
Model-Driven Test Case Construction by Domain
Experts in the Context of Software System Families

Dissertation

zur Erlangung des akademischen Grades

”Doktor der Ingenieurwissenschaften”
(Dr.-Ing.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

Stefan Bärisch

Kiel
2009



1. Gutachter

2. Gutachter

Datum der mündlichen Prüfung

Professor Dr. Wilhelm Hasselbring

Professor Dr. Jürgen Krause

23.02.2009



Abstract

This thesis presents MTCC (Model-Driven Test Case Construction), an approach to the
construction of acceptance tests by domain experts for testing system families based on
feature models. MTCC is applied to the application domain of Digital Libraries.

The creation and maintenance of high quality systems that fulfill both formal require-
ments and meet the needs of users is one of the primary goals of software engineering. A
prerequisite for the quality is the absence of faults. Software engineering has defined a num-
ber of techniques for avoiding faults, identifying them or fixing them. Testing identifies faults
by exercising an implementation artifact and comparing its actual and expected behavior.
MTCC is an approach the automate acceptance tests for the members of system families.

The basic hypothesis of this thesis is that the involvement of domain experts in the testing
process for members of system families is possible on the basis of feature models and that
such a testing approach has a positive influence on the efficiency and effectiveness of testing.
Application quality benefits from the involvement of domain experts because tests specified by
domain experts reflect their needs and requirements and therefore can serve as an executable
specification.

One prerequisite for the inclusion of domain experts is tooling that supports the specifi-
cation of automated tests without formal modeling or programming skills. In MTCC, models
of automated acceptance tests are constructed with a graphical editor based on models that
represent the test-relevant functionality of a system under test as feature models and finite
state machines. Feature models for individual testable systems are derived from domain-level
systems for the system family. The use of feature models by the test reuse system of MTCC
facilitates the systematic reuse of test models for the members of system families. MTCC is a
Model-Driven test automation approach that aims at increasing the efficiency of test execu-
tion by automation while keeping independence from the implementation of the testee or the
test harness in use. Because tests in MTCC are abstract models that represent the intent of
the test independent from implementation specifics, MTCC employs a template-based code
generation approach to generate executable test cases.

In order to validate the approach, MTCC is applied to the Digital Library application
domain. Digital Libraries are Information Retrieval systems that aim to provide the scientific
community with relevant information. A MTCC prototype is designed and realized for a
system family of three Digital Libraries and an Information Retrieval system. The capability
of representing tests relevant for the application domain, for reusing these tests for multiple
systems and for generating executable tests from the abstract test models are validated. An
assessment of the understandability by domain experts and of the usability of the editor
is conducted. The feasibility and practicality are shown by a validation involving domain
experts for a system family of Digital Libraries.



Acknowledgements

Many people deserve my gratitude for the support and encouragement they gave me during
my work on this thesis.

My advisor, Professor Dr. Wilhelm Hasselbring, helped me to shape and refine the ideas
underlying this work und supported me in developing the means to express, implement and
validate this ideas in this dissertation. Thank you.

Professor Dr. Jürgen Krause gave me the opportunity to combine my studies and work
on this thesis with the always interesting work for the GESIS. I thank him for his support
and his belief in this work as well as for our interesting talks.

I thank all my colleges at the GESIS, both past and present. Max Stempfhuber gave
me the freedom to combine this dissertation with my other responsibilities and pointed out
areas of improvement. Patrick Lay and Holger Heusser gave me important feedback on my
thoughts.

Thanks also all domain experts. I am grateful for the time and effort contributed by the
members of the evaluation group, Vivien Petras, Maria Zens, Simone Weber and Jan-Hendrik
Schulz.

Rielies Neitzke proved that at the heart of all research, a librarian can be found. Harald
Deuer and Maria Zens always had time for some words. My deepest thanks to Vivien Petras
for our discussions and for her support and encouragement.

It is always worthwhile to present ones ideas to a fresh audience. My thanks the ES-
EC/FSE 2007 Doctoral Symposium for their time and insights, in particular for emphasizing
the importance of a sound evaluation.

The Software Engineering Group at the Carl von Ossietzky University of Oldenburg gave
me the opportunity to present and discuss many of the ideas that are present in this thesis.
I thank you both for this and for the friendly atmosphere I could always count on.

My parents made this dissertation possible in more than one way. Elke and Wolfgang,
you have my sincerest thanks and gratitude for all you have done in the past 31 years.

ii



Contents

1 Motivation and Background 1

1.1 Testing and Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Testing in Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 The Goal of Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Dimensions of Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Test Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Testing System Families . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.6 Acceptance Tests and the Inclusion of Domain Experts . . . . . . . . 8

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Digital Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Motivation for the MTCC Approach . . . . . . . . . . . . . . . . . . . 12

1.2.3 Hypothesis and Research Question . . . . . . . . . . . . . . . . . . . . 15

1.3 Model-Driven Test Case Construction . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 MTCC Tests Categories for Digital Libraries . . . . . . . . . . . . . . 17

1.3.2 Overview of the MTCC Approach . . . . . . . . . . . . . . . . . . . . 18

1.3.3 Phases and Activities in the MTCC . . . . . . . . . . . . . . . . . . . 19

1.3.4 Modeling of Systems and Tests in MTCC . . . . . . . . . . . . . . . . 21

1.3.5 Test Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.6 Test Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

I Foundations 27

2 Testing of Software 29

2.1 Testing and Software Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Software Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2 Definition of Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.3 Automated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Acceptance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Testing by Domain Experts . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2 Types of Involvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Quality of Test Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Quality of Requirements and Quality of Tests . . . . . . . . . . . . . . 38

iii



2.3.2 Software Quality Attributes Applied to Test Software . . . . . . . . . 38

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Use of Models in Software Engineering 41

3.1 Roles and Properties of Models . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Attributes of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Types of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Model-Driven Software Development . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Generation of Implementations . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Models and Programming Languages . . . . . . . . . . . . . . . . . . . 45

3.3 Model-Driven Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Types of Model-Driven Testing . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Relation to MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 System Families and Variability 49

4.1 Variability in Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Analysis and Scoping of a Product Line . . . . . . . . . . . . . . . . . 51

4.1.2 Variability and System Family Testing . . . . . . . . . . . . . . . . . . 52

4.2 Feature Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Structure of Feature Models . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Configuration and Specialization of Feature Models . . . . . . . . . . . 54

4.3 Testing of System Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Information Retrieval and Digital Libraries 59

5.1 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Purpose of Information Retrieval . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 Concepts and Methods of Information Retrieval . . . . . . . . . . . . . 61

5.1.3 Evaluation for Information Retrieval . . . . . . . . . . . . . . . . . . . 63

5.2 Digital Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Structural and Semantic Heterogeneity . . . . . . . . . . . . . . . . . . 66

5.2.2 User-oriented Quality of Digital Libraries . . . . . . . . . . . . . . . . 67

5.2.3 Testing of Digital Libraries with MTCC . . . . . . . . . . . . . . . . . 68

5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

II Model-Driven Test Case Construction 71

6 The MTCC Approach 73

6.1 The MTCC Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Roles and Relation to Software Development . . . . . . . . . . . . . . 75

6.1.2 Modeling of the Domain and Individual Systems . . . . . . . . . . . . 77

6.1.3 Composition of Models . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.4 Modeling of Test Configurations . . . . . . . . . . . . . . . . . . . . . . 81

iv



6.1.5 Test Script Generation and Execution . . . . . . . . . . . . . . . . . . 83

6.2 Overview of the MTCC Models . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Domain Level Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.2 System-Level Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.3 Test-level Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.4 Relationship of MTCC Models to the MDA . . . . . . . . . . . . . . . 85

6.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Models for System and Test Representation 87

7.1 Models for the Behavior of a Testee . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Structure of the MTCC Behavior Models . . . . . . . . . . . . . . . . 88

7.1.2 Concepts and Structure of the Application State Model . . . . . . . . . 89

7.1.3 Test-level Behavioral Models . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Feature Models for System and Test Representation . . . . . . . . . . . . . . 92

7.2.1 Feature Modeling in MTCC . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.2 Modeling of Test-Relevant Services . . . . . . . . . . . . . . . . . . . . 94

7.2.3 Representation of Test Steps . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Composition of the Application Test Model . . . . . . . . . . . . . . . . . . . . 99

7.3.1 Purpose of the Composition Process and the Application Test Model . 99

7.3.2 The Composition Process . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Application of MTCC Models 103

8.1 Representation of Test Steps in the Editor . . . . . . . . . . . . . . . . . . . . 104

8.1.1 Overview of the MTCC Editor . . . . . . . . . . . . . . . . . . . . . . 104

8.1.2 Construction of Tests from Test Step Instances . . . . . . . . . . . . . 106

8.1.3 Representation of a Test Step Instance by GUI Elements . . . . . . . . 107

8.2 Configuration of Test Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2.1 Representation of Specialization Steps as Configuration Nodes . . . . 112

8.2.2 Implementation of Configuration Nodes . . . . . . . . . . . . . . . . . 112

8.2.3 Application of Configuration Objects . . . . . . . . . . . . . . . . . . . 114

8.3 Reuse of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3.1 Transfer of Test Step Sequences . . . . . . . . . . . . . . . . . . . . . . 115

8.3.2 Transfer of Test Step Configurations . . . . . . . . . . . . . . . . . . . 117

8.3.3 Limitations of Test Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.4 Test Execution based on Test Configuration Instances . . . . . . . . . . . . . . 119

8.4.1 Transformation of Test Configuration Instances . . . . . . . . . . . . . 119

8.4.2 Test Case Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9 Application of MTCC to the Digital Library Domain 123

9.1 A System Family of Digital Libraries . . . . . . . . . . . . . . . . . . . . . . . 123

9.1.1 Sowiport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.1.2 infoconnex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

v



9.1.3 IREON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.1.4 GESIS Solr Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.2 Test-Relevant Services and Test Steps . . . . . . . . . . . . . . . . . . . . . . . 127

9.2.1 Manipulation of the SUT . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.2.2 Verification of the Testee . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.3 Generic Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.3.1 System-independent Services . . . . . . . . . . . . . . . . . . . . . . . 129

9.3.2 Domain-independent Services . . . . . . . . . . . . . . . . . . . . . . . 130

9.4 Domain-Specific Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.4.1 The SEARCH Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.4.2 The SEARCH OPTIONS Service . . . . . . . . . . . . . . . . . . . . . 132

9.4.3 The REQUEST INFORMATION Service . . . . . . . . . . . . . . . . . 132

9.4.4 The DOCUMENT LIST Service . . . . . . . . . . . . . . . . . . . . . . 133

9.4.5 The MARKED DOCUMENT HANDLER Service . . . . . . . . . . . . . 134

9.4.6 The ORDERING Service . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.4.7 The DOCUMENT LINKS Service . . . . . . . . . . . . . . . . . . . . . 134

9.4.8 The PAGINATION Service . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.4.9 The NAVIGATOR LIST Service . . . . . . . . . . . . . . . . . . . . . . 135

9.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

III Validation 137

10 Validation Goals and Design 139

10.1 Validation in Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . 139

10.1.1 Reasons for Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10.1.2 Challenges to Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.1.3 Validation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.2 Goals and Questions of the MTCC Validation . . . . . . . . . . . . . . . . . . 143

10.2.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.2.2 Basic Assumptions of MTCC . . . . . . . . . . . . . . . . . . . . . . . 144

10.2.3 Goal of the Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.2.4 Validation of Testing Approaches . . . . . . . . . . . . . . . . . . . . . 145

10.3 GQM Application for MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.3.1 Systems and Test Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.3.2 Q1: Capability to Represent Tests . . . . . . . . . . . . . . . . . . . . 147

10.3.3 Q2: Executability of MTCC Test Configurations . . . . . . . . . . . . . 149

10.3.4 Q3: Reuse of Test Configurations . . . . . . . . . . . . . . . . . . . . . 151

10.3.5 Q4: Practicality and Understandability of MTCC . . . . . . . . . . . 152

10.3.6 Q5 Efficiency of MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

vi



11 Results of the Validation 157

11.1 Participants in the MTCC Validation . . . . . . . . . . . . . . . . . . . . . . 157

11.2 The Prototype of the MTCC Editor . . . . . . . . . . . . . . . . . . . . . . . 157

11.3 Considered Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

11.4 Capability to Represent Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11.5 Validation of the Executability . . . . . . . . . . . . . . . . . . . . . . . . . . 162

11.6 Validation of Reusability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

11.6.1 Validation of the Usability . . . . . . . . . . . . . . . . . . . . . . . . . 165

11.6.2 Validation of the Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 168

11.7 Interpretation of the Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 168

11.7.1 Robustness of the Validation . . . . . . . . . . . . . . . . . . . . . . . 169

11.7.2 Feasibility of MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

11.7.3 Usability of MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

11.7.4 Efficiency of MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

11.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

12 Related Work 175

12.1 Testing Based on Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 175

12.1.1 The SCENT Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

12.1.2 The Eg Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

12.2 Modeling of Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

12.2.1 UML 2.0 Testing Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 179

12.2.2 Model-Driven Test Development . . . . . . . . . . . . . . . . . . . . . 179

12.3 Abstract Representation of User-Interfaces . . . . . . . . . . . . . . . . . . . . 179

12.3.1 Representation of GUIs . . . . . . . . . . . . . . . . . . . . . . . . . . 179

12.3.2 Modeling of Web Applications . . . . . . . . . . . . . . . . . . . . . . 180

12.4 Testing of System Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

12.4.1 Testing of Software Product Lines . . . . . . . . . . . . . . . . . . . . 180

12.4.2 Condron’s TADE Approach . . . . . . . . . . . . . . . . . . . . . . . . 181

12.5 Involvement of Domain Experts in Software Development . . . . . . . . . . . 182

12.5.1 End User Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 182

12.5.2 FIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

12.6 Novelty of MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

12.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

IV Conclusion 187

13 Summary and Contributions 189

13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

13.1.1 The MTCC Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

13.1.2 Applying MTCC to a System Family of Digital Libraries . . . . . . . 190

13.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

13.1.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

vii



13.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

14 Outlook and Conclusion 193

14.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
14.1.1 Additional Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
14.1.2 Additions to the MTCC Approach . . . . . . . . . . . . . . . . . . . . 193

14.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Appendix 196

A Test Sets 196

Test Set TS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Test Set TS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Test Set TS3a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Test Set TS3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Test Set TS4a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Test Set TS4b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Test Set TS5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B MTCC Editor Handbuch 201

Grundlegende Konzepte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Eindeutigkeit von Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Automatisierung von Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Konzepte des Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Verwendung des Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Ablauf der Testkonstruktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Verwendung von Testschritten . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Speichern und Laden von Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Empfehlungen zur Testmodellierung . . . . . . . . . . . . . . . . . . . . . . . 205

Verfügbare Testschritte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Aktionen auf dem zu Testenden System . . . . . . . . . . . . . . . . . . . . . . . . 205

Statische Links zwischen Seiten . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Absetzen von Suchanfragen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Ändern der Sortierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Verwendung von Navigatoren . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Verweise aus Dokumenten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Öffnen der Detailansicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Verwendung von Variablen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Belegen von Variablen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Vergleich von Variablen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Beispiele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Vergleich von Suchergebnissen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Test der Navigatoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Kontrolle der Detailansicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

viii



Glossary 217

Index 221

Bibliography 236

ix



List of Figures

1 Testing in relation to other methods of software quality assurance (Winter, 1999) 3

2 Classic bug (Binder, 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Implementation, specification and faults (Binder, 1999) . . . . . . . . . . . . 4

4 Goals of automated testing (Graham & Fewster, 2000) . . . . . . . . . . . . . 6

5 Architecture of an Information Retrieval system (Womser-Hacker, 2006) . . . 12

6 Overview of the test construction process . . . . . . . . . . . . . . . . . . . . 18

7 Representation of Test Steps and their parameterization in the MTCC editor 19

8 Phases and activities of the MTCC testing process . . . . . . . . . . . . . . . 20

9 Models and roles in MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Test code generation in MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11 Execution of MTCC tests by multiple test runners is a system family context 24

12 Attributes of good tests (Graham & Fewster, 2000) . . . . . . . . . . . . . . . 33

13 The five phases of testing (Graham & Fewster, 2000) . . . . . . . . . . . . . . 35

14 Definition of model in the Merriam-Webster Dictionary . . . . . . . . . . . . 42

15 Concepts of Model-Driven software development (Stahl & Völter, 2006) . . . 44

16 A process for Model-Driven testing (Utting et al., 2005) . . . . . . . . . . . . 47

17 A taxonomy of Model-Driven testing (Utting et al., 2005) . . . . . . . . . . . 48

18 SPL development process (Meister, 2006a) . . . . . . . . . . . . . . . . . . . . 51

19 Information sources for domain analysis (Kang et al., 1990) . . . . . . . . . . 52

20 Example for a FODA Feature Diagram (Kang et al., 1990) . . . . . . . . . . . 54

21 Specialization steps (Czarnecki et al., 2005b) . . . . . . . . . . . . . . . . . . 55

22 Concepts of Information Retrieval (Belkin & Croft, 1987) . . . . . . . . . . . 60

23 Overview of retrieval models (Baeza-Yates & Ribeiro-Neto, 1999) . . . . . . . 62

24 Averaged 11-point precision / recall graph (Manning et al., 2008) . . . . . . . 64

25 Portals, disciplinary portals and databases (Mayr et al., 2005) . . . . . . . . . 66

26 Shell Model(Krause, 2006a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

27 Abstractions in Information Retrieval and abstractions in MTCC (Belkin &
Croft, 1987) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

28 Phases of MTCC and system family engineering(Czarnecki, 2005) . . . . . . . 74

29 Product Line Practice as defined by the SEI Framework (Czarnecki & Eise-
necker, 2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

30 Relevant concepts of MTCC on the system and system family level . . . . . . 79

x



31 Service instances in a web page . . . . . . . . . . . . . . . . . . . . . . . . . . 79
32 Representation of the available and current teststeps in the MTCC editor . . 82
33 Models used in MTCC and their relationships . . . . . . . . . . . . . . . . . . 84

34 Relationship of the concepts in the dynamic MTCC models . . . . . . . . . . 89
35 Representation of the Application State Model as a Protocol State Machine . . 89
36 Excerpt from the Application State Model of the Sowiport System . . . . . . . 91
37 Protocol State Machine of all possible sequences of Test Step instances in the

Application Test Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
38 Hierarchy of the MTCC feature classes . . . . . . . . . . . . . . . . . . . . . . 94
39 Entities used in MTCC to represent the structure of a system represented as

a class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
40 Example feature model for a system in MTCC . . . . . . . . . . . . . . . . . 96
41 Part of the feature model of a Service instance . . . . . . . . . . . . . . . . . . 96
42 Class diagram of the relevant concepts of a MTCC Test Step . . . . . . . . . 98
43 Feature model of the Interface elements of a Test Step . . . . . . . . . . . . . 99
44 Flowchart of the MTCC Composition . . . . . . . . . . . . . . . . . . . . . . 100

45 Screenshot of the start page of the MTCC editor . . . . . . . . . . . . . . . . 105
46 Dialog for the selection of Test Step Instances . . . . . . . . . . . . . . . . . . 106
47 Mapping of features to GUI elements . . . . . . . . . . . . . . . . . . . . . . . 108
48 Classes used in the GUI representation of feature models . . . . . . . . . . . . 109
49 Representation of domain-specific features in the GUI and in the MTCC editor 110
50 Part of the MTCC editor with the Buildlets used . . . . . . . . . . . . . . . . 111
51 Class hierarchies of features and configuration nodes . . . . . . . . . . . . . . 113
52 Feature model with configuration nodes . . . . . . . . . . . . . . . . . . . . . 114
53 Feature model after the application of its configuration nodes . . . . . . . . . 115
54 Feature model after the structure-preserving application of its configuration 115
55 Acceptor for Test Step sequences based on the Application Test Model . . . . . 116
56 Non-deterministic acceptor in MTCC . . . . . . . . . . . . . . . . . . . . . . . 116
57 Dialog for the selection of Test Step instance sequences . . . . . . . . . . . . . 117
58 Two compatible feature models . . . . . . . . . . . . . . . . . . . . . . . . . . 117
59 Artifacts used in test case generation . . . . . . . . . . . . . . . . . . . . . . . 119
60 Concepts of Model-Driven software development (Stahl & Völter, 2006) . . . 121
61 Concepts of the Template and Filtering approaches (Stahl & Völter, 2006) . . 122

62 Relations of systems within system families . . . . . . . . . . . . . . . . . . . 124
63 Simple search in Sowiport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
64 Advanced Search in Sowiprt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
65 Result page in Sowiport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
66 Result page in infoconnex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
67 Advanced search in IREON . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
68 Result page in IREON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
69 Feature model of the SEARCH Service at the domain level . . . . . . . . . . . 131
70 Instance of the SEARCH Service represented as a feature model . . . . . . . . 132

xi



71 Feature model of the SEARCH OPTIONS service . . . . . . . . . . . . . . . . 132
72 Feature model of the REQUEST INFORMATION Service . . . . . . . . . . . . 132
73 Feature model of the DOCUMENT LIST service . . . . . . . . . . . . . . . . . 133
74 Feature model of the MARKED DOCUMENT HANDLER service . . . . . . . . 134
75 Feature model of the ORDERING service . . . . . . . . . . . . . . . . . . . . . 134
76 Feature model of the DOCUMENT LINKS Service . . . . . . . . . . . . . . . . 135
77 Feature model of the PAGINATION Service . . . . . . . . . . . . . . . . . . . . 135
78 Feature model of the NAVIGATOR LIST Service . . . . . . . . . . . . . . . . . 136

79 Logical architecture of the MTCC prototype . . . . . . . . . . . . . . . . . . . 158
80 Screen shot of the editor prototype used for the validation . . . . . . . . . . . 159
81 Selection of a Test Step instance in the MTCC prototype . . . . . . . . . . . 159
82 Transfer of a Test Configuration to another system in the MTCC editor . . . . 160

83 Notation to express dependencies of scenarios in SCENT (Ryser, 2003) . . . . 177
84 Viewpoints of domain experts (customers) and domain engineers (develop-

ers) (Gälli, 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
85 The Eg meta model (Gälli, 2006) . . . . . . . . . . . . . . . . . . . . . . . . . 178
86 Meta model of a web application underlying the Reweb approach (Ricca &

Tonella, 2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
87 Representation of a feature model in a editor (Antkiewicz & Czarnecki, 2004) 181
88 GUI of the TADE for test development (Condron, 2004) . . . . . . . . . . . . 182
89 Sketch of a FIT workflow test (Mugridge & Cunningham, 2005b) . . . . . . . 183
90 Relationship of testees, tests and fixtures in FIT (Mugridge & Cunningham,

2005b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

91 Bildschirmphoto des Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
92 Symbole in der Editor Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . 203
93 Dialog zum Hinzufügen von Testschritten . . . . . . . . . . . . . . . . . . . . 204
94 Testschritt START SEARCH der Erweiterten Suche in SOWIPORT. . . . . . 206
95 Testschritt SET FILTER in Sowiport . . . . . . . . . . . . . . . . . . . . . . . 207
96 Kopfbereich einer Ergebnisliste in Sowiport . . . . . . . . . . . . . . . . . . . 208
97 Optionen zum Beeinflussen der Anzeigereihenfolge in SOWIPORT . . . . . . 208
98 Speichern von Feldbelegungen für ein Dokument . . . . . . . . . . . . . . . . 209
99 Speichern eines Feldwertes für eine Folge von Dokumenten . . . . . . . . . . . 209
100 Navigatoren in Sowiport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
101 Speichern eines Feldwertes für eine Folge von Dokumenten . . . . . . . . . . . 210
102 Links in einem SOWIPORT Dokument . . . . . . . . . . . . . . . . . . . . . . 211
103 Testschritt zum Vergleich von zwei Variablen . . . . . . . . . . . . . . . . . . 212

xii



List of Tables

10.1 GQM questions and metrics used in the MTCC validation . . . . . . . . . . . 155

11.1 Support of MTCC for the validation of test sets . . . . . . . . . . . . . . . . . 160
11.2 Distribution of the entries of the validation test sets over the categories of

support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.3 Metrics for question Q1 — percentage of the tests that can be represented in

MTCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
11.4 Metrics for question Q2 - percentage of executable Test Steps . . . . . . . . . 162
11.5 Metrics for question Q2 - use of resources . . . . . . . . . . . . . . . . . . . . 162
11.6 Lines of code for the parts of the execution system . . . . . . . . . . . . . . . 163
11.7 Reusability of tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
11.8 Metric for question Q3 - transferability of Test Configurations . . . . . . . . . 165
11.9 Metric M4.1.1 time needed for the adaption of tests . . . . . . . . . . . . . . 166
11.10Metric M4.2.1 Necessary support in test construction . . . . . . . . . . . . . . 167
11.11Help needed by the domain experts . . . . . . . . . . . . . . . . . . . . . . . . 167

xiii





Chapter 1

Motivation and Background

Testing is the execution of a system with the intent to compare the expected and the actual
behavior of a system (Bertolino, 2007) in order to find faults. In addition to the identification
of faults (Myers et al., 2004), testing supports the assessment of the quality of a system with
some degree of confidence (Mugridge & Cunningham, 2005b; Beck & Andres, 2004). Testing
benefits greatly from automation. Automated regression tests allow for a nearly continuous
verification of the quality of a system. Automated tests can also take the role of executable,
albeit limited, specifications.

This thesis describes the MTCC, an approach that facilitates the construction of auto-
mated tests by domain experts for the members of a system family based on abstract models
of the testees in the system family.

The quality of an automated testing system can be evaluated based on two aspects: The
ability of tests to reveal faults in the SUT (System under Test) and the resources necessary
for the design, implementation, execution and maintenance of the test (Graham & Fewster,
2000). We argue that the involvement of domain experts in the testing process increases the
probability to reveal faults, while test automation increases the efficiency of testing:

In order (1) to include domain experts in the testing process and thus increase the prob-
ability of finding faults relevant to them and (2) to support the automation of tests and (3)
to facilitate the reuse of tests in a system family context, we propose the construction of test
models by domain experts. The construction process encompasses (1) the modeling of the
test-relevant aspects of a system family and the implementation of a test infrastructure by
domain experts as well as (2) the use of an editor based on the modeled formal representation
of systems and tests for the members of a system family by the domain experts and (3) the
generation of test cases from these test models.

• If a fault is defined as an aspect of the system behavior that does not meet the require-
ments of customers, it follows that it is beneficial for testing this system and hence
the quality of this system to involve domain experts in the testing process. Such in-
volvement ideally allows the domain experts to directly express their requirements as
acceptance tests.

• The resources necessary for test execution are reduced by the use of test automation
software. Test automation facilitates the execution of more tests more often. Since
human testers are no longer needed for the execution of routine regression tests, they
can work on the identification of new faults. Test automation therefore not only reduces
the costs of testing, but also benefits the quality of a system.

A software system family is defined by the commonalities of its members (Parnas, 1976).
Since the systems within such a system family share common requirements and use cases, it
is desirable to systematically reuse testing assets and tests among them.

1



We argue that the inclusion of domain experts is of particular importance for the ap-
plication domain of Digital Libraries. The inherent vagueness of concepts like information
need (Lewandowski & Hoechstoetter, 2007) and relevance (Schamber et al., 1990) requires
the involvement of human domain experts in the specification of tests.

One challenge to involving domain experts in automated testing is that domain experts
cannot be assumed to have any skills in programming or formal modeling. This is of special
significance when the subject of test automation is not a single system but the different
members of a system family. In such situations, the test-relevant functionality of one system
as well as the commonality and variability (Coplien et al., 1998) between the members of
the system family that are relevant to testing have to be formalized. Existing approaches
involving domain experts in the automation of acceptance tests (Mugridge & Cunningham,
2005b) do not consider the use of models for the systematic reuse of tests in the context of
system families. We therefore present the MTCC approach for the model-driven test case
construction in Chapter 6.

MTCC applies domain analysis (Kang et al., 1990) to the testees in the system family in
order to capture the test-relevant functionality and the steps needed to exercise and test this
functionality. The identified functionality and the corresponding Test Steps are formalized as
feature models (Czarnecki & Kim, 2005; Czarnecki et al., 2005b) that represent the variability
and commonalities within the system family as they are relevant for testing. Specific systems
within the system family are expressed by specializations (Czarnecki et al., 2005b) of these
feature models. System-level feature models describe the testable Service instances for one
SUT. The MTCC editor uses (1) the feature model of the SUT in combination with (2) a
state machine representing all possible sequences of Service invocations and (3) models of
the applicable Test Steps for each Service to support the construction of tests in a graphical
editor.

A test in MTCC is expressed as a sequence of fully specialized (Czarnecki et al., 2005b,a)
Test Step feature models. Each configured Test Step instance represents an action taken on
the system or an assertion used to verify an expectation about the system. Each Test Step
instance is represented by a feature model that represents the possible configuration of the
Service instance exercised by the Test Step as well as the available parameterization. Service
instances represent specific aspects of the functionality of the testee. Since the tests that are
constructed with the editor are abstract models and are thus not suitable for direct execution
on a testee, the MTCC approach employs code generation techniques to create the actual
test code used for exercising the testee.

1.1 Testing and Quality

The goal of testing is to find faults in a software system by executing it and then comparing
some expected behavior for the system with its actual behavior as encountered and recorded
during execution.

1.1.1 Testing in Quality Assurance

Binder (Binder, 1999) writes the following about the definition of testing:’Software testing is
the execution of code using combinations of input and state selected to reveal bugs’.

Binder’s definition is more specific than the definition of testing given by the IEEE stan-
dard 610 (of Electrical & Staff, 1991): ’The process of operating a system or component
under specified conditions, observing or recording the results, and making an evaluation of
some aspect of the system or component’.

According to Binder’s definition, the subject of testing is program code that is executed.
Binder also states that the goal of testing if to identify faults in a system, not to evaluate the

2



system. For the purpose of this thesis, we are closer to the IEEE definition of testing. We
argue that while tests can never prove the absence of faults and thus the quality of a system,
they have more uses than solely the identification of faults. In particular, we consider tests
as an executable and formal — if incomplete — specification of required system behavior.

Quality Assurance

Theory

Testability

Fault Hypotheses

Fault Classifitation

Test Models

Domain Testing

Test Selection

Methods

Dynamic Testing

Unit Testing

Integration Testing

System Testing

Regression Testing

Real Time Testing

Concurrency Testing

Load Testing

Stress Testing

GUI Testing

Usability Testing

Inspections / 
Reviews

Static Analysis

DebuggingTools

Validation Experiments

Case StudiesProcesses & 
Management

Figure 1: Testing in relation to other methods of software quality assurance (Winter, 1999)

Based on this definition, testing can be distinguished from various other techniques that
aim to assure the quality of a software system. Figure 1, adapted from Winter (Winter,
1999), gives an overview of some such methods, among them the following:

• Models, design documents, or code can be reviewed (Gilb et al., 1993) for correctness or
completeness. Since no artifact is executed, a review is not a test. This is also true for
automated reviews such as model checking and static code analysis (Louridas, 2006).

• Debugging (Zeller, 2005) is not a testing activity. The goal of debugging is to find the
cause of a fault in order to correct it. While a system is executed and examined during
debugging, the existence of a fault must already be known in order for debugging to
begin. Testing and debugging are thus closely related but different activities (Cleve &
Zeller, 2000).

• Monitoring observes the execution of a system and records or controls data about the
execution, for example the availability of the system or its resource usage. We do
not consider monitoring a testing activity. While a system is executed and assessed,
the motivation for testing and monitoring are different. Testing is performed in order
to gain some confidence about the question whether a system is faulty, monitoring is
carried out to ensure a reaction when faults occur during the execution of the system
and to provide runtime statistics or uses other than the identification of faults.

1.1.2 The Goal of Testing

Two aspects about the definition of testing need to be discussed in more detail: (1) The
question whether the only goal of testing should be the identification of bugs or whether it
can be leveraged to ensure the quality of a system and (2) the definition of faults or ’bugs’
in a software system.

The fact that testing cannot prove the absence of faults and therefore the quality of a
system (Dijkstra, 1969) is widely accepted today (Winter, 1999). Exhaustive testing for all

3



Figure 2: Classic bug (Binder, 1999)
Figure 3: Implementation, specification and
faults (Binder, 1999)

states and inputs of all but the most trivial systems is impossible (Binder, 1999), no useful
system can thus be completely tested. Instead, testing focuses on those scenarios of system
usage that have the highest probability to have faults.

Despite the fact that testing cannot prove the correctness of a system, we argue that
testing has uses beyond finding faults. Depending on the test coverage of a system (Zhu
et al., 1997), testing can be used to gain some confidence in the correctness of a system.
From this view, tests can also serve as an executable specification of some aspect of system
behavior (Fowler, 2006). Regression testing, the execution of a set of standardized tests to
ensure that modifications to a system did not introduce faults, is an example for the use of
testing to specify the correct behavior of a system and judge its correctness.

Bugs and Faults

One prerequisite for the identification of faults is a definition of what defines a fault or bug
for a given system under test.

Binder uses the term ’bug’ as an euphemism for the term fault. A fault, as illustrated in
Figure 3, is an aspect of the system implementation that differs from the specification. In
this thesis, we use the term fault in a broader sense. Our definition also includes omissions
and aspects of the implementation that differ from the requirements for the system, whether
these are part of the specification or not. A defect is the underlying cause of a fault, for
example a wrong passage in the source code of a system. The class of faults displayed in
Figure 2 has mostly lost its relevance for today’s systems.

As the definition of faults illustrates, in order to test a system for faults, a tester has
to know what constitutes correct behavior for the system under test. In test-driven devel-
opment (Beck, 2002), this fact is used to design and implement software systems. Before
implementing some part of the functionality of a system, a test for this functionality is de-
signed and realized. Writing these tests forces the developer to think about the intended
functionality of the system in detail. The implementation of tests for a system and the
system itself are done in parallel.

According to the definition of faults given above, testing must be based on a specification.
Such a specification may be a formal document that describes the correct behavior of a system
in great detail or it may be informal and incomplete, it may in fact only exist in the minds of
engineers and domain experts. To a certain degree, tests can serve as examples (Gälli, 2006)
of correct system behavior and therefore as a limited specification.

4



1.1.3 Dimensions of Testing

Different types of testing can be differentiated on the basis of their view of the SUT, the
granularity of the SUT and the aspects of the system behavior tested.

Granularity of the Tested Artifacts

The most prevalent distinction of testing is made on the basis of the granularity of the tested
artifact. System-level tests (Binder, 1999) exercise a complete system, unit tests in contrast
are used to verify the correctness of a small number of classes or functions. While system-level
tests require the whole system under development to be in a testable state and are therefore
mostly used late in the development process, unit testing is feasible as soon as the first classes
of the system are implemented.

Regression tests can be used both on the system level and on the unit level. As already
described, regression tests are not used to find previously unknown faults in a system or verify
new functionality but ensure that no faults are introduced into the already existing parts of
a system.

Implementation-based Tests and Responsibility-based Tests

Tests can either verify the implementation of an artifact or its behavior. Implementation-
based tests are written with explicit knowledge about the internal implementation of the
system under test. An implementation-based test for a class would use information about
private methods and instance variables to manipulate the state of a system and test it.
Responsibility-based tests only use the public interface of an artifact under test to manipulate
and verify its state and behavior (Binder, 1999).

An advantage of responsibility-based testing is the decoupling of the tests used to verify
an artifact and the implementation of the artifact. It is therefore possible to reuse tests for
different implementations of the same interface and change the implementation of an artifact
without having to change its tests. Disadvantages of responsibility-based tests include the
fact that direct manipulation of the internal state of the artifact under test is not possible.
As a consequence, it may not be feasible to test the artifact for certain states. It is also
impossible to use the internal data of the artifact under test to verify its correctness.

Functional and Non-Functional Tests

Testing approaches can be distinguished by the question whether they verify functional or
non-functional attributes of the artifact under test. Functional tests ensure that the behavior
of the artifact under test is correct. Non-Functional tests verify aspects like response time or
system behavior under load.

MTCC is a system-Level, responsibility-based approach to test primarily functional re-
quirements.

1.1.4 Test Automation

The testing of a software system can be separated into multiple phases:

• The goals of the test are defined during the first phase. The functionality that will be
exercised by the test is selected and analyzed for likely faults.

• Test cases for previously selected functionality are defined in the second phase of test-
ing. Each test case exercises the testee in a way that is likely to reveal a fault. This
probability is estimated based on the analysis in the first phase.

5



• In the third phase, the test cases are executed on the testee, the behavior of the system
for each test case is recorded.

• In the fourth phase, the recorded behavior of the testee is compared with its expected
behavior. The test is successful, if the actual behavior of the test matches the expected
behavior.

Figure 4: Goals of automated testing (Graham & Fewster, 2000)

Test automation aims to execute one or more of the phases of testing without the need
for human involvement. It has the purpose to relieve humans from the need to repeatedly
execute a test on a system. Test automation has the advantage of using less resources for
the execution of a test and allows far more tests to be executed in a given period of time.
Figure 4 examines a number of reasons for test automation that were given by practitioners
and compares them to the already achieved goals. It can be seen that the reasons for test
automation include both the need for more efficiency and more effectiveness.

Like testing, the automated testing process consists of several phases. Figure 13 on page 35
illustrates these phases. Each phase can be automated to a certain degree. MTCC provides
tool support for the Design phase and supports the automation of the Build, Execute and
Check Phases.

Approaches to automate testing vary widely in the the format and notation used for the
representation of the tests that will be automatically executed and the way in which this

6



representation is created. Capture and replay tools record the interactions between a user
and the system under test. The system is tested by replaying the actions of the user and
comparing its current behavior with its behavior when the test was recorded. The various
xUnit frameworks for different programming languages allow tests to be written as programs
in a regular programming language. Fit (Mugridge & Cunningham, 2005b), a system for
automated acceptance testing, uses a notation based on the spreadsheet paradigm to specify
tests for a system.

Not all attributes of a system can be tested automatically. While function tests and tests
for non-functional attributes like performance are routinely automated, tests for the usability
or accessibility of a system are harder to automate.

A system for the execution of automatic tests is called a test harness. A test harness
consists of a number of subsystems that execute tests, record the behavior of the SUT and
decide whether the execution of each test was successful or not. The test driver, also called
test runner, is the subsystem responsible for the execution of tests and for recording the
behavior of the SUT. The test driver does not need to directly interact with the SUT, the
Test Adapter is a library that provides a simplified interface for the SUT as well as commonly
used functionality.

Since MTCC uses code generation to transform abstract test models into executable tests,
it is not dependent on a specific test harness but assumes that the test harness is compatible
with one xUnit (Meszaros, 2007) framework.

1.1.5 Testing System Families

A number of systems belong to a system family if the members of the family share so many
properties that they are better discussed in terms of their commonalities than in terms of
their differences (Parnas, 1976). System families pose specific challenges to testing, especially
automated testing. An important issue in this context is reuse. In order to ensure optimal
efficiency it would be desirable if both tests and artifacts used for test execution could be
reused for the various members of a system family. The following points are relevant in this
context:

• Similar requirements exist for the different members of a system family and it is likely
that specific requirements are identical for some systems in the system family. In order
to avoid the repeated specification of tests for multiple members of a product-line with
shared requirements, tests should be reusable for different systems.

• The software used for test execution should be able to work with the different members
of the product-line. The use of one test execution environment for all members of the
system family supports the use of a common test representation format. That in turn
makes the use of one repository for all tests in the system family possible and enables
the reuse of tests.

A systematic approach to address the variability and commonalities of the systems within
the system family is needed to enable the optimal reuse of both tests and of the infrastruc-
ture needed for test execution. The field of Software Product Line Engineering (Clements &
Northrop, 2001; Weiss & Lai, 1999) provides both the theory and the methods for such sys-
tematic reuse. Feature modeling (Kang et al., 1990; Czarnecki & Eisenecker, 2000; Czarnecki
et al., 2005a) in particular supports the representation of variability (Bachmann & Clements,
2005) between different testees within a system family. MTCC applies the Software Product
Line concepts to support the systematic reuse of tests and testing core assets.

7



1.1.6 Acceptance Tests and the Inclusion of Domain Experts

The quality of a software system can either be judged on its conformance with a given
specification or in relation to the requirements and needs of the project stakeholders. Ideally,
the specification would be a complete and correct representation of all requirements that
exist for a system. In practice, however, this cannot always be achieved. One problematic
factor are changes to the requirements of a system that only arise or become clear during the
project and are therefore not reflected in the initial requirements.

These problems do not affect the fact that a specification is needed for the development
of all but the most trivial software systems. Such a specification must reflect the actual
requirements for a system as completely and correctly as possible. We argue that tests
constructed by domain experts can serve as a partial specification and that such tests must
be automated. The following reasons for test automation are relevant:

• The construction of tests for a system necessitates the clarification of the requirements
that a domain experts feels the system must fulfill. Since a test reflects a detailed
interaction between the SUT and a user, the requirements reflected by the test must
be elaborated on the same level of detail.

• Automated tests represent a type of executable specification. The execution of a test
allows a definite statement about the success of the test, this in turn informs about the
testee’s compliance to the specification.

• Automated tests are repeatable and can be used to exercise a system without human
involvement. This makes it possible for the domain experts involved in the project to
use more of their time on the improvement of the system under development.

We argue that the fact that tests cannot replace a conventional specification does not put
the advantages of acceptance tests into question. It is indeed the case that tests used for
specification can only ever be a Specification by Example (Fowler, 2006). We argue, however,
that the completeness and correctness of a given specification can only be formally proven to
be correct in very few cases. The incompleteness of tests as a specification is therefore not
specific for specification by example. It is equally impossible to proof that all requirements
of a system are covered by, for example, use cases.

One limitation of tests as a means of specification must be pointed out: Tests cannot
replace other forms of specifications for non-functional quality attributes such as maintain-
ability. Tests can therefore never totally replace other methods of specification, even when
the functionality of a system is completely covered.

1.2 Motivation

In the previous section we discussed the role of testing in the achievement and maintenance
of quality in the context of software engineering. We put emphasis on three aspects of testing
and discussed their potential to contribute to the quality of a system:

• Acceptance tests facilitate the inclusion of domain experts in the testing process. This
inclusion allows for the specification of tests that reflect the requirements of domain
experts regarding a software system under development.

• Test automation, when compared to manual testing, allows for the increase of both the
frequency of test execution and the number of tests that are executed per unit of time.
This supports the establishment of a regression testing regime that helps ensure the
continuos quality of a system under test.

8



• Testing approaches for software system families facilitate the reuse of tests and testing
infrastructure for various systems within a system family. Such approaches allow for
the systematic treatment of the variably and the commonalities between the member
of the system family and aim to establish a set of testing core assets.

We advance the hypothesis that acceptance testing, test automation and testing in the
system family context can be addressed by a single approach. An approach supports testing
in a way that is more likely to identify those faults where the system under test does not
meet the expectations or requirements of domain experts. In order to achieve this goal we
introduce the Model-Driven Test Case Construction process and the artifacts used in the
process. In MTCC, tests are represented as abstract models that represent the members of
a system family and that are constructed by domain experts by means of a Model-Driven
editor.

Testing is closely interlinked with the application domain of the system under test. For
this thesis, we introduce Digital Libraries as the application domain that is addressed by the
automated acceptance tests realized with MTCC.

The discussion of the MTCC approach requires the consideration of the challenges that
have to be met in order to allow the realization of automated acceptance testing in a product-
line context as envisioned by MTCC. We introduce these challenges in the following and list
potential solutions.

Building on our exploration of the application domain, the challenges to automated ac-
ceptance testing in a system family context and potential solutions to these problems, we
formulate the hypothesis underlying MTCC and introduce the approach.

1.2.1 Digital Libraries

In this thesis, we use the term Digital Libraries to describe a specialized class of Information
Retrieval systems. Digital Libraries are an important part aspect to supply researchers as
well as other groups with relevant information, the field has therefore been the subject of
considerable research, for example under the DELOS1 efforts.

The quality of a digital library is determined by its ability to satisfy the information
need of a user searching for relevant documents. In order to fulfill such an information need
it is not sufficient for a Digital Library to merely provide query capabilities for data like a
relational database and not exhibit any obvious faults. As a result of the vague nature of the
concepts relevance and information need, any evaluation of the quality of a Digital Library
has to consider the individual requirements and needs of the library users.

Vagueness in Digital Libraries

The field of Information Retrieval is complex and includes such different topics as distributed
data structures, machine learning and usability. It is therefore nontrivial to give a complete
and concluding definition. Manning, Raghavan and Schütze define Information Retrieval
thus: Information retrieval (IR) is finding material (usually documents) of an unstructured
nature (usually text) that satisfy an information need from within large collections (usually
stored on computers) (Manning et al., 2008). Baeza-Yates and Ribeiro-Neto give the following
definition: Information Retrieval(IR) deals with the representation, storage, organization of,
and access to information items and add in the following: The emphasis is on the retrieval
of information as opposed to the retrieval of data (Baeza-Yates & Ribeiro-Neto, 1999).

Both definitions contrast Information Retrieval from data retrieval ( as the domain for
instance of highly structured relational databases). The difference between both types of

1http://http://www.delos.info

9

http://http://www.delos.info


retrieval for testing becomes evident when we consider that the results of a data retrieval
task are always decidable; results either satisfy the conditions defined by, for instance, a
SQL select statement or they don’t. In contrast there exists no automatic way to determine
whether a given document from an Information Retrieval system satisfies the information
need of a user. Consequently, a data retrieval system can theoretically be tested without any
human involvement, testing an IR system needs humans to judge the relevance of results.

Human involvement in the evaluation and testing of IR systems becomes even more impor-
tant in the face of semantic and structural heterogeneity (Hellweg et al., 2001; Stempfhuber,
2003). Heterogeneity in Digital Libraries has some similarities to Schema Matching (Shvaiko
& Euzenat, 2005; Rahm & Bernstein, 2001), Ontology Mapping (Kalfoglou & Schorlemmer,
2003) and Enterprise Application Integration (Hohpe et al., 2004) but is differs in the sig-
nificant role of semantic heterogeneity and the particularities of bibliographic metadata. In
situations where information from different sources and of different quality are integrated into
a common Digital Library, the involvement of domain experts in testing becomes even more
important since the correctness of integrations efforts can not be judged from a technical
perspective alone.

The Digital Libraries considered in this thesis provide information for scientific commu-
nities. They include bibliographic information as well as information about current research
projects and scientific institutions. A number of specific requirements arise for Digital Li-
braries as Thurmeier (Thurmeier, 2007) and Heinold (Heinold, 2007) discuss.

User Interaction with Digital Libraries

For current Digital Libraries as introduced in Chapter 9, the interactions between a user and
the retrieval systems during a search session may include the following steps:

• The user employs the user interface of the Digital Library to express his or her infor-
mation need in the form of a query and sends this query to the retrieval system.

• The Information Retrieval system accepts the query, does further transformations on
it or expands it. It computes the similarity of the query and the documents in the
Digital Library. The way, in which such similarity values are derived for a query and
the documents in the Digital Library, is determined by the retrieval model implemented.

• The Digital Library assembles a list of those documents that are most similar to the
query and are thus deemed to be the most relevant with respect to the information
need of the user. Most current Digital Libraries will return the documents in a ranked
order, arranged with decreasing probability of relevance.

• The Digital Library represents the list of the documents, often enhanced with extra
information such as statistics about the results, to the users.

• The user surveys the results returned by the Digital Library and investigates those
documents that are the most likely to be relevant. In order to allow both a quick
overview of the results and a detailed investigation of single documents, the Digital
Library provides different views on the documents returned.

• Depending on the specific Digital Library, various value-added functions may be avail-
able to assist the user in her or his research. Examples for such functions include:
Checking the availability of documents at local, physical libraries, ordering the elec-
tronic version of a document or exporting the documents to a reference management
system.

Digital Libraries exhibit a number of particularities relevant for testing, namely their user
interface and the documents held by the library.

10



Heterogeneity in Digital Libraries

A user interacts with the Digital Library by means of a graphical user interface. Since a
domain expert for a given digital library will be familiar with the GUI of the system, an
acceptance testing approach should emulate the patterns of interaction used by this GUI. If
the GUI is the only interface available to interact with a system, the test runner must be able
to exercise the GUI in order to exercise the system.

Two characteristics of the documents included in a Digital Library are relevant to testing:

• The documents in Digital Libraries are often semi-structured (Abiteboul et al., 2000) or
sparse. Many concepts in the documents are either optional and/or can occur multiple
times.

• Structural and semantic heterogeneity (Stempfhuber, 2003) originates when multiple
different document collections are integrated in a common Digital Library, either by
data integration or by means of federated search technology. Documents are struc-
tural heterogeneous when the metadata schemes of the documents differ, semantic het-
erogeneity is defined by the use of different knowledge organization systems such as
classifications or thesauri.

A Digital Library that integrates various different document collections is called a portal.
The trend towards integration is motivated by the intent to provide user of the Digital Library
with one place that allows an integrated search in a number of different collections.

While the data cleansing and integration methods used are main impact factors of the
quality of the integrated, initially structurally heterogeneous data, testing can verify that all
relevant information of a document was considered in data integration and that the results
of the data integration process match the expectation of both the experts for the original
and the integrated document schemas. Testing is highly relevant in the presence of semantic
heterogeneity. Methods that address semantic heterogeneity such as the use of cross con-
cordances in search, increase the complexity of an Information Retrieval system. Tests are
needed to verify that a system works as expected.

Typical Architectures of Digital Libraries

Figure 5 illustrates one possible architecture for an Information Retrieval system, the concepts
and system layers displayed in the figure and their relationships also apply to Digital Libraries
as examined here.

As Figure 5 illustrates, a Digital Library is a modular system that consists of a number of
different components. While MTCC is a responsibility-based approach and thus does not have
any information about the implementation of components, the existence of the components
is nevertheless relevant to testing:

• The Client Software determines how a user can interact with a system and which
interfaces are available for testing. The Digital Libraries considered in this thesis are
web applications whose interface is displayed using a web-browser.

• The Query-Processing Modules and the Result Processing Modules conduct transforma-
tions on the requests send to the IR system and on the results returned by the system.
Since these transformations can greatly influence the behavior of a Digital Library and
its ability to provide a user with relevant results, it is desirable that they are tested.

11



Figure 5: Architecture of an Information Retrieval system (Womser-Hacker, 2006)

• The Information System is the back-end layer that is responsible for the execution of a
query. It has to determine which documents are the most likely to be relevant for the
information need expressed in the query.

All the components listed above have great influence on the behavior of a Digital Library.
While the automated acceptance tests conducted with MTCC do not normally exercise the
components in isolation but rather the digital library as an integrated system, our discussion
of the components serves to exemplify the complexity of a Digital Library and thus the need
for tests.

An important aspect of a Digital Library is the information provided in the system. All
digital libraries are build on metadata that describes the information in the library. The
completeness and correctness of the metadata determines the usefulness of a Digital Library
to its users to a significant degree. Tests for a Digital Library therefore have to include the
option to test the metadata, for example to guard against unintended changes to metadata
entries during updates of the data.

1.2.2 Motivation for the MTCC Approach

In this section, we discuss our motivation for the MTCC approach, namely the deficits we
perceive in existing approaches to automate acceptance tests in the context of system families.

Model-Driven testing and specification-driven testing abstract from details of the imple-
mentation under tests and thus support the use of high-level test description languages or

12



models of tests. While the abstraction of implementation details allows for the high-level
modeling of tests instead of requiring tests to be programmed, the modeling tools used in
these approaches are still not suited to involve domain experts in the testing process.

Testing in the context of Software Product Lines provides methods and tools for the sys-
tematic treatment of the variability of various testees in the product-line and thus facilitates
the reuse of both tests and testing infrastructure. SPL-Testing assumes, however, that the
testees themselves were constructed in a product-line context and thus are based on a com-
mon set of core assets. This assumption does not hold for the system families of Digital
Libraries that are the subject of MTCC.

Approaches for the automation of acceptance tests support domain experts in the speci-
fication of tests that can be automatically executed on a system. However, such approaches
do not address testing in a system family context.

Model-Driven Testing

Model-Driven testing generates automated tests from a model of the system under test and
its environment (Blackburn et al., 2004). In order to apply Model-Driven testing to a system,
two preconditions have to be fulfilled:

• The models must support the identification of a functionality of the testee that is to be
tested and then generate inputs for the system that exercise the testee.

• The model must contain enough information about the intended behavior of the system
to decide whether a test executed on the system was successful or not.

When both these preconditions are met, tests can be automatically generated from models.
Human involvement is neither needed for the design of tests nor for their execution. If such
models would exist for all members of a software product-line, Model-Driven testing could
also be applied to a family of systems.

We argue that applicability of Model-Driven testing is highly dependent on the application
domain. More specific, Model-Driven testing is well suited for application domains where the
requirements can be captured and formalized in a way that supports the instantiation of an
oracle. Such an oracle has sufficient information about the expected behavior of a system to
decide whether the actual behavior of a system is correct with respect to the model.

Such an oracle for Digital Libraries would have to be able to decide whether a document
returned for a query is relevant to the information need expressed in the query. Since the
concepts of information need and relevance are vague and can thus not be formalized in a way
that supports an oracle to decide whether a query matches an information need, implementing
an automatic oracle with these capabilities is not practical.

Aside from the fact that a fully automated oracle for Digital Libraries can not be imple-
mented, another argument against Model-Driven testing is that domain experts cannot be
assumed to have the modeling skills needed for the approach, even if a pragmatic approach
and the reuse of existing design models is assumed (Bertolino et al., 2004).

Testing based on formal Requirements Models

One approach to involve domain experts in the design of tests is the definition of tests during
requirements analysis. In order to serve as tests, models used in requirement analysis, for
example use cases, have to be formalized and extended to include all information necessary
for automatic test execution.

A number of research efforts address different approaches to use functional requirements
models for testing, an overview of the field can be found in Gutierrez et al. (2006).

13



Use case models are frequently used as a means of test description. Since use cases
are not testable (Binder, 1999) models, several of the approaches investigate extensions and
formalizations of use cases and the transformation of the resulting models into executable
tests.

Two consequences arise form the use of formalized requirements models that lead us to
argue that such approaches are not suited for the goals of this thesis:

• Since formal models are needed to express tests, users creating the models need formal
modeling skills. It can therefore not be assumed that domain experts without modeling
skills will be able to model tests.

• Since tests are modeled during requirements analysis and depend on artifacts and meth-
ods from this phase of the software development process, it is unclear how requirements
models would have to be adapted for testing.

Testing of Software Product Lines

The Software Product Line approach to software engineering includes technical as well as
organizational practices that facilitate the systematic development of products in a product-
line context. Meister Meister (2006b) defines Software Product Lines as families of products
that were explicitly designed and realized to support the derivation of new products with
variable elements.

The application of Software Product Line Engineering methods offers potentially many
advantages for testing, but also faces challenges specific to the domain. Software Product
Line Testing (SPLT) is an independent field of research in software engineering (Geppert
et al., 2004a, 2005). MTCC is not a SPLT approach — SPLT is not well suited to achieve
the goals of this thesis for two reasons:

• Most SPLT approaches assume that the systems under tests are themselves products
of a SPL and that therefore a formal description of the variability of the different
members of the product-line exists. It is also frequently assumed that the various
systems under test are derived from a common set of core assets and thus share parts
of their implementation. These assumptions prove to be problematic when they are not
met, as is the case for the system families of Digital Libraries that are investigated in
this thesis. Reuse for these systems is usually opportunistic.

• The focus of many SPLT approaches lies on the generation of tests based on a formal
description of the variability within the product line (Geppert et al., 2004b). This does
not allow for the inclusion of domain experts in the testing process. Approaches that
extend use case notation (Bertolino & Gnesi, 2003b) both to reflect the variability of
a product line and to support the modeling of executable tests suffer from the prob-
lem that such an extended notation is no longer suitable for domain experts without
modeling skills.

We conclude that SPLT aims for the systematic and automated testing of a product-line
but the approach is not suited for our scenario, in which different Digital Libraries form a
system family, not a product-line.

Automation of Acceptance Tests

Approaches for the automation of acceptance tests fall into two categories: Those that aim
for the automation of the interaction between a user and the GUI of the testee and those

14



that try to abstract from the GUI and base tests on a notation or model that expresses what
is to be tested, not how it is to be tested.

The most basic approach to acceptance tests is the Capture-replay approach (Hicinbothom
& Zachary, 1993). Capture-replay records the interaction between a user and the GUI of the
system under test. When a test is executed, the actions of the user on the GUI are replayed
and the behavior of the system is assessed based on the recorded behavior. Capture-replay
tests are tightly coupled to the specifics of the GUI of the system under test, changes to the
GUI often invalidate recorded tests, which than have to be re-recorded.

The fragility of tests created using the capture replay approach as well as other shortcom-
ings have lead to the development of methods for the automation of acceptance tests that
abstract from the GUI of the tested system.

Key Words and Actions Words (Blackburn et al., 2002) are textual representations of
actions on the GUI or steps in a workflow. Key Words and Action Words may represent
fairly low-level actions, such as the filling out of forms, or higher-level actions, such as the
placing of an order. Besides manipulating the SUT, key words and actions words also exist
to verify the state of the SUT.

An even higher degree of abstraction is provided by a category of tools for the automation
of acceptance tests that do not present a test as a sequence of actions on the GUI but allow the
declarative specification of tests where only the inputs and expected results of a workflow are
specified. FIT (Mugridge & Cunningham, 2005b) allows for tests both based on actions taken
on the testee and declarative tests. All FIT tests are represented as tables, tests can be edited
by domain experts as long as they are familiar with the general concepts of spreadsheets.

Regarding the goals of this thesis, these established approaches for the automation of
acceptance tests exhibit the following deficits:

• The different approaches are not based on internal models of the concepts of the ap-
plication domain. The approaches are either based on an abstraction of the GUI or, in
the case of FIT, use generic models based on tables. The lack of formal models on the
function level hinders the transformation of test models and leads to the coupling with
implementation details.

• The lack of models — as opposed to code or spreadsheets — is adverse to the reuse of test
models for different systems within a system family. Without models of a sufficiently
high level of abstraction, the functionality that is exercised by a test and thus must be
present for all systems that are to be tested cannot be determined.

Given that Model-Driven testing relies on complex formal models that are not usable
by domain experts and that most existing approaches to acceptance test automation are
not build on a formal modeling approach, this work proposes the use of simple, test-specific
models that support the construction of tests, not their automatic selection, generation and
assessment.

1.2.3 Hypothesis and Research Question

The hypothesis underlying this work is that the model-based abstraction of tests and tested
systems and the instantiation of an editor for acceptance tests facilitates the inclusion of
domain experts in the construction of tests for the members of a system family.

We argue further that the generation of executable test code is feasible from the editor-
constructed Test Configurations and that the quality of a tested system is improved because
of the increased number of tests relevant to the users of the system. Further the necessary
resources for test execution are lowered since test models can be automatically and repeatedly

15



leveraged to generate and execute test code to exercise the testee. We consider the applica-
tion domain of Digital Libraries, more precisely portals for scientific information, primarily
bibliographic data from the social sciences.

In order to evaluate our hypothesis we present the MTCC approach. MTCC is imple-
mented for a system family of four systems. MTCC uses feature models to represent the
Services of the tested systems both on the level of the system family and on the level of
individual systems. Actions and checks one these Services are also represented as feature
models.

MTCC is based on a set of basic assumptions regarding the role of testing and the software
development process:

• Automated, Model-Driven acceptance tests have a positive influence on the quality of a
number of systems within a system family. Such automated tests facilitate continuous
testing of systems with minimal expenditure of resources and support the formalization
of existing requirements as tests.

• Within the examined application domain, there exists a system family that consists of a
number of systems with similar requirements. The requirements shared by the various
systems can be formalized as tests.

• Requirements for a system as well as the tests derived from these requirements can
be decoupled from the specific implementation that is to be tested. Tests as well the
functionality exercised by the tests can be expressed by abstract, formal models.

• The software development is characterized by different groups of persons with different
roles in the software development process. The groups differ in their required skills
and knowledge. While domain engineers are familiar with implementation technologies,
domain experts have detailed knowledge about the functional requirements of a system.

• The quality of a software system under development benefits from the inclusion of
domain experts. This is particularly true for the information retrieval domain where
the inherent vagueness of concepts like relevance or information need necessitate human
judgement.

We pursue the goal for MTCC to realize activities and artifacts that support the mod-
eling of automated acceptance tests for systems in the context of a system family of Digital
Libraries.

This goal leads to the basic question of our thesis: How can tests and systems under
tests from a system family of Digital Libraries be represented in a way that supports (1) the
instantiation of an editor for tests and thus (2) the construction of tests by domain experts
and (3) the generation of test code?

1.3 Model-Driven Test Case Construction

We now sketch the MTCC approach (Baerisch, 2007), its underlying process and the artifacts
used.

The main hypothesis underlying MTCC is that the use of formal models supports both
the generation of test code and the execution of tests and the construction of tests by domain
experts. Formal models can represent functions and functional requirements within the appli-
cation domain while abstracting from implementation details. This allows for the high-level
specification of tests and the decoupling from the specific interfaces used to exercise a given
testee.

16



A precondition for the use of models to test software systems are transformations that
support the generation of executable test code from the models.

MTCC stipulates a process that includes the analysis of a system family for test-relevant
features both on the level of an individual system within the system family and on the level
of the system family itself. This process is based on the foundations of domain engineer-
ing (Czarnecki, 2005; Eichmann, 1997).

The contribution of MTCC to the field of testing lies in the approach itself as well as
in the implementation used for evaluation and in the results of the analysis for test-relevant
features within the application domain.

In order to support domain experts in the construction of tests, allow the reuse of con-
figured tests for different systems and support the generation of test code, MTCC includes
a number of different activities and artifacts on the level of systems and the system family
that we discuss in the remainder of this chapter. Before the MTCC testing process is covered
however we discuss the different categories of tests that MTCC must support and how the
apply to Digital Libraries.

1.3.1 MTCC Tests Categories for Digital Libraries

MTCC supports three categories of tests. Technical tests verify that a system can be executed
without obvious errors, such as abnormal terminations. Functional tests verify that usage
scenarios can be executed as expected by domain experts. Information Retrieval Tests are
specific the the Digital Libraries Domain. These Tests verify that the SUT is capable to
identify and return relevant documents for an information need. For the Digital Libraries,
the categories above cover the following aspects:

• Technical Tests for Digital Libraries verify that no obvious errors like crashes occur.
These tests also verify that the automated testing system itself is functional and that
all operations necessary to execute the testee can be executed.

• Functional Tests verify that the functionality of a Digital Library conforms to the
expectations of domain experts and that the metadata such a system is complete and
correct. The following scenarios would be covered by functional tests.

– A search for a known document returns the expected document, the metadata for
the document is complete and correct.

– The list of results can be manipulated as expected. Changes to the ordering of the
list for example return the list in the right order.

• Information Retrieval Tests a kind of functional test that are specific for digital libraries.
This tests verifies that an information need, expressed as a query, can be satisfied
by a SUT. In MTCC, Information Retrieval Tests are are represented as Information
Retrieval validation scenarios for which user-specified Recall or Precision values have
to be reached.

MTCC supports system-centric Information Retrieval tests (Manning et al., 2008) that
consider individual queries and the results returned for that queries. User-centric tests are
not supported because MTCC abstracts from the specifics of the GUI of the SUT.

A test in MTCC is successful if all Test Steps specified for the test can be executed on
the SUT and if the behavior of the SUT conforms to all assertions specified in the tests. A
tests fails if the execution of any Test Step instance is not possible for technical reasons or if
the system behavior deviates from the behavior expected from the system and expressed in
the test.

17



1.3.2 Overview of the MTCC Approach

Figure 6 illustrates the process of modeling a test in MTCC from the perspective of a do-
main expert. The figure also illustrates the generation of test code and the execution of the
generated test cases by the test runner.

In a first step, the domain expert uses the editor to construct a Test Configuration. Such
a Test Configuration is a fully specified model for a test. The Test Configuration then serves
as input for the Test Generator. This is a code generator that outputs a test case. The test
runner executes this test case on the system under test.

Editor Test Generator
«Generator»

SUTTest Case
« Generated»

Test Configuration
«Model»

Domain 
Expert

specifies is transformed 
into

writesreadswritesuses
executes

tests

represents testable features

Test Adapter wraps

Test Runner
«COTS»

Figure 6: Overview of the test construction process

The editor facilitates the construction of tests by domain experts without programming
or modeling skills. It represents a model of the testee and the available tests in a simple GUI
and abstracts from implementation details as they would be needed to manually implement
a test case. The editor only supports the construction of those tests that can in fact be
executed on the system represented by the models used by the editor. The editor supports
the test construction process by partitioning a test into a number of Test Steps. Each Test
Step represents a single action or assertion that a user should be familiar with, from his or
her past interaction with the system under test itself.

The editor displays the possible configurations for each Test Step. Since the various sys-
tems in the system family differ with respect to their test-relevant features and supported
interactions, Test Steps for the same actions will have differences in their possible configura-
tions. If for instance one Digital Library supports more options for searching than another,
these differences will manifest themselves into corresponding differences, for the Test Steps
representing the sending of a query to the system. As the editor only displays those Test Steps
that can be executed on a system, it also only displays legal configurations for the available
Test Steps.

Figure 7 displays a screen shot of the editor. The Test Steps of the current tests are
displayed in the left half of the screen, the GUI elements that represent the possible configu-
rations of the currently selected Test Step are displayed in the right part of the screen.

A Test Configuration that has been constructed with the editor is an abstract model, it
cannot be used to exercise and verify a testee. The transformation of the Test Configuration
into an executable Test Step is a separate step in the MTCC testing process.

The Test Generator transforms the Test Configuration into a test case. A test case is an
executable test that can be executed by the test runner. Because test cases for different
test runners or testing frameworks can generated, COTS (Commercial of the shelf) (Morisio
& Torchiano, 2002) testing frameworks or test execution systems developed by the testing
organization can be used.

The test runner is not a MTCC artifact but a COTS software system that is used by
MTCC. MTCC can generate code for different test runners depending on the one that is best

18



Figure 7: Representation of Test Steps and their parameterization in the MTCC editor

suited for the system family investigated by MTCC. The execution of the generated tests
is independent from the MTCC testing process, when and how often tests are executed is
determined by the testing regime in place for the SUT, not by the MTCC approach.

Since the Test Configuration is an abstract model, it does not include information about
the implementation of the system under test. MTCC provides this information in the Test
Adapter, a library that is used by the test script and the test runner to exercise the SUT. The
Test Adapter encapsulates implementation details for each Test Step supported by the system
under test. MTCC uses a different Test Adapter for each pair of SUT and test runner.

The last step, the execution of tests, is equal to test execution in conventional approaches
to test automation and decoupled from MTCC both in terms of the underlying technology
and their organization.

1.3.3 Phases and Activities in the MTCC

From a users point of view, the test construction and test execution process in MTCC can
be regarded as two user-visible phases: (1) The modeling of abstract test models and (2) the
generation of test code and the subsequent execution of these test cases. Such a user-centered
view on testing, however, does not cover all activities necessary for testing with MTCC. The
user-visible phases depend on the existence of a modeling language for the description of
tests and the availability of infrastructure that allows for the creation, maintenance, and
transformation of these models.

The MTCC testing process structures the activities above and those needed to implement
the necessary infrastructure for testing in three phases, each of which is defined by a number
of activities.

Figure 8 illustrates the different phases and activities of the MTCC testing process.

We call the test construction and execution process Test Engineering. The focus of Test
Engineering is the development of tests for one specific system. The activities necessary for
the realization of the infrastructure and the modeling languages at the system family and
system level are part of Domain Engineering or Application Engineering.

19



Domain
Engineering

Application
Engineering

Test
Modeling

Test Code
Generation

Test
Execution

Test
Engineering

Service
Instantiation

Service
Analysis

Teststep
Analysis

Behavior
Modelling

MTCC Testing Process

Service
Modeling

Teststep
Modeling

Adapter
Development

Test
Reporting

Figure 8: Phases and activities of the MTCC testing process

• Domain Engineering considers all SUTs in the tested system family. Hasselbring (2002a)
defines Domain Engineering in the context of component-based software engineering as
an activity for building reusable components, whereby the systematic creation of domain
models and architectures is addressed. This definition can also be applied to the testing
models and infrastructure used in MTCC. The goal of the Domain Engineering phase
in MTCC is the analysis and modeling of the Services of the system family that are
relevant for testing and of the Test Steps that are needed to interact with these Services.
A Service in MTCC is a limited aspect of the functionality of a system in a certain
Context. A search form that can be used to submit queries to a Digital Library and
the list of potentially relevant documents returned by the system would be examples
of Services. Test Steps represent actions that can be taken on a Service for example
counting the results in a list of documents or changing the ordering of such a list.

• The goal of Application Engineering is the representation of one specific system from
the system family considered in Domain Engineering. MTCC represents testees as a set
of Service instances that are arranged in Contexts. A Service instance is a specialization
of one of the Services identified and modeled during Domain Engineering. For the
search form Service described above, a Service instance would describe the exact fields
and operators available for one particular search form. A Context in MTCC is a set of
Services, each of which can be independently exercised. The result overview presented
after a search by a Digital Library is a Context that includes Services like the results list
for the search, information about the search and links to other pages of the application.
The behavior modeling activity of Application Engineering describes how exercising the
Services of a system affects its currently active Context. For example, when a search
is submitted to a system, the current Context of the system changes from a Context
containing an instance of the search Service to a context with a Service instance that
represents a list of result documents.

Adapter development is the realization of a code library that is used by the test runner
and the generated test cases to interface with the system under test.

• The purpose of Test Engineering is to construct tests based on the models implemented
in Domain Engineering and Application Engineering. Test Engineering consists of two
activities, Test Modeling and Test Code Generation. Test Modeling is done by domain
experts using an editor that is instantiated based on the Service and behavior models
for system realized in Application Engineering and the Test Steps realized in Domain
Engineering. The editor uses standard GUI-widgets to represent the possible Test Steps
that can be executed on the SUT at any given time as well as the legal configurations
for this Test Steps. The result of Test Modeling is set of Test Configurations, high-level
models of tests. These high level models are transformed into executable test cases
during test code generation.

20



• The final activities of testing, Test Execution and Test Reporting, are not part of the
MTCC approach. Once test cases are generated, test execution is no different from any
other automated testing regime. MTCC does not assume that a particular test runner
or a specific process is employed.

1.3.4 Modeling of Systems and Tests in MTCC

Figure 9 illustrates the models used in the MTCC test process, the interaction of the different
roles in the development process with the models as well as the various artifacts that use the
models.

Test Runner
«COTS»

Testlogs

writes

Model Composer
«Generator»

models

generates

represents Control Flow

Application State Model
«Model»

reads

composition of

composition of
composition of

Domain Test Model
«Domain Model»

Test Configuration
«Model»

Application Feature Model
«Model»

Test Generator
«Generator»

Domain Feature Model
«Domain Model»

Application Test Model
«Model»

Test Case
«Generated»

Test Adapter
«Library»

Domain-
Engineer

Domain-
Expert

models

models

reads

specializes

reads

configuration of

uses

reads

Editor

SUT

executes

tests

edits

instances generates

represents Features

defines GUI for

uses

Figure 9: Models and roles in MTCC

The construction of Test Configuration-instances using the editor is based on the Appli-
cation Test Model, a feature model (Kang et al., 1990) that describes all tests that can be
executed on the testee represented by the model and the valid configurations for these tests.

The Domain Feature Model describes all Test Steps that are relevant for the system family.
Each Test Step references a Service that is exercised by the Test Step and includes a description
of the parameterization of the Test Step. The Domain Feature Model is collectively realized by
domain experts and domain engineers. The model is realized before the testing of a system
starts but incremental work on the models continues during the whole testing process. The
model can be described as a catalog of test-relevant actions that can be taken on the Services
of the systems and thus the systems themselves in the system family under consideration.

Modeling of SUTs

The Domain Feature Model represents all test-relevant Services for the system family. Each
Service is represented as a feature model that formalizes the variability between different
instances of the Services. The focus of the Domain Feature Model is on the representation
of the testable interface of each Service In contrast to the utilization of feature models in
Generative Programming (Czarnecki & Eisenecker, 2000), feature models in MTCC are used
in a descriptive way to represent an existing system, not in a prescriptive way to describe a
system to be built. The Domain Feature Model is realized by the domain engineer and the
domain expert based on the Test Steps identified for the Domain Test Model.

The Application Feature Model is a specialization (Czarnecki et al., 2005b,a) of the Domain
Feature Model. It represents the specific Service instances of one system from the considered

21



system family as a feature model. The Application Feature Model and Application Test Model
are realized by a domain engineer. Since MTCC assumes that domain engineers have the
necessary skills to realize this model without special tool support, MTCC does not postulate
the use of an editor for the realization of this model.

Test Modeling

The Application Test Model is a composition of the Domain Test Model, the Application State
Model, and the Application Feature Model.

Each of the Test Steps represented in the Domain Test Model, contains references to the
Service instance that is exercised by this Test Step. The use of these references decouples the
Test Steps from the Services and supports the use of a single Test Step for multiple different
instances of Services. In order to instantiate the Application Test Model, these references are
resolved and Test Step instances are created for each Service in the Application Feature Model.
Possible sequences of Test Step instances are derived from the Application State Model that
represents the dynamic behavior of the SUT. The Application Test Model is an integrated
representation of all tests that can be executed on a given system, the model is optimized for
use by the editor to support a domain expert in the construction of tests.

The result of test modeling by a domain expert using the editor is a Test Configuration. A
Test Configuration is a sequence of configured (Czarnecki et al., 2005b,a) Test Step instances
as defined by the Application Test Model. Each Test Step instance is a feature model without
any remaining variability.

Test Modeling for Digital Libraries

After the introduction of the basic MTCC models above, we now discuss how tests for Digital
Libraries and Information Retrieval systems in general can be expressed. We focus on the
representation of the quality attributes of an Information Retrieval system by MTCC.

For the purpose of testing Digital Libraries, the particular quality attributes of such
systems must be considered. One means to verify the ability of an Information Retrieval
system to return relevant results for an information need is an evaluation based on specialized
document collections and predefined information needs with given relevance assessments.
Given such data, the information needs can be used with the system, and the IR system can
be evaluated based on metrics for retrieval evaluation such as Recall/Precision (Baeza-Yates
& Ribeiro-Neto, 1999; Manning et al., 2008).

In addition to the effectiveness of the Information Retrieval aspect of a Digital Library,
the quality of such a system as a whole is also determined by the quality of the information
in the system (Mandl, 2008; Quix, 2003) and by its usability, especially the degree to which
it fulfills the expectations of its users (Thurmeier, 2007; Heinold, 2007).

MTCC does not include any functionality to evaluate the usability of a system nor do we
consider any extension or changes to the approach to add such functionality as useful. We
argue that usability testing conflicts with the purpose of MTCC since MTCC is a Model-
Driven approach that explicitly abstracts from the specifics of the user interface. In contrast
to usability testing, the ability of an IR system to return relevant results for an information
need as well as the quality of the information provided by the system can be evaluated within
the constraints of the MTCC approach. Information needs are expressed as Test Steps that
interact with the testee, for example by sending a query to the system. Recall, precision and
data quality can be evaluated by Test Steps that examine the results returned by the tested
system.

If the quality of IR for a system is to be evaluated with an evaluation collection, it is
necessary for this collection to be part of the information contained in the Digital Library. The

22



corpus must be searchable in isolation from all other documents in the Digital Library. When
the effects of additions to the retrieval process such as the utilization of cross-concordances
are to be evaluated, whether these additions are used must be controllable on a query basis.
Both of the assumptions are not specific to testing with MTCC, they also apply for manual
testing and other forms of retrieval evaluation.

The following steps illustrate how MTCC Test Steps can be employed for an Information
Retrieval evaluation:

1. The set of documents from which the Information Retrieval system may select relevant
documents is limited to those documents in the corpus used for evaluation.

2. The information need is expressed as a query. This encoded information need is sent
to the system.

3. The documents that are returned by the IR system as the most likely to fulfill the
information need are recorded. They are then compared with existing relevance as-
sessments for the document collection in a Information Retrieval evaluation (Manning
et al., 2008).

4. Metrics of the retrieval performance of the system are calculated based on the results
of the previous step.

MTCC provides a number of specialized Test Steps for the evaluation of IR effectiveness,
for example to record the IDs of the documents in a list of results and to calculate recall and
precision values.

1.3.5 Test Code Generation

Since the Test Configuration models specified in the test modeling phase abstract from the im-
plementation specifics of a system under test and from the test runner used for test execution,
they are not suitable by themselves to be executed.

The purpose of the Test Generator is the transformation of Test Configuration models into
tests that can be executed by the test runner. MTCC uses a simple code generation approach
based on the Templates and Filters Stahl & Völter (2006) method. Generated tests use the
routines in the Test Adapter library to actually execute a test. Figure 10 gives an overview
of the test generation process in MTCC.

Test Generator
«Generator»

SUTTest Case
« Generated»

Test Configuration
«Model»

Test Runner

Templates

uses

Test Adaptergenerates
reads

encapsulates
implementation

details

exercises

uses

executed
by

is transformed
into

Figure 10: Test code generation in MTCC

23



In order to allow the generation of test cases from abstract Test Configuration models and
the execution of the generated test scripts on a SUT, the templates used by the Test Generator
and the Test Adapter must provide the following information about the TestRunner and the
SUT:

• Information about the interface by which the SUT will be exercised. Testees may
be exercised via Web Services, HTML/Javascript interfaces, GUIs, or other interface
concepts. In order to execute a test a mapping is needed for all Test Step instances to
the appropriate interactions with the interface of the SUT. In MTCC, this information
is provided at runtime by the Test Adapter.

• Information about the structure and implementation of the test cases, for example,
about the xUnit implementation used. This information is provided by the Templates.

MTCC utilizes a different Template and Test Adapter for each pair of TestRunner and
SUT. Template and Test Adapter are implemented in the Application Engineering Phase.
By concentrating all implementation details necessary for test execution on these artifacts,
changes to the interface of the testee are decoupled from the test models.

1.3.6 Test Execution

Test execution is not part of the MTCC approach insofar as no particular test regime or test
execution infrastructure is required or assumed. The Test Runner is not an artifact of the
MTCC approach but COTS software. The only condition that a test runner must meet to
be usable in the context of MTCC is that it must be capable of exercising the GUI and that
the generation of test code for the test runner must be possible.

The decision not to implement a specific test runner for MTCC was made because a great
number of COTS test runners already exists. It is unlikely that a test runner specific to
MTCC would be more effective or efficient than existing systems, especially since such a test
runner would need to replicate much more functionality than is already implemented in such
systems.

S1:SUT

T3:Test Case
« Generated»

TR2:Test Runner

T2:Test Case
« Generated»

TR1:Test Runner

T4:Test Case
«Manual»

T1:Test Case
« Generated»

S2:SUT

TC1:Test Configuration
«Model»

Figure 11: Execution of MTCC tests by multiple test runners is a system family context

24



The fact that the MTCC approach can be used with various test runners is beneficial
to both the effectiveness and efficiency of testing in multiple ways. Figure 11 illustrates a
scenario where four test cases are executed on the systems by two different test runners.

• Test scripts generated by the Test Generator can be executed in combination with test
cases that are realized by hand. This allows the integration of MTCC into an already
established test regime since test cases can be generated for the test runner already
in use. The same reporting and bug-tracking tools can be used for MTCC tests and
regular tests.

• A Test Configuration can be used to generate test cases for different test runners. Such
a scenario can arise when one test runner exercise the SUT via the GUI while another
uses the API.

1.4 Structure of the Thesis

This thesis consists of four parts. Part I introduces the foundations of our work and gives
an overview of relevant fields of research. Part II discusses the MTCC approach and its
application to digital libraries in detail, Part III introduces the MTCC validation. Part IV
concludes.

Part I introduces the fields relevant to MTCC. Chapter 2 discusses the role of testing in
software quality assurance. The purpose of testing and various testing methods are consid-
ered, special focus is given to acceptance tests and test automation. Chapter 3 discusses the
role and application of models in software engineering. Based on the definition of models
as formal abstraction with a specific purpose used in the context of this thesis, we intro-
duce Model-Driven development and Model-Driven testing. Chapter 4 considers software
product-lines and software families. The concept of variability is introduced and feature
models are explored as a means for the systematic treatment of variability. The consequences
that software families and software product-lines have on the testing process are examined.
Chapter 5 introduces Digital Libraries as the application domain of MTCC. The purpose of
Digital Libraries as a specialized information retrieval system is discussed. The meaning of
the concepts information need and relevance for the definition of quality in the Information
Retrieval context is discussed in relation with its implications for testing.

Part II of this thesis presents the MTCC approach and its underlying process in detail.
The models and artifacts that are utilized in the context of MTCC are described. Chapter 6
gives an introduction to the testing process with MTCC and the roles relevant to this pro-
cess. The activities of domain engineers and domain experts during the different phases of
test construction and the purpose and interdependencies of the various phases are discussed.
Chapter 7 gives a detailed treatment of the various models used in MTCC. The derivation
of system-Level models from system family-level models is examined, as is the composition
of models used for the representation of systems with those representing the Test Steps rel-
evant for the system family. Chapter 8 examines the question how the editor facilitates the
MTCC models to support the construction of tests. The representation of test models using
a graphical user interface is examined. Further topics of the chapter include the generation
of test code and the reuse of Test Configurations for different systems within a system family.
In Chapter 9 we present the application of the MTCC modeling approach to a system family
of Digital Libraries. The members of the Digital Library are introduced and the Services and
Test Steps relevant for testing the system family are examined.

In Part III, we present the evaluation of MTCC and discuss related work. Chapter 10 and
Chapter 11 examine the MTCC plan and the conducting of the MTCC validation. Based on
the GQM approach, we derive questions that verify both the plausibility of various claims
on the approach and its usability. The validation process and its results are introduced, the

25



result are discussed in terms of their consequences with respect to our hypothesis. Chap-
ter 12 discusses related work. We analyze the relation of other approaches to acceptance test
automation or testing in a system family context to MTCC and point out similarities and
differences.

Chapter 13 in Part IV summarizes the results of this thesis and discusses out contributions.
Chapter 14 concludes and gives an outlook of future work.

1.5 Chapter Summary

High quality software depends on the involvement of domain experts in the software de-
velopment process. This involvement is especially significant for Digital Libraries. Digital
Libraries are Information Retrieval Systems whose quality is in part defined by the degree to
which they can satisfy the vague information need of an user. One way to involve domain
experts in the software development is acceptance testing. In automated acceptance testing,
domain experts specify automated tests in a language understandable for non-programmers.
Automated testing facilitates more efficient testing and leads to more repeatable results than
manual testing.

MTCC is an approach that facilitates automated acceptance testing in a system family of
Digital Libraries. MTCC can express technical tests that verify that a system works without
obvious errors, functional tests that allow the testing of a SUT against test scenarios and
information retrieval tests that compare the result returned by a Digital Library against a
collection of documents known to be relevant.

A system family is a set of systems that are defined by their common properties. In
contrast to Software Product Lines, the members of system families are not based on a
common set of Core Assets that can be leveraged to support testing. MTCC addresses the
variability in a system family by representing the testable features of the members of a system
family with feature models. Feature models are used to instantiate an editor that supports
the construction of automated tests by domain experts.

The MTCC process consists of three phases: Domain Engineering addresses the analysis
and modeling of the common and variable test-relevant features of a system family. In
Application Engineering, models for specific systems are derived from the domain level system
and the testing infrastructure for the system is implemented. Abstract tests representations
are constructed by domain experts in Test Engineering. Code generation is used to transform
these test representations into executable test cases.

26



Part I

Foundations

27





Chapter 2

Testing of Software

Testing is defined as the execution of a system with the purpose of finding faults in the system.
It encompasses a wide range of different approaches with different goals and motivations. In
this chapter, we discuss both the role of testing for software quality and the role of MTCC
in the field of testing. We start with an examination of the role of testing in Section 2.1.

In order to be more efficient and effective, often, various parts of the testing process are
automated. The extent, to which testing is automated, varies with different approaches,
but the execution of tests implemented as test scripts and the recording of test results form
the core of test automation. Section 1.1.4 examined the goals of test automation and the
challenges that must be met to establish an automated testing regime.

Acceptance tests involve domain experts in system testing. Section 2.2 motivates the
involvement of domain experts into the testing process and discusses acceptance tests and
their automation.

The quality of a test is defined by its ability to find faults. Tests must therefore be based
on the requirements as defined by the domain experts for a system and must be able the assess
a testee based on this requirements. Section 2.3 discusses the meaning of quality for tests
and test software and applies the quality attributes of software engineering to test software.

2.1 Testing and Software Quality

Testing is a method of quality assurance that verifies the behavior of a system against a set
of requirements that are expressed as tests. The notion of quality and its relation to the
requirements of a system, the specifications that represent these requirements and the needs
of the users of a system are central to testing.

If quality is defined as the capability of a system to fulfill the requirements of its users or
customers (Juran & Gryna, 1988), the question must be considered how these requirements
can be captured and formalized as tests. One source of requirements are domain experts.
Domain experts are customers or users of a system who are familiar with the functions that
the systems needs to fulfill and who are often experienced in the use of similar systems.

The direct and continuous involvement of domain expert in the software development pro-
cess as a methodology belongs to the group of agile approaches to software development (Beck
& Andres, 2004) but is considered as part of other approaches to software development as
well (Evans, 2004).

One method to make the knowledge of domain experts available for the software develop-
ment process is the definition of acceptance tests. In acceptance tests, domain experts either
test a system themselves or specify the functionality to be tested and the conditions for the
success of a test in a format that is either suitable for execution by a human tester or for
execution by an automated testing system.

29



One purpose of test automation is to allow the execution of tests without human involve-
ment. Automation is desirable both for economic reasons and to allow for greater effectiveness
in testing.

2.1.1 Software Quality

Juran & Gryna (1988) defines quality as fitness for use. This definition raises a number of
questions: fitness for what use? What constitutes fitness? How can it be determined, if and to
what degree a system is fit to be used? In order to evaluate the fitness of a system, some sort
of specification is needed. A specification is a document that describes the requirements for a
system. The quality of a system can also be defined as the degree to which its implementation
complies with its specification. The specification must therefore reflect the requirements for
a system.

Functional as well as non-functional quality attributes are relevant to software systems.
Software engineering defines a number of methods that serve the purpose of creating a high-
quality products or evaluating its quality.

Different Notions of Quality

Two questions have to be addressed in the discussion of quality assurance. At first, quality
has to be defined. Based on this definition, methods and tools have to be identified that allow
for the evaluation of quality and thereby provide a prerequisite to increase quality.

Two basic notions of quality exist (Reeves & Bednar, 1994): The view that quality is the
adherence to a specification or that quality is the degree to which a product or Service is useful
to its users or customers. The definition of quality given by Crosby (1979) is exemplary for
the former view on quality while Edwards (1968) and Juran & Gryna (1988) are proponents
of the latter. We call these different notions of quality specification-centric and user-centric.

Applied to the field of software engineering, the specification-centric and the user-centric
notions of quality are reconciled (Kan, 2002) when the specification of a system represents
the needs of its users completely and correctly. The quality of a specification is instrumental
for the quality of the system built based on this specification. The quality of a specification is
determined by the degree to which it reflects the users requirements, needs, and to a certain
degree wishes. In order to build high-quality systems, both high-quality specifications and
ways to compare a specification and the implemented systems are needed.

Validation is the activity to ensure that the right things are done, that is, a specification
represents the requirements of a system. Verification aims to ensure that things are done right
and that a system reflects all points of the specification. Testing is foremost a verification
activity. It systematically compares a specification with a system; tests are examples for the
expected behavior of the system defined by the specification.

We argue that tests can also serve as a partial specification, a specification by exam-
ple (Fowler, 2006), in particular in situations where the actual specifications are incomplete
or missing. In such situations, tests cannot be derived from specifications but must be derived
from the requirements of a system and must be specified by users or customers. It follows
that such acceptance testing by users who are experts for the subject domain is a validation
activity.

Attributes of Software Quality

The concept of software quality has multiple dimensions or attributes. The ISO standard
9126-1 (for Standardization, 2001) defines the quality of software along six attributes: Func-
tionality, Reliability, Usability, Efficiency, Maintainability, and Portability.

30



We distinguish between functional and non-functional quality as well as between user-
observable quality and not user-observable quality (McConnell, 2004):

• Functional quality is the capability of a system to correctly fulfill a specific task. Non-
functional quality attributes describe general conditions that the system must meet, for
instance limits to the time and resources used or the reliability of a system. The final
five of the six ISO quality attributes given above describe the non-functional qualities
of a system.

• The user-observable quality of a system includes those attributes that effect a user
working with the system. User-observable quality subsumes both functional and non-
functional quality attributes but excludes quality attributes such as maintainability or
server-side resource usage that are not visible to a user.

The notion of non-user-observable quality appears contradictory based on our definition
that quality is, either direct or indirect, the degree to which a system meets the require-
ments of its users. It is indeed the case that quality attributes like maintainability are not
visible to a user and are yet crucial for the sustained quality of a system. The existence of
non-user-observable quality attributes is one reason why acceptance tests are only a partial
specification. We argue that this limitation does not challenge the suitability of tests as a
specification for the user-observable quality attributes

Methods of Quality Assurance

There is no method or tool in software engineering that can serve as a silver bullet (Brooks,
1987) and guarantee high quality throughout the whole software development process and
for all products. As a consequence, software engineering employs a bundle of techniques that
support the construction of high-quality artifacts or evaluate the quality of existing products
and processes.

Among the measures that directly influence the quality of a product under develop-
ment are methodologies and software process models, for instance the V-Model (Broy &
Rausch, 2005), the Rational Unified Process(Kruchten, 2003; Larman, 2004) or agile meth-
ods (Beck & Andres, 2004) and the utilization of established best practices like design pat-
terns (Buschmann et al., 1996; Gamma et al., 1995) as well as the use of tools that support
the software development process like version control systems (Pilato et al., 2004).

While the measures above address the creation and increase of quality in the product
development process, complementary means are necessary to verify the quality of a product
and identify quality deficits. Testing is one means for this purpose.

2.1.2 Definition of Testing

A basic question about the role of testing is whether it serves to ascertain the quality of
a product or identify faults. Fault-oriented testing and conformance-oriented testing are
contradictory views on the role of testing and give rise to the question exactly how testing
benefits the quality of a software system and what characterizes good testing.

Conformance and Fault-oriented testing

Conformance-oriented testing is based on the assumption that the purpose of testing lies
in proving or at least demonstrating the quality of product. Approaches that advance a
conformance-oriented view of testing usually place testing towards the end of the develop-
ment of a system or subsystem, for example, at the end of a naive implementation for the
waterfall (Royce, 1987) model of software development.

31



The focus of fault-oriented testing, in contrast, lies on the identification of faults in the
system. Since testing can never prove the absence of faults (Dijkstra, 1969), the fault-oriented
view on testing only regards those tests as useful that find faults (Myers et al., 2004).

The current view on testing is a compromise of the conformance-oriented and the fault-
oriented view. While the notion that correctness cannot be proven by testing is not challenged,
the usefulness of tests that do not find faults is also accepted (Chen, 2005). While, for
instance, regression tests are not expected to find faults in a system, they provide an assurance
against faults that were introduced in existing systems.

While tests cannot prove the absence of faults, high test coverage of a code base both
increases the probability to find faults and allows for some degree of confidence about the
likely faultiness of a system or subsystem.

Beside the fault-oriented and conformance-oriented views on testing, yet another view is
held by the Test Driven Development (Beck, 2002; Janzen & Saiedian, 2005) approach. In
TDD, tests serve to clarify the requirements that exist for a software and ensure that the
intended behavior of an implementation artifact matches its actual behavior. The goal of
testing in TDD is not to find faults but to guide the development of a system. ”One of
the ironies of TDD is that it isn’t a testing technique. It’s an analysis technique, a design
technique, really a technique structuring all the activities of development” (Beck, 2002).

In the context of MTCC we advance the view that automated acceptance tests both serve
to describe the intended behavior of a system and to find faults in a system. MTCC tests also
serve as regression tests and thus, under the precondition that test coverage is sufficiently
high, provide some confidence that a system is free of defects. MTCC shares one aspect with
TDD in the fact that tests serve as a means to express requirements for a system, it is however
no test-first approach since a testable system must exist prior to acceptance testing. Also,
acceptance testing with different roles does not support the red-green-refactor cycle that Beck
describes as the mantra of TDD. We regard testing with MTCC as a supplement to fault-
oriented testing that raises quality both by supporting acceptance tests and by facilitating
to identify conflicts between the requirements of domain experts and an implementation.

Quality of Tests

The ability to identify faults in a system and to provide means to assess the likeliness of faults
with some confidence do not in themselves lead to criteria to judge the quality of a test. In
addition to the effectiveness of a test, its ability to find faults, non-functional criteria like
efficiency and maintainability also contribute to the quality of a test.

Graham & Fewster (2000) introduce four attributes of quality for automated tests that
can be applied to tests in general: A test is effective(1) when it is likely to find faults in
a system, it is exemplary(2) when it does not only cover highly specific functionality of a
system but tests multiple aspects of a system at once.

The resources needed to design, implement, execute and debug the test describe how
economical(3) a test is. A test is evolvable(4) when it can be maintained and adapted to
changes in the testee with high costs.

Figure 12 illustrates how the four quality attributes defined by Graham and Fewster apply
to manual and automated testing. The attributes help to illustrate that testing is an activity
that has economic as well as purely functional aspects. The economic side of testing is one
of the main motivations behind the automation of tests.

32



Effective

Exemplary

EvolvableEconomic

Manual TestAutomated test (after
many runs)

First run of automated
test

Figure 12: Attributes of good tests (Graham & Fewster, 2000)

2.1.3 Automated Testing

One goal of MTCC is the automation of acceptance tests. In the following we discuss in
detail why we argue that such automation is beneficial and which activities of testing are
suitable for automation. We regard test automation as advantageous with respect to both
the effectiveness and the efficiency of testing, in particular in the context of regression tests.
We argue that the subject knowledge and understanding for the requirements of a system
that domain experts can provide is better suited for the testing of digital libraries than the
complete automation of the test design phase. We therefore provide an editor to support the
construction of tests.

Reasons for Test Automation

Since we regard testing as an activity that allows the assessment of the quality of a system
during the whole software life cycle, it follows that testing and in particular test execution are
activities that have to be supported and thus consume resources over the whole length of a
product development and maintenance cycle. Test execution can be very frequent, continuous
integration (Duvall et al., 2007) approaches, for example, aim to execute each test at least
daily.

Test execution with such frequency cannot be achieved manually in practice for a non-
trivial number of tests, the automatization of test execution therefore is imperative. Test
automation is advantageous for a number of reasons even when tests are less frequently
executed (Graham & Fewster, 2000):

• Automated tests have economic advantages compared to manually executed tests. Man-
ual testing requires human involvement and is thus costly while the execution of test
cases will generally consume only minimal resources. For this reasons, the costs for the
implementation of automatic testing will usually be lower than those for manual testing
when tests are repeatedly executed.

33



• The execution of automated tests does not conflict with the day-to-day tasks of software
engineers or domain experts. This focuses on the fact that the resources for manual test
execution need to be available in all organizations and all phases of the software devel-
opment process. If, for instance, manual test execution is done by software developers,
test execution and software development will both compete for the time of this person.
While the implementation of test automation software will also require resources from
a software developer, this is a one-time effort.

• Automated tests are potentially more effective than manual tests. Automated tests
support the execution of more tests more often. Such tests are also more reproducible
than manual tests since no variances are introduced into the test execution process by
human testers.

The above claim that a higher frequency of test execution, a greater number of tests
and better reproducibility result in an overall increase in test effectiveness requires further
consideration. We argue that such an increase occurs because of the following points:

• The number of tests and the frequency with which they can be executed by automated
test software is not achievable by manual test execution. The number of automated
tests that can be executed in a given amount of time is limited only by the available
computation resources. While the number of executed tests alone has little influence
on the ability of a test regime to find faults, the ability to frequently execute all tests
for a given system greatly increases the effectiveness of regression testing.

• Automated tests are reproducible (Binder, 1999). Using test automation it is possible to
exactly specify and repeat the inputs send to test the testee during test execution. This
allows for the exact manipulation of the state of the testee and supports the execution
of repeatable tests.

• Automated tests support the verification of quality attributes that can not be tested by
manual tests in practice. Load tests that require a large number of requests to be send
to the testee within a short period of time can not be realized without test automation.

We conclude that test automation has high potential to increase the effectiveness and
efficiency of testing. Binder goes so far as to call automation the central aspect of test-
ing:”(Testing) is the design and implementation of a special kind of software system: one
that exercises another software system with the intent of finding bugs” (Binder, 1999). We
advance the view that test automation primarily benefits the efficiency and effectiveness of
test execution but that explorative testing (Kaner et al., 2001) is necessary in addition in
order to identify new tests for automation. It is therefore one purpose of MTCC to ease the
automation of test cases identified by explorative testing by providing an environment for
test modeling.

Phases of Test Automation

Our discussion of test automation so far was limited on the automation of test execution. This
is justified by the fact that test execution is the phase of testing that is most often automated.
Phases like test design and test implementation are far less frequently automated in practice.

Fewster and Graham (Graham & Fewster, 2000) partitions the automated testing process
in five phases: The identification of test scenarios, the design of tests, the implementation of
test automation, the execution of tests and the comparison of actual and expected results.
Figure 13 illustrates these activities and their potential for automation:

34



Figure 13: The five phases of testing (Graham & Fewster, 2000)

• The purpose of the Identify phase is the identification of functionality that can be
tested.

• The goal of the Design phase is to produce concrete tests for the functionality identified
during the Identify phase. Input values and expected results are specified for each test.

• During the Build or implementation phase, the tests designed in the previous phase are
implemented in a notation suitable for automatic execution, for instance in a scripting
language.

• The Execute phase sees the execution of the previously implemented tests on the system
under test.

• The purpose of the Check phase is the evaluation of the success of the test based on a
comparison of the expected and the actual behavior of the SUT.

As Figure 13 illustrates, the various phases of testing vary in their suitability for test
automation. The automation of the test execution phase and the comparison of actual and
expected results can generally be automated without significant problems, the automation of
this phases also results in large practical benefits since both phases are frequently executed
in the testing process.

MTCC automates the test execution and the Comparison phase. The build phase is also
automated once the Test Adapter and the necessary templates are implemented. The design
phase is not automated but is supported by the editor.

Automatic and Automated Testing

In order to distinguish MTCC from other approaches for test automation, in particular from
Model-Driven testing (discussed in Section 3.3), we differentiate between automated testing
and automatic testing.

35



The purpose of automated testing is the automation of test execution and comparison
and in some cases the build or test implementation phase. Automatic testing also aims at
the automation of the test design phase.

We consider automated testing not as a partial implementation of automatic testing but
as a separate field. Since test design in automated testing is done by humans, the support of
intellectual test design, not its automation, is the focus of the effort. Specifically, automatic
and automated testing differ in the following points:

• Automatic testing requires a formal model of the testee (Bertolino et al., 2004) that
represents all states of the testee as well as events that can influence this state, automatic
testing is therefore always also Model-Driven testing.

Automated testing in contrast is based on the knowledge of domain experts; the ap-
proach does not require models at the level of detail necessary for automatic testing.
We argue that automated testing is better suited for situations where testing is mostly
based on the requirements of users, not formal specifications.

• Automated and automatic testing do not differ in test execution. Both approaches use
an automated test runner to execute a test case without human involvement.

• A relevant difference between automated and automatic testing is the approach used
to determine the success of a test. In automated testing, the conditions for the success
of a test are defined by a human during test design, automatic testing utilizes an
oracle (Baresi & Young, 2001) for the decision if a test was successful or not. Depending
on the testee and the conditions to be tested, the complexity of an oracle can vary
widely. An oracle that verifies that the testee did not crash during test execution is
far less complex than an oracle that verifies complex business processes (Memon et al.,
2003). If an alternative implementation of the system under test exists, it can serve as an
oracle in the context of differential testing (McKeeman, 1998; Evans & Savoia, 2007).
The fact that automated testing can rely on human intellect to describe the success
criteria of tests allows for the testing in situations where the automatic determination
of test success is not possible, for instance in the context of Digital Libraries.

We argue that automatic and automated testing supplement each other. We further
argue that the inclusion of humans in the testing process leads to advantages that cannot be
achieved by automatic testing: While automatic testing is dependent on the correctness and
completeness of the specification upon which the models used for testing and the oracle are
built, automated testing allows for the discovery of new requirements in the testing process.

2.2 Acceptance Testing

Given that the intent of testing as a verification activity is to ensure that the implementation
of a system conforms to its specification, and that a specification is meant to represent the
requirements of the users of a system, it appears to be beneficial to the quality of software
to directly involve domain experts in testing and thus ensure that the tests executed on the
system represent the real requirements to the system.

Domain experts are assumed to have detailed knowledge of the subject matter and the
functional requirements for a system, but not to have any skills in formal modeling, software
development, or software testing (Andersson & Bache, 2004; Andrea, 2004a; Mugridge &
Cunningham, 2005b).

36



2.2.1 Testing by Domain Experts

Tests that directly involve domain experts in system testing are called acceptance tests (Mu-
gridge & Cunningham, 2005b). Domain experts can participate in acceptance testing in a
number of different ways, They can manually design and execute tests, design tests that are
automated by software developers or use specialized tools for acceptance testing such as FIT
or Selenium. One purpose of the MTCC approach presented in this thesis is to provide a tool
that allows the specification of tests by domain experts in the context of system families.

We consider acceptance testing an activity in parallel to the software development process
that starts as soon as a first testable prototype of the system is available. The advantage of
such an approach over acceptance testing only at the end of the software development process
is that the tests can facilitate discussions over the quality of the system and help discover
previously unknown requirements.

Compared to the evaluation of the degree to which a system meets its requirements purely
based on a specification, testing has a number of advantages: Since testing is always specific
for a concrete, existing system and since tests need to be detailed enough for automated execu-
tion, the preparation of tests supports the discovery of omissions or errors in the requirements
better than a informal specification.

The inclusion of domain experts or customers in the software development process is ex-
plicitly demanded in agile methodologies like Extreme Programming (Beck & Andres, 2004),
often in a testing role. The inclusion of customers in the testing is generally considered
desirable (Armbrust et al., 2004).

2.2.2 Types of Involvement

Since in most cases domain experts will not be professional testers nor software developers,
domain experts cannot automate the execution of acceptance testing themselves by expressing
their tests as test cases. They can instead participate in one of the following ways:

• Acceptance tests can be specified by domain experts in a informal way and are then
implemented by software developers. The approach has the disadvantage that domain
experts are not directly involved in the testing process. In order to ensure that tests
represent the intentions of the domain experts, the test specification must be detailed
enough to prevent misunderstandings. Such a specification must be as formal as the
test it represents, it merely omits implementations details. As a consequence, test and
specification are redundant.

• Acceptance tests are specified using a detailed but informal test plan, the execution
of tests is done by professional testers. While there is no redundancy between a test
implementation and the test specification — there is no implementation — this approach
suffers from the disadvantages of manual test execution.

• Domain experts can test the SUT themselves, either by explorative testing or following
a simple test plan. The main disadvantage of this approach is the increased work load on
the domain experts, especially considering the fact that test will be executed frequently.

• Domain experts construct tests suitable for automatic execution themselves, using a tool
usable without further training. This approach combines the advantages of automated
testing and the involvement of domain experts in the testing process. This approach is
followed by MTCC.

37



2.3 Quality of Test Automation

So far we have introduced our notion of quality for software and discussed criteria to evaluate
the quality of tests, but we have not yet applied our criteria for quality to testing software
itself.

In consideration of the fact that test automation software is software and thus can be
judged in terms of its functional and non-functional qualities, we now discuss what determines
the quality of automated acceptance tests. From the result of this discussion we derive the
requirement of the MTCC approach.

2.3.1 Quality of Requirements and Quality of Tests

As always in software engineering, the quality that can be reached in any phase of the de-
velopment of a system for testing is limited by the results of the proceeding phase. Without
thorough requirements engineering, it is not possible to design the right system and with-
out design, the results of the implementation are more than in question. This applies for
incremental process models as well as the traditional V-Model.

The consequence for test software is, that while domain experts must be present at all
phases of the development of test software, their presence is particularly important in the
early phases of the development of test software when the functionality of a testee that can
be tested and the basic capabilities of the test software are determined. The development
of test software needs the cooperation of experts on the subject matter to be tested and on
the implementation of the testee as described, for instance, in the concept of Domain Driven
Design (Evans, 2004).

In the context of MTCC, this means that domain experts are not only involved in the
construction of tests but also in the analysis of the application domain/system family and
the individual systems within the system family.

2.3.2 Software Quality Attributes Applied to Test Software

The six quality attributes defined by the ISO standard 9126 can be applied to automated tests
as well as to regular software. Non-functional quality attributes, such as the maintainability
and usability, have a direct impact on the fitness of test software to verify the quality of a
testee. In the context of software product-lines, it is of special importance that test software
can be adapted to the specifics of different testees. In the particular case of MTCC, the
usability of those aspects of the test software that are intended for use by domain experts are
highly relevant to the ability of the system to test the members of the product family.

While the quality attributes for automated test systems are the same as those for regular
software, special priorities apply. We argue that a system that aims to involve domain experts
in the testing process must meet the following requirements:

• The functionality of the system must include the capability to cover all fault scenarios
for the system family under consideration. The test automation system must include
functionality to take a representation of a test in some formal notation, execute the test
on the testee and decide on the success or failure of the test.

• In terms of usability, a system for the specification of automated acceptance tests for
domain experts must consider a number of different aspects, the most important of
which is the language or the editor that domain experts use for the specification of
tests.

38



• The efficiency of an automated test system is defined by its ability to execute a large
volume of tests with limited resources. The efficiency of the execution of an auto-
mated test depends on the resources necessary for the execution of the testee since
mocking (Meszaros, 2007) is not possible in a system test context.

• Since test software needs to be adapted to changes of the testee that affect the testable
interface of the testee, maintainability and adaptability are important attributes for
such systems. Maintainability and adaptability are of special importance in a system
family context when a sustainable test process must be established not only for a single
system but for multiple different implementations. Beside the ability to follow changes
in the testee, the test automation software must also be maintainable in the traditional
sense, for example in order to support refactoring (Deursen et al., 2001; Meszaros, 2007).

• An important quality attribute for a test software in a system family context is the
ability to reuse tests. Reuse means that a test that was specified for one system can
be transfered to and executed on another system if this system has the necessary func-
tionality for the test to be executed.

We argue that all functional and non-function quality attributes are of high relevance for
test automation software and that non-functional quality attributes have a significant impact
on the overall effectiveness of such a system. For instance, we consider it highly unlikely that
the specification of acceptance tests is practical if the user interface used for the specification
is not usable. MTCC therefore aims to provide an editor that facilitates the construction of
test cases.

2.4 Chapter Summary

Testing is one of the methods of quality assurance for software. It differs from other methods,
for example Static Analysis, in the fact that it executes the code of the SUT and compares
the encountered behavior of the SUT with its expected behavior. The quality of a test is
defined by a number of factors. A prerequisite for a high-quality test is that it represents
the requirements for the SUT and can be used to verify these requirements. A test must
also be efficient — it must be possible to execute a test with minimal resources. One way to
minimize the resources necessary for test execution is test automation.

Acceptance Tests involve domain experts in the testing process. Because domain experts
are not professional software developers or testers, special tool support is necessary to support
domain experts in the specification of automated acceptance tests.

As software systems, automated tests are subject to all software quality attributes defined
in the ISO 9126. In addition to these quality attributes, some specific requirements apply to
a test automation system in a system family background. Such a system must support tests
that are reusable for multiple systems and can be adapted to changes in the SUT.

39





Chapter 3

Use of Models in Software
Engineering

In this chapter we discuss the use of models in software engineering. We examine the relation
of MTCC to the fields of Model-Driven software development and Model-Driven testing.

Based on the definition of Stachowiak (Stachowiak, 1973) of models as abstractions with
a purpose and a representation, the use of models is a well established practice in software
engineering as well as in computer science as a whole. Models are not only used in approaches
that are explicitly Model-Driven but are employed in a number of different forms and for a
multitude of tasks. We consider an approach Model-Driven if models are the primary artifacts
in a process from which the different implementation artifacts are generated. Models are used
to abstract data and control flow in programming languages (Scott, 2005). The design of a
suitable domain model (Fowler, 2003) is a central part in the development of complex software
systems and the elicitation of a suitable fault model (Binder, 1999) is a central part of the
testing process. Section 3.1 discusses the definition of models we employ for MTCC and
examines the notions of meta models and model transformations.

Current Model-Driven processes and technologies are characterized by the utilization of
formal models on a level of abstraction above the specific implementation platform and by
the use of model transformation, generally for the purpose of code generation, in order to
bridge the implementation gap (France & Rumpe, 2007) between an abstract model and a
specific platform.

A number of different approaches for Model-Driven development exist that influence the
MTCC approach to different degrees. MTCC is closest to the generative programming ap-
proach regarding the used models and the high degree to which the details of the implemen-
tation domain are abstracted. We introduce these approaches in Section 3.2 and compare
them with MTCC.

One concrete use of models is Model-Driven testing, the verification of a software system
based on a model of the system. Depending on the respective approach, the tested aspects of
a system and its operating environment are represented by models that support the automatic
generation of test cases and the allow an automated assessment of the success of the each
generated tests. We discuss Model-Driven testing in Section 3.3 and relate it to MTCC.

3.1 Roles and Properties of Models

The term model has a number of different meanings, depending on the context in which its
is used. Figure 14 gives an overview of 14 different definitions for the term model taken from

41



the online version of the Merriam-Webster Dictionary1.

For software engineering, the definitions of model as structural design and a system of
postulates, data, and inferences presented as a mathematical description of an entity or state
of affairs; also : a computer simulation based on such a system are of particular relevance as
they allude to the prescriptive and descriptive aspects of modeling (Bézivin, 2005).

Figure 14: Definition of model in the Merriam-Webster Dictionary

3.1.1 Attributes of Models

Greenfield & Short (2004) defines a model in the context of software development as follows:
”... a model is an abstract description of software that hides information about some aspects
of the software to present a simpler description of others...”. Evans (2004) gives the following
definition: ”A system of abstractions that describes selected aspects of a domain and can be
used to solve problems related to that domain” where domain is defined as follows: ”A sphere
of knowledge, influence, or activity.”. Stahl & Völter (2006) define the meaning of a model
such: ”A model is a abstract representation of structure, function or behavior of a system.”

According to Stachowiak (1973), a model is characterized by three properties (translation
by the author):

• Representation property Models are reproductions or delineation of natural or ar-
tificial objects

• Abstraction property Models do not capture all attributes of represented original but
only those that appear relevant to the creators and/or users of the model

• Pragmatic property Models are not always unambiguously assigned to their original.
They fulfill a substitution role a) for certain subjects, b) for certain periods of time and
c) under constraints on certain mental or physical operations

1http://www.merriam-webster.com/dictionary/model

42

http://www.merriam-webster.com/dictionary/model


3.1.2 Types of Models

A common aspect of all definitions is the concept of abstraction. For this thesis we de-
fine models as abstractions with a purpose (Ludewig, 2003). In the following, we further
differentiate models by two characteristics:

• Models may be formal or informal. We consider a model formal when it is represented
in a way that allows the automatic processing or transformation of the model for its
intended purpose. The structure and semantics of a formal model are defined by its
meta model.

Modeling languages like the UML can be used both formally and informally. When
used formally in the context of the MDA (Brown, 2004), the MOF (Alanen et al., 2005)
serves as a meta model for the UML. Besides its use for formal modeling, the UML can
also be used as a sketch in order to outline the structure of systems.

Whether a modeling language is formal or informal is independent from the question
whether it uses a graphical or textual representation (Harel & Rumpe, 2004).

• Models can be used either prescriptively or descriptively. Prescriptive models are used
for the design of systems that are yet to be constructed, descriptive models represent
an system that already exists (Bézivin, 2005).

From the definition of a model as an abstraction with a purpose follows that the subject
represented by the model and the goal of modeling process must be considered in every
modeling situation. The subject and the purpose of a model define the domain that is
covered by the model. This domain determines the criteria that stipulate which aspects of
reality have to be representable by the model at what level of detail.

Meta Model

A meta model defines the structure of a model as well as its semantics. The semantics that
can be expressed are specific for a domain, therefore, the meta model is a representation of
that domain. Figure 15 examines the relationship between formal models, their domain and
the various concepts that define a meta model. Models are expressed in a domain specific
language (DSL). A DSL defines a concrete syntax or formal notation used to express concrete
models. The abstract syntax defines the basis concepts available for model construction, it
is determined by static semantics of the meta model.

Notwithstanding the existence of a multitude of standards and approaches for meta mod-
eling (Karagiannis & Kühn, 2002; Budinsky et al., 2003; Alanen et al., 2005), meta models
and their use are an active field of research. This is also true for the integration of different
meta models (Emerson & Sztipanovits, 2006; Baudry et al., 2006) and the representation of
constraints on meta models (Cabot & Teniente, 2006). We argue that neither research nor
practice have yet succeeded in establishing an universal meta modeling standard.

Meta models are related to ontologies (Saeki & Kaiya, 2006). While ontologies aim at the
presentation of knowledge, the purpose of meta models is the definition of a formal language.

Figure 15 illustrates one important property of models: The separation of the represen-
tation of a model, its concrete syntax, from its semantics. This property allows the use
of multiple representations for one meta model, for instance the textual representation of
UML (Spinellis, 2003) or — in the case of MTCC — the representation of the feature model
through a graphical editor.

43



Domain Metamodel

Formal
Model

Abstract
Syntax

Static
Semantic

Concrete
Syntax DSL

Semantic Modeling
Language

describes relevant
concepts of

expressed by means
of

«instanceof»

obtains meaning through

respects

«synonym»

subdomain

expressed by means
of

represents

Figure 15: Concepts of Model-Driven software development (Stahl & Völter, 2006)

3.2 Model-Driven Software Development

The purpose of Model-Driven software development is to close the gap between the problem
domain and the solution domain (Stahl & Völter, 2006). Models abstract from the technical
details of an implementation and facilitate the use of concepts from the subject domain not
only in requirements engineering and design, but also during the implementation of a system.

France & Rumpe (2007) express this goal as follows: ”current research in the area of model
driven engineering (MDE) is primarily concerned with reducing the gap between problem and
software implementation domains through the use of technologies that support systematic
transformation of problem-level abstractions to software implementations.”

The stated goals and claims associated with Model-Driven software development, in par-
ticular the MDA approach, have been the subject of critique (McNeile, 2003; Thomas, 2004).
We argue that potential deficits of specific approaches do not challenge the effectiveness of
Model-Driven software development in general but rather that the methods and tools used
for any software project must consider the individual requirements of each project.

In the following, we introduce multiple approaches to Model-Driven software development
and relate them to the MTCC. We discuss the transformation of models into implementations.
Furthermore we explain the relationship of Model-Driven development and programming
languages with a particular focus on domain specific languages (van Deursen et al., 2000).
We present a summary of relevant approaches to Model-Driven development, a more detailed
comparison can be found in (Völter, 2006a).

Model Driven Architecture

The Model Driven Architecture (MDA) is a standard for Model-Driven development propa-
gated by the Object Management Group (Mellor et al., 2004; Uhl, 2006).

One defining aspect of the MDA is the successive refinement of models (Stahl & Völter,
2006). A Platform Independent Model (PIM) represents functional requirements in a formal
notation. The PIM is used as the basis for one or more Platform Specific Models (PSM). Each
PSM is an abstract representation specific for one aspect of the implementation, for instance,
the database layer or the deployment architecture. In order to create an implementation, each
PSM undergoes one or more transformation steps, turning the PSM into successively more
detailed models and finally implementation artifacts. The MDA emphasizes model-to-model
transformations in the software construction process, as the description above illustrates.

We argue that the MTCC approach does not benefit from the advantages offered by the

44



MDA approach because the increase in complexity that the adoption of the MDA would cause
is not worthwhile.

Architecture-Centric Model-Driven Software Development

Architecture-Centric Model-Driven Software Development (AC-MDSD) is an approach intro-
duced by Stahl and Voelter (Stahl & Völter, 2006). The purpose of AC-MDSD is the ”holistic
automation during the development of infrastructure code respectively the minimization of re-
dundant, technical code in software development”. A concept central to the approach is the
platform, the total of all parts of the infrastructure that are used for the implementation.
Compared to the MDA, the focus of AC-MDSD is more on the abstraction of technical detail
than on the complete representation and implementation of a system with models. We argue
that this approach is more pragmatic than the vision offered by the MDA. MTCC shares the
goal of AC-MDSD to abstract from infrastructure code; in the case of MTCC, test code and
code used to interface with the testee.

Generative Programming

With Generative Programming, Czarnecki & Eisenecker (2000) introduced an approach that
aims at creating complete implementations of software systems, optimized for specific require-
ments, based on a library of implementation artifacts and a formal representation of available
configurations. Czarnecki describes the approach as follows: ”Generative software develop-
ment is a system-family approach, which focuses on automating the creation of system-family
members: a given system can be automatically generated from a specification written in one
or more textual or graphical domain-specific languages” (Czarnecki, 2005). Like Generative
Programming, MTCC considers families of systems, more specific families of tests.

3.2.1 Generation of Implementations

In order to facilitate the creation of implementation artifacts from models, a transformation
step is necessary (Cordy et al., 2006). With the execution of one or more transformation steps,
implementation details and models are integrated and successively more detailed models are
created. A transformation step can either be a Model2Code transformation or a Model2Model
transformation (Stahl & Völter, 2006). While a Model2Model transformation generally starts
with an input model and generates another more detailed, model, Model2Code transforma-
tions generate an implementation artifact, usually program code. A number of different model
transformation approaches exist that address different goals (Czarnecki & Helsen, 2003) and
vary in the complexity and suitability for complex transformation scenarios. The test cases
generated in the MTCC exhibit only minimal complexity. Accordingly, we limit our consid-
eration of possible transformation strategies to template-based (Herrington, 2003; Voelter,
2003) code generation.

3.2.2 Models and Programming Languages

Model-Driven development shares a significant number of concepts with programming lan-
guages and compiler technology. Considerable parallels exist between model transformation
and compilation — both processes create implementations from abstract representations.
The concepts used by programming languages to describe both data and control flow (Scott,
2005) and the rules that govern their use and possible combinations in a program correspond
to a meta model.

Domain specific languages (van Deursen et al., 2000; Tolvanen & Kelly, 2004) exist for a
wide variety of application domains (Mernik et al., 2005; Hudak, 1996). Such languages have

45



the same purpose as models in MTCC expressing the concepts of a specific application domain
— they implement problem-specific abstractions (Grönniger et al., 2006). Implementation
techniques for DSLs are similar to those used in Model-Driven development (Völter, 2007,
2006c), especially for approaches that use code generation.

Another approach that serves to illustrate the close relation between Model-Driven devel-
opment and programming languages is Languages Oriented Programming. Fowler gives an
overview of one such approach (Fowler, 2005c,b,a), the MPS environment (Dmitriev, 2004).
MPS aims to facilitate the integrated development of a meta model, an editor for modeling,
and transformations for implementing DSLs. The intentional software approach is similar in
its goals (Simonyi, 1995; Simonyi et al., 2006).

MTCC uses a graphical editor to present models to domain experts. The XML-based
representation of MTCC models can be considered a domain specific language for system
and test description.

3.3 Model-Driven Testing

Testing is always Model-Driven in the sense that it is based on a fault model. A fault model
considers a system with regards to its likely faults. Binder gives the following definition of a
fault model”(A Fault Model) identifies relationships and components of the system under test
that are most likely to have faults. It may be based on common sense, experience, suspicion,
analysis, or experiment...” (Binder, 1999).

Similar to models used in the construction of systems, a fault model does not have to be
formal to be useful for testing, it may take the form of a list containing the functionality of
a system to be tested. Formal models that are suitable as a basis for automatic testing are
called testable (Binder, 1999). The use of testable models for the automatic verification of
software is the subject of Model-Driven testing.

Figure 16 displays an example of a Model-Driven testing process and the concepts that
are relevant during the phases of the process.

• In a first step, a model that can be utilized for the automatic generation of tests is
realized based on the requirements of the examined system. The model represents
those aspects of the behavior and state of the testee that are relevant for testing. For
any possible input to the system, it provides the outputs expected from the system.
The models serve as an oracle.

• In the Test Case Specification phase, criteria for the selection of tests are defined and
formalized. Criteria include the test coverage by different metrics as well as random
selection of tests and the use of previously recorded user interactions with the sys-
tem. The Test Case Specification is a formalization of this criteria that facilitates the
automatic selection of tests cases.

• Tests are generated and executed on the SUT. The adaptor in Figure 16 corresponds to
the concept of the test runner in MTCC. The results of all executed tests are recorded.

3.3.1 Types of Model-Driven Testing

As in Model-Driven development, many approaches to Model-Driven testing exist. A criterion
by which different approaches can be differentiated from MTCC is Redundancy (Utting et al.,
2005). Redundancy differentiates between approaches that reuse models created for the
construction of a system from those that use specialized models created only for testing.
Bertolino uses the term test-based modeling (Bertolino, 2007) for the latter group.

46



Figure 16: A process for Model-Driven testing (Utting et al., 2005)

Approaches that aim at reusing or extending models or modeling tools created for the
construction of software are limited by the modeling languages used in this process, often the
UML. As a consequence, there is a great number of approaches to Model-Driven testing that
are based on the UML (Cavarra et al., 2004; Briand et al., 2005; Seifert & Souquieres, 2008;
Linzhang et al., 2004; Kim et al., 2005; Hartmann et al., 2004).

One application of the UML for testing is the UML2 Testing profile (Schieferdecker et al.,
2003; Baker et al., 2003; Dai, 2004). The purpose of the U2TP is to provide an UML profile
that adds test-relevant concepts to the UML2 core language and thus allows the modeling of
tests using UML specific tooling. The U2TP can be regarded as Model-Driven development
applied to the testing domain. By envisioning intellectual test specification, the U2TP bears
similarities to MTCC, but differs in the modeling language and the support for modeling by
domain experts.

Test-based modeling approaches are not limited to any particular modeling language.
Utting et al. (2005) present an overview over approaches to Model-Driven testing and the
models used in these approaches. Finite State Machines (El-Far & Whittaker, 2001; Andrews
et al., 2005), decision trees and decision tables are frequently used as models for testing
purposes (Binder, 1999).

3.3.2 Relation to MTCC

Figure 17 displays a taxonomy of Model-Driven testing that classifies approaches to Model-
Driven testing along seven dimensions. Not all dimensions defined by the taxonomy can be
applied to MTCC, in the following we only discuss the relevant classification criteria.

Subject MTCC models represent a testee from a system family of testees. The test-relevant
Services of a testee as well as the Test Steps that exercise and verify these Services are
modeled.

47



Figure 17: A taxonomy of Model-Driven testing (Utting et al., 2005)

Redundancy The models constructed for the MTCC are only used for testing.

Test Selection Criteria MTCC envision test case construction by domain experts. Do-
main experts select and implement those test that they consider relevant based on their
knowledge of the requirements of the system.

On/Offline MTCC generates and executes test cases offline.

3.4 Chapter Summary

A number of different meanings exist for the term model. In this thesis, a model is a formal
abstraction that serves a specific purpose. A model is considered formal if its structure and
semantics conform to an implicit or explicit meta-model.

Model-Driven Software Development attempts to solve the Problem Implementation Gap
by using formal models that represent concept of the application domain. Applications are
modeled and the resulting models are used, optionally after further refinements, to generate
implementation artifacts. MTCC is a Model-Driven approach that uses models to represent
SUTs and tests that exercise a SUT.

Model-Driven Testing uses formal models of a SUT and optionally the environment of
the SUT to generate tests and to assess the success or failure of these tests. MTCC is closely
related to Model-Driven testing approaches but differs in that tests are not generated but
constructed by domain experts.

48



Chapter 4

System Families and Variability

In this chapter we discuss system families (Parnas, 1976) and their relation to software
product-lines (Weiss & Lai, 1999). We introduce feature models (Czarnecki et al., 2005a)
and examine to which degree approaches to Software Product Line Testing (Tevanlinna et al.,
2004; Pohl & Metzger, 2006) can be applied to MTCC.

Section 4.1 discusses the properties of system families as the object of investigation in
MTCC. . A system family is a group of programs who are better discussed in terms of
their commonalities than their differences (Parnas, 1976). The members of a system family
can be programs within the same application domain that fulfill the same tasks but were
developed in separation. Alternatively, the members of a system family can be variants or
versions of a common product. A Software Product Line (Weiss & Lai, 1999; Clements &
Northrop, 2001) is a number of related products which are derived from a common set of
core assets. The focus of software product-line engineering is on the organized reuse and
adaption of implementation artifacts (Meister, 2006a) and the systematic management of
variability (Bachmann & Clements, 2005).

One means to formally express the variability in a product-line are feature models (Kang
et al., 1990) as introduced in Section 4.2. MTCC utilizes feature models both to represent
the functionality and properties of a testee and to describe the possible parameterization
of Test Steps. Feature models facilitate the representation of the supported features and
combinations of features of the members of a system family in an formal, hierarchical way.
Feature models define operations that allow derivations of a feature model that represents a
more constrained variability. Specialization operations perform local transformations on the
feature model that result in a more specific feature model. A fully specialized feature model
is a configuration (Czarnecki et al., 2005b,a).

From the definition of a system family follows that the requirement exhibited by its
members overlap to a certain degree. This leads to the question how tests for the common
requirements of systems can be shared among systems. MTCC’s primarily means of support
for test reuse are abstract test models that can be transfered between systems. Section 4.3
discusses the testing of system families and product-lines and discusses the role of MTCC in
this context.

4.1 Variability in Software Engineering

The increasing complexity of software systems and the associated increase in cost necessitates
the reuse of implementation artifacts. One context for reuse that is of particular interest to
this thesis are program families or system families1 (Parnas, 1976). Parnas defines program

1We use the term system family instead of the term program family used by Parnas since we take the
position that it better reflects current usage of the terms system and program.

49



families as follows: Program families are defined as sets of programs whose common properties
are so extensive that it is advantageous to study the common properties of the programs before
analyzing individual members

Different kinds of system families exist, depending on the relationship of the members of
the product-line:

• System variants are members of a system family that were adapted for different markets
or customers. Variants may differ in their provided features or may be adapted to the
individual requirements of customers.

• Product versions are systems where a newer version of a software builds on an older
version. Since it cannot be assumed that every customer of a software system can
always use the most recent version, different versions have to be maintained in parallel.

• An existing system and its replacement are members of a software family when both
systems share no parts of their implementation but are used for the same tasks and are
subject to the same requirements.

Despite the existence of various approaches to facilitate reuse in software families, the
degree of reuse in software development is still unsatisfactory, reuse in practice is often op-
portunistic (Meister, 2006a).

In order to support reuse within system families, a number of requirements must be meet:

• The variability (Gurp et al., 2001; Bachmann & Clements, 2005) in the system family,
meaning the range of common and different features that can exist for the members of a
product-line, has to be captured and formalized. Domain analysis (Arango, 1989, 1994)
is employed in order to identify and capture the relevant concepts of the domain that
are subsequently formally expressed as feature models (Kang et al., 1990; Czarnecki
et al., 2005a). We call the set of all systems that are covered by the variability of the
system family the scope of the system family.

• Processes and methods must be established that, based on requirements for a system
to be build, support a statement on whether the scope of the product-line covers these
requirements. If the system is within the scope of the product-line, a configuration
must be created that describes the particular features of the systems in terms of the
variability of the system family.

• The realization of all configurations that can be expressed within the scope of the
system family has to be possible. Tooling and core assets must exist that allow the fully
automatic implementation of a product from the previously build abstract configuration.

A system family for which all the above requirements are fulfilled, is called a Software
Product Line (SPL) (Clements & Northrop, 2001; Weiss & Lai, 1999). Meister (Meister,
2006a) defines a SPL as follows: ”A product family is called an SPL if it was explicitly designed
for the reuse of common elements and the tractable reuse realization of varying elements.”

In Software Product Line Engineering, work on concrete products is done in parallel with
work on the artifacts of the product-line infrastructure. Figure 18 illustrates this point.

• In Product-engineering, the requirements for a specific system are captured. Based on
these requirements a product configuration is prepared and as many features of the
product based on the core assets of the Product Line as possible are realized. Features
that cannot be automatically realized, are implemented by hand and form the basis for
new requirements to the SPL.

50



• SPL engineering addresses the product-line infrastructure itself. SPL-scoping defines
the scope of the SPL, the domain considered by the product-line and the set of products
that can be realized by the product-line. Once the scope of a SPL is defined, the set of
Core Assets (Bachmann & Clements, 2005) used to realize members of the product-line
are first established (Bachmann & Clements, 2005). core assets for product realization
can be implemented based on a number of different approaches. Potential implemen-
tations include techniques from Model-Driven development (Voelter & Groher, 2007;
Loughran et al., 2006; Czarnecki & Antkiewicz, 2005), the use of component technol-
ogy (Kettemann et al., 2003), approaches based on programming languages (Patzke &
Muthig, 2002) and frames (Patzke & Muthig, 2003).

SPL scooping
SPL engineering

SPL-architecture

SPL-archetype

Product engineeringRequirements analysis

Product architecture

Instantiation of 
SPL archetypes

Realization of product-specific
archetypes

Feasibility and efficiency analysis

Design and Implementation

Figure 18: SPL development process (Meister, 2006a)

4.1.1 Analysis and Scoping of a Product Line

SPL-Scoping, the part of SPL-analysis that addresses the definition of the extent of the
domain covered and the concepts within the domain, is a prerequisite for the establishment
of a SPL. SPL-scoping is an adaption of the earlier concept of domain analysis that differs
in focusing not on the properties of an abstract domain but on the construction of concrete
products in the domain (Meister, 2006b; DeBaud & Schmid, 1999).

An important aspect of product-line engineering is the identification of the relevant fea-
tures. Czarnecki & Eisenecker (2000) give two conflicting definitions of the term feature:

• An end-user-visible characteristic of a system.

• A distinguishable characteristic of a concept (e.g., system, component, and so on) that
is relevant to some stakeholder of the concept.

For this thesis we use the definition that originates from the FODA (Kang et al., 1990)
approach of feature as ’user-visible aspects or characteristics of the domain’ We argue that

51



this view on features better represents the external view of a system taken in acceptance
testing.

Multiple approaches for domain analysis and SPL-analysis are defined software engineer-
ing (Bayer et al., 1999; Bachmann & Clements, 2005; Czarnecki & Eisenecker, 2000; Neigh-
bors, 1989; Clements & Northrop, 2001; Weiss & Lai, 1999; Matinlassi, 2004). Each approach
defines information sources used in the analysis process and defines the methods and nota-
tions used to formalize the knowledge gained in the analysis. Figure 19 gives an overview
of possible sources of information for domain analysis. In order to identify test-relevant
functionality, MTCC considers the systems to be tested in the system family as well as the
test regime in use and the requirements formulated by the domain experts. The latter is of
particular importance in situations where no test for some functionality of the testees exists.

With the exception of feature models, the details of domain analysis, such as the process
employed and the artifacts used, are not discussed in detail. MTCC does not assume the
utilization of any particular approach for the capture and formalization of the concepts and
features of a domain. The exclusion of these subjects from MTCC is due to two reasons:
First, the contribution does not lie in the field of analyzing but in the application of domain
knowledge, and second, the analysis necessary for MTCC as it is implemented for this thesis
is simplified by the fact that the system family and all systems to be tested already exists.
The domain analysis process is therefore not subject of this work.

Figure 19: Information sources for domain analysis (Kang et al., 1990)

Feature-Products Maps (DeBaud & Schmid, 1999) provide an overview, which products
of a system family support which features. Every feature is correlated with every product in
the system family. The features themselves and thus the variability of the system family are
represented by feature models.

4.1.2 Variability and System Family Testing

We consider two aspects of the variability of a system family of particular importance for
MTCC:

52



• MTCC does not assume that the testees considered are members of a software product
line. Instead, MTCC is based on the premise that the testees form a system family
defined by a common set of test-relevant features. MTCC has the characteristics of a
product-line approach for the construction of tests. MTCC Core Assets are the models
used to represent systems and tests as well as the editor and the subsystems responsible
for model transformation and test code generation.

• In this thesis, we only apply MTCC to an already existing system family of Digital
Libraries. This constraint allows for simplifications in the domain analysis phase that
cannot be assumed if the systems in the system family are still in the development
process.

4.2 Feature Modeling

The purpose of feature models is the representation of the variability in a system family.
A feature model organizes the features of a system and the dependencies of the features
in a tree structure. Specialization steps are operations that support the refinement of the
variability and thus the specification of concrete systems in terms of their features. MTCC
uses feature models for the representation of the Services provided by testees as well as for
the representation of the parameterization of tests.

4.2.1 Structure of Feature Models

A feature model is a tree structure that facilitates the hierarchical description of the features
of a system. Features within a feature model can represent system-subsystem relationships,
choices among different functions that a system can provide or abstract, non-functional re-
quirements.

Figure 20 displays a simple feature model in the notation introduced by the FODA (Kang
et al., 1990) approach. The feature model in the example represents the features of a car as
follows:

• Every feature is the composition of its children. The feature Car is defined by the
lower-level features Transmission, Horsepower and Air conditioning.

• Features can be mandatory or optional. While every car must have a transmission, Air
Conditioning is optional and can be de-selected.

• Features can be alternatives. The Car represented in the feature model either has an
automatic or a manual transmission, but never both.

• Features can hold numerical values, for example, the feature Horsepower.

Alternatives like the one between automatic and manual transmission in Figure 20 are a
special case of a feature group. Besides alternatives that allow only one of the features from
the feature group to be selected, FODA also defines feature groups that allow the selection
of an arbitrary number of features.

Not all relevant aspects for the configuration can be represented by the hierarchical struc-
ture of the feature model alone, rationales and composition rules are employed to add extra
information to a feature model. A rational gives a human-readable reason that can serve as
a basis for the selection or de-selection of a feature. Composition rules describe under which
conditions certain features can be selected or combined. A feature diagram is a set of feature
models together with their rationales and composition rules. MTCC does not use rationales

53



Figure 20: Example for a FODA Feature Diagram (Kang et al., 1990)

or composition rules. We argue that the complexity that these rules add to feature models
is not justified in the context of MTCC, primarily because of the descriptive, fine grained
nature of the feature models used in MTCC.

An important property of feature models is the abstraction of implementation details.
While automatic approaches exist that map features to implementation artifacts (Czarnecki
& Antkiewicz, 2005), the overall level of abstraction provided by feature diagrams is higher
than is the case for modeling approaches that represent high-level implementation artifacts
such as UML class diagrams.

Based on the notation and the semantics for feature models defined for FODA, a number
of different extensions were developed (Heymans et al., 2007). The feature models used in
MTCC are based on feature models with cardinalities (Czarnecki et al., 2005b,a). Compared
to the feature models defined by FODA, feature models with cardinalities exhibit the following
extensions.

• Cardinalities for Features The cardinality of a feature node describes how often
the feature and its children can be included in the feature model. Cardinalities are
expressed as an interval [n,m] where n describes the minimal occurrence of a feature
and m its maximal occurrence. Mandatory features have a cardinality of [1,1], the
cardinality of an optional feature is [0,1].

• Attributes Attributes are nodes in a feature model that can hold numerical or textual
information.

• References Reference nodes support the inclusion of a referenced feature model or a
subtree of a feature model in place of the reference node.

4.2.2 Configuration and Specialization of Feature Models

A feature model describes the variability within a system family in terms of all its potential
configurations. A configuration is a feature model without any variability, the feature model
is completely specialized.

Czarnecki et al. (2005a) describe the relation of a feature model and its configuration as
follows: ’The relationship between a feature diagram and a configuration is comparable to the
one between a class and its instance in object-oriented programming’. The transformation of a
feature model in a completely specialized form is called the configuration process (Czarnecki
et al., 2005a). The configuration process is defined by the application of a series of special-
ization steps. Each specialization step creates a new feature model with less variability than
the initial feature model.

54



Seven specialization steps are defined for feature models with cardinalities. Figure 21
illustrates their application on feature models:

Figure 21: Specialization steps (Czarnecki et al., 2005b)

Refinement of feature cardinalities The refinement of feature cardinalities adjusts either
the minimal or the maximal occurrence of a feature in such a way that the range between
the minimum and and maximum is smaller than in the initial feature model.

Refinement of group cardinalities This specialization step narrows the interval that de-
scribes the minimal and the maximal number of selectable features in a feature group.

De-selection of features from a feature group This specialization step sets the cardi-
nality of one child of a feature group to [0,0], the node can no longer be included in a
configuration. By de-selecting the node, the number of maximal children of the feature
group is lowered by one.

Selection of one feature from a feature group This specialization step sets the cardi-
nality of one child node of a feature group to the interval [1,1]. By applying the spe-
cialization step, the minimal as well as the maximal number of children for the feature
group are lowered by one.

Assignment of attribute values This specialization step sets the value of an attribute.
If a type system for attributes is used, as is the case in the situation illustrated in
Figure 21, the legal values are constrained by the type system.

Cloning of solitary feature nodes As the name suggests, the cloning specialization step
duplicates a feature node which have maximum cardinality greater than 2. The car-
dinality of the cloned feature is [1,1], the minimum and maximum occurrence of the
cloned feature node are lowered by one.

55



Unfolding of feature reference nodes When a feature reference is unfolded, the refer-
enced features are included in place of the feature reference.

As described by Czarnecki et al (Czarnecki et al., 2005b) for the Staged Configuration
Process, the configuration of feature models in MTCC is done in a series of incremental
phases. First, a representation of a single system is derived from a description at the system
family level, then references from Test Step models to the system model are unfolded, and
finally the feature models of Test Steps are configured.

Some restrictions apply to the implementation used in MTCC for feature models with
cardinalities. Solitary features are limited to the cardinalities [0,1], [0,0] and [1,1], refinements
of cardinality and cloning of features are not supported.

4.3 Testing of System Families

A number of approaches address testing in the context of system families or software product-
lines. Compared to the testing of solitary systems, such methods face a number of specific
challenges:

• Ideally, the development of tests and the infrastructure needed for test execution should
be based on a set of core assets. The testing of single systems corresponds to the product
engineering activity (Pohl & Metzger, 2006) in the context of a product-line while work
on common test assets is related to Software Product Line Engineering.

• The features that are available for different systems under test within a product-line or
system family have to be considered in test selection. This requirement has two aspects:
Each system can only be exercised when it exhibits all features necessary for the execu-
tion of a test and each feature of a system should be covered by a test (Geppert et al.,
2004b; McGregor et al., 2004). We call this requirement the test selection challenge.

• Test runners and interfaces must exist that support the execution of tests for all systems
within the system family. In a SPL approach, the implementation artifact must support
testing (Kolb & Muthig, 2006).

Software Product Line Testing (SPLT) is an area of intensive research (Tevanlinna et al.,
2004). A significant difference between SPLT approaches and MTCC is that MTCC does
not assume that the testees are members of a SPL and are built from a common set of core
assets.

A significant difference between testing in the context of software product lines and soft-
ware product families that are not based on a common set of core assets is that no common-
alities in the implementation or the interfaces of the member of the system family can be
assumed. Furthermore, no formalization of the variability of the different members of the
system family will be available for the members of the system family — the members of the
system family were not configured.

As we already pointed out, MTCC does not assume that testees are members of a software
product-line. As a consequence, neither the existence of core assets nor a formal represen-
tation of the variability of the product-line can be assumed. Since reuse of existing assets is
not possible, the identification and capture of variability in the context of MTCC is done for
the first time and only for the purpose of testing. We argue that while the reuse of product
line assets for testing would be desirable, the use of models dedicated to testing simplifies the
modeling process, thus the construction of the MTCC test models is far less costly than the
creation of models for software construction.

56



MTCC does not aim at the fully automatic testing of product-lines. Since domain experts
select the systems of the system family to be tested as well as the features of a system to be
tested, one aspect of the test selection challenge introduced above does not apply. The other
aspect of the test selection challenge, to ensure that only tests supported by the features of
system are specified for that system, is addressed by the MTCC editor and its approach to
test reuse.

MTCC addresses the remaining requirements and particularities of testing in a system
family context as follows:

• The core assets of the MTCC approach, the infrastructure necessary for testing all
members of a system family, are strictly separated from artifacts that are specific to the
testing of a single system. Specifically, the editor, the Test Generator and the models
used to represent the system family at the domain level are used for all systems tested
with MTCC.

• The MTCC testing process is organized in two parallel activities: The derivation of
system-specific tests and the work on domain models and testing core assets.

• Tests constructed in MTCC, in the form of Test Configurations for one specific member
of the system family, are potentially reusable for multiple members of the system family.
A test is reusable for all systems which features support the execution of the test.

While we do not address this aspect in this thesis, the formalization of the variability
within a system family and the representation of system family members as configurations
facilitates other means of quality assurance than automated acceptance testing. For instance,
with a suitable detailed description of the features of individual systems and an infrastructure
that adapts the different interface of testees, Differential Testing (McKeeman, 1998; Evans &
Savoia, 2007) can use the behavior of one system as an oracle for other systems under test.

4.4 Chapter Summary

MTCC is a testing approach for system families. A system family is a set of systems that are
defined by their shared properties, not their differences. While Software Product Lines are
based on the systematic reuse and adaption of a common set of Core Assets, system families
are generally not the product of systematic reuse. MTCC addresses the testing of system
families and therefore does not assume the existence of common infrastructure or artifacts.

A central aspect in working with system families and product lines is the systematic
treatment and representation of the variability. Feature models are a means to represent the
features that exist in a system family and their relationships. MTCC uses feature models
with cardinalities to represent the test-relevant features in a system family and the tests that
exercise these features.

57





Chapter 5

Information Retrieval and Digital
Libraries

In this thesis, we apply MTCC to a system family of Digital Libraries, specifically to web por-
tals for scientific information. Digital Libraries are a class of Information Retrieval systems;
the functional quality of such systems is defined by their ability to fulfill the information need
of a user and present him or her with relevant documents for a search.

The vagueness inherent to the Information Retrieval task makes the participation of
domain experts in the testing process particularly important. Section 5.1 introduces the
concepts and models relevant to Information Retrieval, special focus is given to evaluation
measures for Information Retrieval and the notions of quality in IR.

Section 5.2 gives an overview of the application domain of Digital Libraries. We introduce
basic usage scenarios for this class of systems and discuss the meaning of quality for a Digital
Library. We also outline the treatment of structural and semantic heterogeneity as a Service
that, while it supports users in searching, also raises the complexity of Digital Libraries and
thus necessitates testing.

5.1 Information Retrieval

The field of Information Retrieval (IR) addresses the question how the information need of
a user concerning a collection of documents can be captured, operationalized, and satisfied.
To this purpose, a number of different retrieval models were designed and implemented, for
instance the Boolean, the Vector or the Probabilistic Model. These models define representa-
tions for information needs as queries and documents as document surrogates. They further
provide operations that allow the calculation of the similarity of queries and document sur-
rogates and thus support a statement about the relevance of a document.

Information Retrieval is an empirical field, a number of measures and evaluation methods
exists to support the validation of retrieval models as well as retrieval systems.

5.1.1 Purpose of Information Retrieval

The purpose of Information Retrieval can be well illustrated by contrasting IR with data
retrieval (Baeza-Yates & Ribeiro-Neto, 1999). Data retrieval deals with formal queries that
support for each document a definite, automatic, unchanging decision whether the document
satisfies the criteria defined by the query. The subject of Information Retrieval in contrast is
not a formal query but a vague information need. In addition, if documents in data retrieval
are highly structured records, for example, taken from a relational data management system,

59



documents in Information Retrieval are either unstructured texts, semi-structured (Abiteboul
et al., 2000) or sparse.

Manning et al. (2008) define IR as follow: ”Information Retrieval is finding material
(usually documents) of an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers)”.

Depending on the information need of a user, the document collection and the nature of
the retrieval task, and in absence of a decidable model of relevance, IR bears resemblance to
the proverbial search for a needle in a haystack. In reality, this comparison does not illustrate
the full breadth of different scenarios covered by IR. Beyond the search for a specific needle
in a well-defined haystack, Koll (2000) lists the following scenarios for IR:

• a known needle in a known haystack
• a known needle in an unknown haystack
• a unknown needle in an unknown haystack
• any needle in a haystack
• the sharpest needle in a haystack
• most of the sharpest needles in a haystack
• all the needles in a haystack
• affirmation of no needles in the haystack
• things like needles in any haystack
• let me know whenever a new needle shows up
• where are the haystacks; and
• needles, haystacks — whatever.

An information need can address specific documents or all documents that have specific
attributes. The needed information can be clearly defined — at least in the mind of searcher
— or it can be only vaguely outlined. The information can be needed in the present or
sometimes in the future. From the user perspective, a document is considered relevant if it
satisfies the information need of a user. In order for an IR system to estimate the relevance
of a document, a model of the information need must be compared with models of the
documents (Cooper, 1973). Figure 22 illustrates the relation of an information need and its
representation as a query and documents, represented by document surrogates.

From the technical perspective of an IR system, a document is relevant when the document
surrogate and the query are similar.

Information Need Surrogate DocumentQuery

RepresentationRepresentation Comparison

Figure 22: Concepts of Information Retrieval (Belkin & Croft, 1987)

The design, implementation and evaluation of retrieval models for the representation
and comparison of information needs and documents is a focus of research for Information
Retrieval. One aspect of Information Retrieval that is of significance, but can rarely be rep-
resented in IR models, is the dynamic nature of an information need. Rather than answering
isolated queries, the IR process is an interaction between a user and the IR system in which
an information need is refined or changes.

When IR is regarded as a dialogue between a user and a IR system, the support that the
IR system can provide for different users, their skills, preferences and backgrounds becomes

60



more important. To meet the requirements that arise from a dialog-centric or user-centric
view on IR, the field has developed a number of different interaction models, user interfaces
and methods to tackle the use and enhancement of queries and results:

• In ad-hoc retrieval, users formulate queries to a collection of documents. In filtering,
documents are added to a collection and are tested for their relevance on a set of
predefined queries.

• In search, a user expresses a specific information need in a query and sends this query to
the IR system, the systems returns the subset of all documents that are likely relevant
to the query. In browsing, the user does not necessarily have an explicit information
need, rather, a collection of documents is explored.

Information Retrieval as a field has produced various approaches to support the formu-
lation of information needs and the visualization of results. An overview is presented by
Baeza-Yates and Ribeiro-Neto (Baeza-Yates & Ribeiro-Neto, 1999). Graphical user inter-
faces exist for the treatment of structural and semantic heterogeneity (Stempfhuber, 2003)
or for the combined treatment of the usability and design (Eibl, 2000).

Methods that facilitate the transformation or enhancement of initial queries have a great
impact on the ability of an IR system to return documents that are relevant to the infor-
mation need of a user. Such methods facilitate the integrated retrieval over collections that
use different indexing vocabularies (Mayr & Petras, 2008) or support the consideration of
specialized discourse domains in search (Petras, 2006).

Approaches to clustering and automatic classification (Chakrabarti, 2003; Weiss, 2005)
support the enrichment of a result set of documents by further information that support the
user in refining his or her information need.

5.1.2 Concepts and Methods of Information Retrieval

The relevance of a document regarding an information need is represented by the similarity
of a document surrogate and a query in the context of a retrieval model.

Figure 23 gives an overview of retrieval models in IR. Since MTCC takes an external,
responsibility-based view of testing, details regarding the theory and implementation of the
retrieval model used by the testee are neither available to MTCC nor of interest to acceptance
tests. We therefore limit our discussion to the differences between the Boolean retrieval model
and retrieval models that support the ranking of results by relevance.

The subjects of retrieval models are not an information need and documents but rather
queries and document surrogates.

A common format for document surrogates that is both used by the Boolean and the
vector model is the representation as a multi set or bag of words that are included in or
relevant to the document.

Depending on the specific transformations that a document undergoes during indexing,
the terms in the document surrogate can be identical to those in the document. The terms
in the surrogate may also form a subset of the terms in the document, for instance, when
stop words are removed from the document; or the surrogate may contain a superset of the
original terms, for instance, when synonyms are added to the document. In addition to the
removal or addition of terms, transformation processes at the term level such as stemming
and lemmatization replace individual terms in documents.

If a document is structured into different fields, for instance the title, author and abstract
of a bibliographic record, a document can be represented by a surrogate that contains a
multi-set for each field of the document.

61



Figure 23: Overview of retrieval models (Baeza-Yates & Ribeiro-Neto, 1999)

Two types of retrieval models can be distinguished: 1) Models that are based on a purely
binary model of relevance and 2) vague or graded retrieval models that support the ranking
of the documents according to their likely relevance. When a retrieval model with a binary
model of relevance is used for search, each document of an IR system is assigned to one of
two sets, one containing documents that are relevant to the query and the other containing
documents that are not relevant. The result that a system with a binary IR model returns for
a query contains all documents from the set of relevant documents without further distinction.
Systems based on a graded retrieval model return results sorted by their decreasing probability
of relevance, they assign a relevance value to each document.

The Boolean model is based on Boolean algebra: Queries are represented as Boolean
expressions. Queries are answered as follows: For each term in a query a set of all documents
is built that contains this term, then, unions and intersections of the individual sets are built
based on the Boolean operations used in the query. The Boolean retrieval model supports the
formulation of complex and precise queries by experts for a retrieval system but is problematic
for less experienced users. Not optimally formulated queries can either lead to result sets that
are empty or contain so many elements that the user is overwhelmed. A problem inherent
to the Boolean retrieval model (Eibl, 2000) is that it cannot differentiate between documents
that nearly match a query: If a document matches all but one of the terms specified in a
conjunctive query, it has the same negative relevance as a document that contains no term
at all.

The limitations of the Boolean model were motivating factors in the research of graded
retrieval models like the vector model or probabilistic model. The vector model represents
both queries and documents as vectors in the vector space whose dimensions are defined by
the set of all terms in the information retrieval system. The value of each component of the
vector represents the weight of the corresponding term to the document or query.

The approach used to determine the weight of a term has significant impact on the
calculation of relevance values by the IR system (Salton & Buckley, 1988). Basic concepts
to calculate term weights is the use of term frequency (tf) and inverse document frequency
(idf).

Term frequency is the number of occurrences of a term in a document. The inverse
document frequency is defined as the logarithm of the quotient of the number of documents
in the IR system and the number of documents in which the term is included.

62



idft = log
N

dft
(5.1)

Based on the tf , idf and a normalization factor, the weights of all terms for all documents
are calculated.

The similarity between a query and a document surrogate is done on the basis of a
document vector and a query vector, a frequently used measure is the cosine of the angle
between the two vectors:

sim(d1, d2) =
~V (d1)~V (d2)

|~V (d1)||~V (d2)|
(5.2)

The vector model assigns a graded relevance value to each document held by the retrieval
system. It is a vague retrieval model in the respect that for queries containing multiple
terms, it can also return documents that do not contain all terms. The vector model is better
suited for inexperienced users who lack the skill or inclination to formulate complex queries
based on the Boolean model. At the same time these properties of the vector model limit its
applicability for the formulation of complex and precise queries.

In addition to the Boolean and the vector models, another relevant retrieval model is the
probabilistic model (Robertson et al., 1980) that applies probabilistic theory to the Informa-
tion Retrieval task and provides graded relevance values for queries. The extended Boolean
model (Salton et al., 1982) combines the support of the Boolean model for formulation of
complex queries with the ability to return documents graded by relevance.

The combined support for complex queries and graded relevance ranking is a feature of
most current IR systems, independent from the internally used retrieval model.

5.1.3 Evaluation for Information Retrieval

Since the effectiveness of an Information Retrieval system is defined as its ability to identify
documents relevant to a user’s information need and as the relevance of a document with
regards to an information need cannot be formally proven, the effectiveness of an IR system
must be assessed by empirical means. In order to evaluate an IR system and to compare the
effectiveness of different systems, a standardized collection of information needs, documents
and in some cases relevance assessments for the documents regarding the information needs
are used. We call such a collection an evaluation collection. Using a collection, the evaluation
of an IR system is done as follows:

• Every information need included in the corpus is formulated as a query that is then
executed on the IR system.

• The documents returned for the query as well as their ranking are recorded.

• The (ranked) list of documents for each query is compared with the relevance assess-
ments included in the corpus. If the corpus does not include assessments for all docu-
ments, result documents are intellectually assessed.

• Metrics for the effectiveness of the IR system are calculated based on the relevance
assessments. The MTCC approach supports the calculation of Relevance and Precision
as explained below

A number of metrics exist for the evaluation of IR systems. The two most basic measures
in use are Recall and Precision.

63



Recall =
Number of relevant documents in the result set

Number of relevant documents in the IR system
(5.3)

Precision =
Number of relevant documents in the result set

Number of documents in the result set
(5.4)

Recall describes the completeness of a result set in relation to all relevant documents in
the IR-system, precision the ratio of relevant documents and documents that were falsely
returned as relevant. Since optimizations of an IR system for either recall or precision will
generally have a negative impact on the other measure, recall and precision values for a
system must always be considered in combination (Manning et al., 2008).

Evaluation of Graded Retrieval Models

As described above, recall and precision are best suited for the evaluation of systems with
a binary concept of relevance. Graded retrieval models return a ranked list of documents,
for such systems and for large result sets it is not only important that relevant documents
are part of the result set but also that they are ranked correctly, since most users will only
inspect the first, most highly ranked documents (Blair, 1980; Cooper, 1973). Because recall
and precision are based on sets and thus ignore the order of result documents, other metrics
are needed for the evaluation of graded IR systems.

One means for the evaluation of ranked result is a Precision-Recall chart. Such a chart
displays the precision of a result set at different levels of Recall. Figure 24 displays a variant
of such a chart, an averaged 11-point precision / recall graph. An advantage of such a
representation is that it eases the comparison of results for different evaluations. As illustrated
by Figure 24, precision falls with increasing recall, the first results returned by the system
are therefore the most likely to be relevant by the judgement of the system.

Figure 24: Averaged 11-point precision / recall graph (Manning et al., 2008)

For a number of situations, for instance, when it is likely that a user will only inspect a
limited number of documents, regardless of their relevance, the precision value after the first
k documents is better suited to evaluate an IR system than precision at a specific recall level.
Precision at k and R-Precision are measures applicable for such situations.

64



As the name implies, precision at k measures the precision of the first k documents of
a result list. R-Precision considers the precision after the first k documents known to be
relevant of been returned, compared to precision at k, this allows for better comparability
between queries with large difference in the number of returned results.

Beyond the measures presented here, a number of specialized measures exist, for example
for web-retrieval (Lewandowski, 2007). Mandl (Mandl, 2008) discusses the quality of websites
for Information Retrieval with respect to automatic assessment of quality.

Limitations of the Notion of Relevance

The evaluation process used in Information Retrieval and the measures used in that process
are based on a number of simplifications that have to be considered in the interpretation
of results. One limitation of the evaluation processes outlined above is the use of binary
relevance assessments for the documents in the corpus. While this is a simplification of
reality, it does not put evaluations done with this measure under question (Manning et al.,
2008).

A more fundamental simplification is the assumption that the concept of relevance is
static for every user at each moment of time. This ignores the fact that, for instance, the
relevance of a document changes once this document is known to the user.

A final weakness of the evaluation process is that it is assumed that the information
need of a user is fully formed and can be expressed in a single query. This ignores the fact
that the Information Retrieval process is a dialog and that the information need of a user is
evolving (Schamber et al., 1990).

The evaluation of Information Retrieval as a dialog is not possible with the system-centric
evaluations discussed above. A user-centric (Voorhees, 2002) approach that includes aspects
like the usability of a system is needed instead. Because MTCC abstracts from the interface
that a user employs to interact with the SUT, is not intended to serve as a tool for a user-
centric evaluation.

5.2 Digital Libraries

Digital Libraries are specialized Information Retrieval systems. The digital libraries discussed
in this thesis are topic-specific portals that provide scientific information (Mayr et al., 2005)
for specific fields of science. This thesis investigates a family of on metadata-driven Digital
Libraries, primarily for the social sciences. We argue that Digital Libraries outside this
system family, for example the ACM1 or the IEEE Digital Library2, can also be represented
and tested using the MTCC approach.

We use the term portal to indicate that these particular Digital Libraries integrate various
different databases but use the term Digital Library for the remainder of this text.

Figure 25 illustrates the relations of portals, topic-specific portals and databases.

The fact that the Digital Libraries discussed here integrate several databases raises the
complexity of each system considerably. One reason for this increase in complexity is the
presence of data from a number of different sources. The Digital Libraries discussed here can
include the following types of information (Mayr, 2006):

OPACs Online Public Access Catalogs contain information about the books, periodicals,
and other media available in a library. The records of an OPAC usually contain bibli-

1http://portal.acm.org/
2http://http://www2.computer.org/portal/

65

http://portal.acm.org/
http://http://www2.computer.org/portal/


Portal

Disciplinary 
Portal 1

Database 1

Database 2

Database 3

Disciplinary 
Portal 2

Database 4

Database 5

Database 6

Disciplinary 
Portal n

Database 7

Database 8

Database 9

Disciplinary Cluster 1

Figure 25: Portals, disciplinary portals and databases (Mayr et al., 2005)

ographic data and a subject description in an indexing vocabulary, but do not have an
abstract.

Full-text Electronic full-text may be either available at costs or, for instance in the case of
Open Access Repositories, for free. While the cost of full-texts is not directly relevant
to IR, the treatment of free and at cost resources raises the complexity of a Digital
Library.

Topic Guides Topic guides (Fachinformationsführer) describe Internet resources of rele-
vance for a particular field of science, for instance, the homepages of institutions.

Topic Database Topic databases (Fachdatenbanken) are collections of information that
supply scientists with research-relevant information. A important aspect of topic databases
are bibliographic records, often containing an abstract as well as subject descriptions
from a indexing vocabulary.

In addition to these information types, Heinz and Stempfhuber (Heinz & Stempfhuber,
2007) list 14 different types of information, called modules, among them expert data bases
and event calendars.

The integration of potentially structurally as well as semantically heterogeneous databases
in a Digital Library gives rise to a number of challenges concerning the implementation
technology, information science, and organizational / legal issues.

One approach to the management of different information types is the Shell Model defined
by Krause (Krause, 1996, 2006a). As illustrated in Figure 26, the Shell Model places different
kinds of information in concentric layers around a core of high-quality information. The shell
model thus supports the organization of different types and qualities of information by their
likely relevance to the user of a digital library.

5.2.1 Structural and Semantic Heterogeneity

Structural and semantic heterogeneity (Stempfhuber, 2003) are a consequence of the integra-
tion of multiple databases within one Digital Library.

Databases are structurally heterogeneous when the schema used to describe information
differs. Differences can include different field names, incompatible data types and ranges of
legal values and different granularity used to describe concepts. Structural heterogeneity is a
relevant problem outside the domain of Digital Libraries (Hasselbring, 1997, 2002b; Pedersen
& Hasselbring, 2004). Rahm and Bernstein (Rahm & Bernstein, 2001) give an overview of the
challenges imposed by structural heterogeneity and outline some approaches to their solution.

66



Figure 26: Shell Model(Krause, 2006a)

Semantic heterogeneity is caused by the use of different Knowledge Organization Systems
(KOS) like thesauri, classifications and subject lists for the different databases. Since a user
of a Digital Library cannot be expected to be familiar with multiple KOSs, it is important to
make the different KOSs used in a Digital Library interoperable (Zeng & Chan, 2004). One
means to provide such an operation are cross-concordances (Mayr & Petras, 2008).

Structural and semantic heterogeneity as well as use of methods for treatment of such
heterogeneity like cross-concordances increases the complexity of a Digital Library as a tech-
nical system. This rise in complexity increases the probability of defects and thus necessitates
more testing.

5.2.2 User-oriented Quality of Digital Libraries

If we define the quality of a Digital Library as the degree to which it satisfies the needs
of a user, it becomes obvious that the quality of a Digital Library may be different to
each user. Surveys concerning the factors that define the quality of a Digital Library to
a user (Thurmeier, 2007) place emphasis both on the importance for a Digital Library to
support complex queries and on the usability of the system. In more detail, users have the
following requirements for a system (Heinold, 2007) (translation by the author):

• High coverage of potential information sources

• Ease of the search process:

– quickly accessible search forms for a simple search

– an uncomplicated way to modify the results of a search that allows the reuse of
previous searches.

• Simple assessment of the relevance of results:

– by the preview of a document in the list of results

– by sorting the result by different criteria

67



• Simple access to the needed information

– links to document sources

– direct and uncomplicated access to electronic texts

The significant role of usability is confirmed by Lewandowski (Lewandowski & Hoech-
stoetter, 2007) in the context of web-retrieval. It was also found that advanced functionality
for such systems, for example, Boolean operators, were rarely used. While it is unclear, how
far these findings apply to the users of Digital Libraries, we argue that differences between
available functionality and used functionality are likely to exist for digital libraries as well.
In combination with the survey results outlined above we argue that the assessment of the
quality of a Digital Library must involve users.

5.2.3 Testing of Digital Libraries with MTCC

In order to test a Digital Library in practice, some simplifications have to be accepted. The
following are relevant to testing with MTCC:

• The ability of a Digital Library to provide information relevant to an information need
can only be tested using the system-centric evaluation approaches outlined in the pre-
vious section. Since MTCC abstracts from the specifics of the graphical user interface,
testing of IR as an interactive process involving the information need of a user at a
specific point in time is limited.

• Tests can only represent a static information need, the expected behavior of a test
executed multiple times cannot change.

Similar to the evaluations of IR effectiveness, testing IR systems is based on simplifica-
tions. Figure 27 puts the previously discussed concepts of Information Retrieval in relation
to the abstractions used in MTCC. A query is a representation of an information need, tests
are representations of the requirements for a system. As an IR system can only judge the
relevance of a document, tests in MTCC can only verify the testable aspects of a system that
are represented by the system model.

Requirements TesteeTests Testable
System

Representation
Execution & 
Assessment Part of

Information Need Surrogate DocumentQuery

RepresentationRepresentation Comparison

Figure 27: Abstractions in Information Retrieval and abstractions in MTCC (Belkin & Croft,
1987)

As discussed in Chapter 2, testing can only improve the quality of a system by finding
faults. Applied to the testing of Digital Libraries with MTCC, this means that MTCC must
be able to model the Test Steps and Services needed to fulfill Information Retrieval tasks with
MTCC. In particular, MTCC must be able to compare the expected and the actual results
for a query.

68



The fact that MTCC is a Model-Driven approach and thus abstracts from some aspects
of tested systems has consequences for the aspects of digital libraries that can be tested with
MTCC. The graphical user interface of a system determines what interactions between a
user and a IR system are possible and is an important aspect of the user-centric quality of a
system. Since MTCC does abstract from all aspects of the user interface, the user interface
aspects of a IR system cannot be tested in MTCC. More generally, MTCC does not support
testing of any usability-related aspects of a system.

MTCC does support the testing of the functional aspects of a IR-system within the
constraints of the Cranfield paradigm (Voorhees, 2002) as well as the testing of the technical
functionality and correctness of a system.

5.3 Chapter Summary

The goal of Information Retrieval is to fulfill the information need of a user on a collection
of document by identifying those documents that are relevant to the user. Because an infor-
mation need is an inherently vague concept, Information Retrieval systems are based on a
retrieval model that describes how informations needs can be encoded as queries and how a
relevance assessment for a query and a document representation can be derived.

Digital Libraries are Information Retrieval systems that store digital documents or meta-
data. This thesis applies MTCC to a system family of three Digital Libraries for scientific
information, primarily bibliographic metadata.

Two types of Information Retrieval evaluation can be distinguished, system-centric evalua-
tion and user-centric evaluation. In a system-centric evaluation, the quality of an Information
Retrieval system is assessed based on the results returned for isolated queries derived from
a number of standardized information needs. The degree to which the returned documents
fulfill the information need for the query is established based on relevance assessments by
domain experts. Metrics like MAP, Recall and Precision describe the effectiveness of an In-
formation Retrieval system. A user-centered evaluation of Information Retrieval does not
only consider individual queries but treats Information Retrieval as an interactive process.
In order to conduct a user-centered evaluation, the usability of a IR system and therefore its
user interface must be taken into account.

MTCC models abstract from the user interface of a SUT, MTCC therefore does not
support user-centric evaluations of Information Retrieval systems. MTCC does support the
verification of Recall and Precision values for queries defined by domain experts for a collection
with existing relevance assessments.

69





Part II

Model-Driven Test Case
Construction

71





Chapter 6

The MTCC Approach

This chapter gives a detailed overview of the test construction process with MTCC, the roles
involved in the process and the models and artifacts used.

The MTCC testing process consists of five steps: (1) the analysis and modeling of the
system family under test, (2) the modeling of testees from the system family, (3) the compo-
sition of a system-specific test model, representing the available tests for a system, and finally
(4) the construction of tests represented as sequences of Test Step configurations and (5) the
transformation of these abstract representations into executable Test Steps.

The MTCC process distinguishes two different roles for participants in the test construc-
tion process, domain experts and domain engineers. Domain experts provide knowledge about
the functional requirements of a system, domain engineers contribute implementation knowl-
edge and modeling skills. Section 6.1 describes the phases of the MTCC test construction
process and the responsibilities of the different roles.

MTCC uses a number of different models. Models address (1) different levels of specificity
— for instance at the system family level and system level — and (2) different entities such
as the Services of a system and the Test Steps that exercise these Services and (3) different
aspects of a system, specifically its features and its dynamic behavior. Section 6.2 introduces
the different types of models used in MTCC.

6.1 The MTCC Process

The testing process based on MTCC consists of three phases followed by an external test
execution phase. Figure 6 on page 18 illustrates these phases and their respective activities,
Figure 28 illustrates the relation of the MTCC Phases to the phases of the system family
engineering approach as presented by Czarnecki (Czarnecki, 2005).

In the Domain Engineering phase, a system family is analyzed with respect to its test
relevant Services, the features of these Services and the Test Steps needed to exercise these.
Domain Engineering in MTCC is comparable to Domain Analysis (Czarnecki & Eisenecker,
2000; Arango, 1989, 1994) applied to system families, it is also analogous to Software Product
Line Engineering in that core assets for the testing of the system family under test are
identified and implemented.

In Application Engineering, the results of domain engineering are refined. Models describ-
ing the system family or domain are specialized for the representation of specific systems. The
focus of Test Engineering is the utilization of the test editor that supports domain experts
in modeling tests based on the models instantiated in the previous phases of MTCC. Test
modeling with the editor is done by the selection and configuration of Test Steps, we call this
Test Step instantiation. A Test Step instance represents a concrete interaction with a Service

73



Domain
Engineering

Application
Engineering

Test
Engineering

Application EngineeringDomain
Engineering

Management

Management

Reusable assets
New requirements

Reusable assets
New requirements

Reusable assets
New requirements

Product Line
Engineering

MTCC Test
Construction

Software Engineering Application Use

Test execution
Test Reporting

Application
execution

Figure 28: Phases of MTCC and system family engineering(Czarnecki, 2005)

instance of the testee. The feature model of a Test Step instance is a specialization of the Test
Step feature model that represents the configurations for the Test Step instance, taking into
account the specific features of the Service addressed by the Test Step. The parameterization
of a Test Step is expressed as the configuration of the feature model representing the Test Step
instance. The use of feature models to model the inputs and expected results of a test case
leads to a more fine grained use of feature models than in product configuration, where fea-
tures often represent the general capabilities of a system (Wagelaar & Straeten, 2006). In the
test code generation activity, Test Step configuration serves as the base for the configuration
of executable test cases.

The last phase of Testing with MTCC is not part of the core MTCC process. How the
activities of this last phase, test execution and test reporting, are conducted is determined
by the test runner for which tests are generated and by the general testing regime in place.

While each of the phases of the MTCC process builds on the results of the previous phase,
MTCC does not assume a sequential execution of the different phases. We assume that
domain engineering, Application Engineering and test engineering are executed in iterations.

MTCC can be considered a product-line approach for the construction of tests. Figure 29
illustates the relationship of the work on applications within a domain and the domain in-
frastructure in Product Line Engineering. Applied to the testing process of MTCC, three
processes corresponding to the phases of the MTCC process. In test engineering, tests are
constructed based on the assets implemented in domain engineering and Application Engi-
neering. Requirements for the models and testing infrastructure flow back to Application
Engineering, requirements for new classes of Services and Test Steps serve as input to do-
main engineering. Additions to the MTCC domain models from domain engineering are
used to model new aspects of systems in Application Engineering. The core assets of the
MTCC testing process are the domain models, the editor, the routines for model composition
and the infrastructure for test generation. Figure 28 illustrates the relationship of the three
MTCC phases to Application Engineering and Domain Engineering in System Family Engi-
neering (Czarnecki, 2005). The concept of System Family Engineering as used in the figure
is comparable to our concept of Product Line Engineering.

The different roles involved in the overall testing process with MTCC are expected to
be in constant communication. Domain experts construct tests and inform domain engineers
about test-relevant, but not yet testable functionality. Domain engineers extend and maintain
the models and tools used in the test construction process and oversee the generation and
execution of test cases.

74



Figure 29: Product Line Practice as defined by the SEI Framework (Czarnecki & Eisenecker,
2000)

6.1.1 Roles and Relation to Software Development

Two roles are distinguished in the MTCC testing process, domain experts and domain engi-
neers:

• Domain experts have knowledge about the functional requirements of the application
domain or at least one system in the application domain, but do not know how systems
in the domain are implemented.

• Domain engineers have knowledge about the implementation of the systems within the
system family and have the necessary skills to implement and maintain the artifacts
and models of the MTCC approach, but do not have sufficient knowledge about the
functional requirements of the system to implement tests.

Domain engineers and domain experts cooperate in the application of the MTCC pro-
cesses. MTCC assumes that the system under test is available at least as a prototype and
that the execution of tests generated from MTCC models on the testee is possible.

Roles in the MTCC Process

Roles in MTCC are defined by their knowledge about the functional requirements or technical
implementation of the system under test.

It is one purpose of MTCC to support the capture and formalization of domain experts’
knowledge and operationalize it as information for the verification of systems.

The capture and formalization of requirements is facilitated by the MTCC editor, a tool
that allows the construction of tests for specific systems without requiring that the user
possesses skills in programming or formal modeling.

75



The design and realization of the MTCC models as well as the implementation of the
MTCC infrastructure and its maintenance are the responsibility of the domain engineer. He
or she must be able to represent the test-relevant aspects of the domain identified by domain
experts in the appropriate models.

We argue that the cooperation of domain experts and domain engineers is a prerequisite
for the implementation of high-quality software that meets the requirements of its users. We
see this notion explicitly reflected in a number of software development methods like Domain
Driven Development (Evans, 2004). We argue that the need for cooperation applies to testing
software as well.

In addition to the differentiation of roles by the respective knowledge of their holders, it is
also possible to distinguish roles based on the MTCC phase they are active in. For instance,
domain engineers working on the MTCC core assets need different skills than system engineers
that model the Services of one particular system and maintain the Test Adapter necessary for
test execution. It could be argued that domain engineers and system engineers as well as
domain experts and system experts (knowing the functional requirements for one system)
constitute different roles. For this thesis, we only use the roles of the domain engineer and
the domain expert. While good reasons exist for the definition of additional roles (Krahn
et al., 2006), we argue that for our prototype implementation of MTCC and its evaluation,
such roles are not needed.

Relationship of MTCC to Product Development

MTCC defines two preconditions that the software development process whose products are
to be tested must fulfill: The software development process must have incremental elements
and the testable version of the SUT must be available when MTCC is used.

MTCC can only be used within the context of software development processes that have
iterative or incremental elements (Larman & Basili, 2003). The naive use of the waterfall-
model (Royce, 1987) in a strictly sequential manner as well as the classical V-Model (Broy &
Rausch, 2005) and all other models that do not allow for requirements discovered in testing
to feed back into the design and implementation process are not well-suited for MTCC,
since it is not possible for tests to influence the development process in a form of executable
specification.

Another reason for the use of MTCC in iterative processes is the need for a testable
system, either a prototype or a version of the final system, that supports the execution of
tests and thus the decision whether the requirements defined by domain experts are meet by
the system.

Since the roles in MTCC are compatible with intensive cooperation of software developers
and customers in agile approaches to software development (Beck & Andres, 2004), we argue
that MTCC can be used in such processes. MTCC tests can be an executable alternative
to user stories in situations where MTCC models for the functionality to be implemented
already exist and the implementation in the context of the system is planned next.

MTCC makes no assumption about the use of any particular method for the identifi-
cation of the test-relevant features of a system and about the process used by the domain
experts to determine relevant tests for these features. Methods from the field of requirements
analysis (Mylopoulos, 2005; van Lamsweerde, 2001; Kulak & Guiney, 2003) can be used as
well approaches that are explicitly designed to be used in the testing context (Maletic et al.,
2000).

76



Relationship of MTCC to the Testing Process

MTCC is an approach to acceptance testing. The MTCC approach is a supplement to other
testing techniques. MTCC does not replace approaches such as developer testing or Model-
Driven system testing, nor does it compete with approaches to SPL testing.

6.1.2 Modeling of the Domain and Individual Systems

The first phase of the MTCC approach is domain engineering. From the modeling perspec-
tive, domain engineering in MTCC is an analysis process with the purpose of identifying
test-relevant functionality of the testees, followed by the formalization of the identified func-
tionality as models.

In the Application Engineering phase, concrete instances of systems are modeled as spe-
cializations (Czarnecki et al., 2005b) of the domain models realized in the domain modeling
phase. The dynamic behavior of the system is modeled as a finite state machine.

Domain Engineering

The purpose of domain engineering is the analysis of all systems within the system family
for test-relevant Services and Test Steps. The results of this analysis process are formalized
in models. The Domain Feature Model represents all test-relevant Services in the domain as
feature models. The Domain Test Model represents the Test Steps that serve to exercise and
verify these Services.

The first step of domain engineering is domain analysis (Arango, 1989; Czarnecki & Eise-
necker, 2000). The subject of analysis are all features (Kang et al., 1990) of the members
of the considered system family that are test-relevant. A feature is test-relevant when it is
needed for the specification of acceptance tests by domain experts. In MTCC, test-relevant
features are grouped into Services. A Service is a combination of features that represent some
aspect of a functionality relevant for the system family. For instance, the functionality needed
to start a search or a list of results for a query are both Services for the system family of
Digital Libraries. Within a system family and frequently within a system, multiple different
instances of a Service will exist, for example, different forms used to start a search. The
variability between this different instances is expressed in the feature model of a Service

In addition to Services, domain engineering identifies the Test Steps used to exercise a
Service Each Test Step is either an action that manipulates the Service or an assertion that
compares some aspect of the state of the Service with an expectation. Every Test Step
is specific to one of the Services of a system family. Each Service has multiple Test Steps
assigned to it. An overview of all Services and Test Steps for the system family of digital
libraries considered in this thesis can be found in Section 9.4. The MTCC activities of
Service modeling and Test Step modeling build on the results of the analysis activities and
formalize them in two models, the Domain Feature Model and the Domain Test Model.

The Domain Feature Model describes each identified Service as a feature model. The struc-
ture of the feature model represents the various features of a Service the variability (Czarnecki
et al., 2006b; Coplien et al., 1998) of the feature model represents the difference that can exist
between multiple instances of the same Service For the search form mentioned above, different
instances can vary in the number of fields available to formulate a search as well as in the
advanced search options that are supported. Each Service Domain Feature Model is expressed
as a feature model with cardinalities as introduced in Section 4.2. The Domain Feature Model
is a catalog for Services that exist for the considered system family. It does not describe how
Services are combined to describe a system, the workflow of a system or any aspect of the
dynamic behavior of the system.

77



The Domain Test Model represents all Test Steps that exist for the Services described in
the Domain Feature Model. Every Test Step is specific to one Service it represents either an
action that executes the Service and thus manipulates its state or an assertion that either
verifies if some expectation about the state of the Service is true or reads some aspect of
the Service state and saves it for later use. Submitting a search form and thereby starting a
search is an example of an action, reading the number of results from a list of documents is
an example of an assertion.

Test Steps are represented as feature models that contain references to the feature model
of the Service exercised, these references are unfolded in the Model Composition activity of
Test Engineering and allow the inclusion of those features of the feature model of a Service
instance that are relevant to test construction.

Application Engineering

In the Application Engineering phase, models for one concrete system from the considered
system family are realized.

The Application Feature Model describes a system in terms of its Service instances. Each
Service instance is a specialization of one of the Services described in the Domain Feature
Model. It is possible and common that multiple different instances of one Service exist for a
system, for instance, a simple search form for unexperienced users and a more complex search
form for experts.

Details about the structure of the feature models included in the Application Feature Model
and the information contained in these models can be found in Section 7.2.

The Application State Model describes the dynamic aspects of a specific system. The
model is represented as a non-deterministic finite state machine that represents possible
traces through the system.

The finite state machine of the Application State Model distinguishes two kinds of states:
Context states and Service states. Only Context states can be reached from the initial start
state of the FSM. From a Context state, only Service states can be reached. The transition
from a Context state to a Service state corresponds to the selection of one Service from the
set of all Services defined in a given Context. From a Service state, only Context states can
be reached, the state transitions from a Service to a Context state represent the execution
of a Service and the resulting change of the current Context. For example, the execution
of a search Service can result in a transition to a Context representing a page that displays
the result of a search or, in cases where no documents were found, a transition to a Context
representing the ”no-results found” page. Section 7.1 discusses the dynamic models used in
detail.

Figure 30 illustrates the relevant concepts represented by the MTCC model at the system
family and system level as well as the relations of the these concepts. A system in MTCC
is represented by a number of Contexts. Every Context contains a number of of Service
instances. While a Context has an unique name, it is primarily defined by the Service instances
it contains. For web-applications like the Digital Libraries, a Context will typically correspond
to a page of the application. A concrete example for a Context in such a system would be
the page that displays the results of a search. This Context would include Service instances
representing one or more lists of result documents, links to other pages of the application,
and controls to manipulate a list of the results, for example by changing its sorting.

Figure 31 displays one page of a Digital Library that corresponds to a Context. The
context includes the following seven Services: (1) Information about the search that was sent
to the digital library, (2) controls to browse the results of the search, (3) feedback about the
number of documents found, (4) controls to change the sorting of a list of results, (5) facets

78



SUT

System Family

Context

Service Test Step

Service Instance Test Step
Instance

defined by

instance ofinstance of

specialized for

instance of

defines functionality for

exercises

Domain Test Model
«DomainModel»

Domain Feature Model
«DomainModel»

Figure 30: Relevant concepts of MTCC on the system and system family level

to further restrict the results of the search, (6) controls to mark result documents for experts,
and (7) a list of result documents for a search.

Figure 31: Service instances in a web page

Implementation of Infrastructure Code

After the Application Feature Model and the Application State Model for a testee are realized,
the last activity of the Application Engineering phase is the implementation of infrastructure
that is necessary for the execution of tests. Two artifacts have to be implemented in MTCC
to allow the generation and execution of test cases.

Templates allow the generation of test cases for one specific test runner. The Test Adapter
is a library that provides functionality needed for the execution of the previously generated
test cases. The Test Adapter is specific to the system tested and to the test runner used to
execute the tests.

79



6.1.3 Composition of Models

The MTCC editor supports the construction of tests for a member of a software family based
on the information contained in the Application Feature Model, Application State Model and
Domain Test Model. The use of these models enables the editor to guide a user in the test
construction process by allowing only the construction of tests that are supported by the
system represented by the model.

In order to reduce the complexity of the editor, the editor does not use the Application
Feature Model, Application State Model and Domain Test Model as separate models. Instead
it uses an integrated model, the Application Test Model. The Application Test Model is a
composition of the three initial models, it includes both information about Services and their
associated Test Steps and information about the possible sequences of Test Steps that can be
executed on a system.

While the Application State Model and the Application Test Model represent a system in
terms of its Services, the representation used by the Application Test Model is based on the
Test Steps that can be executed on a system, the configurations that are possible for the Test
Steps and the possible sequences of Test Steps.

Reasons for the Composition of Models

In order to discuss the reasons for the composition of the Application Feature Model, Application
State Model and Domain Test Model into the Application Test Model, we first discuss our
reasons for separating these models. The decision to use three different models and only to
integrate the information contained in these models in the Application Test Model immediately
before the instantiation of the editor has conceptual as well as practical reasons:

• By representing Service instances in the Application Feature Model and Test Steps in the
Domain Test Model, Test Steps only need to be defined once at the system family level.
Service instances have to be defined at the system level.

• The definition of Test Steps at the system family level helps to avoid the redundancy
that would result from the inclusion of all Test Steps for all referenced Service instances.
It thus has positive influence on the maintenance of the models. For instance, in order
to add a new Test Step to a Service the Test Step only needs to be added to the Domain
Test Model, the Service instances exercised by the Service need not to be changed.

The information contained in the Application Feature Model and the Application State
Model is best expressed with different types of models. While a feature model is by definition
an excellent representation for the possible configurations of a Service instance in the Appli-
cation Feature Model, a FSM is better suited to describe the possible sequences of Service
invocations included as described by the Application State Model.

While the use of separate models eases the maintenance of the models, such a represen-
tation as an internal model for the editor is disadvantageous for two reasons:

• The editor needs to represent a system in terms of the Test Steps that can be executed
on it, not in terms of its Services.

• The use of separate models eliminates redundancy in the models, but raises the com-
plexity necessary to work with the models.

80



The Composition Process

The Application Test Model has to parts: a catalog of Test Step instances represented by
feature models and a dynamic part represented by a FSM. We call the catalog of Test Step
instances the structural part.

The structural part is created from the Application Feature Model by replacing every Service
instance with instances of those Test Steps that are assigned to it and can be executed on
it. The Test Step instances are created by checking all Test Steps defined in the Domain Test
Model for compatibility with the Service instances defined in the Application Feature Model.
If the Test Step and the Service instance are compatible, a Test Step instance is created by
unfolding the feature references in the Test Step and is added to the catalog.

The dynamic part of the Application Test Model is created by rewriting the Application
State Model in such a way that Service state is replaced by a number of Test Step states in
the same way that Test Step instance replace Service instances. The resulting FSM describes
all possible sequences of Test Steps that can the executed on a testee.

6.1.4 Modeling of Test Configurations

The editor supports the construction of test cases based on the dynamic and structural
information in the Application Test Model.

From a technical point of view, a test is constructed by building a sequence of configured
Test Step instances. The FSM in the dynamic part of the Application Test Model determines
which sequences of Test Steps are available. The feature models of the structural part define
how each Test Step instance can be configured.

From the users point of view, test construction is defined by two activities: The selection
of Test Steps that represent a usage scenario that is to be tested and the parameterization of
each individual Test Step.

Like Action Word (Blackburn et al., 2004) based approaches to testing or FIT (Mugridge
& Cunningham, 2005b) workflow tests, MTCC represents a test as a sequence of individual
steps that manipulate and verify the testee. The combined Test Steps represent one possible
session of a user with a system. From a technical point of view, a MTCC test is a trace
through the functionality of the system. One property specific to MTCC is that the selection
and combination of Test Steps is guided by the editor. A user can only construct those
sequences of Test Steps that are supported by the system under test as described by the finite
state machine of the Application Test Model. For example, a Test Step to submit a query would
only be available if such an action would be supported by the testee in its current state. The
selection of Test Steps determines the functionality of a testee that will be exercised by the
test.

The parameterization of the individual Test Steps determines exactly how the Service
instances of the testee are exercised and verified. The possible parameterization or configu-
ration of each Test Step instance is defined by feature models in the structural part of the
Application Test Model. The editor represents the specialization steps that can be applied to
the feature model in terms of the elements of a graphical user interface. As it is the case with
the selection of Test Step instances, the editor uses information from the Application Test
Model to guide the user in test construction. A test in MTCC is a sequence of configured
Test Step instances for one system of the system family. We call such a test a Test Config-
uration. An in-depth discussion of the MTCC editor is given in Section 8.1, details on the
specialization of feature models for the purpose of the configuration of Test Step instances
are given in Section 8.2.

81



Representation of Tests in the Editor

The editor displays the sequence of Test Step instances that define the behavior of a test as
a list on the left part of the GUI. The Test Step instance that is currently being configured is
displayed in the right part of the editor. The graphical user interface that represents each Test
Step is dynamically built by the editor based on both the structure of the feature model of
the Test Step instance and the semantics of individual nodes in the feature model. Figure 32
shows the MTCC editor. The Test Steps for the current test are shown in the left part of the
GUI (1), the right part of GUI (2) displays a representation of the current Test Step.

Figure 32: Representation of the available and current teststeps in the MTCC editor

In a breadth-first traversal of the feature model, each node is checked against a number
of GuiBuilder objects. Each GuiBuilder object is responsible for the display of specific nodes
or subtrees of a feature model. When a GuiBuilder object is responsible for the display of a
subtree of a feature diagram, it either builds a complete representation of GUI elements for the
feature model or a partial representation and delegates the rendition of some subtree to other
GuiBuilder object, similar to the application of the Chain of Responsibility Pattern (Gamma
et al., 1995).

The configuration of a Test Step instance done via the editor is represented by config-
uration nodes in the feature model. Configuration nodes are attached to the nodes of the
feature model that are configured by the user. For instance, when an optional feature is
de-selected by clicking the checkbox that represents that feature in the GUI, a configuration
node representing refinement of the feature cardinality from [0,1] to [0,0] is attached to the
feature node.

The representation of the specialization steps used to configure a Test Step instance as
nodes of the feature model instead of directly applying them to the model has advantages
for the representation of feature models in a GUI. Since the specialization steps used during
configuration do not directly manipulate the feature model but are represented as a separate
object, it is easy to undo and change the configuration of a feature model.

Reuse of Tests

One purpose of MTCC is the reuse of tests, more precisely of Test Configurations for multiple
systems. Since a Test Configuration is constructed from the Test Step instances for one partic-
ular system as represented by the Application Test Model of that system, a test can be reused
for another system if its Application Test Model supports the same sequence of Test Steps as
the initial system and each individual Test Step instance supports the same configuration as
the corresponding Test Step instance. Section 8.3 discusses test reuse in detail.

82



6.1.5 Test Script Generation and Execution

In order to use the abstract Test Configuration for testing, MTCC employs code generation.
MTCC generates test cases for COTS or test runner. It is assumed that test scripts for such
a test runner are compatible with the structure of xUnit (Meszaros, 2007) tests. The test
cases generated by MTCC do not exercise the testee directly but use a manually implemented
wrapper library, the Test Adapter. The Test Adapter provides implementations for each Test
Step instance in the system family for a specific pair of system and test runner.

With the use of code generation and the Test Adapter, MTCC facilitates the decoupling
of the semantics of the functionality to be tested and its implementation. Since MTCC does
not assume the use of any particular test runner, the integration of MTCC in an existing
testing process is also supported.

Generation of Test Code

Compared to other applications of code generation, the code generation approach in MTCC
is relatively simple. Since test cases neither include complex data structures nor complicated
control flow, a template-based approach to code generation is sufficient.

Every Test Configurationobject is represented by one test case. The test case is a sequence
of method calls for methods defined in the Test Adapter. Each method corresponds to one
configured Test Step instance in the Test Configuration.

The generation of test case code is done in two phases, in the first phase, the feature
model of each configured Test Step instance is transformed into a simplified representation
as a set of key-value pairs. This presentation is called the parameter object. In the second
phase of the code generation process, method calls for each Test Step instance in the test are
looked up from the Test Adapter library and code for the invocation of the method with the
parameter object as its parameters are generated. Section 8.4 discusses the MTCC approach
to test code generation. The execution of the generated tests as well the logging and reporting
of test results are not part of the MTCC process.

6.2 Overview of the MTCC Models

The models used in the MTCC are directly related to the phases of the MTCC testing
process. In Domain Engineering, Test Steps and Services relevant to the system family as a
whole are expressed in the Domain Test Model and the Domain Feature Model respectively.
Application Engineering derives the specific Services instances for one system by specializing
the Domain Feature Model into the Application Feature Model. The Application Test Model
describes the possible sequences of Service invocations for a system. In test engineering, the
Domain Test Model, the Application Feature Model and the Application Test Model are merged
into one composed model that describes a test in terms of the Test Step instances that can be
executed on it. The editor uses the Application Test Model to support the construction of Test
Configurations, sequences of configured Test Step instances that are an abstract description
of a test.

Figure 33 illustrates the relations of the models used in the MTCC process and their
associated phase of the MTCC testing process. Chapter 7 discusses the information contained
in the models and their implementation in detail.

83



Application Engineering

Domain Engineering

Test Engineering

Domain Test Model
« FeatureModel»

represents SUT in terms
of test steps

Domain Feature Model
« FeatureModel»

Application Feature Model
« FeatureModel»

Application State Model
« StateMachine»

« StateMachine»
Application Test Model

(dynamic)

« FeatureModel»
Application Test Model

(structural)

Application Test Model

Test Configuration
« FeatureModel»

references features from

instantiates test steps

specialization of

configuration of

references

Figure 33: Models used in MTCC and their relationships

6.2.1 Domain Level Models

The MTCC domain level models represent the test-relevant aspects of all members in a system
family modeled by MTCC. MTCC uses two models for the representation of test relevant
models, the Domain Feature Model and the Domain Test Model.

The Domain Feature Model represents the commonalities and variability for each type
of Service present in the system family. It is usually implemented as a feature model with
cardinalities1. The Service instances of the specific members of the system family are special-
izations of the Services defined in the Domain Feature Model. By deriving all Service instances
from a common model, the comparability of individual Service instances is ensured. This is
an important factor when the features provided by one Service instance are compared with
those of another Service instance in order to check if a Test Configuration can be transfered
from the first Service to the second.

The Domain Test Model is a catalog of Test Steps. Each Test Step is specific to one class of
Service Test Steps do not include information about the structure or variability of the Services.
Instead, they contain references to the aspects of a Service instance that is relevant for the
execution of the Test Step. MTCC models at the domain level do not have information about
the dynamic behavior of the testee.

6.2.2 System-Level Models

The MTCC System-Level models created in Application Engineering describe one system in
terms of its Service instances and the possible interactions with these Service instances.

The Application Feature Model represents Service instances of one particular system within
a system family. Service instances are feature models that are specializations of the Service
classes expressed in the Domain Feature Model. Multiple instances of a Service can exist
within one Application Feature Model. The relationship of a Service and a Service instance is
analogous to the relationship of a class and an object in object oriented approaches.

To give an example, the representation of a search form Service in the Domain Feature
Model would describe the kinds of fields available for search and the options to influence the
search that can exist for a system family. The Service instance in the Application Feature

1For tooling reasons, we implemented the Domain Feature Model used for the evaluation as a class library
that instantiates Application Feature Model models directly.

84



Model describes one concrete search form for one system.

The feature models of Service instances are not fully specialized. The remaining vari-
ability for representing the parameters that can be used for the invocation of a Service The
Application State Model describes all possible interactions between a user and the SUT as
possible sequences of Service invocations. The Application State Model is implemented as a
finite state machine. The Test Steps defined in the Domain Test Model are not refined on the
system level.

6.2.3 Test-level Models

MTCC uses two models at the test engineering level: The Application Test Model serves as
input to the editor, the Test Configuration represents tests on a system.

The Application Test Model is a composition of the Application State Model, the Application
Feature Model, and the Domain Test Model. It does not include any information or refinements
not already included in one of its input models. Instead, the Application Test Model is an
alternative representation of the information included in the other models that is explicitly
designed for the purpose of facilitating test construction using the MTCC Editor.

As can be seen from Figure 33, the Application Test Model consists of a structural part
and a dynamic part. The dynamic part is derived from the Application State Model. It is a
finite state machine that describes all possible sequences of Test Steps that can be applied to
a SUT.

The structural part is instantiated by unfolding the references from the Test Steps defined
in the Domain Test Model to the Service instances defined in the Application Feature Model.
This unfolding of references creates instances of Test Steps whose features are a combination
of the feature model of the Test Step and the feature model of a Services instance.

We use the name Application Test Model for both the dynamic and structural aspects of
the model to emphasize that the Application Test Model and all its parts are created in one
process and only for the purpose of test construction. The composition of the Application
Test Model is a fully automated process that occurs immediately before test construction in
the editor. The Application Test Model is a transient model, it is only created for the purpose
of test construction and is never persisted

Test Configuration Models are abstract descriptions of tests for one system. Conceptually,
these models represent a test as a sequence of configured Test Step instances. The feature
models that represent the Test Step instances are fully specialized.

6.2.4 Relationship of MTCC Models to the MDA

Since MTCC uses models of the different levels and steps of refinement and thus exhibits
parallels to concepts used in the MDA, the question arises how the hierarchy of CIM, PIM
and different levels of PSM (Mellor et al., 2004) relate to the domain- and system-level models
of MTCC.

One significant difference is that the different models used in the MDA approach represent
different levels of abstraction with respect to an implementation. The MTCC models at any
level, in contrast, are agnostic to the final implementation of the tests. In MTCC, different
levels of modeling differ not in their details with regards to the implementation, but in the
scope of the modeled entity like system family, system and test.

85



6.3 Chapter Summary

The MTCC process is in many aspects similar to Software Product Line Engineering. Where
the Software Product Line Process is defined by two parallel activities, Domain Engineering
and Application Engineering, MTCC consists of three phases, Domain Engineering, Applica-
tion Engineering and Test Engineering. The focus of Domain Engineering is the analysis and
modeling of the test-relevant features of the system family and the implementation and main-
tenance of the MTCC Core Assets. The Application Engineering phase considers a specific
SUT. The models created in Domain Engineering are specialized to represent the features
available for the SUT and the artifacts needed for text execution are implemented. The
products of the MTCC approach are automated acceptance Tests. These tests are created in
the Test Engineering phase. In Test Engineering, domain experts use the MTCC editor to
create an abstract test representation. These abstract representations are then used to create
executable tests.

The models used in MTCC can be distinguished by the phase in which they are used and
by the aspect of the tested system that is represented. The features of a SUT, the tests used
to exercise these features and parts of the dynamic behavior of the SUT are presented by
feature models and finite state machines. Domain-level models represent the Services and Test
Steps that are relevant for all members of the system family. System-level models represent
the behavior of a system and the instances of Services that are available for the system. Test-
level models combine the information included in the system and domain-level models and
represent tests.

MTCC partitions a system into basic units of functionality called Services. Services are
grouped in Contexts. Contexts and the Services defined in Contexts define the testable interface
of a testee. The actions that are available to exercise and verify the SUT are represented as
Test Steps.

86



Chapter 7

Models for System and Test
Representation

This chapter discusses the models used in MTCC in detail. While the proceeding chapter
focused on the utilization of models in the MTCC testing process and the different models
used at different levels of abstraction, this chapter focuses on the implementation of the
models.

Section 7.1 describes the Application State Model, the model used by MTCC to represent
the behavior of a system. MTCC employes a finite state machine for the Application State
Model, specifically a UML Protocol State Machine (Rumbaugh et al., 2004), to represent the
possible interaction of a user or test with the system under test.

In section 7.2, we discuss the use of feature models (Czarnecki et al., 2005a; Kim &
Czarnecki, 2005) in MTCC to represent both the Services of systems under test and the
Test Steps that are applied to these systems. The Services of a system that are to be tested
are represented by the Domain Feature Model and the Application Feature Model. A Service
in MTCC is the feature model representation of some functionality recurring for multiple
systems in the system family under test and testable in isolation. The representation of a
Service instance at the system level includes details about the functionality provided by this
particular Service especially as they concern the interface of the Service

The Domain Test Model is a domain-level structural model that describes the Test Steps
that can be applied to the Service instances defined in the Application Feature Model.

Section 7.3 discusses the composition process that merges the Application Feature Model,
Domain Test Model, and Application State Model into the Application Test Model. The Ap-
plication Test Model is a transient model that represents the available tests for a member of
a system family. The model is optimized to support test case construction using the editor.
The Application Test Model includes a dynamic part derived from the combination of the Ap-
plication State Model and the Domain Test Model as well as an dynamic part that is created
by unfolding the references from the Test Steps in the Domain Test Model to the Services
instances in the Application Feature Model.

7.1 Models for the Behavior of a Testee

The Application State Model and the dynamic part of the Application Test Model describe
the behavior of the SUT. Both models are represented as finite state machines where states
represent the selection and execution of Services or Test Steps respectively. The Application
State Model and the Application Test Model are related as follows:

• The Application State Model is a System-level model. It describes a system as a num-

87



ber of Contexts, each of which contains a number of Services. The transitions between
Context and Services states represents the selection and execution of Service The Ap-
plication State Model is modeled during the Application Engineering phase. It does not
include any information about the actions or assertions available to test the Service

• The dynamic part of the Application Test Model is a test-level model that describes all
sequences of the Test Steps that are available for the manipulation and verification of
a testee. This model is a combination of information from the Application Test Model
and the Test Steps definitions from the Domain Test Model.

MTCC does not define any models of the behavior of systems at the system family level.
We argue that the differences of systems within a system family regarding their supported
interactions with Services, are so significant that domain-level behavior models are not useful
in practice.

The reason for the use of both the Application State Model and the dynamic part of
the Application Test Model to represent the behavior of a testee is the intent to separate
the representation of a system and tests for the system and thus ease the creation and
maintenance of the models. By limiting the Application State Model to the representation of
models, redundancies are avoided. The Application State Model is thus the canonical model
for the behavior of a system, while the dynamic part of the Application Test Model is a
representation derived from the Application State Model for the purpose of Test Step selection
during test construction.

As discussed in the overview of the MTCC models in Chapter 6, the dynamic and the
structural part of Application Test Model are transient models created in a fully automated
process immediately before the use of the editor for test case construction. Since both the
dynamic and the structural part of the Application Test Model serve the same purpose and
are created in the same process, we treat the Application Test Model as one model. From a
technical and conceptional point of view, the dynamic and structural parts of the Application
Test Model are different models, this section discusses only the dynamic part, an examination
of the structural part follows in Section 7.2.3.

7.1.1 Structure of the MTCC Behavior Models

As already discussed in Section 6.2, the models used in MTCC for the representation of the
behavior are finite state machines. We use the UML2 Protocol State Machines to illustrate
the structure of FSMs in this thesis where appropriate, but do not assume that the exact
semantics of Protocol State Machines are implemented in MTCC.

From a conceptional point of view, MTCC differentiates between three kinds of states:
Context states, Service instance states and Test Step instance states. The Application State
Model contains Context and Service instance states. The dynamic part of the Application Test
Model replaces each of the Service instance states from the Application State Model with one
or more Test Step instance states.

Figure 34 illustrates the relations of the different concepts relevant for the dynamic models
used in MTCC. A system is represented as an aggregation of Contexts. Each Context is in
turn an aggregation of Service instances or Test Step instances. In the FSM, Contexts are
presented as states from which the aggregated Service Test Step instances can be reached.

In the following, we discuss the structure of the FSM that represents a testee in the
Application State Model as well as in the dynamic part of the Application Test Model.

88



SUT

Context

Service
instance

Test Step
instanceassigned

to

1 n

refers to

SystemTestModel

SystemStateModel

Figure 34: Relationship of the concepts in the dynamic MTCC models

Context 1 Context 2

Service B Service CService A

Failure

begin test /

«Context»

«Context» «Context»

«Service»«Service» «Service»

end test /

end test / end test /

select service /
select service / select service /

excercise 
service /

excercise 
service /

excercise 
service /

excercise 
service /

excercise 
service /

excercise 
service /

Figure 35: Representation of the Application State Model as a Protocol State Machine

7.1.2 Concepts and Structure of the Application State Model

The Application State Model represents all possible interactions with a testee as a sequence
of Service invocations. Each invoked Service instance is selected from all Service instances
defined for a Context. A testee consists of a number of Contexts, from which most Service
instances can be reached. Each Service instance in the Application State Model can be reached
from exactly one Context. The invocation of a Service instance leads to the transition of the
system under test into a new Context. The new Context can either be the initial Context,
from which the invoked Service instance was selected or a new Context. A Service instance
can have multiple different Contexts that can be reached as the consequence of an invocation.
For instance, one Context that represents the state of the system after a successful Service
execution and another that represents the state of the testee after a failure occurred.

Figure 35 displays an example Protocol State Machine for a simple system that consists
of three Contexts and three Service instances. Three types of states and three types of transi-
tions are used in the FSM. The Context and Service states represent Context and Services as
described above. The transitions are named after the event that triggers the state transitions.

89



The three types of transitions that are used in the Application State Model in addition to the
transition from the start state are select Test Step, exercise service, and end test:

• The transitions triggered by the select Test Step event cause the change of the current
state of the FSM from a Context state to a Service state. These transactions represent
the selection of one Service instance, for example, a search form or an link, but not yet
the execution of this Service instance.

• The transition exercise service changes the current state of the FSM from a Service state
to a Context state. This transition represents the execution of a Service

Starting from a Service state, multiple different Context states can be reached by an
exercise service transition, the FSM is thus non-deterministic. Contexts reached by
different exercise service transitions represents different outcomes of Service execution.
The different outcomes include, but are not limited to, the successful and the failed
execution of a Service

In the example given in Figure 35, the successful execution of each of the three Services
leads to a transition to either state Context 1 or Context 2. A failed Service execution
leads to the transition to the state Failure.

• The end-state of the FSM is reached by one of the end test transactions. An end test
transaction is available from every Context state in the FSM, it represents the end of a
testing session.

Only some of the Context states of the Application State Model can be reached from the
start state of the FSM. The states that are reachable from the start state represent those
Contexts of a system in which a testing session can start, for instance, the home page of a
Digital Library. In Figure 35, the only Context state that can be reached from the start state
is Context 1. All tests must thus start with one of the Service instances available from this
state.

The Application State Model is only a limited representation of the behavior of a system.
It only includes enough information to represent the available sequences of Service invoca-
tions for a system. Information about the Service instances themselves beyond their possible
successor Contexts are not part of the model. Particularly, the Application State Model does
not model the internal state of Service instances.

Figure 36 display an excerpt from the Application State Model of the Sowiport system,
rendered by GraphViz1 exporter. This representation displays Context Nodes with thick
borders

7.1.3 Test-level Behavioral Models

While the Application State Model represents possible sequences of Service invocations for a
system, the dynamic part of the Application Test Model describes available sequences of Test
Step instances. The dynamic part of the Application Test Model is created by the composition
process discussed in Section 7.3. Each Service instance is replaced by a set of Test Step
instances. The Test Steps defined in the Domain Test Model are tested for compatibility
with each of the Service instances defined in the Application Feature Model. If a Test Step is
compatible with a Service instance, the Test Step is instantiated, meaning that the references
of this Test Step to the Service instance are unfolded and the referenced feature nodes are
replace the references in the feature model (Czarnecki et al., 2005a).

90



Start

SimpleSearch

Search

Search Link

ResultOverview

Failure

AdvancedSearch

SearchByLink

DefaultMarkedDocumentHandler

DefaultRequestInformation DefaultDocumentList

Link

ResultDetailsDefaultNavigation DefaultOrder DefaultPagination

LinkToCLD Availability

External

ResultDetails

SimpleSearch

Link

AdvancedSearchLink

Failure

EXTERNAL_TEXT

ResultOverviewDefaultDocumentList Link AvailabilityLinkSearch

Figure 36: Excerpt from the Application State Model of the Sowiport System

Figure 37 gives an example for the FSM of the dynamic part of the Application Test Model.
The system in the example consists of three Contexts and six Test Step instances.

The transition types of the dynamic part of the Application Test Model are similar to those
in the Application State Model. Since Service instances in the FSM are replaced by Test Step
instances, the names of the transitions change from select service to select Test Step and from
execute service to execute Test Step. MTCC uses three types of Test Step instances in the
dynamic part of the Application Test Model: Actions, SameStateActions, and Assertions.

• A Test Step instance of the type Action interacts with the testee and manipulates its
internal state. The execution of this Test Step will generally result in the transition to
a different Context than the one from which the Test Step instance was selected. Test
Steps of the type action represent actions of a user to change the currently active page
of a web application. A Test Step instance that sends a query to a Digital Library for
instance can change the current Context to the result overview.

• A SameStateAction represents an interaction between a user and the testee that cannot
result in a change of the current Context. After the execution of a SameStateAction,
the system always returns to the initial Context. An example for a SameStateAction is
the selection of filter values in a search form. While this interaction changes the state
of the testee, it does not result in a change of the currently available Services.

• The Test Step Assertion represents an action that does not manipulate the state of the
testee but either compares the state of the testee with an expectation or saves some

1http://www.graphviz.org

91

http://www.graphviz.org


begin test /

Context 1
«Context»

Test step A
«SameStateAction»

Failure
«Context»

Context 2
«Context»

Test step C 
«Action»

Test step B
«Assertion»

Test step E 
«Action»

Test step D
«Assertion»

Test step F
«Assertion»

end test /

end test /

end test /

select teststep /

select teststep /

select teststep /select teststep /

execute
teststep /

execute
teststep /

execute
teststep /

execute
teststep /

execute
teststep /

execute
teststep /

execute
teststep /

D1: Service 
Instance

D2: Service 
Instance

D3: Service 
Instance

references
references

references
references

references

D4: Service 
Instance

references

Figure 37: Protocol State Machine of all possible sequences of Test Step instances in the
Application Test Model

aspect of the state of the testee in a variable. The execution of an assertion always
returns the FSM to the Context state that was active before the execution of the test.

Similar to the Application State Model, the dynamic part of the Application Test Model
only describes possible sequences of Test Step instances.

The testee and the execution test runner contain internal state information. For example,
the test runner used in MTCC stores aspects of the externally visible state of the test runner
in variables that can be used to compare the actual and expected behavior and state of a
system. Such state information is not represented in the dynamic part of the Application Test
Model. MTCC is a Black Box (Beizer, 1995) approach to testing. It does not interact with
or models the internal state of a testee, thus the FSMs used in the Application State Model
and the dynamic part of the Application Test Model do not represent this information.

7.2 Feature Models for System and Test Representation

The purpose of the structural MTCC models is the representation of the test-relevant aspects
of a system and the Test Steps that exercise these aspects. The structural models are expressed
as feature models with cardinalities. The domain-level Domain Feature Model and the derived,
system-level Application Feature Model represent the testable functionality of a system as the
number of Services or Service instances. The Domain Test Model contains models for all Test
Steps that can be executed on these Services.

7.2.1 Feature Modeling in MTCC

In MTCC, feature models are used to describe the Services that provide the test-relevant
functionality of a system. MTCC takes an external view on the Services that focus on the
external interfaces provided by the Service as it is seen by a user or an automated test. The

92



feature models therefore represent both high-level features like the availability of specific
operators in search and low-level details about the different filter values that can be used to
constrain the results of a search.

Test Steps are represented as feature models that reference the feature models of Services.
Test Steps themselves are system family level models that are not specialized for any system
or Service of a system. System-specific information is included in feature models by unfolding
the references to the Service instances in the Application Feature Model.

The feature models used in MTCC are a variant of feature models with cardinalities as
introduced by Czarnecki (Czarnecki et al., 2005a). This kind of feature model is an extension
of simpler forms of feature models (Czarnecki & Eisenecker, 2000) which in turn are based
on feature models defined in the FODA (Kang et al., 1990) context.

Compared to FODA feature models, feature models with cardinalities have the following
extensions (Czarnecki et al., 2006a) relevant in the context of MTCC:

• Feature groups are treated as independent nodes in a feature model. Feature groups
support the selection of a subset of all children of a feature group.

• Attributes provide a way to save textual or numeric information in feature models
without being limited to predefined values. One application of attributes is to assign
names to cloned features or to assign numbers from a potentially unlimited domain.
MTCC uses attributes to save test entries by users in feature models and thus allows,
for example, the pre-filling of search forms in Test Step instances that submit a query.
Attributes in MTCC are untyped and can save a textual value.

• References support the linking and inclusion of subtrees from one feature model in
another. References therefore help to avoid redundancies. Where one part of a feature
model would have to be replicated without references, with references it can simply
be referenced from multiple nodes within the feature model. In MTCC, attributes are
used by Test Steps to refer to the features of Service instances that are relevant for the
parameterization of the Test Steps.

• Cloning supports the repeated replication of a subtree of the feature model. The clones
of a feature are not different from other features in a feature model and can be configured
independently from each other. MTCC does not use cloning in test modeling: Cloning
is not implemented in the MTCC prototype used for evaluation in the context of this
work, but cloning would be useful when features are replicated during the derivation of
a Application Feature Model from the Domain Feature Model.

In addition to the concepts above, MTCC extends feature models with cardinalities by the
addition of configuration nodes. These nodes represent specialization steps that are appended
to a feature node when the node is specialized. Configuration nodes are discussed in detail
in Section 8.2.

The particular implementation of feature models with cardinalities that we implemented
for this thesis has a number of limitations. One limitation concerns the possible cardinali-
ties for feature nodes. Cardinalities other than [1,1] and [0,1] are currently not supported.
References are implemented as attributes that contain the path of the referenced nodes.

On the implementation level, MTCC uses XML to represent feature models. XML is used
for the serialization of feature models. A XML object model is used as the superclass for the
class hierarchy of the MTCC feature nodes. Figure 38 displays the classes used by MTCC to
represent a feature model and the attributes of these classes.

Listing 7.1 gives an example for the representation of a feature model as XML.

93



XMLElement

Node

min : Integer
max : Integer

FeatureGroup
name : String
min : Integer
max : Integer

Feature
value : String
Attribute

Figure 38: Hierarchy of the MTCC feature classes

<Feature max=”1 ” name=”Var iab le ” min=”1 ”>
<FeatureGroup max=”1 ” min=”1 ”>

<Attr ibute va lue=”Wert 1 ” />
<Attr ibute va lue=”Wert 2 ” />

</FeatureGroup>
</Feature>

Listing 7.1: XML representation of a feature model

In contrast to other approaches (Cechticky et al., 2004) that use XML to implement
feature models, MTCC does not use schema languages to describe the possible structure of a
feature model and the specialization steps that can be applied to it. Instead, we implement
methods for the members of our class hierarchy that allow the individual nodes to report
their available configurations.

Since the methods that implement the application of specialization steps to the MTCC
models include checks that ensure that only valid transformations can occur, we argue that
schema validation is not needed.

In relation to other notations used for the representation of XML feature models, like
the textual notation introduced by Deursen (van Deursen & Klint, 2002), we argue that
while XML is more verbose than specialized notations, the tool support available for XML
together with the fact that the XML models are not intended to be edited by humans makes
a XML-based approach better suited in the context of MTCC.

The utilization of feature models in MTCC is invisible to the domain experts that are
involved in test construction. MTCC does not make any assumptions about the tools used
by the domain engineers. While MTCC does not include an editor for feature models like
the one presented by Antkiewicz (Antkiewicz & Czarnecki, 2004) that would allow the direct
manipulation of feature models, the utilization of such an editor to support the realization
of the Domain Feature Model and the derivation specialized Application Feature Model should
be beneficial.

7.2.2 Modeling of Test-Relevant Services

By using feature models, an initial general description of the test-relevant aspects at the
domain-level can be refined into models for system description and finally into models that
facilitate the construction of tests for a system. On the system-family level, the overall
features of Services are represented as Services in the Domain Feature Model. Following an

94



analysis of a system from the system family, Service instances are realized in the Application
Feature Model by applying specialization steps to the feature models of Services. The Test
Step instances defined in the structural part of the Application Test Model duplicate those
subtrees of the Application Feature Model Service instance feature models that are relevant for
the Test Step. In the test modeling, the feature models that represent these aspects of Service
instances as well as the feature models that define the interface of a Test Step are configured
to a concrete Test Step without any remaining variability. A sequence of such configured Test
Step instances, a Test Configuration, represents a test.

With that said, the modeling of tests with MTCC is partly an application of the staged
configuration process (Kim & Czarnecki, 2005; Czarnecki et al., 2005b) for system construc-
tion to the domain of test construction.

In addition to the representation of the test-relevant features of a model, MTCC also uses
feature models to represent the overall structure of a testee. A SUT in MTCC is described as
a hierarchy: The system contains of a number of Contexts, which in turn consist of a number
of Services. Figure 39 illustrates this hierarchy and the classes and attributes at the different
levels of this hierarchy as a UML class diagram. Figure 40 gives an example for the overall
structure of a system as a feature model. Each Service instance is represented by a feature
model that includes both attributes like the unique name and the type of the instance of
well as the test-relevant features that determine the testable interface of the functionality
represented by the Service instance. The information about the testable features is defined in
the sub-nodes of the interface node of the feature model. The features outside the interface
node describe the Service instance and are not variable after Service instance instantiation.

As Figure 39 displays, SUTs, Contexts and Services each have an unique name. MTCC
uses this name to differentiate and to reference different Contexts and different instances of one
Service within a Context. The type attribute of a Service instance informs about the Service
that this instance was derived from. The type of a Service instance determines whether a
Test Step defined in the Domain Test Model can be applied to the Service each Test Step is
specific to one type of Service The MTCC models include documentation for each type of
Service that is defined for a system family.

Name : String
SUT

Interface

Name : String
Context

Name : String
Type : Type

Service

Figure 39: Entities used in MTCC to represent the structure of a system represented as a
class hierarchy

The structure of the interface-nodes of the feature model is specific for each type of Service
The different Services for the system family of Digital Libraries considered for this thesis are
discussed in detail in Chapter 9.

95



SUT

Sowiport
Name

Contexts

Context

Search
Name

Services

Context

QuickSearch
Name

Services

Context

Name

Services

Context

ResultList
Name

Services

Context

Error
Name

Services

Service

NameInterface
SearchForm

AdvancedSearch

...

Type

Search

Figure 40: Example feature model for a system in MTCC

Figure 41 displays a part of the feature model of a Service instance of the SEARCH FORM
Service Compared to the feature model of the SEARCH FORM Service defined in the Domain
Feature Model, this feature model is specialized to a certain degree. For instance, except for
one feature, all children of FieldType and FieldCombination feature groups are de-selected.

Service

TypeInterface

SearchForm

Inputfield InputfieldInputfield

Search

Name
Search

Inputfield

FieldName

FieldType

FieldValue

AND

FieldCombination
FieldInterpretation

AND OR Phrase

Text «not set»

String

Figure 41: Part of the feature model of a Service instance

7.2.3 Representation of Test Steps

Test Steps represent actions that can be used to manipulate the state of a testee as well as
assertions that either compare an aspect of the state of the testee with some expected value

96



or save such an aspect of the state in a variable for later use. All Test Steps for a particular
system family are defined in the Domain Test Model. Every Test Step is specific to one type
of Service During composition, all Test Steps are checked for compatibility with all Service
instances that are of the type required by the Test Step. Details on the composition process
are given in Section 7.3.

In addition to the type of Service instance, Test Steps can define a number of additional
criteria called checks in MTCC, that can be used to test whether a Test Step can be applied
to a particular Service instance.

If a Test Step and a Service instance are compatible, a number of zero or more references
that each step defines for parts of the feature model of a Service instance are unfolded. The
referenced subtrees are thus copied into the feature model of the Test Step. We call this
unfolding of references the instantiation of the Test Step. The resulting model is called the
Test Step instance.

The structural part of the Application Test Model contains all Test Steps instances that
can be instantiated for a given system.

From the perspective of automated testing, Test Steps correspond to action words (Gra-
ham & Fewster, 2000) that represent particular functionality that can be executed on a Service
Test Step instances thus can be seen as specialized action words that support the execution
of one particular Service and which define an interface that represents the testable features
of this Service instance.

Test Steps in MTCC contain the following information:

• A unique name that is used in the editor to describe the functionality and executed
by the Test Step in the editor. When the Test Step is instantiated, this unique name
together with the name of its exercised Service instance defines the Test Step instance.

• A number of checks that are executed against a Service instance and on which a decision
on the compatibility of the Test Step and the Service instance can be determined. The
most basic of these checks that are defined by all Test Steps in MTCC is the check for
the type of a Service instance.

• Features that define the interface of the Test Step. This includes both feature models
that represent choices specific to the Test Step, such as the choice between different
variables that can be used for the comparison of a value or an attribute that allows
the specification of a value, and references that include parts of the feature model of a
Service instance into the feature model and hence the interface definition of a Test Step
instance.

From a purely conceptional point of view, the use of feature models for the representation
of Test Steps is not necessary since Test Steps are not specialized but rather include specialized,
system-level information. We argue that the use of feature models for the representation of
Test Steps is justified by the advantages that result from the use of feature models as a
common metamodel for both Services and Test Steps. The use of a common metamodel
allows the reuse of existing tooling and usually creates less complexity than would result
from the utilization of different metamodels. We further argue that feature models are well
suited to represent the parameterization of Test Steps.

Figure 42 illustrates the different concepts included in a Test Step as a UML class diagram.

• Checks are used to test a Service instance regarding its compatibility with the Test Step.
Test Steps in MTCC support three different classes of checks:

97



Type : TestStepType
Test Step

Checks Interface

Features ReferenceReferenceCheckStructuralCheck TypeCheck

n

Figure 42: Class diagram of the relevant concepts of a MTCC Test Step

– An instance of the class TypeCheck is used by every Test Step. This check tests
whether the type of a Service instance is equal to the StepType attribute of the
Test Step. Only when that condition is fulfilled, are the types of Test Step and
Service instance compatible and any remaining checks of the Test Step need to be
tested.

– Instances of the class ReferenceCheck ensure that a reference to the feature model
of a Service instance can be unfolded. When the referenced features are not present
in the Service instance, the check fails and the Test Step cannot be instantiated for
this Service instance. In contrast to the references defined in the interface part of
the Test Step feature model, no copy of the referenced feature is made when the
references defined in ReferenceCheck are unfolded.
In the implementation of MTCC, the references used as ReferenceChecks are ex-
pressed as XPath statements.

– Instances of the class StructuralCheck support the test of Test Steps against Service
instances based on the structure of the feature model of the Service instance as
defined by a schema language. As is the case with the ReferenceChecks discussed
above, StructuralChecks in the current implementation address the underlying XML
representation of the MTCC feature models. Each StructuralCheck contains a
reference to a RelaxNG2 schema that is tested against a node.

• The Interface part of a Test Step defines the feature model that represents the possible
configurations of the Test Step instance that can be instantiated for the Test Step. As
already described, the feature model both includes feature specific to the Test Step and
defines references to Service instances.

Figure 43 displays a feature model of a Test Step before checks are executed and the
references are unfolded. The name of this Test Step is START SEARCH. The Test Step
represents the submission of a query to an IR system using a search form. This Test Step is
of the type Action, meaning that it manipulates the state of a testee and causes it to change
into a different context.

Two checks are defined for the Test Step: The TypeCheck specifies that instances of
the Test Step can only be instantiated with instances of the SEARCH FORM Service The
ReferenceCheck checks for the existence of a feature with a specific name. The XPath used
by the ReferenceCheck is truncated in the figure.

The Interface feature defines the interface that is available for this Test Step and that
is represented as GUI elements by the editor. The Test Step in Figure 43 includes three
elements:

2http://relaxng.org

98

http://relaxng.org


TestStep

Name

Typ

Checks

TypeCheck Reference
Check

SearchForm

Interface

Field

Reference

//Feature/@name

Text

...

Action

//Feature[@name=

StartSearch

RecentOnly

Figure 43: Feature model of the Interface elements of a Test Step

• The feature group under the Field node defines a reference to the feature model of a
Service instance. When this reference is unfolded, the subtree of the feature specified by
the reference is copied into the feature model of the Test Step, replacing the reference.

• The Text feature is a part of the interface of the Test Step that allows the specification
of textual information, represented by an attribute node.

• The RecentOnly feature represents a choice that can be made for this Test Step. The
RecentOnly option can either be selected or de-selected for the Test Step.

7.3 Composition of the Application Test Model

The Application Test Model is a composition of the Application Feature Model, the Application
State Model, and the Domain Test Model. The purpose of the model is to provide a represen-
tation of the SUT that is optimized as a basis for test modeling, that is the creation of Test
Configurationinstances, using the MTCC editor.

7.3.1 Purpose of the Composition Process and the Application Test Model

The purpose of the composition process is the realization of the Application Test Model. It is
the instantiation of a model whose dynamic parts describe the sequences of Test Steps that
can be used to exercise and verify a testee while the structural parts of the Application Test
Model describe the interface provided by each Test Step instance.

In contrast to the models from which it is created, the Application Test Model is a transient
and automatically created model with the sole purpose to serve as an information source to
the editor during test modeling. As a consequence, the Application Test Model is optimized
to provide the editor with information in the least complex way feasible, but does not aim
for good maintainability or the avoidance of redundancy.

7.3.2 The Composition Process

In the following we discuss the composition process in general as well as the derivation process
used to realize the dynamic part of the Application Test Model.

As in the composition process used to derive the structural part of the Application Test
Model, all Test Steps defined in the Domain Test Model are tested against all Service instances
defined in the Application State Model. Figure 44 gives an overview of the composition process.

99



Check typ

[Type compatible]

Check conditions

Instantiate test step
instance

Add test step to 
FSM

[Further conditions exist]

[Conditions true]

Figure 44: Flowchart of the MTCC Composition

If a Service instance and a Test Step are compatible, a state representing the Test Step instance
is created and added to the FSM. Initially, the dynamic part of the Application Test Model
is a graph that consists only of Context states: A start state and an end state. During the
composition process, all Test Step instances that can be executed from a Context are added
to the FSM. For each added Test Step instance, the following transitions are added to the
FSM:

1. A select Test Step transition from the context of the Service instance referenced by the
Service to the Test Step instance is added to the FSM.

2. A execute Test Step transition is added to test the FSM for every Context state that
represents a possible state of the testee after the execution of the Test Step instance is
added to the FSM.

The resulting FSM is similar to a Application State Model where every Service state is
replaced by one or more Test Step instance states. The number of states in the dynamic part
of the Application Test Model is therefore higher than the number of states in the Application
State Model.

100



The Context states that can be reached from the state of a Test Step instance are deter-
mined by the type of the Test Step instance: For Test Step instances that are either Assertions
or SameStateActions, a transition to the initial Context from which the Test Step instance was
selected is added to the FSM. For Test Step instances that have the type Action, transitions
are added to all Contexts that are reachable from the Service instance of the Test Step in the
Application State Model.

A number of Test Step instances, for example the comparison of variables, are not depen-
dent on the Services of the system under test but represent functionality of the test system
itself. In order to represent such Test Step instances in the same way as the Test Step instances
that exercise or otherwise interact with the testee, MTCC uses a virtual Service instance, the
DefaultService. The DefaultService is automatically included in every Context of a system. Ev-
ery Test Step instance that must be available regardless of the Services provided in the current
Context thus references an instance of the DefaultService. All instances of the DefaultService
are identical, it does not define any interface.

7.4 Chapter Summary

MTCC uses feature models to represent the test-relevant functionality of a system and finite
state machines to represent the behavior of the system.

The behavior of a system is described by a system-level model, the Application State
Model. In order to represent the dynamic behavior of a system, the system is partitioned into
Contexts. Each context is defined by a number of Services that are available for that Context.
Contexts and Services are logically represented as states in a finite state machine. Transitions
represent the invocation of Services and the resulting Context changes.

Feature models are used by MTCC both on the domain-level and on the system-level.
The system-level feature models included in the Application Feature Model are specializations
of the feature models defined in Domain Engineering that are included in the Domain Feature
Model. Each feature model in the Application Feature Model represents an instance of a Service
in one Context of the represented system.

In MTCC model composition, the Application Test Model, the Application Feature Model
and the domain-level Domain Test Model are combined into a test-level model, the Application
Test Model. The Application Test Model describes which Test Steps can be executed in the
different Contexts of a system. In order to instantiate the Application Test Model, the Test
Steps defined in the Domain Test Model are tested for compatibility with the Service instances
defined in the Application Feature Model. If a Service instance and a Test Step are compatible,
a new Test Step instance is created. The static part of the Application Test Model describes the
supported parameterization for Test Steps, the dynamic part describes the possible sequences
in which Test Steps can be invoked to test a system.

101





Chapter 8

Application of MTCC Models

This chapter examines the use of the Application Test Model for test construction. In order to
facilitate the construction of tests by domain experts, the MTCC editor is used to allow the
representation and configuration of the Application Test Model in a graphical user interface.
MTCC supports the reuse of existing Test Configurations for multiple testees in a system
family based on the transfer of Test Configuration instances in order to execute an abstract
Test Configuration. To test, MTCC uses code generation to generate a concrete test script.

Section 8.1 examines the representation of the dynamic and structural parts of the Applica-
tion Test Model in the MTCC editor. The editor represents tests as sequences of configurable
Test Steps. Domain experts create tests by selecting and configuring the Test Step instances
that represent the actions that are intended to exercise the testee. Test Step instance selec-
tion and configuration are done in the editor. The editor is a graphical user interface that
represents specific features and subtrees of features by standard elements of graphical user
interfaces like lists of values, test input fields or check boxes.

One purpose of the editor is the configuration of the Test Step instances defined in the Ap-
plication Test Model and thus the removal of all variable elements of the feature model. While
MTCC does not require or implement all specialization steps defined for feature models with
cardinalities (Czarnecki et al., 2005a), it is important that specializations applied to Test Step
instances are reversible to allow for the correction of mistakes. In order to support the rever-
sal of specialization steps, MTCC introduces configuration nodes that support the explicit
representation and manipulation of selection steps in MTCC feature models. Section 8.2
discusses the realization of the configuration activities for feature models in MTCC.

MTCC considers testees in the context of software system families and aims to support
the reuse of Test Configuration models created based on the Application Test Model of one
testee for other testees. Section 8.3 discusses the requirements for such reuse in MTCC and
the techniques used to support the transfer of tests systems.

In order for tests to be transfered from one system to another, it is necessary that the
target system supports the execution of all Test Steps used in the test in the same order in
which they are used in the test.

Additionally, the Test Steps for the initial system and the target system must be com-
patible in the sense that the feature model of each Test Step instance in the target systems
supports the configuration that was applied to the feature model of the corresponding Test
Step instance for the initial system.

If more than one sequence of Test Step instances for the target system is compatible with
the Test Step instances in the initial system, an automatic decision on the sequence that
best represents the semantics of the original test is not possible. It is also not possible for
MTCC to decide whether a test that can be technically transfered by MTCC really represents
the intention of the test on the target system. For these reasons, test reuse in MTCC is a

103



semiautomatic process.
The Test Configurations created in the test modeling process do not contain information

about the technical details required for test execution. In order to exercise a system based
on the tests, these models must either be interpreted by a runtime system or must serve as
the basis for test code generation. Section 8.4 discusses the approach to test code generation
used in MTCC. MTCC uses a template-based code generator that generates test cases for
xUnit test runners. MTCC test cases depend on a library that contains implementations for
all Test Step instances of a given system under test.

8.1 Representation of Test Steps in the Editor

The purpose of the MTCC editor is to support domain experts’ formal modeling or program-
ing skills in the specification of tests.

The test models created by the domain experts have to be formal in the sense that
they support the generation of scripts without the need for further refinement or rework by
domain engineers. In order to meet this requirement, the editor needs to fulfill the following
conditions:

• The editor has to be able to represent the information contained in the Application Test
Model in a form that allows a domain expert to express a testing intent in a MTCC
test. The possible configurations of the MTCC editor have to be represented by GUI
elements in an understandable way.

• The editor has to be able to translate the interactions of a user with the GUI into
specialization steps that configure the feature model of a Test Step instance. The
specialization steps have to be expressed in a way that allows for changes when the
configuration of a Test Step instance is changed in the editor.

• The editor must be able to save tests in a format suitable of code generation.

In the following, we introduce the MTCC editor from a user’s point of view. We examine
the test modeling process as the selection and configuration of Test Step instances. Based
on the external view on the editor, we examine the representation of feature models as GUI
elements in Section 8.1.3.

8.1.1 Overview of the MTCC Editor

Figure 45 displays a screen shot of the editor. The user interface consists of three separate
areas: A toolbar that gives access to the functionality provided by the editor is located at
the top of the editor window. A list of the Test Step instances that are currently selected
for a test can be seen in the left half of the editor, the right half of the editor consists of
the GUI representation of the currently selected Test Step and a text area that explains the
functionality of this test. The overall structure of the editor — a list that allows the selection
of elements in the left part of the GUI and a detailed representation of the selected element
in the right part — has been chosen for MTCC because it is frequently used in programs in
other domains, for example, in email clients. It is therefore likely that users are familiar with
this representation.

The toolbar gives access to the functions of MTCC such as loading and saving of tests
and the insertion and the deletion of Test Step instances. All functions of MTCC that can
be selected with the toolbar are also available in a menu not displayed in Figure 45. Starting
from the left, the following functions or actions can be invoked from the toolbar:

104



Figure 45: Screenshot of the start page of the MTCC editor

Selection of models This button opens a dialog that allows the selection of the currently
used Application State Model, Application Feature Model and Domain Test Model. All
three models must be available as XML files in the file system. Once the models are
loaded by the editor, a new Application Test Model is created in the composition process
discussed in Section 7.3.

Start of a new test This action starts a new test for the currently selected Application Test
Model. The Test Step instances that are currently loaded into the editor are lost.

Inserting a Test Step instance This action inserts a new Test Step instance into the cur-
rently loaded test. A dialog allows the selection of a Test Step instance from a list, the
Test Step instance is then inserted after the Test Step instance that is currently selected.
Which Test Step instances can be inserted, is determined by the Application Test Model.

Deleting a Test Step instance This action removes the currently selected Test Step in-
stance from the list of Test Step instances. The first Test Step instance in a test can
never be removed.

Saving the current test This action opens a dialog that allows the selection of a file in
which the current test can be saved as a Test Configuration in a XML format.

Loading of an existing test This action loads an existing test in the editor and changes
the currently used Application Test Model by loading the Application State Model, Ap-
plication Feature Model, and Domain Test Model that were used for the construction of
the test and composes a new Application Test Model based on these models.

Transfer of a test This action starts the transfer process of the current test to another
system, the target system of the test transfer is selected from a list of all modeled
systems for the current system family.

The list of Test Step instances includes all Test Step instances that are part of the current
test in the order in which they will be applied to the testee. Each Test Step instance is
represented by the type of the Test Step and the name of the Context of Test Step. If more
than one instance of a Service exist for the Context, the name of the Service instance that the
Test Steps invoke is displayed in parentheses.

105



In Figure 45, the currently selected Test Step is the START Test Step. This Test Step
instance is part of every MTCC test. It represents the start state of the FSM and cannot be
removed from the test. This Test Step instance does not represent an interaction with the
testee but allows the definition of metadata for the test, specifically a description and a title.

8.1.2 Construction of Tests from Test Step Instances

A test in MTCC is a sequence of configured Test Step instances. One part of test modeling
is therefore the selection and combination of those Test Step instances that represent the
interaction between a user and the testee that is to be tested.

Figure 46 illustrates the dialog used for the selection of Test Steps. The Test Steps
presented for selection are those that are available for the current Context based on the
information included in the Application Test Model.

Figure 46: Dialog for the selection of Test Step Instances

The graphical user interface of the dialog used for Test Step instance selection is partioned
in two parts. The left part of the dialog is a list of all Test Step instances available in the
current Context. If the system can be in one of multiple Contexts as the result of the execution
of the previous Test Step, the current Test Step can be selected from a Drop Down list. The
right part of the dialog displays a help text for the currently selected Test Step. The selection
of a Test Step instance is done in two steps: First a Context is selected, then a Test Step
instance from the Context.

In Figure 46, only Test Step instances from one Context can be selected, the control for
the selection of Contexts is therefore grayed out.

In general all Contexts that are potential successor contexts of the Service instance of
the previous Test Step instances can be selected. Since the Application Test Model does not
contain information about the semantic differences of the different Contexts, the selection of
a Context is based only on the expectations of the user.

In the dialog displayed in Figure 46, a Test Step instance is selected from a list of all
available Test Step instances sorted in alphabetic order by the name of the Test Step. The
name of each Test Step serves as a minimal description of the action performed by the Test
Step instances. We use a verb-noun combination for each of the Test Steps defined in MTCC.

106



We employ a textual representation of Test Step instances since it allows easier communication
about Test Steps than an icon based representation. The selection of the right Test Step is
supported by a short description of the currently selected Test Step in the right half of the
dialog.

As Figure 46 illustrates, some Test Step instance are included more than once in the list
of the Test Step instances. The reason for this is that multiple instances of the same Service
are defined for this Context, this leads to multiple instances of the Test Steps exercising this
Service For the system represented in the figure, multiple instances of the FOLLOW LINK
Service representing HTML Links between pages are defined. To support the selection of the
correct Test Step instance, the name of the Service instance is appended to the name of the
Test Step.

The type of a Test Step instance is not displayed in the list. We argue that information
about the type of a Test Step instance does not support the user in test modeling, therefore
we use the type information only internally.

After a Test Step instance was selected in the dialog, it is inserted into or appended to
the sequence of Test Step instances of the test.

When a Test Step instance is added or removed from the test, the sequence of Test Steps
can become invalid. For instance, when a Test Step instance that submits a query to a Digital
Library is removed from the list of Test Steps, the following Test Step instances that rely on
the fact that the search Test Step caused the system to change, cannot be executed. In order
to detect situations where the sequence of Test Steps is not valid, MTCC checks the list for
correctness after each addition or deletion. If the sequence is invalid, that is, if the sequence
of Test Step instances cannot be reproduced with the dynamic part of the Application Test
Model, the name of the first invalid Test Step instance in the list is displayed in red. The
validity can be restored by adding or removing the correct Test Step instances.

8.1.3 Representation of a Test Step Instance by GUI Elements

The second requirement of the editor beyond the construction of valid Test Step instances is
the representation of the feature models of these Test Step instances in a form that allows
their configuration by domain experts. In MTCC, the mapping of feature models to GUI
elements and thereby the representation of feature models in a suitable form for domain
experts is done by the GUIBuilder class and a number of subclasses of the Buildlet class.

These classes select the GUI elements that represent a given feature or feature subtree,
build the GUI representation and integrate it with the GUI for the other features of the
interface of a Test Step instance.

In contrast to other approaches for the creation of GUIs for feature models, the approach
used by MTCC is not solely based on the structure of the feature model but takes into
account the concepts that are represented by the feature models and the conventions for the
representation of these concepts in the respective application domain.

Figure 47 illustrates the mapping of the nodes of a feature model to GUI elements in the
MTCC editor. The following aspects of the mapping are of special relevance:

1. The hierarchy of the feature model is mirrored by the hierarchy of the GUI elements.
The SearchForm and SearchField nodes of the feature model, for example, correspond
to the hierarchy of the GUI containers used to display them.

2. The optional children of the SearchForm feature group are represented by Check Boxes.

3. If a feature group has a maximal cardinality of 1 and thus allows only the selection of a
single child, and if none of the child nodes has children, this feature group is represented

107



SearchForm

SearchField

Name

Value

SearchField SearchField

SearchField

AND

FieldRelations TermRelations

AND OR PHRASE

'TXT'

''

Interface

1

2

3 4

5

[1-n]

[1-1]

6
[1-1]

Figure 47: Mapping of features to GUI elements

by a Drop Down list.

4. An attribute that is already configured in the Application Test Model and thus has no
remaining variability, is represented as a static test panel.

5. Attributes that are not configured in the Application Test Model are represented by a
text input field.

6. Feature groups with only one child and a cardinality of [1,1] — and thus no variability
— are not represented in the GUI.

Figure 48 illustrates the relationship of the classes GuiBilder and Buildlet and their sub-
classes. The GuiBuilder class coordinates the mapping of feature models to GUI elements
and identifies the subclass of the Buildlet class that can build the GUI representation for
a given feature. The instances of the subclasses of Buildlets are responsible for the actual
instantiation of the GUI elements for a subtree of the feature model.

The behavior of a GuiBuilder instance and therefore the GUI representation of a feature
model is primarily determined by its associated Buildlet objects.

MTCC differentiates generic from domain-specific Buildlets. Domain-specific Buildlets
are used to represent concepts from the application domains under test that have to be
represented in accordance with the conventions of the application domain under test.

An example from the application domain of Digital Libraries are complex search forms.
Domain experts often expect that such concepts are represented by a specific arrangement
of GUI widgets. In order to support such convention in MTCC, domain-specific Buildlets are
used.

Generic Buildlet objects are not specific to the application domain and instead build a
representation of feature models based on the structure of a feature model. Factors that
determine the representation include the node type, the cardinality and in more complex
cases the structure of a subtree of features.

The build method of the GuiBuilder class is called when a Test Step instance is selected in
the editor. The following activities are performed in order to map a feature model to a tree
of GUI elements:

• The list of all Buildlet objects registered with the GuiBuilder instance is traversed until an
object is found that supports the mapping of the current feature node and potentially

108



build()
 
Guibuilder

ismatch()
build()

 
Buildlet

ismatch()
build()

 
InterfaceBuildlet

ismatch()
build()

 
SearchFieldBuildlet

ismatch()
build()

 
FilterFieldBuildlet

ismatch()
build()

 
NamedAttributeFileBuildlet

ismatch()
build()

 
TrivialGroupBuildlet

ismatch()
build()

 
AtomicGroupBuildlet

ismatch()
build()

 
ComplexGroupBuildlet

ismatch()
build()

 
NamedGroupBuildlet

ismatch()
build()

 
AtomicFeatureBuildlet

ismatch()
build()

 
ContainerBuildlet

ismatch()
build()

 
OptionalFeatureBuildlet

ismatch()
build()

 
NamedAttributeBuildlet

Figure 48: Classes used in the GUI representation of feature models

its sub nodes into GUI elements. In order to check the suitability of a Buildlet, its
ismatch() method is called. Among the aspects considered by the ismatch() methods of
different Buildlets are the name of the feature, its type, its cardinality and the type and
cardinality of its children.

The List of Buildlet objects is traversed sequentially. The first Buildlet, for which the ex-
ecution of ismatch() returns true, is used for the representation of the feature. Generally,
the most specific Buildlets are tested first, while the more generic ones are considered
last. We discuss the Buildlet objects used in the Context of this thesis and the sequence
in which these objects were arranged in a later part of this section.

• After a suitable Buildlet instance has been found, its build() method is called with
the current node of the feature model as its parameter. This method instantiates the
GUI elements that represent the current node and potentially its children. In order to
connect interactions with the user interface with the configuration of the feature model,
callbacks that apply specialization steps to the feature model are registered.

If a feature model has children that are not mapped to GUI elements by the currently
active build() method, the Buildlet either calls the build() method of another Buildlet
directly or delegates to the GUIBuilder that determines a suitable Buildlet by the process
described above.

The result of a call to the build() method is an object from the hierarchy of GUI classes
used to implement the editor. This GUI object will often be a container class that
contains the GUI elements of children that were mapped by other Buildlet instances.

The implementation of the MTCC approach prepared for this thesis uses four domain-
specific and eight generic Buildlet classes. We first discuss the domain-specific Buildlet classes
in the order in which they are tested against a feature model:

109



InterfaceBuildlet This Buildlet constructs the container object that wraps all GUI elements
used for the representation of a Test Step instance interface.

SearchFieldBuildlet This Buildlet builds a representation of a single field of a search form. As
Figure 49 illustrates, the representation of a search field is similar to the GUI elements
used by the systems within the system family itself. Such a representation would not
be possible on the basis of generic Buildlet objects alone.

FilterFieldBuildlet Analogous to the SearchFieldBuildlet, this object represents a filter used
in a search form. Figure 49 displays the representation of a filter in the editor in
comparison to the GUI used by the Sowiport Digital Library.

NamedAttributeFileBuildlet This Buildlet represents a single attribute node that is used to
store file names as its value. While this Buildlet is not strictly specific to the applica-
tion domain of Digital Libraries, it is domain-specific insofar in that it represents the
attribute based on its intended usage, not its structure.

MTCC - EditorSOWIPORT.de

FilterFieldBuildlet

SearchFieldBuildlet

(b)

(a)

Figure 49: Representation of domain-specific features in the GUI and in the MTCC editor

The following generic Buildlet objects are used in MTCC. Figure 50 displays a part of the
graphical user interface of the editor and relates the utilized GUI elements and their relation
to the generic Buildlet responsible.

TrivialGroupBuildlet This Buildlet is used to represent feature groups with children that are
leaves in the feature diagram. In cases where the cardinality of the feature group is
[1,1], the feature group is represented by a GUI element that allows the selection of a
single value from a list. Otherwise each child feature is represented by a Check Box.

AtomicGroupBuildlet This Buildlet is a subclass of the TrivialGroupBuildet for feature groups
with a single child node. When the cardinality of the feature group is [0,1], the feature
group is represented by a Check Box with one option that represents the single child
of the feature group. If the cardinality of the feature group is [1,1] and thus the child
node is mandatory, it is selected automatically and the feature group is represented by
a static text label.

ComplexGroupBuildlet This Buildlet is used for the representation of feature groups with
non-trivial child nodes. Depending on the cardinality of the feature group, children are
either represented by a Check Box for each child, or in cases where the cardinality is
[1,1], by a radio box. The mapping of child nodes of the feature group to GUI elements
is delegated to other Buildlets.

110



NamedAttributeBuildlet This Buildlet is used for the representation of feature nodes with
an attribute node as its only child node. The feature is represented by a text input
field. The name of the feature that the attributes belongs to is displayed in the border
around the input field.

AtomicFeatureBuildlet This Buildlet is used for the display of a single feature without chil-
dren and a cardinality of [1,1]. Since no further specialization is possible, the name of
the feature is represented as a static text label.

ContainerBuildlet A ContainerBuildlet is used to display feature models where the root node
has a cardinality of [1,1], but where the child nodes can be configured. Such features are
represented by a container object of the GUI library used for the editor. The container
object is not displayed in the GUI, it only serves as a holder for GUI elements.

OptionalFeatureBuildlet This Buildlet is used for the display of optional features with a
cardinality of [0,1]. The representation of the children of this feature is delegated to
another Buildlet.

NamedAttributeBuildlet

ComplexGroupBuildlet

AtomicGroupBuildlet

ContainerBuildlet

ComplexGroupBuildlet

Figure 50: Part of the MTCC editor with the Buildlets used

8.2 Configuration of Test Models

The MTCC editor must not only support the display of Test Step instance feature models
but also allow domain experts to interact with these models. Specifically, it has to translate
user actions into specialization steps that configure the feature model.

The MTCC editor uses event handlers for every control that represents a part of the
feature model of a Test Step instance. Each event handler holds a reference to the feature
node represented by the GUI and calls methods on its interface to reflect the configuration
of the Test Step instance as specified with and represented by the GUI.

111



On the level of the feature model, the configuration of a Test Step instance is represented
by configuration nodes that are appended to the nodes of the feature model which are the
subject of configuration. Each configuration node represents a single specialization step.

The representation of specialization steps has a number of advantages compared to the
direct application of specialization steps and thus the manipulation of the feature model. For
instance, it supports changes to already specialized nodes.

8.2.1 Representation of Specialization Steps as Configuration Nodes

Every action that a user takes on the GUI representation of a Test Step instance results in
the application of one or more specialization steps that are applied to the feature model:

• The input of text into an input field is represented by setting the value of an attribute
node.

• The selection of an element from a Drop-Down list or the selection of elements from a
Check Box is represented by selecting and de-selecting features from a feature group.

• The selection or de-selection of a solitary features is represented by changes to the
cardinality of the feature.

The obvious way to express actions on the GUI as specialization steps on the feature
model of a Test Step is the direct manipulation of the feature model. Direct manipulation
changes the feature model by the application of specialization steps with every action of the
GUI and then builds a new GUI representation for the changed feature model.

A significant disadvantage of this approach is that it is not possible to undo already
applied specialization steps. A specialized feature model does not contain information about
its structure before the specialization occurred. For example, if a solitary feature with a
cardinality of [0,1] is selected and thus the cardinality is changed to [1,1], it is not possible
to discern its cardinality previous to configuration. For the representation of feature models
in the MTCC editor, this loss of information is not acceptable. It is not possible to change
the configuration of a Test Step instance once a specialization step was applied to the feature
model, since the initial state of the feature model is lost.

Another disadvantage of the direct manipulation approach concerns the consistency of
the GUI. Since each specialization step changes the feature model underlying the GUI, the
GUI elements also change with every interaction with the GUI. For example, once a value
has been selected from a Drop-Down list, the list itself would be removed from the GUI.

In order to support changes to the specialization steps that were applied to a feature
model and to avoid changes to the overall structure of the GUI representations of Test Step
instances, at least two different approaches are available: The utilization of multiple versions
of a feature model or the representation of specialization steps as distinct entities, similar
to the Command Pattern (Gamma et al., 1995). We choose the latter approach for MTCC:
Specialization steps are represented as nodes in the feature model.

8.2.2 Implementation of Configuration Nodes

Figure 51 displays the class diagram of the feature object used in MTCC together with the
classes used to represent the specializations that can be applied to each node.

To support the representation of specialization steps as nodes in the feature model, two
class hierarchies are used. One class hierarchy consists of Mixin (Bracha & Cook, 1990)
classes used to extend the functionality of the original feature classes. A Mixin is an abstract
class that defines methods that are added to the functionality of classes that inherit from the

112



Mixin. Mixins only serve to provide functionality to subclasses, an is-a relationship between
a subclass and the Mixin does not exist.

The second class hierarchy includes classes representing the configuration nodes. The
Mixin classes extend the functionality of the feature nodes with methods for the creation,
removal, and querying of feature nodes as well as functionality that allows the configuration
nodes to be applied to the feature model.

These methods are used by the event handlers registered for actions on the user interface.
The decision to use Mixin classes as the basis of the implementation was made to decouple
the configuration mechanism from the basic classes used for feature modeling. The subclasses
of BaseConfigurationMixin do not have any class attributes. They only extend the available
methods of features, feature groups and attributes.

XMLElement

Node

apply()
 

Configuration

Feature

Attribute

FeatureGroup

TextConfiguration

SelectConfiguration

BooleanConfigurationFeatureConfigurationMixin

AttributeConfigurationMixin

GroupConfigurationMixin

isconfigurable()
removeconfig()
applyconfig()
setconfig()
getconfig()

 

BaseConfigurationMixin

Figure 51: Class hierarchies of features and configuration nodes

The configuration nodes store the specialization steps that exist for a given node. Ev-
ery configuration node is associated with one node of the feature model. Figure 52 gives
an example for the relationship of feature nodes and configuration nodes. Not all special-
ization steps defined for feature models with cardinalities are implemented in MTCC, the
cloning (Czarnecki et al., 2005a,b) of features for instance is not supported.

When the feature model of a Test Step instance is loaded into the editor, a default special-
ization for each feature is instantiated and appended to the feature. This default configuration
corresponds to the configuration of the GUI elements in the user interface.

MTCC implements the following configuration nodes:

BooleanConfiguration This configuration object is used for the selection and de-selection of
features with a cardinality of [0,1]. Each instance of BooleanConfiguration stores a single
Boolean value that represents the configuration of the node. A cardinality of [0,0] is
represented by the Boolean value false. A configuration of [1,1] is represented by the
value true. The default configuration of the value is false.

TextConfiguration This configuration node is used to store values that are assigned to at-
tribute nodes. MTCC does not use a type system, the value currently stored by the
attribute is therefore always represented as a string. The default value is an empty
string.

113



SearchForm

SearchField

Name
Value

SearchField SearchField

SearchField

TermRelations

AND OR PHRASE

'TXT'
''

Interface

TestConfiguration
("Water")

SelectConfiguration

SelectConfiguration

Spellcheck

BooleanConfiguration

Figure 52: Feature model with configuration nodes

SelectConfiguration This configuration object is used to represent the selection of nodes
from the available children of a feature group. All legal cardinalities for feature groups
are supported. The configuration object stores the selection of values as a list of Boolean
values. The default configuration for this node selects the minimal number of children
that must be selected according to the cardinality of the feature group.

8.2.3 Application of Configuration Objects

When configuration nodes are used, the transformation of a feature model according to the
specified specialization steps only takes place when the configuration nodes are applied to the
feature model.

In addition to the transformation semantics for feature models with cardinalities as de-
scribed in Section 4.2, MTCC also defines a set of transformation rules that conserve the
position of nodes within the tree of the feature model. Figure 53 displays the feature model
from Figure 52 after the configuration nodes have been applied. The absolute position of
many nodes in the feature model has changed, for example, all fully specialized feature group
nodes are no longer part of the model.

Figure 54 displays the feature model after the configuration was applied using the MTCC
semantics. The absolute positions of all remaining nodes is unchanged. While MTCC pre-
serves nodes that do not add information to the feature model and are thus redundant, the
transformation displayed in Figure 54 facilitates the comparison of feature models before and
after the application of a specialization step. MTCC uses this property when testing the
reusability of test code.

8.3 Reuse of Tests

MTCC approaches the reuse of tests for different systems by providing functionality for
the transfer of Test Configuration instances creates for one Application Test Model to a target
Application Test Model. A target Application Test Model is compatible with a Test Configuration
if it supports the Test Step sequence specified in the dynamic part of the Application Test Model

114



SearchForm

SearchField

NameValue TermRelations

AND

'TXT'"Water"

Interface

Spellcheck

TestConfiguration
("Water") SelectConfiguration

SelectConfiguration

BooleanConfiguration

Figure 53: Feature model after the application
of its configuration nodes

SearchForm

SearchField

NameValue TermRelations

AND

'TXT'"Water"

Interface

Spellcheck

TestConfiguration
("Water") SelectConfiguration

SelectConfiguration

BooleanConfiguration

Figure 54: Feature model after the structure-
preserving application of its configuration

and if the Test Step instance of the target Application Test Model can be configured like the
Test Step instances of the test.

8.3.1 Transfer of Test Step Sequences

As described in Section 7.1, MTCC represents tests as sequences of configured Test Step
instances. Every Test Step instance represents an action or a check for the specific interface
of the system under test.

Which sequences of Test Step instances are available for a system, is determined by the
dynamic part of the Application Test Model. A sequence of Test Steps can only be applied
to a testee if the FSM can produce a sequence of Contexts and of Test Step instances of the
appropriate type.

This condition can be formalized as follows: If only the types of Test Step instances are
considered then a test can be transfered to another system when the FSM of the dynamic part
of the Application Test Model for the target system can be transformed into an acceptor FSM
whose states are the Test Step instances for the system and in which a transition between
the Test Steps exists if a Test Step instance in the Application Test Model can be reached
via any Context node. Figure 55 gives an example for a finite state machine in the acceptor
representation. The FSM accepts a test that consists of the Test Steps Start, A,C, D, E. The
test Start, A,B, C is not accepted.

As we discussed in Section 7.1, since MTCC supports more than one instance of a Service
in one Context, it is possible that more than one instance of a Test Step exists for one
Context. MTCC also supports Test Step instances that are nondeterministic insofar that they
can transfer the SUT into one of multiple Contexts. Both these properties lead to a situation
where one sequence of Test Steps can be expressed by different Test Step instances.

As Figure 56 illustrates, an acceptor in MTCC is not deterministic for the reasons de-
scribed above. The test Start, A,C, D, A can be accepted by both the sequence Start, A1, C1, D1, A1

and Start, A1, C2, D1, A2. An unambiguous mapping of the Test Step instances of a given
test to the Test Step instances of a target system is not available for all testees.

Because it is not possible for an automated system to decide which of the multiple se-
quences of Test Step instances best represents the intention of that test, MTCC uses an
semi-automated approach to test reuse. MTCC builds a list of all candidate sequences that

115



Context 1
«Context»

Test Step A1 
«Action

» Test Step C1 
«Action»

Test Step B1 
«Assertion»

execute
teststep /

select teststep /

Context 2
«Context»

Test Step D1 
«Action»

Context 3
«Context»

execute
teststep /

select teststep /

Test Step E 
«Action»

select teststep / select teststep /

end test / end test /

end test /

select teststep /end test /

execute
teststep /

execute
teststep /

A1
E:

C1
E:

B1
E:

D1
E:

E1
E:

Start
E:

A

B

C

D D

E
B

B

C

E

Figure 55: Acceptor for Test Step sequences based on the Application Test Model

A1 C1

B1 D1

Start
A

B

C

D D
B

A2

A

A

C2

C

D

D
B

C C

Figure 56: Non-deterministic acceptor in MTCC

can represent the test on the target system. When this list is build, the user selects the
sequence that is the best representation of the intended behavior or, if none of the candidate
sequences is suited, aborts the test transfer process.

MTCC represents the different candidate sequences as a tree of Test Step instances whose
root is the start state of the dynamic part of the Application Test Model. Each traversal
through the tree from the root to a leaf represents one trace through the Test Step instances
of the test.

MTCC uses a dialog that displays the tree of candidate sequences to the user. Figure 57
displays an example of this dialog: For every Test Step instance in the test, a Drop-Down
list of candidates is displayed. It displays for each Test Step instance the name of the Service
instance exercised by the Test Step instance and its respective Context.

The dialog reflects the tree structure of possible traces through the system. The Test Step
instance available for selection at each moment depends on the Test Step instance selected

116



for the previous step in the sequence.

Figure 57: Dialog for the selection of Test Step instance sequences

In order to transfer a test as described above, it is not sufficient that a sequence of Test
Step instances of the appropriate type can be found. It is also necessary that the configuration
of each Test Step instance can be transfered to the corresponding Test Step instance of the
target.

8.3.2 Transfer of Test Step Configurations

In order to transfer a test from one system to another, it is necessary for the target system to
have all features that are needed for the execution of the test. In MTCC, tests are transferable
if all Test Step instance are transferable. A Test Step instance is transferable if the Service
instance of the target system supports all features that are needed for the execution of the
action or check that is represented by the Test Step instance.

On the implementation level, MTCC considers a Test Step instance to be transferable
when the configuration of the Test Step instance can be reproduced for the Test Step instance
of the target system. In more detail, MTCC considers the feature models of two Test Step
instances compatible if the feature model of a configured Test Step instance after the applica-
tion of the configuration nodes is a rooted subtree of the the feature model of the target Test
Step instance. Figure 58 displays a feature model and a target feature model. The models
are considered compatible since the left model is a subtree of the right model.

SearchForm

SearchField

NameValue

TermRelations

AND

'TXT'"Water"

Interface

Spellcheck SearchForm

SearchField

NameValue

SearchField SearchField

SearchField

TermRelations

AND OR PHRASE

'Title'''

Interface

Spellcheck

NameValue

TermRelations

AND OR PHRASE

'TXT'''

FieldRelations

AND OR

FieldRelations

AND OR

Figure 58: Two compatible feature models

In order to test the compatibility of two Test Step instances, the following activities are

117



carried out:

• The Test Step instance to be transfered is copied. The configuration objects of the copy
are applied as described in Section 8.2.3. The application of the configuration nodes
removes all feature nodes that are neither selected by a user nor included in the feature
model because the editor set a default value for the node.

• The feature models of both Test Step instances are canonicalized by recursively sorting
all children for every node in the feature model. The sorting process considers the type
of a node, its name and cardinality and in the case of attributes, its value. The purpose
of the canonicalization is to facilitate the later comparison of feature models.

• The configured Test Step instance is tested against the target feature model to determine
if it is a subtree. The Test Step instance is a subtree for every node present in the model
there is an equal node in the model for the target system. Since both feature models
are canonicalized, the upper bound of the number of comparisons necessary to check
for a subtree relationship is equal to the number of nodes in the target model. Two
nodes are considered equal if their type, name, cardinality and value are either equal
or if a specialization action exists that can be applied to the target node that makes
them equal.

When the user has selected a sequence of Test Steps from the set of candidate sequences
that are compatible to the Test Step instances of the original test, the target Test Step
instances are configured. The goal of this configuration is to apply specializations to the
feature model of the target Test Step instance in such a way that the selected nodes of the
target Test Step instance are equal to the selected nodes of the original Test Step instance
feature model. We call this activity configuration transfer. In order to transfer a configured
Test Step instance, the configuration nodes of the original Test Step are applied to the feature
model. The resulting subtree of the feature model is then used as a template for the target
feature model. The nodes of the target model that correspond to the nodes of the subtree
are configured such that all subtree nodes are selected in the target model. If the number
of children of the original and the target node differ, the cardinalities of feature groups are
adapted as necessary.

One consequence of the method described above is that the target Test Step may include
features that are not present in the original model. The FieldRelation node in Figure 58 is an
example for a feature that is only present in the target model. Since MTCC cannot determine
if such features change the semantics of a test, the results of the test transfer process must
be verified by a domain expert familiar with the system.

8.3.3 Limitations of Test Reuse

Some limitations apply to the approach to test reuse discussed in this section. When MTCC
builds the set of candidate sequences of Test Step instances, it only considers sequences as
compatible that contain exactly the same Test Steps in exactly the same order as the original
system. In practice, these requirements are too severe. The order, in which assertions are
executed on a system, for instance, are not always relevant to the behavior of a test.

One potential weakness concerning the transfer of configurations is that features that are
explicitly de-selected are not considered when the configuration is transfered. In practice, this
has little consequence: Optional features are by default not selected in the MTCC editor.
This means that a user will not often de-select features that he or she does not wish to be
used in the test since most features are de-selected by default.

118



8.4 Test Execution based on Test Configuration Instances

The Test Configuration instances modeled by a domain expert are by themselves not sufficient
for testing as they lack detailed information about the implementation of the testee and the
test runner used for test execution. In order to test a system, MTCC uses a code generation
approach that generates test cases from abstract models and templates.

The test cases generated by MTCC utilize the Test Adapter as a platform that provides
functionality needed to exercise a SUT with a specific test runner. Figure 59 displays the arti-
facts relevant for test code generation in MTCC. In the following we examine these artifacts,
their purpose and their interaction.

Test RunnerTest Adapter

SUTTest CaseTest Configuration

Base Library

Test GeneratorConfiguration Reader

Test Parameter

reads realisiert writes uses specific for exercises

specific for

verifies

excutes

Editor

outputs reads

Templates

reads

Figure 59: Artifacts used in test case generation

8.4.1 Transformation of Test Configuration Instances

Before test cases are generated from Test Configuration instances, each instance is transformed
into an intermediate format. The purpose of the Configuration Reader is to transform a Test
Configuration instance created with the MTCC editor into a simple representation that is used
in the further generation of test code. The feature model of each configured Test Step instance
is transformed into a Test Parameter object. Every Test Parameter object is implemented as
an associative array with entries that represent the same information that is contained in the
feature model of a configured Test Step.

Most entries in the Test Parameter object are strings, other possible data types for values
include lists, numbers or other associative arrays. Listing 8.1 gives an example for a Test
Parameter object in Python notation.

para = {
’ s e a r c h f i e l d s ’ : [

{
’ t e rm r e l a t i on ’ : ’AND’ ,
’ f i e l d r e l a t i o n ’ : ’AND’ ,
’name ’ : ’TITLE ’ ,
’ va lue ’ : u ’ Frauen Maenner ’

} ,{
’ t e rm r e l a t i on ’ : ’AND’ ,
’ f i e l d r e l a t i o n ’ : ’AND’ ,
’name ’ : ’YEAR’ ,
’ va lue ’ : ’ 1990−2005 ’

}
]

}

Listing 8.1: Representation of a Test Parameter object as an associative array

119



One purpose of the Configuration Reader is the validation of Test Configuration instances,
especially regarding the question if all necessary information needed for the Test Step instance
is included in the model. The primary reason for the transformation into Test Parameter
objects is the simplification of the data format used to express the semantics of the test. An
associative array is used for the simplified data format since its availability can be assumed
for any programming language.

This is relevant if the MTCC code generator and the test runner used for test execution
are not written in a common language.

The actual transformation of the Test Configuration instances into Test Parameter objects
is done by classes implemented at the system family level and is thus independent from the
concrete system under test or the test runner used to execute tests.

8.4.2 Test Case Generation

MTCC assumes that test cases are generated for an xUnit implementation. Specifically, we
assume that a test is represented as a test case that includes a series of method or function
calls. It is assumed that a test fixture can be initialized by setUp methods/functions and that
individual tests are organized into test suites which are automatically executed.

Assuming an object-oriented target language of test generation, every MTCC test is
represented by a source code file with a single test class that contains a single test method.
While this approach results in many individual files, it facilitates the selection of tests for
execution.

The structure of a test method in MTCC is a sequence of method calls to the Test Adapter
library that implements the functionality needed to exercise the system under test with the
current test runner. Each method call represents the execution of a Test Step instance and
is called with the Test Parameter object that represents the configuration for that Test Step
and an object that stores information about the current state of test execution, for example,
internal variables.

The Test Adapter contains an implementation of every Test Step instance for a specific
combination of SUT and test runner. Listing 8.2 is an excerpt from a generated test case in
Python. Some details of the code are omitted for clarity, the Test Parameter instances, for
example, are not included in their entirety.

From the perspective of Model-Driven software development as described by Stahl and
Voelter (Stahl & Völter, 2006) and illustrated in Figure 60, the Test Adapter is a platform
for the generated code. For test scripts created by MTCC, this platform contains implemen-
tation details about the execution of test cases. In this context, the generated test cases are
schematic code and the Test Configuration instances correspond to the application model.

MTCC does not require or assume the use of any specific approach to code generation.
We argue nevertheless that the simple structure of the test code generated with MTCC are
best generated with a simple approach like the Templates and Filtering (Stahl & Völter,
2006) method.

More complex approaches (Voelter, 2003; Völter, 2005, 2006b), while advantageous for
complex code generation scenarios, are over-specialized for the generation of tests that are
basically linear sequences of method-calls without any control flow.

We already discussed our motivation for the use of the Test Parameter object. Accordingly,
we argue that the direct generation of program code from feature models is not well-suited
for MTCC because the feature models used in the test engineering phase do not represent
implementation artifacts on the level of components or subsystems but rather represent the
parameterization of a single Test Step.

120



import sow ipo r t executo r s e l en ium as runner

class Porta lTest ( u n i t t e s t . TestCase ) :
def t e s t ( s e l f ) :

context=Context ( )

para = { . . . }
s e l f . f a i l U n l e s s ( runner . s t a r t ( context , para ) )

para = { . . . }
s e l f . f a i l U n l e s s ( runner . f o l l ow l i n k ( context , para ) )

para = { . . . }
s e l f . f a i l U n l e s s ( runner . f o l l ow l i n k ( context , para ) )

para = { . . . }
s e l f . f a i l U n l e s s ( runner . s e t f i l t e r ( context , para ) )

para = { . . . }
s e l f . f a i l U n l e s s ( runner . s t a r t s ea r ch advanced ( context , para ) )

para = { . . . }
s e l f . f a i l U n l e s s ( runner . s ave nav iga to r count ( context , para ) )

para = { . . . }
s e l f . f a i l U n l e s s ( runner . end ( context , para ) )

i f name == ” main ” :
u n i t t e s t . main ( )

Listing 8.2: Generated test for the programming language Python

Application Model

DSL

Trans
formation

Individual
Code

Platform

Schematic, repeated
Code

Individual
Code

Generic
Code

Schematic, repeated
Code

analyse
separate

Code of the reference
implementation

generates uses

Figure 60: Concepts of Model-Driven software development (Stahl & Völter, 2006)

Figure 61 illustrates the concepts and the process of the Templates and Filtering code
generation approach. The filtering phase mostly corresponds to the transformation of Test
Configurations in Test Parameter objects. In the template phase, a template of a test class is
used to generate program code for calling the methods in the Test Adapter that contain the
implementation of a given Test Step instance.

Every method call is preceded by code that initializes the TestParamter-object that rep-
resents the configuration of the Test Step. Section 11.5 gives a concrete example of test
code generation in MTCC based on the prototype implementation of MTCC used in the

121



evaluation. Figure 79 on page 158 illustrates the main part of the MTCC implementation.
Figure 59 gives an overview of of the artifacts used in code generation. Figure 79 in

Section 11.2 illustrates the architecture of the MTCC implementation used in the thesis.

Filter

Specification

Subset of 
Specifications Templates

Generated Code

use on
use on

Figure 61: Concepts of the Template and Filtering approaches (Stahl & Völter, 2006)

8.5 Chapter Summary

In order to allow the construction of tests based on the information contained in the Appli-
cation Test Model that represents a SUT, the model has to be represented to domain experts
in a comprehensible way. Test Configurations have to be instantiated that represent the Test
Steps taken on the testee and their parameterization.

The editor represents the available Test Step instances contained in the Application Test
Model using GuiBuilder classes that map concepts from the feature models to generic or do-
main specific GUI representations. Interactions with these GUI representations are expressed
as specialization steps for the feature model. MTCC expresses specialization steps as con-
figuration nodes in the feature model to facilitate the editing of Test Configurations without
directly affecting the structure of the underlying feature model.

A central aim of MTCC is the reuse of tests, represented by Test Configurations for different
SUTs. MTCC supports the reuse of tests for a system if the sequence of Test Steps defined
for the test can be expressed on this system and if each Test Step supports the configuration
of the Test Step in the original test.

MTCC uses code generation techniques to generate test code from Test Configuration.
Tests are generated in a Templates-and-Filters approach. Generated tests utilize a Test
Adapters implementation that serve as a platform that encapsulates implementation specifics
necessary to execute a test on a SUT.

122



Chapter 9

Application of MTCC to the
Digital Library Domain

This chapter describes the application of MTCC for system families from the Digital Libraries
domain.

Section 9.1 introduces the system family of Digital Libraries that MTCC is applied to
in this thesis. We examine a system family of three Digital Libraries, the scientific portal
Sowiport, the interdisciplinary information Service infoconnex and the IREON portal of the
German Institute for International and Security Affairs, addressing international relations
and area studies. In addition to the Digital Libraries, we investigate the Apache search
server Solr.

Section 9.2 discusses the test-relevant Services for this system domain.

Beside the Test Steps that are specific to the requirements for a system family, MTCC
also defines generic Test Steps, for instance for the comparison of variables that hold aspects
of the state of a system family. These Test Steps are mostly independent from the systems,
system family or application domain to which MTCC is applied. We examine these Test
Steps in Section 9.3.

In Section 9.4, we discuss the system family-specific MTCC Services for the Digital Li-
braries considered in this thesis.

9.1 A System Family of Digital Libraries

The Digital Libraries Sowiport1 and infoconnex2 of GESIS as well as the IREON3 portal of
the German Institute for International and Security Affairs form the system family (Parnas,
1976) of testees to which MTCC is applied in this thesis.

MTCC regards the examined systems as Digital Libraries and therefore, as discussed in
Chapter 5, as Information Retrieval systems. For the purpose of this thesis, we limit our
analysis of Digital Libraries to the search process and the presentation of results. In addition
to the digital libraries, MTCC is applied to the search server Solr4. We examine Solr in order
to assess the applicability of MTCC to systems that are not members of the system family
but rather part of their underlying infrastructure.

The three Digital Libraries considered have been designed and implemented at the Ger-
man Social Science Infrastructure Services (GESIS) in cooperation with external partners.

123



IREON

Sowiport uses

Solrinfoconnex

Disciplinary
Portal IR System

FAST

Relational
Database

uses

uses

variant
successor

Figure 62: Relations of systems within system families

Figure 62 illustrates the relations of the systems as well as their commonalities.

The central use case that is relevant for all three Digital Libraries as well as Solr is search.
A user formulates a query and submits it to the system, the system generates one or more lists
of documents that are likely to be relevant to the query. The user surveys the documents in
the result lists, selects documents according to her or his information need and further refines
the query.

Sowiport, infoconnex and IREON differ in the functionality available for searching as well
as in the types of interactions that are possible with an initial list of results. Solr does not
support functionality for the refinement of queries.

All considered systems are web applications. A user interacts with such systems using a
web browser and the HTTP protocol.

9.1.1 Sowiport

Sowiport is a disciplinary information portal for the social sciences. It integrates 15 databases
and contains 2.5 million documents in total. The system is implemented in PHP and Java; a
commercial IR system is used as its search back-end.

Figure 63 and Figure 64 display the simple and the advanced search form of Sowiport.
The simple search form consists of seven text input fields that support queries for specific
fields of documents. By using the Check Box Alle Wörter, the conjunction of the terms within
one text entry can be switched between Boolean AND and OR. By selecting the Check Box
in the lower part of the search form, the search can be restricted to documents that were
published within the last four years.

The advanced search form displayed in Figure 63 extends the simple search by filters that
restrict a search to a subset of all available documents and by providing support for Boolean
operators that allow the formulation of more complex queries. The filter displayed in the
figure supports the restriction of result documents by their information type. Other filters
can be used to restrict a query to certain languages and databases.

The entry fields of the advanced search form allow the explicit selection of the fields
that are to be searched as well as the choice of the Boolean operator that determines the

124



Figure 63: Simple search in Sowiport Figure 64: Advanced Search in Sowiprt

relationship of the multiple fields in search.

Figure 65 displays the result page that presents the documents that are returned for a
query. The result page also includes Services to refine the query. A list with short represen-
tations of the documents that were found for a query is in the center of the result page. A
representation of the query with all transformations that were applied to the terms of the
query is displayed in the upper part of the page (1).

Controls exist for browsing the list (2) and for changing the order in which the documents
are displayed (3). The result page only displays a short surrogate for each document that
was returned. More information about the document is given in the detailed view of the
document that is opened by clicking the title of the document (4). Some fields, for instance
the author of a document (5), are links that send a new query to the Digital Library. In this
case, a search for the author would be started. Other links allow users to work with reference
management systems5 or help to check whether the full text of a document is available (6).

By using a Check Box (7), it is possible to mark documents for export. The links in
the right part of the page are navigators. Navigators allow the restriction of a result set
by facets (Baeza-Yates & Ribeiro-Neto, 1999) and thus the refinement of the search. Every
navigator displays the most frequently occurring values for a given field in the result set
and their count. By clicking the link associated with a value, the result set of the query is
restricted to all documents that contain this value for this field.

9.1.2 infoconnex

infoconnex is a portal that allows the integrated search of documents from the disciplines of
social sciences, pedagogics and psychology. The portal is implemented in Java; the Informa-
tion Retrieval component is based on a relational database.

Regarding the functionality and design of its search forms, infoconnex is similar to the
simple and advanced search in Sowiport. Differences between Sowiport and infoconnex exist
in the display of search results as displayed in Figure 66. infoconnex returns up to three
result lists for a query. Each result list contains documents from one database. The currently

125



Figure 65: Result page in Sowiport

Figure 66: Result page in infoconnex

displayed list can be selected by clicking the tab at the top of the list.

In contrast to the other Digital Libraries, infoconnex does not support navigators or the
ordering of documents by relevance based on the similarity of a query and a document. info-
connex does provide a relevance ranking based on the centrality of an author for documents
from the social sciences (Mutschke, 2003).

1http://www.sowiport.de
2http://www.infoconnex.de
3http://www.ireon-portal.de
4http://lucene.apache.org/solr/
5http://www.refworks.com

126

http://www.sowiport.de
http://www.infoconnex.de
http://www.ireon-portal.de
http://lucene.apache.org/solr/
http://www.refworks.com


9.1.3 IREON

The IREON portal provides information about international relations and area studies. The
portal shares significant parts of its implementation with Sowiport, especially concerning the
transformation of queries and underlying retrieval system. Sowiport and IREON also have
some databases in common.

Figure 67: Advanced search in IREON Figure 68: Result page in IREON

Figure 67 displays the advanced search for all databases in the IREON Portal. The
functionality of search forms and filters is analogous to those in SOWIPORT. Besides the
search forms displayed, IREON also provides a number of of additional search forms that are
adapted for special subsets of the portal.

Figure 67 displays the result page in IREON. The functionality of the elements in the
user interface is similar to Sowiport.

9.1.4 GESIS Solr Installation

In contrast to the Digital Libraries introduced so far, the Solr installation of the GESIS is
a search server, not a Digital Library. The Solr search server only offers a minimal HTML-
based user interface that supports the submitting of queries to a system and provides statistics
about the operations of the system. The GESIS Solr installation includes the same document
collections as the Sowiport and IREON portals. It is used for automated search tasks and
complex queries for which the features of a Digital Library are not needed.

We include the Solr installation at the GESIS in our discussion since it represents a part
of the low-level infrastructure that would be used by a Digital Library. By including Solr,
we investigate whether MTCC can be used for the testing of such sub systems of Digital
Libraries as well as for testing the libraries themselves.

9.2 Test-Relevant Services and Test Steps

In order to test the systems introduced in Section 9.1, they have to be described in terms
of their Services and Test Steps. The Services and Test Steps relevant for the system family
considered in this thesis are presented in Sections 9.3 and 9.4.

127



9.2.1 Manipulation of the SUT

We identify the test-relevant Services and Test Steps for the systems of the considered system
family by examining the test sets discussed in Section 10.3.1. We argue that these Test
Steps represent both current testing practice and the requirements of the domain experts to
a testing system.

Each test set holds a number of tests or documented faults that can serve as the base of
a test for one of the systems in the system family. The different test sets come from sources
such as previously defined manual and automated tests. Manual tests are specified by domain
experts, and documented, testable faults for a system.

Based on the test sets, the most important Services of a Digital Library are the search for
documents and the display of those documents that were returned as the result of a search.
In addition to these core functionalities, the various options that allow the refinements of
queries are also of importance. MTCC must include models for Services and Test Steps that
represent these functionalities and their interactions with a user. An additional requirement
for MTCC is the ability to model retrieval tests.

An application of MTCC for Digital Libraries must include models that represent the
functionality to formulate a query and submit it to the system. This model of the search Ser-
vice must represent all options that the system provides for searching. Furthermore, MTCC
must provide Services that represent a list of potentially relevant documents returned in the
result page as well as the functionality provided to further refine this list or otherwise interact
with it. MTCC must also include Test Steps that represent the interactions performed with a
Service for example the entry of search terms into a search form, the selection of filter values
or the interactions with document surrogates from a list of results.

The Services and Test Steps that support the refinement of a search are an important aspect
of the Digital Libraries discussed here. They address the problem discussed in Chapter 5 that
a user will often start a search with only a vague definition of his or her information need but
will gradually refine it in the process of a search. Among the Services that serve this purpose
are the following:

• The navigators in Sowiport and IREON support the restriction of a result set of docu-
ments to those documents that contain a specific value for a field.

• The order, in which the documents of a result set are presented to the user can be
adapted to the preferences of the user. The systems discussed here support the ar-
rangement of documents by different concepts of relevance or the sorting of documents
based on the contents of fields.

• The link search in IREON and Sowiport allows the start of a new search based on one
of the results of the previous search. For example, a click on the author of a document
starts a search for all documents by this author.

MTCC represents each function above as an independent Service We argue that such a
representation is advantageous compared to the extension of existing Services: The complexity
of the individual Services is limited, making maintenance easier; and functionality can be
added to the models of a system without changing existing Service An advantage of the MTCC
modeling approach is that fine-grained Service models allow for a more precise description of
the behavior of a system in the Application State Model.

9.2.2 Verification of the Testee

In order to test a system it is not only necessary to exercise the system and interact with its
provided functionality, but it is also necessary to verify that the behavior of the system and

128



its visible states conform to the expectations expressed in a test. The Services and Test Steps
provided in MTCC for the verification of a system fall into two groups, those used to capture
some visible aspect of the system state in a variable and those that compare the values of
these variables with the expectations of the test:

• The aspects of the system states of a Digital Library that MTCC must be able to
capture and store, include the number of documents in a result set, the fields included
in the documents and the values of these fields. This also includes the values and counts
with navigators. MTCC represents the inspection of the system state by Test Steps of
the type assertion, meaning that the state of the testee itself is not manipulated, only
captured. MTCC uses variables to store the captured aspect of the system state.

• Test Steps that verify the state of a system operate on the variables. Test Steps of this
kind compare numeric or textual values, test the values in two lists for specific subset
or superset relationships and determine Information Retrieval metrics like recall and
precision.

As described above, MTCC uses variables to store an aspect of the system state for later
comparison. The use of variables allows to separate Test Steps used for capturing the system
state from those that test the system state against a condition. This separation helps to
reduce the complexity of individual Test Steps and lowers the number of Test Steps that must
be implemented for a system.

Variables are always expressed as lists of values. Single values are represented by a list
with a single element. MTCC does not implement a type system, every entry in a variable
list is implemented as a string. The interpretation of this string depends on the Test Step that
uses a variable. Depending on the Test Step, textual or numeric interpretations are possible.

9.3 Generic Services

Generic Services and the Test Steps that refer to these Services are mostly independent from
the system that is tested by MTCC.

Two types of generic Services exist in MTCC, system-independent Services and domain-
independent Services. System-independent Services represent characteristic functionality for
the application domain that MTCC is applied to, but Service instances do not differ between
systems. The Test Steps of domain-independent Services represent functionality that is needed
for testing with MTCC, but that is not specific for a particular system family or system. Most
domain-independent Test Steps are assigned to the DEFAULT SERVICE.

9.3.1 System-independent Services

The feature model of system-independent Services is identical for every instance in every
Context and in every system. Since every instance of a Service is identical to every other
instance, the Service instances do not contain any information and serve purely as markers
for the availability of the Service in a particular Context.

The Service LINK marks Contexts that support the change to another Context without
configuration of a Test Step interface. For the system family of web-based Digital Libraries
considered in this thesis, the link Service represents the HTML links between different pages
of the digital library. Information about the available targets of a LINK Service instance is
included in the Application State Model and in the dynamic part of the Application Test Model.
The feature model of an instance of the LINK Service only marks the existence of one or more
links in a system.

129



The Test Step FOLLOW LINK represents the following of a link. Since the activation of a
link changes the current Context of the system, this Test Step is an action.

The Service EXTERNAL TEXT is used for Contexts where test-relevant functionality is not
or not completely represented by MTCC Service instances. It is used in cases where Contexts
have to be tested that are not part of the system modeled with MTCC. For web applications,
one example for such Contexts would be external pages, reachable by links from the modeled
system. The Test Step SAVE EXTERNAL TEXT is a SameStateAction that stores all text
that is displayed in a Context, for example, all textual content displayed on a web page.

9.3.2 Domain-independent Services

Domain-independent Services represent functionality that is specific to MTCC and mostly
independent from the system or system family under test. The implementation of MTCC
examined in this thesis only defines one domain-independent Service the DEFAULT SERVICE.
This Service is instantiated for every Context of a system. A number of Test Steps are assigned
to the DEFAULT SERVICE. All of these Test Steps with the exception of the RESET SYSTEM
Service are assertions, they do not change the current Context of the system or manipulate
its state:

• The Test Step SET VARIABLE assigns a user defined value to a variable. This variable
can later be used in other Test Steps, for example, in comparisons. Two variants of
this Test Step exist. The Test Step SET VARIABLE LONG TEXT is represented in the
editor by a multi-line text input field and allows the entry of long texts. The Test Step
SET VARIABLE FROM FILE is used to store values read from a file into a variable.

• The Test Steps COMPARE TWO VARIABLES and CHECK VARIABLE are used to com-
pare variables with expected values The Test Steps CHECK VARIABLE requires the value
to be compared against a value to be entered in the editor while COMPARE TWO VARIABLES
is used to compare two previously defined variables.

Since MTCC does not use a type system for the values in the variables, both Test Steps
require the user to specify the data type used for the comparison. In addition, the user
must select whether the values in the variables are expected to be equal, unequal or of
another relation.

The Test Step COMPARE TWO VARIABLE LISTS is used to compare two variables that
each hold multiple values. The values in the variables can either be treated as sets or
ordered lists. They can be tested for equality and for is-part-of relationships.

• The Test Step CHECK SORTING OF VARIABLE checks whether the values in a variable
are sorted. Values can be interpreted as numbers or as strings.

• The Test Step RESET SYSTEM is an action that return the system to its initial state
before any Test Steps were executed on it. How this Test Step is implemented depends
on the SUT. In the case of the digital libraries discussed here, the Test Step resets the
session state of the SUT, emulating a user logging out.

• The Test Step COUNT DISTINCT VALUES IN VARIABLE calculates the cardinal num-
ber of the set of values in the variable and saves the result in another variable.

9.4 Domain-Specific Services

In the following we discuss the system family specific Services that represent the functionality
of the Digital Libraries discussed in Section 9.1. For each Service we discuss its assigned Test

130



Steps. The Services and Test Steps were defined based on an analysis of the concepts required
for the modeling of the test sets defined in Section 10.3.1

Every Service discussed in the following is represented by a feature model. All feature
models have the following two feature nodes in common: The Type node that represents
the class of the Service and the Name node that contains the unique name of this particular
Service instance.

The feature models represents Services as defined in the Domain Feature Model. A Service
instance would be a specialization of this model. We discuss both the system family and
system-level models for complex Services.

9.4.1 The SEARCH Service

The SEARCH Service represented as a feature model in Figure 69, represents a search form. A
search form in the model consists of multiple input fields, represented by an InputField node.
For search forms that allow the selection of the queried field for each input field, the feature
group FieldNames represents all selectable fields for a single InputField. The feature groups
TermRelations and FieldRelations represent the relations of multiple terms within a single input
field and of multiple input fields to each other. The FieldValue attribute is configured in test
modeling and specifies the subject of the query for this input field.

The filters that are available for restricting a search are modeled as a FilterForm. Every
FilterField represents a single filter with multiple selectable values. The feature FilterName
describes the field that the filter refers to, for example, the language or the document type of a
bibliographic record. Possible values for the filter are defined in the feature group FieldValues.

Figure 70 displays the feature model of a Service instance. In the Service instance, it is
possible to search either in the field title or in the field person. The different input fields
represented by the model are always in an AND relationship, the terms in an input field can
be either in an AND or OR relation.

Service

TypeSearchForm

Search

Name
«not set»

InputField

FieldNames

FieldValue TermRelations

AND OR

FieldRelations

AND OR NOT

[1,N]

Name
[1,N]

[1,3] [1,2]

«not set»

«not set»

FilterForm

FilterField

[1,N]

FieldName
«not set»

FieldValues

Value
[1,N]

«not set»

Figure 69: Feature model of the SEARCH Service at the domain level

Two Test Steps are defined for the SEARCH Service One Test Step is used to submit
a search, the other to set the filters that limit a search to a subset of all documents in a
database. The Test Step START SEARCH is an action that represents the submission of a
search. The Test Step SET FILTER is used for the selection of filter values. Since the Test
Step does not cause a change of Context, it is a SameStateAction.

131



Service

TypeSearchForm

Search

Name
DemoSearch

InputField

FieldNames

FieldValue TermRelations

AND OR

FieldRelations

AND

[1,N]

Name

[1,2]

[1,2]

title

«test value»

FilterForm

FilterField

[1,1]

FieldName
Language

FieldValues

Value

[1,2]

en
Value

de

Name
person

Figure 70: Instance of the SEARCH Service represented as a feature model

9.4.2 The SEARCH OPTIONS Service

The SEARCH OPTIONS Service displayed in Figure 71, represents options that are available to
influence the processing of queries. The only search option available for the Digital Libraries
considered here are cross-concordances. The SEARCH OPTIONS Service is a separate Service
from the SEARCH Service which allows the representation of a system where search options
are set globally for all search forms.

Service

TypeCKService

SEARCH_OPTIONS

Name
«not set»

Figure 71: Feature model of the SEARCH OPTIONS service

9.4.3 The REQUEST INFORMATION Service

The Service REQUEST INFORMATION, represented in Figure 72, models the presentation
and explanation of a query after it was executed by the system. In the Digital Libraries
considered here, this Service informs about the transformations that were applied to a query
during query expansion. The Test Step SAVE QUERY INFORMATION is assigned to the
Service This Test Step stores the information displayed by the Service in a variable.

Service

Type

REQUEST_INFORMATION

Name
«not set»

QueryExplantion
«not set»

Figure 72: Feature model of the REQUEST INFORMATION Service

132



9.4.4 The DOCUMENT LIST Service

The DOCUMENT LIST Service represents a list of documents returned for a query. In the
feature model in Figure 73, this list is characterized by three feature nodes: The fields that
each of the result documents can potentially contain are represented by the FieldNames node.
This feature determines which fields of result documents can be checked against expectations
and stored in variables.

The number of documents that can be simultaneously displayed is given by the feature
PageLength. The SupportsSelection node reflects whether it is possible to mark documents,
for example, in order to export them.

The DOCUMENT LIST is not only used to present an overview of the results of a query,
but also for the detailed display of documents. The difference between a DOCUMENT LIST
instance used to represent an overview of documents on the result page and an instance that
represents one ore more documents in detail is that the latter has a PageLength of one and
contains all FieldNames in the result overview. The feature GroupsDuplicates indicates if the
result list supports the marking of duplicates in the result set.

Service

Type

DOCUMENT_LIST

Name
«not set»

PageLength SupportsSelection
«not set»

Name
«not set»

[1,N]

FieldNames

GroupsDuplicates

Figure 73: Feature model of the DOCUMENT LIST service

The DOCUMENT LIST Service has the greatest number of assigned Test Steps of all Ser-
vices. This reflects the central role that the completeness and correctness of search results
has in the Digital Library domain:

• The SameStateAction SAVE NUMBER OF RESULTS stores the absolute number of doc-
uments that were returned as the result of a query.

• The SameStateAction SAVE FIELD FROM DOCUMENT stores the value of one field
for one document in a variable.

• The SameStateAction SAVE FIELD FOR ALL RESULTS stores the values of one field
for all documents within a range of the result list.

• The Assertion Test Step CHECK DUPLICATE GROUPING verifies if two documents are
marked as duplicates.

• The SameStateAction MARK DOCUMENT marks a document on the current page of
the result list.

• The Test Step CHECK RECALL AND PRECISION RESULTS is used to calculate recall
and precision for a section of the result list and to store the result in a variable. A
prerequisite for the invocation of this Test Step is that the IDs of all documents are
available from the list of documents and that relevance assessments are available either
for all documents or for a pool of documents.

133



9.4.5 The MARKED DOCUMENT HANDLER Service

The Service MARKED DOCUMENT HANDLER, displayed in Figure 74 represents the invo-
cation of an action on some previously selected documents. Documents are selected with the
Test Step MARK DOCUMENT. An example for such an action is an export in the BibTex
format. All available actions are described by the feature group ExportActions. Only the
Action Test Step EXPORT MARKED DOCUMENT is assigned to the Service This Test Step
allows the selection and execution of an action that is to be invoked on the documents by its
name.

Service

Type

MARKED_DOCUMENT_HANDLER

Name
«not set»

Name
«not set»

[1,N]

ExportActions

Figure 74: Feature model of the MARKED DOCUMENT HANDLER service

9.4.6 The ORDERING Service

The ordering Service describes the different criteria by which the documents in the result
list can be ordered. Criteria include the fields by which the result list can be sorted, as
well different concepts of relevance or ranking. The feature group OrderFields in Figure 75
specifies for each criterion whether it supports ascending and/or descending order. The Name
attribute contains the name of the criterion. The Action CHANGE RESULTLIST SORTING
is used to invoke the ORDERING Service

Service

Type

ORDERING

Name
«not set»

OrderFields

[1,N]

OrderField

Name
«not set»

AscendingDescending

Figure 75: Feature model of the ORDERING service

9.4.7 The DOCUMENT LINKS Service

The DOCUMENT LINKS Service represents the functionality to start a link search based on
values of a field in the result documents. In a link search, the search term is not entered by
the user. Instead, the values for some fields of documents are represented as links. Following
such a link starts a new search for the value of the link. Sowiport, for instance, supports a link
search for all publications by an author by clicking on the author’s name. The FieldNames
feature group describes the fields of result documents that support a link search.

134



The Action Test Step FOLLOW LINK IN DOCUMENT is assigned to the Service DOCU-
MENT LINKS. This Test Step allows the selection of documents and fields within documents
to be used for a link search.

Service

Type

DOCUMENT_LINKS

Name
«not set»

FieldNames

Name
«not set»

[1,N]

Figure 76: Feature model of the DOCUMENT LINKS Service

9.4.8 The PAGINATION Service

The PAGINATION Service describes the different ways in which a user can browse the different
pages of a result list for a search. Figure 77 displays the feature model of the Service The
features Absolute and Relative describe whether jumps over sections of the result list are
possible

The Test Step GO TO PAGE IN LIST, a SameStateAction, allows the change of the current
page in the list of results.

Service

Type

PAGINATION

Name
«not set»

Relative
«not set»

Absolute
«not set»

Figure 77: Feature model of the PAGINATION Service

9.4.9 The NAVIGATOR LIST Service

The Service NAVIGATOR LIST represents the navigators that allow the restriction of a result
list to documents that have specific values for certain fields. Figure 78 illustrates the feature
model of the Service The CompleteDisplay feature describes whether the navigator returns all
values for a facet or, as is the case for the Digital Libraries considered here, only the most
frequent values.

The NavigatorField node contains the name of the field that is represented by the navigator.
The feature group Values includes the possible values for facets. Three Test Steps are assigned
to the Service the SameStateActions SAVE NAVIGATOR COUNT, and SAVE NAVIGATOR VALUES,
and the Action FOLLOW NAVIGATOR LINK:

• The Test Step SAVE NAVIGATOR COUNT stores the number of results for one value of
a facet.

135



• The Test Step SAVE NAVIGATOR VALUES saves all values of a Navigator for a field in
a variable.

• The FOLLOW NAVIGATOR LINK represents the selection of a navigator value and the
restriction of the result list to documents that contain this value for the field. The Test
Step is an Action.

Service

Type

NAVIGATOR_LIST

Name
«not set»

NavigatorFieldsCompleteDisplay

Name
«not set» [1,N]

NavigatorField

Values

Value
«not set»

[1,N]

Figure 78: Feature model of the NAVIGATOR LIST Service

9.5 Chapter Summary

MTCC is applied to a system family of three Digital Libraries and an installation of the Solr
search server. These systems are analyzed for their test-relevant Services and the Test Steps
that exercise these Services. Services are test-relevant if they represent features or behaviors
of the SUT that is relevant for the domain experts to assess the quality of a system. MTCC
distinguishes between domain-specific and generic Services. Domain-specific Services represent
functionality that is characteristic for the system family to which MTCC is applied. Generic
Services represent functionality of MTCC, for example the use of variables to store and verify
aspects of the state of the SUT.

Test Steps are test-relevant if they either manipulate the state of a Service or serve to
verify that the SUT is in a certain state. The Services for the system family of Digital
Libraries considered in this thesis focus on the functionality of these system for searching and
displaying results.

136



Part III

Validation

137





Chapter 10

Validation Goals and Design

In this chapter, we discuss the role of validation in software engineering. We apply the GQM
approach to the validation of MTCC and formulate the goals and questions based on which
MTCC is evaluated.

Section 10.1 examines the role of validation in software engineering. The need for a
validation is motivated and different approaches to the validation of software are discussed.

Section 10.2 defines the goals of the MTCC validation. We investigate how different types
of validation apply to MTCC.

Section 10.3 discusses the application of the GQM approach to the validation of MTCC
in detail. Five validation questions are formulated in order to address the general feasibility
of the approach as well as its practicability.

10.1 Validation in Software Engineering

A systematic validation is a prerequisite for proving the effectiveness and efficiency of a specific
method or technology and for the verification of a hypothesis (Prechelt, 2001; Wohlin et al.,
2000). How a validation is conducted is determined by the available resources (Prechelt,
2001).

In this thesis, we employ the GQM approach in the context of a case study to validate
both the feasibility of the MTCC and its practicality. The validation of the efficiency of the
approach is the subject of future work.

10.1.1 Reasons for Validation

In software engineering, the validation of assumptions about the effectiveness and efficiency
of a method or tool is necessary for the same reasons that the validation of hypotheses is
necessary in science. Specifically, validation has two goals:

• The validation process assesses the general feasibility, practicality and efficiency of the
object of the validation. Such an object might be a tool, a process or an algorithm.
Here, the validation provides the basis for the future improvement of the object of
validation (Basili, 1996).

• The discipline of software engineering in its entirety benefits from the experience of the
conducted validations of past approaches. The experience and knowledge gained serve
as the basis for further research.

Despite these facts, research in software engineering often ignores validation. The reasons
come in part from the tradition of software engineering. Additionally, a number of practical

139



reasons that are specific to software engineering hinder the conducting of robust validations
for the discipline (Perry et al., 2000).

In practice, the optimal validation of an approach or tool will not be possible in most cases
since the resources necessary to conduct a perfect validation are prohibitively high (Hannay
et al., 2005; Tichy, 2000). We argue therefore that requirements for validation approaches
must take the available resources into account. Based on this argument we adopt the three
types of validation defined by Freiling (Freiling et al., 2008). They address the feasibility,
practicality and efficiency of an approach. The separate validation of the different properties
allows the successive evaluation of a system and the evaluation of fundamental properties
even with limited resources.

If software engineering is considered in the short term, then the purpose of the discipline
is to provide methods that support the creation of high quality systems (see Section 1.1 for
the meaning of high quality in this context). Considered for the long term, the objective of
software engineering is the creation of theories that support a better understanding of the
actors, processes and artifacts relevant to the field. These long-term and short-term views
correspond to the roles of the practitioner and the researcher (Basili, 1996). Validation is an
essential means to reach both the short term and long term goals of software engineering.

One aspect of validation is the assessment of a product or process with the goal to raise the
quality of the system. This aspect is addressed by a number of approaches from manufacturing
and quality management, especially methods like Continuous Improvement (Chase et al.,
2001). One concrete tool to assess the consequences of changes is the Plan-Do-Check-Act
cycle, also known as the Deming Wheel (Chase et al., 2001). The Plan phase of the approach
develops hypotheses that are put into practice in the Do phase. The Check phase measures
the effects of the changes; the Act phase makes changes to the production process based on
the experiences of the proceeding phases and develops new hypotheses.

In contrast to manufacturing, the product of a software development process will usually
only be created once (Basili, 1996). However, since software can be developed in increments
or iterations, experience from one iteration can be used to make improvements to the process.

Software systems are defined by a large number of quality attributes (see Section 1.1).
This leads to a situation where the development of measures that support an assessment of a
software system is non-trivial. If the requirements for a system are known and the degree, to
which these requirements are met can therefore be measured, empirical methods (Zelkowitz &
Wallace, 1998) and the definition of the appropriate metrics (Kan, 2002) are essential means
to assess trends in quality, thereby facilitating the design and implementation of higher quality
systems.

The validation of assumptions is an essential aspect of the empirical method. Every
hypothesis has to be provable or falsifiable by repeated verification (Perry et al., 2000). For
software engineering as an engineering science discipline it follows that a hypothesis or the
predictions made for a process or software system must be compared with the behavior of the
system. Empirical Software Engineering propagates the use of empirical methods in software
engineering (Tichy et al., 1995; Perry et al., 2000). Such methods are also the basis of
physics (Basili, 1996) or evidence-based medicine (Kitchenham et al., 2004).

10.1.2 Challenges to Validation

A number of reasons exist for the relatively low adoption of empirical methods in software
engineering. One aspect that hinders the application of such methods is the problem of
comparability and reproducibility of results. Another factor is lack of knowledge about the
required methods.

One central cause for the lack of reproducibility and for the difficulty in comparing differ-
ent results is the high degree to which the software development process depends on the skills

140



and abilities of the participants and their individual approach to software development (Basili,
1996). Beside differences in the participants, other factors also have a negative impact on
comparability and reproducibility. These factors include differences in the software develop-
ment process, the programming languages and tools used and the specifics of the organization
in which a software system is developed.

A controlled experiment limits the influence of these external factors (Wohlin et al., 2000),
but in order to assess the consequences of an approach in practice, it is desirable to evaluate
the approach in the field. An important factor in this context is that the control over the
evaluation conditions is significantly lower in the field than in a controlled experiment.

In order to apply empirical methods to software engineering, it is necessary to involve
human participants. Such involvement results in a considerable increase in the resources
necessary to conduct the validation. Furthermore, the resources increase with the level of
control that is needed over the validation setting. As a consequence of the above, only a small
fraction of the validations done in software engineering are controlled experiments (Hannay
et al., 2005).

While the awareness of the need for empirical evaluation is rising, knowledge of the nec-
essary methods and processes is still lacking in the community (Zelkowitz & Wallace, 1998).

Compromises about the scope and conducting of a validation cannot be avoided in prac-
tice. It is important not to accidently affect the validity of the validation. In practice, this
means that only those aspects of a system can be validated for which hypotheses can be
proven or falsified with the resources available for the validation.

In the following, we discuss the different types of validation and how they can be applied
to MTCC with the resources available for this thesis.

10.1.3 Validation Methods

Different validation methods can be distinguished by the degree of control over both the
object of the validation and the data acquisition process.

Following the definition by Prechelt (Prechelt, 2001), we distinguish the empirical valida-
tion methods experiment, case study, interview and literature survey. Each of these methods
exerts less control over the validation setting than the preceding one. The above validation
methods are mostly orthogonal to the validated aspect of a method or tool. These aspects
are the feasibility, the practicality and the efficiency.

A validation must be conducted based on a systematic approach. One such approach is
the Goal-Question-Metric approach (GQM) (Basili et al., 1994). In the GQM, the goal for a
tool or method is defined. Based on this goal, questions are formulated that assess whether
a goal was reached. These questions in turn are based on metrics.

In the following we discuss the properties of the four methods of validation introduced
above and examine their respective advantages and disadvantages.

• In a controlled experiment, the object of the validation and its environment are under
the total control of the person conducting the experiment. Such a setting allows the
exact control of the dependent variables of an experiment and therefore the precise
assessment of the influence of changes on the object of the experiment. In order to limit
the influence of the individual characteristics of the participants in the experiment, it
is either necessary to conduct an experiment with a sufficiently large control group or
to repeat the experiment with different groups (Martens, 2007; Prechelt, 2001).

In addition to controlled experiments that are conducted in a laboratory, natural ex-
periments are conducted in the field and investigate the object of the validation in its
natural environment (Prechelt, 2001).

141



• A case study examines the concrete application of an approach for one example (Prechelt,
2001). A case study can either be conducted in the field or under laboratory conditions.
Compared to an experiment, a case study offers less control over independent variables
but also requires less resources than an experiment. The definition of a case study used
here differs from the view of a case study as the observation of a project outside of a
laboratory (Zelkowitz & Wallace, 1998). While the definition used above does include
scenarios where a method or tool is applied with the express purpose to validate this
tool, we argue that a case study differs from an assertion as defined by Zelkowitz. An
assertion validates a method or tool solely based on criteria developed by the developer
of the approach; a case study validates an approach based on external criteria.

• In a survey, a group of people is presented with a number of qualitative or quantitative
questions. A survey can either be conducted as a personal interview or through a
(online) questionnaire (Punter et al., 2003). Regardless of the modus in which it is
conducted, a survey does not have any control over the object that is validated but the
collected data is under the control of the experimenter.

• Literature studies and meta-analyses examine prior empirical research for the subject
area. Literature surveys or literature studies are historical methods (Zelkowitz & Wal-
lace, 1998) that neither allow control over the object of validation nor over the data
that is collected. The quality of a literature study is determined by the availability and
selection of relevant sources.

Of the four validation methods described above, the controlled experiment is the best
in terms of control over the validation process but also needs the most resources. Based on
the available resources, the validation of MTCC is therefore conducted as a case study. This
approach supports a validation of the essential hypotheses underlying the MTCC approach
and serves as a basis for future validations.

Validation Types

We differentiate three types of validation (Freiling et al., 2008; Koziolek, 2008; Becker, 2008)
that consider consecutively more complex and harder to validate properties of a method or
tool.

A type I validation assesses the feasibility of an approach. This type of validation exam-
ines whether the approach can be implemented with limited resources. A successful type I
validation is a prerequisite for the conducting of a type II validation. In the case of MTCC,
that means the ability to represent the members of a system family and test for these systems
as models, to transfer tests between different systems and to generate and execute tests from
the models.

A type II validation considers the practicality of a method or tool. An important aspect
of the practicality of an approach is the degree to which it can be applied by its intended
user. The conducting of a type III validation is only possible when the practicality of an
approach is proven in the type II validation. For MTCC, the type II validation considers the
question whether domain experts understand the concepts and implementation of the editor
and are able to use the editor for test construction.

A type III validation evaluates the efficiency of an approach in terms of the resources
necessary for its application and the associated benefits. The type III validation is the most
resource intensive of the three validation types. To allow a robust assessment of the efficiency
of an approach, a controlled experiment that compares the approach with current practices
is a desirable but costly approach.

142



For this thesis, we conduct type I and type II validations of MTCC. The conducting of
a full type III validation is the object of future work — only some aspects concerning the
efficiency of MTCC are evaluated.

The Goal Question Metric Approach

One prerequisite for a validation is the exact definition of the aspects of a method or tool
that are assessed and the derivation of metrics used for measurement. In this thesis, we use
the GQM approach (Basili et al., 1994, 1999) as the basis of our validation. In the GQM
approach a validation is based on a goal. Questions are defined that allow the comparison of
the goal and the implemented system, the questions in turn are based on metrics:

• The goal defines the relevant properties of the object under validation for the purpose
of the validation. A goal is defined by the focus of the validation, the object of the
validation, the issue of interest and the viewpoint from which the object is investigated.

• Multiple questions are defined for a goal, each of these questions addresses one aspect
of the goal. Questions can be quantitative or qualitative in nature.

• Metrics are derived from the questions. Multiple metrics can be defined for each ques-
tion. Metrics can be either objective of subjective. Objective metrics only depend on
the object of the validation, subjective metrics also depend on the viewpoint of the
validation.

GQM is a result-oriented approach (Zubrow, 1998). Metrics are selected for the purpose
to answer specific questions about the goal of the system.

10.2 Goals and Questions of the MTCC Validation

The GQM validation of MTCC addresses five questions. The type I validation of MTCC is
based on the following three questions that assess: (1) the ability of the MTCC models to
represent systems and tests for the considered application domain, (2) the reusability of Test
Configurations for multiple systems within the system family, and (3) the ability of MTCC to
generate test cases from the models and execute them on the testee. The type II validation
consists of one question. This question examines whether domain experts understand the
concepts of the MTCC approach and are able to use the prototype implementation of the
MTCC editor to construct tests. We only conduct a very limited type III validation in the
context of this thesis. The corresponding question compares the resources needed for test
execution with MTCC with those necessary for an existing, manual testing regime.

The basic hypothesis of this thesis is that the involvement of domain experts in the testing
process in the context of system families is possible on the basis of models and that such a
testing approach has a positive influence on the quality of a system.

Because MTCC is not a replacement of existing testing processes and since the effective-
ness of MTCC in discovering faults is mostly determined by the knowledge and abilities of the
domain experts that are involved in the testing process, the validation of MTCC differs from
the validation of testing approaches that put less emphasis on the involvement of domain
experts. As a consequence, we do not use the number of identified faults as a metric in the
validation. The goal of the MTCC validation is to prove the suitability of the approach for
the automated testing of Digital Libraries from the point of view of domain experts.

143



10.2.1 Hypothesis

The central hypothesis of the MTCC approach is that by constructing suitable models and by
representing them in an editor, it is possible to support test construction by domain experts
who lack formal modeling or programming skills. Furthermore, we advance the view that the
abstract test models thus created can be used to test real systems and that these tests can
be reused for different systems if they support the necessary features for test execution. We
further argue that testing with MTCC is more efficient than manual test execution or other
approaches to test automation, especially in a system family context.

10.2.2 Basic Assumptions of MTCC

One basic assumption of MTCC is that the involvement of domain experts in testing ben-
efits the quality of a system. As discussed in Section 1.2, we argue that the knowledge
of domain experts of the requirements for a system can be a form of executable specifica-
tion (Fowler, 2006; Beck, 2002; Mugridge & Cunningham, 2005b). The usefulness of tests
for quality assurance of software (Beizer, 1990; Myers et al., 2004) and the advantages of
test automation (Binder, 1999; Graham & Fewster, 2000) are accepted both in the software
engineering community and in practice. The involvement of domain experts or customers in
the software development and testing process is well established in agile software development
approaches (Mugridge & Cunningham, 2005b; Andrea, 2004b; Andersson & Bache, 2004).
The goal to involve domain experts in the testing process is also documented outside the agile
community (Armbrust et al., 2004).

The concept of system families is long established in software engineering (Parnas, 1976).
From the definition of system families in Chapter 4 follows that the members of system families
are likely to share requirements and therefore also tests that verify these requirements. It
further follows that the reuse of tests and test infrastructure becomes more important.

Since the members of a system family are often not systematically derived from a common
set of core assets but are rather results of an opportunistic reuse process, test descriptions
for the members of such a system family must be based on an abstract model of the systems,
not on their implementation.

We argue that MTCC addresses both the inclusion of domain experts in the testing process
and the reuse of test assets for multiple systems.

10.2.3 Goal of the Validation

We define the following GQM goal for the validation of MTCC:

Goal Validate

Focus the suitability for automatic testing of a Digital Library system family of

Object the MTCC approach

Viewpoint from the perspective of domain experts.

We already discussed the goal of validation in Section 10.1. Because the validation is done
from the viewpoint of domain experts, the usability of the MTCC editor and more generally
the comprehensibility of the MTCC concepts are of special interest to the validation. The
object of validation is the implementation of the MTCC approach for Digital Libraries and
Solr prepared for this thesis. While a validation of MTCC independent from any concrete
implementation would be optimal, the resources available for this thesis only allow one im-
plementation to be evaluated. MTCC is a test automation approach. For the purpose of this

144



thesis, it is applied to the digital library domain. The focus of the GQM goal is therefore on
the applicability of MTCC to the Digital Library domain.

10.2.4 Validation of Testing Approaches

MTCC is a testing approach that depends on domain experts for the identification and
construction of tests. This results in differences to other approaches to automatic testing.
These differences have to be considered in a validation. As we discussed in Section 1.1.3, a
number of different, sometimes conflicting, quality attributes can be applied to software for
test automation (Kaner, 2003; Graham & Fewster, 2000). If the effectiveness and the efficiency
of a testing approach are considered as its most important attributes (Kaner, 2003), then the
quality of a test is defined by its ability to find faults with minimal resource usage.

In reality, only considering effectiveness and efficiency for a testing approach is an over-
simplification. The individual quality attributes of each system have to be evaluated in the
context of its goals and the domain (Do et al., 2005; Ellims et al., 2006) it is applied to. In the
MTCC approach, the effectiveness of testing is determined by the ability of the domain ex-
perts to identify and design suitable tests for a system. A type III evaluation of MTCC would
have to include domain experts and assess the effectiveness of their tests and the efficiency
of the MTCC test automation over a long period of time and under realistic conditions. A
validation of such scale is not possible in the scope of this thesis.

We focus our validation on the feasibility and practicality of the approach, especially on
the ability of MTCC to express the necessary tests for the domain model, instantiate an
editor instance for these models that allows the construction of tests configurations, and use
the Test Configurations for testing the system.

10.3 GQM Application for MTCC

In the following, we define five questions related to the goal defined in the previous Sec-
tion 10.2. The questions allow the assessment of the degree to which MTCC supports the
goal that we derived from our hypothesis. An overview of all questions, subquestions and
metrics is given in Table 10.1.

The feasibility of the GQM approach is addressed by the following three questions:

Q1 Can all relevant tests for the domain experts be represented by MTCC Test Configura-
tions?

Q2 Is it possible to generate test cases from the abstract MTCC test configuration models
and to execute these tests on the systems under test?

Q3 Can Test Configurations that were constructed for one system be reused for another
system?

Question Q1 considers the basic feasibility for automated testing — MTCC can only
automate a test that can be expressed in terms of MTCC models. Question Q2 builds on
question Q1. If MTCC can represent a particular test in a model, it does not necessarily
mean that the models can be used for the generation of test cases. Question Q3 also depends
on question Q1 — given that a test can be expressed for one system, is it possible to reuse
the test — unchanged after a transformation — for another system?

The fourth MTCC question considers the type II validation of MTCC. The question
validates the practicality of the MTCC approach. We examine whether domain experts
understand the concepts of the MTCC approach as the are presented by the MTCC editor.

145



Q4 Are the MTCC models represented by the editor suited for test construction by domain
experts?

Only a limited type III validation is conducted for MTCC. Question 5 examines the time
necessary for the manual execution of tests and compares this with the resources necessary
to execute tests in MTCC.

Q5 What is the relationship between the resources necessary for the manual execution of
tests compared to the resources needed to automate and execute the same tests with
MTCC?

10.3.1 Systems and Test Sets

For the following discussion of the MTCC validation plan, it is necessary to define several
sets, variables and functions.

Our evaluation considers the system family S of four systems S = {s1, s2, s3, s4}. The
systems are discussed in detail in Chapter 9.

s1 The search of the Sowiport portal.

s2 The interdisciplinary portal infoconnex

s3 The portal for international relations and area studies of the German Institute of Inter-
national and Security Affairs

s4 The search server Apache Solr

In order to assess the capability of MTCC to represent relevant tests for a domain, we
use a number of different test sets. A test set is a collection of tests or testable faults for one
of the members of the system family S. Section 10.3.2 discusses test sets in detail.

TS1 This test set includes a number of tests that we defined as a baseline for the MTCC
approach before the approach was implemented.

TS2 This test set includes a number of test scenarios for quality attributes from the Infor-
mation Retrieval domain that can be applied to the system s4.

TS3a A set of tests that a domain experts defined in a simple text format. This test set
addresses the system s1.

TS3b A set of tests that was specified in the same text format as the tests in the test set
TS3a. In contrast to TS3a, the test in the test set address system s3 and were defined
by domain experts for this portal.

TS4a This test set includes a number of tests that are defined in a test plan for the manual
testing of system s2.

TS4b This test set includes tests for system s2. Like the tests in test set TS4a, the tests were
originally defined in a test plan for manual execution. Unlike the tests in TS4a, the
tests only address the search functionality of s2.

T5 This test set does not include tests as such but rather faults and TODO items that were
reported for system s1. We treat this faults as test scenarios if a regression test could
be derived from the fault .

Each test set contains a different number of tests. The number of tests for each test set
is stored in the variables tx,yx ∈ {1, 2, 3a, 3b, 4a, 4b, 5}, x ∈ N

146



10.3.2 Q1: Capability to Represent Tests

Question Q1 of the MTCC validation is: Can all tests that are relevant for the domain experts
of the current system family be expressed by MTCC models? In order to answer this question
we test to which degree the tests defined in the different test sets introduced in Section 10.3.1
can be represented by the MTCC models for the respective systems.

For every test t ∈ T with T ∈ Tgesamt, Tgesamt = {TS1, TS2, TS3a, TS3b, TS4a, TS4b, TS5}
the degree to which the test can be represented in MTCC is represented by the value gr, gr
is defined as follows.

gr ∈ G, G = {gyes, gcan, gno, gextern} (10.1)

gyes The test can be completely represented by the MTCC models used for the validation.
This means that the Application Feature Model, the Application State Model, and the
Domain Test Model are complete for the purpose of the test.

gcan The test cannot be represented with the models used for the validation, but the models
could be extended to support the test if the necessary Services, Service instances or Test
Steps are added to the Domain Feature Model, Application Feature Model, or Application
State Model respectively.

gno The test can neither be represented by the models used for the validation nor is the
addition of Services, Service instances or Test Steps possible that would allow the rep-
resentation of the test.

gextern The test is not within the scope of MTCC. Examples for such tests are tests that are
specific to the graphical user interface of a testee.

We consider a test t as supported by the MTCC approach if gr(t) = gyes. When a test
set TS ∈ TSgesamt is considered in its entirety, then the support of MTCC for this test set is
defined as

gr(T ) =
|{t1 : t1 ∈ T ∧ g(t1) = gyes }| ∗ 100

|{t2 : t2 ∈ T ∧ g(t2) ∈ {gyes, gcan gno }|
(10.2)

Q1.1 Support of MTCC for Predefined Test Scenarios

The test set TS1 has been defined prior to the design and implementation of the MTCC
approach. The test set consists of 16 tests for system s1. The test set was defined to serve
as the basic for the development and validation of the MTCC models and was the result of a
first informal analysis of the testable functionality of the testee. Each of the 16 tests covers
a different functionality of the system and can therefore be considered as a representative
of a test class. We define a test class as a trace through the functionality of the system for
which many instances can exist. Searching for a term and comparing the number of result
documents with an expectation would be a test class for which search for concrete terms
would be instances or tests.

Each test in TS1 is described as a test scenario in a structured test format that consists
of actions taken on the interface of the testee and the expectation or assertions that must be
true. An example of such a test description is given below. We translated it from the original
German:

Test 4(bs) Test of the SOLIS database filter

147



This tests verifies the filters for databases for the extended search in Solis

1. Action The filter for databases is selected in the Advanced Search
2. Action The Check Box all is de-selected
3. Action The Check Box Solis is selected
4. Action The term ’social’ is entered in the text field of the search form
5. Assertion More than 17.000 documents are found.
6. Assertion The person navigator contains 30 hits for the value Weber, Max

Every test scenario has a name and a short description. The test scenario is represented
as a sequence of interactions that take place between the user and the system under test.
Since user and system interact via the user interface, the actions refer to elements of the GUI.
Actions and assertions in the test scenario correspond to the two action types and assertions
in MTCC.

We choose the above format for the representation of test cases since it is precise enough
to serve as a basis for the manual execution of tests and test modeling while it is not bound
to a particular modeling language.

We argue that test set TS1 is relevant for the validation of MTCC since it covers a wide
range of functionality for the system s1 and is independent of the MTCC approach. Metric
M 1.1.1 describes g(TS1), the degree of support for the tests of the test set TS1.

Q1.2 Capability to Express Information Retrieval Tests

The test set TS2 consists of tests that assess the results of applying cross-concordances (Mayr
& Petras, 2008) to the retrieval process. The test set holds the 7 tests below that verify various
expectations about the use of cross-concordances.

t2,1 Are more documents found for a query that was expanded with cross-concordances than
for queries that were not expanded?

t2,2 Do the 10 or 20 most relevant documents for a query change when cross-concordances
are used?

t2,3 Does the ranking of the most relevant 10 or 20 documents change?

t2,4 Do cross-concordances result in documents form more databases to be included in the
result set than would be the case without cross-concordances?

t2,5 How do cross-concordances change the number of databases in the most relevant 10, 20
or 100 documents?

t2,6 How does the recall change for 10, 20, and 100 documents when cross-concordances are
used?

t2,7 How do cross-concordances influence the precision for the first 10, 20, and 100 documents
of a result list?

Each of the 7 tests above would be tested with a initial query, for example a query derived
from a CLEF (Petras et al., 2007) topic.

Question Q1.2 assesses of the ability of MTCC to express tests for the effectiveness of
Information Retrieval systems. Since the ability of a system to return documents that are
relevant to an information need cannot be completely automated, MTCC must support tests
that calculate recall and precision passed on pooled relevance assessments and must be able
to test hypotheses like those expressed in the seven tests above.

148



Metric M1.2.1 describes the degree to which the test set g(TS2) can be expressed with
MTCC

Q1.3 Capability to Express Tests Defined by Domain Experts

In the preparation for this thesis, domain experts affiliated with the Digital Libraries s1

and s3 were asked to specify tests for their respective system in the format described in
Section 10.3.2. The domain experts were informed that the tests were collected in order to
use them in a test automation approach, but did not know about MTCC. Examples for the
specified tests can be found in Section A and Section A in the appendix.

Compared to the tests in test set TS1, the tests in the test sets TS3a and TS3b were not
defined for the evaluation of the MTCC approach but represent actual requirements for either
system s1 or s3. Since the tests in the test sets are defined by domain experts, we argue that
they are likely to represent realistic requirements to a test automation system.

The metrics M1.3.1 and M1.3.2 describe g(TS3a) and TS3b), the degree to which MTCC
supports the expression of tests for the respective test sets.

Q1.4 Representation of Existing Manual Tests

The test sets TS4a and TS4b consist of manual tests for system s2 that execute monthly on
the system. Section A in the appendix gives an example of the tests in the test sets. A
particularity of the tests in these test sets is that they do not define the expected behavior
of the system under test, only the actions to be taken on the system.

Test set TS4a consists of tests for different aspects of system s2, some of which address
details of the GUI and are therefore not in the scope of MTCC. All tests in the test set TS4b

address the search functionality of the system. Compared to the tests described in TS1, TS4b

does not cover much of the functionality of the system under test but instead tests the search
functionality of system s1 in detail. The fact that all tests in TS4b are instances of only a
few test classes is relevant for the validation since it is likely that MTCC either supports all
tests of a test class or no tests from this test class.

We argue that the test set TS4b is relevant for the validation because it represents real
tests taken from practice.

Metric M1.4.2 describes g(TS4b), the support of MTCC for the tests in test set TS4b,
metric M1.4.1 considers g(TS4a).

Q1.5 Support for Tests derived from Identified Faults

Test set TS5 does not include tests as such. Rather, the test set is an export of all entries of
the issue tracking system for system s2. Some of the entries in the issue tracker are feature
requests and many of the remaining faults in the issue tracker address aspects of the system
that are not within the scope of MTCC. These entries are assigned to the category gextern.
The subset of entries in the issue tracker that are in the scope of MTCC are faults that where
found by domain experts in ad-hoc testing. Since it is desirable to automate such ad-hoc
tests with MTCC, we derive tests from the identified faults and assess if the tests can be
expressed with MTCC.

Metric M1.5.1 describes g(TS5), the degree to which MTCC supports these tests.

10.3.3 Q2: Executability of MTCC Test Configurations

The second question of the type I validation examines the executability of the MTCC Test
Configuration models. We consider a Test Configuration instance executable when it can be

149



used — either in its original form or after a transformation — to exercise a testee. Because
Test Configuration instances serve as the basis for test case generation, a model is executable
if a test case can be created from the model.

The question Q2 has a quantitative aspect. It is not only of interest if test code can be
generated from the models but also how much resources are necessary to establish a test code
generation infrastructure and to use this infrastructure to generate test cases.

We call the infrastructure needed for the generation of test cases and for the execution
of these test cases the execution system. The execution system consists of the Configuration
Reader, the Test Generator and the Test Adapter.

With the consideration of the resources necessary for test code generation and execution,
question Q2 seems to address the efficiency of MTCC and thereby the type III validation.
We argue that Q2 is part of the type I validation because the feasibility of MTCC is only
given if MTCC can be implemented with the resources available for test automation in a
given project.

Question Q2 consists of 4 subquestions:

• To what degree is the complete implementation of the execution system possible for
a given testee? In order to answer this question, we implement an execution system
for the tests of test sets T1 and T3a on system s1. The question examines how many
resources are necessary for the implementation of an execution system that covers most
of the functionality of a system.

• Is the implementation of an execution system feasible for all members of a system
family? In order to examine this question we implement a limited execution system for
all members of the system family. This execution system only supports the execution
of the single test class ta1.

• Is the implementation of an execution system for different test runners possible? We
implement an execution system for the test class ta1 on system s1 with the test runner
tr2. This question investigates whether the MTCC test models are specific to one
particular test runner.

• Can the test cases generated by the MTCC execution system be integrated into an
existing testing process?

In order to investigate the above questions, we implement the needed execution systems
for the MTCC prototype. We document the lines of code for each implementation as a simple
metric for the resources necessary to implement the system. As discussed in Section 11.7.1,
we consider lines of code an imperfect but usable metric.

Q2.1 Near-complete Implementation for a Testee

This question examines the resources necessary for a nearly complete implementation of the
execution system of MTCC for one system. We call the implementation near-complete since
it implements all tests that are defined for a system, not all functionality of the system. We
implement the test sets T1 and T3a for system s1

Metric M2.1.1 describes the percentage of all tests from T1 and T3a that can be supported
by the implemented execution system. Metric M2.1.1 investigates the lines of code that are
used for the implementation of the parts of the execution system.

150



Q2.2 Executability on the Members of a System Family

This subquestion addresses the executability of MTCC Test Configurations on the different
members of the considered system family. These questions aims to prove that MTCC Test
Configurations can be executed on all members of a given system family. In order to answer
the question, an execution system for the test ta1 is implemented for all system in S. ta1

includes the following steps:

1. Action A search using multiple fields in an advanced search form is started.
2. Action The number of result documents is stored in a variable.
3. Assertion The number in the variable is compared to some expected value.

Test ta1 has been chosen for the validation since all systems in the system family S support
the functionality required by the test. We restrict the validation of this question to a single
test because of the available resource for this validation and since the test class described by
test ta1 is the most frequently used for this system family as can be seen from T4a.

Metric M2.2.1 examines whether the execution system for ta1 can be implemented for all
members of the system family. Metric M2.2.2 describes the lines of code necessary for these
implementations.

Q2.3: Executability with Different Test Runners

Question Q2.3 addresses the executability of MTCC Test Configurations with different test
runners. Two test runners are used for the validation.

The test framework Selenium (tr1) is used for testing a system by automating a web
browser. Twill (tr2) is a HTTP Protocol Driver (Brown et al., 2007) used for testing web
applications.

A test execution system is implemented for test ta1 on the system s1 and for both test
runners. Metric M2.3.1 describes whether the implementation of the execution system suc-
ceeds for the two test runners. Metric M2.3.2 measures the lines of code necessary for the
implementation.

Q2.4: Compatibility with Existing Testing Regimes

Question Q2.4 addresses the compatibility of the test cases generated for the questions Q2.1,
Q2.2, and Q2.3 with existing testing tools and the degree to which MTCC test cases can
be integrated in existing testing regimes. For this question we examine the infrastructure
needed in order to execute MTCC tests. This is a qualitative question that is not based on
any metrics.

10.3.4 Q3: Reuse of Test Configurations

Question Q3, the third question of the type I validation, examines to what extent Test Con-
figuration instances can be reused for different systems. Specifically, we investigate whether
a Test Configuration instance that is specific to one Application Test Model can be transfered
to the Application Test Model of another system. If such a transfer of test models is possible
and if execution systems exist for all testees, then tests are reusable for different systems.

Question Q3 consists of three sub questions each of which corresponds to one member of
the system family S for which tests can be reused. For each of the systems and each test in
the test sets T1 and T3a that is intellectually reusable we check whether a Test Configuration
created for system s1 can be reused for the target system.

151



We call a test reusable by hand if a domain expert with knowledge of the original test can
execute the scenario described by the test on another system, that is, if all features required
by the test are present for both systems and the requirements expressed by the test can
therefore be verified on both systems.

Q3.1: Reuse for System Variants

Question Q3.1 considers the reuse of Test Configuration instances for variants of a testee.
Systems s1 and s3 were developed in parallel and are similar regarding their implementation,
we therefore call these systems variants of each other.

For every test t, t ∈ T1 the function x = trans(s1, s3, t), x ∈ {gyes , gno , gcan , gfalse }
describes whether a Test Configuration can be transfered or not.

The value gno is used for tests that are not reusable by hand for different systems. Tests
with the value gcan are reusable by hand but cannot be reused by MTCC. The value gyes is
used for tests that are reusable and whose semantics are correctly represented for the systems
for which the test is reused. The value gfalse is used for tests that can be automatically
transfered but whose semantics are changed by the transfer process — the test for the target
system is not a correct representation of the test on the original system.

Metric M3.1.1 describes the percentage of the reusable tests that can be reused in MTCC.

M3.1.1 =
|{t1 : t1 ∈ T1 ∧ trans(s1, s3, t1) = gyes }| ∗ 100

|{t2 : t2 ∈ T1 ∧ trans(s1, s3, t2) ∈ {gyes , gcan gfalse }|
. (10.3)

Q3.2: Reuse for Systems Versions

Question Q3.2 considers the reuse of test models for a system and another system that is
the precursor of the first system. System s2 can be considered a precursor of system s1 since
s2 was developed earlier and both systems offer the same basic functionality, even though
system s2 includes some functionality that is not part of s1.

Metric M3.2.1 for question Q3.2 is analogous to metric M3.1.1 but considers the transfer
of tests between the systems s1 and s2.

Q3.3: Reuse for System Layers

Question Q3.3 examines the reuse of Test Configurations that were constructed for a system
and are transfered to a subsystem. Specifically, we test if tests for system s1 can be reused
for system s4. Since system s4 is a search server not a Digital Library, these tests assess the
potential for reuse between different layers of a system.

Metric M3.3.1 is analogous to metrics M3.2.1 and M3.1.1, but considers system s4.

10.3.5 Q4: Practicality and Understandability of MTCC

Question Q4 considers the practicality of MTCC. More precisely, it investigates whether
domain experts understand the approach and can use the editor to build Test Configurations
from given test scenarios. Question Q4 is part of the type II validation.

The question primarily investigates whether the MTCC is understandable by domain
experts and can be applied by them. While the usability of the editor implementation used
for the validation contributes to the practicality, it is not the focus of the validation.

We investigate the practicality of MTCC based on two tasks, the adaptation of existing
Test Configurations and the construction of new Test Configurations from textual specification.
We consider quantitative as well as qualitative aspects. Qualitative aspects include feedback

152



given by the domain experts about the usability of the editor and the understandability of
the MTCC approach as well as the most frequent faults and problems that occur in using
the editor. The quantitative aspects measure if the domain experts were able to express the
scenarios without help, with some help or with no help at all.

We use test sets with seven tests each for the validation of the practicality of the approach.
One type serves as the basis of the construction of new tests, the other consists of tests used
to validate the adaptation of existing tests.

The test sets TV2a and TV2b each contain seven tests that were randomly selected from
the test sets T1 and T3a. The test sets hold test scenarios that are used to validate the
construction of new tests by domain experts.

TV2a = {ts1,10, ts1,11, ts3a,0, ts3a,10, ts3a,15, ts3a,28, ts3a,5} (10.4)

TV2b = {ts3a,11, ts3a,12, ts3a,14, ts3a,17, ts3a,21, ts3a,23, ts3a,8} (10.5)

The test set TV1 consists of five tests randomly selected from the test set TS4b. The
tests in the test set are all based on the same test class: The submission of a query and the
calculation of the results of a query.

TV1 = {t4b,88, t4b,89, t4b,90, t4b,103, t4b,104} (10.6)

Four domain experts were involved in the validation, we denote them by the variable
names de1...4.

Q4.1: Adaptation of Tests

Question Q4.1 investigates the adaptation of Test Configurations from test set TS4B by domain
experts. Both the time needed for the adaptation of the tests and potential problems during
the adaptation are considered. We argue that the adaptation of existing tests and the creation
of new instances for already existing test classes is a frequent activity in testing and that tests
from the test set TS4B are well suited to represent this activity.

Metric M4.1.1 measures the average time needed by the domain experts to construct the
test t4b,88 and to adapt this test to the scenarios described in the remaining entries of the
test set.

Q4.2: Construction of Tests

Question Q4.2 investigates the degree to which domain experts can use the MTCC editor to
construct tests from given test scenarios. The question considers 14 tests, subdivided into two
subsets of 7 tests each. In order to validate the practicality of MTCC, four domain experts
evaluated the MTCC editor in 2 sessions each. During the first session, the tests from test
set TS2a were investigated. In the second session, the domain experts were given the task to
model the tests from TS2b. Details are given in Section 11.6.1.

As a quantitative measure we determine the degree to which the domain experts can
express the test with the MTCC editor. We differentiate three degrees of support that can
be given to a domain experts during test construction. If a test is modeled without any help
the test falls into the category nohelp.

If some help is needed, either with respect to the MTCC approach or the MTCC editor,
the respective tests falls into the category help. Examples for the help given to the domain
expert are answers to concrete questions about the user interface or the meaning of the
parameters for specific Test Steps. Generally, all information that could also be learned from

153



the manual is considered limited help. If more help is needed and if it is likely that the
construction of the test would fail even with the use of the manual, the test is assigned to
the category fullhelp.

Details about the categories can be found in Section 11.6.1 Metric M4.2.1 describes the
distribution of the tests TV2a and TV2b on the categories nohelp, help, and fullhelp for all
four participating domain experts.

10.3.6 Q5 Efficiency of MTCC

Question Q5 considers the efficiency of MTCC in comparison to manual testing. The question
is an entry point to a further type III validation at a later date. We consider manual testing
since it is the current approach used for testing in validating organization. A comparison of
MTCC to other approaches of automated testing is the subject of later work.

The purpose of question Q5 is to assess the resources necessary for manual testing and
testing with MTCC. As discussed in Section 1.1.4, four phases of testing can be differentiated.
For question Q5 we only consider the third phase of testing, the execution of tests.

We compare the time needed for the manual execution of the tests in the test set TS4b

on system s2 with the resources necessary to implement the execution system for the tests
and the system. We argue that the comparison of manual testing with implementation costs
for the test generation and execution system provides a better measure than the comparison
with the resources necessary for test case generation and test execution since the automatic
test execution does not depend on human involvement but does depend on the potentially
resource-intensive implementation of the execution system.

We use two measures to discuss the efficiency of MTCC, (1) the lines of program code nec-
essary to implement the execution system and (2) the time needed for the manual execution
of the tests in test set TS4b. The manual execution of tests is done biweekly.

10.4 Chapter Summary

Software Engineering is an empirical science, MTCC must therefore be evaluated in a sys-
tematic manner. This thesis applies the Goal Question Metric (GQM) approach to validate
the feasibility and practicality of MTCC. The MTCC validation is conducted as a case study.
The validation of MTCC consists of a type I and type II validation. The type I validation
addresses the basic feasibility of the approach, the type II validation investigates the practi-
cability the the approach. The type III validation compares the efficiency of MTCC with the
efficiency of other approaches.

The type I validation of MTCC uses three questions: The first question assesses the capa-
bility of MTCC to represent tests that are relevant to domain experts. The second question
investigates how abstract Test Configurations can be used the exercise concrete systems. The
third question of the type I validation investigates the effectiveness of the methods employed
by MTCC to reuse tests. The type II validation consists of one question that investigates
the understandability of the MTCC approach to domain experts. The type III validation
investigates the necessary resources for testing with MTCC with the resources necessary for
manual testing.

154



Question 1 Is MTCC capable to represent all relevant tests?
Subquestion 1.1 Does MTCC support predefined test scenarios?

Metric 1.1.1 Degree of support for test set TS1

Subquestion 1.2 Is MTCC capable to express Information Retrieval tests?
Metric 1.2.1 Degree of support for test set TS2

Subquestion 1.3 Can MTCC express tests defined by domain experts?
Metric 1.3.1 Degree of support for test set TS3a

Metric 1.3.2 Degree of support for test set TS3b

Subquestion 1.4 Can MTCC represent existing manual tests?
Metric 1.4.1 Degree of support for test set TS4a

Metric 1.4.2 Degree of support for test set TS4b

Subquestion 1.5 Does MTCC support tests derived from identified faults?
Metric 1.5.1 Degree of support for test set TS5

Question 2 Can MTCC Test Configurations be executed as automated tests?
Subquestion 2.1 Is a near-complete implementation of the execution system for one testee

possible?
Metric 2.1.1 Percentage of executable Test Steps for TS1 and TS3a

Metric 2.1.2 Lines of code needed to make TS1 and TS3a executable
Subquestion 2.2 Can MTCC Test Configurations be executed on all members of a system

family?
Metric 2.2.1 Percentage of executable Test Steps for ta1 for the system family S
Metric 2.2.2 Lines of code needed to make ta1 executable on all systems in S

Subquestion 2.3 Can MTCC Test Configuration be executed with different test runners?
Metric 2.3.1 Percentage of executable Test Steps for test ta1 on system s1 and the

test runners tr1 and tr2

Metric 2.3.2 Lines of code needed to make ta1 executable on system s1 and the test
runners tr1 and tr2

Subquestion 2.4 Is MTCC compatible with existing testing regimes?
Question 3 Can MTCC Test Configurations be reused?

Subquestion 3.1 Are Test Configurations reusable for system variants?
Metric 3.1.1 Percentage of the reusable tests for system s3 supported in MTCC

Subquestion 3.2 Are Test Configurations reusable for systems versions?
Metric 3.2.1 Percentage of the reusable tests for system s2 supported in MTCC

Subquestion 3.3 Are Test Configurations reusable for system layers?
Metric 3.3.1 Percentage of the reusable tests for system s4 supported in MTCC

Question 4 Is MTCC practical and understandable by domain experts?
Subquestion 4.1 Can domain experts model and adapt simple tests?

Metric 4.1.1 Time needed by the domain experts to model t4b,88 and adapt the test
to TV1

Subquestion 4.2 Can domain experts construct new tests?
Metric 4.2.1 Help needed by the domain experts to model TV2a and TV2b

Question 5 Is MTCC efficient compared to manual testing?

Table 10.1: GQM questions and metrics used in the MTCC validation

155





Chapter 11

Results of the Validation

The validation of MTCC was conducted between March and May 2008 at the GESIS 1 in
Bonn. The participants of the validation were employees of the GESIS who were either
involved in the specification of the systems, in the design of tests for one of the systems or in
the manual testing of the systems. The validation was conducted on systems s1...4. With the
exception of system s4, all systems were original systems used in production. The usability
of MTCC was validated with a prototype of the MTCC editor.

11.1 Participants in the MTCC Validation

Four domain experts were participating in the MTCC evaluation:

p1 This domain expert had experience in test design for system s1 and took part in the
manual testing of this system.

p2 This domain expert was a student employee who undertook the execution of the manual
tests defined in the test sets T4a and T4b for system s2 in the years 2006 and 2007.

p3 Domain expert p3 was the student employee who succeeded domain expert p2 in the
execution of the tests for system s2 in 2008.

p4 This domain expert defined the test set T2 and was familiar with the different systems
within the system family.

11.2 The Prototype of the MTCC Editor

The implementation of MTCC was done according to the principles and techniques discussed
in Part II of this thesis. A class library for the construction and manipulation of feature
models implemented for this thesis was used to instantiate the Domain Test Model and the
Application Feature Model and the Application State Model for every SUT.

Figure 79 illustrates the overall architecture of the MTCC prototype. We distinguish
five logical packages of functionality: The Domain & System package includes class libraries
that support the specification of domain-level and system-level models. These class libraries
build on a Feature Modeling Layer that provides an implementation of feature models with
cardinalities. The feature models in turn are implemented as nodes in a Document Object
Model. The User Interface package includes the Editor that is responsible for the overall lock
and feel of the GUI used for test modeling and the GuiBuilder classes that represent individual
Test Step instances. The Model Composer is responsible for the instantiation of the Application

1German Social Science Infrastructure Services

157



Test Model and the Reuse System that rewrites Test Configurations for different system models
are also part of the Editor package.

The Generator package includes the Code Generator that transforms MTCC Test Configu-
rations into executable test cases. Templates determine the overall structure of the test code.
The Test Parameter Writer rewrites the Test Configurations into a simpler representation better
suited for code generation.

The MTCC Runtime and the External Runtime packages are responsible for the execution
of the generated Test Cases. The Test Adapter provides a platform for test execution the
decouples from the implementation details of the Test Runner and the SUT. The Test Runner
executes the Test Cases. The Test Runner is often supported by Support Libraries for test
execution, this thesis uses Selenium or twill. The Language Runtime used for test execution
can be different from the language in which MTCC is implemented.

User Interface

Model Composer

Generator MTCC -RuntimeDomain & System
Modeling

Feature Models

XML Document Object Model Test Runner

Support Libraries

Feature Macros
Service Macros

Application Macros

wxPython

GuiBuilder
Editor

Reuse System
Test Adapter

Test Case

Language Runtime

Test CaseTest Case

Test Parameter Writer

Templates

Code Generator

Feature Modeling Layer External -Runtime

External -Runtime

Figure 79: Logical architecture of the MTCC prototype

The prototype implementation of MTCC used for the validation was done in Python2.
XML was used as a serialization format for the feature models and for the state machines
used in the validation. wxPython3 was used to implement the GUI. The implementation
comprises 6600 Lines of Python.

Figure 80 displays a screenshot of the implementation of the editor as it was used for the
validation.

As described in Section 8.1, the left part of the GUI displays the Test Steps that the
current test consists of; the right part of the editor represents the currently selected Test Step
and allows its parameterization.

The validation prototype was tested on Mac OS X and MS Windows systems.

The dialog used for the selection of Test Step instances is displayed in Figure 81.

The prototype implements the techniques for test reuse discussed in Section 8.3. Figure 82
displayed a screen shot of the dialog used by MTCC to allow the selection of Test Step
instances when a test is transfered between different systems. Because only one sequence
of Test Step instances is available for the tests and systems used in Figure 82, the dialog is
deactivated.

2http://python.org
3http://wxpython.org

158

http://python.org
http://wxpython.org


Figure 80: Screen shot of the editor prototype used for the validation

Figure 81: Selection of a Test Step instance in the MTCC prototype

11.3 Considered Systems

The validation considered the systems introduced in Section 10.3.1 on page 146. Every
system was represented with a specific Application State Model and Application Feature Model;
a common Domain Test Model was used for all models. All models were modeled to the
extent which was needed for the validation — features that are not exercised by any test set
were not included in the models We tested the executability of the systems based on their
implementation as of May 2008, no changes for the purpose of the validation were made to
the systems.

159



Figure 82: Transfer of a Test Configuration to another system in the MTCC editor

11.4 Capability to Represent Tests

In order to validate MTCC’s capability to represent tests for the application domain of Digital
Libraries, we assessed for each entry t of every test set with t ∈ T, T ∈ {T1, T2, T3a, T3b, T4a, T4b, T5}
into which category of support g ∈ {gyes, gno, gcan, gextern} the test falls. The total values of
the different test sets and categories are displayed in Table 11.1. Table 11.3 displays the
values for the metrics of question Q1 as defined in Section 10.3.2.

Test Set System Number of Tests gyes gno gcan gextern

TS1 s1 16 16 0 0 0
TS2 s4 7 7 0 0 0
TS3a s1 30 26 3 0 1
TS3b s3 50 41 2 3 4
TS4a s2 12 8 0 0 4
TS4b s2 137 137 0 0 0
TS5 s1 352 206 13 3 130
TS1...5 604 441 18 6 139

Table 11.1: Support of MTCC for the validation of test sets

The different test sets displayed in Table 11.1 differ considerable both in the number of
entries and in the properties of the included tests. Before we discuss how the validation of
MTCC was conducted and examine the results of the validation regarding the capability of
MTCC to express tests for the application domain, we examine of the test sets TS1...5.

We differentiate three groups of test sets: (1) Test sets that were defined for the purpose
of test automation, (2) test sets containing tests from current testing practice, and (3) test
sets with entries that were derived from the entries of issue tracking systems.

• The test sets TS1 and TS2 were defined as basic requirements for a system for the
automated execution of acceptance tests. The test sets TS3a and TS3b were defined
as manual tests for systems s1 and s3. The test sets differ in the functionality of their
respective testees and in the specificity of the tests.

• The test sets TS4a and TS4b hold tests that are executed biweekly on system s2. Test
set TS4a consists of a number of different tests for a Digital Library, including a number
of tests that are specific to the user interface of the system. The entries of test set TS4b

represent different queries for system s2.

• Test set TS5 differs from the other test sets in terms of the number of included tests as
well as in the origin of the tests. With 352 entries, this test set includes more potential

160



tests than all other test sets taken together. TS5 is different from the other test sets
as it contains faults and outstanding issues taken from the issue tracker of system s1.
Because the entries of the test set were not originally developed as tests, a large number
of them are not in the scope of MTCC and fall in the category gextern.

In the context of this validation we decide for every potential test in every test set if the
entry is a test for the functionality covered by MTCC. If this is not the case, we assign the
entry to the category gextern. As discussed in Section 10.3.2 on page 147, we differentiate
three categories of support for tests that are within the domain covered by MTCC.

We discuss and interpret the distribution of the entries in the different test sets for the
categories of support in Section 11.7.2. In the following, we give an overview of the results
of the validation and point out relevant aspects.

Test Set gyes gno gcan gextern

TS1 100.00% 0.00% 0.00% 0.00%
TS2 100.00% 0.00% 0.00% 0.00%
TS3a 86.67% 10.00% 0.00% 3.33%
TS3b 82.00% 4.00% 6.00% 8.00%
TS4a 66.67% 0.00% 0.00% 33.33%
TS4b 100.00% 0.00% 0.00% 0.00%
TS5 58.52% 3.69% 0.85% 36.93%
TS1...5 73.01% 2.98% 0.99% 23.01%
TS1...5 without gextern 94.84% 3.87% 1.29%

Table 11.2: Distribution of the entries of the validation test sets over the categories of support

Table 11.2 shows the distribution of the tests in the test set over the different categories
of support.

MTCC supports 94,84% of all tests if all elements of of the test sets TS1...5 that fall into
the category gextern are excluded from consideration. If the tests in gextern are considered,
73.01% of all tests can be represented by MTCC.

All tests of the test sets TS1, TS2, and TS4b can be represented by MTCC. The test sets
TS3a and TS3b include tests that fall in the category gno.

Of the three tests of test set TS3a that cannot be represented with MTCC, test t3a,16

is not supported because the representation of the test would require support for explicit
control flow in Test Steps.

The tests t3a,18 and t3a,20 as well as t3b,31 and t3b,33 of test set TS3b can be expressed with
MTCC test model. Still, the tests fall in the category gno because the execution of the tests
would require access to external systems like the Refworks reference management system or
email accounts, neither of which the MTCC execution system supports.

Test set TS3a includes three tests of the category gcan. These tests address functionality
of the system s3 that is not represented in the Domain Feature Model. Specifically, the tests
address an Service that allows the selection and use of terms from a controlled vocabulary for
a search.

The test sets TS4a and TS5 each contain more than 30% tests that fall in the category
gextern. For test set TS4a, these tests primarily address aspects of the specific user interface
of system s2 that are abstracted in MTCC. The entries from test set TS5 in category gextern

are mostly not tests but feature requests.

161



Metric Test Set T gr(T )
M1.1.1 TS1 100,0%
M1.2.1 TS2 100,0%
M1.3.1 TS3a 89,66%
M1.3.2 TS3b 89,13%
M1.4.1 TS4a 100,0%
M1.4.2 TS4b 100,0%
M1.5.1 TS5 92,79%

Table 11.3: Metrics for question Q1 — percentage of the tests that can be represented in
MTCC

Table 11.3 displays the metrics for all subquestions of question Q1. For four of the test
sets, all examined tests can be expressed with MTCC.

11.5 Validation of the Executability

Question Q2 and its subquestions examine the executability of MTCC test configurations.
Question Q2.1 investigates the resources necessary to implement an execution system for sys-
tem s1. Questions Q2.2 and Q2.3 examine a partial implementation of the execution system
in order to prove the executability of Test Configurations for different testees and test run-
ners. Question Q2.4 investigates to what degree the execution of MTCC test configurations
is decoupled from the specifics of the MTCC approach and can be integrated into an existing
testing regime.

The tables 11.4 and 11.5 display the metrics for question Q2. The execution of the Test
Configurations was possible for all systems and all test runners. The number of lines of code
considers only the parts of the execution system that were specifically implemented for the
respective validation questions, common infrastructure code is ignored.

Metric Percentage of executable Test Steps

M2.1.1 100%
M2.2.1 100%
M2.3.1 100%
M2.4.1 100%

Table 11.4: Metrics for question Q2 - percentage of executable Test Steps

Metric Lines of codes
M2.1.2 530
M2.2.2 189
M2.3.2 66

Table 11.5: Metrics for question Q2 - use of resources

All questions consider quantitative as well as qualitative aspects, the qualitative results
can be found in Section 10.3.3.

Details about the design and implementation of the MTCC execution system are given in
Section 8.4, interesting aspects of individual implementations are discussed in the following.

162



Question Q2.1 examines if the complete implementation of an execution system for the
tests TS1 and TS3a for system s1 is feasible. We argue that the implementation of the test
sets is sufficient to prove the feasibility of a complete implementation of the MTCC execution
system since TS1 and TS3a cover all relevant test classes for system s1 as defined by the
domain experts.

The implementation of all Test Steps of the test sets TS1 and TS3a for system s1 and
the Selenium test runner was successful. Metric M2.1.1 therefore has a value of 100%, as is
displayed in Table 11.4.

Metric M2.1.2 measures the lines of code and thereby the absolute resources necessary
for the implementation of the execution system for TS1 and TS3a. Table 11.5 displays the
results.

Table 11.6 displays the lines of code for the complete implementation of the MTCC
execution system for all systems and test sets. The function ti returns the lines of code
necessary for system s, the test runner tr and the test set ts. Test ta1 was defined for
question Q2 in Section 10.3.3, it represents a search with a subsequent comparison of the
actual and expected number of results.

Execution System Number of Test Steps Lines of Code
Configuration Reader 0 261
Test Generator 0 215
Types and Exceptions 0 120
Support Code 0 596
System Independent Test Steps 9 140
ti(s1, tr1, TS1 ∪ TS3a) 23 530
ti(s2, tr1, {ta1}) 3 69
ti(s3, tr1, {ta1}) 3 55
ti(s4, tr3, {ta1}) 5 65
ti(s1, tr2, {ta1}) 5 66
Sum 48 925

Table 11.6: Lines of code for the parts of the execution system

The execution system for question Q2.1 was implemented in 670 lines of Python code.
140 lines of this code implement system independent Test Steps that are used for all systems
of the system family. 530 lines of code are specific to system s1 and Selenium. 670 lines
of code were necessary to implement the execution system, this is also the value for Metric
Metric M2.1.3 measures 20 lines of code that are needed on average to implement each of the
32 Test Step instances needed for the tests defined in TS1 and TS3a.

The implementation of the MTCC execution system for the test tv1 for different testees
and different test runners as addressed in questions Q2.2 and Q2.3 was successful. Table 11.6
displays the results for metrics M2.2.1 and M2.3.1.

import un i t t e s t
import s 1 execu to r s e l en ium as runner
from runner shared import Bunch , Context

class Porta lTest ( u n i t t e s t . TestCase ) :
def t e s t ( s e l f ) :

context=Context ( )

para = Bunch ({} )
s e l f . f a i l U n l e s s ( runner . s t a r t ( context , para ) )

163



para = Bunch({ ’ next context ’ : ’ Search ’ ,
’ cu r r en t con t ex t ’ : ’ SimpleSearch ’ })

s e l f . f a i l U n l e s s ( runner . f o l l ow l i n k ( context , para ) )

para = Bunch({ ’ s e a r c h f i e l d s ’ :
[ Bunch({ ’ t e rm r e l a t i on ’ : ’AND’ , ’ f i e l d r e l a t i o n ’ : ’AND’ ,

’name ’ : ’TXT’ , ’ va lue ’ : ’ 20060111223 ’ } ) ] } )
s e l f . f a i l U n l e s s ( runner . s t a r t s e a r c h ( context , para ) )

i f name == ” main ” :
u n i t t e s t . main ( )

Listing 11.1: Excerpt from a generated test case

The generation of test cases from Test Configuration instances is done as described in
Section 8.4. A test case is an instance of a xUnit test class, in Listing 11.1 a Python unittest
class.

The generated test cases are dependent on the execution system for the system under test
and the test runner, but are independent of the structure of the Test Configuration models
used for the generation of test code.

In lines two and three of the listing, support classes and functions from the Test Adapter
library are imported. With the exception of the Test Adapter for the tested system and test
runner and some general support code, generated test cases are independent from the MTCC
approach. The test cases can be executed like tests that were not generated by the MTCC
approach and can therefore be integrated in an existing testing approach.

11.6 Validation of Reusability

The reusability of Test Configurations from one system to another was examined by model-
ing the tests of the test set TS1 for the system s1 and testing whether the resulting Test
Configurations are transferable to systems s2, s3, and s4.

The tests were not modified or selected with reuse for different systems in mind, a sig-
nificant number of tests are therefore not reusable regardless of the test transfer methods
implemented in MTCC. 50% of the tests in the test set can be reused for system s4 by apply-
ing the techniques described in Section 8.3. 56.25% of the tests are transferable for systems
s2 and s3. In the case of s2, three of the transfered tests do not represent the intent of the
original test.

Table 11.7 presents the transferability for every test of test set TS1. As in the discussion
of executability of tests, we distinguish different categories of support for the transferability
of a test: gyes, gno, and gcan. A pair (t, s) with t ∈ TS1, s ∈ {s2, s3, s4} falls into the category
gyes if a transfer of the test t from system s1 to system s is possible and is automatically
supported by MTCC. If a transfer of the test is possible in theory but is not supported by
MTCC for technical reasons, the pair falls in the category gcan. The category gno is used
when a test t cannot be transfered, neither by automatic or by manual means.

The tests t1,0, t1,1 and t1,4 for system s2 fall under the category gfalse. The Test Con-
figurations of these tests can be transfered to system s2, but the semantics of the tests are
not correctly represented by the transfered tests. System s2 uses multiple instances of the
DOCUMENT LIST Service in one context. Each of these instances represents a subset of all
results returned for a query. When one of the above tests is transfered in MTCC, the dialog
for the selection of the Service instances addressed in the test is displayed. This approach
fails for the tests t1,0, t1,1, and t1,4 because the result list instances in systems s1 and s2 are
not compatible.

164



Test s4 s3 s2

t1,0 gyes gcan gfalse

t1,1 gno gyes gfalse

t1,2 gcan gcan gcan

t1,3 gyes gno gno

t1,4 gyes gyes gfalse

t1,5 gyes gno gno

t1,6 gno gyes gyes

t1,7 gyes gyes gno

t1,8 gno gyes gno

t1,9 gno gno gyes

t1,10 gyes gyes gyes

t1,11 gno gyes gyes

t1,12 gyes gno gno

t1,13 gyes gyes gyes

t1,14 gno gyes gyes

t1,15 gno gno gno

Transferability 50% 56,25% 37,5%

Table 11.7: Reusability of tests

Table 11.8 displays the metrics for question Q3. 88.9% of the tests for system s4 and
81.1% of the tests for s3 can be correctly transfered. 60% of the tests for system s2 can be
transfered.

Metric System Value
M3.1.1 s3 81.1%
M3.2.1 s2 60.0%
M3.3.1 s4 88.9%

Table 11.8: Metric for question Q3 - transferability of Test Configurations

11.6.1 Validation of the Usability

The usability of MTCC was examined in questions Q4.1 and Q4.2. All domain experts
succeeded in the scenario defined by question Q4.1. They were able to construct an initial
test from test set TS4b for system s2 and then use this test as a basis for the definition of the
remaining tests from the test set.

Question Q4.2 examines the understandability of the MTCC approach and the usability
of the MTCC editor based on 14 tests taken from the test sets TS1 and TS3a. 52% of all
tests could be constructed without help, for further 38%, the domain experts asked for some
help but were otherwise able to construct the test.

The validation of the usability and understandability was done with the participation of
the domain experts described in Section 11.1 in the time between 2008/03/28 and 2008/05/07.
Every domain expert took part in two sessions, in each of which seven tests were modeled.
All domain experts worked on the same tests. These tests were selected randomly prior to
the validation from the test sets TS1 and TS3a. The construction of the five tests in test
set TS4b examined for question Q4.1 was also conducted during the first session with each
participant.

165



Every domain expert who took part in the validation was given a short introduction to
the MTCC editor. The domain experts also had access to a manual describing the basic
principles of the editor. This German manual can be found in Appendix B. Because the
manual describes an earlier version of MTCC, it differs from the implementation described
here. The first and the second session were always conducted on separate days, the time
between the two sittings was between two days and two weeks.

Q4.1 Adaption of Test Configurations

Question Q4.1 examines if the domain experts are able to express the tests t4b,88...90 and
t4b,103...105 using the MTCC editor.

All domain experts were successful in the construction of the tests, on average they took
7.4 Minutes. Table 11.9 presents the time that each domain expert took for the construction
and adaptation of the tests.

Participant Time in Minutes
p1 5.50
p2 7.00
p3 9.00
p4 8.00
Average 7.38

Table 11.9: Metric M4.1.1 time needed for the adaption of tests

Q4.2 Construction of Tests

In order to answer question Q4.2, 14 tests were randomly selected from test set TS1 and
TS3a. For all participants, 51% percent of all tests fall in the category nohelp. For 6 tests
or 11%, the domain experts were not able to model the tests, these tests were assigned the
category fullhelp.

The remaining 38% of all tests could be modeled by the domain experts with minimal
help, the tests therefore fall in the category help.

Table 11.10 informs about the degree to which the participants of the validation were
able to model the tests. Some interesting aspects of the validation are pointed out in the
following. We discuss and interpret the results in detail in Section 11.7.3.

The percentage of tests in the category nohelp is 67% for the second session, compared
to 35% for the first session. While the tests selected for the second session cover less test
classes than those in the first session, we argue that the experience gained in the first session
contributed to the better results in the second session. An interesting point in that context
is that all tests that could be modeled by all four participants without help are part of the
second session.

Table 11.11 displays the help needed by the individual domain experts during the valida-
tion. All tests in the category fullhelp were done by the domain expert p2. Domain experts
p1 and p3 did read the manual before each session, domain expert p4 used the manual during
the session, domain expert p2 did not read the manual.

166



Session Test help fullhelp nohelp

1

ts1,10 2 1 1
ts1,11 1 1 2
ts3a,0 2 0 2
ts3a,10 4 0 0
ts3a,15 2 0 2
ts3a,28 2 1 1
ts3a,5 1 1 2

1
Total 14 4 10

Percentage 50.00% 14.29% 35.71%

2

ts1,15 3 0 1
ts3a,11 0 0 4
ts3a,12 0 0 4
ts3a,14 1 0 3
ts3a,22 1 0 3
ts3a,23 2 1 1
ts3a,8 0 1 3

2
Total 7 2 19

Percentage 25.00% 7.14% 67.86%

1,2
Total 21 6 29

Percentage 37.50% 10.71% 51.79%

Table 11.10: Metric M4.2.1 Necessary support in test construction

Person Category Count Percent

p1
help 10 71.43%

nohelp 4 28.57%

p2
help 5 35.71%

nohelp 9 64.29%

p2

fullhelp 6 42.86%
help 4 28.57%

nohelp 4 28.57%

p4
help 2 14.29%

nohelp 12 85.71%

Table 11.11: Help needed by the domain experts

Problems and Relevant Mistakes in Test Modeling

In addition to the quantitative results discussed above, we also considered qualitative aspects
in the validation of the usability. The most relevant cause of problems or faults during the
validation was the use of the variables and the operations available for comparing the values
of variables. A further source of misunderstandings were the names of Service instances and
contexts.

Variables led to the following problems in the validation:

• Domain expert p3 was repeatedly unsure how and when values were assigned to variables
and how variables had to be used. Specifically, the domain expert did not assign values
to variables before comparing them with an expected value. Also, often the wrong Test
Step was used to assign a value to a variable.

• Domain experts had problems in deciding on the operations used to compare values

167



stored in variables. A particular problem in this context was the decision on the data
types that were to be compared. We discuss this point in detail in Section 11.7.3.

• Variables were overwritten on some occasions before they could be used.

An additional problem unrelated to variables was the selection of the correct Test Step
instance for a given task. This problem was in part caused by the use of internal variable
names for Services and Test Step instances in the editor. The fact that the variable names were
in English and were not always correct translations of the German names proved especially
problematic.

The correct use of the Test Step FOLLOW LINK had to be displayed to all domain ex-
perts, especially the correct selection of the target Context for a link was only understood
after explanation. After such an explanation, all domain experts could use the Test Step
successfully.

Comments from the Participants

The domain experts who took part in the validation made various remarks during the valida-
tion and gave suggestions for improvement. Concerning the MTCC approach itself we found
that the representation of a test as a sequence of Test Steps was understood by all domain
experts. In addition to comments about MTCC itself, the following feedback was given for
the evaluated implementation of the MTCC editor.

• The domain experts liked the limited number of Test Steps and the naming schema for
the Test Step instances.

• The domain experts missed the option to copy and paste Test Step instances.

• Changes to the GUI of the editor were suggested, for example, to the controls for adding
and removing Test Steps and to the editor for Test Step instance selection.

11.6.2 Validation of the Efficiency

In order to investigate question Q5 of the type III validation as discussed in Section 10.3.6
on page 154, the resources necessary for test automation with MTCC are compared to the
resources necessary for manual testing. The time needed for the execution of the manual tests
are determined based on the experiences of the domain experts p2 and p3. Both participants
estimated the time needed for the execution of all tests between 1.5 and 2 hours. Based on
a biweekly execution of the tests, 39 to 52 hours a year are needed for test execution.

The execution system for the tests in test set TS4b is 124 lines of code long.

11.7 Interpretation of the Validation

Based on the results of the validation, we argue that the MTCC approach as implemented for
the purpose of this thesis is feasible as well as usable and understandable by domain experts.

MTCC models support the representation of 95% of all tests from the test sets TS1...5.
The MTCC editor is useable with minimal practice and use of the manual. Potential future
improvements were identified concerning the usability of the editor and the reuse of Test
Configurations for different systems within the system family. In the following, we discuss
potential weaknesses in our validation plan and in the conducting of the validation. After
this we interpret the results of the validation and derive questions for future work. We also
discuss concrete improvement to the MTCC approach.

168



11.7.1 Robustness of the Validation

The validation of MTCC done for this thesis is primarily a type I and type II validation (Freil-
ing et al., 2008). Because we chose to do a case study for validation instead of a controlled
experiment, the efficiency of MTCC could only be validated in part.

In the following, we discuss the plan and conducting of the MTCC validation. We focus
the discussion on potential problems of the validation. We structure the discussion by the
criteria defined by Prechelt (Prechelt, 2001): reliability, descriptiveness, reproducibility, and
generalizability

Reliability

The reasons underlying the validation are given in Section 10.2.3. We argue that the validation
questions listed are necessary for the validation. We argue that questions Q1, Q2, Q3, and
Q4 together with their respective sub questions and metrics are sufficient to support the
reliability of the type I and type II validations. As discussed in Section 14.1, the planning
and conducting of a type III validation is the subject of future work. Consequently, we do
not consider the results of question Q5 as reliable but nevertheless argue that these results
are of interest insofar as the allow a first assessment of the efficiency in the absence of more
reliable and complete data.

Based on the sufficiency of questions Q1, Q2, Q3, and Q4 concerning the type I and type
II validation, we have to examine if the methods and data used to answer the questions are
reliable in themselves.

We discussed the motivation for the subquestions and their metrics in Section 10.3.2 and
Section 10.3.5. In the following we discuss the test sets and domain experts in terms of their
reliability for the validation.

The test set TS1...5 used in the validation would endanger the reliability of the validation
if they were not representative for the full range of tests that MTCC needs to support. We
argue that this is not the case for our validation.

As described in Section 10.3.2, the test sets considered for this validation were collected
from various sources and represent requirements from different domain experts. We therefore
argue that the test sets are a reliable and sufficient sample of the functional requirements for
an automated acceptance test system.

The domain experts who took part in the evaluation and who are discussed in detail in
Section 11.1 were all involved in the testing or test design for the member of the system family
discussed here. We therefore argue that they form representative if small groups of users for
the MTCC approach and specifically the MTCC editor. We consider it advantageous that
some of the domain experts took part in the execution of manual tests for the system and
thus had prior knowledge of testing. MTCC is an approach to support the automation of
tests, not to teach the basics of testing. The fact that the domain experts had skills in manual
testing does not endanger our claim that MTCC allows the construction of automated tests
by domain experts with little modeling or programming skills.

We argue that four participants and 14 tests are sufficient to judge the basic understand-
ability of MTCC. As Nielsen (Nielsen, 1994, 2001) points out, an heuristic evaluation of a
system can be done with a limited number of users. The 14 tests used for the validation were
selected at random but nevertheless cover the frequently used test classes for MTCC.

Optimizations of the usability of the editor and the evaluation of their corresponding
implementations must be the subject of future work.

We emphasize that we do not consider validation conducted here sufficient to assess the
efficiency of MTCC. As already discussed, such an validation would have to be conducted as
a controlled experiment (Martens, 2007) with different control groups.

169



Descriptiveness and Reproducibility

We advance the view that the descriptiveness and reproducibility of the MTCC approach are
proven.

We describe the derivation of the Domain Feature Model and Domain Test Model for the
considered system family and the construction of the Application State Model and Application
Feature Model for systems s1...4 in Chapter 9.

Details about the design of MTCC can be found in Part II of this work. Excerpts from
the test sets used for the validation can be found in Section A of the appendix.

Systems s1, s2 and s3 are publicly accessible, only s4 is an internal system. All the
software used for the implementation is available as Open Source.

The validation of MTCC is described in detail, the details of the approach are available
and can be used to replicate and verify the validation.

Generalizability

When discussing the generalizability of the validation of MTCC it is important to consider
the fact that an application of MTCC is by definition specific to a system family and can
only be validated in the context of this system family. It could therefore be argued that the
results of this validation only apply to the system family of Digital Libraries discussed here.

We advance the view that the results of the validation can be generalized insofar as no
reasons exist that would hinder the adaptation of MTCC to other dialog oriented systems
besides Digital Libraries.

11.7.2 Feasibility of MTCC

We argue that the practicality of MTCC is proven by the results of the type I validation that
was conducted based on the questions Q1, Q2, and Q3.

95% of all tests considered in the validation could be represented by MTCC. The respective
Test Configurations could be used for the automatic generation of test code. Opportunistic
reuse of Test Configurations for the different system models is possible for more then half of
the Test Configurations in the validation.

Interpretation of the Expressiveness

Table 11.2 displays the percentage of tests from the test sets TS1...5 supported by MTCC. If
entries from the test sets that fall in the category gextern are ignored, 94.84% of all tests are
supported in MTCC.

The tests that are not supported are mostly from the test sets T4a and T5. Tests from
these test sets that fall in the category gno are mostly members of two groups of tests: (1)
Tests whose execution is not supported by MTCC since external applications would have
to be exercised and (2) tests that address specific aspects of the GUI of the testee that are
abstracted in MTCC.

The following tests can be expressed by MTCC Test Configurations, but fall into the
category gno since they cannot be executed by MTCC:

• Test t3a,18 requires access to the Refworks4 application.

• Test t5,184 verifies the correctness of the export of result documents by email.

4http://refworks.com

170

http://refworks.com


The following tests are examples for entries from test set TS5 that cannot be expressed
in MTCC since they are dependent on specifics of the GUI of the testee which is expressly
abstracted away in MTCC.

• Test t5,31 exercises the Drop Down list that is used to change the order in which docu-
ments are displayed in the result list. It checks whether the Drop Down List contains
the correct values in the correct order. Since MTCC does not model the specifics of the
user interface, this test cannot be represented.

• Test t5,281 is adapted from a fault reported for the GUI. One of two instances of a
control used for browsing a list of results was not operational. Again, MTCC is not
able to represent the test since the specifics of the GUI are not represented in the MTCC
models.

The metrics for question Q1 in Table 11.3 summarize the results of the validation for
question Q1.

MTCC provided support of 89.13% for the test set TS3b. Two of the tests in the test set
are not supported because the execution of the tests would require the execution of external
Services.

We argue that the feasibility of MTCC is not challenged by the fact that MTCC does not
support such tests. The automation of tests that rely on the interaction with external Services
is also problematic for other test automation approaches. The testing of GUI functionality is
not the purpose of MTCC and can be better tested by dedicated approaches for GUI testing.

Execution of Tests

We consider the executability of MTCC to be proven by the results of the validation. The
implementation of the execution system was possible with limited resources, generated tests
could be executed by a COTS test system. As discussed in Section 11.5, the execution
systems consist of 925 lines of code for all implemented Test Adapters and 596 lines of code
for testing core assets. We argue that this resource usage is acceptable given the number
of tests that can be expressed based on the implemented infrastructure, especially when the
fact is considered that the code of the Test Adapters is structurally simple. The feasibly of
the test code generation approach could be proven. The MTCC implementation used for this
validation generates tests for the Python xUnit implementation.

We expect an implementation of an execution system for other programming languages
to be unproblematic. The abstractions used by the Test Parameter objects provide common
abstractions that are provided by most programming languages and no assumption about the
execution of tests is made.

Reuse

The reuse of Test Configurations for different system models is possible for 50% of all tests of
test set TS1 and the target systems s2, s3, and s4. The tests that are not reusable mostly fall
in the category gno. This category consists of tests that cannot be reused because of missing
or otherwise incompatible features of systems. Reuse is therefore not possible regardless of
the test reuse approach used.

As discussed in Section 11.6, the test t1,0, t1,1 and t1,4 can be reused for system s2, but
do not correctly represent the intent of the test. We therefore consider these tests as not
automatically reusable.

The test t1,2 is in the category gcanfor all systems in the system family S — the test
is reusable in theory but cannot be transfered by the MTCC reuse system. The reason for

171



this failure of the automatic reuse system is a lack of support for mappings between different
names and representations for the same concept in the feature models. Specifically, a filter in
s1 could be represented as a semantically equivalent search field value in s2, but an automated
mapping of this concepts is not supported.

Between 60% and 90 % of all tests for a system can be automatically reused if only those
tests are considered in the validation that do not fall in category gno. We argue therefore
that the support for the reuse of tests that MTCC facilitates already allows for significant
savings in testing costs. Based on this, we further argue that reuse in MTCC is successfully
implemented.

11.7.3 Usability of MTCC

Based on the result of the validation of the usability of MTCC, we argue that the approach is
understandable and usable given minimal training. While significant potential for improve-
ment exists regarding the usability of the editor, the prototype implementation used in the
evaluation can be successfully used for the construction of tests.

As Table 11.10 displays, 52% of the tests could be modeled without help, for 37% some
help was needed and for 11% the tests could not be modeled. Because the same domain
expert was responsible for all failed tests and because this domain expert did not read the
manual, we argue that MTCC can be understood with minimal preparation. We also advance
this view especially given the fact that the results of the second session — 68% of all tests
could be modeled without help — were significantly better than the first session.

As we discussed in Section 10.3.5, one re-occurring problem in the use of the editor was
the use of variables. We discuss potential solutions for this problem in Section 14.1.

As we pointed out in Section 11.6.1, the participants of the validation made a number
of suggestions to improve the usability of MTCC. We argue that these improvements can be
addressed in separation from the other issues discussed in the validation and that the MTCC
approach is valid and usable and that the usability can be improved in the future even though
the usability of the editor was not the focus of this thesis (Norman, 2006).

11.7.4 Efficiency of MTCC

Based on the limited validation of the efficiency of MTCC, the automation of the execution
of test set TS4b, we argue that the use of MTCC is beneficial from a resource point of view
even over short periods of time. A robust validation of the efficiency, however, is the subject
of future work.

As discussed in Section 11.6.2, 39 to 52 hours of time per year are spent on manual
test automation. The implementation of the execution system for the tests in test set TS4b

consists of 124 lines of Python code.

If 4 hours are estimated for the implementation and maintenance of the execution system,
which we argue is realistic based on 124 lines of code and the simple structure of the test
code, and if 15 minutes are needed for each run of the automated test, then testing with
MTCC requires 10.5 hours per year versus a minimum of 39 hours for manual testing. If we
further consider the fact that the addition of new tests to the test set TS4b would have no
impact on the resources required by MTCC, then MTCC is significantly more efficient than
manual testing, even for a limited number of tests and one system under test.

172



11.8 Chapter Summary

The validation of MTCC was conducted on three Digital Libraries and the installation of
the Solr search server at the GESIS. Four domain experts were involved in the validation
of MTCC. All domain experts had prior experience in the specification or execution of tests
or information retrieval evaluation scenarios. Five different sets of tests were used for the
validation of MTCC. These test sets include tests taken from the testing processes of the
evaluated systems as well as tests that were contributed by domain experts for the validation
and tests derived from entries in an issue tracking system.

The type I validation showed that 95% of all tests from the investigated test sets that
were of interest to the MTCC approach could be expressed by MTCC test models. The
execution of tests was successful for the validated test set and for all considered SUTs and
test runners. The implementation of the execution system was done in 925 lines of Python
code, an implementation of all 23 Test Steps needed for the execution of all tests in test
sets TS1 and TS3b was done in 530 lines of code. Between 60% and 88% of all practically
transferable tests for system s1 defined in the test set TS1 could also be transfered by the
MTCC test reuse system.

The type II validation of MTCC was conducted in eight sessions. In each of these sessions,
the four domain experts modeled seven tests. Out of the 56 tests modeled in total, the domain
experts could represent 52% without any help, a further 37% of the tests could be expressed
with minimal help that would also have been available from the MTCC manual. 11% of the
tests could not be expressed.

We conclude that the MTCC approach is feasible, can be implemented with limited re-
sources and can be understood by domain experts given minimal training.

173





Chapter 12

Related Work

This chapter examines approaches that address situations similar to those considered by
MTCC, are faced with related challenges or use comparable methods to tackle the problem
of abstracting testees that have to be exercised by automatic tests.

One basic difference between MTCC and approaches to Model-Driven testing (Blackburn
et al., 2004, 2002) is that MTCC is not based on the principle to automatically generate
tests from a model. Specifically, MTCC does not aim to reuse models from the software
construction process. Bertolino describes the motivation behind such reuse in the following:
”The leading idea is to use models defined in software construction to drive the testing process,
in particular to automatically generate the test cases.” (Bertolino, 2007)

Models in MTCC, in contrast, are used to abstract implementation details and facilitate
the systematic handling of the variability of a system family. The goal of MTCC is the
construction of tests by domain experts, not the automatic creation of tests.

Given these fundamental differences — regarding both the goals and the methodology
— between MTCC and automatic, Model-Driven testing, we do not discuss Model-Driven
testing aimed at fully automatic test generation further.

This chapter discusses different fields of research related to MTCC and gives examples for
concrete approaches. Section 12.1 investigates the use of use cases and examples for testing.
Section 12.2 discusses approaches that employ Model-Driven software development techniques
for the realization of test code. Section 12.3 introduces approaches that represent graphical
user interfaces and web applications as models for testing. Section 12.4 examines approaches
to software product-line testing, in particular an environment for test construction that is in
some aspects comparable to the MTCC editor. Section 12.5 discusses approaches to involve
users and domain experts in the programming or more general software development.

12.1 Testing Based on Usage Scenarios

We call approaches that aim to capture and formalize requirements and use them as a basis
for testing and test generation requirements-based testing. Approaches to requirements-based
testing frequently build on the notations and methods of the requirements engineering process
and then extend and leverage them for testing.

The most significant difference between approaches to requirements-based testing and
MTCC — beside the focus of the former on the testing of single systems and the aim to
reuse and extend methods and artifacts from the software construction process — is test
construction by domain experts as a central aspect of MTCC.

One way to express requirements are scenarios, defined by Ryser as follows: ’Descriptions
of interaction sequences between two or more partners, most often between a system and its

175



users’ (Ryser, 2003). A use case is an extension of a scenario that also describes alternate
scenarios for special cases or failures.

A central aspect of requirements based approaches is the formalization of existing nota-
tions of requirements (Tsai et al., 2001; Ryser, 2003; Poston, 1996; Nebut & Fleurey, 2006;
Poston, 1998) in order to turn them into testable (Binder, 1999) models.

MTCC considers artifacts for requirements analysis and testing in separation. While
MTCC Test Configurations serve as a limited, functional, executable specification (Hoffman
& Strooper, 2000; Fowler, 2006), they are intended to supplement, not replace, existing
specification.

One group of approaches to requirements-based testing is based on UML (Gutierrez et al.,
2006; Botaschanjan et al., 2003), primarily on use case diagrams. Regarding their relationship
to MTCC, these approaches are no different from the approaches discussed above.

12.1.1 The SCENT Approach

The SCENT approach developed in Ryser (2003) addresses the verification of requirements
and the conducting of system-level tests based on scenarios expressed as state-charts. A
particular focus of Ryser’s work are dependencies between state-charts.

Domain experts are involved in the identification and design of scenarios and thereby
contribute to the construction of high-quality software systems. SCENT differs from MTCC
in the consideration of single systems and in the way in which domain experts are involved
in the testing process.

The application of the SCENT approach is subdivided in five steps:

• Use cases for the considered system are captured as SCENT scenarios. The analysis of
the testee for scenarios is done by software engineers and domain experts in cooperation.
The goal of the approach is the description of scenarios in natural language.

• The scenarios are formalized as state-charts. Every scenario is modeled as a state-chart
that represents every system event as a state and every user interaction as an event.

• The state-charts are enhanced with information that is later used for the generation of
tests from the model. Among other information, pre- and postconditions are added to
the states of the state-charts. Also, supported ranges for input values are added for the
user events.

• The dependencies among the previously defined state-charts are analyzed and formal-
ized. This is a prerequisite for the later composition of scenarios into tests. SCENT uses
a graph-based notation to express sequences, alternatives and relations for scenarios.
Figure 83 gives an overview of some of the relevant concepts.

• Tests are derived from the models of scenarios and their dependencies. This derivation
will in most cases be done manually.

SCENT is similar to MTCC both concerning its realization as well as its goals. Both
MTCC and SCENT envision the involvement of domain experts in testing and consider
testing as an essential activity during the software lifecycle.

Basis differences between MTCC and SCENT exist in the concrete roles that domain
experts have in both approaches, in the test construction process and in the treatment of
system families in MTCC. These differences result in different requirements for the models
used in the approaches.

176



Figure 83: Notation to express dependencies of scenarios in SCENT (Ryser, 2003)

MTCC involves domain experts during the analysis of a system for its test relevant aspects
as well as during the construction of tests. SCENT involves domain experts in requirements
analysis and in the realization of test scenarios. These scenarios are not tests in themselves
but serve as an input for test derivation.

The central artifacts in SCENT are not tests but the formalized scenarios and the de-
pendencies between these scenarios. In contrast, the focus of MTCC is the construction of
concrete tests. We argue that the MTCC approach is better suited to facilitate the main-
tenance of tests during the software development process. In MTCC, domain experts can
construct tests at any given time without the need to create executable tests from scenarios.
Since SCENT envisions the automatic generation of tests from the scenarios, these scenarios
have to contain more information about the testee than needed in MTCC. While this causes
an increase in the complexity of the models in SCENT and makes modeling more expensive,
it can potentially result in a better test coverage than testing using the MTCC approach.
Both approaches depend on the cooperation of domain experts and software engineers during
requirements analysis.

MTCC and SCENT use state-charts or finite state machines to represent the behavior of
systems under test, specifically to represent possible interaction sequences between users and
the system under test. The approaches differ in the granularity in which systems are modeled
— MTCC only includes high-level models of the behavior of a system.

One significant difference between MTCC and SCENT is the consideration of system
families by MTCC.

12.1.2 The Eg Approach

The Eg approach developed by Gaelli (Gälli, 2006) uses scenarios, there called examples, for
the testing of software as well as for documentation. This approach is related to MTCC
insofar as Gaelli does not aim at the reuse of artifacts from design or requirements analysis.

Important differences between the Eg approach and MTCC exist both in the fact that
Eg addresses software engineers and not domain experts and in the use of tests as examples,
not as specification. Figure 84 illustrates this difference between MTCC and Eg: The accep-
tance tests constructed with MTCC correspond to story tests in the figure, Gaelli’s approach
addresses unit tests, the user of the Eg approach are developers. As MTCC, Eg does not
restrict the role of tests on fault finding, but where MTCC considers tests as a executable
specification, Eg considers them as examples that facilitate the understanding of software.

Figure 85 displays the Eg meta model. As the figure illustrates, Eg addresses a system un-
der test on the class level. This fine-grained view is necessary to support the implementation-

177



Figure 84: Viewpoints of domain experts (customers) and domain engineers (develop-
ers) (Gälli, 2006)

based tests envisioned by Eg, but is a basic difference to the abstract MTCC feature models
that explicitly abstract the implementation.

Figure 85: The Eg meta model (Gälli, 2006)

12.2 Modeling of Tests

Most approaches to test modeling do not aim to derive or generate tests from models but
rather use a special notation to construct or model tests directly. The models or notations
used in such approaches are dedicated to test construction, existing models from software
design are not reused.

One difference between the approaches discussed here and MTCC is that the notation
used for test description in the former is less abstract than the models used in MTCC. For
example, tests are expressed in an XML notation or created using a spreadsheet applica-
tion (Andrea, 2004b,a). One example for the construction of tests as tables is FIT (Mugridge

178



& Cunningham, 2005a,b; Mugridge, 2004). Like MTCC, FIT is an approach for the automa-
tion of acceptance tests. We discuss the relationship of FIT and MTCC in Section 12.5.

12.2.1 UML 2.0 Testing Profile

The UML 2.0 Testing Profile (Schieferdecker et al., 2003; Baker et al., 2003) adds concepts
relevant for testing to the UML. The application of the UML2TP allows the modeling of
tests. The automatic generation of test code from the models is envisioned (Dai, 2004). In
contrast to MTCC, the U2TP is not a complete approach to testing but rather a specialized
profile for test modeling.

A well established way to express tests independent from the specifics of a GUI are
keywords and action words (Graham & Fewster, 2000). Like MTCC, approaches based on
keywords or action words identify relevant actions on the system under test and abstract the
specifics of the GUI (Andersson & Bache, 2004). Each keyword or action word represents a
concrete step in a workflow or in the interaction between the testee and a user. Keywords
and action words correspond to Test Steps in MTCC, but a difference exists in the fact that
MTCC builds on this common concepts by providing a model based editor for domain experts
and considering system families instead of single systems.

Test scripts are no different from other software in the fact that they can be generated
in a Model-Driven software development process. One example for an approach that uses
Model-Driven development in the testing domain can be found in (Sensler et al., 2006).

12.2.2 Model-Driven Test Development

Approaches for Model-Driven software development can generate test code as well as appli-
cation code. One approach that applies MDSD techniques to the testing domain is the work
by Sensler et al (Sensler et al., 2006). Building on an initial analysis, tests for a system
are formalized in XML, this XML then serves as input for a code generation system. With
the consideration of system families and the goal to include domain experts in the testing
process, MTCC addresses goals beyond the separation from test models and specific system
implementations addressed by such systems.

12.3 Abstract Representation of User-Interfaces

MTCC is an approach that abstracts user interfaces in order to allow the description of high-
level function tests. Therefore, MTCC follows a different approach than approaches that seek
to test the GUI itself.

12.3.1 Representation of GUIs

Memon (Memon et al., 2001; Memon, 2001) uses a hierarchical model to describe the possible
interactions of a user and a GUI. Tests are created automatically based on a test plan and the
model of the GUI. Like in MTCC, structural and dynamic aspects of a testee are modeled,
but differences exist in the granularity in which the GUI is represented. While MTCC only
represents the GUI in terms of the available Test Steps, Memon’s representation also includes
GUI elements like menu items and other low-level artifacts.

Li et al (Li et al., 2007) use a two-level model for a GUI. An interesting aspect of their
work is the GUI component that roughly corresponds to a Service in MTCC.

A fundamental difference between MTCC and the approaches above is that the models
used in MTCC do not represent the GUI, but the functionality provided by the GUI. This

179



allows the use of a common domain model for systems with fundamentally different GUIs,
for example the Digital Libraries and the Solr search server considered in the validation.

12.3.2 Modeling of Web Applications

Ricca (Ricca & Tonella, 2001; Ricca, 2003) developed the Reweb approach that models the
structure of a web site as a graph structure. The representation of a web site as a graph
structure is similar to the representation of a testee in the MTCC Application State Model.

A relevant difference between approaches like Reweb and MTCC is the fact that MTCC,
while it is validated in the web application domain, is technology agnostic. Reweb in contrast
is specific not only for the behavior and structure typical for web application but also for
concrete implementation technologies as can be seen from the Reweb meta model displayed
in Figure 86.

Figure 86: Meta model of a web application underlying the Reweb approach (Ricca & Tonella,
2001)

12.4 Testing of System Families

One central aspect of MTCC is the testing of system families, MTCC is therefore related to
approaches for system product-line testing and to alternative approaches that address the
testing of system families without systematic reuse.

Fundamental differences between MTCC and these approaches exist both in the underly-
ing process and in the view of the respective testees.

12.4.1 Testing of Software Product Lines

A central question concerning the testing of products from software product lines (Tevanlinna
et al., 2004) is the selection of those software systems from all possible systems of the product-

180



line that are to be tested (Geppert et al., 2004b). Another, even more basic issue is the capture
and treatment of the variability in the testing context (Bertolino & Gnesi, 2003b,a).

The problem of test selection is not relevant in the context of MTCC, because tests are
selected by domain experts. The treatment of the variability of the system is not done on the
level of individual tests but is done on the level of the system as expressed by the Application
State Model and the Application Feature Model. In MTCC tests are constructed for one
concrete member of a system family.

Figure 87: Representation of a feature model in a editor (Antkiewicz & Czarnecki, 2004)

The MTCC editor can be regarded as a tool for the manipulation of feature diagrams. It
differs from other editing environments (Myllännistö & Soininen, 2005; Antkiewicz & Czar-
necki, 2004) for feature models as displayed in Figure 87 insofar that its goal is not the
representation of a feature model and supporting specializations on this feature model. In-
stead, the MTCC editor aims to offer a view of the feature model that allows domain experts
the configuration of tests based on domain-specific GUI conventions.

12.4.2 Condron’s TADE Approach

The TADE (Test Application Development Environment) (Condron, 2004) presented by Con-
dron has a number of similarities to MTCC: The approach uses an editor to support the
specification of tests for the members of a systen family. Figure 88 displays a screen shot of
the TADE.

The most relevant differences between Condron’s approach and MTCC are regarding the
goals of the approach, the use of models and the reuse of test models. The goal of Condron’s

181



Figure 88: GUI of the TADE for test development (Condron, 2004)

approach is to decouple tests form implementation details of individual testees and reuse
the testing infrastructure. MTCC aims at the reuse of tests and the involvement of domain
experts. Regarding the use of models, the domain and systems models, their construction,
specialization and composition are central aspects of the MTCC process. This use of models
allows the systematic treatment of the common and variable test-relevant features of the
member of a system family. The TADE presented by Condron is not model-based or Model-
Driven in the sense used in the thesis. Finally, Condron does not address the reuse of test
models for different variants or versions of a system.

12.5 Involvement of Domain Experts in Software Develop-
ment

12.5.1 End User Programming

The automatic instantiation of graphical user interfaces for modeling systems usable by end
users is an area of active research. We differentiate generic approaches without a specific ap-
plication domain (Prinz et al., 2006) from those that are designed for a specific purpose and
for a concrete group of users, for example, for the development of component-oriented sys-
tems (Uflacker, 2005) or the programming of machine tools (Prähofer et al., 2006). Examples
for systems that are not specific for an application domain are meta case systems (Tolvanen
& Rossi, 2003; Deufemia et al., 2006). All the systems above aim to involve people without
formal modeling skills, but differ in the fact that they do not address the testing domain.

An example for a commercial system that facilitates end-user programming is the Au-
tomator software included in Mac OS X1. Like MTCC, this program represents a program
or test as a sequence of successive steps and supports the parameterization of each step. In
contrast to MTCC, Automator is not based on a formal GUI-independent model.

1http://developer.apple.com/macosx/automator.html

182

http://developer.apple.com/macosx/automator.html


An alternative to the use of a GUI like in MTCC is the use of simple, textual domain-
specific language for end user programming (Spinellis, 2001; van Deursen et al., 2000).

MTCC differs from the above approaches insofar as it is a model-based approach for
testing. The models used to represent tests and testable systems are central to the approach,
the concrete GUI representation used in the editor is decoupled from the models but could be
adapted by changing the Buildlets used to construct the GUI. The relationship of the models
and the GUI can be thought of in terms of the model-view-controller approach (Buschmann
et al., 1996).

12.5.2 FIT

FIT, like MTCC, is an approach to the automation of acceptance tests. MTCC and FIT have
a number of similarities regarding their respective goals as well as aspects of their realization.

A basic difference between FIT and MTCC is the consideration of system families in
MTCC and the resulting differences in the underlying models that separate Test Configuration
and test execution for MTCC. FIT does not address the systematic treatment of the variability
within a family of testees.

Like MTCC, FIT considers the role of testing to be both in fault detection and in the
identification and clarification of requirements. Tests are derived in story-driven test devel-
opment, relevant use cases for testing are identified and serve as the basis for tests and the
identification of the parameters needed for testing.

FIT supports different types of tests. Generally, tests either verify the correctness of
calculations or exercise a testee based on a sequence of action words. The later type of tests
is called a workflow test. All tests in FIT are expressed as tables. This representation was
chosen because tables and spreadsheets as well as the tools used to interact with them are
familiar to non-technical users.

Figure 89 displays a sketch of a table for a FIT workflow test. Such a sketch would be
used in the analysis phase to identify functionality relevant to testing.

Figure 89: Sketch of a FIT workflow test (Mugridge & Cunningham, 2005b)

FIT uses fixtures to execute a test described in a table on the testee. Fixtures in FIT
broadly correspond to Test Adapters in MTCC — they provide an implementation for the
actions specified in a test. Figure 90 illustrates the relationship between tables and fixtures.

183



Figure 90: Relationship of testees, tests and fixtures in FIT (Mugridge & Cunningham,
2005b)

In contrast to MTCC, the GUI representation of a test and the underlying model of the
test are not different concepts in FIT. The table used to represent the test is both the GUI
and the model.

FIT does not address the testing of different systems in a system family. While it is possi-
ble to implement multiple fixtures to execute a test on different systems, such an application
is not an explicit part of FIT.

12.6 Novelty of MTCC

MTCC is novel in its goal to facilitate the involvement of domain experts in model-based
testing of software system families. In order to achieve this goal, MTCC combines the fields
of acceptance testing, Model-Driven software development, feature modeling and software
product-line engineering. The main attributes that distinguish MTCC from existing ap-
proaches are (1) the use of a hierarchy of models to support the intellectual specification of
tests and facilitate the reuse and maintenance of these tests. (2) The use of an editor to
represent this models to domain experts as a GUI based on the conventions of the domain.

12.7 Chapter Summary

MTCC is related to a number of different approaches and research directions in Software
Engineering. MTCC differs from these approaches in its goals as well as in the research
directions taken to address the various challenges and research questions.

Requirements-based testing reuses and enhances existing requirements representation as
a basis for testing. MTCC does not assume that formal requirements exist and uses dedicated
models to represent the SUT and test relevant for the SUT. The use of models specific to
testing also puts MTCC in contrast to approaches like the U2TP that aim for the reuse of
design models for testing.

MTCC is not an approach to Model-Driven GUI testing. The models used by MTCC rep-
resent the Services that are made available through the GUI, not the GUI itself. MTCC differs
from approaches to software product line testing in that it does not assume the existence of
a common set of Core Assets.

A central difference between MTCC and the above approaches is the strong focus that

184



MTCC puts on the involvement of domain experts in the testing process. MTCC differs from
alternative approaches to automated acceptance testing in the use of models to systematically
describe the available features in a system family and the Test Steps available to exercise these
features. The combination of models dedicated to testing members of system families and
the involvement of domain experts, facilitated by the MTCC editor, are novel contributions
of MTCC.

185





Part IV

Conclusion

187





Chapter 13

Summary and Contributions

This thesis introduced and validated the MTCC approach to Model-Driven acceptance testing
for system families. MTCC applies methods from software product line engineering to the
testing domain and uses models to represent the test-relevant features of a system. Tests
represented by models and serve as the basis for test code generation. MTCC makes several
contributions to the domains of automated acceptance testing and to the testing of system
families.

13.1 Summary

The MTCC approach introduced in this thesis supports the construction of acceptance tests
for the members of a system family by domain experts. In this thesis, MTCC was applied
to a Digital Library system family. The test-relevant functionality and workflow steps of the
systems in the system family were captured in MTCC models. These MTCC models and an
implementation of the MTCC core assets serve as the basis for the validation of MTCC.

The feasibility and practicality of MTCC as well as the usability of the MTCC editor
were evaluated with good results.

The basic hypothesis of this work is that the use of models supports the construction
of abstract tests by domain experts using an editor. We further advanced the hypothesis
that the use of abstract models facilitates the reuse of tests in a system family context. We
argued that abstract test models can be leveraged to exercise and test concrete systems. We
introduced the MTCC process and its artifacts in Chapter 6 in order to demonstrate the
validity of the approach.

13.1.1 The MTCC Approach

The MTCC process considers the representation of systems and Test Steps on three levels.
On the domain or system family level (1), members of the family of testees are analyzed for
commonalities and variability regarding their test-relevant functionality. The findings of this
analysis are formalized as Services and Test Steps.

On the system level (2), a representation for a concrete system is built by specializing the
feature models that represent Services at the domain level to concrete instance representations
at the system family level. On the testing level (3), the models that represent the behavior,
features, and tests of MTCC at the system and domain-level are integrated into a common
model that is dedicated to test construction. This model represents a system in terms of the
possible sequences of configurable Test Steps that can be executed on the system.

The actual construction of tests is done using the MTCC editor. The editor represents
the MTCC models according to the conventions of the application domain and allows their

189



configuration. Constructed tests — test configurations — are used to generate test cases that
are executable with COTS test runners.

13.1.2 Applying MTCC to a System Family of Digital Libraries

We have applied MTCC to a system family of three Digital Libraries and on the search server
Solr. The identification of relevant tests was done based on an already established testing
regime, documented faults and requirements by domain experts. The identified tests include
scenarios for the evaluation of Information Retrieval systems as well as functional tests.

13.1.3 Implementation

We implemented the MTCC core assets, specifically the editor, the domain model and the
Test Generator for this MTCC evaluation. Test Adapters were implemented to different degrees
for all four systems considered in the validation and for two COTS test runners.

13.1.4 Validation

A type I and type II validation for MTCC was done based on the GQM approach. The
type I validation assessed the feasibility of the MTCC approach. The capability of MTCC
to represent the relevant tests for the domain was validated. Additionally, the reusability of
test models between different system models and the executability of MTCC models for the
testing of system implementations were proven. A type II validation was conducted with the
involvement of four domain experts. The validation lead to the following results:

• 94.84% of all tests considered in the validation could be expressed with MTCC. Tests
that are not supported by MTCC are either dependent on specifics of the testee’s GUI
or exercise external Services.

• The Test Adapter instances needed for the validation could be implemented with few
resources, specifically 900 lines of code.

• The reuse of Test Configurations for different members of the examined system family
is possible for about 50% of all tests. The reuse techniques are limited by the fact that
MTCC can not verify that tests that were transfered to a new system are semantically
equivalent to the original tests.

• The MTCC approach is understandable and usable by domain experts given minimal
training and preparation.

13.2 Contributions

We see the scientific contribution of MTCC primarily in the modeling concepts developed to
express the testable features and tests for systems in the context of product-lines and in the
concepts used to represent and manipulate the models as they are used in the editor. Specific
results from the application of MTCC to the domain of Digital Libraries in this context are
the domain-level models that capture the aspects of the domain relevant to acceptance tests
and the system-level models that represent individual systems. The usage of feature models
to describe tests in the context of a system family and the transfer of specializations that
were applied to these feature models in order to facilitate test reuse are — to our knowledge
— original contributions of MTCC.

Specifically, MTCC makes the following contributions to automated testing

190



• The process for test construction used by MTCC describes how domain analysis and
software product-line methodologies can be applied to testing. With the identification of
test-relevant functionality and actions, the formalization of this knowledge in domain-
level models, and the specialization of these models to system-level models, MTCC
defines a systematic process to realize a testing infrastructure for an existing system
family.

• One novel aspect of MTCC is the use of feature models to represent the testable features
of the members of a system family. MTCC employes feature models for the description
of high-level Services as well as for the definition of parameters that are available for
individual Test Steps. The separation of system-level Service instances and domain-level
Test Steps, in combination with the use of references between feature models, reduces
the redundancy in test modeling and thus supports maintenance and adaptation of test
models.

• The systematic reuse of existing Test Configurations is an original contribution of MTCC.
By checking the transferability of Test Step sequences both based on the features refer-
enced by individual Test Step instances and on the sequence of Test Step types, MTCC
enables the reuse of existing tests.

• On significant contribution of MTCC is the realization of an approach that allows the
representation of feature models in an editor for tests as well as the manipulation of
these feature models. The combination of Buildlets and configuration nodes allows for
the representation of feature models according to the standards and customs of the
application domain investigated by MTCC.

In addition to the points above, MTCC also made the following contributions:

• In the course of this thesis we applied MTCC to the Digital Library domain. This work
resulted in MTCC domain and system level models for the test-relevant functionality of
a system family of Digital Libraries. Because these models are based on the requirements
of domain experts and on current testing practice for the considered systems, the test
models represent the functionality that has to be covered by testing approaches within
this domain.

• The validation of the MTCC approach outlines possible validation scenarios for other
approaches with similar goals.

• The implementation of the MTCC execution system indicates the resources necessary
to implement a test library for a web application from the Digital Library domain.

• The validation conducted as part of this thesis demonstrated that domain experts using
the MTCC approach can contribute to automated testing given minimal training.

191





Chapter 14

Outlook and Conclusion

While the feasibility and the practicality of the MTCC approach were demonstrated by the
MTCC validation, a number of interesting questions remain future work

14.1 Future Work

We differentiate two major areas of future research for the MTCC: The further validation of
the approach and its extension and adaptation based on the results of this thesis.

14.1.1 Additional Validation

Three topics are relevant for future validations: The feasibility of MTCC for other application
domains other than Digital Libraries, the assessment of MTCC in the field and the conducting
of a type III validation:

• This thesis validates MTCC for a system family of digital libraries. In order to assess
the feasibility and practicality of MTCC in other application domains, the capability
of MTCC to represent the concepts of these domains must also be assessed. Beside the
conceptual aspects, the ability of MTCC to exercise testees that are not web applications
must also be verified.

• While MTCC was validated on production systems, the approach was not yet used in
a production context. One question that a future validation could address is to what
degree MTCC can replace or supplement an existing testing approach. An interesting
question in this context is whether MTCC is primarily useful in the context of regression
tests or if it also supports the identification of previously unknown faults.

• In the context of this thesis, a type III validation was only done to a very limited
degree. In order to compare the efficiency of MTCC to other approaches to acceptance
test automation, a controlled experiment that compares MTCC to FIT would be of
interest.

14.1.2 Additions to the MTCC Approach

Two directions are possible for future work on the MTCC approach: The addition of new
Test Steps and the improvement of existing tooling and changes to the fundamental aspects
of the approach:

• The addition of new Test Steps or Services to the MTCC approach is the least compli-
cated way to allow the testing of new functionality with MTCC.

193



• For this thesis we created the domain and system-level models used by MTCC progra-
matically. The implementation of the tooling to create and edit MTCC models would
facilitate the direct involvement of domain experts in the domain engineering and test
engineering stages.

• MTCC does not provide a type system for attribute values. More generally, MTCC
does not support constraints that would allow to distinguish valid and invalid feature
configurations. The expansion of MTCC by a type system or constraints would make
it possible to detect and display invalid Test Configurations in the editor.

• Test execution in MTCC is done offline, tests cannot be executed while they are con-
structed in the editor. If the capability of online test execution was added to MTCC,
domain experts could verify that a test behaves as expected during test execution.

• In their present form, a sequence of Test Steps can only be transfered unchanged to a
target system. Future work would have to investigate the transfer of tests if an existing
sequence of Test Steps cannot be transferred but a semantically equivalent sequence
exists.

• One way to guide domain experts in test construction would be this display of the test
coverage for a specific Service of context of the SUT.

• A future subject of research could be the utilization of MTCC models to test the con-
formance of GUI with the WOB model (Krause, 2006b) by defining a suitable domain
model that represents the attributes of the WOB model and than test the compatibility
of systems with this model.

14.2 Concluding Remarks

MTCC demonstrates that Model-Driven automated acceptance testing can be realized for
system families and that such testing is usable by domain experts. The MTCC approach
builds on concepts from Model-Driven development and software product-line engineering to
allow the involvement of domain experts in a testing process that facilitates the systematic
treatment of the variability and commonalities in a system family. MTCC allows automated
testing based on models for application domains that are characterized by vague, user-defined
requirements which are hard to formalize for fully automatic Model-Driven testing approaches
that do not involve domain experts.

In addition to further work on the MTCC approach and its validation, we envision the
use of MTCC to test the systems presented in the validation and thereby both increase their
quality and save human effort that would otherwise be necessary for test execution.

194



Appendix

195



Appendix A

Test Sets

Test Set TS1

Listing A.1: Excerpt from TS1 : Tests defined for the MTCC validation
<?oxygen RNGSchema=” t e s t s e t s . rnc ” type=”compact ”?>
<out system=”sowiport ”>

<div category=”yes ” id=”t s 1 0 ” s c ena r i o=”t s 1 0 . xml ”>
< !−− Kein T i t e l f e l d in ü−−>
<r euse system=” i b l k ” category=”no ”>Kein T i t e l f e l d im IBLK</ reuse>
<r euse system=” s o l r ” category=”yes ”/>
< !−− Technisch über t ragbar , semantisch prob l emat i s ch wegen der

versch iedene , ge t rennten E r g e b n i s l i s t e n−−>
<r euse system=”infoconnex ” category=”yes ”/>
<h2>Test 1( bs ) Suche mit Umlaut</h2>
<p>Diese r Test übe rpr ü f t d i e Suche mit dem Umlaut ü</p>
<o l>

< l i>Aktion In der Suche wird im Feld T i t e l nach Überleben
gesucht</ l i>

< l i>Erwartung In der T r e f f e r l i s t e entha l t en a l l e T i t e l den

B e g r i f f Überleben</ l i>
</ o l>

</ div>
<div category=”yes ” id=”t s 1 1 ” s c ena r i o=”t s 1 1 . xml ”>

<r euse system=” i b l k ” category=”yes ”/>
< !−− Problem mit den un t e r s c h i e d l i c h en Li s t en −−>
<r euse system=”infoconnex ” category=”yes ”/>
< !−− So l r hat ke ine Anzeige des Queries −−>
<r euse system=” s o l r ” category=”no ”/>
<h2>Test 2( bs ) Phrasensuche</h2>
<p>Diese r Test übe rpr ü f t d i e Phrasensuche</p>
<o l>

< l i>Aktion In der Suche wird im Feld T i t e l nach ? ge ld und ge l tung ?
gesucht ( doppe l te

Anf ührungstr iche und Kle inschre ibung beachten )</ l i>
< l i>Erwartung In der Anzeige Ihre Suche s t eh t ? ge ld und ge l tung ?</ l i>
< l i>Erwartung In der E r g e bn i s l i s t e e r s che inen 3 Tr e f f e r</ l i>

</ o l>
</ div>
<div category=”yes ” id=”t s 1 2 ” s c ena r i o=”t s 1 2 . xml ”>

< !−− Recent Years F i l t e r i s t nur f ü r Sowiport vorhanden −−>
<r euse system=” s o l r ” category=”can ”/>
<r euse system=”infoconnex ” category=”can ”/>
<r euse system=” i b l k ” category=”can ”/>
<h2>Test 3( bs ) Suche nach S o z i o l o g i e im Zeitraum 1992−1997</h2>
<p>Diese r Test übe rpr ü f t d i e Suche in Zeiträumen und d i ent dem

Abgle ich der e r z i e l t e n
Tref fermenge mit Erwartungswerten</p>

196



<o l>
< l i>Aktion In der Suche wird d i e Checkbox Nur d i e l e t z t e n 4 Jahre

durchsuchen d e a k t i v i e r t</ l i>
< l i>Aktion Im Feld Jahr wird d i e Ze i ch en f o l g e 1992−1997

e inge t ragen</ l i>

< l i>Aktion Im Feld Übera l l wird S o z i o l o g i e e ingetragen , d i e Suche
wird g e s t a r t e t</ l i>

< l i>Erwartung Es werden mehr a l s 28000 Tr e f f e r gefunden</ l i>
< l i>Erwartung Es werden mehr a l s 4000 Tr e f f e r in S o l i s gefunden</ l i>

</ o l>
</ div>

</out>

Test Set TS2

Listing A.2: Excerpt from TS2 : Tests for an Information Retrieval evaluation

<?oxygen RNGSchema=” t e s t s e t s . rnc ” type=”compact ”?>
<out system=” f a s t ”>

<div category=”yes ” id=”t s 2 0 ” s c ena r i o=”t s 2 0 . xml ”>
<h2>Anzahl Dokumentzahlen</h2>
<p>Einsatz CK > Nich t e in sa t z > 25 Anfragen: mehr Dokumente

g runds ä t z l i ch gefunden ? </p>
</ div>
<div category=”yes ” id=”t s 2 1 ” s c ena r i o=”t s 2 1 . xml ”>

<h2>Top10 / Top 20 A?nderun</h2>

<p> Ändern s i c h be i Einsatz der CK die Dokumente in den Top 10 oder
Top 20 gerankten ? </p>

</ div>
<div category=”yes ” id=”t s 2 2 ” s c ena r i o=”t s 2 2 . xml ”>

<h2>Top 10 / Top 20 Re ihen fo l ge</h2>

<p> Ändert s i c h be i Einsatz der CK die Re ihen fo l ge von gerankten
Dokumenten in den Top 10 /

Top 20? </p>
</ div>
<div category=”yes ” id=”t s 2 3 ” s c ena r i o=”t s 2 3 . xml ”>

<h2>Anzahl Datenbanken: insgesamt </h2>
<p> Werden be i Einsatz der CK mehr Datenbanken in der Suche

angesprochen , d . h . werden
Dokumente aus mehr Datenbanken gefunden ? </p>

</ div>
</out>

Test Set TS3a

Listing A.3: Excerpt from TS3a : Tests for s1, defined by domain experts
<?oxygen RNGSchema=” t e s t s e t s . rnc ” type=”compact ”?>
<out system=”sowiport ”>

<div category=”yes ” id=”t s 3a 0 ” s c ena r i o=”t s 3a 0 . xml ”>
<h2>Test 17 ( ze ) Test der Funkt i ona l i t ä t des Such f e ld s Jahr /

e i n f a che Suche</h2>
<p>Diese r Test p r ü f t d i e Funkt i ona l i t ä t des Such f e ld s Jahr in der

e in f achen Suche .</p>
<o l>

< l i>Aktion: in der e in fachen Suche Suche mit T i t e l s t i c hwo r t :
Umweltschutz ; Suche s t a r t en </ l i>

< l i>Erwartung: Tref fermenge (T1) </ l i>
< l i>Aktion: in der e in fachen Suche Suche mit T i t e l s t i c hwo r t :

Umweltschutz</ l i>
< l i>Aktion: nur d i e l e t z t e n v i e r Jahre durchsuchen deak t i v i e r en </ l i>
< l i>Aktion: Feld Jahr : 2004 2005 2006 2007 </ l i>

197



< l i>Erwartung: Tref fermenge (T2) , dabei T2= T1 </ l i>
< l i>Aktion: in der e in fachen Suche Suche mit T i t e l s t i c hwo r t :

Umweltschutz</ l i>
< l i>Aktion: nur d i e l e t z t e n v i e r Jahre durchsuchen deak t i v i e r en</ l i>
< l i>Aktion: Feld Jahr : 2004−2007 </ l i>
< l i>Erwartung: Tref fermenge (T3) , dabei T3=T1=T2</ l i>

</ o l>
</ div>
<div category=”yes ” id=”t s 3a 1 ” s c ena r i o=”t s 3a 1 . xml ”>

<h2>Test 18 ( ze ) Test Trunkierung T i t e l f e l d</h2>
<p>Diese r Test p r ü f t d i e Trunkierung im Suchfe ld T i t e l in der

e in f achen Suche .</p>
<o l>

< l i>Aktion: e i n f a che Suche im T i t e l f e l d : Drogen </ l i>
< l i>Erwartung: Tref fermenge (T1) </ l i>
< l i>Aktion: e i n f a che Suche im T i t e l f e l d : Droge∗</ l i>
< l i>Erwartung: Tref fermenge (T2) , T2&gt ;T1</ l i>

</ o l>
</ div>
<div category=”yes ” id=”t s 3a 2 ” s c ena r i o=”t s 3a 2 . xml ”>

<h2>Test 19a ( ze ) Test Verundung von Such fe lde rn in der e rwe i t e r t en
Suche / L i t e r a tu r</h2>

<p>Diese r Test p r ü f t d i e Kombination von Such fe lde rn

( Person und Übera l l ) in der e rwe i t e r t en
Suche f ü r den In format ionstyp L i t e r a tu r .</p>

<o l>
< l i>Aktion: in der e rwe i t e r t en Suche wird a l l e d e a k t i v i e r t</ l i>
< l i>Aktion: in der e rwe i t e r t en Suche wird L i t e r a tu r ausgewählt</ l i>
< l i>Aktion: im Suchfe ld Personen wird Mauss , Marcel e ingegeben . </ l i>
< l i>Erwartung: Anzeige Ihre Suche z e i g t Person : Mauss und Marcel ;

Tref fermenge (T1)</ l i>
< l i>Aktion: im Suchfe ld Personen wird Mauss , Marcel e ingegeben ;

im Suchfe ld Übera l l
S o z i o l o g i e</ l i>

< l i>Erwartung: Anzeige Ihre Suche z e i g t Person : Mauss und Marcel
und So z i o l o g i e ü b e r a l l ; Tref fermenge (T2) , dabei T2&l t ; t1/></ l i>

</ o l>
</ div>

</out>

Test Set TS3b

Listing A.4: Excerpt from TS3b : Tests for s3, defined by domain experts
<?oxygen RNGSchema=” t e s t s e t s . rnc ” type=”compact ”?>
<out system=” i b l k ”>

<div category=”yes ” id=”t s 3b 0 ” s c ena r i o=” t s g e n e r i c s e a r c h . xml ”>
<h2>Test 1a ( g l l ) Suche mit Umlaut</h2>
<p>Diese r Test übe rpr ü f t d i e Aufl ösung des Umlauts ?ü? zu ?ue?</p>
<o l>

< l i>Aktion In der e rwe i t e r t en Suche in a l l e n Datenbanken wird im

Feld T i t e l nach Überbevölkerung gesucht</ l i>
< l i>Erwartung Tref fermenge T1</ l i>
< l i>Aktion In der e rwe i t e r t en Suche in a l l e n Datenbanken wird

im Feld T i t e l nach Ueberbevö lkerung gesucht</ l i>
< l i>Erwartung Tref fermenge T2 , dabei T1=T2</ l i>

</ o l>
</ div>
<div category=”yes ” id=”t s 3b 1 ” s c ena r i o=” t s g e n e r i c s e a r c h . xml ”>

<h2>Test 1b( g l l ) Suche mit D i ak r i t i k a</h2>
<p>Diese r Test übe rpr ü f t d i e Suche mit dem Akzent ´</p>
<o l>

< l i>Aktion In der e rwe i t e r t en Suche in a l l e n Datenbanken wird
im Feld Autor nach Méchet gesucht</ l i>

198



< l i>Erwartung Tref fermenge T1 ( no t i e r en )</ l i>
< l i>Aktion In der e rwe i t e r t en Suche in a l l e n Datenbanken wird

im Feld Autor nach Mechet gesucht</ l i>
< l i>Erwartung Tref fermenge T2 , dabei T1=T2</ l i>

</ o l>
</ div>
<div category=”yes ” id=”t s 3b 2 ” s c ena r i o=” t s g e n e r i c s e a r c h . xml ”>

<h2>Test 1c ( g l l ) Suche mit Sonderze ichen</h2>
<p>Diese r Test übe rpr ü f t d i e Aufl ösung des ?ß? zu ? s s ?</p>
<o l>

< l i>Aktion In der e rwe i t e r t en Suche in a l l e n Datenbanken wird im
Feld Suche ü b e r a l l nach Aus s enpo l i t i k gesucht</ l i>

< l i>Erwartung Tref fermenge T1 ( no t i e r en )</ l i>
< l i>Aktion In der e rwe i t e r t en Suche in a l l e n Datenbanken wird

im Feld Suche ü b e r a l l nach Außenpo l i t ik gesucht</ l i>
< l i>Erwartung Tref fermenge T2 , dabei T1=T2</ l i>

</ o l>
</ div>

</out>

Test Set TS4a

Listing A.5: Excerpt from TS4a : Non-retrievals tests for system s2

<?oxygen RNGSchema=” t e s t s e t s . rnc ” type=”compact ”?>
<out system=”in foconnex ”>

<div category=”ex t e rna l ” id=”t s 4a 0 ”>
<h2>Test der Browse r f unk t i ona l i t ä t</h2>
<p>Läuft in foconnex auf a l l e n Browsern und Benutzungsober f l ä chen ?</p>
<o l>

< l i>I n t e rn e t Explorer</ l i>
< l i>Opera</ l i>
< l i>Mozi l l a F i r e f ox</ l i>
< l i>Netscape</ l i>

</ o l>
</ div>

<div category=”ex t e rna l ” id=”t s 4a 2 ”>
<h2>Test der Dars t e l lung</h2>
<p>Stimmen d i e Sty le−Sheets ? Bsp . H inwe i s s e i t e f ü r Nutzer , d i e n i cht
über e ine l i z e n z i e r t e B ib l i o thek auf in foconnex zug r e i f e n . ”Es kann
nur e ine Kurzinformation ko s t en l o s angeze i g t werden ” ( s i e h e
Ausdruck )</p>

</ div>

<div category=”ex t e rna l ” id=”t s 4a 3 ”>
<h2>Test der Ver f ü gba rke i t s r e che r che</h2>
<p>I s t d i e Ver f ügbarke i t sangabe r i c h t i g ?</p>
<o l>

< l i>Funkt ion i e r t der Link der Ver f ü gba rke i t s i n f o rmat i on ?</ l i>
< l i>Kann der Ar t i k e l w i r k l i c h b e s t e l l t werden?</ l i>
< l i>Kann man be i gr üner Ampel den Ar t i k e l w i r k l i c h s o f o r t

herunter laden ?</ l i>
< l i>Sind ko s t en l o s e Vo l l t e x t e s o f o r t ver f ügbar ?</ l i>
< l i>Sind d i e s e Vo l l t e x t e l e s b a r (PDFs , S ch r i f t , ? ) ?</ l i>

</ o l>
</ div>

</out>

Test Set TS4b

199



Listing A.6: Excerpt from TS4b : Retrieval tests for system s2

<?oxygen RNGSchema=” t e s t s e t s . rnc ” type=”compact ”?>
<out system=”in foconnex ”>

<div category=”yes ” id=”t s 4b 3 ” s c ena r i o=” t s g e n e r i c s e a r c h . xml ”>
<h2>Anfrage 3</h2>
<p>Jahr=1983 :</p>

</ div>
<div category=”yes ” id=”t s 4b 59 ” s c ena r i o=” t s g e n e r i c s e a r c h . xml ”>

<h2>Anfrage 59</h2>

<p>Übera l l=”So z i a l e Ung l e i chhe i t ”</p>
</ div>
<div category=”yes ” id=”ts 4b 136 ” s c ena r i o=” t s g e n e r i c f i l t e r e d s e a r c h . xml ”>

<h2>Anfrage 136</h2>
<p>F i l t e r : Datenque l l e=SOLIS , FORIS ; Sprache=eng l i s c h Suche:
T i t e l=depr i va t i on und Jahr=1993−2003</p>

</ div>
</out>

Test Set TS5

Listing A.7: Excerpt from TS5 : Tests derived from documented issues for s1

<?oxygen RNGSchema=” t e s t s e t s . rnc ” type=”compact ”?>
<out system=”sowiport ”>

<div category=”ex t e rna l ” id=”t s 5 4 ” s c ena r i o=””>
<h2>Eintrag 4</h2>
<p>Ar t i k e l ü b e r s i c h t s s e i t e FQS unter Mac/ Sa f a r i n i cht schön (CSS)</p>

</ div>
<div category=”yes ” id=”t s 5 7 ” s c ena r i o=”NOTMODELLED”>

<h2>Eintrag 7</h2>
<p>in Suchanfragenanze ige Datenbank an s i ch pr ü fen ke in end l o s e s

Hinzufügen g l e i c h e r Informat ionstyp−Navigatoren</p>
</ div>
<div category=”yes ” id=”t s 5 13 ” s c ena r i o=”NOTMODELLED”>

<h2>Eintrag 13</h2>
<p>Zustandsanze ige : Fehlende Klammerung be i Suche: Schlagwort =
( jugend or gewalt ) and ( ehe or f am i l i e ) e r g i b t : Sch lagw ö r t e r : Dasse lbe
Problem t r i t t auch be i Verwendung mehrerer Ze i l en mit demselben
Suchfe ld auf .</p>

</ div>
<div category=”ex t e rna l ” id=”t s 5 14 ” s c ena r i o=””>

<h2>Eintrag 14</h2>
<p>S c h n e l l s t a r t l e i s t e : non−j s−Vers ion</p>

</ div>
</out>

200



Appendix B

MTCC Editor Handbuch

Dieser Text erläutert die Verwendung des Editors zur Konstruktion von Testfällen für Sys-
temfamilien von Fachinformationssystemen durch Domänenexperten. Der Editor erlaubt die
Spezifikation von Tests auf Basis von abstrakten Modellen, dieser Modelle können zeitlich
getrennt von der eigentlichen Modellierung automatisch auf das zu testende Sysystem ange-
wandt werden. Die Trennung von Testmodellierung und Testausführung ist wie folgt mo-
tiviert:

• Über das World Wide Web zugängliche Applikationen wie Fachinformationssysteme
sind häufigen Änderungen unterworfen. Die Änderungen machen die häufige Durch-
führung von Tests notwendig.

• Die Notwendigkeit häufiger Testdurchführung macht die Automatisierung von Tests
notwendig. Manuelles Testen ist mit zu grossem Ressourcenaufwand verbunden um ein
System häufig und zugleich umfassend zu testen.

• Automatische Testverfahren müssen das zu testende System ansprechen können und
sind damit abhängig von den Schnittstellen die das System bietet, Änderungen an den
Schnittstellen machen somit Änderungen an der Testsoftware nötig für jeden betroffen
Test nötig.

• Durch die Verwendung von abstrakten, explizit von der Testausführung entkoppelten
Modellen kann die Semantik von Tests getrennt von deren Ausführung betrachtet wer-
den.

Während die Verwendung von Modellen zur Testautomatisierung an sich die die Ef-
fizienz erhöht, dient die Einbindung von Domänenexperten der Steigerung der Effektivität,
stellen also sicher das Tests die tatsächlich an das System gestellten Anforderungen erfüllt.
Domänenexperten sind mit diesen Anforderungen vertraut. Es ist wünschenswert das Wissen
um die Anforderungen für das Testen nutzbar zu machen. Diesem Ziel steht entgegen das
Domänenexperten in der Regel nicht über die Ausbildung und die Zeit verfügen ihr Wissen in
formalen Modellen verfügbar zu machen. Der im Folgenden beschriebene Editor verfolgt den
Ansatz auch Domänenexperten ohne Modellierungskenntnisse die Konstruktion von Tests zu
gestatten indem ausgehend von einer Beschreibung aller relevanten Tests auf einem System
eine Oberfläche instanziert wird.

Im vorliegenden Abschnitt werden die Grundlagen des Editors dargestellt. Sowohl auf die
Gestaltung der Oberfläche als auch auf die Darstellung eines Tests als Reihe von Aktionen auf
dem Testling wird eingegangen. Der folgende Abschnitt ist eine aufgabenorientierte Darstel-
lung der einzelnen Testschritte, den Abschluss dieses Textes bilden vier Beispielszenarien die
die Anwendung des Editors illustrieren.

201



Grundlegende Konzepte

Ein Test im Sinne dieser Arbeit ist eine Abfolge von Testschritten die entweder den Zustand
des zu testenden Systems, dem Testling, verändern oder prüfen ob eine Annahme über dessen
Zustand zutrifft. Die Automatisierung von Test erlaubt die Ausführung einer großen Anzahl
von Tests ohne menschliche Interaktion. Um automatisiert werden zu können muss eine
Testbeschreibung alle Details enthalten die zur Ausführung des Tests auf den Schnittstellen
des Testings nötig sind. Der hier vorgestellte Editor erlaubt die Konstruktion von automa-
tisierbaren Tests als Folge von Testschritten auf der Grundlage einer formalen Beschreibung
des zu testenden Systems.

Eindeutigkeit von Tests

Ein Test muss entscheidbar sein, nach der Durchführung des Test muss der Durchführende,
sein es ein menschlicher Tester oder ein technisches System, über alle Informationen verfügen
festzustellen ob der Test erfolgreich war oder gescheitert ist. Bei einem erfolgreichen Test ist
die Anwendung aller Testschritte gelungen, es gab keine Fehler oder technischen Ausfälle und
alle im Test explizit oder implizit enthaltenen Erwartungen wurden erfüllt.

Automatisierung von Tests

Ein Tests ist automatisiert wenn die Folge der durchzuführenden Testschritte und die Kri-
terien zur Entscheidung über das Gelingen oder Scheitern des Tests intellektuell festgelegt
werden, die Ausführung des Tests jedoch automatisch erfolgt. Motivation für die Testau-
tomatisierung ist der Wunsch, umfangreiche Bestände von Tests häufig und reproduzier-
bar auszuführen. Bei der Testautomatisierung sind die Definition eines Tests und dessen
Ausführung zeitlich und technisch getrennt. Die Beschreibung eines automatisierten Tests
kann entweder in Form eines Testprogramms in einer gängigen Programmiersprache erfolgen
oder mittels einer aufgabenspezifischen Sprache für die Testbeschreibung. Die Verwendung
einer aufgabenspezifischen Sprache hat den Vorteils dass die Ausführung von Tests von der
Beschreibung der Tests noch weiter entkoppelt werden kann als dies bei der Verwendung eine
Programmiersprache möglich ist.

Konzepte des Editors

Der hier beschriebene Editor erlaubt eine Beschreibung von Tests als Folge von Testschritten
auf Fachinformationssystemen. Die möglichen Reihenfolge von Testschritten wie auch die
zur Verfügung stehende Parametrisierung der einzelnen Testschritte werden in einem Modell
des Testlings beschrieben. Dieses Modell ist eine abstrakte Darstellung eines zu testenden
Systems, beispielsweise des Fachinformationssystems SOWIPORT. Das Modell eines Testlings
betrachtet diesen als eine Menge von Kontexten (Startseite, Erweiterte Suche, Ergebnisliste,
Detailansicht, etc). Jeder Kontext ist definiert durch eine Menge von Aktionen oder Diensten
(Absetzen einer Suche, Setzen von Filtern, Folgen eines Links)

Verwendung des Editors

Im Folgenden wird auf die Verwendung des Editors eingegangen. Die Verwendung des Editors
gliedert sich in die folgenden Schritte: Die Ausformulierung eines Testziels, die Festlegung
von Testschritten mittels derer sich dieses Testziel erreichen lässt, die Parametrisierung dieser
Testschritte und schliesslich das Speichern des Tests. Wichtiger Bestandteil der Beschreibung
von Tests ist die Kontrolle der beschriebenen Tests auf Vollständigkeit und Korrektheit.
Bestehende Tests können wiederverwendet und angepasst werden.

202



Ablauf der Testkonstruktion

Abbildung 91 zeigt ein Bildschirmphoto des Editors. Die Benutzungsoberfläche gliedert sich
in zwei Hauptbereiche: Eine Liste aller Testschritte des aktuellen Tests in der linken Hälfte
und die Oberfläche zur Parametrisierung eines Tests in rechten Hälfte.

Figure 91: Bildschirmphoto des Editors

Speichern eines Tests
Laden eines Tests

Neuen Test beginnen

Testschritt entfernen
Testschritt hinzufügen

Figure 92: Symbole in der Editor Toolbar

Die wichtigsten Kontrollen in der Toolbar des Editors sind in Abbildung 92 zu sehen.
Nach dem Start des Editors ist in der Liste der Testschritte ausschliesslich der Startzustand
enthalten. Dieser Startzustand dient lediglich der Vergabe eines Namens für den Test und
einer kurzen Beschreibung. Durch Betätigen des grünen Plus Symbols wird ein Dialog geöffnet
mit dem ein neuer Testschritt zur Liste der bestehenden Testschritte hinzugefügt werden kann.
Dieser Dialog ist in Abbildung 93 zu sehen.

Die Auswahl eines Testschritts erfolgt in zwei Schritten, der optionalen Auswahl eines
Kontexts der getestet werden soll und der Auswahl eines Testschritt der in diesem Kontext
ausgeführt werden soll.

• Die Auswahl eines Kontexts ist dann notwendig wenn der vorangegangene Testschritt
mehrere Zielkontexte haben kann, konkret ist es etwa möglich das SOWIPORT als

203



Figure 93: Dialog zum Hinzufügen von Testschritten

Folge einer Suche eine Ergebnisliste oder, im Fall einer nicht erfolgreichen Suche, eine
Fehlerseite anzeigt. Wenn der Testschritt FOLLOW LINK aufgerufen wird stehen für
den folgenden Testschritt alle Kontexte zur Verfügung die von der Ausgangsseite durch
einen beliebigen Link erreicht werden können. Wenn nur ein Kontext für Tests zur
Verfügung steht so ist die Auswahlliste für den Kontext im Dialog ausgegraut.

• Die für den Kontext zur Verfügung stehenden Testschritte werden in einer Liste un-
terhalb der Kontextauswahl angezeigt. Ein Testschritt wird durch Anklicken aus-
gewählt, für jeden ausgewählten Testschritt wird im linken Bereich des Dialogs eine
Hilfe angezeigt.

Im Regelfall gibt es innerhalb eines Kontext nur eine Instanz eines Testschritts, einige
Testschritte, insbesondere der Schritt FOLLOW LINK IN DOCUMENT können jedoch mehrmals
erscheinen, wobei die Art des verfolgte Links in Klammern hinter dem Namen des Testschritts
erscheint.

Verwendung von Testschritten

Nachdem ein Testschritt ausgewählt ist muss dieser Testschritt parametrisiert werden, es
müssen also die konkreten Werte festgelegt werden mit denen ein Test aufgerufen wird. Die
für eine Parametrisierung zur Verfügung stehende Oberfläche hängt sowohl von der Art des
Testschritts als auch von dem zu testenden System ab. Details zu den für jeden Testschritt
zu vergebenden Werten wie auch zu Anwendungsszenarien für die Testschritte werden in
Abschnitt B gegeben.

Testschritte lassen sich unterscheiden in Aktionen die den Zustand des zu testenden Sys-
tems beeinflussen und jene die der Überprüfung von Erwartungen dienen. Aktionen sind
etwa das Absetzen einer Suche, das Spezifizieren von Filtern oder das Betätigen eines Links
in einem Dokument. Zur Überprüfung von Erwartungen können die Werte von Feldern und
die Anzahl von Dokumenten in in Variablen gespeichert und mit Erwartungswerten verglichen
werden.

Wenn in der Liste der Testschritte ein Testschritt ausgewählt ist dem noch weitere Testschritte
folgen so wird beim Hinzufügen eines neuen Testschritts dieser neue Testschritt an bestehen-
den Testschritt angehängt. Durch Anklicken des roten X kann ein bestehender, ausgewählter

204



Testschritt wieder entfernt werden. Wenn durch das Entfernen eines Testschritts Wider-
sprüche entstehen, wenn beispielsweise versucht wird eine Ergebnisliste zu sortieren ohne
das zuvor eine Suche abgesetzt wurde, so wird dies durch die Rotfärbung von Testschritten
angezeigt deren Folgeschritt nicht ausgeführt werden kann.

Speichern und Laden von Tests

Wenn alle Testschritte ausgewählt und parametrisiert sind, kann ein Test durch das Betätigen
des entsprechenden Icons in der Toolbar, der Diskette mit dem nach unten weisenden Pfeil,
gespeichert werden. Es wird empfohlen sich bei der Auswahl eines Namens am Namen des
Tests zu orientieren der auch in der Beschreibung des Tests verwandt wurde und das Kürzel
des Autors des Tests in die Beschreibung mit aufzunehmen. Ebenso empfiehlt es sich zu
prüfen ob der gewählte Name bereits vergeben ist; der Editor kontrolliert zur Zeit nicht ob
bereits ein Test mit dem gewählten Namen existiert.

Durch Betätigen des Disketten-Symbols mit dem nach oben weisenden Pfeil wird ein
bestehender Test geladen, das Symbol mit weissem Hintergrund und der Beschriftung NT
legt einen neuen Tests an, der bestehende Tests wird verworfen.

Empfehlungen zur Testmodellierung

Ein Vorgehen zur Verwendung des Editors das nach unseren Erfahrungen den Arbeitsfluss
bei der Testmodellierung erleichtert ist es zuerst eine Folge von Testschritten festzulegen um
den grundsätzlichen Ablauf des Tests festzulegen und die Parametrisierung der Testschritte
erst durchzuführen nachdem alle Testschritte ausgewählt sind. Wird dieser Ansatz gewählt
so ist es besonders wichtig alle Testschritte vor dem Speichern des Tests auf ihre korrekte
Parametrisierung hin zu prüfen.

Wenn eine Reihe von ähnlichen Tests modelliert werden sollen so kann es sich lohnen
einen bereits bestehenden Test zu laden, anzupassen und zu speichern. Dies kann auch in
der Form geschehen dass häufig verwandte Tests in Rohform, also noch nicht vollständig
parametrisiert, gespeichert werden.

Verfügbare Testschritte

Nach der Vorstellung von Grundkonzepten im vorangegangenen Abschnitt werden nun die
einzelnen Testschritte die MTCC zur Verfügung stellt erläutert. Die Testschritte werden in
zwei Teilabschnitten behandelt. Im ersten Teilabschnitt werden Testschritte dargestellt die
den Zustand des zu testenden Systems beeinflussen oder Ergebniswerte in Variablen speichern,
der zweite geht im Detail auf die Verwendung von Variablen aus.

Aktionen auf dem zu Testenden System

Im Folgenden werden Aktionen vorgestellt die zur Manipulation eines zu testenden Systems
im Rahmen von Tests verwendet werden order die dazu dienen Ergebnisse von Testaktionen
zu speichern. Die Aktionen werden in der Reihenfolge dargestellt in der sie angetroffen werden
würden wenn mit dem zu testenden System eine Suche ausgeführt werden soll. Als konkretes
Beispiel wird SOWIPORT verwendet.

205



Statische Links zwischen Seiten

Statische Links zwischen Seiten oder Kontexten sind Links die nicht von den Ergebnissen einer
Suche oder einer anderen Form von Interaktion zwischen dem Tester und dem zu testenden
System abhängen. Beispiele in Sowiport wären die Links die von der Ergebnisliste zurück zur
Suche und zur Erweiterten Suche führen.

Im Editor werden solche Links mit dem Testschritt FOLLOW LINK dargestellt. Unab-
hängig von der Anzahl der Links im aktuellen Kontext gibt es stets nur eine Instanz dieses
Testschritts, die Verwendung entspricht somit weniger dem Folgen eines konkreten Links als
der Aufforderungen, den aktuellen Kontext mit einem Link zu verlassen. Die Auswahl der
Seite die angesprungen werden soll erfolgt indem im nächsten Testschritt ein Zielkontext
ausgewählt wird.

Soll beispielsweise im Fachinformationssystem Sowiport der Link von der Ergebnisliste
zurück zur Suche genommen werden so wird durch das Betätigen des grünen Plus-Symbols
der Dialog zur Auswahl von Testschritten geöffnet und der Testschritt FOLLOW LINK wird
ausgewählt. Der Testschritt selbst hat keine Parametrisierung, die rechte Hälfte des Editors
bleibt entsprechend bis auf die Anzeige der Hilfe leer. Nun wird abermals ein Testschritt
hinzugefügt, im entsprechenden Dialog stehen die Kontexte Search und AdvancedSearch zur
Verfügung.

Absetzen von Suchanfragen

Zum Auslösen von Suchen stehen drei Testschritte zur Verfügung. Die Schritte SET SEARCH OPTIONS
und SET FILTER legen die Optionen oder Filter fest die bei einer Suche verwandt werden, die
Suche wird aber nicht abgesetzt. Der Schritt START SEARCH dient sowohl dazu Suchbegriffe
für eine Suche festzulegen als auch dazu die Suche abzuschicken

Eine Suchanfrage wird durch den Testschritt START SEARCH abgeschickt, die mögliche
Parametrisierung dieses Testschritt ist abhängig von der jeweils getesteten Suchmaske. Die
Abbildung 94 zeigt die Darstellung dieses Testschritts für die Erweiterte Suche in SOWIPORT.

Figure 94: Testschritt START SEARCH der Erweiterten Suche in SOWIPORT.

In Abbildung 94 werden drei Felder des Testschritt gezeigt, im Feld TXT, der Überall-
suche, wird nach Soziale Probleme gesucht. Die Interpretation der Worte innerhalb eines
Suchfelds wird mittels der Kontrolle TermRelations festgelegt, im Beispiel wird eine Phrasen-
suche ausgeführt. Die Verknüpfung von Feldern untereinander wird mittels der Kontrolle
FieldRelations festgelegt, im Beispiel werden das erste Feld und das zweite Feld miteinander
verodert. Der Suchbegriff des zweiten Feldes ist Geld*, es handelt sich um eine trunkierte
Suche. Eine wichtige Eigenschaft des Testschritts ist dass nur solche Felder tatsächlich für
die Suche verwandt werden die durch Auswahl aktiviert sind. Die ersten beiden Felder sind

206



aktiviert. Das dritte Feld ist,wie in der Abbildung hervorgehoben, nicht aktiviert. Somit
wird der Feldinhalt Nicht Beachtet bei der Suche ignoriert.

Figure 95: Testschritt SET FILTER in Sowiport

Mit dem Testschritt SET FILTER werden die Filter einer Suchanfrage spezifiziert, die
Suche wird aber nicht abgeschickt. Abbildung 95 zeigt den Testschritt für das Setzen von Fil-
tern Filter der erweiterten Suche in Sowiport, ebenso wie bei Verwendung von START SEARCH
so muss auch bei diesem Testschritt jedes Filterfeld das für die Suche verwendet werden soll
explizit ausgewählt werden.

Der Testschritt SET SEARCH OPTIONS dient der Festlegung von Optionen für die Suche,
etwa der expliziten Aktivierung von Crosskonkordanzen. In Sowiport stehen keine Suchop-
tionen zur Verfügung.

Ändern der Sortierung

Die Ergebnisliste wird von einer Reihe von Testschritten angesprochen die in der Mehrheit
dem Speichern von Daten aus der Liste dienen. Neben diesen Schritten besteht die Möglichkeit
in der Ergebnisliste zu blättern und deren Sortierung zu ändern.

Test Testschritt SAVE QUERY INFORMATION speichert den Inhalt des Feld des Felds Ihre
Suche wie dargestellt in der Abbildung 96 in einer Variablen. Die Variable kann in einem
späteren Schritt verwandt werden um Annahmen zu überprüfen, etwa um sicherzustellen dass
alle Suchbegriffe tatsächlich wieder aufgeführt werden.

Mittels des Testschritts SAVE NUMBER OF RESULTS wird die Anzahl der Ergebnisdoku-
mente für die aktuelle Suche in einer Variablen gespeichert. Grundlage der Ermittlung dieser
Anzahl ist die Rückmeldung des getesteten Systems wie in Abbildung 96 zu sehen, eine Zahl
der wirklich gelieferten Dokumente durch das Portal findet nicht statt.

Mit dem Testschritt GO TO PAGE IN LIST kann um eine vorgegebene Anzahl von Seiten
in der Ergebnisliste geblättert werden. Dieser Testschritt erwartet als Parameter die Anzahl
der zu blätternden Seiten und die Richtung in die zu blättern ist. Die Ausführung des
Testschritts scheitert wenn nicht ausreichend viele Seiten zu Verfügung stehen.

Der Testschritt CHANGE RESULTLIST SORTING ermöglicht es die Reihenfolge festzule-

207



Figure 96: Kopfbereich einer Ergebnisliste in Sowiport

gen in der Ergebnisse angezeigt werden können. Der Testschritt erlaubt sowohl die Auswahl
von Sortierungen anhand eines Feldwerts als auch die Anordnung anhand einer von der An-
frage ermittelten Relevanz. Abbildung 97 zeigt die mögliche Parametrisierung des Testschritts
für SOWIPORT. Abhängig vom ausgewählten Sortierkriterium ist entweder nur eine ab-
steigende Anordnung möglich oder sowohl ansteigende als auch abfallende Sortierung stehen
zur Auswahl.

Figure 97: Optionen zum Beeinflussen der Anzeigereihenfolge in SOWIPORT

Der Testschritt SAVE FIELD FROM DOCUMENT, zu sehen in Abbildung 98 zeigt die
mögliche Parametrisierung zur Auswahl eines zu speichernden Feldes aus einem Ergebnis-
dokument.

Die Parametrisierung des Testschritts wird durch vier Kontrollelemente vorgenommen.
Mittels der Auswahlliste Names wird zu speichernde Feld ausgewählt, in diesem Fall im
Ergebnisdokument enthaltenen Personen wie etwa Autoren oder Herausgeber. Das Feld Doc-
umentNumber dient dazu festzulegen aus welches Ergebnisdokument von der aktuellen Seite
der Ergebnismenge angesprochen wird, bei zehn Dokumenten auf jeder Seite der Ergebnis-
menge wären mögliche Werte 1 bis 10. Mittels der Kontrolle Field wird festgelegt wie bei
mehrfacher Belegung des Felds, etwa bei mehreren Autoren, der in einer Variable zu speich-
ernde Wert ausgewählt wird. Bei Auswahl von AllValues werden alle Belegungen des Feldes
gemeinsam in einer Variablen gespeichert, bei Auswahl von Value werden alle Werte gespe-
ichert die identisch mit dem eingegebenen Begriff sind, die Selektion anhand von Teilbegriffen

208



Figure 98: Speichern von Feldbelegungen
für ein Dokument

Figure 99: Speichern eines
Feldwertes für eine Folge
von Dokumenten

ist mit dem Trunkierungszeichen * möglich. Im in Abbildung 98 gezeigten Beispiel würden
alle Autoren gespeichert die den Wert Meier enthalten, also sowohl August Meier als auch
Meier, August. Der letzte Teil der Parametrisierung des Testschritts ist die Angabe zur für
die Speicherung zu verwendenden Variablen.

Der Testschritt SAVE FIELD FOR ALL RESULTS speichert die Belegung eines Feldes für
alle Dokumente innerhalb eines Teils der Ergebnisliste, auf diese Weise können etwa alle Titel
oder alle Autoren gespeichert werden um zu einem späteren Zeitpunkt zu kontrollieren ob ein
bestimmter Autor oder Titel enthalten ist. Abbildung 99 zeigt die mögliche Parametrisierung
für diesen Testschritt. Neben dem Feld das gespeichert werden soll und der Variable in der dies
geschehen soll muss die Länge der zu speichernden Liste angegeben werden, die Speicherung
beginnt mit dem ersten Dokument der Ergebnisliste.

Verwendung von Navigatoren

Navigatoren, auch Facetten genannt, erlauben die Einschränkung einer bestehenden Ergeb-
nismenge. In Sowiport sind Navigatoren über Felder definiert, es gibt beispielsweise Navi-
gatoren für Personen. Abbildung 100 zeigt die verschiedenen Navigatoren für SOWIPORT,
durch Betätigen des Links Literatur im Navigator Informationstyp würde eine bestehende
Suche auf Literatur eingeschränkt.

Wie in Abbildung 100 zu sehen ist ist jedem Navigatorwert eine Zählung zugeordnet, im
Fall der Datenbank Solis etwa wurden 69 Treffer gefunden. Der Testschritt SAVE NAVIGATOR COUNT
dient zum Speichern dieser Zählung für einen Navigatorwert in einer Variablen. In Abbil-
dung 101 wird die Schnittstelle zur Parametrisierung des Testschritts gezeigt. Die Auswahl
des Navigator erfolgt mittels eines Radiobutton. Der Wert für den die Zählung gespeichert
werden soll wird für Felder mit einer kontrollierten und überschaubaren Anzahl von Werten in
einer Auswahlliste dargestellt, in der Abbildung ist dies für die Navigatoren DATABASE und
INFOTYPE der Fall. Für Navigatoren die sehr viele unterschiedliche Werte annehmen können
wie die Felder SUBJECT und PERSON im Beispiel, müssen Werte in ein Textfeld eingetragen

209



werden, auch hier wird die Verwendung des Zeichens * zur Trunkierung unterstützt.

Figure 100: Navigatoren in Sowiport

Figure 101: Speichern eines
Feldwertes für eine Folge
von Dokumenten

Sollen alle Werte die ein Navigator für ein Feld annimmt ohne die jeweilige Zählung
gespeichert werden so wird der Testschritt SAVE NAVIGATOR VALUES verwandt. Für diesen
Testschritt muss ein zur Verfügung stehenden Navigator ausgewählt werden des Werte in einer
Variablen gespeichert werden.

Der Testschritt FOLLOW NAVIGATOR LINK dient dazu, einen Navigatorlink auszuwählen
und die Ergebnismenge einzuschränken, entspricht also dem Betätigen eines Links. Die in
Abbildung 101 dargestellte Schnittstelle für das Speichern von Navigatorwerten wird auch für
diesen Testschritt verwandt, da jedoch die Zählung des Navigators nicht gespeichert sondern
der Verknüpfung gefolgt wird entfällt die Auswahlmöglichkeit einer Variablen.

Verweise aus Dokumenten

Mit dem Testschritt FOLLOW LINK IN DOCUMENT wird ein Link in einem Ergebnisdoku-
ment aufgerufen. In SOWIPORT werden entsprechende Links unteranderem für den Verweis
auf die Detailanzeige von Dokumenten, für das Anstossen neuer Suchen nach Personen und
Schlagworten und für den Wechsel zu den Collection Level Descriptions verwendet.

Da unterschiedliche Arten von Verweisen innerhalb eines Dokuments vorkommen können
bietet der Editor mehrere Instanzen des Testschritt FOLLOW LINK IN DOCUMENT an, die
jeweilige Art des Links ist im Dialog zur Auswahl von Testschritten in Klammern hinter dem
Names des Testschritts aufgeführt, auf die Bedeutung der einzelnen Links wird im Folgenden
eingegangen.

Abbildung 102 zeigt die verschiedenen Verweise in einem Dokument aus der Sowiport
Trefferliste farblich hervorgehoben, im Einzelnen existieren die folgenden Verweise.

• Der grün umrandete Titel des Dokuments ist ein Verweis auf die Detailansicht, der
entsprechende Testschritt ist durch den Namen DocumentDetails in der Liste der möglichen
Testschritte hervorgehoben.

210



Figure 102: Links in einem SOWIPORT Dokument

• Der gelbe Verweis löst eine neue Suche nach einer Person aus, die Bezeichnung dieses
Verweises bei der Auswahl eines Testschritt ist SearchByLink.

• Der blaue Verweise führt zur Beschreibung der Datenbank aus der der entsprechende
Treffer stammt, der sogenannten Collection Level Description. Dieser Verweis wird als
LinkToCLD bezeichnet.

• Die gelben Verweise führen zu externen Bezugsquellen der durch das Ergebnisdokument
repräsentierten Literatur oder Diensten zum Verfügbarkeitsnachweis. In der Liste der
Testschritte wird dieser Verweis durch den Titel Availability bezeichnet.

Öffnen der Detailansicht

Aus Sicht des Editors handelt es sich bei der Detailansicht von Dokumenten um eine Liste
mit genau einem Dokument. Die Detailansicht unterscheidet sich von der Trefferübersicht
darin dass im Fall von Sowiport Aktionen wie das Blättern auf der Ergebnisliste oder die
Änderung der Sortierreihenfolge nicht unterstützt werden, um diese Aktionen auszuführen
muss die Detailansicht, etwa durch den FOLLOW LINK, verlassen und die Ergebnisübersicht
angesprungen werden.

Als Liste mit nur einem Dokument unterstützt die Detailansicht alle Operationen die auch
sonst für Ergebnislisten zur Verfügung stehen, so können Links innerhalb des Dokuments mit
dem Testschritt FOLLOW LINK IN DOCUMENT aufgerufen und Feldbelegungen zur späteren
Kontrolle gespeichert werden.

Verwendung von Variablen

Variablen werden vom Editor und letztlich in der Testausführung dazu verwendet um Werte
für einen späteren Vergleich oder eine Kontrolle zu speichern. Der Editor stellt fünf ver-
schiedene Variablen zur Verfügung die entweder explizit durch die Verwendung eines mit
SET VARIABLE beginnenden Testschritts mit einem von Anwender vergebenen Wert belegt
oder durch einen der mit SAVE beginnenden Testschritten zum Speichern von Feldwerten
verwandt werden.

Variablen können Zahlen, Textbestandteile oder Listen von Werten enthalten, abhängig
davon von welchem Testschritt eine Variable gefüllt werden. Wird eine bereits gefüllt Variable
mit einem Wert belegt wird der enthaltene Wert überschrieben.

Belegen von Variablen

Mittels der drei Testschritte SET VARIABLE, SET VARIABLE LONG TEXT und SET VARIABLE FROM FILE
können Variablen explizit mit Werten belegt werden. Der Testschritt SET VARIABLE kann

211



eine Variable mit bis zu drei Werten belegen, jeder Wert kann aus mehreren Worten beste-
hen. Dieser Testschritt wird verwendet wenn etwas das Vorhandensein von mehreren Begriffen
in einer Ergebnisliste überprüft werden soll. Der Testschritt SET VARIABLE LONG TEXT
erlaubt die Belegung einer Variablen mit einem einzelnen Wert, unterstützt durch einen
größeren Textbereich aber auch längere Texte. Der Testschritt SET VARIABLE FROM FILE
kann verwandt werden um eine Variable aus mit Werten aus einer Datei zu laden, dies er-
möglicht auch die Verwendung von langen Listen von Werten in Variablen.

Vergleich von Variablen

Der Editor stellt eine Reihe von Testschritten zu Verfügung mit denen die Werte in Variablen
verglichen werden können. Mit dem Testschritt COMPARE TWO VARIABLES werden die
Werte von zwei Variablen verglichen. Der Testschritt ist in Abbildung 103 dargestellt. Die
Parametrisierung des Testschritts umfasst drei Element: Eine Variable, eine Vergleichsoper-
ation und eine weitere Variable.

Figure 103: Testschritt zum Vergleich von zwei Variablen

Insgesamt existieren vier Arten von Vergleichsoperationen, abhängig von dem Inhalt der
Variablen.

• Wenn beide Variablen Zahlen enthalten, etwa die Menge von Ergebnissen für eine An-
frage, können diese Zahlen auf Gleichheit und Ungleichheit und auf Größer/Kleiner
Beziehungen hin geprüft werden.

• Wenn beide Variablen Worte oder Texte enthalten, etwa Schlagworte, Personenna-
men oder Titel von Dokumenten, können diese Worte auf Gleichheit und Ungleichheit

212



verglichen werden. Wenn der Wert einer Variablen mittels einer der SET VARIBALE
Testschritte belegt wurde wird des * Zeichen bei einem Vergleich als Wildcard Symbol
interpretiert.

• Wenn eine Variable einen Text und die zweite Variable eine Liste von Texten enthält
wird mit der dritten Auswahl das Vorhandensein des Textes in der Liste kontrolliert.
Ein Anwendungsfall dieses Vergleichs ist die Kontrolle ob ein bestimmtes Wort in einem
oder allen Titeln einer Liste von Ergebnisdokumenten erscheint. Im Einzelnen kann
verglichen werden ob ein Begriff immer in einer Liste enthalten ist (Always), niemals
auftaucht (Never) oder zumindest einmal auftaucht (OnceOrMore).

• Wenn beide Variablen Liste von Werten enthalten können diese Listen verglichen wer-
den. Mittels der Option Equal und NotEqual kann sichergestellt werden das die Listen
die gleichen oder unterschiedliche Elemente enthalten. Mittels der Option PartOf wird
überprüft ob alle Werte in der ersten Variablen auch Bestandteil der Werte der zweiten
Variablen sind. Wenn die Option Disjunct ausgewählt ist dürfen keine Elemente aus
der Liste in der ersten Variablen in der Liste in der zweiten Variablen enthalten sein.
Mittels der Checkbox SameOrder wird festgelegt das die zwei Listen nicht nur bezüglich
der enthaltenen Dokumente verglichen werden sondern auch in Bezug auf deren Rei-
henfolge.

Ein wichtiger Punkt beim Vergleich von Variablen ist es sicherzustellen dass die korrekten
Variablen ausgewählt sind, der Editor selbst kann nicht sicherstellen dass dies der Fall ist.

Der Testschritt CHECK VARIABLE entspricht dem Testschritt COMPARE TWO VARIABLES
mit dem Unterschied dass nicht eine Variable mit einer anderen Variablen verglichen wird
sondern dass der Vergleichswert direkt im Testschritt angegeben wird. CHECK VARIABLE
ist somit eine Kombination der Testschritte SET Variable und COMPARE TWP VARIABLES.

Der Testschritt CHECK SORTING OF VARIABLE wird verwendet um die Sortierung einer
Liste von Werten in einer Variablen zu kontrollieren. Wenn alle Werte in der Liste Zahlen
sind wird numerische Sortierung verwandt, ansonsten wird alphabethisch sortiert.

Der Testschritt CHECK RELEVANCE AND PRECISION RESULTS wird verwendet um eine
Liste von Ergebnisdokumenten in absteigender Relevanz mit einer in einer Variablen gespe-
icherten Liste von relevanten Dokumenten IDs zu vergleichen, Recall oder Precision Werte
an einem Punkt der Liste werden wiederum in einer Variablen gespeichert.

Beispiele

In diesem Abschnitt wird die Verwendung des Editors anhand von zwei Beispiele gezeigt, dem
Absetzen einer Suche mit folgender Kontrolle der Menge und des Inhalts der Ergebnisse und
einer Suche mit anschliessender Verwendung der Navigatoren und schliesslich einer Suche nach
einem spezifischen Dokument. Die hier aufgeführten Beispiele können als Beispiel Suche.xml,
Beispiel Navigatoren.xml und Beispiel Detailansicht.xml im Editor geladen werden.

Vergleich von Suchergebnissen

Dieser Test ist ein Beispiel für die Verwendung der erweiterten Suche. Nach einer erweiterten
Suche nach Geld* im Titel unter Verwendung von Filtern wird kontrolliert ob die Ergebnis-
menge zumindest 1000 Dokumente umfasst. Eine zweite Kontrolle stellt sicher dass die ersten
1000 Dokumente ein Wort im Titel haben das mit Geld beginnt.

Der Test setzt sich aus den folgenden Testschritten zusammen:

213



START Dieser Testschritt enthält die Beschreibung des Tests, der einzig mögliche Startzu-
stand für SOWIPORT ist die Einstiegseite.

FOLLOW LINK Mit diesem Testschritt wird die Einstiegsseite verlassen, wie beschrieben
wird beim Aufruf des Testschritts das Ziel des Verweises nicht angegeben, stattdessen
findet eine Auswahl der Zielkontexts bei der Auswahl des folgenden Testschritts statt.

FOLLOW LINK Dieser zweite Linke verlässt die Suche in Sowiport, Intention ist der Wech-
sel zur erweiterten Suche und zur dortigen Nutzung der Filter.

SET FILTER In der erweiterten Suche werden diverse Filter gesetzt, das Setzen dieser
Filter schickt noch keine Suche ab, dies geschieht im folgenden Testschritt.

START SEARCH Mit diesem Testschritt wird die Suche im Titel nach Geld abgesetzt.

SAVE NUMBER OF RESULTS Dieser Testschritt speichert die Länge der Trefferliste
in der Variablen 1.

CHECK VARIABLE Hier wird geprüft ob die Zahl 1000 kleiner ist als der Wert in der
Variablen 1, ob die Suche nach Geld also zu mehr als 1000 Ergebnissen führte.

SAVE FIELD FOR ALL RESULTS Mit diesem Testschritt wird der Titel für die ersten
tausend Ergebnisdokumente in der Variablen 1 gespeichert, die vorherige Belegung der
Variablen wird überschrieben.

CHECK VARIABLE Mit diesem Testschritt wird kontrolliert ob alle Titel die in Variable
1 gespeichert sind mindestens ein Wort enthalten das mit Geld* beginnt.

Test der Navigatoren

In diesem Test wird eine Suche auf drei Datenbanken ausgeführt, die Treffermenge in einer der
Datenbanken wie vom Navigator angezeigt wird gespeichert. Anschliessend wird dem Verweis
dieses Navigators gefolgt und die tatsächliche Ergebnismenge wird mit der vom Navigator
gemeldeten Menge verglichen

START , FOLLOW LINK und FOLLOW LINK diese Testschritte sind identisch mit denen im
vorangegangenen Beispiel. Im Startkontext im ersten Testschritt wird die Beschreibung
der Suche hinterlegt. In den beiden folgenden Testschritten wird auf die Erweiterte
Suche von SOWIPORT gewechselt.

SET FILTER Hier werden die Filter gesetzt um die folgende Suche auf die Datenbanken
Solis, Sofis und Socioguide einzuschränken.

START SEARCH Hier wird eine Suche nach dem Prefix soz* gestartet.

SAVE NAVIGATOR COUNT In der Ergebnismenge wird die vom Datenbank-Navigator
gemeldeten Anzahl der Treffer für Solis gespeichert.

CHECK VARIABLE In diesem Schritt wird die tatsächliche Zahl der Ergebnisse mit
einem Erwartungswert verglichen. Hier wird kein exakter Vergleich ausgeführt, stattdessen
wird der Vergleichsoperator Around verwendet der eine Toleranz von 10 Prozent bei ver-
gleichen zulässt.

FOLLOW NAVIGATOR LINK In diesem Testschritt wird der Navigator Verweis auf die
Solis Daten ausgelöst, die Ergebnismenge wird also auf all jene Treffer eingeschränkt
die aus Solis stammen.

214



SAVE NUMBER OF RESULTS Hier wird die neue, auf Solis eingeschränkte Ergebnis-
menge in der Variablen 2 gespeichert.

COMPARE TWO VARIABLES Hier werden die Variable 1 mit dem Wert der Treffer
aus Solis wie sie im Navigator angezeigt wurden und die Variable 2 mit der Trefferanzahl
nach der Einschränkung auf Solis miteinander verglichen.

Kontrolle der Detailansicht

In diesem Test wird aus der Schnellsuche auf der Sowiport Eingangsseite eine Suche nach
Jugend abgesetzt. Die Detailansicht des ersten Trefferdokuments wird geöffnet und die Quelle
des Dokuments wird mit einem Erwartungswert verglichen.

START In diesem Testschritt werden Titel und Beschreibung des Tests gesetzt.

START SEARCH In diesem Testschritt wird eine Suche nach Jugend mit der Suchleiste
auf der Sowiport Einstiegsseite abgesetzt.

FOLLOW LINK IN DOCUMENT Dieser Testschritt öffnet durch das Betätigen des
Titelverweises im ersten Ergebnisdokument die Detailansicht für dieses Dokument.

SAVE FIELD FROM DOCUMENT Dieser Testschritt speichert den Inhalt des Quel-
lenfelds des Dokuments in der Detailansicht in einer Variablen. Die Dokumentennum-
mer muss trotz der Tatsache angegeben werden dass die Liste der Dokumente nur die
Länge 1 hat, mit der Angabe der der Feldposition 1 wird angegeben dass nur der erste
Wert gespeichert für das Dokumentenfeld gespeichert wird.

SET VARIABLE LONG TXT In diesem Testschritt wird die Variable 1 mit einem Er-
wartungswert für den Inhalt des Quellenfelds belegt. Da der Text des Quellenfelds
verhältnismässig lang ist wird der Testschritt zur Vergabe langer, mehrzeiliger Vari-
ablenwerte verwendet.

COMPARE TWO VARIABLES In diesem Testschritt wird die tatsächliche, in einer
Variablen gespeicherte Belegung der Variablen mit dem Erwartungswert verglichen.

215



Glossary

Action An action is a Test Step that changes the state of the testee.
Assertion An assertion is a Test Step that does not change the state of the testee

but either verifies its state or saves it in a variable.
Buildlet A class that is used by the MTCC editor to instantiate the GUI-

representation for a specific feature model.
Composition The process in which the DomainTestModel, the SystemFeatureModel and

the SystemStateModel are combined into the SystemTestModel.
ConfigurationNode Node in a Feature Model that represents a specialization step applied to

a feature, an attribute or a feature group.
Context In MTCC, a named set of Service instances that can be addressed by

Test Steps for a certain state of the testee.
Domain Engineer Software engineer who is familiar with the implementation of the systems

in a system family and with the most relevant concepts of the domain.
Domain Engineering In the MTCC context, the analysis of the system family for test relevant

aspects, the realization of domain-level models and the implementation
of testing core assets.

Domain Expert Stakeholders, experts, or users of a system who have knowledge about
the functional requirements for a system and of the subject matter in
general, but have no programming or formal modeling skills.

DomainFeatureModel Collection of feature models for all Services for a system family. Each
Service is represented by a feature model that can be specialized to rep-
resent every instance of the Service for every system in the system family.

DomainTestModel Catalog of all Test Steps that are defined for the Services of a system
family.

GuiBuilder Class that coordinates the construction of a GUI representation for the
editor from a feature model.

SameStateAction Test Step that manipulates the state of the testee, but does not change
the current context.

Service An aspect of the functionality of a system that can be tested in sepa-
ration, represented by a feature model. Defined in the DomainFeature-
Model.

Service Instance Specialized instance of a Service that represents one concrete Service for
a system. Defined in the SystemFeatureModel.

Application Engineering Phase of the MTCC testing process in which one member of the inves-
tigated system family is modeled and the Test Adapter for this system
is implemented.

SystemFeatureModel Collection of specialized feature models that represent the Service in-
stances for a specific system.

SystemStateModel Finite State Machine that represents the possible sequences of Service
invocations for a system.

216



SystemTestModel Test-level model that describes both the available Test Step instances
for a system and the possible sequences to invoke this instances.

Test Engineering Phase in MTCC testing process in which an editor instances, based on
a SystemTestModel is used to model tests for one system.

Test Runner (COTS) Program used to execute test cases.
Test Script Program generated by MTCC. Each test case represents one test and is

specific to a test runner and a system under test.
Test Step Single action or assertions that either exercises a Service verifies its state

or saves this state.
Test Step Instance Test Step which was instantiated for one Service instance of unfolding all

references to the Service instance.
Test Adapter Library of routines that serves as a platform for the execution of test

cases for one test runner and one system.
Test Configuration Model that represents a test as a sequence of configured Test Step in-

stances.

217





Index

Test Step, 1

Acceptance Testing, 36
Application Engineering, 73, 78

Composition of Models, 80
Context, 78

Digital Libraries, 65
Quality, 67
Testing of Digital Libraries, 68

Domain Analysis, 52
Domain Engineering, 73, 77
Domain Engineers, 75
Domain Experts, 75

Involvement in Testing, 37
DomainFeatureModel, 77, 84
DomainTestModel, 77, 84

Features
Configuration and specialisation, 54
Definitions of Features, 51
Feature Models, 53
Feature models with cardinalities, 54
Use of features in MTCC, 92

FIT (Related Approach), 183

Generative Programming, 45
GQM, 143

Heterogeneity, 66

infoconnex, 123
Information Need, 60
Information Retrieval, 59

Challenges, 60
Definition, 60
Evaluation, 63
IR as an Interaction, 60

IREON, 123

MDA, 44
Relationship to MTCC, 85

Meta Model, 43
Model, 41

Attributes of Models, 42
Model Driven Architecture, 44

Model-Driven Software Development, 44
Model-Driven Testing, 46

Relation to MTCC, 47
MTCC

Test Step Types, 91
Action, 91
Assertion, 91
Buildlets, 108
Code Generation, 119
Composition, 99
Configuration of Test Models, 111
Domain-Level Models, 84
Domain-specific Services, 130
Generic Services, 129
GUI-representation of Test Steps, 104
GuiBuilder, 108
Implementation of Feature Models, 93
Implementation of specialization steps, 112
Phases of the MTCC process, 73
Relation to Product Line Testing, 52, 56
Relation to Software Product Lines, 74
Relationship of MTCC-Models, 83
Relationship to Information Retrieval, 68
Relationship to MDA, 85
Relationship to Product Development, 76
Relationship to the Testing Process, 77
Representation of Test Steps, 96
Representation of Services, 94
Reuse of Tests, 114
Roles in MTCC, 75
SameStateAction, 91
Selection of Test Step instances, 106
Structure of the Behavior Models, 88
System Family Models, 84
System-Level Models, 84
Test execution, 119
Test-level Models, 85
Tests in MTCC, 81
The MTCC Editor, 82
Use of feature models, 92

MTCC
Related work, 175

Quality, 29
Quality of Digital Libraries, 67

219



Quality of Test Automation, 38

SCENT (Related approach), 176
Service, 78
Shell Model, 66
Software Product Lines, 50
Solr, 123
Sowiport, 123
System Families, 49

System Family Testing, 56
SystemFeatureModel, 78, 84
SystemStateModel, 78, 84
SystemTestModel, 78, 85

Test Configuration, 81, 85
Test Engineering, 73
Testing, 29, 31

Automated, 33
Automatic, 35

Testing Based on Usage Scenarios, 175

UML 2.0 Testing Profile, 179

Validation, 139
GQM, 143
MTCC validation goals, 144
MTCC Validation Questions, 145
MTCC validation results, 157
Validation methods, 141
Validation Types, 142

Variability, 50

220



Bibliography

Abiteboul, Serge, Buneman, Peter, & Suciu, Dan. 2000. Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kaufman.

Alanen, Marcus, Lundkvist, Torbjoern, & Porres, Ivan. 2005. Comparison of Modeling Frame-
works for Software Engineering. Nordic Journal of Computing, 12(4), 321–342.

Andersson, Johan, & Bache, Geoff. 2004. The Video Store Revisited Yet Again: Adventures
in GUI Acceptance Testing. In: Eckstein, Jutta, & Baumeister, Hubert (eds), Extreme
Programming and Agile Processes in Software Engineering 5th International Conference XP
2004 Garmisch-Partenkirchen, Germany, June 2004. Lecture Notes in Computer Science,
vol. 3092. Springer.

Andrea, Jennitta. 2004a. Generative Acceptance Testing for Difficult-to-Test Software. Chap.
Generative Acceptance Testing for Difficult-to-Test Software, pages 29–37 of: Eckstein,
Jutta, & Baumeister, Hubert (eds), Extreme Programming and Agile Processes in Software
Engineering. Lecture Notes in Computer Science, vol. 3092. Springer.

Andrea, Jennitta. 2004b. Putting a Motor on the Canoo WebTest Acceptance Testing Frame-
work. In: Eckstein, Jutta, & Baumeister, Hubert (eds), Extreme Programming and Ag-
ile Processes in Software Engineering 5th International Conference XP 2004 Garmisch-
Partenkirchen, Germany, June 2004. Lecture Notes in Computer Science, vol. 3092.
Springer.

Andrews, Anneliese, Offutt, Jeff, & Alexander, Roger. 2005. Testing Web Applications by
Modeling with FSMs. Software Systems and Modeling, 4(3), 326–345.

Antkiewicz, Michal, & Czarnecki, Krzysztof. 2004. FeaturePlugin: Feature Modeling Plug-in
for Eclipse. In: OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop,.

Arango, Guillermo. 1989. Domain Analysis: From Art Form to Engineering Discipline. Pages
152–159 of: IWSSD ’89: Proceedings of the 5th international workshop on Software speci-
fication and design. New York, NY, USA: ACM Press.

Arango, Guillermo. 1994. A Brief Introduction to Domain Analysis. Pages 42–46 of: SAC
’94: Proceedings of the 1994 ACM symposium on Applied computing. New York, NY, USA:
ACM Press.

Armbrust, O., Ochs, M. A., & Snoek, B. 2004. Stand der Praxis von Software-Tests und
deren Automatisierung : Interviews und Online-Umfrage. Report; Electronic Publication.
Fraunhofer Institut Experimentelles Software Engineering.

Bachmann, Felix, & Clements, Paul C. 2005. Variability in Software Product Lines. Tech.
rept. Carnegie Mellon Software Engineering Institute.

Baerisch, Stefan. 2007. Model-Driven Test-Case Construction. Pages 597–591 of: The 6th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering.

221



Baeza-Yates, Ricardo A., & Ribeiro-Neto, Berthier. 1999. Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Baker, Paul, Dai, Zhen Ru, Grabowski, Jens, Haugen, Øystein, Lucio, Serge, Samuelsson,
Eric, & Williams, Ina Schieferdecker Clay E. 2003. The UML 2.0 Testing Profile.

Baresi, Luciano, & Young, Michal. 2001. Test Oracles. Tech. rept. Department of Computer
and Information Science, University of Oregon.

Basili, Victor R. 1996. The role of experimentation in software engineering: past, current,
and future. Pages 442–449 of: ICSE ’96: Proceedings of the 18th international conference
on Software engineering. Washington, DC, USA: IEEE Computer Society.

Basili, Victor R., Caldiera, Gianluigi, & Rombach, H. Dieter. 1994. Encyclopedia of Software
Engineering. John Wiley & Sons. Chap. The Goal Question Metric Approach, pages
528–532.

Basili, Victor R., Shull, Forrest, & Lanubile, Filippo. 1999. Building Knowledge through
Families of Experiments. IEEE Trans. Softw. Eng., 25(4), 456–473.

Baudry, Benoit, Fleurey, Franck, France, Robert, & Reddy, Raghu. 2006. Exploring the
Relationship between Model Composition and Model Transformation. In: Report of the
7th International Workshop on Aspect-Oriented Modeling.

Bayer, Joachim, Flege, Oliver, Knauber, Peter, Laqua, Roland, Muthig, Dirk, Schmid, Klaus,
Widen, Tanya, & DeBaud, Jean-Marc. 1999. PuLSE: a methodology to develop software
product-lines. Pages 122–131 of: SSR ’99: Proceedings of the 1999 symposium on Software
reusability. New York, NY, USA: ACM Press.

Beck, Kent. 2002. Test Driven Development: By Example. Addison-Wesley.

Beck, Kent, & Andres, Cynthia. 2004. Extreme Programming Explained: Embrace Change
(2nd Edition). Addison-Wesley Professional.

Becker, Steffen. 2008. Coupled Model Transformations for QoS Enabled Component-Based
Software Design. Ph.D. thesis, Carl von Ossietzky Universität Oldenburg, Oldenburg,
Germany.

Beizer, Boris. 1990. Software testing techniques (2nd ed.). New York, NY, USA: Van Nostrand
Reinhold Co.

Beizer, Boris. 1995. Black-Box Testing: Techniques for Functional Testing of Software and
Systems. New York, NY, USA: John Wiley & Sons, Inc.

Belkin, Nicholas J., & Croft, W. Bruce. 1987. Retrieval Techniques. New York, NY, USA:
Elsevier Science Inc. Pages 109–145.

Bertolino, A., Marchetti, E., & Muccini, H. 2004. Introducing a Reasonably Complete and
Coherent Approach for Model-based Testing.

Bertolino, Antonia. 2007. Software Testing Research: Achievements, Challenges, Dreams. In:
29th Int. Conference on Software Engineering - Future of Software Engineering(FOSE’07).

Bertolino, Antonia, & Gnesi, Stefania. 2003a. PLUTO: A Test Methodology for Product
Families. In: van der Linden, Frank (ed), Proceedings of the Fifth International Workshop
on Product Family Engineering (PFE-5). LNCS 3014. Siena, Italy: Springer Verlag.

222



Bertolino, Antonia, & Gnesi, Stefania. 2003b. Use case-based testing of product lines. Pages
355–358 of: ESEC/FSE-11: Proceedings of the 9th European software engineering confer-
ence held jointly with 11th ACM SIGSOFT international symposium on Foundations of
software engineering. New York, NY, USA: ACM Press.

Bézivin, Jean. 2005. On the Unification Power of Models. Software and Systems Modeling,
4(2), 171–188.

Binder, Robert V. 1999. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley.

Blackburn, M., Busser, R., & Nauman, A. 2004. Why Model-Based Test Automation is
Different and What You Should Know to Get Started. In: International Conference on
Practical Software Quality.

Blackburn, Mark, Busser, Robert, & Nauman, Aaron. 2002. Understanding the Generations
of Test Automation.

Blair, D.C. 1980. Searching biases in large interactive document retrieval systems. Journal
of the American Society for Information Science, 31(4), 271–277.

Botaschanjan, Jewgenij, Pister, Markus, & Rumpe, Bernhard. 2003. Testing Agile Require-
ments Models. In: In: Proceedings of the First Hangzhou-Lübeck Conference on Software
Engineering (HL-SE 03).

Bracha, Gilad, & Cook, William. 1990. Mixin-based Inheritance. Pages 303–311 of: OOP-
SLA/ECOOP ’90: Proceedings of the European conference on object-oriented programming
on Object-oriented programming systems, languages, and applications. New York, NY,
USA: ACM.

Briand, L. C., Labiche, Y., & Cui, J. 2005. Automated support for deriving test requirements
from UML statecharts. Software and Systems Modeling, 4, 399–423.

Brooks, Fred P. 1987. No Silver Bullet - essence and accident in software Engineering Com-
puter. Computer, 20(4), 10–19.

Brown, Alan W. 2004. Model driven architecture: Principles and practice. Software and
System Modeling, 3(4), 314–327.

Brown, C. Titus, Gheorghiu, Grig, & Huggins, Jason R. 2007. An Introduction to Testing
Web Applications with twill and Selenium. O’Reilly Media, Inc.

Broy, M., & Rausch, A. 2005. Das neue V-Modell R© XT. Informatik-Spektrum, 28(3), 220–
229.

Budinsky, Frank, Steinberg, David, Merks, Ed, Ellersick, Raymond, & Grose, Timothy J.
2003. Eclipse Modeling Framework. Addison Wesley Professional.

Buschmann, Frank, Meunier, Regine, Rohnert, Hans, Sommerlad, Peter, & Stal, Michael.
1996. Pattern-Oriented Software Architecture Volume 1: A System of Patterns. Wiley.

Cabot, Jordi, & Teniente, Ernest. 2006. Constraint Support in MDA tools: a Survey. In:
Rensink, Arend, & Warmer, Jos (eds), Model Driven Architecture - Foundations and Ap-
plications Second European Conference, ECMDA-FA 2006 Bilbao, Spain, July 10-13, 2006.
Lecture Notes in Computer Science, no. 4066. Springer.

Cavarra, Alessandra, Crichton, Charles, & Davies, Jim. 2004. A Method for the Automatic
Generation of Test Suites from Object Models. Information & Software Technology, 46(5),
309–314.

223



Cechticky, V., Pasetti, A., Rohlik, O., & Schaufelberger, W. 2004. XML-Based Feature Mod-
elling. Pages 5–9 of: Software Reuse: Methods, Techniques and Tools: 8th International
Conference, ICSR. Springer.

Chakrabarti, S. 2003. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann.

Chase, R.B., Aquilano, N.J., & Jacobs, F.R. 2001. Operations Management for Competitive
Advantage. McGraw-Hill Irwin.

Chen, T. Y. 2005. Are Successful Test Cases Useless or Not? Pages 2–3 of: Reussner,
Ralf, Mayer, Johannes, Stafford, Judith A., Overhage, Sven, Becker, Steffen, & Schroeder,
Patrick J. (eds), QoSA/SOQUA. Lecture Notes in Computer Science, vol. 3712. Springer.

Clements, Paul, & Northrop, Linda M. 2001. Software Product Lines : Practices and Patterns.
3rd edn. Addison Wesley.

Cleve, H., & Zeller, A. 2000. Finding Failure Causes through Automated Testing. In: Ducasse,
M. (ed), Proceedings of the Fourth International Workshop on Automated Debugging.

Condron, Chris. 2004. Domain Approach to Test Automation of Product Lines. Pages 27–35
of: Geppert, Birgit, Krueger, Charles, & Li, Jenny (eds), Proceedings of the International
Workshop on Software Product Line Testing (SPLiT 2004).

Cooper, W.S. 1973. On Selecting a Measure of Retrieval Effectiveness. Journal of the Amer-
ican Society for Information Science, 24(6), 413–424.

Coplien, James, Hoffman, Daniel, & Weiss, David. 1998. Commonality and Variability in
Software Engineering. IEEE Software, 15(6), 37–45.

Cordy, James R., Lämmel, Ralf, & Winter, Andreas. 2006. Executive Summary – Trans-
formation Techniques in Software Engineering. In: Transformation Techniques in Soft-
ware Engineering. Dagstuhl Seminar Proceedings, vol. 05161. Dagstuhl: Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany.

Crosby, P.B. 1979. Quality is Free: The Art of Making Quality Certain. McGraw-Hill.

Czarnecki, K., & Kim, C.H.P. 2005. Cardinality-Based Feature Modeling and Constraints: a
Progress Report. In: International Workshop on Software Factories.

Czarnecki, Krysztof, & Eisenecker, Ulrich W. 2000. Generative Programming. Methods, Tools
and Applications. Addison-Wesley.

Czarnecki, Krzysztof. 2005. Overview of Generative Software Development. Pages 313–
328 of: et al:, J.-P. Banâtre (ed), Unconventional Programming Paradigms (UPP) 2004.
Lecture Notes of Computer Science, vol. 3566. Mont Saint-Michel, France: Springer.

Czarnecki, Krzysztof, & Antkiewicz, Michal. 2005. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. In: International Conference on Generative
Programming and Component Engineering.

Czarnecki, Krzysztof, & Helsen, Simon. 2003. Classification of Model Transformation Ap-
proaches. In: OOPSLA’03 Workshop on Generative Techniques in the Context of Model-
Driven Architecture.

Czarnecki, Krzysztof, Helsen, Simon, & Eisenecker., Ulrich. 2005a. Formalizing Cardinality-
based Feature Models and their Specialization. Software Process Improvement and Practice,
special issue of best papers from SPLC04, 10(1), 7 – 29.

224



Czarnecki, Krzysztof, Helsen, Simon, , & Eisenecker, Ulrich. 2005b. Staged Configuration
Through Specialization and Multi-Level Configuration of Feature Models. Software Process
Improvement and Practice, special issue on ”Software Variability: Process and Manage-
ment,, 143 - 169, 10(2).

Czarnecki, Krzysztof, Kim, Chang Hwan Peter, & Kalleberg, Karl Trygve. 2006a. Feature
Models Are Views on Ontologies. Pages 41–51 of: Proceedings of 10th International Soft-
ware Product Line Conference (SPLC 2006).

Czarnecki, Krzysztof, Antkiewicz, Michal, & Kim, Chang Hwan Peter. 2006b. Multi-level
customization in application engineering. Commun. ACM, 49(12), 60–65.

Dai, Zhen Ru. 2004. Model-Driven Testing with UML 2.0. Pages 179–188 of: Second European
Workshop on Model Driven Architecture (MDA) EWMDA.

DeBaud, Jean-Marc, & Schmid, Klaus. 1999. A systematic approach to derive the scope of
software product-lines. Pages 34–43 of: ICSE ’99: Proceedings of the 21st international
conference on Software engineering. Los Alamitos, CA, USA: IEEE Computer Society
Press.

Deufemia, Vincenzo, Ferrucci, Filomena, & Gravino, Carmine. 2006. Constructing Meta-
CASE Workbenches by Exploiting Visual Language Generators. IEEE Trans. Softw. Eng.,
32(3), 156–175. Member-Gennaro Costagliola.

Deursen, Arie, Moonen, Leon, Bergh, Alex, & Kok, Gerard. 2001. Refactoring Test Code.

Dijkstra, E.W. 1969. Notes on structured programming. Technological University Eindhoven,
Netherlands Department of Mathematics, [Eindhoven].

Dmitriev, Sergey. 2004. Language Oriented Programming: The Next Programming Paradigm.

Do, Hyunsook, Elbaum, Sebastian, & Rothermel, Gregg. 2005. Supporting Controlled Exper-
imentation with Testing Techniques: An Infrastructure and its Potential Impact. Empirical
Software Engineering, 10(4), 405–435.

Duvall, Paul, Matyas, Steve, & Glover, Andrew. 2007. Continuous Integration: Improving
Software Quality and Reducing Risk. Addison-Wesley Professional.

Edwards, C.D. 1968. The meaning of quality. Quality Progress, 1(10), 36–39.

Eibl, M. 2000. Visualisierung im Document Retrieval: theoretische und praktische Zusam-
menführung von Softwareergonomie und Graphik Design. Ph.D. thesis, GESIS, Informa-
tionszentrum Sozialwissenschaften.

Eichmann, D. 1997. Representing Knowledge in Domain Engineering. In: Proceedings of the
Eighth Workshop on Institutionalizing Software Reuse.

El-Far, Ibrahim K., & Whittaker, James A. 2001. Model-Based Software Testing. Pages
825–837 of: Marciniak, J.J. (ed), Encyclopedia on Software Engineering. Wiley.

Ellims, Michael, Bridges, James, & Ince, Darrel C. 2006. The Economics of Unit Testing.
Empirical Softw. Engg., 11(1), 5–31.

Emerson, Matthew, & Sztipanovits, Janos. 2006. Techniques for Metamodel Composition.
In: Proceedings of 6th OOPSLA Workshop on Domain-Specific Modeling (DSM’06). Com-
puter Science and Information System Reports, Technical Reports, no. 37. University of
Jyväskylä.

225



Evans, Eric. 2004. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley.

Evans, Robert B., & Savoia, Alberto. 2007. Differential testing: a new approach to change
detection. Pages 549–552 of: ESEC-FSE ’07: Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. New York, NY, USA: ACM Press.

for Standardization, International Organization. 2001. ISO 9126 Software engineering – Prod-
uct quality – Part 1: Quality model.

Fowler, Martin. 2003. Patterns of Enterprise Application Architecture. Addison-Wesley.

Fowler, Martin. 2005a. A Language Workbench in Action - MPS.

Fowler, Martin. 2005b. Language Workbenches and Model Driven Architecture.

Fowler, Martin. 2005c. Language Workbenches: The Killer-App for Domain Specific Lan-
guages?

Fowler, Martin. 2006. Specification By Example.

France, Robert, & Rumpe, Bernhard. 2007. Model-Driven Development of Complex Software:
A Research Roadmap. In: Future of Software Engineering(FOSE’07).

Freiling, F., Eusgeld, I., & Reussner, R. (eds). 2008. Dependability Metrics. Lecture Notes in
Computer Science. Springer-Verlag.

Gälli, Markus. 2006. Modeling Examples to Test and Understand Software. Ph.D. thesis,
Universität Bern.

Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlissides, John. 1995. Design Patterns:
Elements of Reusable Object-Oriented Softwar. Addison-Wesley Professional.

Geppert, Birgit, Krueger, Charles, & Li, J. Jenny (eds). 2004a. SPLiT 2004 International
Workshop on Software Product Line Testing.

Geppert, Birgit, Li, Jenny, Rößler, Frank, & Weiss, David M. 2004b. Towards Generating
Acceptance Test Cases for Product Lines. In: Proceedings of the Eighth International
Conference on Software Reuse.

Geppert, Birgit, Krueger, Charles, & Trew, Tim (eds). 2005. SPLiT 2005 2nd International
Workshop on Software Product Line Testing.

Gilb, T., Graham, D., & Finzi, S. 1993. Software Inspection. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA.

Graham, Dorothy, & Fewster, Mark (eds). 2000. Software Test Automation: Effective Use of
Test Execution Tools. Addison-Wesley.

Greenfield, Jack, & Short, Keith. 2004. Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. Wiley.

Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., & Völkel, S. 2006. MontiCore 1.0 -
Ein Framework zur Erstellung und Verarbeitung domänenspezifischer Sprachen. Tech. rept.
Technische Universität Braunschweig, Carl-Friedrich-Gauss-Fakultät für Mathematik und
Informatik.

226



Gurp, Jilles Van, Bosch, Jan, & Svahnberg, Mikael. 2001. On the Notion of Variability in
Software Product Lines. Page 45 of: WICSA ’01: Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA’01). Washington, DC, USA: IEEE Computer
Society.

Gutierrez, Javier J., Escalona, Maria J., Mejias, Manuel, & Torres, Jesus. 2006. Generation
of test cases from functional requirements. A survey. Tech. rept. Department of Computer
Languages and Systems, University of Seville.

Hannay, Jo E., Hansen, Ove, Kampenes, Vigdis By, Karahasanovic, Amela, Liborg, Nils-
Kristian, & Rekdal, Anette C. 2005. A Survey of Controlled Experiments in Software
Engineering. IEEE Trans. Softw. Eng., 31(9), 733–753. Member-Dag I. K. Sjoberg.

Harel, D., & Rumpe, B. 2004. Meaningful Modeling: What’s the Semantics of Semantics?
Computer, 37(10), 64–72.

Hartmann, Jean, Vieira, Marlon, & Ruder, Axel. 2004. A UML-based Approach for Validating
Product Lines. Pages 58–65 of: Geppert, Birgit, Krueger, Charles, & Li, Jenny (eds),
Proceedings of the International Workshop on Software Product Line Testing (SPLiT 2004).

Hasselbring, W. 1997. Federated integration of replicated information within hospitals. In-
ternational Journal on Digital Libraries, 1(3), 192–208.

Hasselbring, W. 2002a. Component–Based Software Engineering. Pages 289–305 of: Hand-
book of Software Engineering and Knowledge Engineering. World Scientific Publishing.

Hasselbring, W. 2002b. Web Data Integration for E-Commerce Applications. IEEE MULTI-
MEDIA, 16–25.

Heinold, Ehrhardt F. 2007. Virtuelle Fachbibliotheken im System der überregionalen
Literatur- und Informationsversorgung : Studie zu Angebot und Nutzung der Virtuellen
Fachbibliotheken . Tech. rept. Heinold, Spiller & Partner Unternehmensberatung.

Heinz, Sabine, & Stempfhuber, Maximilian. 2007. Eine Informationsarchitektur für wis-
senschaftliche Fachportale in vascoda. Pages 485–507 of: Oßwald, Achim, Stempfhuber,
Maximilian, & Wolff, Christian (eds), Open Innovation: neue Perspektiven im Kontext
von Information und Wissen; Beiträge des 10. internationalen Symposiums für Informa-
tionswissenschaft und der 13. Jahrestagung der IuK-Initiative Wissenschaft. Schriften zur
Informationswissenschaft.

Hellweg, H., Krause, J., Mandl, T., Marx, J., Müller, M.N.O., Mutschke, P., & Strötgen, R.
2001. Treatment of Semantic Heterogeneity in Information Retrieval. Technical Report 23.
GESIS-IZ Sozialwissenschaften.

Herrington, Jack. 2003. Code Generation in Action. Manning Publications.

Heymans, Patrick, Schobbens, Pierre-Yves, & Trigau, Jean-Christophe. 2007. Towards the
Comparative Evaluation of Feature Diagram Languages. Pages 1–16 of: Männistö, Tomi,
Niemelä, Eila, & Raatikainen, Mikko (eds), Software and Service Variability Management
Workshop - Concepts, Models, and Tools. Research Reports, no. 3. Helsinki University of
Technology, Software Business and Engineering Institute.

Hicinbothom, J. H., & Zachary, W. W. 1993. A tool for automatically generating transcripts
of human-computer interaction. Page 1042 of: Proceedings of the Human Factors and
Ergonomics Society 37th Annual Meeting.

227



Hoffman, Daniel, & Strooper, Paul. 2000. Prose + Test Cases = Specifications. Page 239
of: TOOLS ’00: Proceedings of the Technology of Object-Oriented Languages and Systems
(TOOLS 34’00). Washington, DC, USA: IEEE Computer Society.

Hohpe, G., Woolf, B., & Brown, K. 2004. Enterprise integration patterns. Addison-Wesley
Boston.

Hudak, Paul. 1996. Building domain-specific embedded languages. ACM Computing Surverys,
28(4es), 196.

Janzen, David, & Saiedian, Hossein. 2005. Test-Driven Development: Concepts, Taxonomy,
and Future Direction. Computer, 38(9), 43–50.

Juran, J.M., & Gryna, F.M. (eds). 1988. Juran’s quality control handbook. McGraw-Hill.

Kalfoglou, Y., & Schorlemmer, M. 2003. Ontology mapping: the state of the art. The
Knowledge Engineering Review, 18(01), 1–31.

Kan, Stephen H. 2002. Metrics and Models in Software Quality Engineering. 2nd edn.
Addison-Wesley Longman.

Kaner, Cem. 2003 (May 12-16). What is a good test case? In: Software Testing Analysis &
Review Conference (STAR) East.

Kaner, Cem, Bach, James, & Pettichord, Bret. 2001. Lessons Learned in Software Testing.
Wiley.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A. 1990 (November). Feature-oriented
domain analysis (FODA) feasibility study. Tech. rept. CMU/SEI-90-TR-021. Software
Engineering Institute, Carnegie-Mellon University,.

Karagiannis, Dimitris, & Kühn, Harald. 2002. Metamodelling Platforms. In: Proceedings of
the Third International Converence EC-Web.

Kettemann, Stefan, Muthig, Dirk, & Anastasopoulos, Michalis. 2003. Product Line Im-
plementation Technologies : Component Technology View. Tech. rept. IESE-Report No.
015.03/E. Fraunhofer Institut Experimentelles Software Engineering.

Kim, Chang Hwan Peter, & Czarnecki, Krzysztof. 2005. Synchronizing Cardinality-Based
Feature Models and their Specializations. Pages 331–348 of: Hartman, A., & Kreische, D.
(eds), Proceedings of European Conference on Model Driven Architecture – Foundations and
Applications (ECMDA-FA’05). Lecture Notes in Computer Science, no. 3748. Nuremberg,
Germany: Springer.

Kim, Soon-Kyeong, Wildman, Luke, & Duke, Roger. 2005. A UML Approach to the Genera-
tion of Test Sequences for Java-Based Concurrent Systems. Pages 100–109 of: Australian
Software Engineering Conference. IEEE Computer Society.

Kitchenham, Barbara A., Dyba, Tore, & Jorgensen, Magne. 2004. Evidence-Based Software
Engineering. Pages 273–281 of: ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering. Washington, DC, USA: IEEE Computer Society.

Kolb, Ronny, & Muthig, Dirk. 2006. Making testing product lines more efficient by improving
the testability of product line architectures. Pages 22–27 of: ROSATEA ’06: Proceedings
of the ISSTA 2006 workshop on Role of software architecture for testing and analysis. New
York, NY, USA: ACM Press.

Koll, M. 2000. Information Retrieval. BULLETIN-AMERICAN SOCIETY FOR INFOR-
MATION SCIENCE, 26(2), 16–17.

228



Koziolek, Heiko. 2008 (January). Parameter Dependencies for Reusable Performance Specifi-
cations of Software Components. Ph.D. thesis, Carl von Ossietzky Universität Oldenburg.

Krahn, Holger, Rumpe, Bernhard, & Völkel, Steven. 2006. Roles in Software Development
using Domain Specific Modelling Languages. In: Proceedings of 6th OOPSLA Workshop on
Domain-Specific Modeling (DSM’06). Computer Science and Information System Reports,
Technical Reports, no. 37. University of Jyväskylä.

Krause, J. 1996 (September). Informationserschliessung und -bereitstellung zwischen Dereg-
ulation, Kommerzialisierung und weltweiter Vernetzung - Schalenmodell. Tech. rept. 6.
GESIS-IZ Sozialwissenschaften.

Krause, Jürgen. 2006a. Shell Model, Semantic Web and Web Information Retrieval. Pages
95 – 106 of: Harms, Ilse, Luckhardt, Heinz-Dirk, & Giessen, Hans W. (eds), Information
und Sprache: Beiträge zu Informationswissenschaft, Computerlinguistik, Bibliothekswesen
und verwandten Fächern; Festschrift für Harald H. Zimmermann. München: Saur.

Krause, Jürgen. 2006b. Visual Interaction on the Basis of the WOB-Model. In: Rapp,
Reinhad, Seldmeier, Peter, & Zunker-Rapp, Gisela (eds), Perspectives on Cognition - A
Festschrift for Manfred Wettler. Pabst Science Publishers.

Kruchten, P. 2003. The Rational Unified Process: An Introduction. Addison-Wesley Profes-
sional.

Kulak, Daryl, & Guiney, Eamonn. 2003. Use Cases: Requirements in Context. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

Larman, Craig. 2004. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. 3rd edn. Pretentice Hall PTR.

Larman, Craig, & Basili, Victor R. 2003. Iterative and Incremental Development: A Brief
History. Computer, 36(6), 47–56.

Lewandowski, Dirk. 2007. Mit welchen Kennzahlen lässt sich die Qualität von Suchmaschinen
messen? In: Machill, Marcel, & Beiler, Markus (eds), Die Macht der Suchmaschinen /
The Power of Search Engines. Köln: Herbert von Halem Verlag.

Lewandowski, Dirk, & Hoechstoetter, Nadine. 2007. Qualitätsmessung bei Suchmaschinen:
System- und nutzerbezogene Evaluationsmaße. Informatik Spektrum, 30(3).

Li, Ping, Huynh, Toan, Reformat, Marek, & Miller, James. 2007. A practical approach to
testing GUI systems. Empirical Software Engineering, 12(4), 331 – 357.

Linzhang, Wang, Jiesong, Yuan, Xiaofeng, Yu, Jun, Hu, Xuandong, Li, & Guoliang, Zheng.
2004. Generating Test Cases from UML Activity Diagram based on Gray-Box Method.
apsec, 00, 284–291.

Loughran, Neil, Groher, Iris, & Rashid, Awais. 2006. Good Practice Guidelines for Code
Generation in Software Product Line Engineering. In: Clements, Paul, & Muthig, Dirk
(eds), Variability Management – Working with Variability Mechanisms:Proceedings of the
Workshop held in conjunction with the 10th Software Product Line Conference (SPLC-
2006).

Louridas, Panagiotis. 2006. Static Code Analysis. Software, IEEE, 23(4), 58–61.

Ludewig, Jochen. 2003. Models in software engineering – an introduction. Software and
Systems Modeling, 2, 5–14.

229



Maletic, Jonathan I., Soliman, Khalid S., Moreno, Manuel A., & Mercer, William M. 2000.
Identification of Test Cases from Business Requirements of Software Systems.

Mandl, Thomas. 2008. Automatische Bewertung der Qualität von Web-Seiten. Habilitation-
sschrift.

Manning, Christopher D., Raghavan, Prabhakar, & Schütze, Hinrich. 2008. Introduction to
Information Retrieval. Cambridge University Press.

Martens, Anne. 2007 (November). Empirical Validation of the Model-Driven Performance
Prediction Approach Palladio. M.Phil. thesis, Carl von Ossietzky Unversität Oldenburg.

Matinlassi, Mari. 2004. Comparison of Software Product Line Architecture Design Methods:
COPA, FAST, FORM, KobrA and QADA. Pages 127–136 of: ICSE ’04: Proceedings of
the 26th International Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society.

Mayr, Philipp. 2006. IZ-Arbeitsbericht Informationsangebote für das Wissenschaftsportal vas-
coda - eine Bestandsaufnahme. Tech. rept. 37. In formationszentrum Sozialwissenschaften
der Arbeitsgemeinschaft Sozialwissenschaftlicher Institute e.V. (ASI).

Mayr, Philipp, & Petras, Vivien. 2008. Cross-concordances: terminology mapping and its
effectiveness for Information Retrieval. In: IFLA World Library and Information Congress.

Mayr, Philipp, Stempfhuber, Maximilian, & Walter, Anne-Kathrin. 2005. Auf dem Weg zum
wissenschaftlichen Fachportal – Modellbildung und Integration heterogener Information-
ssammlungen. In: 27. DGI-Online-Tagung in Frankfurt am Main.

McConnell, Steve. 2004. Code Complete, Second Edition. Microsoft Press.

McGregor, John D., Sodhani, Prakash, & Madhavapeddi, Sai. 2004. Testing Variability in a
Software Product Line. In: Proceedings of the International Workshop on Software Product
Line Testing (SPLiT 2004).

McKeeman, William M. 1998. Differential Testing for Software. Digital Technical Journal,
10(1), 100–107.

McNeile, Ashley. 2003. MDA: The Vision with the Hole?

Meister, Juergen. 2006a. Produktgetriebene Entwicklung von Software-Produktlinien am
Beispiel analytischer Anwendungssoftware. Ph.D. thesis, Carl von Ossietzky Universitat
Oldenburg.

Meister, Jürgen. 2006b. Software-Produktlinien. Pages 370–393 of: Reussner, Ralf, & Has-
selbring, Wilhelm (eds), Handbuch der Software-Architektur. dpunkt.verlag.

Mellor, Stephen J., Scott, Kendall, & Uhl, Axel. 2004. MDA Distilled: Principles of Model-
Driven Architecture. Addison-Wesley.

Memon, A.M. 2001. A COMPREHENSIVE FRAMEWORK FOR TESTING GRAPHICAL
USER INTERFACES. Ph.D. thesis, University of Pittsburgh.

Memon, Atif M., Pollack, Martha E., & Soffa, Mary Lou. 2001. Hierarchical GUI Test Case
Generation Using Automated Planning. IEEE Trans. Softw. Eng., 27(2), 144–155.

Memon, Atif M., Banerjee, Ishan, & Nagarajan, Adithya. 2003. What Test Oracle Should
I Use for Effective GUI Testing? Pages 164–173 of: 18th IEEE International Conference
on Automated Software Engineering (ASE 2003), 6-10 October 2003, Montreal, Canada.
IEEE Computer Society.

230



Mernik, Marjan, Heering, Jan, & Sloane, Anthony M. 2005. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4), 316–344.

Meszaros, Gerard. 2007. xUnit Test Patterns. Addison Wesley.

Morisio, M., & Torchiano, M. 2002. Definition and Classification of COTS: A Proposal.
LECTURE NOTES IN COMPUTER SCIENCE, 165–175.

Mugridge, R., & Cunningham, W. 2005a. Agile Test Composition. Pages 137–144 of: Extreme
Programming And Agile Processes in Software Engineering: 6th International Conference,
XP 2005, Sheffield, UK. Lecture Notes in Computer Science, vol. 3556. Springer.

Mugridge, Rick. 2004. Test Driving Custom Fit Fixtures. In: Eckstein, Jutta, & Baumeister,
Hubert (eds), Extreme Programming and Agile Processes in Software Engineering 5th In-
ternational Conference XP 2004 Garmisch-Partenkirchen, Germany, June 2004. Lecture
Notes in Computer Science, vol. 3092. Springer.

Mugridge, Rick, & Cunningham, Ward. 2005b. FIT for Developing Software. Framework for
Integrated Tests. Prentice Hall PTR.

Mutschke, P. 2003. Mining Networks and Central Entities in Digital Libraries. A Graph
Theoretic Approach Applied to Co-author Networks. LECTURE NOTES IN COMPUTER
SCIENCE, 155–166.

Myers, Glenford J., Sandler, Corey, Badgett, Tom, & Thomas, Todd M. 2004. The Art of
Software Testing, Second Edition. 2nd edn. John Wiley & Sons.

Myllännistö, Varvana, & Soininen, Timo. 2005. Kumbang Configurator - A Configuration
Tool for Software Product Families. Presented at the . In: International Joint Conference
on Artificial Intelligence 2005 Configuration workshop,.

Mylopoulos, John. 2005. Goal-Oriented Requirements Engineering. apsec, 0, 3.

Nebut, Clementine, & Fleurey, Franck. 2006. Automatic Test Generation: A Use Case Driven
Approach. IEEE Trans. Softw. Eng., 32(3), 140–155. Member-Yves Le Traon and Member-
Jean-Marc Jezequel.

Neighbors, James M. 1989. Draco: A Method for Engineering Reusable Software Systems.
Pages 295–319 of: Biggerstaff, Ted J., & Perlis, Alan J. (eds), Software Reusability –
Concepts and Models, vol. I. ACM Press.

Nielsen, J. 1994. Guerrilla HCI: Using Discount Usability Engineering to Penetrate the
Intimidation Barrier. Pages 245–272 of: Bias, Randolph G., & Mayhew, Deborah J. (eds),
Cost-Justifying Usability. Morgan Kaufmann.

Nielsen, J. 2001. How to Conduct a Heuristic Evaluation.
http://www.useit.com/papers/heuristic/heuristic evaluation.html.

Norman, Donald. 2006. Why doing user observations first is wrong. interactions, 13(4), 50–ff.

of Electrical, Institute, & Staff, Electronics Engineers (eds). 1991. IEEE Computer Dictionary
- Compilation of IEEE Standard Computer Glossaries, 610-1990. Institute of Electrical
and Electronics Engineers.

Parnas, David L. 1976. On the Design and Development of Program Families. IEEE Trans-
actions on Software Engineering, 2(1), 1 – 9.

231



Patzke, Thomas, & Muthig, Dirk. 2002. Product Line Implementation Technologies : Pro-
gramming Language View. Tech. rept. IESE-Report No. 057.02/E. Fraunhofer Institut
Experimentelles Software Engineering.

Patzke, Thomas, & Muthig, Dirk. 2003. Product Line Implementation with Frame Technology:
A Case Study. Tech. rept. IESE-Report No. 018.03/E. Fraunhofer Institut Experimentelles
Software Engineering.

Pedersen, S., & Hasselbring, W. 2004. Interoperabilität für Informationssysteme im Gesund-
heitswesen auf Basis medizinischer Standards. Informatik-Forschung und Entwicklung,
18(3), 174–188.

Perry, D.E., Porter, A.A., & Votta, L.G. 2000. Empirical studies of software engineering: a
roadmap. Proceedings of the conference on The future of Software engineering, 345–355.

Petras, Vivien. 2006. Translating Dialects in Search: Mapping between Specialized Languages
of Discourse and Documentary Languages. Ph.D. thesis, University of California, Berkeley.

Petras, Vivien, Baerisch, Stefan, & Stempfhuber, Maximillian. 2007. The Domain-Specific
Track at CLEF 2007. In: Nardi, Alessandro, & Peters, Carol (eds), Working Notes for the
CLEF 2007 Workshop, 19-21 September, Budapest, Hungary.

Pilato, C. Michael, Collins-Sussman, Ben, & Fitzpatrick, Brian W. 2004. Version Control
with Subversion. O’Reilly Media.

Pohl, Klaus, & Metzger, Andreas. 2006. Software product-line testing. Communication of
the ACM, 49(12), 78–81.

Poston, Robert. 1998. Making Test Cases from Use Cases Automatically. In: Proceedings of
Quality Week Europe 1998.

Poston, Robert M. 1996. Automating Specification-Based Software Testing. Institute of
Electrical & Electronics Engineering.

Prähofer, Herbert, Hurnaus, Dominik, & Mössenböck, Hanspeter. 2006. Building End-User
Programming Systems Based on a Domain-Specific Language. In: Proceedings of 6th
OOPSLA Workshop on Domain-Specific Modeling (DSM’06). Computer Science and In-
formation System Reports, Technical Reports, no. 37. University of Jyväskylä.

Prechelt, L. 2001. Kontrollierte Experimente in der Softwaretechnik: Potenzial und Methodik.
Springer.

Prinz, Andreas, Nytun, Jan P., & Tveit, Merete S. 2006. Automatic Generation of Modelling
Tools. In: Rensink, Arend, & Warmer, Jos (eds), Model Driven Architecture - Foundations
and Applications Second European Conference, ECMDA-FA 2006 Bilbao, Spain, July 10-
13, 2006. Lecture Notes in Computer Science, no. 4066. Springer.

Punter, Teade, Ciolkowski, Marcus, Freimut, Bernd, & John, Isabel. 2003. Conducting On-
line Surveys in Software Engineering. Page 80 of: ISESE ’03: Proceedings of the 2003
International Symposium on Empirical Software Engineering. Washington, DC, USA: IEEE
Computer Society.

Quix, Christoph Josef. 2003. Metadatenverwaltung zur qualitätsorientierten Informationslo-
gistik in Data-Warehouse-Systemen. Ph.D. thesis, Rheinisch-Westfälischen Technischen
Hochschule Aachen.

Rahm, E., & Bernstein, P.A. 2001. A survey of approaches to automatic schema matching.
The VLDB Journal The International Journal on Very Large Data Bases, 10(4), 334–350.

232



Reeves, Carol A., & Bednar, David A. 1994. Defining Quality: Alternatives and Implications.
The Academy of Management Review, Special Issue: Total Quality, 19(3), 419–445.

Ricca, Filippo. 2003. Analysis, Testing and Re-structuring of Web Applications. Ph.D. thesis,
Universität Genua.

Ricca, Filippo, & Tonella, Paolo. 2001. Analysis and Testing of Web Applications. In: ICSE.

Robertson, SE, van Rijsbergen, CJ, & Porter, MF. 1980. Probabilistic models of indexing and
searching. Proceedings of the 3rd annual ACM conference on Research and development in
Information Retrieval, 35–56.

Royce, W. W. 1987. Managing the development of large software systems: concepts and
techniques. Pages 328–338 of: ICSE ’87: Proceedings of the 9th international conference
on Software Engineering. Los Alamitos, CA, USA: IEEE Computer Society Press.

Rumbaugh, James, Jacobson, Ivar, & Booch, Grady. 2004. The Unified Modeling Language
Reference Manual. 2nd edn. Addison Wesley Professional.

Ryser, Johannes. 2003. Szenariobasiertes Validieren und Testen von Softwaresystemen. Ph.D.
thesis, Wirtschaftswissenschaftliche Fakultät der Universität Zürich.

Saeki, Motoshi, & Kaiya, Haruhiko. 2006. On Relationships among Models, Meta Models
and Ontologies. In: Proceedings of 6th OOPSLA Workshop on Domain-Specific Modeling
(DSM’06). Computer Science and Information System Reports, Technical Reports, no. 37.
University of Jyväskylä.

Salton, G., & Buckley, C. 1988. Term-weighting approaches in automatic text retrieval.
Information Processing and Management: an International Journal, 24(5), 513–523.

Salton, Gerard, Fox, Edward A., & Wu, Harry. 1982. Extended Boolean Information Retrieval.
Tech. rept. Cornell University, Ithaca, NY, USA.

Schamber, L., Eisenberg, M.B., & Nilan, M.S. 1990. A re-examination of relevance: Towards a
dynamic, situational definition. Information Processing and Management, 26(6), 755–776.

Schieferdecker, Ina, Dai, Zhen Ru, Grabowski, Jens, & Rennoch, A. 2003. The UML 2.0
Testing Profile and its relation to TTCN-3. Pages 79–94 of: TestCom 2003 : testing of
communicating systems. Lecture Notes of Computer Science, vol. 2644.

Scott, Michael L. 2005. Programming Language Pragmatics. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Seifert, D., & Souquieres, J. 2008. Using UML Protocol State Machines in Conformance
Testing of Components. Tech. rept. 00274383. Institut National Polytechnique de Lorraine
Institut National Polytechnique de Lorraine.

Sensler, Carsten, Kunz, Michael, & Schnell, Peter. 2006. Testautomatisierung mit modell-
getriebener Testskript-Entwicklung. Objektspektrum, 3, 74–84.

Shvaiko, P., & Euzenat, J. 2005. A Survey of Schema-Based Matching Approaches. LEC-
TURE NOTES IN COMPUTER SCIENCE, 3730, 146.

Simonyi, Charles. 1995. The Death Of Computer Languages, The Birth of Intentional Pro-
gramming. Tech. rept. Microsoft Research.

Simonyi, Charles, Christerson, Magnus, & Clifford, Shane. 2006. Intentional software. Pages
451–464 of: OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming languages, systems, and applications. New York, NY, USA:
ACM Press.

233



Spinellis, Diomidis. 2001. Notable design patterns for domain-specific languages. The Journal
of Szstems and Software, 56, 91–99.

Spinellis, Diomidis. 2003. On the Declarative Specification of Models. IEEE Computer,
20(2), 93–95.

Stachowiak, Herbert. 1973. Allgemeine Modelltheorie. Springer, Wien.

Stahl, Thomas, & Völter, Markus. 2006. Model-Driven Software Development. Wiley & Sons.

Stempfhuber, Maximilian. 2003. Objectorientierte Dynamische Benutzungsoberflächen -
Odin:Behandlung semantischer und struktureller Heterogenität in Informationssystemen
mit den Mitteln der Softwareergonomie. Ph.D. thesis, Universität Koblenz-Landau.

Tevanlinna, Antti, Taina, Juha, & Kauppinen, Raine. 2004. Product Family Testing: a
Survey. SIGSOFT Softw. Eng. Notes, 29(2), 12–12.

Thomas, Dave. 2004. MDA: Revenge of the Modelers or UML Utopia? IEEE Softwware,
21(3), 15–17.

Thurmeier, M. 2007. Erwartungen an wissenschaftliche Fachportale : Ergebnisse einer qual-
itativen Befragung von Wissenschaftlern. Tech. rept. in to mind: Institut für Marketing-
forschung.

Tichy, Walter F. 2000. Hints for Reviewing Empirical Work in Software Engineering. Em-
pirical Softw. Engg., 5(4), 309–312.

Tichy, W.F., Lukowicz, P., Prechelt, L., & Heinz, E.A. 1995. Experimental evaluation in
computer science: A quantitative study. The Journal of Systems & Software, 28(1), 9–18.

Tolvanen, Juha-Pekka, & Kelly, Steven. 2004. Domänenspezifische Modellierung. OBJEKT-
spektrum, 04, 30–35.

Tolvanen, Juha-Pekka, & Rossi, Matti. 2003. MetaEdit+: defining and using domain-specific
modeling languages and code generators. Pages 92–93 of: OOPSLA ’03: Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. New York, NY, USA: ACM.

Tsai, Wei-Tek, Bai, Xiaoying, Paul, Raymond A., & Yu, Lian. 2001. Scenario-Based Func-
tional Regression Testing. Pages 496–501 of: Computer Software and Applications Con-
ference (COMPSAC).

Uflacker, Matthias. 2005 (Januar). Entwicklung eines Editors für die modellgetriebene Kon-
struktion komponentenbasierter Software-. M.Phil. thesis, Universität Oldenburg, Depart-
ment für Informatik.

Uhl, Axel. 2006. Model-Driven Architecture. Pages 103–128 of: Reussner, Ralf, & Hassel-
bring, Wilhelm (eds), Handbuch der Software-Architektur. dpunkt.

Utting, M., Pretschner, A., & Legeard, B. 2005. A Taxonomy of Model-Based Testing. Tech.
rept. Department of Computer Science The University of Waikato.

van Deursen, A., & Klint, P. 2002. Domain-Specific Language Design Requires Feature
Descriptions. Journal of Computing and Information Technology, 10(1), 1–17.

van Deursen, Arie, Klint, Paul, & Visser, Joost. 2000. Domain-Specific Languages: An
Annotated Bibliography. SIGPLAN Notices, 35(6), 26–36.

234



van Lamsweerde, Axel. 2001. Goal-Oriented Requirements Engineering: A Guided Tour. Page
249 of: RE ’01: Proceedings of the 5th IEEE International Symposium on Requirements
Engineering. Washington, DC, USA: IEEE Computer Society.

Voelter, Markus. 2003. A collection of Patterns for Program Generation. EuroPLoP.

Voelter, Markus, & Groher, Iris. 2007. Product Line Implementation using Aspect-Oriented
and Model-Driven Software Development. In: 11th international Software Product Line
Conference 2007.

Völter, Marcus. 2006a. Im Fokus: Sprachen, Modelle und Fabriken in der Softwareentwick-
lung. IX Magazin für Professionelle Informationstechnik, 10, 123–127.

Völter, Markus. 2005. Kaskadierung von MDSD und Modelltransformationen. JavaSpektrum,
05/2005, 05/2005, ?

Völter, Markus. 2006b. Best Practices for Model-to-Text Transformations. In: Eclipse Sum-
mit 2006 Workshop: Modeling Symposium.

Völter, Markus. 2006c. oAW xText - A framework for textual DSLs. In: Eclipse Summit
2006 Workshop: Modeling Symposium.

Völter, Markus. 2007. Domain Specific Languages : Implementation Technologies.

Voorhees, Ellen M. 2002. The Philosophy of Information Retrieval Evaluation. Pages 355–370
of: CLEF ’01: Revised Papers from the Second Workshop of the Cross-Language Evaluation
Forum on Evaluation of Cross-Language Information Retrieval Systems. London, UK:
Springer-Verlag.

Wagelaar, Dennis, & Straeten, Ragnhild Van Der. 2006. A Comparison of Configuration Tech-
niques for Refactoring and Refinement Transformations. In: Rensink, Arend, & Warmer,
Jos (eds), Model Driven Architecture - Foundations and Applications Second European Con-
ference, ECMDA-FA 2006 Bilbao, Spain, July 10-13, 2006. Lecture Notes in Computer
Science, no. 4066. Springer.

Weiss, David M., & Lai, Chi Tau Robert. 1999. Software product-line engineering: a family-
based software development process. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc.

Weiss, S.M. 2005. Text Mining: Predictive Methods for Analyzing Unstructured Information.
Springer.

Winter, Mario. 1999. Qualitätssicherung für objektorientierte Software: Anforderungsermit-
tlung und Test gegen Anforderungsspezifikationen. Ph.D. thesis, Fernuniversität Hagen.

Wohlin, Claes, Runeson, Per, Hoest, Martin, Ohlsson, Magnus, Regnell, Björn, & Wesslen,
Anders. 2000. Experimentation in Software Engineering : An Introduction. Kluwer Aca-
demic Publishers.

Womser-Hacker, Christa. 2006. An Information Retrieval Prototype for Research and Teach-
ing. Pages 85–101 of: Eibl, Maximilian, Wolff, Christian, & Womser-Hacker, Christa (eds),
Designing Information Systems: Festschrift für Jürgen Krause. Schriften zur Information-
swissenschaft, vol. 43. Hochschulverband für Informationswissenschaft.

Zelkowitz, MV, & Wallace, DR. 1998. Experimental models for validating technology. Com-
puter, 31(5), 23–31.

Zeller, A. 2005. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA.

235



Zeng, M.L., & Chan, L.M. 2004. Trends and issues in establishing interoperability among
knowledge organization systems. Journal of the American Society for Information Science
and Technology, 55(5), 377–395.

Zhu, Hong, Hall, Patrick A. V., & May, John H. R. 1997. Software Unit Test Coverage and
Adequacy. ACM Comput. Surv., 29(4), 366–427.

Zubrow, D. 1998. Measurement with a Focus: Goal-Driven Software Measurement.
CROSSTALK: The journal of Defense Software Engineering.

236


	1 Motivation and Background
	1.1 Testing and Quality
	1.1.1 Testing in Quality Assurance
	1.1.2 The Goal of Testing
	1.1.3 Dimensions of Testing
	1.1.4 Test Automation
	1.1.5 Testing System Families
	1.1.6 Acceptance Tests and the Inclusion of Domain Experts

	1.2 Motivation
	1.2.1 Digital Libraries
	1.2.2 Motivation for the MTCC Approach
	1.2.3 Hypothesis and Research Question

	1.3 Model-Driven Test Case Construction
	1.3.1 MTCC Tests Categories for Digital Libraries
	1.3.2 Overview of the MTCC Approach
	1.3.3 Phases and Activities in the MTCC
	1.3.4 Modeling of Systems and Tests in MTCC
	1.3.5 Test Code Generation
	1.3.6 Test Execution

	1.4 Structure of the Thesis
	1.5 Chapter Summary

	I Foundations
	2 Testing of Software
	2.1 Testing and Software Quality
	2.1.1 Software Quality
	2.1.2 Definition of Testing
	2.1.3 Automated Testing

	2.2 Acceptance Testing
	2.2.1 Testing by Domain Experts
	2.2.2 Types of Involvement

	2.3 Quality of Test Automation
	2.3.1 Quality of Requirements and Quality of Tests
	2.3.2 Software Quality Attributes Applied to Test Software

	2.4 Chapter Summary

	3 Use of Models in Software Engineering
	3.1 Roles and Properties of Models
	3.1.1 Attributes of Models
	3.1.2 Types of Models

	3.2 Model-Driven Software Development
	3.2.1 Generation of Implementations
	3.2.2 Models and Programming Languages

	3.3 Model-Driven Testing
	3.3.1 Types of Model-Driven Testing
	3.3.2 Relation to MTCC

	3.4 Chapter Summary

	4 System Families and Variability
	4.1 Variability in Software Engineering
	4.1.1 Analysis and Scoping of a Product Line
	4.1.2 Variability and System Family Testing

	4.2 Feature Modeling
	4.2.1 Structure of Feature Models
	4.2.2 Configuration and Specialization of Feature Models

	4.3 Testing of System Families
	4.4 Chapter Summary

	5 Information Retrieval and Digital Libraries
	5.1 Information Retrieval
	5.1.1 Purpose of Information Retrieval
	5.1.2 Concepts and Methods of Information Retrieval
	5.1.3 Evaluation for Information Retrieval

	5.2 Digital Libraries
	5.2.1 Structural and Semantic Heterogeneity
	5.2.2 User-oriented Quality of Digital Libraries
	5.2.3 Testing of Digital Libraries with MTCC

	5.3 Chapter Summary


	II Model-Driven Test Case Construction
	6 The MTCC Approach
	6.1 The MTCC Process
	6.1.1 Roles and Relation to Software Development
	6.1.2 Modeling of the Domain and Individual Systems
	6.1.3 Composition of Models
	6.1.4 Modeling of Test Configurations
	6.1.5 Test Script Generation and Execution

	6.2 Overview of the MTCC Models
	6.2.1 Domain Level Models
	6.2.2 System-Level Models
	6.2.3 Test-level Models
	6.2.4 Relationship of MTCC Models to the MDA

	6.3 Chapter Summary

	7 Models for System and Test Representation
	7.1 Models for the Behavior of a Testee
	7.1.1 Structure of the MTCC Behavior Models
	7.1.2 Concepts and Structure of the Application State Model
	7.1.3 Test-level Behavioral Models

	7.2 Feature Models for System and Test Representation
	7.2.1 Feature Modeling in MTCC
	7.2.2 Modeling of Test-Relevant Services
	7.2.3 Representation of Test Steps

	7.3 Composition of the Application Test Model
	7.3.1 Purpose of the Composition Process and the Application Test Model
	7.3.2 The Composition Process

	7.4 Chapter Summary

	8 Application of MTCC Models
	8.1 Representation of Test Steps in the Editor
	8.1.1 Overview of the MTCC Editor
	8.1.2 Construction of Tests from Test Step Instances
	8.1.3 Representation of a Test Step Instance by GUI Elements

	8.2 Configuration of Test Models
	8.2.1 Representation of Specialization Steps as Configuration Nodes
	8.2.2 Implementation of Configuration Nodes
	8.2.3 Application of Configuration Objects

	8.3 Reuse of Tests
	8.3.1 Transfer of Test Step Sequences
	8.3.2 Transfer of Test Step Configurations
	8.3.3 Limitations of Test Reuse

	8.4 Test Execution based on Test Configuration Instances
	8.4.1 Transformation of Test Configuration Instances
	8.4.2 Test Case Generation

	8.5 Chapter Summary

	9 Application of MTCC to the Digital Library Domain
	9.1 A System Family of Digital Libraries
	9.1.1 Sowiport
	9.1.2 infoconnex
	9.1.3 IREON
	9.1.4 GESIS Solr Installation

	9.2 Test-Relevant Services and Test Steps
	9.2.1 Manipulation of the SUT
	9.2.2 Verification of the Testee

	9.3 Generic Services
	9.3.1 System-independent Services
	9.3.2 Domain-independent Services

	9.4 Domain-Specific Services
	9.4.1 The SEARCH Service
	9.4.2 The SEARCH_OPTIONS Service
	9.4.3 The REQUEST_INFORMATION Service
	9.4.4 The DOCUMENT_LIST Service
	9.4.5 The MARKED_DOCUMENT_HANDLER Service
	9.4.6 The ORDERING Service
	9.4.7 The DOCUMENT_LINKS Service
	9.4.8 The PAGINATION Service
	9.4.9 The NAVIGATOR_LIST Service

	9.5 Chapter Summary


	III Validation
	10 Validation Goals and Design
	10.1 Validation in Software Engineering
	10.1.1 Reasons for Validation
	10.1.2 Challenges to Validation
	10.1.3 Validation Methods

	10.2 Goals and Questions of the MTCC Validation
	10.2.1 Hypothesis
	10.2.2 Basic Assumptions of MTCC
	10.2.3 Goal of the Validation
	10.2.4 Validation of Testing Approaches

	10.3 GQM Application for MTCC
	10.3.1 Systems and Test Sets
	10.3.2 Q1: Capability to Represent Tests
	10.3.3 Q2: Executability of MTCC Test Configurations
	10.3.4 Q3: Reuse of Test Configurations
	10.3.5 Q4: Practicality and Understandability of MTCC 
	10.3.6 Q5 Efficiency of MTCC

	10.4 Chapter Summary

	11 Results of the Validation
	11.1 Participants in the MTCC Validation
	11.2 The Prototype of the MTCC Editor
	11.3 Considered Systems
	11.4 Capability to Represent Tests
	11.5 Validation of the Executability
	11.6 Validation of Reusability
	11.6.1 Validation of the Usability
	11.6.2 Validation of the Efficiency

	11.7 Interpretation of the Validation
	11.7.1 Robustness of the Validation
	11.7.2 Feasibility of MTCC
	11.7.3 Usability of MTCC
	11.7.4 Efficiency of MTCC

	11.8 Chapter Summary

	12 Related Work
	12.1 Testing Based on Usage Scenarios
	12.1.1 The SCENT Approach
	12.1.2 The Eg Approach

	12.2 Modeling of Tests
	12.2.1 UML 2.0 Testing Profile
	12.2.2 Model-Driven Test Development

	12.3 Abstract Representation of User-Interfaces
	12.3.1 Representation of GUIs
	12.3.2 Modeling of Web Applications

	12.4 Testing of System Families
	12.4.1 Testing of Software Product Lines
	12.4.2 Condron's TADE Approach

	12.5 Involvement of Domain Experts in Software Development
	12.5.1 End User Programming
	12.5.2 FIT

	12.6 Novelty of MTCC
	12.7 Chapter Summary


	IV Conclusion
	13 Summary and Contributions
	13.1 Summary
	13.1.1 The MTCC Approach
	13.1.2 Applying MTCC to a System Family of Digital Libraries
	13.1.3 Implementation
	13.1.4 Validation

	13.2 Contributions

	14 Outlook and Conclusion
	14.1 Future Work
	14.1.1 Additional Validation
	14.1.2 Additions to the MTCC Approach

	14.2 Concluding Remarks 


	Appendix
	A Test Sets
	Test Set TS1
	Test Set TS2
	Test Set TS3a
	Test Set TS3b
	Test Set TS4a
	Test Set TS4b
	Test Set TS5

	B MTCC Editor Handbuch
	Grundlegende Konzepte
	Eindeutigkeit von Tests
	Automatisierung von Tests
	Konzepte des Editors

	Verwendung des Editors
	Ablauf der Testkonstruktion
	Verwendung von Testschritten
	Speichern und Laden von Tests
	Empfehlungen zur Testmodellierung

	Verfügbare Testschritte
	Aktionen auf dem zu Testenden System
	Statische Links zwischen Seiten
	Absetzen von Suchanfragen
	Ändern der Sortierung
	Verwendung von Navigatoren
	Verweise aus Dokumenten
	Öffnen der Detailansicht

	Verwendung von Variablen
	Belegen von Variablen
	Vergleich von Variablen

	Beispiele
	Vergleich von Suchergebnissen
	Test der Navigatoren
	Kontrolle der Detailansicht


	Glossary
	Index
	Bibliography

