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Chapter 1

Introduction

In the last fifteen years the Internet has grown dramatically—on the one
hand in terms of the number of users and on the other hand in terms of
the number of available services. Today it is common to do online banking,
to purchase goods or to take part in auctions online. With the increasing
use of online services it has gotten more and more important to ensure the
security of these services. The users of such services want to be sure that
the service they are using is secure. But what does it mean for a service
to be secure? What are the possible attack scenarios these services have to
withstand? How can users be protected against these attacks? All these
questions naturally arise in the context of security of services. To ensure
security of services cryptographic protocols are used for the communication
between the parties involved, e.g., the online bank and the customer.
Cryptographic protocols are communication protocols which are designed

to provide security assurances of various kinds, using cryptographic mech-
anisms. According to [MvV97] a cryptographic protocol is “a distributed
algorithm defined by a sequence of steps precisely specifying the actions re-
quired of two or more entities to achieve a specific security objective”.
There are cryptographic protocols for various kinds of tasks—from very

fundamental ones such as key exchange protocols to more complex ones such
as contract signing protocols. As the complexity of the protocols increases the
possible attacks and security objectives are getting more involved and subtle.
To give a flavor of what “security objectives” may look like we explain two
examples: the key exchange problem and the contract signing problem.
The key exchange problem for two parties can be described as follows:

7



8 CHAPTER 1. INTRODUCTION

There are two participants, A (= Alice) and B (= Bob), which want to
exchange a secret over an insecure channel such that at the end of the com-
munication A and B share a secret and the secret is only known to A and
B.

The contract signing problem for two parties is the following: two partici-
pants (called signers) A and B have agreed upon a contractual text and they
want to exchange their signatures, i.e., their commitments on the contractual
text.

Of course, for both problems mentioned above the solutions are more or
less trivial if Alice and Bob are sitting together face to face: For the key
exchange problem they may agree upon a secret directly and for the contract
signing problem the usual procedure where Alice and Bob simultaneously
sign a copy of the contract and than exchange these copies works out.

How can these real world solutions of the key exchange problem and the
contract signing problem be transfered to the digital world in which the com-
munication between Alice and Bob is carried out over some communication
channel that is not secure in some sense, i.e., what are secure key exchange
and secure contract signing protocols?

If, for example, we try to model the real world procedure of signing con-
tracts as a protocol in a näıve way one could describe this contract signing
protocol as follows: Both signers have copies of the contractual text and both
send a signed copy to the other signer. But, of course, there is an asymmetry
in this simple protocol. If Alice signs her copy of the contract and sends it
to Bob before Bob sends his signed copy to Alice it may happen that Bob
receives a valid contract but Alice is not able to enforce getting a signed con-
tract as well. This is not desirable, it is an unfair situation for Alice. Thus,
a first security objective for a contract signing protocol is fairness. One way
of defining fairness is: A contract signing protocol is fair if whenever the ex-
ecution of the protocol is completed either both signers have a valid contract
or neither does [ASW98].

Due to the distributed nature of the execution of cryptographic protocols,
constructing and analyzing them is highly error-prone. One of the most
prominent examples is the key exchange protocol of Needham and Schroeder
[NS78]. The protocol was believed to be secure until after 17 years Lowe
found an attack on this protocol with an automatic tool [Low95]. This and
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other examples show that a rigorous analysis of cryptographic protocols is
indispensable. To start an analysis of a cryptographic protocol one first has
to decide how protocols and their execution (including the capabilities of
the intruder) are modeled and how security properties are specified. Then,
of course, many questions arise. Among the most important ones are the
following:

Decidability When formulating the question if a given cryptographic
protocol is secure as a decision problem, we ask: Is this problem decid-
able or undecidable?

Algorithms For decidable decision problems we may ask: Is there a
practical algorithmic solution to this problem?

Impossibility Are there security objectives that cannot be achieved
by cryptographic protocols?

When modeling cryptographic protocols one typically distinguishes be-
tween two views of cryptography: The computational view and the sym-
bolic view. In the computational view one deals with real implementations
of cryptographic primitives, modeled for example by some kind of Turing
machines. In this view messages may be viewed as bit strings. This low
level view leads to tedious security proofs and there are not many tools for
automatically proving security in the computational view (see for example
Blanchet [Bla06]). In the symbolic view the level of abstraction is quite
high: cryptographic primitives are modeled as black boxes and are assumed
to function perfectly. In this view messages are often represented as terms
over a suitable signature. One great advantage of the symbolic view is that
there are numerous tools that support automatic verification of protocols,
see for example Armando et al. [ABB+05]. In this thesis we concentrate on
the symbolic view of cryptography.

In the symbolic view of cryptography the capabilities of the intruder are
mostly variants of a so called Dolev-Yao intruder going back to the work
of Dolev and Yao [DY83]. The standard Dolev-Yao intruder is assumed to
control the network, can construct messages from his knowledge and can
send them to protocol participants of his choice. One of the formalisms (also
used in [DY83]) to specify the actions of protocol participant and to describe
the capabilities of the intruder to manipulate messages is term rewriting, i.e.,
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actions of protocol participants and abilities of the intruder to manipulate
messages are described by term rewriting rules.
When answering the three questions stated above the kind of security

properties of cryptographic protocols that are investigated has a great im-
pact. The security properties differ in the way they are taking the possible
executions of a protocol into account. Here, we distinguish between reachabil-
ity properties (which are special cases of trace based properties) and strategy
properties (which are special cases of branching time properties).

Reachability Properties

As mentioned above one of the most fundamental type of cryptographic pro-
tocols are key exchange protocols. Of course, at the end of the protocol
execution the key being exchanged should only be known to the two ex-
changing parties involved in the protocol. This security requirement can be
formulated as a so called reachability property: is there a possible trace of
the protocol execution where the intruder gets to know the secret key at some
point? This problem is also referred to as the secrecy problem. We now give
an overview over the answers given to the questions introduced above in the
context of reachability properties.

Decidability The secrecy problem is undecidable when no bounds on the
number of sessions are imposed is (see Even and Goldreich [EG83]). There are
many classes of restrictions on modeling protocols that lead to decidability of
the secrecy problem, for an intensive discussion see Durgin et al. [DLMS04].

Algorithms In [RT03] Rusinowitch and Turuani have shown that the se-
crecy problem for a bounded number of sessions in presence of a Dolev-
Yao-Intruder is NP-complete, but their work does not provide an appli-
cable algorithm for solving the secrecy problem. An algorithmic solution
of the secrecy and related reachability problems was given in [MS01] by
Millen and Shmatikov. The proposed algorithm is based on constraint solv-
ing. The constraint solving approach has been developed further and led
to industrial strength tools for verifying cryptographic protocols, see, e.g.,
[ABB+05, CV02].
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Impossibility There is a fundamental impossibility concerning fairness of
contract signing protocols. A contract signing protocol is unfair if there is
a state reachable such that both signers have finished their execution of the
protocol and one of the signers has a valid contract and the other signer does
not have a valid contract. The intuition indicates that the asymmetry de-
scribed above for the näıve approach of implementing the real world contract
signing procedure as a protocol can not be resolved. That this is the case was
proved in [EY80, PG99] and is often referred to as the impossibility of fair
exchange without a trusted third party, i.e., there is no fair contract signing
protocol only involving the two signers as participants.

Strategy properties

As an example for a security property that involves strategies we consider bal-
ance of contract signing protocols. Consider the following situation: During
the execution of a contract signing protocol one of the two signers, say Alice,
has both (i) the power to get a valid contract and (ii) the power to abort the
contract signing procedure. In this situation Alice unilaterally can decide
the outcome of the protocol and may use this to get an advantage. Such a
state of the execution of a contract signing protocol is called unbalanced.

To model balance in a formal way one formalizes the notion of power by
“has a strategy”. Thus, a state of a protocol execution is called unbalanced
for one of the signers if the other signer has two strategies: One strategy to
obtain a valid contract as well as one to prevent the other signer from getting
a valid contract.

In the following paragraphs we explain to which extend the guiding ques-
tions stated above were answered in the context of strategy properties.

Decidability The decidability problem concerning strategy properties as
in the case of the secrecy problem was not studied to the same extend as
in the secrecy problem. It is, for example, not known if the problem of
deciding whether a strategy property is fulfilled by a protocol is decidable
when resorting to a bounded number of sessions while imposing no bounds
on the message size.
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Algorithms In [KR02] Kremer and Raskin utilized alternating time tem-
poral logic (ATL) [AHK02] to specify strategy security properties of contract
signing protocols and used a model checker called MOCHA to analyze these
protocols. In their analysis they resort to a finite state space for the possible
execution of the considered protocols.

Impossibility Chadha et al. have shown in [CMSS05] that if a signer acts
optimistically, i.e., he waits for messages of the other signer before contacting
the trusted third party, the other signer has a strategy to get to a point
where he has an advantage against the optimistic signer. In other words it
is impossible to come up with a balanced protocol for an optimistic signer.

Contribution of this Thesis

The contribution of this thesis can be summarized as follows—as above, we
use the questions stated above as a guideline.

Decidability We introduce the alternating µ-calculus (AMC) for crypto-
graphic protocols and show in which cases this logic is decidable and in which
cases it is not. We also give tight complexity bounds for the decidable classes
of this problem.

Algorithms We extend the constraint solving approach developed for
reachability properties to strategy properties and show how to utilize ex-
isting constraint solvers as a black box to decide strategy properties when
a bounded number of sessions is considered and no bound on the message
length is imposed.

Impossibility We give an alternative proof of the impossibility result given
in [CMSS05] based on an axiomatic approach. In order to formulate the
properties of protocols we extend ATL by what we call move selectors. With
move selectors one can talk about different kinds of behaviors (such as honest,
dishonest, and optimistic behavior) of participants in a natural way rather
than model each kind of possible behavior in an ad hoc fashion.
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Structure of this Thesis

In Chapter 2 we give preliminary notation on terms, messages, and rewrite
rules. These notions are the basis for the formal modeling of messages and
protocol rules in Chapters 3 and 4. We also describe the ASW protocol in
more detail as this protocol serves as a running example throughout the rest
of this thesis.

In Chapter 3 we show how to extend the constraint solving approach
for analyzing reachability properties to a special case of strategy properties
with which for example balance can be expressed. Our communication and
intruder model is inspired by the one used in [CKS01] but instead of using
the multiset rewriting approach utilized there we use the term rewriting
approach. In our model participants are described as trees of rewrite rules.
We use trees in order to model the fact that at certain points in a protocol
execution participants must be able to choose between different alternative
actions. Our constraint based algorithm for deciding strategy properties can
use any constraint solver as a black box making it possible to extend existing
constraint based algorithms for deciding reachability properties to handle
strategy properties as well.

In Chapter 4 we introduce the alternating µ-calculus (AMC) as a logic
for specifying security properties of cryptographic protocols. We interpret
AMC formulas over concurrent game structures that are induced by protocol
specifications. As in Chapter 3 participants are modeled as trees. The main
differences to the model of Chapter 3 are that (i) principals act concurrently,
i.e., in each step of the system each participant performs a move and that
(ii) in one step participants can send and receive more than one message
at a time. We introduce a fragment of AMC-formulas called I-monotone.
We show in which cases this fragment is decidable and in which cases this
fragment is not decidable. For the decidable cases we give tight complexity
bounds.

In Chapter 5 we show an impossibility result concerning contract signing
protocols by showing that there is no concurrent game structure satisfying a
specific combination of axioms. To formulate these axioms we extend ATL
by so called move selectors. Move selectors can be used to describe different
behaviors of participants in a natural way. We then use our result to give
an alternative proof of the impossibility result of Chadha et al. [CMSS05]
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mentioned earlier in this introduction.

Pre-published Results

Chapter 3 is heavily based on a submitted paper to TOCL, which, in turn, is
based on the two papers [KK05, KKW05]. Chapter 4 is based on a technical
report [KKT07a] which is a long version of the paper [KKT07b].

Further Related Work

We now discuss related work concerning protocol analysis in the symbolic
view.

One alternative computation model that is used for modelling crypto-
graphic protocols and their execution are process calculi. The most promi-
nent example is an extension of the π-calculus introduced by Milner et al. in
[MPW92]. This extension is called the spi-calculus and was introduced by
Abadi and Gordon in [AG97].

Another computation model used to analyze cryptographic protocols is
the multiset rewriting (MSR) approach. The MSR approach to analyze cryp-
tographic protocols was introduced by Cervesato et al. in [CDL+99]. Based
on this model contract signing protocols were analyzed by hand by Scedrov
et al. in [CKS01].

A computation model inspired by graph theoretic means is the strand
space model introduced by Guttman et al. in [THG99].

The first formal system for the specification of security properties of com-
munication protocols is the Burrows-Abadi-Needham logic (BAN-logic), see
[BAN90]. This logic and variants thereof where utilized to analyze security
properties such as authentication and secrecy. Another logic used in the
context of protocol analysis is the protocol composition logic (PCL) devel-
oped by Durgin et al. in [DMP03]. In the recent past Backes et al. used this
logic to analyze contract signing protocols, see [BDD+05]. In their analysis
only trace-based properties are really addressed since the definition of the
semantics of PCL does not take branching time behavior into account.

Contract signing protocols were analyzed with finite state model checkers,
see for example Shmatikov et al. [SM02]. Drielsma and Mödersheim [DM04]
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analyzed contract signing protocols but the tools they used were not able to
treat real branching time.
Multi party contract signing protocols are analyzed for example by

Chadha et al. by applying ATL to specify security properties and using the
model checker MOCHA to analyze a specific multi party contract signing
protocol, see [CKS04].
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Chapter 2

Preliminaries

In this chapter we introduce basic definitions and explanations that are
needed in subsequent chapters. First, we will define how we model messages
in our communication models used in Chapter 3 and Chapter 4. Second,
we explain the Asokan-Shoup-Waidner (ASW) contract signing protocol in
more detail, see [ASW98]. This protocol will serve as a running example
throughout this thesis.

2.1 Terms and Messages

Our abstraction for messages are terms. Roughly speaking, the symbols of
the corresponding signature correspond to cryptographic primitives. Which
terms we consider is described by a grammar.
From now on let V be a finite set of variables, A a finite set of atoms, K a

finite set of public and private keys, AI an infinite set of intruder atoms. All
these sets are assumed to be pairwise disjoint. The set K is partitioned into a
set Kpub of public keys and a set Kpriv of private keys and there is a bijective
mapping ·−1 : K → K which assigns to every public key the corresponding
private key and to every private key its corresponding public key.
Typically, the set A contains names of principals, atomic symmetric keys,

and nonces (i.e., random numbers generated by principals). We note that
we will allow non-atomic symmetric keys as well. The atoms in AI are the
nonces, symmetric keys, etc. the intruder may generate.
The following grammar defines the core of terms that are used in Chap-

17
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ters 3 and 4.

Tmes ::= V | A | AI | 〈Tmes, Tmes〉 |
{Tmes}s

Tmes
| {Tmes}a

Kpub
| hash(Tmes) |

sig(Kpub, Tmes)

In this grammar, V , A, AI , and Kpub generate any of its elements.
Terms without variables are called messages. The set of messages will be

denoted byM.
As usual, 〈t, t′〉 is the pairing of t and t′, the term {t}s

t′ stands for the
symmetric encryption of t by t′ (note that the key t′ may be any plain term),
{t}a

k is the asymmetric encryption of t by k, the term hash(t) stands for the
hash of t, and sig(k, t) is the signature on t which can be verified with the
public key k.
Note that the above explanations are just to give some intuition on what

these messages mean and how they can be used. In our formal model, there
will be no restriction on the use of these messages in protocol descriptions
except for the rules by which the intruder can derive messages.
By V(t) we denote the set of variables occurring in a term t. The set

Sub(t) of subterms of a term t and the set Sub(E) of subterms of the terms
in a set E of terms are defined in the obvious way.
A substitution assigns terms to variables, that is, it is a function V →

T . The domain of a substitution σ is denoted by dom(σ) and defined by
dom(σ) = {x ∈ V | σ(x) 6= x}. Substitutions are required to have finite
domains. A substitution σ is called ground if σ(x) is a message for each
x ∈ dom(σ). Given two substitutions σ and τ with disjoint domains, their
union σ∪τ is defined in the obvious way. Given a term t and a substitution σ,
the term tσ is obtained from t by simultaneously replacing each occurrence
of a variable x in t by σ(x). If σ and τ are two substitutions, then their
composition, denoted σ ◦ τ , is the substitution defined by (σ ◦ τ)(x) = (xτ)σ

for every x ∈ V .
We say that a term t is used as a verification key in a term t′ if t′ has

a subterm of the form {s}s
t , {s}a

t−1 , or sig(t, s) for some term s. Intuitively,
a verification key is needed to decrypt messages or verify signatures. For
example, if a principal A receives the message m = {〈A,B〉}s

a and wants to
check whether the plain text matches with t′ = 〈A, x〉, then the principal
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first needs to decrypt m with the verification key a.

2.2 ASW Protocol

In this section we explain a well known two party contract signing protocol:
The Asokan-Shoup-Waidner (ASW) protocol. Our informal description of
the ASW protocol follows [SM02] (see this work or [ASW98] for more details).

We write sig[k,m] as abbreviation for 〈m, sig(k,m)〉 and sometimes write
〈m1, . . . ,mn〉 instead of 〈m1, 〈m2, 〈· · · 〈mn−1, 〉〉〉〉. We denote the public or
verification key of a principal A by kA.

The ASW protocol enables two principals A (the originator) and B (the
responder) to obtain each other’s signature on a previously agreed contractual
text contract with the help of a trusted third party (TTP) T , which however
is only invoked in case of problems. In other words, the ASW protocol is an
optimistic two-party contract-signing protocol.

There are two kinds messages that are considered a valid contract in the
ASW protocol:

the standard contract 〈sig[kA,mA], NA, sig[kB,mB], NB〉 and

the replacement contract sig[kT , 〈sig[kA,mA], sig[kB,mB]〉],

where mA= 〈kA, kB, kT , contract, hash(NA)〉, mB = 〈sig[kA,mA], hash(NB)〉,
and NA and NB are nonces.

The ASW protocol consists of four interdependent subprotocols: the ex-
change and abort protocol and two resolve protocols. These subprotocols are
explained next.

Exchange protocol. The basic idea of the exchange protocol is that A first
indicates her interest to sign the contract. To this end, she sends to B the
message sig[kA,mA] as defined above, where NA is a nonce generated by
A. By sending this message, A “commits” to signing the contract. Then,
similarly, B indicates his interest to sign the contract by generating a nonce
NB and sending the message sig[kB,mB] to A. Finally, first A and then
B reveal NA and NB, respectively. The following diagram shows how the
exchange protocol functions:
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Promise to sign contract: mA

Promise to sign contract: mB

Signature: NA

Signature: NB

A B

Abort protocol. If, after A has sent her first message, B does not respond
or B’s answer is not delivered by the network, A may contact T to abort,
i.e., A runs the abort protocol with T . In the abort protocol, A first sends
the message aA = sig[kA, 〈aborted, sig[kA,mA]〉] as an abort request. If T
has not received a resolve request before (see below), then T sends back
to A the abort token aT = sig[kT , 〈aborted, aA〉]. Otherwise (if T received
a resolve request, which in particular involves the messages sig[kA,mA] and
sig[kB,mB] from above), it sends the replacement contract rT = sig[kT , r]

to A with r = 〈sig[kA,mA], sig[kB,mB]〉. The following diagram shows one
possible situation in which A starts the abort protocol:

Promise to sign contract: mA

Abort token: aT

A B

T

Abort request: aA

Resolve protocol. If, after A has sent the nonce NA, B does not respond,
A may contact T to resolve, i.e., A runs the resolve protocol with T . In
the resolve protocol, A sends the message r = 〈sig[kA,mA], sig[kB,mB]〉 to
T as a resolve request. If T has not sent out an abort token before, then T
returns the replacement contract rT , and otherwise T returns the abort token
aT . Analogously, if, after B has sent his commitment to sign the contract,
A does not respond, B may contact T to resolve, i.e., B runs the resolve
protocol with T similarly to the case for A. Note that contacting T is again
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a non-deterministic action of B. This situation is depicted in the following
diagram:

Promise to sign contract: mB

Promise to sign contract: mA

T

BA

TTP contract: rTResolve request: r

We note that the communication with T (for both A and B) is carried out
over secure channels.
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Chapter 3

Constraint-based Algorithm for
Strategy Properties

As mentioned in the introduction constraint solving procedures have proven
to be useful in the automatic analysis of reachability properties of crypto-
graphic protocols, see for example [MS01, CV01, BMV03]. In this chapter
we show how the constraint based approach can be extended in a way that
automatic analysis of a specific type of branching time properties of crypto-
graphic protocols becomes possible.

The protocol and intruder model that we suggest to use is similar to
a model proposed in [CKS01]; it contains different features important for
contract signing protocols, which are absent in the models for authentication
and key exchange protocols referred to above. First, as in [CKS01], we model
write-protected channels which are not under the control of the intruder.
For simplicity, we call these channels secure channels. Second, for protocols
in our model we explicitly define the induced transition systems. These
transition systems have infinitely many states and are infinitely branching,
but have paths of bounded length; they allow us to state crucial properties
of contract-signing properties.

Our main result is that for the transition system induced by a crypto-
graphic protocol properties expressing the existence of certain strategies for
the intruder are decidable.

In a nutshell, our constraint-based algorithm works as follows: Given a
protocol along with a game-theoretic security property, first the algorithm
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guesses what we call a symbolic branching structure. This structure repre-
sents a potential attack on the protocol. In the second step of the algorithm,
the symbolic branching structure is turned into a constraint system. Then
a standard constraint-solving procedure is used to compute a finite sound
and complete set of so-called simple constraint systems. A simple constraint
system in such a set represents a (possibly infinite) set of solutions of the
original constraint system and a sound and complete set of these simple con-
straint systems represents the set of all solutions of the original constraint
system. Finally it is checked whether (at least) one of the computed simple
constraint systems satisfies certain requirements. The first step as described
above is analogous to the first step in a constraint-based algorithm for check-
ing reachability properties of cryptographic protocols, where an interleaving
of the actions of the individual principals is guessed.

3.1 The Protocol and Intruder Model

As mentioned in the introduction, our model is quite similar to the one by
Chadha et al. [CKS01]. When it comes to the technical exposition, our
approach is, however, inspired by the term-rewriting approach of [RT03]
rather than the multi-set rewriting approach of [CKS01]. We start with a
rather precise, but informal description of our model.
In our model, a protocol is a finite set of principals and every principal

is a finite tree, which represents all possible behaviors of the principal. Each
edge of such a tree is labeled by a rewrite rule, which describes the receive-
send action that is performed when the principal takes this edge in a run of
the protocol.
When a principal carries out a protocol, it traverses its tree, starting at

the root. In every node, the principal takes its current input, chooses one
of the edges leaving the node, matches the current input with the left-hand
side of the rule the edge is labeled with, sends out the message which is
determined by the right-hand side of the rule, and moves to the node the
chosen edge leads to. Whether or not a principal gets an input and which
input it gets is determined by the intruder and the secure channels. The
intruder receives every message sent by a principal, can use all the messages
he has received to construct new messages, and can provide input messages
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to any principal he wants.

The above is very similar to standard Dolev-Yao models for reachability
properties (see, e.g., [RT03, MS01]). There are, however, two important
ingredients that are not present in these models: secure channels and an
explicit branching structure. In the remainder of this introduction to our
model, we will explain these two ingredients in more detail.

Unlike in the standard Dolev-Yao models, in our model the input of a
principal may not only come from the intruder but also from a so-called
secure channel. While, as in [CKS01], a secure channel is not read-protected
(the intruder can read the messages written onto this channel), the intruder
does not control this channel. That is, he cannot delay, duplicate, or remove
messages, or write messages onto this channel under a fake identity (unless
he has corrupted a party).

As mentioned in the introduction, unlike authentication and key-exchange
protocols, properties of contract-signing and related protocols cannot be
stated as reachability properties, i.e., in terms of single runs of a proto-
col alone. One rather has to consider branching properties. We therefore
describe the behavior of a protocol as an infinite-state transition system
which comprises all runs of a protocol. To be able to express properties of
contract-signing protocols we distinguish several types of transitions: there
are intruder transitions (just as in [RT03, MS01]); there are ε-transitions,
which can be used to model that a subprotocol is spawned without waiting
for input from the intruder; and there are secure channel transitions, which
model communication via secure channels. Since the intruder can construct
an infinite number of messages, the transition system will have an infinite
number of states, but it will have paths of a bounded length.

In the following subsections, we present a formal definition of our model.

3.1.1 Terms and Messages

In the model used in this chapter messages do not only contain ordinary mes-
sage content but also specify by which means the message is communicated
(i) over the network or (ii) over a secure channel. This is the reason why we
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extend the core grammar given in Chapter 2 by secure channel terms :

Tsc ::= sc(N ,N , Tmes)

T ::= Tmes | Tsc | N

Here the finite set N comprises all principle names that are present in the
protocol.
A secure channel term of the form sc(n, n′, t) stands for a term t on the

secure channel from n to n′. A principal may only generate such a term if
he knows n and t (but does not need to know n′). This guarantees that
a principal cannot impersonate other principals on secure channels. Hence,
knowing n grants access to secure channels with sender address n.

3.1.2 Intruder

Given a set K of terms, the (infinite) set d(K) of terms the intruder can
derive from K is the smallest set satisfying the following conditions:
(D1) K ⊆ d(K).

(D2) Composition and decomposition: If t, t′ ∈ d(K), then 〈t, t′〉 ∈ d(K).
Conversely, if 〈t, t′〉 ∈ d(K), then t ∈ d(K) and t′ ∈ d(K).

(D3) Symmetric encryption and decryption: If t, t′ ∈ d(K), then {t}s
t′ ∈

d(K). Conversely, if {t}s
t′ ∈ d(K) and t′ ∈ d(K), then t ∈ d(K).

(D4) Asymmetric encryption and decryption: If t ∈ d(K) and k ∈ d(K) ∩
Kpub, then {t}a

k ∈ d(K). Conversely, if {t}a
k ∈ d(K) and k−1 ∈ d(K),

then t ∈ d(K).

(D5) Hashing : If t ∈ d(K), then hash(t) ∈ d(K).

(D6) Signing : If t ∈ d(K) and k−1 ∈ d(K) ∩ Kpriv, then sig(k, t) ∈ d(K).
(The signature contains the public key but can only be generated if the
corresponding private key is known.)

(D7) Writing onto secure channels: If t ∈ d(K), n ∈ d(K)∩N , and n′ ∈ N ,
then sc(n, n′, t) ∈ d(K).

(D8) Generating fresh constants : AI ⊆ d(K).

Each of the above rules only applies when the resulting expression is a term
according to the grammar stated above. For instance, a hash of a secure
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channel term is not a term, so (D5) does not apply when t is of the form
sc(n, n′, t′).
Note that the above definition is slightly more general than in other pa-

pers: Typically, one only considers sets K which consist exclusively of mes-
sages. Later, the more general definition, which allows arbitrary sets of terms
for K, will be useful.
In (D7), the precondition n ∈ d(K) ∩ N means that the intruder has

corrupted the principal with address n and therefore can impersonate this
principal when writing onto the secure channel.

3.1.3 Principals and Protocols

Principal rules are of the form R ⇒ S where R ∈ T ∪ {ε} and S ∈ T . We
refer to R as the left-hand side (LHS) of R ⇒ S and to S as the right-hand
side (RHS) of R⇒ S.
A rule tree is a finite rooted tree where the edges are labeled by principal

rules. Formally, a rule tree is a tuple Π = (V,E, r, `) where (V,E) is a finite
rooted tree as usual (in particular, E ⊆ V ×V ), r is the root of (V,E), and `
maps every edge (v, v′) ∈ E to a principal rule, the principal rule associated
with (v, v′).
A principal is a rule tree Π as above which satisfies the following two

conditions for every vertex v ∈ V where we assume that v0, . . . , vn is the
unique path from the root r to v and where Ri ⇒ Si is the principal rule
associated with (vi, vi+1), for every i < n.

1. Well-formedness: V(Sn−1) ⊆
⋃

i<n V(Ri).

2. Feasibility: t ∈ d({R0, . . . , Rn−1} ∪M) for every verification key t in
Rn−1.

Well-formedness requires that every variable occurring on the RHS of a prin-
cipal rule of an edge e also occurs on the LHS of the principal rule of some
edge on the path from the root to e (inclusive). It guarantees that any output
produced by a principal only depends on what he has received, which is a
minimum requirement for a reasonable protocol specification. This condition
is standard in Dolev-Yao models, see, for instance, [RT03, MS01].
Feasibility makes sure that a principal cannot match variables in keys,

which would not be feasible in practice. For example, this condition is not
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satisfied for a principal whose rule tree only contains one edge and where this
edge is labeled with the principal rule {y}s

x ⇒ x. On the other hand, it is
satisfied for a principal whose rule tree is a path of length two and where the
first edge is labeled by x ⇒ 〈x, x〉 and the second edge is labeled as before
(by {y}s

x ⇒ x).

Let Π be a rule true. When v is a vertex of Π, we write Π↓v for the
subtree of Π rooted at v. When σ is a substitution, we write Πσ for the rule
tree obtained from Π by simultaneously applying σ to all the principal rules
(each side of them) of Π.

A protocol is a tuple P = ((Π1, . . . ,Πn),K) which consists of a tuple of
principals and a finite set K ⊆M∪A ∪N of messages, the initial intruder
knowledge. We require that each variable occurs in the rules of at most one
principal, i.e., different principals must have disjoint sets of variables. We
assume that intruder atoms, i.e., elements of AI , do not occur in P (neither
in any principal rule nor in K).

3.1.4 The Transition Graph of a Protocol

The transition graph GP induced by a protocol P comprises all runs of a pro-
tocol. To define this graph formally, we first introduce states and transitions
between these states.

A state is of the form ((Π1, . . . ,Πn), σ,K,S) where

1. σ is a ground substitution,

2. Πi is a rule tree such that Πiσ is a principal for each i,

3. K is a finite set of messages, the intruder knowledge, and

4. S is a finite multi-set of secure channel messages, the secure channel.

The idea is that when the transition system is in such a state, then the
substitution σ has been performed, the accumulated intruder knowledge is
what can be derived from K, the secure channels hold the messages in S, and
for each i, Πiσ is the “remaining protocol” to be carried out by principal i.
This also explains why S is a multi-set: messages sent several times should
be delivered several times.

There are three kinds of transitions between states: intruder, secure
channel, and ε-transitions. In what follows, for every i ∈ {1, . . . , n}, let
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Πi = (Vi, Ei, ri, `i) and Π′
i = (V ′

i , E
′
i, r

′
i, `

′
i) denote rule trees. A transition

((Π1, . . . ,Πn), σ,K,S)
τ−→ ((Π′

1, . . . ,Π
′
n), σ′,K′,S ′)

with label τ exists if one of the three following conditions is satisfied:

1. Intruder transition, τ = [i,m, I]: There exists a vertex v ∈ Vi such
that (ri, v) ∈ Ei and `i(ri, v) = R ⇒ S, and there exists a ground
substitution σ′′ with dom(σ′′) ⊆ V(Rσ) such that

(a) m ∈ d(K),

(b) σ′ = σ ∪ σ′′,
(c) Rσ′ = m,

(d) Π′
j = Πj for every j 6= i, Π′

i = Πi↓v,
(e) either S ∈ Tmes and K′ = K ∪ {Sσ′}, or S = sc(·, ·, t) for some
term t and K′ = K ∪ {tσ′}, and

(f) either S ∈ Tmes and S ′ = S, or S ∈ Tsc and S ′ = S ∪ {Sσ′}.
This transition models that principal i receives the the message m
from the intruder (i.e., from the public network). Note that the second
clause in (e) accounts for the fact that our secure channels are not
read-protected.

2. Secure channel transition, τ = [i,m, sc]: There exists a vertex v ∈ Vi

with (ri, v) ∈ Ei and `i(ri, v) = R ⇒ S, and there exists a ground
substitution σ′′ with dom(σ′′) ⊆ V(Rσ) such that

(a) m ∈ S,
(b)–(e) as above, and

(f) either S ∈ Tmes and S ′ = S \{m}, or S ∈ Tsc and S ′ = (S \{m})∪
{Sσ′}.

This transition models that principal i reads message m from a secure
channel.

3. ε-transition, τ = [i]: There exists a vertex v ∈ Vi with (ri, v) ∈ Ei

and `i(ri, v) = ε⇒ S such that σ′ = σ and (d)–(f) as given above for
intruder transitions.

This transition models that principal i performs a step where neither
a message is read from the intruder nor from a secure channel.
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We call i the principal associated with the transition, R ⇒ S (for the in-
truder and secure channel transitions) and ε ⇒ S (for the ε-transitions),
respectively, the principal rule associated with the transition, and v the prin-
cipal vertex associated with the transition.

Definition 3.1.1 (transition graph) Let P = ((Π1, . . . ,Πn),K) be a pro-
tocol.
The initial state of P is qP = ((Π1, . . . , Πn), σ,K, ∅) where σ is the

substitution with empty domain. The set of states of P , denoted SP , is the
set of states which are reachable from qP by a sequence of transitions.
The transition graph GP of P is the tuple (SP , EP , qP ) where qP is the

initial state of P , SP is the set of states of P , and EP is the set of all
transitions among the states of P .

For convenience, we write q ∈ GP when q is a state in GP and we write
q

τ→ q′ ∈ GP when q
τ→ q′ is a transition in GP .

Remark 3.1.2 The transition graph GP of P is a DAG since by performing
a transition the size of the first component of a state decreases. While the
graph may be infinite branching, the maximal length of a path in this graph
is bounded by the total number of edges in the principals Πi of P .

3.2 Modeling the Originator of the ASW
Protocol

To demonstrate that our framework can actually be used to analyze contract-
signing protocols, we show how the originator of the Asokan-Shoup-Waidner
(ASW) protocol [ASW98] can be modeled. In a similar fashion, other
contract-signing protocols can be dealt with.

3.2.1 The Principal O

The principal O is defined by the tree ΠO depicted in Figure 3.1 where the
edge labels for the principal rules defined below. Rules e1, e2, and e3 belong
to the exchange protocol, rules a1, a2, and a3 belong to the abort protocol,
and rules r1, r2, and r3 belong to the resolve protocol of O.
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r2 r3

r1 e3

e2

a2 a3

a1

e1

Figure 3.1: A model of the Originator O in the ASW protocol

Exchange protocol. The actions performed in the exchange protocol have
informally been discussed above.
Abort protocol. If, after the first step of the exchange protocol, O does not

get an answer back from R, the principal O may start the abort protocol, i.e.,
send an abort request via a secure channel to T (rule a1). Then, T will either
confirm the abort of the protocol by returning an abort token—in this case
O will continue with rule a3—or send a replacement contract—in this case O
will continue with rule a2. (The trusted third party T sends a replacement
contract if R previously contacted T to resolve the protocol run.)
Resolve protocol. If after rule e2, i. e., after sending NO, the principal O

does not get an answer back from R, then O can start the resolve protocol by
sending a resolve request to T via the secure channel (rule r1). After that,
depending on the answer returned from T (which again will return an abort
token or a replacement contract), one of the rules r2 or r3 is performed.
We now present the principal rules for O where the numbering corre-

sponds to the one in Figure 3.1.

(e1) ε⇒ me1 where

me1 = sig[kO,me2] and me2 = 〈kO, kR, kT , contract, hash(NO)〉 .

(e2) sig[kR,me3] ⇒ NO where me3 = 〈me1, hash(x)〉 .

(e3) x⇒ OHasValidContract.

(a1) ε⇒ sc(O, T,ma1) where ma1 = sig[kO, 〈aborted,me1〉].

(a2) sc(T,O,ma2) ⇒ OHasValidContract where

ma2 = sig[kT , 〈me1,me4〉] and me4 = sig[kR, 〈me1, z1〉].
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Π1 : f1

f2

f3

f4

a ⇒ c1

f5

x ⇒ c2

f6

y ⇒ c2

{y}s
k ⇒ y

sc(2, 1, 〈x, b〉) ⇒ x

Π2 : g1

g2

ε ⇒ sc(2, 1, 〈a, b〉)
g3

ε ⇒ sc(2, 1, 〈b, b〉)

Figure 3.2: Protocol Pex = ({Π1,Π2}, I0) with I0 = {{a}s
k, {b}s

k}

(a3) sc(T,O, sig[kT , 〈aborted,ma1〉]) ⇒ OHasAbortToken.

(r1) ε⇒ sc(O, T, 〈me1, sig[kR,me3]〉).

(r2) sc(T,O, sig[kT , 〈aborted,ma1〉]) ⇒ OHasAbortToken.

(r3) sc(T,O,mr1) ⇒ OHasValidContract where

mr1 = sig[kT , 〈me1,mr2〉] and mr2 = sig[kR, 〈me1, z2〉].

3.3 Strategies, Strategy Properties, and
Strategy Problems

In this section, we define intruder strategies on transition graphs of protocols,
the type of goal these strategies try to achieve, and the formal decision prob-
lems we are interested in. We start with an informal explanation following
an example and then turn to precise statements.
Throughout this and the following sections, we will use the protocol Pex

depicted in Figure 3.2 as our running example. This protocol consists of
two principals Π1 and Π2 and the initial knowledge K0 = {{a}s

k, {b}s
k} of the

intruder. Informally speaking, Π2 can, without waiting for input from the
secure channel or the intruder, decide whether to write 〈a, b〉 or 〈b, b〉 into
the secure channel from Π2 to Π1. While the intruder can read the message
written into this channel, he cannot modify or delay this message. Also, he
cannot insert his own message into this channel, for he does not have the
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principal address 2 in his intruder knowledge, and hence, cannot generate
messages of the form sc(2, n, t) for any name n. Consequently, such messages
must come from Π2. Principal Π1 first waits for a message of the form 〈x, b〉
in the secure channel from Π2 to Π1. In case Π2 wrote, say, 〈a, b〉 into this
channel, x is substituted by a, and this message is written into the network,
and hence, given to the intruder. Next, Π1 waits for input of the form {y}s

k.
This is not a secure channel term, and thus, comes from the intruder. In case
the intruder sends {b}s

k, say, then y is substituted by b. Finally, Π1 waits
for input of the form a (in the edges from f3 to f4 and f3 to f5) or b (in the
edge from f3 to f6). Recall that x was substituted by a and y by b. If the
intruder sends b, say, then Π2 takes the edge from f3 to f6 and outputs c2 into
the network. If the intruder had sent a, Π1 could have chosen between the
first two edges. We note that this protocol is not meant to perform a useful
task. It is rather designed to illustrate different aspects of our constraint-
based algorithm that would be more cumbersome to demonstrate by realistic
protocols, such as the ASW protocol.

3.3.1 Intruder Strategies and Strategy Trees

To define intruder strategies, we introduce the notion of a strategy tree,
which captures that the intruder has a way of acting such that regardless of
how the other principals act he achieves a certain goal, where goal in our
context means that a state will be reached where the intruder can derive
certain constants and cannot derive others, e.g., for balance, the intruder
tries to obtain IntruderHasContract but tries to prevent HonestPartyHasContract
from occurring. More concretely, let us consider the protocol Pex depicted in
Figure 3.2. We want to know if the intruder has a strategy to get to a state
where he can derive atom c2 but not atom c1 (no matter what the principals
Π1, Π2, and the secure channels do). Such a strategy of the intruder has
to deal with both decisions principal Π2 may make in the first step because
the intruder cannot control which edge is taken by Π2. It turns out that
regardless of which message is sent by principal Π2 in its first step, the
following simple strategy allows the intruder to achieve his goal: The intruder
can send {b}s

k to principal Π1 in the second step of Π1 and in the last step
of Π1, the intruder sends b to principal Π1. This guarantees that in the last
step of Π1, the left-most edge is never taken, and thus, c1 is not returned, but
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Tex : h1 ((f1, g1), ∅,K0, ∅)

((f1, g2), ∅,K1, {sc(2, 1, 〈a, b〉)}) h2

((f2, g2), σ1,K1 ∪ {a}, ∅) h3

((f3, g2), σ2,K1 ∪ {a, b}, ∅) h4

((f6, g2), σ2,K1 ∪ {a, b, c2}, ∅) h5

[1, b, I]

[1, {b}s
k, I]

[1, sc(2, 1, 〈a, b〉), sc]

[2]

h6 ((f1, g3), ∅,K2, {sc(2, 1, 〈b, b〉)})

h7 ((f2, g3), σ3,K2 ∪ {b}, ∅)

h8 ((f3, g3), σ4,K2 ∪ {b}, ∅)

h9

((f5, g3), σ4,K2 ∪ {b, c2}, ∅)

[1, b, I]

h10

((f6, g3), σ4,K2 ∪ {b, c2}, ∅)

[1, b, I]

[1, {b}s
k, I]

[1, sc(2, 1, 〈b, b〉), sc]

[2]

Figure 3.3: Strategy tree Tex for Pex with K1 = K0 ∪ {〈a, b〉}, K2 = K0 ∪ {〈b, b〉},
σ1 = {x 7→ a}, σ2 = σ1 ∪ {y 7→ b}, σ3 = {x 7→ b}, and σ4 = σ3 ∪ {y 7→ b}.
Also, for brevity of notation, in the first component of the states we write, for

instance, f1 instead of Π1↓f1. The strategy property we consider is ((Cex, C ′
ex)) =

(({c2}, {c1})).

at least one of the other two edges can be taken, which in any case yields c2.
Formally, such strategies are defined as trees. In our example, the strategy
tree corresponding to the strategy informally explained above is depicted in
Figure 3.3. Its construction is in accordance with the following definition of
strategy trees.

Definition 3.3.1 (strategy tree) Let P be a protocol with n principals and
q ∈ GP . A q-strategy tree is a rooted tree Tq = (V,E, r, `V , `E) where every
vertex v ∈ V is labeled by a state, `V (v) ∈ GP , and every edge (v, v′) ∈ E is
labeled by a label of a transition, `E(v, v′), such that the following conditions
are satisfied:

(T1) `V (r) = q.

(T2) `V (v)
`E(v,v′)−−−−→ `V (v′) ∈ GP for all (v, v′) ∈ E.

(T3) Whenever `V (v) = q′ and q′
[j]−→ q′′ ∈ GP for some v ∈ V , q′, q′′ ∈ GP ,

and j ∈ {1, . . . , n}, then there exists v′′ ∈ V such that (v, v′′) ∈ E,
`V (v′′) = q′′, and `E(v, v′′) = [j].

(T4) Whenever `V (v) = q′ and q′
[j,m,sc]−−−−→ q′′ ∈ GP for some v ∈ V , q′, q′′ ∈
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GP , j ∈ {1, . . . , n}, and m ∈ M, then there exists v′′ ∈ V such that
(v, v′′) ∈ E, `V (v′′) = q′′, and `E(v, v′′) = [j,m, sc].

(T5) Whenever (v, v′) ∈ E, `E(v, v′) = [j,m, I], and there exists q′ 6= `V (v′)

with `V (v)
[j,m,I]−−−→ q′ ∈ GP for some v ∈ V , q′ ∈ GP , j ∈ {1, . . . , n}, and

m ∈ M, then there exists v′′ with (v, v′′) ∈ E, `E(v, v′′) = [j,m, I] and
`V (v′′) = q′.

(T2) guarantees that all edges in Tq correspond to transitions in GP . (T3)
says that every ε-transition of the transition graph of P must be present in the
strategy graph. This is because the intruder should not be able to prevent
a principal from performing an ε-rule, since these rules do not depend on
input from the intruder. (T4) is similar: The intruder should not be able to
block secure channels. (T5) says that although the intruder can choose to
send a particular message to a particular principal, he cannot decide which
transition this principal uses (if the message matches the LHS of more than
one rule).
Note that if `V (v) = q′ in a q-strategy tree Tq, then there exists a path

from q to q′ in GP . By Remark 3.1.2 this implies that Tq has finite depth.
Let C,C ′ ⊆ A∪K∪N . We say that a q-strategy tree Tq satisfies (C,C ′)

if in every leaf of Tq all elements from Ci can be derived by the intruder
and no element from C ′ can. Formally, for every leaf v of Tq with `V (v) =

((Π1, . . . ,Πn), σ,K,S) it is required that C ⊆ d(K) and C ′ ∩ d(K) = ∅ hold.

Definition 3.3.2 (strategy property) A strategy property is a tuple

C = ((C1, C
′
1), . . . , (Cl, C

′
l)) (3.1)

where Ci, C
′
i ⊆ A∪K∪N for all i ∈ {1, . . . , l}. A state q ∈ GP satisfies C if

there exist q-strategy trees T1, . . . , Tl such that every Ti satisfies (Ci, C
′
i).

3.3.2 Strategy Problems

We can now define the decision problem we are interested in:

Definition 3.3.3 (Strategy) The decision problem Strategy asks,
given a protocol P and a strategy property C, whether there exists a state
q ∈ GP that satisfies C. When this is the case we write (P, C) ∈ Strategy.
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Note that in a q-strategy tree Tq there may exist vertices v′ 6= v with
`V (v′) = `V (v) such that the subtrees Tq↓v and Tq↓v′ of Tq rooted at v and
v′, respectively, are not isomorphic. In other words, the intruder’s strategy
may depend on the path that leads to a state (i.e., the history) rather than
on the state alone, as is the case for positional strategies.
In general, positional strategies can be very restrictive. Here, however,

we work in a framework where the “games” are of finite depth (bounded
number of steps) and the winning conditions are reachability conditions. In
such situations, positional strategies are no restriction, as we will show in
what follows for our framework.
A q-strategy tree Tq is positional if different subtrees rooted at vertices

with the same vertex label are isomorphic. (In particular, one could define po-
sitional strategies as subgraphs of GP .) We define p-Strategy analogously
to Strategy, but with positional intruder strategies instead of arbitrary
intruder strategies, and use similar notation.
The above assertion can now be stated formally:

Proposition 3.3.4 For every instance (P, C) of Strategy (and
p-Strategy),

(P, C) ∈ Strategy iff (P, C) ∈ p-Strategy .

Proof It suffices to show that for every q ∈ GP and (C,C ′) ⊆ A∪K∪N
there exists a q-strategy tree which satisfies (C,C ′) iff there exists a positional
q-strategy tree which satisfies (C,C ′). The direction from right to left is
trivial. For the other direction, let Tq be a q-strategy tree which satisfies
(C,C ′). If there exist v′ 6= v in Tq with `V (v) = `V (v′) = q′, then it is
not hard to see that the tree obtained by replacing Tq↓v′ with Tq↓v (and
consistently renaming the vertices) is still a q-strategy tree satisfying (C,C ′).
Now, starting with the subtrees of maximum depth and iteratively replacing
all subtrees rooted at vertices labeled with the same state by one of the
subtrees among them, we obtain the desired positional q-strategy tree. 

3.4 Constraint Solving

In this section, we briefly recall the notion of constraint system and state the
well-known fact that procedures for solving constraint systems exist (see, e.g.,
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[MS01] for more details). In Section 3.5, we will then use such a procedure
as a black box in our constraint-based algorithm.
A constraint is of the form t : T where t is a plain term and T is a finite

non-empty set of plain terms. (Since we will take care of secure channel
terms outside of constraint solving, we do not need to consider them here.)
A sequence

C = t1 : T1, . . . , tn : Tn

of constraints is called a constraint system.
Given a constraint system C as above, one would like to determine all

ground substitutions σ that satisfy tiσ ∈ d(Tiσ) for every i ∈ {1, . . . , n} and
where dom(σ) contains only variables occurring in C. These substitutions
are called solutions of C and one writes σ ` C for such a substitution. Since
there is, in general, an infinite number of such solutions, all solutions are
typically described by a finite number of so-called simple constraint systems,
which have obvious solutions, as will be explained in what follows.
For our purposes, a simple constraint system is of the form

C′ = x1 : T ′
1, . . . , xm : T ′

m

where the xj’s are pairwise distinct variables. Such a system has obvious
solutions, namely, every substitution σ where every variable is assigned a
different intruder atom from AI . Such a solution will be called solution
associated with C′.
Given a constraint system C, a constraint solver produces a finite set U

of pairs (C′, τ) where C′ is simple and τ is a substitution such that

• no variable from C′ belongs to dom(τ), and

• for every x ∈ dom(τ), every variable occurring in τ(x) also occurs in
C′.

The important property of U is that for every (C′, τ) ∈ U and for every
solution σ′ of C′, the substitution σ′ ◦ τ is a solution of C, in particular, this
is true for every solution associated with C′ as described above. This is why
U is called a sound set for C. It is said to be a sound and complete set for
C if, in addition, every solution of C can be obtained in the described way.
If σ′ is a solution associated with C′ the solution σ′ ◦ τ will be called

complete solution associated with (C′, τ).



38 CHAPTER 3. ALGORITHM FOR STRATEGY PROPERTIES

If a given constraint system C satisfies certain conditions, which will be
described below, sound and complete sets for C can be computed.
For a given constraint system C as above and a variable x in C, define

occ(x) ∈ {1, . . . , n} to be the minimal index such that x ∈ V(tocc(x)), i.e.,
occ(x) is the index of the first constraint in the sequence where x occurs on
the left-hand side of this constraint. If such an index does not exist, occ(x)

is undefined.
We call a constraint system C as above valid if it satisfies the following

properties for every i ∈ {1, . . . , n}:
1. Origination: V(Ti) ⊆ V({t1, . . . , ti−1}), which means that occ(x) is
defined and occ(x) < i for every x ∈ V(Ti).

2. Monotonicity:

(a) T1 ⊆ Ti.

(b) For every x ∈ V(Ti) we have that Tocc(x) ⊆ Ti.

Intuitively, origination corresponds to well-formedness of principals and
monotonicity captures that the intruder does not forget information. Our
definition of monotonicity above differs from the standard definition (see
e.g., [MS01]). We chose to present the definition in the above form because
it is simpler (but slightly stronger) than the standard definition and because
it is sufficient for our application: the constraint systems we consider fulfill
our stronger definition. We note, however, that we could also have used the
more complex standard definition.
The following fact is well-known (see, e.g., [CV01, MS01, BMV03] and

references therein):

Fact 3.4.1 There exists a procedure which given a valid constraint system
C outputs a sound and complete set for C.

In our model we deal with an infinite set AI of intruder atoms. Constraint
solving procedures do not handle these kind of sets of atoms. It is easy to see
that the set output by a constraint solving procedure for a given constraint
system C also forms a sound and complete set for C when one considers the
set AI of intruder atoms.
While different constraint solving procedures (and implementations

thereof) may compute different sound and complete sets, our constraint-
based algorithm to be introduced in Section 3.5 works with any of them. It



3.5. THE CONSTRAINT-BASED ALGORITHM 39

is only important that the set computed is sound and complete. So we fix
one of these procedures for the remainder of this chapter and refer to it as
constraint solver. As already mentioned in the introduction we only need
one element of a sound and complete set at a time. We therefore view the
constraint solver as a non-deterministic algorithm which at the end of each
run on a given input returns an element from a (fixed) sound and complete
set. We require that for every element in the sound and complete set, there
exists a run of the constraint solver that returns it. If the sound and complete
set is empty, the constraint solver always returns no.
We note that while standard constraint solving procedures can deal with

the cryptographic primitives considered here, these procedures might need
to be extended when adding further cryptographic primitives. For example,
this is the case for private contract signatures, which are used in some con-
tract signing protocols [GJM99]; it should be straightforward to add such
signatures to constraint solving procedures.

3.5 The Constraint-Based Algorithm

We now present our constraint-based algorithm, called SolveStrategy, for de-
ciding the problem Strategy. We first describe its main steps, with details
given in subsequent sections. (In particular, the notions set in italics will be
explained later.) The input to SolveStrategy is a protocol P and a strategy
property C = ((C1, C

′
1), . . . , (Cl, C

′
l)).

SolveStrategy(P, C) : {yes, no}
(A1) Guess a symbolic branching structure B for P and C.

That is, guess a symbolic path πs from the initial state of P to a symbolic
state qs and, for every i ∈ {1, . . . , l}, a symbolic qs-strategy tree T s

i,qs

(see Section 3.5.1 for details).

(A2) From the symbolic branching structure B and the strategy property
C, derive the induced valid constraint system CB (see Section 3.5.2 for
the definition).

(A3) Run the constraint solver on CB. If it returns no, then halt. Other-
wise, let (C′, τ) be the output returned by the solver and ν a complete
solution associated with it.
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(A4) Perform certain tests on B and ν to check whether ν when applied to
B yields a valid path in GP from the initial state of P to a state q and
the q-strategy trees Ti,q satisfying (Ci, C

′
i) for every i ∈ {1, . . . , l} (see

Section 3.5.3 for details of these tests).

(A5) If any of the tests failed, output no, and otherwise output yes.

In the following three sections, (A1), (A2), and (A4) will be further ex-
plained. Our main result is the following theorem, with the proof presented
in Section 3.6:

Theorem 3.5.1 Algorithm SolveStrategy is a (non-deterministic) decision
procedure for Strategy.

Corollary 3.5.2 Strategy is decidable.

We conclude this subsection with some remarks.

Remark 3.5.3 In (A3), it is not sufficient to consider just one simple con-
straint system returned by the constraint solver.

Remark 3.5.4 (A4) is indispensable.

The two previous remarks will be illustrated in Section 3.5.3.

Remark 3.5.5 If yes is output, then B with ν applied is a solution of (P, C).

The previous remark will become clear from the proof of Theorem 3.5.1.

Remark 3.5.6 SolveStrategy is phrased as a non-deterministic algorithm
only for simplicity of presentation; one can easily turn it into a determinis-
tic one, simply by successively checking all symbolic branching structures (of
which there are only finitely many) and all simple constraint systems returned
by a deterministic constraint solver.

Remark 3.5.7 SolveStrategy works with any constraint solving procedure.
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3.5.1 Guessing the Symbolic Branching Structure

To describe the first step of SolveStrategy in more detail, we first define
symbolic branching structures, which consist of symbolic paths and symbolic
strategy trees. To define symbolic paths and strategy trees, we need to
introduce several other notions. These notions will be illustrated by the
example in Figure 3.2.
One technical problem we have to overcome is that a symbolic strategy

tree will represent a set of runs of protocols arranged in trees. Clearly, when
two principal rules sharing variables are applied in independent branches of
such a tree, the shared variables that have not been instantiated during the
common history of the two branches need not be instantiated with the same
terms. This makes it necessary to apply a renaming scheme for the variables
involved: When x is a variable from the original protocol and u is a vertex
of a symbolic tree (to be defined), we will use xu to denote a new variable.
We speak of non-indexed and indexed variables.
A symbolic state

qs = ((Π1, . . . ,Πn),K,S,X ) (3.2)

consists of an n-tuple (Π1, . . . ,Πn) of rule trees, a finite set K ⊆ T of terms
(which may contain variables), a finite multi-set S ⊆ Tsc of secure channel
terms (which may contain variables), and a finite set X of variables, which
are called used variables and are used for renaming variables correctly, as
explained in the previous paragraph. Obviously, a symbolic state is defined
just as a concrete state except that the substitution is omitted, the intruder
knowledge K and the secure channel S may contain terms instead of mes-
sages, and a set of reference variables has been added.
A symbolic tree is of the form (V,E, r, `V , `E) with finite vertex and edge

set V and E, respectively, root r ∈ V , vertex labeling function `V , which
maps vertices to symbolic states, and edge labeling function `E, which maps
edges to labels of symbolic transitions. Let (u, u′) ∈ E be an edge and assume

`V (u) = ((Π1, . . . ,Πn),K,S,X ) , Πi = (Vi, Ei, ri, `i) for i ∈ {1, . . . , n} ,

`V (u′) = ((Π′
1, . . . ,Π

′
n),K′,S ′,X ′) , Π′

i = (V ′
i , E′

i, r
′
i, `

′
i) for i ∈ {1, . . . , n} ,

`E((u, u′)) = τ .

Then one the following conditions must be satisfied.
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1. Symbolic intruder transition, τ = [i, v, I]: v ∈ Vi with (ri, v) ∈ Ei and
`i(ri, v) = R⇒ S for some i ∈ {1, . . . , n}, R and S such that
(a) for every j 6= i we have Π′

j = Πj and Π′
i is obtained from Πi↓v by

replacing every occurrence of a variable x ∈ V(R) \ X by the new
variable xu′ (see above);

(b) K′ = K∪{t′} where either t = S /∈ Tsc or S = sc(n, n′, t) for some
n, n′ ∈ N , and t′ is obtained from t by replacing every variable
x ∈ V(R) \ X by the new indexed variable xu′ ;

(c) either S ′ = S and S /∈ Tsc or S ′ = S ∪ {S ′}, where S ′ is obtained
from S by replacing every variable x ∈ V(R) \ X by xu′ .

2. Symbolic secure channel transition, τ = [i, v, R′, sc]: v ∈ Vi with
(ri, v) ∈ Ei and `i(ri, v) = R ⇒ S such that R′ ∈ S, (a) and (b)
from (1), and either S ′ = S \ {R′} if S /∈ Tsc or S ′ = (S \ {R′}) ∪ {S ′}
otherwise.

3. Symbolic ε-transition, τ = [i, v]: v ∈ Vi with (ri, v) ∈ Ei and `i(ri, v) =

ε⇒ S with (a)–(c) from (1).

In addition, X ′ = X ∪ {xu′ | x ∈ V(R) \ X}.
Just as with (concrete) transitions, in a situation like above, we speak of

a symbolic transition, we call i the principal associated with the transition,
R ⇒ S (for the intruder and secure channel transitions) and ε ⇒ S (for
the ε-transitions) the principal rule associated with the transition, and v the

principal vertex associated with the transition. We call `V (u)
`E(u,u′)−−−−→ `V (u′)

the symbolic transition corresponding to (or associated with) (u, u′).

Let qs be a symbolic state. A symbolic qs-tree is a symbolic tree where
the root is labeled qs. Let XT s

qs
=

⋃
v∈V Xv be the set of used variables in T s

qs

where Xv is the set of used variables in state `V (v).

Figure 3.4 depicts a symbolic qs
0-tree Tex for Pex (Figure 3.2) where qs

0 =

({Π1,Π2}, K0, ∅) is the symbolic initial state of Pex and the set of used
variables associated with qs

0 is empty. Note that copies of the variables x and y
have been introduced, namely xh3 , xh7 , yh4 , yh8 , following the aforementioned
renaming scheme.

We can now define symbolic paths and symbolic strategy trees as special
cases of symbolic trees.

Let P = ((Π1, . . . ,Πn),K) be a protocol as usual. A symbolic path πs
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Tex : h1 ((f1, g1),K0, ∅, ∅)

((f1, g2),K1, {sc(2, 1, 〈a, b〉)}, ∅) h2

((f2, g2),K1 ∪ {xh3}, ∅, {xh3}) h3

((f3, g2),K1 ∪ {xh3 , yh4}, ∅,X1) h4

((f6, g2),K1 ∪ {xh3 , yh4 , c2}, ∅,X1) h5

[1, f6, I]

[1, f3, I]

[1, f2, sc(2, 1, 〈a, b〉), sc]

[2, g2]

h6 ((f1, g3),K2, {sc(2, 1, 〈b, b〉)}, ∅)

h7 ((f2, g3),K2 ∪ {xh7}, ∅, {xh7})

h8 ((f3, g3),K2 ∪ {xh7 , yh8}, ∅,X2)

h9

((f5, g3),K2 ∪ {xh7 , yh8 , c2}, ∅,X2)

[1, f5, I]

h10

((f6, g3),K2 ∪ {xh7 , yh8 , c2}, ∅,X2)

[1, f6, I]

[1, f3, I]

[1, f2, sc(2, 1, 〈b, b〉), sc]

[2, g3]

Figure 3.4: Symbolic strategy tree Tex for the protocol Pex with K1 = K0 ∪
{〈a, b〉}, K2 = K0 ∪{〈b, b〉}, X1 = {xh3 , yh4}, and X2 = {xh7 , yh8}. Note that,
for sake of presentation, the first component of the symbolic states associated
to vertices of Tex only contain the roots of rule trees rather than the whole
rule trees. The strategy property we consider is ((Cex, C

′
ex)) = (({c2}, {c1})).

of P is a symbolic qs-tree where qs = ((Π1, . . . ,Πn),K, ∅, ∅) is the symbolic
initial state of P and every vertex has at most one successor.

If qs is a symbolic state, then a symbolic qs-strategy tree is a symbolic
qs-tree T s

qs = (V,E, r, `V , `E) which satisfies the following conditions:

(S1) For every v ∈ V and every symbolic ε-transition from `V (v) with label
[i, f ], there exists v′ with (v, v′) ∈ E such that `E(v, v′) = [i, f ].

(S2) Whenever (v, v′), (v, v′′) ∈ E with v′ 6= v′′, `E(v, v′) = [j′, f ′], and
`E(v, v′′) = [j′′, f ′′], then (j′, f ′) 6= (j′′, f ′′).

(S3) Whenever (v, v′), (v, v′′) ∈ E with v′ 6= v′′, `E(v, v′) = [j′, f ′, R′, sc],
and `E(v, v′) = [j′′, f ′′, R′′, sc], then (j′, f ′, R′) 6= (j′′, f ′′, R′′).

(S4) Whenever (v, v′), (v, v′′) ∈ E with v′ 6= v′′, `E(v, v′) = [j′, f ′, I], and
`E(v, v′′) = [j′′, f ′′, I], then j′ = j′′ and f ′ 6= f ′′.

(S1) corresponds to (T3) and says that all symbolic ε-transitions that can be
taken are present in a symbolic strategy tree. (S2) and (S3) make sure sym-
bolic strategy trees cannot be too large: (S2) prevents superfluous symbolic
ε-transitions to be present, while (S3) prevents superfluous secure channel
transitions to be present. (S4) makes sure the intruder may only send one
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message to one principal when following his strategy.

There are certain properties required of strategy trees, for instance (T4)
and (T5), which are not reflected in the definition of symbolic strategy trees.
These properties are taken care of by the test in (A4) of SolveStrategy, which
will be explained in Section 3.5.3.

The symbolic tree Tex depicted in Figure 3.4 is in fact a symbolic qs
0-

strategy tree where qs
0 = ({Π1,Π2},K0, ∅, ∅) is the symbolic initial state of

Pex.

Given a protocol P , we call B = (πs, T s
1 , . . . , T s

l ) a symbolic branching
structure of P if the following conditions are satisfied.

1. πs is a symbolic path of P .

2. Let v be the leaf of πs and qs = `V (v). For each i ∈ {1, . . . , l}, T s
i is a

symbolic qs-strategy tree with root v.

3. For i ∈ {1, . . . , l}, let Vi be the set of vertices of T s
i . For i, j ∈ {1, . . . , l}

with i 6= j, Vi ∩ Vj = {v}.
Observe that, by our naming convention, this implies XT s

i
∩XT s

j
= Xπs .

Obviously, there is a non-deterministic exponential time algorithm which
given P can guess all possible symbolic branching structures (up to renaming
of variables).

Consider our running example and the strategy property ((Cex, C
′
ex)) =

(({c2}, {c1})). Then Tex (Figure 3.4) can be viewed as a symbolic branching
structure Bex of Pex when the path πs is considered empty (and l = 1).

3.5.2 Constructing and Solving the Induced Con-
straint System

In this subsection, we explain how the constraint system CB is derived from
the symbolic branching structure B = (πs, T s

1 , . . . , T s
l ) computed in (A1) of

SolveStrategy and the given strategy property C, that is, we give the details
for (A2).

The constraint system CB can be shown to be valid, and hence, by
Fact 3.4.1, a constraint solver can be used to solve it. In other words, (A3)
is well-defined.
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Illustrating the Construction by an Example

Before we get to technical details, we give some informal explanations and
illustrate the construction with our running example, see Figure 3.2.

We first explain informally how to encode in a constraint system com-
munication involving the secure channel. The basic idea is that we write
messages intended for the secure channel into the intruder’s knowledge and
let the intruder deliver these messages. The problem is that while every
message in the secure channel can only be read once, the intruder could try
to deliver the same message several times. To prevent this, every such mes-
sage when written into the intruder’s knowledge is encrypted with a new key
not known to the intruder and this key is also (and only) used in the prin-
cipal rule which according to the symbolic branching structure is supposed
to read the message. This guarantees that the intruder cannot deliver the
same message several times to unintended recipients or make use of these
encrypted messages in other contexts. Here we use the feasibility condition
on principals introduced in Section 3.1.3, namely that verification keys can
be derived by a principal. As explained before, without this condition, a
principal rule of the form {y}s

x ⇒ x would be allowed even if the principal
does not know (i.e., cannot derive) x. Such a rule would equip a principal
with the unrealistic ability to derive any secret key from a ciphertext. Hence,
the intruder, using this principal as an oracle, could achieve this as well and
could potentially obtain the new keys used to encrypt messages intended for
the secure channel.

We now turn to our example and explain how the (valid) constraint sys-
tem, which we call Cex derived from Bex and ((Cex, C

′
ex)) looks like and how

it is derived from Bex, where Bex, as explained above, is simply the symbolic
strategy tree Tex (Figure 3.4): Cex is the following sequence of constraints
where k1, k2 ∈ A are new atoms and we write t1, . . . , tn instead of {t1, . . . , tn}.
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1. {〈xh3 , b〉}s
k1

: K1, {〈a, b〉}s
k1

2. {〈xh7 , b〉}s
k2

: K2, {〈b, b〉}s
k2

3. {yh4}s
k : K1, {〈a, b〉}s

k1
, xh3

4. {yh8}s
k : K2, {〈b, b〉}s

k2
, xh7

5. yh4 : K1, {〈a, b〉}s
k1
, xh3 , yh4

6. xh7 : K2, {〈b, b〉}s
k2
, xh7 , yh8

7. yh8 : K2, {〈b, b〉}s
k2
, xh7 , yh8

8. c2 : K1, {〈a, b〉}s
k1
, xh3 , yh4 , c2

9. c2 : K2, {〈b, b〉}s
k2
, xh7 , yh8 , c2

10. c2 : K2, {〈b, b〉}s
k2
, xh7 , yh8 , c2

This constraint system is obtained from Bex as follows: We traverse the
vertices of Bex in a top-down breadth first manner. Every edge induces a
constraint except those edges which correspond to symbolic ε-transitions.
This is how the constraints 1.–7. come about where 1., 3., and 5. are derived
from the left branch of Bex and 2., 4., 6., and 7. from the right branch.
Note that in 1. and 2. we encode the communication with the secure chan-
nel by encrypting the terms with new keys k1 and k2. The terms {〈a, b〉}s

k1

and {〈b, b〉}s
k2
are not removed anymore from the right-hand side of the con-

straints, i.e., from the intruder knowledge in order for Cex to satisfy the
monotonicity property of constraint systems. As explained above, since we
use new keys and due to the feasibility condition on principals, this does
not cause problems. The constraints 8.–10. are used to ensure that c2 can
be derived at every leaf of Tex, a requirement that comes from our example
security property ((Cex, C

′
ex)) where Cex = {c2}. In vertex h8 of Tex two sym-

bolic intruder transitions leave the vertex, which, as explained above, means
that the associated principal rules should both be able to read the message
delivered by the intruder.

Let C1 and C2 be constraint systems with empty sequences of constraints
and the substitution ν1 = {xh3 7→ a, xh7 7→ b, yh4 7→ a, yh8 7→ b} and ν2 =

{xh3 7→ a, xh7 7→ b, yh4 7→ b, yh8 7→ b}, respectively. It is easy to see that
{C1,C2} is a sound and complete solution set for Cex. Since Cex is valid,
such a set can be computed by the constraint solver (Fact 3.4.1).
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Formal Definition

We now provide a formal construction of the constraint system CB from the
symbolic branching structure B = (πs, T s

1 , . . . , T s
l ) and the given strategy

property C.
The construction consists of three steps: In the first two steps, B is

transformed, and in the last step the resulting branching structure is turned
into the constraint system CB. In the first step, B is transformed to get rid
of secure channel terms generated by the intruder. In the second step, we
encode communication with the secure channel as explained above.

Encoding the derivation of secure channel terms An intruder does
not have secure channel terms in its initial knowledge and he does not receive
secure channel terms during the run of a protocol. Hence, to construct a term
sc(n, n′,m) he has to derive n andm (not necessarily n′). Since addresses such
as n may only occur in the first or second component of a secure channel term
and the intruder cannot read these components, the intruder cannot derive
new addresses. Thus, the only addresses the intruder knows are those in his
initial knowledge. Therefore, the intruder can construct sc(n, n′,m) only if
n belongs to his initial knowledge and he can derive m. This motivates the
following transformation:

(A2.1) For every edge e of B with which a symbolic intruder transition q τ−→ q′

is associated and where the LHS of the associated principal rule is of
the form sc(n, n′, R), do the following:

If n belongs to the initial intruder knowledge, then replace the LHS of
the associated principal rule simply by R, else stop and output no (for
all of SolveStrategy).

We refer to the symbolic branching structure obtained by the transformation
just described as B̂. Strictly speaking, the resulting structure is not a sym-
bolic branching structure anymore as it does not have the required form. By
abuse of terminology, we still call it symbolic branching structure.

Encoding secure channel communication As already explained above,
we eliminate the secure channel component in symbolic states and instead
let the intruder handle all communication.
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In what follows, with “new key” we mean a constant in A that does not
occur anywhere else and which, in particular, the intruder does not (and will
not get to) know.

(A2.2) For every vertex v of B̂ and every successor v′ of v in B̂ do the following
(we traverse the vertices of B̂ in a top-down breadth first manner start-
ing with the root of B̂): If in the transition associated with the edge
(v, v′) of B̂ a message of the form sc(n, n′, R) is written into the secure
channel, then generate a new key kv′ and write {R}s

kv′
into the intruder

knowledge at v′ and all successors of v′ in B̂. Also, do the following
for every edge (u, u′) which is reachable from v′ over edges not labelled
[·, ·, sc(n, n′, R), sc]: Replace the label of (u, u′) by {R}s

kv′
and the LHS

of the principal rule associated with (u, u′) by {R′}s
kv′
where R′ is such

that sc(n, n′, R′) is the LHS of the principal associated with (u, u′).

We refer to the symbolic branching structure resulting from the transforma-
tion just described by B.

We call {R}s
kv′
the (secure channel) encoding term associated with kv′ . If

a ground substitution is applied to this term, we call it the (secure channel)
encoding message associated with kv′ . We call the keys introduced in the step
described above secure channel keys (sch-keys) and denote the set of secure
channel keys by Ksc. We refer to the key generated for the edge (v, v′) by
kv′ (if a key was generated).

Deriving the constraint system From B we now derive the constraint
system CB:

(A2.3) Let CB be the empty constraint system.

(A2.3.a) Traverse the vertices of B in a top-down breadth first manner
starting with the root of B (and hence, the root of πs). For every
vertex v of B and every successor v′ of v do the following:
If the transition corresponding to the edge (v, v′) is a symbolic
secure channel or intruder transition, K is the intruder knowledge
in the state associated with v, and R is the LHS of the principal
rule associated with the transition, then add R : K to CB at the
end.
We call constraints of this kind intruder constraints of CB.
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(A2.3.b) For every i ∈ {1, . . . l}, leaf v of T s
i , and a ∈ Ci do the following:

If K is the intruder’s knowledge in the state associated with v,
then add a : K to CB at the end.
We call constraints of this kind strategy property constraints of
CB.

This completes the description of (A2) of SolveStrategy.
To be able to apply Fact 3.4.1, we need the following lemma. The proof of

this lemma is straightforward and therefore omitted: To show monotonicity
one has to make use of the fact that secure channel encoding messages are
not removed anymore from the intruder’s knowledge

Lemma 3.5.8 CB is a valid constraint system.

As a consequence of this lemma and Fact 3.4.1, we can employ the con-
straint solver to solve CB.

3.5.3 Checking the Induced Substitutions

Let B = (πs, T s
1 , . . . , T s

l ) be the symbolic branching structure obtained in
(A1) of SolveStrategy and let (C′, τ) be the output returned by the constraint
solver when applied toCB in (A2). Let ν be the complete solution associated
with (C′, τ) in (A3), see Section 3.4. We emphasize that for our algorithm
to work, it is important that ν replaces the variables in C′ by new intruder
atoms from AI not occurring in B.
In (A4), we want to check whether when applying ν to B, which yields

ν(B) = (ν(πs), ν(T s
1 ), . . . , ν(T s

l )), we obtain a solution of the problem in-
stance (P, C). Hence, we need to check whether i) ν(πs) corresponds to a
path in GP from the initial state of GP to some state in GP , say q, and ii)
ν(T s

i ) corresponds to a q-strategy tree for (Ci, C
′
i) for every i ∈ {1, . . . , l}.

Since ν is a complete solution ofCB, some of these conditions are satisfied
by construction. In particular, ν(πs) is guaranteed to be a path in GP starting
from the initial state. Also, (T1)–(T3), do not need to be checked. Moreover,
we know that ν(T s

i ) satisfies (Ci, ∅). Hence, SolveStrategy only needs to make
sure that ν(T s

i ) fulfills (∅, C ′
i) and that (T4) and (T5) are satisfied for every

tree ν(T s
i ).

This leads to the following tests:
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(A4) For every i ∈ {1, . . . , l} do:
(A4.1) Check the strategy property: For every leaf v of T s

i check that
C ′

i∩d(Kν) = ∅ where K is the intruder knowledge in the symbolic
state associated with v.

(A4.2) For every vertex v in T s
i perform the following tests. Let

({Π′
h}h,K,S, X ) be the symbolic state associated with v in T s

i

and for every h ∈ {1, . . . , n} let Π′
h = (V ′

h, E
′
h, r

′
h, `

′
h).

(A4.2.a) Check (T4): For all m ∈ Sν, h ∈ {1, . . . , n}, n′h ∈ V ′
h, and R

such that
A. (r′h, n

′
h) ∈ E ′

h,

B. R is the LHS of `′h(r
′
h, n

′
h), and

C. Rν matches m,
check that there exists a successor v′ of v in T s

i such that
(v, v′) is labelled [h, n′h, R

′, sc] for some R′ with R′ν = m.

(A4.2.b) Check (T5): For every successor v′ of v in T s
i , h ∈ {1, . . . , n},

n′h, n
′′
h ∈ V ′

h with n
′
h 6= n′′h, R, and R

′ such that
A. [h, n′h, I] is the label of (v, v

′),

B. R is the LHS of `′h(r
′
h, n

′
h),

C. (r′h, n
′′
h) ∈ E ′

h,

D. R′ is the LHS of `′h(r
′
h, n

′′
h), and

E. R′ν matches with R̂ν where R̂ is obtained from R by
replacing each non-indexed variable x in R by xv′ ,

check that there exists a successor v′′ of v in T s
i such that

(v, v′′) is labelled [h, n′′h, I].

It is clear that the tests in (A4.2) can easily be performed given ν and T s
i .

In [CKRT03], it was shown that the derivation problem, i.e., the problem of
deciding m ∈ d(K) given a ground term m and a finite set of ground terms
K, can be decided in polynomial time. Hence, (A4.1) can also be checked
efficiently in the size of the security property and Kν.

If the above checks are successful, we say that ν is valid for B. In this
case, SolveStrategy outputs yes.

In our example, the induced substitution for Ci is νi as Ci does not
contain any variables. It can easily be verified that with C′ = C2 and
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the induced substitution ν2, the above checks are all successful. However,
(A4.2.b) fails for C′ = C1 and ν1 because in h4 the rule a ⇒ c1 could also
be applied but it is not present in Bex. In fact, Bexν1 would not yield a
solution of the instance (Pex, ((Cex, C

′
ex))). This example illustrates that in

SolveStrategy one cannot dispense with the last step, namely checking the
substitutions, and that one has to try the different pairs (C′, τ) in the sound
and complete solution set for CB.

3.6 Proof of the Main Theorem

In this section, we prove Theorem 3.5.1. Obviously, SolveStrategy always
terminates; we only need to prove soundness and completeness. This is
done in Section 3.6.2 and 3.6.3, respectively. We start with some additional
notation that will be used in the proof.
For all of this section, we fix a protocol P and a strategy property C as

usual.

3.6.1 Further Terminology

Concrete Branching Structures and Naming Conventions

Let q ∈ GP . A q-tree is a q-strategy tree where, however, only (T1) and
(T2) need to be satisfied (see Definition 3.3.1). A concrete path π for P is a
q0-tree where q0 is the initial state of P and every vertex in π has at most
one successor. A concrete branching structure for P is defined analogously to
symbolic branching structure only that now the symbolic path is a concrete
path π and the symbolic strategy trees Ti are concrete strategy trees for every
i ∈ {1, . . . , l}. Such a branching structure satisfies C if Ti satisfies (Ci, C

′
i)

for every i ∈ {1, . . . , l}.

Remark 3.6.1 (P, C) ∈ Strategy iff there exists a concrete branching
structure for P which satisfies C.

Concrete branching structures for P will be denoted B = (π, T1, . . . , Tl)

where π = (V π, Eπ, rπ, `πV , `
π
E) and Ti = (V i, Ei, ri, `iV , `

i
E) for every i ∈

{1, . . . , l}.
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Let B be a concrete branching structure for P . Note that B can be
viewed as a q0-tree (V,E, r, `V , `E) where V = V π ∪ V 1 ∪ · · · ∪ V l, E =

Eπ∪E1∪· · ·∪El, r = rπ, and `V and `E coincide with the labeling functions
of the components of B on the respective domains.
For a symbolic or concrete tree T , we write v ∈ T to express that v

is a vertex in T . Analogously, we write (v, v′) ∈ T if (v, v′) is an edge
in T . Note that since branching structures are viewed as trees we may
also write v ∈ B if v ∈ V and (v, v′) ∈ B if (v, v′) ∈ E. For v ∈ B let
`V (v) = ((Πv

1, . . . ,Π
v
n), σv,Kv,Sv) and Πv

j = (V v
j , E

v
j , r

v
j , `

v
j ).

As usual, for an edge (v, v′) in B, we talk about the transition (in GP )
associated with (v, v′). When i is the principal associated with this transition,
we call i the principal associated with (v, v′), respectively. Similarly, we speak
of the principal rule and the principal vertex associated with (v, v′).
Our notation and naming conventions for symbolic branching structures

will be analogous; we will, however, always add an “s” as a superscript. That
is, a symbolic branching structure will be denoted by Bs = (πs, T s

1 , . . . , T s
l ),

we will write πs = (V s,π, Es,π, rs,π, `s,πV , `s,πE ) and Πs,v
j = (V s,v

j , Es,v
j , rs,v

j , `s,vj ).
Recall that for a symbolic branching structureBs we denote the branching

structure constructed from Bs in (A2) of SolveStrategy by B
s
. We refer to

the components of B
s
by appropriate decorations of the components of Bs,

i.e., `
s,π

E , V
s,v

j and so on.

Substitutions of Symbolic States and Trees

Let qs = ((Π1, . . . ,Πn),K,S,X ) be a symbolic state reachable from the initial
symbolic state of P . Recall from Section 3.5.1 that the variables in X are
indexed with vertices, that is, they are of the form xv. Consider the mapping
δ : xv 7→ x which drops the respective index. Since qs is reachable from the
initial symbolic state of P , the function δ is one-to-one.
Let ν be a substitution of the variables in X . We denote by ν(qs) the

(concrete) state obtained from qs by substituting the variables in qs according
to ν. More precisely, let X ′ be the image of δ. Then δ : X → X ′ is a bijection.
We define ν(qs) to be the tuple ν(qs) = ((Π′

1, . . . ,Π
′
n), ν ′|X ′ ,Kν,Sν) where

Π′
i is obtained from Πi by dropping the indices of variables in X and ν ′|X ′ is
a substitution with domain X ′ and ν ′|X ′(x) = ν(δ−1(x)) for every x ∈ X ′.
For a symbolic qs-tree T = (V,E, r, `V , `E) and a substitution ν of the
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variables used in T we denote by ν(T ) the instantiation obtained from T
by substituting the variables in T according to ν. More precisely, we define
ν(T ) in such a way that it has the form of a (concrete) ν(qs)-tree. For
this, we need to adjust the format of the labeling of edges and of course
replace the symbolic states by concrete ones. However, we note that ν(T )

is not necessarily a ν(qs)-tree in the sense defined above since ν(qs) may
not be a state of GP and the transitions associated to the edges of this tree
may not be transitions of GP . Formally, ν(T ) is defined to be the the tuple
ν(T ) = (V,E, r, ν(`V ), ν(`E)) with ν(`V )(v) = ν(`V (v)) and

ν(`E)(v, v′) =


[j] if `E(v, v′) = [j, f ]

[j, ν(R), I] if `E(v, v′) = [j, f, I] and `j(rj, f) = [R⇒ S]

[j, ν(R), sc] if `E(v, v′) = [j, f, R, sc]

for every (v, v′) ∈ E where rj denotes the root of the jth principal Πj in the
symbolic state `V (v) and `j denotes the labeling function of Πj. Note that
ν(T ) is in fact a concrete ν(qs)-tree.

Solutions of Symbolic Branching Structures

For a symbolic branching structure Bs = (πs, T s
1 , . . . , T s

l ) and a substitution
ν, let ν(Bs) = (ν(πs), ν(T s

1 ), . . . , ν(T s
l )).

We say that ν solves Bs (with respect to the strategy property C) if ν(Bs)

is a concrete branching structure (which satisfies C).
A root path π′ in B is a sequence π′ = v1, . . . , vn of vertices vi ∈ B such

that (vi, vi+1) ∈ B and v1 is the root of B (and hence, of π). If ρi = Ri ⇒ Si

denotes the principal rule associated with the edge (vi, vi+1) ∈ B, then ρ =

ρπ′ = ρ1, . . . , ρn−1 is called the pr-sequence associated with π′. Given a set K
of messages we call a ground substitution σ of the variables occurring in ρ,
a solution of ρ w.r.t. K if Riσ ∈ d(K ∪ {Sjσ | j < i}) for every i. We call σ
a solution of π′ w.r.t. K if σ is a solution of ρπ′ w.r.t. K.

3.6.2 Soundness of SolveStrategy

In this section, we show soundness of SolveStrategy. The main problem is
that when translating the symbolic branching structure that was guessed in
(A1) of SolveStrategy into a constraint system we model the communication
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via secure channels by introducing what we call secure channel encoding
terms. These encoding terms are written into the knowledge of the intruder
and the idea is that the intruder delivers these terms instead of the secure
channel terms that would have been delivered by the secure channel in the
model. The problem is that the intruder might use these messages also in
other contexts. We need to show that one can eliminate these secure channel
encoding messages from a solution of the constructed constraint system.
We start with some lemmas on substitution, especially in the context of

encryption.

Preliminaries

For terms t, t′, t′′, we denote by t|t′→t′′ the term obtained from t by simulta-
neously replacing every occurrence of t′ by t′′. This definition is extended
to sets of terms and substitutions in the obvious way. We write E|t′→t′′ and
σ|t′→t′′ , respectively.
The following lemma can easily be shown by induction on the length of

derivations using the same techniques as for example in [RT03].

Lemma 3.6.2 Let E be a set of messages and m1,m2,m3,m4 messages with
m1 = {m2}s

m3
. If m1 ∈ E and m3 /∈ d(E), then

d(E)|m1→m4
⊆ d(E|m1→m4) . (3.3)

Terms can be viewed as finite vertex-labeled ordered trees where the ver-
tices are labeled with function symbols and the number of successors of a
vertex is exactly the arity of the function symbol the vertex is labelled with.
By convention, if a vertex is labeled by the encryption symbol {·}s

· , then the
right successor corresponds to the key. Similarly, for the {·}a

· and sig(·, ·)
symbols. For a term t, we write v ∈ t to say that v is a vertex of t and t↓v
to denote the subterm of t rooted at vertex v of t.
We say that a term t only occurs in the context of {t′}s

t in the term t′′

if for all v ∈ t′′ with t′′↓v = t we have that t′′↓v′ = {t′}s
t where v

′ is the
predecessor of v in t′′. For a set of terms E we say that t only occurs in
the context of {t′}s

t in E if t only occurs in the context of {t′}s
t in all terms

t′′ ∈ E. Let σ be a substitution. We say that t only occurs in the context of
{t′}s

t in σ if t only occurs in the context of {t′}s
t in σ(x) for all x ∈ dom(σ).
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Lemma 3.6.3 Let R be a term, m1,m2 be messages, k ∈ A be an atom,
and σ be a ground substitution such that k /∈ Sub(R) and k only occurs in
the context of {m1}s

k in σ. Then

(Rσ)|{m1}s
k→m2

= R(σ|{m1}s
k→m2) . (3.4)

Proof First observe that there does not exist a subterm t of R such
that t is not a variable and tσ = {m1}s

k. Otherwise, since k /∈ Sub(R), t
would be of the form {t′}s

x for some t
′ and variable x, and hence, σ(x) = k in

contradiction to the assumption that k only occurs in the context of {m1}s
k

in σ. From this the claim of the lemma follows easily. 
The following lemma can be proved by a simple induction.

Lemma 3.6.4 Let E be a set of messages and k,m be messages. If k only
occurs in the context of {m}s

k in E, then k only occurs in the context of {m}s
k

in d(E).

A vertex v of a term is a key node if it is a descendant of the right
successor (inclusive) of a vertex labeled with {·}s

· , {·}a
· , or sig(·, ·). A term t

occurs only in a key position in term t′ if every vertex v of t′ such that the
term corresponding to v is t is a key node. Otherwise, we say that t occurs
in a non-key position in t′. For example, x only occurs in a key position in
the term {〈a, b〉}s

〈c,x〉 but not in the term {〈x, b〉}s
c.

From the above lemmas, we obtain:

Lemma 3.6.5 Let k1, . . . , kn ∈ A be pairwise distinct atoms, let t1, . . . , tn
be terms, and let K1 and K2 be sets of terms such that {k1, . . . , kn} ∩
Sub(K1) = ∅, K2 = {{t1}s

k1
, . . . , {tn}s

kn
}, and {k1, . . . , kn} ∩ Sub(ti) = ∅

for i ∈ {1, . . . , n}. Let σ be a ground substitution such that {k1, . . . , kn} ∩
Sub(σ(x)) = ∅ for every variable x. Then the following is true for every term
R with {k1, . . . , kn} ∩ Sub(R) = ∅.
1. Rσ ∈ d(K1σ ∪ K2σ) implies Rσ ∈ d(K1σ).

2. For every i, {R}s
ki
σ ∈ d(K1σ ∪ K2σ) implies Rσ = tiσ.

Proof To show (1), we first observe that ki /∈ d(K1σ ∪ K2σ). Now,
iteratively applying Lemma 4.7.27 for every i with m1 = {ti}s

ki
σ and some

intruder atom m4 allows us to eliminate the messages in K2σ. (2) easily
follows with Lemma 3.6.4. 
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Proof of Soundness

Assume SolveStrategy outputs yes. We have to show (P, C) ∈ Strategy.
Let Bs = (πs, T s

1 , . . . , T s
l ) be the symbolic branching structure guessed in

(A1) of SolveStrategy. Let C = CBs be the corresponding constraint system
constructed in (A2) and let C′ be the simple constraint system returned by
the constraint solver in (A3) such that the complete solution ν associated
with C′ passes the tests in (A4) of SolveStrategy.
We would like to show that ν solves Bs with respect to C. Recall that this

means that ν(Bs) is a concrete branching structure which satisfies C. The
main problem is that ν might contain secure channel keys (see Section 3.5.2).
With these keys, ν cannot solve Bs since they do not occur in Bs. We will
therefore iteratively eliminate these keys from ν. This will be done in such a
way that before and after every step the current substitution satisfies certain
conditions with respect to B

s
and C (recall the definition of B

s
and C from

Section 3.5.2). At the end, we will have a ground substitution µ for which
we then show that it solves Bs with respect to C.
For a given substitution σ, the conditions are:

(P1) For every root path π of B
s
the substitution σ is a solution for π.

(P2) The substitution σ solves the strategy property constraints of C.

(P3) The substitution σ passes the tests in (A4).

We first prove:

Lemma 3.6.6 Let σ be a substitution satisfying (P1)–(P3) and let k ∈ Ksc
be a secure channel key and {t}s

k be the corresponding encoding term.
Then k only occurs in the context of {tσ}s

k in σ.

Proof Assume that there exists a variable z in the domain of σ such
that k does not only occur in the context of {tσ}s

k in σ(z). Note that by
construction, z is of the form xv where v is a vertex in Bs and x is a variable
in P . Let z be minimal with this property. That is, there exists v ∈ Bs

such that z ∈ Xv (the set of used variables at vertex v) and for every proper
ancestor v′ ∈ Bs

of v with z /∈ Xv′ and every z′ ∈ Xv′ it holds that k only
occurs in the context of {tσ}s

k in σ(z′). Let z and v be as above and let

π′ = v1, . . . , vn with vn = v be a root path in B
s
and ρ = ρBπ′ = ρ1, . . . , ρn−1

be the pr-sequence associated with π′ where ρi = Ri ⇒ Si. Since σ satisfies
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condition (P1), we know that Rnσ ∈ d(Ks,vn−1
σ) (recall the definition of

Ks,vn−1 from above). Clearly, k only occurs in the context of {tσ}s
k in K

s,vn−1 .
Also, V(Ks,vn−1

) ⊆ Xvn−1 . And hence, k only occurs in the context of {tσ}s
k

for every z′ ∈ V(Ks,vn−1
). Hence, k only occurs in the context of {tσ}s

k in
Ks,vn−1

σ. Lemma 3.6.4 thus yields:

(*) k only occurs in the context of {tσ}s
k in Rnσ.

However, we also have that z ∈ V(Rn) and that k does not only occur in the
context of {tσ}s

k in σ(z). From this it follows that there exists a subterm of
Rn of the form {t}s

z for some term t and that σ(z) = k. By the feasibility
condition on principals we know that z ∈ d(K∪{R1, . . . , Rn}) where K is the
union of the initial knowledge of the principals in P and we consider variables
as constants. Because of the minimality, we know that z only occurs in Rn

and it follows that z must occur in a non-key position in Rn. Hence, k also
occurs in a non-key position in Rnσ, in contradiction to (*). 
Using Lemma 3.6.6, we obtain:

Lemma 3.6.7 Let σ be a substitution satisfying (P1)–(P3) and let k ∈ Ksc
be a secure channel key and {t}s

k be the corresponding encoding term.
Let π′ = v1, . . . , vn be a root path of B

s
and ρ = ρ1, . . . , ρn−1 with ρi =

Ri ⇒ Si the pr-sequence associated with π′. In addition, let Kvi
= Ks,vi be

as in the proof of Lemma 3.6.6.
Then k only occurs in the context of {tσ}s

k in Kvi
σ and Riσ for every i.

Proof By the construction of B
s
, we know that k only occurs in the con-

text of {tσ}s
k in Kvi

and Ri for every i. From this together with Lemma 3.6.6,
the claim follows immediately. 
We can now state:

Proposition 3.6.8 Let σ be a substitution satisfying (P1)–(P3) and let k ∈
Ksc be a secure channel key and {t}s

k be the corresponding encoding term.
Let a ∈ AI be a new intruder atom and define σ′ = σ|m→a where m =

{tσ}s
k.
Then σ′ satisfies (P1)–(P3).

Proof First note that due to Lemma 3.6.6 atom k does not occur in σ′

anymore. We have to show that σ′ satisfies (P1)–(P3).
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(P1) Let π′ = v1, . . . , vn, ρ, ρi, Ri, Si, and Kvi
be given as in Lemma 3.6.7.

By assumption the substitution σ satisfies (P1), and hence, σ solves π′. That
is, Riσ ∈ d(Kvi−1

σ) for every i. We want to show that Riσ
′ ∈ d(Kvi−1

σ′) for
every i. We proceed with a case distinction.

If k does not occur in Riσ and Kvi−1
σ, then Riσ = Riσ

′ and Kvi−1
σ =

Kvi−1
σ′, and hence, Riσ

′ ∈ d(Kvi−1
σ′).

Otherwise, by construction of B
s
, we have that {t}s

k ∈ Kvi−1
, and hence,

m ∈ Kvi−1
σ. By Lemma 3.6.7, we know:

(*) k only occurs in the context of {tσ}s
k in Kvi

σ and Riσ.

Now, if k ∈ Sub(Ri), then by construction of B
s
, we know that Ri is of the

form {t′}s
k for some term t

′. It follows that Riσ = m. Obviously, we have that
m = {t}s

kσ = {t}s
kσ

′. Thus, m ∈ Kvi−1
σ′, and therefore, Riσ

′ ∈ d(Kvi−1
σ′).

If k /∈ Sub(Ri), we can apply Lemma 3.6.3 and obtain that (Riσ)|m→a =

Riσ
′. Moreover, using Lemma 3.6.4 and (*), we know that k /∈ d(Kvi−1

σ).
Now, we can apply Lemma 4.7.27 and obtain that Riσ

′ = (Riσ)|m→a ∈
d((Kvi−1

σ)|m→a
). For S ∈ Kvi−1

such that k /∈ S, Lemma 3.6.3 implies Sσ′ =
(Sσ)|m→a. By construction of B

s
, if k ∈ Sub(S), then S = {t}s

k, and hence,
Sσ = m. Since a ∈ AI ⊆ d(Kvi−1

σ′), we obtain that d((Kvi−1
σ)|m→a

) ⊆
d(Kvi−1

σ′). Consequently, Riσ
′ ∈ d(Kvi−1

σ′).

(P2) We need to show that for every c ∈ Ci and root path π′ = v1, . . . , vn

where vn is a leaf in T s
i , we have that c ∈ d(K

s,vn
σ′). We know that σ solves

C, and hence, c ∈ d(Ks,vn
σ). From this, using the same arguments as above,

we obtain that c ∈ d(Ks,vn
σ′).

(P3) We have to show that σ′ also passes (A4.1), (A4.2.b), and (A4.2.b),
and we know that σ passes them. First, we show that σ′ passes (A4.1). We
know:

(**) C ′
i ∩ d(K

s,v
σ) = ∅ for every leaf v of T s

i and every i.

If there exists c ∈ C ′
i ∩ d(K

s,v
σ′), then it is easy to see that, since a is a new

intruder atom, from (Kv,s
σ′)|a→{t}s

kσ we can still derive c. Together with the

fact that (Ks,v
σ′)|a→{t}s

kσ = Ks,v
σ, this is a contradiction to (**).

To see that σ′ passes (A4.2.a) and (A4.2.b), it suffices to observe that if
condition C. and conditions C.–E. in (A4.2.a) and (A4.2.b), respectively, are
satisfied for σ′, then also for σ. Here we again use that a is a new intruder
atom and that we can replace a again by {t}s

kσ. 
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We can now phrase what we were aiming for:

Proposition 3.6.9 Let µ be the substitution obtained from ν by repeatedly
applying the transformation described in Proposition 3.6.8 (from σ to σ′)
until no secure channel encoding terms are left.
Then µ(Bs) is a concrete branching structure for P which satisfies C.

Note that since ν was returned by SolveStrategy, and hence, solves C and
passes the tests in (A4), ν satisfies (P1)–(P3) and Proposition 3.6.8 can be
applied repeatedly.
Note that by Remark 3.6.1 this proposition implies soundness of

SolveStrategy.
Proof We first show that every edge in µ(Bs) corresponds to a transition

in GP by induction on the length of root paths π′ = v1, . . . , vh in Bs. That
is, we show by induction on h:

(i) µ(`sV )(v1) is the initial state of P ,

(ii) µ(`sV )(vi) ∈ GP for i ∈ {1, . . . , h}, and

(iii) µ(`sV )(vi)
µ(`s

E)(vi,vi+1)
−−−−−−−−→ µ(`sV )(vi+1) ∈ GP for i ∈ {1, . . . , h− 1}.

For h = 1, we only need to show that µ(`sV )(v1) is the initial state of
P , which is obvious. For the induction step assume that we are given a
root path π′ = v1, . . . , vh+1 in Bs (and thus, in B

s
). Let ρs = ρs

1, . . . , ρ
s
h

with ρs
i = Rs

i ⇒ Ss
i be the pr-sequence associated with π

′ in Bs and let
ρs = ρs

1, . . . , ρ
s
h with ρ

s
i = R

s

i ⇒ S
s

i be the pr-sequence associated with
π′ in B

s
. Moreover, let µ(Ks,vi) be the knowledge of the intruder at vi in

µ(Bs). Note that µ(Ks,vi) ⊆ K0 ∪ {Ss
1µ, . . . , S

s
i−1µ} where K0 is the initial

intruder knowledge in P . This inclusion could be strict since some of the Ss
j

may be secure channel terms, and hence, are not written into the intruder’s
knowledge. Let µ(Ks,vi

) = K0∪{S
s

1µ, . . . , S
s

i−1µ} be the intruder’s knowledge
at vi w.r.t. B

s
. Recall that for B

s
all messages are written into the intruder’s

knowledge.
We next show that the statements (i), (ii), and (iii) from above hold

for π′. Obviously, statement (i) still holds. By the induction hypothesis,

we know that µ(`sV )(vi) ∈ GP for i ∈ {1, . . . , h} and µ(`sV )(vi)
µ(`s

E)(vi,vi+1)
−−−−−−−−→

µ(`sV )(vi+1) ∈ GP for every i ∈ {1, . . . , h − 1}. We have to show that
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µ(`sV )(vh+1) ∈ GP and µ(`sV )(vh)
µ(`s

E)(vh,vh+1)
−−−−−−−−→ µ(`sV )(vh+1) ∈ GP . We distin-

guish between the different types of the symbolic transitions. For symbolic
ε-transitions this is obvious.

For symbolic intruder transitions, the main point to show is that we have
Rs

hµ ∈ d(µ(Ks,vh)). First assume that Rs
h is not a secure channel term. It

follows that Rs
h = R

s

h. Since µ satisfies condition (P1) from above, we know
that R

s

hµ ∈ d(µ(Ks,vh
)). We know that µ(Ks,vh) ⊆ µ(Ks,vh

) and that the only
difference between µ(Ks,vh) and µ(Ks,vh

) is that the latter set may contain
secure channel encoding messages. Since µ, Rs

h, and the terms in Ks,vh do
not contain secure channel keys, we immediately obtain Rs

hµ ∈ d(µ(Ks,vh))

by Lemma 3.6.5. The argument in case Rs
h is a secure channel term is similar.

For symbolic secure channel transitions, assume that `sE(vh, vh+1) is of the
form [j, f, sc(n, n′, R′), sc]. We have to show that µ(sc(n, n′, R′)) ∈ µ(Ss,vh)

and µ(Rs
vh

) = µ(sc(n, n′, R′)) where Ss,vh denotes the secure channel in the
symbolic state `sV (vh). By definition of symbolic secure channel transitions,
we know that sc(n, n′, R′) ∈ Ss,vh , and thus, µ(sc(n, n′, R′)) ∈ µ(Ss,vh). If
Rs

vh
is of the form sc(n, n′, R), then, by construction of B

s
, R

s

h is of the form
{R}s

k for some secure channel key k such that {R′}s
k ∈ K

s,vh and k does not
occur in any other term in Ks,vh . We know that R

s

hµ ∈ d(Ks,vh
µ). Since

k does not occur in µ nor in R and R′, with Lemma 3.6.5 we obtain that
Rµ = R′µ, and thus, µ(Rs

h) = µ(sc(n, n′, R′)). Thus, we have shown that the
edges in µ(Bs) correspond to transitions in GP .

The last step is to show that µ(T s
j ) is a strategy tree for (Cj, C

′
j). Prop-

erties (T1) and (T2) of Definition 3.3.1 are satisfied as we have just shown.
(T3) follows directly from (S3). (T4) and (T5) follow directly from the fact
that µ passes (A4.2.a) and (A4.2.b). 

3.6.3 Completeness of SolveStrategy

In this section, we show completeness of SolveStrategy. To this end, let (P, C)

be an instance of Strategy and assume (P, C) ∈ Strategy. We have to
show that there is a run of SolveStrategy in which yes is returned. From
Remark 3.6.1, we conclude that there exists a branching structure B for P
that satisfies C.
Our proof proceeds in three steps:
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(C1) We turn B into a symbolic branching structure Bs together with a
substitution τ such that τ(Bs) = B.

Note that SolveStrategy can guess Bs in step (A1).

(C2) We consider the constraint system C that is constructed in (A2), pro-
vided Bs was guessed in (A1), and show that τ is a solution of C.

It follows that τ is also a solution of a simple constraint system, say
C′, in the sound and complete solution set of C. Thus, there is a run
of the constraint solver which outputs C′.

(C3) We show that the substitution τC′ associated with C′ passes the tests
performed in the third step of SolveStrategy.

This means SolveStrategy outputs yes

The technical problem we have to overcome is that the above steps can
only be carried out if B is what we call a minimal branching structure. So
we also need to show that this is the case without loss of generality.
Roughly speaking, minimal branching structures satisfy two properties:

First, they should not contain superfluous transitions. Second, the secure
channel transitions are in some sense complete. We now define these struc-
tures formally.

Preliminaries

To define minimal branching structures, we first need to introduce sch-
functions and sch-completeness. To motivate these notions, we sketch the
first step of our completeness proof, (C1).
The symbolic branching structure Bs and the substitution τ are con-

structed in an inductive manner starting from the root of B. Given a vertex
v such that the symbolic state associated with v is already defined and the
substitution τ is already defined for the variables in Xv (the set of variables
used in vertex v), we will define for each vertex v′ ∈ B with (v, v′) ∈ B the
symbolic transition label of the edge (v, v′) and the symbolic state associated
with v′ in Bs together with the substitution of the variables used in v′. In or-
der to define the symbolic secure channel components of the state associated
with vertex v ∈ Bs we will define what we call valid sch-functions.
Informally speaking, a valid sch-function for a concrete branching struc-

ture B associates with each vertex v ∈ B a sequence of secure channel terms
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which corresponds to a possible symbolic secure channel state in v ∈ Bs.
More precisely, a valid sch-function `sch associates with the root r of B the
empty sequence. This corresponds to the empty secure channel in the sym-
bolic state associated with r in Bs. Whenever a secure channel message m is
written into the secure channel by a transition from vertex v to v′ in B, then
the sequence of secure channel terms associated with v′ is that of v extended
by the right-hand side of the principal rule associated with the edge (v, v′).
Whenever a secure channel message m′ is read from the secure channel, a
particular secure channel term which matches with m′ is removed from the
sequence `sch(v) of secure channel terms associated with v.
We now turn to the formal definition of the notions explained above.

Formally, we call a sequence s = (S1, . . . , Sk) of sch-terms an sch-sequence.
For a term S, a substitution σ of variables such that V(Si) ⊆ dom(σ) for
some i ∈ {1, . . . , k}, and a message m, we say that the sch-sequence s′ is an
(S,m, σ)-successor of s if

s′ =


(S1, . . . , Si−1, Si+1, . . . , Sk) if Siσ = m and Sj 6= Si for all j < i and

S is not an sch-term,

(S1, . . . , Si−1, Si+1, . . . , Sk, S) if Siσ = m and Sj 6= Si for all j < i and
S is an sch-term.

We call the term Si the term removed from s.
A function `sch which maps every vertex v ∈ B to an sch-sequence is

called an sch-function. Such a function is valid if for every v ∈ B the following
conditions are satisfied:

(F1) Sv = σv({S1, . . . , Sk}) with `sch(v) = (S1, . . . , Sk). (Note that
{S1, . . . , Sk} should be treated as a multiset.)

(F2) If v′ is a successor of v inB and `E(v, v′) is of the form [i] or [i,m, I] (i.e.,
the transition associated with (v, v′) is an ε- or intruder transition),
then

`sch(v
′) =

{
`sch(v) if S is not an sch-term
(S1, . . . , Sk, S) otherwise

where S is the right-hand side of the principal rule associated with
(v, v′).

(F3) If v′ is a successor of v in B and `E(v, v′) is of the form [i,m, sc] (i.e., the
transition associated with (v, v′) is a secure channel transition), then
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`sch(v
′) is a (S,m, σv)-successor of `sch(v) where S is the right-hand

side of the principal rule associated with (v, v′).

In (F3), if S ′ is the term removed from `sch(v), we call S
′ the sch-term

removed in (v, v′). For ε- and intruder transitions, there is no removed sch-
term.

As mentioned above, minimal branching structures will be defined in such
a way that they satisfy two properties: i) there are no superfluous transitions
and ii) the secure channel transitions are in some sense complete. To motivate
the latter condition, we need to sketch (C3): We show that τC′ passes the
tests performed in (A4), in particular, (A4.2.a), which says that all secure
channel messages in the secure channel which could be read by applying a
principal rule are in fact read by applying this rule. For this condition to be
satisfied by τC′ , we have to impose some specific structure on the branching
structure B.

Suppose, for example, that the symbolic secure channel Ss,v associated
with v ∈ Bs contains terms sc(n, n′, x) and sc(n, n′, y) and τ(x) = τ(y) where
Bs and τ are the symbolic branching structure and substitution constructed
from B, respectively. Furthermore, assume that there is a principal rule of
the form sc(n, n′, z) ⇒ S applicable at v in B, then, by definition of strategy
trees (Definition 3.3.1, 4.) there has to be a secure channel transition with
sc(n, n′, z) ⇒ S being the associated principal rule of this transition where
the message τ(sc(n, n′, x)) = τ(sc(n, n′, y)) is read from the secure channel.
In the corresponding symbolic secure channel transition one of the two terms
sc(n, n′, x) and sc(n, n′, y) is removed from the symbolic secure channel. The
substitution τC′ does not have to fulfill the condition τC′(x) = τC′(y) any-
more. So the messages τC′(sc(n, n′, x)) and τC′(sc(n, n′, y)) are not neces-
sarily the same. Still, both could be read when applying sc(n, n′, z) ⇒ S,
and hence, in the concrete branching structure induced by Bs and τC′ there
must be secure channel transitions for both messages. Therefore, we want to
make sure that these transitions already occur in B. This is captured by the
notion of sch-completeness defined next.

Recall the definition of V j from the beginning of Section 3.6. We call B
sch-complete if there is a valid sch-function `sch for B and for all j, v ∈ V

j,
and successors v′ of v in B such that

• the label of the transition associated with (v, v′) is [i,m, sc] for some i
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and m ∈ Sv,

• the principal vertex associated with (v, v′) is f for some vertex f in Πv
i ,

and

• the right-hand side of the principal rule associated with (v, v′) is S for
some term S,

the following conditions are satisfied: For every (S,m, σv)-successor s of
`sch(v), there is a successor v

′′ of v such that `sch(v
′′) = s, the label of

the transition associated with (v, v′′) is [i,m, sc], and the principal vertex
associated with (v, v′′) is f .
We can now define minimal concrete branching structures.

Definition 3.6.10 (minimal branching structure) A branching struc-
ture B for P is called minimal if it satisfies the following conditions:

(M1) B is sch-complete.

(M2) For all i ∈ {1, . . . , l} and (v, v′), (v, v′′) ∈ Ei where v′ 6= v′′ and the
transitions associated with (v, v′) and (v, v′′) are ε-transitions:

• The principal associated with (v, v′) differs from the principal as-
sociated with (v, v′′), or

• the principal vertex associated with (v, v′) differs from the principal
vertex associated with (v, v′′).

(M3) For all i ∈ {1, . . . , l} and (v, v′), (v, v′′) ∈ Ei where v′ 6= v′′ where
the transitions associated with (v, v′) and (v, v′′) are secure channel
transitions:

• The principal associated with (v, v′) differs from the principal as-
sociated with (v, v′′), or

• the principal vertex associated with (v, v′) differs from the principal
vertex associated with (v, v′′), or

• the sch-term removed in (v, v′) differs from the sch-term removed
in (v, v′′).

(M4) For all i ∈ {1, . . . , l} and (v, v′), (v, v′′) ∈ Ei: If `V (v, v′) = [j,m, I] for
some j and m, then `V (v, v′′) = [j,m, I].

(M2) – (M4) say that there are no superfluous transitions in the strategy
trees of a minimal branching structure. These conditions correspond to the
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conditions (S2) – (S4) for symbolic strategy trees. (M1) is the completeness
condition explained above.
The following lemma is easy to show, simply by cutting down a given

branching structure appropriately.

Lemma 3.6.11 If there exists a branching structure for P which satisfies C,
then there exists a minimal branching structure with this property.

Proof of Completeness

We can now carry out (C1), (C2), and (C3), assuming that the given branch-
ing structure B is minimal.

Step (C1) Our goal is to construct a symbolic branching structure Bs for
P and a substitution τ such that τ(Bs) = B. In particular, we define Bs in
such a way that the set of vertices and edges of Bs coincides with the set of
vertices and edges in B, respectively. More precisely, define

• V s,π = V π and V s,i = V i for every i, and

• Es,π = Eπ and Es,i = Ei for every i, and

• rs,π = rπ and rs,i = ri for every i.

It remains to define the labeling functions `sV and `
s
E of B

s and the sets
of used variables associated with each vertex v ∈ V . For the root r of πs we
set `sV (r) = qs

0 where q
s
0 is the symbolic initial state of the protocol P . We

define the set Xr of used variables to be empty.
Assume that for v ∈ V the set of used variables Xv and the symbolic state

`sV (v) associated with v are already defined. Let v′ ∈ V with (v, v′) ∈ E. We
need to define `sE(v, v′) and `s(v′).
We define the first component of `E(v, v′) to be j. We know that

`V (v)
`E(v,v′)−−−−→ `V (v′) ∈ GP . Let f be the principal vertex associated with

this transition. Let X ′ = VR \ dom(σv) where `vj (r
v
j , f) = R ⇒ S is the

principal rule associated with (v, v′) in B. (Note that X ′ is the set of new
variables in R). Define Πs,v′

j = Π̂s,v
j ↓ f where Π̂s,v

j is Πs,v
j with variables

x ∈ X ′ renamed by xv′ .
The set Xv′ of used variables in v′ is set to be Xv′ = Xv ∪ {xv′ | x ∈ X ′}.
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In the following, we denote by R̂ and Ŝ the terms R and S where the vari-
ables occurring in R and S, respectively, are renamed by there corresponding
indexed version from Xv′ .
To define the intruder knowledgeKs,v′ , the secure channel component Ss,v′

of `sV (v′) and the edge label `sE(v, v′), we distinguish between the different
types of transition labels `E(v, v′).

• `E(v, v′) = [j] (ε-transition): We set

(a) `sE(v, v′) = [j, f ];

(b) Ks,v′ = Ks,v ∪ {Ŝ} if Ŝ is not a secure channel term and Ks,v′ =

Ks,v∪{R′} if Ŝ is a secure channel term of the form Ŝ = sc(·, ·, R′);
and

(c) Ss,v′ = Ss,v if Ŝ is not a secure channel term and Ss,v′ = Ss,v∪{Ŝ}
if Ŝ is a secure channel term.

• `E(v, v′) = [j,m, I] (intruder transition): We define `sE(v, v′) = [j, f, I]

and the rest as in (b) and (c) above.

• `E(v, v′) = [j,m, sc] (secure channel transition): We define `sE(v, v′) =

[j, f, S ′, sc] where `sch(v
′) is a (Ŝ,m, σv)-successor of `sch(v) and S

′

is the term removed from `sch(v). The intruder knowledge K
s,v′ is

updated as in (b) above. The secure channel component is updated
to Ss,v′ = Ss,v \ {S ′} if Ŝ is not a secure channel term and Ss,v′ =

Ss,v \ {S ′} ∪ {Ŝ} if Ŝ is a secure channel term.
Using the fact that B is a minimal (concrete) branching structure, it is easy
to verify that Bs is a symbolic branching structure.
We now define the substitution τ . The domain of τ is the set X =⋃

v∈V Xv, i.e., the set of used variables in Bs. For a variable xv ∈ X we
set τ(xv) = σv(x). By induction on h, it is easy to see that for each root
path v1, . . . , vh in Bs we have that τ(`sV (vi)) = `V (vi) and τ(`sE(vi, vi+1)) =

`E(vi, vi+1) for every i. From this, it immediately follows that τ(Bs) = B.

Step (C2) We have to show that τ is a solution of the constraint system
C constructed from B

s
. There are two types of constraints in C: First, con-

straints that were introduced for an edge (v, v′) ∈ E, the intruder constraints,
and second, the strategy constraints.
Let R : T be an intruder constraint of C that was introduced for the edge
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(v, v′) ∈ E. We have to show that τ(R) ∈ d(τ(T )). There are three different
cases that we have to distinguish: (a) `E(v, v′) = [j,m, I] and m is not a
secure channel message, (b) `E(v, v′) = [j,m, I] and m is a secure channel
message, and (c) `E(v, v′) = [j,m, sc].

Case (a). We know that τ(R) = σv′(R) = m ∈ d(Kv) because R is the
left-hand side of the principal rule associated with the edge (v, v′) in B. By
construction of B

s
, we have that Kv ⊆ τ(Ks,v

) = τ(T ) where Ks,v
is the

intruder’s knowledge at vertex v in B
s
. Thus, it follows that m ∈ d(τ(T )).

Case (b). We know that m is of the form m = sc(n, n′,m′) with m′ =

τ(R). We have that m ∈ d(Kv). Since, by construction, Kv does not contain
secure channel terms, it follows that n ∈ Kv and m′ ∈ d(Kv). As in (a) we
know that Kv ⊆ τ(Ks,v

) = τ(T ). Thus, m′ ∈ d(τ(T )).

Case (c). The term R is a term of the form {R′}s
kw′
where kw′ is the sch-

key introduced in the transition associated with an edge (w,w′) ∈ E where w
is a predecessor of v. So the left-hand side of the principal rule associated with
(v, v′) in Bs has the form sc(n, n′, R′) and the right-hand side of the principal
rule associated with (w,w′) in Bs has the form sc(n, n′, R′′). We know that
τ(sc(n, n′, R′)) = m = τ(sc(n, n′, R′′)). Hence, τ({R′}s

kw′
) = τ({R′′}s

kw′
).

Since {R′′}s
kv′′

∈ T , it follows that τ({R′}s
kw′

) ∈ d(τ(T )).

Since a strategy constraint is of the form a : Ks,v
for a leaf v ∈ Ti and

a ∈ Ci for some i and τ(T s
i ) = Ti fulfills (Ci, C

′
i) we know that τ fulfills this

constraint.

Step (C3) We will first show that τ passes the tests that in (A4) of
SolveStrategy and from this it will follow that τC′ passes these tests.

Test (A4.1). Let v be a leaf of some Ti. We know that C ′
i ∩ d(Kv) = ∅

and that τ(`sV (v)) = `V (v). Consequently, τ passes the first check because Ti

satisfies (Ci, C
′
i).

Test (A4.2). For every i and vertex v ∈ V i, we have to show that the
following conditions are satisfied.

Test (A4.2.a). For m ∈ Ss,vτ , h, f , R such that

A. (rs,v
h , f) ∈ Es,v

h ,

B. R is the LHS of `s,vh (rs,v
h , f), and

C. Rτ matches with m
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there is an edge (v, v′) ∈ E such that the label τ(`sE(v, v′)) = [h,m, sc] and
`sE(v, v′) has the form [h, f, ·, sc].
Test (A.4.2.b). If there exists an edge (v, v′) ∈ E and f ′ 6= f such that

A. the transition corresponding to the edge (v, v′) is labeled with [h, f, I],

B. R is the LHS of `s,vh (rs,v, f),

C. (rs,v
h , f ′) ∈ Es,v

h ,

D. R′ is the LHS of `s,vh (rs,v
h , f ′), and

E. R′τ matches with R̂τ where R̂ is obtained from R by replacing every
non-indexed variable x in R by xv′ ,

then there exists v′′ such that (v, v′′) ∈ E and the label of (v, v′′) in Bs is
[h, f ′, I].
Let v ∈ V i for some i. To show (A4.2.a), let m ∈ Ss,vτ , h, and f satisfy

A.–C. as above. We know that τ(T s
i ) = Ti for all i. Since Ti is a strategy tree,

there is an edge (v, v′) ∈ E such that the label is τ(`sE(v, v′)) = `E(v, v′) =

[h,m, sc]. This is sufficient.
To show (A4.2.b), let (v, v′) ∈ E and h, f, f ′, R, and R′ satisfy A.– C. as

above. We know that τ(T s
i ) = Ti for all i. Since Ti is a strategy tree, there is

a vertex v′′ such that the label of (v, v′′) is [h,m, I] and the principal vertex
associated with (v, v′) in B is f . By construction of Bs, we have that the
label of (v, v′′) is [h, f ′, I] as desired.
So τ passes the tests in (A4) of SolveStrategy. Now we show that τC′

passes these tests as well.
Test (A4.1). Let v be a leaf of some T s

i and suppose that there is an atom
a ∈ C ′

i such that a ∈ d(Ks,vτC′). Then it is easy to see that a ∈ d(Ks,vτ),
which is a contradiction to (C1).
Test (A4.2.a). Let m ∈ Ss,vτC′ , h, f such that

A. (rs,v
h , f) ∈ Es,v

h ,

B. R is the LHS of `s,vh (rs,v
h , f), and

C. RτC′ matches with m.

LetR′ ∈ Ss,v such thatm = R′τC′ . Since RτC′ matches with R′τC′ , it is easy
to see that R′τ matches with Rτ (since τ is obtained from τC′ by replacing
intruder atoms by messages). By definition of `sch, there is a successor v

′

of v such that rv′

h = f and `sch(v
′) is a valid (S,m, σv)-successor of `sch(v)
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with the term R′ removed. So by construction of Bs, the label `sE(v, v′) is
`sE(v, v′) = [h, f, R′, sc], and thus, τC′(`sE(v, v′)) = [h,m, sc] as desired.
Test (A4.2.b). Let (v, v′) ∈ E, h, f, R, f ′ and R′ satisfy A.–C. as above.

We have to show that there is a successor v′′ of v in B such that the label of
(v, v′′) in Bs is [h, f ′, I]. Since we know that R′τC′ matches with R̂τC′ , as
above we obtain that R′τ matches with R̂τ . Since τ passes the test (A4.2.b),
there exists a vertex v′′ such that (v, v′′) ∈ E and the label of (v, v′′) in Bs is
[h, f ′, I].
This completes the proof of completeness of SolveStrategy.
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Chapter 4

AMC for Cryptographic
Protocols

The alternating time temporal logic (ATL) has been used to specify and an-
alyze security properties of cryptographic protocols, see [KR01, KR02]. In
this chapter we introduce the alternating-time µ-calculus (AMC) for cryp-
tographic protocols and show that a fragment, called I-monotone, of AMC
is decidable for cryptographic protocols when reasonable restrictions on the
protocols are imposed.

In this chapter we formalize the possible executions of protocols along
with the Dolev-Yao intruder in terms of a certain class of infinite-state con-
current game structures [AHK02], which we call security-specific concurrent
game structures. These concurrent game structures have an infinite state
space since at every execution step the Dolev-Yao intruder can choose mes-
sages to be sent to principals among an infinite set of possible messages.
Similar to [KKW06], we model the realistic situation that (honest and dis-
honest) principals may take actions at the same time and may receive/write
several messages from/to other principals at the same time. Since many
cryptographic protocols with game-theoretic security requirements assume
resilient channels (also called secure channels here), i.e., channels that, un-
like the network, are not under the control of the Dolev-Yao intruder, our
model comprises such channels. We distinguish between direct and scheduled
secure channels: A direct secure channel is a direct link between principals.
Messages sent on scheduled secure channels are first sent to a buffer be-
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fore being delivered to the intended recipient. The buffer is a player in the
security-specific concurrent game structure and may team up with (honest or
dishonest) principals or other scheduled secure channels, as can be specified
by an AMC-formula. Honest principals are specified by finite edge-labeled
trees where an edge is labeled by a rule which describes a possible receive-
send action of a principal at the current step. Vertices in these trees may
have self-loops to allow a principal to stay in the current state.

Based on the security-specific concurrent game structures that we de-
fine, game-theoretic security requirements for protocols can conveniently be
expressed in terms of AMC-formulas (or alternatively, ATL∗-formulas). In
order to decide whether a given protocol satisfies a given security property,
expressed as AMC-formula, one has to decide the AMC-model checking prob-
lem over the security-specific concurrent game structures, where the input to
the problem is the protocol (which together with the Dolev-Yao intruder in-
duces the security-specific concurrent game structure) and the AMC-formula.

Our main technical results are as follows: We show that the above model
checking problem is undecidable for a class of protocols in which honest prin-
cipals may be what we call non-greedy, i.e., they may ignore received messages
even though they conform to the protocol specification. The undecidability
result holds for a relatively simple, fixed AMC-formula. Fortunately, in typ-
ical protocol specifications, honest principals are greedy, i.e., they do not
ignore messages that conform to the protocol specification. Hence, requir-
ing honest principals to be greedy is reasonable from a practical point of
view. We also exhibit another source of undecidability, namely protocols
that involve scheduled secure channels from the Dolev-Yao intruder (i.e., dis-
honest principals) to honest principals. This undecidability result holds for
greedy principals and again a fixed, simple AMC-formula. Since we allow
the Dolev-Yao intruder to send messages over direct secure channels to prin-
cipals, disallowing scheduled secure channels from the Dolev-Yao intruder to
honest principals does not limit the power of the intruder. These undecid-
ability results show that to obtain decidability it is necessary to consider only
protocols with greedy principals and without scheduled secure channels from
the Dolev-Yao intruder to honest principals. For this class of protocols we in-
deed obtain decidability, more accurately (co-)NEXPTIME-completeness, of
the model checking problem for an expressive fragment of AMC, consisting of



4.1. AMC AND PARITY GAMES 73

what we call I-positive (I-negative) AMC-formulas, where I is the name of
the Dolev-Yao intruder in the concurrent game structure. An AMC-formula
ϕ is I-positive if all subformulas of ϕ of the form 〈〈A〉〉ψ with I ∈ A fall un-
der an even number of negations and all subformulas of ϕ of the form 〈〈A〉〉ψ
with I 6∈ A fall under an odd number of negations; a formula is I-negative if
its negation is I-positive. We subsume the set of I-positive and I-negative
formulas under the notion I-monotone formulas. The same terminology can
be applied to ATL∗-formulas. It is easy to see that the property of being
I-positive/-negative is invariant under the translation from ATL∗ to AMC
as described in [AHK02]. Kremer and Raskin were the first to express game-
theoretic security properties in terms of fair ATL [KR01, KR02]. It turns
out that all the properties that they have formulated, including for instance
various forms of fairness, timeliness, balance, and abuse-freeness, fall into
the I-monotone fragment of ATL∗, and hence, the I-monotone fragment of
AMC, indicating that the I-monotone fragment suffices for most properties
of interest.
The complexity upper bound is proved by a novel combination of tech-

niques from the theory of infinite games, such as parity games and mem-
oryless strategies, and techniques from cryptographic protocol analysis for
reachability properties.

4.1 AMC and Parity Games

Following [AHK97, AHK02], in this section we recall the definition of concur-
rent game structures and AMC. We also introduce parity games for AMC-
model checking.

4.1.1 Concurrent Game Structures

Our definition of a concurrent game structure differs from the one in [AHK02]
in two aspects: First, the structures that we consider may have an infinite
state space and in one state players may have an infinite number of possible
moves. Second, while in [AHK02] a move of a player is identified with a
natural number, in our setting it is more convenient to allow arbitrary values;
in the context of cryptographic protocol moves will be vertices of trees and
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terms.

We define concurrent game structures as follows. A concurrent game
structure (CGS) is a tuple S = 〈Σ, Q,P, π,∆, δ〉 where

• Σ is a non-empty, finite set of players,

• Q is a (possibly infinite) set of states,

• P is a finite set of propositional variables/propositions,

• π : Q → 2P is a labeling function (which assigns every state to the set
of propositions true in this state),

• ∆ is a function which for each state q ∈ Q and each player a ∈ Σ

returns a (possibly infinite) set ∆(q, a) of moves available at state q to
player a.

For A ⊆ Σ and q ∈ Q, an (A, q)-move is a function c which maps every
a ∈ A to a move c(a) ∈ ∆(q, a). Given A ⊆ Σ and a state q, we write
∆A(q) for the set of (A, q)-moves. An (A, q)-move is called a partial
move if A 6= Σ, and a total move if A = Σ.

• δ is a transition function which, for each state q and each total move
c ∈ ∆Σ(q), returns a state δ(q, c) ∈ Q (the state obtained when in state
q all players simultaneously perform their moves according to c).

A computation of S is an infinite sequence λ = q0, q1, . . . of states such that
for each i ≥ 0, the state qi+1 is a successor of qi, i.e., qi+1 = δ(qi, c) for some
total move c ∈ ∆Σ(qi). We call λ a q-computation if q0 = q. We refer to the
ith state qi in λ by λ[i], to the sequence qi, qi+1, . . . , qj by λ[i, j], and to the
sequence qi, qi+1, . . . by λ[i,∞].

Let c ∈ ∆A(q) and c′ ∈ ∆A′(q) for A,A′ ⊆ Σ and q ∈ Q with A ⊆ A′.
We write c v c′ if c(a) = c′(a) for every a ∈ A. For a state q, a set of
players A ⊆ Σ, and an (A, q)-move c ∈ ∆A(q), we say that a state q′ ∈ Q

is a c–successor of q if there is a total move c′ ∈ ∆Σ(q) with c v c′ and
q′ = δ(q, c′).

4.1.2 AMC

Following [AHK97, AHK02], we now recall the definition of the alternating
µ-calculus (AMC).
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Syntax of AMC-Formulas

An AMC-formula over the set P of propositions, the set V of variables, and
the set Σ of players is one of the following:

• p ∈ P,

• X ∈ V ,

• ¬ϕ if ϕ is an AMC-formula,

• ϕ1 ∨ ϕ2 if ϕ1 and ϕ2 are AMC-formulas,

• 〈〈A〉〉ϕ if A ⊆ Σ and ϕ is an AMC-formula,

• µX.ϕ if ϕ is an AMC-formula and all free occurrences of X (i.e., those
that do not occur in a subformula of ϕ starting with µX) fall under an
even number of negations.

We use the following common abbreviations: JAKϕ = ¬〈〈A〉〉¬ϕ, ϕ ∧ ψ =

¬(¬ϕ∨¬ψ), and νX.ϕ = ¬µX.¬ϕ[X/¬X] where ϕ[X/¬X] is obtained from
ϕ by replacing every free occurrence of X in ϕ by ¬X and vice versa. Using
these abbreviations we can write every AMC-formula in negation normal
form (also called positive normal form). An AMC-formula is in negation
normal form if every negation symbol only occurs immediately in front of a
proposition or a variable.
An AMC-formula is a sentence if it does not contain free variables, i.e.,

all variables are bounded by a fixed-point operator.
The size of an AMC-formula ϕ, denoted |ϕ|, is defined inductively in the

obvious way.

Semantics of AMC-Formulas

To define the semantics of AMC-formulas, we first need some definitions and
notations. Given a game structure S = 〈Σ, Q,P, π,∆, δ〉, a valuation F is
a function from the set of variables V to 2Q, i.e., subsets of Q. For F , a
variable X, and a set M ⊆ Q, we denote by F [X := M ] the valuation that
maps X to M and agrees with F on all other variables.
An AMC-formula ϕ is interpreted as a mapping ϕS from valuations to

state sets. Intuitively, ϕS(F ) denotes the set of states in which ϕ is satis-
fied under the valuation F in the structure S. The mapping ϕS is defined
inductively as follows:
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• pS(F ) = {q ∈ Q | p ∈ π(q)} for p ∈ P.

• XS(F ) = F (X) for X ∈ V .

• (¬ϕ)S(F ) = Q \ ϕS(F ).

• (ϕ1 ∨ ϕ2)
S(F ) = ϕS

1 (F ) ∪ ϕS
2 (F ).

• (〈〈A〉〉ϕ)S(F ) = {q ∈ Q | there exists c ∈ ∆A(q) such that for every
c′ ∈ ∆Σ(q) with c v c′ we have δ(q, c′) ∈ ϕS(F )}.

• (µX.ϕ)S(F ) =
⋂
{M ⊆ Q|ϕS(F [X := M ]) ⊆ M}, i.e., (µX.ϕ)S(F ) is

the least fixed-point of the function that maps M ⊆ Q to ϕS(F [X :=

M ]). (Note that this function is monotonic.)

Note that if ϕ is a sentence, then the interpretation of ϕ in the structure
S is uniquely determined independently of a valuation function F . In fact,
ϕS(F ) = ϕS(F ′) for all valuation functions F and F ′, i.e., ϕS is a constant
mapping. We therefore simply write ϕS instead of ϕS(F ) for some F .
Given a state q of a CGS S and a sentence ϕ, we write

(S, q) |= ϕ

if q ∈ ϕS.
Deciding (S, q) |= ϕ for a given finitely represented CGS S, a state q in

S, and a sentence ϕ is an AMC-model checking problem. The main purpose
of this chapter is to study this problem for a class of CGSs induced by
cryptographic protocols.
We note that AMC is more expressive than ATL∗ (and hence, ATL).

Theorem 4.1.1 [AHK02] AMC is more expressive than ATL∗, and hence,
provided a suitable set of propositional variables, also more expressive than
fair ATL. The alternation-free fragment of AMC is more expressive than
ATL.

4.1.3 Parity Games and AMC-Model Checking

In this section, we first recall the definition of parity games and then, similar
to the case of modal µ-calculus, associate with every CGS S, state q, and
AMC-sentence ϕ a parity game in which player 0 has a winning strategy iff
(S, q) |= ϕ.
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Parity Games

Following [GTW02], we now recall the definition of parity games.
A parity game G is a tuple (V, V0, V1, E, vI , l) where V is a (possibly

infinite) set of vertices partitioned into sets V0 and V1 (i.e., V0 ∪ V1 = V and
V0∩V1 = ∅), vI ∈ V (the initial vertex), E ⊆ V ×V is a set of edges, and l is
a coloring function from V into the set of colors {0, . . . ,m}, for some natural
number m, such that (V,E) is a directed, leafless graph.
The parity game G is played by two players, player 0 and 1. A play of G

starts by putting a token on vertex vI . Now, if in a play a token is put on a
vertex v (initially v = vI) with v ∈ Vi for i ∈ {0, 1}, then player i chooses a
successor v′ of v, i.e., (v, v′) ∈ E, and moves the token to v′. Then, if v′ ∈ Vj,
for j ∈ {0, 1}, it is player j’s turn to move the token to a successor of v′,
and so on. This continues forever. (Note that by definition of parity games,
every vertex has a successor.) Formally, a play p is an infinite sequence
v0, v1, v2, . . . , of vertices such that v0 = vI and (vi, vi+1) ∈ E for every i ≥ 0.
The play p is winning for player 0 if the maximum color occurring infinitely
often in p, i.e., the color max{k | k occurs infinitely often in the sequence
l(v0), l(v1), . . .}, is even. Otherwise, the play is winning for player 1.
A strategy f of player i is a function that for every finite prefix of a

play, ending in a vertex v ∈ Vi, selects a successor v′ of v, i.e., (v, v′) ∈ E.
A play v0, v1, . . . is consistent with f , if for each n such that vn ∈ Vi, we
have vn+1 = f(v0, v1, . . . , vn). A strategy of player i is winning, if each play
consistent with this strategy is winning for player i.
A strategy is memoryless (or positional), if it depends only on the last

vertex, i.e., if v0, v1, . . . , vn and v′0, v
′
1, . . . , v

′
n′ are prefixes of plays with vn =

v′n′ , then f(v0, v1, . . . , vn) = f(v′0, v
′
1, . . . , v

′
n′). We therefore often represent

a memoryless strategy of player i by a function from Vi to V such that, for
each v ∈ Vi, if f(v) = v′, then (v, v′) ∈ E. A memoryless strategy f of
player i in a parity game G induces a subgraph of (V,E) where all outgoing
edges of vertices v ∈ Vi are deleted except for the edge to f(v). We call this
graph a strategy graph of player i or the strategy graph of player i induced
by f . Obviously, f is a winning strategy for player i iff all infinite paths in
the induced strategy graph starting from the initial vertex vI are winning for
player i. We will sometimes assume that strategy graphs contain only vertices
reachable from the initial vertex. Obviously, if such a graph is winning for
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player i, then each vertex v in this graph is winning for player i in the sense
that each infinite path in this graph starting in v is winning for player i.
We summarize well-known and fundamental facts about parity games.

Fact 4.1.2 [Mar75, Mos91, EJ91] (see also [Zie98]) Parity games are de-
termined, i.e., either player 0 or player 1 has a winning strategy. The player
who has a winning strategy has a memoryless one.

Parity Games for AMC-Model Checking

In this section, we associate with every CGS S, state q0 of S, and AMC-
sentence ϕ in negation normal form a parity game Gϕ

(S,q0) such that player 0
wins Gϕ

(S,q0) iff (S, q0) |= ϕ. Our construction follows that of modal µ-calculus
(see, e.g., [Wil01, GTW02]) and is similar to the one in [SF06]. However,
instead of first turning ϕ into an equivalent alternating parity tree automaton
and then using this tree automaton to obtain the parity game, we construct
the parity game directly from ϕ and S.
Throughout the rest of this section, let S = 〈Σ, Q,P, π,∆, δ〉 be a con-

current game structure, q0 ∈ Q be a state in S, and ϕ be an AMC-sentence
in negation normal form. We assume, w.l.o.g., that for each variable X in ϕ
there is exactly one subformula of the form µX.ψ or νX.ψ in ϕ. (This can
obviously be guaranteed by renaming variables.) We refer to this subformula
by ϕX .
In what follows, we refer to subformulas of ϕ by standard subformulas.

Now, given S, q ∈ Q, and ϕ, we define the set SubqS(ϕ) to consist of the
following (standard and non-standard) subformulas of ϕ:

(a) ψ for every standard subformula ψ of ϕ,

(b) cψ for every standard subformula 〈〈A〉〉ψ of ϕ and c ∈ ∆A(q),

(c)cψ for every standard subformula JAKψ of ϕ and c ∈ ∆A(q).

We will call elements of SubqS(ϕ) subformulas of ϕ where, as mentioned, the
formulas in (a) are called standard subformulas of ϕ and those in (b) and (c)
are called nonstandard subformulas of ϕ. Note that c and c occur only
as top symbols of subformulas; they are not nested.
Now, the parity game Gϕ

(S,q0) = (V, V0, V1, E, vI , l) for S, q0, and ϕ is
defined as follows (see below for a brief discussion of the differences to the
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construction for the model µ-calculus): The set V of vertices consists of all
tuples of the form (q, ψ) where q ∈ Q and ψ ∈ SubqS(ϕ). The initial vertex
vI is (q0, ϕ). The set V0 consists of vertices of the form (q, ψ) where q ∈ Q

and ψ is of one of the following forms:

ψ′ ∨ ψ′′, 〈〈A〉〉ψ′, cψ
′.

All remaining vertices belong to V1. The set E of edges is the smallest set
satisfying the following conditions:

• ( (q, p) , (q, p) ) ∈ E for every (q, p) ∈ V .

• ( (q,¬p) , (q,¬p) ) ∈ E for every (q,¬p) ∈ V .

• ( (q,X) , (q, ϕX) ) ∈ E for every (q,X) ∈ V .

• ( (q, µX.ψ) , (q, ψ) ) ∈ E for every (q, µX.ψ) ∈ V .

• ( (q, νX.ψ) , (q, ψ) ) ∈ E for every (q, νX.ψ) ∈ V .

• ( (q, (ψ ∨ ψ′)) , (q, ψ) ) ∈ E and ( (q, (ψ ∨ ψ′)) , (q, ψ′) ) ∈ E for every
(q, (ψ ∨ ψ′)) ∈ V .

• ( (q, (ψ ∧ ψ′)) , (q, ψ) ) ∈ E and ( (q, (ψ ∧ ψ′)) , (q, ψ′) ) ∈ E for every
(q, (ψ ∧ ψ′)) ∈ V .

• ( (q, 〈〈A〉〉ψ) , (q,cψ) ) ∈ E for every (q, 〈〈A〉〉ψ) ∈ V and c ∈ ∆A(q).

• ( (q, JAKψ) , (q,cψ) ) ∈ E for every (q, JAKψ) ∈ V and c ∈ ∆A(q).

• ( (q,cψ) , (q′, ψ) ) ∈ E for every (q,cψ) ∈ V and c-successor q′ of
q.

• ( (q,cψ) , (q′, ψ) ) ∈ E for every (q,cψ) ∈ V and c-successor q′ of
q.

Let ‖ϕ‖ be the depth of ϕ when ϕ is viewed as a syntax tree. The coloring
function l is defined as follows:1 The color of a state s = (q, ψ) is defined as
follows:

• l(s) = 1, if ψ = p and p /∈ π(q) or ψ = ¬p and p ∈ π(q),

• l(s) = 2‖ψ‖, if ψ = νX.ψ′ for some ψ′,

• l(s) = 2‖ψ‖+ 1, if ψ = µX.ψ′ for some ψ′, and

1Using the alternation depth of formulas, one can obtain a coloring function that assigns
smaller colors. This is useful to achieve more efficient algorithms. However, for the
complexity results shown in this chapter the coloring function employed here is sufficient.
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• l(s) = 0 otherwise.

The above definition of Gϕ
(S,q0) is similar to the case of modal µ-calculus with

the following difference: In case of the modal µ-calculus, when a play reaches
a position (q, ψ) with ψ of the form ψ′ or ψ′, then one of the players
chooses a successor q′ of q and the play continues with (q′, ψ). In case of
AMC, we have a family of modal operators 〈〈A〉〉 and JAK and when a play
reaches a position (q, 〈〈A〉〉ψ′) or (q, JAKψ′) then we use an intermediate state
before a successor of q is chosen: first one of the players moves to a position
of the form (q,cψ

′) or (q,cψ
′), and then the opponent chooses a successor

q′ of q and the play continues with (q′, ψ′).
Similar to the case of the modal µ-calculus (see, e.g., [Wil01, GTW02]),

one shows the following proposition:

Proposition 4.1.3 For S, q0, and ϕ as above we have that (S, q0) |= ϕ iff
player 0 has a (memoryless) winning strategy in the parity game Gϕ

(S,q0).

4.2 Our Protocol and Intruder Model

We now introduce our protocol and intruder model. Similar to [KKW06], we
consider a real concurrent communication model in which principals (includ-
ing the intruder) may take actions at the same time and may receive/send
several messages at the same time from/to different principals. Principals
are connected via different kinds of channels: network and resilient chan-
nels. Instead of the term “resilient channel”, we often use the term “secure
channel”. While network channels are completely controlled by the intruder,
secure channels are not. In particular, the intruder may not be able to delay
or modify messages sent over such a channel. We will consider two types of se-
cure channels. Those that directly link to principals (direct secure channels)
and those that are buffered (scheduled secure channels). While messages
sent over direct secure channels are immediately delivered, messages sent
over scheduled secure channels are first written into a buffer. The buffer is
an independent agent which can follow its own strategy in delivering mes-
sages; it can for example team up with an honest principal or the intruder.
Whether and with whom such a buffer collaborates depends on the security
property considered, as specified by an AMC-formula.
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While conceptually the model presented here and the one presented in
[KKW06] are quite similar, the presentation and level of detail varies in the
following main points: First, in [KKW06], no specific formalism for describing
honest protocol participants was presented. Such participants could be arbi-
trary I/O components (in particular, arbitrary interactive, non-deterministic
Turing machines). However, since in the present work we are interested in
decidability results, we need to be more precise about the representation and
the kind of computation honest protocol participants are allowed to perform.
As defined below, such participants will be modeled by certain edge-labeled
trees. Second, in [KKW06] we considered a general communication model
and described how a system of I/O components runs. Then, protocol runs
and attacks were described in terms of such systems where every entity (hon-
est protocol participants, the intruder, scheduled secure channels) was mod-
eled as an I/O component. In the present work, we do not consider systems
of I/O components but model protocol runs and attacks directly in terms of
concurrent game structures.
In what follows, we define i) terms and messages, ii) how the intruder

can derive new messages from a given set of messages, iii) principals and
protocols, and iv) concurrent game structures which describe the run of a
protocol along with the intruder.

4.2.1 Terms and Messages

The set T of terms is defined by the core grammar given in Chapter 2:
We define T◦ = T ∪ {◦} andM◦ = M∪ {◦} where ‘◦’ is a new symbol

which stands for ‘no message’. This symbol will be used in case there is no
message on a channel.

4.2.2 Derivation of Messages

Given a set K of messages, the (infinite) set d(K) of messages the intruder
can derive from K is the smallest set satisfying the following conditions with
m,m′ ∈M:
1. K ⊆ d(K).

2. ◦ ∈ d(K).
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3. Composition and decomposition: Ifm,m′ ∈ d(K), then 〈m,m′〉 ∈ d(K).
Conversely, if 〈m,m′〉 ∈ d(K), then m ∈ d(K) and m′ ∈ d(K).

4. Symmetric encryption and decryption: If m,m′ ∈ d(K), then {m}s
m′ ∈

d(K). Conversely, if {m}s
m′ ∈ d(K) and m′ ∈ d(K), then m ∈ d(K).

5. Asymmetric encryption and decryption: If m ∈ d(K) and k ∈ d(K) ∩
Kpub, then {m}a

k ∈ d(K). Conversely, if {m}a
k ∈ d(K) and k−1 ∈

d(K) ∩Kpriv, then m ∈ d(K).

6. Hashing : If m ∈ d(K), then hash(m) ∈ d(K).

7. Signing : If m ∈ d(K), k−1 ∈ d(K) ∩ Kpriv, then sig(k,m) ∈ K. (The
signature contains the public key but can only be generated if the
corresponding private key is known.)

8. Generating fresh constants : AI ⊆ d(K).

4.2.3 Channels, Principals, and Protocols

We denote by P the finite set of all principals. This set is partitioned into the
setH of honest and the set D of dishonest principals. All dishonest principals
will be subsumed by the intruder. The behavior of honest principals will be
specified by certain trees (see below). Protocols will basically be defined by a
set of such trees, specifying the behavior of all honest principals participating
in a protocol run. First, we have to define how principals are connected via
channels.

Channels and Multi Terms

We consider three types of communication channels between principals (in-
cluding the intruder): (1) network channels, (2) direct secure channels, and
(3) scheduled secure channels. Network channels are controlled by the in-
truder, i.e., every message sent on a network channel by an honest principal
is immediately delivered to the intruder and every message received from a
network channel was sent by the intruder (who impersonates some honest or
dishonest principal). A direct secure channel is a direct link between princi-
pals, i.e., every message sent on such a channel by some principal to another
principal will immediately be delivered to the latter principal without inter-
vention by the intruder. Messages sent via a scheduled secure channel will
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first be sent to a buffer before they are delivered to the intended recipient.
Such a buffer is an independent player in the concurrent games structures
that we consider and may be controlled or may team up with (honest or dis-
honest) principals or other scheduled secure channels. This will be specified
by AMC-formulas.
A network channel from a principal a to a principal b such that a 6= b

and not both a and b are dishonest will be denoted by net(a, b). Similarly,
we use dir(a, b) and sch(a, b) to refer to direct and scheduled secure channels
from a to b, respectively. The set of all the channels will be denoted by C.
For sets A,B ⊆ P of principals, we define Net(A,B) = {net(a, b) | a ∈

A, b ∈ B, a 6= b, and (a ∈ H or b ∈ H)}. Similarly, we define Dir(A,B) and
Sch(A,B) for direct and scheduled secure channels. We define C(A,B) =

Net(A,B) ∪ Dir(A,B) ∪ Sch(A,B). We will write, for example, Net(a,B)

instead of Net({a}, B).
For a set C ⊆ C, we call a mapping r : C → T◦ a multi term and a

mapping m : C → M◦ a multi message. We denote by ch(m) and ch(r)
the domain C of m and r, respectively, and by V(r) the set of variables
occurring in the range of r, i.e., in the set {t | r(c) = t for some c ∈ C}. If σ
is a substitution, we denote by rσ the multi term obtained by substituting
every variable x ∈ V(r) occurring in r by σ(x), i.e., rσ(c) = r(c)σ for every
c ∈ C.
Let m be a multi message, r be a multi term, and σ be a substitution

with domain V(r). We say that m matches with r by σ, if ch(r) ⊆ ch(m)

and m(c) = r(c)σ for each c ∈ ch(r). We say that m matches with r, if there
is a substitution σ such that m matches with r by σ.

Honest Principals

We now define honest principals; more precisely, we should say ‘instances of
honest principals’ since a principal might run several copies of a protocol in
possibly different roles. Informally speaking, an honest principal is defined
by a finite edge-labeled tree which describes the behavior of this principal in
a protocol run. Each edge of such a tree is labeled by a rule which describes
the receive-send action that is performed when the principal takes this edge
in a run of the protocol. As mentioned above, in one receive-send action a
principal may receive/send several messages on different channels. The trees
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that we consider may have self-loops. These allow a principal to stay in the
same state. When a principal carries out a protocol, it traverses its tree,
starting at the root. In every node, the principal takes its current input (on
all channels the principal has access to or wants to read), chooses one of
the edges leaving the node such that the current inputs match with the left-
hand side of the rule the edge is labeled with, sends out (possibly different)
messages on (possibly different) channels as determined by the right-hand
side of the rule, and moves to the node the chosen edge leads to. Edges have
priorities which influence which edge may be taken in case several edges are
applicable. However, if several edges with the same priority can be taken, one
such edge is picked non-deterministically. Formally, principals are defined as
follows:

For sets C,D ⊆ C, we call r ⇒ s with r : C → T◦ and s : D → T◦ a
(C,D)–rule. For an honest principal a ∈ H, an a–rule is a (C,D)–rule with
C ⊆ C(P , a) and D ⊆ C(a,P). If σ is a substitution and R = (r ⇒ s) is a
rule, we write Rσ to denote the rule obtained by substituting every variable
x occurring in R by σ(x), i.e., Rσ = (rσ ⇒ sσ).

Let a ∈ H be an honest principal. Its behavior is specified by what we
call an a-instance (or simply principal). An a-instance (principal) is defined
by a finite tree P = (V,E, r, `p, `) where V is the set of vertices, E is the set
of edges, r ∈ V is the root of the tree, and `p maps every edge e ∈ E of P to a
natural number, the priority of this edge. The labeling function ` maps every
edge e = (v, v′) ∈ E of P to an a-rule `(e) in such a way that every variable
occurring in V(s) with `(e) = (r ⇒ s) also occurs on the left-hand side of
`(e), i.e., in V(r), or on the left-hand side of a rule on the path from the root
r to v. In other words, every variable occurring on the right-hand side of a
rule also occurs on the left-hand side of this or a preceding rule. Nodes of
P may have self-loops, i.e., P may contain edges of the form e = (v, v) for
v ∈ V . In that case, we require that for `(e) = (r⇒ s) the domains of r and
s are empty, i.e., ch(r) = ∅ and ch(s) = ∅. In other words, when performing a
self-loop, a principal neither reads nor writes messages from/onto a channel.

For an a-instance P , we denote by ch(P ) the set of all the channels used
by P , i.e., ch(P ) consists of those channels c for which there exists an edge
in P labeled with a rule of the form r⇒ s such that c ∈ ch(r) or c ∈ ch(s).
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Protocols

A protocol is a tuple Pr = (H,D,K, {Pa}a∈H) where H and D are sets of
honest and dishonest principals, respectively, Pa is an a-instance for each
a ∈ H, and K is the initial intruder knowledge, i.e., a finite set of messages.
W.l.o.g., we assume that the set of vertices of the trees Pa, a ∈ H, are pairwise
disjoint. For a protocol Pr, we denote by ch(Pr) the set of channels used in
Pr, i.e. the set of all channels c such that c ∈ ch(Pa), for some a ∈ H. The size
of Pr, denoted by |Pr| is defined according to some standard representation
of Pr.

4.2.4 Example: The ASW Protocol

Figure 4.1 and 4.2 present the formal specifications PA and PT of A and T , re-
spectively. The specification of B can be defined similarly. The specification
of the ASW protocol for the case that A and T are honest but B is dis-
honest (and hence, B’s behavior is determined by the intruder) is the tuple
PrASW = ({A, T}, {B}, {A,B, T, kA, kB, k

−1
B , kT}, {PA, PT}). In Figure 4.1

and 4.2 the communication between A and T is modeled by scheduled secure
channels and the communication between B and T by direct secure channels.
Note that allowing (dishonest) B direct communication with T increases his
power. To check certain properties of this protocol, it is useful to add a
“watch dog” W as another honest principal: W checks whether the intruder
(B) has a standard or replacement contract (as defined in Chapter 2). More
precisely,W waits to receive the standard or replacement contract (as defined
in Chapter 2) on a network channel from B and if it receives such a contract,
moves to a vertex called, say Bhascont; W ignores all other messages it
receives.

4.2.5 The Concurrent Game Structure Induced by a
Protocol

We now introduce the concurrent game structure induced by a protocol. The
players involved are the honest principals, the scheduled secure channels,
and the Dolev-Yao intruder (who subsumes the dishonest principals). The
concurrent game structure describes what moves these players can take in
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nXY = net(X, Y )
sXY = sch(X, Y )

abbreviations

[1]

[1]

[1]

∅ ⇒ nAB :me1

sTA :mr2 ⇒ ∅

sTA :ma2 ⇒ ∅
sTA :mr ⇒ ∅

nBA :me2 ⇒ nAB :NA

∅ ⇒ sAT :mr1

∅ ⇒ sAT :ma1

[1] [0]

[1][0]
nBA :x ⇒ ∅

resolved1

resolved2

[0]

abortedcontract

me1 = sig[kA, 〈kA, kB , kT , contract, hash(NA)〉]
me2 = sig[kB , 〈me1, hash(x)〉]
ma1 = sig[kA, 〈abort,me1〉]
ma2 = sig[kT , 〈abort,ma1〉]
mr1 = 〈me1,me2〉
mr2 = sig[kT ,mr1]
mr = sig[kT , 〈me1, sig[kB , 〈me1, y〉]〉]

Figure 4.1: Honest Alice running the ASW protocol as initiator with Bob.
Even though not drawn, every vertex in the tree has a self-loop with priority
0.

every state and what effect these moves have. Roughly speaking, the possible
moves of an honest principal are those edges (receive-send actions) that leave
the current vertex and that can be applied given the current input and the
priority on the edges. As a result of taking such an edge, the principal
writes output on (zero, one, or more) channels. A scheduled secure channel
is represented by a sequence of messages, the messages on this channel. In a
move it decides whether or not to deliver the first message in this sequence.
(Alternatively, in case one would like to model secure channels that do not
preserve the order of messages, one could allow secure channels to pick one
of the messages in their sequence.) The intruder has an infinite number
of possible moves. He can write a message on all channels that he controls,
where for every such channel he can pick one of the (infinitely many possible)
messages that he can derive in the current state. Direct secure channels will
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R1 R2 R3 R4 R5

[1] [2][1] [1] [2]

R6 R7 R8 R9

[1] [1] [1][1]

rules:

messages:

mru = 〈meu
1 , meu

2 〉
meu

1 = sig[kA, 〈kA, kB , kT , contract, xu〉]
meu

2 = sig[kB , 〈meu
1 , yu〉]

mau = sig[kA, 〈abort, meu
1 〉]

maku = sig[kT , 〈abort, meu
1 〉]

mrcu = sig[kT , 〈meu
1 , meu

2 〉]

R1 : sch(A, T ) : maa ⇒ sch(T, A) : maka

R2 : sch(A, T ) : mrb ⇒ sch(T, A) : mrcb

R3 : dir(B, T ) : mrc ⇒ dir(T, B) : mrcc

R4 :
sch(A, T ) : mrd

dir(B, T ) : mrd ⇒ sch(T, A) : mrcd

dir(T, B) : mrcd

R5 :
sch(A, T ) : mae

dir(B, T ) : mre ⇒ sch(T, A) : make

dir(T, B) : make

R6 : dir(B, T ) : mra ⇒ dir(T, B) : maka

R7 : dir(B, T ) : mrb ⇒ dir(T, B) : mrcb

R8 : sch(A, T ) : mrc ⇒ sch(T, A) : mrcc

R9 : sch(A, T ) : mac ⇒ sch(T, A) : mrcc

Figure 4.2: This is the tree model of participant TTP. Even though not
drawn, every vertex in the tree has a self-loop with priority 0. The rules R1

to R5 are needed to distinguish between whether the TTP receives in one
step (1) one abort message from A, (2) one resolve message from A, (3) one
resolve message from B, (4) a resolve message from both A and B, or (5) an
abort message from A and a resolve message from B.

always immediately deliver the message written to them, and therefore, they
do not need to be modeled as players. Before providing the formal definition
of the concurrent game structure, we need to introduce some notation.
For a principal P and a node v of P , we write P↓v to denote the subtree

of P rooted at v. If σ is a substitution, we write Pσ for the principal obtained
from P by applying σ to every rule occurring in P .
For a protocol Pr, let C = C(P , a) ∩ ch(Pr) and C ′ = C(a,P) ∩ ch(Pr).

For m : C →M◦, m′ : C ′ →M◦, an a-instance P = (V,E, v0, `p, `), and an
a-instance P ′, we write (m, P )

v7→ (m′, P ′) if v ∈ V , (v0, v) ∈ E, `(v0, v) is of
the form r ⇒ s, and there exists a substitution σ with dom(σ) = V(r) such
that

• P ′ = (P ↓ v)σ,

• m matches with r by σ,
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• for all v′ ∈ V such that (v0, v
′) ∈ E, `(v0, v

′) = (r′ ⇒ s′) and m
matches with r′ we have that `p(v0, v) ≥ `p(v0, v

′), and

• m′ matches with s by σ and m′(c) = ◦ for each c ∈ C ′ \ ch(s).

In what follows, let Pr = (H,D,K0, {P 0
a }a∈H) be a protocol. Let m ∈ M◦

and t ∈ T◦. Let IC = (Net(P ,H) ∪ Dir(D,H) ∪ Sch(D,H)) ∩ ch(Pr) be the
set of all channels in Pr the intruder may write to and let SC = Sch(P ,P)∩
ch(Pr) be the set of all scheduled secure channels in Pr.

We are now ready to define the concurrent game structure induced by
Pr. The concurrent game structure S = SPr = 〈Σ, Q,P, π,∆, δ〉 induced by
Pr is defined as follows:

• The set of players Σ is H ∪ SC ∪ {I}.

• The set of states Q consists of tuples of the form (K, P ,m, s) where
– K is a finite set of messages (the current intruder knowledge),
– P is a family {Pa}a∈H of a-instances Pa for every a ∈ H,
– m is a family {ma}a∈H of multi messagesma : C(P , a)∩ch(Pr) →
M◦ for every a ∈ H (the current input to a).2

– s is a family {(sc, dc)}c∈SC of tuples (sc, dc) where sc ∈ M∗

is a sequence of messages, the messages on c, and dc ∈
{delivered, delivered}, indicating whether or not c delivered a mes-
sage in the previous step, for every c ∈ SC.

• The set P of propositional variables contains a propositional variable pa

for each constant a ∈ A, a propositional variable pv for each vertex v of
a principal specified in Pr (recall that different principals have different
sets of vertices), and propositional variables emptyc and deliveredc for
every c ∈ SC.

• The evaluation π of the propositional variables in a state q =

2Messages which are to be delivered to the intruder or scheduled secure channels will
immediately be added to the intruder’s knowledge and the secure channel buffer, respec-
tively.
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(K, P ,m, s) is defined as follows:

π(q) = {pa | a ∈ d(K) ∩ A} ∪
{pv | v is the root of Pa for some a ∈ H} ∪
{emptyc | c ∈ SC, sc = ε} ∪
{deliveredc | c ∈ SC, dc = delivered},

i.e., pa is true in q if the intruder can derive a from its current knowl-
edge, pv is true in q if some honest principal is in vertex v, emptyc is
true if c currently does not contain any messages, and deliveredc is true
if dc = delivered.

• For q = (K, P ,m, s) ∈ Q as above and a player α ∈ Σ, we define
∆(q, α) as follows:

– If α ∈ H with Pα = (V,E, v0, `p, `), the set ∆(q, α) consists of all
v ∈ V such that (mα, Pα)

v7→ (m, P ′
α) for some m and P ′

α, i.e., α
can take one of the edges leaving the current vertex. If this set is
empty, we define ∆(q, α) = {v0} (see below for an explanation).
– If α = I, the set ∆(q, α) consists of all m : IC → M◦ such that
m(c) ∈ d(K) for every c ∈ IC, i.e., the intruder can send messages
on the channels that he controls, where the messages are derived
from his current knowledge.

– If α ∈ SC, then ∆(q, α) = {0}, in case sα = ε (i.e., sα is empty),
and ∆(q, α) = {0, 1}, otherwise (1 =̂ “α delivers the next message
in the sequence” and 0 =̂ “α does not deliver a message”).

• For q = (K, P ,m, s) ∈ Q and a total move γ ∈ ∆Σ
q , we define the γ-

successor δ(q, γ) of q to be the state (K′, P
′
,m′, s′) with P

′
= {P ′

a}a∈H,
m′ = {m′

a}a∈H, and s′ = {(s′c, d′c)}c∈SC where:

– K′ is K with the following messages added: (1) the first message
of sc for every c ∈ Sch(H,D) ∩ ch(Pr) with γ(c) = 1, and (2) the
message m(c) for every c ∈ (Net(a,P) ∪ Dir(a,D)) ∩ ch(Pr) and
every a ∈ H such that γ(a) = v and (ma, Pa)

v7→ (m, P ′
a), i.e., the

intruder learns all messages sent by the scheduled secure channels
to dishonest principals, by honest principals on the network (to
honest or dishonest principals) or on direct secure channels to
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dishonest principals.3

– P ′
a is such that (ma, Pa)

v7→ (m, P ′
a) for somem, v = γ(a), for every

a ∈ H, i.e., principal a takes edge v (and performs receive-send
actions according to the rule the edge to v is labeled with).

– m′
a(c) for a ∈ H is equal to:
∗ γ(I)(c), if c ∈ (Net(P , a) ∪ Dir(D, a)),
∗ the first message of sc, if c ∈ Sch(P , a) and γ(c) = 1,

∗ ◦, if c ∈ Sch(P , a) and γ(c) = 0,

∗ m(c), if c = dir(b, a) for some b ∈ H such that (mb, Pb)
v′7→

(m, P ′
b) and γ(b) = v′, i.e., b has written m(c) on the direct

secure channel c from b to a.

– s′c for c = sch(a, b) is defined as follows: Let sc = m1 . . .mn. If
a ∈ H, then letm =m(c) where (ma, Pa)

v7→ (m, P ′
a) for v = γ(a).

If a ∈ D, then let m =m(c) with γ(I) =m. Now, if γ(c) = 0 and
m = ◦, then s′c = sc. If γ(c) = 1 and m = ◦, then s′c = m2 · · ·mn.
If γ(c) = 0 and m 6= ◦, then s′c = m1 · · ·mnm. If γ(c) = 1 and
m 6= ◦, then s′c = m2 · · ·mnm. (Note that if γ(c) = 1, then n ≥ 1.)

– d′c = delivered if γ(c) = 1, and d′c = delivered otherwise, for every
c = sch(a, b) ∈ ch(Pr).

We call the state q0 = (K0, {P 0
a }a∈H,m0, s0) the initial state of SPr where

m0 = {m0
a}a∈H with m0

a(c) = ◦ for every c ∈ C(P , a) and s0 = {(s0
c , d

0
c)}c∈SC

with s0
c = ε and d0

c = delivered for every c ∈ SC.
We defined ∆(q, α) for α ∈ H in such a way that it is never empty. More

precisely, if in the current vertex none of the outgoing edges can be taken,
α will stay in the current state. This, in accordance with standard specifi-
cations, models that unexpected messages are ignored and guarantees that
honest principals, just like all other agents in SPr, can always take an action,
and hence, computations of the overall system will never be blocked. Note
that one can explicitly add edges to the specification of an honest principal
that lead to error states and are taken in case of unexpected messages. The

3In case secure channels are not supposed to be read protected, one would add all mes-
sages on direct and scheduled secure channels to the current intruder knowledge. However,
here we model secure channels to be read protected, i.e., the intruder only gets to see the
messages on secure channels to dishonest principals.



4.3. MAIN RESULTS 91

concrete examples that we consider are always complete in the sense that in
every vertex there will be an edge (possibly a self-loop) that the principal
can take.

4.3 Main Results

In this section, we summarize the main results of this chapter. First, we define
the general protocol induced AMC-model checking problem and some sub
cases. We then state our (un-)decidability and complexity-theoretic results.
Let Pr = (H,D,K0, {P 0

a }a∈H) be a protocol and SPr =

〈ΣPr, QPr,PPr, πPr, ∆Pr, δPr〉 the concurrent game structure induced by Pr.
We call

Pamc = {(Pr, ϕ) | Pr a protocol and ϕ an AMC-formula over ΣPr and PPr

such that (SPr, q
0) |= ϕ where q0 is the initial state of SPr}

the (general) protocol induced AMC-model checking problem. The size of an
instance (Pr, ϕ) of this problem is defined to be |Pr|+ |ϕ|.
As we will see, this problem is undecidable. To identify the main sources

of undecidability and to obtain decidable sub cases, we now introduce certain
classes of protocols and define certain fragments of AMC.
We call a protocol Pr dishonest scheduled secure channel free (dssc-free)

if no honest principal uses a scheduled secure channel from a dishonest prin-
cipal as input channel, i.e., ch(Pr) ∩ Sch(D,H) = ∅. Otherwise, we call a
protocol dssc-containing. Note that dssc-free protocols allow honest princi-
pals to use direct secure channels from dishonest principals as input channel.
Since these channels are completely controlled by the adversary, they provide
the adversary with more power than scheduled secure channels. Hence, the
exclusion of scheduled secure channels from dishonest principals is not a real
restriction in terms of the power of the adversary.
We also consider what we call greedy protocols, which contains only

greedy honest principals. Intuitively, an honest principal is greedy if it does
not ignore messages in case they conform to the protocol specification. For-
mally, greedy protocols are defined as follows.
An a-rule r ⇒ s is consuming if ch(r) 6= ∅. Intuitively, if principal a

performs a consuming rule, then the form of the incoming messages matters.
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An a-instance P is greedy if for all vertices v of P the outgoing edges of v
labeled with consuming rules have priorities strictly higher than the priority
of the self-loop of v (if any). Informally speaking, when a greedy principal
can read a term using some consuming rule, then he has to apply such a rule,
and hence, as a result moves to another vertex.

A protocol Pr is greedy if all of its a-instances, for a ∈ H, are. Assuming
a protocol to be greedy is a realistic assumption since in typical protocol
specifications honest principals will not ignore messages if these messages
conform to the messages they expect to receive.

We consider a fragment of AMC, called I-monotone formulas where I
denotes the intruder in the concurrent game structure induced by a protocol.
Formally, an AMC-formula ϕ is I-positive if all subformulas of ϕ of the form
〈〈A〉〉ψ with I ∈ A fall under an even number of negations and all subformulas
of ϕ of the form 〈〈A〉〉ψ with I /∈ A fall under an odd number of negations. An
AMC-formula ϕ is I-negative if ¬ϕ is I-positive. A formula ϕ is I-monotone
if it is either I-positive or I-negative.

As we mentioned above, each AMC-formula can be written in negation
normal form using the abbreviation introduced in Section 4.1.2. It is easy
to see that if ϕ is an I-positive AMC-formula and ϕ′ is the corresponding
AMC-formula in negation normal form, then (i) for each subformula of ϕ′ of
the form 〈〈A〉〉ψ′ we have that I ∈ A and (ii) for each subformula of ϕ′ of the
form JAKψ′ we have that I /∈ A.

I-positive, -negative, and -monotone ATL- and ATL∗-formulas are de-
fined in the same way. As shown by Alur et al. [AHK02] (see also Theo-
rem 4.1.1), every ATL and ATL∗-formula can be translated into an equiva-
lent AMC-formula. It is not hard to see that the translation preserves the
property of being I-positive/-negative, i.e., the translation of an I-positive/-
negative ATL∗-formula yields an I-positive/-negative AMC formula.

While the class of I-monotone AMC-formulas is a proper fragment of
the set of all AMC-formulas in terms of expressibility, all formulas (typically
ATL or fair ATL) that we encountered in the literature for specifying security
properties of cryptographic protocol are I-monotone. Hence, the restriction
to I-monotone formulas does not seem to be a restriction from a practical
point of view (see Section 4.4 for more details).
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In what follows, we denote by

Pamc(greedy/non-greedy,dssc-containing/-free,I-positive/-negative/-monotone)

the protocol induced AMC-model checking problem where the class of
protocols is restricted to those that are i) greedy/non-greedy and ii)
dssc-containing/-free and the AMC-formulas considered are I-positive/-
negative/-monotone, respectively.
Now, we can state our main results. The first theorem shows that Pamc

is undecidability in case of non-greedy protocols.

Theorem 4.3.1 Pamc(non-greedy,dssc-free,I-positive) is undecidable, and
hence, so are Pamc(non-greedy,dssc-free,I-negative) and Pamc(non-greedy,
dssc-free,I-monotone).

The proof of this theorem is presented in Section 4.5. It shows that the
problem is undecidable even if no scheduled secure channels are used at
all, i.e., neither from dishonest nor from honest principals, and if a very
simple fixed I-positive formula is used, namely, 〈〈I〉〉pok where pok is a
propositional variable.
The above theorem shows that to obtain decidability, one at least has to

consider greedy protocols. The following theorem exhibits another source of
undecidability, namely scheduled secure channels from dishonest parties.

Theorem 4.3.2 Pamc(greedy, dssc-containing, I-positive) is undecidable,
and hence, so are Pamc(greedy, dssc-containing, I-negative) and
Pamc(greedy, dssc-containing, I-monotone).

The proof is presented in Section 4.6. Again, a fixed formula suffices for the
proof, namely 〈〈I, sch(pcp, test)〉〉pok.
The two theorems above show that to obtain decidability, one has to

restrict protocols to be greedy and dssc-free. The following theorem states
that for this class of protocol and I-monotone formulas we obtain decidability
of the AMC-model checking problem.

Theorem 4.3.3 The problem Pamc(greedy, dssc-free, I-monotone) is decid-
able. More precisely, the problem Pamc(greedy, dssc-free, I-positive) is
NEXPTIME-complete, and hence, Pamc(greedy, dssc-free, I-negative) is
coNEXPTIME-complete.
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The only gap that the above theorem leaves is whether Pamc is also de-
cidable for non I-monotone formulas. As explained before, from a practical
point of view the theorem seems to suffice since the formulas that we encoun-
tered in the literature fall into the class of I-monotone formulas. While, as
the undecidability results show, the restrictions to greedy and dssc-free pro-
tocol cannot be avoided, these restrictions are also not severe since typically
protocols are greedy and requiring protocols to be dssc-free does not restrict
the power of the adversary.

4.4 Example Properties

In this section, we illustrate the kind of properties that can be expressed in
the I-monotone fragment of AMC. Kremer and Raskin [KR02, KR01] were
the first to formulate properties of fair exchange protocols, including contract-
signing and non-repudiation protocols, in terms of fair ATL, a fragment of
ATL∗ [AHK02], and hence, of AMC [AHK02] (see also Theorem 4.1.1). It
turns out that all properties that Kremer and Raskin have formulated fall
into the I-monotone fragment of AMC, suggesting that the I-monotone frag-
ment of AMC suffices for most properties of interest. We demonstrate this
fact by recalling some of these properties. Since, as mentioned, AMC is
more expressive than ATL∗, in what follows, for convenience we use ATL∗

as the specification language. As we will see, we will only need I-monotone
ATL∗ formulas. As mentioned in Section 4.3, I-monotonicity is preserved
under the translation to AMC as proposed in [AHK02], i.e., AMC formulas
corresponding to I-monotone ATL∗ formulas are I-monotone.

The precise formulations of the properties stated by Kremer and Raskin
typically depend on the specific protocol analyzed. For concreteness, we will
therefore consider the specification of the ASW protocol PrASW , with honest
A and T and dishonest B, as presented in Section 4.2.4. Hence, formulas are
stated w.r.t. the concurrent game structure SPrASW

induced by PrASW .

As for example in [AHK02], we use ϕ (read “eventually ϕ”) as ab-
breviation for the LTL-formula (true U ϕ) and ϕ (read “always ϕ”) as
abbreviation for ¬¬ϕ.
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Fairness According to Kremer and Raskin, a protocol is unfair for honest
A if dishonest B together with all scheduled secure channels has a strategy
to obtain a signed contract from A such that A does not have a strategy to
receive a signed contract from B, given that the secure scheduled channels
between A and T are fair, i.e., messages on these channels are eventually
delivered.
For the ASW protocol as specified in Section 4.2.4 this property can

be formalized by the following I-positive ATL∗ formula where SC =

sch({A,B, T}, {A, B, T})∩ch(PrASW ) is the set of all scheduled secure chan-
nels used in PrASW :

〈〈I,SC〉〉(pBhascont ∧ ¬〈〈A〉〉(ϕFairSch →ϕAhascont)) (4.1)

where

ϕFairSch =
∧

c∈sch({A,T},{A,T})

¬emptyc → deliveredc (4.2)

says that the scheduled secure channels between A and T are fair4 and

ϕAhascont = pcontract ∨ presolved1 ∨ presolved2 (4.3)

says that A has a standard or replacement contract, according to the protocol
specification.
The property formulated in (4.1) requires A to use the protocol in a

“smart” way in order to get a signature from B. An alternative, stronger
formulation of fairness would require that if A finished the protocol, and
hence, if A cannot take any further action, either both A and B or neither
of the two parties has a signed contract, provided that the scheduled secure
channels between A and T are fair. In other words, the protocol is unfair, if
there exists a state in the protocol run where i) A cannot take any further
action, ii) A does not have a signature from B, but iii) B has a signature
from A. Formally:

〈〈I, A, T,SC〉〉(ϕFairSch ∧(ϕAfinished ∧ ¬ϕAhascont ∧ pBhascont)) (4.4)

4Alternatively, one could require the other scheduled secure channels to be fair as well.
The formulation of fairness for channels as presented is standard and, for example, also
appears in [AHK02].
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where

ϕAfinished = pcontract ∨ presolved1 ∨ presolved2 ∨ paborted (4.5)

says that A finished her protocol run.

Timeliness According to Kremer and Raskin, a protocol is timely for hon-
est A if A has a strategy to finish the protocol while preserving fairness.
Again, the scheduled secure channels (at least those between A and T ) are
required to be fair. Formally, timeliness for A is expressed by the following
I-negative ATL∗ formula:

〈〈A〉〉(ϕFairSch →(ϕAfinished∧
(¬ϕAhascont → ¬〈〈I,SC〉〉(ϕFairSch ∧pBhascont)))). (4.6)

Balance and Abuse-freeness According to Kremer and Raskin, a proto-
col is unbalanced for honest A if at some stage of the protocol run dishonest
B has both a strategy to obtain a signature from A and a strategy to prevent
A from obtaining a signature from B. For the protocol to be abusive, one
additionally requires that B can convince an outside party C of this property.
Whether or not B has this ability is indicated, in the model of Kremer and
Raskin, by a propositional variable pprove2C, which can as well be expressed
in terms of propositional variables on vertices. Again, the scheduled secure
channels between A and T are required to be fair. Unbalanced for A can be
formulated as an I-positive ATL∗ formula as follows:

〈〈I,SC, A, T 〉〉ϕFairSch ∧(ϕgetcontract ∧ ϕprevent) (4.7)

where

ϕgetcontract = 〈〈I,SC′′〉〉ϕFairSch →pBhascont, (4.8)

ϕprevent = 〈〈I,SC′′〉〉ϕFairSch →(¬〈〈A〉〉(ϕFairSch →ϕAhascont))(4.9)

with SC′′ = sch({B, T}, {B, T}) ∩ ch(PrASW ).
Given pprove2C, according to Kremer and Raskin abusiveness for A is for-

malized by the following ATL∗ formula:

〈〈I,SC, A, T 〉〉ϕFairSch ∧(pprove2C ∧ ϕgetcontract ∧ ϕprevent) (4.10)
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We note that the more general, protocol-independent formulation of abuse-
freeness proposed in [KKW06] is not captured by the formulation of Kremer
and Raskin. The formulation in [KKW06] defines abuse-freeness in terms
of certain tests. In order to formulate this property in ATL∗ or AMC, one
would need to augment these logics by certain predicates reflecting the tests.
Very similar formulas as the ones presented above have been stated by

Kremer and Raskin for non-repudiation protocols [KR01]. They are I-
monotone as well.

4.5 Proof of Theorem 4.3.1

We prove Theorem 4.3.1 by a reduction from Post’s Corresponding Problem
(PCP). Let us first recall the definition of PCP.
Given an alphabet A with |A| ≥ 2, an instance Π of PCP over A

is a sequence (ui, vi)
n
i=1 = (u1, v1), . . . , (un, vn) of pairs (ui, vi) of words

ui, vi ∈ A∗. A solution of such an instance is a non-empty sequence
(ki)

l
i=1 = k1, . . . , kl of indices ki ∈ {1, . . . , n}, i ∈ {1, . . . , l}, for some l

such that uk1 · · ·ukl
= vk1 · · · vkl

. Now, given an instance of PCP (over A)
the question is whether it has a solution. It is well-known that this problem
is undecidable.
We now prove Theorem 4.3.1 by reduction from PCP. LetΠ be an instance

of PCP over A as above. We (effectively) associate a protocol PrΠ and a
formula ϕΠ to Π such that Π has a solution iff (SPrΠ

, q0) |= ϕΠ where q0 is
the initial state of SPrΠ

.
The set of atoms of PrΠ is AΠ = A ∪ {⊥, 1, . . . , n}. For a word u ∈ A∗

Π

and a term t, we define t · u by induction on the length of u: t · u = t for
u = ε and t · u = 〈t, a〉 · v for u = av and a ∈ AΠ.
We encode a solution of Π as a sequence of terms over AΠ = A ∪

{⊥, 1, . . . , n} as follows: A sequence t0, . . . , tl of terms over AΠ is called
a solution sequence for Π if the following three conditions are satisfied:

i) t0 = 〈⊥,⊥,⊥〉,

ii) tl = 〈m1,m2,m2〉 for terms m1 and m2 over AΠ, and

iii) for all i ∈ {0, . . . , l−1}, if ti = 〈s, s′, s′′〉, then ti+1 = 〈s · j, s′ ·uj, s
′′ ·vj〉

for some j ∈ {1, . . . , n}.
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It is easy to see that Π has a solution iff there exists a solution sequence for
Π. For a solution (ki)

l
i=1 of Π we call the solution sequence t0, . . . , tl with

t0 = 〈⊥,⊥,⊥〉 and ti+1 = 〈s1 · ki+1, s2 · uki+1
, s3 · vki+1

〉 for 0 ≤ i < l and
ti = 〈s1, s2, s3〉 the solution sequence associated with (ki)

l
i=1.

We define ϕΠ = 〈〈I〉〉pok, i.e., this formula is true in those states where
I has a strategy to obtain ok. (Note that ϕΠ is presented as an ATL-formula,
which by Theorem 4.1.1 can be turned into an AMC-formula).

The protocol PrΠ is defined as follows: There is one honest principal,
called test, and one dishonest principal, called pcp, in PrΠ. The initial knowl-
edge of the intruder is defined to be KΠ = AΠ. The honest principal test
is specified by the test-instance Ptest depicted in Figure 4.3 and explained
next. Altogether, we define PrΠ = ({test}, {pcp},KΠ, {Ptest}).
Principal test does not use any direct or scheduled secure channels. Hence,

the only channel from which principal test reads is net(pcp, test) and the only
channel to which test writes is net(test, pcp). Hence, the left-hand side of the
test-rules depicted in Figure 4.3 are the messages test reads from net(pcp, test)
and the messages on the right-hand side of these rules are the messages test
writes to net(test, pcp). The labels [0] and [1] present the priorities of the
edges. Vertices with boxes have self-loops with priority 0, those without do
not have self-loops. Note that Ptest is non-greedy; the greediness condition
is violated in vertex test-seq.

The purpose of principal test is to test whether the intruder is able to send
a solution sequence. More precisely, test guarantees that the intruder has a
strategy to obtain ok iff the intruder is able to send a solution sequence to
test, where the intruder is supposed to send in every step of a computation in
SPrΠ
one element of such a sequence. In initial, once 〈⊥,⊥,⊥〉 is received, test

can decide to go to test-initial or test-seq. The purpose of going to test-initial
is to check whether the successor term of 〈⊥,⊥,⊥〉 is in fact a successor term
according to the definition of a solution sequence. (The out-going edge from
test-initial with priority 0 guarantees that the intruder has to send a new
term after the initial term 〈⊥,⊥,⊥〉.) The purpose of going to test-seq is to
either stay there until a term of the form 〈x, y, y〉 is received, and hence, a
valid last term of the sequence, or to check at some point of the sequence
whether two consecutive terms are connected according to the definition of
solution sequences (which can be done by moving to test-pair).
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〈⊥,⊥,⊥〉 ⇒ ∅

〈⊥,⊥,⊥〉 ⇒ ∅

[1]

[1]

test-initial

[1]

[0]
[1]

〈⊥·n,⊥·un,⊥·vn〉 ⇒ ok

[1]

test-pair

solution
〈x, y, y〉 ⇒ ok

[0]

∅ ⇒ ∅

〈x, y, z〉 ⇒ ∅ 〈x·n, y·un, z ·vn〉 ⇒ ok

∅ ⇒ ∅

[0]
[1]

[1]

〈⊥·1,⊥·u1,⊥·v1〉 ⇒ ok

〈x·1, y·u1, z ·v1〉 ⇒ ok

initial

test-seq

p1

pn

fail1

t1

tn

fail

Figure 4.3: Honest instance Ptest in the proof of Theorem 4.3.1. A box
around a node is an abbreviation for a self loop with priority 0.

Before we prove the correctness of our construction, we introduce some
notation. By definition, see Section 4.2.5, a state of the concurrent game
structure SPrΠ

specified by the protocol PrΠ is a tuple p = (K, {P}, {m}, s̄)
where K is the intruder knowledge, P is a test-instance, m is a mapping
that assigns messages to the channels read by test, and s̄ is a family of
message sequences representing the states of the scheduled secure channels.
Because there are no secure channels used in this protocol we will omit the
last component of states when referring to them. The only channel from
which participant test reads messages is net(pcp, test). Thus, m assigns mes-
sages to net(pcp, test) and we will only write the message m(net(pcp, test))
when specifying a state. For ease of notation, we specify a test-instance in a
state simply by its current root node. Thus, by these conventions the initial
state of the concurrent game structure SPrΠ

is given by qinit = (KΠ, initial, ◦).
For a state p = (K, s,m) we denote the components K, s, and m by K(p),
statetest(p), and net(pcp, test)(p), respectively. We call m the value of chan-
nel net(pcp, test) in state p.

We now show that Π has a solution iff (SPrΠ
, q0) |= ϕΠ:
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⇒: First, we show that if Π has a solution, then the intruder has a strategy
to obtain ok. Intuitively, the strategy of the intruder is to send a solution
sequence to instance test. More specifically, let (ki)

l
i=1 be a solution of Π

and let t0, . . . , tl be the solution sequence associated with (ki)
l
i=1. We may

assume, w.l.o.g., that tl is the first among the terms in the sequence of the
form 〈m1,m2,m2〉 for some m1 and m2.
The (positional) strategy σok of the intruder to obtain ok only depends on

the message on channel net(pcp, test). We define σok by the following table:
(Note that the choice of the intruder is which message he sends to instance
test, i.e., what the value of netpcptest in the next state of the concurrent game
structure SPrΠ

is.)

net(pcp, test)(q) σok(q)
◦ t0
ti ti+1 for i ∈ {0, . . . , l − 1}

We have to show that if the intruder follows this strategy, then every com-
putation in SPrΠ

starting from the initial state will reach a state q such that
ok ∈ K(q). Let ρ = q0q1 . . . be a computation consistent with σok and such
that q0 = q0. According to the specification of instance test, see Figure 4.3, we
know that statetest(q2) ∈ {test-initial, test-seq}. If statetest(q2) = test-initial,
then ok ∈ K(q3) since we have that net(pcp, test)(q2) = t1. Thus, in this
case we are done. If statetest(q2) = test-seq, then there is a minimal i > 2

such that statetest(qi) 6= test-seq (note that if statetest(qj) = test-seq and
net(pcp, test)(qj) = tn, then according to the specification of instance test,
ok ∈ K(qj+1) and statetest(qj+1) = solution). If statetest(qi) = solution,
then we are obviously done. If statetest(qi) = test-pair, then we know that
net(pcp, test)(qi−1) 6= tn (note that if the intruder has already sent tn in qi−1

then statetest(qi) would be solution). By the specification of instance test
and by the definition of σok we know that statetest(qi+1) ∈ {p1, . . . , pn} and
thus, we are done.

⇐: Now, we prove the other direction, i.e., if the intruder has a strategy to
obtain ok, then Π has a solution. It suffices to show that there is a solution
sequence for instance Π. Let σok be a strategy of the intruder such that in
each computation of SPrΠ

starting from the initial state and consistent with
σok the intruder obtains ok. We want to show that the intruder has to send
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a solution sequence t0, t1, . . . , tl for Π to instance test. More specifically, we
want to show that there is a computation ρ = q0q1 . . . of SPrΠ

, q0 = q0,
and an index i such that σok(q0), σok(q0q1), . . . , σok(q0 · · · qi) is a solution
sequence for Π.
It is easy to see that it is w.l.o.g. to assume that (*) σok(q

0) = 〈⊥,⊥,⊥〉.
The successor state q1 of q0 is (KΠ, initial, 〈⊥,⊥,⊥〉). Since one possible
choice of instance test in state q1 is to proceed to state test-initial one possible
successor state of q1 is (KΠ, test-initial, ◦), see Figure 4.3. Thus, if σok(q1) 6=
〈⊥ · j,⊥ · uj,⊥ · vj〉 for all j = 1, . . . , n, then instance test will proceed to
state fail and the intruder will not obtain ok. Since σok is a strategy for
the intruder to obtain ok we can conclude that (**) σok(q1) is of the form
〈⊥ · j,⊥ · uj,⊥ · vj〉 for some j ∈ {1, . . . , n}.
If the choice of instance test in state q1 is to proceed to state test-seq, then

the successor state of q1 is (KΠ, test-seq, σok(q1)). By an inductive argument
it is easy to see that for a run ρ = q0, q1, q2, . . . of SPrΠ

that is consistent
with σok we have that: (***) if statetest(qi) = test-seq, net(pcp, test)(qi) =

〈m1,m2,m3〉, where m2 6= m3, then σok(qi) = 〈m1 · j,m2 · uj,m3 · vj〉 for
some j ∈ {1, . . . , n}.
Since σok is a strategy for the intruder to obtain ok there is no com-

putation ρ = q0, q1, . . . of SPrΠ
that is consistent with σok such that

statetest(qj) = test-seq from some point on, i.e., statetest(qj) = test-seq
for all j > i for some i > 0. Since instance test can decide to stay in
state test-seq if net(pcp, test) is not of the form 〈m1,m2,m2〉 for some terms
m1 and m2 we can conclude that there is a computation ρ′ = q′0, q

′
1, . . .

that is consistent with σok such that there is some minimal i such that
statetest(q

′
i) = solution. Thus, net(pcp, test)(q′i−1) = 〈m1,m2,m2〉 for some

terms m1,m2. Together with (*), (**), and (***) we can conclude that the
sequence σok(q

′
0), σok(q

′
0q

′
1), . . . , σok(q

′
0 · · · q′i−2) is a solution sequence for Π.



4.6 Proof of Theorem 4.3.2

The proof of Theorem 4.3.2 is very similar to the one of Theorem 4.3.1.
In Section 4.5, we used the non-greediness of instance Ptest in node

test-seq to check property iii) of solution sequences: From node test-seq of
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instance Ptest there is a self-loop with priority 0 and a consuming edge with
priority 0 (see Figure 4.3). Applying the self-loop means “do not check” and
applying the outgoing edge means “check” whether the next two messages
fulfill property iii) of solution sequences. In other words, in node test-seq,
Ptest can non-deterministically decide when to check property iii) of so-
lution sequences for two consecutive messages. However, now we are not
allowed to use non-greediness anymore. Nevertheless, we can simulate this
non-deterministic behavior by introducing a new instance, which we will call
Pcheck. Basically, this instance will send a “check” message to Ptest in or-
der to tell Ptest when to check. More precisely, in the very first step of the
protocol run Pcheck will send the “check” message on a scheduled secure
channel sch(check, test) to Ptest. Then, this scheduled secure channel will
non-deterministically decide when it delivers the “check” message. (Alterna-
tively, Pcheck could be defined to be non-deterministic and decide when to
send the “check” message to Ptest, now on a direct secure channel. However,
this instance seems to be less natural than the first one.) The only problem
is that if in one step of the protocol run the sch(check, test) decides to deliver
the “check” message, then in the next state the intruder knows that a check
will be performed in the next step. Hence, he could produce a message that
together with the previous message sent passes the test, even though the rest
of the sequence that the intruder is sending does not satisfy the conditions on
solution sequences. In other words, the intruder knows one step in advance,
i.e., before sending the second message of the two messages to be checked,
when a check is going to be performed. (Note that in the proof of Theo-
rem 4.3.1 this was not the case since by the time Ptest changed its internal
state to perform the check, the intruder must have sent the second message
already.) We therefore let the intruder communicate with Ptest only over a
scheduled secure channel sch(pcp, test). Now, by the time the intruder gets
to know that a check is going to be performed, he must already have sent the
second message of the two messages to be checked to sch(pcp, test). In other
words, he must already have committed to the second message, and hence,
cannot change it anymore. Thus, this second message must have been valid
in the first place.

We now present the reduction formally and prove its correctness. Let
Π = (ui, vi)

n
i=1 be an instance of PCP over the alphabet A. As in Section 4.5,
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test-initial

[1]

[0]
[1]

〈⊥·n,⊥·un,⊥·vn〉 ⇒ ok

∅ ⇒ ∅

〈⊥·1,⊥·u1,⊥·v1〉 ⇒ ok

start

test-seq

〈⊥,⊥,⊥〉 ⇒ ∅

[1]

◦ ⇒ ∅
[1]

〈⊥,⊥,⊥〉 ⇒ ∅

[1]

t1

tn

fail

test-pair
[0]

〈x·1, y·u1, z ·v1〉 ⇒ ok
p1

pn

fail1

〈x, y, y〉 ⇒ ok
solution

[2]

〈x·n, y·un, z ·vn〉 ⇒ ok
[1]

∅ ⇒ ∅

e

(check, 〈x, y, z〉) ⇒ ∅

[2]

[1]

Figure 4.4: Honest instance Ptest in the proof of Theorem 4.3.2. A box
around a node is an abbreviation for a self-loop with priority 0.

we define a protocol PrΠ and an ATL-formula ϕΠ such that Π has a solution
iff (SPrΠ

, q0) |= ϕΠ where q0 is the initial state of SPrΠ
.

Protocol PrΠ contains two honest principals, Ptest and Pcheck and one
dishonest principal pcp. The initial knowledge of the intruder is defined
by KΠ = A. Altogether, PΠ = ({test, Pcheck}, {pcp},KΠ, {Ptest, PPcheck

})
where the test-instance Ptest is specified by the tree given in Figure 4.4,
explained below. The instance Pcheck consists of only two edges: one edge
(from the root to another node, say v) is labeled with a check-rule of the
form ∅ ⇒ check where check is sent via sch(check, test) to Ptest. The second
edge is a self-loop at v. Hence, the only action that Pcheck takes is to send,
in the first protocol step, check to sch(check, test).
The definition of Ptest (see Figure 4.4) is similar to the one of Ptest

in the proof of Theorem 4.3.1. However, now Ptest may receive messages
from two scheduled secure channels, sch(check, test) and sch(pcp, test). The
convention in Figure 4.4 is that if the left-hand side of the rule consists only
of one message, then this message comes from sch(pcp, test). If the left-hand
side is a tuple with two components (this is only the case for the rule the
edge from test-seq to test-pair is labeled with), then the first component is the
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message coming from sch(check, test) and the other one from sch(pcp, test).
The intuition behind Ptest as presented in Figure 4.4 is the same as

the one in Figure 4.3. The edge from test-seq to e is needed to guarantee
that sch(pcp, test) always delivers messages. The priority of the edge from
test-seq to test-pair is now 1, instead of 0, and hence, test-seq satisfies the
greediness condition. However, because of the message check coming from
sch(check, test), this edge will only be applied if sch(check, test) has delivered
check.
The formula ϕΠ is defined as ϕΠ = 〈〈I, sch(pcp, test)〉〉Fpok. (Note that,

as in Section 4.5, we define, w.l.o.g., ϕΠ as an ATL-formula.)
We now prove that our construction is correct, i.e., we prove that Π has

a solution iff (SPrΠ
, q0) |= ϕΠ:

⇒: First we show that if Π has a solution, then I together with the scheduled
secure channel sch(pcp, test) has a strategy such that I obtains ok. Similar to
the proof of Theorem 4.3.1, the strategy of I is to send a solution sequence
to test via sch(pcp, test) and the strategy of sch(pcp, test) is to deliver a
message whenever possible. More precisely, let (ki)

l
i=1 be a solution of Π and

let t0, . . . , tl be the solution sequence associated with (ki)
l
i=1 (as defined in

Section 4.5).
It is easy to see that if I and sch(pcp, test) follow their strategy, then

after two steps participant test is in state start and message 〈⊥,⊥,⊥〉 is on
channel sch(pcp, test) ready to be read by test. Also, Pcheck has written
check on sch(check, test), which in turn may or may not have delivered this
message. At this point, participant test has two alternatives to proceed:
1) advance to test-initial or 2) advance to test-seq (see Figure 4.4). If test
advances to test-initial, then in the next step test advances to one of the
states t1, . . . , tn and the intruder will obtain ok. If test advances to test-seq,
we have to distinguish between two cases: 2a) message check is not delivered
to test by sch(check, test) before the last message of the solution sequence sent
by the intruder is delivered to test by sch(pcp, test) and 2b) message check
is delivered to test before the last message of the solution sequence sent
by the intruder is delivered to test. In case 2a) participant test advances to
solution and the intruder will obtain ok. In case 2b) participant test advances
to test-pair and since the intruder has sent a solution sequence to test and
sch(pcp, test) immediately delivers all messages, test advances to one of the
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states p1, . . . , pn and the intruder obtains ok.

⇐: Now, we have to show that if the intruder together with the scheduled
secure channel sch(pcp, test) has a strategy σok such that the intruder obtains
ok, then the PCP-instance Π has a solution. It is easy to see when playing
according to strategy σok that the intruder at some point must send 〈⊥,⊥,⊥〉
to test over the scheduled secure channel sch(pcp, test) and that at some point
sch(pcp, test) delivers this message. Thus, at some point participant test is in
state start and 〈⊥,⊥,⊥〉 is ready to be read on channel sch(pcp, test). There
are two possible ways of how participant test may proceed: 1) advancing
to state test-initial and 2) advancing to state test-seq. If 1) participant test
advances to test-initial, then we have that (*) there has to be a message
of the form 〈⊥ · i,⊥ · ui,⊥ · vi〉 stored on channel sch(pcp, test) for some
i ∈ {1, . . . , n} since otherwise in the next step test would advance to state
fail and the intruder would not obtain ok, in contradiction to the assumption.
If 2) participant test advances to state test-seq, then because of the edge
from test-seq to e, we know that in each step sch(pcp, test) has to deliver
a message to test, since otherwise participant test would advance to e and
the intruder could not obtain ok anymore. We now distinguish between two
cases: 2a) message check is never delivered to test by the scheduled secure
channel sch(check, test) and 2b) message check is delivered to test eventually.
In case of 2a), we have that (**) at some point sch(pcp, test) must deliver a
message of the form 〈m1,m2,m2〉 to test since this is the only way for the
intruder to obtain ok. In case of 2b), similar to the proof of Theorem 4.3.1, we
can conclude that (***) the sequence of messages delivered by sch(pcp, test)
to test satisfy property iii) of the properties of solution sequences. At this
point we use that the intruder sends messages to test via a scheduled secure
channel. This guarantees that the intruder must have sent the next message
in a sequence to sch(pcp, test) before he knows that a check is going to be
performed. Now, from (*), (**), and (***) we can conclude that the intruder
has to send a solution sequence to test, and thus, Π has a solution. 

4.7 Proof of Theorem 4.3.3

To prove Theorem 4.3.3, it obviously suffices to show that Pamc(greedy,
dssc-containing, I-positive) is NEXPTIME-complete. In the following sub-
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sections, this statement is proved. The proof of the complexity upper bound
is presented in Section 4.7.1, with the proofs of key lemmas postponed to
Section 4.7.2 to 4.7.6. The complexity lower bound is shown in Section 4.7.7.

4.7.1 Poof of Theorem 4.3.3 Using Key Lemmas

In this section, we prove Theorem 4.3.3 using three key lemmas. The proofs
of these lemmas are postponed to subsequent sections.
Let Pr = (H,D,K, {Pa}a∈H) be a greedy and dssc-free protocol and

ϕ be an I-positive AMC-formula over ΣPr and PPr. Since every AMC-
formula can (in polynomial-time) be turned into an AMC-formula in negation
normal form, we may, w.l.o.g., assume that ϕ is in negation normal form. Let
S = SPr = 〈Σ, QS,P, π,∆, δ〉 be the concurrent game structure induced by
Pr.
We define an equivalence relation ∼ on QS as follows. For q, q′ ∈ QS, we

write q ∼ q′ if q and q′ are equal up to the messages on input ports of honest
participants, i.e., Kq = Kq′ , P q = P q′ , and sq = sq′ . We will write q ≺ q′,
if q 6∼ q′ and q′ is a descendant of q in S, i.e., there exists q1, . . . , qn such
that q1 = q, qn = q′, and qi+1 is a successor of qi for every i = 1, . . . , n − 1.
We extend these relations to states of the parity game Gϕ

(S,q0) where q
0 is

the initial state of S: We write (q, ψ) ∼ (q′, ψ′), if q ∼ q′, and we write
(q, ψ) ≺ (q′, ψ′), if q ≺ q′.
We call a state q of S consuming, if on the input port of some honest

participant a there is a message which can be read by some consuming rule.
Since, by assumption a is greedy, this implies that a’s state will change in the
next step, i.e., a moves to a new vertex. Formally, a state q = (K, P ,m, s) is
consuming, if there exists a ∈ H with Pa = (V,E, v0, `p, `) and if there exists
v ∈ V such that `(v0, v) = (r ⇒ s) is consuming and ma matches with r.
Otherwise, q is called non-consuming. Note that in non-consuming states,
honest principals can only take edges with non-consuming rules (including
self-loops). In particular, any two equivalent, non-consuming states have the
same set of successors. We call a vertex v = (q, ψ) in Gϕ

(S,q0) non-consuming
if q is non-consuming.
The following definition says that a strategy is ∼-uniform if the intruder

chooses the same messages whenever he is in certain non-consuming, equiv-
alent states.



4.7. PROOF OF THEOREM 4.3.3 107

Definition 4.7.1 Consider the game Gϕ
(S,q0) as above. A strategy f for

Player 0 is∼-uniform, if it is memoryless and moreover, for all non-consuming
states v, v′ with v ∼ v′ we have that:

(a) If v = (q, 〈〈A〉〉ψ), v′ = (q′, 〈〈A〉〉ψ) with f(v) = (q,cψ) and f(v′) =

(q′,c′ψ), then c = c′.

(b) If v = (q,cψ) and v′ = (q′,cψ) then f(v) = f(v′).

The following lemma says that it suffices to consider ∼-uniform strategies.

Lemma 4.7.2 If there exists a winning strategy of Player 0 in Gϕ
(S,q0), then

there exists a ∼-uniform winning strategy for this player.

The proof of this lemma is provided in Section 4.7.4. We call a strategy
graph induced by a ∼-uniform strategy a ∼-uniform strategy graph.

Lemma 4.7.3 If F is a ∼-uniform strategy graph for Player 0 in Gϕ
(S,q0),

then the length of every path in F starting from the initial vertex and without
repetitions has length polynomially bounded in |Pr| + |ϕ|. Also, the number
of reachable vertices of F is exponentially bounded in |Pr|+ |ϕ|.

The proof of this lemma is provided in the Section 4.7.5. Lemma 4.7.2 and
4.7.3 imply that if Player 0 wins the game Gϕ

(S,q0), then one can witness
this fact by a strategy graph F with an exponentially bounded number of
vertices. However, this does not necessarily mean that the representation
of F is bounded exponentially in |Pr| + |ϕ| since the size of states in F , in
particular the size of messages in such states, might be big. Fortunately, it
is possible to show that the overall size of F can be bounded exponentially,
where the size of a strategy graph is defined in the obvious way according to
some standard representation, where the set of all messages occurring in F
are represented by a single DAG.

Lemma 4.7.4 If F is a winning strategy graph for Player 0 in Gϕ
(S,q0) as

described in Lemma 4.7.3, then there exists a winning strategy graph F ′ of
(overall) size exponentially bounded in |Pr|+ |ϕ|.

The proof of this lemma is provided in Section 4.7.6.
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Using the three lemmas just stated, it immediately follows that
Pamc(greedy, dssc-containing, I-positive) is in NEXPTIME: By the lem-
mas, we know that Player 0 wins Gϕ

(S,q0) iff there exists a winning strategy
graph for Player 0 of size exponentially bounded in |Pr| + |ϕ|. So, we first
guess such a graph and then check whether it represents a winning strategy
graph for Player 0. The last step can be checked in polynomial time in the
size of the graph (see, e.g., [GTW02]). Hence, we have a non-deterministic
exponential-time algorithm for the problem Pamc(greedy, dssc-containing,
I-positive).
In the following sections, we present the proofs of Lemma 4.7.2 to 4.7.4.

However, first, in Section 4.7.2 and 4.7.3 we summarize some useful properties
of concurrent game structures and parity games induced by protocols.

4.7.2 Properties of Concurrent Game Structures for
Protocols

The following lemma says that ≺ as defined above is transitive, where for an
instance P we write root(P ) to denote the root of P .

Lemma 4.7.5 Let S be defined as above and let q, q′, q′′ be states of S. If
q ≺ q′ and q′ ≺ q′′, then q ≺ q′′.

Proof Let q = (K, P ,m, s), q′ = (K′, P
′
,m′, s′), q′′ = (K′′, P

′′
,m′′, s′′) be

states of S = 〈Σ, Q,P, π,∆, δ〉 such that q ≺ q′ and q′ ≺ q′′. We have to
show that q ≺ q′′, i.e., q 6∼ q′′ and q′′ is a descendant of q. Obviously, q′′ is
a descendant of q. Since q 6∼ q′ and q′ 6∼ q′′, one of the following cases must
occur. From every case we can conclude that q 6∼ q′′:

• Pa 6= P ′
a or P

′
a 6= P ′′

a for some a ∈ H: By definition of S and since
q′ is a descendant of q and q′′ is a descendant of q′, it follows that
root(P ′′

a ) is a (proper) descendant of root(Pa) in Pa. In particular,
root(Pa) 6= root(P ′′

a ). Hence, q 6∼ q′′.

• K 6= K′ or K′ 6= K′′: Since q′ is a descendant of q and q′′ is a descendant
of q′ we know that K ⊆ K′ ⊆ K′′. Thus, we can conclude that K is a
strict subset of K′′. Thus, q 6∼ q′′.

• (sc, dc) 6= (s′c, d
′
c) or (s′c, d

′
c) 6= (s′′c , d

′′
c ) for some c ∈ Sch(H,P) ∩ ch(Pr)

(note that ch(Pr) ∩ Sch(D,P) = ∅ since protocols are dssc-free) and
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Pa = P ′
a = P ′′

a for all a ∈ H: Since c = sch(a, b) for some honest a ∈ H
and some b ∈ P , and Pa = P ′

a = P ′′
a for all a ∈ H, we know that

nothing is written to any scheduled secure channel by a, and hence,
|sc| ≥ |s′c| ≥ |s′′c |. If |sc| > |s′′c |, we immediately obtain that q 6∼ q′′.
Otherwise, we have |sc = s′′c | which implies that d′c = d′′c = delivered

and thus dc = delivered. So, dc 6= d′′c . Thus, q 6∼ q′′. 

While a computation in the concurrent game structure for a protocol can
be infinite, “real progress”, which is captured by relation ≺, can only be
made a bounded number of times during such a computation. This fact is
formally stated in the following lemma.

Lemma 4.7.6 If q1 ≺ · · · ≺ qn, then n is bounded polynomially w.r.t. the
size of Pr.

Proof If q ≺ q′, then, by definition, one of the following cases holds: q and
q′ differ on the state of (a) some honest participant, (b) a scheduled secure
channel in Sch(H,P), or (c) the intruder knowledge.
The lemma follows from the following observations: Each honest par-

ticipant can change his state at most n times, where n is the size of the
protocol description, so case (a) can happen only n2 times. Moreover, each
scheduled secure channel in Sch(H,P) receives only n messages (from honest
participants) during the course of a protocol execution, so its state can be
changed at most 2n times. It means that case (b) can happen at most 2n2

times. Now, whenever a state of the intruder is changed, the state of some
honest participant or some secure channel has to be changed as well. So, if
(c) happens, then so must (a) or (b). 
The following lemma follows immediately from the definition of a con-

suming state and greedy principals (recall that principals considered here
are greedy).

Lemma 4.7.7 If a state q is consuming and q′ is a successor of q, then
q′ ≺ q.

The next lemma formalizes the already mentioned intuition behind non-
consuming states (see Section 4.7.1): When in a non-consuming state, an in-
stance ignores incoming messages, and hence, two equivalent, non-consuming
states have the same set of successors.
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Lemma 4.7.8 Let q1, q2 be non-consuming states with q1 ∼ q2. If a state q
is a c-successor of q1, for c ∈ ∆A(q1) and some A ⊆ Σ, then c ∈ ∆A(q2) and
q is also a c-successor of q2.

Proof Since q1 ∼ q2, we have q1 = (K, P ,m1, s) and q2 = (K, P ,m2, s). It
is enough to show that if c ∈ ∆Σ(q1), then c ∈ ∆Σ(q2) and δ(q1, c) = δ(q2, c).
The set of moves of I depends only on the intruder knowledge (K) which

is the same in q1 and q2 and the result of applying these moves has the same
consequences.
The set of moves of the secure channels depends only on s which, again,

is the same in q1 and q2. Thus, these players have the same moves in q1 and
q2, and the result of applying these moves has again the same consequences.
The states of an honest participant in q1 and q2 are the same, and, because

the states are non-consuming, only non-consuming rules (and exactly those)
can be applied. But the set of these rules is the same in q1 and q2 and the
application of these rules does not depend on the current input. Hence, the
result of applying these moves has the same consequences. 

4.7.3 Some Properties of Parity Games for Protocols

Given Pr, S = SPr, q0 (the initial state of S), and an I-positive AMC-
formula ϕ in negation normal form as above, in this section we study the
induced parity game Gϕ

(S,q0). We also state some general properties of parity
games. We first note:

Remark 4.7.9 For each subformula 〈〈A〉〉ψ of ϕ, we have that I ∈ A and for
each subformula JAKψ of ϕ, we have that I /∈ A. Also, for each subformula
cψ of ϕ, the domain of c contains I and for each subformula cψ of ϕ,
the domain of c does not contain I.

The following lemma is a consequence of Lemma 4.7.8.

Lemma 4.7.10 If (q1,cψ) and (q2,cψ) are vertices of Gϕ
(S,q0) where q1

and q2 are non-consuming, q1 ∼ q2, and such that (q, ψ) is a successor of
(q1,cψ), then (q, ψ) is also a successor of (q2,cψ). Similarly, if (q1,cψ)

and (q2,cψ) are vertices of Gϕ
(S,q0) with non-consuming states q1 and q2,

q1 ∼ q2, and (q, ψ) is a successor of (q1,cψ), then (q, ψ) is also a successor
of (q2,cψ).
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From Lemma 4.7.5 and 4.7.6, we obtain:

Lemma 4.7.11 If λ is a play in Gϕ
(S,q0), then λ can be written as a concate-

nation λ1 . . . λn where

• λj for j = 1, . . . , n− 1 is a finite sequence of states of Gϕ
(S,q0) and λn is

an infinite sequence of states of Gϕ
(S,q0),

• n can be polynomially bounded in the size of Pr,

• for all i and states v, u in λi we have that v ∼ u, and

• for all i < j, u in λi, and v in λj, we have u ≺ v.

Proof First observe that if (q1, ψ1), (q2, ψ2), . . . is a play, then, for i < j,
the state qj is a descendant of qi, and so, either qi ∼ qj or qi ≺ qj. Now, the
lemma easily follows from Lemma 4.7.5 and 4.7.6. 
We now summarize some useful properties of parity games, independent

of the particular game Gϕ
(S,q0).

Lemma 4.7.12 Let λ be an infinite play in some parity game G. Assume
that λ is the concatenation λ1λ2 . . . where each λi is a non-empty sequence
of vertices such that, for each index i, the maximal color occurring in λi is
even (odd). Then the maximal color occurring in λ infinitely often is even
(odd).

Proof Let a be the maximal color occurring infinitely often in λ. Because
the set of colors is finite, there is an index i0 such that, for each i > i0, no
color a′ > a occurs in λi. Clearly, there is j > i0 such that a occurs in λj. So,
a is the maximal color occurring in λj which, by assumption, is even (odd).

Before we proceed, we need to introduce some terminology.
Let G = (V, V0, V1, E, vI , l) be a parity game. A (finite) path π in G is

a finite sequence of the form v1, . . . , vn such that (vi, vi+1) ∈ E for every
i = 1, . . . , n − 1. We say that a vertex v ∈ V is reachable in G if there
exists a path from vI to v in G. For U ⊆ V , we call π = v1, . . . , vn a (finite)
U-path if π is a path and vi ∈ U for every i = 1, . . . , n. An infinite path λ
in G is a finite sequence of the form v1, v2, . . . such that (vi, vi+1) ∈ E for
every i ≥ 1. We call λ winning for Player 0 if the maximum color occurring
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infinitely often in λ is even; otherwise λ is winning for Player 1. We call λ
an (infinite) U-path if λ is an infinite path and vi ∈ U for every i ≥ 1.
Let U ⊆ V and let f : U → V be a function. We call f consistent with

a path v1, . . . , vn in G if vi+1 = f(vi) for every i = 1, . . . , n− 1 with vi ∈ U ;
analogously for infinite paths.

Definition 4.7.13 Consider a parity game (V, V0, V1, E, vI , l). For a set
U ⊆ V , a U -strategy for Player 0 is a function f : U ∩ V0 → V such
that if f(v) = v′, then (v, v′) ∈ E, and each infinite U-path consistent with
f and starting with a state reachable from vI is winning for Player 0.

Definition 4.7.14 Let f be a U-strategy for Player 0, U ⊆ V , and D ⊆
dom(f). We say that f gives a good choice for D in a vertex v ∈ D, if
for each U-path π = v1, . . . , vn in G consistent with f such that v1 = f(v),
vn ∈ D, and vi ∈ U \D, for every 1 ≤ i < n, the maximal color occurring in
π is even.

Lemma 4.7.15 Let (V, V0, V1, E, vI , l) be a parity game, U ⊆ V , f be a U-
strategy for Player 0, and D be a non-empty subset of dom(f). Then, there
exists a vertex v ∈ D such that f gives a good choice for D in v.

Proof For the sake of contradiction, suppose that there is no vertex v ∈ D
such that f gives a good choice for D in v. Let v0 be some element of D
(recall that D is non-empty).
Because f does not give a good choice in v0, there is a U -path π1 consistent

with f , starting in f(v0), and ending in some vertex v1 ∈ D such that the
maximal color occurring in π1 is odd. Because f does not give a good choice
in v1 we can repeat the argument and obtain a U -path π2 consistent with
f , starting with f(v1), ending in some vertex v2 ∈ D such that the maximal
color occurring in π2 is odd, and so on. In this way, we obtain an infinite
path λ = π1π2 · · · ∈ Uω consistent with f such that the maximal color on λi

is odd, for every i. By Lemma 4.7.12, it follows that λ is winning for Player
1, in contradiction to the assumption that f is a U -strategy for Player 0. 

4.7.4 Proof of Lemma 4.7.2

Assume that there exists a winning strategy f in Gϕ
(S,q0) for Player 0. By

Fact 4.1.2, we may assume that this winning strategy is memoryless. Starting
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with f , we will construct a ∼-uniform winning strategy for Player 0.
For v ∈ V , let [v] = [v]∼ = {v′ ∈ V | v ∼ v′} denote the equivalence class

of v (w.r.t. ∼). We define V/∼ = {[v]∼ | v ∈ V } to be the set of equivalence
classes of V . For each ρ ∈ V/∼, let fρ : ρ ∩ V0 → V be the restriction of f
to ρ, i.e., fρ(v) = f(v), for each v ∈ dom(fρ) = ρ ∩ V0. (Note that fρ is a
ρ-strategy for Player 0.)
The outline of the proof is as follows: For each ρ ∈ V/∼, we will construct

f ′ρ : ρ∩V0 → V such that the function f ′ defined by f ′(v) = f ′[v](v), for every
v ∈ V0, is a ∼-uniform winning strategy for Player 0.
For a (possibly non-standard) subformula ψ of ϕ, we define the set

Dρ(ψ) = {v ∈ ρ | v = (q, ψ) for some non-consuming q} ⊆ ρ.
We say that a function gρ : ρ∩V0 → V is∼-uniform w.r.t. a setD ⊆ ρ∩V0,

if for each v, v′ ∈ D, (a) and (b) of Definition 4.7.1 hold true for gρ.
Now, we construct f ′ρ from fρ by iteratively performing the two steps

described below, until this is not possible anymore. More precisely, let f 0
ρ =

fρ. Given f i
ρ, we obtain f

i+1
ρ : ρ ∩ V0 → V either by applying step A or step

B below. In the construction we use the fact that each f i
ρ is a ρ-strategy for

Player 0 (see Definition 4.7.13), which will be proven later.

A. Pick a subformula of ϕ of the form cψ such that f i
ρ is not ∼–uniform

w.r.t. D = Dρ(cψ). Note that f i
ρ is an ρ-strategy for Player 0. Note

also that D is a non-empty subset of dom(f i
ρ). Thus, by Lemma 4.7.15,

there exists a vertex ṽ ∈ D such that f i
ρ gives a good choice for D in ṽ.

We define f i+1
ρ as follows: f i+1

ρ (v) = f i
ρ(ṽ), if v ∈ D, and f i+1

ρ (v) = f i
ρ(v),

otherwise.

B. Pick a subformula of ϕ of the form 〈〈A〉〉ψ such that f i
ρ is not ∼–uniform

w.r.t. D = Dρ(〈〈A〉〉ψ). Note that f i
ρ is an ρ-strategy for Player 0. Note

also that D is a non-empty subset of dom(f i
ρ). Thus, by Lemma 4.7.15,

there exists a node ṽ = (q̃, 〈〈A〉〉ψ) ∈ D such that f i
ρ gives a good

choice for D in ṽ. We define f i+1
ρ as follows: Let (q̃,c̃ψ) = f i

ρ(ṽ).
If v = (q, 〈〈A〉〉ψ) ∈ D, we set f i+1

ρ (v) = (q,c̃ψ), and if v /∈ D, we set
f i+1

ρ (v) = f i
ρ(v).

It is easy to show that if f i
ρ is∼–uniform w.r.t.Dρ(〈〈A〉〉ψ) (orDρ(cψ)), then

f i+1
ρ is also ∼-uniform w.r.t. this set. Moreover, if f i+1

ρ is obtained by step
B, for some 〈〈A〉〉ψ, then f i+1

ρ is ∼–uniform w.r.t. the set Dρ(〈〈A〉〉ψ). Hence,
because the number of distinct subformulas of ϕ of this form is bounded by
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|ϕ|, this step can be done at most |ϕ| times. Similarly, if f i+1
ρ is obtained by

step A, for some cψ, then f i+1
ρ is ∼–uniform w.r.t. the set Dρ(cψ). The

number of subformulas of ϕ of the formcψ is bounded by O(|ϕ| ·2n), where
n is the size of Pr. Here we use that ϕ is I-positive, and hence, I /∈ dom(c)

(see Remark 4.7.9), and each participant, except for I, has a bounded number
of available moves in each state. Consequently, this step can also only be
performed a bounded number of times. Thus, after a bounded number of
steps, say k steps, we obtain fk

ρ which is ∼–uniform w.r.t Dρ(ψ), for each ψ
of the form 〈〈A〉〉ψ′ or cψ

′. We define f ′ρ = fk
ρ .

Now, we prove that each f i
ρ is a ρ-strategy for Player 0. We proceed by

induction on i. In case i = 0, we have f 0
ρ = fρ and from the definition of

fρ it follows that f 0
ρ is a ρ-strategy for Player 0. So, suppose that f

i
ρ is a

ρ-strategy for Player 0. We will show that f i+1
ρ is a ρ-strategy for Player 0

as well.
First, it is easy to show that if f i+1(v) = v′, then (v, v′) ∈ E (if f i+1 is

obtained by Step B, then it follows from Lemma 4.7.8 and the definition of
Gϕ

(S,q0); if f
i+1 is obtained by Step A, then we use Lemma 4.7.10).

Now, suppose that λ is an infinite ρ-path consistent with f i+1
ρ and starting

with a vertex reachable from the initial state ofGϕ
(S,q0). We consider two cases:

(1) There is a suffix λ′ of λ such that λ′ does not contain vertices in D. In
this case, λ′ is consistent with f i

ρ. Thus λ
′ it is winning for Player 0 and so

is λ. (2) λ contains an infinite number of elements in D. In this case we can
split λ into λ0λ1 . . . such that the last element of λi is the only one in λi

belonging to D. Let k > 0. Let λk = v1, . . . , vn and v0 be the last element of
λk−1. So, v0, vn ∈ D and vi /∈ D, for 0 < i < n. Now we consider two cases,
depending on whether f i+1

ρ was obtain by step A or B:

• If f i+1
ρ was obtained by step A, then v1 = f i

ρ(ṽ) is the successor of ṽ
for which f i

ρ gives a good choice. By definition of a good choice for D,
the maximal color occurring in λk = v1, . . . , vn is even.

• If f i+1
ρ was obtained by step B, then v1 is of the form (q,c̃ψ), where

(q̃,c̃ψ) = f i
ρ(ṽ) is the successor of ṽ for which f

i
ρ gives a good choice for

D. Because v2 is a successor of (q,c̃ψ) and q, q̃ ∈ ρ are non-consuming,
by Lemma 4.7.10, we have that v2 is also a successor of (q̃,c̃ψ). Hence,
the path ṽ, (q̃,c̃ψ), v2, . . . , vn is consistent with f i

ρ. Note also that
(q̃,c̃ψ)) /∈ D. So, by the definition of a good choice, the maximal
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color on (q̃,c̃ψ), v2, . . . , vn is even. Because the colors of (q̃,c̃ψ) and
(q,c̃ψ) are the same, the maximal color on λk = v1, . . . , vn is also
even.

So, in the both cases, we have proven that the maximal color on λk is even.
Thus, by Lemma 4.7.12, the path λ1λ2 . . . is winning for Player 0 and so is
λ.
This shows that f i+1

ρ is a ρ-strategy for Player 0. In particular, f ′ρ is a
ρ-strategy for Player 0. We define f ′(v) = f ′[v](v) for every v ∈ V0. It remains
to show that f ′ is a ∼-uniform winning strategy for Player 0.
We know that f ′ρ is ∼-uniform w.r.t Dρ(ψ), for each ψ of the form 〈〈A〉〉ψ′

or cψ
′. From this it is easy to conclude that f ′ is ∼-uniform.

To prove that f ′ is winning for Player 0, let us consider some play λ
consistent with f ′. By Lemma 4.7.11, there is a suffix λ′ of λ such that λ′ is
an infinite ρ-path for some equivalence class ρ. Because λ′ is consistent with
f ′ and, for each v ∈ ρ, we have that f ′(v) = f ′ρ(v), the infinite path λ

′ is
consistent with f ′ρ as well. Since f

′
ρ is an ρ-strategy, we can conclude that λ

′

is winning for Player 0, and hence, so is λ. 

4.7.5 Proof of Lemma 4.7.3

Given Pr, S = SPr, q0 (the initial state of S), and an I-positive AMC-
formula in negation normal form as above, and Gϕ

(S,q0) in this section we
proof Lemma 4.7.3.
We first show that the branching degree of Gϕ

(S,q0) is bounded exponen-
tially. This is true independent of whether or not the underlying strategy is
∼-uniform.

Lemma 4.7.16 The branching degree of a strategy graph of Player 0 of
Gϕ

(S,q0) is exponentially bounded |Pr|.

Proof By the definition of Gϕ
(S,q0), the only vertices of G

ϕ
(S,q0) which can have

more than two successors are of the form (q, 〈〈A〉〉ψ), (q, JAKψ), (q,cψ), and
(q,cψ). Vertices of the form (q, 〈〈A〉〉ψ) and (q,cψ) belong to V0, so in any
strategy graph for Player 0 these vertices have exactly one successor. Hence,
it suffices to check that the number of successors in Gϕ

(S,q0) of vertices of the
form (q, JAKψ) and (q,cψ) is exponentially bounded in |Pr|.
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Let us first consider the case of v = (q, JAKψ). Because ϕ is I-positive,
we know that I /∈ A. Hence, A contains only some honest principals and
some secure channels. Each successor of v corresponds to some combination
of moves of players in A, so the number of successors of v is |∆A

q |. Since
the number of moves available to each honest principal and to each secure
channel is linear in |Pr|, |∆A

q | is exponentially bounded in |Pr|.
Now, let us consider the case of v = (q,cψ). Because ϕ is I-positive, we

have that I ∈ dom(c). Each successor of v corresponds to some c-successor
of q, i.e. to some combination of moves of players in B = Σ \ dom(c). Hence,
one can identify every such successor with exactly one element of ∆B

q . From
the previous case, we know already that |∆B

q | is exponentially bounded in
|Pr|. 
The following lemmas states that in a path in Gϕ

(S,q0) one cannot stay long
in a state with the same first component, i.e., the same state of S, without
repeating the second component, i.e., the subformula of ϕ.

Lemma 4.7.17 For every path (q, ψ1), . . . , (q, ψn) in Gϕ
(S,q0) with ψi 6= ψj,

for every i, j ∈ {1, . . . , n}, i 6= j, it holds that n ≤ 2|ϕ|+ 1.

Proof If ψi is non-standard, then ψi+1 is standard (by the definition of
SubqS(ϕ), symbols c and c are not nested). Thus, at least xn/2y formu-
las amongst ψ1 . . . , ψn are standard. Because there is at most |ϕ| standard
subformulas of ϕ, we can conclude that n ≤ 2|ϕ|+ 1. 
The following lemma states properties of paths consisting of equivalent

states.

Lemma 4.7.18 Let v1, . . . , vn be a path in G
ϕ
(S,q0) such that vi ∼ vj, for

every i, j ∈ {1, . . . , n}. Then:
1. For each i, j ∈ {1, . . . , n − 1}, if vi = (qi,cψ) and vj = (qj,cψ),
then vi+1 = vj+1.

2. For each i, j ∈ {1, . . . , n − 2}, if vi = (qi, JAKψ) and vj = (qj, JAKψ),
then vi+1 = (qi,cψ) and vj+1 = (qj,cψ), for some c.

Proof In both cases, the choices made in vi and vj represent choices of some
honest principals and some scheduled secure channels, but not choices of the
intruder. These choices cannot change the state of these agents: in case 1,
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this is because vi ∼ vi+1 and vj ∼ vj+1, and in case 2, it is because vi ∼ vi+2

and vj ∼ vj+2. So, the choices are uniquely determined and correspond to
the choice of staying in the same state for honest players, and to the choice
of not delivering any message by the scheduled secure channels (recall that
since the protocol is assumed to be dssc-free, these scheduled secure channels
only get their messages from honest principals). 
In what follows, we call a vertex v of Gϕ

(S,q0) modal if it is of the form
(q, 〈〈A〉〉ψ) or (q, JAKψ).

Lemma 4.7.19 Let v1, . . . , vn be a path in a ∼-uniform strategy graph for
Player 0 in the game Gϕ

(S,q0) such that vi ∼ vj, for every i, j ∈ {1, . . . , n}, and
the vertices v1, . . . , vn are non-consuming. Let, for some i, j ∈ {1, . . . , n−2},
the vertices vi and vj be modal and of the form vi = (qi, ψ) and vj = (qj, ψ).
Then, we have vi+2 = vj+2.

Proof We consider two cases:

Case 1 : ψ = 〈〈A〉〉ψ′. By the definition of ∼-uniform strategy, there exists
c such that vi+1 = (qi,cψ) and vj+1 = (qj,cψ). Thus, by Lemma 4.7.18,
we obtain vi+2 = vj+2.

Case 2 : ψ = JAKψ′. By Lemma 4.7.18, there exists c such that vi+1 =

(qi,cψ) and vj+1 = (qj,cψ). Thus, we obtain vi+2 = vj+2 by the definition
of ∼-uniform strategy. 
Let H be a ∼-uniform strategy graph of Player 0 in Gϕ

(S,q0). A path
v1, . . . , vn in H is conservative, if, for all i 6= j we have that vi 6= vj and
vi ∼ vj.

Lemma 4.7.20 Let π = v1, . . . , vn be a conservative path in a ∼–uniform
strategy graph of Player 0 in the game Gϕ

(S,q0). If v1 is consuming, then
n ≤ 2|ϕ|+ 1.

Proof Assume that vi is of the form (qi, ψi) for all i = 1, . . . , n. Let k be
maximal such that qi = q1 for all i ≤ k. By Lemma 4.7.17, k ≤ 2|ϕ|+ 1. We
will show that n = k, which gives n ≤ 2|ϕ|+1. By the sake of contradiction,
suppose that k < n. So, qk+1 6= qk, and thus qk+1 must be a successor of qk.
By the assumption, the state qk = q1 is consuming, so by Lemma 4.7.7, we
have qk ≺ qk+1, which contradicts the assumption that π is conservative. 
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Lemma 4.7.21 Let v1, . . . , vn be a conservative path in a ∼–uniform strat-
egy graph for Player 0 in the game Gϕ

(S,q0). If v1, . . . , vn are non-consuming,
then the number of modal vertices in v1, . . . , vn is bounded by |ϕ|+ 2.

Proof We will show that a modal subformula of ϕ cannot occur twice in
the path v1, . . . , vn−2, which means that the number of modal vertices in
v1, . . . , vn−2 is bounded by the number of distinct modal subformulas of ϕ,
and hence, is ≤ |ϕ|. Consequently, the number of modal vertices in v1, . . . , vn

is bounded by |ϕ|+ 2.
Suppose that, for i, j ≤ n − 2 we have vi = (qi, ψ) and vj = (qj, ψ), for

a modal formula ψ. By Lemma 4.7.19, vi+2 = vj+2, which contradicts the
assumption that v1, . . . , vn is conservative. 

Lemma 4.7.22 Let π = v1, . . . , vn be a conservative path in a ∼–uniform
strategy graph of Player 0 in the game Gϕ

(S,q0). If v1, . . . , vn are non-
consuming, then n ≤ p(|ϕ|) for some fixed polynomial p in |ϕ|.

Proof We split π into π0, . . . , πm such that for each u, v in πi the first
components of u and v are the same and, if v = (qv, ψv) is the last element
of πi and u = (qu, ψu) is the first element of πi+1, then qv 6= qu.
For 0 ≤ i < m, the second component of the last element of πi has to be

a non-standard formula. Moreover, for 0 < i ≤ m, the second component of
the first element of πi is standard. Hence, for 0 < i < m, πi has at least two
elements. A predecessor of a vertex with a non-standard formula is modal,
so each πi, for 0 < i < m, contains a modal element. Hence, by Lemma
4.7.21, we obtain m ≤ |ϕ| + 4. By Lemma 4.7.17, the length of each πi is
bounded by 2|ϕ| + 1, so we conclude that n ≤ (2|ϕ| + 1)(|ϕ| + 4) =: p(|ϕ|).

Now, we are ready to prove Lemma 4.7.3. First, by Lemma 4.7.16, the

branching degree of a strategy graph of Player 0 is exponentially bounded.
Below, we show that every path in Gϕ

(S,q0) starting from the initial state of
Gϕ

(S,q0) without repetitions has length polynomially bounded in |Pr| + |ϕ|.
This shows the first part of Lemma 4.7.3 and from this, together with the
bounded branching degree, the lemma follows.
Let π be a path without repetitions in a ∼–uniform strategy graph of

Player 0. Let v1, . . . , vn be a subsequence of π such that vi ∼ vj, for 1 ≤
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i, j ≤ n. By Lemma 4.7.11, the number of maximal subsequences of π of
this type is at most polynomial in |Pr|. Thus, to prove a polynomial bound
on the length of π, it is enough to show that n is polynomially bounded in
|Pr|+ |ϕ|.
Observe that v1, . . . , vn is conservative. Thus, if v1, . . . , vn does not

contain any consuming vertex, then, by Lemma 4.7.22, n is polynomially
bounded. Otherwise, let k be the smallest index such that vk is consuming.
By Lemma 4.7.22, k is polynomially bounded in |ϕ| and, by Lemma 4.7.20,
n− k is polynomially bounded in |ϕ| as well. Hence, we obtain a polynomial
bound on n as desired. 

4.7.6 Proof of Lemma 4.7.4

Given Pr, S = SPr, q0 (the initial state of S), and an I-positive AMC-
formula ϕ in negation normal form as above, and Gϕ

(S,q0) in this section we
proof Lemma 4.7.4. To do so, we need to bound the size of messages used in
a winning strategy graph. The main idea is to (iteratively) replace certain
(unnecessarily big) messages by new atoms in such a way that the resulting
graph is still a winning strategy graph. For this purpose, we first characterize
the set d(E) of terms derivable from E in terms of what we call intruder rules
and study how the replacement of terms by other terms effects the derivability
of terms.
For a term t the set Sub(t) of subterms of t is defined as usual. We extend

Sub(·) to sets of terms, multi terms, a-rules and a-instance for a ∈ H, and
protocols as expected.
The intruder rules that we use include those introduced in [RT03]. In

addition, we need rules for hashing, signatures, and generating new atoms.
In what follows, we often write E,m and m,m′ instead of E ∪ {m} and
{m,m′}, respectively.
An intruder rule L is of the form E → m where E is a finite set of

messages and m is a message. A rule of this form is also called m-rule
since m is generated. Given a set E ′, L can be applied to E ′ if E ⊆ E ′.
The rule L induces a binary relation →L on finite sets of messages: →L=

{(E ′, E ′ ∪ {m}) | L can be applied to E ′}. If L is a set of intruder rules,
then →L=

⋃
L∈L →L. For a binary relation → we write E → E ′ instead of

→ (E,E ′). The reflexive and transitive closure of → is denoted by →∗.
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To characterize d(E), we consider the following set of intruder rules. In
what follows, the notion “intruder rule” will always refer to the rules intro-
duced below. This set is partitioned into decomposition and composition
rules. Accordingly, we call a rule decomposition and composition rule, re-
spectively.

Decomposition rules are of one of the following forms, where m and m′

are messages and k ∈ K (and thus, k−1 ∈ K):

1. 〈m,m′〉 → m and 〈m,m′〉 → m′.

2. {m}s
m′ ,m′ → m.

3. {m}a
k, k

−1 → m.

Composition rules are of one of the following forms, where m,m′ are some
messages, k, k0, k1, k2 ∈ K, and aI ∈ AI :

1. m,m′ → 〈m,m′〉.

2. m,m′ → {m}s
m′ .

3. m, k → {m}a
k.

4. m→ hash(m).

5. m, k−1 → sig(k,m).

6. → aI .

Let L denote the set of all (composition and decomposition) rules. It is easy
to see that

d(E) =
⋃
{E ′ | E →∗

L E
′}.

A derivation is of the form E0 →L0 E1 →L1 E2 →L2 · · · →Ln−1 En where
Ei →Li

Ei+1 for every i. We call n the length of the derivation. We know
that for every m ∈ d(E) there exists n, intruder rules L0, . . . , Ln−1, and sets
E0, . . . , En such that E0 = E, m ∈ En, and there is a derivation from E0

to En as above. We call such a derivation a derivation for m of length n.
The derivation is minimal if no step can be removed such that the resulting
sequence is still a derivation for m. Clearly, for every m ∈ d(E) there exists a
minimal derivation. We writem ∈ dc(E) if there exists a minimal derivation
of m where the last rule is a composition rule. The following fact is well-
known (see, e.g., [RT03]).



4.7. PROOF OF THEOREM 4.3.3 121

Lemma 4.7.23 Let m ∈ d(E) and let D be a minimal derivation of m from
E such that D ends with a decomposition rule. Then, m ∈ Sub(E).

From this lemma, we obtain:

Lemma 4.7.24 Let E be a set of messages and let τ be a message such that
τ 6∈ Sub(E) and τ 6∈ dc(E). Then for all m ∈ d(E) we have that τ 6∈ Sub(m).

Proof Let D = E0 →L1 E1 · · · →Ln En be a derivation of m from E0 = E.
Assume, for the purpose of contradiction, that τ ∈ Sub(m). Then, there
exists a minimal i 6= 0 such that τ ∈ Sub(Ei) since τ is a subterm of En.
Assume that Li is an s-rule for some s. Then, τ is a subterm of s. If τ is
a proper subterm of s, by the definition of intruder rules, it follows that τ
is a subterm of Ei−1, in contradiction to the minimality of i. Thus, τ = s

and therefore, τ ∈ d(E). Since τ 6∈ dc(E) it follows that all derivations of
τ end with a decomposition rule. Hence, by Lemma 4.7.23, τ ∈ Sub(E), in
contradiction to the assumption that τ 6∈ Sub(E). Hence, τ 6∈ Sub(m). 
Let

Derive = {(E,m) | m ∈ d(E)}

where E and m are given as DAGs be the derivation problem. The following
is well-known (see, e.g., [CKRT03]):

Lemma 4.7.25 Derive can be decided in polynomial time.

We now study which messages can be derived from a set of messages if certain
terms are replaced by other terms.

Definition 4.7.26 Let t, t′ and t′′ be terms. By t|t′→t′′ we denote the term
obtained from t by simultaneously replacing any occurrence of t′ in t by t′′.

For a set T of terms we define T|t′→t′′ = {t|t′→t′′ | t ∈ T}. For a sequence s =

t1 · · · tn of terms the sequence s|t′→t′′ is defined by s|t′→t′′ = t1|t′→t′′ · · · tn|t′→t′′ .
For a substitution σ we denote by σ|t′→t′′ the substitution σ′ with the same
domain as σ and σ′(x) = σ(x)|t′→t′′ for all x ∈ dom(σ). For a multi message
m : A → M◦ for some A ⊆ C, we denote by m|t′→t′′ the multi message
m′ : A → M◦ with m′(c) = m(c)|t′→t′′ for all c ∈ A. For C,D ⊆ C and a
(C,D)-rule R = r ⇒ s the rule R|t′→t′′ is defined by R|t′→t′′ = r|t′→t′′ ⇒
s|t′→t′′ . For a principal P = (V,E, r, λ, l) the principal P|t′→t′′ is defined by
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P|t′→t′′ = (V,E, r, λ, l′) where for (v, v′) ∈ E the label l′(v, v′) is defined by
l′(v, v′) = l(v, v′)|t′→t′′ . For a state q = (K, P ,m, {(sc, dc)}c∈SC) of SPr we
define

q|t′→t′′ = (K|t′→t′′ , {Pa|t′→t′′}a∈H, {ma|t′→t′′}a∈H, {(sc|t′→t′′ , dc)}c∈SC) .

For a formula ψ of the formcψ
′ or cψ

′, we set ψ|t′→t′′ =c′ψ
′ or ψ|t′→t′′ =

c′ψ
′, respectively, where c′(I) = c(I)|t′→t′′ , in case I ∈ dom(c), and c′(a) =

c(a) for a ∈ dom(c) \ {I}. If ψ is not of the form cψ
′ or cψ

′, we define
ψ|t′→t′′ = ψ. For a state α = (q, ψ) of Gϕ

(S,q0) we set α|t′→t′′ = (q|t′→t′′ , ψ|t′→t′′).
For a subgraph F of Gϕ

(S,q0) the graph F|t′→t′′ is defined in the obvious way.
The following lemma was proved in [KKW04].

Lemma 4.7.27 Let E be a set of messages and τ, τ ′ be messages. Then,
τ ∈ dc(E \ {τ}) implies d(E)|τ→τ ′ ⊆ d(E|τ→τ ′ ∪ {τ ′}).

In order to define messages that can be replaced by an intruder atom from
AI , we need to know how variables are substituted in instances. There-
fore, we now define substitutions that keep track of this information. More
specifically, let

ρ = q0, q1, . . . , ql

be a rooted path in the concurrent game structure S = SPr (induced by
protocol Pr), i.e., q0 = q0 is the initial state of S and qi+1 is a successor of
qi as defined in Section 5.1.1. For i ∈ {0, . . . , l} let

qi = (Ki, P
i
,mi, si) .

For a ∈ H let
P i

a = (V i
a , E

i
a, r

i
a, λ

i
a, l

i
a) .

For i ∈ {0, . . . , l − 1} and a ∈ H let vi
a such that

(mi
a, P

i
a)

vi
a7→ (m, P i+1

a ) .

Let lia(r
i
a, v

i
a) = ria ⇒ sia. Let τ

ρ
i,a be the substitution with domain V(ria) such

that for all c ∈ dom(ria) ∩ dom(mi
a) we have

ria(c)τ
ρ
i,a =mi

a(c) .
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We inductively define σρ
i by

σρ
0 = ∅

σρ
i+1 = σρ

i ∪
⋃

a∈H τ
ρ
i,a for i ∈ {0, . . . , l − 1} .

We set σρ = σρ
l . For a substitution σ and terms t and t

′ we say that t is a
σ-match of t′ (t vσ t

′) if t is not a variable and tσ = t′. Now we define for
a message m what it means that m does not match with a rooted path in S
or Gϕ

(S,q0).

Definition 4.7.28 Let ρ = q0, q1, . . . , ql be a rooted path in S. A message
m does not match with ρ if t 6vσρ m for all t ∈ Sub(Pr) ∪ AI .

Let α = α0, α1, . . . , αl be a rooted path in G
ϕ
(S,q0) where αi = (qi, ψi). Let

0 = i0 < i1 < · · · < ik ≤ l such that

• qik = ql,

• qis 6= qis+1 for all s ∈ {0, . . . , k − 1}, and

• qis = qis+1 = · · · = qis+1−1 for all s ∈ {0, . . . , k − 1}.
Then ρ = qi0 , qi1 , . . . , qik is a rooted path in S and we call ρ the S-projection
of α. A message m does not match with α if m does not match with the
S-projection of α.
The following lemma states that a message that does not match with a

rooted path ρ in S can be replaced by a new intruder atom from AI and
after this replacement one still has a rooted path in S with essentially the
same properties. In particular, at the end of the rooted path the intruder
can derive exactly the same constants as he could before the replacement.

Lemma 4.7.29 Let
ρ = q0, q1, . . . , ql

be a rooted path in S. Let τ be a message that does not match with ρ.
Furthermore, let aI ∈ AI be a constant that does not occur anywhere in ρ or
Pr, and define

ρ′ = q′0, q
′
1, . . . , q

′
l

where q′j = qj |τ→aI
. Then, the following is true:

1) ρ′ is a rooted path in S.

2) For each j ∈ {0, . . . , l} and a ∈ H we have ∆(q′j, a) = ∆(qj, a).
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3) For each j ∈ {0, . . . , l} we have that ∆(qj, I)|τ→aI
⊆ ∆(q′j, I).

4) For each j ∈ {0, . . . , l}, a ∈ H, and b ∈ P we have that
∆(q′j, sch(a, b)) = ∆(qj, sch(a, b)).

5) We have that π(ql) = π(q′l).

Proof First, assume that τ does not occur as a subterm anywhere in ρ.
Then ρ′ = ρ and nothing is to show. In what follows, we show the properties
claimed for ρ′ under the assumption that τ occurs in ρ. The proof is organized
in three steps. First, we will prove that the intruder can derive message τ
when it first occurs in ρ. Second, with this proved we show some auxiliary
claims for the states q′i. Third, with these auxiliary claims we show claims
1) to 5) from above.
Before starting with the first step described above we introduce some

notation. For i ∈ {0, . . . , l} let

qi = (Ki, P
i
,mi, si).

For a ∈ H let
P i

a = (V i
a , E

i
a, r

i
a, λ

i
a, l

i
a) .

For i ∈ {0, . . . , l − 1} and a ∈ H let vi
a such that

(mi
a, P

i
a)

vi
a7→ (m, P i+1

a ) .

Let lia(r
i
a, v

i
a) = ria ⇒ sia. We also introduce primed versions of these symbols,

for example, q′i = (K′i, P
′i
,m′i, s′i).

First step Now we show that the intruder can derive τ , even with a com-
position rule at the end of a minimal derivation, when it first occurs in ρ.
We call (*) the property of τ that t 6vσl

τ for all t ∈ Sub(Pr) ∪ AI .
We know that there is i ∈ {0, . . . , l} such that τ occurs in qi. Let p ∈

{0, . . . , l} be minimal such that τ occurs in qp. We first show the following
three claims:

i) p > 0,

ii) there is a channel c of the form net(e, a) or dir(d, a) where a ∈ H, d ∈ D,
and e ∈ P such that τ ∈ Sub(mp

a(c)), and

iii) τ does not occur in components of qp other then those described in ii).
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Claim i): From (*) it follows that τ 6∈ Sub(Pr) ∪ AI . Since initially there
are no messages on secure channels and no messages on channels to honest
instances τ does not occur in q0.
Claim ii) and iii): We show that τ can not occur in components of qp other
than those described in ii). First assume that τ occurs in some scheduled
secure channel, i.e., there is c ∈ SC such that sp

c contains τ . Let m be a
message in sp

c that contains τ . Thus, m has to be sent in a step before step
p by an honest instance, i.e., there is s < p such that m = ssaσs. From (*) it
follows that there is a variable x in the domain of σs such that τ ∈ Sub(σs(x)).
By definition of a-instances x occurs in step s or before in ρ. From this we
get that τ occurs in a step before step p. This contradicts the minimality
of p. Second, assume that τ occurs in Kp. Since all messages in Kp are in
K0 or are sent by honest principals to the intruder by a similar argument to
the one used in the first case we get a contradiction to the minimality of p.
Third, assume that τ occurs in an instance of qp. By a similar argument to
the one used in the first case we get a contradiction to the minimality of p.
This concludes the proof of Claim ii) and iii).
Now we can show that (**) τ ∈ dc(Kp). From ii) and iii) it follows that

τ 6∈ Sub(Kp) and τ ∈ Sub(d(Kp)). By Lemma 4.7.24 we get that τ ∈ dc(Kp).

Second step We now do the second step of the proof, i.e., we show aux-
iliary claims about q′i needed to prove claims 1) to 5). More precisely, by
induction on 0 ≤ j ≤ l using (**) from above we will show that the following
claims hold:

a) q′j is a state of S,

b) for each a ∈ H and j < l we have ∆(q′j, a) = ∆(qj, a),

c) d(Kj)|τ→aI
⊆ d(K′

j),

d) for each a ∈ H and b ∈ P , with sch(a, b) ∈ ch(Pr), we have that
∆(q′j, sch(a, b)) = ∆(qj, sch(a, b)), and

e) if j < l then q′j+1 is a successor of q
′
j.

First, assume j = 0. Claims a),b),d) are obviously fulfilled since q′0 = q0. To
show claim c) we distinguish between two cases:

• τ ∈ d(K0): By (*) we know that τ 6∈ Sub(K0). By Lemma 4.7.24 we
get that τ ∈ dc(K0)(= dc(K0 \ {τ})). By Lemma 4.7.27 we get c).
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• τ 6∈ d(K0): Since we have that τ 6∈ Sub(K0), by Lemma 4.7.24, we
know that for all m ∈ d(K0) we have that τ 6∈ Sub(m). Thus, we have
d(K0)|τ→aI

= d(K0) = d(K0|τ→aI
) = d(K′

0).

To show claim e) we distinguish between two cases:

• p > 1: We have q′1 = q1 and thus we have that q′1 is a successor of
q′0 = q0.

• p = 1: Choose the ports which carry messages that contain τ . By the
points above we have that the intruder can derive these messages and
τ does not occur in other components of q1. Thus, we have that q′1 is a
successor of q′0 = q0.

For the induction step assume that a) to e) are true for a j − 1. We want to
proof the statements for j > 0. Claim a) is fulfilled by induction and claim
e) for j − 1.
To prove claim b) we have to show that ∆(qj, a) = ∆(q′j, a). For this

it suffices to show that if a message m matches with a term t occurring
in the left-hand side of a rule in qj for a ∈ H, then m|τ→aI

matches with
t|τ→aI

and vice versa. More precisely, let v ∈ V j
a be a successor of r

j
a and let

lja(r
j
a, v) = r⇒ s. Let t = r(c) for some c ∈ dom(r).
First, suppose that m = mj

a(c) matches with t, i.e., m = tσ for some
substitution σ. We have to show that m|τ→aI

matches with t|τ→aI
, i.e., we

have to show that there is a substitution σ′ such that m|τ→aI
= t|τ→aI

σ′. Let
t0 = l0a(r

j
a, v), i.e., t

0 is the term in P 0
a = Pa that corresponds to t. We have

that
m|τ→aI

= tσ|τ→aI

= (t0(σj ∪ σ))|τ→aI

= (t0σl)|τ→aI
⊕
= t0(σl|τ→aI

)

= t0(σj ∪ σ)|τ→aI

= t0(σj |τ→aI
∪ σ|τ→aI

)

= (t0(σj |τ→aI
))σ|τ→aI

⊕
= (t0σj)|τ→aI

σ|τ→aI
= t|τ→aI

σ|τ→aI

where all steps are obviously fulfilled by definition, except for the steps
marked with ⊕: For these steps, we use property (*) from above. Thus,
m|τ→aI

matches with t|τ→aI
.
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Now, conversely, suppose that m|τ→aI
matches with t|τ→aI

, i.e., m|τ→aI
=

t|τ→aI
σ for some substitution σ. We have to show that m matches with t, i.e.,

m = tσ′ for some substitution σ′. Using the fact that aI is a new intruder
atom we have that

m = (m|τ→aI
)|aI→τ

= (t|τ→aI
σ)|aI→τ

= (t|τ→aI |aI→τ
)σ|aI→τ = tσ|aI→τ .

Thus, m matches with t.
To show claim c) we distinguish between two cases:

• τ ∈ d(Kj): First, assume that j ≥ p. By (**), we have that τ ∈
dc(Kj \{τ}). By Lemma 4.7.27 we get the desired fact. Second, assume
that j < p. We have that τ 6∈ Sub(Kj). Thus, by Lemma 4.7.24, we
have that τ ∈ dc(Kj \ {τ}). By Lemma 4.7.27 we get the desired fact.

• τ 6∈ d(Kj): In this case we know that j < p − 1. Thus, we have that
τ 6∈ Sub(Kj). From this, by Lemma 4.7.24, it follows that for every
m ∈ d(Kj) we have τ 6∈ Sub(m) and therefore

d(Kj)|τ→aI
= d(Kj) = d(Kj |τ→aI

) = d(K′
j) .

To prove claim d) we have to show that ∆(q′j, sch(a, b)) = ∆(qj, sch(a, b)).
By definition of q′j we know that each scheduled secure channel sch(a, b)
contains as many messages as in qj. Thus, we have ∆(q′j, sch(a, b)) =

∆(qj, sch(a, b)).
To prove claim e) we have to show that if j < l, then q′j+1 is a successor

of q′j. If j < l then we know that qj+1 is a successor of qj since ρ is a path in
S. Let γ ∈ ∆Σ

qj
be a total move such that δ(qj, γ) = qj+1. Let γ′ be defined

by γ′(a) = γ(a) for a ∈ H ∪ SC and γ′(I) = γ(I)|τ→aI
. By claims b),c), and

d) we get that γ′ ∈ ∆Σ
q′j
. Now we have to show that δ(q′j, γ

′) = q′j+1, i.e., we
have to show that δ(q′j, γ

′) = δ(qj, γ)|τ→aI
. With similar arguments as used

for claim b) one shows that if (mj
a, P

j
a )

v7→ (m, P ) for some v, m, and P ,
then (mj

a|τ→aI
, P j

a |τ→aI
)

v7→ (m|τ→aI
, P|τ→aI

). With this it is easy to see that
δ(q′j, γ

′) = δ(qj, γ)|τ→aI
.

Third step Now we are ready to prove claims 1) to 5) using claims a) to
e) from above. Claim 1) is a direct consequence of points a) and e). Claims
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2), 3), and 4) follow directly from b), c), and d), respectively. To show claim
5) we first show that for each atom c we have that c ∈ d(Kl) iff c ∈ d(K′

l).
The implication from left to right follows from c) and the fact that c 6= τ .
The implication in the other direction, follows from Lemma 4.7.27 if we set
E to be Kq′l

, set τ (from Lemma 4.7.27) to be aI , and τ ′ to be τ (from the
lemma proved here). For all other propositional variables p it is obvious that
p ∈ π(ql) iff p ∈ π(q′l). 
The following lemma states that in paths α of Gϕ

(S,q0) starting in the initial
vertex of Gϕ

(S,q0) messages that do not match with α can be replaced by new
constants and after this replacement one still has a path in Gϕ

(S,q0).

Lemma 4.7.30 Let
α = α0, α1, . . . , αl

be a rooted path in Gϕ
(S,q0). Let τ be a message that does not match with α.

Furthermore, let aI ∈ AI be a constant that does not occur anywhere in α
and Pr, and define

α′ = α′0, α
′
1, . . . , α

′
l

where α′j = αj |τ→aI
. Then we have that α′ is a rooted path in Gϕ

(S,q0).

Proof First, assume that τ does not occur as a subterm anywhere in α.
Then α′ = α and nothing is to show. Now, assume that τ occurs in α. For
i ∈ {0, . . . , l} let α′i = (q′i, ψ

′
i). Let ρ = qi0 , qi1 , . . . , qik be the S-projection of

α. By Lemma 4.7.29 we know that ρ′ = q′i0 , q
′
i1
, . . . , q′ik is a rooted path in S.

With statements 2),3), and 4) of Lemma 4.7.29 we can conclude that α′ is a
rooted path in Gϕ

(S,q0). 
Let F be a finite subgraph of Gϕ

(S,q0) such that the initial vertex α0 of G
ϕ
(S,q0)

is present in F and all vertices α in F are reachable from α0 in F . A vertex
α ∈ F is called S-maximal if there is no descendant α′ of α in F such that
an a-instance in α′ differs from an a-instance in α, for some a ∈ H.
We call a path in Gϕ

(S,q0) simple if it is repetition free, i.e., all vertices in
this path are pairwise distinct.

Definition 4.7.31 Let F be a finite subgraph of Gϕ
(S,q0) such that the initial

vertex α0 of G
ϕ
(S,q0) is present in F and all vertices α of F are reachable from

α0 in F . Let M be the set of S-maximal vertices in F . Let R be the set
of all simple paths in F from α0 to some vertex in M . Let R′ be the set of
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all S-projections of paths in R. Let T be the set of all substitutions σρ with
ρ ∈ R′. A message m does not match with F if for all substitutions σ ∈ T

and all t ∈ Sub(Pr) ∪ AI we have that m 6vσ t.

We now can extend Lemma 4.7.30 to subgraphs of Gϕ
(S,q0).

Lemma 4.7.32 Let F be a winning strategy graph for Player 0 in Gϕ
(S,q0).

Let τ be a message that does not match with F . Let aI ∈ AI be a constant
that does not occur anywhere in F and Pr. Then F|τ→aI

is a winning strategy
graph for Player 0 in Gϕ

(S,q0).

Proof Let F ′ = F|τ→aI
. We have to show the following two points:

1) F ′ is a strategy graph for Player 0 in Gϕ
(S,q0).

2) F ′ is winning for Player 0.

1) By claim 1) of Lemma 4.7.30 we get that F ′ is a subgraph of Gϕ
(S,q0). Thus,

it suffices to show that for all vertices α of Player 1 in F ′ all successors of
α|τ→aI

in Gϕ
(S,q0) are present in F

′.
Let α = (q|τ→aI

, ψ|τ→aI
) be a vertex of Player 1 in F ′. Then, by definition,

(q, ψ) is a vertex of Player 1 in F . We distinguish between the different forms
of formula ψ. First, if ψ is of the form

ψ1 ∧ ψ2, p, ¬p, X, µX.ψ or νX.ψ,

then we have that the only successor of (q, ψ) in Gϕ
(S,q0) is of the form (q, ψ′)

for some ψ′. Since F is a strategy graph for Player 0 we know that (q, ψ′) is
present in F . Thus, (q|τ→aI

, ψ′|τ→aI
) is present in F ′. By definition of Gϕ

(S,q0),
we know that (q|τ→aI

, ψ′|τ→aI
) is the only successor of α in F ′.

Second, if ψ is of the form cψ
′ or JAKψ′, then we know that the choices

of players that have to be specified are choices of honest participants of the
protocol Pr or scheduled secure channels, because ϕ is I-positive. Since
F is a strategy graph for Player 0 we know that each such choice, there is
a unique successor (q′, ψ′) of (q, ψ) in F . Now, by condition 2) and 4) of
Lemma 4.7.29, we can conclude that all successors of α are present in F ′.

2) Obviously, it suffices to check that for all vertices (q, ψ) ∈ F the evaluation
of propositional variables in (q, ψ) and (q|τ→aI

, ψ|τ→aI
) is the same. This

follows directly from point 5) of Lemma 4.7.29. 
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Now we can prove Lemma 4.7.4. The idea of the proof is to repeatedly
apply Lemma 4.7.32 to a given winning strategy graph F for Player 0 with
an exponential number of vertices to obtain a winning strategy graph F ′

for Player 0 in which all messages occurring as a subterm in F ′ match with
F ′. By this fact and the exponential number of vertices in F ′ we obtain the
exponential bound of the size of F ′ as desired.
Proof (Lemma 4.7.4) Let F be a winning strategy graph for Player 0

in the game Gϕ
(S,q0) such that the number of vertices of F is exponentially

bounded and for each vertex α ∈ F the length of any simple path from
the initial vertex to α in F is polynomially bounded. Thus, the number of
simple paths in F from the initial vertex in F to S-maximal vertices in F is
exponentially bounded. By Lemma 4.7.32, we may assume that all messages
occurring as subterms in F match with F . Since the number of substitutions
as described in Definition 4.7.28 is exponentially bounded, it is easy to see
that F can be represented in size exponentially bounded in |Pr| + |ϕ| by
representing the set of all messages occurring in F by a single DAG. 

4.7.7 Lower Bound

In this section, we prove that the problem Pamc(greedy, dssc-containing,
I-positive) is NEXPTIME-hard. The proof is by reduction from the the
exponentially bounded tiling problem, a known NEXPTIME-hard problem.
The exponentially bounded tiling problem is defined as follows (see, e.g.,

[CGLV03]): Given is a finite set U of tiles, two relations H, V ⊆ U × U , two
tiles u0, uf ∈ U , and an integer (encoded in unary) m > 0. The question
is whether it is possible to tile a (2m × 2m)-square so that the horizontal
neighbors belong to H, vertical neighbors belong to V , the left-top tile is u0,
and the left-bottom tile is uf . More formally, the question is whether there
exists a function t : {0, . . . , 2m − 1}2 → U such that

(i) 〈t(i, j), t(i+ 1, j)〉 ∈ H, for all 0 ≤ i < 2m − 1, and 0 ≤ j ≤ 2m − 1,

(ii) 〈t(i, j), t(i, j + 1)〉 ∈ V , for all 0 ≤ i ≤ 2m − 1, and 0 ≤ j < 2m − 1,

(iii) t(0, 0) = u0 and t(0, 2m − 1) = uf .

The function t is called a solution of the given tiling problem.
Given an instance T of this problem, i.e., given U , H, V , m, u0, and uf as

above, we now (efficiently) construct a protocol Pr and an AMC-formula ϕ
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such that (SPr, q
0) |= ϕ where q0 is the initial state of ϕ iff T has a solution.

The formula (presented as an ATL-formula) is

ϕ = 〈〈I〉〉pc

for some propositional variable pc. Note that ϕ is independent of T , and
hence, is fixed. Therefore and using Theorem 4.1.1, stating ϕ as an ATL-
formula is w.l.o.g.
We now define Pr (which depends on T ). The constants used in Pr are

c, e, h, v and the elements of U , where the constants e, h, v stand for “equal”,
“horizontal”, and “vertical”, and will be used as keys.
Potential solutions of tiling problems will be represented by messages that

encode binary trees of depth 2 ·m, using the pairing operator, with elements
of U as their leafs. So, every path in such a tree has length 2 ·m. The first
m steps of such a path represent an integer i (encoded as bit string of length
m) which stands for a column in the (2m × 2m)-square. Analogously, the
remaining m steps of the path represent an integer j which stands for a row
in the (2m × 2m)-square. The node the path is leading to represents the tile
at position (i, j) in the square.
Following this intuition, we introduce the following notation: For a term

s and a sequence a ∈ {0, 1}∗, we recursively define s[a] as follows: s[ε] = s;
s[0a′] = s′[a′], if s = 〈s′, s′′〉, and otherwise s[0a′] is undefined; s[1a′] = s′′[a′],
if s = 〈s′, s′′〉, and otherwise s[1a′] is undefined. Furthermore, for a term s

and integers i, j ∈ {0, . . . , 2m−1}, we write s[i, j] for s[ab], where a ∈ {0, 1}m

is the binary representation of i (with leading zeros, if necessary), b ∈ {0, 1}m

is the binary representation of j, and ab stands for the concatenation of them-
bit string a and b. Now, a function t : {0, . . . , 2m−1}2 → U (thus a potential
solution of a tiling problem) can be represented by a term s such that, for
each 0 ≤ i, j < 2m, the expression s[i, j] is defined and s[i, j] = t(i, j). In
that case, s is called the term representation of t. We call the term s[i, j] (if
defined) a cell of t.
The honest principals of Pr are A0, . . . A2m+1. We also have one dishonest

principal B, which we call the the initiator. (Recall that B will be played by
the intruder.) The initial intruder knowledge is U .
The idea is that the initiator guess a solution of T (encoded by a message)

and then the principals A0, . . . A2m+1 are used to check whether the message
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is in fact a solution. More precisely, the message is sent by the initiator to
A0, converted in some way by A0 and sent to A1 over a direct secure channel,
then converted again by A1 and then sent to A2 over a direct secure channel,
and so on, until the message reaches A2m+1, who will possibly output c to
the initiator. The principals A0, . . . , A2m+1 are defined in such a way that if
the message given by the initiator to A0 is in fact a solution, then no matter
what the choices of the Ai are, at the end A2m+1 will output c. Otherwise, if
the initiator did not send a solution, there will be at least one choice of the
Ai such that A2m+1 does not output c.

We now describe the behavior of the honest principals in detail: While we
do not formally define these principals in terms of trees, doing this is straight-
forward. We abbreviate messages of the form 〈m1, 〈m2, 〈· · · 〈mn−1,mn〉 · · ·〉〉〉
by 〈m1, . . . ,mn〉.

• A0 waits to receive some message m0 over a network channel from B,
the initiator (and hence, the intruder). As a response, A0 outputs
{〈m0,m0,m0,m0〉}s

e to A1 over a direct secure channel.

Intuitively, m0 represents a potential solution of T . The purpose of
A1, . . . , Am will then be to pick four bit strings a1 = a1

1 . . . a
1
m, a

2 =

a2
1 . . . a

2
m, a

3 = a3
1 . . . a

3
m, and a

4 = a4
1 . . . a

4
m, where a

j
i ∈ {0, 1} is picked

by Ai for j = 1, . . . , 4. Analogously, the purpose of Am+1, . . . , A2m

will be to pick four bit strings b1 = b11 . . . b
1
m, b

2 = b21 . . . b
2
m, b

3 =

b31 . . . b
3
m, and b

4 = b41 . . . b
4
m, where b

j
i ∈ {0, 1} is picked by Ai+m for

j = 1, . . . , 4. Hence, A1, . . . , A2m pick for positions, namely m0[a
1b1],

m0[a
2b2], m0[a

3b3], and m0[a
4b4] in the potential solution m0. The

principals are defined in such a way that a1 = b1 = 0m, a2 = 0m,
and b2 = 1m, i.e., the first two positions considered in m0 are (0, 0)

and (0, 2m− 1). Principal A2m+1 will check for these positions whether
m0[0, 0] = u0 and m0[0, 2

m − 1] = uf . Moreover, we either have that
a4 = a3 + 1 (interpreted as integers) and b3 = b4, or that a3 = a4 and
b4 = b3 +1. In other words, the third and fourth position correspond to
two positions in m0 that are adjacent horizontally or vertically, respec-
tively. Principal A2m+1 will use these positions to check whether the
tilings at these positions are in a relationship in H or V , respectively.

• Principal Ai, 0 < i ≤ m, in response to the message from Ai−1, received
over a direct secure channel, sends a message to Ai+1 over a direct secure
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channel according to one of the following rules which all have the same
priority, say 1, and are explained below:

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
e → {〈x1, x2, x3, x4〉}s

e,

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
e → {〈x1, x2, y3, y4〉}s

e,

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
e → {〈x1, x2, x3, y4〉}s

h,

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
h → {〈x1, x2, y3, x4〉}s

h

If Ai does not receive a message from Ai−1 in the current round, then
Ai stays in the same state by performing a self-loop which is defined
to have priority 0.

As explained above, we want that a1
i = a2

i = 0. Therefore, for the first
two messages (〈x1, y1〉 and 〈x2, y2〉), all rules pick the left components,
x1 and x2. As for the last two messages, the first two rules pick the
same component. This corresponds to choosing a3

i = a4
i . In the third

rule, the first component is picked for the third message and the second
component for the fourth message. This corresponds to choosing a3

i = 0

and a4
i = 1. Note that now the encryption key is h (instead of e). In

particular, all Aj, with i+1 ≤ j ≤ m, can then only choose the last rule
which corresponds to picking a3

j = 1 and a4
j = 0. Hence, a4 = a3 + 1.

• Principal Ai, m < i ≤ 2m, in response to the message from Ai−1,
received over a direct secure channel, sends a message to Ai+1 over a
direct secure channel according to one of the following rules which all
have the same priority, say 1, and are explained below:

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
e → {〈x1, x2, x3, x4〉}s

e,

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
e → {〈x1, x2, y3, y4〉}s

e,

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
h → {〈x1, x2, x3, x4〉}s

h,

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
h → {〈x1, x2, y3, y4〉}s

h,

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
e → {〈x1, x2, x3, y4〉}s

v,

{〈〈x1, y1〉, 〈x2, y2〉, 〈x3, y3〉, 〈x4, y4〉〉}s
v → {〈x1, x2, y3, x4〉}s

v,

If Ai does not receive a message from Ai−1 in the current round, then
Ai stays in the same state by performing a self-loop which is defined
to have priority 0.
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The intuition behind the rules is similar to the previous case. Here, Ai

chooses the bits b1i , . . . , b
4
i . If the message received is encrypted by h,

then this means that in the previous case two (horizontally) adjacent
positions in m0 were chosen already. So, b3i has to be equal to b

4
i .

Otherwise, if the message is encrypted by e, two vertically adjacent
positions can be chosen. This is done analogously to the previous case.

• A2m+1 receives a message from A2m over a direct secure channel and
sends a message to the initiator (and thus, to the intruder) over a
network channel according to one of the following rules:

{〈u0, uf , a, b〉}s
h → c for each (a, b) ∈ H,

{〈u0, uf , a, b〉}s
v → c for each (a, b) ∈ V ,

{〈u0, uf , a, a〉}s
e → c for each a ∈ U.

From the explanation given above it should now be clear that the intruder has
a strategy to obtain c iff m0 encodes a solution of T , and hence, iff T has a
solution: Clearly, if T has, then the intruder can send this solution (encoded
as a message) to A0 and in any case will receive c at the end. Conversely,
if m0 does not have the correct format, i.e., does not encode a binary tree
as explained above, then one of the Ai will not be able to apply a rule, and
hence, the intruder will not obtain c. If m0 is a binary tree as required but
it nevertheless does not represent a solution of T , then one of the conditions
(i) to (iii) will be violated and then there exists a choice of the A1, . . . , A2m

such that A2m+1 will not be able to apply any of the rules available.
We finally note that instead of direct secure channels one could as well

use only network channels. In this case, more keys would be used to enforce
the intruder to forward messages from one principal to the next as desired.



Chapter 5

Impossibility of Balance—an
Axiomatic Approach

As mentioned in the introduction the logic ATL has been used to specify
and analyze security properties of cryptographic protocols [KR01, KR02]. In
order to take different kinds of behavior of agents into account, for example
honest and dishonest behavior, it is common to introduce new agents that
represent these behaviors [SM02, KR02].
In this chapter we introduce an extension of ATL called ATL

MS
—ATL

with move selectors—which is better suited to describe different behaviors of
participants. The main idea is to distinguish between different kind of moves,
e.g., an agent may have honest and dishonest moves available in a given state.
We utilize this logic to prove an impossibility result about contract signing
protocols in an axiomatic and model independent way. We use our result
to give an alternative proof of the impossibility result shown by Chadha et
al. in [CMSS05].
We first define the syntax and semantics of ATL

MS
. Then we state and

prove our impossibility result and show how to prove the result by Chadha
et al. using our result.

5.1 ATL with Move Selectors

In this Section we first introduce the kind of concurrent game structures that
we need to interpret ATL

MS
formulas and then we define syntax and semantics

135
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of ATL
MS
.

5.1.1 Concurrent Game Structures

Our definition of a concurrent game structure differs from the one in [AHK02]
and the one in Chapter 4: As in Chapter 4 the structures that we consider
may have an infinite state space and in one state players may have an infinite
number of possible moves which may be an arbitrary value. The concurrent
game structures introduced in this section consider propositional variables
not only associated with states but also with moves of players of the concur-
rent game structure. To be able to define the semantics of ATL

MS
formulas

introduced in the next subsection, the transition function of the concurrent
game structures has to be defined for cases where players do not have moves
of a certain type available. Because of the differences of concurrent game
structures utilized in this section to the ones used in [AHK02] and Chapter 4
we define concurrent game structures again.
A concurrent game structure with propositions on moves (CGS) is a tuple

C = (Σ, Q,P, π,∆,M, µ, δ) where

• Σ is a non-empty, finite set of players,

• Q is a (possibly infinite) set of states,

• P is a finite set of propositional variables/propositions,

• π : Q → 2P is a labeling function (which assigns to every state the set
of propositions true in this state),

• ∆ is a function which for each state q ∈ Q and each player a ∈ Σ

returns a (possibly infinite) set ∆(q, a) of moves available at state q to
player a.

For A ⊆ Σ and q ∈ Q, an (A, q)-move is a partial function c that assigns
to every a ∈ A a value c(a) ∈ ∆(q, a) or is undefined. Given A ⊆ Σ and
a state q, we write ∆A(q) for the set of (A, q)-moves. An (A, q)-move
is called a partial move if A 6= Σ, and a total move if A = Σ.

• M is a finite set of move propositions, i.e., each element of M is a
propositional variable. We assume that M ∩ P = ∅.

• µ is a move labeling function which assigns to each player a ∈ Σ, q ∈ Q,
and m ∈ ∆(q, a) a set of propositions µa(q,m) from M,
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• δ is a transition function which, for each state q and each total move
c ∈ ∆Σ(q), returns a state δ(q, c) ∈ Q (the state obtained when in state
q all players simultaneously perform their moves according to c).

A tuple C = (Σ, Q, sI ,P, π,∆,M, µ, δ) is called a pointed CGS if
(Σ, Q,P, π,∆,M, µ, δ) is a CGS and sI ∈ Q. The state sI is called the
initial state of C. In what follows definitions are only given for CGS but they
are implicitly defined for pointed CGS in the obvious way. A computation
of C is an infinite sequence λ = q0, q1, . . . of states such that for each i ≥ 0,
the state qi+1 is a successor of qi, i.e., qi+1 = δ(qi, c) for some total move
c ∈ ∆Σ(qi). We call λ a q-computation for some q ∈ Q if q0 = q. We refer to
the ith state qi in λ by λ[i], to the sequence qi, qi+1, . . . , qj by λ[i, j], and to
the sequence qi, qi+1, . . . by λ[i,∞].

Let c ∈ ∆A(q) and c′ ∈ ∆A′(q) for A,A′ ⊆ Σ and q ∈ Q with A ⊆ A′.
We write c v c′ if c = c′|A. For a state q, a set of players A ⊆ Σ, and an
(A, q)-move c ∈ ∆A(q), we say that a state q′ ∈ Q is a c–successor of q if
there is a total move c′ ∈ ∆Σ(q) with c v c′ and q′ = δ(q, c′).

For C ⊆ Σ we call a function α : C → B(M) a move selector for C
(here B(M) denotes the set of propositional formulas with variables from
M). A move selector for Σ is simply called move selector. For a set P ⊆ M
of move propositions we denote by βP the evaluation that assigns true to
all propositional variables in P and false to the propositional variables in
M \ P . A move m ∈ ∆A(q) for some A ⊆ Σ is called α-consistent in q for A
if for every a ∈ A we have that

1. if there is a move c ∈ ∆(q, a) such that βµa(q,c) |= α(a), then m(a) is
defined and βµa(q,m(a)) |= α(a) and

2. if for all moves c ∈ ∆(q, a) we have that βµa(q,c) 6|= α(a), then m(a) is
undefined.

We call an α-consistent A move m strict α-consistent if for all a ∈ A we
have that m(a) is defined. We call a strict α-consistent move of a ∈ A in
state q an α(a) move in q. For a state q of C a successor q′ of q is called
(strict) α-consistent if there is a (strict) α-consistent move m ∈ ∆Σ(q) in q
(for Σ) with q′ = δ(q,m). A computation λ = q0, q1, . . . of C is (strict) α-
consistent if qi+1 is a (strict) α-consistent successor of qi for each i. A finite
prefix of a computation is called a computation segment. A computation
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segment λ = q0, q1, . . . , ql−1 is called (strict) α-consistent if qi+1 is a (strict)
α-consistent successor of qi for each i ∈ {0, . . . , l−2}. Note that for all move
selectors α and states q ∈ Q there is an α-consistent q-computation but not
necessarily a strict α-consistent q-computation.

5.1.2 ATL with Move Selectors

Here we introduce the formal syntax of ATL
MS
. One could also define an

corresponding extension of ATL∗ but for our purpose it suffices to extend
ATL.
The Logic ATL

MS
extends ATL in two ways. First, the strategy operators

are parameterized by move selectors. These move selectors specify which
kind of moves a coalition is allowed to choose in their strategies and against
which moves of the antagonists the coalition has to play. Second, quantifiers
over moves are introduced that treat moves as first order objects. This
quantification over moves allows to specify the relation between different
kinds of moves. The subformulas that use quantifiers over moves are called
step formulas because they describe properties of one step of the underlying
concurrent game structure.

Syntax of ATL
MS

Formally, an ATL
MS
formula is one of the following:

(S1) p, for propositions p ∈ P.

(S2) ¬ϕ or ϕ1 ∨ ϕ2, where ϕ, ϕ1, and ϕ2 are ATLMS
formulas.

(S3) 〈〈A〉〉αϕ, 〈〈A〉〉αϕ, and 〈〈A〉〉αϕ1Uϕ2, where A ⊆ Σ is a set of agents,
α is a move selector and ϕ, ϕ1, and ϕ2 are ATLMS

formulas.

(S4) A Σ-step formula.

A C-step formula for C ⊆ Σ is one of the following:

(ST1) ¬ϕ or ϕ1 ∨ ϕ2, where ϕ, ϕ1, and ϕ2 are C-step formulas.

(ST2) 〈C〉αψ or [C]αψ, where α is a move selector for C and ψ is an
ATL

MS
formula.

(ST3) 〈A〉α ϕ or [A]αϕ, where ∅ ⊂ A ⊂ C, α is a move selector for A, and ϕ
is a (C \ A)-step formula.
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Semantics of ATL
MS

We interpret ATL
MS
formulas over CGS with propositions on moves.

A strategy for an agent a ∈ Σ is a partial function fa : Q+ → M such
that for all λ ∈ Q∗ and all q ∈ Q we have that fa(λ · q) ∈ ∆(q, a) if fa(λ · q) is
defined. A strategy fa for agent a ∈ Σ is α-consistent for a move selector α for
{a} if for each λ ∈ Q∗ and q ∈ Q such that λ · q is α-consistent, then the {a}

move c : {a} → ∆{a}(q) with c(a) =

{
undefined if fa(λ · q) is undefined
fa(λ · q) otherwise

is an α-consistent move in q for {a}.
Given a state q ∈ Q, a set A of agents, and a set FA = {fa | a ∈ A}

of strategies, one for each agent in A, we define the outcomes of FA from q

to be the set out(q, FA) of all q-computations λ = q0, q1, q2, . . . where qi+1

is a successor of qi that is consistent with all strategies in FA, i.e., qi+1 is a
c-successor of qi where c is an A move such that for a ∈ A the value of c(a)
is undefined if fa(λ[0, i]) is undefined and c(a) = fa(λ[0, i]) otherwise.

As usual in temporal logics we use fair semantics to rule out computations.
A fairness constraint is a function γ : Σ×Q→ 2M such that for each player
a ∈ Σ and state q ∈ Q we have that γ(a, q) ⊆ ∆{a}(q). For a state q ∈ Q,
a player a ∈ Σ, and a move selector α for a we say that γ is (a, α)-enabled
in q if there is an α-consistent move m for a in q such that m ∈ γ(a, q).
For a computation λ = q0q1 . . . we say that γ is a-taken in i if qi+1 is an m
successor of qi for a move m ∈ γ(a, qi). For a move selector α we say that λ
is weakly 〈γ, α〉-fair if for each player a ∈ Σ, there are infinitely many i ∈ N

such that γ is not (a, α)-enabled in qi or there are infinitely many i ∈ N such
that γ is a-taken in qi. A fairness condition Γ is a set of fairness constraints.
We say that λ is weakly 〈Γ, α〉-fair if λ is weakly 〈γ, α〉-fair for all γ ∈ Γ.

Intuitively, the semantics of a formula of the form 〈〈A〉〉αψ is that the
players of coalition A are allowed to use moves in their strategies that are
consistent with α and the coalition plays against all the moves of Σ \A that
are consistent with α.

Given a CGS C, and a fairness condition Γ, we define the semantics of
Fair ATL

MS
as follows:

• For p ∈ P, we have q |=
F
p iff p ∈ π(q).

• q |=
F
¬ϕ iff q 6|=

F
ϕ.
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• q |=
F
ϕ1 ∨ ϕ2 iff q |=F

ϕ1 or q |=F
ϕ2.

• q |=
F
〈〈A〉〉αϕ iff there exists a set FA of α-consistent strategies, one

for each agent in A, such that for all α-consistent, weakly 〈Γ, α〉-fair
computations λ ∈ out(q, FA), we have λ[1] |= ϕ.

• q |=
F
〈〈A〉〉αϕ iff there exists a set FA of α-consistent strategies, one

for each agent in A, such that for all α-consistent, weakly 〈Γ, α〉-fair
computations λ ∈ out(q, FA), we have λ[i] |=

F
ϕ for all i ≥ 0.

• q |=
F
〈〈A〉〉αϕ1Uϕ2 iff there exists a set FA of α-consistent strategies,

one for each agent in A, such that for all α-consistent, weakly 〈Γ, α〉-
fair computations λ ∈ out(q, FA), there exists a position i ≥ 0 such
that λ[i] |=

F
ϕ2 and for all positions 0 ≤ j < i, we have λ[j] |=

F
ϕ1.

• q |=
F
ϕ for a Σ-step formula iff q, ∅ |=

F
ϕ.

• q,m |=
F
¬ϕ for a (C, q)-move m and a (Σ \ C)-step formula ϕ iff

q,m 6|=
F
ϕ.

• q,m |=
F
ϕ1 ∨ ϕ2 for a (C, q)-move m and (Σ \C)-step formulas ϕ1 and

ϕ2 iff q,m |=
F
ϕ1 or q,m |=

F
ϕ2.

• q,m |=
F
ϕ for a (C, q)-move m and a (Σ \ C)-step formula ϕ of the

form ϕ = 〈A〉α ψ where ∅ ⊂ A ⊂ (Σ \ C) iff there there is a strict
α-consistent (A, q)-move m′ such that q,m ∪m′ |=

F
ψ.

• q,m |=
F
ϕ for a (C, q)-move m and a (Σ \ C)-step formula ϕ of the

form ϕ = [A]αψ where ∅ ⊂ A ⊂ (Σ \ C) iff for all strict α-consistent
(A, q)-moves m′ we have that q,m ∪m′ |=

F
ψ.

• q,m |=
F
ϕ for a (C, q)-move m and a (Σ\C)-step formula ϕ of the form

ϕ = 〈Σ \ C〉αψ iff there there is a strict α-consistent (Σ \C, q)-move
m′ such that δ(q,m ∪m′) |=

F
ψ.

• q,m |=
F
ϕ for a (C, q)-move m and a (Σ \ C)-step formula ϕ of the

form ϕ = [Σ \ C]αψ iff for all strict α-consistent (Σ \ C, q)-moves m′

we have that δ(q,m ∪m′) |=
F
ψ.

Given a pointed CGS C with initial state sI , a fairness condition Γ, and an
ATL

MS
formula ϕ we write C |=

F
ϕ instead of sI |=F

ϕ.

We use the following common abbreviation: ϕ = trueUϕ. For com-
putations λ we will also use temporal operators such as  and  with the
usual LTL-semantics.
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If FA is an α-consistent strategy for coalition A such that for all β-
consistent computations λ ∈ out(q, FA) we have that λ |=

F
ϕ we say that

FA is an α-consistent strategy for 〈〈A〉〉βϕ in q.

5.2 Impossibility of Balance

In this section we prove an impossibility result concerning contract signing
protocols in an axiomatic fashion. Our result is inspired by a work of Chadha
et al. in [CMSS05]. There it is proved that in every fair, optimistic, timely
contract signing protocol an optimistic player suffers a disadvantage against a
malicious opponent. The authors prove their result with respect to a concrete
communication model that is based on multiset rewriting and they formalize
security properties and optimistic behavior of players in this model by looking
at the set of traces imposed by a protocol specification. They state that “Any
other formalism [...] that leads to an equivalent set of traces would support
the same results about protocols.” Our approach is to prove an impossibility
result like the one mentioned above in a more model independent way, i.e., we
try to axiomatize the properties that a protocol and communication model
have to fulfill by ATL

MS
formulas.

To model optimistic behavior of players we utilize move selectors and in
order to specify the semantics of optimistic moves we need the quantification
over moves in some places.
In our setting a protocol specification is given by a CGS with proposi-

tions on moves. We will now describe CGS that represent a contract signing
protocol (protocol-CGS) in more detail.
In a protocol-CGS there are at least two players A and B that represent

the contract signing parties.
There are at least three types of moves for each of the players A and

B. There are honest moves, optimistic moves, and silent moves. The set of
honest moves describes the protocol as it is intended. The set of optimistic
moves is a subset of the set of honest moves. By the set of optimistic moves
one could describe the interaction between the two participating signers in
the protocol without the TTP. A silent move represents an action in which
a participant does not interact with other participants, for example does not
send a message to another participant. In some situations a silent move could
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be honest and in some situations a silent move could be dishonest.

The following definition formalizes what is said above:

Definition 5.2.1 A pointed CGS C = (Σ, Q, sI ,P, π,∆,M, µ, δ) is called a
protocol-CGS if it satisfies the following conditions

• {A,B} ⊆ Σ,

• {cA, cB, initialA, initialB} ⊆ P, the propositions cA and cB indicate that
player A and B have a signed contract, respectively. The propositions
initialA and initialB show that player A and B are in an initial state,
i.e., they have not participated in the protocol in an active manner.

• {initialA, initialB} ⊆ π(sI),

• {honest, optimistic, silent} ⊆ M.

5.2.1 Advantage and Balance

The main result of this chapter is to show that a CGS can not achieve balance
for an optimistic player if the CGS fulfils certain conditions. A state of a
CGS is unbalanced for an agent if the opponent has complete control over
the outcome of the protocol, i.e., the opponent has two strategies one for
each outcome he wants to achieve, in this case we say that the agent has an
advantage against his opponent. In the case of contract signing protocols the
two outcomes an agent may want to achieve are (i) getting a contract and
(ii) preventing the other agent of getting a contract. Thus, assuming that
propositional variables cA and cB indicate that agent A and agent B have a
valid contract, respectively, a state q of a CGS is called unbalanced for A if B
has two strategies in q (i) a strategy to get to a state in which cB holds and
(ii) a strategy to get to a state in which A can not get to a state where cA
holds without the help of B. The result of this section says something about
the ability of a malicious agent to get to a state where he has an advantage
against an agent that plays optimistically,i.e., uses only optimistic moves. In
the following we introduce formulas that formalize this notion of optimistic
advantage.

If player B has a strategy in state q against an optimistic player A to get
to a state in which cB holds we say that B has a resolve strategy against an
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optimistic A. Formally this is expressed by q |=
F
optResolve(B) where

optResolve(B) ≡ 〈〈B〉〉
A:ocB .

In this formula and throughout the rest of this chapter we use the following
convention for specifying move selectors. The move propositions honest,
optimistic, and silent are abbreviated by h, o, and s, respectively. For a
given move selector α instead of 〈〈X〉〉αϕ we rather specify α directly by
writing x : β if α(x) = β and omit all x : true. In the above example A : o
stands for the move selector α with α(A) = optimistic and α(x) = true for
all x ∈ Σ \ {A}.
If in a state q player A can not get to a state in which cA holds without

the help of player B we say that the protocol is aborted for B. We express
this by q |=

F
notWithout(B) where

notWithout(B) ≡ 〈〈〉〉
B:s¬cA .

Here the phrase “not without the help of player B” is expressed by the fact
that only silent moves of B are considered.
If player B has a strategy in state q against an optimistic player A to

get to state in which the protocol is aborted for B we say that B has an
abort strategy against an optimistic A. Formally this is expressed by q |=

F

optAbort(B) where

optAbort(B) ≡ 〈〈B〉〉
A:onotWithout(B) .

We say that player B has an optimistic advantage against player A in
a state q if player B has (i) a resolve strategy against an optimistic A in q
and (ii) an abort strategy against an optimistic A in q. This is expressed by
q |=

F
optAdvantage(B) where

optAdvantage(B) ≡ optResolve(B) ∧ optAbort(B) .

5.2.2 Security Assumptions

In this subsection we formulate security properties needed to state our im-
possibility result. We need two properties that we impose on protocol-CGS:
The protocol-CGS has to be optimistic and timely.
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We say that a protocol-CGS is optimistic for B if B has an optimistic
strategy in sI against optimistic A to get a contract, i.e., to reach a state
in which cB holds. The optimistic behavior of the players is modeled by
only allowing both players to use optimistic moves. Formally, a CGS C is
optimistic for B if C |=

F
optimistic(B) where

optimistic(B) ≡ 〈〈B〉〉
A:o
B:o
cB .

A protocol-CGS is timely for B if in every state that is reachable from sI

with B only performing honest moves B has a strategy to end the protocol
when A quits participating in the protocol run. The fact that A quits par-
ticipating in the protocol is modeled by the fact that A is allowed to only
perform silent moves. For B to end the protocol means that B is in a resolved
state for B or in a aborted state for B. Formally, a CGS C is timely for B if
C |=

F
timely(B) where

timely(B) ≡ 〈〈〉〉
B:h〈〈B〉〉A:s

B:h
end(B)

and
end(B) ≡ (cB ∨ notWithout(B)) .

5.2.3 Additional Axioms

In this subsection we describe additional axioms that describe properties of
protocol-CGS that are needed to formulate the impossibility result stated in
Theorem 5.2.2.
We assume that no signer has a possibility to get a contract without the

other signer participating in the protocol in an active way, i.e., the other
signer performs at least one non silent move. This is formalized by the
assumption that

notWithout(A) ∧ notWithout(B)

holds in the initial state of a protocol-CGS. In Theorem 5.2.2 we only need the
fact that the protocol-CGS satisfies notWithout(A) where A is the optimistic
player.
The next two axioms describe the semantics of optimistic moves of play-

ers. The intuition is that if a player is optimistic he waits for an answer of
the other participant to come before contacting for example a trusted third
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party. Thus, if A stays optimistic, then for B performing a silent move should
not decrease the power of B against A. More formally, if we assume that
a state q is reached by optimistic moves from player A and optimistic or
silent moves from player B only, then there is no other participant involved
in the protocol thus far. If in state q player B has an abort strategy against
an optimistic player A, player B performs a silent move and player A stays
optimistic, then player B has an abort strategy against an optimistic A in
the successor state of q. This axiom is formalized by the assumption that
sI |=F

optAbortRemain(B) where

optAbortRemain(B) ≡ 〈〈〉〉
A:o

B:o∨s
(optAbort(B) → 〈〈〉〉

A:o
B:s
optAbort(B)) .

Similarly we assume that under the circumstances described above the exis-
tence of an optimistic resolve strategy remains. This is formalized similarly
by sI |=F

optResolveRemain(B) where

optResolveRemain(B) ≡ 〈〈〉〉
A:o

B:o∨s
(optResolve(B) → 〈〈〉〉

A:o
B:s
optResolve(B)).

The next additional axiom formalizes the intuition that if only commu-
nication between the two signers A and B has taken place and A stays
optimistic, i.e., A waits for B’s answer before communication with other
parties, the existence of an abort strategy of B against a silent A implies
the existence of an abort strategy against an optimistic A. This is moti-
vated by the intuition that the only moves that an optimistic A may perform
is communication with B and B may ignore messages coming from A and
B may use the same strategy as against a silent A. This is formalized by
sI |=F

silOptAbort(B) where

silOptAbort(B) ≡ 〈〈〉〉
A:o

B:o∨s
(silentAbort(B) → optAbort(B))

and
silentAbort(B) ≡ 〈〈B〉〉

A:snotWithout(B) .

The next additional axiom formalizes the intuition that an optimistic
move of player A does not effect the power of player B against a silent player
A. More precisely, if only communication between the two signers A and
B has taken place, then for all moves of the players other then A we have
that if A makes an optimistic and silent move such that in the next state
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B has a silent abort strategy against player A, then for all other optimistic
moves of A player B also has a silent abort strategy in the next state. This
is formalized by sI |=F

optSil(B) where

optSil(B) ≡ 〈〈〉〉 A:o
B:o∨s
[Ac](〈A〉

A:o∧s
silentAbort(B) → [A]A:osilentAbort(B)).

The next additional axiom describes the semantics of the propositional vari-
able initialA. Intuitively, initialA should indicate if participant A has already
started to participate in the protocol execution. In the initial state initialA
has to be true and stays true until A performs a non silent move. This is
formalized by sI |=F

initial(A) where

initial(A) ≡ initialA∧
〈〈〉〉(〈Σ〉

A:¬s
true→ [Σ]

A:¬s¬initialA)∧
〈〈〉〉(initialA → [Σ]

A:sinitialA) .

The last additional axiom is needed for some technical reasons. It states
that there are always silent moves and optimistic moves available for B. This
is formalized by sI |=F

moves(B) where

moves(B) ≡ 〈〈〉〉(〈Σ〉
B:o
true ∧ 〈Σ〉

B:s
true) .

5.2.4 Main Result

The main result of this chapter is a statement about the impossibility of
protecting an optimistic participant against a malicious opponent. Formally
we state this result in

Theorem 5.2.2 Let C be a protocol-CGS and let Γ be a fairness condition
such that

C |=
F
optimistic(B) ∧ timely(B) ∧ ϕA ∧ ϕB ,

where

ϕA ≡ notWithout(A) ∧ initial(A)

ϕB ≡ optResolveRemain(B) ∧ optAbortRemain(B)∧
silOptAbort(B) ∧ optSil(B) ∧moves(B) .

Then we have

C |=
F
〈〈B〉〉

A:o
B:o∨s


(
optAdvantage(B) ∧ ¬initialA

)
.
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For the proof of Theorem 5.2.2 we need the following remark.

Remark 5.2.3 Let p be a state of a CGS C such that p |=
F
〈〈〉〉αϕ. Then

for every α-consistent successor q of p we have q |=
F
〈〈〉〉αϕ. 

Proof Let C be a protocol CGS and let Γ be a fairness condition such
that

C |=
F
optimistic(B) ∧ timely(B) ∧ ϕB ∧ ϕA .

We have to show that there is a (B : o ∨ s, A : o)-consistent strategy fB for
B such that for all 〈Γ, (B : o ∨ s, A : o)〉-fair computations ρ ∈ out(sI , fB) we
have

ρ |=
F
(optAdvantage(B) ∧ ¬initialA) .

The strategy fB is constructed from an (A : o, B : o)-consistent strategy
f ′B for optimistic(B) in sI in the following way

fB(q0q1 . . . qn) =


f ′B(q0q1 . . . qn) if qn |= initialA and

there exists a (A : o ∧ s)-move in qn
any (B : s)-move otherwise .

Note that since there exists an optimistic move in qn for B the
move fB(q0q1 . . . qn) is a (B : o ∨ s)-consistent move and thus fB is an
(A : o, B : o ∨ s)-consistent strategy for B.
We have to show that for all 〈Γ, (B : o ∨ s, A : o)〉-fair computations ρ ∈

out(fB, sI) we have that

(*) ρ |=
F
(optAdvantage(B) ∧ ¬initialA)

holds.
Let ρ ∈ out(fB, sI) be a 〈Γ, (B : o ∨ s, A : o)〉-fair computation. We

show (*) in two steps. First we show that (i) player A eventually makes
a (A : ¬s)-move in ρ and secondly we show that (ii) after this (A : ¬s)-move
optAdvantage(B) holds. From (i), (ii), and C |=

F
initial(A) it immediately

follows that ρ |=
F
(optAdvantage(B) ∧ ¬initialA) holds.

To show (i) assume that on ρ player A does not make any (A : ¬s)-
move, i.e., there is no i ≥ 0 such that ρ(i + 1) is an (A : ¬s)-successor of
ρ(i). Together with C |=

F
notWithout(A) we get that (**) ρ 6|=

F
cB. By

definition of fB we know that for all i ≥ 0 we have fA(ρ[0, i]) = f ′A(ρ[0, i])
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thus we know that ρ is a 〈Γ, (A : o, B : o)〉-fair computation from out(f ′B, sI).
Thus ρ |=

F
cB, this is a contradiction to (**).

We now show (ii), namely, that after the first (A : ¬s)-move of A we
have that optAdvantage(B) holds. For this let i ≥ 0 be minimal such that
ρ(i) |=

F
¬initialA, note that by (i) and C |=F

initial(A) such an i exist and
that i > 0. We know that in ρ(i − 1) player A makes a (A : ¬s)-move. Let
mB = fB(ρ[0, i−1]). According to the definition of strategy fB we distinguish
between two cases:

• In state ρ(i − 1) there is a (A : o ∧ s)-move: We know that mB =

f ′B(ρ[0, i− 1]). Since ρ[0, i] is a prefix of a 〈Γ, (A : o)〉-fair computation
ρ′ ∈ out(sI , f

′
B) we know that ρ(i) |=

F
〈〈B〉〉

A:ocB.

To show that ρ(i) |=
F
optAbort(B) let q be a (A : o ∧ s)-successor

of ρ(i − 1) for the B move mB. From C |=
F
timely(B) we get that

q |=
F
〈〈B〉〉

A:send(B). Let λ be a (A : s)-computation starting at q.
From C |=

F
notWithout(A) and the fact that ρ[0, i − 1]λ is a (A : s)-

computation starting at sI we get that λ |=
F
¬cB. From this we

get that each strategy f ′′B for 〈〈B〉〉A:send(B) in q is a strategy for
〈〈B〉〉

A:snotWithout(B) in q. From C |=
F
optSil(B) we get that ρ(i) |=

F

〈〈B〉〉
A:snotWithout(B). From C |=

F
silOptAbort(B) we get ρ(i) |=

F

optAbort(B). Thus, we have ρ(i) |=
F
optAdvantage(B) ∧ ¬initialA.

• All (A : o)-moves in state ρ(i− 1) are (A : ¬s)-moves: Since ρ[0, i− 1]

is a prefix of a 〈Γ, (A : o)〉-fair computation ρ′ ∈ out(sI , f
′
B) we know

that ρ(i − 1) |=
F
〈〈B〉〉

A:ocB. From C |=
F
optResolveRemain(B) and

the fact that by definition fB(ρ[0, i − 1]) is an (B : s)-move we get
ρ(i) |=

F
optResolve(B). From C |=

F
timely(B) we know that ρ(i−1) |=

F

〈〈B〉〉
A:send(B). Similar as in the previous case we can conclude that

ρ(i − 1) |=
F
optAbort(B). From C |=

F
optAbortRemain(B) and the

fact that by definition fB(ρ[0, i− 1]) is an (B : s)-move we get ρ(i) |=
F

optAbort(B). Thus, we have ρ(i) |=
F
optAdvantage(B) ∧ ¬initialA. 

5.3 Impossibility Result of Chadha et al.

In this section we show how Theorem 5.2.2 can be used to prove the impossi-
bility result shown in Chadha et al. [CMSS05] by a straightforward transla-
tion of a protocol specification in the model of [CMSS05] into a protocol-CGS.
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Our proof of the impossibility result of [CMSS05] is not easier than the one
given there. The advantage of our proof is that it clearly shows which part
of the proof is model independent and which part depends on the concrete
communication and formal model used in [CMSS05].
We will first review the impossibility result shown in [CMSS05] and de-

scribe the model used therein. After this, we will explain the translation
mentioned above exactly and give a sketch of how to apply Theorem 5.2.2 to
prove the result of [CMSS05].

Chadha’s Impossibility Result The impossibility result shown in
[CMSS05] states that in every fair, optimistic, and timely contract sign-
ing protocol an optimistic player suffers a disadvantage against a malicious
opponent. The security properties of protocols and the optimistic behavior
of players are defined with respect to a concrete formal model, namely the
multiset rewriting model (MSR model) introduced for protocol analysis in
[CDL+99]. We now give a very brief recap of this model. For a detailed
description see [CMSS05].

MSR Model The model used in [CMSS05] is based on multiset rewriting
with existential quantification (MSR) introduced in [CDL+99] for protocol
analysis. A protocol definition in this model defines the set of all possible
execution traces for instances of a protocol.
To specify a protocol in the MSR model a first-order signature has to be

chosen. This signature may contain different sorts, for example for public
keys or messages. An atomic formula over the chosen signature without free
variables is called a fact. A state is a finite multiset of facts.
To define possible transitions between states state transition rules are

defined. A state transition rule is of the form

F1, . . . , Fk −→ ∃x1 . . . ∃xj.G1, . . . , Gn .

As an example, consider the state {P (f(a)), P (b)} and rule P (x) −→
∃z.Q(f(x), z). With the ground substitution that assigns b to x the in-
stantiated rule reads P (b) −→ ∃z.Q(f(b), z). Choosing a new value c and
replace P (b) by Q(f(b), c) we obtain the state {P (f(a)), Q(f(b), c)}.
A set of MSR rules is called a theory.
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In [CMSS05] a contract signing protocol is defined to consist of three par-
ties O (originator), R (responder), and T (trusted third party), and enables
O (respectively, R) to obtain R’s signature (respectively, O’s signature) on
some pre-agreed text.

The communication between O and R is modeled by a network predicate.
The communication between the signers and the TTP is modeled by TTP
channel predicates that describe the communication between the TTP T and
O (respectively, R) over resilient channels.

The behavior of participants are described by so called role theories which
are theories that satisfy additional properties. In the modelling of partici-
pants so called role state predicates are used. For a participant A there is
a finite number A0, . . . , An of role state predicates. The role state predicate
that describe the initial state of participant A is A0.

A protocol is specified by an MSR theory, which is the disjoint union
of theories describing the behavior of participants O, R, and T along with
theories that describe so called timers which are used to model optimistic
behavior of protocol participants. The theories for the dishonest behav-
ior of participants O and R are derived from the theories describing the
honest behavior of O and R, respectively, in a generic way. The dishon-
est behavior of participants allows them to stop participating in the pro-
tocol, to gather messages from the communication channels, and to ignore
restrictions imposed by timers. An MSR theory describing a contract sign-
ing protocol is called a protocol theory and is the disjoint union of theories
O,R,T0,Otimeouts,Rtimeouts,Ttimeouts,Othreat,Rthreat specifying the hon-
est behavior of O, R, and T , the timer rules of O, R, and T , and the dishonest
behavior of O and R, respectively. The theory T is defined by the union of
T0 and Ttimeouts.
Usual abilities of a standard Dolev-Yao intruder to manipulate messages,

such as decomposing messages, encrypting messages, etc. can also be mod-
eled by an MSR theory in a natural way. With this theory one can, for
example, express which messages the intruder knows in a given state.

Security Properties A trace from state S is a chain of nodes,
with the root labeled by S, each node labeled by a state, and
each edge labeled by a triple 〈t, σ,Q〉. Here Q is an element of
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{O,R,T,Otimeouts,Rtimeouts,Othreat,Rthreat}, t ∈ Q is a state transition
rule, and σ is a ground substitution. If 〈t, σ,Q〉 labels the edge from a node
labeled by S1 to a node labeled by S2, it must be the case that the application
of tσ to S1 produces S2.
In [CMSS05] an interleaving semantics of concurrency is used. Thus, only

one participant can perform a step at a time. According to this the notion
of a strategy is defined by so called continuation trees (denoted by ctr) that
comprises all possible traces starting at some state into a tree. Each edge
in this tree of traces corresponds to one transition and thus belong to one
of the agents. A strategy for some coalition X is then specified by a set E
of edges under the control of X that are removed from the continuation tree
(denoted by ctr \ E).
According to [CMSS05] we get the following definition.

Definition 5.3.1 A coalition X has a strategy from S to reach a state in
which some property ϕ holds if there is a strategy ctr \E from S for coalition
X such that all leaf nodes of ctr \ E are labeled by states S ′ that satisfy
property ϕ(S ′).

We call a strategy ctr \ E for coalition X a minimal strategy if ctr \ E
satisfies the following two properties

(M1) If in some node of ctr \E there are outgoing transitions not under the
control of X, then there is no outgoing transition under the control of
X in ctr \ E.

(M2) In every node of ctr \E there is at most one outgoing transition under
the control of X.

We have the following remark that is used later in our proof of the im-
possibility result of [CMSS05]. The proof of this remark is straightforward.

Remark 5.3.2 A coalition X has a strategy from S to reach a state in which
some property ϕ holds iff X has a minimal such strategy.

In [CMSS05] security properties of contract signing protocols are formu-
lated in terms of the existence of strategies for some coalition of agents.
There are four security properties formalized: fairness, optimism, timeliness,
and balance. Beside these security properties of contract signing protocols
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different kinds of behaviors of protocol agents are described: (dis-)honest,
silent, and optimistic behavior.
In [CMSS05] the authors model optimism by introducing so called timers,

which are predicates of a special form. Some state transitions rules of role
theories depend on the values of these timers and optimistic players are stuck
to respect these values. To model that a player A is optimistic the control
over the timer predicates of A is given to the opponent B of A. Thus, the
opponent can control if A is allowed to perform protocol rules that depend
on timers that are timed out.

Alternative Proof of Chadha’s Result We now give an alternative
proof of the following impossibility result shown in [CMSS05]:

Theorem 5.3.3 In a fair, optimistic, timely protocol between signers A and
B, if A is optimistic, then B has a strategy for reaching a non-initial state
S∗ such that B has an advantage against A at S∗.

Our proof of this theorem uses a straightforward translation of protocol spec-
ifications in the MSR model into a protocol-CGS and then applies Theo-
rem 5.2.2 to get the desired result.

From an MSR Protocol Specification to a protocol-CGS Let P be
a protocol theory in the MSR model, i.e., P is the disjoint union of the
theories A, B, Atimeouts, Btimeouts, and T. Let Athreat and Bthreat be the
theories that are derived from A and B, respectively, and which describe the
dishonest rules of A and B, respectively. Let S0 be the initial set of facts
that describes the initial situation of the protocol execution.
Given P and S0 we now define the protocol-CGS

C = C(P,S0) = (Σ, Q, sI ,P, π,∆,M, µ, δ)

that corresponds to P and S0. As we use real concurrency in our model,
i.e., the players in Σ perform steps simultaneously in order to simulate the
interleaving semantics of concurrency used in [CMSS05] we have to introduce
a scheduler as a player in C, i.e., Σ = {A,B, T, sch}. The set of states Q
consists of all triples of the form q = (S, τ, F ) where S is a reachable state
from S0 in the MSR model, and τ, F ∈ {A,B, T}. We denote S, τ , and F
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by MSR component of q, active player in q, and fairness component of q,
respectively. Intuitively, the value of τ specifies who of the players A,B, and
T is allowed to perform a real step in state q that corresponds to a step in the
MSR model. The value of F is used to define the fairness condition that has
to be fulfilled by the scheduler sch. This fairness condition ensures that in
every computation each of the players A,B, and T performs infinitely many
real steps. The initial state sI is (S0, T, O) (we use T as the active player in sI

because in a protocol theory that describes an optimistic protocol there is no
rule in T that can be applied to S0 and thus after the first step of C the MSR
component is still S0). We set P = {cA, cB, initialA, initialB} and the intuitive
meaning of these propositional variables are as described in the definition of
a protocol CGS: for a state (S, τ, F ) the propositional variable cA and cB are
in π(S, τ, F ) iff A and B have a signed contract in state S, respectively. The
variable initialA and initialB are in π(S, τ, F ) iff the role state predicate A0

and B0, respectively, is present in S. The setM of move propositions is set to
be M = {honest, optimistic, silent}. The possible moves of the players A,B,
and T along with the associated move propositions in state q = (S, τ, F )

depend on S, τ , and the corresponding role theories. To define the move
function∆ and the assignment of move propositions µ we distinguish between
different cases. For τ ′ ∈ {A,B, T} \ {τ} there is exactly one move available,
i.e., ∆((S, τ, F ), τ ′) = {def}. The move def is called the default move and it is
optimistic, honest and silent, i.e., µa(q

′, def) = {optimistic, honest, silent} for
all a ∈ {A,B, T} and q′ ∈ Q such that def ∈ ∆(q′, a). For τ we distinguish
between the following cases:

τ = B: There are two types of moves available for B in q. First, there is
a skip move skip. Second, there are MSR moves. MSR moves for B are
of the form m = 〈t, σ,Q〉 where Q ∈ {B,Bthreat,Btimeouts,Atimeouts},
t ∈ Q, and there is a state S ′ such that S ′ is obtained from S by
transition 〈t, σ,Q〉 in the MSR model.
The skip move skip is optimistic, honest, and silent, i.e., µB(q, skip) =

{optimistic, honest, silent}. MSR moves m = 〈t, σ,Q〉 with Q ∈
{Btimeouts,Atimeouts} are honest moves, i.e., µB(q,m) = {honest}.
MSR moves of the form m = 〈t, σ,B〉 are optimistic and honest,
i.e., µB(q,m) = {optimistic, honest}. For MSR moves of the form
m = 〈t, σ,Bthreat〉 we set µB(q,m) = ∅.
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τ = A: The only moves that are possibly available for A are MSR
moves. Note that there may be no move available for A. MSR moves
for A are of the form m = 〈t, σ,Q〉 where Q ∈ {A,Athreat}, t ∈ Q,
and there is a state S ′ such that S ′ is obtained from S by transition
〈t, σ,Q〉 in the MSR model. MSR moves of the form m = 〈t, σ,A〉 are
optimistic and honest, i.e., µA(q,m) = {optimistic, honest}. For MSR
moves of the form m = 〈t, σ,Athreat〉 we set µA(q,m) = ∅.

τ = T : The only moves that are possibly available for T are MSR
moves. Note that there may be no move available for T . MSR moves
for T are of the form m = 〈t, σ,Q〉 where Q ∈ {T}, t ∈ Q, and there
is a state S ′ such that S ′ is obtained from S by transition 〈t, σ,Q〉 in
the MSR model. MSR moves m = 〈t, σ,T〉 are honest, i.e., µT (q,m) =

{honest}. (For our purpose it does not matter which value µT (q,m)

has.)

For player sch we set ∆((S, τ, F ), sch) = {A,B, T} and
µsch((S, τ, F ),m) = ∅ for all m ∈ {A,B, T}.
Now we define the transition function δ. Mainly, the transition function

δ is given by the transitions in the MSR model, i.e., by the moves that are
described by the rules in the role theories of the participants. More precisely,
let q = (S, τ, F ) ∈ Q be a state of C and let c be a total move in ∆Σ(q). Then
δ(q, c) = (S ′, τ ′, F ′) where S ′ is the successor of S given by c(τ) in the MSR
model if c(τ) is defined and is not the skip move and S ′ = S otherwise. The
value of τ ′ is simply given by c(sch). And the value of F ′ is F if τ ′ 6= F and
z(F ) otherwise, where z(A) = B, z(B) = T , and z(T ) = A.
The fairness condition Γ consists of only one fairness constraint γ, where

γ(a, (S, τ, F )) = ∅ for a 6= sch and γ(τ, (S, τ, F )) = {F}. With this fairness
condition and the definition of the transition function we achieve that for
every move selector α we have that in every weakly 〈Γ, α〉-fair computation
ρ of C every agent in {A,B, T} performs infinitely many real moves, i.e., for
each a ∈ {A,B, T} there are infinitely many i such that a is the active player
in ρ(i).
It is easy to see that the following remark holds.

Remark 5.3.4 For a protocol theory P and an initial set of facts S0 the
CGS C(P,S0) is a protocol-CGS.
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Apply Theorem 5.2.2 To apply Theorem 5.2.2 to prove Theorem 5.3.3
we show two things. First, we prove that for every fair, optimistic, and
timely protocol in the MSR model the corresponding protocol-CGS fulfils
the assumptions of Theorem 5.2.2. Second, we show that a strategy of player
B for 〈〈B〉〉

A:o
B:o∨s


(
optAdvantage(B)∧¬initialA

)
in sI of C can be transformed

into a strategy from S0 for player B in the MSR model to reach a non initial
state S∗ where B has an advantage against optimistic A in the MSR model.

We now show that the protocol-CGS C = C(P,S0) fulfils the assumptions of
Theorem 5.2.2. The main problem in showing that C satisfies the assumptions
of Theorem 5.2.2 are due to the different notions of strategies in the MSR
model and the CGS model. It is not obvious that strategies from one of the
model carry over to the other model and vice versa. We will not give detailed
proofs but will describe the constructions involved in a non technical manner.
From this it should be clear how the real proofs work.

C |=
F
optimistic(B): According to the definition of optimistic protocols

in the MSR-model, see [CMSS05], we have that: If A is honest and B
controls the timeouts of both A and B, B has an honest strategy at S0

such that

– All edges are labeled by transitions in A ∪B.
– Every leaf node is labeled by a state in which B possesses A’s
signature.

Let ctr\E be a minimal strategy for B that meets the above properties.
We have to define an (A : o, B : o)-consistent strategy fB for B such
that for all 〈Γ, (A : o, B : o)〉-fair computations ρ ∈ out(fB, sI) we have
that ρ |=

F
cB. Given a segment q0q1 . . . qn where qi = (Si, τi, Fi)

we set f(λ) to be a silent optimistic move (which by definition always
exist) if one of the following conditions are satisfied:

– τn 6= B,

– Sn is not a B-node,

– Sn is a leaf.

In case that τn = B, Sn is a B-node, and Sn is not a leaf there is
exactly one transition present in ctr \ E at Sn, note that ctr \ E is
supposed to be a minimal strategy. This transition corresponds to a
rule in B. By the definition of C(P,S0) the move in qn that corresponds
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to that transition is optimistic. It is easy to see that fB is a strategy
for optimistic(B) in sI .

C |=
F
timely(B): In [CMSS05] timeliness is defined in a way that it

could not directly be transfered to timeliness as understood in our
model. To formalize timeliness as understood in [CMSS05] we could
take the axiom

〈〈B〉〉
A:o
B:o

(cB ∧〈〈B〉〉A:s
B:h
endB)

instead of the one used so far for timeliness, note that this formula
is not an ATL

MS
formula anymore but an ATL∗

MS
formula. The proof

of Theorem 5.2.2 can easily be adapted if this version of timeliness is
used.

C |=
F
notWithout(A): This follows from the fact that in [CMSS05] it is

assumed that B will not get a contract if A does not perform at least
one step.

C |=
F
initial(A): Follows directly from the definition of C.

C |=
F
optResolveRemain(B): We have to show that for every

(A : o, B : o ∨ s)-consistent computation segment ρ = q0q1 . . . qn such
that qn |=F

optResolve(B) holds and every (A : o, B : s)-consistent suc-
cessor q′ of qn we have that q′ |=F

optResolve(B). Let qn = (S, τ, F )

and let fB be an (A : o)-consistent strategy for optResolve(B) in qn.
We distinguish between two cases:

τ 6= B: In this case we obviously have q′ |=
F
optResolve(B) since

q′ is an fB-consistent successor of ρ.

τ = B: Let mB = fB(ρ). If mB is a silent move then nothing is
to show since according to the definition of C all silent moves of
B have the same effect on the MSR component of a state of C. If
mB is a non-silent move we construct a strategy f ′B from fB by
postponing mB to the next state when it is B’s turn. Note that a
similar move to mB can be applied in that state. Then it is easy
to show that for some ρ′ ∈ out(q′, f ′B) such that ρ′ |=

F
¬cB there

is some ρ′′ ∈ out(qn, fB) such that ρ′′ |=
F
¬cB.

C |=
F
optAbortRemain(B): This can be shown similar to the previous

property.
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C |=
F
silOptAbort(B): This axiom corresponds to one part of

Lemma 24 of [CMSS05]. Note that timer rules of A and B are not
optimistic and not silent for B thus on every computation that is
(A : o, B : o ∨ s)-consistent no MSR moves that correspond to timer
rules occur. One can prove that C fairly satisfies silOptAbort(B) with
similar arguments as used in the proof of Lemma 24 of [CMSS05].

C |=
F
optSil(B): Since by definition of C there are no optimistic moves

of A that are silent this axiom is trivially fulfilled.

With Theorem 5.2.2 we can conclude that

〈〈B〉〉
A:o

B:o∨s


(
optAdvantage(B) ∧ ¬initialA

)
holds in sI of C. One can show that a strategy of B for
〈〈B〉〉

A:o
B:o∨s


(
optAdvantage(B) ∧ ¬initialA

)
can be translated into a strat-

egy for B in P at S0 against an optimistic A to reach a non initial state in
which B has an advantage against optimistic A in the MSR model. This
finishes our proof of Theorem 5.3.3.
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Chapter 6

Conclusion

The central topic of this thesis was to investigate how strategy properties of
cryptographic protocols can be handled. For trace based security properties
much research has been done in the past. Decidability results and algorithms
were available. These results had led to industrial strength tools for analyz-
ing cryptographic protocols. In this thesis we transfer some of the results
available for trace based properties to strategy properties.
In Chapter 3 we showed how to use the constraint solving approach know

from the analysis of reachability properties for strategy security properties.
In our approach standard constraint solvers can be utilized and thus it should
be possible to implement tools for the analysis of strategy properties of cryp-
tographic protocols on top of existing tools based on constraint solvers.
In Chapter 4 we introduced AMC for cryptographic protocols. We

have interpreted AMC-formulas over concurrent game structures (CGS) that
model real concurrent behavior of protocol participants in the sense that
each player in these CGS performs a move in each step of the system. We
have shown undecidability results and have identified a decidable fragment
of AMC (the I-monotone fragment) that is sufficient to express all strategy
security properties of cryptographic protocols we have found in the literature.
In Chapter 5 we introduced a small extension called ATL

MS
of ATL. This

extension allows us in a natural way to take different kinds of behavior of
participants into account. We utilized ATL

MS
to reformulate the fundamental

impossibility result of Chadha et al. [CMSS05] in an axiomatic and model
independent fashion.
There are many questions concerning strategy properties of cryptographic
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protocols that were not answered here. We want to state some of these
questions.
In this thesis we formulated security properties of contract signing pro-

tocols in terms of strategies. Are there security properties of other kinds of
protocols that can be formulated as strategy properties?
We have shown that under certain reasonable assumptions the I-

monotone fragment of AMC is decidable. What decidability results are there
for the non I-monotone fragment of AMC for cryptographic protocols?
We have shown that the constraint solving approach can be used to de-

cide simple strategy properties of cryptographic protocols. Can one extend
the constraint solving approach to decide properties formulated in the I-
monotone fragment of AMC for cryptographic protocols?
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