
−−−−−→

E
0

A?!A,0
{A+}, 0

−−−−−−−−→
E = {A+}

0

(A present)

The following program has no solution for A at all, A present and absent both lead to
contradictions.

present A else emit A

The logical correctness is rejected as the main criterion on the validity of Esterel pro-
grams, because it is not able to reject certain programs with counterintuitive behavior.
In the following program the emission of signal A depends on the signal itself. Never-
theless it is logically correct, since only for A present a derivation free of contradictions
can be made.

present A then
emit A

else
emit A

end

A+ ∈ E !A
{A+}, 0
−−−−−→

E
0

A?!A,!A
{A+}, 0

−−−−−−−−→
E = {A+}

0

2.4. REACTIVITY, DETERMINISM, CONSTRUCTIVENESS 23

The fundamental reason for this problem lies in the direction of the information flow,
when the program is analyzed. The emission of signal A in both branches must be
known before the outer present test is evaluated. This speculative reasoning on signal
statuses is dealt with by testing all possible input combinations and testing which lead
to derivations free of contradictions. Such an approach is obviously computationally
very demanding and does scale poorly for large programs.

2.4.2 Constructive Behavioral Semantics

The motivation to develop another approach for testing the validity of Esterel programs
besides the logical correctness is founded in the non-intuitive flow of information in
programs according to the logical correctness. This section presents the constructive
behavioral semantics. It is based on strictly following cause and effect to determine the
behavior of a program. When deriving the state of a signal no speculative reasoning
must take place, only known facts on signal statuses are used to derive further signal
statuses (the constructive approach).

“Constructiveness” is defined by Berry [3] as a property of signal emissions:

• A signal is declared present iff it must be emitted.

• A signal is declared absent iff it cannot be emitted.

If a signal cannot be declared either present or absent with regard to some reachable
program state, then the program is considered not constructive.

The actual constructiveness analysis is defined by two functions Must and Can which
iterate on the Esterel program and derive iteratively the emission status of all signals.
The Must function detects which signals are emitted derived from the status of already
known signal statuses. The Can function searches for potential emissions of signals.
That information is not directly useful, but the complement of the result (Cannot =
Can) describes, which signals are absent. The direct computation of Cannot would be
possible, but Can is technically easier to handle.

Both functions are applied iteratively on the Esterel program. In each iteration run the
signal environments delivered by Must and Can are enriched with further knowledge
on signal emissions. The set of signals delivered by Must describes the signals which
are set to present in the current instant. Can produces all signals with a possible
emission, including the signals delivered by Must. The element-wise inverse of the Can
set delivers those signals which cannot be emitted, therefore these are the signals which
are not emitted in the current instant and considered absent. If after several iterations
no further progress on signal states can be derived the the iteration is terminated. If
there are signals remaining, which are not either present or absent then the program is
considered non-constructive.

24 CHAPTER 2. THE ESTEREL LANGUAGE

Both functions collect information on the completion codes returned by the program,
too. The result of each function application is returned as a pair with sets of emitted
signals as the first element, and the completion codes as the second element.

Each Esterel statement is handled by a separate set of Must/Can functions. The first
of these functions manages completion codes.

Must(k,E) = 〈∅, {k}〉
Canm(k,E) = 〈∅, {k}〉

Both functions return an empty set as the first element, since completion code statements
like nothing, pause, or exit do not change the state of signals. In the second element the
respective completion code is returned.

Must(!s, E) = 〈{s}, {0}〉
Canm(!s, E) = 〈{s}, {0}〉

Signal emissions are returned in the first entry and a completion code of value zero
because the emit statement terminates immediately.

Must((s?p:q), E) =

Must(p, E) : s+ ∈ E
Must(q, E) : s− ∈ E
〈∅, ∅〉 : s⊥ ∈ E

Canm(s?p:q, E) =

Canm(p, E) : s+ ∈ E
Canm(q, E) : s− ∈ E
Can⊥(p, E) ∪ Can⊥(q, E) : s⊥ ∈ E

The handling of the present statement is significantly more complicated. Both Can and
Must are applied in the same way if the status of the tested signal s is known. If s
is present then p is evaluated, if s is absent then q is evaluated. Can and Must differ
fundamentally for an unknown s. Can evaluates both p and q and unifies the result.
This implements the detection whether no emissions for signals are contained in p or q.
Must cannot continue on an unknown signal s because this would enable speculative
computation.

Further details on Must/Can rules can be found in [3].

The Must/Can analysis covers only one instant of the Esterel program. Analysis of
the entire program must be repeated for each derivative program covering all reachable
execution states of the program. Additionally for each program state all combinations
of states of input signals must be covered. Therefore a constructiveness analysis of a
program is considered very costly, leading to approaches to avoid a full constructiveness
analysis. These approaches typically put more restrictions on the validity of an Esterel
program. The most prominent restriction is the acyclic property. Acyclic programs are
a superset of constructive programs.

A test for the absence of cyclic dependencies is efficient and therefore implemented by all
Esterel compilers. In fact among the actual available Esterel compilers, only the Esterel
v5 compiler is optionally able to perform a constructiveness analysis. The Esterel v7
compiler, the CEC and others are limited to acyclic Esterel programs. Details on cyclic

2.4. REACTIVITY, DETERMINISM, CONSTRUCTIVENESS 25

dependencies can be found in Chapter 3.

2.4.3 Constructive Circuit Semantics

As already mentioned in Section 1.2 there exists a scheme to translate an Esterel program
into a circuit of logic gates implementing the same behavior. This scheme is efficient
as it is not affected by state explosion, because concurrent activities are synthesized
as parallel sub-circuits. However some logically correct Esterel programs showed some
anomalies in their respective circuit representation. Since these anomalies where rooted
in speculative execution of program parts, a refinement of the logical correctness into
the constructiveness became the reference semantics of Esterel. Constructiveness forbids
speculative execution and makes it feasible to synthesize efficient circuits from Esterel
programs.

The translation of an Esterel program into a circuit as defined by Berry [3] is specified as
a structural translation of the program hierarchy. For each individual Esterel statement
a translation rule is given. By recursively replacing the Esterel statements from the outer
to the inner hierarchy the whole Esterel program is replaced by its circuit representation.

The following paragraphs lists the translation of a selection of Esterel statements ex-
tended by a logical correct program with an unstable circuit representation.

The topmost layer connects the Esterel program P to the environment:

0

0

1 DONE

E E’

P

K0

K1

RES

SUSP

KILL

GO SEL

I O module MAIN:

input I ;
output O;

P

end

The input signals are connected to the E ports, the output signals to the E’ ports. All
tests of input signals can only evaluate signals in the E set, and all emissions of output
signals emissions are connected to the E’ set.

The entire circuit is driven by a single clock signal which is not explicitly shown here.
The clock is connected to every register in the circuit, therefore the entire circuit runs
synchronously on the same clock. One clock cycle in the circuit corresponds to one
instant in the Esterel program. The GO input starts the circuit. It is connected to a
register to produce a single 1 signal at power up of the circuit. This register is also
known as the boot register.

The K0 and K1 outputs reflect the completion codes of P . At the topmost level the
program P will set K1 while it is running and K0 when it terminates completely. Trans-
lations of inner statements can have further outputs for completion codes greater than
1 for trap exceptions.

26 CHAPTER 2. THE ESTEREL LANGUAGE

The RES, SUSP, KILL, and SEL signals are related to suspension, exceptions, and parallel
termination and of no further interest in this context. They will be left out in the
following translations.

A small problem is present with this connection to the environment. Common Esterel
compilers allow emissions of input signals and tests of output signals. This is not reflected
by the former circuit, the following circuit is a proposal to enable the emission/testing
of input/output signals:

0

0

1 DONE

P

I

K0

K1

RES

SUSP

KILL

GO SEL

E E’

O
module MAIN:

input I ;
output O;

P

end

The output signals are made available in the input set and emissions of input signals are
combined with the signals from the environment.

This feedback of signals from the output to the input is similar to the handling of local
signals:

GO K0
K1

P

E’S’SE

E

GO K0

K1

E’

signal S in
P

end

All emissions on the signal S are carried via S’ out of the block P and back into P on
the S inputs where they are available for tests.

The translation for nothing is the most simple one. It just connects the GO input to the
K0 output indicating the immediate termination.

GO K0
nothing

The driver gate is redundant here, it just helps to visually connect the nothing statement
to an actual part of the circuit and to indicate the signal flow.

An emit S statement terminates instantly, too. In addition to nothing it sets the output
part S’ of the signal S. S’ may be connected to a local or output signal.

2.4. REACTIVITY, DETERMINISM, CONSTRUCTIVENESS 27

GO K0

S’

emit S

Sequential execution of two statement blocks like “P;Q” is implemented by starting P on
its GO input. The termination of P is indicated by its K0 output, this signal is connected
to the GO input of Q. This enables the sequential execution of P and Q:

GO K0
K1

P

E’E

GO

K1

K0

GO K0
K1

Q

E’E

E E’

P ; Q

Some additional effort must be made to propagate the completion codes up to the upper
layers of the program: The entire block terminates when Q terminates, therefore the
output K0 of Q is connected to the outer K0. Higher order completion codes from K1
on are simply or-combined from both blocks P and Q. Signal emissions on E’ are treated
likewise.

The basic control flow statement is the present statement. It structurally similar to the
statement sequence:

GO K0
K1

P

E’E

K1
GO K0

K1
Q

E’E

GO

K0

E’ES

present S then
P

else
Q

end

The difference lies in the start and termination of P and Q: Signal S is and-combined
with the GO signal, with the result starting one of P or Q. As a termination criterion

28 CHAPTER 2. THE ESTEREL LANGUAGE

for the whole block the or-combination of K0 from P and Q is used as the outer K0.

The pause statement terminates the execution in the current instant and starts sequen-
tially following statements in the next instant. This behavior is influenced by suspensions
and exceptions. Neglecting these the following circuit represents the pause statement:

GO K0

K1

pause

A simplified implementation of pause is used here, because all cyclic dependencies in this
thesis which are illustrated as circuits do not involve suspension or exceptions.

The following circuit is a translation of the logical correct program in Section 2.4.1 on
page 22. An explicit local signal definition is added to make the instantaneous feedback
loop from the output to the input of the block visible.

signal A in
present A then

emit A
else

emit A
end

end

GO

A’

K0

A

The small circuit to the right is a reduced version of the full circuit. It shows the same
behavior as the original circuit when the GO signal is assumed to be set continuously.
This circuit does not stabilize for certain delays on the logic gates.

The reason for this kind of unstable behavior lies in outputs of a gates which are derived
from signals which itself are not stabilized yet. Such a configuration must be rejected
to achieve stable circuits. This restriction on the circuit level is implemented by the
constructiveness of Esterel programs, because the test of constructiveness is based on
the derivation of known (stable) signal states from already known signal states.

Chapter 3

Cyclic Dependencies

The emission of signals can be conditionally executed depending on tests for the presence
of other signals. This establishes dependency relations between signals. A closed circle
of such dependency relations in an Esterel program is called a dependency cycle. Such
a cycle is problematic, because the evaluation of a condition must not be invalidated
by subsequent signal emissions. If that is possible, the program is invalid and must be
rejected.

This chapter deals with examples of different kinds of cycles in Esterel programs and an
algorithm to find these cycles automatically. The identification of cycles is a preparation
step in resolving them which is described in the next chapter.

3.1 Non-Constructive Cycles

Consider the four short Esterel programs shown in Figure 3.1. The first program NRE-
ACT involves the signal A, which is an input signal, meaning that it can be emitted by
the environment, and also an output signal, meaning that it can be tested by the envi-
ronment. Here the environment may be either the external environment of the program,
or it may consist of other Esterel modules. The body of NREACT states that if A is
present (emitted by the environment), then nothing is done, which is not problematic.
However, if A is absent, then the else part is activated: A is emitted, which invalidates
the former presence test for A. Such a contradiction is an invalid behavior of an Esterel
program; such a program is over-constrained, or not reactive, and should be rejected
by the compiler. This problem also becomes apparent when synthesizing this program
into hardware, as the gate representation of this program is an inverter with its output
directly fed back to the input. This is obviously not a stable circuit and hence forbidden
in Esterel.

The program NDET in Figure 3.1(b) is similar to NREACT, but with else changed to
then. Here a presence of A will result in an emission of A in the then branch of the present
statement, which would justify taking the then branch. Conversely, an absent A will skip

29

30 CHAPTER 3. CYCLIC DEPENDENCIES

module NREACT:
inputoutput A;

present A else
emit A

end

end module

(a)

A

K0

GO

module NDET:
inputoutput A;

present A then
emit A

end

end module

(b)

GO

K0

A

module CYCLE:
inputoutput A, B;

present A then
emit B

end
||
present B then

emit A
end

end module

(c)

A

B

GO

(simplified)

module SEQ:
inputoutput A;

present A then
nothing

end;
emit A

end module

(d)

GO

A

K0

Figure 3.1: Invalid cyclic Esterel programs. The wires shown as dashed lines indicate
the cyclic dependencies.

3.2. CONSTRUCTIVE CYCLES 31

the emission of A. Hence, this program is under-constrained, or not deterministic. A
compiler should reject NDET. This also becomes apparent at the gate representation of
NDET, which is a driver gate that transmits the input value to the output. Now the
output is fed back to the input to map the behavior of the program. As a certain gate
delay is inevitable, this circuit may be an oscillator instead of providing stable outputs.

Programs NREACT and NDET have the same underlying problem: They involve a signal
that is self dependent. In both programs the emission of A depends on a guard containing
A. In these two examples, we have a direct self dependence, where the emission of a signal
immediately depends on the presence of a signal. However, we may also have indirect self
dependencies, in which a signal depends on itself via some other, intermediate signals.
Consider program CYCLE in Figure 3.1(c), which contains two parallel threads, both
testing for the signal emitted by the other one. However, the signals are emitted only if
the other one has been emitted already; the emission of A depends on the presence of
B and vice versa. In this case, we have a cyclic dependency, or cycle for short, and the
program should again be rejected.

The former examples all involved signal emissions guarded by predicates over signal
tests. Another kind of dependency is linked to the termination of a statement block.
Figure 3.1(d) contains such a scenario. The emission of A depends on the termination
of the preceeding present block. But that block can only be executed if the the presence
status of the tested signal A is determined for that instant. That status cannot be
determined at the point of testing, since the sequential order of statements puts the
emission of A behind the test for that signal. In fact the circuit representation of the
program contains a self dependency of signal A to itself. Therefore the program in
Figure 3.1(d) is considered non-constructive.

3.2 Constructive Cycles

All four programs shown in Figure 3.1 involve non-constructive cyclic signal dependencies
and are therefore invalid, and hence of no further interest to us.

However, there are programs that contain dependency cycles and yet are valid. A
program is considered valid, or constructive, if we can establish the presence or absence
of each signal without speculative reasoning, which may be possible even if the program
contains cycles. The equivalent formulation in hardware is that there are circuits that
contain cycles and yet are self-stabilizing, irrespective of delays [5].

Consider the program PAUSE CYC in Figure 3.2(a): the cyclic dependency consists of
an emission of B guarded by a test for A and an emission of A guarded by a test for B. At
run time, however, the dependencies are separated by a pause statement into separate
execution instants. The emission of B in the first instant has no effect on the test for B
in the second instant.

In such a case, where not all dependencies are active in the same execution instant,

32 CHAPTER 3. CYCLIC DEPENDENCIES

module PAUSE CYC:
input A, B;
output C;

present A then
emit B

end;
pause;
present B then

emit A
end

||
present B then

emit C
end

end module

(a)

module PAUSE PREP:
input A, B;
output C;
signal A , B , ST 0, ST 1, ST 2 in

emit ST 0;
[

present [A or A] then

emit B
end;
pause; emit ST 1;
present [B or B] then

emit A
end

||
present [B or B] then

emit C
end

]
end signal

end module

(b)

module PAUSE ACYC:
input A, B;
output C;
signal A , B , ST 0, ST 1, ST 2 in

emit ST 0;
[

present [A or
(ST 1 and (B or ST 0))] then

emit B
end;
pause; emit ST 1;
present [B or B] then

emit A
end

||
present [B or B] then

emit C
end

]
end signal
end module

(c)

module PAUSE OPT:
input A, B;
output C;

signal A , B in
[

present A then
emit B

end;
pause;
present [B or B]
then

emit A
end

||
present [B or B]
then

emit C
end

]
end signal
end module

(d)

Figure 3.2: Resolving a cycle: (a) Original program with cycle between A and B,
(b) introduction of state signals and shifting the cycle on internal signals, (c) replacement
of cycle signal A by an expression, (d) optimized version.

3.2. CONSTRUCTIVE CYCLES 33

A CB

K1

K0

K0GO

(a)

GO

A_

K1

K0

BB_

K0

A C

(b)

Figure 3.3: Circuit representation of the program PAUSE CYC in Figure 3.2 (simpli-
fied without synchronizer): (a) Cycle path of the original program PAUSE CYC, (b)
Transformed, acyclic, and optimized program PAUSE OPT with new signals A and B .

module DRIVER CYC:
input D;
input Ain, Bin;
output Aout, Bout;

loop
present D then

present
[Ain or Aout]

then
emit Bout

end
else

present
[Bin or Bout]

then
emit Aout

end
end;
pause

end
end module

(a)

module DRIVER ACYC:
input D;
input Ain, Bin;
output Aout, Bout;

loop
present D then

present
[Ain and not D and (Bin or D)]

then
emit Bout

end present
else

present
[Bin or Bout]

then
emit Aout

end
end
pause

end
end module

(b)

D

Aout Bout

Bin

GO

Ain

(c)

Figure 3.4: False cyclic dependencies in a bidirectional bus driver. The wires shown as
dashed lines indicate the cyclic dependency.

34 CHAPTER 3. CYCLIC DEPENDENCIES

we will call the cyclic dependency a false cycle. In contrast, the programs shown in
Figure 3.1 all contained true cycles, where all dependencies involved were present at the
same instant.

A cycle may be false because it is broken by a register, as is the case in PAUSE CYC,
or because it is broken by a guard, as is the case in program DRIVER CYC shown in
Figure 3.4(a). Programs that only contain false cycles are still constructive and hence
are valid programs that should be accepted by a compiler.

So far, we have considered only programs that contained true cycles and were invalid
(NREACT, NDET, CYCLE) or that contained false cycles and were valid (PAUSE CYC,
DRIVER CYC). However, there also exist programs that contain true cycles, with all
dependencies evaluated at the same instant, and yet are valid programs. A classic
example of a truly cyclic, yet constructive program is the Token Ring Arbiter [29];
Figure 3.5 shows a version with three stations (slightly modified version from Berry [4]).
Each network station consists of two parallel threads: one computes the arbitration
signals, the other passes a single token from one station to the next in each instant.
An inspection of the Arbiter reveals that there is a true cycle involving signals P1, P2,
and P3. However, the program is still constructive as there is always one token present
that breaks the cycle. Hence, a compiler should accept this program. Note that the
same program, but without the first thread that emits T1 in the first instant, should be
rejected. This illustrates that determining constructiveness of a program is a non-trivial
process.

3.3 Variants of Cyclic Dependencies

Besides syntactical soundness, Esterel programs must be constructive for being con-
sidered a valid Esterel program. This involves the exploration of all internal program
states which are reachable from the initial state [36]. For each of such states the succes-
sor states must be reachable with constructive reasoning. This test for constructiveness
is complex and computationally demanding. Therefore most Esterel compilers put a
stronger requirement on valid Esterel programs: Absence of cyclic dependencies. This
property is much easier to check and yields another benefit: Esterel programs without
cyclic dependencies are statically schedulable. This simplifies code generation, results
in smaller code, faster execution, and easier runtime analysis.

Unfortunately, different Esterel compilers can have different ideas of cyclicity of signal
dependencies. Additionally there is no clear hierarchy of compilers with regard to sub-
sets of accepted programs. And to make things worse, for no compiler a precise definition
of what constitutes cyclic dependencies on the Esterel level is given. The detection of
cycles presented in this work is derived from the behavior of the v5 Esterel compiler on
signal dependencies in the circuit translation of Esterel programs. For an adaption of
the cycle detection algorithm to other Esterel compilers the signal dependency rules as
formulated in Figure 3.7 on page 38 must be checked and implemented in a modified

3.3. VARIANTS OF CYCLIC DEPENDENCIES 35

module TR3 CYC:

input R1, R2, R3;
output G1, G2, G3;

signal P1, P2, P3,
T1, T2, T3

in
emit T1

||
loop % Station 1

present [T1 or P1]
then

present R1 then
emit G1

else
emit P2

end
end ;
pause

end loop
||
loop

present T1 then
pause;
emit T2

else
pause

end
end

||
loop % Station 2

present [T2 or P2]
then

present R2 then
emit G2

else
emit P3

end
end ;
pause

end loop
||
loop

present T2 then
pause;
emit T3

else
pause

end
end

||
loop % Station 3

present [T3 or P3]
then

present R3 then
emit G3

else
emit P1

end
end ;
pause

end loop
||
loop

present T3 then
pause;
emit T1

else
pause

end
end

end module

(a)

P1

GO

R1

Station 1 Station 2

G1

T1

P2

T2

R2 G2

Station 3

T3

P3

R3 G3

(b)

Figure 3.5: Token Ring Arbiter with three stations: (a) Esterel implementation [4] with
expanded run modules, (b) Simplified circuit representation, dashed lines indicate the
path of cyclic dependency.

36 CHAPTER 3. CYCLIC DEPENDENCIES

module CYCLE CEC:
input I ,S;

[
present I then

present S then
pause

else
pause

end
end

||
nothing

];
emit S

end module

(a)

module CYCLE v5:
input A;

[
present A then

nothing
end

||
pause

];
emit A

end module

(b)

module CYCLE TRAP:
input A, B;

trap T1 in
trap T2 in

present A then
nothing

end;
[exit T1 || exit T2]

end;
emit B

end;
pause;
present B then

emit A
end

end module

(c)

Figure 3.6: Ambiguous cyclic dependencies identified differently by CEC and v5: (a)
cyclic for CEC but acyclic for Esterel v5 compiler, (b) acyclic for CEC but cyclic for
Esterel v5 compiler, (c) acyclic for CEC and v5 compiler, but considered cyclic by
transformation.

version accordingly. Probably the greatest potential for differences in signal dependen-
cies will pose the termination of parallel threads, because the interaction of exception
priorities with parallel termination can break cyclic dependencies.

The example program CYCLE CEC in Figure 3.6(a) (taken from D. Potop-Butucaru’s
thesis [31]) is considered cyclic by GRC (graph code) based compilers like the CEC 0.3
compiler and acyclic by circuit code based compilers like the Esterel v5 92 compiler.

Potop-Butucaru shows that the problem originates in the termination control block
(synchronizer) of parallel threads. The synchronizer is treated as opaque, causing de-
pendency connections from otherwise unrelated inputs and outputs. As a solution,
Potop-Butucaru proposes a refinement of the synchronizer by splitting it up into sep-
arate entities each handling an unrelated subset of inputs and outputs. The CEC 0.3
compiler is based on GRC code synthesis, but does not implement this modification.
Therefore the program CYCLE CEC in Figure 3.6(a) is considered cyclic by the CEC.

The parallel synchronizer for circuit representations [3] is not an opaque module, it is
based on logic gates and is therefore the Esterel v5 92 compiler is able to avoid cyclic
dependencies in CYCLE CEC.

The example program CYCLE v5 in Figure 3.6(b) is treated differently than CYCLE CEC:
The CEC is able to compile the program without any complaints on cyclic dependencies,
but the Esterel v5 92 compiler rejects it as statically cyclic and needs a causality analysis
to compile it. The v5 92 compiler does not recognize that the emission of A is executed

3.4. FINDING CYCLIC DEPENDENCIES 37

following a pause statement and therefore not dependent on the test for A.

The third example in Figure 3.6(c) contains a cyclic dependency between signals A and
B involving parallel termination and trap priorities. Both the CEC and v5 92 compiler
recognize the unreachability of the “emit B” statement. Therefore no cycle is detected
by these compilers.

The cycle analysis algorithm described in the next section does not make use of such
optimizations. It is based on the propagation of a set of active guard signals while
traversing the Esterel program. Joining a parallel block is basically the union of two such
sets. Applied to CYCLE CEC in Figure 3.6(a) returns just the signal I, not including S as
a guard, because both branches of the test on S contain a pause statement. As a result
just I is returned as a guard for the appended ”emit S” statement. Therefore no cycle is
detected in this example.

If one would want to make the cycle detection scheme presented here compliant to the
CEC, one possibility is the relaxing of cycle detection in the transformation. This would
involve adding the signals in a present predicate to the guard set returned by that block
if it is connected to a synchronizer. Another possibility would be the addition of Potop-
Butucaru’s proposal for a modified synchronizer to the CEC code synthesis. The latter
approach has bigger potential for a more efficient code generation.

The second example CYCLE v5 in Figure 3.6(b) returns the signal A in the first thread
and no signal in the second thread containing the pause statement. The result is a guard
of A for the ”emit A” statement which constitutes a cycle.

The cycle searching algorithm does not take trap priorities into account. Therefore the
third example CYCLE TRAP in Figure 3.6(c) returns a dependency from A to B in the
first instant before the pause statement. Together with the dependency from B to A in
the second part behind the pause statement, a cycle is detected.

This additional cycle will be resolved by the actual transformation step presented in
Chapter 4. The behavior of the program will be conserved, but a certain amount of
overhead is introduced by this needless transformation.

3.4 Finding Cyclic Dependencies

The previous sections gave some informal introduction into different kinds of cyclic
signal dependencies in Esterel programs on some examples. Before being able to resolve
such cycles algorithmically, details on a method to identify such cycles are needed. The
algorithm presented here is divided into two parts:

1. Identification of all direct dependencies between signals.

2. Searching for cycles in signal dependencies.

38 CHAPTER 3. CYCLIC DEPENDENCIES

P =

emit S
G(P,G, W,X) = G

D(P,G, W,X) = {〈a, S〉 | a ∈ G}
(3.1)

present S then
p

else
q

end

Gp ≡ G(p, G ∪ {S},W, X) Gq ≡ G(q, G ∪ {S},W, X)

G(P,G, W,X) =

⊥ : (Gp = ⊥) ∧ (Gq = ⊥)
Gp : (Gp 6= ⊥) ∧ (Gq = ⊥)
Gq : (Gp = ⊥) ∧ (Gq 6= ⊥)
Gp ∪ Gq : otherwise

D(P,G, W,X) = D(p, G ∪ {S},W, X) ∪ D(q, G ∪ {S},W, X)

(3.2)

pause
G(P,G, W,X) = W

D(P,G, W,X) = {〈a, s〉 | a ∈ G, s ∈ X}
(3.3)

halt
G(P,G, W,X) = ⊥
D(P,G, W,X) = {〈a, s〉 | a ∈ G, s ∈ X}

(3.4)

nothing
G(P,G, W,X) = G

D(P,G, W,X) = ∅
(3.5)

loop
p

end

Gp ≡ G(p, G,W,X)
G(P,G, W,X) = ⊥

D(P,G, W,X) =
{
D(p, G,W,X) : Gp = ⊥
D(p, G ∪ Gp,W, X) : otherwise

(3.6)

p ; q

Gp ≡ G(p, G,W,X)

G(P,G, W,X) =
{
⊥ : Gp = ⊥
G(q,Gp,W, X) : otherwise

D(P,G, W,X) =
D(p, G,W,X)

∪
{
∅ : Gp = ⊥
D(q,Gp,W, X) : otherwise

(3.7)

trap T in
p

end

Gp ≡ G(p, G,W,X ∪ {T})

G(P,G, W,X) =
{a | 〈a, T 〉 ∈ D(p, G,W,X ∪ {T})}

∪
{
∅ : Gp = ⊥
Gp : otherwise

D(P,G, W,X) = {〈a, s〉 ∈ D(p, G,W,X ∪ {T}) | s 6= T}

(3.8)

exit T
G(P,G, W,X) = ⊥
D(P,G, W,X) = {〈a, T 〉 | a ∈ G}

(3.9)

p II q
G(P,G, W,X) =

⊥ :

(G(p, G,W,X) = ⊥)
∨ (G(q, G,W, X) = ⊥)

G(p, G,W,X)
∪ G(q, G,W, X)

: otherwise

D(P,G, W,X) = D(p, G,W,X) ∪ D(q, G,W, X)

(3.10)

Figure 3.7: First part of the equations to determine signal dependencies. See Figure 3.8
for the second part. D collects signal dependencies from signal emissions, G returns
the active guard signals from terminating statement blocks. Parameter P is the given
program fragment shown on the left, G the set of guard signals, W the set of signals in
suspend/abort expressions, and X the set of trap signals in the current context.

3.4. FINDING CYCLIC DEPENDENCIES 39

P =

signal S in
p

end

G(P,G, W,X) =
{
⊥ : G(p, G,W,X) = ⊥
G(p, G,W,X) : otherwise

D(P,G, W,X) = D(p, G,W,X)
(3.11)

suspend
p

when S

Gp ≡ G(p, G,W ∪ {S}, X)

G(P,G, W,X) =
{
⊥ : Gp = ⊥
Gp ∪ {S} : otherwise

D(P,G, W,X) = D(p, G,W ∪ {S}, X)

(3.12)

abort
p

when S

Gp ≡ G(p, G,W ∪ {S}, X)

G(P,G, W,X) =
{
⊥ : Gp = ⊥
Gp ∪ {S} : otherwise

D(P,G, W,X) = D(p, G,W ∪ {S}, X)

(3.13)

Figure 3.8: Second part of the equations to determine signal dependencies.

The first part is specified as a structural induction on Esterel programs with a set of
signal pairs as a result. Each signal pair describes a dependency from one signal to
another.

These pairs are interpreted as a directed graph with the signal names as nodes and the
set of signal pairs defining directed edges between the nodes. The task of the second part
of the algorithm is to identify those nodes which are cyclically connected by directed
edges. Those nodes comprise the cyclic dependency.

The two most basic elements of a signal dependency are the test for a signal state (present
S) and the emission of a signal (emit S). If both elements are combined in a program
fragment

present S then
emit P

end

then a signal dependency is created: The presence state of S decides about the emission
of P. Therefore the state of S must be known before the state of P can be established.
In other words: Signal S is a guard for signal P, or P depends on S.

The simple fact that an emit P statement is contained in a sub-block of a present state-
ment is not a sufficient condition for a signal dependency. Consider this program frag-
ment:

present S then
emit P;
pause;
emit Q

end

40 CHAPTER 3. CYCLIC DEPENDENCIES

P =

emit S
G(P,G, W,X) = G

D(P,G, W,X) = {〈a, S〉 | a ∈ G} (3.14)

present S then
p

else
q

end

G(P,G, W,X) = G(p, G ∪ {S},W, X) ∪ G(q, G ∪ {S},W, X)
D(P,G, W,X) = D(p, G ∪ {S},W, X) ∪ D(q, G ∪ {S},W, X) (3.15)

pause
G(P,G, W,X) = W

D(P,G, W,X) = {〈a, s〉 | a ∈ G, s ∈ X} (3.16)

halt
G(P,G, W,X) = ∅
D(P,G, W,X) = {〈a, s〉 | a ∈ G, s ∈ X} (3.17)

nothing
G(P,G, W,X) = G

D(P,G, W,X) = ∅
(3.18)

loop
p

end

G(P,G, W,X) = ∅
D(P,G, W,X) = D(p, G ∪ G(p, G,W,X),W, X) (3.19)

p ; q
G(P,G, W,X) = G(q,G(p, G,W,X),W, X)
D(P,G, W,X) = D(p, G,W,X) ∪ D(q,G(p, G,W,X),W, X) (3.20)

trap T in
p

end

G(P,G, W,X) =
{a | 〈a, T 〉 ∈ D(p, G,W,X ∪ {T})}

∪ G(p, G,W,X ∪ {T})
D(P,G, W,X) = {〈a, s〉 ∈ D(p, G,W,X ∪ {T}) | s 6= T}

(3.21)

exit T
G(P,G, W,X) = ∅
D(P,G, W,X) = {〈a, T 〉 | a ∈ G} (3.22)

p II q
G(P,G, W,X) = G(p, G,W,X) ∪ G(q, G,W, X)
D(P,G, W,X) = D(p, G,W,X) ∪ D(q, G,W, X) (3.23)

signal S in
p

end

G(P,G, W,X) = G(p, G,W,X)
D(P,G, W,X) = D(p, G,W,X) (3.24)

suspend
p

when S

G(P,G, W,X) = G(p, G,W ∪ {S}, X)
D(P,G, W,X) = D(p, G,W ∪ {S}, X) (3.25)

abort
p

when S

G(P,G, W,X) = G(p, G,W ∪ {S}, X)
D(P,G, W,X) = D(p, G,W ∪ {S}, X) (3.26)

Figure 3.9: Simplified equations from Figure 3.7/3.8 to determine signal dependencies
without skipping of unreachable code. If the input program does not contain any sus-
pend/abort statements then rules (3.25) and (3.25) can be omitted and any reference to
W replaced by ∅.

3.4. FINDING CYCLIC DEPENDENCIES 41

The emission of P is followed by a pause statement and an emission of signal emit Q. The
pause statement defers the emission of Q to the next instant from the instant where S is
tested. Therefore the emission of Q is not influenced by the state of S in their respective
instants and so S is a guard for P but not for Q.

While a signal emission being part of a present block is not a sufficient condition for a
signal dependency, it is neither a necessary condition. Consider the following program
fragment:

present S then
nothing

end;
emit P

In this example the emission of P is not part of the present block, but that block must
terminate before the emission can take place. To execute the present block the state of
the signal S must be known. The fact that the then and (implicit) else branches both
contain just a nothing statement is not relevant here. The constructive semantics of
Esterel demands non-speculative execution of the program and the execution of present
must be held back until the state of all the tested signals is established. Therefore signal
dependencies can be established across sequential execution of statements, too.

Further details of deriving signal dependencies off Esterel programs are given in the next
section on the dependency algorithm.

3.4.1 Algorithm to Identify Signal Dependencies

The concept of signal guards is used to identify all signal dependencies in an Esterel
program. While traversing the syntactical elements of the program, three sets of cur-
rently active guard signals are maintained and signal dependencies are derived from
signal emissions.

Given an an Esterel Program P with signals Σ, the rules to implement both tasks operate
on three signal sets:

• G ⊂ Σ: Set of signals (Guards) comprising the current present conditions.

• W ⊂ Σ: Set of signals (Watchers) contained in the currently active suspend and
abort conditions.

• X ⊂ Σ: Set of trap signals (Exceptions) in the current scope.

Signals in G (the present conditions) do not reach across pause statements and are there-
fore deleted when traversing such statements. The signals added to W inside suspend
and abort blocks are tested for the entire runtime of those blocks, and they must not
be removed while traversing pause statements. Effectively the content of G is initialized

42 CHAPTER 3. CYCLIC DEPENDENCIES

with the content of W at every pause statement. This implements the delayed nature of
suspend and abort conditions.

The signals in X are not regular signals but trap signals. This set is used to express the
extension of range for guards in exceptions in the context of parallel threads.

The rules to derive signal dependencies from Esterel programs are implemented in two
functions (with Π as set of Esterel programs and Σ the set of signals):

• D : Π× 2Σ × 2Σ × 2Σ → 2Σ×Σ (P, G, W, X) 7→ D(P, G, W, X)
This function computes the signal dependencies from the current guard signals.
The result is a set of signal pairs describing all signal dependencies in P . It uses
G to handle sequences of statements.

• G : Π× 2Σ × 2Σ × 2Σ → 2Σ (P, G, W, X) 7→ G(P, G, W, X)
G returns the set of guard signals that are active when the program block P
terminates. If control cannot leave P , then ⊥ is returned. This is used to identify
and efficiently handle unreachable code.

To extract the signal dependencies D from an Esterel program p, D is applied to p with
initially empty guard sets: D = D(p, ∅, ∅, ∅).
The actual rules for all Esterel kernel statements are listed in Figure 3.7 on page 38 and
Figure 3.8 on page 39. Some remarks on the application of the rules are stated in the
following.

Figure 3.9 on page 40 contains a simplified variant: The handling of dead code is missing.
This rule set is useful for an overview on the principle of finding signal dependencies
without the complications introduced by dead code. If dead code in input programs
is not present in the first place, is removed by other means, or known to not contain
dependencies as part of a cycle then the rule set in Figure 3.9 instead of Figures 3.7/3.8
can be used without loss of efficiency. Otherwise the following transformation would
potentially resolve cycles that are not rejected by Esterel compilers.

Rule 3.1 (emit) applies to signal emissions. G returns the current guard unchanged.
D takes the current guard set G and returns a dependency pair for each signal to the
emitted signal.

Rule 3.2 (present) handles the conditional execution of sub-blocks (e. g., either p or
q). D returns the union of the independent results on p and q. For the evaluation of
p and q, the same current signal guard set is used, extended by the signals from the
present condition. The signal guard set at the point of termination consists of the union
of guard sets returned by either terminating branch. If neither branch terminates, then
the entire present block is considered non-terminating and G returns ⊥.

The following code gives an example for the kind of dependencies found by Rules 3.1
and 3.2. Rule 3.2 extracts A as the dependency source used in Rule 3.1 to add a
dependency to B and C.

3.4. FINDING CYCLIC DEPENDENCIES 43

P =

present A then
emit B

else
emit C

end;

; D(P, ∅, ∅, ∅) = {〈A, B〉, 〈A, C〉}

Rule 3.3 (pause) handles the separation of instants at program execution, therefore
the currently valid guards are invalid after execution of the pause statement. G deletes
the guard set by resetting it to the content of W . Details on the purpose of the W set
are given in the remarks on Rule 3.12/3.13.

In a variant of the previous example a pause statement is added to the else branch of the
present statement. This breaks the dependency from A to C and only the dependency
to B remains:

P =

present A then
emit B

else
pause;
emit C

end;

; D(P, ∅, ∅, ∅) = {〈A, B〉}

Function D for pause relates to the use of traps to terminate parallel threads. The
remarks on Rule 3.10 address the handling of trap signals in this context.

Rule 3.5 (nothing) does nothing. G just returns the current guard set and D produces
no dependency pairs.

Rule 3.6 (loop) introduces a difficulty: Unreachable or dead code. The body of a
loop is indefinitely repeatedly executed, unless an included exit statement hands control
over to a surrounding trap exception handler. However, the code located immediately
in sequence of a loop statement is not reachable. Therefore any statements sequentially
following a loop statement do not produce any signal dependencies. This is not correctly
reflected by, e. g., returning an empty guard set for the pause statement. Unreachable
code is marked here with a ⊥ symbol, instead.

The body of a loop statement needs to be evaluated twice, to capture signal dependencies
which are wrapped around the end of the loop body. Rule 3.6 implements this for the
first iteration as an application of D on the loop body p to obtain the guard set active
at termination of p. That guard set is added to the guard set active at the start of the
loop statement. The resulting guard set is used to derive the signal dependencies in p in
the second iteration.

The following example contains a dependency from A to B. The dependency wraps
around the end of the loop statement:

44 CHAPTER 3. CYCLIC DEPENDENCIES

P =

loop
emit B;
pause;
present A then

nothing
end

end

; D(P, ∅, ∅, ∅) = {〈A, B〉}

The emission of B is not added as a dependency to A in the first iteration, because the
test on A is not yet evaluated. The second iteration will register B as dependent on A.

Rule 3.7 (;) handles signal dependencies introduced by sequential execution of code
blocks (e. g., p before q). The analysis of p is the easy part: Function D is applied to
the code of p with the current guard set G. The problematic part is the analysis of
q: Beforehand it must be known if p cannot terminate. In that case q is unreachable
and is considered to produce no signal dependencies. If p is able to terminate, then the
active guard set at the termination of p is needed for the application of D on q. Both
questions are answered by the function G. Incidentally the hypothetical abandonment
of the sequence operator would eliminate the need for the function G altogether.

The following code contains a present statement with empty then and else branches.
Nevertheless the present can only be executed when the status of A is known. After the
termination of present the emit statement is executed in sequence and therefore adds a
dependency from A to B:

P =

present A then
nothing

end;
emit B

; D(P, ∅, ∅, ∅) = {〈A, B〉}

If both branches of a present execute pause statements, then the sequential dependency
is broken. This behavior is implemented in the definition of G in Rules 3.2 and 3.3:

P =

present A then
pause

else
pause

end;
emit B

; D(P, ∅, ∅, ∅) = ∅

Rule 3.8 (trap) and Rule 3.9 (exit) are tightly coupled. The basic problem encoun-
tered when formulating these rules was the handling of exceptional control flow for exit
statements in p. The regular recursive traversal of the trap body would only catch the
guard set for the regular termination of p. But when an exit statement is encountered
inside p, then the guard set present at the point of exit must be added to the guard set
at termination of the entire trap statement.

The solution proposed here adds the trap signal T to the list of signal dependencies.
This connects each signal in the current guard set G as a guard for the trap signal, and

3.4. FINDING CYCLIC DEPENDENCIES 45

“tunnels” the guard set from the exit statement to the termination of the trap body. At
that point the exit guard is extracted back from the signal dependency set and added to
the guard set computed for the regular termination.

At the end of the evaluation of a trap statement, all references to the trap signal T are
removed from the dependency set. But this is just cosmetical, because the trap signal
T is never tested like a regular signal and therefore will not interfere in the search for
cycles in signal dependencies.

The following example contains two signal dependencies. The dependency from B to C
is introduced by regular termination of the trap body. Another dependency connects A
via the exit statement to B:

P =

trap T in
present A then

exit T
end;
pause;
present B then

nothing
end

end;
emit C

; D(P, ∅, ∅, ∅) = {〈A, C〉, 〈B, C〉}

Rule 3.10 (II) handles the parallel execution of threads (e. g., p and q). It is similar
to Rule 3.2 on the present statement. Both threads are evaluated independently and
the results unified. The main difference is in the handling of non-terminating p or q.
For present it is sufficient if either one terminates to consider the whole present block to
potentially terminate. The parallel block terminates when all threads are terminated,
therefore if one thread does not terminate, the whole parallel block must be considered
non-terminating.

This treatment of the termination of parallel blocks is a conservative simplification of the
synchronizer circuit in the circuit semantics of Esterel. Figure 3.6 on page 36 contains
examples where this makes a difference.

Signal dependencies must be recognized across the termination of parallel threads. The
following (simple) example contains two dependencies to C:

P =

[
present A then nothing end

||
present B then nothing end

];
emit C

; D(P, ∅, ∅, ∅) = {〈A, C〉, 〈B, C〉}

Complications are introduced by termination of parallel threads by activating a trap
exception. In a regular control flow the set of guard signals is emptied on encountering a
pause statement because the execution of the instant ends there. This limits the influence

46 CHAPTER 3. CYCLIC DEPENDENCIES

P =

trap T in
present A then

nothing
end;
pause

||
exit T

end;
emit B

(a)

; D(P, ∅, ∅, ∅) = {〈A, B〉}

P =

trap T in
present A then

nothing
end;
pause;
exit T

end;
emit B

(b)

; D(P, ∅, ∅, ∅) = {〈A, B〉}

Figure 3.10: Dependencies introduces by exception handling: (a) Dependency from A
to B because of an exit in a parallel thread, (b) statically unreachable dependency.

of a guard set up to the next pause statement. But if in a parallel thread an exit statement
is executed, then the control point is moved to the end of the corresponding trap block.
This extends the reach of a guard beyond the pause statement.

Such a case is pictured in the example in Figure 3.10(a). The present test in the first
thread adds A to the guard and the execution stops at the pause statement. But the exit
statement in the second thread moves the control to the end of the trap block, which
adds a dependency to B.

The solution to the problem which is proposed here is to not simply discard the guard
set at a pause statement. Instead of this the signals contained in the guard are stored
as dependencies to all trap signals in the current scope. This is implemented in Rule 3.3
on function D for the pause statement.

The additional signal set X (“eXception”) is used to store the set of trap signals in the
current scope. It is set up in Rule 3.8 on entering the body of a trap statement.

A drawback of this simple method is that trap dependencies are added even for clearly
unreachable control flows. That is this method does not return the minimal set of depen-
dencies regarding the cycles which are rejected by Esterel compilers. The dependency
returned for the example in Figure 3.10(b) is just an artefact of the simplicity of the
algorithm. Future refinements of the dependency detection algorithm may improve on
this aspect.

Rule 3.11 (signal) does not remove the locally defined signal S from the guard set,

3.4. FINDING CYCLIC DEPENDENCIES 47

signal S in
...
present S then

pause
end;

end;
emit B;

(a)

signal S in
present A then

emit S
end;
present S then

pause
end

end;
emit B;
pause;
present B then

emit A
end

(b)

Figure 3.11: Signal dependency extending outside the scope of a local signal: (a) De-
pendency from local signal S to B leaving scope of S, (b) constructive cyclic dependency
from A over local signal S to B.

because the local signal may carry a signal dependency outside the scope of the signal.

Consider the examples in Figure 3.11: The termination of the signal block in the program
fragment in Figure 3.11(a) depends on the status of the local signal S. Therefore a
dependency exists from S to the signal B emitted following the signal block. If Rule 3.11
would remove S from the guard set when leaving the signal block, then the dependency
from S to B would be missed. The example in Figure 3.11(b) contains a complete
(constructive) cyclic dependency from A over S to B and back to A. Part of that cycle
is routed outside the scope of the locally defined signal S.

This “leaking” of signal names out of their respective scopes is acceptable to detect the
presence of cyclic dependencies, but it is not for resolving those cycles. Therefore the
transformation algorithm in Chapter 4 suggests in Step 2c (Figure 4.2, page 53) the
removal of locally defined signals. This treatment of local signal definitions is definitely
not needed in all cases, and removal of local signals can be quite expensive in code size.
Therefore an optimization can be applied to this rule, see Section 6.11.

Rule 3.12 (suspend) and Rule 3.13 (abort) are handled in the same way. The
suspend/abort signal is added to the watcher signal set W to analyze the sub-block.
As noted before, a distinct watcher set W is used for the signals in the suspend/abort
condition beside the regular guard set G. The dependencies to signals in G will be
removed by pause statements, but the dependencies to suspend/abort signals are present
for the entire run of the sub-block and therefore must not be deleted. This is implemented
by copying the content of W over into G at every evaluation of pause in Rule 3.3.

The condition of suspend/abort is not evaluated in the very first instant entering the
body. Therefore no dependencies to the suspend/abort condition are produced for the
first instant. This restriction is honored, since the copying of W took not yet place in
the first instant entering the body of suspend/abort.

48 CHAPTER 3. CYCLIC DEPENDENCIES

present A then
emit B

else
emit C

end;
pause;
present B then

emit A
end

(a)

Dependencies:
D = {〈A, B〉, 〈A, C〉, 〈B, A〉}

Cycle:
C = 〈A, B〉

(b)

A

B

C

(c)

Figure 3.12: Finding (cyclic) signal dependencies: (a) Example program, (b) Applica-
tion of functions D() and algorithm find shortest cycle(), (c) Graphical representation of
signal dependencies.

Such a configuration is presented in the following example. The watcher signal C is a
guard for B even though B is located behind a pause statement:

P =

suspend
emit A;
pause;
emit B;

when C

; D(P, ∅, ∅, ∅) = {〈C, B〉}

Signal A does not depend on C because of the delayed nature of suspend/abort conditions.

The rule for abort is listed here despite of abort not being a kernel statement of Esterel.
But abort is frequently used (much more so than suspend) and therefore worth handled
directly without previous expansion into kernel statements.

The algorithm presented in Chapter 4 (Figure 4.2, page 53) on the actual resolving of
cyclic dependencies substitutes in Step (3a) all suspend statements by means of other
kernel statements. Nevertheless the search for signal dependencies supports the suspend
statement directly because in the absence of cyclic dependencies the substitution of
suspend is not needed.

3.4.2 Searching for Cycles in Signal Dependencies

The algorithm described in Section 3.4.1 computes all signal dependencies in a given
Esterel program. The result is a set of pairs of signal names describing all dependencies
between signals. Figure 3.12 contains an example for such an analysis.

Formally: Given the set of signals Σ in the Esterel program P , the signal dependencies
are returned as a set D of pairs by function D(p, ∅, ∅, ∅):

D = {〈a0, b0〉, ..., 〈an, bn〉}, a0, ..., an, b0, ..., bn ∈ Σ

A cycle of length l ∈ N is defined as a chain ~C of signals connected by dependencies:

3.4. FINDING CYCLIC DEPENDENCIES 49

1 type Signal = struct {
2 string name,
3 SignalSet depend,
4 boolean tag
5 };
6
7 type SignalSet = set Signal ;

1 SignalSet
2 find shortest cycle (SignalSet Σ)
3 {
4 SignalSet C min := ∅;
5 int n := |Σ|;
6
7 forall s ∈ Σ do {
8 SignalSet C :=
9 find connection (n,s , s);

10 if (C 6= ∅ and |C| <n) then {
11 C min := C;
12 n := |C|;
13 }
14 }
15
16 return C min;
17 }

1 SignalSet
2 find connection (int n, Signal s , Signal t)
3 {
4 SignalSet C tail := ∅;
5
6 s .tag := true;
7 forall d ∈ s .depend {
8 if (d = t) then {
9 C tail := {d};

10 n := 1;
11 } else {
12 if (not d.tag and n>1) then {
13 SignalSet C :=
14 find connnection (n−1,d,t);
15 if (C 6= ∅ and |C| <n) then {
16 C tail := C;
17 n := |C|;
18 }
19 }
20 }
21 }
22 if (C tail 6= ∅) then {
23 C tail := C tail ∪ {s};
24 }
25 s .tag := false ;
26
27 return C tail ;
28 }

Figure 3.13: Algorithm to find a shortest cycle in signal dependencies by following
recursively all connections. If no cycle is found ∅ is returned.

~C = 〈c0, ..., cl−1〉, c0, ..., cl−1 ∈ Σ
∀i ∈ {0, ..., l − 1} : 〈ci, c(i+1)mod l〉 ∈ D

If multiple cycles are present in D then a smallest cycle must be found for reasons laid
out in Step (6c) on page 59. The search for such cycles in the signal dependencies is
fairly easily done with standard algorithms [34]. Nevertheless a specialized algorithm is
presented here in Figure 3.13 on page 49 in a pseudo code notation.

The data structure used to store the signal dependencies for the algorithm is a little
bit different than the one used in the previous sections. There is one structure defined
for each signal s storing several attributes. The attributes used in the algorithm in
Figure 3.13 are:

• s.depend: Set of references to other signals depending on s.
s.depend = {t ∈ Σ | 〈s, t〉 ∈ D}.

• s.tag: Boolean flag to indicate already visited paths.

50 CHAPTER 3. CYCLIC DEPENDENCIES

The function find shortest cycle(Σ) is the entry point of the algorithm. It iterates over
all signals Σ and searches for the shortest connection over dependencies back to that
signal. To improve on the efficiency of the algorithm an integer variable n stores the size
of the currently shortest cycle found. It makes no sense to follow longer paths than this
size, because cycles found on those paths would be longer than the one already found.

The actual recursive search for cycles is implemented in the function find connection(n,s,t).
It receives as parameters n to limit the search depth, the current signal under test s, and
checks recursively if the signal s is connected to t:

• Line 4: The signal set C tail stores the shortest connection from s to t found so
far.

• Line 6 and 25: Each visited signal is marked to avoid multiple iterations on the
same signal. That mark is removed in Line 25 when the recursion unfolds not to
interfere with iterations on different cycles.

• Line 7: All signals depending on s are tested whether they connect back to t.

• Line 8-10: These lines decide over the presence of a cycle. If t is encountered while
following all dependencies from s, then a cycle has been found. This connection is
stored in C tail. n is updated to reflect the new shortest connection to t.

• Line 12: Reaching an already tagged signal does indicate a cycle, but the current
tags are not limited to the cycle at this point. Therefore the recursion skips already
marked signals. Additionally further recursions are inhibited if a direct connection
to t with length one had already been found on this recursion level.

• Line 13/14: A connection from d to t is searched for recursively with a search limit
decreased by one. The result is stored in a local signal set C.

• Line 15-17: If d provides a shorter connection from s to t then it is stored as a new
minimal connection in C tail.

• Line 22/23/27: If a connection from s to t had been found then s is added to C tail,
too. The resulting connection set is returned to the upper recursion levels.

The result returned by the function find shortest cycle(Σ) is a set of signals contained
in the shortest cycle found in the signal dependencies. That set is empty if no cycle is
present. The actual order of signals in the cycle is not needed in further transformation
processing and therefore not preserved in the set returned by find shortest cycle(Σ).

Chapter 4

Program Transformation

After identifying cyclic dependencies in the previous chapter we are now able to resolve
those cycles by application of the algorithm presented in this chapter.

4.1 The Base Transformation Algorithm

Figure 4.1 introduces the notations which will be used for the transformation. Figure 4.2
presents the algorithm for transforming cyclic Esterel programs into acyclic programs.
The algorithm is applicable to programs with cycles that involve pure signals only. This
section discusses each transformation step along with it’s worst-case increase in code
size.

Step (1): Constructiveness
The constructiveness of the Esterel program is a precondition for the transformation.
This analysis can be performed using the methods developed by Shiple, Berry et al.
[36, 3]; one available implementation is offered by the v5 compiler [18]. The key property
of constructiveness is that no causality cycle makes the state of a signal dependent on
itself. All signals are only dependent on the current program state, other signals, or
inputs from the environment. It is sufficient for this property to hold only for program
states which are reachable at runtime.

This absence of self dependencies is exploited in Step (6d) of the algorithm.

Conversely, the fact that the transformation is valid if and only if the transformed
program is constructive can be exploited to employ this transformation to aid in con-
structiveness analysis in the first place; see also the comments on Step (6d) on page 62,
and in Section 4.5 on page 80.

Step (2): Preprocessing
The core algorithm is only applicable to Esterel programs restricted in certain ways,

51

52 CHAPTER 4. PROGRAM TRANSFORMATION

Basics

N: Set of natural numbers (including zero)

Nn =def {i ∈ N | i < n}, n ∈ N

P : Given Esterel Program

Σ: Set of signals used in P

Signals

Σ ~C : Set of original cycle signals

σ′i: Fresh signal used to replace emission of input signal σi in P

Σ ~C′ : Set of cycle signals derived from Σ ~C with input signals renamed

ST i: State signals used to access the program state in guards

ST = {ST i | i ∈ N}: Set of state signals

Dependencies

G: Set of signals (“Guard”) involving signals Σi ⊆ (Σ ∪ ST).

W : Set of signals off suspend/abort conditions (“Watcher”) involving signals Σi ⊆ Σ.

X: Set of trap signals in the current scope.

G : P ×G×W → G′: Computes active guard signals at program termination.

D = {〈σi, σj〉 | i, j ∈ N}: Dependencies of signals σi to σj .

D : P ×G×W → D: Function to compute signal dependencies from P .

Cycles

σi ∈ Σ ~C : Signal part of a cyclic dependency

~C = 〈σi | i ∈ Nl〉, with l ∈ N: Cycle of length l

∀σi ∈ ~C : 〈σi, σ(i+1) mod l〉 ∈ D: Cycle property

σp ∈ Σ ~C : Pivot signal selected to break the cyle

Emission context

Si: Boolean context expression (“signal state context”) involving signals Σi ⊆ (Σ∪ST).

S : P × S → S: Function to compute context expressions at program termination.

E = {〈σi, Sj〉 | σi ∈ ~C}: All emissions of cycle signals in their respective guard context.

E : P × S → E: Function to compute context expressions for signal emissions.

Ei =
∨
〈σi,Sj〉∈E Sj : or’ed guards of signal σi, describing its complete emission context.

E∗
i : Derived from Ei by iterative replacement of σj ∈ (Σ ~C \ σi) by Ej .

E∗∗
i : Derived from E∗

i by replacement of σi by false (or true).

Figure 4.1: Notation summary.

4.1. THE BASE TRANSFORMATION ALGORITHM 53

Input: Program P , potentially containing cycles
Output: Modified program P ′′, without cycles

1. Check constructiveness of P . If P is not constructive: Error.

2. Preprocessing of P :

(a) If P is composed of several modules, instantiate them into one flat main module.

(b) Expand derived statements that build on the kernel statements, except for abort
which is handled in Step (3a).

(c) Rename locally defined signals to make them unique and lift the definitions up to
the top level. Furthermore, eliminate signal reincarnation. (See Section 6.11)

3. Introduce state signals:

(a) Transform suspend and abort into equivalent present/trap statements.

(b) Add explicit termination handling to II statements. (See Fig. 4.4)

(c) Add boot register as a new global signal ST 0 and add “emit ST 0;” to the start of
the program body.

(d) Enumerate all pause statements starting from 1 and do for all pausei:

i. Globally declare a new signal ST i.
ii. Replace pausei by “pause; emit ST i.”

4. Identification of cyclic signal dependencies:

(a) Identify all signal dependencies: Compute D = D(P, ∅, ∅, ∅) (see Fig. 3.7/3.8).

(b) Search for cycles in D: Compute find shortest cycle() (see Fig. 3.13).

(c) If P does not contain cycles: Done.
Otherwise: Select a shortest cycle ~C, of length l.

5. Transform P into P ′; do for all σi ∈ ~C, if σi is an input signal in the module interface:

(a) Globally declare a new signal σ′i. σ′i replaces σi in ~C.

(b) Replace “emit σi” by “emit σ′i.”

(c) Replace tests for σi by tests for “(σi or σ′i).”

6. Transform (still cyclic) P ′ into (acyclic) P ′′:

(a) For all σi ∈ ~C determine replacement expressions Ei = E(P ′,ST 0) (see Fig. 4.7).

(b) Select some cycle signal σp ∈ ~C as the pivot signal to break the cycle.

(c) Iteratively transform Ep to E∗
p by replacement of all signals σj ∈ (~C \ σp) by their

expressions Ej .

(d) Transform E∗
p into E∗∗

p by replacing σp by false (or true) and minimize result.
Now E∗∗

p does not involve any cyclic signals.

(e) Replace all tests for σp in P ′ by E∗∗
p .

7. Goto Step (4), treat P ′′ now as P .

Figure 4.2: Transformation algorithm, for pure signals.

54 CHAPTER 4. PROGRAM TRANSFORMATION

requiring the following preprocessing steps:

Step (2a): Module expansion
The expansion of modules is a straightforward textual replacement of module calls by
their respective body. No dynamic runtime structures are needed, since Esterel does not
allow recursions.

The complexity of this module expansion can reach exponential growth of code size,
but this expansion is done by every Esterel compiler and not a special requirement of
this transformation algorithm. Hence the baseline for an analysis of the code increase
introduced by the transformation presented here is the size of the original program after
module expansion.

Step (2b): Non-kernel Statements
Regarding the statements handling signals, the transformation algorithm is expressed
in terms of Esterel kernel statements. Therefore statements that are derived from emit,
present, or suspend must be reduced to these statements.

One derived statement is replaced by a fixed construct of kernel statements, therefore the
complexity of this step is a constant factor on the number of statements in the program.

Step (2c): Local Signals
We have to eliminate locally defined signals because replacement expressions for signals
computed by the algorithm could carry references to local signals out of their scope.
(Note that the programmer may still freely use local signal declarations.) Furthermore,
the method of finding replacement expressions assumes that signals are unique, i. e., not
re-incarnated. A simple approach to eliminate reincarnation is based on loop-unrolling,
which results in a potentially exponential increase in code size; using other techniques,
this can be reduced to a quadratic increase [3], or even lower complexity by the intro-
duction of a gotopause statement [37].

This treatment of local signal definitions is clearly not needed in all cases, and removal
of local signals can be quite expensive in code size. Therefore an optimization can be
applied to this rule, see Section 6.11.

Steps (3): State signals
The current execution state of an Esterel program is stored in registers/variables defined
inside the synthesized code/circuit. Unfortunately there is no provision at the Esterel
level to access the state of these registers/variables.

The introduction of additional state signals makes the current state of the program
available to signal expressions. Each pause statement is supplemented with the emission
of a unique signal ST i. (Note that many of the signals may be eliminated again by
subsequent optimizations, see Chapter 6.)

4.1. THE BASE TRANSFORMATION ALGORITHM 55

An important property of the introduced state signal is that they are free of any de-
pendencies. However, they are in turn the source of dependencies for the emission of
other signals, and the transformation algorithm exploits this property to determine the
emission of signals without introducing new signal dependencies.

The number of additional state signals and signal emissions is proportional to the number
of pause statements in the program and therefore proportional to the size of the program.

Step (3a): suspend/abort
The introduction of state signals fails in the context of suspend/abort statements, be-
cause state signals emitted as part of a suspend/abort block are suppressed, too. This
constitutes a dependency of the state signals on the suspension/abortion condition and
invalidates the dependency-less emission of state signals. That influence introduces un-
wanted dependencies, potentially forming a new cyclic dependency.

The solution proposed here simulates the behavior of abort/suspend blocks by means
of other kernel statements (trap, exit, pause, present, loop) which are handled directly.
The key difference to the original suspend behavior is the handling of state signals, they
are emitted regardless of suspension conditions. This avoids unwanted dependencies for
state signals.

Suspension blocks are transformed by removing the suspend envelope:

suspend
p

when S
; p′

Here p denotes the suspended body and S the suspension condition. They are replaced
by just the body p′ derived from p, where all pause statements inside p are replaced
by “await not S.” This transformation emulates the behavior of suspend by explicitly
checking the suspension condition at the start of each instant. However, as the await
statement is a derived statement, we have to transform it further into kernel statements;
“await not S” then becomes:

await not S ;

trap T in
loop

pause;
present S else

exit T
end

end
end

The following transformation step (Step 3d) will add state signals to the newly intro-
duced pause statements. Those state signals are placed before the checks of the sus-
pension condition and therefore not dependent on signals contained in the suspension
condition.

An example program with suspend statements is discussed in Section 4.4.5 on page 78.

56 CHAPTER 4. PROGRAM TRANSFORMATION

abort
abort

pause;
emit A

when S;
emit B

when R

(a)

;

abort
trap T S in

pause;
present S then

exit T S
end;
emit A

end;
emit B

when R

(b)

;

trap T R in

trap T S in
pause;
present R then

exit T R
end;
present S then

exit T S
end;
emit A

end;
emit B

end

(c)

Figure 4.3: Preserving the priorities between cascaded abort statements: (a) original
program, (b) the inner abort statements is transformed first, (c) the outer abort is trans-
formed last.

The Esterel statement abort poses similar problems for state signals. The transformation
algorithm is designed in its current form for kernel statements only, but the (non-kernel)
abort statement is widely used and the conventional replacement expression in kernel
statements is quite voluminous. This especially so because it contains suspend, which
must be eliminated additionally. Therefore this proposal transforms the abort statement
directly.

A construction consisting of a trap block with exit statements added to each pause
statement is used inside the abortion block:

abort
p

when S
;

trap T in
p′

end

where p′ is derived from p by performing the following replacement for each pause state-
ment:

pause ;

pause;
present S then

exit T
end

When transforming cascaded abort blocks, then the innermost abort statements must be
tranformed first and the outermost last. This preserves the priorities of abort conditions,
stating that the outer abort statements take priority over inner statements. An example
of such a transformation of cascaded abort blocks is listed in Figure 4.3.

The complexity of this part of the transformation is proportional to the number of pause
statements inside abort and suspend statements.

An alternative solution to handle state signals inside abort/suspend blocks is proposed

4.1. THE BASE TRANSFORMATION ALGORITHM 57

[
p

||
q

]

(a)

;

signal T i , T j in
trap T in

[
p ;
sustain T i

||
q ;
sustain T j

II
loop

present
[T i and T j]

then
exit T

end;
pause

end
]

end
end

(b)

;

signal T i , T j in
trap T in

[
p ;
loop

emit T i:
pause

end
||

q ;
loop

emit T j:

pause

end
||
loop

present
[T i and T j]

then
exit T

end;
pause

end
]

end
end

(c)

Figure 4.4: Making the termination state of parallel threads visible to signal expressions
by continuous emission of state signals on terminated sub-threads: (a) original parallel
block with threads p and q, (b) added termination handling by trap, (c) expansion of
sustain into kernel statements.

in Section 4.3 on page 68.

Step (3b): Parallel
Another case of hidden program state is present in the termination control of parallel
statements. Given a parallel block with two threads p and q:

p
||

q

This parallel block terminates, if both sub-blocks p and q terminate. The precise signal
state of termination of the whole parallel statement is not directly accessible, because
threads which are terminated in earlier execution instants do not emit any signals any-
more. Therefore a simple signal expression will generally not describe the termination
context of parallel statements.

58 CHAPTER 4. PROGRAM TRANSFORMATION

Figure 4.4 describes the addition of state signals to the end of each thread in a parallel
statement. These signals are continuously emitted, once that thread is terminated. An
additional thread tests for the conjunction of all these state signals. If all termination
signals are present, then the entire parallel statement is terminated via a trap exception.
This transformation replaces the regular termination mechanism of parallel statements
by trap exception handling, which can be covered by simple state signals.

The complexity of these additions is proportional to the number of parallel threads in
the program.

Section 4.4.3 contains an example with a cyclic dependency spanning the termination of
a parallel thread.

Step (3c): Boot state
The first state signal ST 0 is emitted at program start. ST 0 corresponds to the boot
register in the circuit representation of Esterel programs.

Step (3d): State signals
Each pause statement in the program is supplemented with the emission of a unique
signal ST i.

Step (4): Identification of cycles
Cycles in the program are identified by building a graph representing the control flow
dependencies between present tests and signal emissions. That directed graph is used
to search for cyclic dependencies in the Esterel program. Only signals which are part
of the cycle are of further interest. More details on the detection of cyclic dependencies
are given in Section 3.4 on page 37.

If there is more than one cycle present in the program, then Steps (5) through (6) are
performed for each cycle individually. In each cycle resolving step the currently smallest
cycle must be selected to be resolved. This ensures the termination of the iterative
expression transformation in Step (6c). Why this selection is justified is laid out in the
remarks on Step (6c) on page 59.

Step (5): Cyclic input signals
This step splits each cyclic input signal σi into two signals σi and σ′

i. The signal with
the original name σi is emitted outside the cycle or fed into the program as an input
signal. All signal emissions which are part of the cycle use the new signal name σ′

i. The
motivation of this step is to distinguish between emissions from inside and outside the
cycle including the environment; the aim of the replacement expression (see Step (6a))
is to replace emissions inside the cycle.

In a way, this introduction of fresh signals, which are emitted exclusively in the cycle,
is akin to Static Single Assignment (SSA) [13].

4.1. THE BASE TRANSFORMATION ALGORITHM 59

emit ST 0
present A then emit B end;
pause; emit ST 1;
present B then emit C end;
pause; emit ST 2;
present C then emit B end;
pause; emit ST 3;
present C then emit A end

(a)

Cycles:
C1 = 〈A, B, C〉
C2 = 〈B, C〉

State expressions:
A = ST 3 ∧ C
B = (ST 0 ∧ A) ∨ (ST 2 ∧ C)
C = ST 1 ∧ B

(b)

C1

C2

B
A

C

(c)

Figure 4.5: Program with potentially non-terminating iterative signal replacement:
(a) Cyclic program containing two cycles with a common dependency from B to C,
(b) Cycles and emission contexts of signals, (c) Graphical representation of the two
cycles, the common dependency is indicated by a dashed line.

For each input signal in the program, at most one replacement signal is added, thus the
complexity of this step is a constant factor of the program size.

All tests for cyclic input signals in the original program are extended by tests for their
replacement signals. Using the SSA analogy, this corresponds to a φ-node [13].

Each changed signal test is expanded by an expression of constant size, therefore we get
a constant factor on the number of signal test expressions in the program.

Step (6a): Replacement expression
The computation of replacement expressions E is described in detail in Section 4.2 on
page 64 and following.

Step (6b): Point of cycle breaking
One signal in the set of cyclic signals must be selected as a point to break the cyclic
dependency. Any signal in the cycle will work; the actual selection can be based on the
smallest replacement expression computed in the next step.

Step (6c): Iteration on the replacement expression
The replacement expression Ep for the selected cycle signal σp contains references to
other cycle signals σj. These are recursively replaced by their respective expressions Ej

into E∗
p . This unfolding of expressions is performed until only σp and non-cycle signals

are referenced in E∗
p .

The complexity of the replacement expressions depends on the length of the cycle, be-
cause the length of the cycle governs the number of replacement iterations needed to
eliminate all but the first cycle signals in the guard expression. The length of the cycle
and the size of each replacement are limited by the number of signals in the program. So
there is a quadratic relationship of the size of the replacement expression to the program

60 CHAPTER 4. PROGRAM TRANSFORMATION

size. The number of times the replacement expression will be inserted in the program is
likewise dependent on the program size. Thus the growth in program size for one cycle
is of cubic complexity.

If the original program contains multiple cycles with common signal dependencies then
this iterative replacement scheme is potentially non-terminating. Formerly replaced
cycle signals may be reintroduced by later expressions.

Figure 4.5 contains an Esterel program with two cycles ~C1 and ~C2. The key element
here is the common dependency 〈B, C〉 of both cycles. If ~C1 is arbitrarily selected to
be resolved first with A as the point to break the cycle then the following iteration is
applied:

A = ST 3 ∧ C (4.1)
A = ST 3 ∧ ST 1 ∧ B (4.2)
A = ST 3 ∧ ST 1 ∧ (ST 0 ∧ A) ∨ (ST 2 ∧ C) (4.3)

Cycle signal C is part of Equation (4.1). It is replaced by an an expression containing
B in (4.2). The following iteration step reintroduces C into Equation (4.3). Further
iteration steps will continue to oscillate between and C and B leading to an infinite size
of the replacement expression for A.

To avoid this non terminating chain of replacements the algorithm requests in in Step (6c)
to select a currently smallest cycle for transformation. In Figure 4.5 the smallest cycle
is ~C2. Selecting B to break the cycle results in the following iteration:

B = (ST 0 ∧ A) ∨ (ST 2 ∧ C)
B = (ST 0 ∧ A) ∨ (ST 2 ∧ ST 1 ∧ B) (4.4)

Equation (4.4) is a valid result of the iteration process, because of its finite size and it

contains no cycle signals of ~C2 besides B itself. Signal A in (4.4) must not be replaced,

because it is not part of cycle ~C2. The following Step (6d) will yield an expression with
the last occurrence of B in its replacement expression removed.

The following argues the validity of generally solving the termination problem of the
iteration by selecting a smallest cycle.

Preconditions: Given constructive Esterel program P , including n cycles ~C1, ..., ~Cn

involving signals σi ∈ Σ. One shortest Cycle ~Ck is selected with (∀i ∈ {1, ..., n} : |~Ck| ≤
|~Ci|). The emission contexts of all cycle signals σi ∈ ~Ck are represented by expressions

Ei (i ∈ {1, ..., |~Ck|}). One signal σp ∈ ~Ck with associated expression Ep is arbitrarily
selected as the pivot element to break the cycle and performing the iteration.

Claim: The iterative replacement of cycle signals σi ∈ ~Ck (i 6= p) in expression Ep by
expressions Ei terminates with finite steps.

Proof: The occurrences of signals in expressions relate to signal dependencies found in
the cycle analysis step: If an expression Ei for a signal σi contains a signal σj, then a
dependency 〈σj, σi〉 exists. Dependencies on state signals are omitted here because they
are not part of any cycle by design. The iterative replacement of all cycle signals by

4.1. THE BASE TRANSFORMATION ALGORITHM 61

their respective expressions stops at signal σp.

This iteration is structurally equivalent to a reverse traversal on the signal dependencies
starting from σp with the following restrictions: Only those signal dependencies are
followed where both signals in the dependency are part of the cycle, the traversal stops
if σp is reached.

The traversal does not terminate if a loop in signal dependencies is encountered. Two
cases exist for such loop structures:

A single signal dependency may directly connect an already visited cycle signal to the
current cycle signal. Together with the already traversed dependencies this constitutes a
cycle with fewer signals than ~Ck. That is a contradiction to the precondition on selecting
the shortest cycle to resolve first.

The other case is a chain of two or more dependencies connecting back to the cycle. The
signals connected by this chain can not be part of cycle ~Ck (besides the first and last
signal in the chain) because otherwise they would be identical to dependencies already

included in ~Ck or are covered by the previous case. Therefore in this case only signals
outside the cycle are covered. Since such signals are not traversed in the iteration, no
loop in the iteration is present here. q.e.d.

Step (6d): Making the replacement expression acyclic
This is the central step of the transformation. Since the program is known to be con-
structive, it follows that σp in E∗

p must not have any influence on the evaluation of E∗
p .

Therefore we can replace σp in E∗
p by any constant value (true or false). Now E∗

p contains
only non-cyclic signals.

This replacement of a cycle signal by a constant is described in Malik’s work [28] on
resolving cycles in cyclic circuits. The following argues the validity of this replacement.

Preconditions: Given constructive Esterel program P , including cycle involving signal
σp, and other signals ~S = 〈s0, ..., sn〉. A replacement function E∗

p(σp, ~S) for signal σp is
derived as of Step (6c) according to the circuit semantics of Esterel.

Claim: P is constructive ⇒ E∗
p(true , ~S) = E∗

p(false , ~S) for all reachable ~S.

Proof: P is constructive. Therefore the presence of σp can be derived without previous

knowledge of the presence of σp for all reachable states of ~S; in other words, σp is not
allowed to depend on itself. E∗

p computes the presence of signal σp from all signals in P .
Assuming E∗

p yielding different results for true and false in place of σp makes E∗
p depended

on σp. This contradicts the constructiveness of P . Therefore E∗
p cannot depend on the

presence value of σp. q.e.d.

Remark: The use of constructiveness here implies strong constructiveness as defined
by Shiple et al. [36], i. e., even local non-constructiveness with no influence on output
signals are not allowed.

The remaining true or false values must be used to minimize the expression when yielding

62 CHAPTER 4. PROGRAM TRANSFORMATION

E∗∗
p from E∗

p , because Esterel compilers do not support boolean constants in place of
signal tests. Boolean constants may only be used for valued signals of boolean type, and
not for the pure signals that are considered here. Hence these constants are used here
only as intermediate place holders.

Signal σp has no influence on E∗
p for all reachable signal states and control states if

the program is constructive. This does not necessarily hold for all states of signals in
E∗

p , but only for those reached at runtime at the evaluation of E∗
p . This follows from

the iterative process of signal replacement in Step (6c) which is equivalent to a symbolic
version of a three-valued fix point iteration proposed by Malik [28] and Shiple et al. [36].
Note that if the result of the derived expression E∗

p is independent of σp for all reachable
signal combinations at the control point where E∗

p is evaluated, then the program is
constructive with regard to signal σp.

As mentioned above, this observation could be used to aid constructiveness analysis, as
this would eliminate the need to perform a fixpoint iteration; nevertheless, to determine
the reachable control flow and signal space remains a nontrivial problem. See Section 4.5
page 80 for details.

Step (6e): Inserting the replacement expression
The last transformation step in the algorithm replaces every occurrence of σp in present
tests by its replacement expression E∗∗

p . Now we have replaced one signal of the cycle
by an expression which is not part of the cycle. Therefore we have broken the current
cycle ~C.

Step (7): Multiple cycles
The transformation algorithm must be repeated until all cycles are resolved, and the
upper limit of cycles to resolve is the number of statements in the program (counting
signals, conditionals, emissions, etc.).

It is possible to create an Esterel program with an exponential number of cycles on
signals by connecting them in a mesh-like structure. These kind of cycles share sig-
nal dependencies, therefore cutting one signal dependency will resolve multiple cycles,
reducing the maximum number of iterations down to the number of signals.

On the other extreme lies a program with signal dependencies connecting all signals to
every other signal. In this case each cycle must be resolved individually leading to a
quadratic effort with regard to the number of signals. But to establish the net of signal
dependencies the program itself must represent each individual dependency at least as
a single statement. Therefore the number of cycles to resolve is of linear effort relative
to the program size.

4.1. THE BASE TRANSFORMATION ALGORITHM 63

4.1.1 Cost of the Transformation Algorithm

In the previous section the discussion of each step of the transformation algorithm con-
tained an estimate on the amount of program growth for each step. The following listing
summarizes each part of the growth in program size:

• Step (1): The expansion of modules can reach exponential growth of code size.

• Step (2b): Expansion of derived statements is of constant cost with regard to the
number of statements in the program.

• Step (2c): Elimination of reincarnation yields a quadratic growth in program
size.

• Step (3a): Replacement of abort/suspend blocks is proportional in size to the
number of pause statements inside abort and suspend statements.

• Step (3b): The complexity of additions for parallel statements is proportional to
the number of parallel threads.

• Step (3d): Introduction of state signals is proportional to the number of pause
statements in the program.

• Steps (5a/5b): The renaming of cyclic input signals is proportional to the number
of input signals.

• Step (5c): The replacement of cyclic input signals in testing expressions is a
constant factor on the number of signal test expressions in the program.

• Step (6c): The growth in program size by replacing a cycle signal with an ex-
pression is of cubic complexity.

• Step (7): The number of cycles to resolve is proportional to the number of state-
ments in the program.

The expansion of modules with exponential cost in Step (1) must be done by Esterel
compilers anyway and is therefore left out of the cost estimation for the cycle trans-
formation alone. The same can be said on the resolving on reincarnation in Step (2c),
but this depends on the kind of synthesis employed by the actual compiler. Steps (2b),
(3a) to (5c), and (7) all introduce a cost proportional to different parts of the Esterel
program. Therefore the overall cost of these steps can be summarized to be proportional
to the size of the entire Esterel input program. In Step (6c) the actual cycle cutting
takes place with a cost of cubic complexity.

Overall, a very conservative estimate results in a code size of O(n4), where n is the
source program size after module expansion and elimination of signal reincarnations.
However, we expect the typical code size increase to be much lower. In fact, we often

64 CHAPTER 4. PROGRAM TRANSFORMATION

present I1 then
present I2 else

emit A
end

end
II

present A then
emit B

end

(a)

present I1 then
present I2 else

emit A
end

end
II

present [I1 and not I2] then

emit B
end

(b)

Figure 4.6: Replacing the signal test for A by its emission context.

experience an actual reduction in source size, as the transformation often offers opti-
mization opportunities where statements are removed. As for the size of the generated
object code, here the experimental results (Section 7) also demonstrate that typically
the transformation results in a code size reduction.

4.2 Computing the Replacement Expressions

One step towards breaking cyclic dependencies in Esterel programs is to replace within
the conditions of present tests the name of a certain signal by an expression (Step (6a)
of the algorithm). That expression is derived from the control flow contexts of the
program where the signal is set by emit statements. This section presents a set of rules
to derive these replacement expressions. These rules are based on the Circuit Translation
of Esterel [3] with the aim of an easy implementation.

The objective of the rules is to obtain replacement expressions for all signals. A replace-
ment expression describes the signal context of each emission for that signal. Therefore
as a prerequisite the signal context of each emit statement is needed. These signal con-
texts are used to derive the replacement expressions. A current signal context expression
S is modified while traversing the Esterel Program P . The context expressions at the
point of signal emissions are collected and combined into replacement expressions for all
cycle signals. The rules to traverse the Esterel program are implemented in two func-
tions (with Π as set of Esterel programs, Σ the set of signals, and Ψ the set of signal
expressions):

• E : Π×Ψ → 2Σ×Ψ (P × S) 7→ E(P, S)
This function searches for signal emissions and returns a mapping of signal names
to their signal contexts at the point of their emission.

• S : Π×Ψ → Ψ (P × S) 7→ S(P, S)
S takes the signal state context delivered by previous statements, computes the

4.2. COMPUTING THE REPLACEMENT EXPRESSIONS 65

P =

emit A
E(P, S) = {〈A,S〉}
S(P, S) = S

(4.5)

present A then
p

else
q

end

E(P, S) = E(p, S ∧A) ∪ E(q, S ∧A)

S(P, S) = S(p, S ∧A) ∨ S(q, S ∧A)
(4.6)

nothing
E(P, S) = ∅
S(P, S) = S

(4.7)

pause;
emit ST i

E(P, S) = ∅

S(P, S) =
{

false : S = false
ST i : otherwise

(4.8)

exit T
E(P, S) = {〈exit T, S〉}
S(P, S) = false

(4.9)

trap T in
p

end

E(P, S) = {〈σi, Sj〉 ∈ E(p, S) | σi 6= exit T}

S(P, S) =
S(p, S)

∨ (
∨
〈exit σi,Sj〉∈E(p,S)|σi 6=T Sj

∧
∨
〈exit σi,Sj〉∈E(p,S)|σi=T Sj)

(4.10)

p ; q
E(P, S) = E(p, S) ∪ E(q,S(p, S))

S(P, S) = S(q,S(p, S))
(4.11)

loop
p

end

E(P, S) = E(p, S ∨ S(p, S))

S(P, S) = false
(4.12)

signal A in
p

end

E(P, S) = E(p, S)

S(P, S) = S(p, S)
(4.13)

p II q
E(P, S) = E(p, S) ∪ E(q, S)

S(P, S) = false
(4.14)

Figure 4.7: Equations to determine replacement expressions for signals: E collects the
signal state context for signal emissions, S returns the signal state context of terminat-
ing statements, P is the given program fragment shown on the left, and S the state
expression in the current program context.

66 CHAPTER 4. PROGRAM TRANSFORMATION

signal state context from sub-statements, and returns the signal context for eval-
uation on sequentially following statements. It is used by E as a helper function.

These functions are computed by structural induction over their first argument (an
Esterel program); the corresponding definitions for each kernel statement are given in
Figure 4.7. To determine the replacement expressions for all signals in a program P , we
compute E := E(P, ST 0), where ST 0 denotes the boot signal, present only at startup
in the very first instant. The result of E will be a set of pairs. Each pair consists of
a signal name and a signal expression (condition). The expressions describe in which
signal context each signal is emitted. Multiple emissions of the same signal result in
multiple entries of that signal in E. The expressions for the same signals can now be
disjuncted to yield a single replacement expression for the emission of each cycle signal:

Ei =
∨

〈σi,Sj〉∈E Sj

Rule (4.8) handles the pause statement with associated emission of its state signal:
Function E does not return a context expression for the state signal, because state
signals are considered free of dependencies. Function S replaces the previous state
with the name of the current state signal. The state signal is replaced by false, if the
sequentially previous command returned false, too.

Trap signals are treated differently than regular signals: Function E in Rule (4.9) (exit)
adds the current signal context as an emission context for the trap signal to E. The
trap signal name is marked with a prefix “exit” to be able to distinguish it from regular
signals. Function S in that rule returns false as a signal context state to indicate that
sequentially following code is not reachable.

Function E in Rule (4.10) (trap) removes all references to its own trap signal to not
interfere with upper trap definitions.

Function S in Rule (4.10) implements the task to compute the termination context of
the trap statement. It consists of the normal termination part with no exception taking
place; given by S(p, S). The signal context states of control flows triggered by exit
statements are extracted from the emission context E(p, S). Those signal context states
are limited to exit statements referencing the locally defined trap signal (σi = T). The
signal contexts of other trap signals (σi 6= T) are negated, because they reference upper
trap statements with higher priorities.

In Esterel it is possible to specify hierarchic trap definitions sharing the same trap signal
name. In that case the innermost trap masks the outer trap definition, effectively re-
versing the priorities. This is similar to local signals masking global signals of the same
name. Duplicate trap identifiers are not checked explicitly in Rule (4.10). That problem
is deferred to the Esterel parser.

Rule (4.14) (parallel) returns false for the termination context of all parallel statements,
because the termination of parallel statements is assumed to be replaced by the scheme
proposed in Figure 4.4. It replaces the implicit termination of parallel statements by
explicit trap exception handling.

4.2. COMPUTING THE REPLACEMENT EXPRESSIONS 67

GO K0
K1

P

E’E

K1
GO K0

K1
Q

E’E

GO

K0

E’ES

present S then
P

else
Q

end

Figure 4.8: Circuit translation of the present statement as defined in the draft book on
the Esterel semantics [3].

The Token Ring Arbiter, for example, is not susceptible to this problem because its
parallel statements do not terminate. Section 4.4.3 contains a more problematic example
program and its treatment.

Rules for suspend/abort are not given in Figure 4.7, because they are assumed to be
substituted by means of other kernel statements in Step (3a) of the transformation
algorithm. In Section 4.3 alternative treatments of suspend/abort are proposed.

4.2.1 Relation to the Circuit Transformation

The equations to derive replacement expressions for signals are modeled after the cir-
cuit transformation of Esterel. They follow the GO/K0 paths in the Esterel program
recursively but without an explicit synthesis of a circuit representation. This is possible
because the simple mapping of Esterel statements to sub-circuits preserves the control
flow structure of the original program.

As an example to illustrate how the definitions of E and S correspond to circuits, consider
the translation of the present statement. Its circuit is repeated in Figure 4.8 from the
Esterel introduction (page 27). On entering a present block the S expression represents
the GO signal. That signal is combined with the present condition and new GO signals
are derived for the connection of the sub blocks P and Q. In Rule (4.6) the same extension
to the S expression is performed to evaluate p and q respectively.

The termination signal K0 of the present block is generated by the OR combination of the
termination signals from P and Q. This is equivalent to the handling of S in Rule (4.6).
The higher order termination signal K1 (originating at pause statements) is mapped to S
by combination with individual state signals ST i for each pause statement in Rule (4.8).

All higher order termination signals K2 and up are connected to exit statements. These

68 CHAPTER 4. PROGRAM TRANSFORMATION

input A, B;

suspend
pause;
emit A

when B;
pause;
suspend

pause;
emit B

when A

(a)

;

input A, B;

signal ST 0, ST 1,

ST 2, ST 3, A’, B’ in
emit ST 0;
suspend

pause; emit ST 1;
emit A’

when [B or B’];
pause; emit ST 2;
suspend

pause; emit ST 3;
emit B’

when [A or A’]
end

(b)

;

input A, B;

signal ST 0, ST 1,
ST 2, ST 3, A’, B’ in

emit ST 0;
suspend

pause; emit ST 1;
emit A’

when [B or B’];
pause; emit ST 2;
suspend

pause; emit ST 3;
emit B’

when [A or ST 1 and not B]
end

(c)

Figure 4.9: Failed resolving of a cyclic dependency involving two suspend statements: (a)
original program, (b) preprocessing by introduction of state signals and signal renaming,
(c) replacement of tests for A’ by expression involving ST 1, but ST 1 is guarded by cycle
signal B’.

are mapped as additional signal emissions to E . Details are given at the explanations
for Rules (4.9) and (4.10).

The tight relationship to the circuit transformation of Esterel ensures the preservation
of the semantics of the original program when cycle signals are replaced by expressions.

4.3 Extending Esterel for an Alternative Solution

to Handle suspend/abort

The transformation algorithm states in Step (2b) (page 53) as a prerequisite the replace-
ment of all non-kernel statements by their definitions in kernel statements. Additionally
the kernel statement suspend is replaced by means of other kernel statements (see page 55
for details). This replacement is needed, because the presented algorithm does not fully
support splitting cycles across suspend statements. The reason for the failure lies in the
use of state signals which are introduced in Step 3 of the transformation algorithm. One
underlying assumption on replacing cycle signals with expressions is the fact that state
signals are always independent of any signal dependencies and therefore do not introduce
new cyclic dependencies. That assumption is invalid in the context of a suspend or abort
statement. State signals which are emitted inside an abort or suspend block are subject
to a dependency to the guard of the abort or suspend block.

Figure 4.9(a) contains a program fragment with a (constructive) cyclic dependency,
which is not resolvable by replacement of cycle signals alone. Application of the trans-

4.3. EXTENDING ESTEREL TO HANDLE SUSPEND/ABORT 69

formation algorithm will produce Figure 4.9(b) as an intermediate step: State signals
are introduced and input signals part of the cycle are renamed. The new cycle signals
A’ and B’ are emitted in the following state contexts:

A’ := ST 1 ∧ B ∨ B’

B’ := ST 3 ∧ A ∨ A’

Substituting B’ in the expression for A’ yields:

A’ := ST 1 ∧ B ∨ ST 3 ∧ A ∨ A’

Replacing the remaining A’ by true and some simplifications results in:

A’ := ST 1 ∧ B

The resulting program is listed in Figure 4.9(c). That program is not acyclic because
the state signal ST 1 is introduced into the suspend guard. That signal is emitted inside
the body of the other suspend statement and therefore dependent on the cycle signals in
its guard.

An efficient solution for this problem is not obvious. Selecting another signal of the
cycle for cycle breaking does not work, both cycle signals are symmetrically dependent
between two suspend blocks.

The solution proposed in Section 4.1 on page 55 (Step (3a)) of substituting suspend into
other kernel statements is viable, but possibly expensive in code size.

Another possibility is the extension of the Esterel pause command. Instead of adding an
emit statement to all pause statements, the state signal is added to the pause statement
itself:

pause ST i

The modified pause statement will emit the added state signal in each instant it is
activated. The purpose of this extension to the pause statement is to emit state signals
with no regard for suspension and abortion. Therefore no additional cyclic dependencies
can be introduced by state signals inside abort/suspend statements.

Figure 4.10 contains the extended equations to determine replacement expressions for
signals under influence of abort/suspend statements. Functions E and S get an additional
third parameter W (watcher) containing the abort/suspend expression in the current
program context. That parameter is initialized with false at start of the program analysis:

E = E(p, ST 0 , false)

When entering the body of a abort/suspend statement (Rules 4.17 and 4.18), the new
abort/suspend condition is disjuncted with the current watcher expression.

The watcher expression is added to the signal context expression at pause statements in
Rule (4.16). It is negated because if the watcher expression yields true, then the signal
emissions are suppressed in that instant.

Rule (4.15) is not changed compared to Figure 4.7 besides the additional parameter W

70 CHAPTER 4. PROGRAM TRANSFORMATION

for functions E and S. One might consider to use the watcher expression W directly for
signal emissions, e. g., like this:

E(!A, S,W) = {〈A, S ∧W 〉}
However the flaw in this attempt lies in the delayed nature of the abort/suspend state-
ments, the abort/suspend condition is per definition not evaluated in the instant of
entry into the abort/suspend block. When at least the first pause statement in the
abort/suspend block had been encountered, then the watcher condition is evaluated.
Therefore the right thing to do is to add the watcher condition at the pause statements
to the state signal (Rule (4.16)). This ensures the correct handling of the exceptional
“first instant”. The additional case distinction in function S of Rule (4.16) is related to
skipping of dead code.

Function E of Rule (4.16) returns the state signal as a tuple connected to an empty
expression. The purpose of this addition is to collect all state signals contained in an
abort block as possible points of abortions. That empty expression is just a placeholder
which keeps the data format returned by E consistent.

Function S in Rule (4.18) computes the state context at termination of the abort block:
The expression S(p, S, W ∨A) returns the regular termination of the abort body p when
no abortion takes place. The collected state signals are used in the additional expression∨

〈ST i,∅〉∈E(p,S,W∨A)
ST i ∧ A ∧W

It covers all possible control flows from pause statements inside the abort block to the end
of the abort statement when the abortion condition A holds. This is done by extracting
all state signals off the set returned by E applied to the abort body p. Each state signal
is connected to the abortion condition A and the negation of the watcher expression
from upper abort levels. This correctly handles abort hierarchies.

The handling of suspend in Rule (4.17) is much simpler, functions E and S just return
the results of their sub-blocks.

4.4 Example Transformations

In this section the transformation algorithm from Section 4.1 is illustrated by applying
it to some examples.

4.4.1 Transforming PAUSE CYC

The algorithm is applied to the example PAUSE CYC in Figure 3.2(a) on page 32, which
is transformed into the acyclic program PAUSE ACYC in Figure 3.2(c). The transfor-
mation of the program DRIVER CYC in Figure 3.4(a), page 33, into DRIVER ACYC in
Figure 3.4(b) is similar.

Step (1): PAUSE CYC is cyclic but nevertheless constructive, because a pause statement

4.4. EXAMPLE TRANSFORMATIONS 71

P =

emit A
E(P, S,W) = {〈A,S〉}
S(P, S,W) = S

(4.15)

...

pause ST i

E(P, S,W) = {〈ST i, ∅〉}

S(P, S,W) =
{

false : S = false
ST i ∧W : otherwise

(4.16)

...

suspend
p

when A

E(P, S,W) = E(p, S,W ∨A)

S(P, S,W) = S(p, S,W ∨A)
(4.17)

abort
p

when A

E(P, S,W) = E(p, S,W ∨A)

S(P, S,W) =
S(p, S,W ∨A)
∨

∨
〈ST i,∅〉∈E(p,S,W∨A) ST i ∧A ∧W

(4.18)

Figure 4.10: Equations to determine replacement expressions for signals in a suspend
and abort context. It requires an extension of Esterel with a pause statement that emits
an associated state signal without suppression by suspend/abort conditions.

separates the execution of both parts of the cycle.

Steps (2a) to (2c) do not apply to PAUSE CYC.

Steps (3) and (5): To prepare the removal of the cycle, we first transform PAUSE CYC
into the equivalent program PAUSE PREP, shown in Figure 3.2(b). It differs from
PAUSE CYC in the introduction of state signals ST 0 to ST 2 and in that the signals
carrying the cycle (A and B) have been replaced by fresh signals A and B , which are
only emitted within the cycle. All tests for A and B in the original program are replaced
by tests for [A or A] and [B or B], respectively.

Step (4): PAUSE CYC contains one cycle: ~C = 〈A, B〉.
Step (6a): The computation of replacement expressions for A and B according to
Section 4.2 results in:

A = ST 1 ∧ (B ∨ B) (4.19)

B = ST 0 ∧ (A ∨ A) (4.20)

The equations for each signal now refer to other cycle signals; note that we consider
A and B not cycle signals anymore, as they are not emitted within the cycle anymore.
The similarity to a system of linear equations is apparent, and we solve the equations
accordingly:

72 CHAPTER 4. PROGRAM TRANSFORMATION

Step (6b): In PAUSE PREP, we arbitrarily select A as the signal to break the cycle.

Step (6c): To replace B in Equation (4.19), substituting (4.20) into (4.19) results in:

A = ST 1 ∧ (B ∨ (ST 0 ∧ (A ∨ A))). (4.21)

This is now an equation which expresses the cycle signal A as a function of itself and
other signals that are not part of the cycle; so we have unrolled the cycle.

Step (6d): Replacing the self-reference of signal A on the right hand side of (4.21) by
false (absent) yields:

A = ST 1 ∧ (B ∨ (ST 0 ∧ A)). (4.22)

Similarly, for A = true (present):

A = ST 1 ∧ (B ∨ ST 0). (4.23)

We now have derived two equally valid replacement expressions for A , which do not
involve any cycle signal.

Step (6e): Finally we are ready to break the cycle in PAUSE PREP. For that, we have
to replace the signal selected in Step (6b) — in the cycle — by one of the expressions
computed in Step (6d), which do not use any of the cycle signals, without changing the
meaning of the program.

Substituting (4.23), the simpler of these expressions, for A in PAUSE PREP yields the
now acyclic program PAUSE ACYC shown in Figure 3.2(c).

4.4.2 Transforming the Token Ring Arbiter

Searching for signal dependencies in the program TR3 CYC from Figure 3.5 page 35
according to the algorithm presented in Chapter 3 yields the following set:

D =

〈R1, P2〉, 〈R1, G1〉, 〈R2, P3〉, 〈R2, G2〉, 〈R3, P1〉, 〈R3, G3〉,
〈P1, P2〉, 〈P1, G1〉, 〈P2, P3〉, 〈P2, G2〉, 〈P3, P1〉, 〈P3, G3〉,
〈T1, P2〉, 〈T1, G1〉, 〈T2, P3〉, 〈T2, G2〉, 〈T3, P1〉, 〈T3, G3〉

These dependencies can be visualized by the following graph:

T1

G1R1
Station 1

T2

R2
Station 2

T3

G3R3
Station 3

G2

P1 P2 P3

Searching in D for cyclic dependencies delivers the following cycle of length three:

4.4. EXAMPLE TRANSFORMATIONS 73

module TR3 ACYC:

input R1, R2, R3;
output G1, G2, G3;

signal ST 0, ST 1, ST 2, ST 3, ST 4,
ST 5, ST 6, ST 7, ST 8, ST 9 in

emit ST 0;
signal P2, P3, % P1 deleted

T1, T2, T3
in
[

emit T1
||
loop % STATION1

present
[T1 or (ST 0 or ST 7) and (T3 or

(ST 0 or ST 4) and (T2 or (ST 0

or ST 1) and not R1) and not R2)

and not R3] then
present R1 then

emit G1
else

emit P2
end

end;
pause; emit ST 1;

end loop

||
loop

present T1 then
pause; emit ST 2;
emit T2

else
pause; emit ST 3;

end
end

||
loop

% STATION2
present [T2 or P2]
then

present R2 then
emit G2

else
emit P3

end
end;
pause; emit ST 4

end loop
||
loop

present T2 then
pause; emit ST 5;
emit T3

else
pause; emit ST 6

end
end

||
loop % STATION3

present [T3 or P3]
then

present R3 then
emit G3

% else branch
% deleted
end

end;
pause; emit ST 7

end loop
||
loop

present T3 then
pause; emit ST 8;
emit T1

else
pause; emit ST 9

end
end

]
end signal

end signal
end module

(a)

GO

R1

Station 1 Station 2

G1

T1

P2

T2

R2 G2

Station 3

T3

P3

R3 G3

P1

(b)

Figure 4.11: Non-cyclic Token Ring Arbiter: (a) Transformation of the cyclic original
of Figure 3.5(a) page 35, (b) Simplified circuit representation, dashed lines indicate
the additions to make the original circuit acyclic. The emission of P1 is replaced by
(T3 ∨ (T2 ∨ R1) ∧ R2) ∧ R3.

74 CHAPTER 4. PROGRAM TRANSFORMATION

C = 〈P1, P2, P3〉
The cycle is indicated in the graph by dashed lines.

Renaming of cycle signals is not needed here, because all three cycle signals are internally
defined signals and not input signals.

The computation of replacement expressions yields the following results for the cycle
signals:

P1 = (ST 0 ∨ ST 7) ∧ (T3 ∨ P3) ∧ R3
P2 = (ST 0 ∨ ST 1) ∧ (T1 ∨ P1) ∧ R1
P3 = (ST 0 ∨ ST 4) ∧ (T2 ∨ P2) ∧ R2

We may select signal P1 to break the cycle. Now the cycle signals P2 and P3 are
substituted in the equation for P1:

P1 = (ST 0 ∨ ST 7) ∧ (T3 ∨ P3) ∧ R3
P1 = (ST 0 ∨ ST 7) ∧ (T3 ∨ ((ST 0 ∨ ST 4) ∧ (T2 ∨ P2) ∧ R2)) ∧ R3
P1 = (ST 0 ∨ ST 7) ∧ (T3 ∨ ((ST 0 ∨ ST 4) ∧ (T2 ∨ ((ST 0 ∨ ST 1)∧

(T1 ∨ P1) ∧ R1)) ∧ R2)) ∧ R3 (4.24)

Equation (4.24) now expresses a cycle carrying signal (P1) as a function of itself and
other signals that are outside of the cycle. Again we can employ the constructiveness
of TR3 CYC to replace P1 in this replacement expression by either true or false. Setting
P1 to false yields:

P1 = (ST 0∨ ST 7)∧ (T3∨ (ST 0∨ ST 4)∧ (T2∨ (ST 0∨ ST 1)∧T1∧R1)∧R2)∧R3. (4.25)

Setting P1 to true yields:

P1 = (ST 0 ∨ ST 7) ∧ (T3 ∨ (ST 0 ∨ ST 4) ∧ (T2 ∨ (ST 0 ∨ ST 1) ∧ R1) ∧ R2) ∧ R3. (4.26)

The shorter expression (4.26) is applied when transforming TR3 CYC into the acyclic
program TR3 ACYC shown in Figure 4.11(a) on page 73. The other transformation steps
are fairly straightforward.

The replacement expression is fairly complex, but close inspection yields an optimization.
The expression (ST 0 ∨ ST 7) is contained in (4.26): The state signal ST 0 is emitted
in the first instant and ST 7 is emitted in all instants but the first one. In a disjunction
they will always return true. Therefore the expression can be replaced statically by true.
The same holds for (ST 0 ∨ ST 4) and (ST 0 ∨ ST 1).

With this optimization (4.26) can be reduced to:

P1 = (T3 ∨ (T2 ∨ R1) ∧ R2) ∧ R3. (4.27)

Further optimization opportunities are discussed in Chapter 6.

This much simpler equation is used to break the cyclic dependency in the circuit rep-
resentation of the Token Ring Arbiter in Figure 4.11(b). Dashed lines indicate the new
connections. The emission of P1 is not needed anymore, the associated parts of the
circuit are marked with dotted lines.

4.4. EXAMPLE TRANSFORMATIONS 75

module PAR TERM CYCLIC:
output A, B;

[
present A then

nothing
end

||
nothing

];
emit B;
pause;
present B then

emit A
end

end module

(a)

;

module PAR TERM PREP:
output A, B;

signal PST 1, PST 2 in
trap PST in

[
present A then

nothing
end;
sustain PST 1

||
nothing;
sustain PST 2

II
loop

present

[PST 1 and PST 2]

then
exit PST

end;
pause

end
]

end;
emit B;
pause;
present B then

emit A
end

end signal

end module

(b)

;

module PAR TERM KERNEL:
output A, B;

signal PST 1, PST 2 in
trap PST in

[
present A then

nothing
end;
loop

emit PST 1;
pause

end
||
nothing;
loop

emit PST 2;
pause

end
||
loop

present
[PST 1 and PST 2]

then
exit PST

end;
pause

end
]

end;
emit B;
pause;
present B then

emit A
end

end signal

end module

(c)

Figure 4.12: Treatment of cyclic dependencies crossing parallel termination: (a) Pro-
gram with cyclic dependency across the termination of a parallel operator, (b) addition
of trap/sustain/exit construct to correctly catch parallel termination, (c) expansion to
kernel statements. See Figure 4.13 for resolving the cycle.

76 CHAPTER 4. PROGRAM TRANSFORMATION

;

module PAR TERM ACYC:
output A, B;

signal PST 1, PST 2 in
signal ST 0, ST 1, ST 2,

ST 3, ST 4 in
emit ST 0;
signal PST 1, PST 2 in

trap PST in
[

present
[ST 4 and (ST 0 or ST 3)

and (ST 0 or ST 1) and PST 2]

then
nothing

end present;
loop

emit PST 1;
pause;
emit ST 1

end loop
||
nothing;
loop

emit PST 2;
pause;
emit ST 2

end loop
||
loop

present
[PST 1 and PST 2]

then
exit PST

end;
pause;
emit ST 3

end loop
]

end trap;
emit B;
pause;
emit ST 4;
present B then

emit A
end present

end signal
end signal

end module

(a)

;

module PAR TERM OPT:
output A, B;

signal PST 1, PST 2 in
trap PST in

[
present false then

nothing
end present;
loop

emit PST 1;
pause

end loop
||
nothing;
loop

emit PST 2;
pause

end loop
||
loop

present
[PST 1 and PST 2]

then
exit PST

end;
pause

end loop
]

end trap;
emit B;
pause;
emit ST 4;
present B then

emit A
end present

end signal

end module

(b)

Figure 4.13: Continuation of Figure 4.12: (a) Resolved cycle by application of the
transformation algorithm, (b) optimized version.

4.4. EXAMPLE TRANSFORMATIONS 77

4.4.3 Transforming Cycles Over Parallel Termination

Figure 4.12(a) contains an example program with a cycle over the termination of a
parallel statement. The program consists of a parallel statement block with two threads.
In the first thread signal A is tested and the thread terminates instantly. The second
thread does nothing and terminates instantly, too. Sequentially following the parallel
statement block is the emission of signal B. This constitutes a signal dependency from
A to B over the termination of a parallel statement block. To close the cycle, a simple
emission of A guarded by B is added. A pause statement makes the program constructive
by separating both signal tests and emissions into separate instants.

The key in resolving this cyclic dependency lies in deriving a context expression for
the emission of signal B. This involves finding a signal state expression describing the
termination of the parallel statement. This may be doable intuitively in this fairly simple
example by stating

B = ST 0

but the general case needs more effort.

In Figure 4.12(b) the additions performed by Step (3b) of the algorithm (see also Fig-
ure 4.4 on page 57) are applied. To each thread a sustain command is added at ter-
mination, and the combination of all termination signals leads to activation of the trap
around the parallel statement.

Figure 4.12(c) contains the expansion of the sustain commands into kernel statements
(Step (2b)) as indicated in Figure 4.3 on page 56. Now the program is ready to be
applied to the transformation algorithm.

The signal dependencies in this program are:

D =

〈A, PST 1〉,
〈B, A〉,
〈PST 1, B〉, 〈PST 1, PST〉,
〈PST 2, B〉, 〈PST 2, PST〉, 〈PST 2, PST 1〉

This results in the following cyclic dependency:

C = 〈A, PST 1, B〉
The computation of replacement expressions yields the following results for the cycle
signals:

A = ST 4 ∧ B
B = false ∨ (ST 0 ∨ ST 3) ∧ PST 1 ∧ PST 2
PST 1 = ST 0 ∨ ST 1

The signal selected to cut the cycle is A. Cycle signals B and PST 1 are substituted in
the equation for A:

A = ST 4 ∧ (false ∨ (ST 0 ∨ ST 3) ∧ PST 1 ∧ PST 2)
= ST 4 ∧ (false ∨ (ST 0 ∨ ST 3) ∧ (ST 0 ∨ ST 1) ∧ PST 2)

78 CHAPTER 4. PROGRAM TRANSFORMATION

The resulting expression does not contain the cycle signal A, therefore a simple removal
of boolean constants suffices:

A = ST 4 ∧ (ST 0 ∨ ST 3) ∧ (ST 0 ∨ ST 1) ∧ PST 2

This expression is used to replace the test for signal A in the first thread of the parallel
statement. The resulting acyclic program is listed in Figure 4.12(d).

Further inspection of the tranformed program in Figure 4.13(a) reveals that the expres-
sions (ST 0∨ST 3) and (ST 0∨ST 1) yield both always true at their point of evaluation.
But more impact has ST 4, which is absent at the same point inside the parallel block.
This reduces the entire replacement expression to false. It is a correct reflection of the
fact that the test and emission of A take place in different instants in the original program
(Figure 4.12(a)).

The optimized program is listed in Figure 4.13(b). It must be noted that the “present
false” expression is invalid. Instead, the entire present statement must be removed.

4.4.4 Multiple pause Statements

Figure 4.14 gives another program with a cycle involving signals A and B. However, the
cycle is only present at certain instants; the guarded emit of B takes place every 3rd
instant, whereas the guarded emit of A takes place every 5th instant, hence the cycle is
active only every 15th instant. Here the transformation into an acyclic version requires
the emission of the signal ST 2, which indicates the evaluation of the guard dependency
with sink B. As an optimization, due to the invariant “T1 or T2 = true,” which is
ensured by the third parallel thread, it suffices to just replace the guard in the guard
dependency involving A in the transformed program by “A or ST 2”.

4.4.5 Suspend

So far we presented only cycles with a present test as a guard for an emit statement.
Another way to influence the execution of emit is the suspend statement. A complication
with suspend is that, unlike with present, one cannot easily generate a signal that is emit-
ted unconditionally whenever the guard of a suspend is evaluated. The transformation
algorithm therefore first transforms the suspend statements into equivalent present/trap
statements, in Step (3a).

As an example, consider the program SUSP CYC in Figure 4.15(a). The program con-
tains a cyclic dependency on the signals A and B, the emission of each signal is inhibited
by the presence of the other signal.

Applying Step (3a) results in the preprocessed programs SUSP PREP and SUSP KERNEL
in Figure 4.15(b)/(c). Step (3d) adds state signals to SUSP STATE shown in Fig-
ure 4.16(a). The result, after applying the whole transformation algorithm, is SUSP ACYC
in Figure 4.16(b).

4.4. EXAMPLE TRANSFORMATIONS 79

module PAUSES CYC:
input A, B;
output C, D;

signal T1, T2 in
loop

pause; pause;
pause;
present [A or T1]
then

emit B;
emit C

end
end

||
loop

pause; pause;
pause; pause;
pause;
present [B or T2]
then

emit A;
emit D

end
end

||
loop

emit T1;
pause;
emit T2;
pause

end
end
end module

(a)

;

module PAUSES PREP:
input A, B;
output C, D;

signal ST 1, ST 2 in

signal T1, T2 in
loop

pause; pause;
pause; emit ST 1;
present [A or A or T1]
then

emit B ;
emit C

end
end

||
loop

pause; pause;
pause; pause;
pause; emit ST 2;
present [B or B or T2]
then

emit A ;
emit D

end
end

||
loop

emit T1;
pause;
emit T2;
pause

end
end
end module

(b)

;

module PAUSES ACYC:
input A, B;
output C, D;

signal ST 1, ST 2 in
signal T1, T2 in

loop
pause; pause;
pause; emit ST 1;
present [A or

ST 2 and (B or ST 1 or T2)

or T1] then
then

emit B ;
emit C

end
end

||
loop

pause; pause;
pause; pause;
pause; emit ST 2;
present [B or B or T2]
then

emit A ;
emit D

end
end

||
loop

emit T1;
pause;
emit T2;
pause

end
end
end module

(c)

Figure 4.14: Example requiring state signals which cannot be eliminated: (a) Cyclic
dependency between signals A and B, (b) introduction of state signals and signal sep-
aration (unused state signals are left out for brevity), (c) acyclic program obtained by
replacing A with an expression.

80 CHAPTER 4. PROGRAM TRANSFORMATION

module SUSP CYC:
output A,B;

pause;
suspend

pause;
emit A

when B
||
suspend

pause;
emit B

when A

end module

(a)

;

module SUSP PREP:
output A,B;

pause;
await not B;
emit A

||
await not A;
emit B

end module

(b)

;

module SUSP KERNEL:
output A,B;

pause;
trap T1 in

loop

pause;

present B else

exit T1
end

end;
end;
emit A

||
trap T2 in

loop

pause;

present A else

exit T2
end

end;
end;
emit B

end module

(c)

;

Figure 4.15: Simple cyclic program with suspend: (a) Original program with cycle
between A and B, (b) replacement of pause inside suspend by await, (c) expansion of
await into kernel statements. See Figure 4.16 for resolving the cycle.

SUSP ACYC can be optimized further by noting that ST 3 is always present at its point
of evaluation. This results in SUSP OPT in Figure 4.16(c) after removing the now
unneeded state signals.

4.5 Proposals for Constructiveness Analysis

Using Replacement Expressions

The transformation algorithm as described until now needs the constructiveness of input
programs as a precondition. The algorithm exploits the constructiveness while replacing
self referencing signal names in replacement expressions (see the remarks on transfor-
mation Step (6d) on page 62).

Algorithms testing the constructiveness of cyclic dependencies in Esterel programs are
usually not working on the original structure of the Esterel program but on some ab-
stracted intermediate representation or a circuit synthesized from the Esterel program.

4.5. PROPOSALS FOR CONSTRUCTIVENESS ANALYSIS 81

;

module SUSP STATE:
output A,B;

signal ST 0, ST 1,

ST 2, ST 3 in
emit ST 0;
[

pause; emit ST 1;
trap T1 in

loop
pause; emit ST 2;
present B else

exit T1
end

end;
end;
emit A

||
trap T2 in

loop
pause; emit ST 3;
present A else

exit T2
end

end;
end;
emit B

]

end signal

end module

(a)

;

module SUSP ACYC:
output A,B;

signal ST 0, ST 1,
ST 2, ST 3 in

emit ST 0;
[

pause; emit ST 1;
trap T1 in

loop
pause; emit ST 2;
present B else

exit T1
end

end;
end;
emit A

||
trap T2 in

loop
pause; emit ST 3;
present

[ST 2 and not ST 3]

else
exit T2

end
end;

end;
emit B

]
end signal
end module

(b)

;

module SUSP ACYC:
output A,B;

pause;
trap T1 in

loop
pause;
present B else

exit T1
end

end;
end;
emit A

||
trap T2 in

loop
pause;
present false else

exit T2
end

end;
end;
emit B

end module

(c)

Figure 4.16: Continuation of Figure 4.15: (a) Introduction of state signals, (b) resolved
cycle by application of the transformation algorithm, (c) optimized version.

The following two sections outline methods to implement constructiveness analysis di-
rectly on the Esterel level by utilizing the replacement expressions originally used to
resolve cyclic dependencies.

Section 4.5.1 proposes changes for the classic constructiveness analysis based on three-
valued fixpoint iteration and program state exploration on circuits. A summary of that
section is given in Figure 4.17 on page 84 .

Section 4.5.2 modifies the algorithm on temporal induction proposed by Claessen [11].

82 CHAPTER 4. PROGRAM TRANSFORMATION

4.5.1 Substitution of Fixpoint Iteration

Common algorithms for tests of constructiveness of Esterel programs are based on a
three-valued fix point iteration to simulate the execution of the Esterel program under
test. If all signal states converge to either “absent” or “present” in all reachable program
states, then the program is considered constructive. Typical representations of these al-
gorithms working on the circuit level are proposed by Malik [28] and Shiple et al. [36].
An additional effort of these procedures lies in the book keeping of already tested pro-
gram states, the derivation of other states from reached ones, and the comparison against
already checked states.

The modification proposed here changes the handling of the three-valued fixpoint iter-
ation. Instead of performing the fixpoint iteration dynamically on all reached states of
the input, the fixpoint iteration is statically solved in a preprocessing step. In that step
equations are derived for each signal that is part of a cyclic dependency. Those equations
describe for a given state context, if the emission of a signal depends on the signal itself.
This would indicate the non-constructiveness of the program. The main benefit of the
modification presented here lies in the much simpler evaluation of a binary expression
instead of a fixpoint iteration on three-valued signals.

The expressions replacing the fixpoint iteration can be deduced from the procedure
described in Section 4.2 on the computation of replacement expressions: For a cycle
signal σi the expression Ei describes the signal context in which the signal is emitted.
Ei generally involves cycle signals including σi and other signals of the program.

Now Ei is transformed into E∗
i by iteratively replacing all other cycle signals σj (but

skipping σi) by their respective expressions Ej. The resulting expression E∗
i is a function

of the cycle signal σi and other signals σ̃, which are not part of the cycle.

The function E∗
i (σi, σ̃) can now be used to test the constructiveness of the emission of

σi in the context of some signal state σ̃. For that purpose each occurrence of σi in E∗
i is

replaced by true and false yielding two new functions:

E+
i (σ̃) = E∗

i (true, σ̃)
E−

i (σ̃) = E∗
i (false, σ̃).

If the results of E+
i (σ̃) and E−

i (σ̃) differ, then the emission of σi depends of itself and
the program is not constructive regarding σi. This needs to be tested for all reachable
signal states σ̃.

To simplify the application of E+
i (σ̃) and E−

i (σ̃) they can be combined by exclusive or (⊕)
into one function:

E⊕
i (σ̃) = E+

i (σ̃)⊕ E−
i (σ̃).

If E⊕
i becomes true for some σ̃, then P is not constructive regarding σ̃.

If we can establish that E⊕
i does not evaluate to true for any σ̃, then we know that

P is constructive and we are done. This is basically a NP-complete satisfiability prob-
lem (SAT). But proving that E⊕

i evaluates to true for some σ̃ is not sufficient to negate

4.5. PROPOSALS FOR CONSTRUCTIVENESS ANALYSIS 83

the constructiveness of P . In this case to assert the overall constructiveness of P , all
reachable signal statuses σ̃ must be tested against each individual E⊕

i for the cycle
signals. If all applications return false, then P is constructive.

The remaining hard part, however, which is not further improved here, is the identi-
fication of all reachable program states σ̃. At least the computation of replacement
expressions can help to compute successor states for a given program state. The pro-
gram state is expressed by the set of pause statements which start the execution in an
instant. A pause statement starts the execution of an instant iff it has been reached
by the control flow in the previous instant. This fact can be exploited to derive an
expression for the execution of pause statements. An additional detail to distinguish the
pause statements is the enumeration of all pause statement with state signals performed
as part of the transformation algorithm (Step 3d). To derive the emissions of those state
signals, the Equation (4.8) (Figure 4.7 on page 65) can be extended:

pause;
emit ST i

E(1;!ST i, S) = {〈next(ST i), S〉}

S(1;!ST i, S) =
{

false : S = false
ST i : otherwise

(4.28)

The new part is the production of 〈next(ST i), S〉 describing that “emit ST i” and its
associated pause statement will be executed in the next instant, if the current context
expression S evaluates to true. If S contains input signals from the environment, then
all combinations of input signals must be evaluated to get all possible successor states of
the current state.

4.5.2 Temporal Induction

The constructiveness analysis described in the previous section depends on explicitly
computing the entire reachable state space of the program. Claessen [11] proposes a
method of temporal induction to prove the constructiveness of cyclic circuits without
computation of the reachable state space. This is done by formulating safety properties
for cycle signals. They identify stable derivations of signal states for constructive states
by using a dual rail encoding for signal definitions. Furthermore delayed definitions
express the transitions of program states between instants utilizing dual rail encodings,
too.

A theorem prover is used to formally check that for all constructive states in an instant
the following instants are constructive, too. This method is conservative, but very effi-
cient, it is able to handle programs which cannot be practically handled by computation
of state space.

Claessen’s method to prove constructiveness of cycles is defined on circuits, but can be
adopted to Esterel programs by utilizing the replacement expressions used in this work,
like in the previous section.

84 CHAPTER 4. PROGRAM TRANSFORMATION

Input: Program P , potentially containing non-constructive cycles

1. Search for signals with cyclic dependencies.
If no cycle ~C can be found → P is constructive.

2. Add state signals to pause statements as in Steps (3c)/(3d) of the algorithm shown
in Figure 4.2 on page 53.

3. Compute the emission context Ei for each cycle signal σi ∈ ~C.
The expressions Ei are a function of all signal states σ ⊂ Σ in P and describe
when the cycle signals are emitted:
(Ei(σ) = true) ⇔ σi is emitted.

4. For all σi ∈ ~C : Iteratively transform Ei to E∗
i by replacement of all signals

σj ∈ (~C \ σi) by their expressions Ej.

5. The expressions E∗
i are a function of the cycle signal σi ∈ ~C and other signals

σ̃ = (Σ \ ~C): E∗
i (σi, σ̃) → {true, false}

6. To be constructive, the emission of a signal must not depend on itself. Therefore
the following must hold for all reachable program states σ̃ ⊂ (Σ \ ~C):
E∗

i (true, σ̃) = E∗
i (false, σ̃)

7. To test an actual program state for constructiveness,
functions E⊕

i (σ̃) → {true, false} are created: E⊕
i (σ̃) = E∗

i (true, σ̃)⊕ E∗
i (false, σ̃)

This function returns true if P is not constructive with regard to cycle signal σi

and program state σ̃.

8. To enumerate the reachable program state the emission of state signals can be
derived as part of the computation of Ei by adding this rule to Figure 4.7:
E(1;!ST i, S) = {〈next(ST i), S〉}
The result adds to each state signal ST i the context S. When S evaluates to true
in the current instant then ST i is present in the next instant.

Figure 4.17: Outline of an algorithm to decide on the constructiveness of an Esterel
program P . It is an alternative application of the replacement expressions introduced
in Section 4.2. This is a summary of Section 4.5.1.

4.5. PROPOSALS FOR CONSTRUCTIVENESS ANALYSIS 85

The dual rail encoding is applied to the replacement expressions σi = E∗
i (σi, σ̃) by

splitting each binary signal σi into two signals σ0
i and σ1

i representing a ternary value:

σ0
i = E∗0

i (⊥, σ̃)
σ1

i = E∗1
i (⊥, σ̃).

E∗0
i and E∗1

i are derived from E∗
i according to the rules of dual rail encodings given

in [11]. The same pattern is applied to the delayed emissions obtained by (4.28) of state
signals regarding the pause statements.

With these adoptions it becomes possible to directly prove the constructiveness of Esterel
programs with Claessen’s method without the need to synthesize a circuit beforehand.

86 CHAPTER 4. PROGRAM TRANSFORMATION

Chapter 5

Cycles on Valued Signals

The previously presented Esterel programs featured just pure signals; i. e., the only
informational content they provide is their binary presence/absence state. This chapter
outlines a possible extension of the transformation algorithm to valued signals, by way
of some representative examples. Cycles involving variables are not addressed here.

5.1 Introduction to Valued Signals in Esterel

Valued signals are an extension to pure signals with an additional data field. The type
of data must be specified at the point of signal definition. Esterel provides five primitive
types: boolean, integer, float, double, and string. Additional types may be defined as a
reference to the host language.

input A : float ;
output B : integer;
signal S : integer in ... end

The content of a valued signal is set by a parameter on the signal name in an emit
statement:

emit S(3)

This sets the value of signal S to 3. The current value of other signals can be accessed
by the prefix ?:

emit B(?S + 1)

Setting a valued signal with emit will make its status present. In the next execution
instant that presence status will be lost, but the value of the signal is preserved. It can
be accessed by the ? operator until it is overwritten by other emissions.

The content of valued signals can be used to influence the control flow of the Esterel
program similar to the presence state of signals is tested in present statements. Unfortu-

87

88 CHAPTER 5. CYCLES ON VALUED SIGNALS

nately, signal values and presence states cannot mix in the same expression: The Esterel
syntax demands a strict separation of presence and value expressions. The present, abort,
suspend statements all evaluate only expressions on signal presence. The only facility to
test signal values in Esterel is given by the if statement. It evaluates data expressions
with a boolean result, which cannot contain any references to signal presence, just signal
values are permitted.

This separation seems to be somewhat arbitrary since there is no strong technical reason
to exclude access to signal presence statuses in if conditionals. This strict separation
between access to signal statuses and signal values into if and present statements is a
source of problems when dealing with replacement expressions for cycle signals.

If a pure signal is emitted one or more times in an instant, the results are identical: The
signals state is considered “present” for the entire run time of the instant. This behavior
fulfills the synchrony hypothesis, because only the first emission determined the state of
the signal and further emissions are redundant. If multiple emissions on a valued signal
happen in an instant (possibly with different data values), then the question arises which
emitted value should be considered the valid one for the instant:

output A : integer;
emit A(2);

||
emit A(3)

Such an ambiguity is not acceptable in Esterel, and therefore multiple emissions on a
regular valued signal in a single instant are not permitted. But nevertheless there is
a way in Esterel to put a well-defined meaning into multiple emissions by binding a
combination function to the respective signal:

output A : combine integer with +;
emit A(2);

||
emit A(3)

Here the operator + adds up all values of emissions on the signal A in an instant to
produce a single value for the signal. In this case A will be assigned the value 5.

Not all functions are suitable for a combine operator, only commutative and associative
functions produce identical results for multiple applications on more that two emissions
in different orders.

5.2 Signal Dependencies on Valued Signals

Valued signals must obey the constructiveness principles just like pure signals. Not only
the presence of valued signals, but also their values must be established in a constructive
way, which adds additional restrictions for valid Esterel programs. The execution of an
emit statement like

5.2. SIGNAL DEPENDENCIES ON VALUED SIGNALS 89

P =

emit S(expr(?A))
G(P,G, X) = G ∪ {A}
D(P,G, X) = {〈a, S〉 | a ∈ (G ∪ {A})}

if expr(?S) then
p

else
q

end

Gp ≡ G(p, G ∪ {S}, X)
Gq ≡ G(q, G ∪ {S}, X)

G(P,G, X) =

⊥ : (Gp = ⊥) ∧ (Gq = ⊥)
Gp : (Gp 6= ⊥) ∧ (Gq = ⊥)
Gq : (Gp = ⊥) ∧ (Gq 6= ⊥)
Gp ∪ Gq : otherwise

D(P,G, X) = D(p, G ∪ {S}, X) ∪ D(q, G ∪ {S}, X)

Figure 5.1: Deriving signal dependencies of emissions and tests on valued signals in-
volving expressions on valued signals. These rules extend the rule set in Figure 3.7 on
page 38.

P =

emit A(expr)
E(P, S) = {〈A,S, expr〉}
S(P, S) = S

if expr then
p

else
q

end

E(P, S) = E(p, S ∧ expr) ∪ E(q, S ∧ expr)

S(P, S) = S(p, S ∧ expr) ∨ S(q, S ∧ expr)

Figure 5.2: Equations to determine replacement expressions for emissions of valued
signals. It is an extension to Figure 4.7 page 65.

emit S

on a pure signal does not depend on other signals besides control flow restrictions. But
to execute an emission on valued signals like

emit A(?B)

adds a dependency to the signal B, i. e., the value of B for that instant must be established
before the emission statement can be executed. Such dependencies are covered in the
equation in Figure 5.1. It is an extension to the equations in Figure 3.7 on page 38. It
enables the cycle searching algorithm to handle cycles on valued signals. The equation for
the value testing statement if/then/else is treated just like the regular present/then/else
statement.

90 CHAPTER 5. CYCLES ON VALUED SIGNALS

module VALUE EXPR:
input A : integer;
output B : integer;

emit B(123);
pause;
present A then

if (?A = 0) then
emit B(?A + 1)

else
emit B(?A − 1)

end if
end present

end module

(a)

;

module VALUE EXPR PREP:
input A : integer;
output B : integer;

signal ST 0, ST 1 in

emit ST 0;
emit B(123);
pause; emit ST 1;
present A then

if (?A = 0) then
emit B(?A + 1)

else
emit B(?A − 1)

end if
end present

end signal

end module

(b)

Figure 5.3: Example for emissions on valued signals: (a) Multiple emissions on signal
B, (b) added state signals.

5.3 Replacement Expressions for Valued Signals

The actual resolving of cyclic dependencies involves the replacement of one or more cycle
signals by a signal expression. The derivation of signal expressions for pure signals is
described in Section 4.2 and uses the equations in Figure 4.7 on page 65. The extensions
to the equations needed here to handle valued signals are listed in Figure 5.2.

The first equation collects emissions on valued signals into triples of signal names, current
state expressions, and emitted signal values. The difference to pure signals lies in the
additional value expression stored with the signal name representing the value emitted
on the signal. It may consist of other signals or arithmetic operators and constants.

The second equation handles tests on signal values by if/then/else statements. They are
treated like present/then/else statements by adding the predicate to the current program
state. This method will mix signal state expressions with signal value expressions,
although this is not valid in Esterel. Therefore when actually inserting such an expression
back into the Esterel program, some more preprocessing is needed.

Figure 5.3(a) lists the short Esterel program VALUE EXPR. It contains no cyclic depen-
dencies, but helps to visualize the problems of replacement expressions in the context of
valued signals. The output signal B is emitted three times with different arguments as
values. The first one is just a numeric constant, the other two values for B are functions
of the value of input signal A.

In Figure 5.3(b) state signals are added to the Esterel program to enable the derivation

5.4. CYCLES ON PURE SIGNALS BROKEN BY VALUED SIGNALS 91

of context expressions for all signal emission. The resulting context expressions for signal
B are:

E(P, ST 0) =

〈B, ST 0, 123〉,
〈B, ST 1 ∧ A ∧ (?A = 0), ?A+1〉,
〈B, ST 1 ∧ A ∧ (?A = 0), ?A-1〉

These expressions include the actual value expressions according to the extension of
derivation rules in Figure 5.2.

The next step for the replacement expressions according to the procedure as described
for pure signals in Section 4.2 on page 66 would be to disjunct all state expressions for
the signal emissions to yield a single expression representing the signal behavior:

B := (ST 0) ∨ (ST 1 ∧ A ∧ (?A = 0)) ∨ (ST 1 ∧ A ∧ (?A = 0))

This attempt is incomplete, because the value expressions containing the actual emitted
value is lost. Another difficulty — already mentioned before — lies in the mix of signal
and value expressions which is invalid in Esterel. How this mix can be cleaned up to get
valid Esterel code is illustrated in some examples in the following section.

5.4 Cycles on Pure Signals Broken by

Valued Signals

Figure 5.4(a) contains an Esterel program with a cyclic dependency between two pure
input signals Ain and Bin. Constructiveness is established by evaluation of a data ex-
pression on a valued signal S. Figure 5.4(b) lists the resulting program when applying
the transformation algorithm presented sofar.

The remaining problem of mixed signal and value expression is addressed in Figure 5.4(c)
by extraction of the expression (?S=0) and replacement by the auxiliary pure sig-
nal expr 1. The expression (?S=0) is tested in a separate if/then statement and the
result propagated via expr 1 into the original expression.

This simple solution to separate mixed expressions applies only if the replaced signal
itself is a pure signal. If the replaced cycle signal is a valued signal then the situation is
considerably more complicated.

5.5 Cycles on Internal Valued Signals

Figures 5.5(a) and 5.8(a) contain variations of a simple cyclic dependency on valued
signals A and B. The basic difference between both programs is the kind of signal def-
inition for the cycle signals. In Figure 5.5(a) the cycle signals are local signals and in
Figure 5.8(a) they are input signals of the program. The motivation for this duplication
lies in the increased complexity to solve cycles on input signals. Therefore the key ideas

92 CHAPTER 5. CYCLES ON VALUED SIGNALS

module VALUE1 CYC:

input S : integer;
input Ain, Bin;
output Aout, Bout;

if (?S = 0) then
present Ain then

emit Bin
end

else
present Bin then

emit Ain
end

end;

present Ain then emit Aout end;
present Bin then emit Bout end

end module

(a)

module VALUE1 MIXED ACYC:

input S : integer;
input Ain, Bin;
output Aout, Bout;

signal ST 0, Ain 1, Bin 2 in

emit ST 0;
if (?S = 0) then

present [Ain or ST 0 and not (?S = 0) and

(Bin or ST 0 and (?S = 0))]

then
emit Bin 2

end present
else

present [Bin or Bin 2] then

emit Ain 1
end present

end if ;
present [Ain or Ain 1] then emit Aout end;

present [Bin or Bin 2] then emit Bout end

end signal

end module

(b)

module VALUE1 ACYC:

input S : integer;
input Ain, Bin;
output Aout, Bout;

signal ST 0, Ain 1, Bin 2 in
emit ST 0;
if (?S = 0) then

signal expr 1 in

if (?S = 0) then emit expr 1 end;

present [Ain or ST 0 and not expr 1 and

(Bin or ST 0 and expr 1)] then

emit Bin 2
end present

end signal
else

present [Bin or Bin 2] then
emit Ain 1

end present
end if ;
present [Ain or Ain 1] then emit Aout end;
present [Bin or Bin 2] then emit Bout end

end signal

end module

(c)

Figure 5.4: (a) Esterel program with a cycle on pure signals Ain, Bin which is broken
by evaluation of a valued signal S, (b) Replacing Ain 1 by replacement expression with
mixed signal and value expressions, (c) Value expressions are removed from replacement
expression to get a pure signal expression.

5.5. CYCLES ON INTERNAL VALUED SIGNALS 93

module VALUE PAUSE CYC:

input Ain : integer,
Bin : integer;

output Aout : integer,
Bout : integer;

signal
A : combine integer with +,
B : combine integer with +

in
emit A(1);
emit B(2);
loop

emit B(?A+3);
pause;
emit A(?B+4);
pause;

end
||
loop

present Ain then emit A(?Ain) end;
present Bin then emit B(?Bin) end;
present A then emit Aout(?A) end;
present B then emit Bout(?B) end;
pause

end
end

end module

(a)

module VALUE PAUSE PREP:

input Ain : integer,
Bin : integer;

output Aout : integer,
Bout : integer;

signal
ST 0, ST 1, ST 2, ST 3,
A : combine integer with +,
B : combine integer with +

in
emit ST 0;
[

emit A(1);
emit B(2);
loop

emit B(?A+3);
pause; emit ST 1;
emit A(?B+4);
pause; emit ST 2

end
||
loop

present Ain then emit A(?Ain) end;
present Bin then emit B(?Bin) end;
present A then emit Aout(?A) end;
present B then emit Bout(?B) end;
pause; emit ST 3

end
]

end

end module

(b)

E(P,ST 0) =

〈A, ST 0, 1〉,
〈A, ST 1, ?B+4〉,
〈A, (ST 0 ∨ ST 3) ∧ Ain, ?Ain〉,
〈B, ST 0, 2〉,
〈B, (ST 0 ∨ ST 2), ?A+3〉,
〈B, (ST 0 ∨ ST 3) ∧ Bin, ?Bin〉,

(c)

emit A(1) ⇐ ST 0
emit A(?B+4) ⇐ ST 1
emit A(?Ain) ⇐ (ST 0 ∨ ST 3) ∧ Ain
emit B(2) ⇐ ST 0
emit B(?A+3) ⇐ (ST 0 ∨ ST 2)
emit B(?Bin) ⇐ (ST 0 ∨ ST 3) ∧ Bin

(d)

Figure 5.5: Esterel program with a cycle on internal valued signals broken by pause:
(a) Original program, (b) Introduction of state signals, (c) State contexts of emissions
of the cycle signals A and B, (d) Alternative view of the emission contexts.

94 CHAPTER 5. CYCLES ON VALUED SIGNALS

module VALUE PAUSE ACYC:

input Ain : integer, Bin : integer;
output Aout : integer, Bout : integer;
signal

ST 0, ST 1, ST 2, ST 3, ST 4, ST 5,
A : combine integer with +,
B : combine integer with +,
A : combine integer with +

in
emit ST 0;
[

emit A(1); emit B(2);
loop

emit B(?A +3);
pause; emit ST 1;
emit A(?B+4);
pause; emit ST 2

end
||
loop

present Ain then emit A(?Ain) end;
present Bin then emit B(?Bin) end;
present A then emit Aout(?A) end;
present B then emit Bout(?B) end;
pause; emit ST 3

end
]

||
loop

present ST 0 then emit A (1) end;
present [ST 1 and ST 0] then emit A (2+4) end;
present [ST 1 and (ST 0 or ST 3) and Bin] then emit A (?Bin+4) end;
present [ST 1 and (ST 0 or ST 3) and Ain] then emit A (?Ain) end;
present [ST 1 and not (ST 0 or ((ST 0 or ST 3) and Bin))]

then emit A (pre(?B)+4) end;
pause; emit ST 4

end loop
end
end module

Figure 5.6: Acyclic transformation of the cyclic Esterel program in Figure 5.5.

5.5. CYCLES ON INTERNAL VALUED SIGNALS 95

module VALUE PAUSE OPT ACYC:

input Ain : integer,
Bin : integer;

output Aout : integer,
Bout : integer;

signal
ST 0, ST 1,
A : combine integer with +,
B : combine integer with +,
A : combine integer with +

in
emit ST 0;
[

emit A(1);
emit B(2);
loop

emit B(?A +3);
pause; emit ST 1;
emit A(?B+4);
pause

end
||
loop

present Ain then emit A(?Ain) end;
present Bin then emit B(?Bin) end;
present A then emit Aout(?A) end;
present B then emit Bout(?B) end;
pause

end
]

||
loop

present ST 0 then emit A (1) end;
present [ST 1 and Bin] then emit A (?Bin+4) end;
present [ST 1 and Ain] then emit A (?Ain) end;
present [ST 1 and not Bin] then emit A (pre(?B)+4) end;
pause

end
end

end module

Figure 5.7: Optimized version of the transformation in Figure 5.6.

96 CHAPTER 5. CYCLES ON VALUED SIGNALS

are presented on internal cycle signals first, followed by the extensions needed for input
signals.

The program in Figure 5.5(a) contains two parallel loops: The first loop contains the
cyclic dependency between A and B: The value of A is propagated to B and vice versa.
Constructiveness is assured by separating both emit statements into different instants
by a pause statement. The second one propagates the values of input signals Ain and Bin
to the internal signals A and B, and from A and B back to the output signals Aout
and Bout. This construction makes the behavior of the cycle signals A and B visible to
the environment.

Both signals account for several emissions with different sources for values in each instant.
This makes the use of the combine operator necessary for these signals. In this program
the simple + is used for this task.

To resolve the cyclic dependencies, replacement expressions must be derived for both
cycle signals A and B. As a preparation for this task, state signals ST 0 to ST 3 are
introduced in Figure 5.5(b). Applying the derivation rules of Figure 4.7 with extensions
from Figure 5.2 to this program yields the expressions in Figure 5.5(c).

Figure 5.5(d) contains an alternative view on the state context of emissions derived
in Figure 5.5(c). It lists each emit statement involving cycle signals on the left hand
and its associated state context on the right hand. Basically this view will be used in
the following transformations, only the emit keyword will sometimes be left out to save
space.

The next step is the selection of a signal to cut the cycle: Here A is selected arbitrarily.
The cutting of this cycle is based on deriving a replacement expression for this signal
without using any cycle signals. This replacement will break the cycle. The algorithm
to derive such an replacement expression for pure signals is described in Chapter 4. It
will derive an expression to describe the presence of the signal in the program’s state
context. The additional complication for valued signals lies in the derivation of the value
while avoiding references to values of other cycle signals.

To obtain a replacement expression for A, all references to other cycle signals must be
replaced by their respective expressions. In the case of valued signals, these references
may not only occur in the context state of the emission, but also in the expression of
the emitted value. These occurrences must be replaced, too. To illustrate this, the state
contexts of emissions on cycle signals A and B are repeated here:

emit A(1) ⇐ ST 0 (5.1)
emit A(?B+4) ⇐ ST 1 (5.2)
emit A(?Ain) ⇐ (ST 0 ∨ ST 3) ∧ Ain (5.3)
emit B(2) ⇐ ST 0 (5.4)
emit B(?A+3) ⇐ (ST 0 ∨ ST 2) (5.5)
emit B(?Bin) ⇐ (ST 0 ∨ ST 3) ∧ Bin (5.6)

To build a replacement for A, a new signal A is introduced and the emissions on A
applied to A :

5.5. CYCLES ON INTERNAL VALUED SIGNALS 97

emit A (1) ⇐ ST 0 (5.7)
emit A (?B+4) ⇐ ST 1 (5.8)
emit A (?Ain) ⇐ (ST 0 ∨ ST 3) ∧ Ain (5.9)

Equations (5.7) and (5.9) can be used directly, they contain no references to other cycle
signals. Equation (5.8) uses cycle signal B, which must be replaced. This replacement
produces three emissions by applying (5.4), (5.5), and (5.6).:

emit A (2+4) ⇐ ST 1 ∧ ST 0 (5.10)
emit A (?A+3+4) ⇐ ST 1 ∧ (ST 0 ∨ ST 2) (5.11)
emit A (?Bin+4) ⇐ ST 1 ∧ (ST 0 ∨ ST 3) ∧ Bin (5.12)

Equation (5.11) contains a reference to the cycle signal A. This is the cycle signal which
is intended to be replaced and therefore constitutes a self reference. It is equivalent to
the self-reference of replacement expressions described in Step (6d) on page 62 of the
transformation algorithm. With a similar reasoning founded in the constructiveness of
the original program, the non-constructive part of this replacement emission is assumed
as not effective at runtime of the program and is therefore just skipped. And in fact
by inspection of the state context expression on the right hand side of (5.11) its non-
fulfillment is obvious; the referenced state signals are mutually exclusive.

One aspect of valued signals had been neglected at the derivation of (5.10) and (5.12)
out of (5.8): If valued signals are not emitted in an instant, then they keep the value
from the previous instant. In this case B may be not emitted in an instance therefore
keeping the value from the previous instance, i. e., prev(?B). This behavior is not covered
yet. This context state is identified by conjuncting the state expression from (5.2) with
the negation of the disjunction of the state expressions from (5.4) and (5.6):

emit A (prev(?B)+4) ⇐ ST 1 ∧ ST 0 ∨ ((ST 0 ∨ ST 3) ∧ Bin) (5.13)

When this state expression is fulfilled, then B is not emitted in the current instant.
Therefore the value of B from the previous instant must be used to build the current A .
The current value of B could be used, too (since it is not overwritten in the current
instant). But this would introduce an additional dependency from B to A, which leads
to an additional cyclic dependency, thus spoiling the effort to resolve the cycle in the
first place.

If the used Esterel compiler does not provide the functionality of the pre() operator, then
the following substitute might help:

var v : integer in
loop

present B then v := ?B end;
pause;
emit pre B(v)

end loop
end var

When this small code is added as a parallel thread to the program, then use of pre(?B)
can replaced by ?pre B. It must be noted, however, that pre B does not fully implement

98 CHAPTER 5. CYCLES ON VALUED SIGNALS

the pre(B) operator. The presence state of B in the previous instant is not covered; pre B
is always present. But in the context of cycle transformation, the full implementation
of pre() is not needed.

The final set of emissions comprising equations (5.7), (5.9), (5.10), (5.12), and (5.13) are
used to establish the presence and value of A :

loop
present ST 0 then emit A (1) end;
present [ST 1 and ST 0] then emit A (2+4) end;
present [ST 1 and (ST 0 or ST 3) and Bin] then emit A (?Bin+4) end;
present [ST 1 and (ST 0 or ST 3) and Ain] then emit A (?Ain) end;
present [ST 1 and not (ST 0 or ((ST 0 or ST 3) and Bin))] then emit A (prev(?B)+4) end;
pause

end

This multiple emission on a single signal relies on the combine operator + on A which
is inherited from A.

This code block is added as a parallel thread into program VALUE PAUSE ACYC in
Figure 5.6. The (single) testing occurrence of A in the cycle is replaced by A , since A
simulates the presence and value of A. The program is now acyclic because A does not
depend on any cycle signals.

There exists another testing occurrence of A in the second loop block regarding the
emission of Aout. This occurrence does not need to be replaced since it is not part of the
cycle. Replacing it would effectively remove all testing occurrences of A and therefore
even all emissions and the declaration of A could be removed.

The program VALUE PAUSE ACYC can be optimized further by detecting that some
expressions on the state signals are either always true or false at the point of their
evaluation. This leads to just Bin remaining in the present condition. Some state signals
are now not referenced and can be removed. This final optimized version of the program
is listed in Figure 5.7.

5.6 Preprocessing of Cyclic Valued input Signals

The program VALUE INPUT CYC in Figure 5.8(a) is a variation of VALUE PAUSE CYC
in Figure 5.5(a). It contains a cyclic dependency on two valued signals A and B, too.
However, A and B are input signals in this case. Cycles on input signals cannot be resolved
directly for reasons laid out in the notes on Step (5) (page 58) of the transformation
algorithm. Therefore, to be able to derive replacement expressions for those cycle signals,
the cycle needs to be moved to internal signals.

In this section only the renaming of the cycle signals into internal signals is addressed,
the remaining part of the transformation can be done by application of the procedure
in the previous section on cyclic internal signals.

5.6. PREPROCESSING OF CYCLIC VALUED INPUT SIGNALS 99

module VALUE INPUT CYC:

input A : combine integer with +,
B : combine integer with +;

output Aout : integer,
Bout : integer;

loop
emit B(?A);
pause;
emit A(?B);
pause

end
||
loop

present A then emit Aout(?A) end;
present B then emit Bout(?B) end;
pause

end

end module

(a)

module VALUE INPUT PREP:

input A : combine integer with +,
B : combine integer with +;

output Aout : integer,
Bout : integer;

signal
ST 0, ST 1, ST 2, ST 3, ST 4,
A : combine integer with +,
B : combine integer with +,
A : combine integer with +,
B : combine integer with +

in
emit ST 0;
[

loop
emit B (?A);
pause; emit ST 1;
emit A (?B);
pause; emit ST 2

end
||
loop

present (A or A) then emit Aout(?A) end;
present (B or B) then emit Bout(?B) end;
pause; emit ST 3

end
]

||
loop

present A then
present A then emit A (?A+?A)
else emit A (?A) end

else
present A then emit A (?A) end

end;
present B then

present B then emit B (?B+?B)
else emit B (?B) end

else
present B then emit B (?B) end

end;
pause; emit ST 4

end
end

end module

(b)

Figure 5.8: Esterel program with a cycle on valued input signals broken by pause:
(a) Original program, (b) Introduction of state signals and renaming of cyclic input
signals.

100 CHAPTER 5. CYCLES ON VALUED SIGNALS

The basic idea of such a renaming of cyclic input signals is to introduce for each cyclic
input signal (e. g., A) a new internal signal (e. g., A). All emissions on A inside the
program are relocated to A and all tests on A are replaced for a test of the combination
of A and A . The input signal A is now set only by the environment and not by the
program itself anymore. This moves the functionality of the cycle from A to A .

The key problem for cycles on valued input signals lies in the need for a “test of the
combination of A and A ”. For pure signals the combination is a simple “or” operation.
For valued signals the current value of a signal may be combined from several emissions
in that instant, needing a combine function. Alternatively the value is inherited from
the previous instant if the signal is not emitted currently. These distinct cases are here
implemented by introducing further helper signals (e. g., A) for each cycle signal. These
helper signals will represent the current presence state and value of the former cyclic
input signals.

To set up the state of a helper signal A the following cases must be considered.

• A and A are present: The values of A and A are combined with the use of the
defined combine operator and emitted into A .

• Only A is present: The value of A is emitted into A .

• Only A is present: The value of A is emitted into A .

• Neither A nor A are present: No new value is emitted into A , making it absent.
The value of A in the previous instant is preserved.

This distinction of different cases is defined in a parallel thread to the original pro-
gram. Figure 5.8(b) contains the program VALUE INPUT PREP as a preprocessed ver-
sion of VALUE INPUT CYC with added state signals and renamed cyclic input signals.

The additional signals A and B are not independent of the cycle, they enlarge the
cycle. The cycle covers now:

~C = 〈A , A, B , B〉
Computing the context states of emissions on these cycle signals yields:

emit A (?B) ⇐ ST 1 (5.14)
emit B (?A) ⇐ (ST 0 ∨ ST 2) (5.15)
emit A (?A+?A) ⇐ (ST 0 ∨ ST 4) ∧ A ∧ A (5.16)

emit A (?A) ⇐ (ST 0 ∨ ST 4) ∧ A ∧ A (5.17)

emit A (?A) ⇐ (ST 0 ∨ ST 4) ∧ A ∧ A (5.18)
emit B (?B+?B) ⇐ (ST 0 ∨ ST 4) ∧ B ∧ B (5.19)

emit B (?B) ⇐ (ST 0 ∨ ST 4) ∧ B ∧ B (5.20)

emit B (?B) ⇐ (ST 0 ∨ ST 4) ∧ B ∧ B (5.21)

Equations (5.14) and (5.15) result from those two emit statements comprising the cyclic
dependency in the original program. The synthesis of the helper signals A and B is

5.7. TRANSFORMING MEJIA.STRL FROM ESTBENCH 101

described by Equations (5.16) to (5.21). They depend on input signals A and B and the
local cycle signals A and B . Equations (5.16) and (5.19) make use of the combination
function “+” as defined for the input signals A and B.

The remaining part of the transformation can be handled by the procedure introduced
in the previous section.

5.7 Transforming mejia.strl from Estbench

The Estbench Esterel Benchmark Suite [10] collected by Edwards contains some Es-
terel programs intended for comparisons of Esterel compilers. One included program is
mejia.strl. Most Esterel compilers are not able to produce code for this program because
of cyclic dependencies. The cycle includes valued signals which poses problems even for
the causality analysis implemented in the v5 compiler. The v5 compiler is only able to
produce interpretation code (option -I) for mejia.strl that defers the signal dependency
and scheduling analysis to runtime.

The original mejia.strl is separated in several modules and relies heavily on non kernel
statements. As a preprocessing step, the modules are expanded and non-kernel state-
ments replaced by blocks of kernel statements. The extension of the transformation
algorithm to support valued signals is not yet implemented. Therefore the transforma-
tion of mejia.strl must be done manually. This is much too error prone, because the
preprocessed program is several hundred lines of code long.

The way out taken here is to ruthlessly cut the preprocessed program down into the
version listed in Figure 5.9(a). That version includes a cyclic dependency and is not
handled by the causality analysis of the v5 compiler, too.

Searching for signal dependencies in the program STATION CYC from Figure 5.9(a)
according to the algorithm presented in Chapter 3 yields the following set:

D =

〈EE, SE〉,
〈SYNC, SE〉, 〈SYNC, EMISSION〉,
〈SE, DD〉, 〈SE, SR〉,
〈SR, DD〉,
〈DD, SYNC〉

Searching in D for cyclic dependencies delivers the following cycle of length three:

C = 〈SYNC, SE, DD〉
Renaming of cycle signals is not needed here, because all three cycle signals are either
internally defined or output signals and none of them is an input signal.

The computation of replacement expressions yields the following results for the cycle
signals:

102 CHAPTER 5. CYCLES ON VALUED SIGNALS

module STATION CYC:

constant DD const : integer;
constant DF const : integer;
constant RIEN const : integer;

input EE : integer;
input ER : integer;

output SYNC;
output SE : integer;
output SR : integer;

signal DD, DF in
present DD else

nothing
end present;
emit SYNC

||
loop

if (?EE = RIEN const) else
emit SE(?EE)

end if ;
trap EMISSION in

pause;
present SYNC then

exit EMISSION;
end present

end trap;
end loop

||
emit SR(?SE);
if (?SR = DF const) else

emit DD
end if

end signal

end module

(a)

;

module STATION PREP:

constant DD const : integer;
constant DF const : integer;
constant RIEN const : integer;

input EE : integer;
input ER : integer;

output SYNC;
output SE : integer;
output SR : integer;

signal ST 0, ST 1 in

emit ST 0;
signal DD, DF in

present DD else
nothing

end present;
emit SYNC

||
loop

if (?EE = RIEN const) else
emit SE(?EE)

end if ;
trap EMISSION in

pause; emit ST 1;
present SYNC then

exit EMISSION;
end present

end trap;
end loop

||
emit SR(?SE);
if (?SR = DF const) else

emit DD
end if

end signal
end signal

end module

(b)

Figure 5.9: Application of the transformation on a heavily cutdown version of mejia.strl:
(a) cyclic cutdown version of the original, (b) added state signals.

5.7. TRANSFORMING MEJIA.STRL FROM ESTBENCH 103

module STATION ACYC:

constant DD const : integer;
constant DF const : integer;
constant RIEN const : integer;

input EE : integer;
input ER : integer;

output SYNC;
output SE : integer;
output SR : integer;

signal ST 0, ST 1 in
emit ST 0;
signal DD, DF in

present DD else
nothing

end present;
emit SYNC

||
loop

if (?EE = RIEN const) else
emit SE(?EE)

end if ;
trap EMISSION in

pause; emit ST 1;
present ST 0 then

exit EMISSION;
end present

end trap;
end loop

||
emit SR(?SE);
if (?SR = DF const) else

emit DD
end if

end signal
end signal

end module

Figure 5.10: Acyclic transformation of the program in Figure 5.9.

104 CHAPTER 5. CYCLES ON VALUED SIGNALS

emit SYNC ⇐ ST 0

emit SE(?EE) ⇐ (ST 0 ∨ ST 1 ∧ (SYNC ∨ SYNC)) ∧ (?EE = RIEN const)
emit DD ⇐ (ST 0 ∨ ST 3) ∧ Ain

The replacement expression for signal SYNC is derived with the optimization in Sec-
tion 6.1 in mind. That optimization applies if a present statement does not change the
program state and a following program block is not influenced besides the sequential
execution. Omitting this optimization, the expression for SYNC would be derived as:

emit SYNC ⇐ ST 0 ∧ (DD ∨ DD)

If the optimization is applied then the cutting of the cycle is fairly simple: signal SYNC
depends on no other cycle signal and can be easily replaced by the state signal ST 0.
The resulting acyclic program STATION ACYC is listed in Figure 5.10. It can now be
compiled by the CEC and the v5 compiler without causality analysis.

The successful transformation of the cutdown version of mejia.strl is an indication that
the application on the original mejia.strl might be successful, too. Assurance could only
be achieved by a full implementation of the transformation algorithm including the
treatment of valued signals.

Chapter 6

Optimizations

Figures 4.2 (page 53) and 4.7 (page 65) contain the algorithm and equations for replace-
ment expressions in its basic form without any additional optimizations. In the following
some possible improvements on the algorithm are presented.

6.1 Replacement Expression for present

The most important optimization refines the treatment of the present statement in Equa-
tion (4.6). Consider the following program fragment:

pause; emit ST 3;
present S then

emit A
else

emit B
end;
emit C

The application of the rules listed in Figure 4.7 on page 65 would result in a replacement
expression for signal C = (ST 3∧S)∨ (ST 3∧S). It is obvious that this can be simplified
to C = ST 3, since neither present branch has an influence on the emission of C. Or more
generally:

Equation (4.6):

S((S?p,q), C) = S(p, C ∧ S) ∨ S(q, C ∧ S)

can be simplified to

S((S?p,q), C) = C

if

S(p, C ∧ S) = C ∧ S and S(q, C ∧ S) = C ∧ S

holds.

105

106 CHAPTER 6. OPTIMIZATIONS

present A then
nothing

end;
emit B;
pause;
present B then

emit A;
end

;

emit ST 0;
present A then

nothing
end;
emit B;
pause;
emit ST 1;
present B then

emit A;
end

A := ST 1 ∧ B
B := ST 0

Figure 6.1: Cyclic dependency resolved without iterative replacement: The cycle be-
tween signals A and B is not reflected by a cycle in the respective emission contexts.

This optimization alone yields a considerable reduction in the size of replacement ex-
pressions in the current implementation.

Another side effect of this optimization is an elimination of cyclic dependencies for some
programs. Consider the program fragment in Figure 6.1 and the preprocessed version
with added state signals (signal renamings are not necessary here):

This program contains a cyclic dependency between the signals A and B. Signal A is
emitted in state ST 1 under the guard of signal B, therefore yielding a replacement
expression for A:

A := ST 1 ∧ B

Signal B is not under the direct control of the present block on signal A, but the emission
of B depends on the termination of that present block. The present block A is evaluated
with a context expression ST 0 ∧ A for the “then nothing end” branch and ST 0 ∧ A for
the implicit “else nothing end” branch. Both branches do not change their respective
context expression, and if the optimization suggested in this section is applied, then the
context expression for the emission of B is:

B := ST 0

The useful thing visible here is the missing reference to other cycle signals (i. e., A) in
the replacement expression for B. This could be exploited in selecting signal B as the
point of cutting the cyclic dependency. B should be preferred over A in this example,
because B spares the need to perform an iterative replacement of other cycle signals
by their respective context expressions. This would yield a smaller transformed acyclic
program.

Despite forming cyclic signal dependencies, the replacement expressions for A and B are
not cyclically dependent. The reason for this anomaly lies in the different handling of
block terminations for signal dependencies and (optimized) context expressions for use
in replacement expressions.

Another example of such a simplified transformation is described in Section 5.7.

6.2. TERMINATION OF PARALLEL STATEMENTS 107

input A, B;

present A then
emit B

end;
pause;
abort

pause;
emit A

when B

(a)

;

input A, B;

signal ST 0, ST 1,

ST 2, A’, B’ in
emit ST 0;
present [A or A’] then

emit B’
end;
pause; emit ST 1;
abort

pause; emit ST 2;
emit A’

when [B or B’]
end

(b)

;

input A, B;

signal ST 0, ST 1,
ST 2, A’, B’ in

emit ST 0;
present [A or A’] then

emit B’
end present;
pause; emit ST 1;
abort

pause; emit ST 2;
emit A’

when [B or ST 0 and A]
end

(c)

Figure 6.2: Successful resolving of a cyclic dependency involving present and abort
statements: (a) original program, (b) preprocessing by introduction of state signals and
signal renaming, (c) replacement of tests for B’ in abort guard by an expression.

6.2 Termination of Parallel Statements

The general transformation algorithm for parallel statements calls for instrumentation to
detect the termination of parallel statements at runtime. It involves additional signals,
sustain statements, and a test for those signals (see Figure 4.4, page 57).

These additions are not needed, if the parallel statement cannot terminate at all at
runtime, e. g., one thread contains a loop statement on the top level. This is the case
for the Token Ring Arbiter (Figure 3.5).

A more formal characterization of such a thread p with entry context S is:

S(p, S) = false

If one such thread can be found for a parallel statement, then the extensions in Figure 4.4
are not needed for that parallel statement. Using false as the termination context is
sufficient here.

6.3 Interaction of Parallel Termination

with Exceptions

The interaction of parallel threads with exception handling leaves significant room for
optimization in the current implementation. Currently each pause statement contained
in a trap block is considered as a point where the control is handed over to the end of
the trap block. This is motivated by parallel threads which terminate each other by exit
statements. Figure 3.10(a) contains such an example.

108 CHAPTER 6. OPTIMIZATIONS

The current implementation of dependency analysis returns dependencies even for un-
reachable control flows. In Figure 3.10(b) such an example is listed. As an optimization
this could be limited to actually (statically) reachable exceptions at pause statements.

Furthermore the hierarchy of traps limits the reachability of some kinds of signal depen-
dencies. An example is listed in Figure 3.6(c) (page 36): The dependency of A to B is
not reachable because of the priority of T1 over T2.

6.4 Substitution of suspend and abort

Step (3a) of the algorithm calls for a replacement of all suspend/abort statements, for
the reasons outlined on page 55. However, the transformation algorithm does not neces-
sarily fail on all programs containing suspend or abort statements. If the suspend/abort
statements are not part of the cycle, then they trivially pose no problem. But even
some participation in the cycle can be resolved if a way can be found to replace the
suspend/abort guard predicates by non-cyclic expressions. Figure 6.2 contains such an
example:

The cycle runs over two signals A and B. B is emitted under a present guard on A and A is
emitted under an abort guard on B. A and B are renamed into A’ and B’ in Figure 6.2(b).
A’ and B’ are emitted in the following contexts:

A’ := ST 2 ∧ B ∨ B’

B’ := ST 0 ∧ (A ∨ A’)

For this program, the key in successfully resolving the cyclic dependency lies in the
selection of whether A’ or B’ is substituted by an expression. Replacing A’ will not resolve
the cycle, because the replacement expression for A’ contains ST 2, which depends on
B’ in the abort statement. By choosing B’ it is possible to break the cycle. Substituting
A’ in the expression for B’ yields:

B’ := ST 0 ∧ (A ∨ (ST 2 ∧ B ∨ B’))

Replacing the remaining B’ by true results in:

B’ := ST 0 ∧ A

This expression replaces B’ in the suspend guard in Figure 6.2(c) and results in an acyclic
program.

The following optimization hierarchy can be proposed as a conclusion:

• Cutting of a cycle containing suspend/abort statements without explicit elimina-
tion of suspend/abort, if the derived replacement expressions do not depend on
suspend/abort guards.

• Successive elimination of the suspend/abort statements, until the cycle cutting
algorithm is applicable.

6.5. SIGNAL RENAMINGS FOR LOCALLY DEFINED SIGNALS 109

• Replacement of only those suspend/abort statements that are part of the cycle.

These optimizations have the potential to reduce the cost in code size to handle sus-
pend/abort in cyclic Esterel programs.

6.5 Signal Renamings for Locally Defined Signals

Cycle signals that are part of the input interface of the program must be renamed, to
separate emissions from the environment from those of the program itself. output signals
need not and cannot be renamed without altering the interface behavior of the program.

Besides these fixed rules for interface signals, the internally defined signals in a signal
block can optionally be renamed. It depends on the degree of usage as part of the cycle
or outside the cycle if such a renaming results in better or worse efficiency.

The current implementation of the transformation algorithm does not rename internal
cycle signals.

6.6 Replacing State Signal Tests by Constants

Another optimization is to determine which state signals are always present or absent
in a replacement expression. For example, the program PAUSE ACYC can be optimized
into the program PAUSE OPT shown in Figure 3.2(d) on page 32 by taking the reachable
presence status of the signals ST 0 and ST 1 into account.

The replacement expression E∗
i (Step (6e) of the algorithm) may reference some state

signal STj ∈ ST that can be shown to be always present or absent:

1. If E∗
i replaces σ′

i in Ek, and we know that at this location in the program, STj

must always be present, then we can replace STj by the constant true in E∗
i .

In the program PAUSE ACYC, this applies to the state signal ST 0 in the replace-
ment expression (ST 1 and (B or ST 0)), which we therefore can simplify to (ST 1
and B).

More generally, we can replace a state signal by the constant true if we know that
it must be emitted in every instant. As it turns out, there cannot be any state
signals that fulfill this condition by themselves; the boot state signal ST 0 is only
present in the initial instant, and all other state signals are emitted only after a
pause statement, and hence cannot be emitted in the initial instant. However,
another optimization is possible:

2. If a state signal is emitted in every instant except for the initial instant, we can
replace it with pre(tick). This replacement eliminates the need to introduce the
state signal into the program.

110 CHAPTER 6. OPTIMIZATIONS

In the Arbiter, for example, the state signals ST 1, ST 4, and ST 7 are the only
state signals emitted in loops that run concurrently to the rest of the program.
Hence, as loops must not be instantaneous, they must be emitted at every iteration
and are present at every instant except the initial one.

3. Tests for “ST 0 or pre(tick)” can be replaced by true.

This applies for example to the Token Ring Arbiter, where we know that all
guarded emits that constitute the cycle are evaluated in every instant of the pro-
gram. Hence this rule, together with the previous rule, leads to the simplified
replacement expression already stated in Equation (4.27).

4. Correspondingly, it may also be the case that a state signal is always absent when
tested in some replacement expression E∗

i . In particular, this is the case when we
have a false cycle.

In the program PAUSE ACYC, this applies to the state signal ST 1; due to the pause
statement between the evaluation of the replacement expression and the emission
of ST 1, we can set ST 1 to false in the replacement expression. In this case, this
reduces the whole replacement expression to false; therefore, the “[A or (ST 1 and
(B or ST 0))]” from PAUSE ACYC gets reduced to just A in PAUSE OPT.

6.7 Eliminating Emission of State Signals

If all tests for a state signal are replaced by constants, the state signal is no longer needed
and therefore does not need to be emitted any more.

In the program PAUSE ACYC, this applies to both ST 0 and ST 1, we can therefore drop
the corresponding emit in the optimized PAUSE OPT.

6.8 Absence of External Tests of Cycle Breaking

Signal

If the signal σp that is selected in Step (6b) to break the cycle is not tested outside of
the cycle, this means that after replacing the tests for σp within the cycle (Step 6e) by
E∗

i , the signal σp is not tested anywhere in the program. One can therefore eliminate
its emission.

Emissions of output signals must not be removed, because emissions of them must reach
the outside interface.

This optimization also applies to the Arbiter, where signal P1, which we replaced within
the cycle, becomes superfluous. We can therefore eliminate the ”‘emit P1,”’ and the
enclosing else branch.

6.9. SIMPLIFICATION OF EXTERNAL TESTS 111

6.9 Simplification of External Tests

Depending on how often one must replace a particular signal σi in Step (5c) by the
expression “(σi or σ′

i),” it may be beneficial to introduce another fresh signal σ′′
i . This

signal must be emitted whenever σi or σ′
i are present, for example using a new globally

parallel statement of the form “every [σi or σ′
i] do emit σ′′

i end.” Then it suffices to replace
tests for σi by tests for σ′′

i .

6.10 Compiler-Specific Signal Dependencies

The semantics of Esterel [7] defines the reaction of Esterel programs on input signals
and/or internal signal emissions. Different compilers implement the same semantics and
therefore the behavior of compiled programs is expected to be the same independent of
the compiler.

The basic criterion for a valid Esterel program — constructiveness — is well defined, too.
But most Esterel compilers demand a stricter property on Esterel programs: Absence
of cyclic signal dependencies. As noted in Section 3.3, cyclic signal dependencies are
computed on the set of signal dependencies found in the program. Signal dependencies
are not formally defined and as a consequence there are some differences between Esterel
compilers on the notion of signal dependencies. This leads to different sets of signals
dependencies found by different compilers. Therefore the same input program may be
accepted by one compiler but rejected as cyclic by another one.

Two short example programs are listed in Section 3.3 in Figure 3.6 (a) and (b) on page 36.
Each program is accepted by the v5 compiler and rejected by the CEC compiler and
vice versa.

To make all constructive programs compilable by all Esterel compilers, cyclic depen-
dencies must be removed. To support all Esterel compilers, identification of a superset
of signal dependency types would be needed. But implementing this superset in the
detection of cycles would introduce unnecessary transformations for cycles that are not
even noted by some compilers.

An optimized version could make use of “compiler profiles” to match different compilers
implementations of signal dependencies. This would enable the production of efficient
transformed code for each individual compiler.

6.11 Lifting of Locally Defined Signals

The transformation algorithm (Figure 4.2, page 53) states in Step 2c the relocation of
local signal definitions up to the top level. The reason for this step lies in the introduction
of replacement expressions. These may transport references to local signals out of their

112 CHAPTER 6. OPTIMIZATIONS

respective scope. Demanding the relocation of all local signals is in most cases too
conservative and certainly not easily doable either.

It would be more efficient to detect possible conflicts with replacement expressions first
and then to relocate the problematic signals.

Chapter 7

Experimental Results

The proposed transformation has been implemented as an extension of the Columbia
Esterel Compiler (CEC). The implementation handles cycles involving pure signals, using
the algorithm presented in Chapter 4, except that local signals are not moved up to a
global level (Step (2c)). The extensions towards valued signals outlined in Chapter 5 are
not implemented. In addition, the optimization explained in Section 6.1 is implemented,
but not the other ones.

For an experimental evaluation, we have defined several variants of the Token Ring
Arbiter.

TR3: This is the Token Ring Arbiter with three network stations. The implementation
is as in Figure 3.5.

TR10: This is an extension of TR3 from three to ten network stations. The aim is to
test the scaling of the algorithm for code size and runtime of the resulting binary.

TR50, ... TR1000: These versions contain fifty to one thousand network stations. They
are used to estimate the factor of growth for big program sizes and to measure the
performance of the transformation itself.

TR10p: While the former test cases implemented only the arbiter part of the network
without any local activity on the network stations, this test program adds some simple
concurrent “payload” activity to each network station to simulate a CPU performing
some computations with occasional access to the network bus.

All programs are tested in the original cyclic and in the transformed acyclic version.

7.1 Synthesizing Software

To evaluate the transformation in the realm of generating software, we used six different
compilation techniques:

113

114 CHAPTER 7. EXPERIMENTAL RESULTS

v5-L: The publicly available Esterel compiler v5.92 [8, 18]. It is used in this case with
option -L to produce code based on the circuit representation of Esterel. The code is
organized as a list of equations ordered by dependencies. This results in a fairly compact
code, but with a comparatively slow execution speed. This compiler is able to handle
constructive Esterel programs with cyclic dependencies.

v5-A: The same compiler, but with the option -A, produces code based on a flat au-
tomaton. This code is very fast, but prohibitively big for programs with many weakly
synchronized parallel activities. This option is available for cyclic programs, too.

v7: The Esterel v7 compiler (available from Esterel Technologies [17]) is used here in
version v7 10i8 to compile acyclic code based on sorted equations, as the v5 compiler.

v7-O: The former compiler, but with option -O, applies some circuit optimizations to
reduce program size and runtime.

CEC: The Columbia Esterel Compiler (release 0.3) [9] produces event-driven C code,
which is generally quite fast and compact. However, this compiler cannot handle cyclic
dependencies. Thus it can only be applied to the transformed cyclic programs.

CEC-g: The CEC with the option -g produces code using computed goto targets (an
extension to ANSI-C offered by GCC-3.3 [19]) to reduce the runtime even further.

A simple C back-end is provided for each Esterel program to produce input signals and
accept output signals to and from the Esterel part. The back-end provides an iteration
over 10,000,000 times for the reaction function. These iteration counts result in execution
times in the range of about 0.8 to 18 seconds. These times where obtained on a desktop
PC (AMD Athlon XP 2400+, 2.0 GHz, 256KB Cache, 1GB Main Memory).

Table 7.1(a) compares the execution speed and binary sizes of the example programs for
the v5, v7, and CEC compilers with their respective options. The v5 compiler is applied
both to the original cyclic programs and the transformed acyclic programs. The CEC
and v7 compiler can handle only acyclic code.

When comparing the runtime results of the v5 compiler (with sorted equations) for the
cyclic and acyclic versions of the token ring arbiter, there is a noticeable reduction in
runtime for the transformed acyclic programs. This came as a bit of a surprise. It seems
that the v5 compiler is a little bit less efficient in resolving cyclic dependencies in sorted
equations. For the automaton code there are only minor differences in runtime.

Table 7.1 includes the sizes of the compiled binaries, too. All compilers produce code of
similar sizes, but with one exception: the v5 compiler produces a very big automaton
code for the third token ring example. That program contains several parallel threads
which are only loosely related. If someone tries to map such a program on a flat au-
tomaton, it is well known that such a structure results in a “state explosion”. Actually,
we had to limit the number of parallel tasks in this example to get the program to
compile in reasonable time. While the v5 compiler seems to be competitive with respect
to program run times, the binary sizes can reach several times the size of the binaries
produced by the other compilers.

7.1. SYNTHESIZING SOFTWARE 115

Variant Compiler TR3 TR10 TR10p

Cyclic v5-L 1.55/ 14273 5.39/ 21530 17.19/ 32244
(original) v5-A 0.90/13041 2.58/16091 5.26/304095

v5-L 1.40/ 14067 5.07/ 20188 12.16/ 29110
Acyclic v5-A 0.89/13043 2.58/16093 5.26/304097
(trans- v7 1.69/ 14526 6.07/ 20255 12.34/ 27353
formed) v7-O 0.53/ 13467 1.87/ 16315 5.83/21033

CEC 1.80/ 14244 6.42/ 22020 12.04/ 29579
CEC-g 1.09/ 13822 3.82/ 20430 5.89/ 25461

Table 7.1: Run times (in seconds) and binary sizes (in bytes) of cyclic and acyclic
Esterel programs compiled with the v5, v7, and CEC compiler.

For the two token ring arbiter variants without payload, the v7 compiler produces the
fastest code. The third token ring example with payload is executed fastest with the
v5 compiler in automata mode, but only slightly better than the CEC compiler with
computed goto optimization. Nevertheless the huge binary produced by the v5 compiler
in automaton mode limits its usefulness.

Table 7.2 compares the fastest code for our cyclic programs to the fastest code for the
transformed acyclic programs. For each test program the relative reduction in runtime
is listed.

Table 7.3 contains the compilation times for the different Esterel compilers to compile
the various test programs. The v5 compiler for sorted equations code needs only little
time to compile the acyclic versions of the test programs. In fact, it is among the
fastest compilers in all three acyclic test cases. When this compiler is applied to cyclic
programs, the compilation times are several times slower but within reasonable limits.
The transformation times for the acyclic test programs (Table 7.4) are not included in
Table 7.3, but even if we add the transformation times to the compilation times of the
acyclic programs the picture will not change much.

When compiling for automaton code with the v5 compiler, then the compilation time
is mostly independent of cyclic and acyclic properties of the compiled program. The
compilation times are low for small programs with few states, but drastically higher for
programs with many independent, parallel states. The CEC compiler is comparatively
slow for small acyclic programs, but the compilation time does not rise that much for
more complex programs. The v7 compiler behaves similarly.

As an indication of the cost of the transformation algorithm in terms of processing time
and source code increase, Table 7.3 lists transformation times and program sizes before
and after the transformation of the token ring arbiter with 3, 10, 50, 100, 500, and
1000 nodes. The size of the transformed code is nearly proportional with respect to the
arbiter network size. The current transformation times show a sub-quadratic effort for
the transformation.

116 CHAPTER 7. EXPERIMENTAL RESULTS

TR3 TR10 TR10p

min(Tcyclic) 0.90 2.58 5.26
min(Tacyclic) 0.53 1.87 5.26
reduction 41% 28% 0.0%

Table 7.2: Relative run time reduction from the fastest cyclic
version to the fastest version for the acyclic transformation, with

reduction = 100% ∗
(
1− min(Tacyclic)

min(Tcyclic)

)
.

Variant Compiler TR3 TR10 TR10p

cyclic v5-L 0.08 0.29 1.38
(original) v5-A 0.01 0.04 10.86

v5-L 0.01 0.06 0.10
acyclic v5-A 0.01 0.04 10.54
(trans- v7 0.12 0.20 0.36
formed) v7-O 0.24 0.54 1.08

CEC 0.15 0.35 0.76
CEC-g 0.11 0.37 0.71

Table 7.3: Compiler run times for Esterel v5, v7, and CEC (in seconds).

7.2 Synthesizing Hardware

To evaluate the effect of our transformation on hardware synthesis, we compared again
the results of the v5, v7, and CEC compilers, for the same set of benchmarks as for the
software synthesis. Again only v5 can handle the untransformed, cyclic code version;
furthermore, v5 is the only compiler that can generate hardware for valued signals.
The compilers differ in which hardware description languages they can produce, but
a common format supported by all of them is the Berkeley Logic Interchange Format
(BLIF), therefore we base our comparisons on this output format.

Table 7.5(a) compares the number of nodes synthesized. Considering the v5 compiler,

TR3 TR10 TR50 TR100 TR500 TR1000 TR10p

Original program size 1565 3705 16348 32159 162959 326470 5765
After module expansion 1370 4391 22031 44092 224892 450903 6995

After cycle transformation 2108 6856 34804 69920 359788 723804 9736
Ratio after/before transf. 1.53 1.56 1.58 1.59 1.60 1.61 1.39
Transformation time (sec.) 0.05 0.07 0.27 0.57 5.18 17.5 0.11

Table 7.4: Transformation times (in seconds) and resulting program sizes (in bytes) for
token ring arbiters with 3 to 1000 nodes.

7.2. SYNTHESIZING HARDWARE 117

Node Count Latch Count
Variant Compiler TR3 TR10 TR10p TR3 TR10 TR10p

Cyclic v5 112 357 759 10 31 55
v5 108 346 748 10 31 55

Acyclic v7 52 171 351 10 31 55
CEC 146 468 756 4 11 47

(a)

Unoptimized Optimized
Variant Compiler TR3 TR10 TR10p TR3 TR10 TR10p
Cyclic v5 208 745 1551 82 266 539

v5 197 645 1377 89 299 524
Acyclic v7 108 360 702 91 315 591

CEC 221 725 1301 89 313 679

(b)

Table 7.5: Comparison of: (a) node and latch count for BLIF output, (b) sum-of-product
(lits(sop)) count for BLIF output with and without optimization by SIS.

there is a noticeable reduction in the number of nodes generated for the Arbiter. When
considering the synthesis results of v7 and CEC for the acyclic version of the Arbiter,
v7 produces the best overall results, with the node count less than half of v5’s synthesis
results for the cyclic variants.

Table 7.5(b) compares the number of latches needed by the synthesization results. Here
the CEC is able to reduce the number of latches considerably.

Table 7.5(c) compares the number of literals generated. The overall results are similar
to the ones for the node count; the transformation has lowered the literal count for the
arbiter.

Table 7.5(c) compares the number of literals which remain after a SIS [35] optimization.

118 CHAPTER 7. EXPERIMENTAL RESULTS

Chapter 8

Assessment

The transformation presented in this thesis should resolve most cycles involving pure
signals. However, some limitations exist, which are described in Section 8.1 and Sec-
tion 8.2.

As already noted, we assume that the program to be transformed is constructive; Sec-
tion 8.3 discusses the effects of the program transformation on non-constructive pro-
grams.

Finally, Section 8.4 elaborates on the consequences of the non-accessibility of the internal
state in the Esterel language.

8.1 Scope of the Cycle Identification

The identification of cycles in Esterel programs as part of the cycle transformation
is based on the detection of signal dependencies. Loops in these dependencies relate
to cycles in the Esterel program. The algorithm presented in Section 3.4 maps the
signal dependencies as implemented by Esterel compilers fairly well. Even unreachable
code is left out of dependency calculations. The remaining point is the termination
of parallel threads. A synchronizer circuit is used by the circuit semantics to derive
the termination status from the parallel block. The dependency calculation presented
here is based on sets of signal guards and does not evaluate exit codes. Therefore the
cycle detection algorithm may consider some more signal dependencies than actually
are identified by Esterel compilers. This limitations of the cycle detection may lead to
unnecessary resolving of cycles. The program CYCLE TRAP listed in Figure 3.6(c) on
page 36 is an example for such a behavior of the transformation.

119

120 CHAPTER 8. ASSESSMENT

8.2 Scope of the Transformation Algorithm

The transformation algorithm in Chapter 4 is limited to the Esterel language with pure
signals. Not supported are variables and valued signals. A possible extension of the
transformation to valued signals is outlined in Chapter 5.

As noted in Section 4.1 cycles on local signals pose problems when replacement expres-
sions carry the signal name out of the scope of the signal. To rule out such cases, the
algorithm demands a lifting of local signal declarations in Step (2c). However, reincar-
nation problems are not addressed by the transformation, they must be resolved in a
preprocessing step.

8.3 Transformation of Non-Constructive Programs

The transformation algorithm demands a constructive program as its input. This prop-
erty is exploited in the proof for Step (6d) of the algorithm on page 61. A valid question
is, what happens if the input program is not constructive?

For a non-constructive program P three basic cases exist, on transforming it into a
program P ′:

Case 1: P is logically correct, but not constructive

Consider the following program P :

present S then
emit S

end;
present S then

present T else
emit T

end
end

This program contains two cycles: from S on itself and from T on itself. It is
logically correct for S absent.

The state contexts of the emissions of S and T are

emit S ⇐ S
emit T ⇐ S ∧ T

The cycle on S is selected as the first cycle to resolve. By replacing S by True the
following program is obtained:

8.3. TRANSFORMATION OF NON-CONSTRUCTIVE PROGRAMS 121

present True then
emit S

end;
present True then

present T else
emit T

end
end

;

emit S;
present T else

emit T
end

This program is not reactive anymore and therefore not logically correct.

On the other hand, replacing S by False yields:

present False then
emit S

end;
present False then

present T else
emit T

end
end

;
nothing;
nothing

This result is logically correct and even constructive. But the selection between
True or False changes the behavior of the transformed program considerably.

Case 2: P is not deterministic

Consider the following non-deterministic program P :

present A then
emit A

end

The state context of the emission of A is

emit A ⇐ A

The next step in the transformation algorithm is the replacement of the self-
reference of signal A by True or False. Selecting True results in

present True then
emit A

end
; emit A

Selecting False results in

present False then
emit A

end
; nothing

Both cases remove the non-determinism from P ′ by statically selecting different
branches of the present statement making it constructive.

122 CHAPTER 8. ASSESSMENT

Case 3: P is not reactive

Consider the following non-reactive program P :

present A else
emit A

end

The state context of the emission of A is

emit A ⇐ A

Replacement of signal A by True results in:

present False else
emit A

end
; emit A

Replacement of signal A by False results in:

present True else
emit A

end
; nothing

Both replacements remove the non-reactiveness from the program P ′ making it
constructive. This behavior of P ′ is not covered by P , because P has no valid
reaction and the transformation “invents” a behavior for P ′.

In all three case the behavior of P is not preserved in the transformed program P ′. The
different behavior even depends on the selection between True or False on replacing the
self-reference in replacement expressions. Therefore the insistence of the transformation
algorithm on constructive input programs is legitimate.

8.4 Accessing the Program State

A central problem of the cycle treatment on the Esterel level is the unavailable internal
execution state of the program at runtime. This state is represented by the currently
active pause statements where execution starts in each instant. It is needed to express
the emission of cycle signals as a function of the program state. Therefore the access
to the program state is needed. To resolve this problem, emissions of artificial state
signals are introduced into the program after each pause statement. These state signals
are emitted as the first action in each instant and enable an access to the program state.

These added emissions of state signals have two basic problems: First these emissions
are subject to suspensions by the kernel statement suspend. This leads to a dependency
from the suspend condition to the emissions of the state signals. If the suspend condition
contains cycle signals, then the cutting of the cyclic dependency will fail. As a remedy,
Step (3a) of the algorithm substitutes the suspend statement. The functionality of the

8.4. ACCESSING THE PROGRAM STATE 123

suspend statement is emulated at the point of each pause statement by means of other
statements. The removal of suspend solves the suspension problem at the cost of a
growth in code size proportional to the number of affected pause statements.

The second problem with state signals lies in potential extensions of the transformation
algorithm to non-kernel statements. Many of these statements include implicit pause
statements which are not directly accessible (e. g., await, sustain). This prevents the
direct addition of state signals and makes it necessary to expand these non-kernel state-
ments into kernel statements until the pause statements are exposed. If the pause states
are directly accessible then efficient replacement expressions for non-kernel statements
are conceivable.

124 CHAPTER 8. ASSESSMENT

Chapter 9

Conclusions and Future Work

This thesis has presented an algorithm for transforming cyclic Esterel programs into
acyclic programs. This expands the range of available compilation techniques, and, as
to be expected, some of the techniques that are restricted to acyclic programs produce
faster and/or smaller code than is achieved by the compilers that can handle cyclic codes
as well. Furthermore, the experiments showed that the code transformation proposed
here can even improve code quality produced by compilers that can already handle cyclic
programs.

The transformation introduces new signals and expands the original program. However,
most of this disappears again after optimizations. In fact, the net effect of the transfor-
mation is often a reduction of code size, as the static analysis may delete some operations
at run time. In a certain way, the transformation performs a partial evaluation of the
given program.

The transformation is presented for Esterel programs; however, as mentioned in the
introduction, this transformation should also be applicable to other synchronous lan-
guages, such as Lustre. Lustre is also a synchronous language, but data-flow oriented,
as opposed to the control-oriented nature of Esterel. To our knowledge, none of the com-
pilers available for Lustre can handle cyclic programs, even though valid cyclic programs
(such as the Token Ring Arbiter) can be expressed in the language. Hence in the case
of Lustre, applying the source-level transformation proposed here is not only a question
of efficiency, but a question of translatability in the first place.

Unfortunately a notion of constructive Lustre programs has not been established yet.
The transformation needs the assurance of constructiveness to be able to produce pro-
grams with the same behavior as the original programs. Nevertheless a successful manual
application of the transformation on a Lustre implementation of the Token Ring Arbiter
is listed in Section A.3.

Regarding future work, the transformation algorithm spells out only how to handle
cycles carried by pure signals. Chapter 5 outlines how to remove cycles involving a
valued signal, but this still has to be generalized to handle variables as well.

125

126 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

The transformation algorithm in its current form includes a preprocessing step that
expands most of the derived statements into kernel statements. The main reason for
this is the limited access to pause statements buried in derived statements. As outlined in
Section 4.3, this could be avoided if state signals would be directly accessible in Esterel.

There are also numerous optimizations possible, some of which were presented in Chap-
ter 6. Some of these might be helpful for Esterel programs in general, not just as a
post-processing step to the transformation proposed here. For example, the analysis
from the transformation may also detect cases where tested signals are never emitted,
e. g., in the example given in Figure 4.12. This information cannot only be used to
optimize the program, but also to point out possible programming errors.

Finally, as observed earlier, the concept of constructiveness is a fundamental building
block for the transformation presented here. Constructiveness allows us to ultimately
break a cycle by replacing the occurrence of a self-dependent signal in a replacement
expression for that signal by an arbitrary value (true or false). However, to determine
in the first place whether a program is constructive or not, the transformation proposed
here might be employed to accelerate this analysis. As explained in Section 4.5, one
may replace signal occurrences by expressions as computed by the algorithm (including
possible self-references). This would substitute a generally computationally expensive
iterative procedure, which is a classical approach to analyze constructiveness, by a more
efficient analysis.

Appendix A

Example Transformations

This chapter contains some more Benchmarks for examinations on the size of compiled
binaries. The v5 compiler is applied to the original cyclic and the transformed acyclic
programs with compilation options to produce automaton code (v5-A) and circuit code
(v5-L), resulting in four different binaries each. The CEC is applied to the acyclic
programs in its default configuration (CEC) and with an option to use computed goto
(CEC-g). This results in two different binaries for the CEC for each program.

The abbreviations of the compiler names and options are the same as in Section 7.1.

127

128 APPENDIX A. EXAMPLE TRANSFORMATIONS

A.1 present, pause

module PAUSE CYC:
input A, B;
output A out, B out;

present A then
emit B

end;
pause;
present B then

emit A
end

||
loop

present A then emit A out end;
present B then emit B out end;
pause

end

end module

module PAUSE ACYC:
input A, B;
output A out, B out;

signal A , B , ST 0, ST 1, ST 2 in
emit ST 0;
[

present [A or ST 1 and (B or ST 0)] then

emit B
end;
pause; emit ST 1;
present [B or B] then

emit A
end

||
loop

present [A or A] then emit A out end;
present [B or B] then emit B out end;
pause; emit ST 2

end
]

end signal

end module

Variant Compiler PAUSE
Cyclic v5-L 21534

(original) v5-A 18441
Acyclic v5-L 17782
(trans- v5-A 18443
formed) CEC 17617

CEC-g 17619

The noticeable feature in this example is the reduction in code size between the cyclic
and transformed program for the v5 compiler using the circuit synthesis (v5-L).

A.1. PRESENT, PAUSE 129

module DRIVER CYC:
input D;
input Ain, Bin;
output Aout, Bout;

loop
present D then

present
[Ain or Aout]

then
emit Bout

end
else

present
[Bin or Bout]

then
emit Aout

end
end;
pause

end
end module

module DRIVER AYC:
input D;
input Ain, Bin;
output Aout, Bout;

signal ST 0, ST 1 in
emit ST 0;
loop

present D then
present [Ain or (ST 0 or ST 1) and not D

and (Bin or (ST 0 or ST 1) and D)] then

emit Bout
end present

else
present [Bin or Bout] then

emit Aout
end present

end present;
pause;
emit ST 1

end loop
end signal

end module

Variant Compiler DRIVER
Cyclic v5-L 17849

(original) v5-A 18591
Acyclic v5-L 17851
(trans- v5-A 18593
formed) CEC 17623

CEC-g 17625

This transformation lacks some optimizations, e. g., the state signal expressions yield
always true. This inefficiency leads to a slightly worse result for the v5 compiler in
the acyclic case. Nevertheless the CEC achieves a slightly better result on the acyclic
program than the v5 compiler.

130 APPENDIX A. EXAMPLE TRANSFORMATIONS

A.2 Termination of parallel Threads

module PAR TERM CYC:
output A, B;

[
present A then

nothing
end

||
nothing

];
emit B;
pause;
present B then

emit A
end

end module

module PAR TERM ACYC:
input A in, B in;
output A, B;

signal PST 1, PST 2 in
signal ST 0, ST 1, ST 2, ST 3, ST 4, ST 5 in

emit ST 0;
signal PST 1, PST 2 in

[
trap PST in

[
present

[ST 4 and (ST 0 or ST 3)

and ((ST 0 or ST 1) and PST 2

or (ST 0 or ST 5) and B in) or

(ST 0 or ST 5) and A in]

then
nothing

end present;
loop emit PST 1; pause; emit ST 1 end

||
nothing;
loop emit PST 2; pause; emit ST 2 end

||
loop

present [PST 1 and PST 2] then
exit PST

end;
pause; emit ST 3

end loop
]

end trap;
emit B;
pause; emit ST 4;
present B then

emit A
end present

||
loop

present A in then emit A end;
present B in then emit B end;
pause; emit ST 5

end loop
]

end signal
end signal

end module

A.2. TERMINATION OF PARALLEL THREADS 131

Variant Compiler PAR TERM
Cyclic v5-L 17780

(original) v5-A 18424
Acyclic v5-L 17910
(trans- v5-A 18426
formed) CEC 17698

CEC-g 17700

The result of this benchmark is a little bit surprising, because the transformation is
only able to handle parallel termination with a considerable growth in Esterel code size.
Even under these circumstances was the CEC able to produce efficient code from the
transformed acyclic program.

132 APPENDIX A. EXAMPLE TRANSFORMATIONS

A.3 Implementing the Token Ring Arbiter in Lustre

node three stations cyc (request1 : bool;
request2 : bool; request3 : bool)

returns (grant1 : bool;
grant2 : bool; grant3 : bool);

var
pass1 : bool; pass2 : bool; pass3 : bool;
token1 : bool; token2 : bool; token3 : bool;
token1 or pass1 : bool ;
token2 or pass2 : bool ;
token3 or pass3 : bool ;

let
/∗ Station 1 ∗/
token1 or pass1 = token1 or pass1;
grant1 = request1 and token1 or pass1 ;
pass2 = not(request1) and token1 or pass1 ;
token2 = pre ((true) −> (token1)) ;

/∗ Station 2 ∗/
token2 or pass2 = token2 or pass2;
grant2 = request2 and token2 or pass2 ;
pass3 = not(request2) and token2 or pass2 ;
token3 = pre ((false) −> (token2)) ;

/∗ Station 3 ∗/
token3 or pass3 = token3 or pass3;
grant3 = request3 and token3 or pass3 ;
pass1 = not(request3) and token3 or pass3 ;
token1 = pre ((false) −> (token3)) ;

tel ;

node three stations acyc (request1 : bool;
request2 : bool; request3 : bool)

returns (grant1 : bool;
grant2 : bool; grant3 : bool);

var
pass1 : bool; pass2 : bool; pass3 : bool;
token1 : bool; token2 : bool; token3 : bool;
token1 or pass1 : bool ;
token2 or pass2 : bool ;
token3 or pass3 : bool ;

let
/∗ Station 1 ∗/
token1 or pass1 = token1 or

(token3 or (token2 or not request1) and
not request2) and not request3 ;

grant1 = request1 and token1 or pass1 ;
pass2 = not(request1) and token1 or pass1 ;
token2 = pre ((true) −> (token1)) ;

/∗ Station 2 ∗/
token2 or pass2 = token2 or pass2;
grant2 = request2 and token2 or pass2 ;
pass3 = not(request2) and token2 or pass2 ;
token3 = pre ((false) −> (token2)) ;

/∗ Station 3 ∗/
token3 or pass3 = token3 or pass3;
grant3 = request3 and token3 or pass3 ;
pass1 = not(request3) and token3 or pass3 ;
token1 = pre ((false) −> (token3)) ;

tel ;

The Lustre implementation of the Token Ring Arbiter listed here is rejected by Lus-
tre compilers because of cyclic dependencies on streams pass1, pass2, and pass3. The
replacement expression (4.26) (without state signals) is used to manually produce an
acyclic derivation of the original program which is accepted by Lustre compilers. This
example indicates a possible application of the cycle transformation algorithm to Lustre
programs.

Bibliography

[1] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. The Synchronous Languages Twelve Years Later.
In Proceedings of the IEEE, Special Issue on Embedded Systems, volume 91, pages
64–83, January 2003.

[2] Gérard Berry. Esterel on Hardware. Philosophical Transactions of the Royal Society
of London, 339:87–104, 1992.

[3] Gérard Berry. The Constructive Semantics of Pure Esterel. Draft Book, 1999.
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps.

[4] Gérard Berry. The Esterel v5 Language Primer, Version v5 91. Centre de
Mathématiques Appliquées Ecole des Mines and INRIA, 06565 Sophia-Antipolis,
2000. ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf.

[5] Gérard Berry. The Foundations of Esterel. Proof, Language and Interaction: Essays
in Honour of Robin Milner, 2000. Editors: G. Plotkin, C. Stirling and M. Tofte.

[6] Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Programming
Language and its Mathematical Semantics. In Seminar on Concurrency, Carnegie-
Mellon University, volume 197 of LNCS, pages 389–448. Springer-Verlag, 1984.

[7] Gérard Berry and Georges Gonthier. The Esterel Synchronous Programming Lan-
guage: Design, Semantics, Implementation. Science of Computer Programming,
19(2):87–152, 1992. http://citeseer.nj.nec.com/berry92esterel.html.

[8] Gérard Berry and the Esterel Team. The Esterel v5 91 System Manual. INRIA,
June 2000. http://www-sop.inria.fr/esterel.org/.

[9] CEC: The Columbia Esterel Compiler. http://www1.cs.columbia.edu/

~sedwards/cec/.

[10] Estbench Esterel Benchmark Suite. http://www1.cs.columbia.edu/~sedwards/

software/estbench-1.0.tar.gz.

[11] Koen Claessen. Safety property verification of cyclic synchronous circuits. In Elec-
tronic Notes in Theoretical Computer Science, volume 88. Elsevier, July 2003. http:
//www.inrialpes.fr/pop-art/people/girault/Slap03/Final/claessen.pdf.

133

ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
http://citeseer.nj.nec.com/berry92esterel.html
http://www-sop.inria.fr/esterel.org/
http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www.inrialpes.fr/pop-art/people/girault/Slap03/Final/claessen.pdf
http://www.inrialpes.fr/pop-art/people/girault/Slap03/Final/claessen.pdf

134 BIBLIOGRAPHY

[12] Etienne Closse, Michel Poize, Jacques Pulou, Patrick Venier, and Daniel Weil.
SAXO-RT: Interpreting Esterel semantic on a sequential execution structure. In
Florence Maraninchi, Alain Girault, and Éric Rutten, editors, Electronic Notes
in Theoretical Computer Science, volume 65. Elsevier, July 2002. http://www.

elsevier.com/gej-ng/31/29/23/117/53/34/65.5.010.pdf.

[13] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the
control dependence graph. ACM Transactions on Programming Languages
and Systems, 13(4):451–490, October 1991. http://citeseer.nj.nec.com/

cytron91efficiently.html.

[14] Stephen A. Edwards. An Esterel compiler for large control-dominated systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
21(2), February 2002.

[15] Stephen A. Edwards. Making Cyclic Circuits Acyclic. In Proceedings of the Design
Automation Conference, pages 159–162. ACM Press, New York, NY, USA, June
2003.

[16] Stephen A. Edwards and Edward A. Lee. The Semantics and Execution of a Syn-
chronous Block-Diagram Language. In Science of Computer Programming, vol-
ume 48. Elsevier, July 2003.

[17] Esterel Technologies. Company homepage. http://www.esterel-technologies.

com.

[18] Esterel web. http://www-sop.inria.fr/esterel.org/.

[19] Free Software Foundation. GCC – The GNU Compiler Collection. http://gcc.

gnu.org/.

[20] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data-flow programming language LUSTRE. Proceedings of the
IEEE, 79(9):1305–1320, September 1991. http://citeseer.nj.nec.com/

halbwachs91synchronous.html.

[21] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, MA, 1979.

[22] Cornelis Huizing and Rob Gerth. Semantics of reactive systems in abstract time. In
Proceedings of the Real-Time: Theory in Practice, REX Workshop, pages 291–314.
Springer-Verlag, 1992.

[23] Xin Li, Marian Boldt, and Reinhard von Hanxleden. Compiling Esterel for a
multi-threaded reactive processor. Technical Report 0603, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, May 2006. Revised Septem-
ber 2006, http://www.informatik.uni-kiel.de/reports/2006/0603.html.

http://www.elsevier.com/gej-ng/31/29/23/117/53/34/65.5.010.pdf
http://www.elsevier.com/gej-ng/31/29/23/117/53/34/65.5.010.pdf
http://citeseer.nj.nec.com/cytron91efficiently.html
http://citeseer.nj.nec.com/cytron91efficiently.html
http://www.esterel-technologies.com
http://www.esterel-technologies.com
http://www-sop.inria.fr/esterel.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://citeseer.nj.nec.com/halbwachs91synchronous.html
http://citeseer.nj.nec.com/halbwachs91synchronous.html
http://www.informatik.uni-kiel.de/reports/2006/0603.html

BIBLIOGRAPHY 135

[24] Xin Li, Jan Lukoschus, Marian Boldt, Michael Harder, and Reinhard von Hanxle-
den. An Esterel Processor with Full Preemption Support and its Worst Case Reac-
tion Time Analysis. In Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), pages 225–236, New
York, NY, USA, September 2005. ACM Press.

[25] Xin Li and Reinhard von Hanxleden. A concurrent reactive Esterel processor based
on multi-threading. In Proceedings of the 21st ACM Symposium on Applied Com-
puting (SAC’06), Special Track Embedded Systems: Applications, Solutions, and
Techniques, Dijon, France, April 23–27 2006.

[26] Jan Lukoschus and Reinhard von Hanxleden. Removing cycles in Esterel programs.
In Florence Maraninchi, Marc Pouzet, and Valérie Roy, editors, International Work-
shop on Synchronous Languages, Applications and Programming (SLAP’05), Edin-
burgh, April 2005.

[27] Jan Lukoschus and Reinhard von Hanxleden. Removing cycles in Esterel pro-
grams. Technical Report 0502, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science, March 2005. http://www.informatik.uni-kiel.de/

en/ifi/research/technical-reports/.

[28] Sharad Malik. Analysis of cyclic combinational circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(7):950–956, July
1994.

[29] Paritosh Pandya. The saga of synchronous bus arbiter: On model checking quan-
titative timing properties of synchronous programs. In Florence Maraninchi, Alain
Girault, and Éric Rutten, editors, Electronic Notes in Theoretical Computer Sci-
ence, volume 65. Elsevier, 2002.

[30] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical
Report DAIMI FN-19, University of Aarhus, Denmark, 1981. http://homepages.
inf.ed.ac.uk/gdp/publications/SOS.ps.

[31] Dumitru Potop-Butucaru. Optimizations for faster simulation of Esterel programs.
PhD thesis, Ecole des Mines de Paris, France, November 2002.

[32] Marc D. Riedel. Cyclic Combinational Circuits. PhD thesis, California Institute of
Technology, Pasadena, California, USA, May 2004.

[33] Marc D. Riedel and Jehoshua Bruck. The Synthesis of Cyclic Combinational Cir-
cuits. In Proceedings of the conference on Design automation (DAC), Anaheim,
California, USA, June 2003.

[34] Robert Sedgewick. Algorithms in C++, Part 5, Graph Algorithms. Addison-Wesley,
third edition, 2002.

http://www.informatik.uni-kiel.de/en/ifi/research/technical-reports/
http://www.informatik.uni-kiel.de/en/ifi/research/technical-reports/
http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps
http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps

136 BIBLIOGRAPHY

[35] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A
System for Sequential Circuit Synthesis. Technical Report UCB/ERL M92/41,
University of California at Berkeley, May 1992.

[36] Thomas R. Shiple, Gérard Berry, and Hervé Touati. Constructive Analysis of Cyclic
Circuits. In Proc. International Design and Test Conference ITDC 98, Paris,
France, March 1996.

[37] Olivier Tardieu. Goto and Concurrency—Introducing Safe Jumps in Esterel. In
Proceedings of Synchronous Languages, Applications, and Programming (SLAP),
Barcelona, Spain, March 2004.

[38] Olivier Tardieu and Stephen A. Edwards. Approximate Reachability for Dead Code
Elimination in Esterel*. In In Proceedings of the Third International Symposium
on Automated Technology for Verification and Analysis (ATVA), Taipei, Taiwan,
October 2005.

	Contents
	List of Figures
	1 Introduction
	1.1 Contribution of this Thesis
	1.2 Related Work
	1.3 Overview
	1.4 Acknowledgments

	2 The Esterel Language
	2.1 Programming Reactive Systems
	2.2 Basic Structure of Esterel
	2.3 Overview of Esterel Statements
	2.3.1 Kernel Statements
	2.3.2 Derived Statements

	2.4 Reactivity, Determinism, Constructiveness
	2.4.1 Logical Behavioral Semantics
	2.4.2 Constructive Behavioral Semantics
	2.4.3 Constructive Circuit Semantics

	3 Cyclic Dependencies
	3.1 Non-Constructive Cycles
	3.2 Constructive Cycles
	3.3 Variants of Cyclic Dependencies
	3.4 Finding Cyclic Dependencies
	3.4.1 Algorithm to Identify Signal Dependencies
	3.4.2 Searching for Cycles in Signal Dependencies

	4 Program Transformation
	4.1 The Base Transformation Algorithm
	4.1.1 Cost of the Transformation Algorithm

	4.2 Computing the Replacement Expressions
	4.2.1 Relation to the Circuit Transformation

	4.3 Extending Esterel to Handle suspend/abort
	4.4 Example Transformations
	4.4.1 Transforming PAUSE_CYC
	4.4.2 Transforming the Token Ring Arbiter
	4.4.3 Transforming Cycles Over Parallel Termination
	4.4.4 Multiple pause Statements
	4.4.5 Suspend

	4.5 Proposals for Constructiveness Analysis
	4.5.1 Substitution of Fixpoint Iteration
	4.5.2 Temporal Induction

	5 Cycles on Valued Signals
	5.1 Introduction to Valued Signals in Esterel
	5.2 Signal Dependencies on Valued Signals
	5.3 Replacement Expressions for Valued Signals
	5.4 Cycles on Pure Signals Broken by Valued Signals
	5.5 Cycles on Internal Valued Signals
	5.6 Preprocessing of Cyclic Valued input Signals
	5.7 Transforming mejia.strl from Estbench

	6 Optimizations
	6.1 Replacement Expression for present
	6.2 Termination of Parallel Statements
	6.3 Interaction of Parallel Termination with Exceptions
	6.4 Substitution of suspend and abort
	6.5 Signal Renamings for Locally Defined Signals
	6.6 Replacing State Signal Tests by Constants
	6.7 Eliminating Emission of State Signals
	6.8 Absence of External Tests of Cycle Breaking Signal
	6.9 Simplification of External Tests
	6.10 Compiler-Specific Signal Dependencies
	6.11 Lifting of Locally Defined Signals

	7 Experimental Results
	7.1 Synthesizing Software
	7.2 Synthesizing Hardware

	8 Assessment
	8.1 Scope of the Cycle Identification
	8.2 Scope of the Transformation Algorithm
	8.3 Transformation of Non-Constructive Programs
	8.4 Accessing the Program State

	9 Conclusions and Future Work
	A Example Transformations
	A.1 present, pause
	A.2 Termination of parallel Threads
	A.3 Implementing the Token Ring Arbiter in Lustre

	Bibliography

