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Preface 

 

“It is generally accepted that the biologic sciences are 

absolutely splendid. In just the past decade they have 

uncovered a huge mass of brand-new information, and there 

is plenty more ahead; the biologic revolution is evidently still 

in its early stages.”  

(Thomas Lewis, 1974) 

iological research is indeed splendid (Lewis, 1974); the more information about 

the cell in general or a particular cell type we discover, the more this discovery 

reveals new possible functions, which this cell type may exert. This concept applies to mast 

cells (MCs); the still progressing exploration of these cells and their (patho)physiological role 

is a longer than a century-lasting investigation which still, and especially during the last 

decade, reveals novel roles for MCs in health and disease.  

When Paul Ehrlich as a 24-year-old student presenting his doctoral thesis in 1878, 

described a type of ‘‘granular cells of the connective tissue’’, which he named ‘‘Mastzellen’’ 

(Ehrlich, 1878), a vivid, multidirectional research to explore the development, phenotype, 

physiology and pathology of these cells was starting. Since then, the universe of MC biology 

has been ever extending and the deeper we explore the biology of these cells, the more 

functions we discover, including some that shatter long-held beliefs on their nature and 

limitations (Maurer et al., 2003; Maurer and Metz, 2005).  

In an attempt to contribute to the unraveling of the (patho)physiological role of these 

fascinating cells, this study was focused on their involvement in the initiation of an antigen-

specific adaptive immune response and their ability to modulate CD8+ T cell responses.  

BBB 
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1. Introduction 

 

1.1. General introduction 
 

ife is a dynamic, sophisticated process achieved through various, amazingly   

organized and interconnected mechanisms, each of which involves several 

biological pathways. The complexity of this process is attributed to the number of functions 

the living organism must effectively perform in order to survive. Apart from the apparent 

need to obtain and successfully process the necessary environmental elements (nutrition, 

water, air) for its growth and reproduction, a living organism must additionally cope with the 

challenges of the constantly evolving environment. It is a common phenomenon that the 

needs of one organism overlap or contradict the needs of another. Thus, a system of 

protective mechanisms has evolved that secure life from the attack of other organisms. In 

consistency with the evolution of the organisms, these protective mechanisms have evolved 

from simple protein secretion and enzymatic digestive pathways, to the development of 

highly specialized cells and a whole system of complex, still not fully identified interactions 

between those cells. This defense system that has evolved to protect organisms from the 

invading pathogens is called the immune system (Goldsby et al., 2003). The first ever 

observation of an existing immune system is considered to be the one mentioned by the 

Greek historical Thucydides in 430 BC, as he stated that during an epidemic disease in 

Athens, the patients could be nursed only by those who had recovered from the disease, since 

they were protected from developing the disease again (Thucydides).  

 Thus, already during the first observation of its existence, the human immune system 

was attributed with its two major characteristics: protection and memory. Indeed, the immune 

system has developed efficient mechanisms not only for inhibiting most kinds of 

microorganisms, such as viruses, bacteria, protozoa and other parasites to infect the human 

body (immunological protection), but also for recognizing the same antigens upon a 

subsequent encounter (immunological memory). Despite the indispensable role of the 

immune system in protection against pathogens, dysfunction of the immune system may 

often lead to undesirable pathological situations, such as an undue reaction against non-

pathogenic agents (allergy) or even against self-antigens (autoimmunity).  

L 
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 The immune system is sub-divided into two categories: the innate and the adaptive 

immune system. Each of them includes a series of mechanisms exerted by different cell 

types, in order to achieve optimal results. Innate and adaptive immunity cooperate with each 

other and are interconnected by specific cell types and soluble mediators.  

 

1.1.1. Innate immunity 

Innate immune responses are identified as unspecific, short-term protective immune 

responses, present not only in higher evolved organisms, but also in invertebrates and, 

partially, in plants (Jones and Dangl, 2006; Iriti and Faoro, 2007). They include the secretion 

of antimicrobial peptides and enzymes, which damage or destroy the membranes of invading 

microorganisms. In animals, specialized cells, the phagocytes, eradicate foreign 

microorganisms by internalizing and digesting them with intracellular enzymes. Elimination 

of invading microorganisms is additionally facilitated by a group of soluble proteins 

comprising the complement system. Proteins of the complement system recruit phagocytes to 

the site of infection, damage the membrane of the foreign microorganisms and coat the 

pathogens, facilitating their uptake by phagocytes. Another important aspect of the innate 

immune system is the induction of inflammation. Inflammation consists of the release of 

chemoattractive factors at the site of infection as well as increased blood flow and capillary 

permeability, which result in increased cell migration to the site of infection and effective 

clearance of the pathogens. However, dysregulation of the inflammatory response often leads 

to pathological situations such as chronic inflammation and allergy (Goldsby et al., 2003).  

Although the innate and the adaptive immunity are not strictly separated mechanisms, 

different cell types have been characterized as the main executors of the one or the other 

response. Thus, the mammalian innate immune responses are primarily carried out by 

phagocytic cells (such as monocytes, macrophages, neutrophils), as well as eosinophils, 

platelets, NK cells, basophils and MCs (Roitt et al., 2002).  

In the center of the detection mechanisms for invading microorganisms in vertebrates 

lies the family of Toll-like receptors (TLRs). Similar to the Toll proteins of Drosophila and 

highly conserved during evolution, the TLR family has been extensively studied both in 

human and mice (Gay and Keith, 1991; Medzhitov et al., 1997; Rock et al., 1998). Until now, 

10 members (TLRs 1-10) in human and 12 members in mice (TLRs 1-9 and 11-13) have been 
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described. TLRs recognize common molecular structures detected in certain groups of 

microorganisms, called pathogen associated molecular patterns (PAMPs). They are mainly 

expressed by antigen-presenting cells (APCs) and upon binding to their ligands, induce 

activation of the APCs and initiation of immune responses leading to the elimination of the 

invading microorganisms (Kaisho and Akira, 2006).  

In general, the innate immune system can successfully cope with infections at a first 

stage; however, it cannot guarantee a complete and long-term protection against all 

infections, since it lacks the equipment for an antigen-specific interaction with pathogens as 

well as the potential to recognize the pathogenic molecules upon a subsequent encounter.  

 

1.1.2. Adaptive immunity 

The encounter of pathogenic microorganisms in our environment is inevitable. The 

innate immune system provides a prompt defense mechanism, however its lack of specificity 

towards the pathogens renders it inadequate for efficient elimination of the pathogen upon 

subsequent encounter. The evolution of the adaptive immune system has provided additional 

advantages to the vertebrates; specific elimination of the invaders with high efficiency and 

even, display of efficient equipment for their elimination upon a second encounter.  

Adaptive immune responses are carried out by lymphocytes, which derive from a 

common lymphoid progenitor in the bone marrow. There are two major populations of 

lymphocytes: B lymphocytes (B cells) which mature in the bone marrow and T lymphocytes 

(T cells) which mature in the thymus. The main function of B cells is to recognize antigens 

through membrane-bound antibodies (B cell receptor) and subsequently differentiate into 

effector plasma cells which secrete antigen-specific antibodies. Therefore, B cells are the 

main participants of the so-called humoral immunity. On the other hand, T cells recognize 

antigens which are associated with major histocompatibility molecules (MHC) on the 

membrane of APCs. Upon activation, T cells exert their effector functions and regulate a 

cellular immune response (Goldsby et al., 2003).  

 

 



[1. Introduction] 
 

- 13 - 
 

1.1.2.1.  T cells and the regulation of adaptive immunity 

During their maturation in the thymus, T cells express a membrane-bound T cell-

receptor (TCR), which has a unique specificity for antigen. T cells are sub-divided into two 

classes: CD4+ T cells and CD8+ T cells, according to surface expression of CD4 or CD8 

antigens respectively. CD4+ T cells recognize MHC class II-associated antigens, while CD8+ 

T cells recognize MHC class I-associated antigens (Goldsby et al., 2003).  

CD4+ T cells mainly modulate the subsequent immune response by the production of 

cytokines (therefore called T helper cells: Th). Depending on the exposure on cytokines, 

naïve CD4+ T cells differentiate into IFN-γ-, IL-2- and TNF-α-secreting Th1 cells, IL-4-, IL-

5 and IL-13-secreting Th2 cells or IL-17-, IL-6-secreting Th17 cells (Weaver et al., 2006). 

On the other hand, regulatory CD4+ T cells (Treg) suppress the immune response by 

secretion of TGF-β as well as by direct cell-cell contact (von Boehmer, 2005).  

CD8+ T cells are primarily associated with the elimination of virus- or bacteria-

infected cells or tumor cells. Upon interaction with an MHC class I-bound antigen on the 

surface of APCs, CD8+ T cells become activated, proliferate and either mature to effector 

cytotoxic CD8+ T cells or to long-living memory CD8+ T cells. Cytotoxic CD8+ T cells 

eliminate virus- or bacteria-infected cells as well as tumor cells, while memory CD8+ T cells 

preserve the immunological memory for a subsequent encounter with the same antigen 

(Jabbari and Harty, 2006).  

Cytotoxic CD8+ T cells play a central role in the control of microbial and viral 

infections (Wong and Pamer 2003). The TCR on cytotoxic CD8+ T cell recognize and 

interact with MHC class I-antigen complexes on the surface of infected cells. Subsequently, 

cytotoxicity is performed indirectly by the release of cytokines and directly by two different 

pathways; the Fas-FasL pathway and the granule-exocytosis pathway. The secretion of 

cytokines such as IFN-γ and TNF-α induces apoptosis of the target cell without requiring 

direct cell-cell contact (Andersen et al., 2006). On the other hand, the interaction of the 

surface-expressed Fas-Ligand (FasL) on cytotoxic CD8+ T cells with the surface-expressed 

Fas on target cells induces aggregation of intracellular death domains and results in apoptosis 

of the target cell (Hanabuchi et al., 1994). In addition, the granule-exocytosis pathway 

involves the release of cytotoxic mediators, which are pre-stored in cytolytic granules in the 

cytoplasm of CD8+ T cells and are released upon degranulation of the CD8+ T cells 



[1. Introduction] 
 

- 14 - 
 

(Lieberman, 2003). The best studied cytotoxic mediators of CD8+ T cells are perforin, which 

forms pores in the cell membrane of the target cell, and granzymes, which induce the 

caspase-dependent pathway of apoptosis in the target cell. The mechanisms of CD8+ T cell-

induced cytotoxicity are schematically depicted in Fig. 1.1.  

 

Fig. 1.1. Pathways of CD8+ T cell-induced cytotoxicity. a) Indirectly induced apoptosis of 

target cells by cytokines (IFN-γ and TNF-α) released by cytotoxic CD8+ T cell (CTL) b) Cell 

contact-dependent induced apoptosis of the target cell through the Fas-FasL pathway c) 

Apoptosis of target cell induced by the release of cytotoxic mediators (granzyme B and 

perforin) from the CTL (from Andersen et al., 2006, with permission). 

 

1.1.2.2.  Antigen presentation 

Naïve B and T lymphocytes can respond to antigens with high specificity and 

efficiency, initiating an adaptive immune response. The key step for achieving an antigen-

specific adaptive immune response is the presentation of antigens by antigen presenting cells 

(APCs) to B and T lymphocytes.  

APCs degrade antigens into peptides (antigen processing) and present them on their 

surface, associated with MHC molecules and co-stimulatory molecules (antigen 
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presentation) (Brodsky and Guagliardi, 1991). Several factors such as the physical form of 

the antigen, the site of antigen delivery, the presence of adjuvant, as well as the nature of the 

APC can influence the processing and presentation of antigens (Trombetta and Mellman, 

2005).  

Exogenous proteins are internalized by APCs and degraded in endocytic 

compartments (early endosomes, late endosomes and lysosomes) by hydrolytic enzymes and 

acidic pH. The assembly of the MHC class II complex occurs in the endoplasmic reticulum 

(ER), where pairs of MHC class II αβ chains associate with a trimeric protein, the invariant 

chain (Ii). While the MHC class II complex trafficks from the ER through Golgi to the 

endocytic compartments, the Ii chain is degraded. However, the degradation of Ii is not 

complete; a fragment, called CLIP, is left occupying the peptide-binding groove of the MHC 

class II, thus preventing any immature binding of peptides to the MHC class II. Degradation 

of CLIP occurs in endosomal compartments by a non-classical MHC molecule called HLA-

DM. Thus, the peptide-binding groove becomes available to binding peptides derived from 

exogenous proteins that have been degraded in endosomes. Finally, the MHC class II-peptide 

complex is transported to the plasma membrane (Goldsby et al., 2003; Watts, 1997) 

In contrast to MHC class II, the loading of the MHC class I complex with the peptide 

occurs in the ER lumen. Intracellular antigenic proteins (that could be synthesized by virus- 

or bacteria-infected cells) are degraded into peptides by the proteasome in the cytosol. These 

peptides are subsequently transported into the ER by the transporter associated with antigen 

processing (TAP), which is associated with the transmembrane glycoprotein tapasin. Tapasin, 

on the other hand, associates with the heavy chain of MHC class I molecule, which 

constitutively forms heterodimers with the beta-2-microglobulin chain (β2m). The 

association of the MHC class I heterodimers with tapasin enables the loading of the peptides 

onto the MHC class I, which, in turn, stabilizes the MHC class I complex and initiates its 

dissociation from tapasin. Subsequently, the loaded MHC class I trafficks to the cell 

membrane via the Golgi network (Flutter and Gao, 2004; Cresswell et al., 2005; Pamer and 

Cresswell, 1998). A schematic representation of the MHC class I assembly and loading is 

shown in Fig. 1.2.  
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Fig. 1.2. Schematic view of MHC class I assembly and loading pathway. Peptides derived 

from the processing of proteins in the cytosol by the proteasome are transported into the ER 

by TAP. Tapasin provides a link between TAP and the heavy chain of MHC class I molecule, 

which constitutively forms heterodimers with the β2m chain. The association of the heavy 

chain-β2m heterodimers with tapasin results in the loading of the peptides onto the MHC 

class I, which, in turn, stabilizes the MHC class I complex and initiates its dissociation from 

tapasin (from Cresswell et al., 2005, with permission). 

Despite the well-defined borders between MHC class I and MHC class II route of 

antigen presentation, both pathways can be crossed in certain cases (Trombetta and Mellman, 

2005). Thus, exogenous antigens may escape the dominant route to MHC class II-restricted 

presentation, access the MHC class I pathway of antigen presentation and induce cytotoxic 

CD8+ T cell responses. This route of alternative presentation, referred to as cross-

presentation or cross-priming, can be induced by several, not yet fully understood 

mechanisms (Groothuis and Neefjes, 2005). Although many different cell types can present 

antigens through the classical MHC pathways, only DCs and macrophages are so far 

described as cells cross-presenting exogenous antigens (Trombetta and Mellman, 2005).  

DCs are the most highly appreciated APCs, due to their high efficiency in 

internalizing antigens and presenting them in vitro and in vivo to both CD4+ and CD8+ T 

cells. However, several other cell types act as APCs with similar or less efficiency. Therefore, 

the discrimination between “professional” APCs, which generally include DCs, B cells and 

macrophages, and the “non-professional” or “amateur” APCs has been introduced. 
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Interestingly, the uptake and presentation of antigens by different cell types might result in 

distinct, APC-specific epitopes, which induce differential T cell responses (Robadey et al., 

1996; Schneider and Sercarz, 1997). Therefore, it is suggested that the presentation of the 

same antigen by different APCs may result in the induction of distinct T cell responses.   

A constructive tool to study antigen presentation is the generation of T cell receptor- 

(TCR)-transgenic mice. The T cell receptor is expressed on the surface of T cells and allows 

them to recognize antigens associated with MHC molecules. Transgenic mice for the TCR 

recognize and respond to a specific antigen presented in an MHC class I or class II way, 

depending on whether the transgenic TCR is expressed on CD8+ or CD4+ T cells, 

respectively. Since ovalbumin (OVA) comprises a very well characterized model antigenic 

protein extensively studied in murine models, TCR-transgenic mice have been generated 

against peptides derived from OVA protein. Thus, OT-I transgenic mice express transgenic 

TCR on CD8+ T cells, recognizing the OVA257-264 peptide (OT-I peptide) (Hogquist et al., 

1994), while OT-II transgenic mice express a transgenic TCR on CD4+ T cells, recognizing 

the OVA323-339 peptide (OT-II peptide) (Barnden et al., 1998). T cells isolated from those 

mice are used to investigate antigen-specific immune responses in vitro and in vivo.  

 

1.1.3. Crosstalk between innate and adaptive immunity 

Rather than being two separate systems, the innate and the adaptive immune system 

are functionally and anatomically linked to each other and synergize for the successful 

defense against pathogen invasion. Major executors of the innate-adaptive immunity 

crosstalk are cells that possess functional characteristics of both systems, therefore are able to 

detect innate signals and forward them to the adaptive immune cells (Getz, 2005).  

A key mechanism for the crosslink between the two branches of immunity is the 

recognition of pathogens by DCs through TLRs. First, DCs sense the presence of foreign 

microorganisms by TLRs. The TLR-PAMP interaction stimulates signal transduction 

pathways in DCs, which result in maturation of the DCs, up-regulation of co-stimulatory 

molecules and migration to the lymph nodes. Subsequently, the activated DCs present the 

pathogen-derived antigens to T cells, therefore initiate an antigen-dependent adaptive 

immune response. Thus, DCs act as central players at the interface between innate and 
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adaptive immunity by receiving innate immune signals and translating them into antigen-

dependent adaptive responses (Clark and Kupper, 2005; Pulendran, 2001).  

Apart from the DCs which provide the dominant bridge between innate and adaptive 

immunity, other innate immune cells have been reported to influence the adaptive immune 

response. Macrophages also express TLRs, as well as scavenger receptors that bind to and 

mediate phagocytosis of microbial pathogens (Mukhopadhyay and Gordon, 2004). Following 

phagocytosis of microbes, enhanced surface expression of co-stimulatory molecules is 

induced, which provides the macrophages with enhanced efficiency to deliver antigen-

specific signals to adaptive immune cells (Taylor et al., 2005). Moreover, it is proposed that 

NK cells, apart from their well-accepted role in promoting Th1 responses by IFN-γ 

production (Stein-Streilein et al., 2000) can also differentiate into Th2 cytokine-secreting NK 

cells, named NK2 cells (Kimura and Nakayama, 2005). Due to the number of 

immunologically relevant cytokines secreted by NK cells, it is proposed that NK cells may 

also serve as a crosslink between innate and adaptive immunity (Kos, 1998).  

Accumulating evidence suggest that MCs may act as key regulatory cells at the 

crossroads between innate and adaptive immunity. The functional characteristics that enable 

MCs to provide a link between innate and adaptive immunity are further discussed in this 

study.  
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1.2. Mast cells (MCs) 

MCs derive from hematopoietic stem cells (Kitamura et al., 1977; Nabel et al., 1981). 

MC progenitors are either committed to a distinct subtype and selectively recruited to the 

tissue, or get a tissue-specific character after epigenetic influence by environmental factors. 

After homing into different tissues, MC progenitors differentiate into mature, long-living, 

phenotypically diverse MCs (Tsai et al., 2005).  

MCs are categorized into two different subtypes: connective tissue MCs, mainly 

found in the skin, lung and peritoneal cavity and mucosal MCs, mainly found in the 

gastrointestinal mucosa. Mucosal MCs are smaller and contain less granula than the 

connective tissue MCs (Bienenstock et al., 1982; Miller and Schwartz, 1989). The flexibility 

of the MC progenitors to give rise to distinct MC subpopulations depending on the 

environment, may possibly be an explanation for the MC capacity to respond optimally to 

various stimuli in different environments and be implicated in many biological processes 

(Galli et al., 2005a).  

MC differentiation and proliferation is supported by various cytokines and soluble 

factors, such as stem cell factor (SCF), IL-3, IL-4, IL-9, IL-10 and NGF (Metcalfe et al., 

1997), as well as by adhesion to extracellular matrix components, such as laminin (Thompson 

et al., 1989), vitronectin (Bianchine et al., 1992) and fibronectin (Dastych et al., 1991). 

Among these factors, IL-3 is the absolutely necessary and sufficient one to induce murine 

MC differentiation in vitro. Therefore, in vitro differentiation of murine MCs is commonly 

achieved by culturing bone marrow cells in the presence of IL-3 for 4-5 weeks (Razin et al., 

1981; Razin et al., 1984). Such IL-3-dependent bone marrow-derived MCs (BMMCs) contain 

histamine and exhibit the characteristic red-purple appearance of their metachromatic granula 

after staining with toluidine blue (Schueller et al., 1967). A toluidine blue staining of cultured 

MCs is shown in Fig. 1.3A. SCF, the ligand for the c-kit (CD117) receptor, also plays a 

major role in MC differentiation, and induces MC maturation, activation and proliferation in 

vitro and in vivo (Zsebo et al., 1990; Tsai et al., 1991a; Tsai et al., 1991b; Wershil et al., 

1992). Therefore, SCF is used in combination with IL-3 for the in vitro differentiation of 

murine BMMCs (Tsai et al., 1991b).  
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Fig. 1.3. Morphological characteristics of MCs. A. Toluidine blue staining of a cultured 

human MC line showing the characteristic appearance of granula (from Samoszuk et al., 

2005). B. Transmission electron micrograph of rat peritoneal MCs depicting the presence of 

many electron-dense ganula (from Dileepan and Stechschulte, 2006, with kind permission of 

Springer Science and Business Media).  

A unique characteristic of MCs, possibly a fundamental reason explaining their multi-

directional (patho)physiological role, is the large number of their cytoplasmic granula (Riley 

and West, 1952). These electron-dense granules in peritoneal MCs are shown in a 

transmission electron micrograph in Fig. 1.3B. Having been the main issue of MC-related 

research for decades after MCs were first described, MC-granula contain a large stock of pre-

formed soluble mediators; histamine, heparin, proteases, acid hydrolases, chymase and other 

enzymes (Schwartz and Austen, 1980), occupy the majority of MC-cytoplasmic volume until 

an appropriate signal will trigger their prompt release in the surrounding microenvironment. 

Degranulation of MCs, the process of rapid release of pre-stored mediators by fusion of the 

granula membrane with the plasma membrane, is the quick response of MCs to activating 

signals. Sometimes beneficial, sometimes detrimental; when pathogens are being attacked, 

MC degranulation acts as a “first aid” to the threatened organism, when an “innocent” 

allergen such as grass pollen is the cause, undesired inflammation and anaphylactic shock can 

be the undue result initiated by MC over-reaction.  

In addition to the ability of rapid degranulation and release of pre-stored mediators, 

MCs have the potential of synthesizing and releasing a large number of soluble mediators 

upon activation. As shown in Fig. 1.4, MCs have the capacity to secrete a variety of 

cytokines, growth factors, chemokines and other classes of newly synthesized soluble factors 

upon activation. 
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cytokines & growth factors
IFN-α, IFN-β, IFN-γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10,
IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17F, IL-18, IL-22, IL-25, LIF, LT-β,
M-CSF, MIF, SCF, TGF-β1, TNF, TSLP, EGF, NGF, β-FGF, IGF-1, VEGF,
GM-CSF chemokines

CCL1, CCL2, CCL3, CCL3L1, CCL4, CCL5 
(RANTES), CCL7 (MCP-3), CCL8 (MCP-2), 
CCL11 (eotaxin), CCL13 (MCP-4), CCL16, 
CCL17, CCL20 , CCL22, CXCL1, CXCL2, 
CXCL3,CXCL10, CXCL11, XCL1 
(lymphotactin) 

preformed mediators
histamine, heparin, cathepsin, protease, 
tryptase, chymase, carboxypeptidase-A, 
β-hexosaminidase

lipid mediators
LTB4, PAF, PGD2, PGE2

free radicals
nitric oxide, superoxide

 

Fig. 1.4. MC-released soluble mediators. A variety of soluble factors are stored in a 

preformed state in the MC cytoplasmic granula or are newly generated and secreted upon 

activation. (modified from Galli et al., 2005b). 

Activation of MCs is induced by various factors, the best studied of which is the 

crosslinking of the high affinity receptor of IgE (FcεRI) upon specific antigen-binding 

(Metzger, 1992; Turner and Kinet, 1999). Following FcεRI aggregation, increased 

mobilization of calcium (Ca2+) mediated by the signaling enzyme phospholipase Cγ (PLCγ), 

results in MC degranulation. On the other hand, FcεRI signaling also induces 

phosphorylation of the mitogen-activated protein kinases (MAPK) and extracellular-signal-

regulated kinases (ERK), therefore mediates activation of transcription factors (namely AP1, 

NFAT and NF-kB) which lead to the production of cytokines (Gilfillan and Tkaczyk, 2006). 

Apart from the antigen-dependent FcεRI-mediated activation of MCs, other stimuli induce 

MC activation through their interaction with specific receptors. Thus, SCF interacts with the 

c-kit receptor and induces cytokine and chemokine release and regulates MC growth, 

differentiation and adhesion to extracellular matrix components (Coleman et al., 1993; 
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Columbo et al., 1992; Lorentz et al., 2002). Moreover, neuropeptides activate MC 

degranulation as well as cytokine and chemokine production (Kulka et al., 2007). 

Interestingly, pathogen-associated molecular patterns (PAMPs) induce MC activation and the 

release of mediators, via interaction with specific TLRs (Stelekati et al., 2007).  

MC functions in vivo are studied using MC-deficient murine models. MC deficiency 

in those murine models is based on the concept that the receptor c-kit (CD117) plays a major 

role in MC differentiation and function. Therefore, mice with c-kit loss of function mutations 

(WBB6F1-KitW/KitW-v mice; Kitamura et al., 1978) or tissue-type specific dysregulation of c-

kit expression (KitW-sh/KitW-sh mice; Grimbaldeston et al., 2005) lack MCs. An additionally 

interesting tool using those strains is the possibility to generate “MC-knock-in” mice; after 

reconstitution with MCs obtained either from bone marrow or from embryonic stem cells or 

directly isolated, e.g. from peritoneal cavity, these mice can be used to investigate the role of 

MCs in vivo (Nakano et al., 1985). 

 

1.2.1. MCs as participants in allergic responses 

Allergy is the result of inappropriate and excessive immune response, often against 

common, “non-dangerous” antigens. The allergic responses either occur within minutes 

(acute allergic reactions) or within hours (late phase allergic reactions) of allergen exposure. 

In some cases, symptoms may decrease and revert over time (chronic allergic reactions). 

When the allergen is encountered systemically, the symptoms occur in several sites 

simultaneously (anaphylaxis reaction) (Golden, 2007).  

For more than a century after their first description by Paul Ehrlich, MCs were only 

characterized as the main “effector cells” in allergy. The initial role attributed to MCs was 

their involvement in anaphylactic reactions (Keller, 1962) and in acute allergic reactions. 

Upon antigen/IgE-induced degranulation, MCs release histamine, lipid mediators 

(prostaglandins, leukotrienes) and proinflammatory cytokines (TNF-α, IL-8) which trigger 

acute allergic inflammation. The importance of MCs in acute allergic immune responses has 

been demonstrated in vivo by the inability of MC-deficient mice to develop acute IgE-

dependent reactions in the skin, respiratory or intestinal tract (Williams and Galli, 2000).  
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However, the role of MCs in the late phase allergic reactions remains controversial 

and apparently dependent on the immunization procedure and adjuvant used. A commonly 

used method to study the late phase allergic reactions in mice is based on the intraperitoneal 

sensitization and airway challenge against ovalbumin (OVA). Consequent symptoms include 

airway hyperresponsiveness (AHR), increased eosinophilic infiltration in the bronchoalveolar 

lavage fluid (BAL) and development of OVA-specific serum antibodies (IgE, IgG1). Takeda 

et al. (1997) reported that eosinophilic inflammation and AHR in mice sensitized and 

challenged to OVA is not controlled by MCs. However, using a less potent sensitization 

protocol, Kobayashi et al. (2000) demonstrated an essential role for MCs in the development 

of AHR.  

 

1.2.2. MCs and innate immunity 

MCs are commonly found at sites exposed to the external environment (Galli et al., 

1999; Marshall, 2004). At such places, MCs are capable of encountering exogenous antigens, 

therefore participating in the innate immune response. So far, MCs are recognized mediators 

of host defense against parasitic worms, intracellular protozoan parasites and bacteria 

(Maurer et al., 2003). Less information is available regarding the role of MCs during viral 

infections.  

The crucial contribution of MCs in the defense against parasites was defined in the 

1980s (Woodbury et al., 1984) and for many years the protective function of MCs was only 

correlated with parasitic worm infections (Marshall, 2004). MCs also protect against 

intracellular protozoan parasite infections via degranulation and release of leukotriene B4 

(LTB4), which induces cytotoxicity against the parasite (Henderson and Chi, 1998; Ben-

Rashed et al., 2003).  

The recognition of MCs as key players in innate immunity against bacteria was 

promoted by landmark studies of Echtenacher et al. (1996) and Malaviya et al. (1996a). 

These studies indicated that the presence of MCs is essential for host survival after bacterial 

infection. MC-deficient mice were shown to be less efficient both in clearing enterobacteria 

and surviving in the cecal ligation and puncture (CLP)-induced acute septic peritonitis model 

- the gold standard for sepsis research (Buras et al., 2005). 
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The role of MCs in viral infections is less studied. The synthetic compound 

polyinosinic-polycytidylic acid (poly[I:C], pIC) is used as a model to study viral infections, 

since it mimicks dsRNA, which is synthesized by various types of viruses (Der et al., 1997). 

Upon activation with pIC or virus, MCs release type I IFNs (Kulka, et al., 2004). Moreover, 

human MCs can be infected by dengue virus, which induces production of chemokines, 

namely RANTES, MIP-1a and MIP-1b (King et al., 2002). In addition, encephalomyocarditis 

virus infection results in MC chymase and tryptase production in vivo (Kitaura-Inenaga, K., 

2003). Interestingly, human MC progenitors, developed from cord blood stem cells of HIV-

infected patients, are susceptible to HIV infection (Sundstrom et al., 2004). After maturation 

in peripheral tissues, HIV-infected MC progenitors mature into latently infected MCs, which 

comprise a long-living reservoir of the virus in peripheral tissues (Sundstrom et al., 2007). 

However, the role of MCs in antiviral host defense mechanisms in vivo has not been 

thoroughly investigated.  

Lately, functional expression of TLRs has also been detected in human and rodent 

MCs. Table 1.1 summarizes the expression of TLRs on MCs and the result of TLR-induced 

MCs activation. The expression of TLRs by MCs suggests that MCs are capable of 

recognizing innate immune signals and initiating a protective immune response. An 

interesting question arising from the discovery of TLR-expression on MCs is whether TLR-

mediated activation of MCs modulate their ability to direct an adaptive immune response, in 

a way similar to that of the TLR-mediated activation of DCs.  
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TLR Ligand Result of TLR-induced MC activation References 
in vitro in vivo 

TLR1 lipopeptide not studied Matsushima et al., 2004 

TLR2 peptidoglycan 

activation of 
transcription factors, 

pro-inflammatory 
cytokine production 

increased 
vasodilatation, 

accumulation of 
neutrophils 

Supajatura et al., 2002; 
McCurdy et al., 2001; 
Ushio et al., 2004 

TLR3 dsRNA 

transcription of primary 
response genes, pro-
inflammatory cytokine 

production 

up-regulation of co-
stimulatory molecules, 
chemotaxis of CD8+ T 

cells 

Matsushima et al., 2004; 
Orinska et al., 2005 

TLR4 LPS,  
lipid A 

activation of 
transcription factors, 

MAPK activation, pro-
inflammatory cytokine 

production 

neutrophil recruitment, 
enhanced OVA-induced 
eosinophilic infiltration 

Ikeda & Funaba, 2003;  
Masuda et al., 2002; 
Matsushima et al., 2004; 
McCurdy et al., 2001; 
Supajatura et al., 2001;  
Nigo et al., 2006;  
Qiao et al., 2006  

TLR6 peptidoglycan, 
zymosan not studied 

Ikeda and Funaba, 2003; 
Matsushima et al., 2004; 
McCurdy et al., 2001; 
Supajatura et al., 2001  

TLR7 R-848 pro-inflammatory 
cytokine production 

 Matsushima et al., 2004 

TLR8 R-848 not studied Supajatura et al., 2001 

TLR9 CpG pro-inflammatory 
cytokine production 

 Matsushima et al., 2004 

Table 1.1. TLR expression patterns in MCs and their effect on MC activation. dsRNA: 

double-stranded RNA; LPS: lipopolysaccharide; R-848: synthetic imidazoquin-like molecule 

resiquimod R-848; CpG: unmethylated DNA CpG motifs (modified from Stelekati et al., 

2007). 

 

1.2.3. Emerging role of MCs in adaptive immunity 

It is only during the last two decades, that continuously accumulating data suggest a 

dominant role of MCs in the regulation of adaptive immune responses, by controlling the 

phenotype and function of the adaptive immunity players (B cells, DCs and T cells), therefore 

transforming the appreciation of MCs from the pure protagonists of the effector phase of 

allergy to key regulatory cells at the crossroads between innate and adaptive immunity. 



[1. Introduction] 
 

- 26 - 
 

MCs modulate B cell responses either via direct cell-cell contact or indirectly via the 

release of cytokines. Direct cell contact between MCs and B cells occurs via CD40-CD40L 

interaction and induces IgE production by B cells (Gauchat et al., 1993; Pawankar et al., 

1997). Additionally, MCs influence the B cell development and proliferation, as well as the 

production of immunoglobulins through release of cytokines, namely IL-4, IL-9, IL-13, as 

well as proteases (Yoshikawa et al., 2001; Stassen et al., 2001;  Tkaczyk et al., 1996; 

Tkaczyk et al., 2000).  

Furthermore, MCs influence the DC biology. Several MCs products, such as  IL-1β, 

IL-18, RANTES, TNF-α and prostaglandin E2 have been reported to promote DC migration 

(Yamazaki et al., 1998; Cumberbatch et al., 2001; Kabashima et al., 2003; Suto et al., 2006), 

while IgE-mediated activation of MCs directly induces Langerhans cell migration in vivo 

(Jawdat et al., 2004). In addition, MCs regulate the functional maturation of DCs by up-

regulating integrin and co-stimulatory molecule expression (Caron et al., 2001b; Skokos et 

al., 2003). A key function of MCs in regulating DC-mediated immune responses is their 

ability to down-regulate IL-12 production by DCs via histamine and prostaglandins release 

and therefore promote a Th-2 T cell response (Caron et al., 2001a; Mazzoni et al., 2006). 

A highly effective, most recently studied mechanism, by which MCs exhibit their 

regulatory effect on B cells and DCs, is dependent on the release of exosomes. 

Heterogeneous in size and shape and stored inside the cytoplasmic granules, MC-derived 

exosomes contain a pool of MHC class II-, costimulatory- and adhesion-related molecules 

and are released during the process of exocytosis (Raposo et al., 1997; Skokos et al., 2001a). 

Exosomes can be transferred between cells of the immune system (Denzer et al., 2000), thus 

interact with B cells or DCs in an adhesion molecule-dependent way (Skokos et al., 2001b; 

Skokos et al., 2001c), induce maturation of DCs and initiate adaptive immune responses 

(Skokos et al., 2003).  

An optimal T cell response is the center of an antigen-specific cell-mediated immune 

response. MCs have been shown to modulate CD4+ T cell responses either directly (Fig. 1.5i) 

or indirectly (Fig. 1.5ii). MCs release Th-2-related cytokines such as IL-4, which induce Th-2 

polarization of naïve T cells (Mekori and Metcalfe, 1999). In contrast, exosome release by 

MCs has been correlated with Th-1 differentiation of naïve T cells in vitro (Skokos et al., 

2001a). On the other hand, the MC-B cell interaction promotes a Th-1 differentiation of naïve 

T cells (Tkaczyk et al., 2000; Skokos et al., 2001b; Skokos et al., 2001c), while MC-DC 
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interaction, resulting in down-regulation of IL-12 production by DCs promotes a Th-2 

polarization of naïve T cells (Caron et a., 2001b; Mazzoni et al., 2006). These interactions 

suggest that there is a dual role for MCs in regulating the Th1/Th2 equilibrium, depending on 

the encounter of different cells in every microenvironment (Stelekati et al., 2007).  

 
Fig. 1.5. Antigen-independent, MC-mediated modulation of T cell responses. MCs 

modulate T cell responses either (i) directly or (ii) indirectly. (i) The release of IL-4 by MCs 

favours Th-2 polarization of naïve T cells, while exosome release induces Th-1 

differentiation. (ii) MCs interact with B cells either directly (e.g. via CD40-CD40L 

interaction) or via exosome release and this interaction promotes Th-1 differentiation of 

naïve T cells. On the other hand, MCs interact with DCs via histamine and prostaglandins 

release, resulting in down-regulation of IL-12 production by DCs and subsequent Th-2 

polarization of naïve T cell (from Stelekati et al., 2007).  

A critical question arising after the exciting discovery that MCs influence T cell 

responses is whether MCs have the potential to encounter with T cells in vivo. Indeed, MCs 

have been detected in close proximity to T cells at sites of allergic inflammation (Mekori, 

2004; Nakae et al., 2005). On one hand, a variety of MC-derived chemokines induce T cell 

migration towards the site of inflammation (Mekori and Metcalfe, 1999). Furthermore, MC-

derived TNF-α induces recruitment of circulating T cells into the draining lymph nodes 

during bacterial infection (McLachlan et al., 2003). In addition, FcεRI-mediated 

degranulation of MCs results in chemotaxis of effector but not central memory CD8+ T cells 

via leukotriene B4 (LTB4) secretion (Ott et al., 2003). CD8+ T cell recruitment is also induced 
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by TLR-3-dependent activation of MCs in vivo (Orinska et al., 2005). On the other hand, 

MCs have been also reported to migrate from the site of allergen encounter to the draining 

lymph nodes, where they recruit T lymphocytes (Wang et al., 1998). This evidence suggests 

that MCs actively regulate T cell migration, therefore a potential MC-T cell interaction in 

vivo is speculated. 

 

1.2.4. MCs and antigen presentation 

Presentation of antigens is of major importance for the initiation of an appropriate 

adaptive immune response, which will lead to the successful elimination of pathogens as well 

as to the induction of immunological memory. Antigen presentation in every 

microenvironment is dependent on the presence and function of the corresponding APCs 

(Unanue, 2007). DCs, B cells and macrophages are regarded as “professional” APCs, 

however constantly more cell types are suggested to execute similar function. Several hints of 

MCs exerting such a physiological role have emerged during the last decade; however the 

admission of MCs as “antigen presenting cells” has not yet been entirely approved by the 

scientific community.  

The first suggestion that MCs may act as APCs arouse after the observation that 

cultured MC progenitors (Wong et al., 1982) as well as primary rat MCs (Banovac et al., 

1989) express MHC class II. Thereafter, MHC class II and co-stimulatory molecule 

expression has been detected on mouse (Frandji, et al., 1993), rat (Fox et al., 1994; Warbrick 

et al., 1995) and human (Love et al., 1996; Poncet et al., 1999) MCs. Further studies 

investigated the ability of MCs to present MHC class II-restricted antigens to T cells in vitro: 

mouse BMMCs (Frandji, et al., 1993) as well as rat (Fox et al., 1994) and human (Poncet et 

al., 1999) primary MCs can efficiently induce antigen-specific proliferation of CD4+ T cell 

lines in vitro. Despite the reports demonstrating the ability of MCs to induce antigen-specific 

CD4+ T cell responses by presentation of MHC class II-restricted antigens, less information 

has been obtained so far regarding the ability of MCs to modulate CD8+ T cell responses. A 

valuable report in this direction by Malaviya et al., demonstrates that BMMCs present 

bacterial antigens and induce proliferation of a CD8+ T cell line after phagocytosis of living 

bacteria (Malaviya et al., 1996b). Nevertheless, neither the mechanism of the antigen-specific 

interaction between MCs and CD8+ T cells, nor its relevance in vivo has been investigated so 

far. 
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1.3. The goal of this study 

Increasing evidence of MCs playing an important regulatory role in adaptive 

immunity suggests a re-evaluation of their designation as pure innate immune participants 

and a detailed investigation of their diverse physiological and pathological role. It has been 

reported that MCs induce CD8+ T cell chemotaxis, however little is known about the 

potential of MCs to induce further CD8+ T cell responses. The crucial contribution of CD8+ T 

cells in the defense against intracellular pathogen infections as well as their dominant role in 

allergic reaction renders essential the detailed examination of the mechanisms that induce 

their effector functions. A possible crosstalk between MCs and CD8+ T cells could be a key 

regulatory mechanism to modulate the activities of both MCs and CD8+ T cells in various 

pathophysiological situations. For this reason, the purpose of this study was to investigate the 

ability of MCs to interact with CD8+ T cells, present an MHC class I-restricted antigen and 

initiate antigen-specific primary CD8+ T cell responses in vitro and in vivo. Furthermore, 

since MCs are resident cells in the periphery, therefore have the potential to contact activated 

T cells, the effect of MC interactions with activated CD8+ T cells was studied. Finally, the 

investigation of the regulatory effects that a MC-CD8+ T cell interaction has on the MCs was 

pursued.  

 

In summary, the questions addressed during this study were the following:  

1. Are MCs able to modulate primary CD8+ T cell responses in an antigen-independent 

manner? 

2. Can MCs initiate antigen-specific CD8+ T cell responses? 

• What are the outcomes (e.g. activation, proliferation, cytokine production, 

cytotoxicity) of a MC-CD8+ T cell antigen-specific interaction?  

• What is the mechanism of a MC-CD8+ T cell antigen-specific interaction? 

3. Do MCs regulate CD8+ T cell responses in antigen-driven manner in vivo? 

• Do MCs contribute to the modulation of CD8+ T cell activities in an allergic murine 

model? 

4. Do MCs tune the activities of effector CD8+ T cells? 

5. Do CD8+ T cells after the MC encounter affect the activities of their MC partners?  

 

The questions aroused during this study are schematically depicted in Fig. 1.6. 
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Fig. 1.6. Questions aroused during the present study. MCs have been shown to induce 

chemotaxis of CD8+ T cells, however little is known about their further interaction with 

CD8+ T cells. Therefore, this study investigated the ability of MCs to induce CD8+ T cell 

responses in an antigen-dependent and antigen-independent manner as well as the ability of 

CD8+ T cells to modulate MC activities.  
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2. Materials and Methods 

2.1. Materials 

2.1.1.  Animals 

C57BL/6 mice were purchased from Charles River (Sulzfeld, Germany). TCR-transgenic 

OT-I mice (Hogquist et al., 1994) were bred in the Animal Care Facility of the Research 

Center Borstel, Germany. Beta-2-microglobulin-deficient mice (β2m-/-) (Koller et al., 1989) 

were kindly provided by F. Winau (MPI for Infection Biology, Berlin, Germany). Mast cell 

(MC)-deficient WBB6F1-KitW/KitW-v mice (Kitamura et al., 1978) were kindly provided by 

Prof. M. Maurer (Charite, Berlin, Germany) and bred in FEM Berlin.  

 

2.1.2. Chemicals and other reagents 

Reagent:     Purchased from: 

Accutase      PAA Laboratories, Pasching, Austria 

Agarose     Invitrogen, Paisley, U.K. 

Alum Imject (Al(OH)3)          Pierce Biotechnology, Rockford, U.S.A. 

Ammonium chloride (NH4Cl)   Merck, Darmstadt, Germany 

Aqua B. Braun H2O    Melsungen, Germany 

Bio-Plex Cytokine Assay  

(10-plex, mouse Th1/Th2)     Bio-Rad Laboratories, Munich, Germany 

Boric acid (H3BO3)    Merck, Darmstadt, Germany 

Bovine serum albumin (BSA)   Sigma-Aldrich, Steinheim, Germany 

Brefeldin A     Sigma-Aldrich, Steinheim, Germany 

CFDA SE Cell Tracer Kit (CFSE)         Molecular Probes, Leiden, The Netherlands 

Chloroform (CHCl3)     Merck, Darmstadt, Germany 

Ciprofloxacinhydrochlorid            Wald-Apotheke, Wahlstedt, Germany 

Collagenase Type IV  

(from Clostridium histolyticum)   Sigma-Aldrich, Steinheim, Germany 
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Deoxyribonuclease I            Sigma-Aldrich, Steinheim, Germany 

Diethylpyrocarbonate (DEPC)-H2O   Sigma-Aldrich, Steinheim, Germany 

Dimethyl sulfoxide (DMSO)    Sigma-Aldrich, Steinheim, Germany 

Disodium hydrogen phosphate (Na2HPO4)  Merck, Darmstadt, Germany 

dNTP  (10 mM)            Roche, Mannheim, Germany 

DuoSet ELISA Development Kit (IFN-γ) R&D Systems, Wiesbaden, Germany 

DuoSet ELISA Development Kit (IL-2) R&D Systems, Wiesbaden, Germany 

Ethanol (C2H5OH)    Merck, Darmstadt, Germany 
Ethidium bromide     Merck, Darmstadt, Germany  

Ethylene diamine tetraacetic acid (EDTA) Merck, Darmstadt, Germany 

Fetal calf serum (FCS)           Biochrom, Berlin, Germany 

Fluorescein Isothiocyanate Isomer I (FITC)  Sigma-Aldrich, Steinheim, Germany 

Hydrochloric acid (HCl)   Merck, Darmstadt, Germany 

Hydrogen peroxide (H2O2)   Merck, Darmstadt, Germany  

Hematoxylin            Merck, Darmstadt, Germany 

Hydrogen citrate (citric acid)  (C6H8O7)       Merck, Darmstadt, Germany 

IMDM             PAA Laboratories, Pasching, Austria 

Isopropanol (C3H8O)           Gibco, Rockville, USA 

L-glutamine with penicillin/streptomycin  PAA Laboratories, Pasching, Austria 

Loading dye (6-fold)     MBI Fermentas, St.Leon-Rot, Germany 

LPS (from Salmonella enterica)         provided by H. Brade, Borstel 

Lysine       Merck, Darmstadt, Germany 

Magnesium chloride (MgCl2)   Merck, Darmstadt, Germany 

Microarray (Maus MG 430 2.0)  Affymetrix, Santa Clara, U.S.A. 

Microbeads (anti-FITC)         Miltenyi Biotec, Bergisch Gladbach, Germany 

Microbeads (streptavidin)         Miltenyi Biotec, Bergisch Gladbach, Germany 

Mitomycin C            Sigma-Aldrich, Steinheim, Germany 

Molecular weight marker    MBI Fermentas, St.Leon-Rot, Germany 

Newborn calf serum (NCS)          Gibco, Rockville, USA 

Non-essential amino acids          Gibco, Rockville, USA  

Ovalbumin (OVA) grade V         Sigma-Aldrich, Steinheim, Germany 

Ovalbumin (OVA) grade VI         Sigma-Aldrich, Steinheim, Germany 

OVA257-264 (SIINFEKL)         NeoMPS, Strasbourg, France 
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Paraformaldehyde           Fluka, Steinheim, Germany 

PBS for cell culture  

(without Magnesium, without Calcium) PAN Biotec, Aidenbach, Germany 

Polyinosinic-polycytidylic acid (pIC)  Sigma-Aldrich, Steinheim, Germany 

Potassium chloride (KCl)    Merck, Darmstadt, Germany 

Potassium phosphate (KH2PO4)   Merck, Darmstadt, Germany 

Propidium iodide (PI)           Sigma-Aldrich, Steinheim, Germany 

Random Primer            New England Biolabs, Frankfurt, Germany 

Ribonuclease Inhibitor           MBI Fermentas, St.Leon-Rot, Germany 

RPMI-1640      Biochrom, Berlin, Germany 

Sephadex G50     GE Healthcare, Freiburg, Germany 

Sodium azide (NaN3)          Merck, Darmstadt, Germany 

Sodium carbonate (Na2CO3)   Merck, Darmstadt, Germany 

Sodium chloride (NaCl)         Merck, Darmstadt, Germany 

Sodium pyruvat (C3H3NaO3)          Gibco, Rockville, U.S.A. 

Streptavidin-HRP     R&D Systems, Wiesbaden, Germany 

Succrose      Sigma-Aldrich, Steinheim, Germany 

Sulfuric acid (H2SO4)    Merck, Darmstadt, Germany 

Superscript II Reverse Transcriptase Kit        Invitrogen, Paisley, U.K. 

Taq-DNA-Polymerase (SAWADY)  Peqlab Biotechnologie, Erlangen, Germany 

Tetramethylbenzidin           Fluka, Steinheim, Germany 

Toluidine blue            Sigma-Aldrich, Steinheim, Germany 

Tris       Serva GmbH, Heidelberg, Germany 

Trizol-Reagent            Invitrogen, Paisley, U.K. 

Trypan blue  

(0.5% w/v in physiological saline)  Biochrom, Berlin, Germany 

Tween 20      Sigma-Aldrich, Steinheim, Germany 

Vitamin             Gibco, Rockville, U.S.A. 

β-mercaptoethanol            Gibco, Rockville, U.S.A. 
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2.1.3. Cytokines 

Cytokine:     Purchased from: 

Recombinant mouse IL-3    R&D Systems, Wiesbaden, Germany 

Recombinant mouse SCF    R&D Systems, Wiesbaden, Germany 

Recombinant mouse GM-CSF   Peprotec, London, U.K. 

 

2.1.4. Monoclonal antibodies and detection reagents for FACS 

Antibody (specific for mouse):  Purchased from: 

CD117 (c-Kit, 2B8)     BD PharMingen, Heidelberg, Germany 

CD11b (Integrin αM chain, M1/70)         BD PharMingen, Heidelberg, Germany  

CD11c  (Integrin αx chain, HL3)         BD PharMingen, Heidelberg, Germany 

CD16/32 (Fcγ III/II, 2.4G2)           BD PharMingen, Heidelberg, Germany 

CD25 (IL-2 receptor α chain, p55)   BD PharMingen, Heidelberg, Germany 

CD3ε (CD3 ε chain, 145−2C11)        BD PharMingen, Heidelberg, Germany 

CD4 (L3T4, RM4-5)               BD PharMingen, Heidelberg, Germany 

CD44 (Pgp-1, Ly-24, IM7)    BD PharMingen, Heidelberg, Germany 

CD45R/B220 (RA3-6B2)   BD PharMingen, Heidelberg, Germany 

CD49b/Pan-NK Cells (DX5)    BD PharMingen, Heidelberg, Germany 

CD62L  

(L-selectin, LECAM-1, Ly-22, MEL-14) BD PharMingen, Heidelberg, Germany 

CD69  

(very early activation antigen, H1.2F3)  BD PharMingen, Heidelberg, Germany 

CD80 (B7.1, 16-10A1)          BD PharMingen, Heidelberg, Germany 

CD86 (B7.2, GL1)           Southern Biotechnology, Alabama, U.S.A. 

CD8α (Ly-2, 53-6.7)           BD PharMingen, Heidelberg, Germany 

F(ab´)2 anti-rat IgG     AbD Serotec, Dusseldorf, Germany 

F4/80 antigen (MCA497FB)   AbD Serotec, Dusseldorf, Germany 

FcεRI alpha (MAR-1)    eBioscience, Frankfurt, Germany   

Gr-1 (Ly-6C and G, 53-6.7)         BD PharMingen, Heidelberg, Germany 

Granzyme B (16G6)     eBioscience, Frankfurt, Germany 

H2-kb (MHC class I) (AF6-88.5)  BD PharMingen, Heidelberg, Germany 
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I-A/I-E (MHC class II) (M5/114.15.2)      BD PharMingen, Heidelberg, Germany 

IFN-γ       BD PharMingen, Heidelberg, Germany 

IL-2       BD PharMingen, Heidelberg, Germany 

Isotype controls     BD PharMingen, Heidelberg, Germany 

LAMP-1     DSHB, Iowa, U.S.A. 

Streptavidin-APC    BD PharMingen, Heidelberg, Germany 

Streptavidin-FITC     Genzyme, Cambridge 

Streptavidin-PE     Dianova, Hamburg, Germany 

T1/ST2 (DJ8)           Morwell Diagnostics, Switzerland  

 

2.1.5. Primers 

 
Primers for PCR were purchased from Metabion (Martinsried, Germany) at stock 

concentration of 100 μM. Following primer pairs were used: 

mouse Lzp-s-F: 5´-AGA ATG CCT GTG GGA TCA AT- 3´ 

mouse Lzp-s-R: 5´-CTG GGA CAG ATC TCG GTT TT- 3´ 

 

mouse 4-1BB-F: 5´-AGT GTC CTG TGC ATG TGA- 3´ 

mouse 4-1BB-R: 5´-AGT TAT CAC AGG AGT TCT GC- 3´ 

 

mouse 4-1BBL-F: 5´-CGC TTT GGT TTT GCT GCT TCT G- 3´ 

mouse 4-1BBL-R: 5´-CAT CTA CCT GAG GCT TTG CTT GC- 3´ 

 

mouse Tgm-2-F: 5´-TCA GCC AGC AGC CTC TAG AC- 3´ 

mouse Tgm-2-R: 5´-CCT ACT GCC TGC TTG GAA CC- 3´ 

 

mouse IFN-γ-F: 5´-AGC GGC TGA CTG AAC TCA GAT TGT AG- 3´ 

mouse IFN-γ-R: 5´-GTC ACA GTT TTC AGC TGT ATA GGG- 3´ 

 

mouse β-actin-F: 5´-CTC CTT AAT GTC ACG CAC GAT TTC- 3´ 

mouse β-actin-R: 5´-GTG GGG CGC CCC AGG CAC CA- 3´ 
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2.1.6. Buffers 

 
2.1.6.1.  Buffers for cell culture 

Phosphate buffered saline (PBS) (PAN Biotec, Aidenbach, Germany) 

 

IMDM complete medium    =  Iscove´s modified DMEM (IMDM) + 10% heat-inactivated 

FCS + 50 µM β-mercaptoethanol + 2 mM L-glutamine + 

100 U/mL penicillin + 100 µg/mL streptomycin + 1-fold 

non-essential amino acids + 1 mM sodium pyruvat  

RPMI complete medium = RPMI-1640 + 10% heat-inactivated FCS + 50 µM β-

mercaptoethanol + 2 mM L-glutamine + 100 U/mL 

penicillin + 100 µg/mL streptomycin  

 Erythrocyte lysis buffer     =   H2O + 0.83% NH4Cl + 0.168% Na2CO3 + 1 mM EDTA, 

pH=7.3, sterile filtrated 

 

2.1.6.2.  Buffers for cell isolation 

MACS buffer  =  PBS + 5% heat-inactivated FCS  

 

2.1.6.3.  Buffers for flow cytometry 

FACS buffer  =   PBS + 2% NCS + 0.1% NaN3 + 2 mM EDTA, pH=7.4 - 7.5 

Phosphate buffered saline (PBS) = H2O + 3.2 mM Na2HPO4 + 0.5 mM KH2PO4+ 1.3 mM    

KCl + 135 mM NaCl, pH = 7.4 

For intracellular FACS staining:  

IC Fixation buffer (eBioscience, Frankfurt, Germany), containing 4% paraformaldehyde  
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10-fold Permeabilization buffer (eBioscience, Frankfurt, Germany), diluted 1:10 with Aqua 

B. Braun H20 (working solution), containing 0.1% saponin and 0.09% sodium azide at the 1-

fold final working solution 

Flow cytometry staining buffer (eBioscience, Frankfurt, Germany), containing fetal bovine 

serum and sodium azide 

 

2.1.6.4.  Buffers for ELISA 

Blocking buffer = PBS + 1% BSA + 5% sucrose + 0.05% sodium azide 

Washing buffer  = PBS + 0.05% Tween 20, pH=7.2-7.4 

Reagent diluent buffer  =  Tris-buffered saline (20 mM Tris, 150 mM NaCl) + 0.1% BSA+ 

0.05% Tween 20, pH=7.2-7.4 

 

2.1.6.5.  Buffers for molecular biological techniques 

Reaction buffer for cDNA synthesis = 5.0 µl 5-fold Strand-Buffer + 2.5 µl DTT-Buffer (0.1 

M) + 5.0 µl dNTP´s (10 mM) + 0.75 µl Ribonuclease 

Inhibitor + 4.5 µl DEPC-H2O 

5-fold strand-buffer (Invitrogen, Paisley, U.K.), containing  250 mM Tris-HCl, 375 mM 

KCl, 15 mM MgCl2, pH=8.3 at room temperature (RT) 

DTT-Buffer (Invitrogen, Paisley, U.K.) 

10-fold  PCR-buffer  for SAWADY Taq-DNA-polymerase (Peqlab Biotechnologie, 

Erlangen, Germany), containing 100 mM Tris-HCl, 500 mM KCl, 0.1% Tween 20, 15 mM 

MgCl2, pH = 8.8 

Reaction mix for PCR = 2 µl 10-fold PCR-Buffer + 1 µl forward primer + 1 µl reverse 

primer  + 0.3 µl dNTP´s (10 mM) + 0.2 µl Taq Polymerase + 

14.5 µl Aqua B. Braun H2O 

Electrophoresis buffer  (Tris/boric acid/EDTA; TBE)  =  89 mM Tris  +  89  mM boric acid  

+ 2 mM EDTA, pH = 8.0 
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2.1.7. Laboratory supplies 

Supply:     Purchased from: 

Anopore membrane (0.02 μm, 10 μm)   Nunc, Roskilde, Dennmark 

Anopore membrane (0.2 μm, 10 μm)       Nunc, Roskilde, Dennmark 

Gel casting tray     Bio-Rad Laboratories, Munich, Germany 

Microcentrifuge tubes (1.5 ml, 2 ml)      Sarstedt, Nümbrecht, Germany 

Microscope cover slips (24 x 40 mm) Gerhard Menzel Glasbearbeitungswerk, 

Braunschweig, Germany 

Microscope slides (76 x 26 mm)  Waldemar Knittel Glasbearbeitung, 

Braunschweig, Germany 

Multidish with 24 wells    Nunc, Roskilde, Dennmark 

Multidish with 48 wells    Nunc, Roskilde, Dennmark 

Multidish with 96 wells (flat-bottom)  Nunc, Roskilde, Dennmark 

Needles (23 G, 27 G)     Becton Dickinson S.A., Madrid, Spain 

Neubauer counting chamber    Paul Marienfeld, Königshofen, Germany 

Petri dish (100 x 15 mm, sterile)  Becton Dickinson Labware, Franklin Lakes,  

U.S.A. 

Plastic pipette tips   Sarstedt, Nümbrecht, Germany 

Plastic pipettes (5 ml, 10 ml, 25 ml)  Greiner bio-one, Frickenhausen, Germany 

Plastic tubes (15 ml, 50 ml)      Sarstedt, Nümbrecht, Germany 

Syringe (1 ml, 5 ml, 10 ml)   Becton Dickinson S.A., Madrid, Spain 

Tissue culture flask  

(non-pyrogenic, 250 ml, 75 cm2, sterile) Greiner bio-one, Frickenhausen, Germany 

Tubes for FACS (5 ml, 75 x 12 mm)  Sarstedt, Nümbrecht, Germany 

               

 

2.1.8. Laboratory equipment 

Equipment:     Purchased from: 

Automacs      Miltenyi Biotec, Bergisch Gladbach, Germany 

Bench       Kojair, Vilppula, Finland 

Bio-Plex array reader     Bio-Rad Laboratories, Munich, Germany 
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Centrifuge Mikro 22      Hettich Zentrifugen, Tuttlingen, Germany 

Centrifuge Rotina 46 R     Hettich Zentrifugen, Tuttlingen, Germany 

Cytocentrifuge (Cytospin3)     Shandon, Frankfurt, Germany 

ELISA reader       Tecan, Salzburg, Austria 

ELISA washer      Tecan, Salzburg, Austria 

FACS Calibur flow cytometer    BD Biosciences, Heidelberg, Germany 

Fluorescence microscope (Diaphot 300)  Nikon, Japan 

Glassware      Duran Group, Mainz, Germany 

Incubator                                                          Kendro Laboratory Products, Langenselbold, 

Germany 

Microplate shaker  Laborbedarf Hassa, Lübeck, Germany 

Microwave oven (1026L) Privileg, Korea 

Microscope       Olympus Optical, Japan 

pH Meter       Baack Laborbedarf, Schwerin, Germany 

Photometer (automatic)    Eppendorf, Hamburg, Germany 

Pipettes       Eppendorf, Hamburg, Germany 

Power supply (Power PAC300)   Bio-Rad Laboratories, Munich, Germany 

Precision Balance      A&D Instruments, Japan 

Thermoblock       Biometra, Goettingen, Germany 

Thermocycler       Eppendorf, Hamburg, Germany 

Transluminator with camera     Biometra, Goettingen, Germany 

Vortex (Minishaker MS2)     IKA Works, Wilmington, USA 

Waterbath       Medingen, Germany 

 

 

2.1.9. Software 

Bio-Plex Manager Software    Bio-Rad Laboratories, Munich, Germany 

Cell Quest  Becton Dickinson, Immunocytometry Systems,   

California, U.S.A. 

Magellan      Tecan, Salzburg, Austria 

Microsoft Office 2007    Microsoft Cooperation, CA, U.S.A. 
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2.2. Methods 
 

2.2.1.   Cell culture techniques 

 

2.2.1.1. Cell counting 

Counting of cells was performed with exclusion of dead cells by trypan blue. Trypan 

blue permeates the membrane of only dead cells, therefore dead cells appear blue. Working 

solution of trypan blue was prepared by diluting trypan blue 1:10 in 0.9% NaCl. The cell 

suspension to be counted was diluted 1:10 in the working solution of trypan blue and cells 

were counted using a Neubauer counting chamber under optical microscope.  

 

2.2.1.2. Generation and cultivation of BMMCs 

As a model of studying mast cell (MC) phenotype and function, bone marrow-derived 

mast cells (BMMCs) were used. BMMCs were obtained as described previously (Razin et al., 

1984; Dvorak et al., 1994) with some modifications. Bone marrow was isolated from femurs 

and tibia of C57BL/6 wild-type mice or of β2m-/- mice. The bone marrow was flushed with 

phosphate buffered saline (PBS) and washed once with PBS. All cell washing steps were 

carried out in centrifuge at 270 x g for 10 min at 4° C. Erythrocytes were lysed by incubation 

in erythrocyte lysis buffer for 15 min at room temperature (RT). Next, cells were washed 

with IMDM complete medium and cultured in a 75 cm2 tissue culture flask. Cells were 

maintained in IMDM complete medium supplemented with 5 ng/ml murine recombinant IL-3 

and 10 ng/ml murine recombinant SCF. Once per week, cells were collected from the flask, 

centrifugated, resuspended in fresh IMDM complete medium supplemented with 5 ng/ml   

IL-3 and 10 ng/ml SCF and plated in a new flask. During the first 2 weeks of culture, 

ciprofloxacinhydrochlorid was added at a concentration of 10 μg/ml. The cells were 

maintained in incubator with 7.5% CO2 at 37° C. Five weeks after the initiation of the 

culture, the maturation and purity of BMMCs were tested with toluidine blue/hematoxylin 

staining (2.2.1.3) and FACS analysis (2.2.4.1) for cell surface expression of CD117 (c-Kit), 

FcεRI, CD11c, CD11b, CD45R/B220 and F4/80 .  
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2.2.1.3. Toluidine blue/hematoxylin staining of BMMCs 

Toluidine blue staining of MCs was performed in order to test MC maturation. 

Toluidine blue is a metachromatic dye, which binds to biologically active mediators in MC 

granula. Cytospins of MCs were prepared using a cytocentrifuge on 76 x 26 mm microscope 

slides. Cells were fixed in 50% ethanol for 15 min at RT and then transferred into toluidine 

blue working solution, consisting of 0.2% toluidine blue and 1.92% hydrogen citrate in 50% 

ethanol. Cells were stained with toluidine blue for 30 min at RT and subsequently washed 

with distilled water. Afterwards, cells were stained with hematoxylin for 3 min at RT and 

then washed with water. Slides were left to dry on air and covered with microscope cover 

slips before being examined using a microscope.  

 

2.2.1.4. Generation of BMDCs 

As a positive control for antigen presentation experiments, bone marrow-derived 

dendritic cells (BMDCs) were used. BMDCs were derived as previously described (Scheicher 

et al., 1992; Inaba et al., 1992). Bone marrow isolated from femurs and tibia of C57BL/6 

wild-type mice was flushed with phosphate buffered saline (PBS) and washed once with 

PBS. All cell washing steps were performed at 270 x g for 10 min at 4° C. Erythrocytes were 

lysed by incubation in erythrocyte lysis buffer for 15 min at RT. Next, cells were washed 

with RPMI complete medium and viable cells were counted after staining with trypan blue. A 

number of 3 x 106 bone marrow cells were seeded in a 100 x 15 mm petri dish in 10 ml 

complete RPMI medium supplemented with 20 ng/ml murine recombinant GM-CSF. The 

cells were maintained in incubator with 5% CO2 at 37° C. On day 3, 10 ml RPMI complete 

medium supplemented with 20 ng/ml GM-CSF were added to the cells. On day 6, 10 ml of 

the cells were removed in a plastic sterile tube, centrifugated, resuspended in fresh 10 ml 

RPMI complete medium supplemented with 10 ng/ml GM-CSF and added to the rest of the 

cells in the petri dish. On day 8, the maturation of BMDCs was tested by FACS analysis 

(2.2.4.1) for surface expression of CD11c, CD80 and MHC class II expression.  
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2.2.1.5. Detachement of BMDCs 

BMDCs are adherent cells at the bottom of the petri dish. On day 8 of BMDC 

differentiation, cells were detached from the bottom of the petri dish with the use of accutase. 

The medium of the cell culture was removed into a plastic sterile 50 ml tube. 5 ml PBS were 

used to wash the petri dish and subsequently added to the tube with the rest of the cells. 3 ml 

of pre-warmed accutase were added into the petri dish and incubated for 20 min at 5% CO2 in 

37° C in an incubator. Next, the petri dish was washed with PBS until the cells were 

detached. The supernatant was given to the rest of the cells in the plastic tube and the petri 

dish was washed twice with 5 ml RPMI complete medium. Finally, the collected cells were 

added to the rest of the cells in the plastic tube and centrifugated at 270 x g for 10 min, at     

4° C. 

 

2.2.2.    Cell purification 

 

2.2.2.1. CD8+ T cell separation  

CD8+ T cells were obtained from TCR-transgenic (OT-I) mice using magnetic-

associated cell sorting (MACS). Mice were euthanized with CO2 inhalation and inguinal, 

cervical, axillary, brachial, mesenteric and lumbar lymph nodes were excised and 

homogenized in PBS by forcing them through a metallic mesh. All cell washing steps were 

carried out at 270 x g for 10 min, at 4° C. Erythrocytes were lysed by incubation in 

erythrocyte lysis buffer for 15 min at RT. Afterwards, cells were washed with RPMI 

complete medium, counted and resuspended in MACS buffer at a concentration of 108 

cells/ml.  

Negative selection of CD8+ T cells from the lymph node cell suspension was 

performed according to a standard protocol provided by Miltenyi Biotec 

(www.miltenyibiotec.com). The cells were incubated with 1 μg/ml FITC-labeled monoclonal 

antibodies against CD4, CD45R/B220, CD49b/Pan-NK, CD11c and F4/80 for 20 min on ice, 

in the dark. After a washing step with MACS buffer, cells were incubated with anti-FITC 

microbeads for 15 min at 4° C in the dark, according to the manufacturer´s instructions. 

Finally, magnetic associated cell sorting using the program “DEPLETES” (for increased 
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purity) of automacs was performed, resulting in two separate fractions: a negative fraction 

containing the unlabeled CD8+ T cells and a positive fraction containing the rest of the lymph 

node cells (FITC-labeled). The purity of the CD8+ T cell fraction was tested by FACS 

analysis (2.2.4.1).  

 

2.2.2.2. Purification of MCs 

In some experiments, MCs were purified after co-culture with CD8+ T cells in vitro. 

For purification of MCs, positive selection with MACS was used. Cells were washed with 

MACS buffer, counted and resuspended at a concentration of 108 cells/ml. Cells were 

incubated with 2.5 μg/ml biotin-labeled monoclonal antibody against CD117 for 20 min on 

ice, in the dark. After a washing step with MACS buffer, cells were incubated with 

streptavidin-micobeads for 15 min at 4° C in the dark, according to the manufacturer´s 

instructions. Magnetic associated cell sorting using the program “POSSEL” (for increased 

purity) of automacs resulted in two separate fractions: a negative fraction containing the 

unlabeled CD8+ T cells and a positive fraction containing the labeled MCs. To increase the 

purity of MCs, the positive fraction was re-labeled with streptavidin-microbeads and sorted 

with automacs for a second time. The purity of the MC fraction was tested by FACS analysis 

(2.2.4.1). 

 

2.2.3.    In vitro activation of CD8+ T cells by MCs 

 

2.2.3.1. Pulsing of BMMCs with OVA257-264peptide 

In order to test the ability of MCs to induce antigen-specific CD8+ T cell responses, 

BMMCs were pulsed with the OT-I specific OVA257-264 peptide. The pulsing of BMMCs with 

the OVA257-264 peptide was performed according to standard protocols used for DCs 

(Kukutsch et al., 2000; Rückert et al., 2003). BMMCs were resuspended in IMDM complete 

medium at a concentration of 107 cells/ml. The OVA257-264 peptide was added to the cell 

suspension at a final concentration of 4 μg/ml and cells were incubated for 3 hrs in a 

waterbath at 37° C. Cells were gently shaken every 30 min. Afterwards, cells were washed 4 
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times with 5 ml IMDM complete medium, resuspended in IMDM complete medium and 

counted after staining with trypan blue.  

In some experiments, the cytokine release from BMMCs was inhibited by mitomycin 

C or paraformaldehyde treatment of the BMMCs. For this reason, following the pulsing with 

OVA257-264 peptide, BMMCs were treated with 10 μg/ml mitomycin C for 30 min in a 

waterbath at 37° C or with 1% paraformaldehyde for 3 hrs at RT, in the dark. After 

mitomycin C or paraformaldehyde treatment, the BMMCs, as well as their untreated controls, 

were washed 3 times with 5 ml IMDM complete medium. Finally, cells were counted and 

resuspended in IMDM complete medium.  

 

2.2.3.2. In vitro MC-CD8+ T cell co-culture 

Purified CD8+ T cells were plated in the wells of a 48-well multidish plate at a 

concentration of 1 x 106 cells/ml. In parallel, 0.01 x 106 - 0.5 x 106 of OVA257-264 -pulsed or 

control unpulsed BMMCs were added to the CD8+ T cells, as indicated in each experiment. 1 

μg/ml murine recombinant IL-3 was added to the wells and the final volume was brought to 

500 μl by addition of IMDM complete medium.  

In some experiments, the direct cell-cell contact between CD8+ T cells and BMMCs 

was inhibited by placing a 0.2 μm or a 0.02 μm anopore membrane in a 24-well multidish 

plate. In this case, CD8+ T cells were plated at the bottom part of the wells, while BMMCs 

were placed inside the upper chamber of the transwell.  

Unless otherwise stated, the MC-CD8+ T cell co-culture lasted for 48 hrs. However, 

for measuring the CD8+ T cell proliferation by CFSE (2.2.5.1), the MC-CD8+ T cell co-

culture lasted for 72 hrs. In either case, supernatants were collected for measurement of 

secreted cytokines (2.2.6) and cells were analyzed by flow cytometry (2.2.4.). A schematic 

representation of the in vitro MC-CD8+ T cell co-culture experimental setup is depicted in 

Fig. 2.1.  
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48-well plate

Final volume: 

0.5 ml/well

CO-CULTURE: 

in IMDM complete 
medium 

SUPERNATANT

a) ELISA (IL-2, IFN-γ)

b) Bioplex analysis

CELLS

a) Surface FACS staining (activation / 
degranulation)

b) CFSE analysis (proliferation)

c) Intracellular FACS staining (cytokines)

d) RNA isolation (microarray analysis)

+ OVA257-264 peptide (4 μg/ml)

or medium (negative control)

3 hrs, 37°C (waterbath)

Wash 4x

bone marrow lymph nodes

MACS
Negative selection of CD8+ T cells

OT-I 
transgenic mice

C57/BL6 mice
β2m -/- mice

5 weeks
+ IL-3, SCF 

48 / 72 hrs

Bone marrow-derived mast cell
(BMMC) differentiation lymphocyte purification

 

Fig. 2.1. Experimental setup for studying the interactions between MCs and CD8+ T 

cells in vitro. 
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2.2.4. Flow cytometry 

 

2.2.4.1. Surface staining 

For surface FACS staining, 2 x 105 – 5 x 105 cells were washed once, resuspended in 

100 μl FACS buffer and stained with phycoerythrin-(PE), allophycocyanin-(APC), or 

fluorescein isothyocyanate-(FITC) conjugated monoclonal antibodies. The antibodies used 

for surface FACS staining are shown in 2.1.4. Cells were distributed into 5 ml FACS tubes 

and each sample was stained with a maximum of three antibodies: FITC-, PE- or APC- 

conjugated. Unstained cells or isotype-control stained cells served as a negative control, as 

indicated in each experiment. Unless otherwise specified, the antibodies for FACS staining 

were added to the cells at a concentration of 0.2 μg/ml. Cells were incubated for 20 min at 4° 

C in the dark and subsequently washed with 1µg/ml propidium iodide in FACS buffer, in 

order to stain for dead cells.  

In some experiments, biotin-labeled antibodies were used for surface FACS staining. 

These samples were stained with 0.2 μg/ml biotin-labeled antibodies for 20 min, at 4° C in 

the dark and subsequently washed with FACS buffer. Cells were then stained with a 

secondary antibody, namely FITC-, PE- or APC- conjugated streptavidin for 20 min, at 4° C 

in the dark and finally washed with 1µg/ml propidium iodide in FACS buffer.  

For analysis of MC phenotype, the unspecific binding of antibodies to the Fc receptor 

of MCs was blocked by the use of purified anti-mouse CD16/32 antibody. MCs were 

incubated with 10 μg/ml purified anti-CD16/32, for 15 min at 4° C. The antibodies for 

surface staining of MCs were added without washing the anti-CD16/32 antibodies away. 

Samples were incubated for 20 min at 4° C in the dark and subsequently washed with 1µg/ml 

propidium iodide in FACS buffer.  

All samples were analyzed using a FACS Calibur flow cytometer. Gate on viable cells 

was set according to exclusion of propidium iodide staining. Further gates were set on 

forward- sideward- scatter, or a particular stained population, as indicated in each 

experiment. Data were analyzed with CellQuest software.  
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2.2.4.2. Intracellular staining 

In order to examine the presence of cytokines in a particular cell population, 

intracellular FACS staining was performed according to a standard protocol provided by 

eBioscience (www.eBioscience.com). To inhibit the release of cytokines from the cells, 

brefeldin A was added in the cell suspension at a concentration of 10 μg/ml during the last 7-

9 hrs of cell culture. Cells were then washed once in IMDM complete medium and surface 

FACS staining was performed for phenotypical discrimination of the different cell types in 

the culture. Surface staining was performed in IMDM complete medium by addition of 0.4 

μg/ml monoclonal antibodies (2.1.4) for 20 min, at 4° C in the dark. Next, cells were washed 

with IMDM complete medium and fixed with 100 μl IC fixation buffer for 30 min at RT, in 

the dark. Cells were washed with 500 μl of 1-fold permeabilization buffer and resuspended in 

100 μl of permeabilization buffer. Intracellular staining was performed by incubating the 

cells with 1 μg/ml monoclonal antibodies against the cytokines of interest (FITC-conjugated 

IL-2, IFN-γ or granzyme B) for 30 min at RT, in the dark. After a washing step with 

permeabilization buffer, cells were resuspended in 200 μl of flow cytometry staining buffer. 

Samples were analyzed in a FACS Calibur flow cytometer using the software CellQuest.  

 

2.2.4.3. Assessment of CD8+ T cell degranulation  

Degranulation of CD8+ T cells after activation with MCs was assessed by FACS 

analysis for surface expression of lysosomal-associated membrane protein 1, LAMP-1 

(CD107a) (Alter et al. 2004). Cells were washed and resuspended in FACS buffer and stained 

with 0.4 μg/ml APC-conjugated anti-CD3ε monoclonal antibody for discrimination between 

CD8+ T cells and MCs. Simultaneously, cells were stained with rat anti-mouse LAMP-1 

antibody, according to the manufacturer´s instructions. Staining was performed for 20 min, at 

4° C in the dark. Subsequently, the cells were washed with FACS buffer and stained with 

F(ab´)2 anti-rat IgG for 20 min, at 4° C in the dark. Finally, cells were washed with 1µg/ml 

propidium iodide in FACS buffer, resuspended in FACS buffer and analyzed in a FACS 

Calibur flow cytometer. For evaluation of CD8+ T cell degranulation, gates were set on viable 

cells according to exclusion of propidium iodide staining, on lymphocytes according to 

forward- sideward- scatterplot analysis and on CD3+ cells.  
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2.2.5. Quantification of cell proliferation 

 

2.2.5.1. CFSE labeling 

For assessment of CD8+ T cell proliferation, the method of CFSE labeling of CD8+ T 

cells was used. CFSE labeling was performed before the co-culture of CD8+ T cells with 

MCs. Purified CD8+ T cells were resuspended in PBS at concentration of 8 x 107 cells/ml and 

an equal volume of 6 μM CFDA SE in PBS was added. Cells were continuously vortexed for 

6 min at RT and an equal volume of ice-cold FCS was added to stop the reaction of CFSE 

labeling. This was followed by a centrifugation step at 270 x g for 10 min at 4° C and two 

washing steps in PBS. The efficiency of the CFSE labeling was determined by FACS. CFSE-

labeled CD8+ T cells were co-cultured with MCs (2.2.3.2) and proliferation of CD8+ T cells 

was measured by FACS after 72 hrs.  

 

2.2.6. Measurement of cytokines in culture supernatants 

 

2.2.6.1. Enzyme-Linked ImmunoSorbent Assay (ELISA) 

Supernatants of MC-CD8+ T cell co-cultures were kept frozen at -20° C. ELISA was 

performed using a DuoSet ELISA Development Kit according to the manufacturer´s 

instructions. 96-well, flat bottom plates were coated with 100 μl of 4 μg/ml capture antibody 

diluted in PBS and incubated overnight at 4° C. Next, the plates were washed and incubated 

overnight with 200 μl/well ELISA blocking buffer. All washing steps were performed by 

washing the plates three times with ELISA washing buffer in ELISA washer. Samples (100 

μl) and standard dilutions of the cytokines were diluted in reagent diluent buffer, were added 

in the wells and incubated for 2 hrs at RT. After a washing step, the detection antibody was 

diluted in reagent diluent buffer and added in the wells at a concentration of 400 ng/ml (100 

μl/well) for 2 hrs at RT. Plates were then washed and 100 μl/well  streptavidin-HRP were 

added for 20 min. Following a washing step, the reaction was visualized by addition of 100 

μl/well substrate solution, consisting of 1:1 H2O2:Tetramethylbenzidin. Finally, the reaction 
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was stopped by addition of 50 μl/well of 1 N H2SO4 and the optical density of each well was 

determined using ELISA reader set to 450 nm. 

 

2.2.6.2. Bioplex 

For screening of the cytokine content in the MC-CD8+ T cell co-culture supernatants, 

the Bio-Plex Cytokine Assay (10-plex, mouse Th1/Th2) was used according to the 

manufacturer´s instructions. Briefly, the wells of a 96-well flat-bottom microplate were 

prewet with 100 μl of Bio-Plex assay buffer and the buffer was removed by vacuum 

filtration. Next, 50 μl of the multiplex bead working solution were added into the wells and 

subsequently removed by vacuum filtration. 100 μl of Bio-Plex wash buffer were dispensed 

in each well and subsequently removed by vacuum filtration. Samples and pre-diluted 

standard dilutions of the cytokines were added at a final volume of 50 μl and incubated for 30 

min during continuous shaking of the plate on a microplate shaker. Next, the plate was 

washed three times with 100 μl of Bio-Plex wash buffer. The Bio-Plex detection antibody 

was added at a final volume of 25 μl and incubated for 30 min during continuous shaking of 

the plate on a microplate shaker. Following three washings with 100 μl of Bio-Plex wash 

buffer, 50 μl of streptavidin-PE were added for 10 min. Finally, after additional three 

washings with 100 μl of Bio-Plex wash buffer, the beads in each well were resuspended with 

100 μl Bio-Plex assay buffer. The absorbance of the wells was measured in the Bio-Plex 

array reader and the concentration of the cytokines was automatically calculated by Bio-Plex 

Manager Software.   

 

2.2.7.  Generation of OVA-FITC conjugates 

 

2.2.7.1. Labeling of OVA protein to FITC 

In order to visualize the uptake of ovalbumin (OVA) protein by MCs, OVA was 

coupled with fluorescein isothiocyanate (FITC). OVA grade V was diluted in 0.1 M sodium 

carbonate at a concentration of 2 mg/ml. FITC was dissolved in dimethyl sulfoxide (DMSO) 
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at a concentration of 1 mg/ml. For each 1 ml of protein solution, 50 μl of FITC solution were 

added. The FITC solution was added very slowly and the protein solution was continuously 

stirred during the addition. The reaction was left in the dark for 8 hrs at 4° C. The reaction 

was stopped by addition of 1.5 M lysine for 2 hrs at RT during continuous shaking.  

 

2.2.7.2. Column purification of OVA-FITC 

In order to purify the OVA-FITC protein from the unbound FITC, gel filtration was 

performed in Sephadex G50 Column (1.5 cm diameter, 50 cm length). The sample was 

carefully layered on top of the column and was allowed to flow into the column until it 

entered the column bed. PBS was used as elution buffer. The speed of the elution was set to 

1.5 ml / 10 min. The OVA-conjugated FITC was eluted first and could be easily 

distinguished under room light from the unbound FITC, which was eluted afterwards.  

The concentration of protein after the gel filtration was calculated by measuring the 

absorbance at 280 nm. The ratio of FITC to protein was calculated by measuring the 

absorbance at 495 (A495) nm and at 280 nm (A280). Fractions with a ratio of A495 / A280 

between 0.3 and 1 were considered optimal (Harlow and Lane, 1988) and were pooled 

together for further use. The degree of labeling in the final fraction was 0.92 according to the 

following formula: 

 

dye per protein molecule = (A495 x dilution factor) / (68000 x protein concentration (M)) 

 

2.2.8. Molecular biological techniques 

 

2.2.8.1. RNA isolation 

For preparation of RNA, cells were thoroughly resuspended in 1 ml Trizol-Reagent 

and frozen at -70° C. Shortly before the RNA isolation, samples were thawed slowly on ice. 

A volume of 200 µl chloroform was added and the cells were vortexed and centrifugated at 

16000 x g for 15 min, at 4° C. As a result of this centrifugation, three phases were obtained: 
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an upper, colourless phase containing the RNA, a middle phase containing proteins and DNA 

and a lower light red coloured phase, containing trizol and chloroform. The upper phase 

containing the RNA was transferred to a new microcentrifuge tube containing 500 µl 

isopropanol to induce RNA precipitation. Samples were vortexed, left at RT for 10 min and 

centrifugated at 16000 x g (4° C) for 15 min before the supernatant was removed. To wash 

the RNA pellets, 500 µl of 75% ethanol were carefully added without resuspending the 

pellets. Samples were centrifugated again at 16000 x g for 10 min and the supernatants were 

carefully decanted. Pellets were left to air-dry and then resuspended in 30-50 µl DEPC-H2O.  

Quantification of RNA was carried out using an automated photometer. Purity was 

determined by calculating the ratio of absorbance at 260 nm (A260) to absorbance at 280 nm 

(A280). Pure RNA should have an A260/A280 ratio of 2.   

 

2.2.8.2. cDNA synthesis 

Complementary DNA (cDNA) was synthesized from purified RNA using random 

oligonucleotides and Superscript II TM Kit. A volume of 1.5 µl (120 ng) random primer was 

added to 2.5 µg RNA and the total volume was brought to 11.5 µl with DEPC-H2O. The 

reaction was incubated for 10 min in a 70° C pre-heated thermoblock. Samples were briefly 

centrifugated and cDNA synthesis was performed by addition of 100 U (0.5 µl) Superscript II 

reverse transcriptase in reaction buffer. The reaction was incubated for 1 hr at 37° C and 

subsequently inactivated by 5 min incubation at 100° C in a pre-heated thermoblock. Finally, 

the samples were transferred into ice and PCR was performed for amplification of cDNA.  

 

2.2.8.3. Polymerase chain reaction (PCR) 

The sequences of the primers used for PCR are shown in 2.1.5. PCR was performed 

using 1 U (0.2 µl) of Taq DNA polymerase in a PCR-reaction mixture of 20 µl. Samples 

were amplified in a DNA Thermocycler for 30 cycles. Each cycle consisted of denaturation at 

95° C for 30 sec, annealing for 30 sec, and elongation at 72° C for 30 sec, preceded by initial 

denaturation at 95° C for 3 min and followed by a final extension step at 72° C for 10 min. 

Annealing temperature for each primer was experimentally produced by running the same 

reaction at different annealing temperatures using a gradient thermocycler.  
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Amplification of β-actin message was used to normalize the amount of cDNA. For β-

actin amplification, PCR was carried out for 25 cycles, each consisting of denaturation at 95° 

C for 25 sec, annealing at 60° C for 25 sec, and elongation at 72° C for 25 sec, preceded by 

initial denaturation at 95° C for 3 min and followed by a final extension step at 72° C for 10 

min. A mock PCR (without cDNA) was included to exclude contamination in all 

experiments. Aliquots of PCR products were electrophoresed on 1.5% agarose gel and 

visualized under UV light after ethidium bromide staining.  

 

2.2.8.4.  Electrophoresis  

Agarose gel (1.5%) was prepared by heat-dissolving agarose in Tris/boric acid/EDTA 

(TBE) using a microwave oven. Melted agarose was allowed to cool to 55° C before a 

volume of 40 ml was poured into a beaker. To this volume, 10 µl of 1 mg/ml ethidium 

bromide were added, gently swirled and poured into a small gel casting tray fitted with a 12 

well comb. Samples were loaded at volumes of 6 µl which contained 5 µl PCR product plus 1 

µl 6-fold loading dye along with 5 µl (0.1 µg) molecular weight marker. Gel electrophoresis 

was carried out in TBE buffer at 10 V/cm gel width (approximately 70 V) for 1 hr. 

Visualization and photography of the gel were done using a transluminator equipped with a 

camera.  

 

2.2.8.5. Microarray 

Microarray analysis was performed by Dr. Reinhardt Hoffmann and Dr. Jörg Mages 

in the facilities of the Institute for Medical Microbiology, Immunology and Hygiene, at the 

Technical University of Munich. The purified RNA samples were labeled and hybridized on 

a mouse (MG 430 2.0) DNA-microarray (Affymetrix, Santa Clara, U.S.A.), according to the 

manufacturer´s instructions.  
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2.2.9. Animal experiments 

  All in vivo animal experiments were approved by the “Ministerium für 

Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein, Germany“.  

 

2.2.9.1. Adoptive transfer of BMMCs, BMDCs and CD8+ T cells 

BMMCs and BMDCs were pulsed with 4 μg/ml OVA257-264, as described in 2.2.3.1.   

5 x 106 of OVA257-264 -pulsed BMMCs or BMDCs or equal amount of unpulsed BMMCs 

(control) in 200 μl of PBS were injected into the peritoneum of C57BL/6 or β2m-/- mice. One 

day later, CD8+ T cells were purified from the lymph nodes of OT-I transgenic mice as 

described in 2.2.2.1 and labeled with CFSE (2.2.5.1.). A number of 8 x 106 CFSE-labeled 

CD8+ T cells in 200 μl PBS were injected into the peritoneum of the recipient mice. Four 

days after transfer of the CD8+ T cells, mice were euthanized with CO2 inhalation. Peritoneal 

lavage was obtained after injection of 10 ml ice-cold 0.9% NaCl in the peritoneal cavity. 

Inguinal and mesenteric lymph nodes, spleen and blood were isolated and analyzed for CFSE 

proliferation of transgenic CD8+ T cells by FACS. 

 

2.2.9.2. Allergic airway sensitization 

WBB6F1-KitW/KitW-v (MC-deficient) female mice, as well as their congeneic wild-

type mice (WBB6F1-KitW/KitW) were immunized against ovalbumin (OVA), according to an 

established protocol of sensitization against OVA (Rückert et al., 2005; Beisswenger et al., 

2006). Sensitization of mice was performed by three intraperitoneal injections of alum-

absorbed OVA. 20 μg OVA (grade VI) were diluted in 200 μl PBS containing 1.5 mg 

Al(OH)3 and the solution was injected in the peritoneum of the mice with a 27 G needle on 

day 0, day 14 and day 21. Mice were challenged by exposure to aerosolized OVA (1% OVA 

grade V in PBS) for 40 min and were left in the aerosol-chamber for additional 10 min. One 

day after the last OVA-aerosol challenge, mice were sacrificed by cervical dislocation.  

The lung and the draining lymph nodes of the lung were isolated after injection of 

PBS in the right ventricle of the heart, in order to remove the blood. Next, the lung and the 

draining lymph nodes of the lung were digested by incubation in collagenase / 
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deoxyribonuclease buffer (1 mg/ml collagenase and 0.2 mg/ml deoxyribonuclease in RPMI) 

for 30-60 min in incubator with 5% CO2, at 37° C. Subsequently, cells were washed with 

FACS buffer at 270 x g, for 10 min, at 4° C, counted and analyzed for the content and 

phenotype of CD8+ T cells by FACS (2.2.4.1).  

  

2.2.10. Statistical  analysis 

Results are represented as mean values ± standard deviation from pooled data of two 

to six independent experiments, as indicated. Statistical analysis of the results, unless 

otherwise stated, was performed by Student’s t test. A p value of <0.05 was considered 

statistically significant (*).  
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                    3.  Results 

ast cells (MCs) have been well characterized as main “effector” cells in the 

acute phase of allergic reactions and as participants of the innate immune 

response. Recent results, however, suggest that MCs also have a key role in the regulation of 

adaptive immunity, since they recruit and interact with B cells, dendritic cells (DCs) and T 

cells (Galli et al., 2005b). Moreover, bone marrow-derived MCs (BMMCs) have been shown 

to process bacterial antigens and induce proliferation of CD8+ T cell line in vitro (Malaviya et 

al., 1996b). A potential MC-CD8+ T cell interaction is also supported by the fact that MCs 

induce chemotaxis of CD8+ T cells in vivo (McLachlan et al., 2003; Ott et al., 2003; Orinska 

et al., 2005). However, the ability of MCs to modulate primary CD8+ T cell activation and 

effector functions, as well as the identification of the factors that regulate this interaction 

remain unknown. CD8+ T cells play a central role in the induction of a protective immune 

response against intracellular pathogens. Moreover, CD8+ T cells are important for the 

induction of allergic sensitization and atopic diseases (Haczku et al., 1995a; Haczku et al., 

1995b; Hamelmann et al., 1996). Therefore, a potential ability of MCs to regulate CD8+ T 

cell responses could be crucial for the modulation of host defense mechanisms as well as for 

the development of allergic diseases. For this reason, this study investigated the potential of 

MCs to interact with CD8+ T cells in vitro and in vivo, as well as the effects of this interaction 

on MCs.   

 

3.1. Obtaining a pure MC population from the bone marrow 

As a model to study the role of MCs, bone marrow-derived MCs (BMMCs) were 

used.  BMMCs were obtained after cultivating the bone marrow of C57/BL6 mice in the 

presence of IL-3 and SCF for 5 weeks (Dvorak et al., 1994). The maturation of the cells was 

tested with toluidine blue/hematoxylin staining, which results in appearance of the MC-

specific red-purple metachromatic granula (Fig. 3.1A). The morphology of the cells 

reproduced the typical MC-phenotype, as shown by the high granularity (sideward-scatter) 

and size (forward-scatter) of the cells, analyzed by FACS (Fig. 3.1B). The presence of dead 

cells in the cultures was measured by FACS after propidium iodide (PI) staining (Fig. 3.1C), 

which verified that the cultures contained only 1-5% dead cells (PI positive cells). The cells 

displayed the MC-specific surface expression of c-kit (CD117), FcεRI and T1/ST2, as shown 

M 
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by FACS analysis (Fig. 3.1D). In order to exclude the presence of other cell types in the 

cultures, that could possibly interact with T cells and affect the results of the following 

experiments, the cultures were tested for the presence of DCs, myeloid cells, B cells and 

macrophages by analyzing surface expression of CD11c, CD11b, B220 and F4/80 

respectively by FACS (Fig. 3.2). IL-3- and SCF- differentiated BMMCs displayed no 

significant surface expression of those markers, indicating that no other antigen presenting 

cells (APCs) were present in the culture. Therefore, the cells obtained after 5 weeks of in 

vitro culture were considered as pure BMMCs and used as a model to investigate the role of 

MCs in modulating CD8+ T cell responses.  
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Fig. 3.1. The in vitro culture of BMMCs results in a pure population dsiplaying the MC-

phenotype. Bone marrow cells of C57/BL6 mice were cultured in the presence of IL-3 (10 

ng/ml) and SCF (5 ng/ml) for 5 weeks. A. Maturation of BMMCs was tested with toluidine 

blue/hematoxylin staining. B. Morphology of BMMCs was analyzed by FACS. (FSC: 

forward-scatter, SSC: sideward-scatter) C. Viability of the cells was tested with propidium 

iodide (PI) staining D. Purity of BMMCs was analyzed by FACS staining for MC-related 

surface markers (c-kit, FcεRI and T1/ST2) (gated on viable cells). Cells stained with isotype 

control antibodies of irrelevant specificity served as negative control. Representative results 

of more than six independent experiments are shown.  
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Fig. 3.2. The in vitro cultures of BMMCs were not contaminated with “professional” 

antigen-presenting cells (APCs). Bone marrow cells of C57/BL6 mice were cultured in the 

presence of IL-3 (10 ng/ml) and SCF (5 ng/ml). Following 5 weeks of culture, the presence of 

potential APCs was tested with FACS after staining for CD11c, CD11b, B220 and F4/80 

(gated on viable cells). Staining of the cells with control isotype matched antibodies of 

irrelevant specificity is shown in bold black lines. Representative results of more than six 

independent experiments are shown.  

 

3.2. Obtaining a pure DC population from the bone marrow 

DCs are highly efficient APCs, capable of inducing CD4+ as well as CD8+ T cell 

responses. For this reason, DCs were used as a comparison to MCs in following experiments 

investigating the antigen-specific MC-CD8+ T cell interactions in vivo. Bone marrow-derived 

DCs (BMDCs) were obtained after cultivating the bone marrow of C57/BL6 mice in the 

presence of GM-CSF for 7-9 days, as previously described (Scheicher et al., 1992; Inaba et 

al., 1992). On day 7, the phenotype of DCs was analyzed by FACS for maturation and 

viability of the cells. The morphology of the cells reproduced the typical DC-phenotype, as 

shown by the low granularity (sideward-scatter) and moderate size (forward-scatter) of the 

cells (Fig. 3.3A). The presence of dead cells in the culture was measured by propidium iodide 

(PI) staining (Fig. 3.3B), which verified that the culture contained only 5-10% dead cells (PI 

positive cells). The cells displayed the DC-specific surface expression of CD11c, (Fig. 3.3C). 

The DCs obtained by this method were mature, since they expressed surface MHC class II (I-

A/I-E) and the co-stimulatory molecule CD80 (Fig. 3.3C). Therefore, the BMDCs obtained 

according to this protocol were used as potent APCs in comparison to MCs in following 

experiments.  
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Fig. 3.3. The in vitro culture of BMDCs results in a pure population displaying the DC-

phenotype. Bone marrow cells of C57/BL6 mice were cultured in the presence of GM-CSF 

for 7-9 days. A. Morphology of BMDCs was analyzed by FACS. (FSC: forward-scatter, SSC: 

sideward-scatter) B. Viability of the cells was measured by propidium iodide (PI) staining. C. 

Maturation of BMDCs was analyzed by FACS staining for surface markers (CD11c, I-A/I-E  

and CD80) (gated on viable cells). Staining of the cells with control isotype matched 

antibodies of irrelevant specificity is shown in bold black lines. Representative results of 

more than six independent experiments are shown.  

   

3.3. Obtaining a pure population of primary CD8+ T cells 

CD8+ T cells were purified from the lymph nodes of OT-I transgenic mice. These 

mice express a transgenic TCR on CD8+ T cells, which recognizes the OVA257-264 peptide in 

association with MHC class I molecules. The viability, purity and activation status of the 

isolated CD8+ T cells were tested by FACS analysis (Fig. 3.4). The isolated cells displayed 

the typical low size and low granularity of naïve lymphocytes according to forward-/ 

sideward-scatterplot analysis (Fig. 3.4A). The isolated CD8+ T cells were viable (97 ± 2% PI 

negative) (Fig. 3.4B), highly pure (96 ± 2% CD8+) (Fig. 3.4C) and not activated, as shown 

by the minimal surface expression of the activation markers CD69, CD25 and CD44 (Fig. 

3.4D) at the time of the isolation. 
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Fig. 3.4. The isolated CD8+ T cells comprise a pure population of naïve primary CD8+ T 

cells. Lymph nodes were excised from OT-I transgenic mice and CD8+ T cells were purified 

by negative selection with MACS. The phenotype of the CD8+ T cells was analyzed by FACS.  

A. Forward-/ sideward- scatterplot analysis of the purified CD8+ T cells shows that the 

isolated cells displayed the typical morphology of naïve lymphocytes. B. Propidium iodide 

(PI) staining was performed in order to test the viability of the cells. C. Purity of the cells was 

analyzed by surface expression of CD8 and the transgenic TCR β chain (Vβ5). D. Activation 

of the isolated CD8+ T cells was analyzed by surface expression of activation markers 

(CD69, CD25 and CD44) (gated on viable cells). Staining of the cells with control isotype 

matched antibodies of irrelevant specificity is shown in bold black lines. Representative 

results of more than six independent experiments are shown.  

In order to exclude the presence of any other possible APCs in the purified CD8+ T 

cell fraction, the cells were tested for the presence of B cells, DCs, macrophages and NK 

cells by analyzing the surface expression of B220, CD11c, F4/80 and NK1.1 respectively by 

FACS (Fig. 3.5). None of those markers displayed a significant expression, showing that the 

MACS depletion of contaminating cells was up to 96 ± 2% (n=6) efficient. Therefore, the 

CD8+ T cells isolated from the OT-I transgenic mice were considered a pure population of 

naïve primary CD8+ T cells and were used in the following experiments to study the 

interaction between MCs and CD8+ T cells.  
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Fig. 3.5. The isolated CD8+ T cell population was not contaminated with potential APCs.  

CD8+ T cells were isolated from lymph nodes of OT-I mice and purified by negative selection 

with MACS. The presence of APCs in the culture was tested with FACS staining for surface 

expression of B220, CD11c, F4/80 and NK1.1 (gated on viable cells). Staining of the cells 

with control isotype matched antibodies of irrelevant specificity is shown in bold black lines. 

Representative results of more than six independent experiments are shown.  

 

3.4. Antigen-independent effects of MCs on CD8+ T cells in vitro 

The interaction between APCs and T cells may occur both in an antigen-dependent 

and antigen-independent way. In the absence of a specific antigen, DCs have been shown to 

form functional synapses with T cells and induce a small Ca2+ response and weak 

proliferation, mainly on CD4+ and, to a minimal extent, on CD8+ T cells (Revy et al., 2001). 

Interestingly, DCs, but neither B cells nor monocytes, increase the survival of naïve T cells 

(both CD4+ and CD8+) in an antigen-independent manner (Revy et al., 2001; Kondo et al., 

2001). Since an antigen-independent interaction between APCs and T cells is potentially 

relevant for the homeostasis of the naïve T cell pool, the cells that participate in this 

interaction should be characterized in detail. Several investigators suggest that MCs modulate 

CD4+ T cell activities in an antigen-independent manner, by influencing the Th1/Th2 balance 

via release of soluble mediators (Stelekati et al., 2007). Therefore, it was suggested that the 

CD8+ T cell responses might also be influenced by MCs in an antigen-independent manner. 

For this reason, the survival as well as the activation of CD8+ T cells was tested in the 

presence of MCs and in the absence of a specific stimulus (namely the OVA257-264 peptide).  
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3.4.1. MCs support the survival of naïve CD8+ T cells 

MCs are able to release a variety of cytokines (Introduction, Fig.1.3). Some of the 

MC-released cytokines, namely IL-2, IL-7 and IL-15, support and regulate the survival of 

CD8+ T cells (Marrack and Kappler, 2004). Therefore, it was examined whether MCs are 

able to directly regulate the survival of CD8+ T cells. For this reason, the survival of naïve 

CD8+ T cells in the presence or absence of MCs was evaluated by propidium iodide (PI) 

staining of the CD8+ T cells. Indeed, the addition of MCs at a ratio 1:2 to CD8+ T cells 

increased the percentage of viable (PI-negative) CD8+ T cells by 32 ± 9% (n=7), while 

addition of MCs at a ratio 1:10 increased the survival of CD8+ T cells by 16 ± 3% (n=3) (Fig. 

3.6A).  

It has been previously reported that DCs promote the survival of naïve T cells in an 

antigen-independent and cell contact-dependent manner (Revy et al., 2001; Kondo et al., 

2001), suggesting that not only cytokine production but also physical cell-cell interactions are 

essential for the increased T cell survival. For this reason, the importance of direct cell 

contact between MCs and CD8+ T cells for the increased survival of CD8+ T cells was 

examined. Thus, CD8+ T cells were cultured with MCs in the presence of a membrane, which 

inhibited direct cell contact between MCs and CD8+ T cells. As shown in Fig. 3.6B, the 

presence of the membrane reduced the survival of CD8+ T cells by 25 ± 18% (n=4), 

suggesting that direct cell contact between MCs and CD8+ T cells is essential for the 

enhanced survival of CD8+ T cells.  
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Fig. 3.6. MCs enhance the survival of primary naïve CD8+ T cells. CD8+ T cells were 

purified from lymph nodes by negative MACS separation. A. 1 x 106 CD8+ T cells were 

cultured in the absence (“control”) or in the presence of 0.5 x 106 MCs (“1:2”) or 0.1 x 106 

MCs (“1:10”) in IMDM complete medium containing IL-3 (5 ng/ml) for 48 hours. B. 1 x 106 

CD8+ T cells were cultured with 0.5 x 106 MCs and the direct cell contact between MCs and 

CD8+ T cells was either allowed (“free contact”) or inhibited by the presence of a 0.2 μm 

anopore membrane (“membrane”). Cells were stained with propidium iodide (PI) and 

analyzed by FACS. Graphs show the percentage of PI-negative cells (% viable CD8+ T cells), 

gated on CD8+ T cells. Mean values with standard deviation of two to five independent 

experiments are shown (n=4-7). * p<0.05, ** p<0.01 

These data suggest that MCs promote the survival of CD8+ T cells in an antigen-

independent and cell-cell contact-dependent manner and propose that MCs contribute to the 

homeostasis of naïve CD8+ T cells.  

 

3.4.2. MCs do not induce CD8+ T cell activation in the absence of antigen 

The antigen-independent activation of T cells may be important for the establishment 

of protective immunity or play a role in autoimmune diseases (Kondo et al., 2001). Therefore, 

the question whether MCs regulate CD8+ T cell activation in an antigen-independent manner 

was addressed. For this reason, CD8+ T cells were isolated from lymph nodes by MACS and 

cultured in the presence of MCs for 48 hours. Subsequently, the cells were analyzed by 

FACS for surface expression of activation markers on CD8+ T cells. Surface expression of 

CD69 (very early activating antigen) has been shown to become rapidly up-regulated after 
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activation of T cells (Ziegler et al., 1994). CD25 (IL-2 receptor α) is also reported to be 

expressed on T cells upon activation (Santos et al., 1991), while CD44 (cell adhesion 

receptor) surface expression has been correlated not only with activation but also with 

memory differentiation of T cells (Budd et al., 1987). Therefore, the combination of these 

markers was chosen in order to provide a clear estimation of the activation status of the CD8+ 

T cells. In order to focus on the CD8+ T cell population during further analysis, gates were set 

on the lymphocyte population according to forward-/ sideward-scatterplot analysis (Fig. 

3.7A, left plot), alive cells, as demonstrated by exclusion of PI staining (Fig. 3.7A, middle 

histogram) and CD8+ cells, as shown by staining with specific CD8 antibody (Fig. 3.7A, left 

histogram). Further analysis on CD8+ T cells included the set of all these three gates. As 

shown in Fig. 3.7B, MCs did not induce any activation on naïve CD8+ T cells in the absence 

of a specific antigen, as depicted by the absence of surface expression of activation markers 

CD69, CD25 and CD44 on CD8+ T cells.   
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Fig. 3.7. MCs do not induce activation of naïve T cells in the absence of a specific antigen. 

CD8+ T cells were isolated from lymph nodes by MACS and cultured with MCs in the 

presence of IL-3 (5 ng/ml) for 48 hours. A. Gates were set in order to select the CD8+ T cell 

population for further analysis. Lymphocyte gate was set according to FSC/SSC localization 

of lymphocytes. Viability gate was set on the propidium iodide (PI) negative cells in order to 

exclude dead cells from further analysis. CD8+ gate was set according to surface expression 

of CD8. Further analysis was focused on the population selected according to these three 

gates. B. Histograms depict FACS staining for surface expression of CD69, CD25 and CD44, 

gated on viable CD8+ T cells. Staining of the cells with control isotype matched antibodies of 

irrelevant specificity is shown in bold black lines. Representative results of five independent 

experiments are shown.  

These results suggest that an antigen-independent interaction between MCs and CD8+ 

T cells occurs only in terms of enhanced CD8+ T cell survival, and not CD8+ T cell 

activation. Therefore it is proposed that MCs might contribute only to the homeostasis of 

naïve CD8+ T cells, but do not induce activation of naïve CD8+ T cells in the absence of a 

specific antigen.   
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3.5. Antigen-dependent effects of MCs on CD8+ T cells in vitro 

The presentation of antigens to T cells is the initiative step for an adaptive cellular 

immune response. APCs internalize proteins, degrade them into peptides and present them on 

their surface associated with MHC class I or MHC class II molecules for priming CD8+ or 

CD4+ T cells, respectively. Endogenous proteins are generally presented on an MHC class I-

restricted manner, while exogenous proteins are presented on an MHC class II-restricted 

manner. However, through the process of cross-presentation, exogenous antigens may also be 

presented on an MHC class I-dependent manner to induce CD8+ T cell responses (Trombetta 

and Mellman, 2005). MCs have been shown to present MHC class II-related antigens to 

CD4+ T cells (Frandji, et al., 1993). However, less is known about the antigen-specific 

interaction between MCs and CD8+ T cells; MCs induce in vitro proliferation of CD8+ T cell 

lines (Malaviya et al., 1996b), but neither the mechanism of MC-CD8+ T cell interaction nor 

its relevance in vivo has been investigated so far.  

 

3.5.1. MCs internalize the OVA protein 

The first step of presentation or cross-presentation of exogenous antigens consists of 

the internalization of antigenic proteins. In order to test the potential of MCs to interact with 

CD8+ T cells in an antigen-dependent manner, MCs were initially tested for their ability to 

internalize the ovalbumin (OVA) protein. OVA is a model antigenic protein (Herz et al., 

1996) and was chosen on the concept that the OT-I CD8+ T cells used in this study express 

the transgenic TCR for the peptide OVA257-264, derived from the OVA protein.  In order to 

visualize the possible uptake of the OVA protein by MCs, OVA protein was coupled to FITC 

and the OVA-unbound FITC was removed by column purification. First, MCs were either 

incubated with 20 μg/ml OVA-FITC for 4 hours or were left untreated, washed and FITC-

internalization was observed in a fluorescence microscope. As shown in Fig. 3.8A, MCs were 

able to internalize the protein. Next, the effect of the protein concentration on the 

internalization result was studied in the same experimental settings. MCs were incubated with 

different concentrations of OVA-FITC, subsequently washed and analyzed by FACS. As 

depicted in Fig. 3.8B, the internalization of the protein by MCs occured at protein 

concentrations of at least 20 μg/ml. These results suggest that MCs are capable of 
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internalizing antigenic proteins in a dose-dependent manner, therefore have the potential to 

act as APCs.  
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Fig. 3.8. MCs internalize the OVA protein in vitro. OVA protein was coupled with FITC and 

added to the MC culture. A. MCs were incubated with OVA-FITC (20 μg/ml) for 4 hours 

(“+OVA-FITC”) or left untreated (“control”), subsequently washed and visualized under 

fluorescence microscope. B. MCs were incubated with different concentrations of OVA-

FITC, as indicated or left untreated (“control”) for 4 hours and analyzed by FACS. 

Histogram (upper row) shows OVA-FITC staining of MCs (gated on viable, c-kit positive 

cells). Graph in lower row shows mean fluorescence intensity (MFI) of MCs after OVA-FITC 

treatment. Bars represent mean values of MFI with standard deviation of two independent 

experiments.  

 

3.5.2. MCs induce antigen-specific CD8+ T cell responses 

The fact that MCs internalize the OVA-protein supports the initial hypothesis that 

MCs may interact with CD8+ T cells in an antigen-dependent manner. In order to study the 

ability of MCs to induce antigen-dependent CD8+ T cell responses, BMMCs were pulsed 

with the OVA257-264 peptide and cultured with TCR-transgenic (OT-I) CD8+ T cells 

recognizing the peptide OVA257-264. Subsequently, the CD8+ T cell responses were measured 

in terms of activation, proliferation and cytokine production.  
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3.5.2.1. MCs induce antigen-specific CD8+ T cell activation 

In order to test the ability of MCs to induce antigen-dependent activation of CD8+ T 

cells, MCs were pulsed with OVA257-264 peptide and cultured with OT-I transgenic CD8+ T 

cells. After 48 hours of co-culture, CD8+ T cell activation was measured by surface 

expression of activation markers with FACS. Analysis was focused on the CD8+ T cells by 

setting of gates on the lymphocyte population, PI-negative (viable) cells and CD8-expressing 

cells (Fig. 3.9A).  A first hint that CD8+ T cells become activated after antigen-dependent 

contact with MCs was given by the fact that CD8+ T cells exhibited increased size (FSC) and 

granularity (SSC) (Fig. 3.9A, left plot) compared to the CD8+ T cells which experienced 

antigen-independent contact with MCs (Fig. 3.7A, left plot). Indeed, already after 18 hours 

(data not shown) and, to a greater extent, after 48 hours (Fig. 3.9B), antigen-pulsed MCs 

induced activation of CD8+ T cells, as shown by the marked up-regulation of the activation 

markers CD69 (very early activating antigen), CD25 (IL-2 receptor α) and CD44 (cell 

adhesion receptor) on CD8+ T cells, measured by FACS analysis. Since CD69 is a very 

sensitive marker of activation, rapidly induced upon T cell activation, it was used in 

combination with CD25 to estimate the activation status of the CD8+ T cells. The activation 

of CD8+ T cells was dependent on the numbers of OVA257-264-pulsed MCs. All three 

activation markers showed the maximal up-regulation at a ratio of MC:CD8 = 1:2. However, 

even at a much lower ratio of MC:CD8 = 1:10, CD8+ T cells displayed up to  90 ± 4% 

activation (n=6). As depicted in Fig. 3.9C, CD69 appeared to be a more sensitive activation 

marker, as shown by its higher up-regulation compared to CD25 and CD44, mainly at the 

lower MC:CD8 ratios. Thus, at the lowest ratio of MC:CD8 = 1:100, CD69 still exhibited an 

up-regulation of 45 ± 14% (n=6), while the corresponding up-regulation for CD25 and CD44 

were 29 ± 9% and 35 ± 5%, respectively.  

It is therefore concluded that MCs are indeed able to initiate an antigen-dependent 

activation of CD8+ T cells and induce up-regulation of CD69 and subsequently CD25 and 

CD44 surface expression.  
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Fig. 3.9. MCs induce antigen-specific CD8+ T cell activation in vitro. MCs were pulsed with 

OVA257-264 peptide (4 μg/ml), washed and cultured with naïve, purified OT-I transgenic CD8+ 

T cells. 1 x 106 CD8+ T cells were incubated with different numbers of antigen-pulsed MCs. 

A. Analysis of CD8+ T cell population was performed after setting appropriate gates on 

lymphocyte population (left plot), alive cells (middle histogram) and CD8-expressing cells 

(right histogram). Further analysis focused on the population selected according to these 

three gates. B. Activation of CD8+ T cells was determined by analysis of CD69 and CD25 

(upper row) and CD44 (second row) expression by FACS (gated on viable CD8+ T cells). 

Control isotype staining is shown in bold black lines. One representative of six independent 
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experiments is shown. C. Mean values of activated CD8+ T cells (according to CD69, CD25 

or CD44 surface expression) with standard deviation of six independent experiments are 

shown.  

To exclude a TCR-independent, unspecific activation of CD8+ T cells, naïve CD8+ T 

cells were purified from lymph nodes of C57BL/6 wild-type mice and cultured with OVA257-

264-pulsed MCs. After 48 hours of co-culture, no surface expression of CD69 and CD25 and 

minimal surface expression of CD44 were detected on the wild-type CD8+ T cells (Fig. 3.10). 

These results demonstrate that the antigen-specific activation of CD8+ T cells by MCs is 

TCR-dependent. 
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Fig. 3.10. The antigen-specific activation of CD8+ T cells by MCs is TCR-dependent. MCs 

were pulsed with OVA257-264 peptide and cultured with naïve CD8+ T cells purified from 

lymph nodes of OT-I transgenic mice (“OT-I CD8”) or C57BL/6 wild-type mice (“WT 

CD8”) at a ratio of 1:2. Activation of CD8+ T cells was determined by analysis of CD69 and 

CD25 (upper row) and CD44 (lower row) expression by FACS (gated on viable CD8+ T 

lymphocytes). Control isotype staining is shown in bold black line. Representative results of 

three independent experiments are shown. 

To verify that the antigen-specific activation of CD8+ T cells was dependent on the 

functional expression of MHC class I on MCs, BMMCs derived from beta-2-microglobulin 

deficient mice (β2m-/-), were used for co-culture with CD8+ T cells. Absence of β2m 

expression in these mice leads to the lack of a functional expression of MHC class I and 

therefore, to the inability to present in an MHC class I-dependent manner. β2m-/- MCs were 
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pulsed with    OVA257-264 and co-cultured with OT-I transgenic CD8+ T cells. As shown in 

Fig. 3.11, after 48 hours of co-culture, the β2m-/- MCs induced only a minimal activation of 

the CD8+ T cells, measured by surface expression of CD69, CD25 and CD44, as compared 

with wild-type MCs. Therefore, these data confirm that the bulk of CD8+ T cell activation 

induced by MCs is due to MHC class I-dependent antigen presentation.  
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Fig. 3.11. The antigen-specific activation of CD8+ T cells by MCs is MHC class I-

dependent. BMMCs were derived from the bone marrow of C57BL/6 wild-type mice (“WT 

MC”) or β2m-deficient mice (“β2m-/- MC”). MCs were pulsed with OVA257-264 peptide and 

cultured with naïve, purified, OT-I transgenic CD8+ T cells at a ratio of 1:2. Activation of 

CD8+ T cells was determined by analysis of CD69 and CD25 (upper row) and CD44 (lower 

row) expression by FACS (gated on viable CD8+ T cells). Control isotype staining is shown 

in bold black line. Representative results of three independent experiments are shown. 

 

3.5.2.2. MCs induce antigen-specific CD8+ T cell proliferation 

Antigen-specific activation of CD8+ T cells by “professional” APCs leads on the one 

hand to proliferation and clonal expansion, and on the other hand to their differentiation into 

effector cells or long-living memory cells (Roitt et al., 2002). In order to study the result of 

the MC-induced MHC class I-dependent antigen presentation, the proliferation of CD8+ T 

cells after antigen-specific contact with MCs was examined using the method of CFSE 

labeling of CD8+ T cells. CFSE is a cell tracking reagent, which passively diffuses into the 
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cells. Upon reaction with intracellular amines it forms fluorescent conjugates that are 

detectable by flow cytometry. The dye is distributed equally with the cytoplasmic proteins to 

the daughter cells after cell division. Therefore, cell division can be tracked by the sequential 

halving of CFSE fluorescence resulting in a fluorescence histogram in which the peaks 

represent successive generations of daughter cells. 

Thus, the MC-induced, antigen-specific proliferation of CD8+ T cells was examined 

by incubating OVA257-264-pulsed MCs with OT-I transgenic, CFSE-labeled CD8+ T cells. 

Peptide-pulsed MCs stimulated CD8+ T cells to undergo up to five cell divisions, as shown 

by the five successive peaks in the histogram plot of CFSE dilution (Fig. 3.12A), 

demonstrating that MCs are capable of inducing proliferation of naïve, primary CD8+ T cells. 

Maximal proliferation was detected at a ratio MC:CD8 = 1:20, with 92 ± 2% (n=3) of the 

CD8+ T cells proliferating. At the lowest tested ratio of MC:CD8 = 1:100, clearly less cells 

appeared in each cell division, however a total of 57 ± 16% (n=4) of the CD8+ T cell 

population proliferated.  No proliferation could be detected in the presence of unpulsed MCs 

(Fig. 3.12B, “control”) or with β2m-/-, peptide-pulsed MCs (Fig. 3.12B, “β2m-/-”). 

Therefore, it is concluded that MCs are able to induce antigen-specific proliferation of CD8+ 

T cells in a MHC class I-dependent manner.  
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Fig. 3.12. MCs induce antigen-specific CD8+ T cell proliferation in vitro. MCs were pulsed 

with OVA257-264 peptide and cultured with CFSE-labeled OT-I transgenic CD8+ T cells.  A. 1 

x 106 CD8+ T cells were incubated with different numbers of antigen-pulsed MCs.  B. 1 x 106 

CD8+ T cells were cultured with 0.5 x 106 unpulsed MCs (“control”) or with 0.5 x 106 β2m-/-, 

peptide-pulsed MCs (“β2m-/-”). Histograms depict CFSE dilution as measured by FACS 

(gated on viable CD8+ T cells). Representative results of five independent experiments are 

shown. C. Mean values of the percentages of proliferating CD8+ T cells with standard 

deviation of three to four independent experiments are shown.  
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3.5.2.3. MCs induce antigen-specific cytokine production by CD8+ T cells 

Effector functions of activated CD8+ T cells are exerted by secretion of cytokines, 

mainly IL-2 and IFN-γ (Roitt et al., 2002). Therefore, it was questioned whether the MC-

induced antigen-dependent activation of CD8+ T cells resulted also in differentiation of CD8+ 

T cells into effector, cytokine-producing cells. For this reason, the supernatants of the MC-

CD8+ T cell co-cultures were screened for their cytokine content with Bio-Plex assay. 

Cytokines known to be produced at high amounts after antigen-specific T cell activation   

(IL-2, IFN-γ), as well as cytokines that regulate T cell differentiation (IL-4, IL-10, IL-12) and 

cytokines that contribute to the inflammatory response (TNF-α, GM-CSF) were measured. 

High amounts of the T cell-related cytokines IL-2 [5.6 ± 0.9 ng/ml] (n=3) and                   

IFN-γ  [6.0 ± 0.2 ng/ml] (n=2) and lower amounts of TNF-α [312 ± 180 pg/ml] (n=3) and 

GM-CSF [400 ± 116 pg/ml] (n=3) were detected after antigen-specific MC-CD8+ T cell 

contact (n=3) (Fig. 3.13). In contrast, none, or hardly any, production of IL-4, IL-5, IL-10 

and IL-12 was detectable.  
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Fig. 3.13. Cytokines are released during antigen-specific MC-CD8+ T cell contact.  MCs 

were pulsed with OVA257-264 peptide or left untreated (“control”) and cultured with 1 x 106 

OT-I transgenic CD8+ T cells at different cell ratios for 48 hours. Supernatants of the co-

culture were analyzed for cytokine content with Bio-Plex assay. Mean values with standard 

deviation of two to three independent experiments are shown. 

In order to investigate whether the detected cytokines were produced by the activated 

CD8+ T cells, intracellular cytokine staining for the T cell-related cytokines IL-2 and IFN-γ 

was performed. Indeed, both IL-2 and IFN-γ were detected intracellularly in CD8+ T cells 

after the MC-mediated antigen-dependent activation (Fig. 3.14), at a percentage of 5.5 ± 

2.9% and 3.1 ± 1.5% (n=10) respectively. Thus, it was demonstrated that IL-2 and IFN-γ 

were produced by the activated CD8+ T cells, although their production by MCs as well was 

not excluded.  
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Fig. 3.14. MCs induce antigen-specific cytokine production by CD8+ T cells. 1 x 106 OT-I 

transgenic CD8+ T cells were incubated with 0.1 x 106 unpulsed MCs (“ - OVA257-264”) or 

with an equal number of antigen-pulsed MCs (“ + OVA257-264”) for 48 hours. Cells were 

stained for surface expression of CD8, subsequently stained for intracellular expression of 

IL-2 (A) or IFN-γ (B) and analyzed by FACS. Percentages show cytokine-positive CD8+ T 

cells. Dot plots show one representative of five independent experiments. Right panel shows 

mean values of cytokine-positive CD8+ T cells with standard deviation of five independent 

experiments (n=10). 

 ** p<0.01 

 

Conclusively, these results demonstrate that MCs are capable of inducing significant 

antigen-specific CD8+ T cell responses, as shown by the activation, proliferation and cytokine 

production by primary CD8+ T cells. Thus, MCs act as efficient antigen-presenting cells in 

vitro, by presenting MHC class I-related antigens and inducing effector CD8+ T cell 

responses.  
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3.5.3. MCs increase the cytotoxic potential of CD8+ T cells 

A key effector function of CD8+ T cells is their cytotoxic activity (e.g. against 

infected host cells) (Wong and Pamer, 2003). A crucial step in CD8+-mediated cytotoxicity is 

the exocytosis of specialized granules containing cytotoxic proteins, namely granzymes and 

perforin (Lieberman, 2003). Therefore, it was examined whether MCs were able to enhance 

the cytotoxic potential of the CD8+ T cells by increasing their intracellular content of 

granzyme B upon antigen-specific interaction. Indeed, as shown in Fig. 3.15, intracellular 

granzyme B expression was increased by 27 ± 9% (n=9) in CD8+ T cells after antigen-

mediated activation by MCs. 
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Fig. 3.15. MCs increase the cytotoxic potential of CD8+ T cells. 1 x 106 CD8+ T cells were 

incubated with 0.1 x 106 unpulsed MCs (“ - OVA257-264”) or with an equal number of antigen-

pulsed MCs (“ + OVA257-264”) for 48 hours. Cells were stained for surface expression of 

CD8, subsequently stained for intracellular expression of granzyme B and analyzed by FACS. 

Histograms show one representative of five independent experiments. Control isotype 

staining is shown in bold black lines. Graph in the right panel shows mean values of 

granzyme B-positive CD8+ T cells with standard deviation of five independent experiments 

(n=9). *** p<0.001 

Since an essential step for exhibiting cytolytic activity is the exocytosis of the 

preformed cytotoxic granules, it was further examined whether the CD8+ T cells degranulated 

after MC-dependent antigen-specific activation. A novel method for detecting cytotoxic 

CD8+ T cell degranulation has been developed based on the detection of cell surface 

expression of lysosomal associated membrane glycoproteins (LAMPs) on CD8+ T cells 

(Betts and Koup, 2004; Burkett et al., 2005). LAMPs are embedded in the membrane of the 

cytotoxic granules; upon activation and subsequent degranulation of cytotoxic CD8+ T cells, 

the granule membrane fuses with the plasma membrane, resulting in exposure of LAMPs on 
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the cell surface. Therefore, CD8+ T cell exocytosis was evaluated by measuring the 

expression of LAMP-1 (CD107a) on the surface of CD8+ T cells by FACS after MC-

mediated activation. Upon activation with antigen-pulsed MCs, the CD8+ T cells displayed 

increased surface LAMP-1 expression, which was dependent on the numbers of antigen-

pulsed MCs (Fig. 3.16).  
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Fig. 3.16. MCs induce degranulation of CD8+ T cells. MCs were pulsed with OVA257-264 

peptide or left untreated and cultured with OT-I transgenic CD8+ T cells. 1 x 106 CD8+ T 

cells were incubated with unpulsed MCs (“control”) or with antigen-pulsed MCs at different 

cell ratios (1:10, 1:20 or 1:50). Cells were stained for surface expression of CD8 and LAMP-

1 and analyzed by FACS. Histogram shows one representative of three independent 

experiments for surface expression of LAMP-1 (gated on viable CD3+ T cells). Right graph 

shows mean values of mean fluorescence intensity (MFI) for LAMP-1 with standard deviation 

of two to three independent experiments. * p<0.05 

 

Thus, it is suggested that MCs modulate the effector functions of CD8+ T cells in an 

antigen-dependent manner by increasing their cytotoxic content, as well as by promoting the 

release of cytotoxic granula. For this reason, the MC-CD8+ T cell interaction should be taken 

into consideration when processes involving cytotoxicity, such as viral infections, are studied.  
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3.5.4. The antigen-specific interaction between MCs and CD8+ T cells is cell-   

cell contact-dependent 

The finding that MCs induce antigen-specific CD8+ T cell activities raises questions 

about the requirements involved in this interaction. The first step of interaction between 

“professional” APCs (DCs) and T cells consists of physical cell-cell contacts leading to long-

lasting stable conjugates between the two cell types, which allow the formation of 

immunological synapse (Gunzer et al., 2000; Mempel et al., 2004). It was therefore 

hypothesized that direct cell-cell contact is essential for the induction of CD8+ T cell 

activation by MCs.  

To examine this hypothesis, antigen-pulsed MCs were cultured with CD8+ T cells 

either allowing free cell-cell contact or in the presence of a semi-permeable membrane. The 

diverse size of mediators produced by MCs instructed the inhibition of the direct MC-CD8+ T 

cell contact with two different kinds of membrane: either one which allows the passive 

diffusion of any soluble factor produced by MCs (0.2 μm anopore membrane), or one which 

allows soluble factors of only less than 0.02 μm diameter to pass through (0.02 μm anopore 

membrane) and therefore excludes the diffusion of, e.g., exosomes. The inhibition of cell 

contact between MCs and CD8+ T cells by both membranes inhibited the subsequent 

activation, as shown by FACS analysis for activation markers (Fig. 3.17A) and proliferation, 

as shown by the CFSE dilution of the CD8+ T cells, measured with FACS (Fig. 3.17B). Thus, 

it was demonstrated that direct cell-cell contact between antigen-pulsed MCs and CD8+ T 

cells is essential for the induction of antigen-specific CD8+ T cell responses.   
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Fig. 3.17. The antigen-dependent activation and proliferation of CD8+ T cells induced by 

MCs are cell-cell contact-dependent. MCs were pulsed with OVA257-264 peptide or left 

untreated (“control”) and cultured with CD8+ T cells for 48 hours. Direct cell contact 

between MCs and CD8+ T cells was either allowed (“free contact”) or inhibited by the 

presence of a 0.2 μm or a 0.02 μm-anopore membrane, as indicated. A. Activation of CD8+ T 

cells was measured by analysis of CD69, CD25 (upper row) and CD44 (lower row) 

expression by FACS. Staining of the cells with control isotype matched antibodies of 

irrelevant specificity is shown in bold black lines.  B. Proliferation of CD8+ T cells was 

visualized by CFSE dilution. All graphs are gated on viable CD8+ T cells. Representative 

results of three independent experiments are shown. 
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3.5.5. The antigen-specific interaction between MCs and CD8+ T cells is 

dependent on cytokines released by MCs 

Since it was demonstrated that direct cell-cell contact is essential for the antigen-

specific interaction between MCs and CD8+ T cells, it was further enquired whether direct 

cell-cell contact is the only requirement for MCs to induce antigen-specific CD8+ T cell 

activation, or soluble factors produced by MCs contribute additionally to this activation. For 

this reason, the release of soluble factors by MCs was inhibited by treatment with mitomycin 

C.  

Initially, in order to exclude the possibility that the mitomycin C treatment of MCs 

induces activation of the CD8+ T cells in the absence of the OVA257-264 peptide, unpulsed 

MCs were left untreated or treated with mitomycin C and were subsequently co-cultured with 

CD8+ T cells. As shown in Fig. 3.18A, in the absence of the peptide, the CD8+ T cells did not 

exhibit any activation, whether MCs were pretreated with mitomycin C or not.  

Thus, it was further examined whether mitomycin C treatment of MCs would 

influence the ability of MCs to activate CD8+ T cells in an antigen-dependent manner. For 

this reason, MCs were treated with mitomycin C immediately after their pulsing with the 

OVA257-264 peptide. As compared with untreated antigen-pulsed MCs, the treatment of MCs 

with mitomycin C resulted in 54 ± 18% (n=3) decrease of their capacity to activate CD8+ T 

cells, as measured by the surface expression of activation markers (CD69+CD25+) on CD8+ 

T cells (Fig. 3.18B).  
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Fig. 3.18. Mitomycin C treatment of MCs reduces their ability to activate CD8+ T cells. 

Unpulsed MCs (A) or OVA257-264-pulsed MCs (B) were left untreated (“pos. control”) or 

were treated with mitomycin C (10 μg/ml) (“mit. C”) prior to their addition to OT-I 

transgenic CD8+ T cells. Activation of CD8+ T cells was measured 48 hours later by analysis 

of CD69 and CD25 expression (upper row) and CD44 expression (middle row) by FACS 

(gated on viable CD8+ T cells). Control isotype staining is shown in bold black lines. 

Representative results of one out of three independent experiments are shown. Graph in the 

lowest row (in B) shows mean values of activated (CD69+CD25+) CD8+ T cells with 

standard deviation of three independent experiments. * p<0.05 
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Mitomycin C inhibits nucleic acid synthesis, therefore blocks the synthesis of 

cytokines. However, MCs contain granula with many preformed cytokines and soluble 

factors, which are released upon MC degranulation. For this reason, the effect of blocking 

both the synthesis as well as the release of preformed soluble factors was examined by 

paraformaldehyde treatment of MCs.  

First, in order to exclude the possibility that the paraformaldehyde treatment of MCs 

would induce activation of the CD8+ T cells in the absence of the peptide, peptide-unpulsed 

MCs were left untreated or treated with paraformaldehyde and subsequently co-cultured with 

CD8+ T cells. In the absence of the peptide, the CD8+ T cells did not exhibit any activation, 

whether MCs were pre-treated with paraformaldehyde or not (Fig. 3.19A).  

Subsequently, MCs were treated with paraformaldehyde immediately after their 

pulsing with the antigen and were used to activate CD8+ T cells in an antigen-dependent 

manner. As shown in Fig. 3.19B, the paraformaldehyde treatment of MCs resulted in 69% ± 

16% (n=4) decrease of their capacity to activate CD8+ T cells, as measured by the surface 

expression of activation markers (CD69, CD25 and CD44) on CD8+ T cells.  
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Fig. 3.19. Paraformaldehyde treatment of MCs reduces their ability to activate CD8+ T 

cells. Unpulsed MCs (A) or peptide-pulsed MCs (B) were left untreated (“pos. control”) or 

were treated with paraformaldehyde (“PFA”), prior to their addition to the CD8+ T cells. 

Activation of CD8+ T cells was measured by analysis of CD69 and CD25 expression (upper 

row) and CD44 expression (middle row) by FACS (gated on viable CD8+ T cells). Control 

isotype staining is shown in bold black lines. Representative results of four independent 

experiments are shown. Graph in the lowest row (in B) shows mean values of activated 

(CD69+CD25+) CD8+ T cells with standard deviation of four independent experiments.     

** p<0.01 

Conclusively, the MC-mediated, antigen-specific CD8+ T cell activation is dependent 

both on direct cell-cell contact as well as on soluble factors released by MCs. It is therefore 

proposed that direct cell-cell contact between MC and CD8+ T cells is essential for the 

formation of cell conjugates and the presentation of MHC class I-bound antigen. Once this 

first step of interaction is achieved, pre-stored and newly generated soluble factors released 
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by MCs contribute additionally to the antigen-dependent activation of CD8+ T cells. 

However, the formation of cell conjugates between MCs and CD8+ T cells during MHC class 

I-dependent antigen presentation remains to be elucidated.  

 

3.5.6. TLR-ligand exposure of MCs enhances their potential to activate CD8+ 

T cells 

MCs are resident cells in peripheral tissues, especially at sites exposed to the external 

environment (skin, airways, gastrointestinal tract) (Marshall, 2004). At such places, MCs 

encounter invading pathogens, which they can recognize by TLRs. It has been shown that 

TLR3-induced stimulation of MCs mediates CD8+ T cell recruitment in vivo (Orinska et al., 

2005). Therefore, it was suggested that a potential TLR-ligand exposure of MCs might have a 

modulatory effect on the capacity of MCs to induce CD8+ T cell responses.  

To investigate this hypothesis, first it was examined whether TLR-activation of MCs 

enhances the surface expression of MHC class I molecules, since this is the case for MHC 

class II surface expression on MCs (Frandji et al., 1993). Therefore, the level of MC surface-

expressed MHC class I after stimulation with LPS (100 ng/ml) or pIC (10 μg/ml) was 

examined by FACS. As shown in Fig. 3.20, compared to untreated MCs, LPS-exposed MCs, 

exhibited significantly higher expression of surface MHC class I molecules. The surface 

expression of MHC class I on pIC-exposed MCs appeared to be slightly, but not significantly 

increased.  
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Fig. 3.20. TLR-activation of MCs enhances surface expression of MHC class I. MCs were 

stimulated with LPS (100 ng/ml) or pIC (10 μg/ml) or left untreated (“control”) for 48 hours. 

Surface expression of MHC class I on MCs was analyzed by FACS (gated on viable, c-kit 

positive MCs). A. Histogram shows one representative of four independent experiments 

(n=5). Control isotype staining is shown in bold black line. B. Mean values of mean 

fluorescence intensity (MFI) for MHC class I on MCs with standard deviation of four 

independent experiments are shown (n=5).  

The suggestion that MCs may regulate CD8+ T cell responses upon TLR-ligand 

exposure was supported by the up-regulation of MHC class I expression by MCs. Therefore, 

it was further examined whether the activation of MCs with TLR-ligands influenced their 

ability to induce CD8+ T cell responses. To investigate this hypothesis, MCs were cultured in 

the presence of LPS (100 ng/ml) or pIC (10 μg/ml) for 48 hours prior to their loading with 

OVA257-264 peptide. Subsequently, the antigen-pulsed MCs were incubated with OT-I 

transgenic CD8+ T cells. The activation of CD8+ T cells (surface CD69 and CD25 

expression), as well as the cytokines in the supernatants were measured. MCs that have been 

exposed to LPS or pIC exhibited a greater capacity to induce antigen-specific CD8+ T cell 

activation (Fig. 3.21A). At a ratio of MC:CD8 = 1:10, MCs exhibited the maximum capacity 

to activate CD8+ T cells, therefore the exposure to TLR-ligands did not significantly enhance 

the CD8+ T cell activation. However, at a lower ratio of 1:20, LPS- or pIC- activated MCs 

displayed an increased capacity to activate CD8+ T cells by 20 ± 8% or 20 ± 11% 

respectively. Moreover, secretion of IL-2 (Fig. 3.21B) was significantly enhanced upon TLR-

activation of MCs. Regarding IL-2 production, the effect of LPS-stimulation was more 

prominent at the highest ratio of MC:CD8 (1:2), while the effect of pIC-stimulation was more 
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prominent at the ratio of 1:10. In contrast to secretion of IL-2, IFN-γ secretion was not 

significantly enhanced upon TLR-ligand exposure of MCs (Fig. 3.21B).  

These results suggest that TLR-ligand exposure of MCs controls the antigen-dependent 

interaction between MCs and CD8+ T cells. Therefore, it is proposed that the encounter of 

PAMPs by MCs in peripheral tissues is an important factor modulating the contribution of 

MCs in the regulation of adaptive immune responses.  
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Fig. 3.21. TLR-ligand exposure of MCs enhances their capacity to activate CD8+ T cells.  

MCs were stimulated with LPS (100 ng/ml) or pIC (10 μg/ml) or left untreated (“control”) 

prior to their loading with OVA257-264 peptide and were cultured with OT-I transgenic CD8+ 

T cells. A. Activation of CD8+ T cells was measured by analysis of CD69 and CD25 

expression by FACS. Percentage of activated (double-positive CD69+CD25+) CD8+ T cells is 

shown. B. IL-2 production was measured in the supernatants of the co-cultures by ELISA. C. 

IFN-γ production was measured in the supernatants of the co-cultures by ELISA. Bars 

represent mean values with standard deviation of two to three independent experiments.        

* p < 0.05 
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3.6. Antigen-dependent effects of MCs on CD8+ T cells in vivo 

Since MCs were proven to be efficient activators of CD8+ T cell responses, the 

question whether this is only an in vitro observed effect or also an in vivo occurring 

phenomenon was raised. Therefore, the potential of MCs to interact with CD8+ T cells in an 

antigen-dependent manner in vivo was investigated. First, MCs were examined for their 

ability to induce antigen-dependent proliferation of primary CD8+ T cells in vivo. 

Furthermore, since MCs are well characterized cells during allergic reactions, the potential of 

MCs to modulate antigen-specific CD8+ T cell responses in an in vivo murine model of 

allergy was tested.  

 

3.6.1. MCs induce antigen-specific proliferation of CD8+ T cells in vivo 

In order to investigate whether MCs induce antigen-specific CD8+ T cell responses in 

vivo, adoptive transfer experiments were performed. First, 5 x 106 antigen-pulsed MCs were 

administered intraperitoneally in C57/BL6 wild-type mice. As positive control, an equal 

number of antigen-pulsed bone marrow-derived DCs were administered, while an equal 

number of unpulsed MCs served as negative control. One day later, recipient mice were 

injected intraperitoneally with 5 x 106 CFSE-labeled, primary CD8+ T cells purified from 

lymph nodes of OT-I transgenic mice. Proliferation of the transferred CD8+ T cells was 

examined by FACS analysis four days later. As shown in Fig. 3.22 MCs did not induce any 

antigen-independent proliferation of CD8+ T cells (“control”), while they were indeed able 

to induce the proliferation of CD8+ T cells in the presence of the OVA257-264 peptide (Fig. 

3.22, “MC”). The relative amount of CD8+ T cells in each of the successive peaks of CFSE 

dilution corresponds to the relative amount of CD8+ T cells in each cell division. Thus, it is 

shown that DCs pulsed with the OVA257-264 peptide induced higher proliferation of the CD8+ 

T cells, as compared with MCs, since the percentages of the CD8+ T cells in the later cell 

divisions are higher (Fig. 21, “DC”).  
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Fig. 3.22. MCs induce antigen-specific proliferation of CD8+ T cells in vivo.  5 x 106 MCs 

were left untreated (“control”) or were pulsed with the OVA257-264 peptide (“MC”) and 

injected intraperitoneally in C57BL/6 recipients. As positive control, 5 x 106 DCs were 

pulsed with the OVA257-264 peptide (“DC”) and injected intraperitoneally in C57BL/6 

recipients. 24 hours later, 8 x 106 purified CFSE-labeled CD8+ OT-I transgenic T cells were 

transferred intraperitoneally.  4 days later, lymph node cells were isolated and analyzed for 

proliferation of the CFSE-labeled CD8+ T cells by the dilution of CFSE (gated on viable 

lymphocytes). Representative results of three independent experiments with at least seven 

mice per group are shown (n=7-9).  

In order to prove that the antigen presentation was performed exclusively by the 

antigen-pulsed, transferred MCs, and not by other resident APCs, the same adoptive transfer 

experiment was performed in β2m-/- mice. These mice do not possess the β2m chain of MHC 

class I, therefore lack the ability to efficiently present MHC class I-related antigens. A 

comparable stimulation of CD8+ T cell proliferation by the transfer of antigen-pulsed MCs 

was observed in wild-type (Fig. 3.23, “WT”) and in β2m-/- mice (Fig. 3.23, “β2m-/-”), 

excluding the possibility that other resident cells which present MHC class I-dependent 

antigens significantly influenced the CD8+ T cell proliferative response.  
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Fig. 3.23. MCs induce antigen-specific CD8+ T cell proliferation in β2m-/- mice.  5 x 106 

MCs were left untreated (“control”) or pulsed with the OVA257-264 peptide (“+ OVA257-264”) 

and injected intraperitoneally in C57BL/6 (“WT”) or in β2m-/- (“β2m-/-”) recipients. 24 

hours later, 8 x 106 purified, CFSE-labeled, OT-I transgenic CD8+ T cells were transferred 

intraperitoneally.  4 days later, lymph node cells were isolated and analyzed for proliferation 

of the CD8+ T cells by the dilution of CFSE (gated on viable lymphocytes). Representative 

results of three independent experiments with at least seven mice per group are shown. Bars 

in the right graph represent mean values for the percentages of proliferating CFSE-labeled 

CD8+ T cells with standard deviation of three independent experiments with at least seven 

mice per group (n=7-9). n.s.:not significant 

 

With those experiments, showing that MCs induce proliferation of CD8+ T cells in 

wild-type as well as in β2m-/- mice, it was determined that MCs are efficient APCs, capable 

of interacting with CD8+ T cells upon presentation of MHC class I-related antigens in vivo.  

 

3.6.2. MCs do not significantly influence CD8+ T cell responses in a murine 

model of allergic airway sensitization 

Since MCs were proven to induce antigen-specific CD8+ T cell responses in vitro and 

in vivo, an in vivo pathological situation was investigated, in which the MC-CD8+ T cell 

interaction could be relevant. MCs are well characterized as main participants of an allergic 
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immune response. In addition, evidence in different models suggests that CD8+ T cells are 

also important for the induction of allergic sensitization (Haczku et al., 1995a; Haczku et al., 

1995b). Several parameters of allergic sensitization have been shown to be directly dependent 

on the presence of CD8+ T cells (Hamelmann et al., 1996). For this reason, the effect of MCs 

in inducing antigen-specific CD8+ T cell responses during a well established murine model of 

allergic sensitization against OVA was examined.  

To investigate this question, MC-deficient mice (Kit-W/Wv) as well as their 

congeneic wild-type mice (Kit-W/W) were immunized against ovalbumin (OVA), according 

to a well established protocol of sensitization against OVA, schematically represented in Fig. 

3.24. Mice were sensitized with three intraperitoneal injections of OVA (20 μg/mouse) and 

subsequently challenged with OVA aerosol (1% OVA in PBS). One day after the last OVA-

aerosol challenge, the lung and the draining lymph nodes of the lung were analyzed for the 

content and phenotype of CD8+ T cells.  

 

 

SENSITIZATION
OVA  intraperitoneal

29

ANALYSIS

0 14 21 26 27

CHALLENGE
OVA aerosol

28

sensitized mice

control mice
 

Fig. 3.24. Protocol for inducing allergic immune response against ovalbumin (OVA). MC-

deficient mice (Kit-W/Wv) as well as their congeneic wild-type mice (Kit-W/W) received 

intraperitoneal injection of OVA (20 μg/mouse) on days 0, 14 and 21. Subsequently, mice 

were challenged with inhalation (aerosol) of 1% OVA in PBS for 40 min on days 26, 27 and 

28. Control mice were only treated with OVA aerosol. Mice were analyzed for the CD8+ 

immune response in the lung and in the draining lymph nodes on day 29.  
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Using the above protocol of OVA immunizations in wild-type and MC-deficient 

mice, four groups of mice were formed: “control” (= unimmunized) wild-type and MC-

deficient mice as well as “sensitized” (= sensitized and challenged with OVA) wild-type and 

MC-deficient mice (Fig. 3.25). Thus, initially the CD8+ T cell response was compared 

between “control” wild-type and MC-deficient mice, in order to examine whether the absence 

of MCs results in an altered CD8+ T cell phenotype in naïve mice. Subsequently, the CD8+ T 

cell response was compared between “sensitized” wild-type and MC-deficient, in order to 

further investigate whether the CD8+ T cell response during an allergic sensitization is 

dependent on the presence of MCs.  

control WT control MC-deficient

sensitized WT sensitized MC-deficient
 

Fig. 3.25. The groups of mice that were formed and compared after OVA immunizations. 

Unimmunized (“control”) wildtype (WT) mice were compared to their congeneic MC-

deficient mice (W/Wv) to examine if the CD8+ T cell phenotype in naïve mice is dependent on 

the presence of MCs. OVA-sensitized and -challenged mice (“sensitized”) WT mice were 

compared to MC-deficient mice to examine whether the CD8+ T cell response during a 

murine model of allergic sensitization is dependent on the presence of MCs.  

First, the percentage as well as the total number of CD8+ T cells in the lung and in the 

draining lymph nodes of the lung was determined by FACS analysis. MC-deficient “control” 

mice exhibited a reduced percentage and reduced number of CD8+ T cells in the lung, but not 

in the draining lymph nodes of the lung (Fig. 3.26, left columns). However, these differences 

were not visible after sensitization and challenge against OVA (Fig. 3.26, right columns). 

This evidence suggests that MCs may regulate the amount of CD8+ T cells in the lung of 

naïve mice. However, it should be taken into consideration that the lack of c-kit function in 

Kit-W/Wv mice causes additional abnormalities in these mice, such as macrocytic anemia, 

lack of melanocytes, intestinal TCRγδ intraepithelial lymphocytes and interstitial cells of 

Cajal. Therefore, results in terms of MC-mediated effects obtained from comparisons 
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between Kit-W/Wv and their congeneic wild-type mice should be interpreted carefully. For 

this reason, the amount of CD8+ T cells in Kit-W/Wv mice reconstituted with BMMCs 

should be examined, in order to distinguish whether the above demonstrated decreased 

number of CD8+ T cells in the MC-deficient mice is exclusively a MC-dependent 

phenomenon, or results from a dysregulated T cell development in the Kit-W/Wv mice.  
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Fig. 3.26. MCs do not regulate the number of CD8+ T cells in an in vivo model of allergic 

airway sensitization against OVA. MC-deficient mice (Kit-W/Wv, blue bars), and their 

congeneic wild-type mice (Kit-W/W, white bars), were sensitized and challenged 

(“sensitized”) or only challenged (“control”) against OVA according to the protocol shown 

in Fig. 3.24. Lung and the draining lymph nodes of the lung were analyzed by FACS. A. 

Percentage of CD8+ T cells is shown (gated on viable cells) (n=7-9). B. Total number of 

viable CD8+ T cells is shown (n=3-5). * p<0.05, n.s.:not significant 

Furthermore, the potential of MCs to modulate the activation or memory 

differentiation of CD8+ T cells in this allergic model was analyzed.  Activation of CD8+ T 

cells was measured by surface expression of CD69 and CD25, while effector memory 

differentiated CD8+ T cells were characterized as CD44+CD62L- by FACS. As shown in Fig. 
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3.27, MC-deficient mice did not exhibit a significant difference in the activation of CD8+ T 

cells (Fig. 3.27A) or in the development of effector memory CD8+ T cells (Fig. 3.27B) after 

sensitization against OVA.  
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Fig. 3.27. MCs do not modulate the CD8+ T cell response in an in vivo model of allergic 

airway sensitization against OVA. MC-deficient mice (Kit-W/Wv, blue bars), as well as their 

congeneic wild-type mice (Kit-W/W, white bars), were sensitized and challenged 

(“sensitized”) or only challenged (“control”) against OVA according to the protocol shown 

in Fig. 3.24. Lung and the draining lymph nodes of the lung were analyzed by FACS. A. 

Percentage of CD69+CD25+ on viable CD8+ T cells is shown. B. Percentage of 

CD44+CD62L- on viable CD8+ T cells is shown. Bars represent mean values with standard 

deviation of three independent experiments with at least seven mice per group (n=7-9). 

n.s.:not significant 

This data indicate that, although MCs are able to induce antigen-specific proliferation 

of primary CD8+ T cells in vitro and in vivo, this antigen-specific interaction between MCs 

and CD8+ T cells does not have a significant impact on the outcome of the murine allergic 

model studied here. However, MC-CD8+ T cell interactions could play an important role in 
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other in vivo situations, for example viral infections. The role of MC-CD8+ T cell crosstalk in 

such pathological situations remains to be investigated.  

 

3.7. The effect of MCs on pre-activated CD8+ T cells 

MCs are long-lived, resident cells in the peripheral tissues (Marshall, 2004). 

Therefore, the next hypothesis formulated here was that MCs can influence CD8+ T cells that 

have been primed and pre-activated by the migrating DCs in the lymph nodes. Thus, MCs 

may play a role also in a secondary immune response, by regulating the activities of DC-

mediated pre-activated CD8+ T cells. To investigate the effect of MCs on pre-activated CD8+ 

T cells two different approaches were used. First, the effect of the presence of MCs during 

the DC-mediated activation of CD8+ T cells and second, the role of MCs in regulating the 

proliferation of pre-activated CD8+ T cells were examined.  

 

3.7.1. MCs reduce the ability of DCs to activate CD8+ T cells in vitro 

DCs are “professional” APCs capable of inducing optimal CD8+ T cell responses in 

an antigen-dependent manner. MCs have been shown to interact with DCs and induce their 

functional maturation by induction of integrins and co-stimulatory molecule expression (Galli  

et al., 2005b). In order to understand whether MCs also modulate the capacity of DCs to 

prime CD8+ T cells, the DC-induced activation of CD8+ T cells was studied in the presence 

or absence of MCs. For this reason, OVA257-264-pulsed DCs were used to stimulate naïve, 

OT-I transgenic CD8+ T cells in the absence of MCs or in the presence of different amounts 

of MCs in the culture. As read-out, the surface expression of CD69 and CD25 was measured 

by FACS analysis. The result indicated that the presence of MCs in the culture inhibited the 

antigen-dependent, DC-induced CD8+ T cell activation. This effect occurred in a MC dose-

dependent way. Low numbers (1 x 104 – 5 x 104) of MCs did not significantly influence the 

DC-mediated CD8+ T cell activation. However, 1 x 105 MCs reduced the activation of CD8+ 

T cells, as shown by the 12.5% ± 3.5% (n=2) reduced surface expression of activation 

markers CD69 and CD25, measured by FACS (Fig. 3.28).  
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Fig. 3.28. The presence of MCs reduces the antigen-dependent, DC-mediated CD8+ T cell 

activation. DCs were pulsed with OVA257-264 peptide and co-cultured with naïve, OT-I 

transgenic CD8+ T cells without MCs or in addition of 1 x 105, 5 x 104 or 1 x 104 MCs, as 

indicated. After 48 hours, cells were analyzed by FACS for their activation status. Dot plots 

show surface expression of activation markers (CD69 and CD25) on CD8+ T cells (gated on 

viable CD8+ T cells) (n=2). Graph in lower row shows mean values of activated 

(CD69+CD25+) CD8+ T cells with standard deviation of two independent experiments.  

 

3.7.2. MCs inhibit the proliferation of pre-activated CD8+ T cells in vitro 

Furthermore, it was investigated whether MCs modulate the proliferation of DC-

mediated, pre-activated CD8+ T cells. Therefore, CD8+ T cells were antigen-dependently 

activated by OVA257-264-pulsed DCs. Subsequently, the CD8+ T cells were isolated from the 

co-culture by MACS, and co-cultured with MCs at different cell ratios. The presence of MCs 

in the culture inhibited the proliferation of CD8+ T cells, as shown by the reduced CFSE 

dilution of the CD8+ T cells (Fig. 3.29).  
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Fig. 3.29. MCs reduce the proliferation of pre-activated CD8+ T cells. OVA257-264--pulsed 

DCs were cultured with OT-I transgenic lymph node cells for 24 hours. Following, CD8+ T 

cells were isolated by negative selection with MACS and labeled with CFSE. Purified 

activated CD8+ T cells were cultured in the presence of MCs at a MC:CD8 ratio of 1: 2 

(dark blue line) or 1:10 (light blue line) or in the absence of MCs (grey filled histogram). 

Proliferation was analyzed by CFSE dilution of CD8+ T cells, 48 hours after the addition of 

MCs, as measured by FACS (gated on viable CD8+ T cells). Representative results of two 

independent experiments are shown.  

These results suggest that MCs might regulate the CD8+ T cell responses during a 

secondary immune response, by down-regulating the DC-mediated CD8+ T cell activation as 

well as by reducing the proliferation of pre-activated CD8+ T cells. Thus, MCs may act as 

regulatory cells during adaptive immune responses: when encounter with naïve CD8+ T cells 

occurs, MHC class I-dependent presentation of antigens results in antigen-specific CD8+ T 

cell responses; however when MCs encounter pre-activated CD8+ T cells, reduced CD8+ T 

cell activation and proliferation occurs.  
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3.8. The effect of CD8+ T cells on MCs 

With the above demonstrated experiments, it was proven that MCs modulate CD8+ T 

cell responses in an antigen-dependent manner in vitro and in vivo. The contact with activated 

CD8+ T cells could, in turn, modulate the phenotype of MCs, as it is the case for DCs 

(Bernhard et al., 2000). In particular, activated T cells have been shown to induce maturation 

of DCs by enhancing surface expression of MHC and co-stimulatory molecules (Bernhard et 

al., 2000). Moreover, the CD8+ T cell response detected in our settings comprised the 

secretion of cytokines, such as IFN-γ and GM-CSF, which are reported to affect MC 

differentiation and phenotype (Frandji et al., 1995). Therefore, it was suggested that the MC 

phenotype was also regulated by the contact with CD8+ T cells. The modulation of MC 

activities upon contact with activated CD8+ T cells could have a feedback in the MC-

mediated regulation of adaptive immune responses. For this reason, it was further 

investigated whether CD8+ T cells are able to modulate MC activities in an antigen-

independent or antigen-dependent manner.  

 

3.8.1. CD8+ T cells regulate MHC class I protein expression on MCs 

Activated T cells induce up-regulation of surface expressed MHC molecules on DCs 

(Bernhard et al., 2000). Since a surface expression of MHC class I molecules is important for 

the presentation of antigens to CD8+ T cells, the ability to CD8+ T cells to induce surface 

MHC class I on MCs was examined. For this reason, unpulsed or OVA257-264 -pulsed MCs 

were cultured with CD8+ T cells. As negative control, OVA257-264 -pulsed MCs that did not 

contact CD8+ T cells were used. After 48 hours of co-culture, MCs were analyzed for surface 

MHC class I expression by FACS. As shown in Fig. 3.30, antigen-dependent contact with 

CD8+ T cells induced surface expression of MHC class I on MCs. Thus, it is proposed that 

CD8+ T cells upon antigen-dependent, MC-mediated activation, increase the expression of 

MHC class I molecules on MCs, therefore enhance their potential for further interaction with 

CD8+ T cells.  
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Fig. 3.30. CD8+ T cells induce MHC class I surface protein expression on MCs. Unpulsed 

MCs (blue line) or OVA257-264 -pulsed MCs (red line) were cultured with CD8+ T cells. As 

negative control, OVA257-264 -pulsed MCs that did not contact CD8+ T cells were used (black 

line). After 48 hours of co-culture, MCs were analyzed for surface expression of MHC class I 

by FACS. Control isotype staining is shown by the grey filled histogram. A. Expression of 

MHC class I in one representative of three independent experiments is shown. B. Mean 

values of MFI for MHC class I with standard deviation of two independent experiments are 

shown.  

 

3.8.2. CD8+ T cells modulate the gene expression profile of MCs 

The enhanced MHC class I expression by MCs after antigen-dependent contact with 

CD8+ T cells suggests that activated CD8+ T  cells are able to modulate MC activities. To 

further investigate the impact of CD8+ T cells on MCs, first the gene expression profile of 

MCs after antigen-independent or antigen-dependent contact with CD8+ T cells was 

compared to the one of MCs not having contacted CD8+ T cells. Therefore, untreated or 

OVA257-264-pulsed MCs were co-cultured with CD8+ T cells for 48 hours and subsequently 

purified by MACS separation. As negative control, OVA257-264-pulsed MCs not having 

encountered CD8+ T cells were used. The purity of MCs after double MACS separation was 

tested with FACS staining for surface expression of c-kit (CD117) and FcεRI. As shown in 

Fig. 3.31, MCs after MACS purification were 96.8 ± 1.8% (n=3) pure for the case of OVA257-

264-pulsed MCs co-cultured with CD8+ T cells, 97.9 ± 0.5% (n=3) for the case of unpulsed 

MCs co-cultured with CD8+ T cells and 95.7 ± 0.1% (n=2) for the case of OVA257-264-pulsed 

MCs not co-cultured with CD8+ T cells. 
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Fig. 3.31. Purity of MCs after MACS separation following co-culture with CD8+ T cells. 

OVA257-264-pulsed MCs or unpulsed MCs were co-cultured with CD8+ T cells for 48 hours 

and subsequently purified by two successive MACS separations. As negative control, OVA257-

264-pulsed MCs not having encountered CD8+ T cells were used. A. Gate was set on all viable 

cells excluding cell debris and fractions of dead cells by FSC/SSC analysis. B. The purity of 

MCs after MACS separation was tested with FACS staining for surface expression of c-kit 

and FcεRI. Dot plots show representative results of two to three independent experiments. 

The experiment was performed three times and RNA was isolated from the purified 

MCs. Microarray analysis was performed in order to detect genes in MCs which were 

differentially expressed upon contact with CD8+ T cells. The experimental design for this part 

of the study is schematically represented in Fig. 3.32.   
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Fig. 3.32. Schematic representation of the experimental design for analyzing the 

differential gene expression in MCs after contact with CD8+ T cells.  

The labeling and hybridization of the MC RNA in Affymetrix GeneChips, as well as 

the evaluation of the primary data obtained from the microarray experiment, were performed 

by Dr. Reinhardt Hoffmann and Dr. Jörg Mages in the Technische Universität München. 

Statistical analysis was performed by limma analysis (Smyth, 2005), in which each condition 

was compared with each other. The F.p.-value derived from a summarization of the all these 

tests, similarly to a one-way ANOVA analysis. p-values derived from the comparison of pairs 

of MC sets. All p-values derived from the limma analysis were subsequently corrected for 

multiple testing using Benjamini Hochberg correction (Benjamini and Hochberg, 1995). 

Further evaluation of the results was focused only on the genes that revealed a significant 

differential expression between the different sets of MCs (F.p.-value < 0.05). The experiment 

was performed three times and the mean values of each set of MCs were used for further 

analysis.  

The genes that displayed differential expression (more than 5 times) in the different 

sets of MCs are summarized in Table 3.1. Briefly, 29 genes appeared to be more than 5 times 

differentially expressed in MCs after contact with CD8+ T cells. Of these, only 3 (Table 3.1, 

green colour) were down-regulated after contact with CD8+ T cells. These results 

demonstrate that CD8+ T cells direct a potent MCs response.  
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Entrez.
Gene

Rtp4 receptor transporter protein 4 12,96 560,55 546,74 43,25 0,03 67775
LOC630509 

/// 
LOC674192

similar to H-2 class I 
histocompatibility antigen, Q7 
alpha chain precursor (QA-2 

34,17 213,82 1387,46 40,60 0,00

Ifng interferon gamma 5,93 12,25 143,20 24,15 0,00 15978
Mpa2l macrophage activation 2 like 11,18 132,18 240,09 21,48 0,01
Ak3l1 adenylate kinase 3 alpha-like 1 8,87 18,70 174,42 19,67 0,01 11639

AI451557 expressed sequence AI451557 10,76 182,40 210,13 19,54 0,01 102084

Tnfrsf9 tumor necrosis factor receptor 
superfamily, member 9

70,37 68,91 1238,48 17,97 0,00 21942

Lzp-s P lysozyme structural 356,11 247,35 34,18 10,42 0,00 17110
H2-Q1 /// 

0610037M1
histocompatibility 2, Q region 

locus 1 /// RIKEN cDNA 
3,94 6,98 39,73 10,08 0,00

Rsad2 radical S-adenosyl methionine 
domain containing 2

14,21 132,36 136,58 9,61 0,05 58185

Tgm2 transglutaminase 2, C 22,95 39,95 202,67 8,83 0,00 21817
Lpl lipoprotein lipase 79,47 27,20 9,17 8,67 0,00 16956

Zbp1 Z-DNA binding protein 1 10,77 59,06 92,90 8,63 0,02 58203

Stat1 signal transducer and activator 
of transcription 1

74,80 509,32 643,01 8,60 0,01 20846

Irf7 interferon regulatory factor 7 32,56 277,03 200,01 8,51 0,03 54123
Iigp1 interferon inducible GTPase 1 7,67 33,85 60,67 7,91 0,04 60440

Ms4a6b membrane-spanning 4-domains, 
subfamily A, member 6B 12,25 16,36 90,87 7,42 0,05 69774

AW112010 expressed sequence AW112010 22,26 80,97 162,29 7,29 0,01 107350
Mcf2l mcf.2 transforming sequence- 56,96 46,85 305,35 6,52 0,00 17207

Plod2 procollagen lysine, 2-
oxoglutarate 5-dioxygenase 2 40,28 41,96 259,84 6,45 0,00 26432

Irgm immunity-related GTPase family, 122,08 589,89 761,01 6,23 0,04 15944
Rgs11 regulator of G-protein signaling 17,16 35,83 105,81 6,17 0,04 50782
Socs3 suppressor of cytokine 401,19 243,35 1470,84 6,04 0,00 12702

H2-Ab1 histocompatibility 2, class II 
antigen A, beta 1 45,36 66,46 261,66 5,77 0,00 14961

Tgfbi transforming growth factor, beta 
induced

23,12 7,28 4,24 5,45 0,01 21810

Igtp interferon gamma induced 226,87 1041,43 1195,15 5,27 0,03 16145
H2-Q8 histocompatibility 2, Q region 17,22 24,29 90,11 5,23 0,00 15019

Pdk1 pyruvate dehydrogenase kinase, 
isoenzyme 1 47,65 69,48 246,26 5,17 0,02 228026

Irf1 interferon regulatory factor 1 217,34 756,57 1087,75 5,00 0,01 16362  

Table 3.1. Differential gene expression in MCs after contact with CD8+ T cells in an 

antigen-dependent or antigen-independent manner.  OVA257-264-pulsed MCs were left 

untreated (MC + OVA257-264) or were co-cultured with OT-I transgenic CD8+ T cells (MC + 

CD8 + OVA257-264). In parallel, unpulsed MCs were co-cultured with OT-I transgenic CD8+ 

T cells (MC + CD8). After 48 hours MCs were isolated by positive selection with MACS and 

RNA was isolated. Microarray analysis (Affymetrix, Mouse MG 430 2.0) was performed. 

Statistical analysis was performed by limma analysis. Table summarizes the genes that were 
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more than 5 times down-regulated (green colour) or up-regulated (red colour) with F.p.-

value <0.05. Mean values of gene expression from three independent experiments are shown. 

 

3.8.2.1. CD8+ T cells modulate the gene expression profile of MCs in an antigen-

independent manner 

In an attempt to understand the relevance of the CD8+ T cell-induced gene regulation 

in MCs, the differentially expressed genes were analyzed according to whether their 

differential expression was induced in an antigen-independent or antigen-dependent manner. 

First, CD8+ T cells were tested for their ability to modulate the expression of genes in MCs in 

the absence of a specific antigen. As shown in Fig. 3.33, MCs isolated after antigen-

independent contact with CD8+ T cells (MC + CD8) displayed an up-regulated expression of 

several genes, each of them represented by a separate dot in the upper left triangle of the plot. 

Therefore, it is suggested that CD8+  T cells are able to induce a MC response in an antigen-

independent manner.  
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Fig. 3.33. CD8+ T cells induce differential gene expression in MCs in an antigen-

independent manner. MCs were co-cultured with OT-I transgenic CD8+ T cells (MC + 

CD8). In parallel, OVA257-264-pulsed MCs were cultured alone (MC + OVA257-264). After 48 

hours, MCs were isolated by positive selection with MACS and RNA was isolated. 

Microarray analysis (Affymetrix, Mouse MG 430 2.0) was performed. Statistical analysis was 

performed by limma analysis. Scatterplot shows the differential expression of genes with 

F.p.-value of <0.05. Mean values of gene expression from three independent experiments are 

shown. Genes appearing in the upper left triangle of the plot displayed an up-regulation in 

the set of MCs having experienced contact with CD8+ T cells (MC + CD8), while genes 

appearing in the low right triangle of the plot displayed an up-regulation in the set of MCs 

not having contacted CD8+ T cells.  

Examination of the genes that were up-regulated after CD8+ T cell contact revealed 

that several IFN-related genes, such as the receptor transporter protein 4 (Rtp4), IFN 

regulatory factor 7 (IRF7), signal transducer and activator of transcription 1 (STAT1) and 

IFN-γ induced GTPase (Igtp) were induced in MCs in an antigen-independent manner. In 

addition, radical S-adenosyl methionine domain containing 2 (Rsad2), an IFN-inducible gene 

encoding for the antiviral protein viperin (Chin and Cresswell, 2001), was in average 9 times 

up-regulated in MCs upon contact with CD8+ T cells. Therefore, the suggestion that CD8+ T 
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cells induce an IFN signal transduction pathway in MCs, leading to a possible protective 

antiviral response is proposed. A summary of the genes that were induced in MCs upon 

antigen-independent contact with CD8+ T cells is shown in Table 3.2.  

 

Gene 
symbol Gene title 

MC+     
OVA257-264 

(Mean) 

MC+  
CD8 

(Mean) 
max/min 
means 

p-
value 

Entrez 
Gene 

Rtp4 receptor transporter protein 
4 12.96 560.55 43.25 0.04 67775 

AI451557 expressed sequence 
AI451557 10.76 182.40 16.96 0.01 102084 

Mpa2l  macrophage activation 2 like 11.18 132.18 11.83 0.02   

Rsad2 
radical S-adenosyl 
methionine domain 

containing 2 
14.21 132.36 9.32 0.05 58185 

Irf7 interferon regulatory factor 7 32.56 277.03 8.51 0.02 54123 

Stat1 signal transducer and 
activator of transcription 1 74.80 509.32 6.81 0.01 20846 

LOC630509 
/// 

LOC674192 

similar to H-2 class I 
histocompatibility antigen, 
Q7 alpha chain precursor 

(QA-2 antigen)  
34.17 213.82 6.26 0.02   

Zbp1 Z-DNA binding protein 1 10.77 59.06 5.48 0.04 58203 

Igtp interferon gamma induced 
GTPase 226.87 1041.43 4.59 0.04 16145 

 

Table 3.2. CD8+ T cells induce differential gene expression in MCs in an antigen-

independent manner. MCs were co-cultured with OT-I transgenic CD8+ T cells (MC + 

CD8). In parallel, OVA257-264-pulsed MCs were left untreated (MC + OVA257-264). After 48 

hours, MCs were isolated by positive selection with MACS and RNA was isolated. 

Microarray analysis (Affymetrix, Mouse MG 430 2.0) was performed. Statistical analysis was 

performed by limma analysis. Table summarizes the differential expression of genes with p-

value of <0.05 and differential expression (max/min averages) of >4.5. Mean values of gene 

expression from three independent experiments are shown.  
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3.8.2.2. CD8+ T cells modulate the gene expression profile of MCs in an antigen-

dependent manner 

Since the antigen-independent effect of CD8+ T cells on MCs was analyzed, it was 

further examined whether the presence of a specific MHC class I-related antigen (OVA257-264) 

inducing CD8+ T cell responses upon presentation by MCs, would have a different effect on 

the gene expression profile of MCs. For this reason, the gene expression profile of OVA257-

264-pulsed MCs after contact with CD8+ T cells (Fig. 3.34A, MC + CD8 + OVA257-264) was 

compared to the gene expression profile of unpulsed MCs after contact with CD8+ T cells 

(Fig. 3.34A, MC + CD8). As shown in Fig. 3.34, MCs isolated after antigen-dependent 

contact with CD8+ T cells (MC + CD8 + OVA257-264) displayed an up-regulation of gene 

expression of several genes, each of them represented by a separate dot in the low right 

triangle of the plot, as compared to MCs isolated after antigen-independent contact with 

CD8+ T cells (MC + CD8).  

In order to exclude the possibility that the presence of the peptide induces gene up-

regulation in MCs independently of CD8+ T cells, the gene expression profile of OVA257-264-

pulsed MCs (Fig. 3.34B, MC + OVA257-264) was compared to the gene expression profile of 

OVA257-264-pulsed MCs after co-culture with CD8+ T cells (Fig. 3.34B, MC + CD8 +       

OVA257-264). It was shown that the MC response was indeed dependent on the presence of 

CD8+ T cells and not induced by the pulsing with the OVA257-264 peptide. Therefore, it is 

suggested that CD8+ T cells induce a MC response in an antigen-dependent manner.  
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Fig. 3.34. CD8+ T cells induce differential gene expression in MCs in an antigen-

dependent manner. OT-I transgenic CD8+ T cells were cultured with OVA257-264-pulsed MCs 

(MC + CD8 + OVA257-264) or with untreated MCs (MC + CD8). As control, OVA257-264-pulsed 

MCs were left untreated (MC + OVA257-264). After 48 hours, MCs were isolated by positive 

selection with MACS and RNA was isolated. Microarray analysis (Affymetrix, Mouse MG 

430 2.0) was performed. Statistical analysis was performed by limma analysis. Scatterplot 

shows the differential expression of genes with F.p.-value of <0.05. Mean values of gene 

expression from three independent experiments are shown. A. Comparison of the gene 

expression profile of MCs after antigen-dependent or antigen-independent contact with CD8+ 

T cells is shown. B. Comparison of the gene expression profile of OVA257-264 -pulsed MCs 

after contact or not with CD8+ T cells is shown.  

A summary of the genes that were induced in MCs upon antigen-dependent contact 

with CD8+ T cells is shown in Table 3.3. Noteworthy is the fact that several genes related 

with the induction of adaptive immune response were up-regulated. Thus, the co-stimulatory 

molecule tumour necrosis factor receptor superfamily member 9 (Tnfrsf9) and antigens 

related to major histocompatibility complex (MHC) class I and II (Qa-2 antigen, H2-Q1, H2-

Ab1 and H2-Q8) displayed enhanced expression upon antigen-dependent contact with CD8+ 

T cells. MHC class molecules act in collaboration with co-stimulatory molecules on the 

surface of APCs in order to induce antigen-specific immune responses. It is therefore 
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proposed that the role of MCs in adaptive immunity is instructed by antigen-dependent 

contact with CD8+ T cells.  

Gene 
symbol Gene title 

MC+     
OVA257-264 

(Mean) 

MC+  
CD8 

(Mean) 

MC+OVA257-264 
+CD8      

(Mean) 
max/min 
means 

F.p.- 
value 

Entrez
Gene 

LOC630
509 /// 

LOC674
192 

similar to H-2 class I 
histocompatibility 

antigen, Q7 alpha chain 
precursor (QA-2 

antigen)  

34.17 213.82 1387.46 40.60 0.00   

Ifng interferon gamma 5.93 12.25 143.20 24.15 0.00 15978 

Mpa2l  macrophage activation 
2 like  11.18 132.18 240.09 21.48 0.01   

Ak3l1 adenylate kinase 3 
alpha-like 1 8.87 18.70 174.42 19.67 0.01 11639 

Tnfrsf9 
tumor necrosis factor 
receptor superfamily, 

member 9 
70.37 68.91 1238.48 17.97 0.00 21942 

H2-Q1 /// 
0610037
M15Rik 

histocompatibility 2, Q 
region locus 1 /// RIKEN 

cDNA 0610037M15 
gene 

3.94 6.98 39.73 10.08 0.00   

Tgm2 transglutaminase 2, C 
polypeptide 22.95 39.95 202.67 8.83 0.00 21817 

Zbp1 Z-DNA binding protein 
1 10.77 59.06 92.90 8.63 0.02 58203 

Iigp1 interferon inducible 
GTPase 1 7.67 33.85 60.67 7.91 0.04 60440 

Ms4a6b 
membrane-spanning 4-
domains, subfamily A, 

member 6B 
12.25 16.36 90.87 7.42 0.05 69774 

AW1120
10 

expressed sequence 
AW112010 22.26 80.97 162.29 7.29 0.01 107350

Mcf2l mcf.2 transforming 
sequence-like 56.96 46.85 305.35 6.52 0.00 17207 

Plod2 
procollagen lysine, 2-

oxoglutarate 5-
dioxygenase 2 

40.28 41.96 259.84 6.45 0.00 26432 

Rgs11 regulator of G-protein 
signaling 11 17.16 35.83 105.81 6.17 0.04 50782 

Socs3 suppressor of cytokine 
signaling 3 401.19 243.35 1470.84 6.04 0.00 12702 

H2-Ab1 
histocompatibility 2, 

class II antigen A, beta 
1 

45.36 66.46 261.66 5.77 0.00 14961 

H2-Q8 histocompatibility 2, Q 
region locus 8 17.22 24.29 90.11 5.23 0.00 15019 

Pdk1 
pyruvate 

dehydrogenase kinase, 
isoenzyme 1 

47.65 69.48 246.26 5.17 0.02 228026

Table 3.3. CD8+ T cells induce differential gene expression in MCs in an antigen-

dependent manner. OT-I transgenic CD8+ T cells were cultured with OVA257-264-pulsed MCs 

(MC + CD8 + OVA257-264) or with untreated MCs (MC + CD8). As control, OVA257-264-pulsed 
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MCs were left untreated (MC + OVA257-264). After 48 hours, MCs were isolated by positive 

selection with MACS and RNA was isolated. Microarray analysis (Affymetrix, Mouse MG 

430 2.0) was performed. Statistical analysis was performed by limma analysis. Table 

summarizes the  differential expression of genes with F.p.-value <0.05 and differential 

expression (max/min averages) of >5. Mean values of gene expression from three 

independent experiments are shown.  

These results demonstrated that CD8+ T cells direct a strong MC response both in an 

antigen-dependent as well as in an antigen-independent manner. Therefore, the crosstalk 

between MCs and CD8+ T cells is bidirectional, consisting of both the MC-induced 

presentation of MHC class I-related antigens to CD8+ T cells, and of the CD8+ T cell-induced 

up-regulation of gene expression in MCs. Taken into consideration that many of these genes 

are IFN-related, the previously formulated hypothesis that the MC-CD8+ T cell contact plays 

a significant role in the defense against virus is highly strengthened.  

 

3.8.2.3. Confirmation of the microarray results 

The microarray analysis has revealed a significantly differential (>5 times) expression 

of 29 genes in MCs after contact with CD8+ T cells. In order to verify some of these results, 

PCR analysis for the cDNA of the MACS-purified MCs was performed. The results of the 

PCR analysis confirmed the corresponding data of the microarray experiment. Thus, 

transglutaminase 2 (TGM-2) was up-regulated in MCs after contact with CD8+ T cells, as 

shown both by the microarray experiment as well as by the PCR verification (Fig. 3.35). In 

addition, p-lysozyme structural was one of the three genes that were down-regulated in the 

microarray experiment after antigen-independent contact with CD8+ T cells and the same 

result was obtained with PCR analysis (Fig. 3.35). IFN-γ was significantly up-regulated in 

MCs after contact with CD8+ T cells, as shown by the microarray analysis. As shown in Fig. 

3.35, the PCR analysis showed the same tendency of increased IFN-γ in MCs upon contact 

with CD8+ T cells, however this result was not statistically significant.  
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Fig. 3.35. PCR analysis confirmed part of the data obtained by microarray analysis. 

OVA257-264 -pulsed MCs (red bars) or unpulsed MCs (blue bars) were cultured with CD8+ T 

cells. As negative control, OVA257-264 -pulsed MCs that did not contact CD8+ T cells were 

used (black line). After 48 hours, MCs were isolated by positive selection with MACS, RNA 

was isolated and cDNA was synthesized. PCR analysis revealed the expression of genes of 

interest in MCs, in comparison to β-actin control expression. Graphs show mean values of 

arbitrary units (a.u.) as measured with Optimas Software, with standard deviation of three 

independent experiments. Lzp: p-lysozyme structural, TGM-2: transglutaminase-2. * p<0.05, 

** p<0.01, n.s.:not significant 

A prominent up-regulation of the co-stimulatory molecule tnfrsf9 (4-1BB) was 

revealed from the microarray analysis. Next to its role as co-stimulatory molecule during 

APC-T cell interaction, 4-1BB/4-1BBL interaction also mediates DC as well as MC 

activities. Interestingly enough, DCs (Futagawa et al., 2002) as well as MCs (Nishimoto et 

al., 2005) express both 4-1BB and its ligand, 4-1BBL, and 4-1BB/4-1BBL interactions 

mediate activation and cytokine production by both DCs and MCs. These data inspired a 

further investigation of 4-1BBL expression on MCs after co-culture with CD8+ T cells. For 

this reason, PCR analysis was performed on the cDNA of the purified MCs after co-culture 

with CD8+ T cells. As shown in Fig. 3.36, 4-1BB displayed a significant up-regulation in 

MCs upon antigen-dependent contact with CD8+ T cells; a result which verified the data 

obtained by the microarray analysis. In addition, 4-1BBL expression was slightly but not 

significantly up-regulated in MCs after antigen-dependent contact with CD8+ T cells.  
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Fig. 3.36. Expression of 4-1BB but not 4-1BBL in MCs is up-regulated after antigen-

dependent contact with CD8+ T cells. OVA257-264 -pulsed MCs (red bars) or unpulsed MCs 

(blue bars) were cultured with CD8+ T cells. As negative control, OVA257-264 -pulsed MCs 

that did not contact CD8+ T cells were used (black line). After 48 hours MCs were isolated 

by positive selection with MACS, RNA was isolated and cDNA was synthesized. Expression of 

4-1BB and 4-1BBL was tested by PCR. Graphs show mean values of arbitrary units (a.u.) as 

measured by Optimas Software, with standard deviation of three independent experiments.  

4-1BB: tumour necrosis factor receptor superfamily member 9 (tnfrsf9, 4-1BB), 4-1BBL:       

4-1BB-ligand. * p<0.05, n.s.: not significant 

In conclusion, this part of the study demonstrated that the interaction between MCs 

and CD8+ T cells is bidirectional. Thus, CD8+ T cells instruct a potent MC response in an 

antigen-dependent as well as in an antigen-independent manner. The contact with CD8+ T 

cells stimulates MCs to activate the IFN-related pathway and presumably contribute to an 

antiviral response. Moreover, upon antigen-dependent activation, CD8+ T cells induce MHC 

and co-stimulatory molecule expression on MCs, therefore potentially facilitate the MC 

contribution in adaptive immune responses. Thus, MCs may act as key regulatory cells at the 

crossroads between innate and adaptive immunity.   
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                 4.  Discussion 

n optimal CD8+ T cell response is essential for the defense against pathogens, 

such as viral, intracellular bacterial or protozoal infections (Wong and Pamer, 

2003).  Moreover, several pathological situations, including allergic responses (Haczku et al., 

1995a; Haczku et al., 1995b; Hamelmann et al., 1996) and autoimmune reactions (Huseby et 

al., 2001; Sun et al., 2001) implicate antigen-specific CD8+ T cell activities. An antigen-

specific CD8+ T cell response is clearly initiated by “professional” antigen presenting cells 

(APCs), namely dendritic cells (DCs), B cells and macrophages. However, recent results 

suggest that mast cells (MCs) communicate with CD8+ T cells, by inducing CD8+ T cell 

chemotaxis upon activation in vivo (McLachlan et al., 2003; Ott et al., 2003; Orinska et al., 

2005). Moreover, it has been demonstrated that MCs phagocytose living bacteria, process 

bacterial antigens and induce antigen-specific proliferation of CD8+ T cell lines upon 

presentation of bacterial-expressed proteins in vitro (Malaviya et al., 1996a; Malaviya et al., 

1996b). However, the consequences of this crosstalk between MCs and CD8+ T cells, as well 

as the requirements for this interaction, have not been further investigated. Therefore, the 

main purpose of this study was to provide a better understanding of the antigen-dependent, as 

well as the antigen-independent MCs-CD8+ T cell interactions. 

 

4.1. The use of BMMCs for studying MC functions in vitro 

In order to investigate MC activities and their potential interaction with CD8+ T cells, 

the model of in vitro-differentiated murine bone marrow-derived MCs (BMMCs) was used. 

An essential requirement for the further experiments of this study was the high purity of the 

MC cultures and the absence of potential APCs in the MC cultures. Adequate numbers of 

highly pure MC populations were technically difficult to obtain by isolating primary MCs 

from the mouse skin, lung or peritoneal cavity. Therefore, highly pure, homogeneous BMMC 

cultures were chosen as the suitable model to study MC functions in this study.  

The differentiation of BMMCs in vitro was performed in the presence of IL-3 and 

SCF for 5 weeks. Although IL-3 is dispensable for the generation of murine MCs in vivo 

under physiological conditions (Lantz et al., 1998) as well as for the in vitro-generation of 

human MCs from bone marrow cells, peripheral blood mononuclear cells or cord blood cells 

A
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(Valent et al., 1992; Mitsui et al., 1992), it is the absolutely essential factor to support murine 

MC survival in vitro (Mekori et al., 1993). Moreover, IL-3 promotes, at least partially, the 

maturation of mouse MCs, in contrast to human MCs (Valent et al., 1989; Valent et al., 

1990). The addition of SCF in BMMCs in vitro results in a synergistic effect in the 

maturation of MCs, since it enhances the expression of MC proteases and proteoglycans (Tsai 

et al., 1991a; Tsai et al., 1991b; Gurish et al., 1992) and promotes the formation of 

cytoplasmic granules (Dvorak et al., 1994). For this reason, mouse BMMCs in this study 

were differentiated in the presence of both IL-3 and SCF.  

MC maturation is routinely tested by the specific staining of their metachromatic 

granula. The BMMC cultures used in this study displayed the typical appearance of the MC 

metachromatic granula upon toluidine blue staining; however, this staining was weaker 

compared to the staining of ex vivo isolated peritoneal MCs (data not shown). Thus, it is 

suggested that, even when the maturation of BMMCs is significantly enhanced by the 

addition of SCF in the culture, it remains weaker compared to MCs in vivo. The reduced 

maturation of in vitro-generated BMMCs is also proven by the fact that BMMCs, when 

transferred intracutaneously, intraperitoneally or intravenously into mice in vivo, require 5-10 

weeks for optimal maturation to be achieved (Nakano et al., 1985). However, although the 

maturation of BMMCs compared to MCs in vivo appears to be reduced, BMMCs display 

specific phenotypical and functional MC characteristics, such as intracellular storage of 

proteases, histamine, proteoglycans and heparin (Tsai et al., 1991a; Tsai et al., 1991b; Gurish 

et al., 1992), surface expression of c-kit (CD117) and FcεRI (Dvorak et al., 1994), and 

degranulation upon antigen/IgE-specific stimulation (Levi-Schaffer et al., 1993). For this 

reason, BMMCs generated according to the method used in this study, comprise a well-

accepted and widely-used model to study MC functions in vitro (Kawakami et al., 2006).  

 

4.2. Antigen-independent control of CD8+ T cell activities by MCs in 

vitro 

A potential interaction between MCs and CD8+ T cells in the absence of a specific 

antigen might be relevant for the homeostasis of the naïve CD8+ T cell pool. Therefore, the 

crosstalk between MCs and CD8+ T cell was initially studied in the absence of a specific 

antigen. MCs were found to promote the survival of CD8+ T cells in an antigen-independent 
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and cell-cell contact-dependent manner. Similar observations regarding DCs, demonstrate 

that in the absence of a specific antigen, DCs form functional synapses with T cells, induce 

tyrosine phosphorylation and a small Ca2+ response and promote the survival of naïve CD4+ 

and CD8+ T cells (Revy et al., 2001; Kondo et al., 2001). Consistent with the present 

findings, the increased survival of T cells was promoted by DCs only in a cell-cell contact-

dependent manner (Kondo et al., 2001). It is noteworthy that the tyrosine kinase Lck was 

suggested to be a central mediator of antigen-independent DC-T cell interactions, since 

inhibition of Lck activity reduces the formation of stable conjugates between DCs and T cells 

(Revy et al., 2001; Kondo et al., 2001). Although the signal transduction pathways that 

promote CD8+ T cell survival upon antigen-independent contact with MCs were not the focus 

of the present study, it would be interesting to examine whether this phenomenon is similarly 

dependent on Lck tyrosine kinase activation.  

However, MCs did not induce any antigen-independent activation of CD8+ T cells, as 

measured by surface expression of activation markers. Evidence that MCs interact with T 

cells in an antigen-independent manner was provided by Nakae et al. (2005). However, in 

their settings MCs facilitated the proliferation and cytokine production by T cells, only when 

T cells were simultaneously stimulated by sub-optimal doses of anti-CD3. In light of these 

findings, the present study suggests that MCs do not induce antigen-independent CD8+ T cell 

response de novo.  

In conclusion, MCs promote the survival of naïve CD8+ T cells, suggesting that in a 

physiological situation MCs contribute to the homeostasis of naïve CD8+ T cells without 

inducing their activation.  Thereby, MCs are possible key regulators of naïve CD8+ T cell 

homeostasis at peripheral tissues and may potentially modulate the dimension of CD8+ T 

cell-dependent processes.  

 

4.3. Antigen-dependent control of CD8+ T cell activities by MCs in vitro 

Several studies demonstrate the ability of MCs to induce antigen-specific CD4+ T cell 

responses in an MHC class II-dependent manner (Frandji, et al., 1993; Fox et al., 1994; 

Poncet et al., 1999). Despite the central role of antigen-specific CD8+ T cells in host defense 

mechanisms, the potential of MCs to also induce antigen-specific CD8+ T cell responses 



[4. Discussion] 
 

- 115 - 
 

remains inadequately studied. Therefore, this study attempted to investigate the antigen-

specific interaction between MCs and CD8+ T cells.  

 

4.3.1. MCs internalize the OVA protein 

An essential requirement for a cell type to be considered as APC is the ability to 

uptake, process and present antigenic proteins. Thus, it was initially examined whether MCs 

are able to uptake the OVA protein. Indeed, MCs internalized the OVA protein coupled with 

FITC, as shown by fluorescence microscopy and FACS, in a dose-dependent manner. The 

finding that MCs internalize an antigenic protein is in line with previous investigations 

reporting that MCs phagocytose bacteria after binding to FimH, a mannose-binding subunit 

expressed on Escherichia coli and other enterobacteria (Malaviya et al., 1994). In addition, 

MCs were recently reported to express the scavenger receptors SR-A and MARCO and 

internalize silica particles of size 1.5-2 μm (Brown et al., 2007). The fact that MCs internalize 

antigenic proteins and particles or phagocytose bacteria, supports the hypothesis that MCs 

may act efficiently as APCs for presentation of exogenous or bacterial proteins to T cells.  

Following protein uptake, intracellular processing should occur in order to present 

antigenic peptides to T cells. The ability of MCs to process the OVA protein for presentation 

of antigenic peptides to T cells was not the direct focus of the present study. However, in a 

pilot experiment where OVA-pulsed MCs were used to stimulate CD8+ T cells, no significant 

CD8+ T cell activation was detected (data not shown). This was attributed to the fact that 

either a) the CD8+ T cells used in this system (OT-I transgenic) were skewed for the 

recognition of only a specific peptide (OVA257-264), therefore the magnitude of the CD8+ T 

cell response against the whole protein was restricted, or b) the reduced maturation of 

BMMCs in vitro did not allow efficient processing of the OVA protein. However, previous 

investigations have suggested the ability of MCs to process antigenic proteins. Thus, the 

uptake of live bacteria resulted in the processing of bacterial-produced proteins and the 

presentation of antigenic peptides to peptide-specific T cell clones (Malaviya et al., 1996b). 

In addition, MCs apparently possess the required machinery to degrade foreign proteins, 

since they have non-secretory lysosomes, containing acid-hydrolases (Schwartz and Austen, 

1980), where the processing of the ingested proteins might occur. However, whether the 
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processing of proteins for presentation is a feature of mature MCs in vivo should be further 

elucidated.  

 

4.3.2. MCs induce antigen-specific CD8+ T cell responses 

The ability of MCs to induce antigen-specific CD8+ T cell responses in vitro was 

examined by the co-culture of antigen (OVA257-264) -pulsed MCs with TCR-transgenic (OT-I) 

CD8+ T cells. OVA257-264-pulsed MCs induced activation and proliferation of CD8+ T cells in 

a dose-dependent manner. The use of the OVA257-264 peptide for studying antigen presenting 

functions of different cell types in vitro has been widely used by various investigators (Met et 

al., 2003; Rückert et al., 2003; Winau et al., 2007).  A widely used APC:T cell ratio for in 

vitro antigen presentation experiments is 1:2 - 1:10 (Chefalo and Harding, 2001; Brandt et al., 

2003; Rückert et al., 2003; Setterblad et al., 2004; Castiglioni et al., 2005; Winau et al., 

2007). However, it was acknowledged that MCs are generally found at sites where low 

numbers of T cells are encountered (skin, lung, peritoneal cavity), although during a primary 

immune response MCs may migrate to the lymph nodes, where the encounter of high 

numbers of T cells occurs (Wang et al., 1998; Dabak et al., 2004). Thus, in order to reproduce 

a more physiological situation regarding the MC:CD8+ T cell ratio, successively reduced MC 

numbers as stimulators of CD8+ T cells were used. MCs were proven to be efficient 

activators of CD8+ T cells, even at the lowest ratio of MC:CD8 = 1:100, which was sufficient 

to induce activation and proliferation of approximately 50% of the CD8+ T cell population. 

This ratio is comparable to the one required for LPS-matured DCs to induce proliferation of 

heterologous T cells in vitro (Brandes et al., 2005) as well as for E.coli-infected DCs to 

induce proliferation of up to 15% of the CD8+ T cell population (Billard et al., 2007). Thus, 

MCs are suggested to act as highly potent inducers of antigen-specific CD8+ T cell responses 

in vitro. 

The antigen-specific CD8+ T cell response after contact with antigen-pulsed MCs was 

dependent on MHC class I-TCR-signalling, since neither MHC class I-deficient MCs (β2m-/- 

MCs) induced significant CD8+ T cell activation, nor did non-TCR-transgenic CD8+ T cells 

respond to the TCR-specific peptide (OT-I) presented. Thus, it is excluded that the here 

detected MC-mediated antigen-specific CD8+ T cell response was induced by contamination 

of the peptide (e.g. from LPS) or by any other artificial factor except for the active 
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presentation of the peptide from functional MHC class I on the MCs to functional TCR on the 

CD8+ T cells. β2m-/- mice represent a valuable model for studying MHC class I-dependent 

antigen presentation (Koller et al., 1989; Zijlstra et al., 1990). These mice do not express the 

β2m chain, therefore they lack functional MHC class I expression, and subsequently the 

ability to present MHC class I-restricted antigens. The minimal CD8+ T cell response 

observed after co-culture of OT-I CD8+ T cells with OVA257-264-pulsed β2m-/- MCs is 

attributed to the fact that minimal amounts of the peptide could remain in the culture even 

after extensive washings of the MCs and may be presented from CD8+ T cells to themselves. 

In support of this hypothesis, CD8+ T cells have been previously reported to present soluble 

peptides to other CD8+ T cells (Walden and Eisen, 1990; Su et al., 1993; Schott et al., 2002), 

thus suggesting that traces of free OVA257-264 peptide could be responsible for a minimal in 

vitro activation of OT-I specific CD8+ T cells. However, since this MHC class I-independent 

activation is considered minimal in comparison to the MHC class I-dependent (10% in 

comparison to 95%), MCs are suggested to act as efficient APCs of MHC class I-restricted 

antigens.  

In addition to the antigen-specific activation and proliferation of the CD8+ T cells, 

MCs induced also effector CD8+ T cell functions, such as cytokine production. IFN-γ, a 

cytokine known to be produced at high levels upon antigen-specific activation of CD8+ T 

cells (Harty et al., 2000), as well as IL-2, a major regulator of T cell-survival (Marrack and 

Kappler, 2004), were detected at high levels in the supernatants after antigen-specific, MC-

mediated CD8+ T cell stimulation. In order to prove that IFN-γ and IL-2 were secreted by the 

CD8+ T cells, intracellular cytokine staining was performed. Indeed, CD8+ T cells were the 

source of IL-2 and IFN-γ, without excluding the possibility that also MCs contribute 

additionally to the accumulation of these cytokines in the co-culture supernatant. The high 

levels of IFN-γ and IL-2 produced during antigen-dependent CD8+ T cell activation suggest 

that CD8+ T cells may actively regulate many immunological processes upon antigen-

dependent contact with MCs. First, IFN-γ is identified as a main cytokine with cytotoxic 

activities, since it enhances the anti-microbial activity and killing of intracellular pathogens 

by macrophages and neutrophils (Young and Hardy, 1995) and also mediates the cytotoxic 

activity of CTL by promoting the Fas-mediated target cell-lysis (Andersen et al., 2006). On 

the other hand, IL-2 is a growth factor for all subpopulations of T cells and stimulates 

proliferation of B and T lymphocytes at high efficiency (Murray, 1996). Both IFN-γ and IL-2 
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are characterized as Th1-associated cytokines, therefore promote inflammatory reactions 

(Abbas et al., 1996). Thus, it is suggested that upon MC-mediated antigen-presentation CD8+ 

T cells contribute to cytotoxic reactions and to the elimination of intracellular pathogens on 

one hand, and on the other hand contribute to the magnitude of an inflammatory response and 

support the survival of T and B lymphocytes.  

Moreover, the inflammatory cytokines TNF-α and GM-CSF were detected in the 

supernatants upon antigen-dependent MC-CD8+ T cell co-culture. The release of TNF-α and 

GM-CSF suggests that during the antigen-specific MC-CD8+ T cell contact, inflammatory 

cytokines are secreted, which promote neutrophil recruitment and inflammation (Thomas, 

2001; Broide et al., 2001; Shi et al., 2006) and modulate the adaptive immune response by 

regulating the maturation of DCs (Kimber and Cumberbatch, 1992; Jonuleit et al. 1996; 

Thomas and Lipsky, 1996). However, it would be interesting to determine by intracellular 

staining the source of TNF-α and GM-CSF, since both cytokines can be produced at high 

amounts by MCs (Galli et al., 2005b). Moreover, it is interesting to examine whether CD8+ T 

cells induced degranulation of MCs, since TNF-α can be released by MCs by secretion and 

also upon degranulation (Okayama, 2005).  

It is noteworthy that none of the Th-2-associated cytokines examined here (IL-4, IL-5, 

IL-10) (Abbas et al., 1996) were detected after the antigen-specific MC-mediated CD8+ T cell 

activation. Collectively, the cytokine detection after MC-mediated antigen-specific CD8+ T 

cell activation suggests that MCs mediate an antigen-specific activation of CD8+ T cells, 

which results in the production of cytokines favouring the Th1 responses, thus, promoting 

inflammatory reactions and the development of cytotoxic T cells. These findings support the 

proposal that MCs have a diverse, complex role in regulating the Th1/Th2 cytokine milieu 

(Gregory and Brown, 2006; Stelekati et al., 2007). Therefore, next to their traditional, well-

characterized role in inducing Th2 responses through the release of IL-4 (Huels et al., 1995; 

Mekori and Metcalfe, 1999), MCs can also favour the Th1 response via interacting with 

CD8+ T cells and inducing considerable production of IFN-γ and IL-2. Whether a 

degranulation of MCs is required for this function remains to be investigated.  
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4.3.3. MCs increase the cytotoxic potential of CD8+ T cells 

Given the central role of IFN-γ in the facilitation of cytolytic activity performed by 

CD8+ T cells (Andersen et al., 2006), the hypothesis that MCs modulated the cytolytic 

activities of the CD8+ T cells was examined. The intracellular content of granzyme B, a key 

component of the cytotoxic machinery of cytolytic CD8+ T cells, which induces the caspase-

dependent pathway of apoptosis in target cells (Talanian et al., 1997), was increased in CD8+ 

T cells after antigen-specific activation by MCs. Moreover, CD8+ T cell degranulation was 

induced by MCs upon MHC class I-dependent antigen presentation. These findings strongly 

suggest that MCs enhance the cytotoxic potential of CD8+ T cells upon antigen-specific 

activation.  

There has been little information obtained regarding the possible implication of MCs 

in directly inducing cytotoxicity. Human MCs (Strik et al., 2007) as well as mouse MCs 

(Kataoka et al., 2004; Pardo et al., 2007) express granzyme B, the release of which upon MC 

degranulation induces cell death in target cells by a perforin-independent way (Pardo et al., 

2007). The present study suggests that MCs participate in cytotoxic reactions by an additional 

mechanism; that is, by directly inducing cytotoxic CD8+ T cells upon antigen-specific 

activation. This suggestion is supported by the most recent findings of Heib et al. (2007), who 

reported that MC-deficient mice display a deficiency in initiating peptide-specific CTL 

responses upon TLR-7 activation in vivo. It would be interesting to examine whether the MCs 

are subsequently targets of the CD8+ T cell cytotoxicity, or they have mechanisms to prevent 

apoptosis upon contact with CTLs. It is possible that, in response to contact with CTLs, MC 

degranulation is induced in order to increase the release of cytotoxic mediators (such as 

granzyme B) and enhance the efficiency of cytotoxicity. However, the effect of such a 

contact with CTLs on MCs remains to be investigated.  

 

4.3.4. The antigen-dependent activation of CD8+ T cells by MCs requires 

direct cell-cell contact and the release of soluble mediators 

 The mechanism of the MC-induced CD8+ T cell activation was further investigated in 

this study. Thus, it was first demonstrated that inhibition of cell contact between MCs and 

CD8+ T cells blocks the antigen-specific MC-CD8+ T cell interaction. It is therefore 
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suggested that the presentation of MHC class I-antigen complexes on the surface of the MCs 

is the initiative and essential step for the antigen-specific interaction with CD8+ T cells. This 

is explained by the fact that physical APC-T cell contact is essential for the formation of the 

immunological synapse, for the MHC-TCR interaction and for the subsequent stimulation of 

the TCR signaling pathway, which results in the activation of the T cells. Thus, consistent 

with the present study, a similar requirement of direct cell-cell contact has been reported for 

DCs, in order to induce antigen-specific activation of CD8+ T cells (Gunzer et al., 2000; 

Mempel et al., 2004).  

MC-released cytokines were also found to contribute to the antigen-dependent 

interaction with CD8+ T cells, since blocking of cytokine synthesis or secretion by MCs 

significantly reduced their ability to induce antigen-specific CD8+ T cell activation. Thus, it 

is suggested that once direct presentation of the antigen via MHC class I-TCR interaction 

occurs, additional soluble mediators produced by MCs enhance the efficiency of antigen 

presentation. Consistent with this observation, the secretion of cytokines, such as IL-1, IL-6, 

TNF-α, IL-12 and IL-15, by APCs was found to be important for priming naïve T cells and 

promoting their differentiation (Roitt et al. 2002). MC-released cytokines among their diverse 

functions also contribute in the regulation of CD8+ T cell activities. For example, important 

mediators of naïve T cell homeostasis, such as IL-4 and IL-6 (Vella et al., 1997; Teague et 

al., 2000) are produced by MCs (Brown et al., 1987; Burd et al., 1989; Plaut et al., 1989). 

Interestingly, IL-15, which is characterized as the main survival factor for memory CD8+ T 

cells (Zhang et al., 1998), has been detected in MC intracellular granula (Orinska et al., 

2007), although stimuli inducing its release have not been characterized so far. Moreover, 

MC-derived TNF-α has been reported to mediate T cell activation in an antigen-independent 

way (Nakae et al., 2005). However, the identification of the MC-released soluble mediators 

that mediate the antigen-dependent CD8+ T cell activation, as observed in the present study, 

remains to be investigated.  

 

4.3.5. TLR-ligand exposure of MCs enhances their potential to activate 

CD8+ T cells 

In order to understand how an antigen-dependent interaction between MCs and CD8+ 

T cells can be further modulated, the effect of TLR-stimulation of MCs in this interaction was 
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investigated. It was shown that LPS- and, less potently, pIC-stimulated MCs exhibited an 

enhanced capacity to activate CD8+ T cells, due, at least partially, to their increased surface 

expression of MHC class I. Thus, it was demonstrated that the MC ability to induce antigen-

specific CD8+ T cell responses is modulated by TLR-stimulation.  

The effect of TLR-stimulation of MCs has been extensively studied so far in the 

context of enhanced cytokine production (Introduction, Table 1.1). Thus, TLR-4 mediated 

activation of MCs induces TNF-α and other pro-inflammatory cytokine production, without 

stimulating MC degranulation. Therefore, it is suggested that the enhanced activation of 

CD8+ T cells by MCs upon TLR-stimulation of MCs, described in this study, is mediated 

partially by the enhanced MHC class I expression on MCs and partially by cytokines, such as 

TNF-α, released by MCs upon TLR-activation.  

TLR-4-mediated stimulation of MCs by LPS has been identified as a key causal agent 

for the LPS-induced exacerbation of allergic inflammation in vivo, since it results in 

increased cellular infiltration in the lung and enhanced Th2 cytokine production (Nigo et al., 

2006; Murakami et al., 2007). The finding of the present study that LPS enhances also the 

ability of MCs to activate CD8+ T cells, proposes an additional effect of the LPS-exposure on 

MCs; upon TLR4-engagement, MCs additionally initiate an adaptive, CD8+ T cell-dependent 

immune response. Taking into consideration that TLR-3-mediated activation of MCs induces 

CD8+ T cell recruitment in vivo (Orinska et al., 2005), it is here proposed that MCs serve as 

key mediators between innate and adaptive immunity in peripheral tissues; upon encounter of 

pathogens and TLR-induced stimulation, they lead to an enhanced adaptive immune 

response, mediated by increased CD8+ T cell recruitment and subsequent activation.  

 

4.4. Antigen-dependent control of CD8+ T cells by MCs in vivo 

As soon as it was demonstrated that MCs efficiently induce primary CD8+ T cell 

responses in vitro, the necessity to investigate whether this phenomenon occurs also in vivo 

arose. For this reason, first the ability of MCs to induce antigen-dependent responses of 

primary CD8+ T cells in vivo was investigated. Following, the role of MCs in regulating the 

CD8+ T cell response during an allergic airway sensitization model was examined.  
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4.4.1. MCs induce antigen-dependent proliferation of CD8+ T cells in 

vivo  

In order to prove that this interesting MC-CD8+ T cell interaction occurs in vivo, 

adoptive transfer experiments were performed in wild-type and in β2m-/- mice. β2m-/- mice 

lack the expression of the β2m chain of MHC class I, therefore, exhibit a deficiency in 

generating CD8+ T cells and they are unable to efficiently present antigens in an MHC class 

I-dependent manner. For this reason, transfer of antigen-loaded, wild-type MCs and OT-I 

transgenic CD8+ T cells into β2m-/- mice provided a model that lacks endogenous MHC-I-

restricted antigen presentation. Interestingly, MCs induced a similar antigen-dependent CD8+ 

T cell proliferation in wild-type as well as in β2m-/- mice. This finding completely excludes 

the possibility that other resident APCs contributed to the antigen-dependent CD8+ T cell 

responses demonstrated in this study, thus underestimating the role of MCs in this 

phenomenon. The proof that MCs are able to induce antigen-specific proliferation of primary 

CD8+ T cells upon MHC class I-dependent antigen presentation in vivo is of central 

significance for the understanding of the role of MCs in the modulation of adaptive immune 

responses. Thus, this is the first report to demonstrate that MCs are able to induce 

proliferation of primary CD8+ T cells in an antigen-dependent manner in vivo, in mice. The 

investigation whether primary, freshly isolated MCs exhibit the same function, as well as 

whether a similar role for MCs in the human system exists, is considered to be of great 

interest.  

An interesting question arising upon the demonstration that MCs induce antigen-

specific CD8+ T cell responses in vivo is the physiological conditions under which the 

organism benefits by this function of MCs. MCs are mostly resident cells at peripheral sites. 

Therefore, it is possible that upon pathogen or allergen encounter they internalize antigens 

and preserve them in the periphery, thus comprising a reservoir of the antigen in the 

periphery. In support of this hypothesis, it was recently reported that latently HIV-infected 

MCs comprise a long-living, inducible reservoir of the virus at peripheral tissues in humans. 

The release of infectious virus from those latently infected MCs could be induced upon IgE 

crosslinking in vitro (Sundstrom et al., 2007). Thus, it is here hypothesized that MCs may 

have a central contribution in the establishment of memory CD8+ T cell compartment and the 

regulation of immune responses at the periphery. Although subpopulations of MCs have also 

been reported to migrate to the lymph nodes upon infection or inflammatory stimuli (Wang et 
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al., 1998; Dabak et al., 2004), the differences between MCs and DCs in the kinetics and 

degree of migration may highlight the individuality of these two different cell types as APCs. 

Taken together, all these attribute to the MCs the unique role of controlling the CD8+ T cell 

responses in the periphery, in contrast to DCs, which normally execute their antigen 

presenting function in the lymph nodes.  

Interesting evidence accumulate demonstrating that in addition to the “professional” 

APCs (DCs, B cells and macrophages), several other cell types may act as APCs in different 

organs and at different sites of the organism. The fact that endothelial cells (Marelli-Berg and 

Jarmin, 2004), fibroblasts (Kundig et al., 1995), MCs (Frandji et al., 1993), hepatic stellate 

cells (Winau et al., 2007) may act as APCs indicates that antigen presentation might be 

regulated in different ways at the various sites of the body. A possible meaning of the 

existence of several APCs at different sites was interestingly proposed in a recent report by 

Unanue, E. (2007); the antigen presentation in every microenvironment is dependent on 

anatomical and physiological considerations such as patterns of blood flow, barriers to 

vascular permeability, organization of connective tissue and expression of adhesion 

molecules and chemokines. Therefore, the existence of several APCs, next to the 

“professional” ones, is not redundancy; the “non-professional” APCs, such as MCs, are 

needed to mount optimal responses to antigens, meeting the requirements of the exact 

surrounding conditions and to perform the fine-tuning of the antigen presentation in the 

particular environment.  

 

4.4.2. MCs do not significantly influence CD8+ T cell responses in a 

murine model of allergic airway sensitization in vivo 

As soon as the ability of MCs to modulate antigen-specific CD8+ T cell responses in 

vivo was determined, the question of how this phenomenon is relevant for the function of the 

organism arose. Therefore, a pathological situation in which the MC-mediated antigen-

specific CD8+ T cell responses are potentially important was investigated. Since MCs are key 

mediators of the allergic immune reactions, it was hypothesized that their capacity to present 

antigens to CD8+ T cells may regulate the outcome of allergic responses. Increasing evidence 

in different models suggest that CD8+ T cells are important for the induction of allergic 

sensitization and atopic diseases (Haczku et al., 1995a, Haczku et al., 1995b). Interestingly, in 
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a murine model of allergic sensitization to OVA, the development of airway hyper-reactivity, 

eosinophil influx, and IL-5 production was absolutely dependent on the presence of CD8+ T 

cells (Hamelmann et al., 1996). For this reason, the role of MCs in the induction of antigen-

specific CD8+ T cell responses was studied using a well-established murine model of allergic 

sensitization against OVA, in which antigen-specific CD8+ T cell proliferation was observed 

(Rückert et al., 2005).  

An interesting observation arising from the analysis of naïve (control unimmunized) 

mice was that MC-deficient mice exhibit a reduced percentage and reduced total number of 

CD8+ T cells in the lung compared to their congeneic wild-type mice. An important role for 

MCs in regulating naïve CD8+ T cell homeostasis in the lung could be a possible explanation 

for this CD8+ T cell deficiency in MC-deficient mice. Such a role for MCs in promoting 

CD8+ T cell survival has been investigated earlier in this study and discussed in the paragraph 

4.2. However, it should be taken into consideration that Kit-W/Wv mice exhibit several 

developmental abnormalities such as macrocytic anemia, lack of melanocytes, intestinal 

TCRγδ intraepithelial lymphocytes and interstitial cells of Cajal (Galli and Kitamura, 1985; 

Grimbaldeston et al., 2005). Therefore, it is not excluded that the CD8+ T cell deficiency 

observed here is an additional defect caused by a dysregulated T cell development in the Kit-

W/Wv mice. In order to evaluate if MCs were the cause of this deficiency, the CD8+ T cell 

development in the lung of Kit-W/Wv mice reconstituted with MCs should be investigated.  

In contrast to the initial expectations, the CD8+ T cell activation or memory 

differentiation during this model was not significantly influenced by the presence of MCs, 

since MC-deficient mice developed comparable amounts of activated and memory CD8+ T 

cells after OVA-sensitization and challenge. This result suggests that, although MCs are 

capable of inducing antigen-specific CD8+ T cell responses in vivo, this MC-CD8+ T cell 

interaction is dispensable for the CD8+ T cell activation observed in the lung and its draining 

lymph nodes during an allergic airway inflammation. The reason why no significant 

differences were observed regarding the CD8+ T cell response could be attributed to the fact 

that only a small proportion of the CD8+ T cells would be OVA-specific. Thus, the use of 

general activation markers such as CD69 and CD25 and memory markers such as CD44 and 

CD62L, although provides an accurate evaluation of the overall CD8+ T cell response, 

however, does not focus on the antigen-specific CD8+ T cells. Therefore, if there were 



[4. Discussion] 
 

- 125 - 
 

significant differences only in the antigen-specific (OVA-specific) CD8+ T cells, those could 

be detected only with the use of OVA-specific tetramer staining.   

On the other hand, it is possible that MCs do not play a role in the induction of CD8+ 

T cell response in this model, because other APCs in the lung such as DCs or macrophages 

induce a sufficient CD8+ T cell response, therefore overtake the role of MCs in this model. 

Moreover, the total time period in which this sensitization- and challenge-phase occurred 

lasted for 29 days. It may be an explanation that during this time-period, the role of MCs in 

inducing CD8+ T cell responses is overtaken by professional APCs, while this would not be 

the case in a longer-lasting time-frame, since MCs are by far longer-living cells than other 

APCs. Indeed, some existing evidence suggests that MCs are central participants in late phase 

immune responses. Thus, MCs promote the development of chronic asthma, as demonstrated 

in a murine model of chronic asthma lasting for 10 weeks (Yu et al., 2006). Additionally, a 

recent report demonstrated that MCs are recruited and activated by Treg-produced IL-9 in 

tolerant allografts and that this interaction between Treg and MCs is essential for the long-

term allograft tolerance (Lu et al., 2006). It is therefore suggested that the role of MCs might 

be more important in the late phase of immune responses rather than in short-term immune 

reactions. Therefore, a potential physiological role of MC-mediated antigen-specific CD8+ T 

cell responses in long-term immune reaction should be further investigated.   

 

4.5. The effect of MCs on pre-activated CD8+ T cells 

MCs are long-lived, resident cells in the periphery (Marshall, 2004). Therefore, as 

speculated above, MCs may participate in late-phase immune reactions and in the outcome of 

a secondary immune response. During a secondary response, MCs encounter CD8+ T cells 

that have been already primed by the migrating DCs in the lymph nodes. For this reason, the 

effect of MCs on pre-activated CD8+ T cells was further investigated in this study. First, it 

was proven that MCs reduce the antigen-specific DC-induced activation of CD8+ T cells. 

Furthermore, MCs reduced the proliferation of pre-activated CD8+ T cells. These data 

suggest that MCs exhibit a dual modulatory role in priming CD8+ T cells; on encounter with 

naïve CD8+ T cells MCs induce antigen-specific activation and proliferation, while on 

encounter with pre-activated CD8+ T cells, MCs down-regulate the CD8+ T cell responses.  
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An interaction between MCs-DCs-CD8+ T cells could possibly happen in the lymph 

nodes, where all the three cell types may encounter each other. MCs have been reported to 

migrate to the lymph nodes upon infection or inflammatory processes in mice and rats (Wang 

et al., 1998; Dabak et al., 2004). Moreover, MCs have been detected at increasing 

concentrations in the lymph nodes in patients with tuberculous lymphadenitis or lung cancer 

(Tomita et al., 2003; Taweevisit and Poumsuk, 2007). Interestingly, during the progression of 

infection, MCs in the lymph nodes migrate mostly to the paracortical area and medullary 

sinuses, where T cells are found in higher proximity (Dabak et al., 2004). These evidence 

suggest that an interaction between MCs-DCs and CD8+ T cells is indeed a possible 

physiological phenomenon, that might be mostly relevant for the immune response during 

infection.  

The finding that MCs inhibit the antigen-specific response of DC-mediated primed 

CD8+ T cells, gives a hint of a role of MCs in participating in tolerance induction, by down-

regulating CD8+ T cell responses. Indeed, MCs have been reported to be necessary for the 

induction of systemic suppression of contact hypersensitivity responses by UVB radiation 

(Hart et al., 1998). In addition, as mentioned above, MCs were identified as essential 

mediators of the long-term allograft tolerance, by interacting with regulatory T cells (Lu et 

al., 2006). It is therefore tempting to hypothesize that the here demonstrated interaction 

between MCs and pre-activated CD8+ T cells may also play a role in the induction of 

tolerance in CD8+ T cell-mediated immune responses.  

 

4.6. Control of MC phenotype by CD8+ T cells 

The up to here presented results verify that MCs considerably affect CD8+ T cell 

responses. In order to investigate whether the MC-activated CD8+ T cells subsequently 

regulate the activities of their MC counterparts, the effects of CD8+ T cells on MCs in the 

presence and in the absence of antigen were investigated. Microarray analysis, as well as 

PCR analysis on MCs isolated after co-culture with CD8+ T cells revealed a differential gene 

expression profile of MCs after contact with CD8+ T cells. It was therefore concluded that the 

MC-CD8+ T cell interaction is a dialogue affecting both cell types, rather than a monologue 

inducing only CD8+ T cell responses. 
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4.6.1. CD8+ T cells control MC phenotype in an antigen-independent 

manner 

Interestingly, CD8+ T cells induced up-regulation of several genes in MCs in an 

antigen-independent manner, showing that CD8+ T cells are indeed able to modulate MC 

responses.  A great proportion of those genes are correlated with the signaling pathway of 

interferons (IFNs). Thus, the signal transducer and activator of transcription 1 (STAT1), 

which is correlated with IFN-γ production, as well as with IFN-α/β production (Leonard and 

O´Shea, 1998) was significantly up-regulated in an antigen-independent manner. Similarly, 

IFN regulatory factor (IRF) 7, which induces IFN-α and IFN-β production, as well as IRF1, 

responsible for IFN-γ and partially IFN-β  production (Taniguchi et al., 2001), were also up-

regulated in MCs after contact with CD8+ T cells in the absence of specific antigen. 

Moreover, molecules downstream of IFN-γ signaling, such as Rtp4, induced by IFN-γ, and 

Igtp, a GTPase induced also by IFN-γ, which regulates innate immune responses to 

intracellular pathogens (Taylor et al., 2004) displayed enhanced gene expression in MCs after 

contact with CD8+ T cells. These results suggest that CD8+ T cells stimulate the IFN-

signaling pathway in MCs upon antigen-independent contact. Given the central role of IFNs 

in the mechanism of host defense, the result that CD8+ T cells activate the IFN signaling 

pathway in MCs, supports the hypothesis that MC-CD8+ T cell crosstalk might be crucial in 

establishing an optimal antiviral response.  

Further evidence in the frame of this hypothesis is provided by the almost 10-times 

up-regulation of the radical S-adenosyl methionine domain containing 2 (Rsad2), an IFN-

inducible gene encoding for the antiviral protein viperin (Chin and Cresswell, 2001). Viperin 

(named for: virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible) 

inhibits productive human cytomegalovirus (HCMV) infection in vitro, by down-regulating 

several HCMV structural proteins known to be indispensable for viral assembly and 

maturation (Chin and Cresswell, 2001). Consistent with the present study, Rivieccio et al. 

(2006) defined viperin as one of the most highly up-regulated genes on human astrocytes 

upon TLR-3 activation. Therefore, although the protein expression of viperin was not 

measured, the finding of up-regulated Rsad2 gene expression proposes that MCs induce 

antiviral responses upon activation by CD8+ T cells, as shown in a schematic representation 

in Fig. 4.1.  
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Fig. 4.1. CD8+ T cells stimulate the IFN-signaling pathway in MCs and the induction of an 

antiviral programme in an antigen-independent manner. Blue circles highlight the genes 

that were shown to be up-regulated in MCs after contact with CD8+ T cells in an antigen-

independent manner.   

 

Increasing evidence indicates that MCs can be infected by viruses and respond to viral 

signals. MCs can detect viral infections via TLR3 and TLR3-activated MCs contribute to host 

defense by expressing key antiviral response genes (IFN-β, ISG15) and recruiting CD8+ T 

cells (Orinska et al., 2005). MC activation followed by cytokine and chemokine production 

was demonstrated upon dengue virus, HIV and encephalomyocarditis virus infection 

(Bannert et al., 2001; Marone et al., 2001; King et al., 2002; Kitaura-Inenaga et al., 2003). 

However, the mechanism of MC infection and activation during viral infections as well as 

their contribution to the establishment of antiviral responses in vivo remain to be 

characterized in detail.  

 

4.6.2. CD8+ T cells control MC phenotype in an antigen-dependent 

manner 

Apart from the antigen-independent gene up-regulation in MC, several genes 

displayed enhanced expression upon antigen-dependent CD8+ T cell contact. The most 
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prominent of these appeared to be IFN-γ and IFN-related genes, revealing an enhanced 

stimulation of the IFN-related pathway. Moreover, molecules related to major 

histocompatibility complex (MHC) class I and II (Qa-2 antigen, H2-Q1, H2-Ab1 and H2-Q8) 

and the co-stimulatory molecule tumor necrosis factor receptor superfamily member 9 

(Tnfrsf9) were significantly up-regulated.  

The fact that several genes implicated in the IFN-signaling pathway, both upstream 

and downstream of IFN, were up-regulated in MCs upon antigen-dependent contact with 

CD8+ T cells, broadens the conclusions deduced in the previous paragraph. Thus, CD8+ T 

cells induce the IFN pathway in MCs in the absence of a specific antigen, but this effect is 

even more potently induced in the presence of an antigen. Moreover, the increased 

production of IFN-γ resulted in the up-regulation of SOCS-3, which subsequently suppressed 

TGF-β expression. Given the role of TGF-β as a suppressor factor for the induction of 

immune responses (Wan and Flavell, 2007), the down-regulation of its expression by MCs 

upon antigen-dependent contact with CD8+ T cells might provide an essential mechanism for 

MCs in order to mount the maximal of an antigen-specific CD8+ T cell response.  
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Fig. 4.2. CD8+ T cells stimulate the IFN-signaling pathway in MCs and the induction of an 

antiviral programme in an antigen-dependent manner. Blue circles highlight the genes that 

were shown to be up-regulated in MCs after contact with CD8+ T cells in an antigen-

independent manner. Red circles highlight the genes, which displayed increased up-

regulation in the presence of antigen. Green circle shows that TGF-β was down-regulated 

upon antigen-dependent contact with CD8+ T cells.  

The fact that MHC-related antigens were up-regulated on MCs upon antigen-

dependent interaction with CD8+ T cells, strongly suggests that MCs are indeed capable of 

acting as APCs, and this function is significantly promoted after antigen-dependent contact 

with CD8+ T cells. Thus, MCs initiate antigen-specific activation of CD8+ T cells, which in 

turn augment the tools for antigen presentation in MCs and therefore promote the ability of 

MCs to induce antigen-specific responses. It is noteworthy that also MHC class II-related 

molecules were up-regulated in MCs after antigen-specific contact with CD8+ T cells. This 

would provide the MCs an enhanced ability to interact also with CD4+ T cells. The ability of 

MCs to express MHC class II and induce antigen-specific activation of CD4+ T cells has been 

previously reported (Frandji, et al., 1993; Fox et al., 1994; Love et al., 1996; Poncet et al., 

1999). However, the enhanced expression of MHC class II on MCs upon activation by CD8+ 

T cells sheds additional light to this function: MCs present MHC class I-related antigens to 

CD8+ T cells, which results not only in CD8+ T cell responses, but also in enhanced MHC 
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class II expression on MCs. Subsequently, MCs possess an enhanced ability to activate CD4+ 

T cells in an antigen-dependent manner, therefore mediate the crosstalk between CD8+ and 

CD4+ T cells and regulate an optimal antigen-specific response.  

The up-regulation of Tnfrsf9 (also called CD137 antigen or 4-1BB) after antigen-

dependent contact with CD8+ T cells, provides evidence of a possible mechanism by which 

MCs induce CD8+ T cell responses. 4-1BB is a co-stimulatory molecule, promoting 

proliferation and effector function of T cells (Pollok et al., 1993; Hurtado et al., 1995). 

Moreover, 4-1BB stimulation induces cytokine production by DCs (Futagawa et al., 2002) 

and enhances cytokine production and degranulation upon FcεRI- and antigen-stimulation on 

MCs (Nishimoto et al., 2005). Therefore, the enhanced 4-1BB expression on MCs might be 

the reason not only for providing the necessary co-stimulation for CD8+ T cells, but also for 

enhancing the required cytokine and soluble factors production by MCs. Furthermore, the 

hypothesis of this study that MCs might be crucial regulators of viral defense mechanisms is 

highly supported by the findings that in vivo 4-1BB stimulation enhances and broadens the 

CD8+ T cell response to influenza virus and can restore the CD8+ T cell response when CD28 

co-stimulation is absent (Halstead et al., 2002). Finally, an exciting finding that there is a 

switch in co-stimulatory requirement from CD28 to 4-1BB during primary versus secondary 

responses of CD8+ T cells to influenza virus (Bertram et al., 2004), provides further hints that 

the MC-CD8+ T cell interactions might be more important in secondary immune responses.  

The analysis of MC gene expression after CD8+ T cell contact revealed that only 3 

genes were significantly down-regulated in MCs after contact with CD8+ T cells; except 

TGF-β, as discussed above, lysozyme and lipase were also down-regulated in an antigen-

independent manner. The fact that enzymes, such as lysozyme and lipase, localized in the 

granules of MCs were down-regulated provides evidence of a possible regulatory mechanism 

used by MCs; upon CD8+ T cell encounter, molecules related with adaptive immunity and a 

possible crosstalk with T cells become up-regulated, while the potential for degranulation 

becomes reduced. This would direct MCs to instruct specific responses to T cells, while the 

possible boost of inflammation through MC degranulation would be minimized.  

In conclusion, this study has demonstrated that there is a bi-directional crosstalk 

between MCs and CD8+ T cells, which on one hand enhances effector CD8+ T cell functions 

and on the other hand instructs MCs to regulate an adaptive immune response and mediate an 

anti-viral reaction. Such a role of MCs in inducing antiviral responses in vivo should be 

further investigated.  
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5. Conclusions and Perspectives 

n conclusion, this study demonstrated that MCs act as potent regulators of CD8+ T 

cell responses. Thus, it was shown that MCs are powerful antigen-presenting cells of 

MHC class I-related antigens in vitro and in vivo. On the other hand, the antigen-specific 

interaction between MCs and CD8+ T cells affects also MC activities. MCs increasingly 

express the antiviral genes as well as co-stimulatory molecules and MHC class I and class II 

molecules after contact with CD8+ T cells. Briefly, the findings of this study are summarized 

in Fig. 5.1. 
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Mast cell
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cell-cell contact

cytokines
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Fig. 5.1. The main conclusions of the present study 

The here demonstrated ability of MCs to induce antigen-specific CD8+ T cell 

responses upon presentation of MHC class I-related antigens in vitro and in vivo supports the 

hypothesis that MCs are efficient antigen presenting cells (APCs). The MC-induced 

proliferation of naïve primary CD8+ T cells in vivo introduces further questions regarding the 

(patho)physiological situations in which this MC-CD8+ T cell interaction is relevant.  

The fact that MCs did not significantly influence the CD8+ T cell responses in an in 

vivo model of allergic airway sensitization should direct further research of MC-CD8+ T cell 

I 
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interactions to longer-term pathological situations. Since MCs are long living cells in 

peripheral tissues, it is highly speculated that their interaction with CD8+ T cells may 

contribute to the induction of memory CD8+ T cell differentiation at peripheral sites. 

Consistent with this hypothesis, the co-stimulatory molecule 4-1BB, which was highly up-

regulated in MCs after antigen-specific interaction with CD8+ T cells, is important in the 

induction of secondary rather than primary CD8+ T cell responses (Bertram et al., 2004). 

Consequently, the role of MCs as modulators of CD8+ T cell responses should be elaborated 

in secondary immune reactions, such as late phase allergic responses, memory cell 

differentiation or induction of peripheral tolerance.  

On the other hand, the MC-induced augmentation of the cytotoxic potential of CD8+ 

T cells introduces further topics to be investigated:  Do MCs contribute to the induction of 

cytotoxic CD8+ T cells upon MHC class I-dependent antigen presentation in vivo? And is this 

MC-CD8+ T cell interaction essential for host defense mechanisms? Very recent findings 

(Heib et al., 2007), support the requirement of MCs for the induction of CTL responses after 

TLR-7 activation in vivo. However, the significance of this cross-talk for an in vivo 

pathological situation has not yet been explored.  

Finally, a novel direction in MC research is innovated by the fact that several anti-

viral genes in MC were up-regulated after interaction with CD8+ T cells. In addition to the 

available evidence of MCs being activated upon different viral infections, this result proposes 

an important role of MCs for the outcome of viral infections. The investigation of the role of 

MCs in inducing anti-viral responses in vivo is regarded to be of great biological as well as 

medical interest and remains to be examined in detail.  

MCs remain enigmatic cells, despite the attempts of several investigators over the past 

decades to unravel their different roles in health and disease. The contribution of the present 

study further underline the biological importance of MCs in pathological situations. 

Biological research will always be splendid; we may keep on discovering exciting 

information about the cell and possibly unexpected functions of particular cell types, however 

the currently available information will always be a step towards understanding the biological 

functions and manipulate them for the human benefit.  
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                       Summary 
precisely regulated crosstalk between innate and adaptive immunity is a 
prerequisite for an optimal immune response and successful survival strategy. 

Important players of innate immunity are the mast cells (MCs). These are long-living cells at 
sites of host-environment interface and important effector players during allergic responses. 
Recently, MCs have been described as central regulatory cells not only in innate but also in 
adaptive immune responses. MCs interact with cells of the adaptive immune system and 
recruit CD8+ T cells upon different stimuli. The purpose of this study was to investigate the 
interaction between MCs and CD8+ T cells, identify the factors that modulate this interaction 
and examine its downstream effects.  

By using murine bone marrow-derived MCs, this study demonstrated that MCs 
promote the survival of naïve, primary CD8+ T cells in an antigen-independent and cell-cell 
contact-dependent manner. The investigation of the antigen-dependent interaction between 
MCs and CD8+ T cells showed that MCs induce antigen-specific activation, proliferation and 
cytokine secretion by TCR-transgenic CD8+ T cells in vitro. Furthermore, the increased 
intracellular content of granzyme B and enhanced CD8+ T cell degranulation indicated an 
increase in the cytotoxic potential of CD8+ T cells. This antigen-driven communication 
between MCs and CD8+ T cells required both direct cell-cell contact and the release of 
soluble factors by MCs. TLR-mediated activation of MCs augmented their capacity to 
activate CD8+ T cells, partially due to enhanced surface expression of MHC class I 
molecules. Remarkably, the adoptive transfer of antigen-pulsed MCs induced proliferation of 
antigen-specific CD8+ T cells in vivo, in wild-type as well as in β2-microglobulin-deficient 
mice, which lack functional MHC class I expression. Thus, MCs promote CD8+ T cell 
responses, inducing effector CD8+ T cells in vitro and in vivo.  

Furthermore, CD8+ T cells enhanced the expression of several genes in MCs, in an 
antigen-dependent as well as antigen-independent manner, as demonstrated by differential 
gene expression analysis of MCs. Many of these genes are implicated in the signal 
transduction pathway of interferons, suggesting that the MC-CD8+ T cell interaction may 
contribute significantly to host defense mechanisms. Additionally, upregulation of major 
histocompatibility complex-related molecules and of the co-stimulatory molecule 4-1BB 
suggests that the contact with CD8+ T cells enhances the potential of MCs to modulate 
adaptive immune responses.  

In conclusion, this study adds new insights into the physiological role of MCs in the 
context of adaptive immune responses, such as a CD8+ T cell-driven antiviral immune 
response. This novel understanding of MC biology foresees new promising approaches for a 
therapeutic manipulation of antiviral immunity.  
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                  Zusammenfassung 
in exakt regulierter Dialog zwischen angeborener und adaptiver Immunität ist eine 
wesentliche Voraussetzung für eine optimale Immunantwort und somit für eine 

erfolgreiche Überlebensstrategie. Zu den bedeutenden Zellen der angeborenen Immunität 
zählen unter anderen die Mastzellen (MZ). MZ sind langlebige Zellen, welche überwiegend 
an Umwelt-exponierten Körperflächen lokalisiert sind und wichtige Effektorzellen während 
einer allergischen Reaktion darstellen. Kürzlich wurden MZ als zentrale, regulatorische 
Zellen sowohl der angeborenen, als auch innerhalb der adaptiven Immunantwort beschrieben. 
MZ interagieren mit Zellen des angeborenen Immunsystems und vermögen nach 
unterschiedlicher Stimulation CD8+ T-Zellen zu rekrutieren. Absicht der vorliegenden Studie 
war es, die Interaktion zwischen MZ und CD8+ T-Zellen zu untersuchen, die diese 
Interaktion modulierenden Faktoren zu identifizieren und deren weiterführende 
Auswirkungen zu bestimmen. 

Unter Verwendung aus murinem Knochenmark generierter MZ zeigte diese Studie, 
dass MZ das Überleben naiver Primär-CD8+ T-Zellen Antigen-unabhängig und Zell-Zell-
Kontakt-abhängig unterstützen. Untersuchungen der Antigen-abhängigen Interaktionen 
zwischen MZ und CD8+ T-Zellen zeigten, dass MZ eine Antigen-spezifische Aktivierung, 
Proliferation und Zytokinproduktion TCR-transgener CD8+ T-Zellen in vitro induzieren. 
Desweiteren deuten ein erhöhter intrazellulärer Gehalt an Granzym B und ein Anstieg der 
CD8+ T-Zell-Degranulation auf ein gesteigertes zytotoxisches Potential der CD8+ T-Zellen 
hin. Diese Antigen-gesteuerte Kommunikation zwischen MZ und CD8+ T-Zellen benötigte 
sowohl Zell-Zell-Kontakt  als auch die Freisetzung löslicher Faktoren durch Mastzellen. Eine 
Aktivierung der MZ durch die Toll-like-Rezeptoren erhöhte deren Fähigkeit CD8+ T-Zellen 
zu aktivieren, teilweise vermittelt durch eine gesteigerte Zelloberflächenexpression der MHC 
Klasse I Molküle.  Bemerkenswerter Weise induzierte der direkte Transfer Antigen-
stimulierter MZ die Proliferation Antigen-spezifischer CD8+ T-Zellen in vivo, sowohl in 
wildtypischen als auch in β2-Mikroglobulin-defizienten Mäusen, welchen eine funktionale 
MHC Klasse I Expression fehlt. Somit wurde deutlich, dass MZ die CD8+ T-Zelle-Antwort 
fördern und dabei Effektor-CD8+ T-Zellen in vitro und in vivo induzieren. 

Zudem waren CD8+ T-Zellen in der Lage die Expression verschiedener Gene in MZ 
Antigen-abhängig als auch Antigen-unabhängig deutlich zu verstärken, wie mittels 
differentieller Genexpressionsanalyse gezeigt werden konnte. Viele dieser Gene haben eine 
wichtige Funktion innerhalb der Signaltransduktionswege von Interferonen, was zu der 
Annahme führte, dass die MZ-CD8+ T-Zell-Interaktion wesentlich zu Abwehrmechanismen 
beitragen könnte. Zusätzlich lässt die Hochregulation des Major Histocompatibility Complex-
verwandten Moleküls 4—1BB vermuten, dass der Kontakt mit CD8+ T-Zellen das Potential 
der MZ, die adaptive Immunantwort zu modulieren, erhöhen könnte. 

Zusammenfassend ist zu sagen, dass diese Studie neue Einsichten in die 
physiologische Rolle der MZ im Kontext der adaptiven, wie einer CD8+ T-Zelle-gesteuerten 
anti-viralen Immunantwort gibt. Dieses neue Verständnis der MZ-Biologie birgt 
vielversprechende Ansätze für eine Manipulation der anti-viralen Immunantwort im 
therapeutischen Sinne. 
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