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“I am a firm believer that without speculation there is no good and original observation.” 

Charles Robert Darwin (1809-1882) 

in a letter to Alfred Russel Wallace, 22 December 1857
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Summary 

The pseudocolonial coral Lophelia pertusa (Scleractinia, Caryophylliidae) is a eurybathic, stenother-

mal cosmopolitan cold-water species. It occurs in two colour varieties, white and red. L. pertusa 

builds vast cold-water coral reefs along the continental margins, which are among the most 

diverse deep-sea ecosystems. Microbiology of L. pertusa has been in scientific focus for only a few 

years. The question whether the coral holds a host-specific bacterial community is not finally 

answered. Possible implications of the two colour varieties for microbial colonisation must be 

taken into account. Bio imaging can reveal the in-situ location of bacterial groups on and possible 

interactions with the coral. The present study aimed at investigating these aspects, drawing a 

more comprehensive picture of community structure, taxonomy, and in-situ location of 

L. pertusa-hosted microbes. 

Bacteria on coral samples from the Trondheimsfjord (Norway) were characterised by the culture-

independent 16S rDNA- and rRNA-based techniques T-RFLP, cloning and sequencing, and 

CARD-FISH. L. pertusa revealed a high microbial richness. Clone sequences were dominated by 

α- and γ-Proteobacteria. Other abundant taxa were Bacteroidetes, Actinobacteria, Verrucomicrobia, Firmi-

cutes, and Planctomycetes. The bacterial community of L. pertusa differed conspicuously from that of 

the environment, but was not ‘specific’ sensu stricto. It was rather divided into a tissue-bound frac-

tion that was spatially constant within the sampling area and a “liquid-associated” fraction in the 

mucus and gastric fluid varying with location and colour variety of its host. Parallels to other 

coral-bacterial associations suggested existence of certain ‘cold-water coral-specific’ bacterial 

groups sensu lato. L. pertusa-associated bacteria appeared to play a significant role in the alimen-

tation of their host by degradation of sulphur compounds, cellulose, chitin, and end products of 

the coral’s anaerobic metabolism. Different bacterial groups in red and white L. pertusa could 

explain the dissimilar dispersal of these two phenotypes by different nutritional strategies. Some 

microbes were regarded as opportunistic pathogens, others might even be connected to coral 

colouring. Filamentous bacteria in the gastrocoel were identified as bona fide TM7, whose tight 

binding to the endoderm implied exchange of metabolites with their host. A novel Mycoplasma 

species on the nematocyst batteries of the coral tentacles was proposed as “Candidatus Mycoplas-

ma corallicola”. This organism appeared to be a commensal that profits from the leakage of 

dissolved organic substances during prey capture activity of L. pertusa. 



KURZFASSUNG 
  

 2

Kurzfassung 

Lophelia pertusa (Scleractinia, Caryophylliidae) ist eine eurybathe, stenotherme Kaltwasserkoralle. 

Sie tritt als rote und weiße Farbvarietät auf. L. pertusa bildet ausgedehnte Kaltwasserriffe entlang 

der Kontinentalränder, die zu den artenreichsten Lebensräumen der Tiefsee zählen. Die Mikro-

biologie von L. pertusa steht erst seit wenigen Jahren im Fokus des wissenschaftlichen Interesses. 

Die Frage, ob die Koralle eine wirtsspezifische Bakteriengemeinschaft beherbergt, ist nicht end-

gültig beantwortet. Mögliche Auswirkungen der unterschiedlichen Farbvarietäten auf die bakteri-

elle Besiedlung der Koralle sind zu berücksichtigen. Bildgebende Verfahren können Aufschluss 

über die genaue Lage der Bakteriengruppen und mögliche Wechselwirkungen mit der Koralle ge-

ben. Ziel der dieser Arbeit ist es, diese Aspekte zu untersuchen und ein umfassenderes Bild der 

Struktur, Taxonomie und Verteilung der Bakteriengemeinschaft auf L. pertusa zu zeichnen. 

Bakterien von Korallenproben aus dem Trondheimsfjord (Norwegen) wurden mit den kulturun-

abhängigen, auf 16S-rDNA und rRNA basierenden Methoden T-RFLP, Klonen und Sequenzie-

rung, sowie CARD-FISH charakterisiert. L. pertusa wies eine reiche Bakterienflora auf. Klon-

Sequenzen wurden von α- und γ-Proteobacteria dominiert. Klone von Bacteroidetes, Actinobacteria, 

Verrucomicrobia, Firmicutes und Planctomycetes waren ebenfalls zahlreich. Die Bakteriengemeinschaft 

von L. pertusa unterschied sich deutlich von jener der Umgebung, war jedoch nicht ‚spezifisch’ 

i. e. S. Sie war unterteilt in eine innerhalb des untersuchten Gebietes konstante gewebeassoziierte 

Fraktion, sowie eine „flüssigkeitsassoziierte“ Fraktion in Schleim und Gastralflüssigkeit. Letztere 

variierte abhängig von Standort und Farbe des Wirtes. Parallelen zu anderen Korallen-Bakterien-

Assoziationen legten die Existenz ‚kaltwasserkorallen-spezifischer’ Bakteriengruppen i. w. S. 

nahe. Die Bakterien auf L. pertusa schienen durch Abbau von Schwefelverbindungen, Zellulose, 

Chitin und Endprodukten des anaeroben Wirtsmetabolismus eine wichtige Rolle für die Ernäh-

rung der Koralle zu spielen. Unterschiedliche bakterienbedingte Ernährungsstrategien in roten 

und weißen L. pertusa könnten das abweichende Verbreitungsmuster dieser beiden Phänotypen 

erklären. Neben opportunistischen Pathogenen wurden auch Bakterien entdeckt, die für die 

Farbgebung der Koralle verantwortlich sein könnten. Fadenförmige Bakterien auf dem Endo-

derm, identifiziert als bona fide TM7, könnten Metabolite mit ihrem Wirt austauschen. Auf den 

Nematocysten der Tentakel profitierte „Candidatus Mycoplasma corallicola“ offenbar kommensal 

von gelösten organischen Substanzen, die beim Beutefang von L. pertusa freigesetzt werden. 
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1.1 

1 Introduction 

The Cold-Water Coral Lophelia pertusa 

The pseudocolonial scleractinian coral Lophelia pertusa (Linnaeus 1758) belongs to the family 

Caryophylliidae (Wells 1956). Though it is commonly referred to as a ‘deep-water’ or ‘deep-sea’ 

coral, this does not mean that it lives exclusively in deep oceanic water masses, but describes the 

ability of the coral to thrive at greater water depths in a cold and dark environment: Occurrence 

of this species is rather defined by temperature (4-12°C; preferred range, 6-8°C), salinity 

(~35-37 PSU), and dissolved oxygen (~3-5 ml·l-1) (Freiwald 1998, 2002). The coral grows from 

39 m on the Tautra reef in the Norwegian Trondheimsfjord (Hovland and Risk 2003) down to 

3000 m in the Atlantic (Squires 1959). In fact, L. pertusa inhabits shallow water only in Norwegian 

fjords (Strømgren 1971) because of the low depth of the thermocline (Freiwald et al. 1997). 

L. pertusa is thus a rather eurybathic, but stenothermal cold-water species, occurring in areas charac-

terised by high biological production and vigorous hydrodynamic regimes (Rogers 1999). 

The species occurs in two colour varieties (Fig. 1): white (transparent) and red (also referred to as 

“pink”) (Dons 1944; Strømgren 1971). The question whether these two phenotypes differ geneti-

cally is still open, though the molecular phylogeny of L. pertusa and its population structure in the 

NE Atlantic have been addressed quite recently: The coral population in the NE Atlantic should 

not be considered panmictic (random-mating) but instead forms distinct offshore and fjord 

populations. The recruitment of sexually produced larvae appears to be strongly local (Le Goff-

Vitry et al. 2004). 

Like all scleractinian corals from such environments, L. pertusa has no algal endosymbionts and is 

thus termed ‘azooxanthellate’. Stony corals lacking zooxanthellae are commonly called ‘aherma-

typic’ (non-reef-building), as opposed to their ‘hermatypic’ relatives in shallow tropical waters. 

This denomination, however, disregards the ability of L. pertusa to build vast and complex thicket 

frameworks in the bathyal zone along the continental margins (Fig. 2). Though L. pertusa’s 

average linear extension rate of 5.5 mm·yr-1 (Mortensen and Rapp 1998) is far less than that of 

branching warm-water corals (100-200 mm·yr-1) (Buddemeier and Kienze 1976), its extreme long-
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evity of estimated 200-366 years allows the coral to build colonies up to 1.5 m in height (Wilson 

1979). Post-glacial Lophelia reefs developed over periods of 1,000-10,000 years (Rogers 1999). 

 

Fig. 1: Red and white colour variety of L. pertusa growing entwined together with associated sponges at 

Tautraryggen (Tautra sill) in the Trondheimsfjord, Norway. Photo by courtesy of Erling Svensen 

(http://www.uwphoto.no). 

Cold-water corals do not build large continuous reef structures like, e.g., the Great Barrier Reef 

off the East coast of Australia or the Belize Barrier Reef in the Caribbean Sea, but form rather 

discontinuous patches and banks. Nonetheless, the overall area covered by cold-water reefs 

exceeds by far the extent of their tropical coral reef counterparts (magenta areas in Fig. 2). 

L. pertusa is the dominant coral in the NE Atlantic, forming giant carbonate mounds and reef 

patches along the continental margin from the North Cape to the Straits of Gibraltar (Mortensen 

et al. 1995; Freiwald 1998; Freiwald et al. 1999; Freiwald 2002). The coral is most abundant on 

the continental shelf in mid Norway at 200-400 m depth with largest densities along the conti-

nental break and on edges of shelf-crossing trenches (Fosså et al. 2002). Illustration of known 

cold-water coral reef locations (red points in Fig. 2) might convey the impression that the main 

 4
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distribution of L. pertusa is confined to the North Atlantic. However, this appears to be merely a 

consequence of intensive research and mapping effort in this ocean region. As shown by the pre-

dictive distribution of L. pertusa (orange and yellow areas in Fig. 2), the species is rather assumed 

to be an abundant cosmopolitan, fringing the margins of all continents. 

The importance of L. pertusa in reef-forming processes with respect to lithification was discussed, 

e.g., by Reitner (1993), and recently by Noé et al. (2005). Despite that, cold-water coral reefs have 

long been neglected in calculations of global carbonate production. CaCO3 flux is 4%–12% of 

that in tropical reefs, and a preliminary global estimate indicates that cold-water coral CaCO3 pro-

duction could add >1% to the total marine CaCO3 production (Lindberg and Mienert 2005). 

Given their assumed widespread occurrence (Fig. 2), cold-water reefs might constitute a 

significant carbonate sink. 

Cold-water reefs are among the most diverse deep-sea ecosystems with more than 980 inverte-

brate species known to be associated with cold-water corals, belonging to a broad range of taxa: 

Foraminifera, Cnidaria, Nemertini, Polychaeta, Crustacea, Gastropoda, Bivalvia, and Ophiuroidae 

(Echinodermata) (Buhl-Mortensen and Mortensen 2004). Obviously, also sponges (Porifera) 

occur at least on some Lophelia reefs (Fig. 1). Though most of these organisms are not found 

exclusively on Lophelia banks, many of them are much less common in other habitats (Mortensen 

2001). 

Unfortunately, cold-water reefs are also highly endangered by human impact: Because the coral 

thickets provide habitat particularly for some commercially important fish and crustacean species 

(Roberts and Hirshfield 2004), they are sought grounds for industrial fishing. In the past, Lophelia 

reefs were exploited by long-line and gillnet fisheries (Fosså et al. 2002). While these traditional 

methods caused only limited damage to the coral framework, introduction of bottom trawling in 

the 20th century led to considerable reef destruction (Fosså et al. 2002; Hall-Spencer et al. 2002). 

Due to their slow growth (see above), recovery of cold-water reefs from these massive impacts is 

likely to be in the order of decades or even centuries (Roberts and Hirshfield 2004). 
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1.2 Coral-Associated Bacteria 

Interactions between warm-water corals and bacteria have been observed for over seventy years: 

Yonge (1937) and Franzisket (1970) noticed that bacterial digestion of mucus could interfere with 

coral respirometric measurements. Corals are able to feed on bacteria from the water column 

(DiSalvo 1971). Sieburth (1975) described bacterial “lawns” covering the tissue surface of the 

ahermatypic coral Astrangia danae. Ducklow and Mitchell (1979) showed that the external mucus 

layer of certain stony reef corals is inhabited by communities of heterotrophic bacteria; 

population levels of these bacteria seem to be controlled by some host corals, and show response 

to stresses applied to the host. Santavy (1995) observed bacteria-filled ovoids in Caribbean Porites 

astreoides samples. Carbon source utilisation patterns of bacteria isolated from the mucus of 

various Caribbean corals exhibited species-specific mucus-associated microbial communities 

(Ritchie and Smith 1997). 

It is still under debate whether such bacterial-anthozoan assemblages are specific and of ecologi-

cal importance. Nevertheless, there are copious examples that microbes do not just dwell 

passively on a coral, but have noticeable impact on their host – for both its advantage and disad-

vantage: The observation that many tropical corals ingest their own mucus (Coles and 

Strathmann 1973) indicates that they take advantage from the ability of the mucus-inhabiting 

bacteria to scavenge low-concentrated nutrients (Knowlton and Rohwer 2003). Experiments 

suggest that bacterially driven nitrification takes place in the tissue of living hermatypic corals 

(Wafar et al. 1990). Diazotrophic bacteria in reef-building stony corals benefit from organic 

carbon excreted by the coral tissue, supplying their hosts with nitrogen-containing compounds 

(Williams et al. 1987; Shashar et al. 1994; Lesser et al. 2004). Hermatypic warm-water corals live 

in close symbiosis with dinoflagellate algae of the genus Symbiodinium, known as ‘zooxanthellae’, 

which are located intracellularly in the coral. In the oligotrophic, nutrient-limited environment of 

the tropical coral reef, both nitrogen fixation and nitrification – as a pathway of nitrogen recy-

cling (Wafar et al. 1990) – are favourable for these zooxanthellae. 

Among endolithic microborers inhabiting the corallum (=coral skeleton) of the Indo-Pacific 

shallow-water species Porites lobata, bacteria were shown to be responsible for breakdown of the 

organic skeletal matrix (DiSalvo 1969). More recently, the cyanobacterium Plectonema terebrans was 

found in both live and dead specimens of the same coral (Lukas 1974; Le Campion-Alsumard et 
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1.3 

al. 1995). In the latter case, the consequence for the host can be considered ambivalent: On the 

one hand, P. terebrans weakens the internal structure of its host through biocorrosion; on the 

other hand, the coral may benefit from the nitrogen-fixing activity of the cyanobacterium as 

shown for other coral-diazotroph associations (Williams et al. 1987; Lesser et al. 2004). 

Hermatypic corals are prone to numerous bacterially induced diseases, among which are Coral 

Bleaching (Banin et al. 2000a; Banin et al. 2000b), Black Band Disease (Cooney et al. 2002; Frias-

Lopez et al. 2002; Richardson and Kuta 2003), and White Plague (Bythell et al. 2002; Denner et 

al. 2003). Microbial surface fouling is another detrimental threat. Accordingly, many scleractinians 

and other anthozoans use antibiotic compounds to make chemical war on bacteria (Slattery et al. 

1995; Koh 1997; Kelman et al. 1998; Wilsanand et al. 1999; Kelman et al. 2006). This kind of 

antagonism is fairly common in nature. Yet, it is stunning that substances produced in certain 

corals show activity against potentially pathogenic marine bacteria, but not against the associated 

microbes from the animal’s tissue and mucus (Kelman et al. 1998). Thus, one may be apt to think 

that corals are able to differentiate between “enemy” and “friend”. But, as Kelman et al. (1998) 

and Knowlton and Rohwer (2003) point out, the source of antimicrobial activity could again be 

the coral-associated bacteria themselves. 

In recent years, molecular genetics has been increasingly applied to investigate the diversity and 

specificity of associations between bacteria and tropical reef corals. The culture-independent 

analysis of ribosomal RNA genes (16S rDNA) revealed a richness in prokaryotic gene sequence 

patterns comparable to that of the eukaryotic coral reef community (Rohwer et al. 2001; Frias-

Lopez et al. 2002; Rohwer et al. 2002). These studies showed that coral-associated bacteria were 

not only different to water-column bacteria, but that different coral species harbour dissimilar 

bacterial communities, even when physically adjacent. Moreover, microbial patterns of the same 

coral species separated by time and space remained similar. These investigations strongly suggest 

that coral-bacterial associations are non-random. 

Aims of this Study 

Though bacteria may be of similar great ecological significance for L. pertusa as described above 

for warm-water scleractinians, the microbiology of this coral has been in scientific focus for only 

a few years. Microbial aspects of the bioerosion patterns in L. pertusa skeletons were presented by 
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Beuck and Freiwald (2005). Beside some preliminary investigations on L. pertusa-associated 

bacteria (Kellogg and Stone 2004; Kellogg 2006), Yakimov et al. (2006) were the first to publish 

phylogenetic data on metabolically active microbes in Mediterranean specimens of this coral. By 

means of clone libraries derived from reversely transcribed bacterial 16S rRNA, the authors could 

show that the sampled coral specimens sheltered a microbial community different from that of 

dead corals, sediment, or surrounding water. Spatial variation of the bacterial community on 

L. pertusa from the Mingulay-reefs in the Sea of the Hebrides was only recently observed by 

Großkurth (2007). The author also reported evidence for both antimicrobial and growth-stimula-

ting factors that may permit L. pertusa to influence composition of its epibacterial community. 

Latest contribution was made by Schöttner et al. (2008), who characterised and compared the 

microbial consortia of L. pertusa by means of ARISA (Automated Ribosomal Intergenic Spacer 

Analysis) (Fisher and Triplett 1999). The authors found that various parts (surface, skeleton, 

mucus) of corals from in-situ (fjord slope, Norway) and ex-situ (maintenance tank) environments, 

ambient seawater, and proximal sediment each exhibited distinct community profiles. This sug-

gested special relations between bacteria and the different habitats. All these studies show that 

living L. pertusa hosts special bacterial associations which are unlike those of the environment, 

and probably actively influenced by the coral. The associations appear to differ both with the 

partitioning of their host and with its habitat. 

One prerequisite to call an observed coral-microbial association truly ‘specific’ is spatial con-

stancy. Thus, the next step in understanding the microbiology of L. pertusa is to compare coral-

associated bacteria not only from different stations within the same geographic region, but also 

from different geographic regions. Moreover, the existence of two colour phenotypes in L. pertusa 

and their possible implications for microbial colonisation must be taken into account. Finally, bio 

imaging can reveal the in-situ location of bacterial groups on the coral, providing insights in 

possible microbe-host interactions. 

The present study aimed at investigating these points, drawing a more comprehensive picture of 

community structure, taxonomy, and in-situ location of L. pertusa-hosted microbes. Therefore, 

the following objectives were posed: 
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1.4 

(1) Comparison of the bacterial assemblages of L. pertusa from the Trondheimsfjord in Nor-

way with those of the surrounding environment. This fjord is a high-latitude environment 

comparable to those locations examined by the two latest studies (see above) but compri-

sing the coral’s shallowest habitat (Hovland and Risk 2003). It was thus important to 

know whether L. pertusa from that region harbours special bacteria as well. 

(2) Determination of the variability of these assemblages with the coral’s location in the 

Trondheimsfjord and with its colour variety, respectively. 

(3) Identification of the dominant bacterial groups associated with L. pertusa and their poten-

tial ecological role. 

(4) Locating the (tissue-associated) bacteria on L. pertusa by in-situ imaging. 

Answers to these questions should illuminate the relations between L. pertusa and its associated 

bacteria. In particular, the issue whether this association is specific and implications for coral 

ecology (nutrition, health, dispersal, and colouring) were to be discussed. 

General Strategy 

Microbial variability on L. pertusa from the Trondheimsfjord was addressed by the following 

strategy: Sampling sites had to feature healthy cold-water corals that were not noticeably influ-

enced by human activity. To account for intra-regional variability, sites were sampled that lay at 

least a few kilometres apart from each other, and at different depths. At each location, red and 

white corals were recovered to assess inter-phenotypic bacterial variance. To get a suitable num-

ber of parallels for reliable statistics, three coral colonies were randomly collected per station with 

three branches of healthy polyps sampled per colony. Thus, 9 samples per station and 27 samples 

in total were acquired with about equal numbers of red and white L. pertusa branches. To test 

whether bacteria found in L. pertusa were also ubiquitously present in the environment, water and 

sediment samples were taken from the adjacency of the corals. 

The Trondheimsfjord in mid Norway was chosen as sampling region for the following reasons: 

Healthy and undisturbed L. pertusa reefs are known to grow at various locations within the fjord, 

including its shallowest habitat on the Tautra reef (Hovland and Risk 2003). Infrastructure of 
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Trondhjem Biological Station facilitated flexible land-based operation. The remotely operated 

vehicle (ROV) “Minerva” of the Norwegian University of Science and Technology in Trondheim 

was an ideal tool for the recovery of corals from deep locations. With the chartered research 

vessel “Vita” providing a dynamic positioning system, precise navigation of the ROV was 

ensured. 

Marine prokaryotes are known for their extremely poor culturability (Amann et al. 1995). To 

overcome this problem, culture-independent approaches were employed to meet the proposed 

objectives (→  1.3): 

Objectives (1) and (2) were accomplished by Terminal Restriction Fragment Length Polymor-

phism (T-RFLP) (Liu et al. 1997) of the bacterial gene for the small ribosomal subunit RNA (16S 

rDNA). In this method, DNA of complex bacterial communities is amplified by polymerase 

chain reaction (PCR) with fluorescently labelled primers, and subsequently digested by a restric-

tion enzyme. Bacterial groups differ in number and location of restriction sites on the gene, 

which results in restriction fragments (RFs) of different number and length for each group. These 

RFs are separated according to their length by gel electrophoresis in an automated gene sequen-

cer. Only the fluorescently labelled terminal RFs (T-RFs) are detected by the machine, thereby 

reducing the high complexity of the RF pattern of a multi-species environmental sample. An 

electropherogram is produced with the T-RF signals that can be regarded as a ‘genetic finger-

print’ of the microbial community. Comparison of such ‘fingerprints’ from coral and environ-

mental samples was a means to detect differences and variations in bacterial community patterns. 

Detailed phylogenetic analysis (objective (3)) was based on cloning and sequencing of PCR-

amplified prokaryotic 16S rDNA. This gene provides an excellent means of identification of bac-

terial species, as for it large nucleotide sequence databases and powerful tools for sequence com-

parison exist on the internet. Comparison with closely related organisms and evaluation of 

common features of a phylogenetic group allows to infer the ecological potential of coral-hosted 

bacteria, which was also part of objective (3). 

The location of tissue-associated bacteria within the coral polyps (objective (4)) was determined 

by Fluorescence In-Situ Hybridisation (FISH) on coral thin sections. Stony corals exhibit a typical 

strong tissue autofluorescence that interferes with the signals of fluorescently labelled DNA 
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probes commonly used to detect bacteria in situ. To surmount this impediment, a special FISH 

technique named Catalysed Reporter Deposition Fluorescence In-Situ Hybridisation (CARD-

FISH) (Schönhuber et al. 1997; Pernthaler et al. 2002) was used. CARD-FISH employs DNA 

probes labelled with horseradish peroxidase (HRP) at their 5’ end. This HRP catalyses the 

deposition of fluorochrome-coupled tyramide molecules in the vicinity of the probe binding site 

(a 16S or 23S rRNA molecule). This technique, known as Tyramide Signal Amplification (TSA), 

provides up to 20-fold brighter signals relative to conventional monolabeled probes (Schönhuber 

et al. 1997), and thus enables detection of marked cells even against the bright coral tissue 

background. 
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2.1 

2 Materials and Methods 

Location and Sampling 

2.1.1 Topographic, Hydrological, and Biological Aspects of the 

Trondheimsfjord 

The Trondheimsfjord is located between 63°30’–64°N and 9°30’–11°30’E on the coast of mid 

Norway (Fig. 3). From the seaward Agdenes sill with a depth of 195m, three consecutive basins 

stretch to the inland: The seaward basin drops to the maximum depth of the fjord of 617 m 

immediately behind the Agdenes sill and has a mean depth of 212 m, followed by the large middle 

basin with a maximum depth of 440 m and a mean depth of 130 m. The innermost part, 

Beitstadfjord, is also the shallowest with a maximum depth of 210 m and a mean depth of 86 m 

(Jacobson 1983; Børsheim et al. 1999). The overall distance from the Agdenes sill to the end of 

Beitstadfjord is approximately 135 km, making the Trondheimsfjord the third largest in Norway. 

Seasonal variation of the fresh water supply from various rivers affects the surface salinity. The 

less saline surface water is mixed with the more saline water from below while it moves seaward. 

This produces a residual compensating current below the surface layer known as ‘estuarine circu-

lation’ (Jacobson 1983). Tidal currents up to 100 cm·s-1 at the Agdenes sill and up to 86 cm·s-1 at 

the Tautra sill (separating seaward and middle basin) have been measured (Jacobson 1983). Water 

masses below the surface layer in the fjord usually change twice a year, through the inflow of 

deep water in winter and an intermediate coastal water inflow at 20-70 m depth in late summer or 

early autumn (Jacobson 1983). Measurements of Børsheim et al. (1999) indicate that the water 

column of the seaward basin is de-stratified in midwinter, and stratification starts in spring. In the 

seaward fjord, below 100 m depth both temperature and salinity appear to be rather stable (7-8°C 

and 34-34.7 PSU, respectively) (Jacobson 1983; Børsheim et al. 1999). The euphotic zone of the 

Trondheimsfjord is not likely to exceed 20 m in depth (Sakshaug and Myklestad 1973). 

Two spring blooms of diatoms are persistent from year to year in the area (Sakshaug and 

Myklestad 1973): The first one starts in March and culminates in early April, nourished mainly by 

nutrients accumulated during the winter. The second takes place in brackish waters during May-

June. This bloom is kept in a physiologically more or less steady state for up to more than one 
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month apparently related to river floods due to snow melting. Through ‘estuarine circulation’ (see 

above) the seaward transport of phytoplankton is compensated for by a continuous replenish-

ment of the populations, as in a chemostat system (Sakshaug and Myklestad 1973). High produc-

tivity favours the growth zooplankton, which in turn serves as prey for L. pertusa (cf. 

Kiriakoulakis et al. 2005). The coral occurs on the Agdenes reef complex in the seaward basin 

and on the Tautra sill. The Tautra reef complex is one of the world’s shallowest cold-water coral 

reefs, reaching up to a depth of only 39 m below the sea surface. Because it has become a target 

for scuba diving and other activity, the reef has been protected by Norwegian law as a marine 

nature reserve on an interim basis, as of June 2000 (Fosså et al. 2002; Hovland and Risk 2003). 

2.1.2 Sampling and Fixation 

L. pertusa specimens were collected at three stations on the Tautra sill and in the seaward basin of 

the Trondheimsfjord, on 20 and 21 October 2004: (1) ‘Tautra’ (geographic position, 63°35’34’’N, 

10°31’4’’W; depth, 54 m; temperature, 9.6°C; salinity, 30.1 PSU), (2) ‘Stokkbergneset’ 

(63°28’14’’N, 9°55’8’’W; 264 m; 8.1°C; 31.9 PSU), and (3) ‘Røberg’ (63°28’36’’N, 9°59’43’’W; 

240 m; 8.1°C; 31.2 PSU). Station ‘Tautra’ was characterised by silty sediment. The sites 

‘Stokkbergneset’ and ‘Røberg’, both with rocky steep slope, lay about 30 km further south-west 

to ‘Tautra’ at the transition to the sound connecting the seaward fjord basin and Norwegian Sea 

(Fig. 3). All sampling sites featured apparently healthy coral communities without signs of pollu-

tion or other direct human influence. 
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Fig. 3: Map of stations in the Trondheimsfjord (Norway) sampled for this study. The mean sampling 

depth is given in brackets for each station. (Created with Online Map Creation (OMC; http:// 

www.aquarius.ifm-geomar.de/omc) based on The Generic Mapping Tools (GMT) (Wessel and 

Smith 1995).) 

Sampling was accomplished with the SUB-Fighter 7500 remotely operated vehicle (ROV) 

“Minerva” from the Norwegian University of Science and Technology (NTNU), Trondheim, in 

cooperation with the ROV pilots J Järnegren from Trondhjem Biological Station (TBS) and 

M Ludvigsen from NTNU. A landing net attached to the ROV served as collection device. The 

net was cleaned after every sampling and also rinsed by the strong water current during the 

descent of the ROV, so cross-contamination by remains of coral debris and mucus from the 

previous sampling was unlikely to occur. Moreover, sampling of coral parts that had been in con-

tact with the net was avoided. Three colonies (white and red colour varieties) were randomly 

collected at each station within a radius of about 10 m around the positions given above, and 

three living branches with 3-5 polyps were randomly taken per colony, summing up to a total of 

27 coral samples (15 white and 12 red). The branches were rinsed with sterile filtered seawater to 

 15
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remove loosely attached microbes from their surface, and individually put into sterile centrifuge 

tubes. 

All coral samples were incubated in sterile filtered MgCl2 solution to anaesthetise the coral polyps 

for 30 minutes. Anaesthesia was regarded as beneficial for FISH (→  2.5) in order to prevent the 

polyps from full retraction, providing an unobscured view on the tentacles (cf. Bythell et al. 

2002). Samples for DNA extraction were frozen at -20°C. Samples for FISH were incubated in a 

sterile filtered solution of 4% paraformaldehyde in PBS (phosphate-buffered saline: 8.0 g NaCl, 

0.2 g KH2PO4, 1.15 g Na2HPO4, 0.2 g KCl, H2O ad 1000 ml, pH 8.3) for 5-7 hrs, then 

transferred into 50% [v/v] ethanol in sterile filtered seawater and frozen at -20°C. 

Two samples of surrounding water (1 L each) were collected about 1 m apart from the coral 

colonies at each station using a Niskin bottle that was attached to the ROV and disengaged 

remotely. Water samples were cooled to 4°C until return to the laboratory at TBS (4-6 hrs) and 

filtered through polycarbonate Nucleopore® membrane filters (0.2 µm pore size, ∅ 47 mm) 

(Whatman). The filters were frozen at -20°C in small Petri dishes. Two sediment samples were 

taken from the basis of two separate corals from station ‘Tautra’ and stored at -20°C in sterile 

centrifuge tubes. It was not possible to collect sediment samples at the other two stations because 

of their rocky steep slope. 

For evaluation of the CARD-FISH method and the applied oligonucleotide probes the following 

bacterial test strains were used: DSM498 (γ-Proteobacteria, Escherichia coli); DSM347 (Firmicutes, 

Bacillus subtilis); environmental isolate, 98% 16S rDNA sequence similarity to type strain 

022-2-10T (α-Proteobacteria, Erythrobacter vulgaris); environmental isolate, 99% 16S rDNA sequence 

similarity to type strain ATCC 25495T (Actinobacteria, Streptomyces sampsonii). All strains were 

cultured on agar plates and harvested during exponential growth phase (by courtesy of 

A Gärtner). After fixation with 4% formaldehyde in PBS (pH 8.3) at 4°C overnight, bacterial cells 

were spread onto polycarbonate Nucleopore® membrane filters (0.2 µm pore size, ∅ 47 mm) 

(Whatman) by vacuum filtration, and frozen at -20°C in small Petri dishes. Sections of these 

filters were processed the same way as coral thin sections in CARD-FISH (→  2.5). 
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2.2 

2.3 T-RFLP 

Freshly harvested polyps of aquarium-reared L. pertusa were used for testing the preparation and 

CARD-FISH procedure on the coral. These specimens were fixed in PBS with 4% formaldehyde 

for 5 hrs and immediately decalcified thereafter (→  2.5). 

DNA Extraction 

Whole coral samples were pounded in liquid nitrogen with a mortar and pestle. To avoid carry-

over of DNA from consecutive sample treatments, tools were sterilised with 3 M HCl and 

neutralised with sterile filtered PBS (pH 7.4). DNA was extracted from all sample types with the 

UltraClean™ Soil DNA Kit (Mo Bio). About 1 g of material (corals/sediment) and approxi-

mately one eighth of the polycarbonate filter area (corresponding to the filtrate of about 125 ml 

seawater) were employed in each extraction, respectively. To minimise DNA shearing, the 

‘alternative lysis method’ proposed by the manufacturer (heating to 70°C instead of vortexing) 

was applied with 4 times elongated incubation as compared to the manufacturer’s protocol. 

DNA amplification. PCR with template DNA from environmental and coral samples was 

conducted with the Phusion™ High-Fidelity PCR Kit (Finnzymes) according to manufacturer’s 

instructions, and the Bacteria-specific primer 27f (5’-AGAGTTTGATCMTGGCTCAG-3’) and 

universal primer 1492r (5’-GGTTACCTTGTTACGACTT-3’). This primer combination was 

chosen in order to amplify a broad range of bacterial 16S rDNA sequences. Archaea were not 

investigated in this study. Primers for T-RFLP were 5’-labelled with the fluorescent dyes 6-FAM 

(27f) and VIC (1492r), respectively. The total reaction volume was 20 µl, containing 6 µl of 

template DNA. Since it was impossible to measure the amount of bacterial DNA in the extract 

(because eukaryotic DNA was present, too), concentration of template DNA was adjusted to 

obtain clearly visible 16S-rDNA bands on the agarose gel (~10-50 ng per band, estimated by 

ethidium bromide staining): undiluted DNA extract from coral samples, 1:400 diluted DNA 

extract from sediment and water samples. PCR conditions were 3 min at 98°C; 35 cycles of: 10 

sec at 95°C, 30 sec at 55°C, 45 sec at 72°C; 1 terminal elongation step of 5 min at 72°C. The 

number of cycles had been adjusted to get a clear signal of coral-derived bacterial PCR products 

in gel electrophoresis. Since this cycle number was kept constant in the whole assay, the PCR bias 
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as systematic error remained comparable for all samples. PCR products were obtained from all 

coral samples but one red from station ‘Tautra’, resulting in 26 coral PCR products. 

Restriction digests. PCR products were purified by excision from a 1% agarose gel in Tris-

Acetate-EDTA buffer and subsequent extraction with the NucleoSpin® Extract II Kit 

(Macherey-Nagel), and eluted from spin columns with 100 µl elution buffer. They were concen-

trated by conventional isopropanol precipitation and re-suspended with 30 µl elution buffer. The 

PCR products were digested with two restriction endonucleases commonly used in T-RFLP, 

Hha I and Alu I, respectively (New England Biolabs). 10 µl of purified PCR product were mixed 

with 10 µl of restriction enzyme master mix containing 5 U of the respective enzyme. Restriction 

reactions were incubated for 6 h at 37°C, followed by 20 min at 65°C to denature the enzyme. 

Analysis. Restriction products were purified by ethanol precipitation and re-suspended in 12 µl 

of Hi-Di™ formamide (Applied Biosystems). For determination of fragment lengths (‘size 

calling’), a size standard mix was prepared containing 5.9 µl of Hi-Di™ formamide and 0.1 µl of 

GeneScan® - 500 [ROX]™ size standard (Applied Biosystems) per sample. 6 µl of the size 

standard mix were merged with 6 µl of the re-suspended restriction product and denatured at 

95°C for 5 min. T-RF signals were detected by capillary electrophoresis on an ABI PRISM® 310 

Genetic Analyser with POP-6™ Polymer in a 30 cm capillary (Applied Biosystems) under the 

following conditions: injection time 15 sec, injection / electrophoresis voltage 15 kV, electropho-

resis current ~7 mA, gel temperature 60°C, run time 44 min. Electropherograms were analysed 

with the program GeneScan® v2.0.2 (Applied Biosystems). 

Statistics. Peak data of T-RFs between 30 and 500 nucleotides (nt) and signal intensities ≥50 

(arbitrary units) were exported as tabular data from the Genetic Analyser. A data matrix was crea-

ted from the combined Hha I and Alu I peak data with samples as columns and peak positions 

(T-RF lengths) as rows. The area under each peak was used as a measure of T-RF abundance, 

standardised as percentage of total peak area as described by Lukow et al. (2000). Due to roun-

ding errors and minor variations in size determination, the length of defined T-RFs varied by 

±1 nt among samples. Peaks were aligned within this range from their expected mean (cf. Lukow 

et al. 2000). Rows without T-RF data were deleted from the matrix. Two distance matrices were 

derived from the peak matrix employing (1) Manhattan distances and (2) percent mismatch 
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2.4 

distances based on binary (presence – absence) data of peaks. Non-metric Multidimensional 

Scaling (MDS) was applied to ordinate samples in three dimensions according to the distance 

matrices. Statistical analyses were performed with (1) average peak numbers of the sample types 

and (2) the three MDS dimensions as independent variables, and ‘sample type’, ‘station’, and 

‘colour variety’ (of the coral samples) as categorical predictors. The Shapiro-Wilk W statistic was 

used to test the variables for normality. With normally distributed variables, a multivariate 

analysis of variances (MANOVA) was performed, followed by Duncan’s test for post hoc evalu-

ation of significant differences. For non-normally distributed variables, non-parametric Kruskal-

Wallis-ANOVA was applied, combined with the Mann-Whitney U test for post hoc evaluation. 

All statistics were executed with Statistica v6.1 (StatSoft). 

Cloning and Sequencing 

DNA amplification. For cloning, DNA extracts of all three stations were pooled according to 

environmental sample type ( water / sediment) and colour variety (corals). In a first step, three 

parallel PCRs were conducted for each pool ( water / sediment / white corals / red corals), each 

with a total reaction volume of 20 µl containing 6 µl (corals) or 1 µl (water / sediment) of 

undiluted DNA extract as template. PCR was conducted with the Phusion™ High-Fidelity PCR 

Kit (Finnzymes) according to manufacturer’s instructions and primers 27f and 1492r. PCR condi-

tions were 3 min at 98°C; 20 cycles of: 10 sec at 95°C, 30 sec at 55°C, 45 sec at 72°C; 1 terminal 

elongation step of 5 min at 72°C. PCR products of the three parallels were pooled and purified as 

described above (→  2.3, Restriction digests). Elution from spin columns was done in 25 µl 

elution buffer. In a second step, the purified PCR products were re-amplified in a total reaction 

volume of 50 µl containing 6 µl of template DNA (all samples). PCR conditions were 3 min at 

98°C; 10 (water / sediment) or 20 (corals) cycles of: 10 sec at 95°C, 30 sec at 55°C, 45 sec at 

72°C; 1 terminal elongation step of 5 min at 72°C. This two-step procedure aimed at obtaining 

high quality PCR products for cloning while reducing formation of chimeric sequences. 

Cloning. PCR products were purified and precipitated as described above (→  2.3, Restriction 

digests). Cloning was carried out with the TOPO TA Cloning® Kit for Sequencing with One 

Shot® TOP10 Chemically Competent E. coli (Invitrogen). This kit was preferred for its high 

reliability, but it required DNA inserts with a 3’ adenosine overlap for ligation with the cloning 
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vector. Since the Phusion™ polymerase produces blunt-ended PCR products, a terminal deoxy-

adenosine had to be added to the 3’ ends of the amplified DNA prior to ligation. For this 

purpose, the natural non-template-dependent terminal transferase activity of Taq polymerase was 

exploited: PCR products were incubated in 50 µl of 1x ThermoPol buffer (New England Biolabs) 

with 1 Unit of Taq DNA Polymerase (New England Biolabs) and 200 µM dATP (Roche) for 

30 min at 72°C. After terminal adenosine addition, PCR products were purified and precipitated 

as described above (→  2.3, Restriction digests) and re-suspended with 25 µl elution buffer. Puri-

fied products were ligated into the vector, followed by transformation of competent E. coli accor-

ding to manufacturer’s instructions. Cells were spread onto LB agar-plates amended with kana-

mycin (recipe given in the TOPO TA Cloning® Kit manual) and grown at 37°C overnight. Clone 

forming units were separated into 96-well plates filled with liquid LB medium, and re-grown at 

37°C overnight. Cloned 16S rDNA inserts were re-amplified with the primer pair T3 / T7 

(contained in the cloning kit). The total reaction volume was 45 µl containing 0.5 µl of E. coli cell 

suspension, 1 U of Taq DNA Polymerase (New England Biolabs), 0.1 µM of each primer, 50 µM 

of each dNTP, and 1x ThermoPol buffer. PCR conditions were 5 min at 95°C; 35 cycles of: 

10 sec at 95°C, 30 sec at 55°C, 1 min at 72°C; 1 terminal elongation step of 10 min at 72°C. 

Aliquots of 5 µl were taken from each PCR product and tested for their correct length (about 

1,600 base pairs, including the T3 and T7 priming sites) by agarose gel electrophoresis. 

Sequencing. PCR products from clones showing correct length were sequenced at the Institute 

for Clinical Molecular Biology at Kiel University Hospital (Kiel, Germany). Purification of PCR 

products and sequencing procedure were as described by Gärtner et al. (2008). Partial sequences 

were obtained by sequencing with primer 27f. For nearly complete sequences, PCR products 

were additionally sequenced with primer 1492r, followed by assembling of the two overlapping 

partial sequences. 

Phylogenetic analysis. Sequence data were visually checked for quality issues. Putative chimeric 

sequences were detected and eliminated using the online tools Chimera Check v2.7 of the 

Ribosomal Database Project II (RDP II) release 8.1 (Cole et al. 2003) and the Bellerophon 

chimera detection program (Huber et al. 2004). The sequence classifier of RDP II release 9 

(http://rdp.cme.msu.edu/classifier/classifier.jsp) (Cole et al. 2007) and BLAST (Basic Local 

Alignment Search Tool; http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) (Altschul et al. 1990) were 
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used for classification of the bacterial sequences and determination of closest relatives. The latter 

were obtained from the EMBL nucleotide sequence database (http://srs.ebi.ac.uk/) (Kulikova et 

al. 2004). Data of sequences from this study, their closest relatives, and sequences of coral-

associated bacteria from other studies were imported into a sequence library of ARB v2.5b 

(Ludwig et al. 2004) and aligned according to 16S rRNA secondary structure information. A posi-

tional mask was applied that only allowed for unambiguously alignable sequence positions in all 

following phylogenetic assays. This mask comprised E. coli 16S rRNA positions (Brosius et al. 

1981) 28-68, 101-183, 220-451, 480-838, 848-1003, 1037-1134, 1140-1440, and 1461-1491. 

Aligned sequences were incorporated into the phylogenetic ‘backbone’ tree of the ARB library 

consisting of over 52,000 sequences, using parsimony as inference method. Sequences were 

grouped into operational taxonomic units (OTUs) if the proportion of identical sequence posi-

tions shared between any two of them was ≥97%, which corresponds approximately to affiliation 

with the same species (Stackebrandt and Goebel 1994). A rarefaction analysis was conducted, 

applying the algorithm of Hurlbert (1971) implemented in the program aRarefactWin (http:// 

www.uga.edu/~strata/software/). Theoretical coverage of microbial diversity in the different 

sample types was estimated from rarefaction curves with the method of Thiel, Neulinger et al. 

(2007b) (→ Appendix). A maximum likelihood tree with sequences of interest was calculated 

with 100 bootstrap replicates using the program PHYML (Guindon and Gascuel 2003). To 

ensure clearness and reliability of this tree, a subset of 133 sequences from the initial ARB align-

ment was used. This subset contained only reference sequences of relevant OTUs from this 

study, sequences of coral-associated bacteria from other studies, and reference sequences. An 

OTU was considered ‘relevant’ if it (1) comprised at least two sequences from this study that 

were not from water or sediment clones, or (2) was related to a sequence of a coral-associated 

bacterium form another study. The corresponding subset of the ARB ‘backbone’ tree was used as 

starting tree in PHYML sustaining topology and branch lengths. The most appropriate model of 

nucleotide substitution for the maximum likelihood calculation was determined with the program 

ModelGenerator v0.84 (Keane et al. 2006). A detailed phylogeny for classification of L. pertusa-

hosted Mycoplasmataceae was calculated the same way. For comparison of results from cloning and 

T-RFLP the T-RFs of clone sequences were determined in silico with the tool TRF-CUT (Ricke 

et al. 2005) integrated in ARB. 
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2.5 

Nucleotide sequence accession numbers. Reference clone sequences of all OTUs from 

L. pertusa samples and clone sequences from water and sediment samples obtained in this study 

were deposited in the EMBL nucleotide sequence database (Kulikova et al. 2004) under accession 

numbers AM911346-AM911622. 

Fluorescence In-Situ Hybridisation 

Decalcification and thin sectioning. The polyps had to be decalcified for CARD-FISH, since 

the carbonate of the corallum would have hampered thin sectioning as well as epifluorescence 

microscopy (see below) because of its autofluorescence. Coral branches were decalcified in 20% 

[w/v] EDTA in PBS (pH 8.3). The solution was changed 2-3 times over two days until the coral 

skeleton was completely dissolved and polyps remained connected only by the coenosarc. The 

polyps were then singularised and dehydrated in a graded ethanol/xylene series (ethanol 70% – 

90% – 95% – 2×100%, xylene 3×100% [v/v]) at room temperature (RT) for 20 min each step, 

followed by 2× infiltration in paraffin at 60°C for 10 min each and paraffin embedding in cuboid 

tin foil molds. Series of 4-5 longitudinal sagittal sections (6-10 µm) of the embedded polyps were 

immobilised onto SuperFrost Plus slides (Menzel) (2 series per slide). They were de-paraffinated 

by heating to 60°C and immediate washing in pure xylene and ethanol for 30 sec each step. 

Permeabilisation and peroxidase inactivation. Coral thin sections were re-hydrated in ethanol 

(100% – 70% [v/v]) and H2O for 30 sec each step. To avoid merging of liquids on the slide, thin 

sections were framed with a hydrophobic border using a paraffin crayon. Bacterial cell walls were 

permeabilised by incubation in 100-200 µl lysozyme buffer (1.355·106 U·ml-1 lysozyme (Serva), 

500 mM EDTA (pH 8.0), 300 mM Tris-HCl (pH 8.0), H2O ad 100% [v/v]) at 37°C for 2 hrs. 

After washing with H2O at RT for 3×1 min, some samples were additionally permeabilised with 

100-200 µl achromopeptidase buffer (60 U·ml-1 achromopeptidase (Sigma), 10 mM NaCl, 10 mM 

Tris-HCl (pH 8.0), H2O ad 100% [v/v]) at 37°C for 1 hr. Slides were again washed with H2O at 

RT for 3×1 min and air-dried. For inactivation of endogenous peroxidases, thin sections were 

incubated in 100-200 µl of 3% [v/v] H2O2 at RT for 30 min, followed by washing with H2O at 

RT for 3×1 min, air-drying, and storage at -20°C until further processing. 
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Hybridisation. HRP-labelled oligonucleotide probes (Table 1) were purchased from biomers.net 

(http://www.biomers.net). The lyophilised probes were rehydrated in H2O, quantified with a 

NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific), and adjusted to 50 ng·µl-1 

(probe working solution). The hybridisation buffer consisted of 20-60% [v/v] formamide (depen-

ding on the probe, see Table 1), 900 mM NaCl, 20 mM Tris-HCl (pH 8.0), 10% [w/v] dextran 

sulphate (Sigma), 0.01% [w/v] sodium dodecyl sulphate (SDS), 10% [v/v] blocking solution, and 

H2O ad 100% [v/v]. The blocking solution was made of 10% [w/v] blocking reagent for nucleic 

acid hybridisation (Roche), 1.16% [w/v] maleic acid (Fluka), 150 mM NaCl, and H2O ad 100% 

[v/v], pH 7.5. 100-200 µl of a 1:200 [v/v] mixture of probe working solution and hybridisation 

buffer were spread onto the thin sections. 

Table 1: Oligonucleotide probes used in FISH for identification of bacterial populations. Names, targeted 

taxa, targeted rRNA molecules and sites, and sequences of the probes, and the formamide con-

centrations in the hybridisation buffer required for specific in-situ hybridisation are stated. 

Probe Target group Target rRNA Target site2) Sequence (5'→3') % formamide Reference

ALF968 α-Proteobacteria 16S  968−985 GGTAAGGTTCTGCGCGTT 45 Neef (1997)
EUB338 I most Bacteria 16S  338−355 GCTGCCTCCCGTAGGAGT 55 Amann et al. (1990)
EUB338 II Planctomycetes 16S  338−355 GCAGCCACCCGTAGGTGT 55 Daims et al. (1999)
EUB338 III Verrucomicrobia 16S  338−355 GCTGCCACCCGTAGGTGT 55 Daims et al. (1999)
GAM42a γ-Proteobacteria 23S  1027−1043 GCCTTCCCACATCGTTT 50 Manz et al. (1992)
BET42a1) β-Proteobacteria 23S  1028−1043 GCCTTCCCACTTCGTTT 50 Manz et al. (1992)
HGC236 Actinobacteria 16S  236−253 AACAAGCTGATAGGCCGC 30 Erhart et al. (1997)
LGC0355 Firmicutes 16S  355−373 GGAAGATTCCCTACTGCTG 45 Hallberg et al. (2006)
LGC0355b Mycoplasmataceae 16S  355−373 GGAATATTCCCTACTGCTG 35 this study
MYC850 Mycoplasmataceae from this study 16S  850−867 CGTTAGCTACGCCAGTGA —3) this study
NON338 — (control) — — ACTCCTACGGGAGGCAGC 55 Wallner et al. (1993)
1) Used as unlabeled competitor with probe GAM42a. 
2) E. coli numbering (Brosius et al. 1981). 
3) No signal with 20% formamide. 
 

Slides were incubated at 35°C for 3-4 hrs in a vapour saturated repository and subsequently 

washed in Falcon tubes containing 50 ml of washing buffer at 37°C for 5 min. The washing 

buffer consisted of NaCl (concentration corresponding to the amount of formamide in the hybri-

disation buffer, see Table 2), 20 mM Tris-HCl (pH 8.0), 5 mM EDTA (pH 8.0), 0.01% [w/v] 

SDS, and H2O ad 100% [v/v]. 
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Table 2: Concentration of NaCl in the washing buffer corresponding to the amount of formamide in the 

hybridisation buffer. Concentrations are determined for stringent washing at 37°C after hybridi-

sation at 35°C. 

% formamide in hybridisation buffer mM NaCl in washing buffer

20 135 
25 95 
30 64 
35 42 
40 27 
45 16 
50 9 
55 3 
60 0 

 

Tyramide Signal Amplification (TSA). Cyanine 3 (Cy3) and fluorescein tyramide conjugates 

from TSA™ Tyramide Reagent Packs (PerkinElmer) were dissolved according to the manufac-

turer’s instructions. The amplification buffer contained 10% [v/v] blocking solution (see above), 

2 M NaCl, 10% [w/v] dextran sulphate, 0.0015% [v/v] H2O2, and PBS (pH 7.3) ad 100% [v/v]. 

Thin sections were equilibrated with PBS (pH 7.3) at RT for 15 min. 100-200 µl of a 1:500 [v/v] 

mixture of tyramide solution and amplification buffer were spread onto the thin sections. Incuba-

tion of the slides at 46°C for 30 min in a dark, vapour saturated repository was followed by 

washing with PBS (pH 7.3) at RT for 20 min and H2O at RT for 3×1 min. 

Double hybridisation. Simultaneous marking of bacteria with two different probes was accom-

plished as follows: After the first signal amplification with Cy3 tyramide HRP was inactivated 

with H2O2 as described above. Then a second hybridisation and signal amplification with fluores-

cein tyramide was carried out. In a parallel treatment, probe NON338 was used for the second 

hybridisation to prove that these signals did not result from persisting HRP activity of the first 

hybridisation. 

Mounting. Air-dried thin sections were covered in mountant (80% [v/v] Citifluor AF1 (Citifluor 

Ltd.), 14% [v/v] VECTASHIELD® Mounting Medium (Vector Laboratories), 1 µg·ml-1 4’,6’-

diamidino-2-phenylindole (DAPI) (Sigma), and PBS (pH 9) ad 100% [v/v]) and stored at -20°C 

until microscopic analysis. 

Microscopy and image processing. Thin sections were viewed on a Leitz DMRB epifluores-

cence microscope, equipped with filter sets A, N2.1, and I3 (for fluorescence detection of DAPI, 
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Cy3, and fluorescein, respectively), and 40× and 100× PL FLUOTAR objectives (all from Leica). 

Image stacks were taken with a digital still camera by advancing the focus layer through the z-axis 

of the whole thin section in steps of ~2 µm and ~1 µm for the 40× and 100× objective, respec-

tively. Deconvolved composite images were produced from these stacks with the software 

Helicon Focus v4.21 (Helicon Soft Ltd.). Overlay images for the simultaneous display of fluores-

cence signals of different dyes were produced with Photoshop® CS (Adobe). 

Probe specificity assay. To cross-check specificity of the newly designed probe LGC0355b, a 

culture of B. subtilis DSM347 (which has the probe LGC0355 target site) was hybridised with 

probes LGC0355 and LGC0355b, respectively, each with 35% formamide. Signal brightness was 

compared between the two approaches after TSA with Cy3 tyramide. As bacterial cultures har-

vested during their exponential growth phase have a vast number of ribosomes, even sub-optimal 

probe binding results in bright fluorescence signals. This makes it difficult to assess brightness 

differences with the naked eye. Therefore, digital image analysis was employed to compare signal 

intensities: Of each hybridisation five digital images from filter sections densely covered with bac-

teria were taken with identical camera settings. Cumulative histograms of pixel brightness values 

were obtained with ImageJ v1.37 (Rasband 1997-2007). To ensure that results were not biased by 

dark spaces between the bacterial cells or pixel super saturation, only intermediate brightness 

values between 80 and 165 (arbitrary units) were taken into account. 
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3.1 T-RFLP 

3 Results 

3.1.1 Comparison of Coral and Environmental Samples 

T-RFLP, like other PCR-based fingerprinting methods, generates datasets (patterns, electrophe-

rograms; Fig. 4) that relate each signal (peak) – in the best case – to a single taxon (Casamayor et 

al. 2002). T-RFLP analysis of this study yielded such datasets for 26 coral, 6 water, and 2 sedi-

ment samples. A total of 517 different electropherogram peak positions were observed. Overlay 

plots of electropherograms from the three sample types are shown for restriction enzymes Hha I 

(Fig. 4 a) and Alu I (Fig. 4 b) in combination with primer 27f. The figure gives an impression of 

what the raw data obtained from the genetic analyser looked like. However, it does neither pro-

vide a detailed view due to the limited resolution of the graphic, nor does it allow direct compa-

rison of relative peak intensities. Analyses were therefore solely conducted on the peak matrices. 

Comparative values for T-RF profiles of the different sample types are summarised in Table 3. In 

the peak matrix, 167 (32.3%) peaks belonged exclusively to corals, while the others were shared 

with sediment (34 peaks, 6.6%), water (49 peaks, 9.5%), or both (78 peaks, 15.1%), summing up 

to a total of 161 shared peaks (31.1%). 

Table 3: Absolute and relative numbers of T-RFLP peaks shared by the respective sample types. 

corals 
only 

sediment 
only 

water 
only 

corals 
+ sediment 

corals 
+ water 

sediment 
+ water 

all samples ∑ 

167 
32.3% 

85 
16.4% 

74 
14.3% 

34 
6.6% 

49 
9.5% 

30 
5.8% 

78 
15.1% 

517 
100.0% 
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Fig. 4: T-RFLP chromatograms produced by restriction enzymes Hha I (a) and Alu I (b) in combination 

with primer 27f. All chromatograms of a respective sample type were combined to a single over-

lay plot to illustrate the overall pattern. T-RFs of clone sequences (→  3.2.2) as determined by 

TRF-CUT are indicated as triangles at the respective positions. 
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The average number of peaks per sample was highest for sediment (150.5), followed by water 

(83.8), red (54.3) and white (39.4) coral samples. Significance of these differences was tested by 

Kruskal-Wallis-ANOVA and Mann-Whitney U test, because the distribution of average peak 

numbers deviated from normality. Kruskal-Wallis-ANOVA indicated significant differences 

between average peak numbers of the respective sample types (p <0.01). However, the diver-

gence between average peak numbers of red and white coral samples was insignificant according 

to the Mann-Whitney U test. 

Non-metric Multidimensional Scaling (MDS) is used in data visualisation for exploring similarities 

or dissimilarities between items. In this case the items were coral and environmental samples and 

the measure of dissimilarity was the Manhattan or percent mismatch distance between any pair of 

samples based on their T-RFLP peak patterns. Manhattan distance is more robust to outliers than 

the conventional Euclidean distance measure in the case of normalised peak areas, while percent 

mismatch measure is particularly suited for binary (presence – absence) data. For comparison of 

N items a matrix of N·(N-1)/2 pairwise distances has to be constructed. A diagram with up to 

N-1 dimensions would be needed to visualise the distances between all items correctly, which can 

become impractical for N >4. MDS takes the distance matrix as input and yields a smaller matrix 

of item ‘dimensions’, the configuration of which minimises a loss function called ‘stress’. Coordi-

nates are plotted in a diagram with 2 or 3 dimensions. Proximity of the items to each other in the 

diagram indicates how similar they are. The fewer dimensions, the easier it is to interpret the 

results, but also the worse is the statistical fit. The stress value reported along with each ordi-

nation specifies the quality of preservation of the original distance values in the diagram: 

Following Clarke (1993), stress values <0.10 indicates an ideal preservation, i.e., the configuration 

of items is close to their actual distances. A stress value ≤0.15 still means a good ordination. 

Higher values (around 0.20) indicate that the original relations between items are depicted in an 

exceedingly contorted manner and details of the plot should not be over-interpreted. 

MDS is an appropriate means for the exploration of relationships between biological samples, 

because the method does not assume normal distribution of the raw data. This property is almost 

never met by biological data in general and T-RFLP patterns in particular. On the other hand, the 

resulting coordinates often feature normal distribution and can be used as input for further 

statistical analyses. 
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For clearness, of the three dimensions calculated by MDS only the two with the most conspicu-

ous differences were plotted in the following diagrams. Coral, water, and sediment samples of all 

stations were clearly separated from each other by MDS based on normalised peak areas (Fig. 5 a) 

(stress: 0.10). Data points clustered closely together within their respective sample type with no 

overlap between different sample types. This separation of coral, water, and sediment samples 

was corroborated by MANOVA (p <0.00). A similar picture was given by MDS based only on 

the presence or absence of T-RFs, so-called ‘binary’ peak data (Fig. 5 b) (stress: 0.05), though this 

analysis led to greater scattering as compared to MDS based on normalised peak areas. The two 

more remote sample points in question (one from water and one from sediment) belonged to 

samples with above-average peak numbers in their T-RFLP profiles. For binary peak data the 

same clear separation of sample types as for normalised peak data was confirmed by Kruskal-

Wallis-ANOVA (p<0.00 for dimensions 1 and 2). 
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Fig. 5: Multidimensional scaling (MDS) ordination of coral (26 data points), sediment (2 data points), 

and water samples (6 data points). Ordination was based on Manhattan distances (a) and percent 

mismatch distances (b) derived from the T-RF peak matrix. For clearness, of the three calculated 

MDS dimensions only the two with the most conspicuous differences were plotted. Stress values 

for dimensional downscaling were 0.10 (a) and 0.05 (b), respectively. 
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3.1.2 Differences between Coral Samples 

For analysis of coral samples, T-RFs were divided into two categories: (1) ‘rare’ peaks occurring 

in less than one third (<9) of the coral samples (291 T-RFs) and (2) ‘consistent’ peaks occurring 

in at least one third (≥9) of the coral samples (37 T-RFs). Fig. 6 illustrates that, though only 

about one out of nine coral-derived T-RFs was consistent according to the above definition, the 

second category comprised all dominant peaks (i.e., peaks with highest relative abundance 

values). 
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Fig. 6: Distribution of average relative abundances for rare and consistent coral T-RFs. For each distri-

bution the median, central quartiles (25%-75%), and extremes (min-max) are plotted. The number 

of T-RFs falling into the respective category is stated below the box plots. 
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MDS dimensions derived from relative abundances of rare peaks (stress: 0.12) (not shown) 

deviated considerably from normal distribution. Kruskal-Wallis-ANOVA revealed significant 

differences between stations in dimension 1 (p <0.01). Pairwise comparison by the Mann-

Whitney U test denoted the differences between stations 1 and 2 (p =0.03), and between stations 

2 and 3 (p <0.01) to be significant. The effect of ‘colour variety’ was insignificant. 
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MDS data of consistent peaks (Fig. 7) (stress: 0.09) were approximately normally distributed. 

With two-way MANOVA the predictor ‘station’ accounted for a significant difference between 

corals from different sampling sites (Fig. 7 a) (p =0.03). Post hoc comparison with Duncan’s test 

revealed significant differences between stations 1 and 2 (p <0.01). This is also visible in Fig. 7 a, 

where values of dimension 2 were mostly positive for coral samples from station 1, while coral 

samples from station 2 had mostly negative values. 

In addition, also dissimilarities between T-RFLP profiles from corals of different colour (Fig. 

7 b), denoted by the predictor ‘colour variety’, were significant (p =0.05). This difference became 

only clear from two-way MANOVA of MDS coordinates of the coral samples, since it was not as 

evident from the distribution of sample points as the differences between sampling sites (see 

above). However, the means of sample coordinates of MDS dimension 2 were more positive for 

red than for white coral samples (Fig. 8). 

The crossover effect ‘station’ × ‘colour variety’ that could be evaluated by two-way MANOVA 

was insignificant. 

Dimension 1 / arbitrary units

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

D
im

e
n

s
io

n
 2

 /
 a

rb
it
ra

ry
 u

n
it
s

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

station 1

station 2

station 3

a

 

 32



RESULTS 
  

 33

Dimension 1 / arbitrary units

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

D
im

e
n

s
io

n
 2

 /
 a

rb
it
ra

ry
 u

n
it
s

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

red corals

white corals
b

 

Fig. 7: Multidimensional scaling (MDS) ordination of coral samples (26 data points) based on relative 

abundances of consistent peaks. The plot is shown twice with samples differentiated into groups 

from same station (a) and of same colour variety (b), respectively. For clearness, of the three cal-

culated MDS dimensions only the two with the most conspicuous differences were plotted. The 

stress value for dimensional downscaling was 0.09. 
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Fig. 8: Summary of the MDS ordination of coral samples differentiated into groups of same colour 

variety (Fig. 7 b). Means and standard errors of sample coordinates of MDS dimension 2 are 

given for white and red coral samples. 

Corresponding analyses were carried out with MDS dimensions based on (1) rare binary peak 

data (stress: 0.00), and (2) dominant binary peak data (stress: 0.15) (not shown). Since variables 

considerably deviated from normal distribution in both cases, Kruskal-Wallis-ANOVA and 

Mann-Whitney U test were employed to test differences between samples. 

In consideration of rare binary T-RF data the predictor ‘station’ accounted for significant differ-

ences between coral samples in dimensions 1 (p =0.02) and 3 (p =0.04). Post hoc comparisons 

yielded significant differences between stations 1 and 2 (dimension 3; p <0.01), and between 

stations 2 and 3 (dimension 1; p =0.02). The effect of ‘colour variety’ was insignificant. 

No significant differences were observed for any of the two predictors in consideration of 

dominant binary T-RF data. 
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3.2 Cloning and Sequencing 

3.2.1 Phylogenetic Analyses 

A total of 536 16S rDNA clone sequences passed quality checks and were subjected to phylo-

genetic analysis: 177 from white corals, 163 from red corals, 71 from water, and 125 from sedi-

ment. Length of partial sequences ranged from 294 nt (one sequence) to 902 nt (average, 765 nt). 

12 nearly complete sequences from selected bacterial OTUs were retrieved for comparison with 

FISH probe target sites, design of new FISH probes, and to increase the data basis for phylo-

genetic calculations. These sequences were 1318 nt to 1421 nt long (average, 1374 nt), and 

marked by the suffix “full” in the phylogenetic tree (Fig. 11). Based on 97% sequence similarity 

the number of OTUs found in the respective sample types were 27 (white corals), 54 (red corals), 

28 (water), and 74 (sediment). Rarefaction analysis (Fig. 9) assigned highest bacterial OTU rich-

ness to the sediment, followed by red L. pertusa, water, and white L. pertusa. Consequently, theore-

tical coverage of total bacterial diversity was highest in white L. pertusa (83.2%), followed by water 

(64.7%), sediment (60.3%), and red L. pertusa (42.1%). Table 4 summarises these properties of the 

sequence library. 
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Fig. 9: Rarefaction analysis. The expected number of OTUs is plotted against the number of analysed 

clones from red and white L. pertusa, sediment, and water. Dotted lines mark the extrapolations of 

the respective rarefaction curves according to the calculation method of Thiel, Neulinger et al. 

(2007b). The asymptotes of these curves give an estimate of the expected number of OTUs to be 

found if an infinite number of clones were sampled, which is tantamount to the maximum 

expectable OTU richness. 

Table 4: Summary of properties of the sequence library. For all sample types, the following values are 

given: Number of analysed clones, number of OTUs based on 97% sequence similarity, and theo-

retical coverage of total bacterial richness estimated by rarefaction analysis. 

 white corals red corals water sediment 

no. of clones 177 163 71 125 

no. of OTUs 27 54 28 74 

coverage 83.2% 42.1% 64.7% 60.3% 
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Affiliation with bacterial phyla and classes (in case of Proteobacteria) and relative abundances of 

16S rDNA sequences from corals, water, and sediment are shown in Fig. 10. Qualitative and 

quantitative differences of the large-scale bacterial community compositions between coral, 

water, and sediment samples are visible at first sight. Sequences assigned to the phylum Proteobac-

teria constituted the largest fraction, not only in water and sediment but also in both coral colour 

varieties (64% in white, 50% in red L. pertusa). In either case this fraction was dominated by the 

classes α- and γ-Proteobacteria. Other major taxa (relative abundance ≥10%) occurring on both 

coral phenotypes were Actinobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes. Some minor 

taxa (relative abundance <10%) were exclusively found on either colour variety, namely candidate 

division TM7 on white L. pertusa and δ-Proteobacteria as well as Bacteroidetes on red L. pertusa. A 

small group of cyanobacterial sequences was found on both coral colour varieties but not in the 

water. 
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Fig. 10: Affiliation with bacterial phyla and classes (Proteobacteria) and relative abundances of 16S rDNA 

sequences. Data are given separately for red and white L. pertusa, water, and sediment. Equal 

colours in the respective pie charts denote equal taxa. 
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Detailed analysis on the OTU level revealed that, despite the number of phyla and classes shared 

among coral colour variations, white and red L. pertusa had only twelve OTUs in common. This 

equals mere 16% of the combined bacterial richness of 75 OTUs for both coral colour varieties. 

Commonalities between corals and environment were confined to the class γ-Proteobacteria, where 

three OTUs were common to corals and seawater, and one OTU was shared between corals and 

sediment. 

A phylogeny of 133 reference sequences of relevant OTUs is shown in Fig. 11. These OTUs (1) 

comprised at least two sequences from this study that were not from water or sediment clones or 

(2) were related to a sequence of a coral-associated bacterium form another study. The phyloge-

netic tree was based on maximum likelihood calculation according to the GTR+I+G model of 

nucleotide substitution. 

Relevant OTUs affiliated with eight bacterial phyla (Proteobacteria, Bacteroidetes, Firmicutes, Cyanobac-

teria, candidate division TM7, Actinobacteria, Verrucomicrobia, and Planctomycetes). Several sequences 

published by Yakimov et al. (2006) belonged to three additional phyla (Gemmatimonadetes, Acidobac-

teria, and Nitrospira) that were exclusively associated with Mediterranean L. pertusa. Details on 

these bacterial groups are presented in the following, emphasising microbes of potential signifi-

cance for the ecology of L. pertusa. Taxonomic classification below the phylum / class level is 

given for L. pertusa-associated OTUs as far it could be reliably determined. For all database 

sequences their accession numbers and similarity to L. pertusa-originating sequences are stated in 

brackets. In cases with no overlap between a L. pertusa-originating and a database sequence the 

similarity to the closest common relative was determined instead. 
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α−Proteobacteria

γ−Proteobacteria

other Bacteria (b)

mucus bacterium 23, Oculina patagonica, AY654769

slope strain EI1*, North Atlantic slope sediment, AF254105

clone ctg_CGOAB33, Bamboo Coral, DQ395503

slope strain DIII4*, North Atlantic slope sediment, AF254106

D05_CW03_full, white D05_CW03_full, white Lophelia pertusa, Lophelia pertusa, AM911409, 65AM911409, 65

A02_CR01, red A02_CR01, red Lophelia pertusa, Lophelia pertusa, AM911347, 1AM911347, 1

E03_CW03, white E03_CW03, white Lophelia pertusa, Lophelia pertusa, AM911415, 5AM911415, 5

Sulfitobacter sp. clone F2C43, Antarctic seawater, AY697883

E07_CR02_full, red E07_CR02_full, red Lophelia pertusa, Lophelia pertusa, AM911377, 1AM911377, 1

H07_CW02_full, white H07_CW02_full, white Lophelia pertusa, Lophelia pertusa, AM911425, 7AM911425, 7

A04_CR01_full, red A04_CR01_full, red Lophelia pertusa, Lophelia pertusa, AM911350, 1AM911350, 1

A04_CW03, white A04_CW03, white Lophelia pertusa, Lophelia pertusa, AM911401, 6AM911401, 6

Roseobacter sp. strain MBT22, Flustra foliacea, AJ344506

D08_CW03, white D08_CW03, white Lophelia pertusa, Lophelia pertusa, AM911410, 2AM911410, 2

clone PDC-OTU3, Pocillopora damicornis, AY700622

D10_CW02, white D10_CW02, white Lophelia pertusa, Lophelia pertusa, AM911411, 3AM911411, 3

H11_CR02, red H11_CR02, red Lophelia pertusa, Lophelia pertusa, AM911400, 1AM911400, 1

clone 131839, whale bone off West Antarctic Peninsula Shelf, AY922245

B04_CR02, red B04_CR02, red Lophelia pertusa, Lophelia pertusa, AM911354, 2AM911354, 2

Sphingobium yanoikuyae strain GIFU9882, D16145

H05_CW03, white H05_CW03, white Lophelia pertusa, Lophelia pertusa, AM911424, 2AM911424, 2

Erythrobacter litoralis HTCC2594, CP000157

F06_CR02, red F06_CR02, red Lophelia pertusa, Lophelia pertusa, AM911382, 2AM911382, 2

B05_CW03, white B05_CW03, white Lophelia pertusa, Lophelia pertusa, AM911405, 7AM911405, 7

H11_CR01, red H11_CR01, red Lophelia pertusa, Lophelia pertusa, AM911399, 2AM911399, 2

clone MTAD4, brewery bottling plant, AJ619049

F09_CW03, white F09_CW03, white Lophelia pertusa, Lophelia pertusa, AM911419, 1AM911419, 1

Methylobacterium radiotolerans strain DSM 760, AB175637

H07_CR01, red H07_CR01, red Lophelia pertusa, Lophelia pertusa, AM911397, 1AM911397, 1

Bosea massiliensis strain 63287, AF288309

F07_CW02, white F07_CW02, white Lophelia pertusa, Lophelia pertusa, AM911418, 2AM911418, 2

Afipia birgiae strain 34632, freshwater supply, AF288304

E06_CR01, red E06_CR01, red Lophelia pertusa, Lophelia pertusa, AM911375, 1AM911375, 1

clone ctg_CGOF042, Bamboo Coral, DQ395711

A04_CR02_full, red A04_CR02_full, red Lophelia pertusaLophelia pertusa, AM911351, 19, AM911351, 19

A10_CW03_full, white A10_CW03_full, white Lophelia pertusa, Lophelia pertusa, AM911404, 7AM911404, 7

Brevundimonas terrae strain KSL-145, alkaline soil, DQ335215

B05_CR01, red B05_CR01, red Lophelia pertusa, Lophelia pertusa, AM911355, 1AM911355, 1

clone ctg_CGOF287, Bamboo Coral, DQ395857

Brevundimonas nasdae strain GTC1043, space laboratory, AB071954

D11_CR01, red D11_CR01, red Lophelia pertusa, Lophelia pertusa, AM911371, 2AM911371, 2

clone ctg_CGOAA08, Bamboo Coral, DQ395424

C10_CR02, red C10_CR02, red Lophelia pertusa, Lophelia pertusa, AM911363, 2AM911363, 2

B02_CR01, red B02_CR01, red Lophelia pertusa, Lophelia pertusa, AM911353, 3AM911353, 3

clone ctg_CGOAB38, Bamboo Coral, DQ395443

E07_CR01, red E07_CR01, red Lophelia pertusa, Lophelia pertusa, AM911376, 1AM911376, 1

clone CSCor-21Eub, Mediterranean Lophelia pertusa, AJ876953

clone MBMPE38, Pacific deep-sea sediment, AJ567552

clone ss1_B_08_64, Arctic coastal sediment, EU050760

clone CSCor-28Eub, Mediterranean Lophelia pertusa, AJ876954

C02_CR01, red C02_CR01, red Lophelia pertusa, Lophelia pertusa, AM911358, 1AM911358, 1

clone MT09A_B02, human chronic wound, DQ170293

clone PmeaMucE2, Pocillopora meandrina, EU249970

H03_CW02, white H03_CW02, white Lophelia pertusa, Lophelia pertusa, AM911421, 1AM911421, 1

C08_CR01, red C08_CR01, red Lophelia pertusa, Lophelia pertusa, AM911361, 1AM911361, 1

clone PDC-OTU7, Pocillopora damicornis, AY700625

Calyptogena phaseoliformis gill symbiont, AF035724

endosymbiont of Bathymodiolus aff. brevior, DQ077891

E12_CR02_full, red E12_CR02_full, red Lophelia pertusa, Lophelia pertusa, AM911378, 17AM911378, 17

G02_CR02_full, red G02_CR02_full, red Lophelia pertusa, Lophelia pertusa, AM911391, 2AM911391, 2

clone CSCor-31Eub, Mediterranean Lophelia pertusa, AJ876951

clone MBMPE4, Pacific deep-sea sediment, AJ567535

C05_CR02, red C05_CR02, red Lophelia pertusa, Lophelia pertusa, AM911359, 2AM911359, 2

C08_S02A, Trondheimsfjord sediment, AM911542

F09_CR01, red F09_CR01, red Lophelia pertusa, Lophelia pertusa, AM911385, 1AM911385, 1

clone cw5, soil, AY850300

clone A139, Pacific deep-sea sediment, AY373401

clone CSCor-26Eub, Mediterranean Lophelia pertusa, AJ876957

clone CSCor-32Eub, Mediterranean Lophelia pertusa, AJ876956

A06_CR02, red A06_CR02, red Lophelia pertusa, Lophelia pertusa, AM911352, 3AM911352, 3

clone SIMO-1228, salt marsh sediment, AY710668
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Aquifex aeolicus, AE000709

A03_CR02, red A03_CR02, red Lophelia pertusa, Lophelia pertusa, AM911349, 3AM911349, 3

clone 9NBGBact_66, East Pacific basalt glass, DQ070805

D01_CR02, red D01_CR02, red Lophelia pertusa, Lophelia pertusa, AM911365, 2AM911365, 2

clone Therm01-A12, hydrocarbon sedim., AY534034

C07_CR01, red C07_CR01, red Lophelia pertusa, Lophelia pertusa, AM911360, 1AM911360, 1

Chryseobacterium hispanicum strain VP48, AM159183

clone HKT72, Porites sp., DQ188008

E03_CR02, red E03_CR02, red Lophelia pertusa, Lophelia pertusa, AM911373, 2AM911373, 2

clone CH3_12_BAC_16SrRNA_9N_EPR, hydrothermal vent,
AY672513

clone ME154, Muricea elongata, DQ917898

clone ctg_CGOCA66, Bamboo Coral, DQ395509

D11_CW02_full, white D11_CW02_full, white Lophelia pertusa, Lophelia pertusa, AM911412, 9AM911412, 9

Mycoplasma sphenisci strain UCMJ, Spheniscus demersus, 
                                                                               AY756171D12_CW02, white D12_CW02, white Lophelia pertusa, Lophelia pertusa, AM911413, 1AM911413, 1

Staphylococcus caprae strain ATCC 35538T, AB009935

isolate DGGE gel band 22 Pocillopora damicornis, AY700659

Clostridium sp. strain U40A-5, anaerobic sludge compost, AB059480

F11_CR01, red F11_CR01, red Lophelia pertusa, Lophelia pertusa, AM911387, 2AM911387, 2

B10_CW03, white B10_CW03, white Lophelia pertusa, Lophelia pertusa, AM911406, 2AM911406, 2

G05_CR01, red G05_CR01, red Lophelia pertusa, Lophelia pertusa, AM911392, 1AM911392, 1

Synechococcus sp. strain Almo3, Red Sea water column, AY172800

clone PDM-OTU8, Pocillopora damicornis, AY700638

F05_CW03, white F05_CW03, white Lophelia pertusa, Lophelia pertusa, AM911417, 2AM911417, 2

clone SBR2001, activated sludge, X84546

D07_CR02_full, red D07_CR02_full, red Lophelia pertusa, Lophelia pertusa, AM911370, 5AM911370, 5

clone JdFBGBact_23, East Pacific basalt glass, DQ070822

G01_CR02, red G01_CR02, red Lophelia pertusa, Lophelia pertusa, AM911389, 1AM911389, 1

clone ctg_CGOAA22, Bamboo Coral, DQ395502

A02_CR02_full, red A02_CR02_full, red Lophelia pertusa, Lophelia pertusa, AM911348, 9AM911348, 9

H04_CW03_full, white H04_CW03_full, white Lophelia pertusa, Lophelia pertusa, AM911422, 32AM911422, 32

clone KT-2K12, brine-seawater interface of Red Sea Kebrit Deep, AJ309523

clone CSCor-08Eub, Mediterranean Lophelia pertusa, AJ876950

clone BD2-11, deep-sea sediment, AB015540

clone CSCor-04Eub, Mediterranean Lophelia pertusa, AJ876958

clone PAUC37f, Theonella swinhoei, AF186413

clone CSCor-39Eub, Mediterranean Lophelia pertusa, AJ876960

clone BPC102, hydrocarbon seep sediment, AF154083

clone mb2430, Z95735

clone CSCor-17Eub, Mediterranean Lophelia pertusa, AJ876955

clone AT-s3-24, Mid-Atlantic Ridge hydrothermal sediment, AY225641

clone CSCor-38Eub, Mediterranean Lophelia pertusa, AJ876952

clone AT-s3-56, Mid-Atlantic Ridge hydrothermal sediment, AY225651

clone CSCor-30Eub, Mediterranean Lophelia pertusa, AJ876949

clone Belgica2005/10-ZG-15, marine sediment, DQ351808

clone ctg_CGOAB70, Bamboo Coral, DQ395470

clone CSCor-02Eub, Mediterranean Lophelia pertusa, AJ876959

A01_CR02, red A01_CR02, red Lophelia pertusa, Lophelia pertusa, AM911346, 13AM911346, 13

C04_CW03, white C04_CW03, white Lophelia pertusa, Lophelia pertusa, AM911407, 4AM911407, 4

F07_CR01, red F07_CR01, red Lophelia pertusa, Lophelia pertusa, AM911383, 18AM911383, 18

clone ctg_CGOCA75, Bamboo Coral, DQ395537

E04_CR02, red E04_CR02, red Lophelia pertusa, Lophelia pertusa, AM911374, 13AM911374, 13

clone IndB1-5, inactive deep-sea hydrothermal vent chimney, AB099995

A05_CW03, white A05_CW03, white Lophelia pertusa, Lophelia pertusa, AM911403, 4AM911403, 4

E07_CW02, white E07_CW02, white Lophelia pertusa, Lophelia pertusa, AM911416, 2AM911416, 2

clone ctg_CGOCA60, Bamboo Coral, DQ395513

C10_CR01, red C10_CR01, red Lophelia pertusa, Lophelia pertusa, AM911362, 2AM911362, 2

clone Therm30-E08, hydrocarbon sediment, AY534070

F05_CR02, red F05_CR02, red Lophelia pertusa, Lophelia pertusa, AM911380, 3AM911380, 3

clone JdFBGBact_75, East Pacific basalt glass, DQ070834

H05_CW02, white H05_CW02, white Lophelia pertusa, Lophelia pertusa, AM911423, 4AM911423, 4

clone pIR3BE02, Rainbow hydrothermal vent sediment, AY354172
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Fig. 11: Maximum likelihood tree sub-divided into proteobacterial (a) and other bacterial (b) relevant 

OTUs from white and red Norwegian L. pertusa (grey and red), Mediterranean L. pertusa (orange), 

other corals (blue), and from reference organisms (black). For each sequence its name, source (if 

available), EMBL accession number, and the number of similar clones with 97% identity cut-off 

(sequences from this study) are given. Bootstrap proportions ≥50% from 100 re-samples are 

shown next to the clusters they support. The sequence of Aquifex aeolicus (AE000709) was used to 

root the tree. The shaded box in (b) marks a group of coral-inhabiting Mycoplasmataceae. The scale 

bar (a) and b), bottom left) denotes 0.10 nucleotide substitutions per alignment position. 

The α-Proteobacteria contained most of the coral-derived OTUs from this study. Within this 

class sequences of the family Rhodobacteraceae constituted the largest sub-cluster, dominated by 

clones from white L. pertusa. In particular, 65 identical sequences from white L. pertusa (37% of all 

white L. pertusa-hosted sequences; reference: D05_CW03_full) showed high similarity to two bac-

terial strains DIII4* (AF254106; 98%) and EI1* (AF254105; 98%) (asterisks are part of the clone 

names) isolated from North Atlantic continental slope sediments at 1500 m depth (Teske et al. 

2000). These strains were capable of thiosulphate (S2O3
2-) oxidation. A sequence of presumably 

the same bacterial species (DQ395503, 98%) had also been found on deep-sea octocorals of the 

family Isididae, so-called “Bamboo Corals” (Octocorallia, Gorgonacea, Isididae; scientific species 

names not provided) growing on seamounts in the Gulf of Alaska (Penn et al. 2006). 3 sequences 

from white (reference: D10_CW02) and sequence H11_CR02 from red corals (both Rhodobacter-

aceae) were closely related to a clone (AY922245, 97% and 98%, respectively) associated with the 

remains of a deep-sea “whale fall” off the West Antarctic Peninsula Shelf (Tringe et al. 2005). 

Several bacterial sequences from red L. pertusa within the α-Proteobacteria affiliated with sequences 

from other animal-associated bacteria: A group of 6 sequences (reference: A04_CW03) in the 

above-mentioned Rhodobacteraceae cluster were identical with the 16S rDNA of a cultivated bacte-

rium (AJ344506) from the North Sea bryozoan Flustra foliacea (Pukall et al. 2001). D08_CW03 

(also Rhodobacteraceae) was similar to a sequence (AY700622; 97%) associated with the tropical 

scleractinian coral Pocillopora damicornis (Astrocoeniina, Pocilloporidae) (Bourne and Munn 2005). 

Several sequences from L. pertusa associated with sequences form Isididae (accession numbers 

DQ395xxx): E06_CR01 (Afipia sp.) with DQ395711 (98%); a cluster of 19 sequences from red 

and 7 sequences from white L. pertusa (references: A04_CR02_full and A10_CW03_full) and 

B05_CR01 from red L. pertusa (all Brevundimonas sp.) with DQ395857 (97%, 98%, and 100%, 
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respectively); 2 sequences (reference: D11_CR01; Rhizobiales) with DQ395424 (99%); 3 sequences 

(reference: B02_CR01; unclassified α-Proteobacteria) with DQ395443 (99%). E07_CR01 (Rhodo-

spirillaceae) associated with a sequence (AY654769; 97%) obtained from the mucus of the shallow-

water scleractinian Oculina patagonica (Faviina, Oculinidae) (Koren and Rosenberg, unpubl.). Other 

α-proteobacterial sequences from both white and red L. pertusa (F09_CW03 and H07_CR01) were 

virtually identical with that of Methylobacterium radiotolerans (AB175637; 100% in both cases) (Kato 

et al. 2005); a larger sister-cluster of 7 sequences from white and 2 from red corals (references: 

B05_CW03 and H11_CR01) also belonged to the genus Methylobacterium. 

The γ-Proteobacteria cluster was dominated by bacterial sequences from red L. pertusa. The 

largest group of them comprised 17 sequences with reference E12_CR02_full (unclassified 

γ-Proteobacteria). This cluster showed closest relatedness to endosymbionts of the two deep-sea 

mussels Calyptogena phaseoliformis (AF035724; 94%) (Peek et al. 1998) and Bathymodiolus aff. brevior 

(DQ077891; 93%) (McKiness and Cavanaugh 2005). 2 other sequences (reference: 

G02_CR02_full) belonged to the same cluster but were more distantly related to the above-men-

tioned database sequences (88% and 87%, respectively). Out of each 100 hits for BLAST 

searches with references E12_CR02_full and G02_CR02_full, respectively, about 60 sequences 

originated from sulphur oxidising symbiotic bacteria hosted by the above-mentioned and other 

species of deep-sea mussels. Even sequences of free-living bacteria with lowest similarity values 

were clearly related to thiotrophy or hydrothermal activity, respectively. Sequences C02_CR01 

from red and H03_CW02 (both Shigella sp.) from white corals were almost identical with a clone 

sequence (DQ170293; 100% in both cases) obtained from a human wound (Frank et al., 

unpubl.). Sequence C08_CR01 (Vibrio sp.) from red L. pertusa was identical with that of another 

bacterium from the tropical scleractinian P. damicornis (AY700625; 100%). A clone of probably 

the same species has also been identified on mucus of the scleractinian coral Pocillopora meandrina 

(Astrocoeniina, Pocilloporidae) (EU249970; 99% to both L. pertusa-derived sequences) (Speck et 

al., unpubl.). 

The Bacteroidetes cluster exclusively consisted of sequences associated with red L. pertusa.  

3 sequences (reference: A03_CR02; Flavobacteriaceae) were closely related to sequence DQ070805 

(98%) acquired from basalt glass of the East Pacific Rise (Di Meo-Savoie et al., unpubl.). 2 other 

sequences of Flavobacteriaceae (reference: D01_CR02) were identical to sequence AY534034 

(100%) obtained from Mediterranean sediments rich in petroleum hydrocarbons and n-alkanes 
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(Polymenakou et al. 2005). 2 sequences (reference: E03_CR02; Bacteroidetes) were remotely related 

to a clone sequence (AY672513; 91%) associated with distinct mineralogical layers of a white 

smoker spire from a deep-sea hydrothermal vent site (Kormas et al. 2006). Sequence C07_CR01 

(Chryseobacterium sp.) was phylogenetically related to sequence DQ188008 obtained from the 

shallow-water scleractinian Porites sp. (Fungiina, Poritidae) from the Arabian Sea (Kapley et al. 

2007). There was no overlap between C07_CR01 and DQ188008, but DQ188008 was 96% 

similar to Chryseobacterium hispanicum AM159183, which in turn showed 100% similarity to 

C07_CR01. 

The Firmicutes cluster comprised mostly sequences from white L. pertusa that were closely 

related to bacteria form other corals: D12_CW02 (Staphylococcus sp.) affiliated with a sequence 

from P. damicornis (AY700659; no overlap, 99% to Staphylococcus caprae AB009935), and  

2 sequences (reference: F11_CR01, Clostridiaceae) were highly similar to an isolate from an 

enriched anaerobic microbial community (AB059480; 100%) (Ueno et al. 2001). 

A cluster of 9 sequences (reference: D11_CW02_full, Mycoplasmataceae) were only distantly related 

to the next cultivated relative Mycoplasma sphenisci (AY756171; 89%) (Frasca et al. 2005). They 

formed a separate cluster with bacteria associated with Isididae (DQ395509; 91%) and the 

Caribbean coral Muricea elongata (Octocorallia, Gorgonacea, Plexauridae) (DQ917898; 90%) 

(Ranzer et al., unpublished), which is marked by a shaded box in Fig. 11 b. An additional 

maximum likelihood tree (Fig. 12) was constructed with closest cultivated and uncultivated rela-

tives of L. pertusa-hosted Mycoplasmataceae to determine the exact position of this coral-related 

sub-cluster. The model of nucleotide substitution was again GTR+I+G. Several sequences of the 

Mycoplasma pneumoniae group, Spiroplasma group, and “Candidatus Hepatoplasma crinochetorum” 

(Wang et al. 2004) were used as outgroup. (Note that taxonomy is not always congruent with 

phylogeny in Mycoplasmataceae). The bootstrap proportion of 55% (marked with an asterisk in Fig. 

12) for the overall group of coral-related Mycoplasmataceae (shaded box in Fig. 12) was deteriorated 

as compared to 100% in the complete phylogeny (Fig. 11 b). This was most likely due to the 

inclusion of partial sequences into the calculations (dotted branches in Fig. 12), which are known 

to impair bootstrap analysis (cf. Gutiérrez et al. 2002). Yet, these sequences had to be considered 

because they obviously constituted the next relatives to the coral-inhabiting Mycoplasmataceae. 

Repeated bootstrap analysis without these partial sequences (not shown) resulted in high 

bootstrap values near 100% for the coral-related sequence cluster. Other sequences of cultivated 
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Mycoplasma species appeared to be slightly closer to D11_CW02_full than that of M. sphenisci 

(AY756171), but the latter still featured highest similarity to the L. pertusa-derived sequence 

(89%). 

clone ME154, Muricea elongata, DQ917898

clone ctg_GCOCA66, Bamboo Coral, DQ395509

 D11_CW02_full, white Lophelia pertusa, AM911412 

100

clone FS312_454_1000bp_0993B, marine hydrothermal vent fluids, DQ910085

clone A9, abalone gut, AY720906

55*

clone TLStrainConBH10, rainwater from Trout Lake lakeshore, EU136885

87

Mycoplasma iguanae strain 2327(T), AY714305

Mycoplasma lagogenitalium strain 12MS(T), AF412983

Mycoplasma hyorhinis strain BTS7(T), AF258792

78

Mycoplasma columborale strain MMP4(T), AF412975

Mycoplasma sphenisci strain UCMJ, AY756171

100

100

87

52

Mycoplasma faucium strain DC333(T), AF125590

Mycoplasma gypis strain B1/T1(T), AF125589

91

83

Mycoplasma genitalium strain G37, U39694

Ureaplasma gallorale strain ATCC 43346, U62937

"Candidatus Hepatoplasma crinochetum" clone 48, AY500249

100

Spiroplasma chinense strain ATCC 43960(T), AY189126

Spiroplasma lampyridicola strain ATCC 43206(T), AY189134

75

100

100

83

Staphylococcus caprae, AB009935

0.10

Mycoplasma hominis group

Mycoplasma pneumoniae group

Spiroplasma group

 

Fig. 12: Maximum likelihood tree of L. pertusa-inhabiting Mycoplasmataceae with sequences of cultivated and 

uncultivated relatives within the Mycoplasma hominis group. The coral-related sequences are marked 

by a shaded box. For each sequence its name, source (if clone), and EMBL accession number are 

given. A ‘(T)’ behind the strain designation denotes a type strain. Bootstrap proportions ≥50% 

from 100 re-samples are shown next to the clusters they support. The low bootstrap proportion 

of 55% for the coral-related cluster (marked with an asterisk) is most likely due to incorporation 

of partial sequences (≤1012 nt, dotted branches). The sequence of Staphylococcus caprae (AB009935) 

was used to root the tree. The scale bar (bottom left) denotes 0.10 nucleotide substitutions per 

alignment position. 

Cyanobacteria were found in both white and red L. pertusa (references B10_CW03 and 

G05_CR01, respectively) and belonged to the genus Synechococcus. Bacteria of the same genus are 

hosted by the tropical reef coral P. damicornis (AY700638; 98% to both references). 
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Candidate division TM7 had 2 representatives from white L. pertusa (reference: F05_CW03) 

that were 98% similar to the partial 16S rDNA sequence X84546 obtained from activated sludge 

(Bond et al. 1995). 

The Actinobacteria cluster comprised sequences from both white and red L. pertusa. 5 sequences 

(reference: D07_CR02_full; unclassified Actinobacteria) were closely related to DQ070822 (98%) 

acquired from basalt glass of Cobb Seamount at the Juan de Fuca Ridge (Di Meo-Savoie et al., 

unpubl.). Sequence G01_CR02 (unclassified Actinobacteria) affiliated with a sequence from Isidi-

dae (DQ395502; 97%). A large sub-cluster consisting of 9 sequences from red L. pertusa 

(reference: A02_CR02_full) and 32 sequences from white L. pertusa (reference: H04_CW03_full; 

Propionibacterium acnes) were identical with sequence AJ309523 (100%) obtained from the brine-

seawater interface of Kebrit Deep in the Red Sea (Eder et al. 2001). 

In the Verrucomicrobia a large proportion of sequences affiliated with sequences from Isididae 

(accession numbers DQ3955xx): 18 sequences (reference: F07_CR01; Rubritalea sp.) were identi-

cal with DQ395537 (100%); a large sister cluster of 13 sequences from red and 4 sequences from 

white L. pertusa (references: A01_CR02 and C04_CW03) belonged to the same genus Rubritalea 

(92% similarity to DQ395537); 2 sequences (reference: E07_CW02, Verrucomicrobiales) were 

identical with DQ395513 (100%). Another sub-cluster consisted of 13 sequences from red 

L. pertusa (reference: E04_CR02) and 4 sequences from white L. pertusa (reference: A05_CW03) 

(both Rubritalea sp.) that showed high similarity to sequence AB099995 (98% and 97%, 

respectively) of an uncultured bacterium from inactive deep-sea hydrothermal vent chimneys 

(Suzuki et al. 2004). 

The Planctomycetes cluster comprised coral-associated sequences of both white and red 

L. pertusa, too. 2 sequences of Planctomycetaceae from red corals (reference: C10_CR01) were 

almost identical to sequence AY534070 (99%) acquired from petroleum- and n-alkane-rich 

sediment in the Eastern Mediterranean Sea (Polymenakou et al. 2005). 3 other sequences from 

red corals (reference: F05_CR02; Planctomycetaceae) were closely related to sequence DQ070834 

(97%) from basalt glass of Cobb Seamount at the Juan de Fuca Ridge (Di Meo-Savoie et al., 

unpubl.). 4 sequences from white L. pertusa (reference: H05_CW02; Planctomyces sp.) showed 

closest relatedness to sequence AY354172 (98%) of an uncultured bacterium from sediment of 

Rainbow vent field on the Mid-Atlantic Ridge (Nercessian et al. 2005). 
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Bacteria from Mediterranean L. pertusa (accession numbers AJ8769xx) (Yakimov et al. 2006) 

did not show direct affiliation with Norwegian L. pertusa-hosted bacteria. Because the authors 

sequenced their bacterial clones partially from the 3’ end, while 5’ partial sequencing was used for 

most clones in the present study, straight comparison was impeded by missing sequence overlap. 

Still, Mediterranean and Norwegian sequences did not even have common relatives from the 

online database in most cases except for two instances: AJ876951 and 2 sequences from red 

L. pertusa (reference: C05_CR02; γ-Proteobacteria) both clustered with a clone obtained from deep-

sea sediment (AJ567535; 97% and 90%, respectively), and sequences AJ876956 and F09_CR01 

(γ-Proteobacteria) from red L. pertusa showed 96% and 99% similarity to an uncultured soil bacte-

rium (AY850300). However, F09_CR01 was the one sequence closely related to a sequence from 

Trondheimsfjord sediment (C08_S02A; 99%) and the corresponding bacterium was thus not 

exclusively confined to L. pertusa in its Norwegian habitat. AJ876953 from Mediterranean 

L. pertusa was in a sister clade of E07_CR01 (α-Proteobacteria, Rhodospirillaceae) associated with a 

sequence originating form O. patagonica (see above). A very conspicuous feature of several 

sequences from Mediterranean L. pertusa was their affiliation with clones from hydrocarbon seep 

or hydrothermal sediments. 

The clusters Gemmatimonadetes, Acidobacteria, and Nitrospira exclusively consisted of 

sequences from Mediterranean L. pertusa. Sequence AJ876950 had been classified as member of 

Actinobacteria in the original study and was re-classified as member of Gemmatimonadetes in this 

study. Within the Nitrospira cluster sequence AJ876959 (Nitrospira sp.) showed moderate related-

ness to another sequence from an isidid coral (DQ395470; 95%). The above-mentioned affili-

ation with deep-sea and seep-related bacteria was most distinct within the Gemmatimonadetes and 

Acidobacteria. 

3.2.2 Comparison of T-RFLP Data and 16S rDNA Sequences 

From the sequences of 16S rDNA clones the lengths of their theoretical terminal restriction frag-

ments (T-RFs) can be calculated assuming that the molecules had been digested by a respective 

restriction enzyme. Such ‘in-silico’ digestion enables comparison between 16S rDNA sequences 

of a certain sample type and the actual T-RF profiles of that sample type. In this way it can be 

determined in retrospect which bacterial phylotype gave rise to a distinct peak in the T-RFLP 

electropherograms. This comparison can also be used to consider the resolution of T-RFLP, i.e., 
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whether certain peaks comprise more than one bacterial group. Taking the abundances of clones 

and the area (or height) of electropherogram peaks into account one can also assess the degree of 

congruence between the two methods: If both methods ideally depicted the bacterial communi-

ties in the same manner, it could be expected that every clone matches a peak (and vice versa) 

and abundant clones coincide with dominant peaks. Since most clones of this study were 

sequenced partially from the 5’ end, only 5’ clone T-RFs were compared to T-RFLP electro-

pherograms based on the forward primer (27f). 

T-RFs of clone sequences as determined by TRF-CUT were grouped into three abundance cate-

gories: T-RF positions occupied by (1) one clone (‘rare’), (2) two to five clones (‘intermediate fre-

quency’), and (3) more than five clones (‘frequent’). In most cases clone T-RF lengths and fre-

quencies correlated with peak positions and intensities in the electropherograms (Fig. 4), although 

with a slight displacement between peak positions and clone T-RF lengths. Very often clones of 

two or more different phyla or classes shared the same T-RF length. For example, with the 

enzyme / primer combination Alu I / 27f, T-RF length 74 nt comprised sequences of Bacteroide-

tes, Firmicutes, Planctomycetes, α-Proteobacteria, and γ-Proteobacteria. Furthermore, several OTUs had 

T-RFs longer than 500 nt and thus showed no corresponding peak in the respective electro-

pherogram (e.g., in Verrucomicrobia and Bacteroidetes). 
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3.3 Fluorescence In-Situ Hybridisation 

3.3.1 Bacteria Associated with Coral Ectoderm 

For testing of the CARD-FISH method freshly harvested polyps of aquarium-reared L. pertusa 

were hybridised with a mixture of probes EUB338 I-III. This probe combination targets the 

majority of all known bacteria (Daims et al. 1999). Bright fluorescence signals were obtained 

from remains of mucus attached to the thin-sectioned coral tissue (Fig. 13) indicating that the 

coral mucus was densely inhabited by microbes. 

Thin sections of coral samples from the Trondheimsfjord hybridised with probes EUB338 I-III 

did not feature mucus-colonising bacteria like those in aquarium-reared L. pertusa, obviously 

because the mucus had been washed off the polyps. Instead, fluorescence signals in the periphe-

ral ectoderm of the tentacles were observed (Fig. 14 a) that were not as abundant and dense as 

compared to the signals in Fig. 13. Brightest fluorescence was caused by aggregates of bacterial 

cells situated on the distal ends of nematocysts of the spirocyst type (cf. Rifkin 1991) arranged in 

nematocyst batteries (Fig. 14 c, e). The fluorescing bacterial cells had a flask-like shape (about 

1.6 µm long and 0.5 µm wide) with a tip at one end (Fig. 14 f). DAPI counterstaining confirmed 

that the bacterial cells highlighted by CARD-FISH contained DNA and were thus no artefacts 

(Fig. 14 b, d). Documentation of DAPI signals was hampered though by coral tissue autofluores-

cence and the much brighter signals of the coral cell nuclei underneath or in direct vicinity of the 

prokaryote aggregates. Beside bacterial cells some other structures were marked by the fluores-

cent dyes, in particular stylets of nematocysts belonging to the stenotele type (Fig. 14 c, e) and 

other nematocyst parts. However, from their size, shape, and lack of a DAPI signal, these struc-

tures could be clearly distinguished from bacterial cells. No unspecific marking of bacterial cells 

was observed after hybridisation with control probe NON338 (not shown). The flask-like 

bacteria described above prevailed on the nematocyst batteries. Sporadic cells of the same mor-

photype were only observed on the coral coenosarc (not shown) but not on the endoderm. 
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Fig. 13: Epifluorescence micrographs of bacteria in the mucus of an aquarium-reared L. pertusa polyp. The 

image is an overlay of DAPI signals (blue) targeting DNA of coral cell nuclei and bacteria, and 

hybridisation signals of probes EUB338 I-III with Cy3 TSA (red). Arrows mark mucus secretions 

with considerably large amounts of bacteria. Scale bar, 100 µm. 

To identify the prokaryotes on a sub-domain level probes targeting all abundant L. pertusa-associ-

ated bacterial groups in the sequence library (Table 1) were employed. In all cases hybridisation 

under stringent conditions failed to mark the majority of ectoderm-associated bacteria. Cells 

hybridised with α- and γ-Proteobacteria-specific probes were observed only few and far between on 

the ectoderm (not shown). Additional application of achromopeptidase to support cell wall per-

meabilisation had no effect. Subsequently, hybridisation was repeated with only 20% formamide 

in the hybridisation buffer allowing the probes also to bind to not strictly complementary target 

sites. This procedure proved successful in case of the Firmicutes-specific probe LGC0355. Compa-

rison with the sequence library revealed two clusters with a single-nucleotide deviation from the 

probe’s target sequence (5’-CAGCAGTAGGGAATCTTCC-3’): the Mycoplasmataceae cluster with 

reference sequence D11_CW02_full (target site, 5’-CAGCAGTAGGGAATATTCC-3’) and the 
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TM7 cluster with reference sequence F05_CW03 (target site, 5’-CAGCAGTAGGGAATTT-

TCC-3’). No mismatches were observed for the other (16S rRNA-targeting) FISH probes with 

their respective binding sites in sequences originating from Norwegian L. pertusa. 
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Fig. 14: Epifluorescence micrographs of bacteria on a thin section in the tentacle region of a L. pertusa 

polyp (red coral colour variety, station 3). a) Overview of a cross-sectioned tentacle. The image is 

an overlay of coral tissue autofluorescence (green), DAPI signals of coral cell nuclei (blue), and 

hybridisation signals of probes EUB338 I-III with Cy3 TSA (red). b-e) Micrograph details 1 (b, c) 

and 2 (d, e) showing DAPI (b, d) and Cy3 (c, e) signals of bacterial aggregates on the nematocyst 

batteries of the tentacle ectoderm. f) Single flask-shaped bacterial cells. Annotations: *, frame of 

micrograph detail 1; **, frame of micrograph detail 2; nb, nematocyst battery; nu, coral cell nuclei; 

s, nematocyst stylet; arrows in b-e), corresponding DAPI and Cy3 signals of selected bacterial 

aggregates; arrow in f), tip at one end of a bacterial cell. Scale bars, 100 µm (a), 20 µm (b-e), 5 µm 

(f). 

For the larger Mycoplasmataceae cluster a modified probe LGC0355b (Table 1) was designed that 

compensated the sequence deviation in the target site of the original probe LGC0355. If the bac-

teria on the coral ectoderm had the same target site as the Mycoplasmataceae sequences in the 

library, binding efficiency of the modified probe would be higher than that of the original probe. 

Accordingly, there should be a stringency condition (formamide concentration) in hybridisation 

that allowed for specific binding of probe LGC0355b but not of probe LGC0355. In addition, 

probe MYC850 (Table 1) was designed following the recommendations of Hugenholtz et al. 

(2002). While both probes LGC0355b and MYC850 were designed to hybridise Mycoplasmataceae 

sequences, the target site of probe MYC850 was highly specific only to the coral-borne Mycoplas-

mataceae and thus suitable for direct identification of corresponding microbes. 
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Fig. 15: Epifluorescence micrographs of bacteria on thin sections in the tentacle region of L. pertusa 

polyps. The images are overlays of DAPI (blue) and Cy3 signals (red). a, b) Red coral colour 

variety, station 1. c, d) White coral colour variety, station 3. Thin sections were hybridised with 

probes LGC0355 (a, c) and LGC0355b (c, d), respectively, under the same conditions (35% 

formamide in hybridisation buffer). Arrows mark DAPI and Cy3 signals of selected bacterial cells. 

Scale bars, 20 µm (a-d). 

Hybridisation with 35% formamide gave a negative result for the original probe LGC0355 (Fig. 

15 a, c) but yielded conspicuous specific signals for the modified probe LGC0355b (Fig. 15 c, d). 

Test hybridisations of probe MYC850 with 20% formamide were negative. Results of the specifi-

city cross check for probes LGC0355 and LGC0355b are shown in Fig. 16. For hybridisation of 

Bacillus subtilis (with the binding site of probe LGC0355) the main fluorescence peak of the newly 

designed probe LGC0355b is less pronounced and shifted towards lower brightness values as 

compared to the original probe LGC0355. In addition, probe LGC0355b exhibits more pixels 

with low brightness values than probe LGC0355. These results indicate a lower binding efficiency 

of probe LGC0355b with B. subtilis as compared to that of probe LGC0355. 
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Fig. 16: Specificity cross check for probes LGC0355 and LGC0355b. Histograms of signal brightness 

(expressed as pixel brightness values of digital images) for hybridisation of the firmicute Bacillus 

subtilis with probes LGC0355 and LGC0355b under the same conditions (35% formamide in 

hybridisation buffer). Arrows denote the main fluorescence signals of both probes. 

An additional assay was conducted to test whether cell wall permeabilisation was crucial for 

hybridisation with HRP-coupled oligonucleotide probes (Fig. 17). Permeabilisation by lysozyme 

was necessary for both gram-negative (Fig. 17 a-d) and gram-positive bacteria (Fig. 17 e, f) having 

thin and thick peptidoglycan cell walls, respectively. For the bacteria on L. pertusa tentacles, how-

ever, omission of lysozyme treatment resulted in no apparent loss in abundance and brightness of 

hybridisation signals (Fig. 17 g-k). 

Double hybridisation with probes LGC0355b and EUB338 I demonstrated that virtually all 

detectable bacteria on L. pertusa thin sections could also be hybridised with the Mycoplasmataceae-

specific probe (Fig. 18 a, c, e). Lack of signals from control probe NON338 confirmed specificity 

of the double hybridisation (Fig. 18 b, d, f). No evident discrepancies in bacterial abundances 

were observed between coral samples from different stations or of different colour. 
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Fig. 17: Epifluorescence micrographs of bacteria hybridised with probe EUB338 I. a-f) Overlay images of 

DAPI (blue) and Cy3 signals (red). a, b) α-Proteobacteria, environmental isolate. c, d) γ-Proteobacteria, 

Escherichia coli. e, f) Firmicutes, Bacillus subtilis. g-k) Thin sections in the tentacle region of L. pertusa 

polyps. g, h) Red coral colour variety, station 1. j, k) Red coral colour variety, station 2. Bacteria 

had been permeabilised with lysozyme (a, c, e, g, j) or not permeabilised (b, d, f, h, k) prior to 

hybridisation. Scale bars, 20 µm (a-k). 
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Fig. 18: Epifluorescence micrographs of bacteria on thin sections in the tentacle region of L. pertusa 

polyps. a, b) Red coral colour variety, station 1. c, d) Red coral colour variety, station 2. e, f) White 

coral colour variety, station 3. The images are overlays of Cy3 (red) and fluorescein signals 

(green). Double hybridisation with probes LGC0355b (+ Cy3) and EUB338 I (+ fluorescein) 

resulted in a yellowish overlay signal (a, c, e). Double hybridisation with probes LGC0355b 

(+ Cy3) and NON338 (+ fluorescein) resulted in a red overlay signal since no hybridisation signal 

was obtained with control probe NON338 (b, d, f). Scale bars, 20 µm (a-f). 
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3.3.2 Bacteria Associated with Coral Endoderm 

Corals from all stations and both colour varieties harboured filamentous structures in their 

endoderm (Fig. 19). These structures were thin (0.6 µm) twisted chains about 20 µm long con-

sisting of short rod-shaped cells about 1 µm in length (Fig. 19 a, b). Filaments were scattered 

within the septal tissue of the gastral cavity. Despite the lack of conspicuous DAPI signals the 

structures exhibited bright fluorescence upon hybridisation with probe EUB338 I (Fig. 19 c, d). 

Negative results with control probe NON338 on parallel thin sections (not shown) confirmed 

the specificity of this hybridisation. 

Identification on the sub-domain level was approached as described above (→  3.3.1). As with the 

tentacle-associated microbes, only hybridisation with the Firmicutes-specific probe LGC0355 

under low-stringency conditions (20% formamide in the hybridisation buffer) resulted in positive 

FISH signals (Fig. 19 a, b). The filaments did not hybridise with probe LGC0355b under 

stringent conditions (not shown). Omitting the cell wall permeabilisation step in the CARD-

FISH protocol resulted in a visible weakening, though not complete loss of the hybridisation 

signal (Fig. 19 d) as compared to permeabilised cells (Fig. 19 a-c). As in the case of ectoderm-

associated bacteria, abundances of filamental structures did not diverge conspicuously between 

coral samples from different stations or of different colour. 
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Fig. 19: Epifluorescence micrographs of bacteria on thin sections of the gastral cavity of L. pertusa polyps. 

a, b) White coral colour variety, station 3. b) Micrograph detail of (a) showing a filament that 

consists of nine cells. c, d) Red coral colour variety, station 1. Thin sections were hybridised with 

probe LGC0355 under low stringency conditions (20% formamide in hybridisation buffer) (a, b) 

and probe EUB338 I (c, d), respectively, with Cy3 TSA. Bacteria had been permeabilised with 

Lysozyme (a-c) or not permeabilised (d) prior to hybridisation. Annotations: *, frame of micro-

graph detail (b). Arrows in b) mark the gaps between a single cell and adjacent cells in the fila-

ment. Scale bars, 20 µm (a, c, d) and 5 µm (b). 
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4.1 

4 Discussion 

Differences in Bacterial Assemblages of L. pertusa 

4.1.1 Comparison of Coral and Environmental Samples 

In this study first evidence of special bacterial associations in Norwegian L. pertusa from the 

Trondheimsfjord is presented. Bacterial associations clearly differed from microbial communities 

of the environment, which was in accordance with results of other studies (Großkurth 2007; 

Schöttner et al. 2008). 

T-RFLP fingerprinting was used to compare microbial communities in L. pertusa to those of the 

coral’s environment. The method was demonstrated to be robust in identifying similarities and 

differences in the composition of complex microbial communities (Dunbar et al. 2000). The 

main advantages of T-RFLP over the commonly used Denaturing Gradient Gel Electrophoresis 

(DGGE) lie in higher resolution (Moeseneder et al. 1999) and direct availability of electrophero-

grams in digital form providing high precision and easy downstream data processing. Average 

peak numbers found in the respective sample types mirrored the complexity (richness) of their 

microbial assemblages: While the sediment is commonly expected to house the most species-rich 

microflora, seawater bacteria were found to be less diverse than the sediment but richer than the 

coral samples, which present a rather special environment for bacteria. This was corroborated by 

non-parametric Kruskal-Wallis-ANOVA. The microflora hosted by red L. pertusa appeared to be 

richer than that of white L. pertusa, but this difference was insignificant for the given dataset. 

MDS-aided comparison of T-RFLP profiles demonstrated clear differences between coral, water, 

and sediment samples (Fig. 5). Since stress values of all ordinations were mostly below 0.10 and 

never exceeded 0.15, results form dimensional downscaling could be safely used to infer relations 

between the samples (cf. Clarke 1993). Differences between sample types were again substanti-

ated by both parametric (MANOVA and Duncan’s test) and non-parametric (Kruskal-Wallis-

ANOVA and Mann-Whitney U test) statistics. Separation of the three sample types was no mere 

bias caused by different concentrations of the respective PCR products, or only due to water- or 

sediment-specific T-RFs. It could also be ascribed to a great number of peaks occurring exclu-

sively in the corals (Table 3) denoting a special bacterial community on L. pertusa. Consequently, 
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MDS ordination based only on binary (presence – absence) peak data (Fig. 5 b) led to the same 

conclusion regarding sample clustering as ordination based on normalised peak areas (Fig. 5 a). 

Two more remote water and sediment sample points were observed in the MDS plot based on 

binary peak data (Fig. 5 b). This scattering mirrors a certain lack of reproducibility in DNA 

extraction with the UltraClean™ Soil DNA Kit that was only recently documented by Carrigg et 

al. (2007). The kit extracted bacterial DNA from different samples with varying efficiency (i.e., 

the amount of DNA per unit of sample material). This in turn affected amplification of 16S 

rRNA genes from different bacterial groups in subsequent PCR. DNA extraction efficiency was 

apparently above average with the water and sediment sample in question resulting in more PCR 

products. This was also seen in the analysis of binary peak data because all peaks were weighted 

equally regardless of their mostly very low signal intensities. However, the aberrant data points 

showed greater distance to the coral data than did the other water and sediment samples. This 

indicated that their additional peaks even enhanced the differences to coral-hosted bacterial 

communities. Thus, performance issues of the extraction kit did not affect the study in an 

unacceptable way. In addition, DNA extracts had been pooled prior to phylogenetic analyses: 

Mixing of parallel extracts of the same sample type levelled differences in their DNA composi-

tion. As a result, cloning and sequencing characterised the “average” bacterial community to be 

covered by DNA extraction from a respective sample type. 

4.1.2 Differences between Coral Samples 

Associations between L. pertusa and bacteria varied within the Trondheimsfjord: For both rare 

and consistent T-RF data post hoc tests revealed differences between stations 1 (‘Tautra’) and 2 

(‘Stokkbergneset’) 32.5 km apart from each other. For rare T-RFs (i.e., organisms of more vari-

able occurrence within L. pertusa) differences also manifested between stations 2 and 3 (‘Røberg’) 

that lay only 3.9 km apart but on opposite sides of the bottleneck connecting the seaward fjord 

basin with the open sea (Fig. 3). In contrast, variations between stations 1 and 3 remained insigni-

ficant in all analyses, though their distance of 28.7 km was almost as large as between stations 1 

and 2. Accordingly, divergence in bacterial community composition was not related to distances 

between sampling sites. Results from binary T-RF data suggested that these differences were not 

only caused by shifts in relative bacterial abundances: Though there was no indication that 
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presence of dominant groups varied between stations, changes in presence of rare species or 

groups were significant. 

Also Großkurth (2007) observed spatial variation of L. pertusa-associated bacterial communities 

from adjacent locations by analysis of DGGE patterns and suggested influence of the local envi-

ronment as an explanation for these inconstancies. Salinity measurements of the present study 

(→  2.1.2; 30.1-31.9 PSU) deviated considerably from values (34-34.7 PSU) reported by other 

authors for comparable locations in the Trondheimsfjord (Jacobson 1983; Børsheim et al. 1999). 

Since the possibility of exceptional environmental conditions during the sampling time appears 

rather remote, a systematic measurement error was assumed to be responsible for the aberrant 

salinity values of the present study. Nevertheless, relative differences in salinity could still be con-

sidered in a meaningful way. Relative differences in the temperature and salinity revealed the 

presence of slightly warmer and more brackish sub-surface water at station 1, while no conspicu-

ous divergences of water masses were observed between stations 2 and 3. However, this does not 

explain the differences between bacterial associations of coral samples from the three stations 

(see above). Other physicochemical environmental factors might vary in the sampling region 

(e.g., current velocity, oxygen saturation, light, non-conservative ions, trace gases, dissolved and 

particulate organic matter). In addition, site-specific macrofaunal associations or differences in 

the developmental stage of the corals could account for the observed variations (Großkurth 

2007). 

In contrast, the finding that the two colour varieties of L. pertusa diverged in their bacterial com-

position (Fig. 7 b, Fig. 8) was unexpected and constituted one of the most intriguing results of 

this study. Although not as striking as the discrepancies between coral and environmental 

samples this divergence was statistically significant for relative abundances of consistent peaks, 

which comprise the most dominant T-RFs (Fig. 6). Contrary to the site-dependent variations, 

these colour-dependent differences in microbial communities are not explicable ad hoc. This was 

the reason to lay focus on the latter aspect. Details and implications of this finding are discussed 

in the following chapters. 
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4.1.3 Comparison of T-RFLP Data and 16S rDNA Sequences 

T-RFLP data were based on PCR products from single-sample DNA extractions, whereas 16S 

rDNA sequences were obtained from amplified pooled DNA. Also, PCR protocols differed 

between the two methods. Nevertheless, there were conspicuous congruities between peak posi-

tions and intensities of T-RFLP data on the one hand, and T-RF lengths and frequencies of 

clones on the other (Fig. 4). In particular, most dominant electropherogram peaks were mirrored 

by frequent clone T-RFs. The slight displacement between peak positions and clone T-RF 

lengths can be explained by a systematic error introduced by the GeneScan® software during size 

calling. Given the necessity to limit the number of analysed clones one must not expect to find a 

matching clone T-RF for every electropherogram peak. Peaks without corresponding clone 

T-RFs might also constitute artefacts, so-called pseudo-T-RFs. These are caused either by intra-

strand reannealing of PCR products, which is strongly dependent on the number of PCR cycles 

(Egert and Friedrich 2003), or by incomplete restriction enzyme digestion (Osborn et al. 2000). 

Pseudo-T-RFs may lead to an overestimation of microbial diversity. However, since all samples 

had been treated in the same way (i.e., equal number of PCR cycles and digestion time), they were 

also equally prone to this kind of error, so that statistical analysis was not expected to be biased. 

Fingerprints generated by T-RFLP reproducibly reflect the composition of the dominant PCR-

targeted members of the community, while rare members are likely to be overlooked due to 

detection threshold effects (Lukow et al. 2000; Osborn et al. 2000). Factoring peak intensity 

(T-RF abundance) into the analysis must be treated with caution keeping in mind ubiquitous 

biases in PCR-aided analyses (von Wintzingerode et al. 1997). However, final PCR product con-

centrations are generally biased toward a 1:1 ratio regardless of the initial template concentrations 

(Suzuki and Giovannoni 1996). This means that infrequent ribotypes tend to become more abun-

dant with increasing cycle number, while frequent ribotypes remain frequent throughout the 

PCR. It is thus still safe to assume that dominating phylotypes depicted by both PCR-based 

methods were also most abundant in situ. This is of importance when it comes to considering 

bacterial richness: Due to the great variety of bacterial ribotypes (OTUs) in red L. pertusa, to reach 

a theoretical coverage as high as that of white L. pertusa (Fig. 9, Table 4) more than 770 clones 

would have had to be analysed in red L. pertusa according to Thiel, Neulinger et al. (2007b). Since 

this would have been far too cost-intensive and time-consuming, infrequent ribotypes remained 
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4.2 

elusive to detailed phylogenetic analysis. For these reasons, conclusions on the ecology of 

L. pertusa-associated microbes (chapter  4.2) were chiefly limited to abundant phylotypes. 

Comparison of the two methods also solves seemingly contradictory results: (1) While over one 

third (37%) of the T-RFs occurred both in corals and environmental samples (water and / or 

sediment; Table 3), the sequence library shows virtually no common overlap of bacterial con-

sortia for corals and environmental samples except for three proteobacterial OTUs. (2) T-RFLP 

only detected differences in relative bacterial abundances between coral colour varieties, whereas 

phylogenetic analysis revealed far more striking disparities between bacterial communities of both 

coral phenotypes. (3) Phylogenetic analysis supported predictions of bacterial richness by 

T-RFLP (average peak numbers per sample) with respect to the relations between sediment and 

water, between sediment and corals, and among coral colour varieties. Yet, contrary to T-RFLP 

bacterial richness assigned to red corals by phylogenetic analysis was unequivocally higher than 

that of white corals, even higher than bacterial richness of the surrounding seawater (Fig. 9, Fig. 

10, Table 4). The solution for all three issues lies in the fact that different bacterial species, even if 

they were of different phyla, could produce the same T-RFs with a given restriction enzyme 

digestion, which reduced resolution of T-RFLP. This was especially the case with dominant 

peaks. As a consequence thereof, fingerprinting did not resolve the minor differences between 

corals and environment or differences among coral colour varieties as accurately as the phyloge-

netic approach. Interestingly, data of Schöttner et al (2008) even suggested highest bacterial diver-

sity to exist in L. pertusa, not in the sediment. Whether this is a matter of methodology, or inher-

ent to different properties of sediment or corals sampled in both studies, remains speculative for 

the time being. 

Dominant Bacterial Groups of L. pertusa and their Ecological 

Potential 

4.2.1 Phylogenetic and Ecological Inference 

Molecular phylogenetic inference involves comparison of nucleotide sequences – in this case, of 

the 16S rDNA – according to mathematical algorithms. All such comparisons base on an align-

ment that defines homologous sequence positions. There are regions of the 16S rDNA with base 
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counts strongly varying between taxa, wherein assignment of homologous sequence positions is 

extremely ambiguous. It is therefore impossible to align sequences from diverse bacterial groups 

(as present in this study) consistently over their whole length. Errors likely to be made here 

would severely affect downstream analyses (cf. Swofford et al. 1996). The positional mask 

employed in ARB (→  2.4) ensured dependable phylogenetic analyses because it admitted only 

unambiguously alignable sequence positions into phylogenetic analyses. A similar strategy was 

also used by other authors (e.g., Lanoil et al. 2001). The resulting phylogenies (Fig. 11, Fig. 12) 

were consistent with high-level bacterial taxonomy and reliably assorted sequences within their 

respective clusters as confirmed by bootstrapping. 

Naturally, the ecology of bacteria is not directly evident from their molecular phylogeny, since 

16S rDNA, as a structural gene, does not contain information on the physiological capabilities of 

the respective organisms. However, evidence of their ecological potential can be deduced from 

comparison with closely related organisms, whose biochemistry is well known, or by evaluation 

of common features innate to the whole phylogenetic group they affiliate with. 

Bacteria of L. pertusa from the Trondheimsfjord mostly affiliated with organisms or groups 

featuring the following aspects: (1) Cycling of sulphur compounds, (2) methylotrophy, or  

(3) symbiotic or parasitic relationships with other organisms, especially other corals. It therefore 

appeared reasonable to examine the potential ecological role of L. pertusa-related microbial bio-

diversity from these angles. In several cases the mentioned aspects were interconnected, as 

shown in the following. 

4.2.2 Sulphur Cycling 

Sequences of coral-hosted bacteria with potential thiotrophic abilities (i.e., hydrogen sulphide 

(H2S) /thiosulphate (S2O3
2-) oxidation) were confined to the phylum Proteobacteria. The class 

α-Proteobacteria was dominated by sequences of the family Rhodobacteraceae from white L. pertusa 

(over one third of all sequences obtained from white corals), which plays an important role in the 

marine sulphur cycle (Gonzalez et al. 1999). Like purple sulphur bacteria, this family of non-obli-

gately aerobic purple bacteria often features red pigments. Many (but not all) representatives 

perform aerobic anoxygenic phototrophy, but mostly with organic carbon sources (Buchan et al. 

2005). Despite their trivial name “non-sulphur” purple bacteria, several groups of Rhodobacteraceae 
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are also able to transform inorganic forms of sulphur, including elemental sulphur, sulphide, 

sulphite, and thiosulphate. These pathways facilitate sulphur-based lithoheterotrophy (Buchan et al. 

2005), which represents a special type of mixotrophy. It makes their metabolism more flexible as 

compared to that of obligately chemotrophic species (Sorokin et al. 2005): By drawing energy 

from sulphur oxidation the bacteria can exploit even small amounts of organic material as carbon 

sources. Reference strains DIII4* and EI1* showed greatly increased S2O3
2- oxidation after 

pyruvate supplementation (Teske et al. 2000). This indicates that these organisms are lithohetero-

trophic as well. Rhodobacteraceae can use a variety of organic substances as carbon sources, among 

which are organic and amino acids, sugars, and alcohols (Madigan et al. 2003). Besides, members 

of the clade are able to degrade N-acetyl-D-glucosamine (chitin) (Cottrell et al. 2000). Some 

L. pertusa-affiliated Rhodobacteraceae were related to microorganisms found on whale bones. These 

bacteria profit from H2S that is produced through coupling between decomposition of bone 

lipids and seawater sulphate reduction (Goffredi et al. 2004). Moreover, almost all representatives 

of the α-Proteobacteria (Rhodobacteraceae, Rhodospirillaceae, Methylobacterium, and Afipia) are able or 

likely to exploit dimethylsulphoniopropionate (DMSP), or its derivatives such as dimethyl-

sulphide (DMS), methanesulphonate, and dimethylsulphone as a source of energy (González et 

al. 1999; González et al. 2000; Zubkov et al. 2001; Yoch 2002; Moosvi et al. 2005). This property 

links them to methylotrophy (→  4.2.3). 

Two OTUs within the γ-Proteobacteria comprising 19 sequences exclusively from red L. pertusa 

showed closest relation to endosymbionts of two deep-sea mussels, Calyptogena phaseoliformis and 

Bathymodiolus aff. brevior. These mussels are part of the fauna colonising hydrothermal vents at the 

ocean floor spreading centres, an environment rich in H2S. With their foot tucked in fissures in 

the seafloor they take up H2S from hydrothermal fluid seeping from beneath. Since H2S is toxic 

for the mussels, it is detoxified either by binding to high molecular binding factors in the hemo-

lymph (Calyptogena) (Arp et al. 1984; Powell and Somero 1986) or by transformation into other 

compounds (Bathymodiolus) (Pruski et al. 2002). The transformed reduced sulphur is transported 

to the bacteria in the gills. They oxidise the reduced sulphur species with oxygen from the 

surrounding seawater to obtain energy and electrons for CO2 fixation. These endosymbionts are 

thus lithoautotrophic, more precisely, thioautotrophic organisms as opposed to the lithohetero-

trophic α-Proteobacteria discussed above. Coral-hosted sequences from the present study form an 

unambiguously monophyletic cluster with the group of these thiotrophs. Taking also the results 
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from additional BLAST searches into account, these organisms represented by reference sequen-

ces E12_CR02_full and G02_CR02_full obviously constitute novel thiotrophs associated with 

the red colour variety of L. pertusa. 

Representatives of four other bacterial phyla, Bacteroidetes, Actinobacteria, Verrucomicrobia, and Planc-

tomycetes, once more point to the importance of sulphur metabolism in L. pertusa-associated bacte-

ria: Closest relatives of these groups were found at active and inactive deep-sea hydrothermal 

vent sites (Suzuki et al. 2004; Nercessian et al. 2005), basalt glass from an ocean spreading zone 

(Di Meo-Savoie et al., unpubl.), and in hydrocarbon-rich sediments (Polymenakou et al. 2005). 

Even at sites without active fluid venting, chemolithotrophy can still occur via metal sulphide oxi-

dation, e.g. by Archaea (Edwards et al. 2000); the outer glassy part of submarine erupted basalt 

contains high amounts of reduced sulphur (Moore and Fabbi 1971); and presence of hydrocar-

bons in the sediment always implies the release of H2S through anaerobic methane oxidation: 

CH4 + SO4
2- + 2 H+ → CO2 + H2S + 2 H2O (e.g., Hansen et al. 1998). Admittedly, a direct 

involvement in the cycling of sulphur cannot be assumed for all members of the groups in ques-

tion: A recently described novel member of Flavobacteriaceae (Bacteroidetes), Flaviramulus basaltis, was 

also found at basalt glass, but with a chemoorganotrophic metabolism and no reported utilisation 

of sulphur compounds (Einen and Øvreås 2006). The same holds for the representatives of 

Verrucomicrobia, which belong to the genus Rubritalea (→  4.2.4) from inactive deep-sea hydro-

thermal vent chimneys (Suzuki et al. 2004). These organisms might rather profit from metabolites 

of sulphur-oxidising bacteria. In contrast, Actinobacteria are known to possess highly variable phy-

siological and metabolic properties. Their direct physical association with marine gas hydrates as 

reported by Lanoil et al. (2001) suggests straight participation in sulphur cycling. This is also con-

ceivable for Planctomycetes, as for instance representatives of this phylum isolated from sulphidic 

sediments were shown to reduce elemental sulphur to sulphide under strictly anaerobic con-

ditions (Elshahed et al. 2007). 

4.2.3 Methylotrophy 

Methylotrophs have the capacity to aerobically exploit organic single-carbon (C1) compounds as a 

sole source of carbon and energy. If the C1 compound is methane the organism is termed a 

methanotroph. The presence of apparent thiotrophs in L. pertusa, related to endosymbionts in 
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Bathymodiolus, raises the question whether there could be a bimodal symbiosis in L. pertusa 

combining thiotrophy and methanotrophy, as was observed in other Bathymodiolus species 

(Duperron et al. 2005; Duperron et al. 2006). From both white and red L. pertusa bacterial 

sequences identified as those of Methylobacterium radiotolerans and other members of Methylobacte-

rium were obtained. M. radiotolerans is a facultative methylotroph. Like all members of the genus it 

is aerobic and features pink pigmentation. However, this species does not exploit methane (Kato 

et al. 2005), which rules out a direct link to methanotrophy. Methane utilisation of other mem-

bers of the genus has been suggested (Van Aken et al. 2004), but is still discussed controversially 

(Dedysh et al. 2004). While methanotrophic bacteria are confined to exploiting organic C1 sub-

stances (i.e., carbon compounds without C-C bonds), methane-non-utilising methylotrophs such 

as Methylobacterium can also degrade, for instance, organic acids, ethanol, or sugars (Madigan et al. 

2003) just like “non-sulphur” purple bacteria (→  4.2.2). 

Another organism abundant in both white and red corals was identified as Propionibacterium acnes. 

Though this actinobacterium is predominantly known as a parasite of the human skin, it is found 

in the environment as well (e.g., Salvador Pedro et al. 2001): Propionibacterium was observed in 

methanogenic reactors (Fernández et al. 1999; Tsurumi et al. 2000) and in direct association with 

gas hydrates (Lanoil et al. 2001). Most notably, a sequence identical to those of the present study 

was obtained from the brine-seawater interface of Kebrit Deep (Arab. kebrit, sulphur), a site with 

considerable concentrations of CH4 (22 ml l-1) and H2S (sulphur content 12 to 14 mg l-1). For this 

location archaeal methanogenesis in sedimentary organic matter as well as biotic methane oxida-

tion at the brine-seawater interface were suggested (Eder et al. 2001). These examples demon-

strate a correlation of Propionibacterium with methane- and / or sulphide-rich habitats linking it 

indirectly to thiotrophs (→  4.2.2). A main characteristic of this genus is the production of large 

amounts of organic acids, especially propionic and acetic acid, by fermentation of more complex 

organic substrates such as lactate, carbohydrates, and polyhydroxyl alcohols (Madigan et al. 2003). 

Relatives of the Clostridiaceae obtained from red L. pertusa live strictly anaerobic and occur ubiqui-

tously in nature, particularly in the digestive tract of mammals (Madigan et al. 2003). Like the 

microbes discussed above they degrade high molecular substances such as sugars, amino acids, 

and cellulose to low molecular carbon and sulphur compounds including H2S (Madigan et al. 

2003). Clostridiaceae are also able to degrade chitin (Schwarz 2001). 
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4.2.4 Parallels to Other Symbiotic and Parasitic Associations 

Almost every bacterial phylum detected in L. pertusa from the Trondheimsfjord comprised OTUs 

that were closely related to sequences obtained from other coral species. Relatives of bacteria 

associated with several other scleractinians from different suborders and families were found: 

Pocillopora damicornis (4 OTUs), Porites sp., (1 OTU), Oculina patagonica (1 OTU), and Pocillopora 

meandrina (1 OTU). They are all hermatypic warm-water species. 

By far the most similarities (9 OTUs from Norwegian and 1 OTU from Mediterranean L. pertusa) 

were however observed with bacterial lineages from deep-sea gorgonians, so-called “Bamboo 

Corals” (Isididae), named after their likeness to bamboo plants (Noé and Dullo 2006). Source 

specimens of bacterial sequence data were sampled from three seamounts in the Gulf of Alaska 

at depths between 634 m and 3,300 m (Penn et al. 2006). The family’s range of distribution 

exhibits remarkable parallels to that of L. pertusa (→  1.1): It lives from less than 100 m to more 

than 4,000 m depth along the Indo-Pacific and Atlantic margins and in the Mediterranean (Roark 

et al. 2005) in areas of high hydrodynamic energy and sufficient advection of zooplankton and 

particulate organic matter as food sources (Heikoop et al. 2002). In addition, another gorgonian 

Muricea elongata, was found to host bacteria similar to that from Isididae and L. pertusa (1 OTU). 

Representatives of the Roseobacter clade (α-Proteobacteria) form symbiotic relationships with various 

marine organisms (Buchan et al. 2005), as was demonstrated for some Rhodobacteraceae species 

from L. pertusa that equally live on the bryozoan Flustra foliacea (Pukall et al. 2001). Notably, 

bacteria of the genus Sulfitobacter within this clade are associated with the tubeworm Lamelli-

brachia sp. from cold seeps (Kimura et al. 2003). α-Proteobacteria involved in sulphur cycling and 

methylotrophy (→  4.2.2,  4.2.3) were also regularly found on other corals: Roseobacter strains are 

known as coral pathogens, e.g., as agents of Black Band Disease in scleractinians (Buchan et al. 

2005). They are obviously an integral part of the coral holobiont in both warm- and cold-water 

habitats as demonstrated by bacterial sequences from Isididae, P. damicornis, and L. pertusa from 

this study. Sequences of Rhodospirillaceae, another lineage of “non-sulphur” purple bacteria were 

equally found in O. patagonica, Norwegian L. pertusa, and – even if not in the same OTU – in 

Mediterranean L. pertusa. Also members of the Rhizobiales were found in both Isididae and 

Norwegian L. pertusa, among which is Afipia sp. Members of this genus have been shown to 
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exploit methanesulphonate and dimethylsulphone (Moosvi et al. 2005) and may be both 

significant sulphur cyclers and methylotrophs in natural environments. 

Also γ-Proteobacteria in L. pertusa can be assigned to other symbiotic bacteria: Relatedness of a 

distinct group of γ-Proteobacteria in red L. pertusa to thiotrophic symbionts of deep-sea mussels was 

already discussed (→  4.2.2). Similar sulphur-oxidisers were again present on O. patagonica (Koren 

and Rosenberg 2006). Contrary to the thiotrophs of the present study these bacteria belonged to 

another clade of symbionts predominantly associated with vestimentiferan tubeworms and were 

not as abundant as in L. pertusa. One OTU of the genus Shigella was found on both red and white 

corals. Shigella is a facultatively anaerobic pathogen commonly inhabiting the intestinal tract of 

humans and other primates (Zaika et al. 1998). A closely related organism has also been identified 

on the scleractinian coral P. meandrina (Speck et al., unpubl.) and another scleractinian, Acropora 

palmata, shows antibiotic activity against this germ (Ritchie 2006). It can thus not be ruled out that 

Shigella sp. also affects stony corals as a potential pathogen. One γ-proteobacterial OTU compri-

sing a sequence from P. damicornis belonged to the genus Vibrio (Bourne and Munn 2005). Vibrio 

appears to be a common part of both hard and soft coral microflora (e.g., Ducklow and Mitchell 

1979; Koren and Rosenberg 2006). Members are non-obligate anaerobes (Madigan et al. 2003) 

and able to degrade chitin (Hunt et al. 2007). But the genus also holds many pathogenic species, 

some of which are agents of coral diseases: V. shiloi (isolated from O. patagonica) (Banin et al. 

2000b), V. coralliilyticus and V. harveyi (both isolated from P. damicornis) (Ben-Haim et al. 2003; 

Luna et al. 2007), and V. tasmaniensis (isolated from a diseased gorgonian coral) (Vattakaven et al. 

2006). Yet, all specimens of L. pertusa analysed in the present study were apparently healthy, as 

were the specimens of P. damicornis in the study of Bourne and Munn (2005). Consequently, 

Vibrio sp. found in both coral species may be an opportunistic pathogen constituting a normal 

component of the healthy coral microbiota until environmental or physiological factors trigger a 

pathogenic response (Bourne and Munn 2005). The same might hold for Chryseobacterium sp. 

(Bacteroidetes) and Staphylococcus sp. (Firmicutes) that were also found in corals: Clone HKT72 

(DQ188008) from Porites sp. (Kapley et al. 2007) was identified as uncultured Chryseobacterium 

reported in diseased aquatic animals (Bernardet et al. 2005). The genus Staphylococcus, also 

observed on P. damicornis (Bourne and Munn 2005), is likewise associated with diseases of marine 

crustaceans (Costa et al. 1998; Becker et al. 2004). The role of Staphylococcus as potential coral 

pathogen was very recently discussed by Dinsdale et al. (2008). 



DISCUSSION 
  

 69

The occurrence of the photoautotrophic cyanobacterium Synechococcus sp. in both coral colour 

varieties seems surprising at first glance, since sampling was performed well below the euphotic 

zone of the Trondheimsfjord, which is not likely to exceed a depth of 20 m (Sakshaug and 

Myklestad 1973). The possibility that these organisms are mere planktonic bycatch exported from 

surface waters seems remote in view of the absence of cyanobacterial sequences in the water 

column. A great variety of hermatypic scleractinians produce secondary metabolites against this 

very cyanobacterial genus (Koh 1997): According to this author Synechococcus sp. could be 

repressed because it features the same cell wall characteristics as Phormidium corallyticum, one of the 

members of a pathogenic microbial consortium causing Black Band Disease (Richardson and 

Kuta 2003). Synechococcus sp. could also be antagonised by hermatypic corals because it might 

compete with the symbiotic zooxanthellae for photosynthetic resources. Both these arguments 

are untenable in the case of L. pertusa, since the species neither suffers from Black Band Disease 

nor hosts zooxanthellae. The genus Synechococcus frequently forms symbiotic relationships with 

sponges, which was recently shown for Tethya aurantium by Thiel, Neulinger et al. (2007b). Diazo-

trophic symbiosis was also described for other cyanobacteria-scleractinian associations (Williams 

et al. 1987; Lesser et al. 2004) with cyanobacteria residing intracellularly in the host tissue. As the 

latter was not observed in this study, Synechococcus sp. appears to live extracellularly on or in 

L. pertusa polyps. Thermophilic Synechococcus spp. in microbial mats perform photosynthesis by 

day and seem to ferment stored carbohydrates to generate reduction equivalents for nitrogen 

fixation in the dark (Steunou et al. 2006). Cyanobacteria – specifically symbiotic species – can 

completely resort to chemoheterotrophy in the absence of light while maintaining their capability 

of nitrogen fixation (Tredici et al. 1988). Under the assumption that such light-independent 

chemoheterotrophic nitrogen fixation also occurs in Synechococcus sp. from the present study a 

diazotrophic relationship with L. pertusa is conceivable. 

Most members of the Verrucomicrobia found in L. pertusa (predominantly in the red colour variety) 

belonged to the genus Rubritalea. This genus owes its name to the production of carotenoids of 

orange or reddish colour (L. ruber, red and talea, rod). All four species described to date were iso-

lated from marine sponges: R. marina (Scheuermayer et al. 2006), R. squalenifaciens (Kasai et al. 

2007), and R. spongiae and R. tangerina (Yoon et al. 2007). All but R. marina produced squalene, a 

triterpenic hydrocarbon that acts as an antioxidant (Ko et al. 2002), as is the case with the carote-

noids (Shindo et al. 2007). R. squalenifaciens was reported to catabolise chitin (Kasai et al. 2007). 
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Sequences affiliating with the family Mycoplasmataceae (Firmicutes, Mollicutes) found in this study 

were phylogenetically remote from their next characterised relative Mycoplasma sphenisci, which is a 

parasite isolated from a Jackass Penguin (Spheniscus demersus) (Frasca et al. 2005). Phylogenetic 

analysis (Fig. 12) suggested that the Mycoplasmataceae from L. pertusa formed a monophyletic and 

well-defined cluster within the Mycoplasma hominis group together with above-mentioned se-

quences from Isididae and M. elongata. Most mollicutes live as commensals but are also wide-

spread in nature as parasites of a variety of animal groups (including humans) and plants (Razin et 

al. 1998). (Note that the trivial terms “mycoplasmas” or “mollicutes” are often used synony-

mously to refer to any species of the class Mollicutes.) Though members of the class Mollicutes have 

evolved from cell wall-possessing bacteria and are classified into the phylum Firmicutes (L. firmus, 

strong and cutis, skin), they are distinguished phenotypically from all other bacteria by their total 

lack of a cell wall (Razin et al. 1998). This circumstance also led to their name (L. mollis, soft). 

Since the cell membrane is their only barrier, the mycoplasmas are osmotically much more sensi-

tive than other bacteria; however, the constant milieu of their host offers protection (Razin et al. 

1998). Due to this deformable membrane the dominating shape of mycoplasmas is a sphere, but 

cytoskeletal elements in various groups facilitate other appearances, too: Many pathogenic myco-

plasmas have a flask- or club-like cell shape with a protruding tip, which serves as an organelle 

for cytadhesion to epithelial linings of their host (Razin et al. 1998). Mycoplasmas usually exhibit 

a rather strict host and tissue specificity probably reflecting their nutritionally exacting nature and 

obligate parasitic mode of life (Razin et al. 1998). They underwent a distinct reductive way of 

evolution characterised by ‘genetic economisation’. Surveys have shown a particular scarcity of 

genes in mycoplasmas coding for energy and intermediary metabolism (Razin et al. 1998). 

Because of the absence of cytochromes the major route for ATP synthesis in mycoplasmas is 

probably substrate-level phosphorylation (Dybvig and Voelker 1996). Lacking the ability of de-

novo synthesis of amino and fatty acids makes them totally reliant on external sources of these 

vital compounds (Razin et al. 1998). 

Candidate division TM7 is one of several newly described bacterial divisions exclusively charac-

terised by environmental sequence data (Hugenholtz et al. 1998; Hugenholtz et al. 2001). TM7 

sequences have been detected in a range of chemically and geographically diverse habitats 

(Hugenholtz et al. 2001). These include activated sludges (Bond et al. 1995) as well as hydrother-

mal sediment at Rainbow vent site (López-García et al. 2003). The latter constitutes yet another 
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link towards sulphur cycling (→  4.2.2). TM7 were even found in the human oral cavity, where it 

is believed to be a pathogen connected to the development of periodontitis (Brinig et al. 2003; 

Ouverney et al. 2003). Yet, the recent discovery of TM7 as part of the natural microflora of the 

marine sponge Chondrilla nucula (Thiel et al. 2007a) represents further analogy between coral- and 

sponge-associated bacteria. This indicates a symbiotic potential of this candidate division. 

In-Situ Location of L. pertusa-Associated Microbes 

4.3.1 Bacteria Associated with Coral Ectoderm 

Autofluorescence of the coral tissue could be successfully surmounted by CARD-FISH. By far 

the most bacteria were detected on the nematocyst batteries of L. pertusa (Fig. 14). The bacteria 

could be successfully hybridised with a modified Firmicutes-specific oligonucleotide sequence, 

probe LGC0355b (Table 1), targeting the 16S rRNA of Mycoplasmataceae present in the sequence 

library. Results of hybridisations at stringent conditions (Fig. 15) and specificity cross check (Fig. 

16) showed that the modified probe LGC0355b specifically detects the single-nucleotide devia-

tion from the target sequence of the original probe LGC0355. 

Like most oligonucleotide probes LGC0355b is not exclusively specific to Mycoplasmataceae but 

also targets other taxa, predominantly of the class Bacilli in the common phylum Firmicutes. 

Morphology of the latter is quite similar to that of the observed microbes. For that reason, probe 

MYC850 was designed to confirm that the tentacle-associated bacteria on L. pertusa belonged to 

the family Mycoplasmataceae. Unfortunately, probe MYC850 did not yield a specific hybridisation 

signal. Since such a failure is quite common with untested FISH probes (Amann et al. 1995), this 

negative result was not rated as counterevidence for the identity of Mycoplasmataceae in this study. 

Re-evaluation of probe MYC850 according to the approach of Yilmaz and Noguera (2004) 

revealed that its overall binding efficiency was too low to perform well under CARD-FISH con-

ditions. Hence, alternative evidence had to be furnished to corroborate that the microbes discov-

ered on L. pertusa tentacles were indeed mycoplasmas. The lack of a cell wall is an exclusive pro-

perty of representatives of the Mollicutes (Razin et al. 1998). It could be demonstrated that with 

the CARD-FISH protocol used in the present study, cell wall permeabilisation was crucial to 

obtain brightest fluorescence after TSA. The fact that an equally strong hybridisation signal was 
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obtained from the ectoderm-associated bacteria even without lysozyme treatment confirmed that 

these prokaryotes lacked a cell wall. 

In summary, the results of phylogenetic analysis and CARD-FISH led to the conclusion that the 

microbes colonising the nematocyst batteries of L. pertusa are representatives of a thus far 

unknown Mycoplasmataceae species. Their cell morphology (Fig. 14 f) resembled the flask-shaped 

and elongate forms with unipolar tip structures of M. sphenisci (Frasca et al. 2005), which was the 

closest characterised relative to the Mycoplasmataceae sequences from this study. 

Double hybridisation with probes LGC0355b and EUB338 I (Fig. 18) was used to determine the 

abundance of the new Mycoplasmataceae species relative to other bacterial groups on L. pertusa thin 

sections. It could be shown for all coral samples, regardless of their provenience or colour 

variety, that the bacterial clusters situated on their nematocyst batteries consisted almost entirely 

of mycoplasmas. 

4.3.2 Bacteria Associated with Coral Endoderm 

Long and twisted filamentous structures were found in the gastral cavity of red and white coral 

phenotypes from all stations. Due to the lack of a visible DAPI signal, these structures were first 

considered artefacts. However, similar filaments had been observed with FISH in L. pertusa 

samples from other Norwegian locations (S Schöttner, pers. comm.) and specificity of the 

hybridisation was proven by means of the control probe NON338. Poor DNA staining with 

DAPI was previously reported for other microbes (Boetius et al. 2000). 

The phylum Actinobacteria abundantly represented in the corals by 16S rDNA sequences is rich in 

filamentous morphotypes. In contrast, like all sub-phylum level probes used in this survey, also 

the Actinobacteria-specific probe HGC236 failed to hybridise the filaments under stringent condi-

tions. The filamentous bacteria could only hybridise with the Firmicutes-specific probe LGC0355 

with low stringency, just like the ectoderm-associated mycoplasmas. The only L. pertusa-associ-

ated sequences, except for those of Mycoplasmataceae, which permitted such unspecific probe 

binding, were that of candidate division TM7 (reference: F05_CW03). The sequence of probe 

LGC0355 is 5’-GGAAGATTCCCTACTGCTG-3’), its original target site on the bacterial 

ribosome is 5’-CAGCAGUAGGGAAUCUUCC-3’ (the reverse complement of the probe 
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sequence). TM7 sequences show only one mismatch as compared to this site (5’-CAGCAG-

UAGGGAAUUUUCC-3’), which is at the same position as with Mycoplasmataceae (5’-CAGCAG-

UAGGGAAUAUUCC-3’) but has uridine instead of adenosine. This could also explain why 

hybridisation of filamentous bacteria with the Mycoplasmataceae-specific probe LGC0355b 

(5’-GGAATATTCCCTACTGCTG-3’) failed under stringent conditions: ΔG (Gibbs free energy) 

of hybrid formation is less negative for the U-T mismatch between the TM7 target site and probe 

LGC0355b than it is for the matching pair A-T in Mycoplasmataceae under the same hybridisation 

conditions. 

The filaments found in this study also resembled morphotypes of TM7 bacteria from the human 

oral cavity (Brinig et al. 2003; Ouverney et al. 2003) and from a laboratory scale bioreactor 

(Hugenholtz et al. 2001). The latter study reported members of candidate division TM7 to be 

gram-positive. Coral endoderm-associated bacteria showed visible fluorescence attenuation when 

cell wall permeabilisation was omitted (unlike Mycoplasmataceae). This indicates that they have a 

cell wall. It though appears to be a priori more permeable to the large CARD-FISH probe mole-

cules than the cell walls of other, namely gram-positive bacteria (cf. Fig. 17 a-f). Other filamen-

tous bacteria were described to occur endolithically (i.e., in the skeleton) in the Mediterranean 

coral O. patagonica (Ainsworth et al. 2008), but due to their autofluorescence typical for chloro-

phyll they were most likely cyanobacteria. 

For the time being, identity of the endoderm-associated filaments found in L. pertusa cannot be 

determined with sufficient confidence. Nevertheless, indirect evidence presented here permits 

addressing of these bacteria as bona fide TM7. 

4.3.3 Comparison of Sequence Frequencies and Bacterial in-Situ Abundances 

The high microbial diversity of 27 OTUs in white and 54 OTUs in red corals as depicted by the 

sequence library is in marked contrast to CARD-FISH results: Irrespective some sporadic α- and 

γ-Proteobacteria only two groups of bacteria (probably two species) were abundant and in direct 

association with the coral tissue, namely Mycoplasmataceae and bona fide TM7. Test hybridisations 

with aquarium-reared L. pertusa polyps (Fig. 13) indicated that the mucus of this coral was densely 

populated by bacteria, which were apparently far more abundant than bacteria on coral tissue thin 
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sections. These findings reveal that the major bacterial diversity – and most likely the numerical 

majority of bacteria – is sited in the mucus and probably also in the gastric fluid of L. pertusa. 

The reason why bacteria associated with coral mucus and gastric fluid were observed by 16S 

rDNA analysis but not CARD-FISH is given by the different preparation procedure of the two 

techniques: For DNA extraction mucus and gastric fluid were never completely removed from 

coral-specimens. In contrast to that, storage, decalcification, paraffin embedding and de-paraffi-

nation, and the multiple washing steps of the thin sections during the CARD-FISH procedure 

washed away mucus as well as gastric fluid from the polyps. Loose bacteria living therein were 

thus not preserved on the slides except for very few cells of α- and γ-Proteobacteria, the apparently 

largest groups on L. pertusa. Even in the aquarium-reared polyps that were immediately decalci-

fied after fixation without additional storage time, only wisps of mucus remained attached to the 

tissue thin sections. Thus, the starting material was different for both techniques. 

Embedding the polyps in artificial resin prior to thin sectioning might have better preserved 

unbound bacteria. However, resin embedding has a considerable drawback in combination with 

CARD-FISH, because the dense matrix of the resin obstructs diffusion of the large HRP-labelled 

probe. Moreover, tissue boundaries stand out much clearer in paraffin-embedded samples than in 

resin-embedded as observed for test samples in Histocryl acrylic resin. It would neither have 

been useful to examine the mucus of aquarium-hatched coral samples, because significant com-

positional changes in L. pertusa’s microbial community were reported to occur in the artificial 

environment (Schöttner et al. 2008). For all these reasons, the present study was confined to 

investigate the in-situ location of the tissue-associated bacteria of L. pertusa (→  1.3). 

Both coral colour varieties hosted Mycoplasmataceae and bona fide TM7 without discernible differ-

ences in abundance. This finding conflicted with phylogenetic analysis, according to which both 

groups of bacteria should live exclusively on the white L. pertusa colour variety (Fig. 10, Fig. 11). 

This inconsistence can be explained by statistical effects and PCR interference: The probability 

for a distinct PCR product to become cloned and sequenced is a function of its relative propor-

tion in the overall mixture of amplified gene fragments. This probability is particularly low for 

rare fragments in a diverse mixture as in the case of red L. pertusa (Fig. 9). Since the two epithe-

lium-bound bacterial groups most probably constituted minor fractions of the total bacterial 
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quantum on the coral polyps (see above), they are less likely to be detected in red corals by clo-

ning and sequencing than in white corals. 

Furthermore, obstruction of primer annealing or elongation could have occurred: Primer-tem-

plate mismatch can never be ruled out with primers targeting a broad range of phylogenetic 

groups and might occur in both Mycoplasmataceae and TM7. In many mycoplasmas, the adenine 

residues at GATC sites are methylated, while in others the cytosine residues are methylated 

(Razin et al. 1998). Because this motif is part of the forward primer 27f sequence (5’-AGAGTT-

TGATCMTGGCTCAG-3’) and its reverse complement reads the same, binding of the primer is 

likely to be restricted in Mycoplasmataceae (Herman et al. 1996). Methylation may also inhibit elon-

gation (Rountree and Selker 1997). These factors could also have reduced the yield of respective 

PCR products in white L. pertusa leading to the observed underrepresentation of Mycoplasmataceae 

and TM7 sequences. In red L. pertusa the effects of low primer binding probability (see above) 

and obstruction of primer annealing or elongation would be combined. Consequently, the proba-

bility of Mycoplasmataceae and TM7 sequences to become retrieved from red L. pertusa would be 

further impaired, which could explain why no sequences of these groups were found in that coral 

colour variety. 

Relations between L. pertusa and its Associated Bacteria 

4.4.1 Partitioning and Specificity of the Bacterial Community 

The present study confirmed that also L. pertusa from the Trondheimsfjord hosted a special and 

highly diverse bacterial community, as do members of the same coral species from other geogra-

phic regions (Yakimov et al. 2006; Großkurth 2007; Schöttner et al. 2008) (→  4.1.1). Members of 

this bacterial community are – preponderantly – not present in the coral’s environment (→ 

 4.1.3). Notably, this was also true for samples from station 1 (‘Tautra’), one of the shallowest 

occurrences of L. pertusa (Hovland and Risk 2003) and thus likely to show greater variations in 

environmental conditions than deeper habitats. 

Data presented here and by Großkurth (2007) displayed spatial variations of coral associated bac-

teria within the respective sampling areas. Even more outstanding differences were shown in the 

present study by comparative analysis of L. pertusa-derived DNA sequences from different geo-
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graphic regions: Apart from marginal intersections in the α- and γ-Proteobacteria Mediterranean 

L. pertusa (Yakimov et al. 2006) hosted bacterial phylotypes that were almost completely different 

from those in Norwegian specimens. Oceanographic data from the Central Mediterranean where 

these corals had been sampled show that bottom temperature and salinity are generally around 

13.6°C and 38.7 PSU (Klein et al. 1999; Seritti et al. 2003). These values are much higher than 

those reported for the Trondheimsfjord (→  2.1.1). L. pertusa actually lives at the limits of its 

physiological niche (→  1.1) in the Mediterranean, which might be the reason why living deep-

water coral banks are generally rare there (Delibrias and Taviani 1985; Tursi et al. 2004). A 

species existing in a suboptimal milieu may unsurprisingly host a bacterial community that is 

adapted to these specific conditions. This strongly suggests temperature and salinity to be addi-

tional physicochemical factors (→  4.1.2) accounting for the divergence between prokaryotic 

consortia from Norwegian and Mediterranean L. pertusa. 

A considerable partitioning of the bacterial community was observed on L. pertusa by comparison 

of 16S rDNA sequence frequencies and bacterial in-situ abundances (→  4.3.3): Only two groups 

of bacteria (Mycoplasmataceae and bona fide TM7) were bound to the coral tissues, while most bac-

teria were apparently present in the mucopolysaccharide layer and gastric fluid. Data from other 

studies obtained with the fingerprinting methods DGGE (Großkurth 2007) and ARISA 

(Schöttner et al. 2008) indicated a similar partitioning of bacterial groups in L. pertusa. The tissue-

bound bacteria were equally found on corals from all stations and both colour varieties (→  4.3.1, 

 4.3.2). Hence, the observed location- and colour-related differences between coral-associated 

groups (→  4.1.2) could only be ascribed to communities in the “liquid” parts of the host, i.e., in 

the mucus and gastric fluid. These communities fluctuated in their relative abundances and – in 

the case of spatial variation – even in presence and absence. They appear thus to be sensitive to 

physicochemical factors (→  4.1.2) varying from site to site. Association of these “liquid-

inhabiting” bacterial groups with the coral can thus not be regarded as constitutive but rather as 

adaptive to the prevailing environmental conditions. 

To call the observed coral-microbial association truly ‘specific’ it has to be constant over time and 

space. While temporal variations still need to be investigated, results of the present study gave evi-

dence for a spatially constant fraction of tissue-associated bacteria in L. pertusa. Yet, this was not 

mirrored on a wider geographic level, since Großkurth (2007) reported spatial variations of both 
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mucus- and tissue-associated bacteria on L. pertusa from offshore locations in the NE Atlantic. 

This coral is known to form distinct, genetically isolated offshore and fjord populations in the 

NE Atlantic (Le Goff-Vitry et al. 2004). Thus, it could be speculated that each of these popu-

lations hosts a unique bacterial community and that there is no really constitutive coral-bacterial 

association in L. pertusa at all. Also Yakimov et al. (2006) did not find Mycoplasmataceae and TM7 

on Mediterranean L. pertusa. Then again, there is the possibility that these bacterial groups had 

simply been overlooked in the former studies, since culture-independent techniques had been 

employed which are susceptible to biases similar to those described in this study (→  4.3.3). 

Unpublished FISH data suggested the presence of at least bona fide TM7 on corals from other 

Norwegian locations (S Schöttner, pers. comm.). There is a good chance that the use of CARD-

FISH or other bio imaging techniques in future studies will reveal these tissue-associated 

microbes on L. pertusa from other geographic regions. 

The coral’s microbiology features numerous similarities to other bacterial symbioses, notably with 

marine sponges. Similarities to sponge symbionts were also described for Mediterranean L. pertusa 

by Yakimov et al. (2006), who point out that specialised microbiota may be important for protec-

ting the coral from pathogens through the production of secondary antibiotics as demonstrated 

for some sponges. Parallels between microbial inhabitants of L. pertusa and symbionts from other 

warm- and cold-water corals indicate that microbial populations associated with corals are glo-

bally distributed as postulated by Bourne and Munn (2005). Such parallels are particularly fre-

quent in the case of Isididae, cold-water corals whose distribution and habitat requirements are 

very similar to those of L. pertusa. 

In summary, the bacterial community of L. pertusa from the Trondheimsfjord could not be 

termed ‘specific’ sensu stricto but had to be divided into two sub-communities differing in their 

location on the coral: (1) a tissue-bound bacterial fraction on the ecto- and endoderm that was 

spatially constant at least on a regional scale and (2) a “liquid-associated” bacterial fraction in the 

mucus and gastric fluid varying with location and colour variety of its host. Parallels to other 

coral-bacterial associations suggested the existence of certain ‘cold-water coral-specific’ bacterial 

groups sensu lato. 

The “liquid-associated” community comprised bacterial groups with important alimentary charac-

teristics, in particular thio- and methylotrophy (→  4.2.2,  4.2.3). Their implications on various 
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aspects of the ecology of L. pertusa are discussed in detail in the following chapters  4.4.2 and 

 4.4.3, while the roles of tissue-associated bacteria are addressed in chapter  4.4.4. 

4.4.2 Implications for Nutrition, Health, and Dispersal of L. pertusa 

L. pertusa is thought to feed primarily on mesozooplankton (Kiriakoulakis et al. 2005). However, 

in radiocarbon labelling experiments conducted with several species of stony corals Sorokin 

(1973) showed that the polyps actively incorporate planktonic bacteria. The amount of this 

bacterial organic carbon assimilated per day was equivalent to 10-20% of the carbon content of 

the polyp’s body. Bacteria could thus provide subsidiary alimentation for L. pertusa. In fact, corals 

have been suggested to harbour microbial communities for beneficial effect (Rohwer and Kelley 

2004) which amongst others also includes nutrition: By ingesting their own mucus (Coles and 

Strathmann 1973), a process that was also observed with L. pertusa (Mortensen 2001), corals can 

harvest contained bacteria after the continuous-flow culture principle. It has been shown that the 

growth rate of microbes living in the corals’ surface mucopolysaccharide layer can be accelerated 

through elevation of DOC levels by an order of magnitude (Kline et al. 2006). In the Trond-

heimsfjord large amounts of DOC accumulate in the euphotic zone during the productive season 

(Børsheim et al. 1999). A considerable proportion of mono- and particularly polysaccharides are 

exported from the euphotic zone to the deep fjord, probably through the sinking of phytoplank-

ton cells which are degraded in the depth (Børsheim et al. 1999). Though L. pertusa is unable to 

benefit from dissolved substances in the water column, most members of its bacterial consortium 

can degrade these sugar compounds (→  4.2.2 f) and incorporate them into their own biomass. 

This can in turn be utilised by the coral. In a way, that scenario shows similarities to a “host-

bound” variant of the water column ‘microbial loop’ (Azam et al. 1983) without nanoplanktonic 

heterotrophic flagellates as interlink but the coral as direct terminal consumer. 

In this context, also a diazotrophic symbiosis between Synechococcus sp. (assuming the ability of 

light-independent nitrogen fixation) and L. pertusa would make sense: Though the coral may not 

directly suffer nitrogen limitation from feeding on zooplankton, utilisation of organic compounds 

from the water column by its bacterial inhabitants could require a supplementary source of nitro-

gen, since exported organic matter is known to be nitrogen-depleted. 
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Additionally, the associated bacterial groups can catabolise cellulose from phytoplankton that was 

ingested either through mucus entrapment (Lewis and Price 1975) or as part of the diet of the 

coral’s prey. Even the chitin in the exoskeleton of prey crustaceans can be degraded by Vibrio, 

Clostridiaceae, probably Rubritalea sp., and most notably, by the dominant Rhodobacteraceae. This 

offers a significant contribution to the carbon and nitrogen budget (McCarthy et al. 1997; 

Aluwihare et al. 2005) of the coral holobiont. 

Almost all α-Proteobacteria occurring in Norwegian L. pertusa can exploit DMSP or its derivatives 

(→  4.2.2). DMSP is an osmoprotectant produced in high concentrations by marine phytoplank-

ton. It was even measured in a variety of tropical coral reef invertebrates as a consequence either 

of their phytoplankton diet or, in the case of cnidarians, their symbiosis with zooxanthellae (Van 

Alstyne et al. 2006). Damm et al. (2008) argued that DMSP degradation is responsible for a direct 

in-situ methane production / consumption cycle in another NE Atlantic fjord environment 

(Storfjorden, Svalbard Archipelago). The substance and its derivatives should thus also occur in 

considerable amounts in highly productive coastal regions and fjords such as the Trondheims-

fjord, especially during phytoplankton blooms. In addition to providing the coral with energy 

from DMSP-degradation, the mentioned α-Proteobacteria are regarded to play an important role in 

the cycling of these organic sulphur compounds (Penn et al. 2006) produced in and exported 

from the euphotic zone. 

Several bacterial groups observed in Norwegian L. pertusa (Rhodobacteraceae, Rhodospirillaceae, Vibrio, 

Propionibacterium, Planctomyces, Clostridiaceae) can tolerate or even strictly require anaerobic condi-

tions. Finding sequences from coral-associated Archaea closely related to strict and facultative 

anaerobes on coral surface microlayers led Kellogg (2004) to hypothesise that anaerobic micro-

niches may exist in the mucus of tropical reef corals. Anthozoan polyps and colonies are in fact 

diffusion-limited in their oxygen consumption even under well-stirred, air-saturated conditions 

(Shick 1990). This can result in total oxygen depletion within the diffusion boundary layer on the 

surface of coral polyps (Shashar et al. 1993). This layer is 0.2-4 mm thick depending on the 

growth form of the colony, polyp size, and current velocity (Shashar et al. 1993; Kühl et al. 1995). 

Contraction of the polyps even enhances hypoxia, thus favouring anaerobic metabolism in the 

gastral cavity (Levy et al. 2001). Observations on aquarium-reared L. pertusa showed that its 

polyps can stay retracted for three weeks and longer (Mortensen 2001) and also retract after 
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feeding for up to several days (A Form, pers. comm.). This strongly implies that hypoxia occurs 

in L. pertusa’s polyps and, as a consequence, fermentation may significantly contribute to the 

nutrition of this coral. The above-mentioned bacterial groups appear to constitute a specialised 

community that profits from further degrading end products of the coral’s own anaerobic meta-

bolism. Low molecular organic acids produced by P. acnes and Clostridiaceae can thereby in turn 

serve as substrates for Rhodobacteraceae and Rhodospirillaceae, and for Methylobacterium under 

(temporarily) oxic conditions. 

Deep-water coral reefs are highly endangered ecosystems (Fosså et al. 2002; Hall-Spencer et al. 

2002; Roberts and Hirshfield 2004). The direct consequences of ocean acidification by anthropo-

genic CO2 on the calcification process in cold-water corals have already been recognised (Orr et 

al. 2005). But shifts in both pH and temperature can also threaten these animals indirectly through 

detrimental responses of their bacterial microflora: Coral-pathogenic Vibrio (V. shiloi, V. corallii-

lyticus) become virulent only at higher water temperatures (Ben-Haim and Rosenberg 2002; Ben-

Haim et al. 2003; Vattakaven et al. 2006). One must be apprehensive of the possibility that 

Vibrio sp., but also Shigella sp., Chryseobacterium sp., and Staphylococcus sp. found in L. pertusa exhibit 

a pathogenic potential that is likewise stimulated by temperature rise. Environmental changes can 

also affect other members of the microbial community. Resulting disruption of the balance 

between the coral and its associated microbiota (even if they are harmless under natural circum-

stances) can trigger coral mortality as well (Kline et al. 2006). 

To my knowledge, no investigations have been made so far on the nature of the two phenotypes 

of L. pertusa. It is not even known whether they are genetically or environmentally controlled 

(Mortensen 2001). Both colour varieties of L. pertusa were found growing entwined at all stations 

in the Trondheimsfjord (cf. Fig. 1), so divergence in their bacterial composition cannot be 

explained by spatial separation. In contrast, personal observations by myself and other research-

ers imply that L. pertusa’s white colour variety occurs more frequently along the NE Atlantic con-

tinental margin than the red one. Cold-water reefs along the southern and central parts of this 

margin comprise exclusively white L. pertusa (A Freiwald, pers. comm.). What does the red coral 

phenotype cause to be rarer than the white one? Their distribution may be limited by some 

hitherto unknown internal or external factor that affects red L. pertusa more than white, conse-

quently allowing common occurrence only in locations where this factor is optimal for both 
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corals. The dominance of Rhodobacteraceae in white corals (or rather, the scarcity of them in red 

corals) might constitute an internal factor: Because of their mixotrophy these bacteria can be 

highly productive also under conditions of moderate carbon supply. This would enable the white 

phenotype to exist also in regions that offer less amounts of dissolved and / or particulate 

organic matter, where the red phenotype could not survive according to this line of thought. An 

external factor that might affect coral dispersal is given by the ‘Hydraulic Theory’ proposed by 

Hovland and colleagues (Hovland 1990; Hovland and Thomsen 1997; Hovland et al. 1998; 

Hovland and Risk 2003). These authors proposed that chemotrophic bacteria might provide the 

corals with supplementary nutriment at sites where hydrocarbon-rich fluids emanate from the 

seafloor. Remarkably enough, the vast majority of sequences with relatives from marine environ-

ments rich in reduced sulphur compounds are found on red L. pertusa. In particular, the red coral 

colour variety exclusively features a phylogenetic cluster of γ-Proteobacteria, whose relatedness to 

thiotrophic endosymbionts strongly suggests their aptitude to draw energy from the oxidation of 

reduced sulphur compounds. The latter can be formed by anaerobic methane oxidation occurring 

along with fluid seepage (→  4.2.2). If red L. pertusa, because of these specialised bacterial consor-

tia, preferred higher concentrations of substrates for chemotrophy in the ambient seawater than 

white L. pertusa, the two colour varieties would only occur together at sites where fluid-seepage is 

sufficiently high for both phenotypes. From statistical analysis of fingerprinting data, station 2 

(‘Stokkbergneset’) showed the most pronounced dissimilarities to the other stations in terms of 

relative and absolute composition of L. pertusa-related bacterial communities (→  4.1.2). Acoustic 

measurements provided evidence for hydrocarbon-enriched pore water seepage in the Agdenes 

reef complex (Hovland and Risk 2003) fringing the southern side of the sound between seaward 

fjord and Norwegian Sea. Judging from its position in the Trondheimsfjord (Fig. 3) it is well con-

ceivable that station 2 lies within the reach of this seepage and fluid emanation may constitute 

another physicochemical factor (→  4.1.2) controlling the bacterial consortia on L. pertusa in the 

sense of the ‘Hydraulic Theory’. 

Albeit thiotrophic γ-Proteobacteria on red corals could be positively influenced by seepage-coupled 

anaerobic methane oxidation, this coral phenotype is obviously not completely reliant on 

hydrocarbon seepage, since it also grows in regions for which such activity can be ruled out (e.g., 

station 1) (Hovland and Risk 2003). A trophic linkage appears to exist that enables independence 

of the above-mentioned γ-Proteobacteria from exogenous H2S: The gas can also be produced 
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through decomposition of sulphur-containing amino acids by Clostridiaceae. Strikingly enough, 

that group, too, appears to occur exclusively on red L. pertusa. Of course, this proposition calls 

for further studies including stocktaking of coral phenotypes and detailed measurements of water 

chemistry on various sites. 

Interestingly, relatedness of bacteria from Mediterranean L. pertusa to microbes from hydro-

carbon seep or hydrothermal sediments (→  3.2.1) suggests that they, too, are involved in 

metabolising reduced sulphur compounds. This in turn implies that, howbeit Mediterranean 

corals hosts different bacterial groups owing to the special environmental conditions, these 

groups occupy the same or similar ecological niches connected to sulphur cycling as microbes in 

Norwegian L. pertusa (→  4.4.2). 

4.4.3 Bacterial Community Composition and Colouring of L. pertusa 

The finding of coral colour-dependent variations in the bacterial consortia of L. pertusa imposes 

two other questions: What is the cause for the observed differences in bacterial community com-

position of the two coral phenotypes? And: Could bacteria cause the different colouring in 

L. pertusa? 

Mucus-mediated selection of bacterial symbionts was shown in the scleractinian coral Acropora 

palmata, suggesting the coral mucus to play a role in the structuring of beneficial coral-associated 

microbial communities (Ritchie 2006). Selection of certain bacterial groups by antibiotic or 

growth-stimulating coral metabolites was also demonstrated for L. pertusa (Großkurth 2007). The 

variability of the “liquid-associated” bacterial fraction (→  4.4.1) observed in the present study 

could be caused by such metabolites. Colour-related differences in bacterial community compo-

sition imply that white and red L. pertusa colonies produce different microbiologically active sub-

stances that lead to colour-specific selection of certain bacterial groups over others. 

Bacterial pigmentation is already well known to play a role in eukaryote-prokaryote symbioses. In 

particular, bacterially induced colouring applies to the Caribbean scleractinian coral Montastraea 

cavernosa (Lesser et al. 2004): Its bright fluorescent orange colour is not caused by the animal itself 

but by accessory pigments belonging to symbiotic cyanobacteria inside the coral tissue. It is of 

course unlikely that staining in L. pertusa is caused by photosynthesis-related pigments, as this 



DISCUSSION 
  

 83

species grows in virtually complete darkness. But pigmentation is a common phenomenon in 

bacteria and does not necessarily coincide with photosynthesis or light protection. Light-indepen-

dent carotenoid formation, so-called scotochromogenesis, has been suggested to be a protection 

against oxidative damage involving oxygen radicals (Madigan et al. 2003). Several bacteria found 

in this study are know to produce reddish pigments: Rhodobacteraceae, Methylobacterium, and Rubri-

talea sp. All three groups occurred in both white and red L. pertusa. The Roseobacter clade, though 

more abundant in white corals, does not necessarily produce red pigments: Closest cultivated 

relatives from the most abundant Roseobacter group in white L. pertusa, strains DIII4* and EI1*, 

were in fact colourless (Teske et al. 2000). Methylobacterium was only of minor abundance in the 

two colour varieties. This leaves Rubritalea sp. (Verrucomicrobia), the only microbe both obligatory 

red and prevailing on red L. pertusa, as the potential candidate for coral colouration. Since Verruco-

microbia were not detected on or in the coral tissue, a direct colouring of the tissue by the bacteria 

as observed in M. cavernosa (Lesser et al. 2004) can be ruled out. Instead, conservation of the 

carotenoids by the host cells upon digestion of the bacteria is conceivable. They could serve the 

corals as protective agents against oxidative stress, as is the case for the squalene produced by 

Rubritalea sp. 

4.4.4 The Role of Tissue-Associated Bona Fide TM7 and Mycoplasmataceae 

Two bacterial groups, Mycoplasmataceae and bona fide TM7, were found in close association with 

the tissues of L. pertusa. From the interpretation of CARD-FISH data (→  4.3) a schematic illus-

tration was created (Fig. 20). This scheme is meant to serve as a synoptic impression elucidating 

positions and proportions of the two groups in relation to their host. Bacteria associated with the 

coral’s mucus and gastric fluid are not shown in Fig. 20. 

For the first time, sequences of candidate division TM7 were found in corals. With high probabi-

lity, those sequences belong to the filamentous bacteria observed in the gastrocoel of L. pertusa 

(Fig. 20). General physiology and ecology of this group remain subject to speculation until addi-

tional knowledge from isolation assays becomes available. From what was said above on hypoxia 

in the coral (→  4.4.2), the location of these bona fide TM7 filaments indicates an anaerobic 

metabolism. Their obviously tight attachment to the endodermal tissue suggests an interaction 

with the gastromuscular cells probably involving the exchange of metabolites with its host. 
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Fig. 20: Schematic illustration of L. pertusa polyps and bacteria hosted on their ectoderm and endoderm. 

Bacteria associated with mucus and gastric fluid of the coral are not shown. 

Mycoplasmas commonly live either attached to interior epithelia or inside cells of their hosts. 

Several species were reported to colonise the external ear canal of goats (Cottew and Yeats 1981; 

DaMassa et al. 1994). To my knowledge, the present study constitutes the first report on Mycoplas-

mataceae residing on exterior parts of their host, directly facing the environment. Given the 

osmotic sensivity of this group (→  4.2.4) their protection at this exposed location could be 

ascribed to buffer properties of the coral’s mucopolysaccharide layer. Conclusions from the 
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general biology of mycoplasmas (→  4.2.4) and their distinct boundedness to L. pertusa’s spiro-

cysts (Fig. 20) lead to the following theory: Capturing procedure in corals involves discharge of 

stenoteles and other penetrant cnidocysts that perforate the prey and inject neurotoxins. Spiro-

cyst threads bear hollow tubules that solubilise upon discharge and contact with sea water and 

adhere to the prey (Mariscal et al. 1977). Thus, the prey is kept affixed to the tentacles while the 

paralysing effect of the neurotoxins evolves. Penetration of the prey will lead to leakage of hemo-

lymph. This process is comparable to the release of DOC from planktonic algae by ‘sloppy 

feeding’ in zooplankton (e.g., Møller 2005). Their location on the distal ends of the spirocysts 

allows coral-associated Mycoplasmataceae to directly assimilate from the leaking hemolymph amino 

and fatty acids that they cannot synthesise themselves. The bacteria prevent themselves from 

getting removed during the coral’s feeding process by adhesion to the host tissue via their tip 

structure. The available evidence suggests that these L. pertusa-associated mycoplasmas live as 

commensals in contrast to many of their parasitic relatives. They profit from the prey capture 

activity but are neither advantageous nor detrimental to their coral host. 

Closest relatives of the newly discovered Mycoplasmataceae are common on octocorals (Isididae 

and M. elongata) (Fig. 11). Together these sequences form a monophyletic cluster within the Myco-

plasma hominis group (Fig. 12) (→  3.2.1,  4.2.4). It is therefore reasoned that these organisms are 

members of a novel phylogenetic lineage currently consisting of three apparently coral-specific 

Mycoplasmataceae species. Its representative from L. pertusa is proposed as a novel candidate 

species, “Candidatus Mycoplasma corallicola”, which is formally described in the following 

chapter. 

4.4.5 Proposal of “Candidatus Mycoplasma corallicola” 

As suggested by Murray and Stackebrandt (1995), the category “Candidatus” should be used for a 

description of prokaryotic entities that is based on more information than just a DNA sequence 

but which lacks characteristics required according to the International Code of Nomenclature of 

Bacteria. The Mycoplasmataceae described here represent a novel lineage of Mollicutes. 16S rDNA 

sequence similarity is 89% and below to all other described Mycoplasma species, which justifies 

proposition of a new candidate species. The lineage should be designated “Candidatus Myco-

plasma corallicola” (co.ral.li.co’la. L. n. corallum, coral; L. suff. -cola, inhabitant dweller; N.L. n. 
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4.5 

corallicola, coral-dweller, referring to the host of the microorganism). The phylotype inhabiting the 

cold-water coral L. pertusa is currently the only representative of this candidate species. 

Assignment to “Candidatus Mycoplasma corallicola” is based on (1) the 16S rRNA gene sequence 

of the above-mentioned phylotype (D11_CW02_full, EMBL accession number AM911412), (2) a 

flask-shaped cell morphology of 0.5 × 1.6 µm, (3) the absence of a cell wall, (4) preferential 

attachment to the spirocysts on the tentacle ectoderm of L. pertusa, and (5) positive hybridisation 

with the oligonucleotide probe LGC0355b (5’-GGAATATTCCCTACTGCTG-3’). 

Significance and Outlook 

The present study tries to provide comprehensive report on the bacterial microflora associated 

with the cold-water coral L. pertusa. Connections between the microbiology of this and other 

marine hosts, most notably other corals were discovered. The association with certain types of 

bacteria gave a number of clues about the ecology of L. pertusa. However, this indirect evidence 

has to remain necessarily speculative in some points. Further studies based on these results will 

offer new directions for research. In particular, the following aspects might be addressed: 

(1) Comparison of L. pertusa-associated communities from a range of other locations to 

broaden the data pool for conclusions on distribution patterns. 

(2) Examination of the novel thiotrophic γ-Proteobacteria, bona fide TM7, and “Candidatus 

Mycoplasma corallicola” by use of both cultivation and culture-independent methods. 

(3) Investigation into the role of sulphur cycling, methylotrophy, and anaerobiosis in the 

coral, e.g., by microsensor measurements and enzyme assays. 

(4) Finding the cause of different colouring of L. pertusa by chemical analysis of its pigments 

and comparing them to bacterial ones. 

(5) Examination of the mechanisms used by L. pertusa colour varieties to maintain different 

microbial communities, e.g., by analysis of antimicrobial factors in the coral mucus. 

Investigation into these aspects will further elucidate the role of bacteria for the ecology of this 

important cold-water coral species. 
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Abstract

The local distribution of the bacterial community associated with the marine

sponge Tethya aurantium Pallas 1766 was studied. Distinct bacterial communities

were found to inhabit the endosome and cortex. Clear differences in the associated

bacterial populations were demonstrated by denaturing gradient gel electrophor-

esis (DGGE) and analysis of 16S rRNA gene clone libraries. Specifically associated

phylotypes were identified for both regions: a new phylotype of Flexibacteria was

recovered only from the sponge cortex, while Synechococcus species were present

mainly in the sponge endosome. Light conduction via radiate spicule bundles

conceivably facilitates the unusual association of Cyanobacteria with the sponge

endosome. Furthermore, a new monophyletic cluster of sponge-derived 16S rRNA

gene sequences related to the Betaproteobacteria was identified using analysis of

16S rRNA gene clone libraries. Members of this cluster were specifically associated

with both cortex and endosome of T. aurantium.

Introduction

The phylum Porifera contains an estimated 15 000 species in

three taxonomic classes: Calcarea (calcareous sponges),

Hexactinellida (glass sponges) and Demospongiae (demos-

ponges) (Hooper & van Soest, 2002). As sessile filter-feeding

organisms sponges pump large amounts of water through

their aquiferous channel system. They take up bacteria,

single-celled algae and other food particles from the filtered

water by phagocytosis within the choanocyte chambers,

which are located within the inner part of the sponge, the

endosome ( = choanosome). The endosome is protected

against strong currents and high light intensities by an outer

region, the cortex (or ectosome) (Sará, 1987); this has also

been used as a basis for taxonomic classification. As a

protective device (Burton, 1928), the cortex is found to be

particularly thick and well structured in species living in

shallow waters subject to strong currents and high light

intensities. By contrast, species living in more protected

habitats have a thin, almost indistinct cortex (Sará, 1987).

Tethya aurantium (Fig. 1a) is characterized by a globular

shape and a thick and well-developed cortex, clearly differ-

entiated from the endosome by texture and colour of the

tissue (Fig. 1b). In the Mediterranean Sea T. aurantium

cooccurs with the very similar species of Tethya citrina, but

inhabits different niches and can be distinguished by the

development of its cortex. Tethya aurantium generally

inhabits areas that are more exposed to light and current in

depths of 1–40m, while T. citrina prefers more sheltered

places and possesses a thinner cortex than T. aurantium

(Sará, 1987).

Associations between microorganisms and sponges have

been systematically studied using microscopy and isolation

methods since the 1970s (Vacelet, 1970, 1971, 1975; Vacelet

& Donadey, 1977; Manz et al., 2000; Webster & Hill, 2001;

Lafi et al., 2005). These studies have shown that bacteria are

abundant within the mesohyl of sponges and can form up to

40% of the sponge volume (Wilkinson, 1978). More recent

studies on sponge–microbe associations were based mainly

on culture-independent molecular methods (Hinde et al.,

1994; Althoff et al., 1998; Burja et al., 1999; Burja & Hill,

2001; Webster & Hill, 2001; Webster et al., 2001). Compar-

ison of 16S rRNA gene clone libraries obtained from several

sponges of different geographical origin have revealed

unexpected conformity between the different sponge spe-

cies, and a uniform sponge-associated bacterial community

was proposed (Hentschel et al., 2002).

The aim of this study was to characterize the microbial

community associated with T. aurantium. We demonstrate

specific differences between bacteria associated with the

cortex and endosome. Furthermore, we report on a new

phylogenetic cluster of sponge-associated Betaproteobacteria

FEMS Microbiol Ecol xx (2006) 1–11 c� 2006 Federation of European Microbiological Societies
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and a possible association of T. aurantium with Cy-

anobacteria.

Materials and methods

Sampling sites

The Limski kanal is a semiclosed fjord-like bay in the

Adriatic Sea near Rovinj (Istrian Peninsula, Croatia) (4517,
9720N; 13143, 7340E). It extends along an east–west axis,

with an c. length of 11 km, a maximum width of about

650m and a depth of up to 32m. The bottom is generally

muddy, with insular sites consisting of stones and shallow

rocky slopes along the sides. It is characterized by a very high

sedimentation rate and rapid water exchange (Kuzmanovic,

1985). In a recent study, 42 sponge species were found in the

Limski kanal including three species of the genus Tethya:

T. aurantium Pallas 1766, Tethya limskiMüller & Zahn 1969

and T. citrina Sará & Melone 1965 (Brümmer et al., 2004).

Sponge sampling

Specimens of T. aurantium were collected by SCUBA diving

from a depth of 5–15m in April 2003, June 2004 and May

2005. The sponges were placed into sterile plastic bags,

cooled in an isolation box, immediately transported to the

laboratory and processed within 3 h. In the laboratory the

sponges were washed carefully three times in filter-sterilized

seawater (0.2mm) prior to cutting. The sponges were

separated into cortex and endosome sections and washed

again separately in sterile seawater. Tissues were cut into

small pieces of c. 20–30mg each, frozen in liquid nitrogen

and kept frozen (� 80 1C) until further investigation.
Ambient seawater was collected into sterile glass bottles

(Duran; 1 L) prior to sponge sampling. The water was

cooled on the way back to the laboratory and immediately

filtered through a cellulose-acetate filter (0.2mm pore

size; Sartorius). The filters were placed in a cryovial, frozen

in liquid nitrogen and stored at � 80 1C until further

investigation.

Electron microscopy

Sponge samples were prepared for scanning electron micro-

scopy by fixation with 1% glutaraldehyde in seawater,

replacement of water with an ethanol series and subsequent

critical-point drying. After mounting, samples were sput-

tered with Au/Pd and observed with a Zeiss DSM 940

scanning electron microscope.

DNA extraction

Genomic DNA was extracted and purified using the QIA-

GEN DNeasys Tissue Kit following the manufacturer’s

protocol for Gram-positive bacteria and animal tissue.

PCR and cloning procedure

Amplification of ribosomal DNA was performed using

puReTaqTM Ready-To-GoTM PCR Beads (Amersham Bios-

ciences). For amplification of the nearly complete 16S rRNA

gene the eubacterial primers 27f and 1492r (Lane, 1991)

were used. The conditions for this PCR were: initial

co

en

2 μm2 μm2 μm

(a) (b)

(c) (d) (e)

Fig. 1. (a) Photograph of the Mediterranean

sponge Tethya aurantium Pallas in situ. A cross

section (b) shows the morphologically different

regions endosome (en) and cortex (co). Electron

microscopic photography shows no apparent

accumulation of bacteria in the cortex (c) and a

moderate number of different bacterial morpho-

types within the endosome (d and e).
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denaturation (2min at 94 1C) followed by 30 cycles of

primer annealing (40 s at 50 1C), primer extension (90 s at

72 1C) and denaturation (40 s at 94 1C), a final primer

annealing (1min at 42 1C) and a final extension phase

(5min at 72 1C). PCR products were checked for correct

length on a 1% Tris-borate-EDTA (TBE) agarose gel (1%

agarose, 8.9mM Tris, 8.9mM borate, 0.2mM EDTA),

stained with ethidium bromide and visualized under UV

illumination.

DNA was purified using the High Pure PCR Product

Purification Kit (Roche) prior to ligation into pCRs4-

TOPOs vector and transformation into One Shots Com-

petent Escherichia coli cells using the TOPO TAs Cloning

Kit (Invitrogen). Inserts were amplified as described above

using the M13f/M13r primer set (M13f: 50-GTAAAAC-
GACGGCCAG-30; M13r: 50-CAGGAAACAGCTATGAC-30)
(0.1mM each). Correct insert size was verified using agarose

gel electrophoresis.

PCR for denaturing gradient gel electrophoresis (DGGE)

was performed using the primers 342-GCf and 534r (Muy-

zer et al., 1993). The temperature profile was as follows:

initial denaturation (2min at 94 1C) followed by 15 cycles of

touchdown primer annealing (40 s at 65–50 1C), primer

extension (1min at 72 1C) and denaturation (40 s at 94 1C),
an additional 20 cycles of primer annealing (40 s at 50 1C),
primer extension (1min at 72 1C) and denaturation (40 s at

94 1C), and a final primer annealing (1min at 42 1C) with a

final extension phase (5min at 72 1C). PCR products were

checked for correct length on a 2% TBE-agarose gel. Excised

DGGE bands (see below) were reamplified using primers

GC/M (50-GGGGGCAGGGGGGC-30) and 534r (Muyzer

et al., 1993) as described above with an annealing tempera-

ture of 50 1C and for 30 cycles.

Double gradient DGGE

DGGE was conducted in a double gradient gel (Petri &

Imhoff, 2001), containing a linear 6–8% polyacryla-

mide (acrylamide : bisacrylamide ratio 37.5 : 1) and a

50–80% denaturing gradient (100% corresponds to 7M

urea/40% deionised formamide). The gel was run in a

Tris-EDTA-acetic acid (TAE) buffer (10mM Tris, 5mM

acetic acid, 5mM EDTA, titrated to pH 7.5) at a voltage of

80V for 15 h. The gel was stained in 1� SYBR Gold

(Invitrogen) (Tuma et al., 1999) in TAE and documented

digitally.

Bands exclusively present in sponge samples were cut out

and DNA was extracted for sequencing. Excised bands were

transferred into 50 mL of molecular grade water, crushed

with sterile pistils and incubated overnight at 4 1C. The
supernatant (1mL) was used as template for reamplification

with primers GC/M and 534r as described above and

sequenced.

Cluster analysis

For statistical comparison of the DGGE banding patterns,

similarity cluster analysis (Clarke & Warwick, 1994) and

analysis of similarity (ANOSIM) (Clarke, 1993) were per-

formed using the program PRIMER 5 v5.2.2 (PRIMER–E Ltd).

Similarity was calculated using the Bray–Curtis index and

cluster analysis was conducted with complete linkage. Sub-

sequently, one-way ANOSIM with all possible permutations

was performed. In accordance with the PRIMER manual

(Clarke & Gorley, 2001) ANOSIM R-values of 4 0.75 were

interpreted as well separated, R4 0.5 as overlapping, but

clearly different, and Ro 0.25 as barely separable at all.

Replicate samples were grouped according to source

(e.g. endosome, cortex, seawater) as factors for the analyses.

Sequencing and phylogenetic analysis

After verification of correct insert size, clones (for each

sample 29–41) were sequenced using the ABI PRISMs

BigDyeTM Terminator Ready Reaction Kit (Applied Biosys-

tems) and an ABI PRISMs 310 Genetic Analyser (Perkin

Elmer Applied Biosystems). Sequence primers used were:

plasmid primers M13f and M13r as well as the 16S rRNA

gene-specific primers 342f (Muyzer et al., 1993), 534r

(Muyzer et al., 1993), 790f (50-GATACCCTGGTAGTCC-
30), 907f (50-GGCAAACTCAAAGGAATTGAC-30), 1093f

(50-TCCCGCAACGAGCGCAACCC-30) and 1093r (50-
GGGTTGCGCTCGTTGCGGGA-30). Sequence data were

edited with Lasergene Software SeqMan (DNAStar Inc.)

and checked for possible chimeric origin using the program

CHECK_CHIMERA (http://35.8.164.52/html/index.html) of the

Ribosomal Database Project (http://rdp.cme.msu.edu/in-

dex.jsp) (Maidak et al., 1999). Putative chimeric sequences

were removed from phylogenetic analyses. Next relatives

were determined by comparison to 16S rRNA genes in the

NCBI GenBank database using BLAST (Basic Local Alignment

Search Tool) searches (Altschul et al., 1990) and the

RDPII Sequence Match Program (http://rdp.cme.msu.edu/

seqmatch/seqmatch_intro.jsp). Sequences were aligned

using the FastAlign function of the alignment editor im-

plemented in the ARB software package (http://www.

arb-home.de) (Ludwig et al., 2004) and refined manually

employing secondary structure information. For phyloge-

netic calculations the PhyML software (Guindon & Gascuel,

2003) as well as the online version of PhyML (Guindon

et al., 2005) were used. Trees were calculated by the

maximum-likelihood (ML) method (Felsenstein, 1981)

using the GTR model and estimated proportion of invari-

able sites as well as the Gamma distribution parameter with

near full-length sequences (Z1200 and Z1000 bp for trees

in Fig. 4b and c, respectively). Calculated trees were im-

ported into ARB and short sequences were subsequently

added by use of the ARB parsimony method without
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changing the tree topologies. Phylogenetic positions of short

sequences (o 1200 bp/o 1000 bp) were additionally veri-

fied by phylogenetic analysis (ML, 100 bootstraps) of full

and partial sequences.

Nucleotide sequence accession numbers

The 16S rRNA gene sequences obtained in this study have

been deposited in the EMBL database. They have been

assigned accession numbers AM259730–AM259769,

AM259770–AM259831 and AM259832–AM259898 for the

sequences obtained from seawater, endosome and cortex,

respectively.

Diversity estimation

Sequences with similarities 4 99.0% were defined as one

phylotype, i.e. one operational taxonomic unit (OTU). The

proportion of prokaryotic diversity represented by the clone

libraries was estimated by rarefaction analysis combined

with nonlinear regression, and by calculation of the chao1

estimator as proposed by Kemp & Aller (2004). Rarefaction

analysis calculations were performed applying the algorithm

described by Hurlbert (1971) with the program aRarefact-

Win (http://www.uga.edu/strata/software.html). Rarefac-

tion curves were plotted and regressions performed using

two different regression equations:

y1 ¼ a1ð1� e�b1xÞ ð1Þ

y2 ¼ a2ð1� e�b2x̂cÞ ð2Þ
where x is the sample size, y the observed number of OTUs

and a the number of OTUs to be expected with infinite

sample size (i.e. total diversity) (Koellner et al., 2004).

Equation (1) is the most common regression approach for

rarefaction analysis and has been used by many authors (e.g.

Webster et al., 2004; Yakimov et al., 2006). However, curves

derived from regression (1) exhibited an apparent misfit to

the data points of the rarefaction analysis. The increase in

the regression curves was too steep at small OTU numbers

and curves flattened visually too early at large sample sizes.

The expected underestimation of the maximum species

number proposed a modification of regression (1), namely

Equation (2). To prove this, we developed an algorithm to

simulate sampling of specimens for rarefaction analysis that

has the potential to produce datasets ranging from highly

diverse (each OTU occurring only once or twice) to almost

uniform (one or two abundant OTUs): a cohort of random

integer numbers ki (iAN; 1 � i � 50) were created with the

equation ki= 5 �Gai(zi), where G is the standard Gamma

function of zi (randomized; 0 � zo 1) with shape para-

meter ai (randomized; 0.1 � aio 0.6). Of this cohort, n

numbers k were taken so that
Pn

i¼1 ki � s (randomized;

30 � so 70). This procedure is tantamount to sampling up

to s specimens (i.e. clones) representing n OTUs of abun-

dance ki. The randomized Gamma function causes the

distribution of ki to be skewed more or less to the right,

resembling abundance proportions in most natural com-

munities. The simulated datasets were subjected to rarefac-

tion analysis, and the resulting rarefaction curves were fitted

by regressions (1) and (2), respectively. From both equa-

tions, the asymptote a and the PRESS (Predicted Residual

Error Sum of Squares) statistic were obtained. PRESS is a

gauge of how well a regression predicts new data. The

smaller the PRESS statistic, the better is the predictive ability

of the regression. To test whether the two equations differed

statistically from each other, we calculated the ratios A= a2/

a1 and P=PRESS1/PRESS2. If there is one highly abundant

OTU (kiZ20) beside many OTUs of low abundance (kio 3)

in the sampling datasets, the rarefaction curve tends to

converge to a line without apparent limit. This occurred

three times with our simulated datasets with a2 � a1
(104o a2o 107; 6o a1o 40). For these cases, ratio A was

not calculated. Transformed ratios A0 = ln(ln(A11/100))

and P0 = ln(P11/100) did not show significant devia-

tions from the normal distribution (Shapiro–Wilk W-test).

A0 and P0 were tested against the null hypotheses

A0 ¼ �4:61 ðA ¼ 1Þand P0 ¼ 0:01ðP ¼ 1Þ, respectively.
SigmaPlot v6.0 (SPSS) was used for plotting and regres-

sion analysis. Statistical tests were performed with Statistica

v6.1 (StatSoft).

Results

Electron microscopy

Tethya aurantium cortex and endosome (Fig. 1) samples

were studied separately and sponge samples from consecu-

tive years were compared. Electron micrographs revealed

large differences between cortex and endosome. Only low

numbers of bacteria were associated with the sponge cortex

region while bacteria were fairly abundant in the endosome

(Fig. 1c–e). Different morphotypes, especially a high abun-

dance of rod-shaped bacteria, were found associated with

the sponge endosome.

Cortex- and endosome-specific bacteria

DGGE banding patterns clearly showed the presence of

different bacterial communities in endosome and cortex of

T. aurantium (Fig. 2). Additionally, both parts of the sponge

differed in their DGGE banding patterns from surrounding

seawater samples. Bacterial phylotypes specifically asso-

ciated with distinct sponge regions were represented by

DGGE bands that were exclusively present in all endosome

or cortex samples, respectively, but not found in seawater

(Fig. 2a). Other bands were found in all sponge samples

(Fig. 2a). Whereas the patterns in subsamples of endosome
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and cortex of one individual were apparently identical, slight

variations were found between endosome as well as cortex

samples from consecutive years (2003–2005) (Fig. 2b and c).

Nevertheless, bacterial communities inhabiting the same

sponge region (endosome or cortex) were more similar than

populations from different regions (Fig. 2a and b). In

contrast to the subsamples of a sponge individual (2005)

that showed identical DGGE banding patterns, seawater

samples from different nearby locations varied between each

other to some extent (Fig. 2c). The clusters of DGGE

banding patterns of endosome, cortex and seawater samples,

respectively, were confirmed to be well separated by ANO-

SIM (R-value4 0.75).

Methods of diversity estimation

Comparison of the two regressions (Table 1) showed that

rarefaction analysis using regression (2) resulted in higher

estimated maximum OTU numbers a2 as compared with a1
of regression (1). a2 is, in most cases, comparable with the

richness estimation using the nonparametric estimator

chao1, as proposed by Kemp & Aller (2004) (Table 1).

Equality of parameters a1 and a2 and the statistics PRESS1
and PRESS2 of the two regressions could be rejected on a

highly significant level (Po 10�6) in both cases. We can

therefore state that (i) Equation (2) fits significantly better

than Equation (1) as a regression for fitting rarefaction

curves and predicting total diversity, and that (ii) the total

diversity a1 calculated with the conventional Equation (1) is

systematically lower than a2 calculated with regression (2).

Diversity of sponge-associated bacteria

A total of 171 clone sequences were obtained (29–41

sequences for each clone library). Observed numbers of

OTUs and the total diversity estimated by rarefaction

analyses revealed high variability in the sponge-associated

bacterial community (i) between sponge endosome and

cortex, (ii) between sponge and ambient seawater and (iii)

between the different sampling times. In the sponge samples

from June 2004, in cortex and endosome, six and nine OTUs

were identified, respectively (Table 1). By contrast, seawater

collected at the same time displayed 27 identified OTUs

(Table 1). Tethya aurantium sampled in April 2003 displayed
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Fig. 2. (a) DGGE banding patterns of amplified bacterial DNA extracted from Tethya aurantium Pallas cortex region (2003, 2004 and 2005-a/b),

endosomal region (2003, 2004 and 2005-a/b) and surrounding seawater (SW). Specialised bands, which are not present in seawater, occur in all sponge

samples (TA-I) and in the cortex only (TA-II). (b and c) Dendograms of similarity cluster analysis with DGGE banding patterns of amplified bacterial DNA

extracted from T. aurantium cortex (co) and endosomal (en) samples. Comparison of sponge individuals from 2003, 2004 and 2005 and surrounding

seawater (b) show that, although not identical, a clear clustering of the banding patterns is seen. Regardless of the year, samples of endosomal regions

are more similar to each other than to the cortex samples of the same individual. Replicate subsamples from one individual (May 2005) (c) show identical

banding patterns and precise differences between endosome and cortex, as well as to several nearby seawater samples, which differ to some extent.
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a higher diversity: 26 and 13 OTUs were identified in cortex

and endosome, respectively (four-fold higher compared

with cortex in 2004). The total number of OTUs obtained

from the sponge cortex (30) was higher than each of the

values calculated individually for 2003 (26) and 2004 (6).

Applying rarefaction analysis, regression (2) always

showed higher r2 values and led to a higher estimated total

diversity (Fig. 3, Table 1). According to regression (1), the

total bacterial diversity seems to be well covered by the gene

libraries obtained from the sponge sampled in June 2004

(88–103%). However, rarefaction analysis using regression

(2) demonstrated that these proportions are overestimated

under regression (1). When applying regression (2),

c. 48–76% of the diversity seems to be covered by the clone

libraries in this study (Table 1). Only three phylotypes were

obtained from endosome or cortex in both years. The

majority of the sequences were found only in one of the

years. Thus, the total diversity of endosome- and cortex-

associated sequences (as determined by rarefaction analy-

sis), respectively, is much higher if both years are included

than if each year is considered separately. These differences

in the diversity possibly demonstrate annual and seasonal

variation in the bacterial communities.

Phylogenetic analysis

A high phylogenetic diversity was observed for the 171

bacterial sequences obtained from both sponge samples

and surrounding seawater, including members of the Alpha-

proteobacteria, Betaproteobacteria, Gammaproteobacteria

and Deltaproteobacteria, Bacteroidetes, Verrucomicrobia,

Planctomycetales, Gemmatimonadales, Acidobacteria, Actino-

bacteria, Spirochaeta and Cyanobacteria (Table 2). However,

the majority of sequences was affiliated with the Proteobac-

teria (38%), the Cyanobacteria (27%) and the Bacteroidetes

(25%).

Some phylotypes were found in T. aurantium from

both years. They form monophyletic clusters (i) related to

the Betaproteobacteria (Tethya-I, Fig. 4a), (ii) affiliated with

the Cyanobacteria (Tethya-II, Fig. 4b) and (iii) within the

Bacteroidetes (Tethya-III, Fig. 4c). Within each of these

Table 1. Observed and estimated total bacterial diversity of phylotypes (OTUs) in the different sponge and seawater samples. Rarefaction analysis and

the nonparametric richness estimator chao1 were used for diversity estimation. Rarefaction analysis was conducted with a commonly used regression

(1) and a modified regression (2). In all cases regression (2) gave higher r2 values and a higher expected diversity than regression (1). Except for the

seawater clone library, chao1 coverage resembles total coverage estimated by the use of regression (2). Total diversity was best covered by the analysed

clones for the clone library from the sponge cortex in 2004 (76–103% depending on method used)

Clone library n OTU

Rarefaction analysis (RA) Chao1

Regression (1) Regression (2)

Schao1 Cchao1a1 r2RA1 CRA1 a2 r2RA2 CRA2

Seawater 2004 41 27 46.2 0.99976 58% 56.5 0.99993 48% 88.2 31%

Sponge cortex total 66 30 41.1 0.99816 73% 67.7 0.99996 44% 59.0 51%

Sponge cortex 2003 37 26 49.5 0.99992 52% 56.6 0.99998 46% 60.0 43%

Sponge cortex 2004 29 6 5.8 0.97321 103% 7.9 0.99814 76% 6.7 90%

Sponge endosome total 65 21 23.0 0.99246 91% 36.1 0.99954 58% 35.5 59%

Sponge endosome 2003 33 13 14.8 0.99599 88% 20.5 0.99968 63% 20.6 63%

Sponge endosome 2004 32 9 9.1 0.99010 99% 11.8 0.99920 76% 12.4 73%

n, number of clones in clone library; OTU, number of phylotypes/OTU in clone library; a, asymptote of regression equation, giving the estimated total

diversity; r2, square of correlation-coefficient; C, OTU/estimated diversity, a measure of coverage of a clone library; Cchao1=Observed phylotypes/

predicted SChao1 =Coverage.

Fig. 3. Example analytical rarefaction curve plotted for one sponge-

derived 16S rRNA gene clone library (sponge cortex 2004). The expected

number of OTUs as determined by the analytical algorithm described by

Hurlbert (1971) were plotted against the number of analysed clones

(circles). Extrapolated regression curves (solid line and dashed line) are

shown for the different regression Equations (1) and (2). The expected

total diversity determined by the asymptotes (a1/a2) is indicated by

dotted lines. Regression (1), which has been used in former studies

(Webster et al., 2004; Yakimov et al., 2006), results in a lower expected

total diversity compared with regression (2) (a1o a2) with also lower

values for the nonlinear coefficient of determination (r21o r22).
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Table 2. List of phylogenetic affiliations of 16S rRNA gene clone sequences obtained from the cortex and endosome of Tethya aurantium sampled in

2003 and 2004 as well as surrounding seawater (2004)

Clone Source

Length

[bp] Next relative Acc.

Overlap

[bp] Identity

Phylogenetic

affiliation

TAA-10-30v [1] Cortex 2003 1498 Sponge clone L35 (Latrunculia apicalis) AY321419 881 93% Betaproteobacteria- related

TAA-5-01v [12] Cortex 2004 1489 Sponge clone L35 (Latrunculia apicalis) AY321419 882 94% Betaproteobacteria- related

DGGE TA-Ia [2] Cortex 03/04 142 Sponge clone HRV40 (Halichondria

panicea)

UBZ88592 113 99% Betaproteobacteria- related

TAA-10-50v [1] Cortex 2003 1376 Mangrove bacterioplankton clone

DS143

DQ234225 1376 96% Gammaproteobacteria,

Oceanospirallales

TAA-10-78v [1] Cortex 2003 1393 Sponge clone E01-9c-26 (Axinella

verrucosa)

AJ581351 1312 95% Gammaproteobacteria,

Oceanospirallales

TAA-10-33v [2] Cortex 2003 1388 Uncultured bacterium clone

A314926

AY907761 1216 93% Gammaproteobacteria

TAA-10-62v [1] Cortex 2003 1372 Gammaproteobacterium

17X/A02/237

AY576771 1375 91% Gammaproteobacteria

TAA-10-90v [2] Cortex 2003 1387 unc. sediment proteobacterium

SIMO-2184

AY711550 810 93% Gammaproteobacteria

TAA-10-60v [1] Cortex 2003 1393 Uncultured bacterium clone

SDKAS1_6

AY734243 1290 91% Gammaproteobacteria,

Coxiella group

TAA-10-18v [1] Cortex 2003 1303 Marine Alphaproteobacterium

clone MB11B07

AY033299 1313 99% Alphaproteobacteria

TAA-5-11v [2] Cortex 2004 1405 Seamount Alphaproteobacterium clone

JdFBGBact_40

AF323257 1174 88% Alphaproteobacteria

TAA-10-03v [1] Cortex 2003 1367 Mucus bacterium 23 AY654769 1175 95% Alphaproteobacteria

TAA-10-13v [1] Cortex 2003 1335 Hypersaline bacterium clone E6aH10 DQ103609 765 92% Alphaproteobacteria

TAA-10-23v [2] Cortex 2003 1404 Holophaga sp. oral clone CA002 AF385537 1184 93% Deltaproteobacteria

TAA-5-46v [1] Cortex 2004 1435 Synechococcus sp. WH 8016 AY172834 1436 99% Cyanobacteria,

Synechococcus group

TAA-10-02v [3] cortex 2003 1339 Synechococcus sp. WH 8016 AY172834 1322 99% Cyanobacteria,

Synechococcus group

TAA-10-19v [1] Cortex 2003 1335 Antithamnion sp. plastid DANN X54299 1335 95% Cyanobacteria, chloroplasts

TAA-10-96v [3] Cortex 2003 1387 Tenacibaculum lutimaris strain TF-42 AY661693 1303 98% Bacteroidetes,

Flavobacteriaceae

TAA-10-10v [4] Cortex 2003 1368 Flavobacteriaceae bacterium CL-TF09 AY962293 1368 96% Bacteroidetes,

Flavobacteriaceae

TAA-10-14v [2] Cortex 2003 1392 Unc. Bacteroidetes bacterium

C319a-R8C-C8

AY678510 1384 97% Bacteroidetes,

Flavobacteriaceae

TAA-10-29v [1] Cortex 2003 1386 Flavobacteriaceae str. SW334 AF493686 1252 96% Bacteroidetes,

Flavobacteriaceae

TAA-10-74v [1] Cortex 2003 1390 Bacterium K2-15 AY345434 1390 90% Bacteroidetes,

Flavobacteriaceae

TAA-10-77v [1] Cortex 2003 1381 Uncultured bacterium clone LC1408B-

77

DQ270634 1180 91% Bacteroidetes,

Flavobacteriaceae

TAA-5-15v [3] Cortex 2004 1430 Bacteroidetes bacterium PM13 AY548770 1201 89% Bacteroidetes,

Flavobacteriaceae

TAA-10-32v [1] Cortex 2003 1385 Microscilla furvescens AB078079 1340 91% Bacteroidetes,

Flexibacteriaceae

TAA-5-103v [10] Cortex 2004 1375 Microscilla furvescens AB078079 1301 91% Bacteroidetes,

Flexibacteriaceae

DGGE TA-II [2] Cortex 03/04 137 Bacteroidetes clone GCTRA14_S AY701461 135 97% Bacteroidetes,

Flexibacteriaceae

TAA-5-25v [1] Cortex 2004 1485 Flexibacter aggregans AB078038 1399 88% Bacteroidetes,

Flexibacteriaceae

TAA-10-06v [1] Cortex 2003 1385 Uncultured marine eubacterium

HstpL64

AF159640 876 92% Planctomycetales

TAA-10-04v [1] Cortex 2003 1387 Uncultured bacterium clone

FS142-21B-02

AY704401 1183 90% Planctomycetales

Continued
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Table 2. Continued.

Clone Source

Length

[bp] Next relative Acc.

Overlap

[bp] Identity

Phylogenetic

affiliation

TAA-10-09v [1] Cortex 2003 1369 Uncultured Pirellula clone 6N14 AF029078 1369 97% Planctomycetales

TAA-10-101v [1] Cortex 2003 1419 sponge clone TK19 (Aplysina

aerophoba)

AJ347028 1416 93% Gemmatimonadales

TAA-10-43 [2] Cortex 2003 1375 Unc. marine bacterium

SPOTSFEB02_70m35

DQ009431 1357 92% Actinobacteria,

Acidimicrobiaceae

TAA-10-01v [1] Cortex 2003 1382 Uncultured Actinobacterium

clone Bol7

AY193208 1365 96% Actinobacteria

TAI-8-03v [1] Endosome 2003 1436 Sponge clone L35 (Latrunculia apicalis) AY321419 881 94% Betaproteobacteria- related

TAI-2-47f [12] Endosome 2004 1436 Sponge clone L35 (Latrunculia apicalis) AY321419 882 94% Betaproteobacteria- related

DGGE TA-Ib [2] endosome 03/04 142 Sponge clone HRV40 (Halichondria

panicea)

UBZ88592 113 99% Betaproteobacteria- related

TAI-2-153v [2] Endosome 2004 1384 Sponge clone 34P16 (Phyllospongia

papyracea)

AY845231 950 86% Gammaproteobacteria

TAI-8-61v [1] Endosome 2003 1370 Uncultured marine bacterium clone

SPOTSAUG01_5m75

DQ009136 1370 99% Gammaproteobacteria

TAI-8-75 [2] Endosome 2003 864 Uncultured Gammaproteobacterium

KTc1119

AF235120 860 99% Gammaproteobacteria

TAI-8-99k [1] Endosome 2003 462 Uncultured Gammaproteobacterium

clone PI_4j5b

AY580744 438 100% Gammaproteobacteria

TAI-8-76v [4] Endosome 2003 1370 Uncultured marine bacterium clone

SPOTSAPR01_5m185

DQ009135 1370 99% Gammaproteobacteria

TAI-8-20v [2] Endosome 2003 1388 Unidentified Gammaproteobacterium

OM60

U70696 1389 99% Gammaproteobacteria

TAI-8-64v [1] Endosome 2003 1339 Photobacterium phosphoreum strain

RHE-01

AY435156 1303 99% Gammaproteobacteria

TAI-2-166v [5] Endosome 2004 1443 Cyanobacterium 5X15 AJ289785 1443 99% Cyanobacteria,

Synechococcus group

TAI-8-58v [6] Endosome 2003 1332 Cyanobacterium 5X15 AJ289785 1331 99% Cyanobacteria,

Synechococcus group

TAI-8-74v [9] Endosome 2003 1340 Synechococcus so. Almo3 AY172800 1326 99% Cyanobacteria,

Synechococcus group

TAI-2-160v [6] endosome 2004 1419 Synechococcus sp. RS9920 AY172830 1402 99% Cyanobacteria,

Synechococcus group

TAI-8-17v [3] Endosome 2003 1372 Flexibacter sp. IUB42 AB058905 1375 95% Bacteroidetes,

Flavobacteriaceae

TAI-8-94v [1] Endosome 2003 1380 Uncultured marine bacterium ZD0255 AJ400343 1381 96% Bacteroidetes,

Flavobacteriaceae

TAI-8-51v [1] Endosome 2003 1388 Uncultured CFB group bacterium clone

AEGEAN_179

AF406541 1368 97% Bacteroidetes,

Flavobacteriaceae

TAI-2-145v [1] Endosome 2004 1438 Uncultured marine bacterium clone

Chl1.12

DQ071033 1419 99% Bacteroidetes,

Flavobacteriaceae

TAI-2-81v [1] Endosome 2004 1372 Uncultured marine bacterium clone

SPOTSAPR01_5m235

DQ009115 1353 97% Bacteroidetes,

Flavobacteriaceae

TAI-2-123v [1] Endosome 2004 1385 Flexibacter aggregans strain:IFO 15974 AB078038 1457 88% Bacteroidetes,

Flexibacteriaceae

TAI-2-130f [3] Endosome 2004 1418 Uncultured marine eubacterium

HstpL83

AF159642 1008 99% Planctomycetes

TAI-2-28v [1] Endosome 2004 1407 Uncultured Verrucomicrobia

Arctic96BD-2

AY028221 1193 95% Verrucomicrobia

TAI-8-67v [1] Endosome 2003 1369 Uncultured bacterium clone

ELB16-004

DQ015796 1369 98% Actinobacteria

TAU-7-56k [1] Seawater 2004 430 Uncultured Gammaproteobacterium

clone SIMO-2629

DQ189604 367 99% Gammaproteobacteria

TAU-7-53p [1] Seawater 2004 937 Uncultured marine bacterium clone

SPOTSOCT00_5m102

DQ009138 882 98% Gammaproteobacteria

Continued
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clusters, sequences share 4 99% similarity. Of special

interest is cluster Tethya–I, which is represented by 26 clone

sequences (19%) and was found in the cortex and endosome

of all T. aurantium individuals. Tethya-I forms a monophy-

letic cluster with sponge-derived 16S rRNA gene sequences

from different sponges from Antarctic (Webster et al., 2004)

and Australian waters (Taylor et al., 2004), as well as the

Mediterranean Sea (Althoff et al., 1998). This sponge-

specific monophyletic cluster is related to the Betaproteo-

bacteria and branches deeply (dotted frame in Fig. 4a). In

addition, the DGGE band TA-I, assigned to the sponge-

specific cluster Tethya-I, was unique to all T. aurantium

Table 2. Continued.

Clone Source

Length

[bp] Next relative Acc.

Overlap

[bp] Identity

Phylogenetic

affiliation

TAU-7-30p [4] Seawater 2004 835 uncultured Gammaproteobacterium

CHAB-III-7

AJ240921 840 98% Gammaproteobacteria

TAU-7-93 [1] Seawater 2004 496 Uncultured Gammaproteobacterium

OCS44

AF001650 495 99% Gammaproteobacteria

TAU-7-25 [1] Seawater 2004 407 Uncultured Gammaproteobacterium

NAC11-19

AF245642 407 97% Gammaproteobacteria

TAU-7-100v [1] Seawater 2004 1509 Uncultured Gammaproteobacterium

KTc1119

AF235120 1491 99% Gammaproteobacteria

TAU-7-63p [1] Seawater 2004 866 Uncultured bacterium clone MP104-

1109-b35

DQ088799 843 99% Gammaproteobacteria

TAU-7-71p [3] Seawater 2004 866 Uncultured bacterium MabScd-NB AB193929 833 99% Alphaproteobacteria

TAU-7-36p [1] Seawater 2004 858 Uncultured Proteobacterium clone

SIMO-855

AY712392 748 99% Alphaproteobacteria

TAU-7-38 [1] Seawater 2004 414 Uncultured bacterium clone CD3B11 AY038391 410 97% Alphaproteobacteria

TAU-7-44p [1] Seawater 2004 862 Uncultured Alphaproteobacterium

clone PI_4t1g

AY580547 809 95% Alphaproteobacteria

TAU-7-79v [1] Seawater 2004 1438 Unidentified eukaryote clone OM21

plastid 16S rRNA gene

U32671 1251 96% Cyanobacteria, chloroplasts

group

TAU-7-26p [2] Seawater 2004 747 Environmental clone OCS50 chloroplast

gene

AF001656 746 98% Cyanobacteria, chloroplasts

group

TAU-7-39p [1] Seawater 2004 833 Unidentified haptophyte OM153 U70720 768 95% Cyanobacteria, chloroplasts

group

TAU-7-57p [1] Seawater 2004 801 Uncultured diatom clone Hot Creek 8 AY168751 802 95% Cyanobacteria, chloroplasts

group

TAU-7-73p [1] Seawater 2004 756 Unidentified eukaryote clone OM20 U32670 755 98% Cyanobacteria, chloroplasts

group

TAU-7-97p [3] Seawater 2004 803 Environmental clone OCS20 AF001654 800 98% Cyanobacteria, chloroplasts

group

TAU-7-68v [4] Seawater 2004 1436 Neoptilota densa plastid DQ028877 1334 94% Cyanobacteria, chloroplasts

group

TAU-7-74p [1] Seawater 2004 864 Environmental clone OCS162 AF001659 617 92% Cyanobacteria, chloroplasts

group

TAU-7-50p [1] Seawater 2004 803 Uncultured Bacteroidetes bacterium

clone SIMO-780

AY712317 580 96% Bacteroidetes,

Flavobacteriaceae

TAU-7-28p [2] Seawater 2004 690 Uncultured Bacteroidetes bacterium

clone CONW90

AY828420 582 99% Bacteroidetes,

Flavobacteriaceae

TAU-7-43 [1] Seawater 2004 476 Uncultured Bacteroidetes bacterium

clone CONW90

AY828420 457 95% Bacteroidetes,

Flavobacteriaceae

TAU-7-02v [1] Seawater 2004 1490 Uncultured marine bacterium clone

Chl1.12

DQ071033 1452 99% Bacteroidetes,

Flavobacteriaceae

TAU-7-69v [3] Seawater 2004 1487 Unc. marine bacterium

SPOTSAPR01_5m235

DQ009115 1468 97% Bacteroidetes,

Flavobacteriaceae

TAU-7-61p [1] Seawater 2004 813 Unc. Bacteroidetes bacterium

3iSOMBO27

AM162576 817 96% Bacteroidetes,

Flexibacteriaceae

TAU-7-58 [1] Seawater 2004 277 Uncultured bacterium gene for 16S

rRNA, clone:JS624-8

AB121106 288 93% Spirochaetes

TAU-7-55p [1] Seawater 2004 804 Bacillus sp. C93 DQ091008 797 99% Firmicutes, Bacillus group

Numbers in brackets indicate no. of sequences in the phylotype represented by listed clones.
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samples but was not found in seawater. Moreover, no clone

sequences belonging to the Betaproteobacteriawere obtained

from seawater in this study.

Within the Cyanobacteria, three phylotypes comprising

30 Synechococcus species sequences (22%) were obtained

from T. aurantium-derived clone libraries. One of the

phylotypes was found repeatedly in consecutive years

(Tethya-II, Fig. 4b). Synechococcus species sequences were

found mainly in the endosome samples (Table 2), but not in

the surrounding seawater. All cyanobacteria-like sequences

obtained from the surrounding seawater belonged to chlor-

oplasts of different algae. Only one chloroplast sequence was

also found in the sponge cortex in April 2003.

Within the Bacteroidetes one bacterial cluster (Tethya-III)

of Flexibacteriaceae was repeatedly found in T. aurantium

(Fig. 4c, Table 2). The sequences of the cluster shared highest

similarity with Microscilla furvescens (AB078079, 91%) and

were found in the cortex only. Additionally, DGGE band TA-

II, present exclusively in cortex samples and absent from

endosome and seawater, was assigned to this cluster (Fig.

4c). A further cluster of T. aurantium-derived Flexibacter-

iacea was found in both endosome and cortex in June 2004

samples (Fig. 4c). Similarity between the clusters was 90%.

Flexibacteriaceae related (92%) to putative vertically trans-

mitted sponge-symbionts (Enticknap et al., 2006) were

found in the sponge cortex from 2004 only (TAA-5-15v,

Fig. 4c). All other T. aurantium-derived sequences within

the Bacteroidetes belonged to the Flavobacteriaceae and

Saprospiraceae, regardless of their origin from sponge cortex

or endosome (Fig. 4c). All sequences showed a high degree

of similarity to sequences retrieved from various marine

environments (Fig. 4c, Table 2).

Thirty T. aurantium-derived 16S rRNA gene sequences

(22%) were closely related to other sponge-derived 16S

Beta-
proteobacteria

Gamma-
proteobacteria

Alpha-
proteobacteria

Tethya-I

(a)

Fig. 4. Phylogenetic trees constructed from 16S rRNA gene sequences related to the Betaproteobacteria (a), Cyanobacteria (b) and Bacteroidetes (c).

Sequences obtained from Tethya aurantium are shown in bold type. Adriatic seawater clone sequences are underlined. Numbers of represented clones

in each OTU are given in brackets after the clone names. Clusters of T. aurantium-associated bacterial phylotypes found in both years (Tethya-I, Tethya-II

and Tethya-III) are framed with dotted line. The new sponge-specific cluster related to the Betaproteobacteria is framed with a dashed line (a). All trees

were generated using the maximum likelihood method. Tree (a) is based on sequences of 500–1500bp length. The DGGE sequence (o 500) was added

without changing the tree topology using the parsimony method in ARB. Trees (b) and (c) are based on almost complete sequences (b, Z1000 bp; c,

Z1200 bp). Partial sequences (o 1000/o 1200 bp) were added without changing the tree topology using the parsimony method in ARB and are

indicated by dashed branches. The phylogenetic positions of partial sequences were verified by calculation of all length sequences separately.

Bootstrapping analysis (100 datasets) was conducted. Values equal to or greater than 50% are shown. Bootstrap values in parentheses refer to tree

calculations including short sequences. The scale bars indicate the number of substitutions per nucleotide position.
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rRNA gene sequences. Twenty-six of these belonged to

cluster Tethya-I, with the remaining four sequences affiliated

to the Gemmatimonadales, the Gammaproteobacteria, the

Actinobacteria and the Acidobacteria: Clone TAA-10-101v,

obtained from T. aurantium cortex in 2003, clustered

monophyletically with the sponge-specific cluster ‘uncer-

tain-I’ described by Hentschel et al. (2002) within the

Gemmatimonadales (represented by sponge clone TK19,

Table 2). Clone TAA-10-78v from the T. aurantium cortex

(April 2003) was related to sequences obtained from sponges

as well as other marine habitats within the Gammaproteo-

bacteria (data not shown). BLAST search results showed

closest association to sponge-associated bacteria (Table 2),

but phylogenetic analysis could not identify monophyly of

the sponge-derived gammaproteobacterial sequences. TAI-

2-153v, representing two sequences obtained from the

sponge endosome in 2004, was most similar to the Phyllos-

pongia papyracea-associated Gammaproteobacteria clone

34P16 (Ridley et al., 2005) (sequence similarity of 86%,

Table 2). Again, phylogenetic analysis did not support

monophyletic clustering of the sponge-derived sequences.

Actinobacteria as well as Acidobacteria derived from sponges

have been reported previously (Hentschel et al., 2002; Imh-

off & Stöhr, 2003; Kim et al., 2005; Schirmer et al., 2005) and

sponge-specific clusters have been described (Hentschel

et al., 2002). Tethya aurantium-derived sequences TAI-8-

Chloroplasts

Synechococcus sp.
Tethya-II

(b)

Fig. 4. Continued
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Flex

Flav

Sapr

Tethya-III

aFlav= Flavobacteriaceae, Sapr= Saprospiraceae, Flex= Flexibacteriaceae

(c)

Fig. 4. Continued
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67v and TAA-10-43v showed similarities of 84–95% to

different sponge-associated Actinobacteria sequences but

did not group with any of the three described sponge-

specific Actinobacteria clusters (Hentschel et al., 2002).

TAA-10-23v, which represents two clones obtained from

the T. aurantium cortex, showed o 90% sequence similarity

to the sponge-specific cluster Acido-I (Hentschel et al., 2002)

and did not cluster monophyletically with it.

Several sequences obtained from T. aurantium were

not specifically related to sequences found in sponges,

but were either closely related to seawater-derived

bacteria or to bacteria associated with other marine macro-

organisms (Vergin et al., 1998; Cho & Giovannoni, 2004;

Brown et al., 2005) [i.e. TAI-8-61v, TAI-8-64v, TAI-8-20v

(Gammaproteobacteria) and TAI-2-130v, TAA-10-09v

(Planctomycetales); Table 2]. Bacteria affiliated with the

Gammaproteobacteria (TAU-7-100v/TAI-8-75p) and the

Flavobacteriaceae (Bacteroidetes) (TAI-2-145v/TAU-7-02v

and TAI-2-81v/TAU-7-69) were found in both T. aurantium

endosome and seawater in this study. No sequence obtained

from the sponge cortex showed similarity to seawater-

derived sequences obtained in this study.

Alphaproteobacteria were exclusively found in the

T. aurantium cortex and in ambient seawater in June 2004

(Table 2). The sponge-derived sequences were related to

bacterioplankton-derived sequences (Suzuki et al., 2001),

coral mucus-associated bacteria (O. Koren & E. Rosenberg,

unpublished data, GenBank accession no. AY654769) and a

filamentous bacterium from a wastewater treatment plant

(Levantesi et al., 2004). Alphaproteobacteria closely related

to those found in seawater in this study (TAU-7-44p and

TAU-7-38) have been obtained from sponges (Halichondria

panicea and Halichondria okadai) previously (Althoff et al.,

1998; I. Okano et al., unpublished data, GenBank accession

no. AB054143).

Discussion

Although sponges do not possess organs or real tissues,

cortex and endosome are clearly differentiated with respect

to structure and function. For the first time, our studies on

Tethya aurantium have revealed that they also differ in their

bacterial communities. Distinct phylotypes, represented by

DGGE bands and 16S rRNA gene clone sequences, were

affiliated with the different regions of the sponge.

Tethya aurantium supports a relatively low diversity of

specifically associated bacteria. Only three bacterial phylo-

types were found in sponge specimens from both years

investigated. For diversity estimation we applied rarefaction

analysis in combination with two nonlinear regressions. The

commonly used regression (1) was shown to underestimate

systematically the total diversity, while regression (2) results

in estimates comparable with those from chao1. Regression

(2) was demonstrated to be significantly better suited as a

regression for fitting rarefaction curves and predicting total

diversity, and therefore is recommended to be used for

diversity estimation of clone libraries in future studies.

Under application of the more conservative regression (2),

rarefaction analysis displays only two (cortex) and four

(endosome) expected additional bacterial phylotypes

(OTUs) not identified in this study for the T. aurantium

specimen from 2004.

One characteristic cluster closely related to the Betapro-

teobcteria (cluster Tethya-I) is associated with both endo-

some and cortex of T. aurantium. Betaproteobacteria, with

the exception of ammonium oxidizers (Voytek & Ward,

1995), are not abundant in open oceans (Giovannoni &

Rappé, 2000), but are characteristic of freshwater habitats

(Methe et al., 1998; Schweitzer et al., 2001) and have also

been observed in coastal waters (Rappe et al., 1997; Fuhr-

man & Ouverney, 1998). Nonetheless, Betaproteobacteria-

affiliated bacteria have previously been found in sponges by

culture-independent methods (Althoff et al., 1998; Webster

et al., 2001, 2004; Thoms et al., 2003; Taylor et al., 2004). In

Rhopaloides odorabile, they were located intracellularly in

some cases by fluorescence in situ hybridization (Webster

et al., 2001). Tethya-I clusters monophyletically with those

other sponge-derived sequences (Althoff et al., 1998; Web-

ster et al., 2004; Taylor et al., 2004, 2005), forming a sponge-

specific monophyletic cluster (Fig. 4a). Our studies indicate

that this cluster branches deeply within the Betaproteobac-

teria, but its exact phylogenetic affiliation remains uncer-

tain. Phylogenetic analysis using the backbone tree and the

parsimony method implemented in the ARB program

(Ludwig et al., 2004) demonstrated a consistent affiliation

with the Betaproteobacteria, although within this group the

phylogenetic position of the Tethya-I cluster largely depends

on the (DNA)-filter used. By contrast, complete phyloge-

netic calculations including a reasonable number of repre-

sentatives of the Betaproteobacteria, Gammaproteobacteria

and Alphaproteobacteria, using the ML method (Felsenstein,

1981), placed the sponge-specific cluster outside the known

Betaproteobacteria (Fig. 4a).

Finding of Tethya-I-related sequences in Halichondria

panicea from the Adriatic Sea but not in individuals from

the North Sea or the Baltic Sea (Althoff et al., 1998) possibly

indicates a synergistic sponge–microbe association. Yet, the

occurrence of members of the Betaproteobacteria-related

sponge-specific cluster is not limited to the Mediterranean

Sea, as formerly unaffiliated sequences obtained from the

Antarctic sponges Latrunculia apicalis and Mycale acerata

(Webster et al., 2004) can now be assigned to the cluster. As

Betaproteobacteria are abundant in freshwater habitats

(Methe et al., 1998; Schweitzer et al., 2001) a freshwater

origin cannot be excluded for the T. aurantium-derived

sequences obtained from the river-fed Limksi kanal.
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However, no Betaproteobacteria were found in the seawater

surrounding the T. aurantium habitat and furthermore no

freshwater-derived bacteria closely related to the Tethya-I

cluster have been described.

Cyanobacterial associations in sponges have been known

for many years. Within the Synechococcus group one speci-

fically sponge-associated cluster and several additional

sponge-associated Cyanobacteria have been identified

(Steindler et al., 2005). Besides symbiotic associations, the

genus Synechococcus is also known as a member of marine

picoplankton communities and serves as food for different

filter-feeding animals, including sponges (Pile et al., 1996).

For T. aurantium no cyanobacterial associations have been

reported in the literature. Interestingly, we found Synecho-

coccus species sequences making up a major part of the

endosome-derived clone library (n= 26%, 39%) (Fig. 4b,

Table 2). They represent three closely related phylotypes,

only distantly related to the sponge-specific group of

Synechococcus species strains. They show high sequence

similarity to several cultured and uncultured Synechococcus

strains, also including sponge- and sponge-larvae-associated

uncultured strains obtained from Chondrilla sp. and Mycale

laxissima (Usher et al., 2004; Enticknap et al., 2006). The

close relationship to putative vertically transmitted sponge-

associated Synechococcus strains indicates constant and ob-

ligate association to sponges. However, unlike the T. aur-

antium-derived sequences in this study, the closely related

cyanobacterial symbionts from Chondrilla sp. were also

found in seawater. It was hypothesized that these Cyanobac-

teria have become symbiotic with sponges relatively recently

(Usher et al., 2004). Owing to the close phylogenetic

relationship to planktonic Synechococcus strains, a seawater

origin cannot be excluded for the T. aurantium-associated

strains either. Cyanobacteria in sponges have generally been

found in the thin (few millimetres) outer tissue regions,

where light energy is available for photosynthesis. The

endosome of T. aurantium is covered by a thick and dense

cortex region, but spicule bundles might function as a

natural light conductor, similar to fibre-optic systems, as

was postulated for the growth of the sponge-associated

green alga Ostreobium sp. in Tethya seychellensis (Gaino &

Sará, 1994).

A specifically cortex-associated bacterial cluster was iden-

tified within the division Bacteroidetes, affiliated with the

family Flexibacteriaceae (clone cluster Tethya-III and DGGE

band TA-II, Fig. 2). Although several previous studies have

demonstrated Bacteroidetes belonging to the family Flavo-

bacteriaceae to be associated with sponges (Webster et al.,

2001, 2004; Lafi et al., 2005), only very recently have sponge-

associated Flexibacteriaceae been obtained from sponge

larvae by culture-independent methods (Enticknap et al.,

2006). These putative vertically transmitted sponge sym-

bionts are closely related to sequences obtained from T.

aurantium cortex in 2004 and distantly related to cluster

Tethya-III found in both years. Cluster Tethya-III has been

observed in sponges for the first time in this study. The

bacteria were not detected in the ambient seawater and in

the sponge endosome. Given the occurrence in the sponge

cortex exclusively and presence in specimens from consecu-

tive years as well as the phylogenetically relatively

large distance (o 91%) to known sequences, we assume

specific association between theMicroscilla-like bacteria and

T. aurantium.

As sponges are filter-feeding animals, a seawater origin of

sponge-derived bacterial sequences cannot be excluded

despite repeated washing steps in sterile seawater prior to

DNA extraction. Several sequences obtained from seawater

in this study share high similarity with clone sequences

found in both T. aurantium and other sponges. Thus, some

of the endosome-associated bacterial sequences may solely

resemble DNA of ambient seawater bacteria ingested in the

choanocyte chambers. Additionally, the high variability of

different phylotypes observed either implies seasonal

differences in the sponge-associated bacterial communities

or possibly reflects seasonal microbial population dynamics

in the ambient seawater. The similarity between the

sponge endosome-associated bacterial community and the

ambient seawater bacterioplankton as demonstrated in

DGGE and phylogenetic analysis again emphasizes the need

to differentiate between sponge-specific and merely ingested

bacteria.

Hentschel et al. (2002) found 70% of all sponge-derived

sequences clustering together in different phylogenetic

clades. By contrast, a minor fraction (22%) of the T.

aurantium-derived sequences were closely related to other

sponge-associated bacteria. Apart from cluster Tethya–I

related to the Betaproteobacteria, only two additional se-

quences obtained from T. aurantium cluster with other

known sponge-derived sequences. The monophyly of the

sponge-specific cluster indicates common ancestry for

members of this group. Furthermore, limitation of these

bacteria to associations with the phylum Porifera can be

hypothesized. However, because abundance and diversity of

bacteria associated with different sponges depends to a large

extent on the sponge species and possibly on seasonal

influences, a uniform specifically sponge-associated bacter-

ial community as proposed by Hentschel et al. (2002)

probably does not exist.

We suggest a specific association of both the Betaproteo-

bacteria-related cluster Tethya–I and the Flexibacteriaceae

cluster Tethya-III with the sponge T. aurantium. The new

cluster of specifically associated Flexibacteriaceae has so far

been exclusively found in T. aurantium and its presence in

sponges of other taxonomic affiliation and geographical

regions remains to be investigated. The unusual association

of Synechococcus species strains with the T. aurantium

FEMS Microbiol Ecol xx (2006) 1–11c� 2006 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

14 V. Thiel et al.

 124



APPENDIX 
  

endosome and the putative light conduction by sponge

spicule bundles will be studied in future research.
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