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“There is grandeur in this view of life …  from so simple a beginning 

endless forms most beautiful and most wonderful have been, and are 

being, evolved.” 

From: Darwin, C. R. 1872. The origin of species by means of natural selection, or the preservation of 

favoured races in the struggle for life.  
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1 INTRODUCTION 

 

1.1 Evolutionary Developmental Biology – Evo-Devo 

“Evo-Devo comprises all that is contained in the black box that lies between genotype 

and phenotype” (Hall, 2003). Evolutionary developmental biology (Evo-Devo) is a broad 

scientific field of biology that i) compares developmental processes between organisms 

to determine their ancestral relationships and ii) tries to understand the evolution of 

developmental mechanisms, how they account for the generation of novel features and 

species diversity. Evo-Devo has its origins in evolutionary morphology of the late 19th 

century when Charles Darwin postulated his concept of evolution to be the result of 

“descent with modification” through selection in his book “On the Origin of species” 

(Darwin, 1895). Scientists at that time looked to embryonic and larval stages searching 

for homologies that would be obscured in the adult. Today, current research 

investigates the evolution of regulation of the “genetic toolkit” together with gene 

duplication and gene diversification. And, indeed, finding a very conserved set of 

regulatory genes playing comparable developmental roles in nearly all organisms 

(Carroll et al., 2001; Wilkins, 2002) represents a powerful molecular proof for Darwin’s 

concept. However, there remains a big problem: If all developmental genes are the 

same, how are differences in development and morphology of different organisms 

accomplished? One possible explanation is that differences between organisms are due 

to differences in expression of regulatory genes driven by upstream regulators or by 

changes in the range of downstream target genes (Bosch and Khalturin, 2002; Rudel 

and Sommer, 2003). But this may not be the only answer. New data from the increasing 

number of complete genome sequences indicate a substantial number of novel 

unknown genes (Pires-daSilva and Sommer, 2003) and the obvious question what do 

these genes code for, is a new and till yet mostly unappreciated issue in current 

evolutionary developmental research (Bosch and Khalturin, 2002). 
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1.2 Classical model systems and their limits in current evo-devo research 

Our understanding of developmental mechanisms and the evolution of metazoan 

genomes is mainly based on research in a few complex animals and a small number of 

complete genome sequences. Recent findings on the evolutionary origin of 

developmental genes in vertebrates are mostly examples resulting from studies 

including the insects Drosophila melanogaster and Anopheles gambiae, the nematode 

Caenorhabditis elegans and the two yeast species Saccharomyces cerevisiae and 

Schizosaccharomyces pombe as “basal” invertebrates. Today, we consider these 

organisms as well established model systems with powerful molecular genetic tools, 

fully annotated genome sequences, large EST projects and the availability of functional 

tests. Within the past years extensive research using these model systems led to key 

findings in evolutionary and developmental biology. Deciphering the genetic control 

mechanisms of patterning during embryonic development in Drosophila melanogaster 

1995 (Lewis, 1978; McGinnis and Kuziora, 1994; Nüsslein-Volhard and Wieschaus, 

1980), the discovery of key regulators of the cell cycle in Saccharomyces cerevisiae 

2001 (Hartwell, 2002; Hunt, 2002; Paulovich and Hartwell, 1995; Royer, 2001), as well 

as unraveling the genetic regulation of organ development and programmed cell death 

(apoptosis) in Caenorhabditis elegans 2002 (Brenner, 2003; Check, 2002; Hoffenberg, 

2003) and the discovery of gene silencing by double stranded RNA (RNA interference 

or RNAi) 2006 (Caplen et al., 2001; Fire et al., 1998; Grishok et al., 2001), were 

awarded by Nobel prices. Studying the evolution of genes taking part in these 

processes identified significant examples of conservation of developmental programs, 

especially between Drosophila and vertebrates (Jaruzelska et al., 2003; Sun et al., 

2003; Zdobnov et al., 2002).  

However, there are also limits of conservation as for example a large number of genes 

from D. melanogaster, C. elegans and S. cerevisiae appear to be highly derived when 

compared to vertebrate genomes (1998; Adams et al., 2000; Goffeau et al., 1996). In 

addition, a significant number of genes have been identified during comparative studies 

that seem to be present only in one organism and not in others (Gibson, 2001; Hutter et 

al., 2000; Parkinson et al., 2004; Sommer, 1997; Wood et al., 2002) and thus are 

referred to as “taxon-specific” genes.  
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Moreover, finding a significant proportion of mammalian genes being absent within 

invertebrate genomes initially led to the wrong assumption that these genes are 

vertebrate innovations instead of gene losses in the invertebrates. With the increasing 

availability of genome sequences and expressed sequence tags (ESTs) for other basal 

invertebrates like poriferans or cnidarians, this assumption has repeatedly been shown 

to be incorrect (Ball et al., 2004; Kortschak et al., 2003; Miller et al., 2005), and the 

importance of comparative data from model systems other than Drosophila and C. 

elegans has been underlined.  

 

1.3 “Non-model” systems in evolutionary and developmental biology 

While classical model systems benefit from being completely molecularized, animals 

representing the so-called “non-models” often suffer from lacking essential functional 

tests or sequence data from EST or genome projects. But for a number of evolutionary 

old organisms this situation changed drastically within the last five years. More and 

more genomes become sequenced mostly accompanied by extensive EST sequencing 

(see Table 1) and research groups try to apply modern molecular genetic tools and 

establish functional tests for the animal they are working on. 

 

Organism Taxonomy Common name Genome project 
(coverage) 

EST project 
(# seqs) 

Trichoplax adhaerens Placozoa - in process in process 

Reniera sp. Porifera sponge in assembly (n.a.) 83.000 

Nematostella vectensis Cnidaria sea anemone completed (7.5 x) 166.000 

Hydra magnipapillata Cnidaria fresh water polyp in annotation (6 x) 174.000 

Table1: Current status of genome and EST projects for selected “non-model” organisms 

 

Trichoplax adhaerens, a member of the Placozoa (see Figure 1) represents one of the 

most basal metazoan taxa of the animal kingdom (Dellaporta et al., 2006). Exhibiting an 

extremely simple body plan generated by only four somatic cell types (Grell, 1971) 

together with its taxonomic position, it is used as a model to study the transition from 

unicellular to multicellular animals. Within the last two years the first evolutionary 

conserved developmental genes were identified (Hadrys et al., 2005; Monteiro et al., 
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2006) pointing towards a reduced complexity in gene families compared to higher 

metazoans. Sequencing of the Trichoplax mitochondrial genome (Dellaporta et al., 

2006) consolidated the taxonomic position in the tree of life. The ongoing genome and 

EST project will massively aid in the identification of conserved and novel genes 

involved in forming such a simplistic animal and will provide new insights in the genome 

evolution of the metazoa. 

 

 
Figure 1: Schematic evolutionary tree of the lower metazoa. 
Modified from Miller & Hemmrich et al., 2007. 

 

The oldest animals in the sister group of the Placozoa are the Porifera (sponges; see 

also Figure 1). Current research projects mostly investigate the demosponges Suberites 

domuncula and Reniera sp. These multicellular animals consist of at least ten different 

cell types, including the characteristic choanocytes, but they lack symmetry around a 

body axis and, thus, have no defined body plan (Leys and Ereskovsky, 2006). Although 

established molecular techniques are still limited, some first evidence about the 

presence of conserved genes involved in developmental processes (Nichols et al., 

2006; Simionato et al., 2007) or components of an ancestral innate immune system 

(Wiens et al., 2007) already implicates the importance of sponges for comparative 

studies as they highlight ancestry and/or secondary gene loss. To unravel the complete 

ancestral metazoan gene set, the active genome-sequencing project and extensive EST 

data are crucial for further investigations. 
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1.4 Cnidarians, arising model systems at the base of Bilateria 

Cnidarians provide several important features to be subject of active evo-devo research. 

As sister-group to all bilaterian animals (see Figure 1) they are the first organisms in 

evolution that have developed a defined body plan, stem cell systems, nerve cells and a 

tissue layer construction. In contrast to the triploblastic Bilateria, cnidarians develop 

from two germ layers, the ectoderm and the endoderm, and are thus referred to as 

diploblasts lacking the mesoderm (Ball et al., 2004). The two body layers are organized 

around a single (oral - aboral) body axis, forming a gastric cavity that is defined by the 

mouth opening at one end. The synapomorphic feature of the Cnidaria is the co called 

cnidocyte or nematocyte (stinging cell), which is used to catch prey or to defend 

predators (Holstein, 1995). Cnidarians can be roughly divided into the most basal 

Anthozoa (corals & anemones) and the Medusozoa (see Figure 2), consisting of the 

Cubozoa (sea wasps), the Scyphozoa (jellyfishes) and the Hydrozoa (hydroids) (Collins 

et al., 2006). Because some of the medusozoans exhibit nearly radially symmetric body 

plans, cnidarians are often grouped together with the non-cnidarian ctenophores (comb 

jellyfishes) as the Radiata with two body layers and one axis in contrast to the Bilateria 

with three body layers and two axes (Martindale et al., 2002). 

 

 

Figure 2: Cnidarian relationships with selected ancestral characters. 1) nematocytes, planula larvae, 
solitary polyp; 2) pelagic medusa; 3) Rhopalia; 4) medusa produced through lateral budding of the 
entocodon, epidermal gonads; 5) polydisk strobilation, ephyrae; 6) complex eyes. Modified from Collins et 
al., Syst. Biol. 2006. 
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1.5 State of the art in cnidarian evo-devo research 

In current research, cnidarians are often used as model to study various aspects of 

evolution and development such as patterning, regeneration, embryogenesis, apoptosis 

or the evolution of metazoan genomes. The most widely used cnidarian organisms are 

the marine anthozoan Nematostella vectensis and the fresh-water hydrozoan Hydra 

magnipapillata, whereas anthozoans are thought to represent the basal and hydrozoans 

the derived state within this phylum (Figure 2). 

1.5.1 Developmental genes in Cnidaria 

Since many years Hox genes are studied as key players in patterning processes. The 

evolutionary origin of cnidarian Hox genes is controversially discussed and remains 

arguable. Recent publications discuss, whether the bilaterian Hox code was present 

before the cnidarian/bilaterian split or not (Chourrout et al., 2006; Kamm et al., 2006; 

Ryan et al., 2007). Kamm et al. in 2006 proposed the term Hox-like genes because it 

was not clear if the cnidarian Hox genes were paralogs or homologs compared to the 

bilaterian complement (Kamm et al., 2006). Later studies document the presence of a 

simple proto-Hox cluster in the anthozoan Nematostella vectensis (Chourrout et al., 

2006) and in a recent publication Ryan et al. suggest that the bilaterian Hox code was 

already present before the divergence of Cnidaria (Ryan et al., 2007). Other research 

projects investigated the possible function of Hox genes in cnidarian development and 

could show in various cnidarians that indeed there is a correlation between patterning 

processes along the forming body axis (de Jong et al., 2006; Finnerty et al., 2004; 

Fröbius et al., 2003). Further studies demonstrated the role of Pax genes in cnidarian 

ectodermal nerve net development (Matus et al., 2007) and identified the full 

complement of classical non-Hox ANTP-superclass transcription factors in Nematostella 

(Kamm and Schierwater, 2006).  

Another crucial problem in patterning processes is to understand the formation of body 

axes, positional gradients and the determination of cell fate (Guder et al., 2006a; Lee et 

al., 2006; Meinhardt, 2006). During the past years extensive research in this field tried 

to shed some light on these issues. From previous studies it was known that 

components of the Wnt pathway are involved in axis formation (Hobmayer et al., 2000; 

Minobe et al., 2000) and the formation of the head organizer in Hydra magnipapillata 
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(Broun et al., 2005). Recent publications showed that an ancient Wnt/Dickkopf 

antagonism is present in Hydra (Guder et al., 2006b) and that Dickkopf genes are also 

components of the positional value gradient (Augustin et al., 2006). Searching for Wnt 

genes in Nematostella resulted in unexpected Wnt gene complexity and expression 

data indicate their role in gastrulation and axis formation (Kusserow et al., 2005). 

Investigating Wnt genes in the marine hydrozoan Hydractinia echinata revealed a tight 

connection of Wnt expression during embryonic development and metamorphosis 

(Plickert et al., 2006). Besides Wnt, also other genes have been shown to play a role in 

patterning processes in cnidarians. In a recent study, components of the Notch pathway 

were found directly linked to nerve cell differentiation in Hydra (Käsbauer et al., 2007).  

Focusing on the TGFbeta signaling cascade, the role of bone morphogenic proteins 

(BMPs) and their antagonists were investigated in Hydra (Hobmayer et al., 2001; 

Reinhardt et al., 2004), Nematostella (Rentzsch et al., 2006; Rentzsch et al., 2007) and 

the marine hydrozoan Podocoryne carnea (Reber-Muller et al., 2006). Signalling via 

receptor thyrosine kinases (RTKs) is yet mainly studied in Hydra and a variety of 

molecules participating in RTK-related pathways have been identified(Arvizu et al., 

2006; Bridge et al., 2000; Cardenas and Salgado, 2003; Reidling et al., 2000; Steele, 

2002; Sudhop et al., 2004). Further attempts to identify genes involved in patterning in 

Hydra resulted in the isolation of a secreted peptide governing tentacle formation in 

Hydra (Broun et al., 2005) . 

1.5.2 Embryogenesis in Cnidaria 

While most scientists study genes and mechanisms tightly linked to patterning 

processes during embryonic development, some other research projects investigate 

embryogenesis per se. An ultra-structural study of embryogenesis in the sea anemone 

Nematostella identified the cellular mechanisms underlying gastrulation (Kraus and 

Technau, 2006). In another approach the role of programmed cell death during 

development of the anemone embryo was investigated (Technau et al., 2003). In Hydra 

not all embryonic stages are easy to access (Alexandrova et al., 2005; Martin et al., 

1997) but nevertheless, attempts to isolate genes related to embryogenesis identified 

interesting candidates that broaden our understanding of the mechanisms during this 

process (Fröbius et al., 2003; Genikhovich et al., 2006).  
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1.5.3 Cnidaria as model for regeneration 

A remarkable feature of some cnidarians is their capability to regenerate missing body 

parts. This phenomenon is predominantly present in Hydra and subject of research for 

over 200 years. Scientific findings related to regeneration in Hydra have recently been 

reviewed in Bosch, 2007b. As shown in several independent experiments, regeneration 

in Hydra occurs by morphallaxis (Cummings, 1984; Holstein et al., 1991), a process first 

described by Thomas Hunt Morgan in 1901 (Morgan, 1901). Various approaches 

identified genes involved in regenerating the head (Augustin et al., 2006; Kaloulis et al., 

2004; Manuel et al., 2006). Recently it has been proposed that also the nervous system 

in Hydra seems to play a role during regeneration (Miljkovic-Licina et al., 2007). 

1.5.4 Programmed cell death in Cnidaria 

Since the presence of programmed cell death (PCD) or apoptosis in cnidarians has first 

been reported for the hydrozoan Hydra in 1999 (Cikala et al., 1999), this process is 

under permanent investigation in a variety of cnidarian organisms. Conserved 

components of caspase signaling could be identified in the anthozoan Aiptasia pallida 

(Dunn et al., 2006) and in the marine hydrozoan Hydractinia echinata (Seipp et al., 

2001) where metamorphosis was shown to be dependent on caspase signaling (Seipp 

et al., 2006). Further investigations in apoptosis in Hydra revealed a role of PCD during 

spermatogenesis (Kuznetsov et al., 2002), in regulating cell numbers and during 

regeneration (Böttger and Alexandrova, 2007). 

1.5.5 Genomics and transcriptomics in Cnidaria 

As cnidarian research finally entered the age of genomics and transcriptomics a few 

years ago, scientists also start to investigate subjects such as the evolution of genes 

and genomes, the appearance of taxon-specific genes, or the evolution of the immune 

system. In addition large-scale gene expression profiling approaches using ESTs 

became a valuable tool to isolate genes involved in a certain cell type, a tissue or 

developmental stage. First implications about ancestral gene structure and cross 

kingdom conservation came from corals and jellyfish when characterizing the genes 

encoding for integrins and ion channels as well as components of the DPP/BMP 

pathway on the genomic level (Hayward et al., 2002; Samuel et al., 2001; Schmitt and 

Brower, 2001; Spafford et al., 1999). Elaborate EST analysis in the coral Acropora 
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millepora revealed extensive gene loss and a high degree of sequence divergence 

within the classical models Drosophila and C. elegans (Kortschak et al., 2003). First 

reports about ancestral genetic complexity of gene families came from research projects 

investigating the role of Wnt genes during development (Kusserow et al., 2005; Miller et 

al., 2005). In another approach a significant number of non-metazoan genes were 

identified within EST collections for Acropora and Nematostella (Technau et al., 2005). 

Recent publications on a variety of subjects focus on the evolution of microRNAs in the 

bilaterian ancestor (Prochnik et al., 2007) and the presence of clustered developmental 

genes within cnidarian genomes (Sullivan et al., 2007b). And since genome sequences 

are available, scientists start to screen for complete gene sets involved in processes like 

gene regulation (Simionato et al., 2007) or immune response (Miller et al., 2007; 

Sullivan et al., 2007a). 

1.5.6 Molecular resources for model cnidarians 

For both Nematostella and Hydra, extensive molecular resources have been 

established within the last three years. Whole genome shotgun (WGS) sequencing 

approaches generated sequence data for draft genome assemblies with at least six fold 

coverage. Two different research groups meanwhile assembled the Nematostella 

vectensis genome and made their results accessible for analysis through online 

platforms (Sullivan et al., 2006). For Hydra magnipapillata only preliminary genome 

assemblies are available which are not yet publicly available. Both genome projects 

were accompanied by large scale EST sequencing. Whereas a large proportion of the 

Nematostella ESTs are not yet publicly available, all Hydra sequences were deposited 

at NCBI dbEST and are open for analysis. Within each particular EST project, several 

different cDNA libraries derived from several different developmental stages or tissues 

were generated providing additional valuable information (see also chapter 2.4). In 

addition to genomic and transcriptomic data several attempts to construct large insert 

bacterial artificial chromosome (BAC) libraries resulted in an 8 x coverage Nematostella 

BAC library and a low coverage (3.5 x) library for Hydra (Hemmrich and Bosch, 

unpublished). In addition to these molecular resources several powerful molecular 

genetic tools have been developed. Gene silencing using RNAi via in vivo 

electroporation was established for Hydra in 1999 and recent publications demonstrate 

double-stranded RNA feeding experiments resulting in transient gene knock-down 
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(Chera et al., 2006; Lohmann et al., 1999). In Nematostella first gene silencing effects 

could be shown using RNA morpholinos, but the method is still under investigation 

(Technau, pers. communication). Finally, the possibility of generating transgenic Hydra 

via microinjection of embryos (Wittlieb et al., 2006) completed the catalogue of methods 

required for modern functional analysis of genes. 

 

1.6 The cnidarian model system Hydra 

The fresh-water polyp Hydra has a long history as model system in classic 

developmental biology because of the remarkable plasticity in its differentiation capacity 

and its ability to regenerate missing body parts (Bode, 2003; Bosch, 2007b; Galliot et 

al., 2006; Holstein et al., 2003). Hydra´s regeneration capacity and the underlying 

mechanisms, responsible for specification of positional information, present excellent 

opportunities for understanding how gradients of morphogens could be generated and 

maintained to control local developmental processes (Meinhardt and Gierer, 2000; 

Wolpert, 1973; Wolpert et al., 1972). 

1.6.1 Systematics of Hydra  

Within the Cnidaria, Hydra belongs to the Hydrozoa (see also Figure 2). Because of the 

high morphological diversity, the variety of different sensory organs and the complexity 

in their cnidocytes, hydrozoans are thought to represent the most derived class within 

the Cnidaria (Collins, 2002; Steele, 2002). The systematics of hydrozoan subtaxa is still 

far from being complete but the combination of morphological and molecular data help 

to increasingly clarify the situation (Marques and Collins, 2004). For Hydra a vague 

number of 30 species have been described (Anokhin, 2004) but there is neither clear 

evidence on the exact number of species nor is it clarified whether Hydra is one genus 

or should be split into several genera. Previous attempts to group different Hydra 

species were all based on general morphological differences in the body plan, different 

modes of tentacle formation and differences in specific types of cnidocytes (Campbell, 

1987; Holstein, 1995) but so far no molecular data was included. Generation of a first 

comprehensive molecular phylogeny of selected Hydra species is part of this thesis 

(see chapter 2.1) and was published recently in Molecular Phylogenetics and Evolution 

(Hemmrich et al., 2006). 
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1.6.2 Morphology, histology and life cycle of Hydra 

Unlike most members of the Hydrozoa, which are typically marine, colonial animals, 

Hydra are solitary living freshwater polyps. Their body plan is organized around a single 

body axis that can be subdivided in head, body column and foot (see Figure 3A). The 

head comprises a ring of 4-7 tentacles that are organized around the mouth opening 

(hypostome) and the foot has a so-called basal disk that is used to attach the polyp to 

the substrate.  

 

Figure 3: The freshwater polyp Hydra. (A) Schematic longitudinal cross section indicating the simple 
epithelial organization. Arrows indicate the direction of tissue displacement. (B) Photograph of a section 
of part of the epithelial lining of the body column, showing the diploblastic organization. Note how 
interstitial cells and gland cells are interspersed between ectodermal and endodermal epithelial cells, 
respectively. End, endoderm; ect, ectoderm; m, mesoglea; Figure taken from Bosch, 2007. 

 

Hydra is made up of two tissue layers, the ectoderm and the endoderm (Figure 3B). The 

two layers are separated by a thin extracellular matrix (ECM), the mesoglea. The 

cellular system of Hydra can be divided in three independent cell lineages, the ectormal 

and the endodermal epithelial cell lineage as well as the intestitial cell lineage. The 

epithelial cells are epitheliomuscular cells that build the two tissue layers, whereas 

interstitial stem cells, mainly localized in the interstitial space between ectodermal 

epithelial cells, give rise to nerve cells, cnidocytes, gland cells and gametes (Bosch, 

2007a; Bosch and David, 1986). 

In Hydra, reproduction is mostly accomplished by clonal propagation in a process called 

budding during which a new polyp is built from the body column of the adult polyp. 
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Depending on several different environmental factors like population density, availability 

of food or water temperature, also gametes are produced from the interstitial cell 

lineage (Figure 4) (Martin et al., 1997). During oogenesis, interstitial cells proliferate and 

form a cluster of cells that are connected by cytoplasmic bridges. One of the cells within 

the cluster gets determined to become the egg cell. All other cells of the cluster are 

phagocytosed and incorporated into the cytoplasm of the developing oocyte. After 

external fertilization, the embryo develops directly into an adult polyp without a larval 

stage in-between. Embryogenesis is finished when a completely developed polyp 

hatches from the egg. In contrast to most other Hydrozoa, Hydra, lacking the medusa 

stage, has no metagenetic life cycle (Figure 4). 

 

 
Figure 4: Life cycle of Hydra. The two ways of propagation in Hydra include budding as 
asexual mode and the development of sperm and eggs as sexual mode. Embryos 
develop attached to the female polyp until they are released and completely developed 
polyps hatch. Figure modified from Westheide & Rieger, 1995. 
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1.6.3 Developmental processes in Hydra 

Whereupon in most other animals patterning processes are restricted to embryonic 

development, different axial patterning processes are constantly active in the adult 

Hydra and during regeneration or budding even de novo patterning processes can be 

studied (Bode, 2003; Bosch, 2003; Bosch and Fujisawa, 2001; Broun and Bode, 2002; 

Steele, 2002). The epithelial tissues of Hydra are in constant homoeostasis of cell 

proliferation and cell loss (see Figure 5). Cells are permanently shifted towards the 

forming buds and the extremities where in the ends of the tentacles, in the hypostome 

tip and in the basal disk, cells are released into the medium from the ectoderm or 

released into the gastric cavity from the endoderm.  

 

 

Figure 5: Tissue dynamics of the adult Hydra. 
Arrows indicate directions in which cell are displaced 
after a certain time. The yellow coloured area indicates 
the region of epithelial cell proliferation. The blue 
coloured areas indicate parts of the body where the 
cells have been transdifferentiated and do not divide 
any more. Figure modified from Steele, 2002. 

 

 

 

Numerous transplantation and tissue manipulation experiments in the past provided 

experimental data for the generation of theoretical models, describing patterning 

processes in Hydra (Berking, 2003; Meinhardt, 1993; Meinhardt, 2006; Meinhardt and 

Gierer, 2000). These models propose, that the morphology of the polyp along the body 

axis is maintained by a morphogenetic gradient that is maximal in the head and 

decreases towards the foot (Gierer and Meinhardt, 1972; MacWilliams, 1983; Muller, 

1996; Wolpert, 1971; Wolpert et al., 1972). The gradient has been proposed being 

established by a local autocatalytic activator that produces a long-ranging inhibitor. This 

inhibitor in turn antagonizes the self-activation (Meinhardt, 2004). But how this gradient 

is established during development and which molecules account for the gradient is yet 

to be determined.  
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1.7 Towards molecularization of Hydra: aims of the study 

Over the past few years an impressive accumulation of gene sequences, novel tools 

and genomic resources has brought a new perspective on research in Hydra (Bosch, 

2007b; Galliot et al., 2006; Holstein et al., 2003). In addition to the already mentioned 

powerful analytical tools like RNAi and transgenic animals several more valuable 

methods have been developed. Approaches including suppression subtractive 

hybridization (SSH) (Augustin et al., 2006; Genikhovich et al., 2006) and phylogenetic 

footprinting procedures have been established (Siebert et al., 2005) and the genome 

sizes and corresponding karyotypes of five Hydra species have been determined 

(Zacharias et al., 2004). The huge amount of available genomic and transcriptomic 

sequence data from various Hydra species complement these tools.  

But to talk about a completely molecularized model organism, some important features 

and resources are still missing: i) till yet no molecular phylogeny of genus Hydra has 

been published, ii) most of the EST and genomic sequence data available for Hydra are 

raw data, that require processing and annotation, iii) despite being submitted to NCBI 

neither for ESTs nor for the genome sequence comprehensive online analytical 

platforms exist, iv) so far the current organization of molecular data for Hydra do not 

allow application of modern computational biology methods (e.g. conserved domain 

searches, HMMs, peptide prediction etc.). 

To complement the available molecular resources and tools for current research in 

Hydra, a comprehensive molecular phylogeny for selected members of the genus Hydra 

was established. In a separate project, a bioinformatics analytical platform for 

comparative genetics and genomics in Cnidaria and for high-throughput processing of 

EST and genomic data was established and used in several approaches. These 

included an extensive screening for cnidarian genes related to immunity, a large-scale 

gene expression analysis approach using Hydra EST data, and the genomic 

characterization of a novel, taxon-specific gene family in Hydra magnipapillata. 
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2 RESULTS 

2.1 Establishing a molecular phylogeny for selected species of the genus 

Hydra 

The phylogeny of the genus Hydra for long time has been a controversially discussed 

and unresolved issue. In all previous attempts, to resolve the phylogenetic relationships 

of the approximately 30 extant Hydra species, only morphological differences were 

taken into account (Campbell, 1983; Holstein, 1995) whereas molecular data were not 

included. The lack of such data for Hydra led to determine the phylogenetic affinities of 

the eight most commonly used species and laboratory strains of this genus on the 

molecular level. Two nuclear (18S rDNA SSU; 28S rDNA LSU) and two mitochondrial 

(16S rRNA; cytochrome oxidase I, COI) markers were cloned and analyzed by 

maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI) 

methods to reconstruct the evolutionary history of these eight species (Hemmrich et al., 

2006). 

2.1.1 Phylogenetic inference using mitochondrial genes 

For the mitochondrial DNA, the data sets included 401 base pairs (bp) of the 

mitochondrial (mtDNA) 16S ribosomal RNA (rRNA) gene as well as 573 bp of the 

cytochrome oxidase I (COI) gene. mtDNA sequences of the marine hydrozoans Obelia 

geniculata and the anthozoan Nematostella vectensis available on GenBank were 

included as outgroup. As shown in Figure 6A+B, both single-gene maximum likelihood 

analyses recovered Hydra viridissima as the most basal group. Hydra circumcincta and 

the two members of the “oligactis” group (Hydra oligactis and Hydra robusta) invariably 

resolved as the sister groups to the other four Hydra species examined. Unexpectedly, 

all analyses of both mitochondrial genes strongly suggest that Hydra vulgaris (strain 

AEP) is most closely related to Hydra carnea and not to Hydra vulgaris (srain Basel) or 

Hydra magnipapillata. There were no conflicts between the MP, ML and BI analyses 

since results from the MP and BI analysis support all of the affinities recovered in the 

ML analysis (see Appendix, Figures 1+2). Analyses on the combined data sets of both 

mtDNA genes were also performed. Figure 6C shows that as with the individual gene 

analyses, Hydra viridissima is strongly supported as basal species and Hydra 
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circumcincta and Hydra oligactis are the sister taxons to the “vulgaris” group. Hydra 

vulgaris (strain AEP) and Hydra carnea form a monophyletic group.  

 

Figure 6: Maximum likelihood phylogenetic trees inferred of the A) mitochondrial 16s rRNA gene, B) 
mitochondrial CO1 gene and C) combined mitochondrial dataset. Bootstrap values for ML and MP criteria 
and Bayesian posterior probabilities (BI) are depicted at the corresponding nodes (order=ML/MP/BI).  
Single values in bold letters indicate the identical result in all 3 analyses. Branch lengths are scaled to the 
expected number of substitutions (0.05 substitutions per site). Figure taken from Hemmrich et al., 2006. 
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2.1.2 Phylogenetic inference using nuclear genes  

Two nuclear genes were used to provide an independent estimate of the evolutionary 

relationships among the Hydra species. The data sets included 1053 bp of the 18S 

small ribosomal subunit rRNA gene and 1275 bp of the 28S large ribosomal subunit 

rRNA gene. Corresponding sequences of the marine hydrozoan Podocoryne carnea 

available on GenBank were included as outgroup. As shown in Figure 7A+B, both 

single-gene maximum likelihood analyses recovered Hydra viridissima as the most 

basal group. Hydra circumcincta and the two members of the “oligactis” group (Hydra 

oligactis and H. robusta) were recovered as the sister groups to the other four Hydra 

species examined. The only difference between the trees shown in Figure 7 A and B is 

in the position of Hydra circumcincta, as in the 18S rRNA tree it clusters with the 

“vulgaris” group, while in the the 28S rRNA tree - similar to the trees of mtDNA 

sequences (see Figure 6) - it is recovered as the sister species to the “oligactis” and 

“vulgaris” group. Similar to the analyses of mtDNA, phylogenetic trees of both nuclear 

genes strongly suggest that Hydra vulgaris (strain AEP) and Hydra carnea form a 

monophyletic group. Results from the MP and BI analysis support all of the affinities 

recovered in the ML analysis of the two nuclear genes (see Appendix, Figures 3 and 4). 

The results of the ML analysis on the combined data sets including the 18S rRNA and 

the 28S rRNA genes is shown in Figure 7C and indicates that Hydra circumcincta 

should be considered as sister species to Hydra oligactis and Hydra robusta.  

Taken together, in all trees Hydra viridissima was significantly differentiated from all the 

remaining species and recovered as the most basal species. Hydra circumcincta and 

the pair of Hydra oligactis and Hydra robusta invariably resolved as the sister taxons to 

Hydra carnea and Hydra vulgaris (see Figure 7). Hydra vulgaris strain AEP clusters with 

Hydra carnea rather than with Hydra vulgaris (Basel strain). 
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Figure 7: Maximum likelihood phylogenetic trees inferred of the A) nuclear 18s rRNA, B) nuclear 28s 
rRNA gene and C) combined nuclear dataset. Bootstrap values for ML and MP criteria and Bayesian 
posterior probabilities (BI) are depicted at the corresponding nodes (order=ML/MP/BI). Branch lengths 
are scaled to the expected number of substitutions (0.005 substitutions per site). Figure taken from 
Hemmrich et al., 2006. 
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2.1.3 Phylogenetic inference using morphological characteristics fails to group Hydra 

vulgaris (strain AEP) 

The compelling and surprising molecular evidence that Hydra vulgaris (strain AEP) is 

most closely related to Hydra carnea and not to Hydra vulgaris or Hydra magnipapillata 

prompted us to re-examine morphological characteristics traditionally used for 

identification purposes within the genus Hydra. Beside characters such as general 

morphology and the order in which tentacles arise on young buds, one of the few 

diagnostic and reliable features used to classify Hydra species is the shape and size of 

nematocysts (Campbell, 1983). We, therefore, examined the nematocysts in Hydra 

vulgaris (strain AEP) and compared them to the nematocysts in Hydra carnea and the 

other frequently used species. As shown in Figure 8, on the basis of the size and shape 

of the nematocysts it is impossible to distinguish Hydra vulgaris (strain AEP) from the 

other three species of the “vulgaris” group (Hydra vulgaris, Hydra magnipapillata, Hydra 

carnea). Other characters such as body form, the order in which tentacles arise, 

pigments in the epithelium, the mode of sexual reproduction (hermaphroditic versus 

dioecious), and the genome size also do not allow to assign Hydra vulgaris (AEP) to 

either Hydra vulgaris or Hydra carnea. Thus, while morphological evidence is not 

informative to infer the phylogenetic position of Hydra vulgaris (strain AEP), molecular 

evidence strongly suggests, that it is most closely related to Hydra carnea. The initial 

description of this new strain as a strain of the Hydra vulgaris species (Martin et al., 

1997; Technau and Scholz, 2003) obviously was affected by the lack of molecular data. 
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Figure 8: Nematocysts of different species/strains of the “vulgaris-group” and Hydra oligactis. A-E 
Hydra magnipapillata; F-J Hydra vulgaris; K-O Hydra vulgaris (AEP); P-T Hydra carnea; U-Y Hydra 
oligactis; (A,B,F,G,K,L,P,Q,U and V) = stenotels; (C,H,M,R and W) = holotrichous isorhizas; (D,I,N,S and 
X) = atrichous isorhizas; (E,J,O,T and Y) = desmonemes. Figure taken from Hemmrich et al., 2006. 
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Figure 9: Summary of phylogenetic relations within the genus Hydra including molecular and 
morphological data. Schematically depicted in the branches are holotrichous isorhizas of the different 
groups. Figure taken from Hemmrich et al., 2006. 

 

2.1.4 Concluding remarks 

The results presented in this study represent a preliminary phylogenetic analysis of the 

Hydra species most commonly used in current research. The previously established 

morphological taxonomy (Campbell, 1983; Holstein, 1995) could be complemented and 

renewed by the addition of new molecular data, as summarized in Figure 9. Although 

the work clarifies some of the evolutionary relationships and establishes a solid 

foundation for future investigations, data from other Hydra species are needed to fully 

understand the evolutionary history and speciation of this group of basal metazoans. 
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2.2 Establishment of a comparative genomics analysis platform for cnidarian 
model systems 

The availability of online analytical platforms for computational biology today is mainly 

limited to the well established and widely used model organisms like yeast, fruit fly, 

earthworm, mouse and man (Bieri et al., 2007; Cherry et al., 1997; Crosby et al., 2007; 

Eppig et al., 2007; Letovsky et al., 1998). Research groups investigating non-popular 

models often face the problem of how to get and deal with biological data like genome 

or EST sequences of their preferred organism. An additional problem lies in the 

availability and/or accessibility of these data in public domains. Current research 

projects investigating lower metazoan animals like cnidarians or poriferans (see also 

Figure 1) are confronted exactly with these problems. Several different sequencing 

initiatives generated large amounts of (mostly raw) genomic and EST sequence data 

that are scattered on computers all over the world.  

To provide a comprehensive working environment for comparative genomic studies, it is 

crucial to centralize, integrate and pre-analyze these data and make them publicly 

available for the interested researcher. The need for such a bioinformatics analytical 

environment for cnidarian model systems led to the idea of establishing a comparative 

genomics online platform for basal, evolutionary old metazoan animals. 

2.2.1 “Compagen” – a comparative genomics platform for basal metazoa 

With “Compagen” I have put together a huge collection of raw and processed genomic 

and transcriptomic sequence datasets derived from various lower metazoans, 

generated by public and private sequencing projects. To provide a possible comparative 

perspective and to enlarge the analysis capability, sequence data from higher metazoan 

non-model organisms as well as from the unicellular choanoflagellates have been 

included. Enabling the application of various computational methods, all datasets are 

organized on a bioinformatics analytical platform on unix based computer systems 

(Figure 10) situated at the Zoological Institute, University of Kiel.  
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Figure 10: Schematic representation of the “Compagen” platform at the University of Kiel. 

 

The platform is split into a database-server, managing sequence data, a storage server 

for deposition of large amounts of data and an application-server, responsible for data 

processing. Possible computational analyses include (see also Table 3) sequence 

assembly of ESTs and small genomic datasets, sequence annotation, gene and peptide 

prediction, spliced alignments of cDNA to genomic sequence and the prediction of 

conserved domains via hidden markov models (HMMs) with the possibility to implement 

additional methods as required. To provide the possibility of sequence similarity 

searches, all datasets have been made searchable through an online Blast-server 

(Figure 11) that can be accessed through the Internet at http://www.compagen.org on 

request.  

 

Figure 11: Homepage of the “Compagen” facility Blast-server. http://www.compagen.org. 
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At the current state, datasets for at least 25 different animal species (as indicated in 

Figure 12) are stored in databases containing round about 59 million sequences (see 

also Table 2). To make databases easily distinguishable from each other and easy to 

work with, a common database-naming convention has been introduced, indicating the 

type of database, the source organism and the date of construction (Appendix, Table 1).  

 

 
Figure 12: Schematic evolutionary tree of selected metazoan organisms. For the 
indicated species, datasets on the “Compagen” database-server are available. 

 

2.2.2 Datasets and computational tools on the “Compagen” server 

Currently the “Compagen” database-server (Figure 10) harbors a collection of different 

sequence datasets that are stored as so called “flat files” in plain text format. An 

integration of all sequences into a common relational database scheme is planned but 

requires more powerful computational resources. So far, all datasets have been 

formatted into searchable databases for local and online Blast analysis. The datasets 

can be divided in 1) raw genomic sequence data (dbWGS), 2) raw EST sequence data 

(dbEST) and 3) processed EST sequence data (dbUNI, dbPEP, dbCAP3). The 

“dbWGS” section contains exclusively single whole genome shotgun (WGS) sequencing 

reads, originating from the corresponding organisms genome-sequencing project. In the 

“dbEST” section all raw EST sequences are organized. The remaining sections contain 

Unigene collections (dbUNI), predicted peptides (dbPEP) and CAP3-assembled EST 
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datasets (dbCAP3) that enable for conserved domain searches or gene prediction. 

Table 2 gives an overview of the different datasets currently available on the 

“Compagen” platform.  

 
Organism dbWGS dbEST dbUNI dbPEP dbCAP3 
      Hydra magnipapillata 10.272.644 163.221 19.845 19.845 25.106 
Hydra mag. SF-1  30.715    
Hydra vulgaris  6.105    
Hydra AEP  2.851    
Hydra viridissima  4.608    
Nematostella vectensis 8.411.866 166.595   30.666 
Acropora millepora 14.625 10.247 6.020 5.062  
Acropora palmata 11.025 4.017    
Porites lobata 11.450     
Hydractinia echinata  9.460    
Montastrea faveolata  2.156    
      Biomphalaria glabrata in progress 10.882    
Aplysia californica 4.320.600 179.001    
Daphnia pulex 2.724.768 1.548    
Daphnia magna  11.964    
Litopenaeus vannamei  7.429    
Penaeus monodon  7.330    
      Strongylocentrotus purpuratus 7.352.452 17.012    
Petromyzon marinus 18.808.412 108.847    
Monosiga brevicollis 640.632     
Monosiga ovata  7.391    
Trichoplax adhaerens pending pending    
Reniera sp. 2.823.539 83.040    
Molgula tectiformis  106.863    
Branchiostoma floridae 11.953.628 277.538    
      Total # each: 58.454.690 1.218.820 28.865 24.907 55.772 

Table 2: Databases and corresponding sequence-counts stored on the “Compagen” facility sever.  

 

In addition to the sequence data resources on the database-server, the “Compagen” 

application-server (Figure 10) provides a variety of computational tools that enable for 

extensive DNA and protein sequence analysis as well as for the inference of phylogeny 

(see Table 3). For general sequence analysis (pairwise alignment, six-frame translation, 

restriction site prediction etc.), the two commonly available software suites from NCBI 

and EMBOSS have been installed.  
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Software name Description 

ncbi Toolkit General bioinformatics tools package for sequence analysis 

EMBOSS European Molecular Biology Open Software Suite 

blast / wwwBlast Sequence similarity searches / online application (Blast server) 

tgicl EST clustering and assembly 

minimus Assembly of smaller genomic datasets 

MUMmer Alignment of large sequences and whole genomes 

ESTscan Detection and evaluation of potential coding regions in ESTs 

AAT Generation of spliced alignments (EST vs. genome) 

HMMer Detection of conserved domains using HMMs 

Mr. Bayes Bayesian inference of phylogeny 

Phylip Inference of phylogeny using maximum likelihood methods  

Table 3: Summary of important software programs available on the “Compagen” server. 

 

The TIGR gene indices clustering tool package (Pertea et al., 2003) serves as 

backbone for the later described EST analysis pipeline. ESTscan (Iseli et al., 1999) is 

required for the detection and evaluation of coding regions in assembled ESTs. To 

generate local genomic assemblies a subprogram of the whole genome shotgun 

assembler AMOS, called “Minimus” (Sommer et al., 2007), has been implemented. 

Enabling for the alignment of very long (several 100 kb) sequences, the MUMmer 

program (Delcher et al., 2002) has been installed and to generate so called spliced 

alignments between EST and genomic sequences, the AAT suite has been built in. The 

HMMer software (Eddy, 1998) has been added for the prediction of conserved domains 

within protein sequence datasets. As phylogenetic analysis applications serve the Tree-

Puzzle program (Schmidt et al., 2002) as well as the bayesian inference software Mr. 

Bayes (Huelsenbeck and Ronquist, 2001). 

2.2.3 Establishment of an EST analysis pipeline on the “Compagen” server 

For not to analyze thousands of sequences by hand, it is necessary to use in silico 

analytical tools for the analysis of redundant EST sequence data. As large amounts of 

raw EST data from various cnidarians are available, I established a semi automatic EST 

analysis pipeline as part of the “Compagen” genomic analysis platform. The pipeline 

was conceived to handle large and redundant sequence datasets. Major components of 

the pipeline were previously developed at the bioinformatics section of “The Institute of 

Genomic Research” (TIGR) in Rockville. Algorithms for preparatory as well as analytical 

steps were structured into a 5-step procedure shown in Figure 13.  
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Figure 13: The EST analysis pipeline for large-scale gene expression profiling 

 

Raw sequence data mostly were acquired from public databases using the EBI 

sequence retrieval system SRS (Kulikova et al., 2007) or by downloading directly from 

the corresponding sequencing center. Using the TGICL seqclean program, a careful 

quality assessment was performed. Vector and/or adaptor sequences were clipped 

away and low quality sequencing reads were removed. The resulting “cleaned” data 

then were subjected to the clustering and assembly routine. The purpose of this routine 

is to efficiently cluster and create assemblies (contigs) from a given set of sequences. 

During the “clustering phase” the input dataset is partitioned into smaller groups of 

sequences (clusters) that share some similarity in fast MegaBlast (Zhang et al., 2000) 

searches and that potentially come from the same longer original sequence. However, 

clustering does not produce any multiple alignments but only pairwise alignments. In the 

“assembly phase” each cluster is subjected to the CAP3 assembly program (Huang and 

Madan, 1999) which tries to create multiple alignments of the sequences within each 

cluster. The resulting one or more consensus sequences from the assembly step are 

then stored as so called “contig” sequences (or contigs). Sequences that did not fall into 

clusters or that did not fit in the CAP3-assemblies are afterwards stored as “singletons”. 

To check whether the assembly was accurate, the program clview was used to visualize 

the multiple alignments. Eventual misassembly, accidental contig fusions or other 

mistakes in the previous steps could thus be excluded.  
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For further analysis of the resulting sequences from the EST assembly, contigs and 

singletons of each library were subjected to consecutive batch Blast-searches (Altschul 

et al., 1990) (see Figure 14).  

 

 

Figure 14: Consecutive Blast pipeline for the EST analysis pipeline 

 

In phase n1, BlastX searches using the NCBI non-redundant protein database and the 

annotated RefSeq (Pruitt et al., 2007) database (threshold e-20) were carried out. All 

sequences, that gave no homologous match within the first search round were then 

subjected to phase n2, where the sequences were subjected to BlastX against the 

same databases as before but with lower similarity threshold (e-5). Sequences that gave 

no match in both previous searches could then optionally be searched in phase n3 vs. 

the EST or UniGene database of the corresponding organism, to clarify whether a 

corresponding similar sequence is already present. Sequences that found homologs in 

phase n1 were referred to as “strong hits” or real homologous sequences. Blast 

matches from phase n2 were denoted “weak hits” or highly diverged homologous 

sequences. Contigs and singletons that gave no Blast match in any databank (n2 and/or 

n3) were taken as “No Blast match” indicating genes diverged beyond recognition, novel 

genes or untranslated regions (UTR). Further possible sequence analysis steps 
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included domain-searches using SMART (Letunic et al., 2004), the prediction of putative 

signal peptides using SignalP (Bendtsen et al., 2004) or transmembrane domains using 

TMHMM (Moller et al., 2001). In the optional last step of the pipeline all contig 

sequences with “strong hits” in the first Blast-search were assigned a specific GO-term 

indicating a putative functional category of the predicted peptide sequence. This 

functional annotation was done in most cases by hand, as automatic annotation 

software such as GoBlet (Groth et al., 2004) or AutoFACT (Koski et al., 2005) only 

function for highly conserved sequences when compared to the available annotated 

reference databases like SwissProt  (Bairoch and Apweiler, 1996) or RefSeq (Pruitt et 

al., 2007).  

2.2.4 “Compagen”, a growing resource – future perspectives 

With regards to the already available variety of different sequence datasets for many 

different metazoan and non-metazoan organisms and the possibility to subject these 

data to modern bioinformatics tools, the “Compagen” platform has the potential to 

develop into a comprehensive, publicly available analysis resource. However, to serve 

as online platform several important steps have to be taken. As mentioned above, the 

only usable tool from outside is the Blast-server, which is per se helpful. But an internal 

sequence retrieval system is still missing and sequences have to be copied from long 

lists. Another problem lies in the availability or retrievability of all other additional 

analysis results for each single sequence. The most important step to be taken in the 

future will be the integration of all data into a relational database system, to interconnect 

all related information, and to provide a graphical interface for analysis and retrieval of 

all required information. 
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2.3 Using the “Compagen” platform to unravel the innate immune repertoire in 
Cnidaria  

The availability of whole genome sequences for two cnidarians, the hydrozoan Hydra 

magnipapillata and the basal anthozoan Nematostella vectensis, together with elaborate 

EST datasets for these and for the coral Acropora millepora, offered the possibility of 

getting new insights into the evolution of innate immune systems. In a first research 

project using the “Compagen” bioinformatics analytical platform, available genomes and 

transcriptomes of the above-mentioned animals were screened for counterparts of key 

components of the vertebrate innate immune repertoire (Miller and Hemmrich et al., 

2007, in press). 

2.3.1 Toll receptors and other TIR-domain containing proteins 

Searching the Hydra predicted protein collection using PFAM precompiled hidden 

markov models (HMMs, (Sonnhammer et al., 1998) identified only four TIR domain-

containing proteins, two of which are clearly related to MyD88, which functions 

downstream of TLRs (see Table 4) in the classical Toll signaling pathway. Consistent 

with their assignment as MyD88 family members, both of these Hydra proteins also 

contain the characteristic DEATH domain.  

 

 

Figure 15: Summary of domain structures of TIR domain containing proteins identified in selected 
Cnidaria. Figure taken from Miller and Hemmrich  et al., 2007. 
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The two other Hydra TIR proteins are atypical transmembrane proteins in having 

relatively short extracellular domains that are devoid of the LRR domains that 

characterize Toll and the TLRs (see Figure 15). cDNAs encoding these proteins have 

previously been isolated by the Bosch laboratory (Bosch et al., in prep.) and their 

functions are presently under investigation; these proteins are annotated as HyTRR-1 

and HyTRR-2. Surprisingly, extensive searching of the Hydra genome and all available 

EST/cDNA resources failed to identify any proteins having the canonical Toll/TLR 

structure, characterized by possession of both LRR and TIR domains. 

Whereas only four TIR proteins are present in Hydra, substantially more could be 

identified within the predicted proteins from Nematostella using HMM-based search 

methods. Five of them were sufficiently complete to be included in the analyses 

presented here. These include a single MyD88 homolog (NvMyD88) and a protein 

(NvTLR-1) clearly related to members of the Toll/TLR family (Figure 15). Whereas the 

mammalian TLRs, and some members of the fly Toll/TLR family, have only a C-terminal 

cysteine-rich motif flanking the LRRs proximal to the membrane, Nematostella NvTLR-1 

is predicted to contain both C- and N-flanking cysteine-rich motifs in the extracellular 

part of the protein (Figure 15). This suggests that fly and anemone Toll receptors more 

closely reflect the ancestral domain structure than do the mammalian TLRs. Moreover, 

a phylogenetic analysis (see Figure 16) groups the TIR in Nematostella NvTLR-1 with 

its fly and human counterparts, with strong bootstrap support.  

Surprisingly, three more of the predicted Nematostella TIR proteins also contain multiple 

immunoglobulin (Ig) domains (Figure 15), and thus reflect the domain structure of 

mammalian interleukin 1 receptors (IL-1R). NvIL-1R1 and -2 each contain three Ig 

domains, and NvIL-1R3 contains two predicted Ig domains (Figure 15) but may be 

incomplete. In the phylogenetic analysis based on TIR domains the Nematostella IL-1R 

like proteins form a clade distinct from both the MyD88 and Toll/TLR types (Figure 16), 

although these cnidarian TIRs appear to be distinct from those in the vertebrate IL-1 

receptors (data not shown). Several other TIR proteins were detected amongst the 

sequences of Nematostella (Appendix, Table 2), but were not subjected to further 

analysis as the TIR domains were incomplete or the sequences were judged likely to be 

artefactual. Searching the available coral datasets identified two complete TIRs. The 

trace archive yielded one TIR from Acropora palmata (ApGenomic) and a second was 
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encoded by an Acropora millepora EST (AmTIR-1). These two coral TIRs are most 

similar to those in the Nematostella IL-1R-like proteins (Figure 16), but no linked 

domains have yet been identified in these cases.  

 

 

Figure 16: Phylogenetic analysis of cnidarian TIR sequences in comparison to a selection of TIR 
domains from other species. The ML tree shown is the result of analysis of an HMM-based alignment 
of TIR domains. Three clades are resolved by these analyses, corresponding to the TIR domains 
characteristic of the “MyD88-type”, “Toll/TLR-type” and “IL-1R-type”. In addition to the TIR domain, the 
first of these types contains a death domain and the second contains multiple LRRs. Like the mammalian 
receptors for interleukin 1, the three Nematostella proteins falling into the third clade each also contain 
multiple immunoglobulin domains. Note that HyTRR1 does not contain such domains and that it is not yet 
clear whether either of the Acropora proteins does. The Acropora sequences included in the analysis 
were predicted from A. palmata genomic clones (ApGenomic) and from an A.millepora cDNA clone 
(AmTIR-1). Hydra lacks a canonical Toll/TLR, having only two MyD88 genes and the two sequences 
known as TRR-1 and TRR-2; Hydra magnipapillata and Nematostella vectensis sequences are indicated 
by the prefixes Hy and Nv respectively. Reference sequences: HsMyD88 = human MyD88 
(SwissProt:Q99836); DmMyD88 = fly MyD88 (GenBank:AAL56570); SdMyD88 = Suberites MyD88 
(EMBL:CAI68016); Dmtoll = fly Toll (SwissProt:P08953); HsTLR4 = human TLR4 (EMBL:CAD99157); 
Arabidopsis (GenBank:AAN28912). Figure taken from Miller and Hemmrich et al., 2007. 

 

The Müller group recently reported the identification of MyD88 in a demosponge, 

Suberites domuncula (Wiens et al., 2005). However, while the phylogenetic analysis 

clearly grouped the TIR in this sponge sequence with those present in unambiguous 

MyD88 orthologs (Figure 16), domain searching indicates that the predicted sponge 

protein may not have a functional DEATH domain. 
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         Anthozoa     Hydrozoa  
 Nematostella  Acropora  Hydra  
  Accn. # e-value   Accn. # e-value   Accn. # e-value  

TLR pathway: 

LBP + gnl|ti|1139929806 7e-51 n.d.   + gb|DT619160 2e-13 

CD14 -   n.d.   -   

TLR + 

gnl|ti|573160901  
gnl|ti|566578628  
gnl|ti|558319530  
gnl|ti|567085258 
gnl|ti|581064934  

1e-47 + gb|EF090256 2e-7 -   

MyD88 + gnl|ti|1139972660 4e-26 n.d.   + gb|CV182656 1e-18 

IRAK + gnl|ti|1146119691 3e-14 n.d.   + gb|DT608600 2e-10 

TRAF6 + gnl|ti|1135509399 2e-51 + gb|DY583189 1e-38 + gb|CV985667 3e-41 

TAK1 + gnl|ti|1135635219 1e-51 + gb|DY583694 8e-119 + gb|DN812953 1e-45 

IkK + gnl|ti|1135636054 5e-68 n.d.   + gb|CV985420 2e-60 

NFkB + gnl|ti|1139960940 1e-74 + gb|DY582971 3e-36 -   

IFN pathway: 

TRAM + gnl|ti|1139940977 9e-66 + gb|DY579224 5e-72 + gb|DT615400 1e-58 

TRIF + gnl|ti|1139933368 4e-07 n.d.   ?   

TBK-1 ?   n.d.   ?   

IRF3 + gnl|ti|1146121907 6e-13 n.d.   + gb|DT609518 2e-14 

p65 -   n.d.   -   

IFN-ß -   n.d.   -   

ECSIT pathway: 

ECSIT + gnl|ti|1139978500 4e-35 n.d.   + gnl|ti|1223628732 2e-18 

MEKK1 + gnl|ti|1139956887 2e-28 + gb|DY581138 3e-83 + gnl|ti|1226566543 3e-25 

MKKs + gnl|ti|557758729 1e-14 n.d.   + gnl|ti|1121918104 1e-18 

JNK + gnl|ti|1135503269 1e-106 n.d.   + gnl|ti|877334588 2e-33 

p38 + gnl|ti|1139959014 1e-114 + gb|DY579712 5e-111 + gnl|ti|686048504 7e-39 

AP1 + gnl|ti|1139792930 3e-10 + gb|DY581320 3e-09 + gb|CX771032 7e-10 

ATF + gnl|ti|1139796564 4e-11 n.d.   + gb|CN624618 3e-06 

Other TLR related proteins: 

HyTRR-1 -   n.d.   + gb|DQ449929 0 

HyTRR-2 -   n.d.   + gb|DQ449930 0 

IL1-R related proteins:          

IL1R-1 + gnl|ti|573182253 0 n.d.   -   

IL1R-2 + gnl|ti|557993643 0 n.d.   -   

IL1R-3 + gnl|ti|567060226 0 n.d.   -   

Complement system related proteins: 

C3/A2M related + 

gnl|ti|557724205  
gnl|ti|559738307  
gnl|ti|558391450  
gnl|ti|573218050  
gnl|ti|558266068  
gnl|ti|573218146  
gnl|ti|586367083  
gnl|ti|557912603  
gnl|ti|573084165 

1e-84 + gb|EF090257 1e-134 + 
gb|DT618439 
gb|CN554187 
gb|CO376061 

 

C6/C7/C8 -   n.d.   -   

MAC/PF domain containing proteins: 

Apextrins -    + gb|EF091848 6e-15 + 

gb|CV185005 
gb|DT613346 
gb|CF655657 
gb|DT620043 

4e-04 

Tx60-A + gnl|ti|1139936806 
gb|DY579588 

7e-48 
3e-35 + gb|DY579588 9e-48 + 

gb|CV464226 
gb|CD680300 
gb|BP512716 
gb|CV464282 
gb|DN246811 

1e-07 

MPEG + gnl|ti|613559286 5e-59 n.d.   -   
          
Table 4: Overview of innate immunity components present or absent in selected Cnidaria. Plus or minus indicate presence or 
absence of genes; components marked “n.d.” could not be determined within the limited available Acropora dataset; question marks 
indicate not resolvable Blast results, mostly within kinase domain encoding sequences. All accession numbers originated either from 
GenBank (gb) or from NCBI trace archive (gnl|ti). The given e-values were obtained by BlastX searches against the NCBI nr protein 
database. Taken from Miller and Hemmrich et al., 2007. 
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2.3.2 The Toll/TLR pathway is ancestral but some components are missing or highly 

diverged in Hydra 

Most of the intracellular mediators of Toll/TLR signalling could be identified in 

Nematostella and Acropora, but some key components appear to have either been lost 

or diverged beyond recognition in Hydra (Table 4). The absence of a Toll/TLR protein 

sensu stricto from Hydra is discussed above, but in addition only a single highly derived 

Rel domain could be found in Hydra whereas unambiguous NF-kb homologs are 

present in both Nematostella and Acropora (Table 4). In addition to the pathway leading 

to nuclear localisation of NF-kb, Toll/TLR signalling can activate the JNK and p38 MAPK 

pathways, leading to transcription of a range of target genes via the AP1/ATF factors. 

Toll/TLR signalling via JNK/MAPK requires the participation of the ECSIT adaptor 

protein (Kopp et al., 1999), which also provides a link between the Toll/TLR and TGF-

b/BMP pathways (Xiao et al., 2003). The presence of ECSIT as well as the key 

components of the JNK/MAPK pathway in the cnidarian datasets (Table 4, Figure 17) 

indicates an early origin for this variant of Toll/TLR signalling.  

 

 Figure 17: Signalling pathways downstream 
of the Toll/TLRs. Pattern recognition, either 
indirectly or directly, by Toll/TLRs results in 
activation of NF-kb (vertebrates) or the Dif/Rel 
heterodimer (Drosophila) and thus transcription 
of appropriate immune response genes. At 
TRAF6, the classical Toll/TIR pathway (shown 
in the right branch) is linked to the JNK/p38 
pathway (shown in the left branch) by the 
ECSIT protein, which acts as a regulator of 
MEKK-1 processing (Kopp et al., 1999). 
Components of both pathways downstream of 
Toll/TLRs are represented in the cnidarian 
datasets (Table 1). ECSIT may also act as a 
link between these and the TGF-b signalling 
pathway, since it forms complexes with BMP-
pathway restricted Smads and is essential for 
regulation of the BMP-target gene Tlx2 (Xiao et 
al., 2003). All of the components of the TGF-b 
signalling pathway are also known from 
anthozoan cnidarians (Technau et al., 2005). 
Figure taken from Miller and Hemmrich et al., 
2007. 
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2.3.3 Cnidarian complement C3 and related proteins 

The complement component C3 has recently been reported in another anthozoan 

cnidarian, the octocoral Swiftia (Dishaw et al., 2005), and the corresponding gene has 

recently been cloned from Acropora (Hayward et al., unpublished). The Acropora C3 

(C3-Am) gene is first expressed strongly in the endoderm of the planula as it elongates 

following gastrulation (Figure 18A). The endodermal expression is not uniform, being 

most intense in a subset of dark staining cells that have not yet been characterized. As 

the planula elongates expression becomes somewhat weaker, with the strongest 

expression localised to the aboral endoderm (Figure 18B). Post-settlement (Figure 18 

C-E) expression is limited to the endoderm and is particularly strong in the endoderm of 

the polyp as it rises from the calcifying platform at its base (e.g. Figure 18D).  

C3 has a complex domain structure. While anthozoan C3s resemble their deuterostome 

counterparts both in domain structure (Figure 18F) and sequence, not only could no 

corresponding gene be identified in Hydra, but also some of the domains characteristic 

of C3 (ANATO, C345C; see Figure 18F) could not be detected in any Hydra protein. 

Although lacking a canonical C3, Hydra contains a gene encoding A2M related 

domains. Interestingly, in situ hybridisation in Hydra using a probe covering these 

typical A2M-related domains (Figure 18F; A2M-comp/A2M-recep) showed expression 

restricted to the endodermal epithelium (Figure 18G), as was the case with Acropora 

C3. 

2.3.4 MAC/PF domain containing proteins in Cnidaria 

Searching for other components of the complement cascade, we identified proteins 

containing a Membrane Attack Complex/Perforin domain (MAC/PF) similar to that 

present in complement component C6 and related proteins. HMM searching identified 

just two MAC/PF domain-containing proteins in Hydra (Table 4), whereas four proteins 

were identified in Nematostella. Two MAC/PF proteins were also identified amongst the 

Acropora ESTs. Database searches and analyses of predicted domain structures 

revealed that most of the cnidarian MAC/PF sequences are likely to fall into three 

groups corresponding to the known proteins types MPEG, TX-60A and apextrin (Table 

4, Figure 18H).  
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Figure 18: Complement component C3 and MAC/PF domain containing proteins in Cnidaria. (A-E) 
In situ hybridisation of C3-Am in Acropora. (F) Domain map and presence/absence data for the various 
protein domains characteristic of complement C3 components in the Hydra, Nematostella and Acropora 
datasets. (G) In situ hybridisation of the Hydra magnipapillata A2M-related gene. (H) Domain maps of 
major cnidarian MAC/PF proteins types. (I) Hydra Tx-60a in situ. The insert shows the sense control. (J) 
Hydra apextrin in situ. (K-O) Acropora apextrin in situ. Figure taken from Miller and Hemmrich et al., 
2007. 

 

TBlastN-based searches of the Nematostella genome identified a gene matching 

strongly to the human macrophage expressed protein 1 (MPEG1; gbXP_166227) and 

its abalone homolog abMPEG1 (gbAAR82936) (Mah et al., 2004). A clearly related 

gene in Suberites domuncula has recently been implicated as an effector in a 

hypothetical sponge innate immune defence pathway (Wiens et al., 2005). 

Recombinant Suberites MPEG has anti-bacterial activity against gram-negative 

bacteria, and is up-regulated after lipopolysaccharide (LPS) treatment (Wiens et al., 

2005). The MPEG1 family clearly has an ancient evolutionary history (the sponge and 

human sequences have 28% identity and 46% similarity) but only in Suberites has any 

functional characterization been done. Despite the presence of MPEG1 in the sponge 

and an anthozoan, no corresponding gene could be identified in Hydra. 
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The nematocyst venom of at least some anthozoans contains the protein TX-60A 

(Oshiro et al., 2004), and two of the Nematostella MAC/PF proteins and one of the 

Acropora ESTs clearly correspond to this protein type (Table 1). TX-60A has an EGF 

domain immediately C-terminal of the MAC/PF domain. In Hydra, this domain structure 

can be found in Hy-MAC, one of the two Hydra MAC/PF proteins (Figure 18H and Table 

4). However, it is unclear whether the Hydra and anthozoan sequences are orthologous, 

as overall sequence identity is low. In situ hybridisation analysis shows that expression 

of Hy-MAC is restricted to gland-cells that are interspersed throughout the endoderm of 

Hydra (Figure 18I). Since endodermal gland cells and nematocysts are terminally 

differentiated, this pattern of expression is not easy to reconcile with a common function 

for the venom TX-60A and Hy-MAC. 

2.3.5 Apextrin, a gene lost from Nematostella 

The third class of cnidarian MAC/PF proteins represented in the Hydra and Acropora 

ESTs (Figure 18H) contains no other identifiable domains than MAC/PF. These proteins 

have moderate overall similarity to the echinoderm apextrins (Haag and Raff, 1998; 

Haag et al., 1999) and to the apicomplexan protein family to which Plasmodium MOAP 

(Kadota et al., 2004) belongs. MOAP is responsible for rupture of epithelial cells in the 

insect host by the ookinete stage of the parasite. Surprisingly, apextrin seems to be a 

case of gene loss from Nematostella as, despite clearly related genes being present in 

Hydra and Acropora, extensive searching of both the predicted protein collection and 

the anemone genome using a variety of tools failed to identify an apextrin-related gene 

(Table 4). 

2.3.6 Concluding remarks 

Taken together, these preliminary analyses of the newly available genomic and 

transcriptomic datasets indicate that although some immune components have been 

lost or diverged beyond recognition, a surprising number of key genes of the innate 

immune system already exist within the Cnidaria, a phylum at the base of metazoan 

evolution.  
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2.4 Using “Compagen” for large scale gene expression profiling in Hydra and 
other organisms 

Expressed Sequence Tags (ESTs) provide a valuable tool for gene expression studies 

in the absence of expensive microarray techniques in “non-model” systems like Hydra. 

Sequencing only small (300-600 bp) regions of each transcript of a whole animal, a 

special tissue or simply a cell, quickly and cost effectively generates large amounts of 

expression data. For Hydra a whole transcriptome EST sequencing project started in 

2003 at the Genome Sequencing Center of Washington University in Saint Louis, USA. 

Studying various aspects of development and evolution on the molecular level, the 

Bosch lab generated several different cDNA libraries that were sequenced within the 

Hydra EST project or in separate EST sequencing projects (see Table 5). All cDNA 

libraries were constructed using suppression subtractive hybridization approaches 

(SSH), a method that allows the qualitative comparison of transcriptomes between 

different tissues (Diatchenko et al., 1996). Dependent on the focus of each research 

project, different Hydra species with different features were used. Hydra vulgaris AEP is 

known to exhibit an increased level of sexual reproduction (Martin et al., 1997), which 

predestinates for embryogenetical studies. Hydra magnipapillata sf-1, a temperature 

sensitive mutant strain, loses all i-cells and derivates upon heat shock (Terada et al., 

1988). The animals used in other experiments were normal laboratory strains as 

described by Holstein et al. (Holstein, 1995). 

Library: Species / Description: # clones: # sequences: 

Kiel 2 Hydra magnipapillata, Head regeneration and budding 3.072 3.634 

Kiel 3 Hydra AEP, Embryogenesis enriched 2.688 2.851 

Kiel 4 Hydra vulgaris, Pathogen (P. aeroguinosa) induced 2.304 1.715 

Kiel 5 + Hydra magnipapillata SF-1, I-cell (+ derivates) enriched 2.304 2.727 

Kiel 5 - Hydra magnipapillata SF-1, Epithelial cell enriched 2.304 2.727 

Kiel 6 Hydra oligactis, species specific 1.152 1.022 

Kiel 7 Hydra magnipapillata, species specific 1.152 1.104 

Kiel 8 Hydra viridissima, symbiosis related genes 2.304 4.608 

Kiel 9 Ciona intestinalis, individual specific variable transcripts  2.304 4.608 

Total # 18.234 24.996 

Table 5: Overview of sequenced cDNA libraries constructed in the Bosch lab. 
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In a research project, investigating genes differentially regulated in head regeneration 

and budding, 3.072 clones were sequenced from a SSH library (Kiel2). Focusing on 

genes expressed mainly during Hydra embryogenesis resulted in sequencing 2.688 

clones (Kiel3). For the isolation of genes involved in the innate immune response of 

Hydra, a cDNA library containing genes upregulated upon immune stimulation was 

constructed and yielded sequences of 2.304 clones (Kiel4). To find genes exclusively 

expressed in the interstitial cell or epithelial cell lineage, a SSH library enriched in both 

directions respectively gave 5.454 sequences (Kiel5). The idea of subtracting whole 

transcriptomes of different Hydra species to isolate species-specific genes, led to the 

construction of Hydra magnipapillata and Hydra oligactis specific cDNA libraries 

(Kiel6/7). To gain insights in the regulation of genes involved in the algal symbiosis of 

the green Hydra viridissima, a library of 2.304 clones was sequenced. Taken together 

over 18.000 clones were sequenced from single or both clone-ends resulting in more 

than 24.000 EST sequences.  

For all above-described cDNA libraries (see Table 5) the “Compagen” EST analysis 

pipeline (see chapter 2.2.3) was used to generate non-redundant datasets containing 

the corresponding sequence assemblies (contigs + singletons). In addition, for the first 

seven libraries, consecutive Blast searches and functional annotations were performed. 

The complete datasets for each library consisting of raw and processed sequences as 

well as tables containing Blast-results and annotations are available on the 

accompanying DVD. 

2.4.1 “Compagen” identifies genes differentially expressed during head regeneration 

and budding 

During a research project, investigating genes controlling the processes of regeneration 

and budding in Hydra, a suppression subtractive hybridization based cDNA library was 

created and sequenced (Augustin et al., 2006). One half of the library contained 

upregulated (↑) genes during head regeneration and budding, the other half contained 

the downregulated (↓) ones.  

EST sequencing of 3072 clones yielded 3634 sequences. Running the EST analysis 

pipeline on this dataset generated 448 contigs and 116 singletons in the upregulated 

part and 504 contigs and 205 singletons in the downregulated part of the library. In total 
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952 contigs and 321 singletons were obtained. Following the consecutive Blast search 

procedure resulted in 38% sequences with strong homology to known proteins and 24% 

sequences exhibiting weak homology, suggesting a high degree of divergence. A 

surprising fact was the finding of 38% transcripts showing no homology to known 

protein sequences and thus may represent unknown or novel genes (Figure 19A). 

Annotation of gene ontology (GO) terms for strong homologous Blast hits could group 

the sequences in 12 different categories (Figure 19A+B). Apparent quantitative 

differences in gene up- or downregulation were detectable in the portion of transcripts 

encoding proteins involved in general cellular metabolism pathways (↑24% / ↓13%), 

transcripts related to RNA/DNA regulatory pathways (↑14% / ↓8%) and the ribosomal 

protein category (↑3% / ↓15%). Smaller differences could be detected in the ECM & 

cytoskeleton portion (↑9% / ↓6%) and in protein metabolism (↑6% / ↓9%).  

  

Figure 19: Gene expression profiles of genes differentially regulated during head regeneration 
and budding. (A) Results of consecutive Blast analysis; (B) functional annotation of genes upregulated 
during head regeneration and budding; (C) functional annotation of downregulated genes. 
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Two genes HyDkk1/2/4-A and HyDkk1/2/4-C, identified within this screening approach, 

belonging to the Dickkopf family (see also Figure 20) were further investigated by 

Augustin et al. and led to a recent publication (Augustin et al., 2006) underlining their 

role as components of the positional value gradient in Hydra. 

 

 

Figure 20: HyDkk1/2/4-C and HyDkk1/2/4-A are similar in structure and related to Dickkopf 
proteins in vertebrates. (A) Amino-acid sequence alignment of HyDkk1/2/4-C and HyDkk1/2/4-A. *, 
Same amino acid residue; :, conserved substitutions; ., semi-conserved substitutions. The signal peptide 
sequence is underlined and thecysteine-rich domain 2 is shaded. (B) Schematic diagram depicting the 
structural similarities between HyDkk1/2/4-C and HyDkk1/2/4-A in comparison to HyDkk3and Dkk-1, 2, 3 
and 4 in human (HDkk). (C) Multiple amino acid sequence alignment of cystein-rich domain 2 from mouse 
(Mus), man (Hom), frog (Xen),chicken (Gaga) and Hydra (Hy). black boxed amino acid residues, highly 
conserved amino acid residues; gray boxed residues, amino acid residues sharing thesame biophysical 
properties. Figure taken from Augustin et al., 2006. 

 

2.4.2 “Compagen” identifies genes expressed during embryogenesis in Hydra 

The primary mode of reproduction in Hydra is clonal propagation, called budding. 

However, Hydra also undergoes seasonal sexual phases where eggs and sperm are 

produced from the interstitial cell lineage (Aizenshtadt and Marshak, 1974; Bosch and 

David, 1986; Littlefield, 1985; Littlefield and Bode, 1986; Nishimiya-Fujisawa and 

Sugiyama, 1993). The cellular processes taking place during embryogenesis in Hydra 

are well understood (Aizenshtadt, 1975; Aizenshtadt, 1978; Aizenshtadt and Marshak, 

1974; Alexandrova et al., 2005; Honegger, 1989; Martin et al., 1997; Tardent, 1985; 

Technau et al., 2003) but very little is known about the molecular underpinnings. There 

is also no clear understanding how different the processes in adult and embryonic 

patterning are. To isolate genes predominantly or exclusively expressed during 
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embryogenesis in Hydra, an SSH-based cDNA library was generated, subtracting 

asexually propagating polyps from animals undergoing embryogenesis (Genikhovich et 

al., 2006). Remaining transcripts should ideally come from genes directly linked to 

embryogenesis. Construction of the library resulted in 2688 cDNA clones that yielded 

2851 EST sequences. Submitting these sequences to the analysis pipeline led to 87 

contigs and 47 singletons. The Blast analysis resulted in 42% strong homologous and 

24% weak homologous sequences. Again, as well as in the previous analysis, the 

portion of non-homologous sequences was unexpectedly large containing 34% of the 

transcripts (Figure 21A). Assignment of GO-terms could group the strong homologous 

sequences into 11 categories (Figure 21B).  

 

 
Figure 21: Gene expression profiling for genes differentially regulated during embryogenesis. A) 
Result of consecutive Blast analysis; B) functional annotation of genes upregulated during 
embryogenesis. Figure modified from Genikhovich et al., 2006. 
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Further characterization of the different putative embryogenesis specific genes identified 

several putative candidates. One to be mentioned here is the Hydra othologue to 

Embryonic Ectoderm Development (EED), a polycomb group (PcG) gene involved in 

chromatin modulation and repression of transcription (see also Figure 22). The detailed 

analysis of HyEED and other identified genes were published in Genikhovich et al. 

(Genikhovich et al., 2006).  

 

 

Figure 22: Expression of HyEED in Hydra vulgaris (AEP) polyps. (A) Newly hatched polyp (scale bar: 
240 Am). (B) Close-up of the area boxed in panel A under Nomarsky optics. Embryonic endocytes are 
still visible in the endodermal cells (arrowhead). (C) Asexual polyp with HyEED-expressing interstitial cells 
(scale bar: 240 Am). (D) Interstitial cells in a female polyp (scale bar: 30 Am); (E) Male polyp with strong 
expression of HyEED at the base (arrowhead) of the testis; (F) Female polyp with two egg patches.Figure 
taken from Genikhovich et al., 2006. 
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2.4.3 “Compagen” identifies genes involved in the epithelial defense of Hydra 

Consisting mainly of two epithelial tissue layers and lacking an impermeable barrier to 

the outside like a cuticle or an exoskeleton, Hydra seems to be highly vulnerable to 

pathogens in its environment. Living in fresh-water ponds, Hydra is constantly exposed 

to a variety of bacteria, viruses, fungi and protist that may act as potential pathogens. In 

a large screening approach for potential immune components, the Bosch lab tried to get 

deeper insights into the immune system of Hydra. One approach was to isolate 

upregulated genes in response to immune stimulation via the suppression subtraction 

hybridization procedure. To do so, two different SSH libraries were constructed. From 

previous experiments it was known, that protein extracts of the temperature sensitive 

mutant H. magnipapillata sf-1 exhibit higher antimicrobial activity when depleted of all 

interstitial cells and derivatives than normal animals (Kasahara and Bosch, 2003). Thus, 

genes could be of interest, which are upregulated during this enhanced antimicrobial 

activity. In succession, a SSH library was constructed subtracting interstitial cell 

depleted animals from wild type polyps. 2727 sequences were subjected to the EST 

analysis pipeline resulting in 297 contigs and 80 singletons. The second library was 

constructed using animals that were immuno-challenged by bacterial culture 

supernatant which should induce genes involved in pathogen detection and pathogen 

defense. Sequencing the library yielded 1715 sequences resulting in 43 contigs and 19 

singletons after running through the pipeline. For further analysis both dataset were 

concatenated (also shown in the statistics Figure 23). 

As shown in Figure 23A, nearly half (46%) of the transcripts examined fell into the 

category of strong homologous sequence. 20% of sequences exhibited only weak 

homology to know proteins and 34% showed no similarity at all. Comparing the 

predicted functional categories of the genes identified as strong homologs (also 

compared to previous findings 2.4.1 and 2.4.2) shows an enlarged proportion of genes 

involved in antimicrobial- and stress response (Figure 23B). The distribution of other 

functional gene ontology (GO) categories is comparable to the usual findings. 

Interesting candidate genes within this study are HyPericulin (from the induced library, 

see Figure 24) and HyMacin (epithelial library) that were later on identified as potent 

antimicrobial peptides in the Hydra immune response. Two other interesting classes of 

transcripts found in the epithelial library were HyVinins (see Figure 24) and HyDurins.  
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Figure 23: Gene expression profiles for genes upregulated after immune stimulation in epithelial 
cells and after pathogen induction. A) Results of consecutive Blast analysis; B) functional annotation of 
genes upregulated after immune stimulation. 

 

These genes were identified in several different “isoforms” and are potentially members 

of larger gene families. Their domain structure and biophysical features propose a 

putative role as antimicrobial peptides and their function is currently under investigation. 

The function of HyMacin and HyPericulin together with other relevant findings 

concerning the Hydra immune system will be published soon (Bosch et al., in prep.). 

 

 

Figure 24: Hydravinin and periculin, two novel host-defense genes in Hydra. (a) Hydravinin-1 amino 
acid sequence; (b) predicted structural features of hydravinin-1. A signal peptide (SP) is followed by an 
anionic (red,) and a cationic (blue) domain; (c) Hydravinin-1 is expressed exclusively in the endoderm; (d) 
Periculin-1 amino acid sequence; the 8 cysteines are marked in yellow; (e) structural features of Periculin-
1. A signal peptide (SP) is followed by a anionic (red) and a cationic (blue) domain which contains 8 
cysteines predicting three disulfide bridges; (f-h) Periculin-1 mRNA is expressed in endodermal cells as 
well as in interstitial cells in the ectoderm;(i) polyclonal antiserum shows the Periculin-1 peptide localized 
in the endoderm as well as in some ectodermal interstitial cells. Figure courtesy of T. Bosch. 
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2.4.4 “Compagen” identifies genes expressed in cnidocytes 

Unraveling the genetic mechanisms that account for animal diversity remains one of the 

central problems in evolutionary biology. At present there is no comprehensive 

understanding of how taxon- or species-specific features are encoded. Finding changes 

in the spatio-temporal use or specificity of regulatory genes being correlated with 

differences in morphology between different species, it is generally assumed that animal 

diversity is mainly the cause of differential use of the same conserved components 

(Duboule and Wilkins, 1998). Another source of creating evolutionary novelty may be 

differences in the action of downstream or effector genes. A totally neglected fact is the 

presence of taxon- or species-specific genes.  

During an experiment focused on the transcriptomes of interstitial cells and their 

derivatives (Milde, Hemmrich, Bosch, unpublished), a proportion of new and unknown 

genes were found to be expressed exclusively in the developing or mature cnidocytes, a 

cell type restricted to the Cnidaria. The approach included the construction of a SSH 

library subtracting i-cell containing polyps from i-cell depleted Hydra magnipapillata sf-1 

and subsequent sequencing of 2304 clones resulting in 2727 cDNA sequences.  

 

 
Figure 25: Gene expression profile for genes differentially regulated in the i-cell lineage. A) Results 
of consecutive Blast analysis B) functional annotation of genes expressed in the i-cell lineage. 
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These EST sequences were subjected to the analysis pipeline and by that yielded 151 

contigs and 163 singletons. The consecutive Blast analysis could identify 40% of the 

transcripts being homologous to already known proteins, 34% were designated weak 

homologous sequences and a proportion of 26% of sequences returned no Blast 

matches (Figure 25A). Among the strong homologous sequences a number of already 

known nematocyte specific genes was identified. Taking a closer look onto the non- 

homologous sequences by examining their expression pattern via in situ hybridization 

(see Figure 26), it was surprising to find nearly all of them expressed in different types 

and differentiation steps of cnidocytes. The obtained results may provide a good 

example that novel taxon-specific genes are crucial for the genesis of a taxon-specific 

structure. To prove their role in this respect, all novel genes identified in this study are 

currently under in depth investigation (Milde et al., in prep). 

 

 
Figure 26: (a-i) Expression of cnidocyte specific genes in adult polyps: a) 
CL001, b) CL012, c) CL031, d) CL035, e) CL039, f) CL042, g) CL054, h) CL082 
and i) CL092. (j-l) Close-up to different cnidocyte cell types from the in situ 
hybridisation with CL001: j) stenoteles, k) isorhiza and l) desmonemes. Figure 
courtesy of S. Milde. 
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To complete the EST pipeline, gene ontology annotation of the strong homologous 

sequences was performed (see Figure 25B). Noteworthy are the relatively high number 

of transcripts falling into the categories of extra-cellular matrix, cytoskeleton and cell 

adhesion as well as receptors and signal transduction pointing towards a extensive use 

of these gene classes in the development of the cnidocyte. 

2.4.5 Additional projects 

During three other research projects in our laboratory (see also Table 5) the EST 

analysis pipeline was used to create CAP3 assemblies without subjecting the 

sequences to subsequent analysis steps.  

In an attempt to identify genes involved in encoding taxon-specificity the suppression 

subtraction hybridization procedure was used to subtract whole transcriptomes of two 

different Hydra species. The resulting putative species-specific cDNA libraries for Hydra 

magnipapillata and Hydra oligactis yielded 2126 sequences that were clustered and 

assembled within the pipeline resulting in 277 / 235 contigs and 209 / 189 singletons, 

respectively. The genes identified during this approach are currently under investigation 

and a publication by Khalturin et al. is in preparation. 

Another project in the Bosch laboratory studies the genetic basis of symbiosis using 

Hydra viridissima the “green” Hydra as model. This species undergoes livelong 

symbiosis with green algae from the Chlorella family (Habetha et al., 2003). The 

question what genes may be involved in forming and maintaining this symbiotic 

relationship, led to the construction of a SSH library subtracting symbiotic from non-

symbiotic polyps. The obtained 4608 sequences went through the EST pipeline 

resulting in 1199 contigs and 1041 singletons and are awaiting further analysis 

A last study to be mentioned concerning the usage of the EST pipeline so far, is the 

screening for genes involved in allorecognition in the urochordate Ciona intestinalis. 

Focusing on genes exhibiting high inter- and intra-individual variability SSH was used 

filtering common transcripts and extracting different/variable ones. The approach 

resulted in the identification of a highly polymorphic gene vCRL1, which shows 

structural similarity to vertebrate complement receptors. For further characterization 

details see Kürn et al., (2007). 
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2.5 Genomic analysis of a novel, taxon-specific gene-family in Hydra 
magnipapillata 

As shown during the above EST analysis, all Blast searches performed so far identified 

around 35% novel genes. Here I describe one of these novel genes in detail. While 

many developmental genes have been identified within the cnidarian Hydra, little is 

known about their molecular evolution and their genomic organization. In Hydra 

magnipapillata, one of the genes involved in morphogenesis of the head is ks1. The 

gene was identified in a differential cDNA screening approach focused on genes 

expressed exclusively in apical/head tissue of Hydra (Weinziger et al., 1994). As 

described by Weinziger et al., (1994), the ks1 transcript encodes for a 217 amino acid 

protein (Figure 27) that consists of two highly acidic and three basic domains (Weinziger 

et al., 1994). Ks1 is expressed in ectodermal epithelial cells in the upper body column 

as they enter the tentacle-building zone (Figure 27A). Ks1 expression continues in the 

tentacle-base where epithelial cells start to build up a multi-cellular complex, the so-

called battery cell, by integrating several different nematocytes. When the battery cell 

has formed, ks1-expression fades off. In previous studies it was shown that the ks1 

gene is regulated by complex interaction of inhibitory factors (Endl et al., 1999) and that 

loss-of-function polyps generated by dsRNA-mediated interference exhibit defects in 

head formation indicating that this gene is functionally involved in head development 

(Lohmann et al., 1999). The concrete function of the ks1 protein remains unknown. 

Searching for ks1 homologous sequences in the available databases from other 

organisms so far failed to identify a putative counterpart. Even in other cnidarians, such 

as the anthozoans Nematostella vectensis or Acropora millepora, a similar gene is not 

detectable. Thus, ks1 seems to be a gene restricted to the hydrozoan phylum. 

 
Figure 27: A) Expression of the ks1 gene in Hydra magnipapillata; B) predicted domain structure of ks1; 
cross-hatched areas, acidic domains; open boxes, basic domains; stippled, signal peptide; part B taken 
from Weinziger et al., 1994. 
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2.5.1 Different Hydra species possess different numbers of ks1 genes 

To get a first impression of how the ks1 gene is organized on the genomic level, a 

heterologous Southern blot analysis was conducted on HindIII and XbaI digested 

genomic DNA of eight different species of Hydra. As heterologous probe a 1,2 kb 

genomic sequence from the Hydra magnipapillata Hm_ks1_18A7 gene covering exons 

1 to 4 was used for hybridization. As shown in Figure 28A, in H. magnipapillata, H. 

vulgaris, H. vulgaris AEP and H. carnea, several signals were obtained. Since the probe 

did not contain cutting sites for the used restriction enzymes, these results suggest the 

presence of multiple ks1 gene copies in these Hydra species.  

 
Figure 28: ks1 genes at the genomic level within the genus Hydra. Southern blots hybridized with (A) 
the ks1-1 gene probe and (B) the H. magnipapillata ß-actin control probe. Species abbreviations: mag = 
H. magnipapillata; vul = H. vulgaris; AEP = H. AEP; car = H. carnea; cir = H. circumcincta; vir = H. 
viridissima; oli = H. oligactis; rob = H. robusta (syn. Pelmatohydra robusta) 
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A comparison between the phylogenetically closely related species H. magnipapillata 

and H. vulgaris, as well as H. carnea and H. vulgaris AEP reveals that some of the ks1 

hybridization signals are identical in each species pair respectively, indicating a high 

degree of sequence similarity. These findings also confirm the results of the 

phylogenetic analysis described in chapter 2.1 (Hemmrich et al., 2006). Variable 

numbers of ks1 hybridization bands in different Hydra species may represent 

differences in the size of the ks1 gene family of each species. For the remaining four 

Hydra species tested, no ks1 hybridization signal could be detected neither in HindIII 

nor in XbaI restricted DNA. A subsequent hybridization of the same filter with a gene 

probe for H. magnipapillata ß-actin revealed signals in all tested Hydra species (see 

Figure 28B) indicating that DNA was present and restricted properly. Thus, the ks1 

gene, if present at all in H. circumcincta, H. viridissima, H. oligactis and H. robusta, must 

have been significantly diverged in these species.  

2.5.2 Characterizing the gene structure of three ks1 genes in Hydra magnipapillata 

using a BAC library 

Discovering extensive complexity of the ks1 gene family in closely related Hydra 

species was unexpected and surprising and led us to further investigate the genomic 

background of ks1 within one selected species, Hydra magnipapillata. Lacking a 

genome project and having only a small set of EST sequences for Hydra at that time 

point, a Hydra magnipapillata bacterial artificial chromosome (BAC) library was 

constructed and screened (see Methods for details) using the 1,2 kb gene probe from 

Hm_ks1_18A7 to identify and characterize the different ks1 gene copies. Among 55.000 

checked clones 19 ks1 positive clones could be identified. All clones were analyzed via 

restriction digestion fingerprinting and subsequent radioactive hybridization (see 

Methods for details). Since these analyses revealed that BAC 18A7 and BAC 10A18 

comprise small genomic inserts of less than 10 kb enabling for rapid complete 

sequencing, and that BAC 87C19 contains an insert around 30 kb facilitating isolation of 

the complete 5’-regulatory region, these three ks1 positive BAC clones were chosen for 

a short-term detailed characterization.  
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To assess the gene position and the exon/intron structure of the three selected ks1 

genes, BAC 18A7 (9049 bp; gb|AJ829761) and BAC 10A18 (4032 bp; gb|AJ841298) 

were sequenced completely by stepwise primer walking. For BAC 87C19 (3322 bp; 

gb|AM161050) only the ks1 gene-containing region of was sequenced. The ks1 genes 

on BAC 18A7, 10A18 and 87C19 are referred to as Hm_ks1-18A7, Hm_ks1-10A18 and 

Hm_ks1-87C19 respectively. As depicted in Figure 29, all three genes exhibit the same 

structure with 4 exons interrupted by three introns. A high degree of similarity was 

observed in exon/intron boundary positions as well as in exon sizes. The only exception 

was found in exon 2 of gene Hm_ks1-18A7 where 48 bp (16 aa) compared to the other 

genes were missing. The splice donor and acceptor sites of all introns within the 

different genes confirmed to the established (Senapathy et al., 1990) consensus GT at 

the 5’-end and AG at the 3’-end of the intron. Alignment of the DNA sequence of the 

three ks1 genes reveals 86% identity at the nucleotide level in the complete overlapping 

region and 96% identity in the coding region.  

 

 
Figure 29: Genomic organization of ks1 genes in H.magnipapillata on selected BAC clones. Sizes 
of exons (blue/magenta) and introns or flanking genomic sequences (lines) are indicated in bp. White 
boxes highlight putative untranslated regions (UTR). 
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As shown in Figure 30, comparison of the predicted peptide sequence for the three ks1 

genes revealed three different types of proteins. Two long versions of 224 aa 

comprising 12 conserved cysteine residues within the acidic domains of the protein and 

a shortened version of 208 aa missing a stretch with 2 conserved cysteines within the 

first acidic domain. All other previously described features (Weinziger et al., 1994) of the 

predicted protein sequences remain unchanged. 

 

 
Figure 30: ClustalW multiple alignment of the predicted ks1 peptide sequences 
deduced from the genes included on the analyzed BAC clones. Conserved amino acid 
residues are indicated in colours, white shading of residues highlights variable sites. 

 

2.5.3 Screening the Hydra magnipapillata EST project for ks1 gene family members 

The Hydra EST sequencing project at Washington University’s Genome sequencing 

center provided an additional possibility to get information about the expression of 

different ks1 genes in Hydra magnipapillata. Searching the 174.000 Hydra ESTs for ks1 

coding sequences identified 209 single EST sequences covering at least parts of the 

ks1 gene. These ks1 positive ESTs were assembled using the previously described 

EST analysis pipeline (see also Figure 13, chapter 2.2.3) on the “Compagen” platform 

with adjusted parameters. To exclusively assemble identical gene sequences and not to 

mix genes because of their repetitive structure, the identity threshold for the assembly 

was set to 99%. Of the initial sequence set 192 sequences fell into clusters, resulting in 

5 different contig consensus sequences. The remaining 17 sequences could not be 

grouped into clusters and might thus represent separate transcripts of other ks1 gene 

copies. For further analysis only the consensus contigs were used as they encode for 

the full-length protein sequence. The resulting predicted protein sequences named 

Hm_ks1_A to Hm_ks1_E are aligned in Figure 31. Compared to the three predicted 
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proteins from sequencing the BAC clones (Figure 30), five different predicted ks1 

protein versions could be identified within the ESTs. Similar to the BAC derived 

sequences, these predicted proteins differ in the amount of conserved cysteine pairs 

within the acidic domains (red). In addition, Hm_ks1_D seems to have lost the small 

lysine rich basic domain separating the two acidic ones. 

 

 
Figure 31: ClustalW multiple alignment of assembled predicted ks1 protein sequences 
derived from the ESTs. White shading indicates variable amino acid residues; asterisks mark 
the position of conserved cysteine residues. 

 

Two of the previously identified BAC sequences were found to be within this EST 

derived dataset. Whereas Hm_ks1_18A7 corresponds to the EST derived variant 

Hm_ks1_E, the corresponding counterpart to Hm_ks1_87C19 is EST variant 

Hm_ks1_B. Gene Hm_ks1_10A18 seems to encode for an additional version resulting 

in a total of 6 different predicted ks1 protein sequences. The apparent domain 

composition together with the presence or absence of conserved cysteine residues 

might point to different protein 3D topologies.  
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2.5.4 Screening the Hydra magnipapillata genome sequence for the ks1 gene family 

During 2006, the genome of Hydra magnipapillata was sequenced in a whole genome 

shotgun approach at the J. Craig Venter Institute (JCVI) in Rockville, USA and the 

resulting ~12 million single genomic reads recently got assembled at the Institute of 

genomic research in Rockville (TIGR) and in a second approach by the Joint Genome 

Institute (JGI, Berkeley). Both the TIGR and the JGI-assembly are not yet publicly 

available but they were made accessible for trial usage to the Hydra community. This 

offered the possibility to get new and deeper insights into the ks1 gene-family situation.  

Both genome assemblies were screened by TBlastN searches for ks1 related 

sequences. Whereas the TIGR assembly exhibited 19 possible loci for ks1 encoding 

genes, screening the JGI assembly identified only 5 putative loci. A direct comparison 

revealed that the 5 predicted loci from JGI were also within the results of the TIGR 

dataset. Thus, all further analyses were carried out on the basis of the TIGR genome 

assembly. All predicted loci were carefully hand checked and if possible complete or 

partial ks1 genes were annotated on the corresponding genomic scaffold. This 

procedure identified 14 loci encoding a complete and coding ks1 gene, two loci coded 

only for parts of the gene sequence as they were situated at the end of a scaffold and 

three loci exhibited disrupted or highly diverged ks1 related sequence. Two loci were 

found to encode for identical ks1 genes and further analysis revealed that also the 

complete scaffolds share 98% identity on nucleotide level (data not shown) and thus 

most probably represent alleles. To better distinguish the different loci all intact genes 

were assigned Hm_ks1_1 to 13, partial genes were named ks1_partial_1 and 2, and 

diverged loci were assigned ks1_diverged_1 to 3 (see also Table 6). To check which of 

the 13 identified genes are expressed, all genomic ks1 coding sequences were 

compared to the available Hydra magnipapillata EST collection.  
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Gene name Scaffold # gene length 
ATG–STOP 

(bp) 

length of 
predicted 

peptide (aa) 

conserved 
cysteine 
residues 

covered by 
ESTs 

corresponding 
BAC clone 

Hm_ks1_1 1101284898227 1714 224 12 yes / Hm_ks1_A - 

Hm_ks1_2 1101284911599 1730 224 12 yes Hm_ks1_10A18 

Hm_ks1_3 1101284871475 1780 224 12 yes / Hm_ks1_B Hm_ks1_87C19 

Hm_ks1_4 1101284937399 1723 219 12 no - 

Hm_ks1_5 1101284937399 1663 227 12 no - 

Hm_ks1_6 1101284937399 1780 224 12 yes - 

Hm_ks1_7 1101284939199 1691 208 9 yes - 

 1101284922152 1691 208 9 yes - 

Hm_ks1_8 1101284904964 1687 203 9 yes / Hm_ks1_C - 

Hm_ks1_9 1101284920977 1692 208 9 yes / Hm_ks1_E Hm_ks1_18A7 

Hm_ks1_10 1101284882688 1692 203 9 yes - 

Hm_ks1_11 1101284900312 1596 208 8 yes - 

Hm_ks1_12 1101284872160 1587 202 8 no - 

Hm_ks1_13 1101284935645 1359 170 8 yes / Hm_ks1_D - 

 
ks1_partial_1 1101284920977 (partial) 174 - - - - 

ks1_partial_2 1101284935645 (partial) 108 - - - - 

 
ks1_diverged_1 1101284871475 incomplete 2 internal stop codons 

ks1_diverged_2 1101284871475 incomplete 3 internal stop codons 

ks1_diverged_3 1101284936749 incomplete very diverged fragments originating from  2 clustered genes 

Table 6: Identified putative ks1 gene encoding loci in the Hydra magnipapillata genome assembly.  

 

Ten out of thirteen genes were found being covered by cDNA sequence at a minimum 

of 98% identity on nucleotide level. Also the 5 different ks1 versions identified during the 

EST analysis were found among the genes annotated from their corresponding genomic 

scaffolds. In addition, the previously sequenced BAC clones could be clearly mapped to 

a corresponding genomic scaffold using the particular BAC-end sequences as query 

(see Table 6). 

For all annotated ks1-encoding loci, gene models were generated showing the relative 

gene structure and the precise exon/intron sizes (see Figure 32). Except of the 

Hm_ks1_13 gene that has apparently lost the second intron and fused exons two and 

three, all other predicted gene models exhibit a four-exon gene architecture with a high 

degree of conservation in the sizes for the first and the last exon (blue) and variable 

sizes in the second and third exon (rose). Interestingly Hm_ks1 genes 1-3 and 6 share 

identical exon sizes whereas all other genes differ from each other in at least one of the 

exons. Inferred from the gene structure Hm_ks1_10, 11 and 12, together with the 

already mentioned Hm_ks1_13 seem to be the most diverged genes. The identified 

“partial” ks1 genes encode only for one exon generally consistent in the corresponding 
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sizes but from present data it is unclear, whether they belong to a complete gene or 

remain fragmented. Taking a closer look on the diverged ks1 encoding loci in 

ks1_diverged_1 and 2, the relative gene structure is still present but due to single 

nucleotide polymorphisms (SNPs) inserted stop-codons in the second or third exon 

respectively the continuous open reading frame is interrupted. The third identified 

diverged ks1-encoding locus appeared to be highly derived so that no obvious gene 

structure could be deduced. 

To get insights into the conservation and/or divergence of the 13 complete coding 

genes, mutiple sequence alignments were generated using the MAFFT program (Katoh 

et al., 2002) for large sequences (for alignment see Appendix, Figure 7). A surprisingly 

high degree of conservation could be observed within the coding region (96% on 

nucleotide level) but also in the smaller intronic regions (92% on nuc. level). The only 

more variable region was found in the first intron (84% on nuc. level), which is usually 

around 600 bp in size. Of course some of the more derived gene variants show 

deletions or insertions like a 325 bp deletion in gene Hm_ks1_13 but the overall 

conservation remains unexpectedly high. 
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Figure 32: Gene models for the identified ks1 genomic loci within the Hydra magnipapillata 
genome. 
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To infer the evolutionary relationships of the 13 different coding ks1 genes, multiple 

alignments were generated and application of a so-called Neighbor-Joining (NJ) 

phylogenetic distance method, based on the aligned ks1 genes, resulted in a clear 

separation of four distinct groups of sequences (see Figure 33). All nodes are supported 

by high bootstrap values and a similar tree could be obtained by maximum parsimony 

(MP) analyses as used for the Hydra phylogeny project (see Methods 7.1.4.4). Five 

different ks1 gene copies were grouped together in group A with Hm_ks1_1 being the 

most basal one. Within group B Hm_ks1_4 seems to be highly diverged in comparison 

to the more closely related genes 2 and 5. Only two gene copies Hm_ks1_3 and 6 fall 

into group C. The most distant and diverged sequences from genes Hm_ks1_11 and 12 

resolved in group D. With regard to the previously shown gene models it was surprising 

that the (from exon/intron structure) apparently derived genes Hm_ks1_10 and 13 

resolved in group A.  

 

Figure 33: Neighbour-Joining (NJ) tree of complete ks1 gene sequences. Bootstrap values for NJ 
criteria are depicted at the corresponding nodes; branch lengths are scaled to the expected number of 
substitutions (0.02 substitutions per site). As outgroup served a random genomic H. magnipapillata 
sequence.  
 

Unfortunately, lacking ks1 sequence data of more basal Hydra species like Hydra 

carnea or Hydra vulgaris AEP, the phylogenetic tree in Figure 33 does not represent a 

complete phylogeny of ks1 gene family. It only displays the affinities of the 13 members 
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within Hydra magnipapillata. But it is yet noteworthy that together with the most basal 

Hm_ks1_1 from group A, most genes in groups B and C exhibit similar exon sizes (see 

Figure 32) and thus code for similar proteins. Taken into consideration that group D 

genes might not represent the ancestral state because of their obviously high 

divergence (Figure 32), the conserved architecture of genes 1-3 and 6 instead may 

represent the evolutionary ancestral state from which the other variants may have 

evolved.  

 
Figure 34: ClustalW multiple alignment of predicted peptide sequences derived from 13 full-
length ks1 gene models. 

 

To further characterize the 13 identified ks1 genes, the corresponding predicted peptide 

sequences were analyzed according to the already known domain features (see Figure 

27, chapter 2.5). From the multiple alignment (Figure 34) five different possible types of 

ks1 proteins could be identified. 1) Genes Hm_ks1_1- 3, 5 and 6 encode for a long type 

(224-227 aa) comprising the classical previously described domain structure. 2) The 
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predicted proteins of genes 7-10 (203-208 aa) share a deletion within the first acidic 

domain leading to the loss of 17 amino acid residues. 3) The third type (genes 11+12) 

exhibits a similar deletion but here the missing residues are in the second acidic domain 

resulting in a loss of 15 aa. 4) Hm_ks1_4 seems to have been derived within the first 

acidic domain and thus forms its own derived protein type. 5) Finally, Hm_ks1_13 (170 

aa), encoded by only 3 exons, shows the largest deletion, which results in the loss of 

the complete 2nd basic and large parts of the 2nd acidic domain.  

2.5.5 Ks1 genes are clustered within the Hydra magnipapillata genome 

Some identified ks1 encoding loci fell onto the same genomic scaffold and, thus, 

represent members of multiple ks1 gene clusters within the Hydra magnipapillata 

genome. As depicted in Figure 35, four different clusters have been identified with two 

or three involved ks1 genes. The distances between the single genes range from 7.9 to 

more than 20 kbp and their orientation differs in each cluster. Interestingly, in both 3-

gene-clusters only one gene (Hm_ks1_3 and Hm_ks1_6) is covered by ESTs whereas 

the other are either diverged or not expressed. Moreover, from the NJ inference it was 

already shown that Hm_ks1_3 and Hm_ks1_6 are most closely related and might 

represent the result of a gene duplication event whereupon the other members in the 

cluster seem to be independent duplications. A possible duplication of the whole cluster 

seems thus to be unlikely. 

 
Figure 35: Schematic overview of clustered ks1 genes within the Hydra magnipapillata genome 
scaffolds. Black arrows indicate the orientation of the corresponding gene; asterisks mark the positions 
of additional STOP codons in non-functional duplicates. 
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To get an impression of how the ks1 genes and clusters are distributed within the Hydra 

genome, fluorescent in situ hybridization (FISH) on mitotic chromosome plates of Hydra 

magnipapillata using the 1,2 kb Hm_ks1_18A7 probe were carried out at different 

hybridization and washing stringencies. As shown in Figure 36 A-D, a strong 

hybridization signal was detected on three chromosome pairs using stringent conditions 

(3 x 5 min. 0,1 x SSC at 61°C). With reduced stringency (3 x 5 min. 0,5 x SSC at 43°C) 

several additional signals appeared on other chromosome pairs (Figure 36 E-F).  

 
Figure 36: Fluorescence in situ hybridization (FISH) of ks1 on Hydra magnipapillata mitotic 
metaphase chromosomes. (A) FISH using a 1,2 kb ks1-1 probe without DAPI counterstaining; (B,E,F) 
FISH using the ks1-1 probe with DAPI counterstaining. Arrows mark the ks1 positive chromosomes. (C-
D) and (G-H) Karyograms of H. magnipapillata metaphase chromosomes. (A-D) Stringent hybridization 
and washing conditions. (E-H) Low stringency hybridization and washing. Bars indicate 10µm. Pictures 
courtesey of Dr. B. Anokhin. 
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A possible explanation for the strong fluorescent signals present under both stringent 

and less stringent conditions might be the hybridization of a ks1 gene cluster in contrast 

to single gene copies that hybridize only under reduced stringency. Taken together, 

these findings complement the previously described complexity of the ks1 gene family. 

2.5.6 Insights into the regulation of ks1 genes by promoter comparison 

Since the regulation of ks1 genes may provide a model for understanding how 

positional signals control the differentiation of epithelial cells, a further motivation was to 

get insight into the conservation of regulatory elements in their promoters. For nine of 

the 13 identified ks1 genes sufficient genomic 5’-flanking sequence was available. To 

generate conservation profiles and to infer conserved cis regulatory elements, 

comparative “phylogenetic footprinting” methods were applied based on the ConSite 

(Sandelin et al., 2004) and Vista (Frazer et al., 2004) online platforms. 

 
Figure 37: mVista conservation profile for nine ks1 promoters. The profile covers 4,2 kb of 5’-flanking 
region; the start codon of the corresponding genes is at position 0 bp; depicted in blue are regions where 
sequence similarity of each sequence lies above 50% compared to the reference sequence. Sequence 
numbers correspond to the accession numbers of the genomic scaffolds. Note that for sequence Nr. 
1101284882688 only 890 bp of promotor sequence were available for comparison. 
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Comparing 4,2 kbp of the selected ks1 promoters (Figure 37) revealed a high degree of 

conservation in the proximal 700 bp for all analyzed genes. Furthermore, for six genes 

this conserved region covers even 1200 bp. In addition to that, some conserved blocks 

of sequence could be identified in the upstream 4,2 kbp 5’-flanking region of the 

particular gene. Prediction of putative transcription factor binding sites (TFBS) using 

ConSite with thresholds of 96% sequence conservation and 90% TF score, resulted in 

the identification of several conserved binding elements within the most proximal 1 kb 

(see Figure 38). In all analyzed promoters a TRE-binding motif, a 27bp sequence 

previously characterized as Hyko-11 site (Endl et al., 1999) and a GATA-binding motif 

were found to be highly conserved in sequence and position on the first 300 bp 

upstream of the ks1 coding sequence. Both TRE- and Hyko-11 motif have been 

experimentally verified during gel shift experiments (Endl et al., 1999). The short TRE 

sequence serves as the binding site for transcription factor AP1 and for vertebrate 

genes numerous experiments have shown its requirement for TPA induction (Angel et 

al., 1987). For Hydra TPA was shown to induce ectopically expression of ks1 by 

inhibiting DNA protein interactions at the ks1 promoter (Endl et al., 1999). The Hyko-11 

element has been identified as a binding site for a putative Hydra specific transcription 

factor. Among all other TFBS that appeared to be highly conserved in sequence but 

variable in position (Figure 38), a FREAC3 binding site, a predicted Ubx binding site, a 

TCF11 binding element as well as a binding motif for members of the broad-complex 

(BC) family could be identified. The high degree of conservation for these binding sites 

implies that their potential for mutations is constricted by their function. Thus, these 

sequences may contain targets essential for head-specific gene expression. 

 

 

Figure 38: Schematic overview of potential regulatory target sites on 
the ks1 promoter. The transcription initiation site (asterisk) is located 42 bp 
upstream of the translation initiation codon. 
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2.5.7 Concluding remarks 

The results presented here show that the previously identified head specific gene ks1 is 

a member of a large gene family with a complex distribution in different closely related 

species of the genus Hydra. Whereas in basal Hydra species no close ks1 homolog 

could be identified in heterologous Southern blot experiments, the four most advanced 

members show different hybridization patterns, indicating different complexity in their 

ks1 gene families (Figure 39).  

 

 

Figure 39: Schematic overview of the distribution of ks1 genes across the genus Hydra. (+) 
and (-) indicate the abundance of ks1 positive hybridization signals on the heterologous Southern 
blot (see Figure 28). 

 

The most complex situation could be determined in Hydra magnipapillata, where the 

ks1 gene family consists of 13 members of whom 10 are represented in the Hydra EST 

collection. Comparison of gene structures and sequences revealed high degrees of 

conservation within the first and the fourth exon, whereas exons two and three exhibit 

several different modifications. Phylogenetic analyses indicate four groups of related 

ks1 genes. Localization of the genes on assembled genome data as well as 
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fluorescence in situ hybridization suggest that some members of the ks1 gene family 

are clustered within the Hydra magnipapillata genome. Translated gene sequences 

propose at least five variants of different ks1 proteins with alterations in a domain like 

manner. Comparison of 9 available ks1 promoters resulted in the identification of a 

conserved core region including conserved DNA binding sites.  

Taken together, the large species-specific complexity of the ks1 gene family in addition 

to the complex distribution of ks1 within the genus Hydra, provide a good model to study 

the evolution of a taxon- specific (in this particular case, genus-specific) gene. 
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3 DISCUSSION 

 

3.1 Towards a full molecularization of cnidarian models systems 

As sister group of the Bilateria, Cnidaria occupy a key place in the evolutionary tree and 

make it possible to infer the genetic complexity of ancestral metazoans (see Figure 1, 

chapter 1.3). The lack of genetic background information, however, made it difficult so 

far to use cnidarians in comparative genetics and genomics. Meanwhile several of these 

basal metazoan animals are on the way to become fully molecularized, modern model 

systems.  

3.1.1 A molecular phylogeny for Hydra 

While a substantial number of molecular and genetic resources are already available for 

Hydra and functional tests have been developed and can be applied, several other 

resources are still missing. In the aim to complement already available resources for the 

first time a molecular phylogeny for Hydra has been generated (Hemmrich et al., 2006) 

using different marker genes from nuclear (18S, 28S) and mitochondrial (16S, CO1) 

DNA. Not to unravel the phylogeny of the complete genus Hydra that would have 

required extensive worldwide sampling, the analyses were focused on species and 

strains that are most commonly used in current research. The obtained grouping of the 

different species almost completely conformed what was already proposed from 

morphologically based taxonomy (Campbell, 1983; Holstein, 1995). The only symbiotic 

species Hydra vridissima resolved as most basal, whereas species of the previously 

postulated “vulgaris group” represent the most derived state. However, the finding that 

Hydra vulgaris AEP, previously described as Hydra vulgaris strain (Martin et al., 1997), 

resolved as close relative to Hydra carnea was surprising and unexpected and 

demonstrated that morphological features failed so far to correctly group that species. 

This finding is of particular importance as Hydra vulgaris AEP is the strain used to 

generate transgenic animal lines whereas most genomic information is available for 

Hydra magnipapillata. The high degree of similarity of the trees obtained using three 

different phylogenetic methods – maximum likelihood, maximum parsimony and 

Bayesian inference – strongly suggests that the resulting phylogenetic estimates are 

robust and may serve as solid fundament for upcoming comparative approaches.  
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3.1.2 Computational resources for cnidarian comparative genetics and genomics  

The sequencing of several basal metazoan genomes and large EST collections for even 

a larger number of lower metazoan organisms offers a wide range of possibilities to 

conduct comparative genetics or genomics approaches. For the sea anemone 

Nematostella vectensis two different genome assemblies became available during the 

last year. One assembly is completely accessible through a graphical genome browser 

at the Joint Genome Institute (JGI) in Berkley, whereas the other is at least Blast 

searchable on the Nematostella focused online platform StellaBase (Sullivan et al., 

2006). For Hydra, the only public resource till yet is a website (www.hydrabase.org) that 

attempts to govern the sequence data from the Hydra magnipapillata EST project.  Also 

temporary access to a preliminary version of a Hydra genome browser at JGI proved to 

be of limited use as the supplied genome assembly was of low quality. A second 

genome assembly performed at the institute of genomic research (TIGR) provided much 

better quality but is not publicly available. Thus, most of the available molecular 

resources for Hydra remained collections of raw data deposited in public repository 

databases that provided limited analytical possibilities. 

The development and construction of “Compagen” for the first time provides an up to 

date comprehensive analytical resource for the application of bioinformatics methods 

not only to Hydra data but also to all other publicly available cnidarian datasets. In 

addition to that, vast amounts of data provided on “Compagen” are already processed 

data, such as assembled EST sequences or predicted peptide collections. Moreover, for 

comparative purposes also data for lower as well as higher metazoan animals are 

available. The platform can be used for various types of sequence analyses starting 

from a single DNA or protein sequence up to high-throughput analyses including 

thousands of sequences. As “Compagen” proved to be a valuable resource in several 

different projects and collaborations presented here and elsewhere (Augustin et al., 

2006; Genikhovich et al., 2006; Kürn et al., 2007; Miller et al., 2007), further 

development in the future will add not yet implemented but important features like an 

internal sequence retrieval system and the possibility of online access to all information 

stored within the “Compagen” database. 
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Taken together, the newly available molecular and computational resources presented 

here facilitate research for all cnidarian models and make Hydra the most advanced and 

the farthest molecularized model system within Cnidaria.  

 

3.2 The ancestral genetic toolkit – what we can learn from basal animals 

One of the most striking findings in the last few years in comparative genetics and 

genomics was that the link between morphological complexity and gene number is 

illusive (Technau et al., 2005). The idea of a simple ancestral genetic toolkit based on 

the “low” complexity of ancestral animals turned into a contradiction as soon as 

scientists started to look into their genomes (Kortschak et al., 2003). The common 

ancestor of cnidarians and higher animals was surprisingly complex on the genetic level 

and it quickly became clear that the reduced complexity in the genomes of Drosophila 

and C. elegans was due to a high level of derivation (Kortschak et al., 2003). To unravel 

the real ancestral genetic toolkit, it is thus necessary to analyze the genomes of lower 

metazoan animals and maybe even of their unicellular predecessors.  

Today the availability of genome and EST data for two different cnidarians, the sea 

anemone Nematostella vectensis and the freshwater polyp Hydra, situated at different 

phylogenetic positions within the cnidarian phylum, offer new perspectives on the 

evolution of genes, pathways and developmental mechanisms. In a first screening to 

unravel the cnidarian repertoire of genes involved in the innate immune systems of 

higher invertebrate and vertebrate animals, the idea of a genetically complex common 

ancestor could be strongly supported (Miller et al., 2007). A large variety of genes 

related to immunity were identified (see chapter 2.3). The Toll/TLR, MyD88 and IL-1R 

gene families were shown to be distinct before the divergence of the Cnidaria from the 

Bilateria. Recent findings in sponges suggest that the Toll/TLR pathway even precedes 

the Porifera/Eumetazoa split (Wiens et al., 2007). Finding genes that code for proteins 

with the same domain structure as the IL-1R in Nematostella indicates that this receptor 

type even predates chordate origins and that its original ligands may not have been 

interleukins. In addition, identification of components from the complement system 

including C3 and multiple MAC/PF proteins suggest the presence of a prototypic 

effector pathway in these basal metazoans. Another implication on genome evolution 
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came from the direct comparison of the Nematostella and Hydra genomes, highlighting 

the likely extent of gene loss and sequence divergence in the latter. Major components 

of the Toll signaling cascade such as the Toll-receptor and the nuclear factor NF-kB 

have been lost or diverged beyond recognition.  In addition, Hydra appears to have lost 

a number of MAC/PF proteins and lacks an equivalent of the ancestral complement 

component C3, which may implicate a degeneration of the prototype complement 

effector pathway. But gene loss also occurred within the anthozoans, as the gene 

encoding for the MAC/PF protein apextrin has been lost in Nematostella but is still 

present and expressed in Acropora millepora. 

Taken together, these preliminary analyses of the newly available genomic and 

transcriptomic datasets show another example for ancestral genetic complexity but they 

also highlight the level of divergence present within closely related animal taxa. Thus, 

simple comparisons between these taxa are unlikely to be informative in terms of 

understanding the evolution of genes.  

An important general implication from these data is, that gene loss may occur 

stochastically. If genes involved in certain pathways only possess this particular 

function, then the complete pathway would disappear following the loss of one key 

component. However, the Hydra Toll/TLR data seem to contradict this, as most of the 

intracellular intermediates are present despite loss of the corresponding receptor, 

suggesting the invention of an alternative or even novel molecule bypassing this 

problem. Reconstructing the ancestral genetic toolkit of the common animal ancestor 

will not be a simple task; it will require the comparison of genome data for a wide range 

of lower as well as higher animals. 

 

3.3 Novel genes – possible key players in animal diversity 

To understand the evolution of novelty is a central problem in evolutionary and 

developmental biology. Mainly three different evolutionary levels of novelty are currently 

being discussed: i) the evolution of novel genes, ii) the invention of new regulatory or 

functional circuits, and iii) the evolution of new morphologies (e.g. animal diversity). For 

the evolution of new genes and new circuits meanwhile a variety of possible 

mechanisms have been identified. Certainly gene duplication is the most obvious and 
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frequently named one, but also others such as exon shuffling, retroposition, gene 

translocation, mobile elements, lateral gene transfer and “tinkerism” all reviewed in 

Long, (2001), have been shown to be able to invent new genes, new functions and also 

new regulatory circuits (Long, 2001). For the evolution of novel morphological features, 

a “central dogma” has been formulated including the differential spatio-temporal use of 

the same conserved regulatory genes in all animals as well as changes in the use of 

regulatory proteins or changes in the action of downstream or effector genes (Carroll et 

al., 2001).  

With the advent of comparative genomics and transcriptomics we learn that this dogma 

may not be the only possibility to generate morphological novelty. Several recent 

comparative studies identified a proportion of novel genes that seemed to be restricted 

to a certain phylum, class, genus or even species. Genes of this category are referred 

to as taxon- or species-specific genes. Comparative studies investigating vulval 

patterning in nematodes revealed that the underlying genes and mechanisms are highly 

species specific (Gibson, 2001; Sommer, 1997). In addition to that, a substantial 

number of novel genes identified have been suggested being implicated in structures 

important to all nematodes such as the collagenous cuticle (Hutter et al., 2000). An 

extensive transcriptomic analysis of the phylum Nematoda including more than 30 

different species of nematodes (Parkinson et al., 2004) revealed that more than 50% of 

the genes were unique to the phylum. In the same way, analysis of two yeast genomes 

(Goffeau et al., 1996; Wood et al., 2002) showed that over 680 proteins seem to be 

unique to Schizosaccharomyces pombe, while over 1000 proteins were shown to be 

unique to Saccharomyces cerevisae. And when comparing the fungus Neurospora 

crassa to its yeast relatives, more than half of the genes showed no significant similarity 

(Arnold and Hilton, 2003). A similar trend could also be observed within the large-scale 

EST analysis approach conducted on several different Hydra cDNA libraries shown in 

this thesis (chapter 2.4). In all seven experiments the proportion of genes with no 

homologs in other animals was around 30%. A good hint, that these genes might also 

represent taxon- or species-specific genes came from the analysis of transcripts 

identified in a SSH cDNA library focused on genes predominantly expressed in 

cnidocytes (see also chapter 2.4.2). There, 80% of the transcripts that turned out to be 

non-homologous sequences were shown to be expressed in cnidocyte precursors as 

well as in mature cnidocytes (Milde et al., in prep.).  As cnidocytes are restricted to the 
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cnidarian phylum and specific cnidocyte types are restricted to single species, these 

genes represent bona fide taxon- or species-specific genes. With regard to the above-

mentioned three levels of generating evolutionary novelty, it may be easily possible to 

explain the mechanisms of how these novel genes have been invented but it is 

surprising that so far no one tried to interconnect this first level of gene invention with 

the third level of morphological novelty implicating the role of a taxon specific gene in 

defining also a taxon specific feature. 

Another new example of such a taxon- and even species-specific gene within cnidarians 

is the Hydra magnipapillata ks1 gene family. Attempts to find a possible counterpart in 

all other available cnidarian sequence dataset as well as searches in all other “lower” 

and “higher” metazoan animals so far failed to identify a possible homologous sequence 

(see also chapter 2.5). Moreover, it was shown in heterologous southern blot 

experiments that the ks1 genes are even absent or at least highly derived in some 

closely related Hydra species. In addition to that, some Hydra species seem to have 

differences in ks1 gene numbers. Interestingly and consistent with the idea of a novel, 

species specific gene, functional analysis of the ks1 promoter in Hydra vulgaris revealed 

that transcriptional regulation of ks1 also involves novel transcription factor binding sites 

(Endl et al., 1999). Furthermore, the expression of ks1 in a very specialized Hydra 

specific cell type, the developing battery cell, also points towards species specificity. 

Why expression of the ks1 gene is essential for maintaining head structures in some 

Hydra species (Lohmann et al., 1999) while it is not even present in others remains to 

be shown.  

Taken together, finding numerous novel genes expressed in a taxon specific manner 

indicate that conserved regulatory genes and signal transduction cascades alone may 

not be sufficient to explain the advent of a novel, taxon-specific morphological feature. 

More plausible seems a combination of both conserved and unique components. 

Obviously many different novel genes were invented in several independent lineages 

during animal evolution. It might be crucial for the understanding of evolution not only to 

investigate the similarities between organisms but also the differences. 
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3.4 Genomic plasticity prior to the divergence of Cnidaria 

During evolution, several qualitative and quantitative changes like the expansion of 

gene families, the appearance of new function and the invention of new regulatory 

circuits have shaped the metazoan genome. Within Hydra we find direct indications for 

dramatic changes during genome evolution. Measuring and comparing the genome 

sizes of several different Hydra species revealed significant differences (Zacharias et 

al., 2004). While the most basal Hydra viridissima exhibits the smallest genome with 

380 mbp, other more derived Hydra species dramatically increased the genome size to 

1.250 in Hydra magnipapillata and even 1.450 Mbp in Hydra oligactis (Zacharias et al., 

2004).  

Further indications come from comparisons of the genetic complexity of several 

developmental genes. As described in this thesis (chapter 2.5), the extensive genomic 

characterization of the ks1 gene family showed high degrees of interspecies variation, 

gene numbers but also significant levels of complexity within one species. The finding of 

at least 13 related genes, most of them expressed and some of them even clustered 

within the genome suggests rapid evolution at surprisingly high levels of conservation in 

gene structure and also within the promoters. Characterization of ks1 related genes in 

more basal Hydra species (e.g. Hydra carnea, Hydra vulgaris AEP) could even reveal 

the evolutionary origin of such a taxon- and species-specific gene.  

Similar to the ks1 genes described here, the PPOD gene family was previously shown 

to be differentially distributed across different Hydra species (Thomsen and Bosch, 

2006). Whereas only one gene copy was found in Hydra oligactis and Hydra robusta, 

several genes were identified in Hydra vulgaris and Hydra magnipapillata. Moreover, 

comparing their expression patterns resulted in striking differences. The PPOD gene 

family, therefore, might represent another example how new evolutionary opportunities 

are created.  

Finally, two recent studies provide first evidence that also in Hydra horizontal gene 

transfer complements the mechanisms that increase the complexity of the genome 

(Habetha and Bosch, 2005; Steele et al., 2004). Recent publications on research in 

other cnidarians such as the coral Acropora and the sea anemone Nematostella report 

similar mechanisms of genome evolution (Technau et al., 2005). Moreover, analysis of 
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the available EST collections provides evidence for a significant number of genes only 

found in non-animal kingdoms. These genes might represent ancient genes that have 

been lost by all bilaterians rather than genes gained by recent lateral gene transfer 

(Technau et al., 2005). Taken together, comparative genomics studies presented here 

and elsewhere point to unexpected genomic plasticity and complexity within groups of 

closely related species at the base of metazoan evolution. 
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4 SUMMARY 

Among the basal metazoa, cnidarians are used as classical model systems in 

evolutionary and developmental biology. Entering the age of genomics and 

transcriptomics, new molecular tools and data resources for model cnidarians, such as 

the sea anemone Nematostella vectensis or the fresh water polyp Hydra magnipapillata, 

become available and offer the possibility of getting new insights in various aspects of 

evolution and development. To complement the already available molecular resources 

for Hydra, I report in this thesis the establishment of a molecular phylogeny for selected 

members of the genus Hydra, based on the phylogenetic analysis of two nuclear (18S, 

SSU; 28S, LSU) and two mitochondrial (16S, CO1) markers. 

In a second project, complementing resources for cnidarian comparative genomics, 

“Compagen”, a bioinformatics analysis platform for basal metazoan sequence datasets, 

was established and used in several different approaches. “Compagen” was used to: i) 

unravel the cnidarian repertoire of genes related to innate immunity in a comparative 

genomics study, which resulted in unexpected genetic complexity of the metazoan 

ancestor and provided evidence for stochastic gene loss in more derived cnidarian 

species; ii) identify several interesting genes involved in patterning, embryogenesis and 

immunity during large-scale gene expression profiling approaches using Hydra EST 

data. In addition, a large proportion of non-homologous sequences obtained in each 

analysis showed to encode for taxon-specific genes; iii) characterize a novel gene, the 

Hydra ks1 gene family. Ks1 was shown to represent a large and partly clustered gene 

family with 13 conserved members in Hydra magnipapillata. During a genus-wide 

comparison striking differences in the gene distribution in other Hydra species could be 

observed, introducing the ks1 genes as possible model for gene or even genome 

evolution within the genus Hydra. 

The described established resources together with the obtained results contribute to a 

better understanding of cnidarian evolutionary and developmental biology as well as the 

evolution of metazoan genomes. 
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5 ZUSAMMENFASSUNG 

Cnidaria stellen als basale Metazoen klassische Modellsysteme in der Entwicklungs- 

und Evolutionsbiologie dar. Im Zeitalter von Genom- und Transkriptomanalyse sind 

auch für einzelne Vertreter der Cnidaria, wie z. B. der Anemone Nematostella vectensis 

oder dem Süßwasserpolypen Hydra magnipapillata, neue molekulare Werkzeuge und 

Datenressourcen entwickelt worden, die neue Perspektiven für wissenschaftliche 

Fragestellungen ergeben. Mit dem Ziel, die bereits vorhandenen molekularen 

Ressourcen für Hydra zu erweitern, wurden die Verwandtschaftsverhältnisse 

ausgewählter Hydra-Arten durch eine molekularphylogenetische Analyse mittels zweier 

Kernmarker (18S rDNS, 28S rDNS) und zweier mitochondrieller Marker (16S rDNS, 

Cytochromoxidase 1) aufgeklärt. 

In einem zweiten Projekt wurde eine bioinformatische Analyse-Plattform, genannt 

„Compagen“, für vergleichende Genomanalyse in basalen Metazoen entwickelt und in 

den folgenden drei Studien eingesetzt. i) Die vergleichende Suche nach konservierten 

Komponenten des angeborenen Immunsystems in verschiedenen Vertretern der 

Cnidaria zeigte eine unerwartete genetische Komplexität des Vorläufers der höheren 

Metazoen und ergab Hinweise auf zufälligen Verlust von Genen in abgeleiteten Taxa; ii) 

Der Einsatz von Hochdurchsatz-Transkriptomanalysen ermöglichte die Isolation 

mehrerer interessanter Gene in Hydra, die bei der Musterbildung, in der Embryogenese, 

und im Immunsystem eine Rolle spielen. Zusätzlich konnte für einige neu identifizierte 

Gene gezeigt werden, dass diese taxon-spezifisch vorkommen; iii) Die genomische 

Analyse des ks1 Gens ergab, dass es sich in Hydra magnipapillata um eine große 

Genfamilie mit wenigstens 13 verschiedenen Genen handelt, von denen einige 

geclustert im Genom vorliegen. Darüber hinaus wurden signifikante Unterschiede in der 

Verteilung der ks1 Gene innerhalb der verschiedenen Arten des Genus Hydra 

gefunden. Die ks1 Genfamilie kann daher als Modellsystem für Gen- und 

Genomevolution in Hydra dienen. 

Die in dieser Arbeit entwickelten molekularen Ressourcen erscheinen hilfreich für die 

vergleichende Analyse von basalen Metazoen und versprechen, zu einem besseren 

Verständnis von evolutionären und entwicklungsbiologischen Problemstellungen 

beizutragen. 
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7 METHODS 

 

7.1 Computational Methods 

7.1.1 Comparative genomics analysis tools 

7.1.1.1 Sequence alignments 

For alignment of nucleotide and amino acid sequences, a variety of algorithms were 

used. General pair wise or multiple alignments were constructed using ClustalW 

(Thompson et al., 1994), Muscle (Edgar, 2004), T-Coffe (Notredame et al., 2000) or 

Praline (Simossis and Heringa, 2005). To generate spliced alignments of cDNA 

sequences vs. genomic DNA sequence, the MAFFT program (Katoh et al., 2002) or the 

AAT-algorithm (Huang et al., 1997) were used. 

7.1.1.2 Local genomic assemblies 

To generate local genomic assemblies based on raw WGS sequencing reads from the 

NCBI trace archive, the pipeline-based genome-assembler AMOS from TIGR was used 

(www.amos.sourceforge.net). The included lightweight pipeline Minimus served for 

generating up to 80 kbp local alignments including important additional sequence 

information like sequencing-quality or mate-pairs. The Assembly-Viewer was used to 

visualize resulting sequence assemblies and to check the coverage by mate-pairs. 

7.1.1.3 Prediction of ORFs and peptides from EST data and gene prediction from genomic 

sequence data 

To predict the most probable open reading frames and the corresponding predicted 

peptide sequence from assembled EST sequence data, the ESTscan program (Iseli et 

al., 1999) was applied. For each investigated organism, a hidden-markov model file 

(.smat) including among other things the codon usage and Exon/Intron borders was 

created on the basis of the corresponding NCBI UniGene dataset. Gene predictions 

from genomic data were performed using either online prediction programs GenScan 

(Burge and Karlin, 1997) or HMMgene (Krogh, 1997) . 
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7.1.1.4 Detection of conserved domains in peptide datasets using HMMs 

Conserved domains were detected using SMART (Letunic et al., 2004) or a local install 

of HMMer (Eddy, 1998). Hidden Markov models for local searches were obtained from 

PFAM (Sonnhammer et al., 1998) and Superfamily (Gough et al., 2001) databases.  

7.1.1.5 Prediction of transcription factor binding sites and promoter conservation profiles 

For in silico analysis of putative promoter sequences, the publicly available online 

platforms Consite (Sandelin et al., 2004) and Vista tools (Frazer et al., 2004) were used 

with standard parameters. 

 

7.1.2 Programs and algorithms used to setup the “Compagen” facility 

7.1.2.1 Web server and www-Blast-server 

To run a private Blast server within the workgroup, the open source HTTP server 

Apache v.2.2.3 was installed on a RedHat Linux system. The www-Blast package from 

NCBI was integrated and the server configuration files were adjusted to suite the 

custom requirements. To open the server to the public, an accompanying small website 

was implemented at http://www.compagen.org that governs registration of users and 

provides basic information about the platform. 

7.1.2.2 Datasets on the “Compagen” server 

Sequence datasets were downloaded in plain fasta-format from the Ensembl trace 

server (Hubbard et al., 2007) or from Genbank (Benson et al., 2007) and formatted into 

Blast searchable databases using the formatdb script from NCBI´s toolkit. To govern the 

variety of different databases on the server, a common naming convention has been 

developed (see Appendix, Table 1). Every database name consists of three qualifiers. 

The first qualifier indicates the type of sequences within the database (for example 

dbWGS = whole genome shotgun). The second qualifier provides the name of the 

animal species the sequences come from (HMAG = Hydra magnipapillata). The third 

qualifier specifies the date of database construction (070825 = YYMMDD). A detailed 

list of abbreviations can be found in Appendix, Table 1. 
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7.1.3 Programs and algorithms used in the EST analysis pipeline 

Sequence data as well as sequencing quality data was downloaded in flat-file format 

from the dbEST section of NCBI GenBank (Benson et al., 2007) or from the ENSEMBL 

database at the European Institute for Bioinformatics (Hubbard et al., 2007). 

Raw sequence data was checked for obstructive vector sequences, low quality values 

(N-stretches) and adaptor sequences, using the TIGR Gene Indices Sequence Cleaning 

and Validation Script called seqclean from the Institute of Genomic Research (Pertea et 

al., 2003) with the following parameters: psx; –p 1; -n 2000; -i  input database; -d 

cleaning; -v UniVec and/or AdapDB (databases for vector and adapter sequences). 

Cleaning steps were repeated until no sequences were excluded from the dataset any 

more. 

Cleaned sequence datasets were subjected to a two-step procedure, including 

sequence clustering and CAP3 assembly (Huang and Madan, 1999) using the TIGR 

Gene Indices Clustering Tools (TGICL) (Pertea et al., 2003) with the following 

parameters: -p 95; -l 80; -v 40. Resulting contigs were checked using clview, a program 

for visualization of assembly-files (ace.) (Pertea et al., 2003). Remaining singletons 

were extracted using cdbfasta/cdbyank scripts. 

The assembled contigs, as well as the extracted singletons, were subjected to stepwise 

batch Blast-searches (Altschul et al., 1990). Further possible sequence analysis steps 

included domain-searches using SMART (Letunic et al., 2004) and the prediction of 

putative signal peptides using SignalP (Bendtsen et al., 2004). 

For sequences with Blast matches in the first round of homology searches (see Figure 

14, step n1), a semiautomatic or fully automatic functional annotation according to 

general GO terms (Harris et al., 2004) was conducted using Goblet (Groth et al., 2004) 

and/or AutoFACT (Koski et al., 2005). 
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7.1.4 Molecular phylogenetic analysis 

7.1.4.1 Multiple alignments and substitution models 

Sequence alignments were generated using ClustalW (Thompson et al., 1994) included 

into the BioEdit v.7.053 sequence analysis software package (Hall, 1998). Alignments 

were optimized by hand and converted into required file-formats (.nex, .phy). FindModel 

(Tao, 2005) was used to estimate the best-fit substitution models for further 

phylogenetic analyses. To infer phylogenetic relationships among the taxa, three 

different analytical methods were conducted. Maximum parsimony (MP), maximum 

likelihood (ML) and Bayesian inference (BI) methods were used for the dataset of each 

single gene and for the (by concatenation) combined datasets of nuclear and 

mitochondrial genes, respectively. Trees were drawn using TreeView 1.6.6 (Page, 

1996) and MEGA. 

7.1.4.2 Maximum parsimony analyses 

Maximum parsimony (MP) analyses were performed using the MEGA 3.1 software 

package (Kumar et al., 2004). A bootstrap test with 100.000 replicates and random 

seed was conducted to each analyzed dataset. Gaps were set to complete deletion. All 

three codon positions plus noncoding characters were included. The datasets were 

tested using the Close-neighbour-interchange (CNI) method with search level 1. Initial 

trees for CNI searches were build using the Minimal-Mini Heuristic method with a 

search factor of 100. 

7.1.4.3 Maximum likelihood analyses 

Maximum likelihood (ML) analyses were performed using the quartett-puzzling method 

implemented in Tree-Puzzle 5.2 (Schmidt et al., 2002). The analyses included 100.000 

puzzling steps. Exact analysis parameters were estimated from each dataset using 

quartet sampling and NJ trees. Nuclear genes were tested using the Tamura-Nei 

substitution model. For testing mitochondrial genes the GTR (General Time Reversible) 

and the HYK (Hasegawa-Kishino-Yano-85) substitution models were used for CO1 and 

16s, respectively. 
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7.1.4.4 Bayesian Inference analyses 

Bayesian inference analyses were carried out using Mr. Bayes v.3.0 (Huelsenbeck and 

Ronquist, 2001). All analyses were run for 100.000 generations and a sample frequency 

of 100. Trees were inferred at a burn-in of 250. The datasets were tested using the 

General Time Reversible (GTR) substitution model with 6 substitution types and 

gamma-shaped rate variation with a proportion of invariable sites. The gamma 

distribution was approximated using 4 discrete categories. 

 

7.2 Molecular biology methods 

7.2.1 Animal culture 

Molecular phylogenetic analyses and Southern blots were carried out with Hydra 

magnipapillata, Hydra vulgaris (strain Basel), Hydra carnea, Hydra oligactis, Hydra 

robusta, Hydra circumcincta, Hydra viridissima and Hydra vulgaris (strain AEP) (Martin 

et al., 1997; Technau et al., 2003). All experiments concerning the BAC library and 

FISH were carried out with Hydra magnipapillata (strain 105). The animals were 

cultured in mass cultures according to standard conditions (Lenhoff and Brown, 1970) in 

an air-conditioned room maintained at 18 ± 0.5°C. 

7.2.2 Isolation of DNA 

7.2.2.1 Isolation of genomic DNA (standard protocol) 

Genomic DNA from up to 500 Hydra polyps was isolated by tissue homogenization, 

using a plastic pestle in 500 µl lysis buffer and proteinase K treatment (50 µl, 1 mg/ml) 

for 2 h at 50°C, followed by phenol/chlorophorm and ethanol-precipitation steps. After a 

washing step in 75 % ethanol, DNA pellets were resolved in 10 mM Tris (pH 8.0). 

7.2.2.2 Isolation of genomic DNA from Hydra viridissima (aposymbiotic) 

As the standard DNA isolation method for Hydra viridissima yields only small amounts 

of genomic DNA, an alternative protocol was used. Approximately 1000 polyps were 

cooled on ice and washed in 0.5 x PBS (pH 7.4) by consecutive centrifugation steps at 

2000 g. Tissue was homogenized on a horizontal shaker (650 rpm) for 1 h at room 

temperature in a 0.5 x PBS/ 10 % trypsin solution. The resulting cell suspension was 
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lysed in 500 µl lysis buffer and 100 µg/ml proteinase K for 2 h at 60°C. To the resulting 

lysate 2 µl DEPC was added and incubated for 30 min at 60°C. Adding 50 µl 5 M 

potassium acetate and incubation for 30 min on ice was followed by 4 consecutive 

centrifugation steps at 14.000 g for 15 min at 4°C, always carrying over the supernatant. 

Ethanol precipitation was carried out using 750 µl absolute EtOH at room temperature. 

7.2.2.3 Isolation of High-Molecular-Weight (HMW) DNA 

High molecular weight DNA (HMW-DNA) was isolated according to Gindullis et al., 

2001, with minor modifications. For extraction of HMW-DNA, cells of about 1000 polyps 

were used. Polyps were first incubated in dissociation medium (Gierer et al., 1972) 

which contained 1 mM polyamine and pressed gently through a metal screen of 0.5 mm 

pore size. The resulting cell suspension was centrifuged at 1200 rpm for 5 min at 4° C. 

The supernatant was discarded and the pellet was washed two times in washing buffer 

(dissociation medium, containing 1 mM EDTA pH 8.0, 1 mM polyamine), using cell 

saver tips. The washed pellet was resuspended in 2 ml of 0.75 % low melting point 

agarose (InCert Agarose, FMC) and poured into 100 µl plug moulds. Solidified plugs 

were washed overnight in 10 volumes of lysis buffer (0.5 M EDTA, pH 9.0; 1 % Na-

laurylsarcosine; 0.1 mg/ml proteinase K) at 50°C.  After lysis, plugs were washed for 1 h 

at 50°C in 10-20 vol EDTA (pH 9.0 – 9.3) and once in 0.05 M EDTA (pH 8.0) on ice. 

Before use, excess EDTA was removed by washing in ice cold TE buffer containing 0.1 

mM PMSF and three 1 h washes in ice cold TE without PMSF. Plugs were stored in TE 

at 4° C. 

7.2.3 Isolation of total RNA and mRNA 

Total RNA was isolated using TRIzol DNA/RNA extraction reagent from Invitrogen 

according to the manufacturers protocol. For isolation of mRNA the QuickPrep mRNA 

Purification Kit (GE Healthcare) was used according to the manufacturers protocol. 

7.2.4 Preparation of Hydra chromosomes 

Chromosome preparations were obtained using the air-drying method: polyps were 

treated in a hypotonic 0.4 % sodium citrate solution for 25 min and then fixed in 3:1 (v/v) 

ethanol-glacial acetic acid for 15–30 min. Fixed polyps were homogenized in 0.1–0.3 ml 

of 70 % acetic acid. The cell suspension was dropped on pre-warmed (40°C) cleaned 

slides and dried at 37–40°C. 
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7.2.5 Isolation of plasmid DNA 

To isolate plasmid DNA from bacteria, several Kits - depending on the particular 

application – were used according to the manufacturers protocol. For small insert clones 

the “NucleoSpin Quick Pure Kit” (Macherey Nagel) and the “Qiafilter Plasmid Midi Kit” 

(Qiagen) were used. For isolation of large insert clones (BACs) the “BACMAX DNA 

Purification Kit” (Epicentre) and the “Qiafilter Plasmid Midi Kit” (Qiagen) with a BAC-

specialized protocol were used. 

7.2.6 Quantification of DNA 

Concentration and purity of isolated DNA was determined by measuring the optical 

density at 260/280/230 nm using an Eppendorf Bio Photometer or a NanoDrop ND-

1000 spectrophotometer. 

7.2.7 Polymerase Chain Reaction (PCR) 

For standard PCRs, Illustra Taq DNA polymerase (GE Healthcare) was used. To 

amplify larger (up to 10 kb) PCR fragments, the Expand Long Template PCR System 

from Roche was used.  

A typical PCR reaction, used for probe generation or insert check, is summarized in the 

following Table: 

Reagent volume [µl] 

10 x PCR buffer 2.5  

dNTPs [10 mM each] 0.4  

forward primer [10 µM] 1 

reverse primer [10 µM] 1 

Taq polymerase [5 U/µl] 0.2 

template  x 

water fill to final volume 

Total 25 
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7.2.8 Cleaning and extraction of PCR products, dialysis  

To clean or gel-extract PCR products, the “NucleoSpin Extract 2 Kit” from Macherey 

Nagel was used. For dialysis of DNA or to change buffers, “YM-50” columns from 

Millipore were used. 

7.2.9 Agarose and pulse-field gel electrophoresis 

To separate PCR fragments according to their expected size, 0.7 % – 1.4 % agarose 

gels were run on BIORAD horizontal gel electrophoresis devices in 1 x TAE buffer at 

70-90 V. Ethidium bromide was used to stain and visualize (UV-illumination) the 

resulting DNA bands. Depending on the expected fragment sizes, different DNA-size 

standards were added. These included 100 bp – 1 kb ladders from MBI Fermentas, as 

well as low range markers from New England BioLabs. For fingerprinting BAC clones or 

for separation of high molecular weight DNA a BIORAD CHEF-2 pulse-field gel 

electrophoresis system was used according to standard protocols. 

7.2.10 Cloning techniques 

7.2.10.1 Cloning of PCR products 

PCR products were purified as described above and ligated into the pGEM-T vector 

system (Promega) as described by the manufacturer. Ligation mixtures were dialyzed 

against water using nitrocellulose filter membranes (0,025 µm) from Millipore to 

increase the transformation efficiency. Electro competent cells of E. coli strains XL-1 

blue or DH-10B were transformed (BIORAD electroporation device, 1 mm cuvette) 

using up to 15 µl ligation mixture and blue/white selected on ampicillin containing LB-

plates. Positive (white) colonies were picked and subjected to insert check PCR. 

Selected clones were cultured over night in 3 ml LB-amp+ medium and plasmids were 

isolated as described above. 
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7.2.10.2 Bacterial artificial chromosome (BAC) library construction 

Digestion of HMW-DNA was done as described by Gindullis et al., (2001). HindIII 

restriction fragments were resolved by pulse-field electrophoresis (PFGE). Zones with 

restriction fragments between 80 and 150 kb were cut out of the gel and electro eluted 

following standard procedures (Gindullis et al., 2001). Size fractionated HMW-DNA (100 

ng) was ligated into 25 ng of pCC1H BAC vector using the Copy Control BAC Cloning 

Kit (Epicentre) according to the manufacturer’s manual. The mixture was transformed in 

competent DH10B cells (Invitrogen) by electroporation. Cells were plated on LB agar 

plates containing 12.5 µg/ml chloramphenicol, 25 µg/ml isopropylthiogalactoside (IPTG) 

and 50 µg/ml X-GAL (5-bromo-4-chloro-3-indolyl-b-D-galactoside). Bacterial colonies 

were picked by the QPix2 automated colony picker (Genetix) in 144 x 384 micro titer 

well plates, grown overnight and stored at –80°C. 

7.2.11 DNA sequencing 

Sequencing of cDNA or genomic DNA was performed either on a LI-COR 4300 plate 

sequencer or using a MegaBace 1000 capillary sequencing system.  

Sequencing reactions for the LI-COR system were carried out using the SequiTherm 

EXCEL II DNA sequencing kit LC (Epicentre) according to the manufacturer’s protocol. 

The 6 % polyacrylamide gel contained 14 ml H2O, 3.75 ml 40 % Rapid Gel XL solution, 

2.5 ml 10 x TBE long run buffer, 10.5 g urea, 38 µl TEMED and 175 µl ammonium 

persulfate (APS). 5’-IRD700 or IRD800 labeled sequencing primers were used for 

standard sequencing runs. Basecalling and quality assessment was conducted using e-

Seq software package provided with the sequencer. 

Sequencing reactions for the MegaBace 1000 capillary system were carried out using 

the DYEnamic ET Terminator Cycle sequencing kit (GE Healthcare) following the 

manufacturer’s protocol. Amersham Bioscience provided the required sequencing 

matrix and buffers as well as basecalling and sequence assembly software.  
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7.2.12 Hybridization techniques 

7.2.12.1 Southern Blot Hybridization 

20 µg of isolated DNA was digested with 4 Units of HindIII and XbaI respectively. 

Nucleic acids were transferred to Hybond N+ nylon membranes (Amersham 

Biosciences). Hybridizations were carried out over night in Church buffer at 55°C, 

followed by washes in 0.2 x SSC / 0.1 % SDS at room temperature, 42°C and 60°C for 

2 x 30 minutes, depending on the signal/ background ratio. Autoradiographies were 

performed using imaging-plates for the Phosphoimager FLA-5000 (FUJI). DNA-probes 

were radioactively labelled with P–[32P]-dCTP using the Megaprime DNA labelling 

System (Amersham Biosciences). 

7.2.12.2 Screening of the Hydra magnipapillata BAC library 

For the identification of BAC clones containing specific genes, BAC colonies on 

Performa high-density membrane (Genetix) were hybridized with radiolabeled probes 

following conventional Southern blotting protocols. Positive clones were picked from 

348-well plates and pre-cultured in 3 ml 2 x YT medium at 37°C over night. BAC DNA 

was isolated as described above. For restriction digestion fingerprints, 1 µg BAC DNA 

was digested with 10 U HindIII, XbaI and NotI at 37° C for 5 h, and loaded on a 0.7 % 

agarose pulsefield gel. DNA bands were transferred on a N+ nylon membrane and 

hybridized with the radiolabeled specific probe. Selected clones from fingerprints were 

sequenced by primer-walking directly on complete BAC clones using the Amersham 

Bioscience MegaBACE 1000 capillary sequencer. For BAC-end sequences, the LICOR 

plate sequencer was used. 

7.2.12.3 Fluorescence in situ hybridization (FISH) 

FISH was carried out on Hydra chromosomes, using probes labeled by random primer 

labeling with biotin according to the manufacturer’s (Roche) protocol. In situ 

hybridization was performed as described by Schwarzacher and Heslop-Harrison 

(Schwarzacher, 2003) with some modifications. Chromosome preparations were treated 

with 100 µg/ml RNaseA (Sigma) for 50 min at 37°C in humid chamber, washed two 

times in 2 x SSC (5 min each) at 37°C, incubated in 0.01 % pepsin in 0.01 N HCl for 10 

min at 37°C, washed in 1 x PBS for 1 min at RT and in 2 x SSC for 5 min at 37°C, 

dehydrated through an ethanol series (ice cold, 70 %, 90 % and 99 %, 2 min each) and 
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finally, dried. After pretreatment, preparation were mounted using frames for in situ 

hybridization (Peqlab) at 40°C with 90 µl pre-denatured (5 min at 96°C) hybridization 

solution, containing 150–200 ng of labeled genomic DNA, 25 % formamide, 4 × SSC, 

10 % (w/v) dextran sulfate, 0.15 % (w/v) sodium dodecyl sulfate (SDS) and 2 µg 

salmon-sperm DNA. The slides were placed in a prewarming histological table and 

denaturated for 5 min at 68–69°C. The temperature was gradually reduced to 37–40°C, 

and the chromosome slides were incubated for 42–44 h at 37°C. Following 

hybridization, the slides were washed three times in 2 x SSC (5 min each) at 37°C, 

three times in 0.5 x SSC (3 min each) at 43°C, incubated in detection buffer (4 x SSC/ 

0.1-0.2 % Tween) for 2 min at 37°C and blocked in 2 % (w/v) BSA/ 4 x SSC/ 0.2 % 

Tween for 25 min at 37°. Probes were detected with 13.5 µg/ml avidin or streptavidin, 

conjugated to FITC (Sigma). Detection reaction was performed in 2 % BSA/ 4 x SSC/ 

0.1 % Tween for 1 h at 37°C. Slides were washed three times in 4 x SSC/ 0.1 % Tween 

(5 min each) at 37°C and rinsed in 1 x PBS at 37°C. Chromosomes were contrasted 

with 1 µg/ml DAPI and mounted in an antifade solution containing 60 % Glycerol in 1 x 

PBS and 5 % DABCO (Sigma). 
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8 MATERIALS 

8.1 Servers, Software and Web resources 

8.1.1 Servers 

System Description 

Servers DELL PowerEdge 1800, Dual Xeon 3 GhZ, 2 Gb RAM, 1x 73 Gb + 2x 146 Gb 
SAS HDDs 

 Dual Xeon 2,8 GhZ, 2 Gb RAM, 2x 250 Gb S-ATA HDDs 

NAS Lacie Ethernet Disk, 2 Tb S-ATA storage 

 

8.1.2 Software 

Microsoft Windows OS 
BioEdit 7.0.5.3 http://www.mbio.ncsu.edu/BioEdit/bioedit.html  

eSeq v.3 LI-COR Inc., Michigan Technology University 

MegaBACE Sequence Analyzer 3.0 Amersham Biosciences, 2001. 

Mega 3.1 http://www.megasoftware.net/index.html  

seqtools 8.4 http://www.seqtools.dk  

Unix based OS 
 AAT http://genome.cs.mtu.edu/aat/aat.html  

AMOS / minimus http://amos.sourceforge.net/  

Apache webserver 2.2.4 http://httpd.apache.org/  

CLC Workbench 3.2 http://www.clcbio.com 

clview http://www.tigr.org/tdb/tgi/software/  

EMBOSS 4.1 http://emboss.sourceforge.net/  

ESTScan 2-2.1 http://estscan.sourceforge.net/  

HMMer 2.3.2 http://hmmer.janelia.org/  

Mr. Bayes 3.1.2 http://mrbayes.csit.fsu.edu/  

MUMmer 3.18 http://mummer.sourceforge.net/  

MySQL 4.1 http://www.mysql.com/  

ncbi toolbox http://www.ncbi.nlm.nih.gov/IEB/ToolBox/index.
cgi  openSputnik 1.0.2 http://sourceforge.net/projects/opensputnik  

Pasa http://pasa.sourceforge.net/  

PostgreSQL 7.4.16 http://www.postgresql.org/  

seqclean http://www.tigr.org/tdb/tgi/software/ 

tgicl http://www.tigr.org/tdb/tgi/software/ 

TreePuzzle 5.2 http://www.tree-puzzle.de/  

wwwBlast http://www.ncbi.nlm.nih.gov/BLAST/download.s
html  
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8.1.3 Web resources 

Name URL 
BCM Genome browser http://www.hgsc.bcm.tmc.edu/projects/  

Consite http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite  

DDBJ http://www.ddbj.nig.ac.jp/Welcome.html.en  

EBI http://www.ebi.ac.uk/  

ENSEMBL http://trace.ensembl.org/  

FindModel http://hcv.lanl.gov/content/hcv-

db/findmodel/findmodel.html  GenScan http://genes.mit.edu/GENSCAN.html  

GO Browser AmiGO http://amigo.geneontology.org/cgi-bin/amigo/go.cgi  

Graphical codon usage analyzer http://gcua.schoedl.de/  

Hydrabase http://www.hydrabase.org  

JGI Genome Browsers http://www.jgi.doe.gov/  

NCBI http://www.ncbi.nlm.nih.gov/  

PFAM http://www.sanger.ac.uk/Software/Pfam/  

PRAline http://zeus.cs.vu.nl/programs/pralinewww/  

Repbase http://www.girinst.org/repbase/index.html  

SignalP 3.0 http://www.cbs.dtu.dk/services/SignalP/  

SMART http://smart.embl-heidelberg.de/  

Stellabase http://www.stellabase.org   

Superfamily http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/  

TFsearch http://www.cbrc.jp/research/db/TFSEARCH.html  

TMHMM 2.0 http://www.cbs.dtu.dk/services/TMHMM/  

Transfac 7.0 http://www.gene-

regulation.com/pub/databases.html#transfac  Vista tools http://genome.lbl.gov/vista/index.shtml  
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8.2 Media, buffers and solutions 

Name Ingredients 

2xYT medium 16 g Tryptone, 10 g Yeast extract, 5 g NaCl, add H2O to 
1 l, autoclave 

Denaturation/ Transfer buffer 0,4 M NaOH; 1 M NaCl 

Denhardt´s (50 x) 1 % Polyvinylpyrrolidone, 1 % Ficoll, 1 % BSA fraction V, 
filter sterile, -20°C 

Dilution buffer Amersham Biosciences 

DNA loading buffer (6x) 50 % Glycerol, 10 mM EDTA pH 8, 0.1 % SDS, 0.025 % 
Bromphenolblue, 0.025 % Xylencyanol 

Freezing medium 

10 g Tryptone, 5 g Yeast extract, 20 g NaCl, 6.3 g 
K2HPO4, 1.8 g KH2PO4, 0.5 g Sodium-Citrate, 98.8 g 
MgSO4, 0.9 g (NH4)2SO4, 51.2 ml 86% Glycerol, add 
ddH2O to 1 l, autoclave 

Hybridization buffer (Southern blots) 6 x SSC, 5 x Denhardt´s, 0.5 % SDS, sonicated salmon 
sperm (conc.?) 

Hybridization buffer (BAC library) 5 x SSPE, 5 x Denhardt´s, 0.2 % SDS, sonicated 
salmon sperm 

LB+amp medium 20 g LB Broth Base, 15 g Bactoagar, add H20 to 1 l, 
autoclave, add 1:1000 ampicillin stock (100 mg/ml) 

M-solution 1 mM CaCl2, 1 mM NaCl, 0,1 mM MgSO4, 0,1 mM KCl, 
1 mM Tris-HCl, pH 7.8 

SOC medium 10 ml SOB medium, 100 µl 2 M glucose 

SOB medium 20 g Bactotryptone, 5 g Yeast extract, 0.58 g NaCl, 0.19 
g KCl in 1 l, 100 µl MgCl2, 10mM MgSO4 

SSC (20 x) 3 M NaCl, 0.3 M Sodium-citrate, pH 7.0 

SSPE (20 x) 3 M NaCl, 0.2 M Na2HPO4, 0.02 M EDTA, pH 7.4 

TAE (50 x) 2 M Tris-HCl, 0.05 M EDTA, pH 8.0 

TBE long run buffer (10 x) 1340 mM Tris-HCl, pH 7.5; 450 mM boric acid; 25 mM 
EDTA, pH 8.3 – 8.7 

TE 10 mM Tris-HCl, pH 7.5, 1 mM EDTA pH 8.0 

Washing buffer 1 2 x SSC, 0.1 % SDS 

Washing buffer 2 1 x SSC, 0.1 % SDS 

Washing buffer 3 0.2 x SSC, 0.1 % SDS 
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8.3 Chemicals, Antibiotics, Enzymes and Kits 

Product Manufacturer 
 

Chemicals 
α-p32 dCTP / dATP GE Healthcare 

Acetic acid Roth 

Agarose Roth 

Agarose (InCert) Sigma 

Agar-Agar Roth 

Ammonium acetate Roth 

APS Roth 

Bactoagar Roth 

Bactotryptone Roth 

Boric acid Roth 

CaCl2 Sigma 

Chlorophorm Roth 

Dimethylformamide Merck 

DNA size standarts (100 bp, 1 kbp) Fermentas 

dNTPs (100 mM) Fermentas 

Ethanol Roth 

EDTA Sigma 

Ethidium bromide (50 ng/ml) Merck 

Formaldehyde Merck 

Formamide Roth 

Glucose Roth 

Glycerol Roth 

HCl Roth 

IPTG Sigma 

Isopropanol Roth 

Low range marker NEB 

Methanol Roth 

MgCl2 Roth 

MgSO4 Roth 

Na2HPO4 Roth 

NaH2PO4 Roth 

Paraformaldehyde Merck 

Phenol Roth 

PMSF Sigma 
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RapidGEL-XL 40% concentrate USB 

Sea salt (Ocean Zac plus) Zoo Zajac 

Sephadex G50 Pharmacia 

Sodium acetate Roth 

Sodium azide Roth 

Sodium chloride Roth 

Sodium citrate Roth 

Sodium hydroxide Roth 

Sodium pyruvate Roth 

Sodium larylsarcosine Roth 

Sonicated salmon sperm DNA Invitrogen 

Spermine / Spermidine Sigma 

TEMED Merck 

Tris base Roth 

Tris HCl Roth 

Tryptone Roth 

Urea Roth 

XGal Sigma 

Yeast extract Roth 

 

Antibiotics 
Ampicillin Fluka 

Chloramphenicol Fluka 

 

Enzymes 
Taq polymerase GE Healthcare 

Platinum Taq polymerase Invitrogen 

Platinum Taq polymerase high fidelity 

 

Invitrogen 

T4 DNA Ligase NEB 

Klenow fragment Fermentas 

Proteinase K Fermentas 

SAP (alkaline phosphatase) Fermentas 

Hind III Fermentas 

EcoRI Fermentas 

BamHI Fermentas 

Not I Fermentas 
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Kits 
DYEnamic ET Terminator Cycle Sequencing Kit Amersham Biosciences 

SequiTherm EXCEL™ II DNA Sequencing Ki Epicentre 

QIAfilter Plasmid Midi Kit Qiagen 

CopyControl™ BAC Cloning Kits  Epicentre 

BACMAX™ DNA Purification Kit Epicentre 

GELase™ Agarose Gel-Digesting Preparation Epicentre 

NucleoSpin Plasmid quick pure Macherey & Nagel 

NucleoSpin Extract II Macherey & Nagel 

pGEM®-T Easy Vector Promega 

Microcon YM-50 columns Millipore 

 

8.4 Laboratory machines and devices 

PCR Thermocycler 

 
Cyclone gradient peqLab 

Primus 96 plus MWG-Biotech 

Primus 25 MWG-Biotech 

  

Gelelectrophoresis 

 
various AGE chambers BioRAD 

CHEF-3  PFGE system BioRAD 

  

Incubators / Shakers 

 
HIS25 Grant Boekel 

KS1 (rotator) Edmund Bühler 

Mini 10 Thermo Hybaid 

Thermo-Incubator Heraeus Instruments 

Thermomixer compact Eppendorf 

Thermomixer Certomat H B. Braun Biotech 

Ultratemp 2000 Sternkopf 

  

UV devices 

 
Imaging-system Biorad 

ImaGo compact imaging system B+L Systems 

UV-Stratalinker 1800 Stratagene 
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Electroporation devices 

 
Gene Pulser II Biorad 

Pulse Controller II Biorad 

  

Centrifuges 

 
Centrifuge 5415 D Eppendorf 

Centrifuge 5417 R (cooling centrifuge) Eppendorf 

Minifuge RF Heraeus Instruments 

Labofuge 1 Heraeus Instruments 

  

Sequencer 

 
LICOR DNA Analyzer Gene Read IR 4200 LiCOR Biotech 

LiCOR DNA Analyzer 4300 LiCOR Biotech 

MegaBACE 1000 capillary sequencer Molecular Dynamics 

  

Other material 

 
384 well microtiter plates Genetix 

96 well microtiter plates MJ Research 

Seal-Mats for 96 well plates BioZym 

Q-trays Genetix 

Electroporation cuvettes Peqlab 

Imager plate eraser Raytest 

BioPhotometer Eppendorf 

Nylon membrane Amersham 

Chromatographic paper Whatman 

Milli-Q Academic System Millipore 

Phospho Imager FLA-5000 FUJI 

Phospho Imagingplates FUJI 

VARIOKLAV autoclave Typ 400 EV H+P Labortechnik GmbH 

pH-Meter pH 211 Hanna Instruments 

Vortex Genie 2 Scientific Industries 

Plastic labware Sarstedt, Eydam, Eppendorf 

Dialysis membranes Millipore 

Dialysis tubes Medicell Int. Ltd. 

Xray films (Hyperfilm) Amersham 

BAC filters (Performa II) Genetix 
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8.5 Oligonucleotides  

 

LSU/28s primers:  

28SrRNA_F 5'-GCTAAGCTTTGACGAGTAGG-3',  

28SrRNA_R 5'-CTGCCACAAGCCAGTTATC-3';  

SSU/18s primers:  

18SrRNA_F 5'-GATCCTGCCAGTAGTCATATG-3',  

18SrRNA_R 5'-GAGTCAAATTAAGCCGCAGG-3';  

16s primers:  

16SrRNA_F 5'-GGATGCAGTAACTCTGACTG-3',  

16SrRNA_R 5'-CCTGTTATCCCTAAGGTAGC-3';  

CO1 primers:  

CO1_F 5'-GGATGCAGTAACTCTGACTG-3',  

CO1_R 5'-CTATCAGTTAGTAGCATAGTTAT-3'.  
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9 APPENDIX 

 

 

Appendix Figure 1: Phylogenetic trees resulting of A) maximum parsimony (MP), B) maximum likelihood 
(ML) and C) Bayesian inference (BI) analyses for the mitochondrial 16s rRNA gene. Bootstrap values for 
MP and ML as well as Bayesian posterior probabilities are given at the nodes. Branch lengths are scaled 
to the corresponding indicator bars that display substitutions per site. Figure taken from Hemmrich et al., 
2006. 
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Appendix Figure 2: Phylogenetic trees resulting of A) maximum parsimony (MP), B) maximum likelihood 
(ML) and C) Bayesian inference (BI) analyses for the mitochondrial cytochrome oxidase 1 (CO1) gene. 
Bootstrap values for MP and ML as well as Bayesian posterior probabilities are given at the nodes. 
Branch lengths are scaled to the corresponding indicator bars that display substitutions per site. Figure 
taken from Hemmrich et al., 2006. 
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Appendix Figure 3: Phylogenetic trees resulting of A) maximum parsimony (MP), B) maximum likelihood 
(ML) and C) Bayesian inference (BI) analyses for the nuclear 18s rRNA gene. Bootstrap values for MP 
and ML as well as Bayesian posterior probabilities are given at the nodes. Branch lengths are scaled to 
the corresponding indicator bars that display substitutions per site. Figure taken from Hemmrich et al., 
2006. 
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Appendix Figure 4: Phylogenetic trees resulting of A) maximum parsimony (MP), B) maximum likelihood 
(ML) and C) Bayesian inference (BI) analyses for the nuclear 28s rRNA gene. Bootstrap values for MP 
and ML as well as Bayesian posterior probabilities are given at the nodes. Branch lengths are scaled to 
the corresponding indicator. Figure taken from Hemmrich et al., 2006. 
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Appendix Figure 5: MAFFT alignment of 13 Hydra magnipapillata ks1 genes. Included in the 
alignment are coding sequences plus introns. The alignment served as basis for the NJ analysis of ks1 
relationships. 
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Database naming convention for www.compagen.org 

<database type_species code_date of construction> 

 

database type: Abrev.: 

Expressed sequence tags dbEST 

Whole genome shotgun dbWGS 

Cap3 assembled sequences dbCAP3 

ESTScan predicted UniGenes dbUNI 

Predicted peptides dbPEP 

Gene models dbGMOD 

Whole genome assemblies dbASM 

 

species code: Common name:  

Hydra magnpapillata Freshwater polyp HMAG 

Hydra magnipapillata sf-1  HMAGsf1 

Hydra vulgaris  HVUL 

Hydra AEP  HAEP 

Hydra viridissima  HVIR 

Nematostella vectensis Starlet sea anemone NVEC 

Acropora millepora Coral AMIL 

Aropora palmata Elkhorn coral APAL 

Porites lobata Lobe coral PLOB 

Hydractinia echinata Colonial hydroid HECH 

Montastrea faveolata Coral MFAV 

Biomphalaria glabrata Bloodfluke BGLA 

Aplysia californica California sea hare ACAL 

Daphnia pulex Water flea DPUL 

Daphnia magna n.a. DMAG 

Litopenaeus vannamei Pacific white shrimp LVAN 

Penaeus monodon Black tiger shrimp PMON 

Strongylocntrotus purpuratus Sea urchin SPUR 

Petromyzon marinus Sea lamprey PMAR 

Monosiga brevicollis Choanoflagellate MBRE 

Monosiga ovata n.a. MOVA 

Trichoplax adherens Placozoan TADH 

Reniera sp. Demosponge RENI 

Molgula tectiformis Tunicate MTEC 

Branchiostoma floridae Florida lancelet BFLO 

 

date of construction: YYMMDD 

Appendix Table 1: Overview of the “Compagen” database naming convention 
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Additional sequences identified but not further investigated: Accn.# 

  

Nematostella TIR-domain encoding sequences:  

predicted protein encoding 2 TIR domains gnl|ti|613621229 

predicted protein encoding 1 TIR domain and 2 ARM domains gnl|ti|595419898 

predicted protein encoding 1 TIR, 2 TM, 1 ANK and 3 Ig domains gnl|ti|571936680 

  

Acropora palmata TIR-domain encoding sequences:  

predicted protein similar to Nematostella IL-1R like protein gnl|ti|824028928 

 gnl|ti|824031090 

  

Nematostella MAC/PF domain encoding sequences:  

predicted protein encoding a putative homolog of the spondin gene (MAC/PF and 
Spondin domain) 

gnl|ti|557738010 

  

Appendix Table 2: Accession numbers for additional sequences identified within the database searches 
that were not further characterized in the present study. Table taken from Miller and Hemmrich et al., 
2007. 
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